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Abstract: Future space robot generations will replace astronauts in deep space missions and routine operations. 
They will use tools, perfonn assembly, disassembly and handling tasks for maintenance and repair purposes, among 
others . A key feature of autonomous, task-level commandable maintenance robots is a valid and complete 

representation of an application's task space for planning and optimizing a rough action sequence facing a specific 
sensorially classified situation . This paper shows such a representation for a robot based automated material science 
experiment setup und proposes a method of analysis by which a valid and complete task space model can be 
obtained. Results of practical experiments with a terrestrial laboratory mock-up using the novel representation 
scheme are presented as welL 
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I . INTRODUCTION 

Man's investment into space technology during the 

past decades pays off nowadays as widely increased 

capabilities for communications, global navigation, 

earth observation and a large amount of new and 

fascinating insights into the nature of our solar sys­

tem. As applications become more widespread the 

amount of work to be performed on satellites or 

space-stations will rise beyond the technical and 

financial means available today (SPACE magazine, 

1991). Automating loading, berthing, docking and 

handling tasks using advanced robot technology is 

already under way (Hirzinger 93), though currently 

man is still in the loop. In the long run lightweight 

space robots will be endowed with enough mechan­

ical degrees of freedom and robust sensor technology 

to cope with many routine tasks in an autonomous 

fashion. Prerequisies for this to become true are 

adequate structuring of hard- and software, dedicated 

automation of mechanical dexterity for certain com­

plicated tasks and a systematical means of designing 

and modelling a space robot's workjng environment 

such that local decisions can be made by an Expert­

System like high-level control module. In this paper 

we will focus on the systematical modelling for auto-
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nomous decision takjng . We will, however, put this 

into some perspective, reviewing related work done 

for assembly automation and embedding the concept 

presented here into a hard- and software control 

framework developed at THD's control systems the­

ory and robotics department during the past three 

years . Practical implementation and experiments 

underpin the necessity for a systematical design of 

high-level robot control algorithms. 

2. EXAMPLE AND PROBLEM STATEMENT 

Research on automating handling tasks with robots 

performed on ground in a laboratory setup will 

always face some scepticism concerning the transfer­

ability of its results to a real space environment. 

Therefore, some care has been invested into the selec­

tion of workjng scenarios exhibiting a clear relevance 

for space automation tasks. In order to simplify the 

comparison to previous approaches a classical scen­

ario has been chosen for exemplifying our current 

work: 

In the Spacelab Dl-mission, a material science expe­

riment rack called Critical Point Facility (CPF) was 
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flown which was re-built by Kegel (Kegel 90) in a 

simplified fashion for our laboratory (Fig. 1). The 

CPF-mock-up called THEMSE (Testbed for Hier­

archical Expert Manipulation of Space Experiments) 

consists of a rack with several integrated units . 

Among them is a mechanically operated drawer con­

taining four metal probes (Fig . 2). These probes have 

to be processed in a furnace and a freezer device. The 

furnace' 5 interior is hidden behind a flap which may 

be opened or closed by operating a switch in order 

not to touch the "hot" surface. The freezer's cabinet is 

closed by a lid with a bajonet lock . 

Fig. 1. CPF~xperiment mock-up 

The set of tasks to be performed by the robot being 

of standard industrial type (manutec r3, a 6 DOF 

Puma-type robot) comprises: 

• operating the drawer, the freezer's lid and the 

furnace's flap . 

• transporting the probes between their various stor­

age and processing places. 

waiting for process events to trigger continued 

probe handling . 

• detection of abnormal conditions, error diagnosis 

and treatment to an extent the robot system is 

capable of. 

Gripping and manipulating is performed by means of 

a parallel jaw electrically controlled gripper of custom 
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design (Fig . 3). The robot system's sensor suite con­

sists of a wrist force/torque sensor manufactured by 

LORD Corp., a laser triangulation distance sensor, 

grip width , grip force and an optical slippage detector 

grid within one of the gripper jaws. 3D-stereo-vision 

is scheduled to be integrated in the course of 1994. 

In fully autonomous mode the robot system will be 

given a number of tasks in symbolical teletype form, 

e.g. "process probes 1 and 2 in the furnace for 15 

min ., cool them down in the freezer for 5 min. and 

store them in the drawer again ." 

