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Ablltract. This paper introduces an approach for learning environmental maps based on ultrasonic range 
data. A neural network concept (self-organizing feature map) is used to learn a classification of the range 
data which makes it possible to discern situations. As a consequence the free-apace is partitioned into 
situation areas which are defined as regions wherein a specific situation can be recognized . Using dead
reckoning such situation areas can be attached to graph nodes generating a map of the free-apace in the form 
of a graph representation. In this context it is di.cussed how the dead-reckoning drift can be compensated . 
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1. INTRODUCTION 

Many proposed approaches to the problem of 
path-planning for autonomous mobile robots 
presuppose a map which shows idealized shapes 
of obstacles (geometrical maps) . When such 
a map of the environment is not given a pri
ori, the autonomous vehicle must build it by 
itself using it's external sensors . Most of the 
researchers try in a straightforward way to de
velop methods for learning such geometrical maps 
having in mind the existing methods for path
planning (e .g. Crowley, 1989; Leonard and Cox, 
1990) . Work has been done in this field us
ing different external sensor data like ultrasonic, 
infrared and/or laser range data. Experiments 
with computer-vision have also been performed. 

However , it is questionable whether the high ac
curacy of geometrical maps is really necessary 
for solving the path-planning problem. A major 
class of path-planning methods show that this 
is not the case (e .g. Kampmann and Schmidt, 
1989; Liu and Arimoto, 1991) : these methods 
entail the transformation of a geometrical map 
into a graph to get a coarse representation of 
the free-space between the obstacles. The nodes 
of such graphs correspond to areas of free-space 
and the edges to possible transitions from one 
area to another. Using a graph-representation 
path-planning can be performed effectively by 
graph-searching techniques. A main aspect of 
the approach discussed in this paper is to build 
a graph-representation of the free-space directly 
from sensor data thereby avoiding the expensive 
transformation of the geometrical map . 
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1.1. Basic Approach 

The main idea is to use an adaptive classification 
algorithm to process the external sensoric data, 
generating condensed information which can be 
used directly for learning a graph-representation . 
This works as follows: given a mobile robot which 
is equipped with external sensors and which is at 
a certain position in the environment , then the 
sensors yield specific data which depend on the 
actual position. When the robot moves the sen
sor data change and the size of these changes is 
correlated to the extent of the move, i .e., gener-

• 
Fig. 1 Left: situation areas. Right: situation map. 

ally, at similar positions the sensor data are sim
ilar too. Therefore - when similar sensor data 
are grouped in classes by a suitable classification 
algorithm - it must be possible to attach sensor 
data classes to specific local areas in the elJ\'iron
ment wherein the measured sensor data belong 
to the same class (see left side in fig . 1) . Such ar
eas can be called situation areas and the attached 
classes of sensor data situations. Using this ter
minology one can say that the classification al
lows a recognition of situations when the robot 
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is in the corresponding situation areas. Based on 
this classification of sensor data a situation map 
can be built up in the form of a graph storing the 
situation areas as nodes and the transitions from 
one situation area to another as edges (fig. 1) . 

In the following this approach is discussed as ap
plied to a mobile robot equipped with a ring of 
24 ultrasonic range detectors as external sensors 
and with goniometers for estimating its position 
via dead-reckoning: It is shown that for recogniz
ing situations a self-organizing feature map (an 
artificial neural network concept) can be used as 
a learning classifier (ch. 2). Further, the prob
lem of building a map during the exploration of 
the environment is treated . Especially, the possi
bility to compensate the drift of dead-reckoning 
using situation maps is discussed (ch . 3) . 

2. CLASSIFICATION 

Kohonen's self-organizing feature map (Koho
nen, 1988) has been used to classify the ultra
sonic sensor data. This artificial neural network 
concept is able to yield a vector-quantization 
adapted to the set of the incoming sensor data. 
The adaptation results in a partitioning of the 
training data set into classes which comprise ap
proximately the same amount of similar mem
bers . Thereby, the Euclidean distance is used 
as a measure for similarity. Each neuron of the 
network represents a class: it responds when the 
signal applied to the network input (in the ac
tual case a vector of ultrasonic range data) is a 
member of the class it corresponds to. Therefore, 
the number of possible classes is fixed due to the 
amount of available neurons in the network . This 
means in the actual context that the number of 
discernible situations is a (not critical) parameter 
which must be chosen a priori. 

