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Abstract:

This article presents a state synchronization method within multi-agent systems upon multiple
states. Based on their formation in state space, the agents decide on a clustering and synchronize
their states within these clusters. The solution steps for this N-consensus problem, clustering and
synchronization, may both be solved entirely in a decentral manner. This is achieved by means of
a distributed Variational Bayes to describe the distribution of the agents’ positions as a mixture
of densities. The entire N-consensus problem is illustrated with graphical probabilistic models
whose underlying potential is shown to be maximized when reaching the final N-consensus.
An improvement of the overall convergence speed is achieved by a dynamical adaption of the
distributed Variational Bayes, which leads to an intertwining of clustering and synchronization.
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1. INTRODUCTION

In mobile robotics, the synchronization of agent states
within a multi-agent system (MAS) onto a single state
is denoted as consensus. These states are often associ-
ated with positions in the spatial domain. To achieve this
behavior within MAS by decentral computations, numer-
ous distributed consensus protocols exist (e.g. (Saber and
Murray, 2003), Moallemi and Van Roy (2006), Listmann
et al. (2011)). These algorithms have in common that
they solely aim to reach a synchronization upon a single
state. Especially in MASs, which exhibit a large spatial
distribution and which are supposed to solve tasks in
smaller subgroups, it might be useful to synchronize the
agents upon multiple different states depending on their
group membership as well, which will be denoted as N-
consensus in the sequel. Such an N-consensus is depicted
in Fig. 1b for the MAS shown in Fig. 1a with its calculated
group memberships. Again, the communication graph is
shown by solid lines and the trajectories are depicted by
dashed lines. The problem of synchronizing a MAS upon
multiple states was already addressed, e.g. in Yu andWang
(2009), where a multi-group consensus was proposed. The
drawback of the multi-group consensus protocol is that
the number of groups as well as the agents’ group mem-
berships have to be known in advance. These parameters
require global knowledge which contradicts the idea of a
fully distributed protocol. Therefore, we present the N-
consensus protocol that does neither require the number
of groups nor the group memberships in advance. Instead,
both will be the outcome of a decentral and distributed
protocol. For this reason, the terminology N-consensus is
used, emphazising that the number of groups is unknown
a priori.

(a)

(b)

Fig. 1. (a) MAS with final cluster memberships shown by
different colors and (b) N-consensus

Apparently, the N-consensus problem consists of a dis-
tributed clustering as well as a distributed synchronization
depending on the clustering. Besides consensus protocols,
there already exist methods for distributed clustering.
The affinity propagation algorithm presented in Frey and
Dueck (2007), for example, makes use of a message passing
procedure. A distributed K-means algorithm discussed in
Forero et al. (2008) as well as a distributed Expectation
Maximization (EM) introduced in Gu (2008) may serve
as other examples. The latter two approaches can be used
in MAS with arbitrary connected communication graphs.
Nevertheless, they suffer from the drawback that the num-
ber of clusters K has to be known in advance, which may
only be determined when the MAS formation is known.
This requirement of global knowledge appears to be in-
convenient for a completely decentralized implementation.

In Safarinejadian et al. (2010), a distributed Variational
Bayes is introduced, which on the one hand does not
suffer from this drawback, because K is automatically
determined during the iterative solution. On the other
hand, this algorithm is limited to the special case of
sensor networks with a ring-shaped topology. Because of
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this, an application to MAS with arbitrary connected
communication graphs is not possible.

In the following, a solution for the distributed calculation
of the Variational Bayes in MAS with arbitrary connected
communication topology is presented. In contrast to Sa-
farinejadian et al. (2010), this allows an estimation of the
distribution of the agents’ positions, which forms the basis
of an N-consensus within MAS – a problem which to the
best of our knowledge has not been addressed before.

The paper is organized as follows: In Sec. 2, the N-
consensus problem is formally stated. Sec. 3.1 then reviews
the concept of the Variational Bayes for mixtures of
Gaussians as described in Bishop (2006), which is then
extended in Sec. 3.2 for fully distributed implementations.
A further adaption of this concept in combination with an
appropriate determination of control signals leads to the
N-consensus protocol in Sec. 4. Then, Sec. 5 presents a
way of graphically representing probabilistic dependencies
occuring in the N-consensus problem and Sec. 6 illustrates
the application of the framework for an example.

