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Zusammenfassung

In dieser Arbeit entwickeln wir eine zuverlässige und ganzheitlich fehlergesteuerte Quantifizierung
von Unsicherheiten für hyperbolische partielle Differentialgleichungen (PDEs) mit zufälligen
Daten auf Netzwerken. Das Ziel ist es, adaptive Strategien im stochastischen und im physi-
kalischen Raum mit einer Multilevel-Struktur so zu kombinieren, dass sowohl eine vorgegebene
Genauigkeit der Simulation als auch eine Reduktion des Rechenaufwands erreicht wird.

Zunächst betrachten wir hyperbolische PDEs auf Netzwerken, die keine Unsicherheiten enthal-
ten. Wir führen eine Hierarchie von Modellen mit abnehmender Genauigkeit ein, die durch
Vereinfachungen von komplexen Modellgleichungen erreicht werden kann. Diese Hierarchie er-
möglicht es detaillierte Modelle in Bereichen des Netzwerkes komplexer Dynamik, und verein-
fachte Modelle in Bereichen geringer Dynamik anzuwenden. Als Nächstes erweitern wir das
Netzwerkproblem um unsichere Anfangsdaten und unsichere Bedingungen, die an den Rand und
an innenliegende Netzwerkkomponenten gestellt werden. Um das Verhalten des betrachteten Sys-
tems trotz der Unsicherheiten prognostizieren zu können, wollen wir relevante Ausgabegrößen
und ihre statistischen Größen, wie Erwartungswert und Varianz, approximieren.

Für die Untersuchung des Einflusses der Unsicherheiten konzentrieren wir uns auf zwei Sampling-
Methoden: die weit verbreitete Monte-Carlo-Methode (MC) und die stochastische Kollokation
(SC), die eine vielversprechende Alternative darstellt. Folglich liegt das Hauptinteresse dieser Ar-
beit auf der stochastischen Kollokation. Diese Methoden ermöglichen numerische, für das deter-
ministische Problem bestehende Löser wiederzuverweden, wodurch sich deren Implementierung
vereinfacht. Wir entwickeln für beide Methoden einen adaptiven Singlelevel-Ansatz (SL), indem
wir adaptive Strategien im stochastischen Raum mit adaptiven physikalischen Approximationen
effizient kombinieren. Die physikalischen Approximationen werden mit einer sample-abhängigen
Auflösung in Raum, Zeit und Modellhierarchie berechnet. Anschließend wird der Ansatz auf eine
Multilevel-Struktur (ML) erweitert. Hierfür koppeln wir physikalische Approximationen mit un-
terschiedlichen Genauigkeiten so miteinander, dass die Rechenkosten minimiert werden. Mit
Hilfe von a posteriori Fehlerindikatoren können wir die Diskretisierung der physikalischen und
stochastischen Approximationen so kontrollieren, dass eine vorgegebene Genauigkeit der Simu-
lation gewährleistet wird. Bei den SC-Methoden setzen wir die adaptive stochastische Strategie
mittels adaptiver dünnbesetzter Gitter um, die im Gegensatz zu MC-Methoden glatte oder an-
dere spezielle Strukturen im stochastischen Raum ausnutzen können. Außerdem analysieren wir
die Konvergenz, den Rechenaufwand und die Komplexität unserer SL- und ML-Methoden.

Um die Zulässigkeit relevanter unsicherer Ausgabegrößen zu untersuchen, stellen wir ein sample-
basiertes Verfahren auf. Das Verfahren approximiert die Wahrscheinlichkeit, dass die Aus-
gabegröße über den gesamten Zeithorizont Werte zwischen einer gegebenen unteren und oberen
Schranke annimmt. Hierzu wird die im Allgemeinen unbekannte Wahrscheinlichkeitsdichtefunk-
tion der Ausgabegröße benötigt. Deshalb analysieren wir zusätzlich den Kerndichteschätzer
(KDE), der eine Approximation an die Wahrscheinlichkeitsdichtefunktion der Ausgabegröße
liefert und in einem Nachbearbeitungsschritt von SC-Methoden sehr kosteneffizient berechnet
werden kann.



Als anwendungsbezogenes Beispiel betrachten wir den Gastransport in Pipelines, der durch
isotherme Euler-Gleichungen beschrieben werden kann. Wir präsentieren numerische Ergeb-
nisse für zwei Gasnetzwerke mit unsicherer Gasnachfrage und demonstrieren die Zuverlässigkeit
der Fehlerkontrolle unserer Methoden, wobei der Erwartungswert einer unsicheren Ausgabegröße
approximiert wird. Die numerischen Beispiele zeigen, dass die MC-Methoden aufgrund der hohen
Rechenkosten nicht konkurrenzfähig sind und auch, dass die Multilevel-SC-Methode bessere
Ergebnisse als der Singlelevel-Ansatz liefert. Des Weiteren wenden wir die KDE-Methode auf
den minimalen und den maximalen Druck an den Ausflussknoten des Netzwerkes an.
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Abstract

In this thesis, we develop reliable and fully error-controlled uncertainty quantification methods
for hyperbolic partial differential equations (PDEs) with random data on networks. The goal is
to combine adaptive strategies in the stochastic and physical space with a multi-level structure
in such a way that a prescribed accuracy of the simulation is achieved while the computational
effort is reduced.

First, we consider hyperbolic PDEs on networks excluding any type of uncertainty. We introduce
a model hierarchy with decreasing fidelity which can be obtained by simplifications of complex
model equations. This hierarchy allows to apply more accurate models in regions of the network
of complex dynamics and simplified models in regions of low dynamics. Next, we extend the
network problem by uncertain initial data and uncertain conditions posed at the boundary and at
inner network components. In order to predict the behavior of the considered system despite the
uncertainties, we want to approximate relevant output quantities and their statistical properties,
like the expected value and variance.

For the study of the influence of the uncertainties, we focus on two sampling-based approaches:
the widely used Monte Carlo (MC) method and the stochastic collocation (SC) method which is
a promising alternative and therefore of main interest in this work. These approaches allow to
reuse existing numerical solvers of the deterministic problem such that the implementation is sim-
plified. We develop an adaptive single-level (SL) approach for both methods where we efficiently
combine adaptive strategies in the stochastic space with adaptive physical approximations. The
physical approximations are computed with a sample-dependent resolution in space, time and
model hierarchy. The extension to a multi-level (ML) structure is realized by coupling physical
approximations with different accuracies such that the computational cost is minimized. Due
to a posteriori error indicators, we can control the discretization of the physical and stochastic
approximations in such a way that a user-prescribed accuracy of the simulation is ensured. For
the SC methods, we realize the adaptive stochastic strategy by adaptive sparse grids which are
able to exploit any smoothness or special structure in the stochastic space, in contrast to MC
methods. In addition, we analyze the convergence, the computational cost and the complexity
of our SL and ML methods.

