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Abstract: In this article a global method for master-slave synchronization of nonlinear systems
is provided. Based on a diffeomorphic transformation of the original dynamics, a reduced
observer is designed such that the nonlinear state feedback law is independent of the inertial
frame. Generally, the method requires non trivial computations but leads to global convergence
results for the invariant tracking error. We illustrate the design procedure in detail for a master-
slave synchronization of a bacterial growth model, which may escape to infinity in finite time.
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1. INTRODUCTION

Within the last decade a growing community of researchers
has been focusing on the cooperative control of networked
dynamic systems, denoted as agents. A fundamental task
in such cooperative control scenarios is the synchronization
of the agents (Olfati-Saber et al., 2007). Key aspects to
achieve synchronization are the exclusive use of only local
knowledge in the control laws and hence, their distributed
nature. To this end, only the states of the neighbors in
the communication network are used in the controllers of
each agent to achieve unison. As a result, this procedure
is independent of a common inertial reference frame of
the agents. General solutions for agents with nonlinear
dynamics using passivity are reported in Arcak (2007);
Listmann et al. (2009); Listmann and Woolsey (2009) and
for systems on Lie groups in Sarlette et al. (2010).

In contrast to such new developments, the tracking problem
is a classical problem of control design. Here, the goal is to
let a dynamic system follow a given reference trajectory.
Similar to the synchronization problem, to date solutions
also use only local knowledge. In this case invariant track-
ing errors are defined, again independent of the chosen
inertial reference frame. Very advanced techniques for gen-
eral nonlinear systems are given in Martin et al. (2004)
using exact linearization and for systems on Lie groups,
Maithripala et al. (2006) provide appropriate solutions.

A combination of both problems, tracking and synchro-
nization, is the master-slave synchronization considered
in this article. Then, a collective of agents, the slaves,
try to synchronize to or track the trajectory of a single
master, all described by identical dynamics. This approach
is often elaborated to study and achieve synchronization
in nonlinear chaotic systems (Pecora and Carroll, 1990).
Generally this problem is not fully distributed in nature.
Although some computations may only be done by the
master, all the slaves compute their local controller as
well, contradicting a fully centralized approach. In this set-
up, the only knowledge available to all agents, the master

and the slaves, is the distance of each slave’s trajectory
to the trajectory of the master. This is again an invariant
information referred to as translational invariance and is
illustrated in Fig. 1. From a tracking perspective, master-
slave synchronization achieves tracking (for the slave) for
an unknown reference trajectory (of the master). A typical
application would be to clone the behavior of an industrial
plant to other ones.

In van de Wouw and Pavlov (2008) master-slave synchroni-
zation is considered for piecewise affine systems and the
solution is based on full-order observers and the fact that
the overall system is a convergent dynamics (Pavlov et al.,
2004). Regardless of such particular system structures,
the approach presented here is applicable to all nonlinear
input affine systems. We present a general procedure to
derive invariant tracking control laws for such systems as
only the relative distance to the trajectory of the master
is available to every slave and the master. Key to our
solution is the application of a globally convergent reduced
observer, recently defined in Karagiannis et al. (2008).
The use of such observers is facilitated by transforming
the dynamics so that only the master trajectory and the
relative distances to the slaves are remaining. The observer
then reconstructs the trajectory of the master based on the
relative measurements available. Further, this estimated

x1

x2 xs − xm

master

slave x̄1

x̄2

Fig. 1. Phase-plane trajectories of a master (−) and a
slave (−−) indicating the invariance of xs−xm w.r.t.
translation of the reference frame from xi to x̄i.
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value is used in the feedback design, of the master and of
the slaves, to accomplish the goal.

Hence, the paper is structured as follows: In the next
section the problem and the utilized reduced observer
are introduced. Then in Section 3, the diffeomorphic
transformation to the particular form considered is shown,
and the general procedure for the control design is given.
This procedure is illustrated for a bacterial growth model
in Section 4. Finally, a conclusion is provided.

2. PRELIMINARIES

In this section a proper problem description is given and
the utilized reduced observer is introduced briefly.

