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Abstract. The technical use of biological or biochemical processes requires a.dditionally to 
the biological preparation and process engineering an intelligent automatic control engine­
ering whose performance characteristics excel the classical approaches, Most fermentations 
are operated in a phase-building batch mode, which does not allow a linearization of the 
not or only inexact known process model and the operation near one or several different 
working points. With Bio.x++ an intelligent control system was successfully designed, whose 
fundamentals and extensions will be the contents of the article a.t hand. 
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1. INTRODUCTION 

A lot of severe problems of our modern society, 
like the always increasing waste, the feeding of 
an exponentially growing number of people li­
ving on this planet and the production of new 
and effective medicines require the technological 
use of natural biological or biochemical proces­
ses. The difficulty in practical use is found in the 
complexity of these processes and their depen­
dencies on a lot of different partially unknown 
or not measurable environmental conditions. So 
normally in the laboratory scale first experiences 
and qualitative models are extracted, whose small 
number of input and output variables in the form 
of measured data sets are the available informa­
tions for the optimization of a given criterion, for 
example achieving maximum efficiency in mini­
mum time. During the following experiments in 
the technical school a so-called scale-up process 
is used to transfer the scale onto always incre­
asing production units. Furthermore, the tests 
take a lot of time and therefore hardly permit a 
time-dependent optimization of manipulated va­
lues. In short the optimal manipulated values of 
the laboratory scale which in general are statio­
nary applied do not have to be the valid ones for 
the larger production scale. Because of this the 
intelligent control system BioX++was designed 
as a new approach for the successful automa­
tion of biotechnological processes. It allows, on 
the base of technical school experiments, a time-
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dependent off-line optimization. Furthermore it 
can be used to operate the real process and to exe­
cute an automatic on-line actualized optimization 
therein, in order to improve the production and 
to achieve higher autonomy in automation. 

2. BioX++ 

Based on the learning control loop LERNAS 
[Ersii and Tolle, 1984], the intelligent control sy­
stem BioX++, which is shown in fig.l, was deve­
loped [Gehlen et al., 1988] [Gehlen et al., 1992]. 
This system consists of the following three lay­
ers: 

• Lower Level: Subordinate control loops in clas­
sical architecture. 

• Medium Level: Modelling using interpolating 
associative memories and numerical optimiza­
tion. 

• Upper Level: Knowledge-based coordination 
and management layer including fault dia­
gnosis, phase classification, choice of phase­
specific model memories and definition of 
phase-specific optimization criterions. 

2.1 Subordinate Control Loops 

The subordinate control loops are classical con­
trol loops, using P-, PI- or PID-controllers, for 
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Expen System 

Fig. 1: Architecture of BioX++ 

physical environmental conditions like tempe­
rature or pH-value in order to guarantee the 
maintainance of applied setpoints for the actual 
fermentation received from the two higher-level 
control layers. We examined as a pilot process 
the fermentation of bacillus subtilis producing a­
amylase in a batch process. 

2.2 Modelling and Optimization 

In the medium layer the modules for the predic­
tive self-learning modelling of the process and the 
numerical optimization are arranged. The short 
term memory - connecting the lower and the me­
dium level - supplies the whole system with the 
values of the process input variables Ui and the 
from that resulting measurable output variables 
Yj, including a pre-defined history. As interpola­
ting associative memories modelling the process, 
the neuronally inspired system called AMS or the 
mathematically inspired memory called MIAS are 
in use, see e.g . [Tolle and Ersii, 1992]. In this sy­
stem it is their task to realize the following map­
ping 

[ 
U(k) ] 
Y(k) f-+ ¥.,(k + 1) 

where !L( k) is a vector representing the sequences 
~Ak) [uj(k), ui(k - 1), ... , ui(k - m)f and 
r.( k) combines all 
y.(k) = [Yj(k), Yj(k - 1), ... , Yj(k - m)f. As an 
-) 

