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Abstract

In this thesis the unstructured Finite-Volume hybrid Level Set / Front Tracking method
(LENT) for immiscible two-phase flows is extended to enable the simulation of capillary
flows. The major contributions are a more accurate interface curvature approximation,
an accuracy driven pressure velocity coupling algorithm, an approximation technique
for consistent mass fluxes for momentum convection and two novel approaches for the
computation of volume fractions from triangulated surfaces. All proposed techniques and
algorithms are devised for unstructured Finite-Volume meshes.

The improved curvature approximation uses a signed distance field as input and utilizes
surface-mesh/volume-mesh mappings to reduce curvature variation in interface normal
direction. A novel, local correction approach is introduced to further reduce the curvature
error in cells intersected by the interface. To ensure a prescribed solution accuracy, an
iterative, accuracy driven pressure velocity coupling algorithm is presented that builds on
the established segregated solution algorithms. The necessity of consistent mass fluxes
for momentum convection in the presence of differing fluid densities is analyzed. For
interface advection methods that do not utilize phase-specific volumetric fluxes, a method
to obtain approximate, consistent mass fluxes is proposed. The resulting improvements
for capillary flows are demonstrated using canonical verification and validation test cases.

Two novel algorithms to compute volume fractions on unstructured volume meshes from
oriented triangle surfaces meshes are introduced, one based on geometric intersections and
one based on approximation and adaptive refinement. Intended for the phase indicator
calculation in the context of Level Set / Front Tracking methods, both algorithms are
shown to be sufficiently accurate to initialize volume fractions also for the Volume-of-Fluid
method. In fact, test cases demonstrate that both approaches’ accuracy is only limited by
the resolution of the surface mesh.
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Zusammenfassung

In dieser Arbeit wird die unstrukturierte Finite-Volumen hybride Level Set / Front Tracking
Methode (LENT) für unmischbare Zweiphasen Strömungen erweitert auf die Simulation
kapillarer Strömungen. Die wesentlichen Beiträge sind eine genauere Approximation der
Krümmung der Grenzfläche, ein genauigkeitsgesteuerter Algorithmus zur Kopplung von
Druck und Geschwindigkeit, eine Näherungungstechnik für die Berechnung konsistenter
Massenflüsse zur Impulskonvektion und zwei neuartige Ansätze zur Berechnung von
Volumenfraktionen auf Basis triangulierter Oberflächen. Alle vorgeschlagenen Techniken
und Algorithmen sind formuliert für unstrukturierte Finite-Volumen Gitter.

Die verbesserte Krümmungsapproximation nutzt ein vorzeichenbehaftetes Distanzfeld
als Eingangsparameter und nutzt die Oberflächengitter/Volumengitter Zuordnungen um
die Krümmungsänderung entlang der Grenzflächennormale zu reduzieren. Ein neuartiger,
lokaler Korrrekturansatz wird eingeführt um den Krümmungsfehler weiter zu reduzieren
in Zellen, die von der Grenzfläche geschnitten werden. Um eine vorgeschriebene Lösungs-
genauigkeit sicherzustellen, wird ein iterativer, genauigkeitsgesteuerter Algorithmus zur
Kopplung von Druck und Geschwindigkeit vorgestellt, der auf etablierten segregierten
Lösungsalgorithmen aufbaut. Die Notwendigkeit konsistenter Massenflüsse für die Im-
pulskonvektion in der Gegenwart von Fluiden unterschiedlicher Dichte wird analysiert.
Für Methoden der Grenzflächenadvektion, die keine phasenspezifischen volumetrischen
Flüsse verwenden, wird ein Ansatz vorgeschlagen um genäherte, konsistente Massenflüsse
zu erhalten. Die resultierenden Verbesserungen für kapillare Strömungen werden anhand
kanonischer Verfifikations- und Validierungsfällen gezeigt.
Zwei neuartige Algorithmen zur Berechnung von Volumenfraktionen auf unstrukturi-

erten Volumengittern auf Basis orientierter Dreicksoberflächengitter werden vorgestellt,
einer basierend auf geometrischen Schneidungen und einer basierend auf Approximation
und adaptiver Verfeinerung. Vorgesehen für die Phasenindikatorberechnung im Kontext
von hybriden Level Set / Front Tracking Methoden, zeigen beide Algorithmen ausreichend
genau zu sein um Volumenfraktionen für die Volume-of-Fluid Methode zu initialisieren.
Vielmehr zeigen Testfälle, dass die Genauigkeit beider Ansätze nur durch die Auflösung
des Oberflächengitters limitiert wird.
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1. Introduction

1.1. Motivation

A vast array of technical applications involves flows of fluids that do not mix, driven by
surface tension forces in geometrically complex domains. Two very timely and relevant
examples are the Lab-On-a-Chip (LOC) devices used for fast disease detection [92] and
the simulation of the water management problem in Proton-Exchange Membrane (PEM)
fuel cells [6]. These applications are geometrically complex, and their development
is almost exclusively experimental. Therefore, they would significantly benefit from
predictive numerical simulations in two ways. First, predictive simulations would allow
to observe physical quantities resolved in time and space, complementing experimental
measurements and thereby aiding to better understand the processes of an application.
Second, numerical simulations can speed up design cycles through faster evaluation of
potential designs and design space exploration using automated parameter studies.
Still, fundamental research of numerical methods is required to make the simulations

in such complex technical systems predictive. First, a precise, robust, and computationally
efficient tracking of fluid interfaces is necessary. Fluid interfaces deform freely and
potentially significantly, merge with, and separate from each other. Second, a numerically
stable and accurate solution of two-phase Navier-Stokes equations with high density ratios
typically encountered in technical applications is needed. Third, the developed numerical
methods must be robust and computationally efficient on high-performance computers.
The amount of scientific literature dedicated to these objectives confirms that they

are among the most actively researched Computational Fluid Dynamics topics [136].
Numerical methods that utilize both a Lagrangian (co-moving) reference frame and the
Eulerian (fixed) reference frame - so-called Lagrangian / Eulerian methods - show great
promise with evolving fluid interfaces.
Efficient workflows are crucial when designing solutions for technical problems: engi-

neers who set up and simulate such problems must be able to do so quickly and automatize
them. An unstructured domain discretization (unstructured mesh) significantly simplifies
the simulation workflow. Additionally, unstructured meshes support local dynamic Adap-
tive Mesh Refinement (AMR), enabling a very high degree of accuracy and computational
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efficiency. Only a handful of 3D unstructured Lagrangian / Eulerian methods for simulat-
ing surface-tension driven incompressible two-phase flows are available [69]. A stable
and accurate simulation of surface-tension driven flow in arbitrary geometrically complex
domains is still out of reach [94].

The common methods for the simulation of two-phase flows, e.g. the Volume-of-Fluid
(VOF) method [46, 69], the Level Set method [118, 84, 41] and Front Tracking method
[129, 126], feature characteristic strengths and weaknesses. Consequently, hybrid meth-
ods have been proposed in an attempt to overcome each individual method’s shortcomings.
Examples for such hybrid methods are the Coupled Level Set / Volume-of-Fluid (CLSVOF)
method [117] and the Level Contour Reconstruction Method (LCRM) [105, 107, 109,
106], combining Level Set and Front Tracking techniques. The latter is also an example
for an approach that combines Lagrangian (Front Tracking) and Eulerian (Level Set)
elements, demonstrating impressive results [106]. Inspired by the capabilities of LCRM,
the conceptual feasibility of this approach on unstructured meshes has been demonstrated
by Marić et al. [71], showing promising results. Therefore, this theses aims to extent the
Level Set / Front Tracking (LENT) method described in [71] for capillary flows, with the
applicability to technical applications in mind.

1.2. Thesis outline

This thesis is structured as follows. In chapter 2, the underlying mathematical model
based on continuum mechanics along with assumptions about the considered two-phase
flow regimes is introduced and summarized in the governing partial differential equations
(PDEs). Afterwards, chapter 3 gives a short overview of the employed numerical method,
concerning domain discretization and discretization of differential operators. Following
the state-of-the-art fundamentals, chapter 4 proposes a novel method for the computation
of signed distances and volume fractions from triangulated surfaces. In chapter 5, improve-
ments to the LENT method concerning approximation of interface curvature and solution
of the pressure velocity system are presented. This is complemented by a discussion
about the role of consistent mass fluxes for momentum convection and a novel method to
compute consistent mass fluxes for methods without phase-specific fluxes in chapter 6.
The thesis closes with a summary and an outlook in chapter 7.
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2. Mathematical model

Starting from the governing conservation principles of continuum mechanics, additional
assumptions regarding the flow characteristics for a single fluid and their consequences
for the mathematical model are stated. Subsequently, this model is extended to two
immiscible fluids.
The dynamics of a fluid obey the conservation laws of continuum mechanics, namely

of mass, momentum and energy. In general, a balance equation for each of these three
quantities is required. However, for the flows considered in this work, the model does
not require an energy equation which is clarified below. In conservative form, mass
conservation is expressed by

∂t(ρ) +∇ · (ρv) = 0 (2.1)

and momentum conservation by

∂t(ρv) +∇ · (ρv⊗ v) = ∇ · T+ fv (2.2)

where ρ denotes the fluid’s density, v its velocity, T the stress tensor and fv volume forces.
The subscript t denotes differentiation with respect to time. Furthermore, a constitutive
relation for the stress tensor T is required. This relation is fluid dependent and here only
Newtonian fluids are considered. Many fluids of technical relevance, e.g. water, air and
several oils, belong to the group of Newtonian fluids. For these fluids, the stress tensor is
given as

T = (−p+ λ∗∇ · v) I+ µ
(︂
∇v+ (∇v)T

)︂
(2.3)

with the pressure p, and the fluid specific scalar functions λ∗, µ – dynamic viscosity –
depending on the thermodynamic state of the fluid.

While the equations introduced above hold for a wider range of flows, the flows consid-
ered within this thesis can be assumed isothermal. Furthermore, the fluids are assumed to
be incompressible. While this assumption is very accurately satisfied for the liquid phase,
incompressibility can also be safely assumed for the gas phase in case the Mach number

Ma =
|v|
a
, (2.4)
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with a denoting the fluid’s speed of sound, is significantly smaller than 1. With the speed
of sound in air aair = 343m

s at standard conditions [45], this assumption will be satisfied
for the kind of flows considered in this thesis. Consequently, the material properties
ρ, λ∗, µ reduce from functions to scalar constants. Mass conservation eq. (2.1) reduces to
volume conservation

∇ · v = 0. (2.5)

Hence, the term λ∗∇ · v vanishes and inserting the remainder of eq. (2.3) into eq. (2.2)
yields

∂t(ρv) +∇ · (ρv⊗ v) = −∇p+∇ ·
(︂
µ
(︂
∇v+ (∇v)T

)︂)︂
+ fv. (2.6)

Equations 2.5 and 2.6 are known as the Navier-Stokes equations for an incompressible,
single-phase system. However, they are also valid for each phase of a two-phase system.
Such a system is formed if both phases are immiscible or only partially miscible on a
molecular level. A schematic of a two-phase system is displayed in fig. 2.1. The overall
simulation domain Ω ⊂ R3 is separated into two subdomains Ω = Ω+(t) ∪ Ω−(t), each
representing a phase as illustrated for a liquid drop on a surface in fig. 2.1. At the contact
line Γ := ∂Ω ∩ Ω+ ∩ Ω−, the liquid-gas interface Σ encloses a contact angle θ with the
solid surface ∂Ωwall. Furthermore, the normal vector nΣ of the interface Σ is oriented
such that it points from Ω− into Ω+. Typically, a continuum mechanical model is used

Ω+(t)

Σ(t)

θ

∂Ω

∂Ωwall
Ω−(t)

Γ

nΣ

χ(x, t) = 0

χ(x, t) = 1

Figure 2.1.: Schematic of a two-phase system domain Ω subdivided into the phase spe-
cific domains Ω− and Ω+, separated by the interface Σ.

for the description of such a fluid mechanical problem. This description is often based
on a sharp interface model, as depicted in fig. 2.1, meaning Σ has zero thickness in the
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direction of nΣ. With this model, the liquid-gas interface can be described using an
indicator function

χ(x, t) :=

{︄
1, x ∈ Ω−(t) ⊂ R3,

0, otherwise.
(2.7)

Using χ(x, t), the phase-wise constant fluid properties can be expressed as a single field
for the entire domain by

ρ(x, t) = χ(x, t)ρ− + (1− χ(x, t))ρ+, (2.8)
µ(x, t) = χ(x, t)µ− + (1− χ(x, t))µ+. (2.9)

As in general ρ− ̸= ρ+ and µ− ̸= µ+, the single fields ρ(x, t), µ(x, t) exhibit discontinuities
at the interface Σ.
A phenomenon characteristic for two-phase flows is surface tension, a force acting on

the interface Σ. The surface tension force FΣ is given by

FΣ = σκnΣ +∇Σσ (2.10)

where κ = ∇Σ · (−nΣ) denotes the interface curvature – the sum of the two principle
curvatures or twice the mean curvature –, ∇Σ the surface gradient and σ the surface
tension coefficient [127]. In general, σ depends on the fluid combination and temperature.
Furthermore, fluids may contain so-called surfactants which accumulate at the interface
and thereby influence σ (see e.g. [91]). However, in the scope of this thesis only pure fluids,
devoid of surfactants or other contaminations, are considered. Taking into account the
assumption of isothermal flows as stated above, σ reduces to a scalar constant determined
solely by the fluid combination of the two-phase system. Consequently, the term ∇Σσ in
eq. (2.10) vanishes. The remainder of eq. (2.10) can be reformulated as a volumetric
term using an interface Dirac distribution

δΣ(x, t) = δ0 ((x− xΣ) · nΣ) (2.11)

yielding
fΣ = σκnΣδΣ (2.12)

where δ0 denotes the one-dimensional Dirac distribution. Adding this term to eq. (2.6)
and replacing the generic volume force term with gravity fv = ρg gives the mathematical
model for flows considered within this thesis:

∂t(ρv) +∇ · (ρv⊗ v)−∇ ·
(︂
µ
(︂
∇v+ (∇v)T

)︂)︂
= −∇p+ ρg+ fΣ, (2.13)

∇ · v = 0
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with volume conservation eq. (2.5) repeated for completeness. The gravity term ρg is
included for completeness only. In the verification and validation cases presented in
chapter 5 and chapter 6, gravitational forces are absent. Thus, handling of ρg is not
further discussed.
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3. Numerical method

As pointed out in chapter 1, the two-phase method presented in this thesis has been
developed with technical applications in mind. Consequently, the employed numerical
method has to be able to handle the complex domains often encountered in such cases.
Therefore, the unstructured Finite-Volume method (FVM) is used for the discretization
of the governing partial differential equations 2.13 and 2.5. As this method is already
well established, only a brief overview of the main principles and properties is presented
here. For further information, the reader is referred to the available literature, e.g. to [34]
for a theoretical description of the method or [52, 56] for error analysis. As this thesis
builds upon the OpenFOAM framework [134, 82] for finite volume discretization, another
noteworthy reference is [77] for a detailed description for FVM as it is implemented in
OpenFOAM.
First, the domain discretization and its relevant geometric quantities are introduced.
Afterwards, discretization of the different terms appearing in eq. (2.13) is discussed. The
chapter closes with some two-phase specific characteristics.

3.1. Domain discretization

An approximate solution of the model eq. (2.13) requires a decomposition of the solution
domain into volumes that have no volume overlaps, the closed cells Ωc, denoted by

Ω ≈ Ω̃ = {Ωc}c∈C (3.1)

where C = {1, 2, 3, . . . , Nc} is a set of indices to mesh cells. The mesh is a set of non-
overlapping subsets (cells) Ωc ⊂ Ω̃. With non-overlapping, it is meant the volume of an
intersection between any two cells is zero. Index sets represent the unstructured mesh
data [39]. A set of cell corner-points Ph is considered where each point in Ph is an element
of R3. Geometrically, each cell Ωc is a volume bounded by polygons, so-called faces. A
global set of faces Fh is defined, and each face is a sequence of indices of points in Ph. In
this context, a cell set Cc is defined as a set of indices of faces in the set of mesh faces Fh.
Therefore, when referring to a volume defined by the cell, Ωc is used and its magnitude
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is then |Ωc|, and when referring to the cell as an unordered index set, Cc is used and its
magnitude |Cc| is the number of faces that bound the cell.

xc

xc,n

nf

xf

Sf

Figure 3.1.: Exemplary cell Ωc and quantities required by the finite volume method.

Figure 3.1 shows an exemplary polyhedral cell Ωc with geometric quantities required
for discretization using the Finite-Volume Method. Its centroid xc is defined as

xc =
1

|Ωc|

∫︂
Ωc

xdV. (3.2)

Analogue, for each of the cell’s bounding faces Sf , a centroid

xf =
1

|Sf |

∫︂
Sf

xdS (3.3)

is given with |Sf | denoting the face area. Assuming an ideal mesh, the polygon Sf is planar
1 and thus has a constant, unique unit normal nf . It is oriented such that (xf −xc) ·nf > 0.
For conciseness, a face area-normal vector Sf = |Sf |nf is defined. Finally, dcn = xc,n − xc
denotes the connection between the centroid of Ωc and a neighbor cell Ωc,n sharing the
face Sf with Ωc.
Aside from their geometric flexibility, the solution of continuum mechanical problems

in geometrically complex domains may significantly benefit from unstructured meshes in
additional ways. For example, gradients of solution variables are resolved at geometrically
1For complex geometries, only tetrahedral meshes guarantee exact planar faces. Other polyhedrons may
exhibit non-planarity.
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complex boundaries by employing mesh boundary layers, strongly reducing the number
of cells required to achieve specific accuracy. Hence, this reduces the overall required
computational resources.

While, in principle, the Finite-Volume method can be applied to a moving mesh where
the cell corner points Ph change over time, within this thesis only static meshes with fixed
Ph are considered.

3.2. Unstructured Finite-Volume method

The central approach of the Finite-Volume method is to approximate a spatially varying
quantity ψ(x) with a volume average

ψc =
1

|Ωc|

∫︂
Ωc

ψ(x)dV (3.4)

for each cell, resulting in a piecewise constant approximation. Thus, the integral form
of eq. (2.13) over a control volume Ωc is considered. Where applicable, the divergence
theorem ∫︂

Ωc

∇ · BdV =

∮︂
∂Ωc

B · ndS =
∑︂
f∈Cc

∫︂
Sf

B · nfdS, (3.5)

with B denoting a vector field in R3, is used to transform volume integrals to surface
integrals. The integral over a cell face Sf defines a so-called flux

fluxf (B) :=
∫︂
Sf

B · nfdS. (3.6)

For two cells sharing a face Sf , the flux only differs in its sign, not its magnitude. This is
a crucial observation for ensuring conservativeness at the discrete level.

Below, each term of eq. (2.13) is discussed individually, namely the time derivative, the
convective term, the diffusion term and the source terms.

3.2.1. Time derivative

Integration of the time derivative in eq. (2.13) over a fixed control volume Ωc and applying
the Reynolds transport theorem to interchange the order of integration and time derivative
yields ∫︂

Ωc

∂t(ρv)dV = ∂t

∫︂
Ωc

ρvdV. (3.7)
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Using quadrature to approximate the integral by midpoint rule and, for example, the Euler
scheme to approximate the time derivative results in

∂t

∫︂
Ωc

ρvdV ≈ |Ωc|
∆t

(︁
ρvn+1 − ρvn

)︁
(3.8)

with discrete time levels tn+1 = tn +∆t, n ∈ N, and vn+1 = v(xc, tn+1), vn = v(xc, tn)
associated with the cell centroid xc. This approximation is first order accurate in time and
second order accurate in space. Whether a term is discretized explicitly or implicitly with
respect to time is explained below. The density ρ is left without a time index on purpose.
As ρ is assumed constant for each phase, ρn+1 = ρn holds for bulk cells. For interface
cells, ρ is a function of Σ (see eq. (2.8)) and its calculation within the solution algorithm
is described in chapter 5.

3.2.2. Convective term

Applying the divergence theorem eq. (3.5) to the convective term integrated over Ωc

results in ∫︂
Ωv

∇ · (ρv⊗ v)dV =
∑︂
f∈Cc

∫︂
Sf

ρv⊗ v · nfdS =
∑︂
f∈Cc

∫︂
Sf

(ρv · nf )vdS. (3.9)

With the midpoint rule for the surface integrals the second order accurate approximation

∑︂
f∈Cc

∫︂
Sf

(ρv · nf )vdS ≈
∑︂
f∈Cc

(|Sf |ρvf · nfvf ) (3.10)

is obtained with vf denoting the velocity at a face centre xf . It is linearized by employing
two different time levels for vf , |Sf |ρvnf · nfvn+1

f = ṁn
fv

n+1
f , using the known velocity

vnf to compute the mass flux ṁn
f . Whether the non-linearity is further accounted for

depends on the solution algorithm. The Pressure Implicit with Splitting of Operators
(PISO) algorithm [49], a common solution method for transient flows, does not further
consider the non-linearity of the convective term. In contrast, within the scope of this
thesis an algorithm has been developed, section 5.8, which allows to update ṁf in an
iterative manner, thereby considering the non-linearity.
Within the cell-centred Finite-Volume method, face-centred quantities like vf are not

readily available. Consequently, interpolation from cell-centres is required. This is ex-
plained in section 3.2.5 further down.
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3.2.3. Diffusion term

As for the convective term, the divergence theorem eq. (3.5) is used to transform the
volume integral of the diffusion term into a surface integral∫︂

Ωc

∇ ·
(︂
µ
(︂
∇v+ (∇v)T

)︂)︂
dV =

∑︂
f∈Cc

∫︂
Sf

µ
(︂
∇v+ (∇v)T

)︂
· nfdS. (3.11)

Replacing the surface integrals with midpoint rule quadrature yields the approximation∑︂
f∈Cc

∫︂
Sf

µ
(︂
∇v+ (∇v)T

)︂
· nfdS ≈

∑︂
f∈Cc

µf

(︂
∇vf · nf + (∇v)Tf · nf

)︂
|Sf |. (3.12)

Discretization with respect to time is split into an implicit and an explicit contribution.
The scalar product ∇vf · nf is discretized implicitly by

∇vn+1
f · nf ≈

vn+1
c,n − vn+1

c

∥dcn∥2
(3.13)

using the cell-centred vn+1
c ofΩc and cell-centred vn+1

c,n from the neighboring cell straddling

face Sf . The term
(︂
∇vnf

)︂T
· nf is discretized explicitly in the following way. First, the

discrete cell-centred gradient ∇vnc is computed with the Green-Gauss scheme as

∇vnc =
1

|Ωc|
∑︂
f∈Cc

vnf ⊗ nf |Sf | ≈
1

|Ωc|

∫︂
Ωc

∇vndV (3.14)

with vnf interpolated from cell centres. Afterwards, ∇vnc is interpolated to face centres to

compute
(︂
∇vnf

)︂T
· nf .

Overall, given an interpolation that is at least second order accurate and in the absence
of additional mesh-related errors, the discretization eq. (3.12) is second-order accurate in
space. More information about the mesh-induced discretization errors for the unstructured
FVM can be found in [52, 56].

3.2.4. Source terms

In principle, the pressure gradient ∇p in eq. (2.13) can be discretized using the Green-
Gauss scheme, analogue to eq. (3.14). However, this would lead to an inconsistency with
respect to the discretization employed in the pressure-correction equation (see section 5.8).
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Thus, the reconstruction operator R, defined by eq. (5.17), is used to obtain a cell-centred
∇pc from the pressure fluxes at face centres

∇pf · Sf ≈ pn − pc
∥dcn∥2

|Sf |. (3.15)

This approach is part of a well-balanced discretization [35, 94] ensuring that equilibria of
the model eq. (2.13) also exist in its discrete form.

Handling of surface tension is a central part of this thesis and as such it is described in
section 5.7.

3.2.5. Interpolation

The discretization schemes described above require interpolation from cell centres to face
centres. With the exception of the convective term, quantities are interpolated linearly

ψf = (1− w)ψc + wψc,n (3.16)

with ψc denoting a generic cell-centred quantity. The interpolation weight w is computed
by

w =
∥xf − xc∥2
∥xc,n − xc∥2

. (3.17)

For the convective term, linear interpolation may negatively impact the stability of the
resulting linear system of equations. Instead, either upwind interpolation

ψf =

{︄
ψc, ṁf ≥ 0,

ψc,n, ṁf < 0
(3.18)

or a high resolution scheme [77, chapter 12] is used.