In order to validate the feasibility of relevant uncertain output quantities, we propose and ana-
lyze a sample-based method which approximates the probability that the quantity takes values
between a given lower and upper bound on the whole time horizon. To this end, the usually
unknown probability density function (PDF) of the output quantity is required. Therefore, we
introduce and analyze a kernel density estimator (KDE) which provides an approximation of the
PDF of the output quantity and can be computed cost-efficiently in a post-processing step of SC
methods.

As an application-relevant example, we consider the gas transport in pipeline networks which
can be described by the isothermal Euler equations and their simplifications. We present nu-
merical results for two gas network instances with uncertain gas demands and demonstrate the
reliability of the error control of our methods approximating the expected value of a random



output quantity. The numerical examples show that the MC methods are not competitive due to
high computational costs and that the multi-level SC approach outperforms the single-level SC
method. Based on the SC methods, we successfully apply the KDE approach to the minimum
and maximum pressures at the outflow nodes of the network.

vi
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Chapter 1

Introduction

The importance of natural gas transport has significantly increased in the last years due to the
ongoing transition from fossil fuels to renewable energies, for example by shut downs of coal-fired
plants. The role of gas has been changed from a pure energy source to an additional transport
and storage option of energy generated from renewable resources like wind and solar power.
In the future, natural gas will be replaced by climate-neutral gas, like biogas and low-carbon
hydrogen [55]. Therefore, the comprehension of the dynamics in gas networks still remains
important. Typically, the aim of operating a gas network is to achieve a reliable and efficient gas
transport which means that the proper amount of gas has to be distributed to the consumers
with the required quality and the operational costs as well as the contractual penalties have to
be minimized. Due to the complexity of this operational task, modeling, numerical simulation
and optimization of gas transport are necessary.

Renewable energies depend on the weather and have a seasonally fluctuating nature. Conse-
quently, the electricity production varies which leads to fluctuations in the demand of the gas
transportation. Furthermore, the gas consumption of consumers can also be uncertain due to
unexpected weather changes or inaccurate weather forecasts like the temperature of the envi-
ronment. The influence of these intra-day uncertain oscillations on the gas transport needs to
be investigated in order to understand and predict the behavior of the system despite the un-
certainties. This challenge is a key issue of uncertainty quantification and demands computing
statistical quantities. To this end, the simulation has to be extended to these dynamic fluc-
tuations. In order to assess the reliability of the gas transport, we are interested in how likely
relevant output quantities meet the prescribed bounds over the whole time horizon. For example,
we can validate if the delivered gas is within the pressure limits specified in a contract between
gas company and consumer.

In the last decades, the modeling, simulation and optimization of gas transport in networks has
been extensively investigated in many publications [9, 14, 61, 85, 91]. The gas dynamics can
be described by the Euler equations which belongs to the class of hyperbolic partial differential
equations (PDEs). Based on assumptions and simplifications, different models can be derived
and arranged in a hierarchy with decreasing fidelity [26, 29, 75]. Typically, the computational
effort of the simulation increases with the fidelity of the selected model. Since the gas dynamics
can vary in space and time, Domschke et al. [29] developed an adaptive algorithm which uses
simplified models in regions of the network with low dynamics and more detailed models in the
case of complex dynamics so that the computational effort can be reduced. Furthermore, this
cost-efficient algorithm adaptively adjusts the spatial and temporal discretization and it provides
an automatic control of the accuracy of the simulation [25, 29]. Recently, the role of uncertain
demands in gas networks has increased and is widely investigated in the context of simulation
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and probabilistic constrained optimization [35, 36, 44, 45, 90]. In all these approaches, there is
no automatic control of the accuracy of the simulation of uncertain gas transport.

The purpose of this thesis is to develop a reliable and fully error-controlled quantification of the
transport of uncertainties through networks such that a prescribed accuracy of the simulation
is automatically achieved while the computational effort is reduced as much as possible. To
this end, we want to combine two separate concepts which are well-established in uncertainty
quantification (UQ): (i) adaptive strategies in the stochastic and physical space and (ii) multi-
level structures. Since we have access to the adaptive algorithm developed in [29] for gas transport
in networks, we focus on sampling-based methods. These methods allow to reuse any numerical
solver that already exists for the simulation without uncertainties. Moreover, we develop an
efficient approach for the validation of the pressure of the delivered gas or other relevant quantities
by applying a kernel density estimation. In this work, we generalize the setting to any physical
phenomena on networks which can be described by hyperbolic PDEs, for example traffic flow,
material flow or the aforementioned gas transport problems.

1.1 Uncertainty Quantification

Uncertainty quantification (UQ) plays an important role in application if the required input
data or model parameters are subject to uncertainty because of a lack of knowledge, natural
fluctuations or imprecise data (e.g. measurements). The main interest of this relatively young
research field is to study how the uncertainties influence the so-called quantity of interest (QoI)
which is typically the solution or a functional of the solution. An example for the QoI in gas
networks are the compressor costs or the pressure at a certain node integrated over time. The
uncertainties in the input data are modeled by random variables and transfer to the solution of
the model such that the QoI is also uncertain. In order to predict the behavior of the system
despite these uncertainties, we want to approximate the QoI and its statistical quantities, like
the expected value and the variance. A general introduction to UQ can be found in [40, 73].

For the forward propagation in UQ, there are three main approaches: Stochastic Galerkin (SG),
Monte Carlo (MC) and stochastic collocation (SC) methods. These approaches can be divided
into two classes: intrusive and non-intrusive methods. For hyperbolic systems of conservation
laws, the application of the three approaches is discussed in detail in [1]. The SG method is an
intrusive approach and is based on generalized polynomial chaos expansion. In this approach, a
highly expanded system of coupled equations has to be solved and existing numerical solvers for
the deterministic problem cannot be reused. The other two approaches are non-intrusive: The
physical (deterministic) dimension is fully separated from the random dimension. Therefore, we
only have to solve decoupled deterministic problems which correspond to specific points in the
stochastic space and do not include any uncertainties. The QoI of these decoupled problems,
the so-called samples, are independent of each other and are needed to approximate the desired
statistical quantities. Accordingly, these approaches are also called sampling-based methods. If a
solver for the deterministic problem is already available, then these methods are highly preferred
since we can reuse the original deterministic solver without changes. This is a great advantage
and strongly simplifies the implementation of non-intrusive methods. Additionally, we can solve
the problems in parallel because the problems are decoupled.

