
Citation: Faress, F.; Pourahmad, A.;

Abdollahi, S.A.; Safari, M.H.;

Mozhdeh, M.; Alobaid, F.; Aghel, B.

Phase Equilibria Simulation of

Biomaterial-Hydrogen Binary

Systems Using a Simple Empirical

Correlation. Processes 2023, 11, 714.

https://doi.org/10.3390/pr11030714

Academic Editors: Zixu Yang

and Kamil Witaszek

Received: 30 January 2023

Revised: 17 February 2023

Accepted: 22 February 2023

Published: 28 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

processes

Article

Phase Equilibria Simulation of Biomaterial-Hydrogen Binary
Systems Using a Simple Empirical Correlation
Fardad Faress 1 , Afham Pourahmad 2, Seyyed Amirreza Abdollahi 3, Mohammad Hossein Safari 4,
Mozhgan Mozhdeh 5, Falah Alobaid 6 and Babak Aghel 6,7,*

1 Department of Business, Data Analysis, The University of Texas Rio Grande Valley (UTRGV),
Edinburg, TX 78539, USA

2 Department of Polymer Engineering, Amirkabir University of Technology, Tehran 1591634311, Iran
3 Mechanical Engineering-Energy Conversion, Faculty of Mechanical Engineering, Tabriz University,

Tabriz 5166616471, Iran
4 Department of Civil Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran
5 Department of Petroleum and Chemical Engineering, Science and Research Branch, Islamic Azad University,

Tehran 1477893855, Iran
6 Institut Energiesysteme und Energietechnik, Technische Universität Darmstadt, Otto-Berndt-Straße 2,

64287 Darmstadt, Germany
7 Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology,

Kermanshah 6715685420, Iran
* Correspondence: babak.aghel@est.tu-darmstadt.de; Tel.: +49-6151-16-22673; Fax: +49-(0)-6151-16-22690

Abstract: This study proposes a simple correlation for approximating hydrogen solubility in bioma-
terials as a function of pressure and temperature. The pre-exponential term of the proposed model
linearly relates to the pressure, whereas the exponential term is merely a function of temperature.
The differential evolution (DE) optimization algorithm helps adjust three unknown coefficients of the
correlation. The proposed model estimates 134 literature data points for the hydrogen solubility in
biomaterials with an excellent absolute average relative deviation (AARD) of 3.02% and a coefficient
of determination (R) of 0.99815. Comparing analysis justifies that the developed correlation has
higher accuracy than the multilayer perceptron artificial neural network (MLP-ANN) with the same
number of adjustable parameters. Comparing analysis justifies that the Arrhenius-type correlation
not only needs lower computational effort, it also has higher accuracy than the PR (Peng-Robinson),
PC-SAFT (perturbed-chain statistical associating fluid theory), and SRK (Soave-Redlich-Kwong)
equations of state. Modeling results show that hydrogen solubility in the studied biomaterials in-
creases with increasing temperature and pressure. Furthermore, furan and furfuryl alcohol show the
maximum and minimum hydrogen absorption capacities, respectively. Such a correlation helps in
understanding the biochemical–hydrogen phase equilibria which are necessary to design, optimize,
and control biofuel production plants.

Keywords: biochemical–hydrogen binary system; empirical correlation; artificial neural networks;
equations of state; comparative analyses

1. Introduction

Modern life consequences, including industrialization [1], increasing population [2],
environmental pollution [3,4], and depletion of hydrocarbon resources [5,6], have con-
vinced researchers to seek new environmentally friendly fuels to satisfy the high energy
demand [7,8]. The research mainly focused on developing a scenario to produce energy
from sustainable and renewable sources with low greenhouse gas emissions. Solar irradia-
tion [9], wind power [10], biogas [11], biodiesel [12], and biomaterials [13,14] are among
the most well-known candidates to replace fossil-derived fuels. Although geography plays
an important role in selecting an appropriate option to produce renewable energy [15],
almost all countries have the possibility of utilizing different waste materials (i.e., biomass)
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to produce energy. Biomass may be directly utilized to generate energy or considered as
feedstock for synthesizing value-added substances [16]. In this regard, there are several
well-established technologies, that is, gasification, combustion, and pyrolysis [17]. Thermal
energy is generated by the direct combustion of biomass. The value-added substances
can be obtained from biomass by combining the gasification and Fischer–Tropsch pro-
cesses [18]. Biofuel can be achieved by condensing the vapor stream obtained from biomass
decomposition in a pyrolysis unit.