Before the ultrasonic range data are classified, 
they are preprocessed . Since situations are lo
cal entities, the measured distances are cut when 
they are greater then a certain threshold (in the 
performed experiments about 1.5 to 2.0 metres) . 
In a second step a virtual rotation of the sensor 
ring is performed. This operation means a cycli
cal shifting of the 24-dimensional ultrasonic data 
vector which is equivalent to a rotation of the sen
sor ring relative to the mobile robot base. Virtual 
rotation is used in two different ways to make the 
classification independent from the robot orien
tation: 

1. Rotation into a reference orientation (RO): 
When the orientation of the robot in the environ
ment is known, the effects caused by the robot ro
tation can be eliminated turning the sensor ring 
virtually into a reference orientation. 
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2. Rotation into the most-occupied-orientation 
(MOO): For each sensor data vector a spe
cific orientation can be calculated where the en
vironment looks "most occupied" by obstacles 
(MOO), i.e., wherein the sensors measured the 
shortest distances . Turning the sensor ring vir
tually into the MOO the classification becomes 
also independent of the robot orientation. This 
method allows a variation using not all the sen
sors for the determination of situations, but only 
a certain number of sensors which lie symmet
rical to the MOO. This has a positive influence 
making the perception of situations more local. 

2.1. Classification Results 

In an experiment a quadratic self-organizing fea
ture map (10 x 10 neurons) has been trained 
with 10000 samples of ultrasonic data vectors , 
recorded while the vehicle moved on an arbitrar
ily chosen path through a laboratory environ
ment (sample rate: 2.5/sec, velocity : 10 cm/sec). 

Fig. 2 RO-classification . 
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Fig. 3 MOO-classification. 

The learned classification with turning the sen
sor ring virtually into a RO using internal sensor 



data (RO-classification) is visualized in fig. 2. 
To generate the map of situation areas shown, 
the environmental surface was divided into little 
squares and each square marked with the sym
bol of that neuron (situation) which responded 
when the mobile robot had been in the atta
ched position. The square also shown in fig. 2 
represents the Kohonen-map schematically. Se
veral adjacent neurons have been marked with 
the same symbol what means that several classes 
have been put together and therefore only seven 
different situations have been distinguished. This 
is possible due to another feature of Kohonen
maps: adjacent neurons (situations) in the net
work correspond to adjacent situation areas in 
the environment. 

The result of learning a classification using 
the MOO-calculation (MOO-classification) is 
shown in (fig. 3): Comparing it with the RO
classification, the situations correspond e.g. to 
things like corners, which can be oriented arbitra
rily in the environment (areas near corners are 
marked equally which means that the same si
tuation has been recognized there). 

3. MAP-BUILDING 

3.1. Generating a Graph-Representation 

'When the training of the self-organizing feature 
map (for the situation-classification) has been fi
nished the mobile robot starts a second explora
tory run for map-building. In every moment, 
when the classification indicates a change of the 
situation, it has crossed a situation area. Then 
- when not already existing - a new node and a 
new edge are added to the graph-representation 
of the free-space (the map) representing the just 
traversed actual situation area and the transi
tion from the last to the actual situation area. 
In this way a topological situation map is genera
ted since only relations of neighbourhood and no 
metrical data are stored. As already mentioned 
in the introduction, such a topological graph
representation is sufficient for path-planning, but 
there are reasons for the necessity to add metrical 
information to the graph: 

- Since the environment may look similar to 
the robot in different areas, situation areas are 
existing which correspond to the same situation. 
They can only be distinguished when distances 
between situation areas are known. 

- For following a planned path it must be known 
how to get from one situation area to another. 
Therefore, at least rough orientations and distan
ces must be available. 

To meet these requirements to each graph node 
some specific position in the environment is at-
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Fig. 4 Determination of the graph node positions. 

tached. This means that representative positions 
for situation areas have to be found. Figure 4 
shows how this problem is solved by averaging 
all those positions of the robot which belong to 
pieces of the trace which cross the same situation 
area. The so learned map of the same environ-

Fig. 5 Graph-representation of the free-space . 

ment shown in fig. 2 is visualized in fig. 5. It is 
the result after 30 min. of exploration (velocity: 
10 cm/sec) using the trained feature map offig. 2. 
For reasons of better quality a slightly enhanced 
position correction has been applied which allows 
big situation areas to be representated by several 
graph nodes. 

