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TASK-LEVEL PROGRAMMING WITH COLLISION 
A VOIDANCE FOR AUTONOMOUS SPACE ROBOTS 
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Abstract. The reasons for integrating collision aVOiding path planning into a task-level programmable 
multi-sensor robot system are put forward. The underlying system architecture and the specific approaches 
for environment modelling, task planning and path planning are discussed. Task planning is performed 
using a rule based expert system and a frame representation of relevant environment data. Path planning 
is based on a configuration-space approach with a fast new algorithm for obstacle transformation. Results 
gained from experimental laboratory work are presented and show some advantages and problems of the 
entire system. 
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INTRODUCTION 

In this paper two major problems of orbital robot 
system autonomy, facilitated task-level program
ming and real-time collision aVOiding path plan
ning are discussed and an integrated solution is 
put forward. Task-level specification of system 
behaviour is a key issue serving the reduction of 
data transfer bandwidth requirements. The under
lying idea is that when manipulating within the 
space environment a ground or astronaut operator 
merely has to state the system's handling objectives 
in a more or less abstract fashion leaving the 
planning of details and the entire execution train 
to the control system. One necessary feature of a 
partly autonomous action planner is the ability to 
generate collision-free trajectories for the manipu
lator including the consideration of real-time vary
ing environments. Extensive theoretical and experi
mental lab work has shown collision avoiding path 
planning in a cluttered environment to be a con
siderable problem of its own. The existence of a 
real-time path planner therefore greatly alleviates 
the burden the general robot control system's 
strategic and planning level has le carry. Alterna
tive approaches suggest disjunct use of the work
space by separate manipulators (Cheng, 1991) and 
tackle the problem of single manipulator collision 
avoidance by explicit environment and task design. 
Comparable approaches (Lozano-Perez, 1989) 
have only limited real-time capabilities or have so 
far not been demonstrated in an integrated system 
featuring task-level programming. 
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SYSTEM DESIGN 

The functionality of the entire system has been 
distributed on a server and a client level named in 
analogy to the X-windows terminology (Nye 1989) 
for modularity reasons. Major benefit of this sub
division scheme is that improvements can be added 
on either side of the layer interface without inter
fering with the other side's integrity. The task-level 
programming features belong to the strategy and 
planning (S&P) "cl ient" level and have been tested 
with an existing system for knowledge based 
assembly shortly sketched in the following section. 
Collision avoidance is considered a feature of gen
eral use and was consequently integrated into the 
action execution "server" level. 

Task-level programming 

The aim of using a higher language task specifica
tion of programming language is to facilitate the 
man-machine communication by adapting the 
machine's level of data processing in some sort to 
the common way humans think. Computers need 
formal languages to process and can only work on 
a restricted vocabulary. Humans on the contrary 
like to express their intentions individually and can 
handle multiple modes of expression and even 
syntactically wrong sentences. For the purpose of 
high level commanding a multi-sensor robot sys
tem we defined a formal language frame permit-
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ting the usage of near to natural language con
structs with a simple syntax and individual word
ing. We call the task-level commands "operations" 
whereas the more primitive actor motions or sen
sor functions are referred to as "(elementary) 
actions". An "operation" consists of three elements 
answering the following questions: 
a) What is to be done? - the operator, b) Which 
tool shall be used? - the gripped object and c) 
Where is the focus of attention for this operation? 
- the target object. Thus, an operation reads e.g. 
"put, probe_I, freezer". A series of operations is 
put into a list called the Assembly Plan or Oper
ation Plan. This list is given to the S&P modules 
for processing. These modules have to bridge the 
gap between the action and the command level. 
The action level integrates a number of services 
provided for the S&P layer such as elementary 
robot and gripper motions configurable with paral
lel sensor (eg. force-) control and observation 
modes. When a motion finishes, a batch of current 
sensor data (e.g. wrist forces/torques, robot & 
gripper positions, grip force and Object pre
sence/slip information) are gathered and prepro
cessed. Together with action state information (e.g. 
that a motion was stopped due to contact detec
tion) this batch is transferred back to the S&P 
level. 
The coarse task-level operations are split up by the 
S&P modules into a series of subordinate actions 
according to the initial state and the intermediate 
sensor data readings. This subdivision answers to 
a) Which component (actor/sensor) will carry out 
the following action?, b) Which specific action 
type is necessary? and c) Which are the appropri
ate parameters for the action? Following the 
action execution its result must be classified based 
on the sensor readings and execution state infor
mation. If a deviation from the intended course of 
execution is detected, corrective measures have to 
be taken. This means, the selection of the next 
action is based on the intermediate state gener
ated. 
The problems involved include logical planning 
and classification. We used expert system technol
ogy to further structure the S&P level. One key 
aspect in conjunction with expert systems is the 
separation of knowledge from the knowledge pro
cessor or inference engine. The knowledge is sub
divided twofold into factual vs. strategic on the 
one hand and static vs. dynamic or time-varying on 
the other. Static factual knowledge subsumes the 
naming, fixed characteristics and hierarchical struc
ture of the environment Objects. Dynamic facts 
comprise position information, system generated 
symbolic states and information about mechanical 
and logical Object interconnections subject to 
change due to robot handling. StrategiC knowledge 
is represented as production rules of the form 
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IF (the robot is in approach position of probe_I) 
and (the gripper is closed) 

