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Abstract: Due to the upcoming applications in the field of service robotics mobile robots are 
currently receiving increasing attention in industry and the scientific community. Applications 
in the area of service robotics demand a high degree of system autonomy, which robots without 
learning capabilities will not be able to meet. Learning is required in the context of action 
models and appropriate perception procedures. Both are extremely difficult to acquire espe­
cially with high bandwidth sensors (e.g. video cameras) which are needed in the envisioned 
unstructured worlds. Selflocalization is a basic requirement for mobile robots. This paper 
therefore proposes a new methodology for image based selflocalization using a selforganized 
visual representation of the environment. It allows for the seamless integration of active and 
passive localization. Copyright © 1998 IFAC 
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1. INTRODUCTION 

The service robotics applications of the future demand 
a high degree of system autonomy also in unstruc­
tured (compared to industrial production sites) envi­
ronments. In addition, these environments and their 
sensorical characteristics are hardly to be known in de­
tail at the design time of the robot. 

Intelligent service robots without learning capabilities 
will therefore not be able to suffice in these applica­
tions. It is important to note, that learning is not only 
required in the context of action models where a lot 
of work is being done (Thrun (1994 ),Cassandra et al. 
(1996) and others), but also in the context of appro­
priate perception procedures for extracting relevant in­
formation from the available sensor data. This is ex­
tremely difficult especially with high bandwidth sen­
sors (e.g. video cameras). On the other hand power-

1 This work was funded in part by the Deutsche Forschungsgemein­
schaft under grant no . To-75124·1. 
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Fig. 1. The mobile robot ALEF 

ful sensors are needed in the envisioned unstructured 
worlds. 

One basic requirement on mobile robots is the capa­
bility to localize themselves with respect to a global 
map of the work space. We therefore propose in this 
paper a new methodology for image based self local­
ization using a selforganized visual representation of 
the environment. As a start, the next section will intro-
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duce our mobile robot ALEF, which was used for the 
experiments. Then section 3 will shortly discuss our 
approach to the problem of extracting relevant scene 
features from the video images perceived by the robot. 
The extracted scene features enable the robot to mem­
orize and recognize distinct places in its environment. 
This capability is the foundation of a self-localization 
and navigation method presented in sections 4 and 5. 
Results from experiments are given along the presen­
tation of our methods. The paper is summarized in sec­
tion 6. 

2. THE MOBILE ROBOT ALEF 

Figure I shows our mobile robot ALEF. It is built upon 
a RWI-B 12 platform and equipped with 24 ultrasonic 
sensors plus a CCD camera. A 486-based on board 
computer is responsible for basic tasks like collision 
avoidance (using the ultra-sonic sensors), odometric 
navigation and radio communication with an off board 
control computer. Via a separate analog radio link the 
video images are transferred to the same off board 
computer. Thus it is possible to perform all high level 
tasks off board. 

3. SELFORGANlZATION OF PERCEPTIJAL 
CAPABILITIES 

The final goal of every image or scene analysis is to 
find a set of features which characterize the scene un­
der examination and enable the system to compare it 
with other scenes perceived before. In 'natural' envi­
ronments which can not be prepared for the robot's 
needs, it will at least be difficult or even impossible 
to define a standard set of features, which characterize 
the scene precisely enough and which can at the same 
time be extracted from the image with sensible effort. 
In addition, for service robots, it will not be possible to 
engineer each system for a specific environment, and 
the variety of possible environments makes it unreal­
istic to assume, that the feature extraction process can 
be defined in detail at the design time of the system. 

We therefore propose, that the robot should be able 
to decide itself, which features are useful in a given 
situation. We formulate an unsupervised scene feature 
extraction process that enables the robot to create a 
visual representation of its environment by means of 
selforganization of its perceptual capabilities. 

3.1 Unsupervised Scene Feature Extraction 

The scene feature extraction is performed in three ma­
jor steps: 

(1) The first step consists mainly in extracting lo­
cal pixel features . In case of a grey level image 
s( x, y) these will be features computed from the 

388 

local grey level distribution by means of a set of 
Nh feature extractors hi(x, y) with i E [I, NhJ . 
We obtain N h feature channels 

s~(x , y) = hi(x , y) * *s(x, y). (1) 

For hi (x, y) we use texture energy features Laws 
(1980) on different scales (image pyramids), but 
other filters (e.g. Garbor Wavelets) could also 
be used. The single feature channels are then 
grouped into a multi channel image 

(2) 

When a color camera is available, these local 
pixel features can be derived from col or can­
nels S(x, y) = [SR(X, y) , sG(x , y), SB(X , y)f 
instead (or in addition) by an appropriate col or 
space transformation Tc (for an interesting phys­
iologicaly motivated approach see Pomierski and 
GroB (1996)). 