example see fig.3. This predictive behaviour can 
be achieved by either utilizing off-line training 
using archived measured data or by artificial time 
delay in on-line operation making use of the short 
term memory. As the up to now examinati­
ons have shown [Gehlen and Bettenhausen, 1990] 
[Gehlen and Kreuzig, 1991], this procedure is 
well suited to any non-linear process model­
ling without depending on structural conditions. 
Only the knowledge of the input and output va­
riables contributing to the process behaviour is 
necessary. For the prediction properties one has 
to distinguish between short time prediction and 
long time prediction. With short time prediction 
we mean the prediction of the output variables 
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for the next sampling period (k + 1) . tiT, with 
long time prediction we want to forecast the va­
lues for a later point of time (k + n) . tiT. This 
can be achieved learning the predictions for later 
points of time or re cursively re-applying the short 
time prediction . Making use of these predictive 
models, numerical optimization can be done to 
find out the effects of the manipulated varia­
bles on the process and to minimize or maximize 
a pre-defined optimization criterion. The ade­
quate manipulated variables can also be stored 
situation-dependent, by what, corresponding to 
a learned non-linear process model, learned fa­
vourable non-linear controllers arise, so that in 
the long run the optimization layer will only be 
needed in exceptional situations. The correspon­
ding structure diagram, the learning control loop 
LERNAS, is shown in fig.2. This learning control 
loop supplies in the considered case the setpoints 
for the conventional lowest layer Qf BioX++. 

Proccaa Slale 

Fig. 2: Structure of the learning control loop 
LERNAS including heuristic knowledge 

2.3 Knowledge-based Coordination 

A detailed examination of fermentation proces­
ses shows that phases with more or less activity 
can be distinguished which reasonably are stored 
in various models and also should meet different 
optimization criterions [Gehlen et al., 1992] . But 
the general profile of the phase shapes is known 
and can be described heuristically. Therefore the 
first task of the upper knowledge-based level is 
the phase classification for detection of physio­
logical states, for example the single or several 
times appearing characteristic process phases for 
a batch fermentation: lag phase, exponentially 
growing phase, intermediate phase, stationary 
phase and death phase. A faultless classifica­
tion of the process phases assumed, phase-specific 
model memories and phase-specific optimization 
criterions can be chosen. One possible mapping 
for the exponentially growing phase for a-amylase 
production with bacillus subtilis - our pilot pro­
cess - is shown in fig .3. Additional to these fea­
tures the upper level will perform fault diagnosis, 
which recognizes dangerous operating states like 
non-working pumps, blocked membran filters or 



broken tubes, it will display alarm signals and 
demand the operator to correct failures. 
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ciative memory mapping 

2.4 System Status 

The whole system is implemented on a SUN-4 
workstation using the operating system UNIX 
and is connected via serial interfaces to perso­
nal computers. Till now the activities were con­
centrated on the construction of the medium le­
vel, using heuristic control strategies of the upper 
layer but not specifying them in detail. Thus the 
future attention will be put on the flexible reali­
zation of the upper coordination layer in order to 
offer the operator a much more efficient and in­
telligent man-machine-interface and to integrate 
heuristics more extensively. In order to integrate 
learning components in the upper knowledge­
based layer it is sensible to use the same pro­
gramming language for medium and upper level. 
Because of this the concept is realized using the 
programming language C++ which supports clas­
sical numerical and algorithmic programming as 
well as object-oriented programming. Keeping in 
mind that the operator in general has problems to 
express his knowledge in crisp formulations, the 
extended knowledge-based system was designed 
to deal with fuzzy knowledge. But according to 
subsection 2.3 also tasks of fault diagnosis shall 
be handled, which partly require exact models 
with crisp rules . This feature could be realized 
using an approach which can transform, only de­
pending on the choice of some simple parameters, 
the fuzzy estimate into a crisp estimate. 

3. EXPERIMENTS 

As in the previous section has been put forward 
the phase-specific modelling and optimization is 
a basis for further improvement of the whole sy­
stem for the operation of batch fermentations. A 
necessary presupposition for the successful exe­
cution of this strategy is the faultless automatic 
classification of the process phases. For detecting 
the different phases one has to take into account, 
however, that due to the living substrate seemin­
gly identical substances may behave differently. 
Fig.4 demonstrates this by showing the shapes of 
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3.1 Phase Classification 