Monte Carlo (MC) methods are very widely used because they are robust even for a lack of
regularity of the solution. In addition, they are easy to implement and the convergence rate is
independent of the stochastic dimension. Therefore, they are preferred especially for problems
with very high-dimensional stochastic spaces. However, the convergence rate of 0.5 is rather small

2



1.1 Uncertainty Quantification

and usually a huge number of problems has to be solved to achieve an adequate accuracy. Since
computing numerical solutions is often computationally expensive, we can get huge computation
times. SC methods are based on a polynomial interpolation in the stochastic space using samples,
i.e. the QoI of deterministic problems. Therefore, we obtain an interpolant of the uncertain QoI,
which provides a lot of statistical information in a post-processing step. Compared to MC, SC
methods do not choose the needed points randomly, but according to a fixed structure. For
moderate stochastic dimensions and a smooth dependency on the uncertain parameters, sparse
grid methods allow us to solve significantly fewer problems than in the case of MC. This is an
important advantage because a numerical solution is often computationally expensive.

In order to enhance the computational efficiency of MC methods, multi-level strategies were
first introduced as a variance reduction technique in an abstract setting by Heinrich [53]. This
approach extends the MC setting where only one problem with a fixed resolution is considered
to a hierarchy of subproblems with increasing resolution and couples the subproblems via a
telescoping sum. Moreover, Giles [42] extended the multi-level Monte Carlo method (MLMC) to
stochastic differential equations in financial engineering and proposed a numerical algorithm to
choose the number of samples adaptively. Barth et al. [10] and Cliffe et al. [18] developed MLMC
methods for elliptic PDEs with uncertain data using a hierarchy of uniform mesh refinements for
the spatial approximation. Considering hyperbolic PDEs, the MLMC method was combined with
finite volume discretizations for the physical space using uniform refinements in [76–78]. Several
years later, Teckentrup et al. [106] extended the SC approach by a multi-level structure.

The efficiency of MLMC methods applied to uncertain PDEs can be further improved by using
adaptive spatial mesh refinements obtained via error estimators. In [32], a hierarchy of spatial
meshes was generated by adaptively refining an initial spatial mesh based on expected values of
local sample-dependent error estimators. For the computation of failure probabilities, Elfverson
et al. [33] performed a selective refinement for every sample in an MLMC method. Moreover,
Detommaso et al. [22] proposed to consider the level parameter of the multi-level approach as
a continuous variable and to construct different level hierarchies which are determined indepen-
dently for each sample. Kornhuber and Youett [64] replaced the hierarchy of uniform spatial
meshes by a sequence of spatial tolerances which specify the desired accuracy of the computed
samples.

In the context of high-dimensional quadrature, Gerstner and Griebel [38] introduced adaptive
sparse grid methods which adaptively select the sample points in the stochastic space and are
able to exploit any smoothness or special structure with respect to the stochastic parameters.
These methods were used with SC methods for PDEs with uncertain data in [49, 81, 95], but
without a multi-level structure. Recently, Lang et al. [67] combined adaptive sparse grids in the
stochastic space and adaptive sample-dependent mesh refinements for the spatial approximation
with a multi-level structure. Until then, spatial approximations which are locally refined for
each sample, were only considered in MLMC methods [22, 32, 33, 64]. Thereafter, Feischl
and Scaglioni [34] proved the convergence of an SC method which is based on the adaptive
sparse grid algorithm of [49] and extended, similar to [67], by adaptive sample-dependent spatial
refinements.

In this thesis, we focus on SC and MC methods since we want to reuse existing efficient determin-
istic solvers. We extend the fully adaptive multi-level stochastic collocation (MLSC) approach
for elliptic PDEs [67] to hyperbolic PDEs with random data on networks. Adaptive sparse grids
in the stochastic space are efficiently combined with physical approximations computed individ-
ually for each stochastic sample point in a space-time-model adaptive manner. Moreover, the
multi-level structure is realized in such a way that the computational cost is minimized and the

3



Chapter 1 Introduction

usage of error estimators enables us to achieve a user-prescribed accuracy of the approximated
QoI. For the purpose of comparison with the SC method, we analyze a fully adaptive MLMC
approach where again the same concepts, adaptivity and multi-level, are combined. A similar
approach was presented for random elliptic problems in [64], but to the author’s knowledge not
so far for hyperbolic PDEs with random data on networks.

1.2 Kernel Density Estimation

The validation of real-valued QoIs, like the minimum and maximum pressures at the delivery
points over time, implies the computation of the probability that the QoI lies in the prescribed
range. For this computation, the probability density function (PDF) of the QoI needs to be
integrated. However, the PDF as well as the probability distribution of the QoI are usually
unknown. Applying a kernel density estimator (KDE) provides an approximation of the required
PDF which can be performed in a post-processing step of MC or SC methods since the KDE is
based on samples of the QoI. In the case of MC methods, the samples which are already computed
can be reused of course. But if more samples are needed to obtain an accurate approximation,
then new samples has to be computed which can be computationally expensive, especially for
complex problems. In contrast to the MC approach, SC methods provide an approximation of
the QoI which only needs to be evaluated in order to get samples for the KDE approach. This
evaluation is extremely cheap and has the advantage that no computational effort is invested in
solving further deterministic problems.

The KDE was originally introduced in [86, 92] and became a widely used data-smoothing method
(e.g. [46]). In the context of stationary gas networks and transient flow networks, the approach
was applied to compute probabilities in optimization problems with probabilistic constraints [98].
In this thesis, we analyze the KDE for univariate and multivariate QoIs. Furthermore, we investi-
gate different techniques how to compute probabilities by integrating the KDE in MATLAB®.

1.3 Contribution and Outline

In this thesis, we develop a reliable and fully error-controlled quantification of the transport of un-
certainties through a network problem. We extend the fully adaptive MLSC method introduced
recently for elliptic PDEs by Lang et al. [67] to hyperbolic PDEs with uncertain initial data,
uncertain boundary conditions and to some extent uncertain coupling conditions on networks.
Moreover, we provide an extensive analysis of the convergence and the computational complex-
ity of this method. For comparison, we propose a fully adaptive MLMC method, similar to the
elliptic setting in [64], and analyze its convergence and complexity, too. In a post-processing
step of the considered methods, we propose the validation of uncertain real-valued QoIs on the
basis of a KDE.

InChapter 2, we describe the setting of hyperbolic PDEs on networks without any uncertainties,
the so-called deterministic (network) problem. First, we consider the definition of networks
based on directed connected graphs and extend common function spaces to the network case.
We introduce a general hyperbolic PDE and its entropy solution on networks. If the considered
physical process can be described by different hyperbolic PDEs, then we arrange the equations
in a model hierarchy with decreasing fidelity. Consequently, we can use the simplified models
in regions of the network with low dynamics and more accurate models in the case of complex
dynamics so that the computational cost can be reduced. Furthermore, we allow to supplement
the model hierarchy by a suitable quasi-stationary equation as the simplest model and adapt the
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1.3 Contribution and Outline

definition of the solution appropriately. Afterwards, we present an implicit box scheme [63] which
is used in our computations and the general concept of adaptive algorithm for simulations. We
assume to have such an adaptive deterministic black box solver at hand since we only consider
UQ methods which reuse the deterministic solver, see Chapters 4 and 5. Finally, we concentrate
on gas networks including compressor stations and valves. We describe the gas transport on a
pipe network by isothermal Euler equations in one spatial dimension. Then, we derive a model
hierarchy based on [24, 29] and present an adaptive simulation algorithm in space, time and
model hierarchy developed for gas transport by using adjoint-based error estimators [24, 29].