2.1 Problem Statement

Generally, the goal is to synchronize a group of slaves to
one single master. This problem is in spirit similar to the
tracking of a reference trajectory, where the reference is
given through the motion of an identical dynamic system,
the master. To this end, we consider N agents with
dynamics

ẋi = a (xi) + b (xi)ui ∀i = 1, . . . , N, (1)

where xi ∈ R
n and ui ∈ R

m. The first agent is considered
to be the master, all other N − 1 agents are called slaves.
Since the task is to synchronize the slaves with the master
the tracking errors

yj = xj − x1 ∀j = 2, . . . , N (2)

are defined. Therefore, synchronization is equivalent to
limt→∞ yj(t) = 0. Note that this implies full state syn-
chronization and the only information available for control
design are the tracking errors, i.e. relative information. The
absolute position of the master agent, x1, is unknown,
giving rise to an interpretation as an invariant tracking
problem.

2.2 Reduced Nonlinear Observer

Before introducing the concept of the reduced observer,
some mandatory definitions are given. We consider the
autonomous differential equation

ẋ = f(x) (3)

together with its solution at time t denoted by φ(t, x0, t0),
where t0 and x0 are the initial time and state, respectively.

Definition 1. (Khalil (2001)). A set M is called invariant
with respect to (3) if x0 ∈ M ⇒ x(t) ∈ M, ∀t ∈ R and is
said to be positively invariant if the same holds ∀t ≥ t0.

Hence, if a solution to (3) belongs to M at some time
instant, then it will belong to M for all future times.

Assume that the equilibrium, i.e. f(xe) = 0, is given
by xe = 0. Further, let this equilibrium be isolated, i.e.
its neighborhood contains no other point x̄ such that
f(x̄) = 0. This leads to

Definition 2. (Hahn (1968)). The equilibrium of the dif-
ferential equation (3) is called attractive if there exists a
number α > 0 with the property

lim
t→∞

φ(t, x0, t0) = 0 whenever ‖x0‖ < α.

Clearly, the key idea behind a design of a reduced observer
is to create a positively invariant and attractive set. The
distance to this set should be described by the observer
error, to let the estimated value globally converge to the
true state. This idea is elaborated in Karagiannis et al.
(2008) and a globally convergent reduced order observer
for nonlinear dynamical systems is presented. Assuming
that the measurable states are y ∈ R

q and the states
η ∈ R

n have to be estimated, the dynamical system is
written as

ẏ = f1 (y, η) , (4a)

η̇ = f2 (y, η) . (4b)

The objective is to find a dynamical system

ξ̇ = α (y, ξ) (5)

with ξ ∈ R
p, p ≥ n and the mappings

β (y, ξ) : R
q × R

p → R
p, (6a)

Φy (η) : R
n → R

p (6b)

such that the manifold

M = {(y, η, ξ) : β (y, ξ) = Φy (η)} (7)

is positively invariant and attractive.

To design the observer the variable z measuring the
distance to the manifold M is introduced,

z = β (y, ξ) − Φy (η) . (8)

Since we have z = 0 on M, for the estimation of η

η̃ = ΦL
y

(β (y, ξ)) (9)

holds, where ΦL
y

(·) is the left-inverse of Φy (·), so that

ΦL
y

(Φy (η)) = η. (10)

The invariance of M is ensured by

α (y, ξ) = −
(

∂β

∂ξ

)−1 [
∂β

∂y
f1 (y, η̃)

− ∂Φy

∂y

∣
∣
∣
∣
η=η̃

f1 (y, η̃)

− ∂Φy

∂η

∣
∣
∣
∣
η=η̃

f2 (y, η̃)

]

(11)

if the inverse (∂β/∂ξ)−1 exists. Using this, the time
derivative of z is given by

ż = − ∂β

∂y
(f1 (y, η̃) − f1 (y, η))

+
∂Φy

∂y

∣
∣
∣
∣
η=η̃

f1 (y, η̃) − ∂Φy

∂y
f1 (y, η)

+
∂Φy

∂η

∣
∣
∣
∣
η=η̃

f2 (y, η̃) − ∂Φy

∂η
f2 (y, η) .