2. THE N-CONSENSUS PROBLEM

We consider MAS with N agents, whose communication
graph G = (V , E) is represented by a finite non-empty
node set V(G) and an edge set E(G) ⊆ V × V . The nodes
vn ∈ V(G) describe the agents and the undirected edges
en ∈ E(G) represent communication links between them.
The set of neighbors N (n) of node vn contains all nodes
vm for which (vn, vm) ∈ E(G) holds. It is assumed that G
is always connected. For simplicity, it is also assumed that
the agents exhibit integrator dynamics

ẋn = un (1)

with xn(0) = xn,0 ∈ R
D, where xn describes the position

of the n-th agent and un describes its actuator signal.
Following Saber and Murray (2003), the choice of

un(t) =
∑

vm∈N (n)

(

xm(t)− xn(t)
)

(2)

leads to the convergence of the agent states towards the

mean xsyn = 1
N

·
∑N

n=1 xn,0 of their initial positions and
therefore onto a single synchronous state. Because an N-
consensus shall be reached, the consensus protocol in (2)
may not be applied directly. Instead, the agents first have
to estimate their spatial distribution and come to a state
synchronization upon their cluster centers µk by means of
an actuator signal

un(t) =

(

∑K

k=1
znk · µk

)

− xn(t) (3)

or reference input

wn(t) = un(t) + xn(t) =
∑K

k=1
znk · µk, (4)

depending on the cluster membership znk ∈ {0, 1}.

3. DISTRIBUTED PROBABILISTIC CLUSTERING

3.1 Variational Bayes

In order to achieve a clustering among the agents, their
positions xn are interpreted as independently identically
distributed stochastic variables and it is assumed that

positions of the same cluster result from a multivariate
normal distribution N

(

x
∣

∣µk,Λ
−1
k

)

with mean µk and
precision Λk. Then the probability density of the whole
MAS consisting of K clusters is a Gaussian mixture of
densities

p(xn) =
∑K

k=1
πkN

(

xn

∣

∣µk,Λ
−1
k

)

, (5)

where πk describe the mixing coefficients, with 0 ≤ πk ≤ 1

and
∑K

k=1 πk = 1. The exact membership of an agent n
to cluster k may be expressed by a K-dimensional binary
vector-valued stochastic variable zn, for which znk = 1
and znl = 0, ∀l 6= k holds. The prior probability density
over znk is determined by

p(znk = 1) = πk, (6)

so that the marginal probability density for z may be
expressed as

p(zn) =

K
∏

k=1

πznk

k . (7)

The conditional probability over all membershipsZ = {zn}
given the mixing coefficients is therefore

p(Z |π) =
N
∏

n=1

K
∏

k=1

πznk

k . (8)

If the memberships Z as well as µ and Λ are known,
the conditional probability for the agents’ positions is
X = {xn}

p(X |Z,µ,Λ) =

N
∏

n=1

K
∏

k=1

N
(

xn

∣

∣µk,Λ
−1
k

)znk

. (9)

In this probability distribution, the agents’ positions xn

are given and the unknown variables π = {πk}, µ = {µk},
Λ = {Λk}, Z = {zn} and the cluster number K have to
be determined such that the positions X are explained by
(5) as well as possible. By interpreting π, µ, Λ and Z as
stochastic variables, this corresponds to a maximization
of the joint probability p(X,Z,π,µ,Λ), which may be
factored into conditional and prior probabilities according
to

p(X,Z,π,µ,Λ) =

p(X |Z,µ,Λ)p(Z |π)p(π)p(µ |Λ)p(Λ). (10)

In order to determine the maximum posterior probability
density p(Z,π,µ,Λ |X) and the marginalized probabil-
ity density p(X), a variational approach is presented in
Bishop (2006), which links their determination to the cal-
culation of a functional q(Z,π,µ,Λ). For this, ln p(X) =
L(q) + KL(q‖p) with

L(q)=

∫

q(Z,π,µ,Λ) ln

[

p(x,Z,π,µ,Λ)

q(Z,π,µ,Λ)

]

dZdπdµdΛ,

(11a)

KL(q‖p)=−

∫

q(Z,π,µ,Λ) ln

[

p(Z,π,µ,Λ|x)

q(Z,π,µ,Λ)

