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Ablirad. The article at hand preaentl new reaulta and conceptio!1l concerning the intelligent and 
autonomoua control of biotechnological proceuel by integrating conventional. knowledge-bued and 
learning method.. The extended IYltem BioX++ facilitatel the tranaparent generation of procesa 
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problema are part of thil paper 61 well 61 the new approaches actually examined. 

Key Wordl. Expert IYltema; neural network.; fuzzy IYltema; learning control; fermentation pro­
ceues; biotechnology; genetic algorithms. 

1. INTRODUCTION 

In contrast to fermentation control strategies 
based on mathematical process models in recent 
time a lot of research work focusses on new meth­
ods, e.g . expert systems , fuzzy logic and neural 
networks . Even if improvements in bioprocess con­
trol using only one of these techniques have been 
reported by several authors it becomes obvious . 
that in future intelligent control concepts must 
flexibly cope with several of the design methods 
mentioned before . 

The concept of such a control system - called 
BioX - using a flexible integration of expert sys­
tem techniques and learning control based on neu­
ral networks as well as first results in fermen­
tation control using this system were presented 
in (Gehlen et al., 1992) . New results using BioX 
for optimization of a fermentation process and 
a demonstration of the achievable improvements 
will be reported in the first part of this paper . 
The second part of this paper will show the actu­
al structure of the .extended system BioX++ and 
discuss the new features including 

• automatic generation of fuzzy rules for a 
transparent process optimization and 

• automatic generation of non-linear structured 
process models 

in detail. A short summary and a preview of future 
practical and theoretical work will be given in the 
last section . 
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2. PROCESS OPTIMIZATION USING BioX 

The first stage of this intelligent and integrating 
approach for the control of biotechnological pro­
cesses called BioX is explained in detail in (Gehlen 
et al., 1992) and (Gehlen , 1993) . In order to avoid 
any kind of confusion this section will present the 
gained experimental results using this first imple­
mentation before the actual stage of development 
is described in the next section . 

BioX was applicated to the control of an 0-

amylase production with Bacillus subtilis . The 
process was performed in a 19 I fermenter . Tem­
perature , pH . stirrer speed , pO., air-flow and 
CO.-fraction in the outlet were measured with 
a sampling time of 1 minute , the amylase con­
centration was monitored every 30 minutes us­
ing a flow-injection analyzer (FIA) in a bypass of 
the fermenter . The complex medium used leads to 
multiple growth phases . Based on the data of 17 
process runs with constant setpoints of underlying 
conventional temperature and pH controllers pre­
dictive process models were learned using AMS -
explained in detail in (Tolle and Ersii , 1992) - as 
an effective software implementation of an inter­
polating storage device of the CMAC type (Albus, 
1975). The whole process was divided into two 
physiological states, the first state describes the 
lag and main growth phases (ca. 0 - 10 hours pro­
cessing time) , the second state all following growth 
phases and the main amylase production (ca. 10 
- 50 h). It has been shown in (Konstatinov and 
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Fig_ 1. Associative memory mapping for process pre­
diction during fust ciusified process phase (k 
means k . To , To = 30min) . 

Yoshida, 1989) that a separation of characteristic 
process phases is helpful. The active model is se­
lected by a knowledge-based phase classification. 
In both states appropriate models predict amy­
lase , p02 and CO2 with a forecast of 30 minutes 
based on the actual and past values of amylase, 
p02, CO2 , temperature and pH as shown in fig . 
1. With this approach an accurate process pre­
diction was achieved (Gehlen et al_, 1992) . For 
process optimization these predictive models were 
used for process planning. The optimization pro­
cedures implemented (Hooke-Jeeves and/or evo­
lution strategy) determines in each cycle the best 
setpoints for the underlying temperature and pH 
controllers minimizing the performance criterion 

• 2 • 
l(k) = reo, . [C02 - weo,J + romv . [oomv -
womv J2 . C'02 and oomv are the predicted values 
of C02 and amylase concentration, reo" weo" 
r omv and Womv are free parameters. For the first 
physiological state romv was set to zero , so the 
optimization was concentrated on the cell growth 
only, afterwards growth and amylase production 
were balanced appropriately. The aims were set to 
weo, = 5 and womv = 500 in order to maximize 
the CO2 and amylase concentration by minimiz· 
ing the differences in the criterion . 
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Fig. 2. pH timecounes of four optimization runs. 

Fig . 2 shows stepwise the development of pH time­
courses in case of four fermentations with op­
timized setpoints for temperature and pH con­
trollers. Corresponding timecourses for o-amylase 
are given in fig. 3. During the first optimiza-
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tion run (32) the pH was driven to high values 
(pH > 8) leading to a saturation in amylase pro­
duction. This behaviour is a consequence of mod­
eling errors due to extrapolation problems outside 
of trained process points. 
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Fig. 3. Resulting amylase timecourses. 

After model adaptation with the data of each op­
timization run during the following four fermenta­
tions the process productivity was increased step 
by step . In contrast to our best fermentations with 
constant setpoints (T = 37°C, pH = 7.0) the fi­
nal amylase concentration was increased by more 
than 100%. In addition , the production time was 
shortened . These practical results demonstrate 
the achievable improvement in performance by us­
ing knowledge-based and learning methods . But 
there still remain a couple of problems: 

• As mentioned before, the modelling errors 
can lead the optimization procedure into pre­
viously unknown regions of the memory input 
space . 