THEN (open the gripper) 

The set of conditions and actions implemented for 
system control, planning and classification adapts 
the application independent forward chaining rule 
processing mechanism to the problem domain. 

Implementation 

The task-level robot programming system WISMO 
developed at TH Darmstadt (Simon, 1991) fea
tures frame-based hierarchical Object modelling 
and a production rule based cyclic planning and 
execution control algorithm. Rules are used in 
every step of this cycle: manipulator/sensor action 
type selection, parameter calculation, system state 
classification after action execution and environ
ment model updates. The system thus emulates a 
planning-acting-perception cycle. The WISMO 
architecture is shown in Fig. !. 

• •.••• : ••• · •• ·· l)serll)t~~ ·.·.>:·:: : ·:· ··· . 

Knowlege Base 

Inference Engine 

: A<ifQ~Lev~1 > > • 
> > tni~rta~ > > . ................ 

Fig. 1: WISMO architecture (Simon 1991) 

A WISMO environment Object is represented as a 
collection of positions relative to a reference 
coordinate frame in work space together with 
appropriate handling information. The positions 
are of predefined type (eg. denoting reference to 
world or Object coordinates, defining tool correc
tions or part-of relations) in order to enable auto
matic algorithmic handling. The manipulation 
states of robot, gripper and Objects are expressed 
using a predefined set of symbolic attribute-value 
pairs that the system classification component is 
able to deal with. Data reduction was achieved by 
superimposing a class hierarchy and an inheritance 
scheme for pOSitions and attributes. 
Knowledge transfer to WISMO is performed in 
three steps: First, a rough outline of the course of 
action is laid down as a list of operations, e.g. 
"mate, peg_I, hOle_3". In a second step, the Objects 
involved have to be modelled and their relevant 
position and attribute data have to be obtained. 
Thirdly, the operator interactively specifies which 



concrete manipulator actions he wishes the system 
to perform given the operations. A recording mod
ule memorizes the initial symbolic system state and 
the actions/parameters commanded and transforms 
both into action and parameter planning rules 
which consequently enable the system to reperform 
the planning shown by the human instructor. 
Another positive aspect lies in the instruction 
mode's basic strategy to fasten the strategies told 
only to the classes of the objects involved. By this 
means basic substrategies like peg-in-hole mating 
or screwing must be instructed only once and are 
automatically remembered by the system given a 
similar problem. Using this simple machine learn
ing approach the tedious ·process of manually fill
ing the system's rule base is reduced. 

Collision avoidance 

A very important feature of a task-level pro
grammable robot sytem is autonomous collision
free path planning. Such a component frees the 
task planner from geometrical considerations con
cerning the robot's movement: Provided that such 
a component exists, it is sufficient to command 
target configurations with respect to the given 
taSk, for example the position of an Object which 
should be grasped. The path-planner computes 
automatically a movement which guides the system 
to the target position. 