It is often necessary to perform additional processes on bio-based chemicals to improve
their heating value and remove their water and oxygen contents [19]. Thermal instabil-
ity [20], storage difficulty [21], and the reactive nature of the oxygenated substances [22]
make biomaterial utilization so difficult that a deoxygenation process is often required.
Hydrogenation [23], decarboxylation [24], catalyst-aided [25], and dehydration [26], have
been widely applied for hydrodeoxygenation of the biomaterials [27].

Several substances, such as hydrogen, carbon monoxide, and carbon dioxide are often
involved in the associated reactions in these processes [15]. Hence, hydrogen solubility in
biochemicals is required to construct, optimize, and control the bio-based processes [28–30].
This information is also needed for the separation, transportation, and storage of biochemi-
cals [15]. Indeed, the separation process requires reliable information about hydrogen solu-
bility in biochemicals [15]. Jaatinen et al. experimentally investigated the phase equilibria
of a furfural–hydrogen binary mixture [28]. They also mathematically studied the furfural–
hydrogen equilibrium behavior using the PR (Peng–Robinson), PC-SAFT (perturbed-chain
statistical associating fluid theory), and SRK (Soave–Redlich–Kwong) [28]. Ivaniš et al.
focused on the experimental investigation of the equilibrium behavior of gaseous hydrogen
in the presence of furfuryl alcohol and furfural as two biomaterials [29]. This research
group also utilized the SRK, PC-SAFT, and PR to monitor the biochemical–hydrogen phase
behaviors [29]. Qureshi et al. experimentally measured hydrogen (H2) solubility in three
diverse bio-oils (furan, allyl alcohol, and eugenol) [30]. All possible binary mixtures of the
hydrogen/bio-oil have been simulated by the PR equation of state [30].

Since the thermodynamic-based approaches have their challenges to model the phase
equilibria of the biochemical–hydrogen systems and often provide a high level of error,
this study proposes a simple, easy-to-use, and precise correlation for the considered task.
This model only needs pressure and temperature to simulate the biochemical–hydrogen
phase equilibrium. The prediction accuracy of the proposed correlation is also validated by
the literature data, three equations of state, and the multilayer perceptron artificial neural
network (MLP-ANN). The proposed correlation not only is simpler than the equations of
state and MLP-ANN, but it also presents higher accuracy than these potential methods.
The developed correlation is then employed to monitor the dependency of the hydrogen
absorption by different biochemicals on operating conditions and solvent type.

2. Literature Data and Methods

This section presents the hydrogen solubility data in five biomaterials with the indus-
trial application and fundamentals of the Arrhenius correlation.

2.1. Hydrogen Solubility in Biochemicals

Three research groups have experimentally measured hydrogen solubility in fur-
fural [28,29], furfuryl alcohol [29], allyl alcohol [30], furan [30], and eugenol [30]. Table 1
summarizes the phase equilibrium data for different biochemical–H2 binary systems.
Ranges of the temperature, pressure, and hydrogen solubility are listed in Table 1. This
table also presents the number of collected samples for each biomaterial–H2 binary mixture.

This study develops an empirical correlation to relate hydrogen solubility in bioma-
terials to pressure and temperature. The proposed correlation has only three adjustable
parameters and can be readily used with the lowest computational time/effort. The dif-
ferential evolution (DE) optimization algorithm [31] uses the literature databank to adjust
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the coefficients of the proposed correlation. This gathered databank will also be used to
compare the accuracy of this correlation and MLP-ANN.