The principal question addressed in this paper reads: 

In order to be able to autonomously plan and carry 

out a sequence of sensor-guided robot and gripper 

motions that reliably implement a probe-handling se­

quence like the one sketched above - which is a suit­

able high-level representation of the application's task 

space and how can it be arrived at? Follow-up topics 

that cannot be fully elaborated in this paper are 

planning, optimization and execution of task sequen­

ces. 

3. RELATED WORK 

Earlier attempts at automating the probes' processing 

took their cue from the widespread task-decomposi-



tion paradigm (Kegel, 90), (Lumia, 90), (Putz, 91) In 

short. this paradigm calls for regarding command 

symbols as decomposable functions or "methods" of 

"objects" within an application , e.g. moving a probe 

symbolized by the verb "put" would be a method of 

object "probe" its target parameters being "furnace", 

"freezer ", "drawer" and an additional method modifier 

being "into", "before" or "on" . Thus, control of an 

application can be effected on a relatively high level, 

e .g. "put probe_1 into furnace" adhering to a simple 

predefined formal grammar. The method "put" of 

probe_ I can be decomposed either on a global scale 

(Kegel. 90) into general subtasks like 

Fig. 2. CPF-probes inside drawer 

• prepare target-object 

• prepare source-object 

• grip source-object 

• transport source-object 

• release source-object 

• post-process source-object 

• post-process target-object 

which are instantitated consequently by an object 

specific list of motion procedures provided by a robot 

systems programmer. These motion procedures may 

be interspersed with procedures testing sensor condi­

tions enabling program-flow modifications in a go-to 

manner. Since the domain of application of these 

motion procedures is known at the time of program­

ming, additional parameters needed for calling can be 

extracted directly from a frame-based object data 

representation. 

A more strictly object oriented approach to task de­

composition developed at Sandia Labs is reported in 

(Miller, 92). By adhering to the well-known assets of 

object oriented techniques a robot independent pro­

gramming environment was realized which enables 

implementing a robot based application on a fairly 

high level by abstracting from real robots and sensors 

via C++' s virtual function features . Here, the com-
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mand flow is implemented by traditional message 

passing between objects distributed over a hetero­

geneous UNIXlSUN and VxWorksIVME-bus environ­

ment. Task decomposition happens in the mind of the 

programmer who assigns responsibilities to the soft­

ware objects , e .g. robot.grip(waste_cask) in C++'s 

syntax . 

A drawback of these approaches from the viewpoint 

of system autonomy consists in modelling and imple­

menting only one optimal or a few nominal high-level 

sequences stopping task abstraction at a point where 

combinatorial explosion will forbid explicit coding of 

all alternatives . This does not constitute a serious 



problem if the application exhibits a linear character 

(i .c . the control decision tree has only few ramifica­

lions) . Examples are fixed sequence strategies like the 

one presented for "put probe into furnace". Increasing 

system autonomy beyond this stage without generaliz­

ing and adding to the control paradigm results in 

exponentially growing coding and testing costs . 

Related to this, control program error probabilities 

increase. Both effects are intolerable for space 

missions. 

One tool for unravelling the tangles of a complex 

robot application is systematical decoupling, i.e . the 

components of a global application state should be 

controllable one by one or with as little interaction as 

possible. Therefore, representation plays an all-impor­

tant role in achieving system performance. 

Assembly and disassembly are part of the complex 

handling tasks a maintenance robot has to carry out. 

There have been a number of researchers who devel­

oped high-level state representations for the assembly 

of mechanical parts. 

Petri nets have been a useful tool among them in 

representing partial order graphs for robot assembly 

control (Hbrmann 89) . These graphs result from a 

geometrical and technological analysis of the product 

to be assembled (e.g. the Cranfield assembly 

benchmark). Lefebvre and Saridis also report in (Le­

febvre 92) on a Petri-net based approach for 

coordination-level control of a multi-robot system and 

stress the suitability of the graphical net rendition as 

an intuitive user interface. They did not yet address 

the problem of a systematical net design, however. 

given an arbitrary application. 