]

dZdπdµdΛ,

(11b)

is introduced, where L(q) is a lower bound on ln p(X)
and KL is the Kullback-Leibler-divergence between the
distributions q and p. A maximization of ln p(X) may
now be achieved by maximizing the lower bound L(q) and
by minimizing the Kullback-Leibler-divergence, which are
both dependent on the newly introduced probability den-
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sity q. In order to limit the search area for the functional,
a factorization

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) (12)

is being introduced in order to obtain a tractable solution
of (11). Furthermore, some assumptions considering the
prior probability densities π, µ und Λ have to be made.
Because of (8), p(Z|π) has the form of a multinomial
distribution. Making use of the concept of conjugacy a
Dirichlet prior

p(π) = Dir (π |α0 ) = C(α0) ·
K
∏

k=1

π
(α0,k−1)
k (13)

is assumed as prior distribution for p(π), where α de-
notes a vector of hyperparameters and C(·) is a constant.
Likewise, because of the normal distribution of the agents’
positions xn within a cluster k, the conjugate prior of mean
µk given the precision Λk is again normally distributed,
whereas the prior for Λk is a Wishart distribution. Thus,
the joint probability density over µ und Λ now takes the
form

p(µ,Λ) = p(µ|Λ)p(Λ) =

K
∏

k=1

N
(

µk

∣

∣m0, (β0Λk)
−1
)

W (Λk |W0, ν0 ), (14)

with parameter β0 and ν0 denoting the degrees of freedom
of the Wishart distribution. By means of the variational
approach, the optimal distributions q⋆ may be calculated
in general. This leads to

q⋆(Z) =

N
∏

n=1

K
∏

k=1

rznk

nk , (15a)

rnk =
ρnk

∑K

j=1 ρnj
, (15b)

ln ρnk = E (lnπk) +
1

2
E (ln |Λk|)−

D

2
ln 2π

−
1

2
E µ

k
,Λk

(

(xn − xk)
⊤
Λk(xn − xk)

)

,
(15c)

as marginalized distribution over Z, where the auxiliary
variables

Nk =

N
∑

n=1

rnk, (16a)

xk =
1

Nk

N
∑

n=1

rnkxn, (16b)

Sk =
1

Nk

N
∑

n=1

rnk(xn − xk)(xn − xk)
⊤ (16c)

have been introduced. The optimal prior for the mixing
coefficient is then a Dirichlet-distribution

q⋆(π) = Dir (π |α ) (17)

with hyperparameter components αk = α0 +Nk.

The expectation values of the mixing coefficients are thus
given by E (πk) = α

k′
∑

K

k′=1
α

k′

. Finally, the optimal prior

distribution over µk and Λk is calculated as

q⋆(µk,Λk) =

N
(

µk

∣

∣mk, (βkΛk)
−1
)

W (Λk |Wk, νk ) , (18a)

with

βk = β0 +Nk, (18b)

mk =
1

βk
(β0m0 +Nkxk), (18c)

W−1
k = W−1

0 +NkSk

+
β0Nk

β0 +Nk

(xk −m0)(xk −m0)
⊤,

(18d)

νk = ν0 +Nk + 1. (18e)

Their expected values are determined by E (µk) = mk and
E (Λk) = νk ·Wk. Because of

E µ
k
,Λk

(

(xn − µk)
⊤Wk(xn − µk)

)

=

Dβ−1
k + νk(xn −mk)

⊤Wk(xn −mk), (19)

the expected values for the memberships E (znk) = rnk
take the form

rnk ∝ π̃kΛ̃
1/2
k

· exp

{

−
D

2βk
−
νk
2
(xn −mk)

⊤Wk(xn −mk)

}

(20a)

with

ln Λ̃k := E (ln |Λk|)

=

D
∑

i=1

ψ

(

νk + 1− i

2

)

+D ln 2 + ln |Wk|, (20b)

ln π̃k := E (lnπk) = ψ (αk)− ψ
(

∑

k′
αk′

)

. (20c)

Herein, ψ(x) = d
dx

ln Γ(x) describes the digamma function.
By means of these equations, the optimal model parame-
ters of the Gaussian mixture density in (5) as well as zn
may be iteratively calculated with the following algorithm:

Algorithm 1. (Variational Bayes).

(1) Choice of an upper bound on the cluster number
Kmax and initialization of α0, β0, m0, W0, ν0,

(2) Variational Expectation: Calculation of
E (znk) = rnk with (20) for fixed π, µ, Λ,

(3) Variational Maximization: Calculation of optimal
prior densities q⋆(π) and q⋆(µk,Λk) with (17) and
(18) for fixed rnk,

(4) if convergence of probability densities q(Z,π,µ,Λ)
or the variables is not reached, go to step 2, else stop.