3.3. Volume fraction and mixture of fluid properties

For the Finite-Volumemethod, instead of evaluating eq. (2.8) and eq. (2.9) at xc to compute
density and viscosity for a cell, the cell-averaged fluid properties are calculated with a
volume-averaged phase indicator αc. This so-called volume fraction is given, according to
eq. (3.4), by

αc =
1

|Ωc|

∫︂
Ωc

χ(x, t)dV. (3.19)
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With the volume fraction, the single-field cell-centred fluid properties are computed by

ρc = αcρ
− + (1− αc)ρ

+, (3.20)
µc = αcµ

− + (1− αc)µ
+, (3.21)

giving the corresponding bulk values for cells away from the interface and intermediate
values for cells intersected by Σ. Equation (3.20) follows directly from mass conservation
since

|Ωc|ρc =|Ωc|
(︁
αcρ

− + (1− αc)ρ
+
)︁

=|Ωc|
1

|Ωc|

[︃∫︂
Ωc

χdV ρ− +

∫︂
Ωc

(1− χ)dV ρ+
]︃

=

∫︂
Ωc

ρ−χ+ ρ+(1− χ)dV

=

∫︂
Ωc

ρdV.

For viscosity, in contrast, there is no obvious functional relation between µc and µ−, µ+.
Additionally, according to eq. (3.12), viscosity values are required at the face centres.
Here, the same approach as for ρc is used to calculate µc which is interpolated to obtain
µf . However, there are also alternatives, e.g. using the harmonic mean, reported in the
literature [58, 119, 62].
Evaluation of eq. (3.19) is trivial for bulk cells as χ is constant within those cells.

For interface cells Ωc ∩ Σ ̸= ∅, however, accurate approximation is more involved and
depends on the representation of Σ. Computation of αc is discussed for the case when Σ
is represented by a triangle surface mesh in the following chapter.
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4. Computation of signed distances and
volume fractions from surface meshes

In the context of hybrid Level Set / Front Tracking methods, the volume fractions αc

are required for the calculation of the one-field fluid properties, eqs. (3.20) and (3.21).
However, αc is not directly available for this method type and thus has to be approximated
from the available interface representations, meaning either the discrete level set values or
the triangular surface. This calculation has an interesting secondary application, namely
calculation of initial conditions for another two-phase method, the VOF method.
In this chapter, a new numerical algorithm that calculates initial conditions for simu-

lations of two-phase flow problems for fluid interfaces of complex shapes is presented.
The initial conditions are calculated in the form of signed distances and volume fractions
from fluid interfaces approximated as arbitrarily shaped triangular surfaces immersed
in unstructured meshes. The signed distances are relevant as initial conditions for the
Level Set method [115, 114] for multiphase flow simulation. Volume fractions on unstruc-
tured meshes are required for the unstructured Volume-of-Fluid method (cf. [69] for a
recent review). In fact, the proposed algorithms have been applied to model experimental
fluid interfaces from wetting experiments [44], which was not possible using available
contemporary approaches that model fluid interfaces using (compositions of) implicit
functions or parameterized surfaces. The proposed algorithm approximates the surfaces
using triangle meshes that are omnipresent in Computer-Aided Design (CAD) because of
their versatility: they can approximate basic surfaces such as spheres and ellipsoids, but
also surfaces of mechanical parts, disjoint surfaces in mechanical assemblies, or surfaces
resulting from imaging scans.

4.1. Literature review

The unstructured VOF methods [69] rely on the volume fraction field αc to track interface
with the advecting velocity obtained from the solution of two-phase Navier-Stokes equa-
tions in a single-field formulation. All multiphase flow simulation methods that utilize the
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single-field formulation of Navier-Stokes equations approximate the phase indicator func-
tion similarly to eq. (3.19). The phase indicator approximation utilizes signed distances
in the Level Set [115, 113, 114] method, the volume fractions approximate the phase
indicator for the Volume-of-Fluid [26, 81, 46, 98] method.
Various methods exist that compute the volume fraction αc based on the exact phase

indicator χ(x, t). The majority of methods calculate the integral in eq. (3.19) numerically,
as schematically shown in fig. 4.1, using numerical quadrature.

Σ

χ(x, t) = 1

χ(x, t) = 0

ΣΩc

Ω−

h(x)

x

y

Ω−

Figure 4.1.: Calculating volume fractions of a circular interface by numerical integration.

Different approaches are outlined below with increasing complexity in terms of admis-
sible shapes of the fluid interface. The admissible shapes range from analytic descriptions
of basic geometric shapes such as spheres and ellipsoids to implicit functions (or their
combinations) and more general shapes approximated with volume meshes.

Strobl et al. [112] propose an exact intersection between a sphere and a tetrahedron, a
wedge, or a hexahedron. The proposed algorithm is exact and fast, though it is limited to
a spherical interface shape.

Fries and Omerović [36] represent the fluid interface as a level set and propose a higher-
order quadrature for the integral on the right-hand side of eq. (3.19). The parametrization
of the surface uses roots of the implicit function found by the closest-point algorithm.
Results are presented for hexahedral and tetrahedral unstructured meshes that may also
be strongly deformed. Fries and Omerović [36, fig. 52, fig. 53] also show results with
higher-order (> 2) convergence for the volume integration of an arbitrary non-linear
function on hexahedral and tetrahedral meshes. However, the volume and area integration
error is reported for a single function. While a relative global volume error between 1e−08
and 1e−06 is reported, no information about the required CPU times is provided. In the
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approach proposed by Fries and Omerović [36], fluid interfaces with complex shapes are
modeled as a composition of implicit functions.

Kromer and Bothe [60] propose an efficient third-order accurate quadrature to approxi-
mate eq. (3.19). Contrary to Jones et al. [55], who decompose cells into tetrahedrons,
Kromer and Bothe [60] locally approximate the hypersurface by a paraboloid based on the
principal curvatures. Applying the Gaussian divergence theorem to eq. (3.19) then yields
contributions from the cell boundary and the approximated hypersurface patch. Using
the surface divergence theorem, Kromer and Bothe [60] reformulate the contribution
from the hypersurface patch into a set of line integrals, where the associated integrand
emerges from the solution of a Laplace-Beltrami-type problem. The method of Kromer
and Bothe [60] is directly applicable to unstructured meshes. However, locally, i.e., within
a cell, the fluid interface has to be C2 and simply connected.

Aulisa et al. [10] and Bnà et al. [16, 17] calculate the volume fraction by representing
the indicator function as a height function inside cubic cells, using the structure of the
underlying Cartesian mesh. Numerical integration of the height function is illustrated by
fig. 4.1. However, extending this approach to unstructured meshes raises many questions.
First, constructing a height function in a specific direction is complex and computationally
expensive [88]. Second, the orientation of the interface in the chosen coordinate system
may easily make the problem ill-conditioned. Finally, required mesh-search operations
are complicated as the face normals of polyhedral cells are typically not aligned with the
coordinate axes.

Σ

Ωc ∩ Ω−
Ωc ∩ Ω−

Σ

Figure 4.2.: Polyhedral cell (left) and non-convex cell (right) for which the intersection
volume (dark grey) has to be computed. The light grey regions lead to cases
that have to be identified and require special treatment increasing the problem
complexity far beyond a simple one dimensional integration.
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The calculation of the volume fraction given by αc =
|Ω−∩Ωc|

|Ωc| can be reformulated into
the integration of a function f = 1 within Ω− ∩ Ωc. Since ∂Ωc consists of piecewise-
planar surfaces (faces), the complexity lies in the non-planar part of the surface ∂Ω− ∩
Ωc = Σ(t) ∩ Ωc. Trimmed isogeometric analysis can be used to integrate f = 1 within
Ω− ∩ Ωc by representing ∂Ω− ∩ Ωc using a trimmed NURBS surface, effectively resulting
in αc =

|Ω−∩Ωc|
|Ωc| for complex non-linear CAD surfaces. Although not yet applied to volume

fraction calculation (f = 1 integration), trimmed isogeometric analysis has been applied
to solving PDEs in solution domains bounded by NURBS surfaces [59, 102, 80]. Similarly,
the immersed isogeometric analysis (e.g. [32]) requires function integration in cut cells,
where the integration of f = 1 in the cut cell is equivalent to computing |Ω− ∩Ωc| used in
volume fraction calculation. Although it is a potentially interesting alternative approach
for computing volume fractions from CAD surfaces, the isogeometric analysis requires
NURBS trimming, octree refinement, and higher-order quadratures. These efforts are
worthwhile for the goal of achieving higher-order solutions for PDEs in complex solution
domains. However, as demonstrated in the results section 4.3, the proposed algorithms
achieve sufficient accuracy for signed distances and volume fractions on unstructured
meshes while relying on straightforward second-order accurate discretization.
The signed distances in the Level Set Method require re-distancing (correction). The

re-distancing methods are usually based on approximate solutions of PDEs that ensure
the signed-distance property [100]. Contrary to this approach, the unstructured Level
Set / Front Tracking method [71] geometrically computes minimal signed distances from
Σ̃. This calculation is relatively straightforward on structured meshes [105, 109], but
significantly more complex on unstructured meshes [71]. Here, the calculation of signed
distances from [71] is significantly extended by introducing an efficient approximate
propagation of the inside/outside information from Σ̃.

Volume fraction calculation methods outlined so far model the fluid interface using exact
functions and handle more complex interface shapes via combinations of these functions.
A combination of exact functions cannot accurately capture the shape of the fluid interface
in many cases. For example, when the interface shape is prescribed experimentally [44].
One approach exists that can handle arbitrarily complex interface shapes. In this

approach, the fluid interface encloses a volumetric mesh as its boundary surface mesh.
This mesh given by the fluid interface is intersected with a ”background” mesh that stores
volume fractions. This approach is called volume mesh intersection. An example for such an
intersection between Ω̃ and cells from Ω̃

− is shown in fig. 4.3. In principle, this approach
is relatively straightforward, provided an accurate geometrical intersection of tetrahedrons
is available. However, geometrical operations based on floating-point numbers are not
stable and can lead to severe errors [123, chap. 45].
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Ω̃
−
l

Ω̃
−
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Figure 4.3.: Calculating volume fractions from a circular interface by volume mesh
intersection.

Ahn and Shashkov [4] have initialized volume fractions by volume mesh intersection as
shown in fig. 4.3. In this approach, the approximated phase Ω̃

−
(t) is decomposed into

volumes (an unstructured mesh), equivalently to the decomposition Ω̃ given by eq. (3.1).
The boundary ∂Ω− is the fluid interface Σ(t), and it is approximated as a polygonal surface
mesh, leading to

Ω− ≈ Ω̃
−
:= {Ω̃−

l }l∈L, (4.1)

i.e. an approximation of Ω−. Generally, as shown in the detail in fig. 4.3, a cell Ωc of the
background mesh Ω̃ may overlap with multiple cells Ωl from the Ω̃

− mesh, and vice versa.
A set of indices l of cells Ω̃−

l in Ω̃
− is defined that overlap with the cell Ωc: the so-called

cell stencil of Ωc in Ω̃
−
l , namely

S(Ωc, Ω̃
−
) = {l ∈ L : Ωc ∩ Ω̃

−
l ̸= ∅,where Ωc ∈ Ω̃, Ω̃

−
l ∈ Ω̃

−}, (4.2)

where L is an index set, containing indices of cells from Ω̃
−. Volume fractions {αc}c∈C

can then be calculated by performing the intersection

αc =
| ∪

l∈S(Ωc,Ω̃
−
)
Ωc ∩ Ω̃

−
l |

|Ωc|
. (4.3)

Since each Ω̃
−
l overlaps with at least a one cell from Ω̃, and the number of cells from Ω̃

that intersect each cell from Ω̃
− can be approximated as

N(Ω̃
−
, Ω̃) ≈ |Ω̃−|mean

l∈L
(|S(Ω̃−

l , Ω̃)|), (4.4)
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where |Ω̃−| denotes the number of cells in the mesh Ω̃
−. The average number of cells Ωc

overlapping Ω̃
−
l , mean

l∈L
|C(Ω̃−

l , Ω̃)|, depends on the mesh densities of both meshes, Ω̃ and

Ω̃
−. However, it is safe to assume that mean

l∈L
|C(Ω̃−

l , Ω̃)| > 1. Next, it is known that |Ω̃−|
grows quadratically in 2D and cubically in 3D with a uniform increase in mesh resolution,
taken as the worst case scenario. It grows linearly in 2D and quadratically in 3D if Ω̃− is
refined only near the interface Σ̃ := ∂Ω̃

−. Consequently, the computational complexity
of the volume mesh intersection algorithm in terms of cell/cell intersections is quadratic
in 2D and cubic in 3D in the worst case, and linear in 2D and quadratic in 3D if local
refinement is used to increase the resolution of Σ̃. The quadratic complexity in 3D is
a serious drawback of this algorithm, especially for large simulations where |Ω̃−| easily
reaches hundred thousand cells per CPU core. Menon and Schmidt [75] have extended
the volume mesh intersection algorithm from Ahn and Shashkov [4] to perform a volume
conservative remapping of variables in the collocated FVM with second-order accuracy on
unstructured meshes. Their results confirm the polynomial computational complexity in
terms of absolute CPU times for this volume mesh intersection algorithm [75, table 3].

López et al. [66] propose a volume truncation algorithm for non-convex cells and apply
it to the initialization of volume fractions from exact functions on unstructured meshes.
Cell-subdivision is introduced to handle cases for which the interface crosses an edge of
a cell twice. Non-planar truncated volumes are triangulated [66, fig 18], and second-
order accuracy is demonstrated in terms of the relative global volume error for a uniform
resolution and a higher-order accuracy when locally refined sub-grid meshes are used.

Ivey and Moin [50] initialize volume fractions on unstructured meshes using tetrahedral
decomposition of non-convex cells and perform geometrical intersections with a similar
approach as the approach from Ahn and Shashkov [4]. Unlike Ahn and Shashkov [4],
Ivey and Moin [50] compute volume fractions of intersected tetrahedrons by intersecting
them with exact signed distance functions that are used to model the fluid interface.
Therefore, this algorithm cannot directly utilize arbitrarily shaped interfaces. However,
their approach utilizes a linear interpolation of intersection points between the tetrahedron
and the signed-distance function and yields second-order accuracy. Accuracy is further
increased using adaptive mesh refinement.

The approaches reviewed so far require an exact representation of the interface using
explicit analytic expressions, which hinders the direct application of such algorithms to
initial conditions resulting from experiments as these are typically not available as function
compositions. The volume mesh intersection algorithm [4] is flexible but computationally
expensive, and it requires highly accurate and robust geometrical intersections.

The following sections outline the proposed algorithm that uses an unstructured surface
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mesh Σ̃ to compute signed distances and volume fractions on unstructured meshes.
Relying on unstructured surface meshes retains the ability to handle arbitrary-shaped
surfaces while avoiding computationally expensive cell/cell intersections. Of course, using
surface meshes to approximate the fluid interface renders the proposed algorithm second-
order accurate; however, sufficient absolute accuracy is achievable with second-order
accurate methods using local mesh refinement on the background mesh [24, 35]. Applying
local mesh refinement on the background mesh in the close vicinity of the triangulated
surface increases the accuracy and limits it to the resolution of the surface mesh, not
the background mesh that stores volume fractions and signed distances. The proposed
algorithm geometrically computes signed distances near the fluid interface. These signed
distances (so-called narrow-band signed-distances) are then propagated throughout Ω̃
by an approximate solution of a diffusion equation. The propagated signed distances
determine the value of the phase indicator χ(x, t) in those cells that are either completely
empty (αc = 0), or completely full (αc = 1). Finally, second-order accurate volume
fraction values are calculated in intersected cells (0 < αc < 1). This work enables the
calculation of complex initial conditions for different multiphase simulation methods.
These include in particular geometric [54, 50, 86, 70], geometric/algebraic [101] and
algebraic VOF methods [128, 29]. The calculation of volume fractions from a surface
mesh (marker points in 2D) was done in the mixed markers / VOF method by Aulisa et al.
[9]: the proposed algorithm significantly extends this idea towards an accurate and fast
volume fraction model for Front Tracking methods [126], as well as the hybrid Level Set /
Front Tracking methods on structured [105, 109] or unstructured [71] meshes. Signed
distances and the respective inside-outside information from triangulated surfaces are
available for unstructured Level Set and Immersed Boundary methods.

4.2. Algorithm description

The calculation of volume fractions by the proposed Surface-Mesh Cell Intersection/Ap-
proximation (SMCI/A) algorithms, outlined in fig. 4.4, requires signed distances to the
interface at cell centres and cell corner points. As a naive computation is computationally
expensive (section 4.2.2), we employ an octree based approach to the calculation of signed
distances. Starting point of the octree based search is the calculation of search radii at
the relevant points.
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Figure 4.4.: Steps of the Surface Mesh Intersection / Approximation (SMCI/A)
algorithms.

4.2.1. Octree-based search structure

In the first step, a search radius rc and rp is calculated at each cell center and cell-corner
point, respectively. This is illustrated in fig. 4.4a. Here, the cell search radius rc is defined
by

rc = λsminf∈Cc ∥xf,O − xf,N∥2, (4.5)
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where xc is the cell center, λs > 0 is the search radius factor detailed below and xf,O, xf,N
are the cell centers of two cells that share the face with index f of the cell Ωc (O for owner
cell with a smaller cell index than the neighbor cell N). Here, the index set Cc contains
the indices of those faces that form the boundary of Ωc. Based on (4.5), the corner-point
search radius rp is defined by

rp = λsminc∈Cp(xp) rc, (4.6)

where xp is the cell-corner point, while the point-cell stencil is the index set S(xp, Ω̃), that
contains indices of all cells from Ω̃ whose corner-point is xp.
The search radii introduced above are used to define search balls in 3D (circles in

2D), which are used to reduce the number of calculations to determine signed distances
between the cell corner points xp and the cell centers xc with respect to the provided
surface mesh Σ̃.

4.2.2. Octree decomposition of the surface mesh

In contrast to various other approaches for volume fraction initialization, the here interface
is not represented by some kind of function, but as a set of triangles. First, to define the
interface Σ̃, the convex hull of a set of n points Pn = {x1, . . . , xn}, xi ∈ R3 is denoted by

conv(Pn) :=

⎧⎨⎩x ∈ R3 : x =
∑︂

xi∈Pn

γixi,
n∑︂

i=1

γi = 1

⎫⎬⎭ . (4.7)

Using this, a triangle is defined as the convex hull of a point triple: T := conv(P 3).
Consequently, the surface mesh is defined as

Σ̃ := {T1, T2, . . . , Tn}. (4.8)

With the structure of Σ̃ in mind, it should be emphasized why an octree based approach
is the key to obtaining reasonable computation times. Consider the case where a minimal
distance between a point x and Σ̃would be calculated for each cell center xc and cell-corner
point xp. The need for the spatial subdivision and search operations becomes obvious,
as this would require a distance computation between each point of the interface mesh
and each cell centers and cell corner points of the background mesh. Consequently, this
would require |C||Σ̃| operations to compute the geometric signed distances at cell centers
and additional computations for evaluating signed distances at cell-corner points. For the
computations below, the number |C| often reaches the order of 1e05 per CPU core, while
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|Σ̃| is typically on the order of 1e04 per CPU core. Aiming at redistancing computations for
a dynamic setting in multiphase flows where Σ̃ = Σ̃(t), such a large number of distance
computations makes such a brute force redistancing approach prohibitively expensive.

The first step of the signed distance calculation is the computation of an Axis-Aligned
Bounding Box (AABB) from the surface mesh Σ̃. The AABB is used to build an octree data
structure, illustrated as a 2D quadtree subdivision in fig. 4.4b, which is used to access Σ̃.
The octree data structure enables fast search queries involving cell centers and cell corner-
points that are close to the surface mesh Σ̃, with a logarithmic computational complexity
with respect to the number of vertices in Σ̃ [73, 74]. The structure of the octree depends
on the ordering of vertices in Σ̃: since Σ̃ is an unstructured surface mesh, its vertices are
generally sufficiently unordered, which makes the octree well-balanced. Once the octree
has been constructed, it can be used to find the closest points x ∈ Σ̃ to cell centres xc and
cell corner points xp. Note that this is only true for those xc, xp which are sufficiently close
to Σ̃ in terms of their search radius rc, rp. Thus, the search radii define a so-called narrow
band around Σ̃, where the nearest distances are calculated geometrically. The narrow
band of Σ̃ is denoted with N (Σ̃), and the closed ball B(x∗, r) := {x ∈ R3| ∥x− x∗∥2 ≤ r}
with a radius r around a point x. Then

N (Σ̃) :=
{︂
x ∈ R3| ∃ T ∈ Σ̃ such that T ∩ B(x, r) ̸= ∅

}︂
, (4.9)

where r is either rp or rc.

4.2.3. Signed distance computation

For a point x ∈ N (Σ̃), the octree provides the closest point xmin ∈ Tmin for some T ∈ Σ̃
and the corresponding triangle Tmin itself. While the absolute distance can be directly
computed as ∥x− xmin∥2, care must be taken when computing the sign with respect to
the orientation of Σ̃. Directly using the triangle normals nT may lead to false signs and
consequently, to erroneous volume fractions. Thus, the work of [120, 11] is followed and
angle weighted normals

nxv =

∑︁
T ∈ngh(xv) βT nT∑︁
T ∈ngh(xv) βT

(4.10)

are computed at the vertices xv of Σ̃. Here, ngh(xv) denotes the set of all triangles
containing xv, nT a triangle normal and βT the inner angle of T at xv. Baerentzen and
Aanaes [11] propose a classification of the point xmin whether it is located within a triangle,
on an edge, or a vertex and base the choice of the normal on this classification. While
such a classification is simple in theory, a robust implementation is difficult due to the
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limited precision of floating point arithmetic. Thus, instead a linear interpolation of nxv
within Tmin to xmin is used, denoted nI(xmin, Tmin). With this normal computation, the
signed distance between x and xmin is calculated by

φg(x, Σ̃) = sign((x− xmin) · nI(xmin, Tmin))∥x− xmin∥2. (4.11)

where the supindex g indicates a geometrical construction. This procedure is illustrated
in fig. 4.4c. The robustness of this approach with regard to inside/outside classification is
demonstrated in section 4.3.1.

Using the spatial subdivision provided by the octree, the computational complexity for
finding the minimal distances between mesh points and Σ̃ is reduced severely, as the vast
majority of cell centers xc are not even considered for calculation as no triangle T ∈ Σ̃
exists within the corresponding search ball. The closest triangles of those points xc, whose
ball B(xc, rc) intersects Σ̃ are found with logarithmic search complexity with respect to
|Σ̃|. This significant reduction of complexity can potentially enable a future application of
the proposed algorithm on moving interfaces Σ̃(t) as a geometrically exact marker field
model for unstructured Front Tracking methods. Therefore, it is crucial to understand
that the minT ∈Σ̃ operation in eq. (4.11) throughout this text relies on the octree spatial
subdivision and search queries.

4.2.4. Inside / outside propagation

After the calculation of geometric signed distances in the narrow band around Σ̃, the
signed distances are propagated to the bulk of different phases, as shown in fig. 4.4d. In
[71], the geometric signed distances are set to large positive numbers throughout the
domain, and a graph-traversal algorithm is used to iteratively correct the signs of signed
distances using face-cell and point-point graph connectivity provided by the unstructured
mesh. Graph-traversal is computationally expensive and complicated to implement in
parallel. Here, a straightforward alternative that instantaneously propagates signs of
signed distances through the solution domain is proposed which is parallelized easily.
This approach relies on the diffusion equation for the signed distances, namely

−∆φ = 0,

∇φ = 0, for x ∈ ∂Ω
(4.12)

and its discretization using the unstructured FVM in OpenFOAM [52, 56, 77], giving a
linear system of equations. The key idea to sign propagation is to apply a few iterations
(< 5) of an iterative linear solver to this system. Here, a Conjugate Gradient approach
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with an incomplete lower upper preconditioner has been used. With the initial field set to

φ(x) =

{︄
φg(x, Σ̃), if x ∈ N (Σ̃)

0, otherwise,
(4.13)

this small number of iterations suffices to properly propagate sign(φ) with respect to the
orientation of Σ̃ throughout Ω̃. Prerequisite for this approach to work is that the narrow
band has a certain minimum width in interface normal direction. At least four cells on
each side of the interface are required to ensure a robust propagation. This is achieved
by setting a global search radius factor λs := 4 in eq. (4.5) used to calculate rc at cell
centers. Note that increasing λs beyond this value only increases computational costs,
and does not impact the accuracy of the proposed algorithm, as with a larger value of λs
the narrow band N (Σ) becomes wider and consequently the geometrical signed distances
are calculated at more points xc, xp, using eqs. (4.14) and (4.17), respectively.

Two aspects have to be considered when solving the linear system of equations resulting
from the discretization of eq. (4.12). First, cells for which xc ∈ N (Σ̃) have to be excluded
from the vector of unknowns as φg(xc) is already known for those. Second, for cells away
from N (Σ̃) the only relevant information is sign(φc) indicating Ωc ∈ Ω− or Ωc ∈ Ω+,
respectively. A few iterations of a linear solver suffice to reliably propagate sign(φc) to the
entire domain. The resulting field is

φc =

{︄
φgc , if xc ∈ N (Σ̃),

φac , otherwise,
(4.14)

with φgc denoting geometric signed distances and φac approximate values from the solution
of eq. (4.12) carrying inside/outside information but without geometric meaning.