In Chapter 3, we extend the deterministic network problem described in Chapter 2 by uncertain
input data and uncertain conditions posed at the boundary and at inner network components.
In order to formulate the stochastic problem, we introduce the needed solution spaces and the
definition of finite-dimensional noise which is assumed for SC methods. The uncertain data
are modeled by random fields with given distribution. Since the uncertainties propagate to the
solution of the problem, the solution is a random field as well. The derived stochastic formulation
has an infinite-dimensional probability space as stochastic space and constitutes the basis for the
MC approach. Assuming that the uncertain data can be described by a finite number N of real-
valued random variables ξi (finite-dimensional noise assumption), we can transfer the stochastic
formulation to the finite-dimensional image space of the random vector ξ = (ξ1, . . . , ξN ). This
parametrized problem is purely deterministic and is considered in SC methods. Furthermore, we
extend the definition of the deterministic network solution given in Chapter 2 to the two new
problems including uncertainties.

In Chapter 4, we develop a fully adaptive MLMC method which approximates the expected
value of the QoI. We consider the two common QoIs: the solution of the stochastic network
problem itself and a functional of the solution. First, we analyze the single-level (SL) approach
where we combine an adaptive choice of the number of samples with adaptive computations
of each sample computed for a given physical tolerance. Then, we extend it by a multi-level
structure such that the computational cost is reduced. Due to these adaptive strategies, both
methods are fully controlled by a prescribed total accuracy of the expected value of the QoI. For
both methods, we analyze the error, the computational cost and the complexity. Finally, the
implementation of the methods is explained.

Chapter 5 is concerned with the development and analysis of the fully adaptive MLSC method,
an effective and promising alternative to MC methods. As in Chapter 4, we apply the method to
the full solution of the parametrized network problem as well as to a functional of the solution.
SC methods are based on an interpolation in the stochastic space and thus they provide an
approximation of the QoI. In contrast, MC methods handle only statistical quantities. Since we
use global polynomials for the interpolation, we assume a smooth dependence of the QoI on the
stochastic parameters. First, we explain the construction and main properties of sparse grid in-
terpolation operators for multi-dimensional spaces. Then, we describe how to compute statistical
quantities using the approximated QoI and present the adaptive algorithm described in [81]. We
combine the adaptive sparse grid algorithm with the adaptive physical solver which is assumed
to be available for the deterministic network problem such that we get a fully error-controlled
method. Then, we extend this method by a multi-level structure and analyze its convergence and
complexity. Finally, we present the whole algorithm for the single-level and multi-level approach
as pseudocode. In the context of uncertain gas transport, the results concerning functionals
of the solution are already published by the author in collaboration with Lang and Domschke
in [68].
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Chapter 1 Introduction

In Chapter 6, we investigate an approach based on KDEs to check the feasibility of a real- or
function-valued QoI. Using the approximated QoI given by SC methods, this post-processing step
is computationally very cheap. First, we introduce the KDE in order to approximate the usually
unknown PDF of a random variable which takes values in Rd. Then, we analyze the convergence
of this estimator and describe how to approximate the probability that the random variable
meets some prescribed bounds. Furthermore, we show the convergence of this approximated
probability and study computational aspects using a common choice of the KDE. In the case of
bounded random variables, the KDE has a larger support than the exact PDF. For this case,
we consider a boundary correction method which provides an approximated PDF with the same
support as the exact PDF. Some intermediate results of Chapter 6 are already published by the
author in collaboration with Schuster, Gugat and Lang in [98].

In Chapter 7, we present numerical experiments of uncertain gas transport. We apply the fully
adaptive SL and MLSC methods to gas networks and compare them with the fully adaptive SL
and MLMC methods. We investigate two networks from a public gas library in order to show the
reliability of the error control and especially the efficiency of the fully adaptive MLSC method.
Furthermore, we apply the KDE approach in a post-processing step of the SC methods in order
to check the feasibility of the pressure at the exits.

Finally, we summarize our investigations and show interesting open questions for future research
in Chapter 8.
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Chapter 2

Deterministic Problem Setting

In this chapter, we describe a network of hyperbolic partial differential equations (PDEs) with
suitable initial values, boundary and coupling conditions. In order to reduce the computational
cost of the simulation, we use hyperbolic equations with different fidelity assuming that all
models describe the same physical process. Afterwards, we present an implicit box scheme and
the general concept of adaptivity in the simulation of hyperbolic PDEs. Finally, we concentrate
on gas networks including their components and the modeling of gas transport in pipelines. For
this case, we present a specific adaptive algorithm based on a posteriori error estimators.

2.1 Network Description

Let G = (V ,E ) be a directed, connected and finite graph with the set of vertices V = {v1, . . . , vR},
also called nodes, and edges E = {e1, . . . , eP } ⊂ V × V . Each edge ej = (v, w) ∈ E is di-
rected from node v to node w with v 6= w and corresponds to the interval Ωj := (aj , bj) with
−∞ < aj < bj < ∞ and finite length Lj := bj − aj > 0. For each vertex v ∈ V , we define the
index set δ+(v) of outgoing edges and the index set δ−(v) of ingoing edges by

δ+(v) := {j : ej = (v, w) ∈ E , w ∈ V },
δ−(v) := {j : ej = (w, v) ∈ E , w ∈ V }.

Hence, the index set of all edges which belong to vertex v ∈ V is given by δ(v) := δ+(v)∪ δ−(v).
The incidence matrix A ∈ RR×P of the graph G is given by

Aij =


1 if j ∈ δ+(vi),

−1 if j ∈ δ−(vi),

0 otherwise

for i = 1, . . . , R and j = 1, . . . , P . The component Aij indicates whether the edge ej is connected
to the node vi (differing in ingoing or outgoing edge) or not. The set V of nodes can be divided
into two disjoint sets: boundary and inner/coupling nodes. Boundary nodes are connected to
the graph by only one single edge and are defined by

V∂ := {vi ∈ V : |δ(vi)| = 1}

with the index set

I∂ := {i : vi ∈ V∂}.