In both cases the local features should be inde­
pendent from the absolute brightness, to suppress 
illumination effects. 

(2) Step two essentially consists of a learning clas­
sification of Sh(X, y) , the multichannel feature 
image computed in step one. With the pixelwise 
classifier Cl( ·) using Ne classes c we get the 
classification result 

SI(X, y) = Cl(Sh(x, y)), SI(X , y) E [1, Ne],(4) 

SI being an integer value. This results in an unsu­
pervised segmentation of the input image, group­
ing areas of similar local appearance. Several 
methods can be considered to perform this quan­
tization step, but a hierarchical arrangement of 
selforganizing feature maps Kohonen (1988) has 
proven to be well suited (see v. Wichert (1996)). 
The segmented image SI (x , y) resulting from this 
procedure is robust to small variations of the 
camera (and thus also the robot) position. This 
robustness is crucial for the next step, which com­
putes the desired scene features x( SI (x, y)) from 
this segmentation of the image. Otherwise, these 
would not smoothly change as the robots moves 
so that existing neighborhood relations in the re­
sulting "scene space" would get lost during the 
transformation to the feature space. 

(3) As mentioned above the third step comprises the 
computation of a set of features which shall be 
used afterwards to robustly compare images from 
the video sensor. The basic assumption for this 
step is, that the distribution of the image segments 
computed in step two is a characteristic of the 



scene under examination. Therefore we compute 
the scene features from this distribution. Again, a 
large variety of methods could be used here (lo­
cal feature histograms, . .. ) v. Wichert and Kleiner 
(1995), but good results have always been ob­
tained using geometric moments m~ , q of the seg­
ments belonging to each class c 

x x 

Where 8(x) is the Dirac-impulse function and 
w( x , y) is a weighting function, that emphasises 
the center of the image and fades out pixels near 
the edges. 

Geometric moments are often used as features 
for shape recognition problemsHu (1961). Their 
major advantage compared to other shape fea­
tures (e.g. fourier descriptors) is that the seg­
ments do not have to be connected. This is a prop­
erty that can not be guaranteed with our unsuper­
vised segmentation method (Step I and 2). 

The scene features up to order P and Q resulting from 
the third step are then grouped into scene feature vec­
tors (SFV's) 

I [0,0 P,Q 0, 0 P,Q] T x(s) = m1 , .. . , m1 , . .. , m Nc ' ... , mNc (6) 

They will later on - after some normalization - be used 
to compare different images without the need of any 
geometric model and any need to interpret the scenes 
represented by the video images. The neccessary com­
putation requires a processing time of 1.2 sec on an 
Ultra-SPARC I workstation. 

4. BUILDING MAPS FROM SCENE FEATURE 
VECTORS 

The environment map used by the robot must contain 
all information necessary to navigate in the workspace. 
This comprises the representation of places and path­
ways as well as additional information the system might 
need to fulfill its task. Many learning systems use 
either grid-based maps (Moravec and Elfes (1985), 
Burgard et al . (1996)) or graph-like representations 
(Zimmer (1995), Kurz (1995), Simmons and Koenig 
(1995), Tolle and Kurz (1998)). Grid-based approaches 
can be appropriate for systems using one dimensional 
distance sensors (US, Lidar) and comparatively small 2 

environments. Maps composed from places at which 
sensory information (images) was stored and path ways 
(experienced traversals between different places) as 
nodes and edges of a graph structure seem to be more 
natural in our context. 

2 This is of course limited only by the available memory. 
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Fig. 2. Sensor data (vision, ultrasonics (.), odometric 

position) are used to represent a specific place. 
SFV's are stored instead of the original images. 

4.1 Representing Places and Pathways 

To represent places in our enironment we use an omni­
directional place representation which is generated by 
acquiring an omnidirectional view at every place rep­
resented by a node n in our graph-like map. This can 
be done taking a fixed number Nk of images s~(x , y) 
equidistant in all directions. The major advantage of 
such an omnidirectional representation is caused by 
the trivial fact, that - after taking all images at the same 
place - it is known that these images were acquired at 
the same position and which are the correct neighbor­
hood relations with respect to the rotational axis of the 
robots three dimensional workspace. This reduces the 
amount of information to be inferred from experiments 
and thus one can expect that the map learning process 
is significantly simplified. 