Starting from a geometrical and contact model of the 

product, Sanderson and de Mello (Sanderson, 87) 

construct an AND/OR-graph of all feasible 

subassemblies for which correctness and completeness 

has been shown in (de Mello, 9\) . Feasibility is tested 

regarding contact degrees of freedom and geometrical 

penetration. Assembly operations that can be carried 

out in parallel are clearly marked. Thus, decoupling is 

an inherent feature of this approach. An assembly 

state is given by a pattern of markers on nodes of the 

AND/OR-graph denoting currently active 

subassemblies. 
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Fig. 3. MARS-gripper 

De Fazio and Whitney (de Fazio 87) deduct temporal 

restrictions (precedence relationships) for assembly 

operations corresponding to contacts between 

subassemblies in a precursory analysis phase. In this , 

they may consider the product's geometry and tech­

nological restrictions imposed e.g. by fluid containers 

or sensitive units. Taking the precedence relation­

ships, an assembly state graph with directed links 

representing assembly operations is generated. A node 

of this graph corresponds to exactly one assembly 

state and vice versa. In this representation, alternative 

assembly operations result in forking of the decision 

tree. The number of states grows exponentially with 

the complexity of the application. Parallel operation is 

not mentioned. On the other hand, v. Dungern in his 

dissertation (v. Dungern 92) maintains that the 

de FaziolWhitney representation is better suited to the 

way of reasoning of a human assembly expert and 

does neither presuppose a formal product model nor 

computer implementations . He extends their approach 

by explicitly enumerating product aspects leading 

toward precedence relationships taking into account 

necessary fixtures. He also distinguishes between in­

tentional contacts and by-products thus eliminating 

problems with co-occurrence of contact initiation and 



does not extract an optimal assembly sequence from 

the graph like de Fazio and Whitney but retains the 

whole graph for an online planning phase. V. Dun­

gern acknowledges that this representation is not 

necessarily complete owing to a possible over­

restrictiveness of the (manually generated) precedence 

relationships. 

Fundamental work concerning online situation-based 

planning has been presented by Fox and Kempf (Fox. 

86 ; Fox . 87). They argue along the line that in the 

offline analysis phase only part of the infonnation 

relevant for selection of alternative operation 

sequences is available . Any offline decision based on 

hypotheses about online sensor data etc. will most 

likely be inappropriate to the real situation. Fox and 

Kempf propose to use a least commitment strategy: 

taking decision at the latest possible moment or only 

in order not to violate side conditions. Arbitrary deci­

sions are thus prevented. On the other hand, the tenn 

opportunistic decision taking was coined for online 

selecting only among locally available options. Selec­

tion is an optimization problem and can be based on 

local or global criteria which may be evaluated 

statically offline in the modelling phase or dynami­

cally online while the robot is running. Offline global 

statical evaluation results in fixed local priorities for 

the alternatives which are efficient for online pro­

cessing. Some degree of online dynamical evaluation 

of path costs can prevent the system from taking 

suboptimal paths. The depth of the forecast should 

sensibly depend on the expected accuracy of the 

results which decreases with the number of steps. 

Summing up, the Sanderson/de Mello-approach seems 

most suitable for representing large scale applications 

with a high number of alternative ways of manipula­

tion due to its decoupling methodology and computer 

support features for semi-automatically generating 

high-level state-space representations . Petri-nets also 

are a well established tool for modelling precedence 

relationships, parallel processing as well as resources' 

limits and in the last respect they outperfonn 

AND/OR graphs . V. Dungern's work inspires a 

modelling scheme that takes into account not just the 

product. but the entire environment. Finally , Fox and 

Kempf underline the necessity to distinguish between 

decision criteria that can be evaluated during the 

preparation phase and infonnation which is available 

only at the time of execution . Separation of the deci-
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sion process into an offline and an online pan is a 

prerequisite for efficient run-time system perfonn­

ance. 