3.2. Position Estimation 

To build up the graph the position of the mobile 
robot must be known because it is the basic re
quirement for the calculation of the graph node 
positions. Experiments confirmed that a relative 
coarse estimate suffice, when the error is bias
free: Since the node positions are the result of 
an averaging process deviations from the exact 
position are smoothed . The inaccuracies which 
are not filtered in this way can be accepted since 
node positions are coarse statements. For the 
map shown in fig. 5 a position estimate yielded 
by dead-reckoning (deviation about 1 % of the 
covered distance) has been used, which has been 



corrected approximately every 30 metres (the ro
bot corrected the position estimate by itself using 
its ultrasonic sensors in a special procedure when 
it reached a designated corner with known posi
tion). 

X,."(I) 

Fig . 6 Position estimation using the situation map. 

It is also possible (but a much harder problem) 
to use the situation map itself for the correction 
of the dead-reckoning error: the positions of si
tuation areas which are registered there can be 
compared with the dead-reckoning position and 
the observed difference can be employed for drift 
compensation. The diagram depicted in fig . 6 
shows this idea more precisely : 

- While the mobile robot moves through the 
environment driven by the motor control values 
ii( I) its goniometric sensors measure differential 
angles at the motor axes, ~g(l), and its ultra
sonic sensors yield distances to obstacles, d(/) at 
every time step I . 

- The ultrasonic sensor data d(/) are analysed 
by the classifier. At each time step k, when the 
recognized situation changes, the robot has cros
sed a border between two situation areas. Then, 
the situation s(k) is recorded which corresponds 
to the situation area just passed through (see 
fig . 7 which illustrates the relationship of the time 
steps 1 and k) . 

- The goniometric data ~g( I) are used for per
forming dead-reckoning to estimate the internal 
state ir(l) of the robot . This state is determined 
by three values: two coordinates of the robot po
sition, x(/) and y(l), and the robot orientation 
0(1) . 

- At every time step k the position estima
tes which belong to the traversed situation area 
are averaged calculating ATP's (averaged trace 
points) pt(k) = (xt(k), Yt(k)f (see fig . 7) . 
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- Using the ATP p,(k) and the attached situa
tion s( k) the crossed situation area can be de
termined in the situation map. It corresponds to 
that graph node which is attached to the recogni
zed situation s(k) and possesses the graph node 
position p,(k) which is nearest to the ATP. 

- The difference .::lp(k) between the ATP pi(k) 
and the position of the just crossed situation area 
p-; (k) is used to calculate a correction vector for 
the estimate of the internal robot state, icorr(l) . 

Fig. 7 Averaged trace points and time steps I, k. 

The structure shown in fig . 6 can be interpre
ted as an observer for estimating internal system 
states, a well-known system-theoretical concept : 
The mobile robot , the classifier and the situation 
map are the process with the internal state ir 
of the robot , the dead-reckoning and the calcu
lation of ATP's correspond to the process model 
of the observer. 

The correction vector comprises in correspon
dence to the robot state three components : 
icorr = (xcorr,Ycorr,ocorr)T. The first and the 
second can be combined to the vector Peorr = 
(xeorr , Yeorr)T which is a correction vector for the 
robot position. It can be calculated in a straight
forward way from the observed difference bet
ween the ATP and the graph node position of 
the traversed situation area: 

The correction factor kp is a parameter which has 
to be specified. Figure 8 visualizes the correc-

Fig. 8 Position correction . 

tion procedure. When the trace of the mobile 
robot in the situation map (the sequence of the 
positions of visited nodes) is interpreted as the 
sum of the real trace in the environment corrup
ted by additional (rather strong) noise, kp can be 



considered as a constant noise filter factor. Fur
ther, the structure in fig. 6 is then a system for 
compensating uncertaincies of the process model 
(resp. the drift of dead-reckoning) using noisy 
process output values (resp. positions of graph 
nodes in the situation map). 

The calculation of the third element of the cor
rection vector, a co,.,., is more difficult: An esti
mate of the robot orientation a,. is available from 
dead-reckoning, but the situation map yields 
only estimates for posi tions p. = (z" y, f. The
refore a difference between an observed and the 
estimated orientation (~a) can not be got di
rectly to calculate a co,.,. in analogy to equ. 1: 

(2) 

In the following several approaches for the correc
tion of the robot orientation are discussed. They 
differ in the way how values for ~a are acqui
red using different types of situation maps. They 
have been tested in experiments using situation 
maps which have been learned a priori - the pro
blems which arise when position estimation and 
map building are performed simultaneously are 
discussed in the next paragraph. 

