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ABSTRACT Learning control systems are expected to have several advantages over 
conventional approaches when dealing with complex, high-dimensional processes. 
One example is the task of controlling grasping operations of a multifingered, mul­
tijoined robot gripper, which has been designed and implemented at our robotics 
lab (the Darmstadt-Hand). The Advanced Gripper Control with Learning Algo­
rithms -AGRICOLA- presented in this paper is able to maintain a stable grasp even 
if disturbances are applied. Also it works for objects of different sizes for which the 
grasping has not been learned. Compared to the conventional stiffness approach the 
performance of the learning system is equal but the design is much easier, since less 
knowledge about the gripper-hardware has to be taken into account . The main part 
of the learning control loop is an associative memory storing the grasping behaviour 
as determined by the choice of an objective function. 
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INTRODUCTION 

Within the last years industrial robots played 
a major role in industrial automation and their 
increasing flexibility showed new ways for auto­
mated assembly. In order to improve the ma­
nipulation capabilities of todays robots several 
dextrous hands have been developed as research 
tools. 

In contrast to standard robot effectors like e.g. 
two-fingered grippers the multifingered robot 
hands are able to grasp a large variety of differ­
ently shaped objects and to make small changes 
to orientation and position without moving the 
whole manipulator. Thus a robot equipped 
with it operates much more flexible and is able 
to imitate human dextrous manipulation . Ne­
vertheless, the increased flexibility is accompa­
nied by an increased complexity of the control 
system, since these grippers are highly nonlin­
ear systems with a large number of inputs and 
outputs. The implementation of conventional 
control algorithms (e.g. Salisbury and Mason 
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(1985)) requires detailed knowledge about me­
chanical design and the dynamics of the grip­
per in order to determine precompensation fac­
tors for the decoupling of position- and torque­
control loops. On the other hand learning con­
trol loops have proven to be applicable for the 
control of nonlinear unknown or only partially 
known systems. Therefore a gripper control sys­
tem has been designed at which grasping oper­
ations are controlled exclusively by associative 
memories and learning control loops (fig. 3) . 

The paper is organized as follows : After a short 
description of the implemented gripper hard­
ware we introduce to the neurobiologically mo­
tivated Associative Memory System AMS, an 
enhanced version of the CMAC. Then the learn­
ing coordination of the three fingered gripper by 
applying incremental actions is discussed and 
some results are given which have been car­
ried out using the Darmstadt-Hand (Paetsch 
and Kaneko, 1990). The paper concludes with 
some statements concerning the efficiency of the 
learning approach and further research topics . 
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BASICS 

Gripper System 

The O-version gripper system used for the ex­
periments was developed and built at the Tech­
nical University of Darmstadt (Germany) . It 
is a three fingered tendon driven gripper with 
three joints per finger, see fig . 7. Each joint 
has a joint torque sensor as well as a joint po­
sition sensor. Therefore joint torque and joint 
position control loops can be set up . A simpli­
fied blockdiagram of a conventional joint torque 
control for one finger is shown in fig . 1. 

The input values are the desired joint torques 
and the output values are the actual joint 
torques. The innermost blocks represent the 
dynamic behavior of the DC-motors. The non­
linear block in each joint control loop describes 
the effects within the bowden wires which under 
certain circumstances produces stability prob­
lems in the control loops. 

Because of the wire guiding within each finger 
there exist some coupling effects between the 
control loops. These coupling effects are rep­
resented by the factors Kpij (i,j E [1, ... ,3]) . 
The factor Kp12 for example means that joint 
two will move (joint angle Oj2) when a motion 
in joint one (joint angle Ojl) appears. A sec­
ond type of coupling is a torque coupling repre­
sented by the factor Kt32 for example, which 
means that if a certain torque is applied in 
joint three an additional joint torque, beside the 
regular torque transmitted by radial forces in 
the joint bearings, is produced in joint two be­
cause of the wire guiding. The respective decou­
pling blocks are represented by K/cpij and K/Ctij 

(i, j E [1, . .. ,3]) . Every conventional control 
has to decouple the joint loops because other­
wise the fingers have a very different behaviour 
in the different directions in cartesian space due 
to the kinematic coupling effects. This would 
lead to large problems in stable grasping un­
der disturbance forces because the finger motion 
due to a disturbance force is sometimes ampli­
fied by the kinematic coupling effects so that the 
fingers can loose the grasped object. Therefore 
the coupling effects have to be considered. 