4. TASK-SPACE MODELLING 

Our approach owes much to the work of SanderSOn/­

de Mello: Its foundation is a model of geometry and 

objects contacts . So far. our representation is 

restricted to rigid solid bodies (cf. Fig. 4). Due to 

deficiencies detected when trying to model several 

different lab applications we made the following 

modifications and extensions: Our modelling scheme 

is encompassing as it includes the manipulator. any 

necessary fixtures and ancillary devices as well as the 

set of objects traditionally looked at. Apart from that 

we look at multiple instances of objects and locations 

where objects can be linked. 
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Fig. 4. simplified satellite model 
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Our geometrical model of solid objects comprises 

• volume as a set of convex polyhedrons. The vol ­

ume model is the base for collision avoiding path 

planning and object visibility analysis . 

• surface as a set of flat polygon patches fonning a 

calculation base for distance measurements. 

• 3D-vertices as a reference for stereo or shape­

from-motion vision serving identification and local­

ization purposes. 

The contact model describes matching contact frames 

of objects by so-called anchor points. They are 

assigned key and lock attributes. Key anchor points 

only match with lock anchor points . Contact classes 

are modelled according to geometrical and technologi­

cal considerations, e.g . the class "grips" with a grip 

source frame (key) located between the jaws of the 

gripper and any number of grip target frames (locks) 



located at suitable positions of objects that have to be 

manipulated . Contact frames are positioned with 

respect to an object reference frame by homogeneous 

transforms, just like the geometrical features men­

tioned above . Contact characteristics relevant for a 

semi-automated generation of all feasible high-level 

states of manipulator plus environment are modelled 

as contact attributes: 

Permanent or transient contact, e.g. robot joint or 

robot grip . 

Fixed link or number and kind of mechanical 

degrees of freedom for automatic checking of 

motion capabilities. 

Passive or computer controllable joints, e.g. 

between the drawer and the THEMSE-frame or, 

again, the robot joints. This information is used 

for sorting out unfeasible contact transitions in the 

model generation phase. 

At this moment , no attempt is made to deduct small 

range handling tactics automatically from contact 

attributes like local degrees of freedom, because 

according to our practical lab experience these handl­

ing tactics often carry the characteristics of manual 

"dexterities" which are not well enough understood 

today to be modelled in frame-like structures. 

Every individual anchor point is formally represented 

by a quadruple consisting of object class name, object 

instance name, anchor point class name and anchor 

point instance name. Contact instance descriptions 

comprise two fully specified anchor point quadruples 

located on different objects. The notion of contact 

classes is explained here for later reference: First 

order contact classes merely specify the matching 

anchor point classes, e.g. the set of grips existing 

within the CPF-experiment scenario. The rest of the 

places in the contact octuple can be imagined to 

contain joker symbols. Second order contact classes 

specify the type of anchor points (anchor point 

classes) and one or both objects (object classes) 

involved in a contact. The spatial relation between 

two objects is defined by any second order contact 

class except for the case of objects featuring multiple 

instances of that anchor point class which is men­

tioned in the contact class description, e .g. the 

THEMSE drawer which has several places for probes. 

For these cases third order contact classes additional­

ly specify the anchor point instance name(s) of one or 
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both of the objects coupled. All of these classes can 

be viewed as templates for object pairs that may 

appear in the course of manipulation . Their relevance 

emerges when trying to subsume many fully specified 

contact states under one more general state because 

the kinds of manipulation intended to be used in those 

states do not depend on all of the state components 

which would be theoretically available. 

Objects are ordered in an inheritance hierarchy of 

object classes subsuming identical geometrical and 

contact features . Every object class of lowest abstrac­

tion level may have an arbitrary number of instances. 

This is where combinatorial explosion creeps in in the 

first place. In the second, every object class may have 

several anchor point instances of one class, e.g. the 

THEMSE-drawer has four storage places for probes. 

The maximum number of different fully specified 

contacts between two objects of any class equals the 

product of the number of possible anchor point pairs 

and the number of different object instance pairs. 

Starting from this object model, a formal graph repre­

sentation is to be found that contains all feasible high­

level system states (system=manipulator+environ­

ment) as nodes and actions of the manipulator or 

other controllable devices corresponding to a state 

transition as arcs . This representation must withstand 

the following requirements: 

The number of states must not explode when 

applications grow to a realistic scale. 

All operational sequences feasible and sensible 

from the offline point of view must be included 

or reproducible in order to achieve a maximum of 

autonomy. 