However, in order to render the problem hand
able, the following classification of the overall 
manipulator movements is advantageous: For 
Objects which have to be handled, we define a 
pre-position from which the grip configuration can 
be approached collision-free under all circum
stances (Kegel, 1990). Then, the manipulator 
movements decompose into three parts: gross 
motions between pre-positions, fine motions 
between pre-positions and grip pOSitions and, 
finally, the gripping act itself. 

In order to ensure the t1exibility of such a robot 
system especially in dynamically varying environ
ments the path planner has to work online. 
Therefore on the one hand the internal model of 
the environment has to be updated whenever a 
change occurs and on the other hand the computa
tion of the further movement must be very fast. To 
attain this goal an internal model of the environ
ment is described in configuration-space (c-space), 
which is the space of all kinematically possible 
configurations of the robot. All configurations 
which cannot be reached without collision between 
robot and an environment obstacle are marked as 
forbidden. Main advantage of the c-space model is 
a fast collision-test for the robot which can be 
performed by a single read access to the c-space. 
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Due to this fact a very efficient path-planning is 
possible. Unfortunately, the transformation of 
Objects given in work-space coordinates into 
c-space needs much computational expense. In 
order to reduce this time considerably some 
special algorithms were developed, which are 
described im more detail in the next section. 

Representation of environment 

Mapping Objects given in work-space coordinates 
into c-space is a very time-consuming task, espe
cially when considering the complex shape of the 
robots links not only by simple envelope-bodies. 
Most approaches use recursive algorithms (Gouze
nes, 1984), which start at the first link of the robot 
and determine the collision interval when moving 
the link. To avoid this on-line collision check we 
developed a new method. Therein the correspon
dence between work-space and c-space is stored in 
a look-up-table, which is called OCMEM-table. 
This concept is based on a discretization of work
space as well as c-space into elementary cells. Fig
ure 2 shows all the positions V ,(e), which can not 
be reached by the robots tool-center point (TCP) 
without a collision between the robot and such an 
elementary cell e. Thereby the orientation of the 
robots hand and a possible load is fixed and the 
TCP is defined as the intersection point of the 
three hand-axes. Thus a TCP-position com
plemented by the kinematic state corresponds to a 
specific shape of the robot. To store the corres
pondence between e and V.(e) in a look-uptable is 
the basic idea of OCMEM. Because the table entry 
does not depend on the actual environment but 
only on the size of the elementary cells, the table 
can be calculated with an off-line procedure. 

:-----. work-s pace 

Fig. 2: The elementary work-space cell e causes 
the not collision-free reachable region V .(e) 
(=OCMEM lookup-table) in c-space. 

For mapping an Object 0 in real-time to c-space in 
the first instance it has to be discretized into ele
mentary cells like 



In the next step the OCMEM table is applied to 
every cell e j and the corresponding forbidden 
regions in c-space are superposed. Thus the not 
collision-free reachable region C(O) with respect 
to the object 0 is calculated via 

The principle of this transformation is illustrated 
in fig. 3. The object 0 is discrctized into 3 elemen
tary cells (a). The OCMEM table contains for each 
elementary cell e j the non-reachable c-space 
regions Va(e j ) (b), which are superposed to get the 
whole forbidden part of the c-space C(O).Because 

(a) (b) (c) 

Fig. 3: Mapping the object 0 to c-space. (a) Dis
cretization of object O. (b) Determination of the 
forbidden c-space regions for each elementary-cell. 
(c) Superposition of these regions. 