(12)

The task of constructing a globally convergent observer is
therefore reduced to finding the mappings β (·) and Φy (·)
guaranteeing invariance and attractiveness of M.

3. DESIGN PROCEDURE

The idea of the design procedure presented in the current
paper can be split into four aspects described in this
section. Fig. 2 shows a summary of the design steps.
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original system
(x1, . . . , xN)

Step 1:
transformed system

(y2, . . . , yN , η)

Step 2:
certainty equivalence
control law u∗

j (yj , η̃)

Step 3:
reduced nonlinear observer

β(·),Φy(·), ξ̇ = α(·)

Step 4:
stability verification

lim
t→∞

yj(t) = 0

invariant tracking
master-slave synchronization

Fig. 2. Design procedure

In Step 1, the system dynamics are formulated in terms
of the tracking errors. To achieve this, the system is
transformed by










y2

...

...
yN

η










=










−I I 0 · · · 0
... 0

. . .
. . .

...
...

...
. . .

. . . 0
−I 0 · · · 0 I
I 0 · · · · · · 0










x (12)

to describe the unknown reference state η = x1 and the
tracking errors yj . In this, I denotes the n×n-dimensional
identity matrix. The transformation results in

ẏ = f1 (y, η, u) (13a)

=






a (y2 + η) − a (η) + b (y2 + η)u2 − b (η)u1

...
a (yN + η) − a (η) + b (yN + η)uN − b (η) u1




 ,

η̇ = f2 (η, u1) = a (η) + b (η)u1. (13b)

Obviously, limt→∞ xj(t) = limt→∞ x1(t) in the original
system is equivalent to limt→∞ yj(t) = 0 in the trans-
formed version. Therefore, given the dynamics of the track-
ing errors, a control law stabilizing yj has to be found in
Step 2. To this end, we first assume that u1 as well as η
are known for the design of uj (yj , η). As we are dealing
with input affine systems, exact linearization is a common
approach but we emphasize that other design procedures
such as Lyapunov-based controllers may be employed. Fol-
lowing the certainty equivalence heuristic (Rusnak et al.,
1993), the control law uses the estimated absolute position
η̃ in the remainder of this paper, i.e. uj (yj , η̃). Of course
this requires observability of the system (13) for y 6= 0.

The main ingredient in the concept proposed in this
paper is an estimator for the unknown reference state
η designed in Step 3. We are looking for a globally
convergent estimator contrary to local approaches such as
high-gain observers or Extended Kalman Filters. These
would significantly simplify the design while closed loop
stability would be hard to proof. Moreover, the well-known
nonlinear full order observer designs (e.g. Marino and
Tomei, 1995) are not applicable for the problem discussed
in this paper. Due to the special system structure one is

not able to find a transformation into a linear system with
output injection terms. However, one possible solution for
our task is given by the reduced order invariant-manifold
based observer developed in Karagiannis et al. (2008). By
using the dynamical equations of the closed loop with
the certainty equivalence based controller we specifically
design such an observer for the control law uj (yj , η̃).

As a consequence, the global convergence of the estimator
is assured. However, it is well known that closed-loop
stability is generally not guaranteed when a stabilizing
control law is used in combination with a convergent
observer (Andrieu and Praly, 2009). To this end, we verify
stability of the closed loop system

ẏj = a (yj + η) − a (η) + b (yj + η)uj (y, η̃) − b (η)u1

(14)
for j = 2, . . . , N in Step 4. In order to guarantee closed-
loop stability globally, we require the bounds on the initial
observer error to be known a priori. However, the initial
deviation will always be finite so that without loss of
generality the observer error may be enclosed within a ball
of appropriate radius.

In view of the master-slave synchronization problem, the
information flow in the system is visualized in Fig. 3.