The definition of goals by a human user should 

be simple. This corresponds to the demand that 

model states should intuitively correspond to 

situations in the real application and transitions 

should correspond to operations on the everyday 

abstraction level like grip, transport, open, etc . 

Planning and finding alternative execution strat­

egies when trying to reach goals should be as 

efficient as possible. 

Objects should stay individuals: Assembly fuses 

objects, disassembly rips them apart again. Since 

we want to be able to specify the process history 

of individual objects, e.g. the THEM SE-probes in 

furnace and freezer, their instance identity must 

be preserved. 



Before elaborating on a semi-automatic generation 

scheme for all feasible system states some underlying 

concepts have to be explained : 

A number of coupled objects is referred to as a clus­

ter. There may be several copies of one cluster de­

pending on the available number of objects in an 

application . We declare these copies to be instances 

of one cluster class or cluster template. 

Up to here, any mechanical contact counts, so there 

has to be a criterion for decoupling clusters since on 

earth objects do not float around and hence they 

would be all connected via the ground which contra­

dicts our effort to decouple states. We adhere to the 

following simple rule : If in a kinematic chain all 

joints are changed in every conceivable manner and 

anyone object does not move at all, e.g. because it is 

fixed to the ground like the THEMSE-rack or the 

robot ' s base, this object is declared a terminal and 

counted out from the cluster. This exclusion is essen­

tial, otherwise such objects might simultaneously 

belong to several clusters which is undesirable from 

the point of view of conserving object individuality. 

The cluster, however, still includes the contact defi­

nition with any terminal object in order to distinguish 

between the various ways of being linked to its sur­

roundings . In an application, there are clusters con­

sisting merely of permanent contacts, e.g. the robot. 

We call them permanent clusters. Since their joints 

will never be taken apart in the course of action there 

is no need to represent corresponding system states. 

Therefore, clusters linked permanently are treated in 

planning mostly like single objects. We will hence­

forth refer to both of them collectively as permanent 

clusters because single objects can be viewed as a 

special case. On the other hand, clusters containing 

transient contacts, i.e. contacts which can be taken 

apart again by the manipulator without demolition, 

represent a topological state of the objects or sub­

clusters subsumed and are referred to as transient 

clusters. 

A special case is introduced by the notion of irrevers­

ible contact transitions, e.g . contact initiation by snap 

fittings or welding or contact demolition by disruptive 

disassembly. These transitions actually subdivide the 

state graph into various sections which may be 

entered or left only via one-ways by the autonomous 

robot system. Within each of these regions a specific 

set of permanent clusters is valid. When performing 

some non reversible assembly on two permanent 
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clusters these are actually fused into a new permanent 

cluster. The opposite applies to one-way disassembly: 

one permanent cluster is split up into at least two 

parts . 

The formal state space model we use resembles a 

Coloured Petri net to a large extent (Baumgarten, 90). 

It consists of 

Tokens: 

They represent permanent cluster individuals as a 

list of their contacts and available free anchor 

points . A token consists of a type (=colour) and 

object instantiation information. The individuality 

of tokens is kept by including object instance 

names in the contact and anchor point definition. 

Places : 

They describe transient cluster contact states. For 

planning purposes a place is modelled as a con­

tainer with a limited capacity for tokens of differ­

ent colours, e.g. the place modelling the robot 

gripping a probe in the drawer has a capacity of I 

for the drawer, 4 for probes and I for the robot. 

The capacity results primarily from the number of 

anchor points available but can be limited if 

objects intersect. This is taken care of in the 

model generation phase. So, for the planning 

phase individuality is ignored. 

During execution of a plan consisting of a series 

of transitions, the actual contact state is registered 

in a place by associating the variables in a cluster 

template with object and anchor point instance 

values from the tokens for reference by the transi­

tion operator programs. 