Along with the SFV's, also information from all other 
sensors (US, Odometry) is stored at each place. Fig. 2 
gives an example of all the data used to represent a 
specific place in our environment. For each node n E 
[1 , Nnl (Nn : Number of nodes in the map) the position 
Pn of the node, as derived from odometry, and the Nk 
SFV's x~ (s~ (x , y)) are of relevance in this paper. 

Pathways represent connections between places corre­
sponding to experienced traversals and thus the topo­
logical structure of the environment. Information stored 
to represent them comprises mainly the mean posi­
tional difference of the adjacent places as measured by 
dead reckoning during past traversals. 

4.2 Localization in the Map - Where is the Robot? 

Having gathered all necessary information and having 
stored it appropriately in the map, it can now be used 
for robot selflocalization. The goal of the selflocaliza­
tion process is to reposition the robot using the data 
stored in the map to compensate for a significant drift 
of the odometry caused by slippage of the wheels. 

The optimum selflocalization process would be able to 
exactly specify the robots current position by means of 
sensor data gathered currently. However, this is very 
hard in practice, due to the ambiguity of the sensor 
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Fig. 3. Data from real experiments with ALEE Left side: Places selected for representation in the map. The graph 
nodes are plotted at their cartesian position as derived from dead reckoning. Dead reckoning errors distort the 
vehicle's internal position hypothesis, which leads to nodes placed outside the actual rooms when plotting the 
map against a floor plan. Right side: Path traveled through the environment (dead reckoning). 

images. Especially with the one dimensional distance 
sensors, often used in mobile robots, many places in 
the environment "Iook the same". This problem is 
sometimes also referred to as perceptual aliasing. Dur­
ing map learning, the map is built using position data 
from the dead reckoning process and at the same time 
the dead reckoning has to be corrected using the posi­
tion data stored in the map. The major consequence is 
that the map building process tends to become unstable 
for large environments, because the system needs its 
cartesian position to distinguish between areas in the 
map that cannot be uniquely recognized using external 
sensors only. As a result of this, the capability to dis­
tinguish successfully between as many different places 
as possible - only by means of the external sensors -
is crucial for map learning. It is therefore interesting 
to see how much our selforganized visual perception 
process (Section 3) can contribute to the solution of 
this problem. The left part of figure 3 shows a map ac­
quired on our office floor. Small circles indicate places 
selected for inclusion in the map. The right part shows 
a path 3 followed by the robot. 

4.2.1. Localization at a glance 

Ideally it would now be possible to select at each time 
step the closest place to the true robot position, only 
by comparing the SFV's stored in the map and the one 
computed from the image grabbed at the current posi­
tion. 

A correct localization "at a glance" could be consid­
ered optimal. The left part of Figure 4 shows the re­
sult of such an unconstrained One-Step-Localization 
experiment. Grey lines are drawn from each recorded 
position during path execution to the place with the 
best matching SFV. In addition the orientation of the 

3 Map acquisition and the execution of the reference path were per­
formed in completely different runs. The similarity between dead 
reckoning errors in fig. 3 is a pure coincidence. 
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corresponding view direction is plotted in grey at each 
robot position. There are two things to note: 

(1) A correct localization with only one image is pos­
sible in 70-80% of all cases. There are only a few 
mismatches and (at least here) at maximum two 
consequent errors. 

(2) In those cases, where the current image was as­
signed to the correct 4 place, especially the orien­
tation estimated from the map is correct. This is 
notable, because dead reckoning errors effect the 
orientation estimation most. As expected, the vi­
sual information is very orientation sensitive and 
thus well suited for updating the odometry. 

It should also be noted that only vision data were used 
to perform the unconstrained localization. The robot 
performs a complete and unconstrained relocalization 
at every step. This shows, that the features provided by 
the SFV's are very rich compared to e.g. simple range 
measurements. The next section will present a simple 
but effective voting mechanism, which can be used to 
remove the remaining errors. 