of rotational symmetry with respect to the z-axb 
the TCP-position is described using cylindrical 
coordinates (r,cp,z). With a dimension of the ele
mentary cell e of 5cm x 5cm x 2° the size of the 
OCMEM table would be in the range of 100 
Megabytes, which today cannot be realized on 
standard hardware. To make this concept appli
cable to an industrial robot system some special 
techniques have to be used in order to reduce the 
size of the OCMEM table as well as to speed up 
the mapping. Therefore the symmetry of the work
space according to the z-axis is used, which results 
in a considerable reduction of size. For the 
example discussed above we achieve a reduction 
factor of 180. By additionally using a difference
coding teChnique which is described in (Adolphs, 
1990) a very short mapping time is achieved. 
By using this approach all Objects, whose position 
is known before the robot movement starts, can be 
mapped to the c-space. This task can be performed 
in a few seconds. But moreover changes in the 
environment which occur while the robot is mov
ing have to be considered for the internal model. 
For this purpose an extension of the 
OCMEM-concept described so far for moving 
obstacles was developed which cannot be discussed 
here. A description is given in (Adolphs, 1992). 
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Path-planning 

The shortly discussed method for modelling 
obs tacles into the c-space is well suited to apply 
many of the well-known global path-planning 
methods. To achieve fast computation we devel
oped a special path -planning algorithm which is 
based on the distance-field approach, but includes 
some heuristical motivated enhancement. 

Low computational expense is reached by utili z
ation of special limitations. These limitations are: 

1. Restriction to two directions for searching the 
path 
(a) 

(b) 

random search within a r,z-slice of 
c-space 
search in cp-direction 

2. Priority on finding one possible path, not 
necessarily the optimal one. 

This results in a very fast algorithm which is able 
to find semi-optimal paths. It is specially appropri
ate to meet the online requirement. 
Fig. 4 illustrates the principles of this MINPOT 
algorithm in more detail. The figure shows a 
2-dimensional z,cp-slice with constant r-coordinate 
in the c-space described in cylindrical coordinates. 
This simplification is made for better illustration 
only, all the algorithms are implemented for three 
dimensions (including the r-coordinate). The 
hatched area denotes the non-reachable regions in 
c-space. Starting at the target cell (T) a distance 
field is generated within the target sector. The 
cells with the same cp-coordinate as the target cell 
(target sector) get a distance value, which describes 
the distance to the target cell. Thus the neighbour
ing cells get the value 1, the neighbours of these 
cells the value 2 and so on. The generation of the 
distance field in that manner is related to the type 
(a) search discussed above. 

Z target-sector start-sector 

linear expansion 

Fig. 4: Basic idea of MINPOT-algorithm. 

Every cell that gets a distance value while expand
ing the field serves as a starting cell for a linear 



expansion in rp-direction. For the example of fig. 4 
the linear expansion is successful in the third step 
of expansion, because the start-sector is reached 
first in this case. Now the generation of the dis
tance field continues beginning with the cell in the 
start-sector which was reached first. 
For more complex environments the algorithm has 
special strategies for the case that the startsector 
cannot be reached in the first step: Additional 
sectors for expansion of the distance field are 
located between start- und target-sector automati
cally. 
The path can be found by following the negative 
gradient of the distance field starting with the 
start-cell. The path found is highlighted in fig. 4 by 
the grey area. 

Sensor-systems 

Besides the fast algorithms for modelling and 
path-planning, sensor systems are needed which 
are able to survey the environment in real time. 
To limit the hardware expense of such systems we 
use a hierarchical classification of the Objects: 
Objects whose position in the environment is fixed 
are modelled in advance. Thus the sensor systems 
can concentrate on changes within the work-cell. 
AI; an example for demonstrating the real-time 
capabilities of the path-planning module an infra
red-radar sensor was integrated, which surveys a 
table. When an additional obstacle is put on the 
table this sensor determines the current position of 
the Object and sends the geometrical data of this 
obstacle to the path-planning processor. The robot 
avoids such obstacles automatically without inter
rupting its motion. 

Inte!.'.ration 

One main aspect of the work presented in this 
paper is the integration of taSk-planner and path 
planner in a modular manner. Fig. 5 shows how 
thi ~ ini cgration \\:J~ 

generates commands 
following way: 

:,:bed T he \a~k ;· 1:::· .:,; 
which are classified in the 

(1) motion commands with collision avoidance 
for gross motions 

(2) motion commands without collision avoid
ance for fine motions 

(3) gripper and/or manipulation commands 

Gross motions (1) which implicate long sweeps to 

a target configuration are given to the path 
planner first. It generates a sequence of intermedi
ate points which describe the collision free path. 
Commands of type (2) are transferred directly to 
the RCM 3D commercial robot control unit. Com-
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mands belonging to the third type are sent to and 
are autonomously executed by the gripper control 
unit. 
By means of integrating sensors into the system 
the environment can be monitored online: infor
mation about the Objects handled is generated by 
the gripper sensors and fed back to the task 
planner. On the other hand, sensors surveying the 
work space directly provide the path planner with 
data for updating its internal world model. 