Transitions: 

They connect places and transfer tokens between 

them. Transitions represent real-life operators or 

control programs that connect or disconnect sub­

clusters. The description of a transition for 

planning purposes comprises only the token trans­

fer capacity of its arcs . A transition has ~l input 

and n~ I output arcs each associated with a list of 

formal token transfer specifiers denoting which 

subclusters are moved where (type and count) 

when the transition fires . Firing preconditions are: 

There must be enough tokens of the necessary 

colours lying on the input place(s) to saturate the 

input arc(s) and the capacity of the output places 



must not be exceeded by the firing of the transi­

tion . A place corresponding to a fully specified 

contact state must be completely emptied by a 

transition. e.g. if the robot takes a probe out of 

the drawer. the tokens for the rest of the probes 

and the drawer are transferred to the place in 

which no grip contact with the robot exists. This 

need not be so for underspecified places but we 

cannot go into more detail here. The phenomenon 

of creating or disrupting permanent clusters is 

represented by fusing or splitting tokens as a side 

effect of the corresponding transition operator. 

This modelling scheme can represent the finest granu­

larity of contact states by working with fully specified 

contact definitions or third order contact classes if 

necessary. In these cases the specific place token­

capacities are equal to one . Often however. the asso­

ciated states need not be represented explicitly: If a 

control strategy that can handle the set of contacts 

associated with a second order contact class exists. 

e.g. a gripping strategy that will pick up any probe 

from the THEMSE drawer no matter at which place 

it is located inside, the use of second or lower order 

contact classes in defining a cluster can serve to 

reduce the number of contact states drastically. Thus, 

in our example a reduction of the total number of 

states from approximately 10.000 to the relatively 

small number of 22 was reached, mainly due to the 

fact that permutations of probes inside the drawer 

were modelled not to have impact on manipulation 

strategies. 

In the process of generating all feasible system con­

tact states we proceed as follows : 

Starting from an initial finite set of objects linked 

by permanent and transient contacts, permanent 

clusters are automatically identified. 

Free anchor points of different clusters are sys­

tematically matched according to their key and 

lock classes in order to find possible follow-up 

clusters . Simulating to a certain extent the real 

procedure, only anchor points located in a 

kinematic chain consisting of controllable contacts 

(e.g. the gripper frame of the manipulator) are 

considered. Places and transitions already defined 

or equivalent due to the inclusion of contact 

classes in the place definition are skipped. 

Filters are applied to eliminate unfeasible or unde­

sirable contact states and transitions . Currently 
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these are still carried out mentally by the system 

designer. but simulation techniques for some of 

the subproblems. esp. collision avoiding path 

planning exist. Such filters are : 

Collision test : There must be a collision-free 

path from one contact state to the next at the 

time of execution. Since we do not know the 

run-time circumstances (number and location 

of parts and obstacles) at the time of model 

generation . only a primary feasibility check 

based on the geometric description of those 

parts whose contact is changed, is performed . 

Online a path planner may still fail to find a 

collision-free path due to the real arrangement 

of objects but this has to be dealt with at the 

time of execution by replanning. 

Stability test : The resulting contact state must 

not collapse due to external forces because 

recovering from such a turmoil is currently 

out of the question. 

System engineer's desire: The system designer 

may specify via templates a number of con­

tacts or contact classes that are undesirable 

within the application . Technological condi­

tions which are not caught by the 

geometry/contact model may thus be imple­

mented. 

The designer can specify which of the contacts 

contained in the new place definition are relevant 

for the (robot) control programs that will be 

defined for transfers between clusters or modifica­

tion of internal degrees of freedom. Thus, e.g. by 

telling the algorithm that for gripping the drawer 

the presence of probes is irrelevant, the multitude 

of fully specified clusters that would result from 

the probes' permutation within the drawer can be 

prevented from being explicitly generated. 

The contact state is merged with the graph of 

states already generated. If the place already 

exists but no transition is defined, a transition link 

is inserted from the source to the target places. 

Otherwise, the graph is extended by a new place. 

This procedure is applied in a loop visiting all feas­

ible places of the application. The generation process 

terminates when all possibilities have been exhausted. 

An example modelling run for the THEMSE appli­

cation will clarify our algorithm. For the sake of 

brevity, we skip the preliminary cluster analysis and 



start with a relevant selection of object classes and a 

reduced set of pennanent clusters: 

Object classes: 

MARS---Eripper, drawer, freezer, probe 

Pennanent clusters : 

robot. drawer, furnace, probe_I-4 

In the example, the pennanent contacts are left out, 

though they are part of the representation and condi­

tions must be specified for the online planning phase 

referring to joint states of these pennanent contacts , 

e.g. the drawer must be open in order for the robot to 

be able to grip a probe. 