C M

O
−

SjCj

master

slaves

w u1 x1

yj

x̃1

(x̃1, u1, yj)

uj xj

Fig. 3. Information flow in master-slave synchronization

The master with dynamics M is able to measure the
state differences xj − x1. Based on this information the
master agent estimates its absolute position by means of
the reduced order observer O designed in Step 3 which in
turn is based on the control law of Step 2. The estimated
position as well as the control input of the master agent
and the measured differences are communicated to the
slaves. The slaves with dynamics Sj use this information
in their controller Cj to track the master. Additionally, it
is possible for the master to track an exogenous reference
signal w based on the estimated absolute position using
the controller C.

We would like to point out again that the tracking of the
master as well as the tracking of the exogenous reference
signal are based solely on relative information, i.e. the state
differences between the master and the slaves. No absolute
state information is incorporated in the proposed design.

4. EXAMPLE

For illustration purposes we choose the population dynam-
ics of bacteria cultures. The so called logistic differential
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equation is a first order nonlinear differential equation and
is shown to give a good approximation of the population
growth dynamics (Britton, 2003). Here, it is augmented by
an affine control input ui and thus given by

ẋi = rxi

(

1 − xi

K

)

+ ui = rxi −
c1

2
x2

i + ui (15)

where r describes the growth rate, K is the capacity of
the autonomous system and c1 = 2r

K
is introduced for

notational convenience.

4.1 Transformed system dynamics

Following the proposed design procedure we evaluate (13)
for a system of N bacterial populations. This results in

ẏ = f1 (y, η, u) =








ry2 − c1ηy2 −
c1

2
y2
2 + u∗

2

...

ryN − c1ηyN − c1

2
y2

N + u∗
N








, (16a)

η̇ = f2 (y, η, u) = rη − c1

2
η2 + u1 (16b)

where u∗
j = uj − u1 is used for notational purposes.

To check the observability of the system, we calculate the
observability mapping (Kou et al., 1973)

q (η, y, u)=









y2

ẏ2

...
yN

ẏN









=











y2

ry2 − c1ηy2 −
c1

2
y2
2 + u∗

2

...
yN

ryN − c1ηyN − c1

2
y2

N + u∗
N











. (17)

Then, for the observability matrix Q(y, η, u) ∈ R
2(N−1)×N

Q (y, η, u) =
∂q (y, η, u)

∂
[

y⊤ η
]⊤ =











1 0 0 · · · 0
χ2 0 0 · · · −c1y2

0 1 0 0
...

. . .
...

0 · · · 0 1 0
0 · · · 0 χN −c1yN











(18)

holds with χj = r − c1 (η + yj). Therefore, yj 6= 0 for at
least one measurable output implies

rank (Q (y, η, u)) = N (19)

and the system is globally observable.

4.2 Certainty Equivalence Based Control Law

Assuming the absolute position of the master is known, an
exactly linearizing control law resulting in the closed loop
dynamics ẏj = −a0yj can easily be found. This motivates
the use of the certainty equivalence based controller

u∗
j = −

(

ryj − c1η̃yj −
c1

2
y2

j + a0yj

)

(20)

which leads to

ẏj = −c1 (η − η̃) yj − a0yj . (21)

The aim then is to ensure global convergence of yj for all
slaves.

4.3 Observer design

Setting Φy (η) = ε (y) η and evaluating (12) results in

ż =




−∂β

∂y






−c1y2

...
−c1yN




 + εr

+
∂ε

∂y








ry2 −
c1

2
y2
2 + u∗

2

...

ryN − c1

2
y2

N + u∗
N















(η̃ − η)

+




−ε

c1

2
+

∂ε

∂y






−c1y2

...
−c1yN











(
η̃2 − η2

)

(22)

after some simplifications. The arguments of β(·) and ε(·)
were omitted for notational convenience. To eliminate the
quadratic terms in η and η̃,

−ε
c1

2
+

∂ε

∂y






−c1y2

...
−c1yN




 = 0 ∀t > 0 (23)

has to be fulfilled. In this example it is straightforward to
verify that

ε (y) =

N∑

j=2

|yj |−
1

2 ∀yj 6= 0 (24)

solves the differential equation (23). Substituting (24), the
control law (20), η̃ = ε−1(y)β and η̃ − η = ε−1(y)z into
(22) gives

ż =






∂β

∂y






c1y2

...
c1yN




 + εr +

∂ε

∂y






c1εβy2 − a0y2

...
c1εβyN − a0yN









 ε−1z

=






∂β

∂y






c1y2

...
c1yN






1
∑N

j=2 |yj |−
1

2

+ r

+








−1

2
sgn (y2) |y2|−

3

2

...