4.2.2. Passive and Active Seljlocalizationby " Voting " 

Looking carefully at figure 4 (left), only a few and 
single misassingments can be identified. Therefore it 
seems reasonable to think about a voting mechanism 
which uses also past images for finding the best match­
ing place in the map. The algorithm we use selects the 
place with the maximum votes in the past N images. 

Naturally any decision to switch to the next node is 
delayed by this voting procedure for a large N, because 
new decisions have to be supported by several mea­
surements before being accepted. However, in com­
bination with distance thresholding it is possible to 

4 Correct in the sense, that one of the closest places in the workspace 
was selected. 
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Fig. 4. Localization at a glance: One-Step-Localization with no constraints (left). Localization by voting: Con­
strained Three-Step-Localization with a distance threshold of r = 2.5m (right). Erroneous localizations are 
marked with a ' *' . 

choose N = 3 assuming aditionally a minimum ac­
curacy of the dead reckoning process and excluding 
all nodes further away than r = 2.5m (marked by 
the large circles) from the search for the best candidate 
(fig. 4, right). Although this is rather straight forward 
and is sufficient in the gi ven example, the voting mech­
anism allows additionally for a seamless integration of 
passive and active selftocalization strategies. 

In the previous sections only a passive selflocalization 
was presented. The robot used images acquired during 
its trip without taking any special actions to establish 
or support a specific localization hypothesis. Such pas­
sive methods do not fully exploit the data stored in 
the map, since due to our omnidirectional place repre­
sentation information on other directions than the cur­
rent driving direction is also available. Humans tend 
to stop their movement when they get lost and start 
looking around to gather additional data to support or 
change their current idea of where they are. This type 
of behaviour can be added to our robot system by in­
troducing a voting threshold. If the maximum number 
of votes falls below this threshold, the robot stops its 
default movement and turns the camera to capture ad­
ditional views from its current position. These views 
are then replacing earlier images in the voting buffer. 
The voting procedure does not need to be changed to 
incorporate active relocalization. 

4.3 Choosing Places to Represent 

One problem, which was not discussed in the previous 
sections, is the selection of appropriate places for in­
clusion in the map. Our current mapbuilder uses only 
a distance criterion: If the exploration path leads the 
robot to a region further than an empirically deter­
mined threshold of one meter 5 away from all previ­
ously established graph nodes, a new node is generated 
and an omnidirectional view is acquired. As a next step 

5 As measured by odometry. 
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we will add two additional conditions for node gener­
ation: 

(I) If the voting procedure is not able to establish a 
clear position hypothesis with respect to the cur­
rent map, i.e. if also after stopping and the ac­
quisition of additional images no clear majority 
vote can be made, this indicates that a new node 
should be generated. Either because the vehicle 
reached a previously unknown region, or because 
the environment has changed. If the new node lies ' 
close to existing nodes, these should be removed 
to reflect changes in the robot's world. 

(2) If the SFV changes significantly during travel­
ing - this is determined from a learning quantiza­
tion of the SFV's v. Wichert (1996) - a new node 
will also be inserted in the map. This condition 
enables an image "content" driven generation of 
map nodes in addition to the distance criterion 
used so far. 

While the first criterion will allow for navigation in 
moderately dynamic environments, the second node 
insertion condition will strengthen the selforganization 
characteristics of the map building process as it adapts 
the node densitity in the map to the distribution of the 
data in the SFV-space. 

5. INTERNAL VS. EXTERNAL CONCEPTS 

The graph-like map of the environment acquired using 
the techniques describe above forms an internal repre­
sentation of the system. It is not suited for communi­
cating with the robot, because it is not transparent to 
the user. 

The unsupervised acquisition of a representation that 
fits with the human users concepts is not realistic. 
Therefore it is neccesary to teach the external concept 
to the system in a supervised manner on a higher level 
of abstraction. A simple assignment of names to nodes 
is not satisfying. Our approach is based on the defini­
tion of an application dependent construction kit. For 



an indoor application this kit might look like the one 
depicted in figure 5. Predefined structural conditions­
we compel the system to place nodes in doorways -
force the graph map to fit in the corresponding higer 
level structures. This way our system can automat­
icly translate its internal representation into the users 
way of perceiving things without the designer making 
more than very rough predefinitions. On the other hand 
this bridges the gap between subsymbolic continuous 
scene features and an object oriented higher level de­
scription that facilitates the communication with the 
system. 

Elements: Map: 

Office 

Fig. 5. The "representation construction kit" contains 
predefined and application dependent environ­
mental structures, that are used to automaticly 
build representations transparent to the user. 