The I ines of the following table defining legal token 

types that represent pennanent clusters should be read 

as follows: "The robot token has one free anchor 

point of class grip_source". Anchor points are given 

in their full quadruple representation. Object and 

anchor point instances are represented as variables Oi 

and Aj , jokers are represented by stars (*). Indices are 

nonnally counted only within a token type or a place 

definition. Different indices are used here for 

improved reader ' s insight. 

roken type free anchor point names 

TI MARS---Eripper:OI. 

grip_source:grip 

T2 THEMSE_drawer:02. 

T3 

T4 

grip_target grip, 

THEMSE_drawer:02. 

probe_depotdepot_1 

THEMSE_drawer:02 . 

probe_depotdepoc 4 

THEMSE_fumace:03 

probe_depot depot 

THEMSE_probe:04 

grip_target:grip, THEMSE_probe:04 

probe_base:base 

A token is instantiated by substituting the object 

variables consistently with object names. Every token 

instance as an individual carries its own name. The 

following tokens appear within the example: 

T I : 0 I =gri pper, name=robot 

T2 : 02=drawer, name=drawer 
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T3:1 
T4:1 PS 

/ 
(griP 
\ prob 

\ 
\ 

put prob 
into furnac 

Fig. 5. pan of THEMSE state space graph. 

T3 : 03=furnace, name=fumace 

T4 : 04=probe_l, name=probe_1 

T4: 04=probe_2, name=probe_2 

T4 : 04=probe_3, name=probe_3 

T4: 04=probe_ 4, name=probe_ 4 

Matching anchor points classes are: 

grip_source - grip_target 

probe_base - probe_depot 

take \ 
probe) 
out of 
furn- e 

Combining these anchor points among the pennanent 

clusters results in the following topological states or 

transient clusters represented by places. Remember, 

that a cluster is defined as a set of specific contacts 

between objects of a given type. A second order con­

tact class definition for drawer and probes is part of 

the example. Null entries denoting free anchor points 



are represented by the keyword 'void'. Permanent 

contacts are left out again . 

We illustrate the correspondence between certain 

contact states and our lab system with some of the 

photos . The complete list of places is given in the 

appendix . Here we illustrate the topology by a sketch 

of a part of the state graph (Fig. 5). Ti :j denotes the 

place's capacity j for token type i, encircled numbers 

symbolize tokens of a certain type . The token transfer 

notation of the transitions is left out for simplicity. 

List of places : 

place PI 

The robot is free 

place P2 

The furnace is free 

place P3 (Fig. 2) 

The drawer is loaded with probes 

place P4 (Fig. I) 

The robot holds the drawer 

place P5 

The robot holds a probe in the drawer 

place P6 

The robot holds a probe in free space 

place P7 (Fig. 6) 

The robot sticks a probe into the furna ce 

place P8 

A probe is in the furnace 

5. MODELLING ONLINE RESTRICTIONS 

Conditions which have to be evaluated at run time 

before activating an operator are attached to the tran­

sitions. These can be of the following types: 

joint state of the application 

sensor conditions 

time conditions 

Within one contact state single controllable joints or 

groups of joints are associated each with a high-level 

control program (operator) with is responsible for the 

manipulation of these joints. Thus a certain locality of 

the control algorithms is guaranteed which facilitates 

program generation. A method for programming 

application-oriented operators and the architecural 

issues of the run-time system have been published 

elsewhere (Matthiesen 92), (Adolphs 92). A global 

list contains those contact states in which a given 

joint can be manipulated for reference by the online 

planner. 
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Fig. 6. robot puts probe into furnace 

6. CONCLUSION 

Building upon experiences gained with traditional task 

decomposition and work done in the field of assem­

bly automation a powerful improved modelling 

scheme for highly autonomous robotic handling , 

maintenance and repair systems has been presented 

and illustrated by a practical example. We claim to 

have addressed several aspects of task space 

modelling that have been underestimated or ignored 

up to now : 

The entirety of mechanisms and objects used in 

an application has to be included in an overall 

work space model. 