Chapter 2 Deterministic Problem Setting

Coupling nodes V0 := V \ V∂ connect at least two edges and can represent not only junctions
but also different network components, for example valves and compressors in gas networks. The
set

I0 := {i : vi ∈ V0} = {i : vi ∈ V , |δ(vi)| ≥ 2}

contains the indices of all coupling nodes. In order to illustrate the introduced notation, we
provide an example of a small network in Figure 2.1. For a well-arranged design of the network,
we allow to add edges with zero length. Note that every one-dimensional interval (a, b) ∈ R can
be represented as a graph having one edge and two nodes.

In order to describe the behavior of each component in the network, we use algebraic equations
as well as hyperbolic partial differential equations. Usually, we store only the state of the edges
instead of the whole network since the state of a node can be defined implicitly by the states of
the edges connected to this node [62].

v1 v2

v3

v6

v5

v4

e1

e2

e3

e5

e4

Figure 2.1: Example of a network with the set of nodes V = {v1, v2, v3, v4, v5, v6} and edges
E = {e1, e2, e3, e4, e5}. The set I∂ = {1, 4, 5, 6} contains the indices of the four boundary nodes
v1, v4, v5 and v6. The two remaining nodes v2, v3 are coupling nodes and thus we have I0 = {2, 3}.
Considering node v3, there are two outgoing edges e4, e5 and one ingoing edge e2 which leads to
the index sets δ+(v3) = {4, 5} and δ−(v3) = {2}.

2.2 Preliminaries and Notation

In this section, we introduce basic function spaces which we extend to networks. Let G ⊂ Rn be
a domain. We denote the space of all functions v : G→ R which are continuous on G by C(G).
If the domain G is bounded, the function space C(Ḡ) with the norm

‖v‖C(Ḡ) = max
x∈Ḡ
|v(x)|

is a Banach space, see for example [113]. Let (W, ‖ · ‖W) be a Banach space. The space
C([0, T ],W) for T > 0 contains all continuous functions v : [0, T ] → W endowed with the
norm

‖v‖C([0,T ],W) = max
t∈[0,T ]

‖v(t)‖W .

The space C([0, T ],W) is a Banach space [73, Chapter 1]. Moreover, the set of continuously
differentiable functions v : G→ Rd is described by the space C1(G,Rd).
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2.2 Preliminaries and Notation

The Lebesgue space Lp(G) with p ∈ [1,∞) is defined as

Lp(G) = {v : G→ R measurable, ‖v‖Lp(G) <∞}

with the norm

‖v‖Lp(G) =

(∫
G
|v(x)|p dx

) 1
p

,

see [4]. The space L∞(G) contains all (equivalence classes of) essentially bounded, measurable
functions v : G→ R and is equipped with the norm

‖v‖L∞(G) = ess sup
x∈G

|v(x)|.

The Lebesgue spaces have the following properties [2, Chapter 2].

Proposition 2.1 (Properties of Lp(G))
Let G ⊂ Rn be a domain.

(i) Lp(G) is a Banach space for 1 ≤ p ≤ ∞.

(ii) L2(G) is a Hilbert space with the scalar product (v, w)L2(G) :=
∫
G v(x)w(x) dx.

(iii) If G is a bounded domain, then it holds Lq(G) ⊂ Lp(G) for 1 ≤ p ≤ q ≤ ∞.

Extending the Lebesgue spaces to Banach space-valued functions, we introduce the Lebesgue-
Bochner space Lp(G,W) which consists of all measurable functions v : G→W with finite norm
given by

‖v‖Lp(G,W) :=

(∫
G
‖v(x)‖pW dx

) 1
p

for p ∈ [1,∞),

‖v‖L∞(G,W) := ess sup
x∈G

‖v(x)‖W for p =∞.

For 1 ≤ p ≤ ∞, the Lebesgue-Bochner spaces are Banach spaces [73, Chapter 1].

Let α = (α1, . . . , αn) ∈ Nn be a multi-index and |α| :=
∑n

i=1 αi be the length of α. A function
w ∈ L2(G) is called a weak derivative of v ∈ L2(G) of order |α| if∫

G
v(x) ∂αφ(x) dx = (−1)|α|

∫
G
w(x) v(x) dx ∀φ ∈ C∞c (G).

We denote the weak derivative w by ∂αv. The Sobolev space H1(G) consists of all functions
v ∈ L2(G) with weak derivatives ∂αv ∈ L2(G) for all α ∈ Nn with |α| ≤ 1 [4]. The space H1(G)
is a Hilbert space with scalar product

(v, w)H1(G) =
∑
|α|≤1

(∂αv, ∂αw)L2(G)

which induces the norm
‖v‖2H1(G) = (v, v)H1(G) =

∑
|α|≤1

‖∂αv‖2L2(G).

9
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Now, the Lebesgue spaces Lp(G) are extended to vector-valued functions v : G→ Rd with d > 1
and afterwards to networks. For this, we first introduce product spaces in general. Let (Wi, ‖·‖i)
be finitely many Banach spaces with i = 1, . . . , d. The product space W1 × · · · × Wd is defined
by

W1 × · · · ×Wd := {y = (y1, . . . , yd) : yi ∈ Wi for i = 1 . . . , d}.

Proposition 2.2
Let (Wi, ‖ · ‖i) be finitely many Banach spaces with i = 1, . . . , d.

(i) The product space W1 × · · · ×Wd with any of the equivalent norms

‖y‖∞ := max
i=1,...,d

‖yi‖i, ‖y‖p :=

(
d∑
i=1

‖yi‖pi

) 1
p

for 1 ≤ p <∞, (2.1)

is a Banach space.

(ii) If Wi are Hilbert spaces with scalar products (·, ·)i, then the product space W1 × · · · × Wd

is a Hilbert space with the scalar product (v, w) =
∑d

i=1(v, w)i.

(iii) Let (Vi, ‖ · ‖Vi) be d many normed spaces with Vi ⊂ Wi. Then, it holds the property
V1 × · · · × Vd ⊂ W1 × · · · ×Wd.

Proof. The considered properties of the underlying spaces transfer to the product space by con-
struction. For (i) see [16, Chapter 3 and 5] and for (ii) see [5, Proposition 1.6.2].

Consequently, we define for the Lebesgue spaces the extension

Lp(G,Rd) := Lp(G)× · · · × Lp(G)︸ ︷︷ ︸
d−times

= {v = (v1, . . . , vd) : G→ Rd : vi ∈ Lp(G) for i = 1, . . . , d}.

For the product space, we choose the norm which is a canonical extension of the norm of the
underlying space:

‖v‖Lp(G,Rd) :=


(

d∑
i=1

‖vi‖pLp(G)

)1/p

for p ∈ [1,∞),

max
i=1,...,d

‖vi‖L∞(G) for p =∞.