6. CONCLUSION 

The work presented in this paper has shown, that our 
selforganizing scene feature extraction process can suc­
cessfully contribute to the problem of mobile robot 
selftocalization. The unsupervised nature of our ap­
proach is desirable, because true service robots operat­
ing in unstructured and apriori unknown environments 
do not only need to adapt their behaviour but also their 
perception procedures to the specific characteristics of 
their application environment. 

In our system the complete sensor interpretation pro­
cess is totally unsupervised. Nevertheless, the robot is 
able to relocalize itself with respect to a previously ac­
quired map. The procedures introduced above allow 
for a seamless integration of passive and active self­
localization strategies. As sketched above, next steps 
will extend our method to moderately dynamic envi­
ronments. Our approach does not require any type of 
environment model to be supplied to the robot in ad­
vance. No restricting assumption neither on the struc­
ture of the workspace nor on the internal structure of 
the images (the existence of vertical line segments or 
something similar) have to be made. Easy communi­
cation with the robot requires the internal concepts of 
the system to be translated into the users way of think­
ing. We propose an approach using predefined envi­
ronmental structures from a "representation construc­
tion kit" to build a transparent representation. 

392 

References 

Wolfram Burgard, Dieter Fox, Daniel Henning, and 
Timo Schmidt. Position tracking with position prob­
ability grids. In I st Euromicro Workshop on Ad­
vanced Mobile Robots (EUROBOT'96), pages 2-
9, Kaiserslautern, Germany, 1996. IEEE Computer 
Society Press. 

Anthony R. Cassandra, Leslie Pack Kaelbling, and 
lames A. Kurien. Acting under uncertainty : Dis­
crete baysian models for mobile-robot navigation. 
In Proc. of the Con! on Intelligent Robots and Sys­
tems (IROS'96), pages 963-972,1996. 

Ming-Kuei Hu. Visual pattern recognition by moment 
invariants. IRE Transactions on Information The­
ory, 8:179-187, 1961. 

Teuvo Kohonen. Self-Organization and Associa-
tive Memory. Springer, New York, London, Paris, 
Tokyo, 1988. 

Andreas Kurz. ALEF: An autonomous vehicle which 
learns basic skills and constructs maps for naviga­
tion. Autonomous Systems, 14:171-183,1995. 

Kenneth l . Laws. Textured Image Segmentation. PhD 
thesis, University of Southern California, 1980. US­
CIPI Rep. 940. 

Hans P. Moravec and Alberto Elfes. High resolution 
maps from wide angle sonar. In Intern. Con! on 
Robotics and Automation, pages 19-24, 1985. 

T. Pomierski and H.-M. GroB. Biological neural ar­
chitecture for chromatic adaptation resulting in con­
stant color sensations. In Proc. of the ICNN-96, 
pages 734-739, Washington DC, USA, 1996. IEEE­
Press. 

Reid Simmons and Sven Koenig. Probabilistic naviga­
tion in partially observable environments. In Intern. 
Joint Con! on Artificial intelligence (IJCAI'95), 
pages 108~1O87, 1995. 

Sebastian B. Thrun. A lifelong learning perspective for 
mobile robot control. In Proc. of the IEEElRSJIGI 
Intern. Con! on Intelligent Robots and Systems 
(IROS'94), pages 23-30, 1994. 

Henning Tolle and Andreas Kurz. Learning aspects 
for mobile service robots. accepted for: Intern. 
Journal of Intelligent Control and Systems (Special 
Issue: Intelligent Machines: Bridging the Gap be­
tween Theory and Practice), 1998. 

G. v. Wichert. Selforganizing visual perception for 
mobile robot navigation. In I st Euromicro Work­
shop on Advanced Mobile Robots (EUROBOT'96), 
pages 194-200, Kaiserslautern, Germany, 1996. 
IEEE Computer Society Press. 

G. v. Wichert and K. Kleiner. Selbstorganisierende 
Bildanalyse fUr die Navigation von mobilen 
Robotern. In R. Dillmann and T. Ltith, editors, 
Autonome Mobile Systeme (AMS'95), Inforrnatik 
Aktuell. Springer Verlag, Heidelberg, December 
1995. 

U. R. Zimmer. Self-localization in dynamic environ­
ments. In IEEElSOFT Workshop BIES'95, Tokyo 
(Japan), May 1995. 