All geometrically feasible task sequences need to 

be represented for the sake of completeness of the 

representation . Due to the possibly large number 

of these sequences only an implicit coding seems 

to be realistic . This can be done by means of a 

contact state graph which reduces the effort for 

application programming: Instead of explicit cod­

ing of possibly a myriad of task level action 

sequences only transfer control programmes for 



switching between a limited number of contact 

states need to be written and tested. The task level 

action sequence can be generated online by 

adapted graph search mechanisms. This will pave 

the way for enhanced robot system autonomy . 

The layout of an algorithm for supporting the 

semi-automatic generation of the new topological 

contact state models was presented and hints were 

given how to avoid generating too many states by 

decoupling and locally ignoring irrelevant parts of 

the representation .. 

Work continues in the direction of further improving 

the modelling and model generation scheme. 

planning. optimizing and reliably executing complex 

action sequences. 
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8. APPENDIX 

place PI 

The robot is free 

MARS~ripper:OI .grip_source:grip­

*:void.grip-targetvoid 

place P2 

The furnace is free 

THEMSE_fumace:O I.probe_depot :depot­

* :void.probe_base:void 

place P3 (Fig. 2) 

The drawer is loaded with probes 

THEMSE_drawer:OI .probe_depot:A2-

probe:02.probe_base:base 

THEMSE_drawer:O l .probe_depot:A3-

probe:03.probe_base:base 

THEMSE_drawer:O l .probe_depotA4-

probe:04.probe_base:base 

THEMSE_drawer:O l.probe_depot :AS­

probe:OS .probe_base:base 

THEMSE_drawer:O I.grip_target:grip­

*:void.grip_source:void 

probe:02.grip_target:grip-
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*:void.grip_source:void 

probe:03.grip_target:grip­

*:void.grip_source:void 

probe:04 .grip_target:grip­

*: void.gri p _source: void 

probe:OS .grip_target:grip­

* :void.grip_source:void 

place P4 (Fig. I) 

The robot hoLds the drawer 

THEMSE_drawer:O l .probe_depotA 1-

probe:02.probe_base:base 

THEMSE_drawer:O l.probe_depot:A2-

probe:03.probe_base:base 

THEMSE_drawer:0 l.probe_depotA3-

probe:04 .probe_base:base 

THEMSE_drawer:O l.probe_depotA4-

probe:OS .probe_base:base 

THEMSE_drawer:0 l .grip_targetgrip­

MARS~ripper:06 .grip_source:grip 

probe: 02.grip_target: grip-

* :void.grip_source: void 

probe:03.grip_target:grip­

*:void.grip_source:void 

probe:04.grip_target:grip­

*:void.grip_source:void 

probe:OS .grip_target:grip­

*:void.grip_source:void 

place PS 

The robot holds a probe in the drawer 

THEMSE_drawer:O l .probe_depotA 1-

probe:02.probe_base.base 

THEMSE_drawer:O l .probe_depotA2-

probe:03 .probe_base.base 

THEMSE_drawer:O 1.probe_depotA3-

probe:04.probe_base.base 

THEMSE_drawer:O l.probe_depotA4-

probe:OS.probe_base.base 

MARS~ripper:06.grip_source:A5-

probe:02.grip_target.grip 

THEMSE_drawer:O I.grip_target:grip­

*: void.grip_source:void 

probe:03 .grip_target:grip­

*:void.grip_source:void 

probe:04.grip_target:grip-

*: void.gri p_source: void 

probe: OS .grip_target:grip­

*:void.grip_source:void 



place P6 

The robot holds a probe in free space 

MARS---2ripper:OI.grip_source :A 1-

probe :02.grip_target.A2 

probe:02.probe_base:base-

* : void . probe _ depot : void 

place P7 (Fig . 6) 

The robot sticks a probe into the furnace 

MARS---2ripper:O I .grip_source :grip­

probe :02.grip_target.grip 

THEMSE_furnace:03.probe_depot .depot­

probe:02 .probe_base.base 

place P8 

A probe is in the furnac e 

THEMSE_furnace:OI .probe_depot.A 1-

probe:02 .probe_base.A2 

probe:02.grip_target:grip-

*: void .grip_source:void 
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