Table 1. Summary of the literature data for hydrogen solubility in biomaterials.

Binary Mixture Temperature
(K)

Pressure
(kPa)

H2 Solubility
(Mole Fraction) Count Ref.

Allyl alcohol–Hydrogen 341–473 4400–15,250 0.014–0.062 21 [30]

Eugenol–Hydrogen 402–543 10,000–14,980 0.038–0.113 14 [30]

Furan-Hydrogen 342–402 3890–14,930 0.014–0.081 14 [30]

Furfural–Hydrogen 323–476 6960–12,450 0.014–0.038 7 [28]

Furfural–Hydrogen 323–423 5111–26,565 0.009–0.068 39 [29]

Furfuryl alcohol–Hydrogen 323–423 5197–26,348 0.007–0.062 39 [29]

2.2. Arrhenius-Type Correlation

The general form of the Arrhenius correlation [32] is shown by Equation (1).

K = K0 exp
(
− Ea/Rg T

)
(1)

In Equation (1), K is the dependent variable, K0 shows the pre-exponential coefficient,
Rg stands for gas constant, Ea designates activation energy, and T represents the absolute
temperature. In the isothermal condition, the dependent variable linearly relates to the
pre-exponential coefficient. The second form of the Arrhenius correlation (Equation (2))
can be simply achieved by taking the natural logarithm (ln) of Equation (1).

ln(K) = ln(K0) −
(
Ea/Rg T

)
(2)

The above equation states that the natural logarithm of the dependent variable linearly
relates to the inverse of absolute temperature.

3. Results and Discussion

Monitoring the variation of hydrogen solubility in biomaterials with the pressure and
temperature, validating the proposed model by actual data in the literature and multilayer
perceptron artificial neural network, and analyzing the effect of biomaterial type and
operating conditions on the phase equilibria of biochemical–H2 are investigated in this
section.

3.1. General Behavior of Biomaterial–Hydrogen Phase Equilibria

Figure 1 depicts the isothermal variation of hydrogen dissolution in the furfural,
eugenol, furfuryl alcohol, allyl alcohol, and furan, as a function of pressure. It is easy to see
that hydrogen solubility in all biochemicals linearly relates to the isothermal variation of
pressure (i.e., α + β P).

Hydrogen solubility in diverse biomaterials as a function of the isobaric change of
the inverse temperature on the semi-logarithm coordination is presented in Figure 2. This
figure approves that the natural logarithm of the hydrogen solubility linearly relates to the
isobaric change in temperature, that is, exp

(
− Ea/Rg T

)
.

3.2. Model Development
3.2.1. Empirical Correlation

The hydrogen solubility (S) in biomaterials as a function of the pressure (P) and
temperature (T) simply appears in the form of Equation (3).

S(P, T) = (α + β P) exp
(
− Ea/Rg T

)
(3)
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In this equation, α, β, and Ea are unknown coefficients of our proposed correlation,
and Rg = 8.314 Pa m3/mol K. The DE optimization algorithm adjusts these unknown
coefficients using the actual hydrogen solubility data (Sexp) employing Equation (4) [33].

AARD% = (100/N) ×
N

∑
k=1

∣∣∣Sexp
k − Scal

k

∣∣∣/Sexp
k (4)
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Indeed, the absolute average relative deviation (AARD%) between actual and esti-
mated hydrogen solubility values is the objective function to be minimized by the DE
optimization algorithm.

The adjusted values of unknown coefficients of the proposed model for correlating
hydrogen solubility in different biochemicals are reported in Table 2. These coefficients
are only needed to put in Equation (3) to calculate the hydrogen solubility in a given
biochemical at a desired pressure and temperature.

Table 2. Coefficients of the proposed model for correlating hydrogen solubility in biochemicals.