This space also results from the construction as a Bochner space Lp(G,W) with W = Rd since
Rd is a Banach space with any norm in (2.1). Note that the function space Lp(G,Rd) is a
Banach space for p ∈ [1,∞] and even a Hilbert space for p = 2. The Hilbert space H1(G,Rd) is
analogously defined using Proposition 2.2 (ii).
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For a domain G ⊂ R, the total variation of a function v ∈ L1(G,Rd) is defined as

TV (v) = lim
ε→0

sup
1

ε

∫
G
|v(x+ ε)− v(x)| dx,

see for example [71]. We denote the space of all functions v ∈ L1(G,Rd) with bounded total
variation by BV (G,Rd).

Focused on one single edge ek ∈ E and the time interval (0, T ) with T > 0, we denote the physical
domain by Dk := Ωk × (0, T ) and consider the function spaces Lp(Dk,Rd). For 1 ≤ p <∞, this
space is isomorphic to Lp

(
(0, T ), Lp(Ωk,Rd)

)
and the norm can be written as

‖v‖p
Lp(Dk,Rd)

=

d∑
i=1

∫ T

0

∫
Ωk

|vi(x, t)|p dx dt,

due to Fubini’s theorem. For p = ∞, the isomorphic relation does not hold and we only have
L∞

(
(0, T ), L∞(Ωk,Rd)

)
⊂ L∞(Dk,Rd) [93].

Moreover, the space C
(
[0, T ], Lp(Ωk,Rd)

)
is required for the definition of weak entropy solutions

of hyperbolic PDEs later. In order to consider functions on the whole network, we define the
following product space.

Definition 2.3 (Function Spaces for Networks)
For a network described in the previous subsection, we define

Lp := Lp(D1,Rd)× · · · × Lp(DP ,Rd)

=
{
v =

(
v(1), . . . , v(P )

)
: v(j) =

(
v

(j)
1 , . . . , v

(j)
d

)
∈ Lp(Dj ,Rd) for j = 1, . . . , P

}
with the corresponding norm

‖v‖Lp :=

 P∑
j=1

‖v(j)‖p
Lp(Dj ,Rd)

1/p

for p ∈ [1,∞),

‖v‖L∞ := max
j=1,...,P

‖v(j)‖L∞(Dj ,Rd) for p =∞.

Additionally, we define functions on the network which are continuous on the time interval [0, T ].
The space

C0 := C
(
[0, T ], L1(Ω1,Rd)

)
× · · · × C

(
[0, T ], L1(ΩP ,Rd)

)
is equipped with the norm

‖v‖C0 := max
j=1,...,P

‖v(j)‖C([0,T ],L1(Ωj ,Rd)).

We denote the vector of the i-th components of {v(k)}k=1,...,P by vi =
(
v

(1)
i , v

(2)
i , . . . , v

(P )
i

)
. Due

to the Propositions 2.1 and 2.2, the space Lp is a Banach space for p ∈ [1,∞] and L2 is a
Hilbert space. Furthermore, it holds Lp ⊂ Lq for 1 ≤ q < p ≤ ∞ and Hölder’s inequality can be
generalized for the L1-Norm.

11
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Lemma 2.4 (Generalized Hölder’s inequality)
Let v be a function of the space L2. Then, it holds

‖v‖2L1 ≤ CT,Ω‖v‖2L2

with CT,Ω = d T
∑P

j=1 |Ωj |.

Proof. We consider the term

‖v‖L1 =

P∑
j=1

‖v(j)‖L1(Dj ,Rd) =
P∑
j=1

d∑
i=1

‖v(j)
i ‖L1(Dj).

Applying Hölder’s inequality [2, Theorem 2.4] to the L1(Dj)-norm and the Cauchy-Schwarz
inequality, we obtain

‖v‖L1 ≤
P∑
j=1

d∑
i=1

‖1‖L2(Dj)‖v
(j)
i ‖L2(Dj)

≤

 P∑
j=1

d∑
i=1

‖1‖2L2(Ωj×(0,T ))

1/2 P∑
j=1

d∑
i=1

‖v(j)
i ‖

2
L2(Ωj×(0,T ))

1/2

=

d T P∑
j=1

|Ωj |

1/2

‖v‖L2 .

2.3 Deterministic Hyperbolic Equations on Networks

On each interval Ωj = (aj , bj) ⊂ R representing an edge ej ∈ E in the network G = (V ,E ), we
consider a one-dimensional hyperbolic partial differential equation

∂tu
(j)(x, t) + ∂xF

(
u(j)(x, t)

)
= G

(
u(j)(x, t), x, t

)
for (x, t) ∈ Ωj × R+ (2.2)

with flux function F : Rd → Rd and source termG : Rd×R×R+ → Rd. For a general introduction
to hyperbolic PDEs, we refer to [43]. In general, a classical (i.e. continuously differentiable)
solution which solves the previous PDE pointwise does not exist so that weak solutions are
typically considered. In order to define the solution u(j) at the boundary of Ωj , we assume
that u(j)(t) has bounded variation for all t ∈ [0, T ], i.e. u(j)(t) ∈ BV (Ωj ,Rd) ⊂ L1(Ωj ,Rd).
Therefore, the traces

u(j)(aj+, t) = lim
x↘aj

u(j)(x, t),

u(j)(bj−, t) = lim
x↗bj

u(j)(x, t)

exist [21, 43]. Since weak solutions are not necessarily unique, as discussed for example in [43,
Subsection I.4.3], we identify the physically correct solution by the entropy condition and define
the weak entropy solution similar to [75].
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Definition 2.5 (Entropy Solution)
A function u(j) ∈ C

(
[0, T ], L1(Ωj ,Rd)

)
is a (weak) entropy solution of the PDE (2.2) if

• The function u(j) is a weak solution: It holds u(j)(t) ∈ BV (Ωj ,Rd) for all t ∈ [0, T ] as well
as

∫ T

0

∫
Ωj

(
u(j)∂tφ+ F

(
u(j)
)
∂xφ+G

(
u(j)
)
φ
)

dx dt

=

∫ T

0

(
F
(
u(j)(aj+, t)

)
φ(aj , t)− F

(
u(j)(bj−, t)

)
φ(bj , t)

)
dt

for all φ ∈ C∞c (Ω̄j × (0, T ),R). The space C∞c (Ω̄j × (0, T ),R) contains all infinitely differ-
entiable functions with compact support on Ω̄j × (0, T ).

• The entropy condition is fulfilled: For all non-negative φ ∈ C∞c (Ωj × (0, T ),R+), it holds∫ T

0

∫
Ωj

(
η
(
u(j)
)
∂tφ+ ψ

(
u(j)
)
∂xφ+ ∂u(j)η

(
u(j)
)
G
(
u(j)
)
φ
)

dx dt ≥ 0

for all convex entropy-entropy flux pairs
(
η(u(j)), ψ(u(j))

)
.