Once the cell-centered signed distances φc are computed, they are used to calculate the
signed distances at cell corner-points via

φIp =
∑︂
c∈Cp

wp,cφc, (4.15)

where Cp is the index set of cells that contain the cell corner point xp and the supindex
I indicating interpolation. Furthermore, wp,c is the inverse-distance weighted (IDW)
interpolation weight

wp,c =
∥xc − xp∥−1

2∑︁
c̃∈Cp

∥xc̃ − xp∥−1
2

. (4.16)

As with φc, the accuracy of φp is irrelevant outside of the narrow band of Σ̃, only the sign
of the signed distance is important in the bulk. To correct for the error introduced by the
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IDW interpolation in eq. (4.15), signed distances at cell-corner points of intersected cells
are calculated geometrically

φp =

{︄
φgp, if xp ∈ N (Σ̃),

φIp, otherwise.
(4.17)

Equations (4.14) and (4.17) define the final signed distances at cell centers and cell-
corner points, respectively. These quantities will have the value of a geometrical distance
to Σ̃ in the narrow band, while outside of the narrow band only the correct sign resulting
from the approximative solution of eq. (4.12) is relevant.

4.2.5. Volume fractions by geometrical intersection

Once signed distances at cell centers {φc}c=1,2,...,|Ω̃| and cell corner points {φp}p=1,2,...|Ph|
are calculated as outlined in the previous section, the Surface-Mesh / Cell Intersection
(SMCI) algorithm calculates the volume fractions in a straightforward way. The volume
fraction calculation is shown schematically for the SMCI algorithm in fig. 4.5b. Each
cell is decomposed into tetrahedrons, using the cell centroid xc as the base point of the
tetrahedron, the centroid of the face xc,f , and two successive points from the cell-face,
xc,f,i, xc,f,i+1. The resulting tetrahedron has the distance φc associated to the cell centroid,
the distance φc,f associated to the face centroid, and and (φc,f,i, φc,f,i+1) pair of distances
associated with a pair of points that belong to the cell-face (c, f), as shown in fig. 4.5b.
If all the distances of the tetrahedron are negative, the tetrahedron lies in the negative
halfspace with respect to Σ̃, and its total volume contributes to the sum of the volume of
phase 1 inside the volume Ωc. If a pair of distances in a tetrahedron has different signs,
the tetrahedron is intersected by the interface approximated by the surface mesh Σ̃. The
volume of this intersection is calculated by geometrically intersecting the tetrahedron
with those triangles from Σ̃, that have a non-zero intersection with a ball B enclosing
the tetrahedron. The center of the ball Bc,f,i := B(xc,f,i, Rc, f, i) is the centroid of the
tetrahedron xc,f,i = 0.25(xc + xc,f + xc,f,i + xc,f,mod(i+1,|Fc,f |)), where i = 0, . . . , |Fc,f | − 1,
and Ff is the oriented set of indices of the points x (cf. fig. 4.5b) that belong to the face f
of the cell Ωc. The radius of the tetrahedron-ball Bc,f,i is then

Rc,f,i = max(∥xc − xc,f,i∥, ∥xc,f − xc,f,i∥, ∥xc,f,j − xc,f,i∥, ∥xc,f,mod(j+1,|Fc,f |) − xc,f,i∥),
(4.18)

j = 0, . . . , |Fc,f | − 1. This sub-set of Σ̃ is found using the octree data structure with
logarithmic complexity with respect to Σ̃, as outlined in the previous section. For the
example tetrahedron in the cell shown in fig. 4.5b, the resulting intersection between
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the approximated interface Σ̃ and a tetrahedron from the cell Ωc is shown as the shaded
volume. The magnitude of this volume is computed by applying the Gauss divergence
theorem using eq. (4.28). The phase-specific volumes from cell-tetrahedrons are summed
up for the cell Ωc, into the total phase-specific volume of the phase 1 within the cell Ωc,
and the volume fraction is therefore computed as

αc =

∑︁
f=0,...|Cc|−1

∑︁
i=0,...,|Fc,f |−1 |T (xc, xc,f , xc,f,i, xc,f,mod(i+1,|Fc,f |)) ∩ (Bc,f,i ∩ Σ̃)|

|Ωc|
(4.19)

with T := {x1, x2, x3, x4} denoting a tetrahedron. The SMCI algorithm is summarized by

xc

(a) A cell Ωc intersected by Σ̃.

xc, φ(xc)
φ(xc,f,i+1)

φ(xc,f,i)

xc,f,i
Rc,f,i

xc,f , φ(xc,f )

xc,f,i+1

xc,f,i

(b) Tetrahedral cell decomposi-
tion.

Figure 4.5.: Centroid decomposition of an interface cell into tetrahedra and calculation
of αc using the SMCI/A algorithms.

algorithm 1.

4.2.6. Volume fractions by adaptivity and approximation

This section presents an alternative approach to the computation of volume fractions
presented in section 4.2.5. While section 4.2.5 details a method based on geometric
intersections, this section introduces an algorithm based on volumetric reconstruction by
adaptive mesh refinement. Detrixhe and Aslam [30] introduce a second-order accurate
approximation for the volume fraction of a triangle (2D) or a tetrahedron (3D). Their
model is an algebraic expression taking the signed distances φ of the vertices as arguments.
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Algorithm 1 The Surface-Mesh / Cell Intersection Algorithm (SMCI)
1: αc = 0, φc,p = 0
2: Compute search radius for cell centers rcc∈C using eq. (4.5).
3: for cell centroids {xc}c∈C do
4: Place the vertices of Σ̃ into an octree (section 4.2.2).
5: Find the triangle Tn ∈ Σ̃ nearest to xc within a ball B(xc, rc).
6: Set φgc := φg(xc, Tn) using eq. (4.11).
7: end for
8: Approximately solve eq. (4.12) to propagate sign(φc).
9: Compute search radius for cell corner points rpp∈P using eq. (4.6).
10: Find all intersected cells I = {c, φcφp < 0 for at least one p}.
11: Use eq. (4.14) to correct φc within the narrow band.
12: Compute φp in the bulk using eq. (4.15).
13: Use eq. (4.17) to correct φp within the narrow band.
14: for cells {Ωc}c∈C do
15: if φc ≤ 0 and all corner-point distances φp ≤ 0 then ▷ Cell is inside the negative

Σ̃-halfspace.
16: αc = 1
17: end if
18: if cell Ωc is intersected, c ∈ I then ▷ Cell is intersected by Σ̃.
19: αc given by eq. (4.19).
20: end if
21: end for

In contrast, here a volume fraction initialization algorithm is proposed that employs this
model in combination with an adaptive tetrahedral cell decomposition and the octree-
based signed distance calculation described in section 4.2. This algorithm is termed
Surface-Mesh / Cell Approximation (SMCA) and it is outlined below.
The SMCA algorithm is based on the signed distance results of the SMCI algorithm

introduced in section 4.2. The steps depicted in fig. 4.4a - 4.4d of the SMCI/A are used to
compute φc, φp in the narrow band and propagate inside/outside information in the rest of
the mesh points. Subsequent steps for the computation of volume fractions are displayed
in fig. 4.6. First, all cells intersected by Σ̃ are identified to reduce computational costs, as
only these cells have intermediate values 0 < αc < 1. This step is depicted in fig. 4.6a.
Each cell for which xc ∈ N (Σ̃) is checked with the bounding ball criterion. A bounding ball
(bb) is defined for a point xbb ∈ Ωc using rbb = maxx∈Ωc ∥x−xbb∥2. This ball is the smallest
ball that contains all points of Ωc. This bounding ball is compared to B(xbb, |φ(xbb)). These
balls are shown in fig. 4.7, where the bounding ball is illustrated by a dashed and the
other ball by a continuous line. As a general observation, if the bounding ball is contained
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(a) Identify potential inter-
face cells (marked grey)
using bounding ball crite-
rion. Shown are circles
with radii |φc|.

(b) Adaptive, tetrahedral de-
composition of interface
cells. Compute φ at new
vertices.

(c) Compute the volume
fraction αc using the
model of [30] (detail
view).

Figure 4.6.: Steps of the SMCA algorithm following signed distance computation and
inside/outside propagation.

in the ball with the radius |φ(xbb)|, i.e. B(xbb, rbb) ⊆ B(xbb, |φ(xbb)|), then such a cell
is guaranteed to be a bulk cell. This cell can then be removed from the set of cells in
the narrow band to reduce the number of cells which are considered for decomposition
in the next step. If the criterion is not satisfied, the cell is considered an interface cell.
Two remarks on this criterion: first, the existence of such a xbb is not a necessary but a
sufficient condition. Second, in a practical implementation evaluation of this criterion
is only feasible for a small number of points when aiming to keep computational costs
reasonable. Thus, the actual check is performed by evaluating

fbb(x, φx,Ωc) =

{︄
1, maxxi∈Ωc ∥xi − x∥2 ≤ |φx|,
0, otherwise

(4.20)

with x ∈ Ωc. The evaluation of the max-operator is based on a comparison to the corner
points xi of the cell Ωc. For example, in the software implementation this function is only
evaluated at cell centres xc (original mesh cells, see below) or cell corner points (tetrahedra
resulting from decomposition). As a consequence, a few bulk cells are considered as
interface cells (fig. 4.7b). This is deemed acceptable as this only has a minor impact on
the computational time, but not on the computed volume fractions.

After identification of interface cells, the cell volume fractions are initialized according
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Σ

rbb

|φc|

xc

(a) Bulk cell: the ball B(xc, |φc|) contains the
cell bounding ball B(xc, rbb).

Σ
|φc|

xc
rbb

(b) False positive: a bulk cell which is not
detected by the bounding ball criterion
as B(xc, rbb) ⊈ B(xc, |φc|).

Figure 4.7.: Illustration of the idea of the bounding ball criterion in 2D for clarity. The solid
grey line represents B(xc, |φc|), the grey dashed one B(xc, rbb).

to the sign of φc,

αc =

{︄
1, φc ≤ 0,

0, otherwise.
(4.21)

This gives correct volume fractions for bulk cells, while the values of interface cells are
updated as described below. Each cell flagged as an interface cell by the method described
above is decomposed into tetrahedra using its centroid and cell face centroids as shown
in fig. 4.5. Each resulting tetrahedron is further refined in an adaptive manner such that
resolution is only subsequently increased where a new tetrahedron is again intersected
by the interface. To achieve this, a tetrahedron T is checked with the bounding ball
criterion eq. (4.20). The criterion is only evaluated at the vertex xmax ∈ T for which
|φ(xmax)| = maxx∈T |φ(x)|. Only if fbb(xmax, φ, T ) = 0 (eq. (4.20)), T is considered for
further decomposition. An obvious choice would be decomposition at the centroid of T .
However, repeated application of this approach results in increasingly flattened tetrahedra.
To avoid this problem, the decomposition shown in fig. 4.8 is applied. First, from the
vertices edge centres of the tetrahedron

xij =
1

2
(xi + xj), i, j ∈ {1, 2, 3, 4}, i ̸= j (4.22)

are computed (fig. 4.8a). By combining each vertex xi with the three edge centres of
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x1 x2

x3

x4

x12

x24

x23
x34

x13

x14

(a) Original tetrahedron with
vertices (xi, black) and
edge midpoints (xij ,
grey).

(b) Four tetrahedra are
created by combining
each vertex with its con-
nected edge midpoints
(indicated by dashed
lines).

x12

x23

x34

x24x14

x13

(c) Decompose octahedron
into four tetrahedra by
combining each grey
edge with the black line
formed by two opposite
points (here x12, x34).

Figure 4.8.: Decomposition of a tetrahedron into eight tetrahedra using edge midpoints.

the adjacent edges, four new tetrahedra are created (fig. 4.8b). The remainder of the
original tetrahedron is an octahedron (fig. 4.8b grey dashed lines) constituted by the edge
centres xij . This octahedron is decomposed into four additional tetrahedra by choosing
two opposite edge centres as shown by the black line in fig. 4.8c. The indices of vertices
of such a line are the numbers one to four. From the remaining four edge centres, point
pairs are created such that {xmn, xmo} or {xmn, xon}, yielding four pairs. Combining each
pair with {xij , xkl} (e.g. black edge in fig. 4.8c) gives the aforementioned four tetrahedra.
Subsequently, φ is computed for the added vertices xij . The decomposition is based on
the pair of edge centres that have the smallest distance between each other. Refinement
is completed when a maximum refinement level lmax is reached. This can either be an
arbitrary prescribed value or can be computed such that the edge length of the refined
tetrahedra is comparable to the edge length of surface triangles. In the latter case,

lmax = minl∈N
(︃
Ltet
Ltri

< 2l
)︃

(4.23)

with Ltet and Ltri being cell specific reference lengths for tetrahedra and surface triangles,
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respectively. Different choices for Ltet and Ltri are possible. Here,

Ltet =
1

nt

∑︂
e∈Ecdc

|e|,

Ltri = mine∈EΣ̃,c
|e|

is chosen with Ecdc denoting the set of edges resulting from tetrahedral decomposition of
a cell Ωc at its centroid, nt the number of edges in Ecdc and EΣ̃,c a subset of edges of Σ̃.
The set EΣ̃,c consists of all edges of T ∈ Σ̃ for which T ∩ B(xcp, rcp) ̸= ∅. Here,

xcp =
1

|Pcp|
∑︂

xi∈Pcp

xi,

Pcp := {x ∈ Σ̃ : minxi∈Ωc ∥x− xi∥2}

and the radius rcp = maxx∈Pcp ∥x− xcp∥2.
Finally, after computing a tetrahedral decomposition of each interface cell, the volume

fraction of a cell Ωc is calculated as

αc =
1

|Ωc|
∑︂
T∈Tc

α(T )| conv(T )| (4.24)

where Tc denotes the set of tetrahedra resulting from the decomposition of Ωc and
| conv(T )| the volume of T . The volume fraction α(T ) is computed with the approach of
[30] (eq. 7), repeated here

α(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, φ4 ≤ 0,

1− φ34
(φ4 − φ1)(φ4 − φ2)(φ4 − φ3)

, φ3 ≤ 0 < φ4,

1− φ1φ2(φ
2
3 + φ3φ4 + φ24) + φ3φ4(φ3φ4 − (φ1 + φ2)(φ3 + φ4))

(φ1 − φ3)(φ2 − φ3)(φ1 − φ4)(φ2 − φ4)
, φ2 ≤ 0 < φ3,

− φ31
(φ2 − φ1)(φ3 − φ1)(φ4 − φ1)

, φ1 ≤ 0 < φ2,

0 φ1 > 0,
(4.25)

where φ4 ≥ φ3 ≥ φ2 ≥ φ1 are the signed distances at the vertices xi of T . The overall
approach is summarized in algorithm 2.
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Algorithm 2 The Surface-Mesh / Cell Approximation Algorithm (SMCA)
1: Follow algorithm 1 up to step 13.
2: Identify interface cells (eq. (4.20))
3: Set bulk αc (eq. (4.21))
4: Centroid decomposition of cells into tetrahedra (fig. 4.5)
5: for l ∈ {1, . . . , lmax} do
6: Flag tetrahedra for further refinement (eq. (4.20))
7: Decompose flagged tetrahedra (fig. 4.8)
8: Compute φ for new points (eq. (4.11))
9: end for
10: Compute αc for interface cells (eq. (4.24))

4.3. Numerical results

The software implementation is available on GitLab [68]: the specific version (git tag)
used to generate results described below is referred to. Detailed information on how to
build and use the software is provided in the README.md file in the root folder of the
software repository.

The difference between the total volume given by the volume fraction calculated from
the surface on the unstructured mesh, and the exact volume bounded by the surface,
namely

Ev =
1

Ve

⃓⃓⃓⃓
⃓Ve −∑︂

c∈C
αc|Ωc|

⃓⃓⃓⃓
⃓ , (4.26)

is used as the measure of accuracy of the proposed algorithms. Here, Ve is the volume
given by the exact surface function, or the volume that is bounded by a given surface
mesh if an exact surface function is not available, e.g. in section 4.3.1. In these cases, we
calculate Ve using

Ve =
1

3

⃓⃓⃓⃓∫︂
Ve

∇ · x dV
⃓⃓⃓⃓
=

1

3

⃓⃓⃓⃓∫︂
∂Ve

x · n dS
⃓⃓⃓⃓

(4.27)

where ∂Ve is the surface that bounds Ve. As this surface is triangulated, eq. (4.27) can
be expanded further

Ve =
1

3

⃓⃓⃓⃓
⃓⃓ ∑︂
t∈1..NΣ̃

∫︂
Tt
x · n dS

⃓⃓⃓⃓
⃓⃓ = 1

3

⃓⃓⃓⃓
⃓⃓ ∑︂
t∈1..NΣ̃

∫︂
Tt
(x− xt + xt) · n dS

⃓⃓⃓⃓
⃓⃓ = 1

3

⃓⃓⃓⃓
⃓⃓ ∑︂
t∈1..NΣ̃

xt · St

⃓⃓⃓⃓
⃓⃓

(4.28)
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where NΣ̃ is the number of triangles in Σ̃, Tt ∈ Σ̃ are triangles that form the interface
mesh, and xt,St are their respective centroids and area normal vectors.

Computing architecture

CPU
vendor_id : AuthenticAMD
cpu family : 23
model : 49
model name : AMD Ryzen Threadripper 3990X 64-Core Processor
frequency : 2.90 GHz

Compiler
version : g++ (Ubuntu 10.2.0-5ubuntu1 20.04) 10.2.0
optimization flags : -std=c++2a -O3

Table 4.1.: Used computing architecture.

Table 4.1 contains the details on the computing architectures used to report the absolute
CPU times in the result section. The CPU frequency has been fixed to 2.9 GHz to stabilize
the CPU time measurements.

4.3.1. Triangulated surfaces

Sphere and ellipsoid

Exact initialization algorithms for spheres are available on unstructured meshes [112, 60].
The sphere and ellipsoid test cases are used to confirm the second-order convergence of
SMCI/A algorithms and their applicability as a volume fraction model for the unstructured
Level Set / Front Tracking method [71]. The sphere case consists of a sphere with a radius
R = 0.15, and the ellipsoid half-axes are (0.4, 0.3, 0.2). Both the sphere and ellipsoid
center are at (0.5, 0.5, 0.5), in a unit box domain. Error convergence, CPU time and
additional data are publicly available [122].

SMCI Algorithm

Figure 4.9 shows the expected second-order convergence of the global error Ev given by
eq. (4.26) on cubic fig. 4.9a and irregular hexahedral fig. 4.9b unstructured meshes. In
fig. 4.9, Nc is the number of cells used along each spatial dimension of Ω̃ and NT is the
number of triangles used to resolve the sphere.
The CPU times reported in fig. 4.10 for the architecture A1 in table 4.1 show that the

SMCI algorithm is a promising candidate for a volume fraction model for the unstructured

35



102

√
NT

10−3

10−2

E
v

Nc = 16

Nc = 32

Nc = 64

Nc = 128

(a) Equidistant mesh.

102

√
NT

10−3

10−2

E
v

Nc = 16

Nc = 32

Nc = 64

Nc = 128

(b) Irregular hexahedral mesh.

Figure 4.9.: Ev errors of the SMCI algorithm for the sphere. The grey dashed line indicates
second order convergence.

Level Set / Front Tracking method. The complexity of the algorithm expressed in terms of
the measured CPU time remains, linear for a constant ratio

√
NT /Nc. The computational

complexity increases to quadratic with an increasing number of triangles per cell
√
NT /Nc:

this happens when a very fine surface mesh is used to compute volume fractions on a very
coarse volume mesh. An intersection between a highly resolved surface mesh and single
cell of a relatively coarse mesh is shown in fig. 4.11a.
This configuration is relevant for accurate initialization of volume fractions on coarse

meshes, but irrelevant for calculating the phase indicator for Front Tracking, where only
a small number of triangles per multimaterial cell (≤ 10) is present. Therefore, linear
complexity of the SMCI algorithm for small ratios

√
NT /Nc makes SMCI a potential

candidate for a highly accurate geometrical volume fraction model for the unstructured
Level Set / Front Tracking method. When considering the absolute CPU times, it is
important to note that the SMCI algorithm has not yet been optimized for performance.

The volume error Ev for a sphere is shown in fig. 4.9b for a perturbed hexahedral mesh.
An example perturbed mesh from this parameter study is shown in fig. 4.11b. The mesh is
distorted by randomly perturbing cell corner points, using a length scale factor αe ∈ [0, 1]
for the edges e that surround the mesh point. αe = 0.25 is used, resulting in perturbations
that are of the size of 0.25× the edge length. This results in a severe perturbation of the
mesh shown in fig. 4.11b, as well as non-planarity of the faces of hexahedral cells. Still,
as shown in fig. 4.9b, SMCI retains second-order convergence, which is also the case for
the initialization of the ellipsoid on the equidistant fig. 4.12 and perturbed hexahedral
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Figure 4.10.: CPU times of the SMCI algorithm for the sphere initialized on a cubic un-
structured mesh.

mesh fig. 4.12b.

(a) SMCI: intersected cell.

αc

0 0.5 1

(b) SMCI: sphere and ellipsoid volume fractions.

Figure 4.11.: SMCI algorithm used with a sphere and an ellipsoid on an unstructured
hexahedral mesh.
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Figure 4.12.: Ev errors of the SMCI algorithm for the ellipsoid. The grey dashed line
indicates second order convergence.

SMCA algorithm

First, the effectiveness of the local adaptivity employed in the SMCA algorithm is examined
with a spherical interface as described in section 4.3.1. Resolution of the volume mesh
is fixed to Nc = 16 cells in each direction while the sphere is resolved with

√
NT ≈ 410

triangles. Maximum refinement levels lmax from 0 to 3 are manually prescribed. In
fig. 4.13, the resulting global volume errors Ev are displayed. This test case confirms
the expected second-order convergence of Ev with adaptive refinement. An exemplary
tetrahedral decomposition of a perturbed hex cell with a part of the the surface mesh is
displayed in fig. 4.14. It demonstrates that the adaptive refinement based on the bounding
ball criterion eq. (4.20) works as intended. Refinement is localized to the vicinity around
the interface. Yet, the approach ensures all tetrahedra intersected by the interface are
actually refined. The effectiveness of the local adaptive refinement compared to a uniform
one becomes apparent when comparing the resulting number of tetrahedra. The adaptive
approach yields around 2247 tetrahedra per interface cell on average for the spherical
interface with

√
NT ≈ 410, Nc = 16 and lmax = 3. A uniform decomposition, on the

contrary, would result inMi×M lmax
r = 24×83 ≈ 47.9×103 tetrahedra, whereMi denotes

the number of tetrahedra from initial cell decomposition andMr the number of tetrahedra
from refining a tetrahedron. Thus, the local adaptive refinement reduces the required
overall number of tetrahedra by a factor of 5.5 in comparison to a uniform refinement,
without affecting the accuracy.
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Figure 4.13.: Ev errors of the SMCA algorithm using different refinement levels lmax for a
sphere. Resolution of volume and surface mesh are fixed to Nc = 16 and√
NT ≈ 410. The grey dashed line indicates second order convergence.

Having verified the refinement procedure, accuracy of the SMCA algorithm and its
convergence with respect to surface mesh resolution is assessed in the following. As for
the SMCI algorithm, a sphere and an ellipsoid are used for this purpose. Results for
the sphere in terms of the global volume error Ev (eq. (4.26)) are shown in fig. 4.15
for cubic cells (fig. 4.15a) and perturbed hexahedral cells (fig. 4.15b). Domain size,
sphere centre and radius are identical to the SMCI setup as well as the perturbation factor
αe = 0.25. The maximum refinement level is computed according to eq. (4.23). Both
mesh types yield nearly identical results and show second-order convergence. Resolution
of the volume mesh Nc has a minor influence for coarser surface meshes which vanishes
for

√
NT > 100. For the ellipsoidal interface, the errors Ev are shown in fig. 4.16. The

results are qualitatively and quantitatively similar to those of the spherical interface.
Absolute computational times required for the initialization of a sphere with the SMCA
algorithm are displayed in fig. 4.17. Run times have been measured on the architecture
listed in table 4.1. As the implementation SMCI algorithm, the implementation of the
SMCA algorithm has not yet been optimized for performance.
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Figure 4.14.: Tetrahedral decomposition of a perturbed hex cell used to approximate αc.
Tetrahedra from different refinement levels are shown in different colors
(level 1: blue, level 2: grey, level 3: red). Due to adaptivity, the highest
refinement level is localized in the vicinity of the surface mesh..

