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Abstract. The article at hand presents new results and conceptions concerning the intelligent and
autonomous control of biotechnological processes by integrating conventional, knowledge-based and
learning methods. The extended system BioX*+ facilitates the transparent generation of process
control strategies and sequences based on automatically self-organized structured process models.
Experimental results showing the increased product yield and the discussion of approach-specific
problems are part of this paper as well as the new approaches actually examined.
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1. INTRODUCTION

In contrast to fermentation control strategies
based on mathematical process models in recent
time a lot of research work focusses on new meth-
ods, e.g. expert systems, fuzzy logic and neural
networks. Even if improvements in bioprocess con-
trol using only one of these techniques have been
reported by several authors it becomes obvious,
that in future intelligent control concepts must
flexibly cope with several of the design methods
mentioned before.

The concept of such a control system - called
BioX - using a flexible integration of expert sys-
tem techniques and learning control based on neu-
ral networks as well as first results in fermen-
tation control using this system were presented
in (Gehlen et al., 1992). New results using BioX
for optimization of a fermentation process and
a demonstration of the achievable improvements
will be reported in the first part of this paper.
The second part of this paper will show the actu-
al structure of the .extended system BioX**and
discuss the new features including

e automatic generation of fuzzy rules for a
transparent process optimization and

e automatic generation of non-linear structured
process models

in detail. A short summary and a preview of future
practical and theoretical work will be given in the
last section.
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2. PROCESS OPTIMIZATION USING BioX

The first stage of this intelligent and integrating
approach for the control of biotechnological pro-
cesses called BioX is explained in detail in (Gehlen
et al., 1992) and (Gehlen, 1993). In order to avoid
any kind of confusion this section will present the
gained experimental results using this first imple-
mentation before the actual stage of development
18 described in the next section.

BioX was applicated to the control of an a-
amylase production with Bacillus subtilis . The
process was performed in a 19 | fermenter. Tem-
perature, pH, stirrer speed, pO,, air-flow and
CO5-fraction in the outlet were measured with
a sampling time of 1 minute, the amylase con-
centration was monitored every 30 minutes us-
ing a flow-injection analyzer (FIA) in a bypass of
the fermenter. The complex medium used leads to
multiple growth phases. Based on the data of 17
process runs with constant setpoints of underlying
conventional temperature and pH controllers pre-
dictive process models were learned using AMS -
explained in detail in (Tolle and Ersii, 1992) — as
an effective software implementation of an inter-
polating storage device of the CMAC type (Albus,
1975). The whole process was divided into two
physiological states, the first state describes the
lag and main growth phases (ca. 0 - 10 hours pro-
cessing time), the second state all following growth
phases and the main amylase production (ca. 10
- 50 h). It has been shown in (Konstatinov and
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Fig. 1. Associative memory mapping for process pre-
diction during first classified process phase (k
means k- Ty, To = 30min).

Yoshida, 1989) that a separation of characteristic
process phases is helpful. The active model is se-
lected by a knowledge-based phase classification.
In both states appropriate models predict amy-
lase, pO2 and CO; with a forecast of 30 minutes
based on the actual and past values of amylase,
p0,, CO4, temperature and pH as shown in fig.
1. With this approach an accurate process pre-
diction was achieved (Gehlen et al., 1992). For
process optimization these predictive models were
used for process planning. The optimization pro-
cedures implemented (Hooke-Jeeves and/or evo-
lution strategy) determines in each cycle the best
setpoints for the underlying temperature and pH
controllers minimizing the performance criterion
I(k) = rco, - [CO2 — weo,)? + Tamy - [Gamy —
Wamy]?. COz and Gamy are the predicted values
of CO, and amylase concentration, rco,, wco,,
remy and wamy are free parameters. For the first
physiological state ram, was set to zero, so the
optimization was concentrated on the cell growth
only, afterwards growth and amylase production
were balanced appropriately. The aims were set to
weo, = 5 and wamy = 500 in order to maximize
the CO; and amylase concentration by minimiz-
ing the differences in the criterion.
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Fig. 2. pH timecourses of four optimization runs.
Fig. 2 shows stepwise the development of pH time-
courses in case of four fermentations with op-
timized setpoints for temperature and pH con-

trollers. Corresponding timecourses for a-amylase
are given in fig. 3. During the first optimiza-

302

tion run (32) the pH was driven to high values
(pH > 8) leading to a saturation in amylase pro-
duction. This behaviour is a consequence of mod-
eling errors due to extrapolation problems outside
of trained process points.
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Fig. 3. Resulting amylase timecourses.

After model adaptation with the data of each op-
timization run during the following four fermenta-
tions the process productivity was increased step
by step. In contrast to our best fermentations with
constant setpoints (T = 37°C, pH = 7.0) the fi-
nal amylase concentration was increased by more
than 100%. In addition, the production time was
shortened. These practical results demonstrate
the achievable improvement in performance by us-
ing knowledge-based and learning methods. But
there still remain a couple of problems:

e As mentioned before, the modelling errors
can lead the optimization procedure into pre-
viously unknown regions of the memory input
space.

e A long-term prediction 1s not possible due
to propagation errors during recursive model
predictions.

e The input-output mapping of the interpolat-
ing memories does not directly allow to take
inner states of the fermentation process or ex-
isting operator or expert knowledge into ac-
count.

e Well known conscious strategies that can a
priori be integrated in the process manage-
ments knowledge-based level cannot be im-
proved during automatic optimization.

e The distinction between the knowledge-based
upper and the medium learning level in BioX
which can also be found in the software im-
plementation — the programming language
Lisp is used in the knowledge-based, C in the
learning layer — does not bring the positive
characteristics together.