One can see that the gripper is a comparatively 
complex, nonlinear process therefore being a 
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good canidate for applying a learning control 
scheme 

Learning Elements 

The Associative Memory System AMS dis­
cussed below is a suitable system for storing 
a nonlinear input-output relationship and for 
a fast recall of the stored information. AMS 
is conceptually based on CMAC (Cerebellar 
Model Articulation Controller), which was orig­
inally proposed by Albus (1975) as a model for 
information processing in the human cerebellar 
cortex. 

adlu,Iallle weights 

Figure 2: The basic mapping mechanism of 
AMS 

AMS can be represented mathematically by the 
overall mapping (see fig. 2) 

f: (1) 

where! is an n-dimensional input vector (stim­
ulus) and!:. is an m-dimensional output vec­
tor (response). An encoding procedure selects 
a constant number of cells (memory locations) p 
ou t of p (p ~ p) memory cells depending on the 
contents of the input information!. The output 
value is determined by the mean value of the 
p selected memory locations (active weights) . 
During the learning phase (training), the gen­
erated output f is compared with a desired out­
put !:.. The correction value (r - f) can then be 
determined and added to each active weight. 
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Figure 1: Simplified blockdiagram of the joint torque control for one finger 

One of the characteristics of the encoding mech­
anism is that similar input vectors are mapped 
to similar sets of activated memory cells. This 
yields the AMS most fundamental feature of 
generalization, i.e. similar inputs generate sim­
ilar outputs. The response for untrained stim­
ulus vectors in the neighborhood of trained 
points is calculated by an automatic multidi­
mensional interpolation over the output values 
of the trained points, for details see e.g. Tolle 
and Ersue (1992). 

AGRICOLA 

ADVANCED GRIPPER CONTROL 

WITH LEARNING ALGORITHMS 

In general a grasping operation can be charac­
terized by the four phases approach, contact, 
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grasping and handling. 

During approach, the geometrical data of the 
target are used for preshaping the gripper i.e. 
for opening the hand wide enough not to col­
lide with the target. This involves the determi­
nation of joint angles so that the finger tips can 
be located at prespecified points of a cartesian 
space: 

(2) 

where q represents vectors of joint angles and p 
the cartesian positions of the finger tips, respec-=­
tively. Also ,-1 represents a mapping from po­
sition to joint coordinates, the so called inverse 
kinematics function. 

We trained an AMS-block off-line using p as 
stimulus (!) and i as response (r.) vector . The 
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Figure 3: AGRICOLA - Advanced Gripper Control with Learning Algorithms 

joint vectors q were selected by a random num­
ber generator-:- Based on the forward kinematics 
relationship 

(3) 

which can be simulated easily, one can compute 
for each given q the corresponding p values. As 
a result of stonng q and p in AMS, the asso­
ciative memory learns the correct inverse kine­
matics after sufficient training. By a recall, the 
AMS-block can subsequently be used to provide 
the joint angles for a given finger tip position 
within the workspace. 

After the approach phase the hand is closed un­
til all fingers detect a contact with the object. 
We implemented the detection by a continuous 
supervision of the joint forces. 

During the grasping phase the fingers have to 
exert coordinated forces to the object in order 
to ensure a stable grasp. Stability with respect 
to the grasping operation is defined as keeping 
the object at rest with respect to the hand co­
ordinate system and to move the object back to 
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its original position after it has been shifted due 
to external forces. The coordination mechanism 
is based on the learning control loop LERNAS 
(Ersue, 1984), which imitates human problem 
solving behaviour. A blockdiagram of this im­
plemented approach is shown in fig. 4. 

It consists mainly of two AMS-blocks. Theo­
retically other implementations of associative 
memories are also applicable, but as is shown in 
Mischo, Hormel and Tolle (1991) AMS has some 
major advantages with respect to convergence 
and computational complexity. Comparable to 
the conventional stiffness control approach one 
associative memory AMS maps joint position 
errors l':1q to desired joint torques Lt. The op­
timal control strategy is determined by plan­
ning control actions using a nonlinear, unstruc­
tured, predictive process model and evaluating 
the predicted reactions according to a certain 
performance criterion. The predictive model -
giving an estimate of the joint positions q at 

-=-4 

time (k+ l)To (To sampling time) in dependence 
of the desired joint torque values Lt and joint 
positions q at time kTo - is generated on-line 

-=-4 

by observing the input and output values of the 
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Figure 4: Learning finger coordination (shaded boxes denote AMS-units) 

gripper and storing this relationship in another 
AMS-block. 