Complex surfaces

Surface of a fluid from an experiment

Some methods that are surveyed in section 4.1 can initialize volume fractions from exact
implicit surfaces, such as a sphere or an ellipsoid, analyzed in section 4.3.1. One novelty of
SMCI/A algorithms is their ability to compute volume fractions from arbitrary surfaces on
arbitrary unstructured meshes. For example, volume fractions given by an experimental
surface were calculated by the SMCI algorithm in [44] for studying breakup dynamics of
a capillary bridge on a hydrophobic stripe between two hydrophilic stripes. In [44], the
experimental setup involves a liquid bridge that is formed between two larger droplets
across a hydrophobic stripe. The hydrophobic stripe drives the collapse of this liquid
bridge, that is observed experimentally and in a simulation in [44]. The quantitative
comparison of the simulation and the experiment from [44] is shown in fig. 4.18a. The
experimental surface from [44], used to initialize volume fractions, is shown in fig. 4.18b.
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Figure 4.15.: Ev errors of the SMCA algorithm for the sphere. The grey dashed line
indicates second order convergence.
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Figure 4.16.: Ev errors of the SMCA algorithm for the ellipsoid. The grey dashed line
indicates second order convergence.

The SMCI algorithm computes the volume fractions of the experimental fluid interface
from [44] with the volume error Ev = 7.789e−06. As shown in section 4.3.1, the accuracy
of the initialization depends on the quality of the surface mesh, not on the resolution of
the volume mesh, that is chosen in this case to appropriately resolve the hydrodynamics
in [44].
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Figure 4.17.: CPU times of the SMCA algorithm for the sphere initialized on a cubic
unstructured mesh.
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Figure 4.18.: Simulation of the wetting experiment with the fluid interface given as a
triangular surface mesh [44].
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CAD model

To demonstrate that the SMCI/A algorithms are able to handle interfaces more complex
than shown above, the surface mesh from a CAD model displayed in fig. 4.19a is used. In

(a) Surface mesh from a CAD
model.

(b) Cross section of the volume mesh with part
of the surface mesh, colored by signed dis-
tance.

Figure 4.19.: Surface and volume mesh of the CAD model test case.

contrast to the previous interfaces, this one features sharp edges and geometric features
of distinctly different sizes. The mesh for this test case has been generated with the
cartesianMesh tool of cfMesh [57]. Refinement is used in the vicinity of the interface.
This meshing procedure is chosen to obtain a mesh that closer resembles that of an
industrial application than a uniform cubic mesh. A cross section of the mesh is depicted
in fig. 4.19b. Before examining the computed volume fractions for this case, the signed
distance calculation (section 4.2.2) and sign propagation (section 4.2.4) are verified.
The presence of sharp edges (see fig. 4.19a) makes this test case more prone to false
inside/outside classifications than the others shown so far. Yet the proposed procedure
yields the correct sign for the distance in all cells as shown in fig. 4.20a. The enclosed
volume of the surface mesh is considered as Ω+, thus φ > 0 for all points x ∈ Ω+. As
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(a) Cells for which φc ≥ 0 (blue)
overlayed with the surface
mesh (grey).

(b) Cross section through the
mesh with cells colored by vol-
ume fraction.

Figure 4.20.: Inside/outside computation and resulting volume fractions for the CAD
geometry.

displayed in fig. 4.20a and confirmed by further manual inspection of the results, the
proposed signed distance calculation correctly classifies all cells within the narrow band
and robustly propagates this information to the entire domain. This is reflected in the
volume fractions as computed, shown in fig. 4.20b. Bulk cells are assigned values of
either 1 or 0, depending on whether they are located in Ω+ or Ω− and mixed cells with
0 < αc < 0 are only found where the surface mesh is located. Accuracy-wise, the global
errorsEv depicted in fig. 4.21 have been obtained with the SMCA algorithm using different
refinement levels. As for the spherical interface (see fig. 4.13), second-order convergence
is achieved, even though the surface mesh approximates a non-smooth interface here.

4.3.2. Implicit surfaces / Level Set surfaces

Because of the algebraic calculation of volume fractions from signed distances, the SMCA
algorithm allows a direct comparison with volume fraction initialization methods on
unstructured meshes that represent the fluid interface using function composition. Consid-
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Figure 4.21.: Ev errors of the SMCA algorithm using different refinement levels lmax for
the CAD model with the reference volume Ve computed by eq. (4.28). The
grey dashed line indicates second order convergence.

ering section 4.1, logical choices for the comparison are the methods of Ahn and Shashkov
[4], Fries and Omerović [36], and Jones et al. [55]. However, Ahn and Shashkov [4] do
not provide convergence results for the 3D initialization and Fries and Omerović [36]
integrate a function that is ̸= 1 within their 3D surface, so the result of the quadrature
does not correspond to the volume enclosed by the surface. Therefore, a direct comparison
with Jones et al. [55] is provided, specifically Jones et al. [55, table 3].

Absolute volume errors are computed for an octant of a sphere with radius R = 0.5,
placed at (0, 0, 0) within a unit-length cubical domain, and are shown in fig. 4.22. Tetra-
hedral unstructured meshes are generated using the Delaunay algorithm in gmsh [38],
by providing a discretization length that results in a number of mesh points comparable
to Jones et al. [55, table 3, No Nodes]. As shown in fig. 4.22, the accuracy of the SMCA
algorithm depends on the volume mesh resolution and the number of refinement levels
when an implicit (exact) sphere is used as interface description. This is expected since both
parameters influence the size of the refined tetrahedra which are used to approximate
the volume fraction. Consequently, the achievable accuracy is not limited by the volume
mesh resolution and can be controlled through the number of refinement levels. The
lowest absolute errors are in the order of magnitude of 10−9, achieved by SMCA using 10
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refinement levels, and correspond to relative errors in the order of magnitude of 10−8,
which is around 4 orders of magnitude lower than minimal VoF advection errors reported
so far in the literature [69], and are therefore admissible as initial volume fraction values.
Even higher levels of absolute accuracy, comparable to Jones et al. [55, table 3, ϵ6, ϵ9],
can be achieved with further refinement, with substantially increased computational
expense. However, such further increase in accuracy is without significance to the volume
fraction advection [69]. Contrary to the implicit (exact) sphere, resolving a sphere using a
triangular mesh is more challenging, as the absolute accuracy depends on the resolution
of the surface mesh. Results for spheres triangulated using the Frontal Algorithm in gmsh
[38] are shown in fig. 4.22. Doubling the resolution of the surface mesh, as expected,
doubles the accuracy of SMCA with triangulated surfaces as input. This approach of
course does not make sense for a sphere, whose implicit (exact) function is easily defined.
For geometrically complex surfaces shown below, it is important to have in mind that the
resolution of the surface mesh together with the refinement level determine the absolute
accuracy and computational costs.

1024× 101 6× 101

Number of mesh points (Jones et al. [19, table 3, No. node])
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SMCA triangulated sphere, edge length 0.005, 9 refinements

SMCA triangulated sphere, edge length 0.0025, 9 refinements

Jones et al. 2018, table 3, implicit sphere, ε3

SMCA implicit sphere, 8 refinements

SMCA implicit sphere, 9 refinements

SMCA implicit sphere, 10 refinements

Figure 4.22.: Comparing the SMCA algorithm and Jones et al. [55, table 3] on tetrahedral
meshes.
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4.4. Conclusion

The proposed Surface-Mesh Cell Intersection / Approximation algorithms accurately
compute signed distances from arbitrary surfaces intersecting arbitrary unstructured
meshes. Geometrical calculations ensure the accuracy of signed distances near the discrete
surface. The signed distances (actually their inside / outside information) are propagated
into the bulk using an approximate solution of a Laplace equation. Once the signed
distances are available in the full simulation domain, the SMCI algorithm computes
volume fractions by intersecting arbitrarily-shaped mesh cells with the given surface-mesh,
while the SMCA algorithm approximates volume fractions using signed distances stored
at cell corner points. Both algorithms are robust and show second-order convergence
for exact surfaces and arbitrarily shaped surface meshes. The SMCI algorithm scales
linearly with a small number of surface triangles per cut-cell. Since a small number of
triangles per cell is a requirement for Front Tracking, this linear-complexity makes SMCI
an interesting candidate for computing volume fractions in the 3D unstructured Level Set
/ Front Tracking method [71], which will be the subject of future investigations.
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5. Hybrid Level Set / Front Tracking method

At their core, numerical methods for multiphase flow simulations attempt to accurately
and efficiently approximate the evolution of interfaces that form between immiscible fluid
phases. An accurate, stable and efficient motion of the fluid interface in the context of
multiphase flows consists of two components: the kinematics of the interface and the
solution of a multiphase Navier-Stokes system.
In a previous publication [71], a new LENT hybrid Level Set / Front Tracking method

was developed on unstructured meshes. In this chapter extensions to the LENT method
towards two-phase flows driven by the surface tension forces are presented. For this
purpose, the Segregated Accuracy-driven Algorithm for Multiphase Pressure-Linked
Equations (SAAMPLE) is developed to stabilize the single-field formulation of Navier-
Stokes equations on unstructured meshes.

5.1. Literature review

Before the new solution algorithm of the LENT method is described, it should be placed
in the context of other contemporary contributions. Research of multiphase simulation
methods has produced a substantial amount of scientific contributions over the years.
Here, the focus is placed only on the methods that are directly or indirectly related to the
hybrid Level Set / Front Tracking method.

Widely usedmultiphase flow simulationmethods can be categorized into: Front Tracking
[129, 42, 126], Level Set [103, 115, 41] and Volume-of-Fluid (VOF) [46, 98] methods.
Each method has specific advantages and disadvantages with respect to the other methods.
All methods are still very actively researched and a relatively recent research avenue is
focused on hybrid methods. Hybrid methods are set to outperform original methods
by combining their sub-algorithms, with the goal of combining strengths and avoiding
weaknesses of individual methods.

A notable example is the widely used coupled Level Set and Volume-of-Fluid method
(CLSVOF) [117]. CLSVOF was developed to address the disadvantage of the Volume-of-
Fluid method in terms of accurate surface tension calculation and the disadvantage of the
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Level Set method in terms of volume conservation. A similar hybrid method between the
Moment of Fluid (MoF) method [33] and the Level Set method has been developed using
a collocated solution approach and block-structured adaptive mesh refinement (AMR)
[53].
A very promising hybrid method is the hybrid Level Set / Front Tracking method.

Here, the Level Set method is used to simplify the handling of topological changes of
the interface and improve the accuracy of the curvature approximation, while the Front
Tracking method is employed for its widely known accuracy in tracking the interface.

The Front Tracking method approximates the fluid interface using a set of mutually
connected lines in 2D and triangles in 3D. Coalescence and breakup change the connectivity
of the Front and these operations are possibly global, because coalescence or breakup
may involve interaction between arbitrary parts of the fluid interface. Global topological
operations are therefore required to handle topological changes in the connectivity of
the Front, and the corresponding changes in connectivity then complicate an efficient
implementation. This especially concerns the efficiency of the parallel implementation of
the Front Tracking method in non-periodic solution domains. More information about the
Front Tracking method is available in [127].
The hybrid Level Contour Reconstruction Method (LCRM) [105, 110, 107, 109, 106]

simplifies the topological changes of the interface while ensuring stability, accuracy and
computational efficiency of the fluid interface motion. The connection between LCRM and
the original Level Set method is the use of a signed distance field. The signed distance
field is computed in the near vicinity of the Front and it is updated as the Front moves
in space. A zero level set (i.e. an iso-surface) reconstruction from this distance field
automatically handles topological changes of the interface. Iso-surface algorithms do not
require large cell stencils, so an efficient parallel implementation can be achieved using a
straightforward domain decomposition approach. Other researchers have extended the
hybrid Level Set / Front Tracking method with block-adaptive structured mesh refinement
(block AMR). Block AMR is applied near the interface in order to increase accuracy and
reduce errors in mass conservation [21]. Hybrid Level Set / Front Tracking has also been
successfully developed using the Finite-Element discretization, for fluid-solid interaction
[13] and two-phase flows [14]. In this approach, the immersed Front is used as a surface
onto which vertices of a 2D unstructured mesh are projected, to ensure the necessary
alignment of face and interface normal vectors.

All the aforementioned Front Tracking and hybrid Level Set / Front Tracking methods
are developed on structured meshes. Structured methods can employ very accurate
interpolations and still maintain high computational efficiency [106]. On structured
meshes, geometrically complex solution domains are often handled using the Immersed
Boundary Method (IBM) [76].
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Unstructured meshes greatly simplify simulations of multiphase flows in geometrically
complex domains, in terms of a relatively straightforward domain discretization. However,
unstructured meshes also introduce additional challenges when used with hybrid Level Set
/ Front Tracking methods in the context of the Finite-Volume method (FVM). To address
the specific challenge of an accurate and stable solution of the two-phase Navier-Stokes
system for the LENT method, the new SAAMPLE segregated solution algorithm is proposed
which is outlined in the following sections.

5.2. Method overview

The LENT hybrid Level Set / Front Tracking method [71] is used for the evolution of the
interface, and the unstructured Finite-Volume method in the OpenFOAM computational
fluid dynamics platform [52, 56, 77] is used for the discretization of two-phase Navier-
Stokes eqs. (2.5) and (2.13). This contribution improves the LENT method [71], in
terms of the phase indicator and curvature approximation as well as the pressure-velocity
coupling algorithm.
Algorithms of the LENT method and their respective improvements with respect to

capillary flows are outlined in the following sections.

Σ̃(t) nΣ̃

Ωh

xk
Σ̃

Figure 5.1.: Two-phase flow domain discretization.

The LENT method is outlined together with the SAAMPLE algorithm in fig. 5.2. Algo-
rithms of the LENT-SAAMPLE method that are not modified with respect to the previous
publication [71] are accordingly referenced. Figure 5.2 shows the difference in controlling
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the convergence between the SAAMPLE and the PISO internal loop, in terms of disre-
garding a fixed number of iterations and relying on the pressure residual error norm. To
prevent the decoupling of the acceleration from the forces acting at the interface, the
cell-centered velocity is reconstructed using the operator defined by eq. (5.17).
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Calc. search distances sc,p [71]

t = t + ∆t

Reconstruct front Σ̃ [71]

Calculate signed distances φc,p [71]

Calculate phase indicator
αc (section 5.5)

Update mixture properties ρc, µc, ρf
(eqs. (2.8), (2.9) and (5.3))

Calc. mass flux ṁf = ρfF
K
f

using ρf from eq. (5.3)

Momentum predictor
vI , I = 0, from eq. (5.25),

discretized with FK
f

Initialize pressure residual norm r

Pressure equation
pI from vI using eq. (5.26)

Update residual norm r

Flux update
F I+1
f =

(︂
1
ap

)︂
f
H(vI)f − Dv

f∇pIf

Velocity reconstruction
vI+1 from eq. (5.18)

END

Evolve the front

t < tEND

conv(v̇Kf )! = 0 (eq. (5.28)) or K < Kmax

r > tolls and I < Imax

Figure 5.2.: Flowchart of the LENT-SAAMPLE method.
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5.3. Interface evolution

The solution domain Ω is discretized into the discrete domain Ω̃ that consists of non-
overlapping polyhedral finite volumes Ωc (cf. fig. 5.1) such that Ω̃ = ∪cΩc, c ∈ C, as
described in section 3.1. As the initialization procedure in chapter 4, the LENT method
approximates the fluid interface Σ(t) with a set of triangles Σ̃(t) (cf. fig. 5.1): the so-called
Front. The motion of the Front is then given by a kinematic equation for each Front vertex
xk
Σ̃
, i.e.

∂txkΣ̃ = v
(︂
xk
Σ̃
, t
)︂
, k ∈ K. (5.1)

The velocity v(·, t) is obtained from the numerical solution of eqs. (2.5) and (2.13).
The Front vertex xk

Σ̃
does not in general coincide with mesh points used in the domain

discretization. Therefore, the velocity v(xk
Σ̃
, t) must be interpolated from the cell centres

xc to xk
Σ̃
. To interpolate the velocity, the front vertices xk

Σ̃
must first be located with respect

to mesh cells. This is achieved by a combination of octree space subdivision, described in
section 4.2.1, and known-vicinity search algorithms [71]. For handling the topological
changes of the interface, the iso-surface reconstruction by marching tetrahedra [124] is
used.
The time step restriction imposed by the resolution of capillary waves renders higher-

order methods unnecessary, which are usually used for the interpolation of v(xk
Σ̃
, t), as

well as the temporal integration of eq. (5.1). Therefore, the Inverse Distance Weighted
(IDW) approximation is used for interpolation of the velocity v(xk

Σ̃
, t) and the explicit

Euler method for the integration of eq. (5.1), same as in [71].

5.4. Signed distance calculation

In contrast to pure level set methods, the signed distance field φ is not transported by
solving an advection equation. Instead, φ is computed geometrically from the front Σ̃
each time step. For a point x, it is calculated as

φ(x) = sign((x− xΣ̃,min) · nT )∥x− xΣ̃,min∥2 (5.2)

where xΣ̃,min ∈ Σ̃ is the point closest to x, similar to the procedure described in section 4.2.3.
The sign is determined with the normal vector nT of the triangle which contains xΣ̃,min.
The signed distance is evaluated at cell centres and cell vertices. Since φ is only required
in the vicinity of Σ̃, the octree space subdivision is used to limit the computation to a
narrow band N (Σ̃). A detailed description of the procedure is given in [71].
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5.5. Phase indicator approximation

As explained in section 3.3, an approximation of αc is required, amongst others to compute
the material properties of cells Ω : Ω ∩ Σ̃ ̸= ∅ according to eqs. (3.20) and (3.21). In the
previous publication [71] αc is approximated with a harmonic function of φ which was
also used in the LEFT hybrid level set / front tracking method [21]. The width of the
marker field computed by this approach can be as large as the narrow band (4-5 cells) or
limited to the single layer of cells that are intersected by the front.

Here, the SMCA procedure, section 4.2.6, is used for the approximation of αc. However,
no additional tetrahedral refinement is employed, only a tetrahedral decomposition of
Ωc. An approach different from section 4.2.6 to decomposition is chosen, namely the
decomposition method proposed by Bloomenthal [15]. This approach only uses the cell
centre xc and cell corner points xp. At these points, the signed distances are already
available and computation at additional locations is avoided.

5.5.1. Approximation of area fractions for cell faces

The discretization of the convective term in eq. (2.13) requires the mass flux ṁf at cell
faces f (see section 3.2.2). In the LENT method ṁf needs to be computed from the
volumetric flux Ff and the density at the face ρf . While ρf is simply the corresponding
fluid’s density for faces of bulk cells, attention must be paid for faces of interface cells.
Thus, ρf is calculated analogously to the density at cell centers eq. (2.8) by taking an
area weighted average of the bulk densities

ρf = αfρ
− + (1− αf )ρ

+ (5.3)

where αf denotes the fraction of face Sf wetted by the corresponding phase. The area
fractions are computed in a similar fashion as the volume fractions by using the two-
dimensional variant of [30]. For the sake of efficiency, αf is only computed in this way for
faces intersected by the Front, i.e. Sf ∈ Ωc : Ωc ∩ Σ̃ ̸= ∅.

5.6. Curvature approximation

The curvature κ of the interface Σ is given by

κ = −∇Σ · nΣ. (5.4)
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Figure 5.3.: Curvature of a sphere with R = 1, evaluated in the normal direction to the
sphere, as a function of the signed distance from the sphere φ using eq. (5.5).
Obviously, the exact value κ = 2 can only be obtained on the sphere, where
φ = 0.

With a level set field ψ(x) representing Σ at the iso-contour ψ(x) = ψΣ, eq. (5.4) can be
replaced by

κ = −∇ · ∇ψ(x)
|∇ψ(x)|

for x ∈ Σ. (5.5)

In the context of the LENT method ψ is either the phase indicator α or the signed distance
φ. For the sake of simplicity ψ = α has been chosen in [71] for a preliminary coupling
of LENT with the Navier-Stokes equations. The present work, however, uses φ for the
calculation of κ.

As pointed out in [116] and [94], eq. (5.5) does not yield the curvature of the interface
if x /∈ Σ. Instead, eq. (5.5) gives the curvature of the contour that passes through the
point where eq. (5.5) is evaluated. For example, at a cell center, the curvature of a contour
φ = φc is computed. Thus, κ changes in normal direction of the interface as illustrated for
a sphere in fig. 5.3. This error can be mitigated to some degree by the so-called compact
curvature calculation.
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Figure 5.4.: Compact curvature calculation.

5.6.1. Compact curvature calculation

In [104] the authors introduce the concept of compact curvature calculation for their LCRM
method to propagate the curvature in the narrow band as follows. A different approach
to the actual curvature approximation is used in [104], so here the compact curvature
calculation only is only adopted for the correction of the curvature in the narrow band of
cells surrounding the Front.

Consider the example Front and narrow band configuration in fig. 5.4. Each cell center
xc in the narrow band is associated with a point xmin ∈ Σ̃ such that the distance between
xc and Σ̃ is minimal. Using this connection κ is first interpolated to xmin, and then
κ(xc) = κ(xmin) is set.

In the LENT method, κ is first computed using eq. (5.5). This gives a curvature field that
varies along interface normal direction in general (cf. fig. 5.3). To reduce the curvature
variation in the interface normal direction, only the curvature values computed at cells Ωc

for which Σ̃ ∩ Ωc ̸= ∅ are kept. This information is propagated in approximate interface
normal direction by combining two maps. First

MT (k) : k → Tm (5.6)

gives the closest triangle Tm for each cell Ωc,k in the narrow band not intersected by the
Front, i.e. Σ̃ ∩ Ωc,k = ∅. The second map

Mc(m) : Tm → l (5.7)

associates the triangle Tm with a narrow-band cell Ωc,l, that is intersected by the Front
and is nearest to Tm. Taken together, the maps relate a non-intersected narrow band cell
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Ωc,k to an interface cell Ωc,l, the nearest Front-intersected narrow band cell. Now the
curvature of the nearest non-intersected cell Ωc,k is set as

κc,k = κc,l. (5.8)

Results presented in section 5.9.1 confirm that this compact calculation improves the
curvature approximation considerably in terms of accuracy. Yet, the source of error does
not vanish since φ(xc,l) ̸= 0 in general. The maximum error can be estimated for a
spherical interface of radius RΣ and a cubic cell with an edge length h. The radius of the
bounding ball of this cell is Rbb =

√
3h/2. This is also the maximum distance between

the interface and an interface cell since

|φ(xc,l)| ≤ Rbb ∀ Ωc : Σ̃ ∩ Ωc ̸= ∅. (5.9)

The exact curvature of a sphere is given by

κ =
2

R
, (5.10)

while the approximate curvature is

˜︁κ =
2

RΣ + φ
. (5.11)

Thus, the relative curvature error is given by

eκ,rel(φ) =
|˜︁κ− κ|
κ

=

⃓⃓⃓⃓
−φ

RΣ + φ

⃓⃓⃓⃓
. (5.12)

Setting φ = −Rbb = −
√
3h/2 and expressing h = RΣ/n, where n is the number of cells

per radius, yields

eκ,rel(n) =

√
3

2n−
√
3
. (5.13)

This indicates first order convergence of the maximum relative curvature error with respect
to mesh resolution. To further reduce the curvature error an additional correction for the
curvature computed at interface cells is employed.

5.6.2. Spherical curvature correction

Though the interface is not spherical in the general case, a correction assuming the
interface to be locally spherical is proposed due to the following observations:
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(i) The proposed correction is consistent and vanishes in the limiting case φc,l → 0.

(ii) Accurate curvature approximation becomes more important with more dominant
surface tension often involving close to spherical interface configurations.