Thus the extended system BioX**was developed
in order make a higher autonomy of the process
management system accessible to the user.



3. THE EXTENDED SYSTEM

BioX**- shown in fig. 4 and first described in
(Bettenhausen and Tolle. 1993) — does not distin-
guish in its implementation explicitely between a
knowledge-based and a learning layver but it per-
forms related tasks. This can be achieved by a
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Fig. 4. Structure of BioX**

methodical and a conceptional change.

e First, the upper level generating the setpoints
for the underlying conventional control loops
i1s implemented in the object oriented pro-
gramming language C** - still on a SUN-
Workstation .

e Second. a fuzzy approach for rule representa-
tion instead of an interpolating memory ex-
tensively uses the similarities between non-
linear mappings generated by neural or fuzzy
conceptions, see for example (Brown and
Harris, 1994).

This fuzzy approach is based on a pre-defined
complete rule space and allows the automatic
correction and extension of rulebases. This pro-
cess can be called learning of rules and is trans-
parent for the operator because of the linguistic
man-machine interface. It was first examined con-
cerning the rule based classification of character-
istic process phases of the a-amylase fermenta-
tion. These results were part of the oral presen-
tation related to (Bettenhausen and Tolle, 1993)
and published in German (Bettenhausen et al.,
1993). This mechanism of rule learning was al-
so applied to a multivariable continuous work-
ing stirred tank reactor — a benchmark problem
for the design of nonlinear controllers (Klatt and
Engell. 1992) - generating high-level signal range
controller outputs superpositioned to a classical
diagonal PID controller. The conception called
Fuzzv-Lernas is explained in detail in (Betten-
hausen. 1994). Genetic algorithms and the search
algorithm of Hooke and Jeeves (Hooke and Jeeves,
1961) were used in order to optimize the rulebase,
applied to continuous processes and supporting
transitions between several working or equilibri-
um points. This behaviour can also be achieved
by a pure neural approch (Suykens et al., 1994).
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In the meantime several implementation and rep-
resentation specific optimization strategies with
increased performance were developed and exam-
ined. These results will be published separately.

Fig. 5. Structure of Fuzzyv-Lernas for the transparent
and autonomous control of continuous process-
es.

The autonomous production of process manage-
ment strategies is based on long-term predictions
using structured process models. A system sup-
porting modelling simply by preparing dynam-
ic simulations and parameter estimations in pre-
defined structures was presented in (Schumann,
1991). However, before such an enhanced sequence
generation can experimentally be verified some
conception for the data-driven automatic self-
organizing generation of structured process mod-
els is essential. Due to this fact the actual work is
concentrated on a methodology inspired by Koza's
ideas of genetic programming (Koza, 1992).

3.1. Self-organizing structured modelling

The design of structured mathematical models of
biological processes in a certain level of abstrac-
tion defined by the given task appears to be diffi-
cult and time consuming even to experienced ex-
perts. The methods of so called process identifica-
tion mentioned above usually have strong limita-
tions since the models structure has to be known
a priori. However in practice an overall structure
is not known in general.

Using the new methodology structured mathe-
matical models can be generated automatically in
a self-organizing way. Fig. 6 shows the underlay-
ing concept of self-organizing model generation.
Starting with some elementary transfer elements
like time-delay or Monod kinetics placed in a so
called “model construction set“ a number of mod-
els are more or less randomly created. Using well
known optimization methodes — e.g. the algorithm
of Hooke and Jeeves (Hooke and Jeeves, 1961) -
the parameters of the models are adapted to mea-
sured process response. For each model a fitness



value is evaluated by assessing its accuracy and
complexity. By imitating the principles of natural
selection and reproduction (Holland, 1975) a pro-
cess of evolutionary improvement of the models
structure is achieved. This finally leads to models
that combine high accuracy and low complexity,
which are needed for most kinds of control pur-
poses. A priori knowledge on structural properties
can be taken into account in this process by con-
straining the elements in the model construction
set and by influencing their selection frequency.
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Fig. 6. Structure of automatic self-organizing struc-
tured modelling.

4. CONCLUSIONS

In the previous sections first experimental results
using an intelligent system integrating conven-
tional, knowledge-based and learnig methods for
the control of biotechnological processes as well
as new conceptions increasing the autonomy of
the system and the transparency of automatical-
ly generated and learned process models and se-
quences of control strategies were presented.

The actual pratical work is concentrated on the
extension of the fermentation system adding nu-
trients 1n order to allow a fed-batch mode for fu-
ture fermentations which gives the possibilities of
direct metabolism manipulation.
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