Three-dimensional situation areas. A first idea 
was to build situation maps without turning 
the sensors (virtually) into a special orientation . 
Then situation areas in the three-dimensional 
state space of the robot can be defined and points 
of the state space can be attached to the graph 
nodes . However, experiments revealed that the 
position estimation is not stable. 

Fig . 9 Correction of the robot orientation . 

Situation Maps Using Ra-Classification. When 
the mobile robot is driven by two motors, it 
is possible to infer the robot position from the 
trace, and the tangential orientation of the trace 
curve can be taken as the internal state variable 
a . Then ~a( k) can be calculated as the angle 
formed by the two ATP's Pl(k) and Pl(k-l) and 
the node position p.(k) (see fig. 9). This method 
works, but it is not very robust due to the fact 
that the reference orientation which is needed for 
the RO-classification must be derived from the 
estimated state variable a . 

Situation Maps Using MOO-Classification . This 
does not hold when MOO-classification is per
formed . Then the angle for the virtual rotation 
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of the sensor ring is calculated using the ultra
sonic data exclusively and the position estima
tion is very reliable. Alternatively, the indepen
dency of the MOO from the estimated a,. makes 
it also possible to store the MOO-information in 
the map, and to use it for getting a ~a by cal
culating the difference between the M 00 of the 
actual ultrasonic data and the MOO which is en
tered in the map with the corresponding graph 
node. Both methods are useful and robust: the 
adjustment of the parameters is not critical and 
the inaccuracy of the dead-reckoning can be rela
tively great (ca. 1.8 degrees per turn of the mobile 
robot). 

3.3. The Map-Building Problem 

The position estimation method works well if a 
situation map already exists . Further, it is also 
no problem to build up the graph-representation 
and to determine the positions of its nodes when 
the position of the robot is known exactly. Ho
wever, is it also possible to build the situation 
map and to use it for position estimation at the 
same time? This is the general problem of lear
ning maps by a mobile robot which is equip
ped with goniometers for measuring its position 
(dead-reckoning): The position estimate has to 
be corrected using a map which only can be lear
ned using this corrected position . 

The experiences from experiments performed 
with a real mobile robot in laboratory em'iron
ments can be summarized in the following state
ments : 

- It is no problem to build stable situation 
maps when the orientation of the mobile robot 
is known and the position drift has to be com
pensated only. Then, both RO-classification and 
MOO-classification can be used . 

- If the drift of the robot orientation must be 
corrected too, it is not possible to build stable 
situation maps using RO-classification. With 
MOO-classification, maps can be built up but 
only when the drift of the orientation is relati
vely small and when the exploration trips into 
unknown areas are not too long. 

In fig . 10 an example of a stable graph
representation is shown which has been learned 
in a greater environment during about 30 mi
nutes of exploration using MOO-classification. 
The little bars at the graph-nodes represent the 
MOO-information stored in the situation map . 

Above all, problems arise when the mobile robot 
explores a fully unknown area. Then, it must rely 
on the accuracy of dead-reckoning and of the last 
position and orientation estimate which has been 
calculated when it has left the known area . As 
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Fig. 10 Map-building with unknown robot orientation using MOO-classification . 

a resu It, differences between exact and estimated 
position influence the determination of the graph 
node positions and are documented in the map. 
The error in the orientation estimate especially 
has grave consequences since it leads to position 
errors which grow with the distance proportio
nally. Therefore , the situation map contains in
accuracies and inconsistencies, which make the 
position estimation very difficult. 

4 . SUMMARY 

In this paper a method has been introduced for 
generating graph-representations of a mobile ro
bots world directly through evaluation of ultraso
nic range data: in the first step a self-organizing 
feature map is trained to learn a classification of 
the ultrasonic data which allows the recognition 
of situations . In the second step a graph is built 
up attaching to situation areas specific positions 
which are calculated during the exploration of 
the environment. Especially it has been discus
sed under which conditions situation maps can be 
used to compensate the drift of a dead-reckoning 
position estimate. 
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