If the interface is assumed to be locally spherical, the curvature error introduced by the
cell signed distance φc,l can be remedied in a rather simple way. If the initial curvature˜︁κc,l is given by the compact curvature correction, eq. (5.11) can be used to compute an
equivalent interface radius RΣ. Inserting RΣ in eq. (5.10) yields a distance-corrected
curvature

κc,l = 2

(︃
2˜︁κc,l + φc,l

)︃−1

. (5.14)

5.7. Surface tension computation

A semi-implicit surface tension model, proposed by Raessi et al. [96], is used which is an
extension of the original Continuum Surface Force (CSF) model of Brackbill et al. [18].
In [96], the surface tension is modeled as

fn+1
Σ = σ(κnΣ)

nδΣ + σ∆t(∆Σvn+1)δΣ (5.15)

when a backward Euler scheme is used for temporal discretization. ∆Σ denotes the
Laplace-Beltrami operator. As in the original CSF the approximations δΣ ≈ |∇α| and
nΣδΣ ≈ ∇α are employed. To achieve an implicit discretization of the Laplace-Beltrami
operator the representation

∆Σv = ∇ · (∇v)−∇ · [(nΣ · ∇v)⊗ nΣ]− κ [(∇v− (nΣ · ∇v)⊗ nΣ)) · nΣ] (5.16)

is used. The underlined term∇ · (∇v) is discretized implicitly as described in section 3.2.3
while the remaining terms are treated explicitly. Since an iterative approach is used to
solve the pressure velocity system (see section 5.8), the converged solution is not affected.
However, the explicit contribution to the surface tension force requires additional

attention. The pseudo-staggered unstructured FVM stores scalar numerical flux values at
face centers. However, the solution algorithm requires cell-centered vector values for the
surface tension force in the momentum equation. Therefore, the explicit surface tension
force term is reconstructed from face-centered scalar flux values. The reconstruction
operator that approximates ψc in OpenFOAM is given as

ψR
c ≈ R(ψf ) =

⎡⎣∑︂
f̃

Sf̃Sf̃

⎤⎦−1

·
∑︂
f

nf · Sf · ψf = S−1
c ·

∑︂
f

nf · Sf · ψf , (5.17)
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where ψR
c is the cell-centered reconstructed vector value, f is the index of a polygonal face

that belongs to the polyhedral cell Ωc, and ψR
c is the reconstructed vector value, associated

with the centroid of the polyhedral cell Ωc and nf ,Sf are the respective outward oriented
unit normal and area normal vector of face f . Usually, the vector quantity ψf is not
available, otherwise it would be possible to compute ψc using interpolation. Instead, the
product ψf · Sf is given, namely the scalar flux of the vector quantity ψ through the face
Sf . The reconstruction operator introduces an error ϵR in eq. (5.17) as

ψc = S−1
c ·

∑︂
f

nf · Sf · ψf + ϵR. (5.18)

The reconstruction error is thus expressed as

ϵRc = S−1
c ·

∑︂
f

nf · Sf · (ψc − ψf ). (5.19)

Equation (5.19) is the exact equation for the error introduced by the reconstruction
operator given by eq. (5.17). If ψf is sufficiently smooth, then

ψf = ψc +∇ψ|c · cf+∇∇ψ|c : (cfcf) + . . . , (5.20)

and eq. (5.20) can be used to replace ψc − ψf in eq. (5.19).
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cg
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−cf
−cg
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Figure 5.5.: The cell-face connectivity of a regular hexagonal cell.

The vector cf = xf − xc shown in fig. 5.5 connects the centroid of the cell c and the
centroid of the face f . Inserting eq. (5.20) into eq. (5.19), while disregarding higher-order
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terms, leads to

ϵ̃Rc = −S−1
c · (

∑︂
f

nf · Sf · ∇ψ|c · cf+
∑︂
f

nf · Sf · ∇∇ψ|c : (cfcf)). (5.21)

The first sum cancels out in convex orthogonal cells with an even number of faces. This
can be easily shown if one considers fig. 5.5. Regular polygons and polyhedra exist, that
have an even number of faces and form so-called orthogonal unstructured meshes1. For
each face i of such cells, there exists another face j, such that ci = −cj and Si = −Sj .
Because these cells have an even number of faces, the first sum in eq. (5.21) can be split
into two sums of equal length. This, together with the opposite sign of the Sj and cj
vectors leads to∑︂

f

nf · Sf · ∇ψ|c · cf =
∑︂
i

nf,i · Si · ∇ψ|c · ci+
∑︂
j

nn,j · Sj · ∇ψ|c · cj (5.22)

=
∑︂
i

(nf,i · Si · ∇ψ|c · ci− nf,i · −Si · ∇ψ|c · −ci) = 0. (5.23)

The cancellation in eq. (5.23) happens for quadratic and hexagonal cells in 2D and
hexahedral cells with orthogonal faces, as well as regular dodecahedron cells. For slightly
irregular cells (e.g. hexahedrons with slightly non-orthogonal faces), the error cancellation
is partial, but it may still be strong, due to the fact that ct is almost, but not quite, equal
to −cf. The canceling rate thus directly depends on the mesh non-orthogonality.
Therefore, for orthogonal meshes, the reconstruction error is given as

ϵ̃R,orth
c = −S−1

c

∑︂
f

nf · Sf · ∇∇ψ|c : (cfcf). (5.24)

Equation (5.24) shows that the reconstruction of the surface tension force is second-order
accurate on orthogonal unstructured meshes: the reconstruction error ϵ̃R,orth

c is zero if the
vector field is linear. On non-orthogonal meshes, the cf vectors do not cancel out and the
reconstruction may deteriorate to first order of accuracy, given by eq. (5.19), depending
on mesh non-orthogonality.

5.8. Pressure velocity coupling

In order to solve the discretized pressure-velocity system a new segregated solution
algorithm based on the PISO approach [49] is developed. An overview of the different
1A mesh is orthogonal if the face normal vectors are collinear with the line segments between face-
neighboring cell centroids.
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pressure-correction methods and how they are related can be found in [25]. Barton [12]
compares several PISO and solution procedures based on the Semi-Implicit Method for
Pressure Linked Equations (SIMPLE) in terms of accuracy, robustness and computational
efficiency. He concludes that PISO is the preferred algorithm for transient flows considering
all metrics. This is the reasoning behind using the PISO algorithm in [71], however
with n = 4 pressure correction iterations and followed by an additional solution of the
momentum equation with the updated pressure.

Given that PISO has originally been proposed as a solution procedure for single-phase
flows, some drawbacks become apparent when it is used for two-phase flows. There is
no control over the solution accuracy because the PISO algorithm is controlled by a fixed
iteration count. How this maymanifest, is demonstrated in section 5.9.3. In the OpenFOAM
framework, used to develop the LENT method, the explicit velocity update involves the use
of the reconstruction operator given by eq. (5.17), that introduces additional errors given
by eq. (5.24). Another problem that is emphasized by multiphase flows is the inability
of the PISO algorithm to account for the non-linearity of the convective term. The main
contribution of this work is the alleviation of these issues in the context of surface-tension
driven multiphase flows.
Here, a new PISO-based solution algorithm termed SAAMPLE (Segregated Accuracy-

driven Approach for Multiphase Pressure Linked Equations) is proposed that overcomes
these disadvantages. Additionally, SAAMPLE avoids the use of case-dependent parameters
like under-relaxation factors of the original SIMPLE method [89]. SAAMPLE is outlined
in algorithm 3. It employs the same equations as the original PISO algorithm, namely
a momentum predictor (eq. (5.25)), a pressure correction equation (eq. (5.26)) and an
explicit velocity update (eq. (5.27)), given here in a semi-discrete form as

avcvc +
∑︂
n(c)

avnvn = bvc − Vc(∇p)c,

v∗c +Hc[v∗] = −Dv
c(∇pprev)c + Bv

c ,

(5.25)

∇ · (Dv
c(∇p∗)c) = ∇ ·

(︂
Hc[v∗] +Hc[v′]− Bv

c

)︂
, (5.26)

v∗∗ = −Hc[v∗]− Dv
c(∇p∗)c + Bv

c , (5.27)

in which

(∇p)c =
1

|Ωc|

∫︂
Ωc

∇pdV, Hc[v] =
1

avc

∑︂
n(c)

avnvn, Bv
c =

bvc
avc
, Dv

c =
Vc
avc
.

As in PISO, the underlined term HΩ[v′] in eq. (5.26) is neglected as the velocity corrections
v′ are unknown.
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Algorithm 3 Pseudo code of the SAAMPLE algorithm for the segregated solution of the
pressure-velocity system. The operator ’:=’ denotes assignment.
1: conv-vol-fluxes := False
2: pU-converged := False
3: K := 0
4: v := vn
5: p := pn

6:
7: while not pU-converged and K < Kmax do
8: if not conv-vol-fluxes then
9: Update mass flux: ṁf := ρfFf (eq. (5.3))
10: end if
11: conv-vol-fluxes := eq. (5.28)
12: Solve momentum predictor eq. (5.25): v := v∗
13:
14: I := 0
15: correct-pressure := True
16: while correct-pressure and I < Imax do
17: Setup pressure-correction eq. (5.26)
18: Compute r as norm of initial residual r
19: if r > tolls then
20: Solve for p: p := p∗

21: Update volumetric fluxes Ff

22: Explicit velocity update eq. (5.27): v := v∗∗
23: else
24: correct-pressure := False
25: if I = 0 and conv-vol-fluxes then
26: pU-converged := True
27: end if
28: end if
29: I := I + 1
30: end while
31: K := K + 1
32: end while
33:
34: vn+1 := v
35: pn+1 := p
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Contrary to PISO, SAAMPLE is an iterative algorithm that is driven by the solution
accuracy. It consists of two nested loops with specific purposes. The outer loop updates
the mass fluxes ṁf as long as the function

conv(Ff ) =

⎧⎪⎪⎨⎪⎪⎩
1, if L∞

(︂⃓⃓⃓
Ff − F

prev
f

⃓⃓⃓
/L∞ (Ff )

)︂
< tolrel

1, if L∞

(︂⃓⃓⃓
Ff − F

prev
f

⃓⃓⃓)︂
< tolabs

0, otherwise

(5.28)

evaluates to 0. The parameters tolrel and tolabs are prescribed tolerances for the relative
and absolute change of Ff between two consecutive outer iterations. Subsequently, the
momentum predictor eq. (5.25) is solved with a known pressure field, either from a
previous time step or previous outer iteration.

The inner loop performs the pressure correction to enforce discrete volume conservation.
This is achieved with a series of corrector steps as in the original PISO algorithm [49].
First, eq. (5.26) is solved implicitly for p. The Laplacian operator on the left hand side is
discretized using surface normal gradients at each cell face as implemented in OpenFOAM
(see sections 3.2.3 and 3.2.4). Subsequently, v is updated explicitly according to eq. (5.27)
As reported in [25], this removes the need for underrelaxation as each corrector iteration
partly recovers the neglected term of eq. (5.26). This agrees with the findings of Venier
et al. [132]. They investigate the stability of the PISO algorithm using Fourier analysis
and conclude that more corrector iterations provide a stronger coupling of pressure and
velocity. Iteration of the inner loop is stopped if either the initial residuals of the pressure
equation are below a prescribed threshold tolls or the maximum number of inner iterations
Imax is exceeded.
The overall algorithm is considered converged when condition eq. (5.28) has been

fulfilled and for the initial residual r of the pressure equation in the first iteration of the
inner loop r < tolls is fulfilled. It means that v∗ obtained from momentum predictor
eq. (5.25) satisfies ∇ · v∗ < tolls in a discrete sense. If convergence is not reached within
Kmax outer iterations, the current fields for v and p are considered as solutions for the
time step.

5.9. Verification and validation results

The following sections show the improvements achieved in terms of curvature approxima-
tion, surface tension calculation and pressure velocity coupling on standard validation
cases found in the literature. Because the quality of the Front is improved significantly
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by smoothing [61], the reconstruction of the interface can be avoided for small interface
deformations.
Research data containing the numerical results are publicly available for: vector field

reconstruction in OpenFOAM 2, SAAMPLE algorithm data for the stationary droplet and
low amplitude oscillation, 3, and the validation of the SAAMPLE algorithm with large
amplitude droplet oscillations 4.
While uniformly resolved meshes are used for curvature and surface tension force

reconstruction test cases, statically refined meshes are used for the hydrodynamic test
cases to reduce the total number of cells. The adaptive meshing procedure is described
in algorithm 4. It starts from a coarse Cartesian mesh, e.g. n = 4 cells in each spatial
direction and a box shaped region bb. This region is chosen such that it contains the
interface δΣ and cells with |fΣ| ̸= 0 over the simulated time. All cells which are at least
partly located in bb are refined by bisecting their edges. Thus, each refined cell is replaced
by eight cells. This procedure is repeated until the cell size in bb is equivalent to ne cells
along a spatial direction of Ω. In fig. 5.6, an exemplary mesh with the initial interface is
shown for stationary, translating and oscillating droplet. Note that the refinement process
also ensures that the size of neighbouring cells only differs by one refinement level.

Algorithm 4 Generation procedure for statically refined hexahedral meshes. The operator
’:=’ denotes assignment.
1: m := coarse initial mesh
2: bb := boxed shaped region, bb ⊂ Ω, Σ̃(t) ∩ bb = Σ̃(t)∀t ∈ [t0, tend]
3: n := coarse initial resolution
4: ne := fine resolution
5: while nc ≤ nf do
6: for cell Ωc in m do
7: if Ωc ∩ bb ̸= ∅ then
8: Refine Ωc: split into eight new cells
9: end if
10: end for
11: n := 2n
12: end while

2http://dx.doi.org/10.25534/tudatalib-61
3http://dx.doi.org/10.25534/tudatalib-62
4http://dx.doi.org/10.25534/tudatalib-136
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(a) Stationary droplet (b) Translating droplet (c) Oscillating droplet

Figure 5.6.: Crosssection of statically refined 3D meshes for hydrodynamic test cases
with initial interface. The equivalent resolutions from left to right are ne = 64,
ne = 64 and ne = 256.

5.9.1. Curvature calculation

Due to the important role of curvature approximation for the computation of surface
tension the accuracy of the techniques described in section 5.6 is investigated here. The
following test setup has been used to obtain the results presented in this section: A cubic
domain Ω : [0, 0, 0] × [4, 4, 4] is used, discretized with n ∈ [16, 32, 64, 128] cells in each
spatial direction. Two interface geometries, a sphere with radius R = 1 and an ellipsoid
with semi-axes s = [3/2, 1, 1/2], are employed. While the radius / semi-axes are kept
constant, the interface centroids are generated randomly in a box-shaped region. The
center of this region coincides with the center of Ω and its size is chosen such that the
narrow band does not touch or intersect the domain boundary. To examine the influence
of the signed distance calculation, both the exact signed distance and the signed distance
computed from the front are used in different setups. Accuracy of the different curvature
models is evaluated with two norms of the relative curvature error

L∞(eκ,rel) = max
i

(︃
|κi − κexact|

|κexact|

)︃
(5.29)

and

L2(eκ,rel) =
1

|κexact|

√︄
1

m

∑︂
i

(κi − κexact)2 (5.30)

where index i denotes all cell faces at which the surface tension is evaluated andm is the
number of such faces. The face centers are chosen as evaluation locations rather than the
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acronym input field compact calculation spherical correction
DG(α) α no no
DG(φ) φ no no
cDG(φ) φ yes no

sccDG(φ) φ yes yes

Table 5.1.: Acronyms of the tested curvature model configurations. Compact calculation
refers to the modfication described in section 5.6.1 and spherical correction
to eq. (5.14).

cell centers since the surface tension is discretized at the cell faces. Each setup (resolution,
interface shape, signed distance calculation procedure, curvature model) is repeated 20
times with random placement as described above.

The results for the L2-norm are depicted as scatter plots in fig. 5.7 and the four different
configurations are summarized in table 5.1.

Several conclusions can be drawn from these plots. First of all, scattering range is small
compared to the error differences between different resolutions and different models. The
only exception are the cDG(φ) and the sccDG(φ) model for the ellipsoidal interface where
there is an overlap of data points. Furthermore, the accuracy of the models increases
in the order as they are listed in table 5.1 for all setups. While the signed distance as
input field significantly improves the accuracy compared to the phase indicator field, the
qualitative behavior is left unchanged: both models show convergence of decreasing order
up to n = 64. Further increase of the resolution does not reduce the L2-norm (DG(α)) or
reveals the onset of divergence (DG(φ)).
Applying the compact curvature calculation idea of [104] described in section 5.6.1

yields higher absolute accuracy and consistent convergence behavior. Order of convergence
lies in-between one and two for a sphere which agrees with the estimation of the maximum
error eq. (5.13).

For the spherical correction approach eq. (5.14), two observations can be made. First,
there is no negative impact on the accuracy when applied to the non-spherical, ellipsoidal
interface. Second, as can be expected for a spherical interface, the errors are reduced by
an order of magnitude or more compared to the compact calculation without correction.
Finally, comparison of fig. 5.7a and fig. 5.7b shows the impact of the signed distance

calculation on the curvature calculation when the sccDG(φ) model is used. For the
curvature models DG(α) and sccDG(φ) which are used for the hydrodynamic test cases the
results are summarized in table 5.2 and table 5.3. They illustrate the distinct improvement
of both the L2- and L∞-norm compared to the previous publication [71].
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(b) Sphere R = 1, φ = f(Σ̃)
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(c) Ellipsoid s = (1.5, 1.0, 0.5), exact φ
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(d) Ellipsoid s = (1.5, 1.0, 0.5), φ = f(Σ̃)

Figure 5.7.: L2 norm of the relative curvature error for a sphere (upper row) and an ellip-
soid (lower row) for different curvature models. The exact signed distance
(left column) and the signed distance computed from the front (right column)
have been used as input. A cubic domain Ω : [0, 0, 0]× [4, 4, 4] with n cells in
each spatial direction. Each setup has been simulated 20 times by setting
the centroid of the interface at a random position around the domain center.
The dashed/dotted line indicates first/second order of convergence.
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L∞(eκ,rel) L2(eκ,rel) σ(L∞(eκ,rel)) σ(L2(eκ,rel))

model interface n

sccDG(φ)

ellipsoid

16 1.17e+00 1.10e-01 1.20e-01 7.99e-03
- 0.83 1.97 - -
32 6.58e-01 2.80e-02 9.97e-02 4.99e-04
- 1.19 2.05 - -
64 2.88e-01 6.74e-03 2.42e-02 1.41e-04
- 1.16 1.79 - -
128 1.29e-01 1.95e-03 4.34e-03 1.46e-05

sphere

16 9.37e-03 8.14e-04 5.16e-04 2.27e-05
- 2.69 2.87 - -
32 1.45e-03 1.11e-04 2.21e-05 5.06e-07
- 2.32 2.62 - -
64 2.91e-04 1.80e-05 1.67e-06 5.84e-08
- 2.10 2.53 - -
128 6.79e-05 3.12e-06 2.04e-07 5.10e-09

DG(α)

ellipsoid

16 1.42e+01 8.19e-01 3.52e+00 6.78e-02
- 0.86 1.84 - -
32 7.85e+00 2.29e-01 8.49e-01 1.30e-02
- 0.10 1.77 - -
64 7.32e+00 6.72e-02 4.32e+00 7.56e-03
- -0.59 0.14 - -
128 1.10e+01 6.09e-02 2.09e+00 1.25e-03

sphere

16 2.14e+00 1.72e-01 3.00e-01 2.19e-03
- -0.29 1.40 - -
32 2.62e+00 6.50e-02 8.08e-01 2.32e-03
- -0.93 0.87 - -
64 5.00e+00 3.56e-02 1.81e+00 2.02e-03
- -0.63 0.27 - -
128 7.74e+00 2.96e-02 4.48e+00 1.44e-03

Table 5.2.: Mean error norms (L∞ and L2) of the curvature and their standard deviation σ
for the DG(α) and sccDG(φ) model using an exact signed distance. Between
resolutions, the order of convergence is displayed.
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L∞(eκ,rel) L2(eκ,rel) σ(L∞(eκ,rel)) σ(L2(eκ,rel))

model interface n

sccDG(φ)

ellipsoid

16 1.12e+00 1.09e-01 1.59e-01 9.13e-03
- 0.76 1.95 - -
32 6.60e-01 2.83e-02 8.38e-02 5.74e-04
- 1.13 2.03 - -
64 3.02e-01 6.91e-03 2.68e-02 1.34e-04
- 1.22 1.80 - -
128 1.30e-01 1.98e-03 2.86e-03 9.53e-06

sphere

16 8.45e-03 1.07e-03 5.67e-04 5.39e-05
- 0.46 1.50 - -
32 6.16e-03 3.79e-04 4.96e-04 8.87e-06
- -0.01 0.87 - -
64 6.20e-03 2.05e-04 1.12e-03 3.73e-06
- -0.29 0.83 - -
128 7.59e-03 1.15e-04 1.48e-03 2.44e-06

DG(α)

ellipsoid

16 1.31e+01 7.78e-01 4.23e+00 7.97e-02
- 0.78 1.77 - -
32 7.61e+00 2.28e-01 9.29e-01 1.22e-02
- 0.1 1.77 - -
64 7.08e+00 6.69e-02 4.21e+00 7.75e-03
- -0.69 0.12 - -
128 1.14e+01 6.14e-02 4.39e+00 2.78e-03

sphere

16 2.23e+00 1.73e-01 3.02e-01 2.54e-03
- -0.53 1.37 - -
32 3.22e+00 6.68e-02 8.69e-01 2.49e-03
- -0.44 0.93 - -
64 4.36e+00 3.51e-02 1.62e+00 1.94e-03
- -0.73 0.26 - -
128 7.23e+00 2.93e-02 4.22e+00 1.35e-03

Table 5.3.: Mean error norms (L∞ and L2) of the curvature and their standard deviation
σ for the DG(α) and sccDG(φ) model using a signed distance computed from
the front. Between resolutions, the order of convergence is displayed.
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5.9.2. Surface tension force reconstruction
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(a) Convergence of the flux reconstruction
for the ”SHEAR 2D” velocity field.
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Figure 5.8.: Convergence of the flux reconstruction.

Figure 5.8 contains results from two tests used to verify the second-order accuracy of the
reconstruction operator described in section 5.7. In both cases, velocity is reconstructed
in cell centers, from the numerical scalar flux exactly defined at face centers. The first
case, shown in fig. 5.8a, is a single-phase solenoidal velocity field function known as the
”single vortex test”, often used to validate the advection of the fluid interface [98].

For the other verification case, the creeping flow around a spherical interface is used,
as given by the Hádamard-Rybczynsky model. The velocity expressions available in [19]
are used. The interface is a circle of radius R = 0.15, centered at (0.5011, 0.507, 0.05).
The outside viscosity is µo = 5e-04 and the inside viscosity µi = 5e-03 and the free
stream velocity v∞ = 1.0. Figures 5.8a and 5.8b show that the reconstruction error ϵR,orth

c

given by eq. (5.24) exactly corresponds with the computed L∞ error norm L∞(|vc − vRc |).
Therefore, eq. (5.24) can be used to verify the reconstruction operator convergence
behavior both for single and two-phase flows. Second order accuracy is obtained only in
the single-phase scenario, shown in fig. 5.8a. However, as the discontinuity of the velocity
gradient in the Hádamard-Rybczynsky model increases with increasing mesh resolution,
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Figure 5.9.: Error distribution for the Hadamard-Rybczynsky flow.

the convergence of the reconstruction operator deteriorates, as shown in cf. fig. 5.8b.
Figure 5.9 confirms this, by showing the L∞ error norm distribution for the velocity field,
where the error is concentrated at the fluid interface.

These results have an important consequence. Field reconstruction is performed by the
SAAMPLE algorithm at the r.h.s. of the momentum equation for the surface tension force
(together with other forces) as well as for the velocity field, at the end of the internal
loop of the SAAMPLE algorithm. As clearly visible in fig. 5.9, both the velocity field,
and the surface tension force reconstruction introduce errors at the interface. Further
improvements of the reconstruction operator are expected to improve the convergence
and stability of the SAAMPLE algorithm and are left as future work.

5.9.3. Stationary droplet

According to the Young-Laplace law, the velocity for a spherical droplet in equilibrium in
the absence of gravity is v = 0 because the surface tension is balanced by the pressure
jump across the interface. With a prescribed, constant curvature this case allows to test if
a numerical method is well-balanced [35]. With a numerically approximated curvature,
limitations of the numerical method with respect to the capillary number

Ca =
|vref|µ
σ

(5.31)

due to so-called spurious currents can be investigated. A setup given in [93, 1] is adapted
here. The setup introduced below differs from those publications in two regards. First, it is
three-dimensional instead of two-dimensional. Second, no symmetry is used: the complete
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droplet is simulated. The domain is Ω : [0, 0, 0]× [1.6, 1.6, 1.6] with a spherical interface of
R = 0.4 centerd at [0.800000012, 0.799999932, 0.800000054], to avoid exact overlap with
mesh points. The material properties are identical for the droplet and the ambient fluid
with the density ρ = 1, the kinematic viscosity ν = [8.165e-2, 2.582e-2, 8.165e-3, 0] and
a surface tension coefficient of σ = 1. The values of ν are chosen such that the Laplace
number

La =
2Rσ

ρν2
(5.32)

assumes La = [120, 1200, 12000,∞]. Dirichlet boundary conditions are prescribed for the
pressure p = 0 on ∂Ω and for the velocity ∇v · n = 0 on ∂Ω. The initial conditions are
p(t0) = 0 and v(t0) = 0. A time step of ∆t = 0.5∆tcw is chosen where

∆tcw =

√︃
ρh3

πσ
(5.33)

is the time step limit due to capillary waves according to [27].