• A long-term prediction is not possible due 
to propagation errors during recursive model 
predictions . 

• The input-o'Jtput mapping of the interpolat­
ing memories does not directly allow to take 
inner states of the fermentation process or ex­
isting operator or expert knowledge into ac­
count . 

• Well known conscious strategies that can a 
priori be integrated in the process manage­
ments knowledge-based level cannot be im­
proved during automatic optimization. 

• The distinction between the knowledge-based 
upper and the medium learning level in BioX 
which can also be found in the software im­
plementation - the programming language 
Lisp is used in the knowledge-based , C in the 
learning layer - does not bring the positive 
characteristics together . 

Thus the extended system BioX++was developed 
in order make a higher autonomy of the process 
management system accessible to the user. 



3. THE EXTENDED SYSTEM 

BioX++- shown in fig . 4 and first described in 
(Bettenhausen and Tolle. 1993) - does not distin­
guish in its implementation explicitely between a 
knowledge-based and a learning layer but it per­
forms related tasks . This can be achieved by a 
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Fig. 4. Structure of BioX++ 

methodical and a conceptional change. 

• First , the upper level generating the setpoints 
for the underlying conventional control loops 
is implemented in the object oriented pro­
gramming language C++ - still on a Sl";\­
Workstation . 

• Second . a fuzzy approach for rule representa­
tion instead of an interpolating memory ex­
tensively uses the similarities between non­
linear mappings generated by neural or fuzzy 
conceptions , see for example (Brown and 
Harris , 1994). 

This fuzzy approach is based on a pre-defined 
complete rule space and allows the automatic 
correction and extension of rule bases . This pro­
cess can be called learning of rules and is trans­
parent for the operator because of the linguistic 
man-machine interface. It was first examined con­
cerning the rule based classification of character­
isti c process phases of the o-amylase fermenta­
tion . These results were part of the oral presen­
tation related to (Bettenhausen and Tolle , 1993) 
and published in German (Bettenhausen et al., 
1993) . This mechanism of rule learning was al­
so applied to a multi variable continuous work­
ing stirred tank reactor - a benchmark problem 
for the design of nonlinear controllers (Klatt and 
Engell. 1992) - generating high-level signal range 
controller outputs superpositioned to a classical 
diagonal PID controller . The conception called 
Fuzz.v-Lernas is explained in detail in (Bet ten­
hausen . 1994) . Genetic algorithms and the search 
algorithm of Hooke and Jeeves (Hooke and Jeeves , 
1961) were used in order to optimize the rulebase , 
applied to continuous processes and supporting 
transitions between several working or equilibri­
um points . This behaviour can also be achieved 
by a pure neural approch (Suykens et al., 1994) . 
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In the meantime several implementation and rep­
resentation specific optimization strategies with 
increased performance were developed and exam­
ined . These results will be published separately. 

Fig . 5. Structure of Fuzz.v-Lernas for the transparent 
and autonomous control of continuous process· 
es. 

The autonomous production of process manage­
ment strategies is based on long-term predictions 
using structured process models . A system sup­
porting modelling simply by preparing dynam­
ic simulations and parameter estimations in pre­
defined structures was presented in (Schumann , 
1991) . However , before such an enhanced sequence 
generation can experimentally be verified some 
conception for the data-driven automati c self­
organizing generation of structured process mod­
els is essential. Due to this fact the actual work is 
concentrated on a methodology inspired by Koza's 
ideas of genetic programming (Koza, 1992) . 

3.1. Self-organIZIng structured modelling 

The design of structured mathematical models of 
biological processes in a certain level of abstrac­
tion defined by the given task appears to be diffi­
cult and time consuming even to experienced ex­
perts . The methods of so called process identifica­
tion mentioned above usually have strong limita­
tions since the models structure has to be known 
a priori. However in practice an overall structure 
is not known in general. 

using the new methodology structured mathe­
matical models can be generated automatically in 
a self-organizing way. Fig. 6 shows the underlay­
ing concept of self·organizing model generation . 
Starting with some elementary transfer elements 
like time-delay or Monod kinetics placed in a so 
called "model construction set " a number of mod­
els are more or less randomly created . using well 
known optimization methodes - e.g. the algorithm 
of Hooke and Jeeves (Hooke and Jeeves , 1961) -
the parameters of the models are adapted to mea­
sured process response . For each model a fitness 



value is evaluated by assessing its accuracy and 
complexity. By imitating the principles of natural 
selection and reproduction (Holland, 1975) a pro­
cess of evolutionary improvement of the models 
structure is achieved . This finally leads to models 
that combine high accuracy and low complexity, 
which are needed for most kinds of control pur­
poses . A priori knowledge on structural properties 
can be taken into account in this process by con­
straining the elements in the model construction 
set and by influencing their selection frequency. 
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Fig . 6. Structure of automatic self-organizing struc­
tured modelling. 

4. CONCLl"SIONS 

In the previous sections first experimental results 
using an intelligent system integrating conven­
tional , knowledge-based and learnig methods for 
the control of biotechnological processes as well 
as new conceptions increasing the autonomy of 
the system and the transparency of automatical­
ly generated and learned process models and se­
quences of control strategies were presented. 

The actual pratical work is concentrated on the 
extension of the fermentation system adding nu­
trients in order to allow a fed-batch mode for fu­
ture fermentations which gives the possibilities of 
direct metabolism manipulation . 
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