P&:~~ P er 

Fig. 5: System hardware structure 

Experiments 

The entire system has been verified in ground
based experiments and continues to be used. In the 
course of system build-up a MANUTEC R3 robot 
connected to a Siemens RCM-3D control unit was 
augmented by the components discussed (cf. Fig.5). 
For the sake of modularity task planner, path 
planner, gripper-control unit and coordinating unit 
are implemented on separate hardware. This per
mits modifying the setup with respect to the speci
fic task. For instance, the adaptation to different 
grippers (we used a parallel jaw gripper and a 
three-fingered gripper as well) or different sensors 
for surveying the environment is possible. 

Task specification 

"I hc i:.', <J c l~ ! :;~ ~!j'ld ~r"f'·l<.i i "r . ...:!-'I .. ~T. ~ · J":'t: pcscJ 
turned out to be elfenivc in a series of lab setups 
including the handling of a satellite mOCk-up 
(Matthiesen 92) and several small assemblies. The 
time for implementing an assembly consisting of 
60 operations, 12 Objects and including strategies 
such as tool handling and screwing was about two 
weeks. Students unfamiliar with the robot environ
ment and the expert system approach were able to 
use the system after about a week of training. 
Experience showed, however, that by instruction in 
general too many simple rules are generated. This 
results from the underlying assumption that every 
planning step has its own specific reason which in 
fact turns out to be rarely true. Debugging large 
rule domains is time consuming and requires a 



degree of expertise the target system user is not 
expected to own. Taking into account, in addition, 
that planning rules represent links of a decision 
graph we will further investigate into using a graph 
representation for planning. 
Some difficulty also arose from the approach not 
to hother the instructor with the situation specific 
interpretation of sensor data. One way to cope 
with this reyuirement we went I~ tu use s,andard 
attrihutes for class ifying the situation ~ueh as the 
symholic rohot position and gripper state (open, 
closed, object gripped etc.). However, the evalu
ation of any action's success is tricky on such pre
mises and further work has to be invested in this 
area. 
Finally. the geometrical modelling should be sup
ported hy CAD techniques and in the same step 
more geometrical Object information should he 
supplied in order to enahle more complex sensor 
data interpretation and knowledge based updates 
of the collision avoiding path planner's Object 
database. 

Path-planner 

The algorithms for modelling the environment and 
path-planning were implemented on a INTEL iK60 
processor running with 32 MHz. Using this pro
cessor the calculation of internal world model as 
well as path-planning is accelerated by a factor of 
10-15 with respect to a former implementation on 
R0386 (16 MHz) hardware. 
A reasonahle compromise hetween low computa
tj ( ,q lime :1nd ?( '\.'t.lr : 'l", ' '~('ll ' d ~',\ :h 'hi l'\Td h\':~ (" i·/~.' 

of elementary cells of Scm x 5cm x 2e
• which wa~ 

evaluated with a lot of simulations. The mapping 
of an additional obstacle into the c-space model 
need 50-WO msec. depending on the size and the 
position of the ohject. A global path-planning with 
respect to whole model of environment Gln he 
performed in IS-lOO msec.. Thereby the computa
tion time highly depends on the length of the path 
which has to be computed. Fortunately the time 
for path-planning does not increase for more com
plex environments. It depends on the path-length 
and the size of elernen tar\' cells onlY. . . 

CONCLUSION 

An autonomous multi-sensor robot system was 
discussed which Gln be programmed using task
level instructiom. In this context the capability to 
automatically generate collision-free rohot trajec
tories complemented with suitable environment 
ol1stade sensing and local dexterity by using t1ex
ible multi-sensor grippers plays an important role. 
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