Prescribed exact, constant curvature

To test if our numerical method is well-balanced, a stationary droplet is simulated with a
prescribed, constant curvature. Figure 5.10 shows the temporal evolution of the spurious
currents when the PISO algorithm is used to solve the pressure velocity system. Except for
the inviscid case, the PISO algorithm does not obtain the equilibrium state within the first
time step. Instead, there is a transient phase before the velocity magnitude falls below the
linear solver tolerance. This behavior can be understood by reformulating eq. (5.26) as

∇ ·
[︁
Dv
c(∇p′)c

]︁
= ∇ · v∗ +∇ ·Hc[v′] (5.34)

where p′ = p∗ − pprev is a correction to the old pressure field pprev. Again, the underlined
term ∇ ·HΩ[v′] is neglected. Thus, from eq. (5.34) it is clear that the pressure correction
is driven by the divergence of the preliminary velocity field v∗. So, starting with a
constant pressure field the only acting forces in the solution of eq. (5.25) are surface
tension and viscous forces. The latter counteracts surface tension, thus the resulting
force is lower than in the inviscid case. One can then expect the volume defect also to
be smaller than in the inviscid case. However, since the volume defect is the only source
term for eq. (5.34), the gradient of the updated pressure field p∗ = pprev + p′ does not
balance surface tension. Consequently, L∞ (|v∗∗|) > tolls can be expected after the explicit
velocity update eq. (5.27). Increasing the number of pressure correction iterations reduces
L∞ (|v(t = ∆t)|), but it may require a considerable number of iterations to reach a given
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Figure 5.10.: Temporal evolution of the spurious currents for the case of a stationary
droplet for different Laplace numbers. The LENT method is configured as
in [71] using the PISO algorithm and exact curvature. On the left, the results
for an equivalent resolution of ne = 16 are displayed while the right graph
has been computed with an equivalent resolution of ne = 64.

ne Laplace number
120 1200 12000 ∞

16 15 9 7 1
64 19 11 8 1

Table 5.4.: Number of pressure-correction iterations required to obtain L∞ (|v|) < 1e-13
within the first time step for the stationary dropletwith exact curvature. Results
are shown for different Laplace numbers and two mesh resolutions.
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L∞ (|v(t = ∆t)|) L∞ (|v(t = tend)|) tend
PISO SAAMPLE PISO SAAMPLE

La ne

120

16 3.90e-06 1.47e-14 3.32e-14 1.14e-14 7.8
32 7.40e-06 7.74e-15 1.25e-14 3.74e-15 7.8
64 1.49e-05 1.77e-14 2.17e-14 3.40e-14 7.8
128 2.37e-05 1.29e-14 8.55e-11 3.61e-14 0.3

1200

16 9.29e-08 1.06e-14 7.75e-16 1.33e-15 24.8
32 2.25e-07 2.70e-14 6.32e-15 6.62e-16 24.8
64 6.10e-07 1.56e-14 5.47e-14 9.84e-16 8.0
128 1.39e-06 1.61e-14 2.53e-11 1.72e-14 0.3

12000

16 1.27e-09 4.26e-14 1.39e-14 1.72e-14 78.4
32 3.38e-09 4.85e-14 1.59e-15 1.37e-15 50.0
64 1.07e-08 1.74e-14 2.67e-13 2.66e-14 8.0
128 2.99e-08 1.94e-14 5.81e-12 2.77e-14 0.3

∞

16 2.60e-15 7.29e-14 2.03e-13 1.75e-14 100
32 2.97e-15 2.34e-14 1.56e-13 1.25e-13 35.0
64 2.73e-15 2.18e-14 1.58e-13 7.54e-14 8.0
128 2.70e-15 1.58e-14 2.19e-14 1.20e-14 0.3

Table 5.5.: Spurious currents of the stationary droplet using the PISO and SAAMPLE algo-
rithm with exact curvature. Results are shown for different Laplace numbers
La and mesh resolutions ne. Magnitude of the spurious currents is given after
one time step and at the end of the simulations.
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(a) Σ̃(t = 0) (both) (b) Σ̃(t = 20) (old) (c) Σ̃(t = 20) (new) (d) Σ̃(t = 40) (new)

Figure 5.11.: Front for the stationary droplet at different times for La = 120. From left to
right: initial front (identical for old and new configuration), front of the old
configuration at t = 20, front of the current configuration at t = 20 and front
of the current configuration at t = 40.

threshold as displayed in table 5.4. This behavior motivated the development of the
accuracy controlled SAAMPLE algorithm 3. Table 5.5 compares L∞ (|v|) of PISO and
SAAMPLE after the first time step and at the end of simulation. For all configurations, the
SAAMPLE algorithm maintains L∞ (|v|) < tolls over the simulated time. This indicates
that our method is balanced in the sense of [35] and that SAAMPLE is a suitable segregated
solution algorithm for two-phase flows.

Numerically approximated curvature

Two curvature models are used. For the LENT configuration from [71] the DG(α) model
is used while the current configuration employs the sccDG(φ) model (see table 5.1). The
results are compared in fig. 5.12 for two resolutions and four Laplace numbers. Overall,
the new configuration of LENT reduces the spurious currents between one and two orders
magnitude for the simulated time and Laplace numbers. With the old configuration
[71] simulations over the depicted time is only possible for La = 120 (ne = 16) and
La = [120, 1200] (ne = 64). Applying the modifications described in chapter 5 allows to
simulate more physical time for all Laplace numbers. To put these results into perspective,
a study of Abadie et al. which investigates the influence of surface tension and advection
for various VOF and Level Set methods [1] is taken as a reference. They show results of
a stationary droplet with La = 12000 and a resolution of n = 64 which corresponds to
the green graph in fig. 5.12d. One should keep in mind though that a two-dimensional
setup employing a structured mesh with staggered variable arrangement is used in [1].
All reported combinations in figure 3 of [1] show either almost constant Camax over a
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simulated time of around 40 s or decreasing Camax before reaching a quasi stationary state.
For the first group, Camax lies between O(10−6) and O(10−4), while for the second group
O(10−16) < Camax < O(10−8) is reported. With La = 12000, the method proposed within
this thesis maintains an almost constant Ca of O(10−6) up to t ≈ 2. Afterwards, Camax
increases until an oscillatory state is reached around t ≈ 7 with O(10−4) < Camax <
O(10−3). A similar behaviour is observed for other Laplace numbers and the coarser
resolution ne = 16, with La = 120 and ne = 16 being the only exception. A possible
cause for this behaviour is the average number of front triangles per interface cell. For
both resolutions, each interface cell contains 8-9 triangles on average, meaning that the
front’s resolution is notably finer than the resolution of the volume mesh. So, the relatively
coarse resolution of the velocity field, which drives the motion of the front, may prevent
that an equilibrium or quasi stationary state is reached. Instead, small scale perturbations
accumulate in the vertex positions. These perturbations feed back through different parts
of the algorithm (signed distance calculation, curvature approximation, surface tension)
into the velocity. Over time, the perturbations become visible as shown in fig. 5.11d.
Currently, it is not possible to change the average number of triangles per cell as this
number is inherently linked to the interface reconstruction algorithm, whose improvement
is left as future work.

5.9.4. Translating droplet

As pointed out by Popinet [93], the solution to a stationary droplet also holds in a moving
reference frame. Yet this variant is better suited to study the influence of interface advection
as the droplet moves through the fixed cells of the mesh. Again, the two-dimensional setup
from [93] is adapted for three spatial dimensions. Material properties are same as for
the stationary droplet (section 5.9.3). The radius of the droplet is R = 0.2 and its center
initially placed at c = [0.5, 0, 5, 0.4] in Ω : [0, 0, 0]× [5R, 5R, 6R]. The constant, uniform
background velocity is vbg = [0, 0, 1]. As boundary conditions ∇v · n = 0 and p = 0 is
prescribed for the boundary part where z = 6R, for the rest of the boundary v = vbg
and ∂p/∂n = 0 is set. The initial conditions are p(t0) = 0 and v(t0) = vbg. Simulation
duration is chosen as t = 0.4, so the that the droplet is advected by one diameter.
In fig. 5.13 the temporal evolution of the velocity deviations from the background

velocity field vbg is displayed. As for the stationary droplet (section 5.9.3), the figure
compares two configurations of LENT for two resolutions. The improvements are similar
to the stationary droplet with spurious currents reduced between one and two orders of
magnitude. For ne = 64 and La = [12000,∞], the qualitative behavior changed also. The
magnitude of spurious currents oscillates around its initial level while it increases for the
previous configuration. Popinet [93] reports the period of the oscillations to scale with
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Figure 5.12.: Evolution of spurious currents for the stationary droplet when using the LENT
method. The left column shows the results obtained with the configuration
from [71], the right column for the current configuration. In the upper row
results for a resolution of ne = 16 are displayed, in the lower row for ne = 64.
Each plot shows the results for different Laplace numbers.
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|v| /h as the droplet moves through the cell layers of the mesh. Compared to the results of
the stationary droplet shown in fig. 5.12, a notable difference is that the spurious currents
remain in the same order of magnitude. This can be attributed to the different physical
times simulated. For the translating droplet, this is a time span of 0.4 s. During this time
in fig. 5.12b and fig. 5.12d, L∞ (|v|) decreases for the stationary droplet, while he onset
of increasing L∞ (|v|) lies beyond t = 1 s.
To put these results into perspective, figure 7 of Abadie et al. [1] is taken as a reference.
The parameters are the same as for fig. 5.13d (ne = 64, La = 12000), albeit in a two-
dimensional setting with staggered variable arrangement. In contrast to the stationary
droplet, the qualitative behaviour of spurious currents is quite similar for LENT and
most of the VOF / Level Set configurations shown in [1] which also exhibit oscillations.
Quantitatively, Abadie et al. [1] report results in the range O(10−4) < Camax < O(10−3)
for the VoF methods and in the range O(10−6) < Camax < O(10−5) for the level set
methods. With |v|max ≈ 3e-3, LENT maintains Camax ≈ 2.4e-5, achieving more accurate
results than the tested VOF methods and comparable accuracy with regard to level set
methods. In this case, the Lagrangian advection is advantageous as the movement of
the front vertices due to vbg is captured exactly by first order spatial interpolation and
first order temporal integration (eq. (5.1)). The errors arise from the signed distance
calculation, influencing the calculation of α and the approximation of κ.

5.9.5. Oscillating droplet

Comparison to analytic solution

To analyze the accuracy of LENT with interface deformation a setup of an oscillating
droplet given in [105, 109] is adopted. For this case, Lamb derived an analytical solution.
The oscillation frequency of an inviscid droplet is given by

ω2
n =

n(n+ 1)(n− 1)(n+ 2)σ

[(n+ 1)ρd + nρa]R3
0

(5.35)

with the mode number n, the droplet density ρd, the density of the ambient fluid ρa and
the radius of the unperturbed droplet R0. In case of a viscous fluid, the amplitude an(t)
decreases over time

an(t) = a0e
−γt, γ =

(n− 1)(2n+ 1)ν

R2
0

. (5.36)

The initial interface shape is

R(θ, t) = R0 + ϵPn(cos θ) sin (ωnt), θ ∈ [0, 2π], (5.37)
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Figure 5.13.: Evolution of spurious currents for the translating droplet when using the
LENT method. The left column shows the results obtained with the configu-
ration from [71], the right column for the current configuration. In the upper
row results for a resolution of ne = 16 are displayed, in the lower row for
ne = 64. Each plot shows the results for different Laplace numbers.
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where Pn denotes the n-th order Legendre polynom.
The domain isΩ : [0, 0, 0]×[4, 4, 4], the interface is initialized withR0 = 1, n = 2, ϵ = 0.025
and t = π/(2ωn) with its center at [2.00001, 1.99999, 2.0000341]. Material parameters are
ρd = 10, ρa = 0.1, νd = [0.05, 0.005], νa = 5e-4 and σ = 10. Initial fields at t = 0 are
v0 = 0 and p0 = 0. Dirichlet boundary conditions are used for the pressure (p = 0) and
∇v · n = 0 for v. The semi-axis length is computed as

sx =
max
k

(︂
xk
Σ̃
· ex
)︂
−min

k

(︂
xk
Σ̃
· ex
)︂

2
(5.38)

in each time step.
In fig. 5.14 the evolution of the semi-axis sx is depicted for the previous configuration of
LENT [71] and the current one with two different kinematic viscosities. For νd = 0.05, both
configurations capture the qualitative behavior. However, the previous configuration shows
considerable deviations with regard to the temporal evolution of sx. This can be attributed
to development of spurious currents. First, the droplet deforms towards a cubic shape
similar to fig. 5.11b, resulting in a smaller sx around t∗ = 1/2 than analytically predicted.
A second effect is that small wave like perturbations with wavelength comparable to the
cell size h grow over time. Since the displacement of a single vertex can already change
the result of eq. (5.38), sx is considerably larger than the analytical prediction at later
times, depending on the resolution. The setup reported in this thesis, however, shows
much smaller deviations from the analytical solution. While sx decays a bit slower than
predicted by eq. (5.36), the numerical period converges with mesh refinement.
Setting ν = 0.005, the previous configuration is not able to simulate one oscillation. Due
to decreased dissipation, perturbations of the front amplify themselves faster than for
the more viscous setup and eventually lead to the crash of the simulation. With the new
configuration, however, this setup becomes viable. Both amplitude and period converge
with mesh resolution and at ne = 100 the numerical results agree very well with eq. (5.35)
and eq. (5.36).

Comparison to experiment

The numerical results presented so far rely on analytical solutions for verification. In this
section, the proposed method is validated against experiments conducted by Trinh and
Wang [125]. They investigate oscillations of droplets for which, in contrast to section 5.9.5,
the amplitude cannot be considered small compared to the equivalent radius of the droplet.
For the experiments, single silicone oil drops are suspended in water. Each drop is kept at
a stable position using acoustic radiation pressure generated by an ultrasonic transducer. A
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Figure 5.14.: Temporal evolution of the x semi-axis sx for the oscillating droplet. Time
is non-dimensionalized with the analytical period T2 = 2π/ω2. The dashed
lines represent the exact envelope of sx (R0 + a2(t) and R0 − a2(t), see
eq. (5.36)). Each plot shows the results for three mesh resolutions ne.
The case has been simulated using the LENT configuration from [71] (left
column) und the current configuration (right column)with different kinematic
viscosities of the droplet (upper and lower row).
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second transducer is used to drive the droplet oscillations. Besides forced oscillations, the
authors investigate the damping of free large amplitude oscillations (section 5 in [125]).
In the following, it is examined to what degree the LENT method is able to reproduce
Trinh and Wang’s experimental results.
The numerical setup is as follows. The fluid properties are as given in [125] with
ρa = 998 kg/m3, νa = 0.95e-6 m2/s for the ambient phase (water), ρd = 1001 kg/m3,
νd = 3.2e-6 m2/s for the droplet phase (silicone oil) and σ = 0.037 N/m. A domain
Ω : [0 cm, 0 cm, 0 cm] × [8 cm, 8 cm, 8 cm] is used with equivalent resolutions of ne ∈
[64, 128, 256]. The initial fields are p0 = 0 and v0 = 0. Homogeneous Dirichlet bound-
ary conditions are used for the pressure and homogeneous Neumann boundary condi-
tions for the velocity field. The interface is initialized as a prolate spheroid, centerd at
[4 cm, 4 cm, 4 cm] with two semi-axes configurations: sA = [8.02 mm, 5.46 mm, 5.46 mm]
and sB = [9.18 mm, 5.1 mm, 5.1 mm]. Configuration A corresponds to a droplet volume
of Vd = 1 cm3 and a semi-axes ratio of L

W = 1.47, while configuration B corresponds to
Vd = 1 cm3 and L

W = 1.80 in [125]. The time step is set to ∆t = 0.5∆tcw (eq. (5.33)),
giving ∆t64 = 2 ms, ∆t128 = 0.72 ms and ∆t256 = 0.26 ms. In fig. 5.15, the previous
configuration of LENT [71] and the one described in this publication are compared to
Trinh and Wang’s experimental results given in section five of [125]. The semi-axis sx is
evaluated according to eq. (5.38). Except for the lowest resolution ne = 64, the old con-
figuration shows good agreement of amplitude and period for the first peak at t ≈ 0.28 s.
However, afterwards, the behavior is qualitatively similar to fig. 5.14. Due to parasitic cur-
rents, perturbations accumulate in the front and feed back into the velocity field through
surface tension. Subsequently, the semi-axis evolution starts to severely deviate from the
expected behavior during the second oscillation period. Between t ≈ 0.35 s and t ≈ 0.5 s,
depending on resolution and semi-axes ratio, the graphs no longer resemble a harmonic
oscillation. With the modifications proposed here, however, the simulations yield the
qualitatively expected behavior. Agreement between the experimental oscillation period
and the simulated one is quite good with a relative difference of erel(L/W = 1.47) ≈ 0.07
and erel(L/W = 1.80) ≈ 0.05 for ne = 256. The amplitude decays noticeably faster in the
simulation compared to the experiment. This is related to the reconstruction operator
eq. (5.17) and its diminishing convergence, illustrated in section 5.9.2. Another cause lies
in the semi-implicit surface tension model eq. (5.15) as the second term is effectively a
diffusion term. Improvement of the balanced discretization between the surface tension
force and the pressure gradient on unstructured meshes by introducing an alternative field
reconstruction operator in OpenFOAM, as well as the introduction of the new algorithm
for the reconstruction of the Front are ongoing work. It is important to note, though, that
the simulation results computed with the existing numerical method converge toward the
experimental data with increasing mesh resolution.
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Figure 5.15.: Temporal evolution of the x semi-axis sx for the oscillating droplet replicating
the experimental setup described in [125]. The gray area depicts the decay
envelope (see eq. (5.36)) according to the experimentally measured γ, while
the black dots mark measured oscillation peaks. Each plot shows the
results for three different mesh resolutions ne. The left column shows the
results using the LENT configuration from [71], the right column the results
obtained with the current configuration. Two semi-axes ratios L/W have
been simulated.
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5.10. Conclusions

The proposed SAAMPLE algorithm together with the improvements in the curvature
approximation, phase indicator approximation and implicit surface tension modeling
significantly increases the numerical robustness of the unstructured LENT hybrid Level Set
/ Front Tracking method when simulating surface-tension driven flows, when compared
to both the previous publication [71] and contemporary Level Set and VOF methods on
structured meshes. For the experimental case reported in section 5.9.5, overdamping of the
solution is still present. However, the solution converges to the experimental observation
with increased mesh resolution.

It is found that the field reconstruction from scalar values on unstructured meshes in
OpenFOAM diverges for fields that are not at least C1. This behavior of the reconstruction
operator has not been reported so far in the literature, and it is crucial for the segregated
equation coupling in OpenFOAM for multiphase flows. The field reconstruction is also
used for combustion, spray simulations, electromagnetic simulations and heat transfer
(weak compressibility), so the findings reported in section 5.7 might be of significant
importance for those applications as well.
Additionally, the length scale of the reconstructed Front should be connected with the

length scale of the Eulerian mesh by developing a new Front reconstruction algorithm on
unstructured meshes which does not construct the connectivity of Front elements. The
absence of connectivity between the Front elements will make the parallelization of the
method, using the message passing parallel programming model, more straightforward
and will enable to more accurately tackle physical problems such as the one in section 5.9.5,
by allowing much higher mesh resolutions.

Improvements of the field and Front reconstruction algorithms are left as future work.
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6. Mass flux consistency and high density
ratios

In the previous chapter, both fluids featured either the same density or only a small
difference to isolate the errors arising from the numerical treatment of surface tension.
While such settings are useful for testing, they do not reflect the conditions usually
encountered in applications. A variety of natural and industrial two-phase flow processes
involve gas/liquid flows, characterized by density ratios ρ−/ρ+ ≥ 10001, such as the
atomization of fuel jets [65], sloshing tank [43], mold filing [111], water flooding [37].
Large density ratios at the fluid interface cause severe challenges for numerical simulations
[28]: the pressure Poisson equation becomes ill-conditioned due to the discontinuity, and
spurious numerical errors in the solution of the momentum equation accumulate because
of inconsistencies between mass and momentum advection.

Within this chapter, the conditions for a consistent transport of mass and momentum in
two-phase setting with different density values are derived and an approach for calculating
consistent fluxes for methods that do not provide volumetric phase fluxes, as e.g. the
LENT method, is introduced.

6.1. Literature overview

Ghods and Herrmann [40] point out that for Level Set methods mass and momentum
are typically transported in different, inconsistent ways. While mass is transported by a
solution of the level set equation, momentum is obtained from solving a non-conservative
form of a momentum balance equation. Hence, a large non-physical change in the
momentum can be generated by a small error in the interface position when the density
ratio is high. Nangia et al. [79] state that the abrupt change in density often introduces
notable shear at the interface and adds difficulties in the discretization of governing
momentum equations at the interface, which further leads to higher stiffness of the linear
equation system.
1Within this chapter ρ− denotes the density of the denser fluid, so that ρ− ≥ ρ+ and ρ−/ρ+ ≥ 1 holds.
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Many researchers have addressed these problems, and some indicated further that
because of the sizeable numerical error resulting from high-density ratios, some flow
algorithms or solvers can only be used to solve low density-ratio cases with ρ−/ρ+ ∈ [1, 10]
[97]. However, in engineering applications, density ratios usually range from 100 to 1000,
and even 10000 for molten metals or water-water vapor systems. Hence, a solution
algorithm with the ability to handle a broader range of density ratio problems is required
to simulate real-world engineering problems.
A pioneering attempt to alleviate numerical instability of the VOF method caused by

high-density ratios was made by Rudman [99]. Rudman [99] has used a sub-mesh with
a doubled mesh resolution for advecting volume fractions, compared to the mesh used
for the momentum and pressure equations. The goal of this two mesh approach was the
reduction of small errors in the discrete momentum that cause large errors in the velocity.
However, an additional higher mesh resolution for the volume fractions requires a discrete
divergence free velocity on the finer mesh. Furthermore, using an additional mesh for the
volume fractions increases the computational costs significantly, and it is not applicable
to general unstructured meshes. Rudman [99] demonstrates qualitatively a reduction of
parasitic currents for the stationary droplet case with ρ−/ρ+ = 100, and improved results
for more complex cases. Another important finding of Rudman [99] is the role of the
densities used in the mass flux and the momentum flux in ensuring numerical consistency
of the two-phase momentum advection.
Bussmann et al. [20] extended the work of Rudman [99] for the unstructured collo-

cated finite volume method. Bussmann et al. [20] employ the conservative form for the
momentum convection. At first, the momentum convection is solved separately, using an
explicit Euler time integration scheme. Bussmann et al. [20] use the unstructured unsplit
Volume-of-Fluid method of Rider and Kothe [98], which enables the simplification of the
numerical consistency requirement for the density and momentum equations. Specifically,
the solution of the volume fraction equation results in phase-specific volumes at face
centers. Those phase-specific volumes are then used to compute the volume fractions at
face centers. These volume fractions are used by Bussmann et al. [20], together with
a simple average of cell densities, and velocities calculated by the least squares recon-
struction technique, to compute the momentum fluxes at face centers. Since the velocity
is continuous at the interface, the least squares approximation is acceptable. However,
calculating face-centered densities by an average does not yield numerical stability in
all cases. Contrary to Rudman [99], Bussmann et al. [20] do not require an additional
finer mesh. They do, however, limit the solution to first-order accuracy in time and intro-
duce the Courant–Friedrichs–Lewy (CFL) condition by solving the momentum advection
equation explicitly. Bussmann et al. [20] introduce the important case of a translating
droplet in a quiescent ambient fluid. This test case can be used to demonstrate numerical
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consistency in the momentum transport. Their solutions show accurate results for high
density ratios, especially considering the fact that even the unsplit VOF method distorts
the interface during the translation [22]. However, for ρ−/ρ+ ∈ [1, 100], the constant
translation velocity is modified by the solution of the pressure and momentum equations,
which indicates a remaining numerical inconsistency in this approach.

Sussman et al. [119] employ the CLSVOF method [117] for obtaining a robust and
stable solution for the density ratio of 1000 by extrapolating the liquid velocities into the
gas domain. The interface is advected using the extrapolated liquid velocity field only.

Raessi and Pitsch [97] propose a 2D staggered discretization of conservative single-field
form of two-phase Navier-Stokes equations for handling high density ratios. Like Bussmann
et al. [20] did, Raessi and Pitsch [97] first solve the momentum advection equation, using
second-order (or higher) explicit integration schemes, and upwinding for the velocity
near the interface. The density used in the momentum convective term is computed as a
weighted combination of signed distances from the old and the new time step. For the
partially submerged line segments bounding 2D rectangular cells, intersection between
the mesh and the zero level set (iso-surface) is performed using the marching cubes
algorithm. Raessi and Pitsch [97] point out that there is still an inconsistency between the
face-centered density and the momentum transport, as the Level Set equation remains
decoupled / inconsistent with the momentum transport. The verification of numerical
stability was done using the translating droplet case from Bussmann et al. [20], and
results demonstrate qualitative improvement for the density ratio ρ−/ρ+ = 106. Other
density ratios have not been verified. A viscous oscillating droplet case demonstrates
quantitative improvement in terms of the improved amplitude decay rate, compared to
non-conservative form of the momentum equation.