Hydrogen + α (−) β
(
kPa−1) Ea/Rg (K)

Allyl alcohol −0.0363 3.429 × 10−5 917.3

Eugenol 0.0289 5.151 × 10−5 1071.5

Furan −0.1121 7.556 × 10−5 988.4

Furfural 0.0136 1.523 × 10−5 769.8

Furfuryl alcohol 0.0057 1.614 × 10−5 823.9

The proposed model correlated hydrogen dissolution in the furfural, eugenol, allyl
alcohol, furan, and furfuryl alcohol with the excellent AARD of 4.67%, 1.23%, 2.46%,
2.34%, and 2.25%, respectively. In addition, the coefficient of determination (i.e., R,
Equation (5) [34]) between actual and calculated hydrogen solubilities in the furfural, ally
alcohol, furfuryl alcohol, eugenol, and furan is 0.99392, 0.99675, 0.99805, 0.99867, and
0.99892, respectively.

R =

√
1 −

{
∑N

k=1

(
Sexp

H2
− Spred

H2

)2

k
/∑N

k=1

(
Sexp

H2
− Sexp

H2

)2

k

}
(5)

It is worth noting that the developed model correlated all actual datasets with the
AARD = 3.02% and R = 0.99815.

3.2.2. Multilayer Perceptron Artificial Neural Network

Machine learning methods are recently engaged in the modeling of different phe-
nomena [35–39]. Multilayer perceptron artificial neural network is likely the most famous
black-box methodology in this regard. The developed empirical correlation has 15 ad-
justable coefficients for all the biochemical–hydrogen binary systems. Therefore, this
section designs different MLP-ANNs with the maximum 16 adjustable parameters and
compares their accuracy with the proposed empirical correlation. This study adjusts the
weights and biases of the MLP-ANN model utilizing the Levenberg–Marquardt optimiza-
tion method. Table 3 reports the accuracy of different topologies of the MLP-ANN in terms
of AARD% and R indices. It can be seen that the MLP-ANN with three hidden neurons
(3-3-1 structure) has better AARD% and R values than the other topologies. This MLP-
ANN model predicts 134 biochemical–hydrogen equilibrium samples with AARD = 8.18%
and R = 0.98983.

Table 3. Sensitivity analysis on the topology of MLP-ANN.

MLP-ANN Structure Overall AARD% R

3-1-1 26.81 0.84011

3-2-1 15.75 0.93326

3-3-1 8.18 0.98983

Figure 3 presents the schematic of the MLP-ANN model with the highest accuracy to
predict hydrogen solubility in biochemical. It should be mentioned that the biochemical
molecular weight is used as a solvent indicator in this study.
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3.3. Comparison between the Empirical Correlation and MLP-ANN

Table 4 compares the prediction accuracy of the empirical correlation and MLP-ANN
in terms of AARD% and R indexes. It can be seen that the empirical correlation provides a
more accurate prediction than the MLP-ANN.

Table 4. Comparison between the performance of empirical correlation and MLP-ANN with the
same number of adjustable parameters.

Approach Overall AARD% R

Empirical correlation 3.02 0.99815

MLP-ANN 8.18 0.98983

3.4. Comparison between the Empirical Correlation and Equations of State

Figures 4 and 5 compare performances of the proposed Arrhenius type correlation
with the well-known thermodynamic-based approaches, that is, SRK, PR, and PC-SAFT
equations of state for predicting hydrogen solubility in furfuryl alcohol and furfural,
respectively. The reported accuracy in the literature for the hydrogen + furfuryl alcohol [29]
and hydrogen + furfural [28,29] for these equations of state are used in the current analysis.
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Arrhenius type correlation.

It can be seen that the Arrhenius-type correlation has better accuracy than all available
equations of state in the literature. The developed correlation presents the best results for
predicting hydrogen dissolution in furfuryl alcohol as well as furfural.

The Arrhenius-type correlation predicted hydrogen dissolution in the furfuryl alcohol
and furfural with an excellent AARD of 2.25% and 4.67%, respectively. These predictions
are 2–6 levels more accurate than those obtained by the SRK and PR equations of state. On
the other hand, the PC-SAFT accuracy for predicting H2 solubility in the furfural is almost
equal to that presented by the Arrhenius-type correlation. But its prediction for furfuryl
alcohol (AARD = 4.62%) is lower than the correlation result (AARD = 2.25%).