Now, we supplement the hyperbolic PDE with initial and boundary conditions which yield the
following initial-boundary value problem

∂tu
(j)(x, t) + ∂xF

(
u(j)(x, t)

)
= G

(
u(j)(x, t), x, t

)
, (x, t) ∈ Ωj × R+, (2.3)

u(j)(x, 0) = u
(j)
0 (x), x ∈ Ωj , (2.4)

B1

(
u(j)(aj+, t)

)
= H1(t), t ∈ R+, (2.5)

B2

(
u(j)(bj−, t)

)
= H2(t), t ∈ R+. (2.6)

The task to pose boundary conditions on {aj , bj} in (2.5) and (2.6) such that the previous
problem is well-posed is in general difficult.

In order to choose proper boundary conditions, the characteristics of the hyperbolic equation [43,
Section I.4, Section II.5 ] and thus the eigenvalues of the Jacobian ∂uF (u) have to be investigated.
Note that, in general, the eigenvalues determine the slope of the characteristics. The boundary
conditions need to be chosen depending on the direction of the characteristics at the boundary
of Ωj . For each characteristic which points inwards at the boundary aj or bj , we need to pose
one boundary condition at the corresponding boundary since we prescribe the initial value in
(2.4). Of course, it can occur that no conditions on the boundary are allowed. In this case, the
functions Bi and Hi vanish. Considering equations (2.5) and (2.6), the function Bi maps the
solution to components of the solution u(j) or to linear combinations of the components for which
we prescribe the boundary values Hi. Since the direction of the characteristics can depend on
time or even on the solution, the number of boundary conditions can vary over time such that the
dimension of the image spaces of Bi as well as of Hi changes or even no condition is allowed. For
the standard treatment of boundary conditions and well-posedness results of initial-boundary
value problems considering scalar hyperbolic equation as well as linear hyperbolic systems, we
refer to [43, Chapter VI] and [66, Chapter 6].
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If the considered physical phenomenon can be described by models with different fidelity rep-
resented by hyperbolic PDEs, we allow to choose the model for each interval Ωj separately. In
regions of the network of complex dynamics, models with high fidelity should be chosen and in
regions of low dynamics, simplified models should be applied. We denote the resulting hierarchy
of models with decreasing fidelity by M := {M1, . . . ,MH} and indicate the models by the
parameter mj ∈M.

Proceeding with the whole network, we need to pose conditions in order to couple the edges at
the inner nodes and to prescribe values on specific boundary nodes by the so-called coupling and
boundary conditions. For t ∈ R+, we get

∂tu
(j)(x, t) + ∂xFmj

(
u(j)(x, t)

)
= Gmj

(
u(j)(x, t), x, t

)
, x ∈ Ωj , j = 1, . . . , P (2.7)

u(j)(x, 0) = u
(j)
0 (x), x ∈ Ωj , j = 1, . . . , P (2.8)

Bb
(
u(j)(vb, t)

)
= Hb(t), b ∈ IBC ⊂ I∂ , j ∈ δ(vb), (2.9)

Cc
(
u(j1)(vc, t), . . . , u

(jNc )(vc, t)
)

= Πc(t), c ∈ I0, jk ∈ δ(vc),
k = 1, . . . , Nc, (2.10)

with Nc := |δ(vc)|, solution u(j) : Dj → Rd and the physical domain Dj := Ωj × (0, T ). As
mentioned above, we assume that u(j)(t) ∈ BV (Ωj ,Rd) so that the traces

u(j)(aj+, t) := lim
x↘aj

u(j)(x, t) and u(j)(bj−, t) := lim
x↗bj

u(j)(x, t)

exist [21, 43]. Now, we define the solution u(j) at the nodes belonging to edge ej by

u(j)(vi, t) := u(j)(aj+, t) if j ∈ δ+(vi),

u(j)(vi, t) := u(j)(bj−, t) if j ∈ δ−(vi).

The index set IBC ⊂ I∂ describes the indices of the boundary nodes I∂ in the network where we
have to pose boundary conditions. As mentioned above, the function Bb specify the components
of the solution or a linear combination of it for which we prescribe valuesHb at the boundary node
vb. The indices of the coupling nodes, or inner nodes, are denoted by I0. The function Cc couples
the solutions of all edges which belong to the node vc and function Πc is the prescribed coupling
constant depending only on time. The coupling of edges can be interpreted as a boundary value
problem: If no additional auxiliary variables are introduced, the number of coupling conditions
at the inner node vc has to be equal to the sum of the number of the boundary conditions which
are required on each adjacent edge at node vc. Hence, the number of coupling conditions depends
on the direction of the characteristics of adjacent edges and can change over time. Moreover,
we assume that the initial values u(j)

0 , the functions Bb and Hb as well as the coupling functions
Cc and Πc are chosen in such a way that the initial-boundary value problem (2.7)–(2.10) is
well-posed. In the context of gas networks, we refer to [9, 19, 48, 69, 88] for details.

Beside hyperbolic PDEs, we can also add a quasi-stationary equation to the model hierarchy
where the solution can be computed analytically. Typically, this equation is used as the simplest
model which should always be chosen if the loss of accuracy is acceptable. We denote the
set of hyperbolic models with MPDE and the quasi-stationary model with MQS. For each
individual interval Ωj we choose either a hyperbolic PDE contained in MPDE or the quasi-
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2.4 Numerical Methods for Simulation

stationary equation inMQS. Thus, the full network problem is given by

∂tu
(j)(x, t) + ∂xFmj

(
u(j)(x, t)

)
= Gmj

(
u(j)(x, t), x, t

)
, mj ∈MPDE,

}
(2.11)

∂xFmj
(
u(j)(x, t)

)
= Gmj

(
u(j)(x, t), x, t

)
, mj ∈MQS,

x ∈ Ωj , (2.12)

u(j)(x, 0) = u
(j)
0 (x), x ∈ Ωj , (2.13)

for j = 1, . . . , P and t ∈ R+. The problem is complemented by boundary and coupling condi-
tions

Bb
(
u(j)(vb, t)

)
= Hb(t), b ∈ IBC , j ∈ δ(vb), (2.14)

Cc
(
u(j1)(vc, t), . . . , u

(jNc )(vc, t)
)

= Πc(t), c ∈ I0, jk ∈ δ(vc),
k = 1, . . . , Nc, (2.15)

for t ∈ R+ and Nc := |δ(vc)|. For this problem, we extend the definition of a weak entropic
solution in [75], where a single branching node is considered, to the whole network and supplement
it with the quasi-stationary model.

Definition 2.6 (Entropy Network Solution)
A function u =

(
u(1), . . . , u(P )

)
is called an entropy network solution of the previous problem, if

• for mj ∈MPDE, the function u(j) ∈ C
(
[0, T ], L1(Ωj ,Rd)

)
is a weak entropy solution of the

corresponding PDE, see Definition 2.5,

• for mj ∈ MQS, the function u(j) ∈ C
(
[0, T ], C1(Ωj ,Rd)

)
is the classical solution of the

corresponding quasi-stationary equation,

• the initial condition u(j)(x, 0) = u
(j)
0 (x) in (2.13) is satisfied for j = 1, . . . , P ,

• the boundary conditions (2.14) and the coupling conditions (2.15) are satisfied for almost
all t > 0.