Le Chenadec and Pitsch [63] extend their forward/backward Lagrangian tracking and
Eulerian remapping VOF method [63] for handling high density ratios. Equivalent to
volume fractions in [63], the density and the momentum are advected in the Lagrangian
forward/backward tracking step by observing the control volume as a material volume and
moving the mesh forward / backward with the flow velocity. While the content of material
volumes does not change on the continuum level, this condition cannot be discretely
ensured and is a source of conservation errors. In the Eulerian re-mapping step, physical
properties are transferred from the Lagrangian to the Eulerian mesh, and the geometrical
intersections between the PLIC interface on the forward/backward image of the mesh,
and the background mesh, are another source of volume conservation errors. Ensuring
numerical consistency further requires the transfer of velocities located at the center of
mass. Since the velocities associated with the cell centroids are used, an inconsistency is
introduced. Qualitative results show significant improvements for the stationary droplet
with ρ−/ρ+ = 109, and quantitative improvement is shown for the standing wave by
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Prosperetti [95] with ρ−/ρ+ = 850.
Ghods and Herrmann [40] have developed a consistent rescaled momentum transport

(CRMT) method. The CRMT method discretizes the conservative form of the single-
field Navier-Stokes equations using a collocated unstructured Finite-Volume method. To
increase the numerical stability for high density ratio, CRMT solves a mass conservation
equation using a mass flux either by upwinding the face-centered density in the interface
cells and their face-neighbors (defined by a volume fraction tolerance), or by averaging the
densities elsewhere. The same discretization scheme used for the face-centered density
is also applied to the mass flux in the convective term of the momentum equation. A
difference is therefore introduced in the mass flux of the continuity equation and the
mass flux in the convective term of the momentum equation when upwinding is used,
because the upwinded face-centered density in the continuity equation uses the face-
centered velocity, while the upwinded mass flux in the momentum equation includes
both the upwind velocity and density. Within this thesis it is shown that any difference
in the discretization of the mass flux is a source of numerical inconsistency for the two-
phase momentum advection. Like Bussmann et al. [20], the explicit discretization of
the momentum convective term introduces the CFL condition, limiting the time step for
convection-dominated multiphase flows, where high density ratios play a major role. Using
upwind schemes makes the discretization first-order accurate. The droplet translation
case [20], with ρ−/ρ+ = 106, is compared in terms of the droplet shape, that remains
stable. Other density ratios are not reported for this verification case. It is the author’s
opinion, that the droplet shape errors may result from the interface advection scheme2,
and should be generally substituted by the L∞ norm of the velocity error to demonstrate
numerical consistency.
Vaudor et al. [131] base their approach on a CLSVOF code from Aniszewski et al. [7],

which can switch between Level Set based and VOF based mode to calculate momentum
fluxes. They chose the VOF-based momentum fluxes calculation mode and implemented
the framework of Rudman’s method [99] but with more accurate interpolation schemes
for velocities and velocity gradients on faces of staggered meshes to ensure consistency.
This method is developed in two-dimensions and exploits two sets of meshes. To provide
a more widely applicable method, Vaudor et al. [130] advanced the method in their more
recent study. In contrast to the previous work [131], the Level Set method tracks the
interface, while the VOF method is utilized to update density. They exploited the identical
scheme to discretize conservative convective term in mass and momentum equation. In
addition, the mass flux is also identical in both discretized equations. A new strategy that
leverages half cell-faces’ and half cells’ quantities of volume fraction and density to couple

2The Level Set and VOF methods do not exactly preserve the shape of a translating droplet.
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staggered mass cells and momentum cells is introduced to avoid the need for a refined
mesh in the original method by Rudman [99]. A prominent feature of this new method is
that it can be used to simulate three-dimensional applications. Besides, comparing with
the method from Rudman [99], the new method shows relatively low computational cost
when simulating the same 2D application.

Owkes and Desjardins [87] presented a three-dimensional, un-split, second-order semi-
Lagrangian VOF scheme that conserves mass and momentum and ensures consistency
between the mass (volume fraction) and momentum fluxes. The volume fractions are
geometrically transported near the fluid interface using the method from [85]. As in [99],
Owkes and Desjardins [87] introduce an additional refined mesh for the calculation of
semi-Lagrangian fluxes. The motivation for the refined mesh is to enforce the consistency
between semi-Lagrangian mass and momentum fluxes, similar to Rudman [99]. Results
confirm mass and momentum conservation, and stability of the momentum convection.
The method proposed by Owkes and Desjardins [87] relies on the staggered variable
arrangement and this, together with the use of the additional finer mesh, makes this
approach inapplicable to unstructured finite volume meshes.
Orazzo et al. [83], similarly to Rudman [99], resolve the volume fraction function on

twice finer sub-cells and update density from the volume fraction. After that, they update
face-centered density on mass cells by averaging density on sub-cells, and then evaluate
the mass flux on the faces of standard staggered momentum cells. These density and mass
flux values are used to initialize and calculate interim momentum and velocity during
the prediction step. Zuzio et al. [139] made no changes and applied Orazzo’s method
[83]. Besides, they further verified and validated this method with new, different cases
and analyzed the results of simulations using more novel ways. Yang et al. [135] notice
that the high-density ratio has a profound effect on robustly simulating two-phase flows
at high Reynolds numbers. To mitigate the problem, they adopt the consistent framework
from Nangia et al. [79] and replace the interface-capturing method in [79], which is
standard Level Set, with CLSVOF method [117] to ensure mass conservation.
Patel and Natarajan [90] employ the method of Ghods and Herrmann [40], a high-

resolution scheme called Cubic Upwind Interpolation (CUI) for the convective terms of
momentum and volume fraction transport equations, and the solution of a momentum
equation in the face-normal direction. The face-normal momentum equation leads to a
combined collocated/staggered variable arrangement, that requires the use of nonlinear
solvers, as this equation is a nonlinear algebraic equation. Patel and Natarajan [90]
demonstrate the balanced nature of their discretization for the stationary droplet using
exact curvature and density ratios ρ−/ρ+ ∈ [10, 1000]. Numerical stability is demonstrated
with reduced parasitic currents when the curvature is approximated numerically for
ρ−/ρ+ = 10 and a Weber number of We = 1. For the verification test case of the two-
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phase momentum convection problem, ρ−/ρ+ = 106 is used without surface tension and
viscous forces and qualitative results show slight deformations of the interface shape, the
L∞ norm of the velocity error is not reported. With enabled surface tension and viscous
forces and exact curvature prescribed, and density ratios ρ−/ρ+ = 1, 1000, the velocity
error in the L∞ norm lies within [10−3, 10−2].

Manik et al. [67], similarly to [90], attempt to enforce numerical consistency by applying
the similar discretization scheme on the conservative form of the volume fraction advection
equation and the momentum conservation equation. Manik et al. [67] are using a
collocated unstructured Finite-Volume method for the equation discretization and the
CUBISTA scheme (Alves et al. [5]) to discretize convective terms. The verification of
the numerical consistency for the two-phase momentum advection is done using the
droplet translation case of Bussmann et al. [20] and density ratios ρ−/ρ+ = 103, 106,
that demonstrates qualitative improvement compared to a naive discretization of the
momentum convective term with the upwind method. The qualitative evaluation is based
on the shape of the droplet, given by the 0.5 iso-surface of the volume fraction. Although
the proposed method demonstrates improvement w.r.t. an obviously inconsistent approach,
some shape deformation is still visible, so one can conclude that L∞(v) ̸= 0 and some
non-zero velocities are still generated.
A recent second-order accurate Level Set method is proposed by Nangia et al. [79],

extending the work from Ghods and Herrmann [40] that is first-order accurate. Similar
to the method proposed by Ghods and Herrmann [40], an additional mass conservation
equation is solved, and the identical mass flux is used for both mass and momentum
transport. Two techniques are employed: one is the third-order accurate Koren’s limited
CUI, which is modified to consistently discretize the convective term of both mass and
momentum equation. This scheme satisfies the convection-boundedness criterion (CBC)
and is total variation diminishing (TVD). The second technique is the solution of an
update equation for the face-centred densities. In this step, a third-order accurate strong
stability preserving Runge-Kutta (SSP-RK3) scheme is used for time integration. The
update is performed in every fix-point iteration, and the updated face-centered density is
then employed to solve the discretized momentum equation.

Zuzio et al. [139] also follow Ghods and Herrmann [40] by solving an auxiliary conti-
nuity equation for increasing the numerical consistency in discretizing the two-phase mo-
mentum convection term. Their Consistent Mass-Momentum (CMOM) transport method
utilizes a staggered Cartesian variable arrangement and utilizes the two-phase incompress-
ible Navier-Stokes equations in the conservative form, solved using Chorin’s projection
method together with the CLSVOF method for tracking the fluid interface. The solution
of the auxiliary density equation requires the evaluation of staggered (face-centered)
densities, by constructing staggered control volumes, and evaluating the densities using
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sub-grid quadtree (octree in 3D) refinement and intersection with the PLIC interfaces.
This aspect of CMOM shows the importance of evaluating the densities at face-centeres
that are required for the solution of the auxiliary continuity equation. Momentum flux
reconstruction scales the fluxed phase-specific volume from the VOF method. Finally,
the two-phase momentum is advected in the staggered cells, and scaled with the cor-
responding density to obtain velocity components in all spatial directions. Zuzio et al.
[139] demonstrate significant improvements in numerical stability in a very detailed way,
reporting shape, position and kinetic energy errors for canonical verification and validation
cases. The kinetic energy for the dense translating droplet [20] with a density ratio of 106
is reported, and CMOM recovers a numerically stable solution.

Arrufat et al. [8] consider the conservative form of the advection equation of a discon-
tinuous property to enforce numerical consistency of the advected two-phase momentum,
using face averages that are derived by integrating the advection equation in space and
time. Since the discontinuity of the property introduced by the interface complicates
the evaluation of the face averages, two additional equations are introduced, one for
each phase. The method is derived for the MAC staggered variable arrangement. Results
demonstrate a numerically stable droplet shape when it is advected with a constant velocity,
however, the authors consider this case to only test the consistency of the implementation
and not the numerical consistency of the method so the results are not quantified in terms
of kinetic energy or L∞ velocity errors. Still, the method shows significant improvements
for realistic multiphase flows with high density ratios.
The high-density ratio is also challenging for other numerical methods for two-phase

flows, like the phase-field and lattice Boltzmann. The corresponding surveys are beyond
the scope of this work, more details can be found in [31, 133, 47, 48, 64, 137]. Contrary
to the numerical two-phase methods mentioned so far, the difficulties with high density
ratios are far less pronounced for Front Tracking methods [109] because the marker field
(phase-indicator) is not as sharp as in the unstructured Volume-of-Fluid method [69] and
the unstructured Level Set / Front Tracking method [71].

The methods of Bussmann et al. [20], Ghods and Herrmann [40], Patel and Natarajan
[90], and Manik et al. [67] utilize the unstructured Finite-Volume equation discretiza-
tion, other above-mentioned methods utilize a staggered variable arrangement that is
not applicable to unstructured meshes. Compared to contemporary collocated Finite-
Volume methods, the proposed ρLENT method achieves the numerical consistency in
the two-phase momentum advection exactly. The requirement for the auxiliary mass
conservation equation, introduced by Ghods and Herrmann [40], and the requirement
for the face-centered (flux) density from the mass conservation principle are derived.
Compared to a similar observation by [8], the proposed approach avoids the integration in
time that complicates the evaluation of face-centered quantities, as demonstrated in detail
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below. Although hybrid Level Set / Front Tracking LENT method [71] is used for interface
capturing, the ρLENT solution algorithm can be used with other interface capturing meth-
ods, where there is a discrepancy in the evaluation of the collocated density. Compared
to all contemporary collocated methods, ρLENT allows an implicit discretization of the
two-phase momentum convective term which removes the CFL stability condition.

6.2. A solution algorithm for two-phase flows with high density
ratios using the collocated unstructured Finite-Volume
method

6.2.1. Numerical consistency of the single-field conservative two-phase
momentum convection term

Bussmann et al. [20] were the first to consider the problem of numerical consistency of
the two-phase momentum convective term in the setting of the collocated unstructured
Finite-Volume method. Within this chapter, their work is extended by improving the
accuracy of the face-centered density evaluation and employing a solution algorithm
that allows for an implicit discretization of the convective term, thus removing the CFL
condition.

Consider first the Euler explicit collocated unstructured Finite-Volume discretization of
the mass conservation equation,

∂tρ+∇ · (ρv) = 0, (6.1)

namely,

ρn+1
c − ρnc

∆t
+

1

|Ωc|
∑︂
f∈Cc

ρnfF
n
f = 0, (6.2)

ρn+1
c = ρnc − ∆t

|Ωc|
∑︂
f∈Cc

ρnfF
n
f , (6.3)

where Ff is the volumetric flux at the face defined by the index f from the set of all
indexes of cell-faces Cc that belong to Ωc, defined as

Ff := vf · Sf , (6.4)

with vnf as the face-centered velocity and Sf := |Sf |nf as the face area-normal vector,
with |Sf | denoting the area of the face Sf .
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Second, the focus is on the two-phase momentum advection with a prescribed initial
velocity, spatially constant throughout the solution domain and its inlet/outlet boundaries.
Without forces on the r.h.s of eq. (2.13), the momentum conservation equation becomes

∂t(ρv) +∇ · (ρv⊗ v) = 0. (6.5)

Without forces on the r.h.s. of eq. (6.5), eq. (6.5) keeps the initial velocity spatially constant
and without acceleration/deceleration. Therefore, a numerically consistent unstructured
collocated FVM discretization of the two-phase momentum convection equation (6.5)
must ensure that no artificial acceleration or deceleration occurs. For example, just like
eq. (6.3), the Euler explicit discretization of eq. (6.5) is

ρn+1
c vn+1

c = ρnc vnc − ∆t

|Ωc|
∑︂
f∈Cc

ρnfF
n
f vnf . (6.6)

If this discretization is numerically consistent, and the velocity field remains spatially
constant, then

vnf = vnc , (6.7)

which is, of course, ensured for the initial spatially constant velocity (v0f = v0c). Equa-
tion (6.7), applied to eq. (6.6), results in

ρn+1
c vn+1

c = vnc

⎛⎝ρnc − ∆t

|Ωc|
∑︂
f∈Cc

ρnfF
n
f

⎞⎠ , (6.8)

and dividing by ρn+1
c finally gives

vn+1
c =

vnc
(︃
ρnc − ∆t

|Ωc|
∑︁

f∈Cc
ρnfF

n
f

)︃
ρn+1
c

. (6.9)

As there are no forces on the r.h.s. of eq. (6.5), the velocity should not be changed simply
by advecting the two-phase momentum, i.e.

vn+1
c = vnc , (6.10)

and this condition is ensured in eq. (6.9) if

ρnc − ∆t

|Ωc|
∑︁

f∈Cc
ρnfF

n
f

ρn+1
c

= 1, (6.11)
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which is equivalent to eq. (6.3): the Euler explicit discretized form of the mass conserva-
tion equation. Consequently, a numerically consistent discretization of the momentum
convection equation requires the new cell-centered density ρn+1

c to be computed by solv-
ing a mass conservation equation. This observation justifies theoretically the use of the
auxiliary mass conservation equation, introduced by Ghods and Herrmann [40], and used
by [79, 97, 83, 139, 23].

Modern unstructured geometric flux-based Volume-of-Fluid methods ([51, 87, 70,
101], see [69] for a recent review), potentially ensure this property, since they solve the
conservative formulation of the volume fraction advection equation for αn+1

c by computing
phase-specific fluxed volumes, and then use the cell-centered volume fraction αn+1

c to
compute ρn+1

c with eq. (3.20). However, the temporal discretization scheme used in the
momentum equation for the convective term, must be consistent with the integration of
the fluxed phase-specific volumes, used to obtain αn+1

c . Additionally, the αn+1
c ∈ [0, 1]

must hold near machine epsilon. Any correction to αn+1
c performed after the numerical

solution of the volume fraction advection equation, that bounds αn+1
c within [0, 1], results

in a discrepancy between ρn+1
c computed using the mass flux that gives unbounded αn+1

c ,
and the ρn+1

c computed from the a-posteriori bounded αn+1
c using eq. (3.20).

It is important to note that if the pressure gradient is included on the r.h.s of eq. (6.5),
any error in vn+1

c will result in non-zero source terms on the r.h.s. of the resulting pressure
equation, in the p− v coupling algorithm. Since the pressure gradient enforces ∇ · v = 0
(
∑︁

f∈Cc
Ff = 0 on the discrete level), this results in artificial velocities similar to parasitic

currents caused by the surface tension force.

However, numerical methods such as Front Tracking, Level Set, and their hybrids,
update the cell-centered density ρn+1

c from the approximated fluid interface that is not
advected by solving the volume fraction advection equation. Bussmann et al. [20] rely
on this consistency of the Volume-of-Fluid method and use the VOF fluxes to first solve
eq. (6.5) explicitly in the first step, followed by the second step that includes volume
and surface forces. The approach from Bussmann et al. [20] works very well for the VOF
method, however it cannot be directly applied to the Level Set method, the Front Tracking
method or their hybrids, when the unstructured collocated Finite-Volume method is used
to discretize the single-field Navier-Stokes equations. The solution algorithm for high
density ratios that is proposed avoids the CFL condition imposed by Bussmann et al. [20]
and increases the accuracy of the face-centered density ρf required by the mass flux, and
it is applicable to any multiphase flow simulation method that utilizes the single-field
formulation of the Navier-Stokes equations.
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Figure 6.1.: A two-phase fixed control volume Ωc separated by the interface Σ(t).

6.2.2. A semi-implicit solution algorithm for high density ratios

Section 6.2.1 provides the formal reasoning behind solving the mass conservation equation
(or its equivalent) for ρn+1

c . Since Ghods and Herrmann [40] introduced the use of the
”auxiliary” mass conservation equation, other researchers have adopted this approach,
with the main difference in the way the face-centered (mass flux) density ρf is evaluated
both in the discretized mass conservation equation (6.1) and the discretized momentum
equation (2.13).
The condition given by eq. (6.11), derived from eqs. (6.9) and (6.10) can be fulfilled

only if the same face-centered (mass flux) density is used when discretizing the auxiliary
mass conservation and momentum equations. Going one step further, the volumetric flux
Ff must also be the same in the discretized auxiliary mass conservation and momentum
equations. Put together, the mass flux in the auxiliary discretized mass conservation
equation must be equal to the mass flux in the discretized momentum conservation
equation: this is the requirement for the mass flux consistency, mentioned throughout the
literature.
It is relevant to point out that the same model for the single-field density given by

eq. (3.20) is used throughout the literature. The basis of this model is mass conserva-
tion, and this fundamental principle further leads to an interesting conclusion regarding
the evaluation of the face-centered (mass flux) density ρf in the discretized mass and
momentum conservation equations. The face centered density is evaluated differently
throughout scientific publications reviewed in section 6.1, and here it is shown that there
is a strict relationship between the phase indicator and the face centered density ρf .

Consider the fixed control volume Ωc in fig. 6.1, that is separated by the fluid interface
Σ(t) into two parts, occupied by fluids Ω∓(t). The single-field density model given by
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eq. (2.8) is adopted in every publication reviewed in section 6.1, an in the rest of the
scientific literature on two-phase flow simulations. The mass conservation principle
together with the single-field density model (2.8) give

d

dt

∫︂
Ωc

ρ dV = −
∫︂
∂Ωc

ρv · ndS = −
∫︂
∂Ωc

[ρ−χ+ ρ+(1− χ)]v · n dS. (6.12)

The equality of surface integrals in eq. (6.12),∫︂
∂Ωc

ρv · ndS =

∫︂
∂Ωc

[ρ−χ+ ρ+(1− χ)]v · n dS,

demonstrates that the mass flux of the single-field density over ∂Ωc is determined by the
constant densities ρ∓ and the phase indicator given by eq. (2.7), if eq. (2.8) is used to
model the single-field density. In other words, the single-field density at ∂Ωc should be
computed using the phase indicator as done on the r.h.s. of eq. (6.12), otherwise the mass
conservation of the single-field density model given by eq. (2.8) will not be upheld. This
relevant condition transfers to the discrete level, leading to an interesting consequence for
the computation of the face-centered (mass flux) density, that has so far been computed
in many ways throughout the literature.

Specifically, when the surface integrals in eq. (6.12) are discretized using the unstruc-
tured collocated finite volume method,∑︂
f∈Cc

ρfFf =
∑︂
f∈Cc

[︄
ρ−

(︄∫︂
Sf

χdS

)︄
vf · nf + ρ+

(︄∫︂
Sf

dS

)︄
vf · nf − ρ+

(︄∫︂
Sf

χdS

)︄
vf · nf

]︄

=
∑︂
f∈Cc

[︄
ρ−

∥Sf∥
∥Sf∥

(︄∫︂
Sf

χdS

)︄
vf · nf + ρ+

(︄∫︂
Sf

dS

)︄
vf · nf

−ρ+
∥Sf∥
∥Sf∥

(︄∫︂
Sf

χdS

)︄
vf · nf

]︄
=
∑︂
f∈Cc

[︁
ρ−αf + ρ+(1− αf )

]︁
Ff ,

(6.13)
where

αf :=
1

|Sf |

∫︂
Sf

χdS ≡
|Ω−(t) ∩ Sf |

|Sf |
(6.14)

is the area fraction of the face Sf ⊂ ∂Ωc, i.e. the ratio of the area of Sf submerged in
Ω−(t), and the total face-area |Sf |. Further, ∥Sf∥ ≡ |Sf |, and Ff is the volumetric flux
vf · Sf (eq. 6.4) in eq. (6.13).
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An important consequence of eq. (6.13) is the requirement for the evaluation of the
face-centered (mass flux) density, necessary for ensuring the numerical consistency of
the single-field two-phase momentum convection. Equation (6.13) requires all methods3
that define ρ using eq. (3.20) to either compute ρf using the area fractions or

∫︁
Sf
χdS

from eq. (6.13), or to achieve this equivalently when computing ρn+1
c from the advected

volume fractions αn+1
c , which is possible for the flux-based VOF methods [69].

Another important realization is that eq. (6.13) is valid at any time t - which is very
relevant for the semi-implicit discretization developed within the ρLENT method, that
applies eq. (6.13) at tn+1.
It is true that many two-phase simulation methods do not advect the phase indicator

when advecting the fluid interface Σ(t), but this does not infer that eq. (6.13) cannot be
applied. The idea of using an auxiliary mass conservation equation introduced by [40],
made into a formal requirement by eqs. (6.9) and (6.10), allows the use of eq. (6.13):
αf can be computed regardless of the approximation of the fluid interface Σ(t) and the
method used to advect it.
Similar to other contemporary methods, the ρLENT method also first advects the

interface using the velocity from the previous time step as shown in the left image of
fig. 6.2a, resulting in the new position of the interface shown in the right image in
fig. 6.2a, that is then used to geometrically calculate the face-centered density ρn+1

f , by
calculating area fractions αn+1

f from the interface approximation, as shown in fig. 6.2b.
The face-centered density ρn+1

f and the volumetric flux Fm
f are then used to update the

cell-centered density ρn+1
c by solving a mass conservation equation. The index m in

the volumetric flux refers to the linearization of the convective term in the momentum
equation. The same mass flux ρn+1

f Fm
f is used in the implicitly discretized momentum

conservation equation. The pressure-velocity coupling algorithm iterates the linearized
volumetric flux Fm

f to Fn+1
f . Finally, the cell-centered velocity vn+1

c is obtained, which is
used to evolve the fluid interface in the next time step, from tn+1 to tn+2. At this point,
the numerically consistent cell-centered density ρn+1

c has served its purpose and is reset
using eq. (3.20), to make it consistent again with the fluid interface approximation.

Any two-phase flow simulation method has the possibility to compute the face-centered
density ρf (t) from the interface approximation in some way. The ρLENT method computes
the face-centered density ρf (t) by computing the face area fraction αf (t) (short: area
fraction) of the face Sf , submerged in the phase Ω−(t). The calculation of αf uses
signed distances available in the unstructured LENT method [71]. Other two-phase flow
simulation methods rely on a different approximation of the fluid interface Σ(t), that

3All two-phase flow simulation methods encountered by the authors use eq. (3.20).
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Σ̃(tn) Σ̃(tn+1)

(a) Interface Σ̃ at tn and tn+1 and the respective Ω−(tn) and Ω−(tn+1) in gray
color, used to compute αn

c and αn+1
c , that are further used to compute ρnc and

ρn+1
c in an inconsistent way.

ρfFf

αf

(b) Interface at Σ̃(tn+1) used to com-
pute αn+1

f , then ρn+1
f and finally

ρn+1
c in a consistent way, by solv-

ing a mass conservation equa-
tion.

Figure 6.2.: Updating the face-centered (mass flux) density in the ρLENT method.

can be used to geometrically approximate the area fraction αf without resorting to an
interpolation of the field that abruptly changes in the interface-normal direction.