It should be noted that the simulation of the biomaterial–hydrogen phase equilibrium
with the proposed correlation in this study has a simpler calculation than the equations
of state.

3.5. Validation by the Literature Data

In this section, a cross-plot is employed to validate the efficiency of the proposed
correlation using the actual data in the literature. Figure 6 illustrates the predicted and
actual values of hydrogen solubility. Since relatively whole symbols are located on the 450

line, the excellent efficiency of the proposed correlation is approved.
It should be highlighted that the considered bio-solvents have different polarity

characteristics, and their molecules may interact differently with the nonpolar hydro-
gen molecules. The topic becomes more interesting when we see that a simple correlation
(with only three adjustable coefficients) accurately estimates the hydrogen solubility in
different bio-solvents.

3.6. Dependency of Biochemical–H2 Equilibrium on Operating Conditions

Actual values of hydrogen dissolution in three biochemicals and their corresponding
predictions have been depicted in Figures 7 and 8, respectively. All these figures explain the
variation of hydrogen dissolution versus the isothermal change in pressure. An acceptable
level of agreement exists between laboratory-measured data and prediction findings can be
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observed from these figures. The suggested correlation precisely persuades the trend of
laboratory-measured information and accurately estimates all individual data samples.
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Furthermore, both literature data [28–30] and modeling findings state that hydrogen
solubility in all given biochemicals increases by increasing pressure or temperature. It is
well established that pressure increases gas solubility in a liquid by increasing the mass
transfer driving force [40]. The effect of temperature on hydrogen solubility is also in
complete agreement with a general rule that states that raising the temperature raise
enhances the solubility of materials with slight dissolution in liquids [22].

3.7. Analyzing the Impact of Biomaterial Types on the H2 Dissolution

The impact of biomaterial types on hydrogen dissolution from modeling and ex-
perimental perspectives are analyzed in this section. Actual data points as well as their
corresponding predictions by the empirical correlation for H2 solubility in the concerned
biomaterials are shown in Figure 9. This figure expresses that furfuryl alcohol and furan
have the minimum and maximum capacity to capture hydrogen molecules. Although the
hydrogen dissolution in the furfuryl alcohol and furfural is relatively similar, the first is the
worst biomaterial for absorbing the hydrogen due to its higher temperature value. More-
over, it should be highlighted that the furan absorbs the maximum amount of hydrogen at
a smaller operating pressure than the other biomaterials. Based on the modeling results,
hydrogen solubility in the investigated biomaterials decreases in an order of furan, eugenol,
allyl alcohol, furfural, and furfuryl alcohol.

This finding is possibly related to the increased tendency of nonpolar or low-polar
biochemicals to dissolve the nonpolar hydrogen substance [29].
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4. Conclusions

The current study developed a straightforward correlation to estimate the biomaterial–
hydrogen equilibrium behavior from the pressure and temperature. The trend monitoring
confirmed that the pre-exponential coefficient of the correlation must linearly relate to
the pressure, and its exponential term is a function of the absolute temperature only. The
proposed correlation also provides higher accuracy than the MLP-ANN with the same
number of adjustable parameters. The proposed correlation estimates hydrogen dissolution
in furfural, eugenol, allyl alcohol, furan, and furfuryl alcohol with an excellent AARD of
4.67%, 1.23%, 2.46%, 2.34%, and 2.25%, respectively. In addition, the proposed correlation
simulates all the actual data samples with R = 0.99815. These accuracy values are better than
those obtained by three well-trusted thermodynamic models in the literature, that is, Peng–
Robinson, perturbed-chain statistical associating fluid theory, and Soave–Redlich–Kwong
equations of state. Modeling investigations approved that both pressure and temperature
increase the hydrogen absorption tendency of all investigated biochemicals. Also, hydrogen
solubility in the investigated biomaterials decreases in an order of furan, eugenol, allyl
alcohol, furfural, and furfuryl alcohol.
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