The continuous updating of the model mem­
ory and the on-line optimization ensures that 
the system is able to follow slow time depen­
dent variations in the process parameters . Ex­
ternal forces as they occur during accelerations 
of the robot arm may be considered as fast 
changes in the environment. The learning con­
troller can deal with this time variant behaviour 
by the implemented learning of incremental ac­
tions which are added to the currently effec­
tive values. In a conventional control loop a 
linear mapping from situations to incremental 
actions would lead to stability problems (inte­
grating behaviour). However, the implemented 
mechanism which is comparable to human con­
trol strategies is nonlinear and stable! It should 
be pointed out that the controller-AMS could 
also learn absolute joint torques, but the incre­
mental method improves the performance sub­
stantially. 

In fig . 5 the desired joint torques Lt of one fin­
ger during the grasping phase are shown. The 
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constant values after every manually applied 
disturbance prove the stability of the grasping 
operation. 

o.e 

0 .• 

;:; 
L 0.2 
~ 

'" c 
£ 

-0 .• 

-o.e 
o 

~ Joint 1 

1\ joint 2 \ 

joint 3 

100 200 

l~ 

Y 

300 

sampled t ime 

400 

IV-

500 800 

Figure 5: The calculated joint torques of one 
finger (disturbances are manually applied) 

Our learning approach is also suitable to learn 
the finger coordination for object manipulation . 
The handling task depends only on the trajec-



tory of desired joint angles. Figure 6 shows 
the actual joint positions and the desired joint 
torques during a peg-in-hole manipulation, re­
spectively. 
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Figure 6: The joint positions and joint torques 
of one finger during an object manipulation 

CONCLUSION 

The presented learning gripper control system 
is able to achieve a stable grasp and to realize 
object manipulation. 

In contrast to a conventional algorithmic con­
trol scheme the implementation effort is less. 
Details about the gripper mechanics, internal 
parameters for de coupling or precompensation 
are not necessary. The learning system is able 
to learn a control behaviour specified by an ob­
jective function in contrast to a heuristical set 
up of the stiffness matrix by trial and error. The 
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learning system stores the process behaviour in­
stead of identification and modelling. The in­
verse kinematic is learned off-line in contrast to 
the on-line computation of the algorithmic ap­
proach. 

The performance of the system can be improved 
by a VLSI-chip for AMS which is currently un­
der development at our department. Further 
research activities are concerned with the ex­
tension of the system to a learning hand-arm 
control. 

REFERENCES 

Albus, J. S. (1975). A new approach to ma­
nipulator control: The cerebellar model 
articulation controller (CMAC) . Transac­
tions of the ASME, 97(9). 

Ersue, E. (1984). A new concept for learn­
ing control inspired by brain theory. Pro­
ceedings of the 9th IFAC World Congress, 
Budapest, Hungary. 

Mischo, W. S., Hormel, M., and Tolle, H. 
(1991). Neurally inspired associative 
memories for learning control: A com­
parison. Proceedings of the International 
Conference on Artificial Neural Networks 
- ICANN91, Espoo, Finland. 

Paetsch, W . and Kaneko, M. (1990) . A 
three fingered, multijointed robot grip­
per for experimental use. Proceedings of 
the International Workshop on Intelligent 
Robots and Systems - IROS90, Tsuchiusa, 
Ibaraki, Japan. 

Salisbury, J. K., and Mason, M. T . (1985). 
Robot Hands and the Mechanics of Ma­
nipulation. MIT Press, Cambridge, 
Mass., USA. 

Tolle, H., and Ersue, E. (1992). Neurocontrol 
- Learning Control Systems Inspired by 
Neuronal Architectures and Human Prob­
lem Solving Strategies. Lecture Notes 
in Control and Information Sciences No. 
172. Springer-Verlag, Berlin, Germany. 



Figure 7: The Darmstadt-Hand 

309 