In the original Front Tracking method, the density is updated utilizing the new position
of marker points (the approximated interface) [78]. After the velocity field in the current
step is computed, the position of marker points in the new time step can be updated
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immediately by
xn+1
p = xnp +∆t vnp , (6.15)

where xp,vp indicate the position and interpolated velocity of marker points respectively,
and∆t is the time step length.The advection of marker points along Lagrangian trajectories
eventually corrupts the triangular mesh, leading to discrepancies in the ratios of triangular
angles and areas and self-intersections of the triangular mesh. The original Front Tracking
method [126] deals with this by redistributing marker points based on quality criteria
imposed on the triangular mesh, which involves manipulating the connectivity of the
triangular mesh.
Contrary to original Front Tracking [126], the LENT method reuses the principles

from LCRM / Local Front Reconstruction Method (LFRM) methods [108, 110, 109,
106] and reconstructs the interface using an iso-surface reconstruction algorithm. The
iso-surface reconstruction does not add/delete marker points locally by changing the
connectivity of the triangular surface mesh; it reconstructs the entire interface in the
solution domain as an iso-surface. Following the strategy from LCRM / LFRM, the physics
of the problem determines the iso-surface reconstruction frequency. The LENT method
uses the marching tetrahedra [124] algorithm to enable the iso-surface reconstruction
on unstructured meshes. However, the marching tetrahedra algorithm introduces many
triangles per cell (even with regularization), causing instabilities in front tracking. At the
moment of writing, an alternative iso-surface reconstruction that relies on a higher-order
signed-distance interpolation and results in a favorable ratio of triangle-to-cell length
scales is developed.
Once the marker points are advected and redistributed, the cell density is updated

depending on xn+1
p , namely

ρn+1 = ρ
(︁
xn+1
p

)︁
. (6.16)

The face-centered density used for the mass flux is then interpolated from densities of
two adjacent cells. Contrary to LENT, the face-centered density is updated by ρLENT
using the phase indicator approximated at each cell-face. A 2D interface is depicted in
fig. 6.2b, where αn+1

f is the area fraction at tn+1: the ratio of the cell-face area submerged
in the phase Ω̃

−
(tn+1) ≈ Ω−(tn+1), and the total face area |Sf |. More precisely, the area

fraction αn+1
f is computed by the ρLENT method using a second-order accurate approx-

imation from signed distances [30], used in section 4.2.6 to equivalently approximate
the volume fraction αc (see eq. (3.19)). The Level Set component of the LENT method
[71] calculates signed distances from the triangular surface mesh that approximates the
interface Σ(tn+1) ≈ Σ̃(tn+1) := ∂Ω̃

−
(tn+1). With the narrow band approach from [71],

described in section 4.2, the signed distances can be computed efficiently at any point
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in a close vicinity of Σ̃(t). The original LENT method [71] computes signed distances
at cell-centers and cell corner-points, and the proposed ρLENT additionally computes
signed distances at face centers. Each face Sf is triangulated using its centroid xf , as
shown in fig. 6.3. The face centroid xf , together with the two successive cell-corner points
that belong to the face Sf , xf,i, xf,i+1, forms a triangle (xf , xf,i, xf,i+1). Face-triangles
may be partially submerged in the phase Ω̃

−
(tn+1), in which case the submerged area of

the triangle is computed using the nearest signed distances to Σ̃(tn+1) from the triangle
points (xf , xf,i, xf,i+1), namely (φf , φf,i, φf,i+1), as shown in fig. 6.3. The second-order
approximation developed in [30] is used here for computing the area fraction of a triangle
submerged in Ω̃

−
(tn+1). Any other second-order method can be applied. For example,

a linear interpolation of signed distances along the edges of the triangle may be used
equivalently, or a geometrical intersection between Ω̃

−
(tn+1) and the triangle. The total

submerged area of the face Sf is then the sum of the submerged areas of face-triangles

An+1
f := |Ω−(tn+1) ∩ Sf | =

∑︂
t∈Tf

|Ω−(tn+1) ∩ Tt|, (6.17)

where Tf is the set of indexes of the triangles in the triangulation of the face Sf . As
mentioned above, other two-phase flow simulation methods may compute |Ω−(tn+1)∩ Tt|
differently.

αn+1
f =

|Ω̃−
(tn+1)∩Sf |
|Sf |

φn+1
f,i

φn+1
f,i+1

xf,i+1

xf,i

Ω̃
+
(tn+1)

nΣ
φn+1
f

xf Σ̃(tn+1)

Ω̃
−
(tn+1)

Figure 6.3.: Computing area fractions from signed distances in the method.
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The area fraction αn+1
f is then computed as

αn+1
f :=

|Ω̃−
(tn+1) ∩ Sf |
|Sf |

=
Af

|Sf |
, (6.18)

as shown in fig. 6.3. Once the area fraction αn+1
f is approximated, it is used to compute

the face-centered densities required by eq. (6.13), namely

ρn+1
f = αn+1

f ρ− + (1− αn+1
f )ρ+, (6.19)

at the new time step, because the interface has been advected forward in time to tn+1

with the available velocity vn. The discretized continuity equation (6.3) then obtains the
form

ρn+1
c = ρnc +

∆t

|VΩc|
∑︂
f

ρn+1
f Fm

f , Fm
f = vmf · Sf . (6.20)

It is important to note that, although ρn+1
f appears in eq. (6.20), ρLENT does not use

an implicit discretization for eq. (6.20): ρn+1
f is geometrically computed from the fluid

interface approximation Σ̃(tn+1), so eq. (6.20) is solved explicitly (exactly). The exact
(non-iterative) evaluation of ρn+1

c from eq. (6.20), alongside eq. (6.9), further infers
the possibility of exact numerical consistency for the discretized convective term in the
single-field momentum equation, which is in fact achieved and supported by the results.
In addition to density, the viscosity is updated utilizing the area fraction αf . Note

that there is no need to calculate the cell-centered viscosity for the unstructured FVM
discretization, only the face-centered viscosity is updated as follows

µn+1
f = αn+1

f ρ−ν− + (1− αn+1
f )ρ+ν+. (6.21)

The non-linearity of the convective term in the momentum equation eq. (2.13), namely
ρvv, is usually linearized when solving the single-field Navier-Stokes equations using the
unstructured Finite-Volume method. The convective term (see section 3.2.2) is discretized
as ∫︂

Ωc
∇ · (ρv⊗ v)dV ≈

∑︂
f∈Cc

ρn+1
f Fm

f vn+1
f . (6.22)

Numerical consistency also does not depend on the implicit / explicit discretization. As
an analogue, observe the Euler implicit and Euler explicit discretization of the momentum
convection equation: in the lim∆x→0,∆t→0, both implicit and explicit discretization must
converge to eq. (2.13). Therefore, the requirement given by eqs. (6.9) and (6.10), is valid
for an implicit discretization as well.
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The volumetric flux Fm
f is initialized to Fn

f and iterated within the SAAMPLE pressure-
velocity coupling algorithm loop, introduced in section 5.8, until m = n+ 1 is reached.
The ρLENT algorithm is outlined in algorithm 5 and it extends the SAAMPLE algorithm.
It is relevant to note that Fm

f is iterated from Fn
f to Fn+1

f and pm is solved for from pn to
pn+1 such that the discrete incompressibility condition

∑︁
f∈Cc

Fn+1
f = 0 is ensured.

Algorithm 5 The ρLENT solution algorithm.
1: while simulation time ≤ end time do
2: Advect the interface to Σ̃(tn+1). ▷ [71].
3: Compute the signed distance φn+1 from Σ̃(tn+1) at xc, xf , xp in the narrow-band. ▷ [71]
4: Compute αn+1

c from φn+1
c , φn+1

p . ▷ [121]
5: Compute the area fraction αn+1

f from the signed distance fields φn+1
f , φn+1

p . ▷ Figure 6.3
6: Compute the face-centered densities ρn+1

f using αn+1
f . ▷ Equation (6.19)

7: Solve the continuity equation using ρn+1
f Fm

f for cell-centered densities ρn+1
c . ▷ eq. (6.20).

8: Use ρn+1
c and ρn+1

f Fm
f in p− v coupling to compute vn+1

c , Fn+1
f . ▷ [121] and eq. (6.22).

9: Make ρn+1
c consistent with Σ̃

n+1
, i.e. ρn+1

c = αn+1
c ρ− + (1− αn+1

c )ρ+.
10: Make µn+1

c consistent with Σ̃
n+1

, i.e. µn+1
c := αn+1

c ρ−ν− + (1− αn+1
c )ρ+ν+.

11: end while

6.3. Verification and validation

Results presented in this section are publicly available [72].

6.3.1. Time step size

The time step size limit due to the CFL condition is given by

∆t ≤ ∆tCFL =
h

U
, (6.23)

where h is cell length and U is a characteristic velocity. In the cases, h is the ratio of
domain side length to resolution N , while U is equal to magnitude of the ambient flow
velocity vector, i.e. U = |va| = 1. Another restriction for the time step size arises from the
propagation of capillary waves on interfaces between two fluids. This time step constraint
was introduced first by Brackbill et al. [18], and later revised by Denner and Wachem
[27]. It has the form

∆t ≤ ∆tcw =

√︃
(ρd + ρa)h

3

2πσ
, (6.24)
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in which ρd and ρa are density of droplet and ambient fluid, respectively, σ is the surface
tension coefficient. In the case setup procedure, the smallest time step step

∆t = min (kcw∆tcw, kCFL∆tCFL) (6.25)

is chosen where kcw and kCFL are arbitrary scale factors between 0 and 1. In the following,
kcw = 0.5 and kCFL = 0.2 are used.

6.3.2. Translating droplet

mantle

mantle

outlet

v
R

Ly

Lx

Lz

inlet
Cz

Cx

Cyx
y

z

v = (0, 0, 1)

v = 0

v = (0, 0, 1)

inlet:

mantle:

oulet:

R = 0.2, Cx = Cy = 0.5, Cz = 0.4, Lx = Ly = 5R,Lz = 6R

tend = 0.41s

∇p = 0

∇p = 0

p = 0

Figure 6.4.: Translating droplet case setup.

Following the setup of Popinet [93], a sphere of radiusR = 0.2 translates in a rectangular
domain having side lengths Lx = Ly = 5R,Lz = 6R. The initial position of the sphere’s
centroid is Cx = Cy = 0.5, Cz = 0.4. One corner of the rectangular domain is located in
the origin as shown in fig. 6.4. The boundary conditions of the rectangular domain are
set as follows: ∇v · n = 0 and p = 0 for the outlet, v = va and constant normal pressure
gradient ∂p/∂n at the mantle and the inlet. The initial conditions for internal field is set
to p(t0) = 0 and v(t0) = va. The end time of simulation is set to tend = 0.41 s, which
corresponds to a droplet displacement of one diameter.
Two groups of cases are tested to verify the ρLENT method, respectively. For the

first group, only the convection of momentum is considered, and the ambient flow has
a constant density ρa = 1, while the density of the droplet assumes values of ρd ∈
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[1, 102, 103, 104], resulting in four density ratios. Three mesh resolutions N ∈ [16, 32, 64]
are tested. For each mesh resolution N , the domain is discretized equidistantly into 1.2N3

hexahedral cells, as shown in fig. 6.5. The exact solution is given by vn+1
c = vnc = vc(t0) =

va and can be used to verify the numerically consistent discretization of the single-field
conservative two-phase momentum convection.

Figure 6.5.: Half section of mesh N = 64, droplet at initial position.

Viscosity and surface tension forces are included in the second test case group. A smaller
range of density ratios is simulated, ρ−/ρ+ ∈ [1, 10, 102, 103]. The same kinematic viscosity
is used for the ambient and the droplet phase, such that the Laplace number (eq. (5.32))
assumes values of La ∈ [120, 1200, 12000,∞] for the ambient phase. Consequently, the
ratio of dynamic viscosities is the same as the ratio of densities. The surface tension
coefficient is constant σ = 1.

Droplet translation without viscosity and surface tension forces

When the momentum is transported only by advection, no forces are exerted on the droplet
body and surface. As a result, the velocity field in the overall domain should remain
spatially constant and equal to va = (0, 0, 1). The maximum norm L∞ is employed to
measure how much the numerical velocity deviates from the analytical one, i.e.,

L∞(v) = maxi
(︃
∥vi − v∞∥

∥v∞∥

)︃
, (6.26)
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(a) Old inconsistent method. (b) New consistent method.

Figure 6.6.: Temporal evolution of velocity error norm L∞(v): the left figure depicts the
results from old inconsistent SAAMPLE algorithm, the right shows the results
from new consistent method.

where vi denotes velocity of all interface-intersected cells, and v∞ = va = (0, 0, 1). The
numerically inconsistent solution can cause large nonphysical interface deformations
leading to a complete deterioration of the solution, visible for a verification configuration
in the left image in fig. 6.7. The deterioration is amplified by the p− v coupling algorithm
that will calculate a pressure field p that enforces ∇ · v = 0. This, in turn, causes artificial
acceleration in all cells where vn+1

c ̸= va. The consistent ρLENT method ensures the shape
of the droplet is preserved, as shown on the right image in fig. 6.7.
The fig. 6.6a contains the velocity error calculated with the old, inconsistent method.

Every line in the diagram is labeled by the number of the case, mesh resolution N , and
droplet density ρ−. The default ambient density is 1. Thus, the ρ− also represents the
density ratio. As shown in fig. 6.6a, the cases with the density ratio ρ− = 1 run successfully
until end time tend = 0.41s. All cases with a density ratio higher than 1, namely ρ− > 1,
diverge and stop early. Cases with a very high density ratio of 104 (e.g., case 0011 and
0003) fail catastrophically.
When ρLENT is used, as shown in fig. 6.6b, the velocity error remains exactly 0 in all

cases. This means that the interface velocity remains consistent with the ambient flow
and is unaffected by the mesh resolution and density ratio. The results demonstrate the
exact recovery of numerical consistency for the convection of the two-phase momentum,
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Figure 6.7.: Comparison of the strong interface deformation with the inconsistent LENT
method (left) and the numerically consistent interface shape of the ρLENT
method. Parameters: N = 64, ρ−/ρ+ = 104, t = 0.0008s.

using the conservative formulation of single-field two-phase Navier-Stokes equations.

Droplet translation with viscosity and surface tension forces

(a) Old inconsistent method: interface stable
only for cases with density ratio ρ−/ρ+ = 1

(b) New consistent method: interface stable
for density ratios ρ−/ρ+ ∈ [1, 10, 100, 1000]

Figure 6.8.: Temporal evolution of velocity error norm L∞(v) for the viscous flow with
surface tension forces: the left diagram depicts the results from the old incon-
sistent method, and the right diagram contains the results from the ρLENT
method. The legends of these diagrams are large, and the full information is
available in Appendix A: fig. A.1 for fig. 6.8a, fig. A.2 for fig. 6.8b.
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Here, viscous and capillary forces are taken into account when solving the momentum
equation. Since SAAMPLE is a well-balanced algorithm, as demonstrated in chapter 5,
surface tension force is balanced by the pressure gradient, if the curvature is exactly calcu-
lated and propagated as a constant in the normal direction with respect to the interface.
In the absence of gravity, such a droplet does not accelerate or decelerate. In other words,
the velocity error L∞ stays the same, namely 0, in theory. The temporal evolution of L∞
is shown in fig. 6.8. The inconsistent method remains stable only for ρ−/ρ+ = 1. For the
results of all other cases, i.e., with ρ−/ρ+ > 1, the velocity error increases exponentially,
and the simulations crash. In contrast, as depicted in fig. 6.8b, the ρLENT demonstrates
numerically stable results for all tested density ratios. Additional numerical errors are
introduced compared with two-phase momentum advection, specifically when approxi-
mating the curvature (see section 5.6). Therefore, L∞ cannot exactly be equal to zero, as
shown in fig. 6.6b. However, as seen in fig. 6.8b, the final L∞ error given by eq. (6.26)
10−4 and 10−2, which is acceptable.

Translating sub-millimeter droplet with realistic physical properties

materials/properties (25 ◦C) density (kgm−3) kinematic viscosity (m2 s−1) surface tension (Nm−1) density ratio
air 1.1839 1.562× 10−5 −−− −−− [3]

water 997.05 8.926× 10−7 0.07213 (in air) 842.17 (in air) [3]
mercury 13.5336× 103 1.133× 10−7 0.4855 (in air) 11431.37(in air) [3]

silicone oil (cSt 10) 0.934× 103 1.088× 10−5 0.0201 (in air) 788.92(in air) [138]
silicone oil (cSt 50) 0.96× 103 5× 10−5 0.032 (in water) 0.96 (in water) [125]

Table 6.1.: Realistic fluid properties are combined into four tests: water droplet/air ambi-
ent, mercury droplet/air ambient, silicone oil droplet/air ambient, silicone oil
droplet/water ambient.

Table 6.1 contains the physical properties used for the test-case configuration of the
translating sub-millimeter droplet with realistic physical properties. In terms of size, a
spherical droplet of radius R = 0.25mm is translating a distance of three diameters with
velocity 0.01m/s in z-direction of the rectangular solution domain (Lx = Ly = 5R,Lz =
10R). The initial centroid position of the droplet is (2.5R, 2.5R, 2R). Surface tension and
viscous forces are not considered for this setup. As depicted in fig. 6.9, it is obvious that
L∞(v) remains stable over time when the droplet translates. Even in the cases with a
density ratio of over 10000, as shown in fig. 6.9d, no matter how high the resolution is,
the results from ρLENT the method can reach machine precision.
Apart from the observation mentioned above, table 6.2 reveals another advantage of

ρLENT method, that is, the conspicuous computational efficiency. As shown in table 6.2,
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the execution time of the solver using ρLENT method to simulate a case is always short.

case resolution execution time (s)
16 6.62
32 74.34silicone oil droplet / water
64 929.79
16 7.77
32 91.64water droplet / air
64 1324.38
16 7.71
32 94.57mercury droplet / air
64 1334.36
16 7.31
32 83.43silicone oil droplet / air
64 1318.43

Table 6.2.: Execution time for the ρLENT method.

6.4. Conclusions

The proposed ρLENT method exactly ensures numerical consistency of the single-field
incompressible two-phase momentum convection, discretized by the unstructured collo-
cated Finite-Volume Method. The ρLENT method is straightforward and can be applied
directly to any two-phase flow simulation method that relies on the collocated Finite-
Volume Method for equation discretization: the only difference is the computation of area
fractions αn+1

f from the approximated fluid interface Σ̃
n+1. It is shown, by analyzing the

two-phase momentum advection equation, that the numerical consistency requires the
computation of the cell-centered density ρn+1

c using a mass flux identical to the one used in
the two-phase momentum convective term. This provides the theoretical reasoning behind
the auxiliary mass conservation equation, originally introduced by Ghods and Herrmann
[40]. Following the importance of the face-centered (mass flux) density pointed out by
[139], the expression for the mass flux density using the principle of mass conservation
is derived and the mass flux density is connected with the phase indicator. Here, this is
achieved by avoiding the temporal integration of the conserved property as done very
recently by Arrufat et al. [8], which allows to express the mass fluxes using the phase
indicator in a discrete setting. The consistent cell-centered density ρn+1

c is used in the p−v
coupling algorithm section 5.8 to obtain the velocity vn+1

c , necessary to evolve the fluid
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interface in the next step from tn+1 to tn+2. Once the velocity is obtained by p−v coupling,
the cell-centered density ρn+1

c is again made consistent with the fluid interface. Using
the face-centered (mass-flux) density in the p− v coupling and advecting the interface
first, enables ρLENT to discretize the momentum convection term implicitly, compared
to the explicit convective term discretization that is used by Bussmann et al. [20] and
Ghods and Herrmann [40] in the collocated Finite-Volume setting. The consistency of the
mass flux in the auxiliary density equation with the mass flux computed using the phase
indicator, justifies theoretically the use of the same schemes for these two fluxes by Ghods
and Herrmann [40], Patel and Natarajan [90], and Manik et al. [67].
Results demonstrate the recovery of an exact solution, with the error in the L∞ norm

exactly equaling 0, for the canonical droplet translation verification case studies [93].
Droplets with sub-millimeter diameters and with realistic fluid properties are also advected
exactly. Validation cases with realistic surface tension forces and viscosity demonstrate
numerical stability of ρLENT, resulting in the relative L∞ norm for the parasitic currents
between 10−4 and 10−2 for realistic density ratios.
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(a) Silicone oil droplet in water, density ratio
0.96

(b) Silicone oil droplet in air, density ratio
788.92

(c) Water droplet in air, density ratio 842.17 (d) Mercury droplet in air, density ratio 11431.37

Figure 6.9.: Temporal evolution of velocity error norm L∞(v) with pure advection: ρLENT
method used in simulating two-phase flows with different density ratios,
mesh resolution: N = 16, 32, 64.
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7. Summary and outlook

Within this thesis an existing Level Set / Front Tracking method using an unstructured
Finite-Volume method [71] for equation discretization has been extended to make simula-
tions of capillary flows feasible. Several aspects of the original method have been improved
for this purpose. First, a more accurate approximation of the interface curvature has
been devised. The new approach still relies on the Eulerian Level Set field, but ensures
curvature is only approximated for cells intersected by the interface. For these cells, the
absolute accuracy is further increased by a so-called spherical correction which accounts
for the distance between cell centre and fluid interface. Propagation of curvature within a
narrow band around the interface is achieved by adopting the idea of compact curvature
calculation [104], modified for unstructured meshes. It is demonstrated that the absolute
accuracy is improved considerably with these techniques while also showing convergence
across the entire range of mesh resolutions investigated. In addition, the convergence
behavior of the reconstruction operator used in the OpenFOAM framework [82] is ex-
amined. It is derived that this operator yields second-order accuracy for special meshes
and first-order accuracy for general unstructured meshes given that the original field is
at least C1. A novel pressure velocity coupling algorithm termed SAAMPLE is proposed
for the segregated solution of pressure and velocity for two-phase flows. In contrast to
the PISO algorithm [49] it builds upon, it is driven by solution accuracy and accounts for
the non-linearity of the convective term. The overall improvements for capillary flows are
demonstrated for canonical two-phase verification and validation test cases.
The necessity for consistency between mass fluxes and the cell-centred density when

dealing with high density differences is clarified. For a momentum balance in conservative
form in the absence of additional forces, it is shown that the updated cell-centred density
has to match the mass fluxes across cell faces. Otherwise, the mass inconsistency leads
to an artificial acceleration or deceleration in order to preserve momentum. As these
consistent fluxes are not inherently available for Level Set or Front Tracking methods, a
new approach termed ρLENT is proposed that approximates mass fluxes by computing
area fractions for faces intersected by the fluid interface. These fluxes are used to compute
an intermediate cell density for the solution of the momentum balance equation. It
is demonstrated that this approach recovers exactly the momentum convection for a
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translating droplet in the absence of other forces and ensures numerical stability for the
translating droplet under influence of viscous and surface-tension forces.
An efficient and robust method, the SMCI/A algorithm, is proposed that enables the

calculation of signed distances and volume fractions from oriented triangulated surfaces.
Building upon an octree search structure, a novel normal computation is introduced
which enables a robust inside/outside computation with respect to the surface mesh
triangle normals. An approximate solution of a diffusion equation is used to propagate
inside/outside information from a small narrow band around the surface mesh to the
entire domain efficiently. Volume fractions are computed either by means of geometri-
cal intersection or approximation from signed distances in combination with adaptive
tetrahedral refinement. For spheres and ellipsoids it is verified that the accuracy of both
approaches is ultimately limited by the surface mesh resolution. Furthermore, the global
volume error is second-order convergent with respect to surface mesh resolution for both
approaches. The SMCI/A algorithm is applicable to complex triangulated surfaces, making
it a promising algorithm for volume fraction and signed distance computation in other
simulation contexts. Implementation of the SMCI/A algorithm publicly available and full
reproducibility of results is given by a fixed virtualized computing environment and by
fully automated test case execution and evaluation [68].
While substantial accuracy improvements have been achieved for the LENT method

when applied to capillary flows further work is required to make predictive simulations
for technical applications feasible. The current iso-surface reconstruction approach limits
the method to cases with small to moderate interface deformation. Moreover, it also
limits the maximum of simulated physical time due to the accumulation of numerical
interface perturbations. Thus, an alternative approach to the iso-surface reconstruction is
required. Higher-order interpolation of the signed distances is desirable to reduce volume
and position errors introduced by reconstruction. This will also allow to reconstruct the
interface frequently, thereby ensuring a proper surface mesh quality. Given a surface
mesh with less perturbations and larger triangles may also make curvature approximation
directly on the discrete interface feasible.
Another point of future work is the replacement of the reconstruction operator which

is not suited for discontinuous or strongly varying fields. It makes sense to consider this
question together with the mathematical model for surface tension and its numerical
discretization to ensure the resulting method is well-balanced [35, 94]. Following the
ideas proposed in [94, 2], an interesting avenue for surface tension is to base a model on
the integral formulation. As shown in [2], such an approach allows to have a conservative
discretization of surface forces. In addition, this may remove the necessity to approximate
interface curvature and rely on interface normals only, meaning only first derivatives of
the interface position would be required.
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For any potential solution to the future research tasks listed above, their computational
costs and their suitability for parallelization should be considered. These are important
aspects to make predictive simulations of technical applications feasible in the long run.
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A. Additional figures

A.1. Parameter study figures with legends
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Figure A.1.: Full figure of fig. 6.8a
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Figure A.2.: Full figure of fig. 6.8b
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