In order to assess the activity and therewith the 
actual physiological state one needs the informa­
tion about the trend of the measured variables 
CO2 and p02. The gradient is calculated using 
the first order difference quotient followed by a 
short time average filter 6.X(k) = (1- CI'). 6.X(k-
1) + CI' . X(k)-;(k-l) where X is either C02 or p02 
and the memory factor Cl' = 0.01. Fuzzy rules can 
reduce the number of rules in phase classification 
and allow some more tests like detection of rule 
inconsistencies. For the evaluation the following 
five simple rules were constructed: 

• IF (C02 is constant) and «P02 decreases) or 
(P02 is constant)) and (last phase == lag phase) 
THEN (newphase = lag phase) 

• IF (C02 increases) and «P02 decreases) or (PO, 
is constant)) and «lastphase == lag phase) or 
(last phase == exponential phase) or (last phase 
== intermediate phase) or (lastphase == statio­
nary phase)) 
THEN (newphase = exponential phase) 

• IF (C02 decreases) and (P02 increases) and 
«lastphase == exponential phase) or (lastphase 
== intermediate phase)) 
THEN (newphase = interphase) 

• IF (C02 is constant) and (P02 is constant) and 
«lastphase == intermediate phase) or (last phase 
== stationary phase)) 
THEN (newphase = stationary phase) 

• IF (newphase is not classified) 
THEN (newphase = lastphase) 

The rule base does not include a rule to classify 
the death phase, because this phase does not ap­
pear in our fermentation data. The variables CO2 

and p02 are defined as fuzzy variables, while the 
last phase is treated with a 'winner takes it all' 
- strategy, which means that the grade of mem­
bership is one for the phase classified in the last 
step while all other grades of membership are set 
to zero. The defuzzyfication ensues from the de­
termination of the maximum grade of member­
ship according to one of the terms. Fig.5 shows 
the impressing results, especially since similar re­
sults apply to all other fermentations of fig.4 (not 
shown) . 
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Fig. 5: Classified Physiological States 

3.2 Outlook 

The capability of learning in the upper 
knowledge-based level can be achieved in two dif­
ferent ways: manipulation of membership func­
tions and modification of the rule base. Member­
ship functions represent a Rl 1-+ Rl mapping for 
each term of any linguistic variable. The already 
performed tests use linear membership functions. 
Only the interpolation points are stored and allow 
to approximate any desired membership function 
with polylines. The initial startup parameters of 
these linear membership functions could also be 
stored in one of the already mentioned associa­
tive memories AMS or MIAS. The contents of 
these memories can be modified on-line or du­
ring an off-line pre-training using the optimiza­
tion structure of LERNAS. For the modification 
of the rule base another procedure is envisaged 
which is shown in fig.6 for a single rule: 

If o Inference o Then 

Fig. 6: Learning rule connection 

In our example and and or operators are reali­
zed as minimum and maximum operators. The 
result of any elementary block will be weighted 
with a factor aij. The indices describe the num­
ber of the actual input and the depth from the 
goal. Combinations of such blocks, each consi­
sting of elementary blocks will build a network of 
rules. In this network it is not possible to supple­
ment new rules because of the existing structure, 
but a deletion of unnecessary rules can be achie­
ved using a weighting factor zero. The weighting 
factors will be optimized using numerical optimi­
zation criterions as it is already explained. The 
on-line learning will be performed in a parallel 
process and actualize the parameters and weigh­
ting factors during the initialization step . 
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4. CONCLUSIONS 

The article at hand describes and explains the 
development of an intelligent system for lear­
ning control of biotechnological processes. Ba­
sed on earlier results with the learning control 
loop LERNAS and the intelligent system BioX, 
using integrated learning capabilities in a medium 
layer including modelling and optimization mo­
dules , BioX++extends the learning features into 
the upper knowledge-based layer. This reduces 
the extensive and time-expensive work for the 
scale-up process. Additionally optimal phase­
specific operation of batch and fed-batch fermen­
tations can be guaranteed based on a maximum 
faultless phase classification. The chosen fuzzy 
estimate increases the already available features 
and also includes the classical crisp knowledge re­
presentation. Based on the impressing results of 
a phase classification using static rules and static 
membership functions one of the next steps will 
be the self-learning phase classification stored in 
locally interpolating associative memory systems 
and the use of the sketched weighted learning rule 
connection. 
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