The advantage of this Variational Bayes is the ability
of a soft partitioning of the agents’ positions as well
as an automatic determination of the model complexity,
because only an upper bound Kmax on the cluster number
K ≤ Kmax has to be set in advance. Depending on the
choice of α, more or less mixing coefficients πk 6= 0 remain
after convergence of the algorithm.

3.2 Distributed Variational Bayes

Considering a decentral implementation in an MAS, the
aforementioned Alg. 1 allows a local calculation of the
rnk for fixed π, µ and Λ by each of the agents. On
the other hand, it has the disadvantage that in order
to compute the model parameters π, µ and Λ for fixed
rnk, global computations are necessary due to (16), which
prevent a fully distributed implementation. With a con-
sensus protocol like in (2), on the other hand, a decentral
computation of the mean is possible. Therefore a strategy
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for the distributed calculation of the Variational Bayes
Alg. 1 is the transformation of global computations into
computations of mean values. For this to be achieved, (16)
is first transformed into

Nk =

N
∑

n=1

rnk = N · ωk, (21a)

xk =
1

Nk

N
∑

n=1

rnkxn =
1

Nk

N
∑

n=1

τnk =
τ̃ k

Nk

, (21b)

Sk =
1

Nk

N
∑

n=1

rnk(xn − xk)(xn − xk)
⊤

=
1

Nk

N
∑

n=1

ρnk =
ρ̃k

Nk

.

(21c)

With help of the auxiliary variables

ωk =
Nk

N
=

1

N

N
∑

n=1

rnk, (22a)

τ k =
τ̃ k

N
=

1

N

N
∑

n=1

τnk, (22b)

ρk =
ρ̃k

N
=

1

N

N
∑

n=1

ρnk (22c)

a calculation of (21) is possible with Nk = N · ωk, xk =
τ k

ωk

, Sk =
ρ

k

ωk

. The advantage of the auxiliary variables

in (22) is their affinity to mean value computations for
rnk, τnk and ρnk of each agent. These may be carried
out in a distributed manner by applying a consensus
protocol for each of the variables in (22), e.g. with (2).
For recovering (21), the number of agents N has to be
known by all agents. This may also be easily computed in
a distributed manner. With help of the auxiliary variables
it is now possible to calculate the the prior probability
densities q⋆(µk,Λk). Thus, a fully distributed Variational
Bayes is reached. Although being analytically slightly more
complex than other clustering methods, the Variational
Bayes approach allows for a complete description of the
MAS formation as a mixture density, for which only an
upper bound on the cluster number has to be set in
advance. In addition to these benefits, this fully distributed
version of the Variational Bayes may be applied to MAS
with arbitrary connected communication graphs. Thus,
the communication structure has not to be known to
the agents and yet after convergence each agent has an
estimate of the agents spatial distribution. This forms the
basis of the N-consensus protocol.

4. THE N-CONSENSUS PROTOCOL

In order to reach an N-consensus, the agents have to be
controlled by a signal wn as in (4) in order to move to the
center of clusters they are belonging to. Like the cluster
centers µk and memberships znk, the reference signal may
as well be interpreted as a stochastic variable and its
probability density can be denoted as

p(wn|rn,mn) = N

(

wn

∣

∣

∣

∣

∣

∑

k

rnkmnk,Σw

)

, (23)

with E (zn) = rn and E (µn) = mn. The complete algo-
rithm for the calculation of the N-consensus is summarized
in the following steps:

Algorithm 2. (N-consensus protocol).

(1) Choice of an upper bound of the cluster number
Kmax and initialization of parameters α0, β0, m0,
W0, ν0,Σw,

(2) Variational Expectation: Calculation of rnk with (20),
(3) Consensus : Distributed calculation of ωk, τ k and ρk

in (22) with a consensus protocol,
(4) Variational Maximization: Computation of interme-

diate variables Nk, xk, Sk with (21), calculation
of optimal prior probability densities q⋆(π) and
q⋆(µk,Λk) with (17) and (18) for fixed rnk,

(5) local computation of new reference signals wn with
(23),

(6) if convergence of probability densities q(Z,π,µ,Λ)
or variables is not reached, go to step 2, else stop.