−1

2
sgn (yN) |yN |−

3

2








⊤

(25)











c1
1

∑N

j=2 |yj |−
1

2

βy2 − a0y2

...

c1
1

∑N

j=2 |yj |−
1

2

βyN − a0yN











1
∑N

j=2 |yj |−
1

2











z

which is linear in z. It remains to find a mapping β(·) such
that z → 0 for t → ∞, making M invariant and attractive.
Despite the relatively simple nature of the example this
task requires non trivial computations. To the authors’
knowledge there exists no constructive method to find such
a mapping. It can however be verified that

β (y, ξ) =

N∑

j=2

(1 + ξ) |yj |
1

2 +
a0

c1
|yj |−

1

2 (26)
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leads to

ż =

(

−1

2
a0 + r

)

z = −c2z. (27)

Thus a0 > 2r implies c2 = 1
2a0 − r > 0 and guarantees

global asymptotic convergence of the observer.

The estimated state is calculated from the observer state
ξ and the measured output y by means of (24) and (26):

η̃ =
1

ε (y)
β (y, ξ) . (28)

For the implementation, we compute and insert into (11)

∂β

∂ξ
=

N∑

j=2

|yj |
1

2 , (29a)

∂β

∂y

⊤
=










1

2
sgn (y2)

(

(1 + ξ) |y2|−
1

2 − a0

c1
|y2|−

3

2

)

...
1

2
sgn (yN )

(

(1 + ξ) |yN |−
1

2 − a0

c1
|yN |−

3

2

)










, (29b)

∂Φy

∂y

∣
∣
∣
∣

⊤

η=η̃

=








−1

2
sgn (y2) |y2|−

3

2

...

−1

2
sgn (yN ) |yN |−

3

2








, (29c)

∂Φy

∂η

∣
∣
∣
∣
η=η̃

=

N∑

j=2

|yj|−
1

2 , (29d)

f1 (y, η̃) = −a0 [y2 · · · yN ]
⊤

, (29e)

f2 (y, η̃, u1) = rη̃ − c1

2
η̃2 + u1. (29f)

We recall that the designed observer depends on the
certainty equivalence based control law developed in (20).
It is therefore possible that the observer design might be
simplified if a different control law was chosen. Generally
the design is difficult in the case of agents with higher order
dynamics.

4.4 Tracking error stability

In the previous section a globally convergent observer is
designed. Since the estimated absolute position η̃ is used
to control the agents, it remains to verify the stability of

the closed loop dynamics. Again using η̃ − η = ε (y)
−1

z,
the tracking error dynamics (21) can be rewritten in terms
of y and z as

ẏj = c1
1

ε (y)
zyj − a0yj. (30)

The time solution of the observer error obviously is z(t) =
z0e

−c2t. To show the convergence of the tracking errors we
thus have to ensure asymptotic stability of

ẏj = c1
1

∑N

k=2 |yk|−
1

2

yjz0e
−c2t − a0yj . (31)

In the special case N = 2 we can explicitly solve the
differential equation for y > 0 and get

y(t) = y2(t) =
e2c2t (a0 + 2c2)

2

(

c1z0 + e(
a0

2
+c2)t

(
a0+2c2√

y0

− c1z0

))2 .

Obviously, y(t) escapes to infinity in finite time if the
denominator of y(t) becomes zero. Otherwise we have
y(t) → 0 because

lim
t→∞

e2c2t

e2( a0

2
+c2)t

= lim
t→∞

e−a0t = 0. (32)

However, we can derive a condition for the tracking errors
to converge to zero by regarding

e(
a0

2
+c2)tesc

(

c1z0 −
a0 + 2c2√

y0

)

= c1z0, (33)

where tesc denotes the finite escape time. The above
equation has no solution if z0 < 0. Therefore, asymptotic
tracking is achieved if a0 > 2r is satisfied. The case of
z0 > 0 requires further examination as then, (33) has no
solution if

c1z0

c1z0 − a0+2c2√
y0

≤ 0. (34)

A similar result can be obtained for y < 0 which finally
gives the condition

a0 ≥ c1z0

√

|y0| − 2c2. (35)

Resubstituting c1 and c2 we can deduce a condition for
the controller parameter a0 to guarantee the convergence
of the tracking error as

a0 ≥ r

K
z0

√

|y0| + r. (36)

In this equation z0 is unknown but since z0 < z0,max we
can use the upper bound on the initial estimation error
z0,max to calculate a stabilizing a0.

When multiple slaves are considered, i.e. N > 2, it be-
comes far more difficult to solve the differential equations
of yj because of couplings between the tracking error
dynamics. We can overcome this problem at the cost of
some conservatism if we require the tracking error to be
monotonically decreasing for y > 0. This is obvious if we
write

ẏ = y
(

−a0 + c1

√

|y|z0e
−c2t

)

. (37)

Since e−c2t is positive and monotonically decreasing, y is
alike if ẏ(0)y(0) < 0 is satisfied. Therefore, the tracking
error will converge to zero as t → ∞. Similar reasoning for
y < 0 leads to

a0 ≥ c1

√

|y0|z0 (38)
which is a conservative estimate of the condition given
beforehand in (35), since c2 > 0. From this, we can derive
a sufficient condition for the tracking errors to converge
asymptotically in the case of N > 2 as

a0 ≥ c1z0
∑N

j=2 |yj,0|−
1

2

. (39)

In addition to the slaves tracking the master, the estimated
absolute position η̃ allows to design a control law for the
master agent. If we choose

u1 (w, ẇ, η̃) = ẇ + γw − (r + γ) η̃ +
c1

2
η̃2 (40)

the master agent tracks the exogenous differentiable signal
w(t) asymptotically. We emphasize that this is possible
despite the unmeasurable absolute position η. Introducing
the master tracking error et = w − η we calculate

ėt = −γet − (r + γ) (η − η̃) +
c1

2

(
η2 − η̃2

)

︸ ︷︷ ︸

v

. (41)
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As shown before, z(t) → 0 as t → ∞ implies η(t) → η̃(t) if
condition (39) is satisfied. Therefore, we can conclude that
v(t) → 0 as well guaranteeing et(t) → 0 for γ > 0.

4.5 Simulation results

To illustrate the obtained results, a system with two slaves
is simulated with parameter values r = 0.8 and K = 10.
Following (27) the choice of a0 = 2 ensures convergence
of the observer. With y2(0) = 8, y3(0) = −3, η(0) = 5
and η̃(0) = 1 the condition (39) for the stability of the
tracking errors is also satisfied. Fig. 4 shows the absolute
agent states, the control inputs and the tracking errors over
time. Therein, the master is controlled by u1 = ẇ + γw −
(r + γ) η̃ + c1

2 η̃2. In this w(t) = 5 + 3sin (2πt) is a given
reference signal and γ = 1. In addition to showing the
applicability of the proposed invariant tracking controller
the simulation shows that the estimated absolute state η̃
can also be used to control the unmeasurable reference
state η.
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Fig. 4. Tracking of bacteria population size (master −, 1st

slave −−, 2nd slave − · −)

5. CONCLUSION

In this article a solution to the master-slave synchroniza-
tion of nonlinear input affine systems was proposed. The
methodology is based on an appropriate transformation
of the complete system dynamics so that only locally
available information is used to reconstruct the global state
of the trajectory of the master. Despite the challenging
problem of finding a stabilizing mapping for the observer
error, the method provides a globally convergent result.
If in contrast, local estimators would be used, more gen-
eral dynamic systems could be studied but the stability
analysis gets slightly more involved.

For the future, it would be interesting if the same could be
achieved if the state difference to the master is only known
partially. Moreover, a full distribution of this concept
would be able to solve the synchronization problem for
a very general class of dynamic systems.
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