In Alg. 2, a distributed clustering is reached by means
of a Variational Bayes working on the initial agents’
positions xn(0). Depending on the estimated mixture
density representing the whole MAS, each agent derives
a control signal. Considering the overall system dynamics,
this process may be seen as an open-loop control involving
the distributed Variational Bayes and the MAS. It is now
tempting to ask whether a consideration of the current
agents’ positions xn(t) in the clustering process may
lead to an improvement of the system dynamics. This
equivalence to a feedback control is shown in Fig. 2.
Because the agents are solely moving towards the centers
of their clusters, such an adaption should not change the
result of the final N-consensus, although the estimated
mixture density will be different. The advantage of this
adaption will be a faster convergence of the whole process
due to sharper cluster shaping over time.

DDVB
π, µ, Λ, Z

MAS
ẋ = f(u)

u x

Fig. 2. Feedback control of MAS with distributed Dyna-
mical Variational Bayes (DDVB)

Considering an implementation of such a distributed Dy-
namical Variational Bayes (DDVB), one has to take care
of rnk, which converge asymptotically to 0 or 1. For agents
adapting their positions xn, this might cause problems in
cases where the agents follow their control input faster
than rnk are converging towards a fixed value rnk ∈ {0, 1}.
This would lead to a convergence of all agents’ positions
onto one single synchronous state, independent of their
original formation. By carrying out a hard decision ac-
cording to

r̃nk =







1, if ∃ rnl : rnl > τr ∧ k = l

0, if ∃ rnl : rnl > τr ∧ k 6= l

rnk, otherwise

, (24)

this undesirable behavior may be avoided. The threshold
τr may be chosen rather restrictive, e.g. τr ≥ 0.95. Thus,
an agent is assumed to fully belong to a certain cluster
whenever its expected membership exceeds τr. Another
problem results from the expected value E (µk) = mk in
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(18c). In order for the Variational Bayes not to run into
singularities for D ≥ 2 and data points collapsing onto
a cluster center, β0 6= 0 has to be chosen. In case of an
adaption of xn and m0 = 0, this offset causes a drift of
the agents towards the origin of the coordinate system due
to

mk =
β0m0

βk
+
Nkxk

βk
=

1

1 + β0

Nk

xk, (25)

which forms a sequence converging to zero. This is avoided
by a correction of the Variational Bayes with

m̃k = mk +
β0
βk

· xk =
Nk

Nk + β0
xk +

β0
βk

· xk = xk. (26)

Algorithm 3. (Dynamical N-consensus protocol). Akin to
Alg. 2, but with adaption of agents’ positions xn(t) within
the DVB and wn(t) =

∑

k r̃nk(t) · m̃k(t).

This differs from Alg. 2, because the Variational Bayes
now uses the current agents’ positions xn(t) instead of the
inital values xn(0).

5. THE N-CONSENSUS MODEL

In Bishop (2006) it is shown that probabilistic depen-
dencies may be visualized by graphical models. As an
example, the joint probability in (10) may be represented
by the Bayesian Network in Fig. 3a. Therein, the observed
stochastic variables xn are being represented by filled
circles, whereas unobserved (latent) variables are depicted
by empty circles. The rounded box around the variables zn
und xn emphasizes that they are given for each of the N
agents, whereas the parameters π, µ and Λ of the mixture
density appear only once.

(a)

π

zn xn

µ Λ

N (b)

=̂

πn

zn

µn

xn

Λn

θn

ηn

Fig. 3. (a) Mixture of Gaussians as Bayesian Network and
(b) equivalent compact notation using vector valued
stochastic variables

Because in the distributed Variational Bayes each agent
calculates an identical copy of the model parameters πn,
µn and Λn using the consensus protocol, this can be taken
into consideration graphically by Fig. 3b, which also shows
a compact notation using hypernodes. Therein, the vector
valued node ηn combines the local variables xn and zn of
each agent and θn represents the set of model parameters
πn, µn and Λn that were calculated by the n-th agent.

The probabilistic dependencies between the reference sig-
nal wn and the hypernodes ηn and θn may equivalently
be visualized as shown in Fig. 4.

θn

ηn wn

Fig. 4. Dependency of reference signal from vectorial nodes
η and θ

The partial graphical models may be combined to a
unifying graph, which is illustrated for the MAS example

in Fig. 1. Each agent n possesses a local variable ηn

and a global variable θn as well as a reference signal
wn, therefore being described by three nodes as shown
in Fig. 4. In order to compute (22) in a distributed
manner, the agents have to transfer information over the
communication graph, which is symbolized by the vectorial
connections between global variables θn. This results in
the N-consensus model depicted in Fig. 5, which shows
probabilistic dependencies as well as the communication
structure.

ψmn

θm

ηm

wm

θn

ηn wn

Fig. 5. N-consensus model

When introducing Gaussian potentials

ψmn(θm, θn) = e−(θm−θn)
2

(27)

for the edges of each two hypernodes θm, θn withm 6= n in
order to characterize the probabilistic dependencies among
the global variables of the agents, the N-consensus model
describes a potential

Ξ =
∏

n

p(ηn, θn) ·
∏

{m,n}

ψmn(θm, θn) ·
∏

n

p(wn |ηn, θn),

(28)
which includes the joint probabilities p(ηn, θn) being cal-
culated by the agents with (10) as well as the reference
signals p(wn |ηn, θn) derived from the model estimates.
The synchronization among the global variables θm, θn

is taken into account by ψmn(θm, θn). Altogether, an N-
consensus of the agents is reached by maximizing (28).

If a dynamical Variational Bayes is used in order to
improve the overall system dynamics, the complete system
in Fig. 2 may also be visualized as a Dynamical Bayesian
Network (DBN) as shown in Fig. 6. Herein, the control
signals are being used in the following time steps as
new position values that are to be clustered. In addition,
the agents are measuring new position values yn(t + 1)
that are identical with xn(t + 1) and thus with wn(t)
due to the integrator dynamics of the agents. When
combining the latent stochastic variables in a hypernode
Ω = {x, z,u,π,µ,Λ}, the DBN reveals an analogy to a
Markov chain of order one, which is shown in Fig. 7.

Λ(0)

µ(0)

xn(0)

wn(0)

zn(0)

π(0)

yn(0)

N

Λ(1)

µ(1)

xn(1)

wn(1)

zn(1)

yn(1)

π(1)

N

. . .

Fig. 6. N-consensus as DBN unrolled over two time steps
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. . .y(0)

Ω(0) Ω(1) Ω(2) Ω(3)

y(1) y(2) y(3)

Fig. 7. N-consensus representation as Markov chain

6. SIMULATION RESULTS

For the MAS in Fig. 1, the agent trajectories until conver-
gence upon N-consensus are shown in Fig. 8. In the same
figure, a contour plot of the estimated mixture density in
case of a Variational Bayes without dynamical adaption
of the position values is drawn as well. A second example
with an MAS consisting of 100 agents, Fig. 9 shows the
result of an N-consensus with dynamical adaption of the
Variational Bayes. For this example, the summed differ-
ence between the agents current position and their final
position

F (t) =

N
∑

n=1

∥

∥

∥

∥

∥

K
∑

k=1

r̃nk(t) · m̃
(n)
k (t)− r̃nk(Tend) · m̃

(n)
k (Tend)

∥

∥

∥

∥

∥

(29)
is shown in Fig. 10, which can be interpreted as a control
error. As can be seen, the N-consensus converges faster in
case of a dynamical adaption of position values used within
the Variational Bayes compared to a clustering which is
only executed on the initial agents’ positions.
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Fig. 8. Agent trajectories until reach of N-consensus

7. CONCLUSION

The N-consensus was addressed for the first time, describ-
ing a combined clustering and synchronization upon mul-
tiple states within an MAS. Based on existing probabilistic
methods, it was shown that a Variational Bayes in MAS
with arbitrary connected topology may be computed in
a distributed manner. In order to visualize probabilistic
dependencies, a graphical model was presented which de-
scribes a potential that is maximized when a N-consensus
is reached. By dynamically adapting the position values
used for the clustering process, an improvement in the
overal system dynamics was gained. At the same time,
the analogy of this process to a first order Markov chain
was shown. In order to synchronize auxiliary variables, a
consensus filter was utilized.

Further research is necessary on how to include the actual
dynamics of the agents into the framework as well as
their impact on the system dynamics and the N-consensus.
Also, the effect of weighted communication graphs and
switching topologies remains an open question. The frame-
work presented might be an even more general solution
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Fig. 9. N-Consensus in MAS with 100 agents
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Fig. 10. Control error over time for MAS with 100 agents

method for problems involving distributed clustering and
synchronization.
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