In order to ensure the continuity in time of the solution of the quasi-stationary equation, we
require that the boundary and the coupling conditions are continuous in time. Additionally,
the given initial values should be consistent with the boundary conditions and satisfy the quasi-
stationary equation for t = 0.

2.4 Numerical Methods for Simulation

The exact solution u cannot be computed analytically in general. Therefore, a numerical ap-
proximation of the solution is necessary. In order to solve hyperbolic PDEs numerically, several
numerical methods are available. A very common approach are finite volume methods [43, 66, 71]
where the space-time domain is split into cells, the so-called finite volumes. Integrating the PDE
over the cells leads to a formula for computing the average solution inside the cells. A necessary
condition for the stability of the scheme is the CFL condition which states that the numerical
information needs to be propagated faster than the analytic information. This condition usually
provides an upper bound for the time step size. In the case of networks with regions with high
dynamics, the CFL condition would determine a very small time step for the whole network. If
simulations over a large time span are needed, as in the case of gas transport, this restriction
would be disadvantageous since the computational effort would be relatively high. Therefore, we
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Chapter 2 Deterministic Problem Setting

focus on an implicit box scheme which allows arbitrary large time step sizes since it requires no
CFL condition.

Since the behavior of the solution may change dynamically in space and time, we want to adjust
the model and the time-space discretization according to the dynamics. Adaptive algorithms
provide such an automatic control of the discretizations which reduces the computational cost
while ensuring a prescribed accuracy of the simulation. In Subsection 2.4.2, we present the
general aspects of adaptive strategies.

2.4.1 An Implicit Box Scheme

In the following, we present a symmetric implicit box (IBOX) scheme which was introduced
in [63] for subsonic compressible flow. We use this scheme for a discretization of the isothermal
Euler equations in Section 2.5. In [107], numerical tests with a higher order finite volume method
showed that the IBOX scheme provides approximations with comparable accuracy for the gas
transport in networks.

We consider a general system of balance laws

∂tu(x, t) + ∂xF
(
u(x, t)

)
= G

(
u(x, t)

)
, (x, t) ∈ R× R+

with initial condition

u(x, 0) = u0(x), x ∈ R.

Let ∆x be the spatial step size and ∆t the temporal step size. The implicit box scheme provides
the pointwise approximation Unj ≈ u(j∆x, n∆t) for j ∈ Z, n ∈ N0 computed by

Un+1
j−1 + Un+1

j

2
=
Unj−1 + Unj

2
− ∆t

∆x

(
F (Un+1

j )− F (Un+1
j−1 )

)
+ ∆t

G(Un+1
j−1 ) +G(Un+1

j )

2
.

For the initial condition we set

U0
j =

1

∆x

∫
Xj

u0(x) dx

with Xj = [(j − 0.5)∆x, (j + 0.5)∆x).

Finally, we approximate the weak solution by the piecewise constant function

ũ(x, t) := Unj for (x, t) ∈ Xj × Tn

with Tn = [n∆t, (n+ 1)∆t). This implicit box scheme has order 1 in time and 2 in space [31]. In
contrast to time discretizations via explicit methods, the CFL condition which yields an upper
bound on the time step size does not have to be satisfied. Therefore, this method allows large
time steps which is preferred in simulations over a long time period. However, we need to fulfill
an inverse CFL condition:

∆t ≥ ∆x

2λmin
,

where λmin is the smallest absolute value of the eigenvalues of the Jacobian matrix of the flux
function F (u).
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2.4 Numerical Methods for Simulation

For scalar hyperbolic PDEs with dissipative source term, the following properties of the IBOX
scheme are shown in [63]: The scheme admits a unique solution in every time step, the approxi-
mate solutions converge to the entropy solution and the scheme is stable.

As already mentioned in [63], we need to assume that the slope of each characteristic does
not change its sign over the considered spatial and temporal interval in order to get a well
working numerical method. Considering a one-dimensional interval (a, b) ⊂ R with positive
length L = b − a which represents an edge in a network, the spatial step size ∆x has to be
chosen such that Nx := L/∆x is an integer. Then, we discretize the interval in Nx subintervals:
a < a + ∆x < · · · < a + Nx∆x = b. The IBOX scheme provides dNx equations for d(Nx + 1)
unknown variables when u(x, t) ∈ Rd. Therefore, we have to impose d conditions on the boundary
depending on the sign of the characteristic directions: The number of conditions needed on the
left boundary x = a and on the right boundary x = b is equal to the number of characteristics
entering the interval at the corresponding boundary, i.e. the characteristics having a positive
and negative slope, respectively.

2.4.2 Abstract Adaptive Strategy

The aim of adaptive strategies is to control the local resolution in time, space and in model
hierarchy such that we can ensure a prescribed accuracy of the simulation and reduce the com-
putational cost. To this end, we perform the classical adaptive loop illustrated in Figure 2.2.
First, we solve the hyperbolic problem by a numerical method. Then, we estimate the total error
as well as the local temporal, spatial and model error of the computed numerical solution. If the
total error estimate is below a given tolerance, we accept the numerical solution. Otherwise, we
perform a suitable refinement strategy: We mark the regions where at least one local estimator
is too high. For each marked region, we refine the corresponding discretization in time, space
and/or model hierarchy and solve the PDE problem using the new discretization. Finally, we
repeat the described process.

Start

Solve

Estimate

Total
error OK ?

Stop

Mark

Refine

NO

YES

Figure 2.2: Classical adaptation loop for adaptive solvers.
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In adaptive schemes, a posteriori error estimators are frequently used since no a priori knowledge
about the solution is needed. The error estimates are based on already computed solutions. If
the error estimator does not provide a strict upper bound on the exact error, we cannot guarantee
that the accuracy of the exact solution is smaller than the prescribed tolerance. In this case,
the estimator is only heuristic and is often called error indicator. For nonlinear conservation
laws, details on the adaptive scheme and a good review of a posteriori error control based on
Kruzkov’s doubling of variables technique is given in [84]. Another error estimator is introduced
in [57, 58]: A heuristic error indicator based on the weak local truncation error of the numerical
solution serves as smoothness indicator in adaptive algorithms.

Furthermore, the influence of the resolution can also be measured in a user-defined functional F ,
for example the solution integrated over time and space. In the setting of gas networks, we focus
on such solution functionals and on error estimators based on solutions of adjoint equations, see
Subsection 2.5.4.

Usually, the adaptive scheme performed for a given tolerance TolH provides

‖uh − u‖X ≤ Ch TolH,

where Ch is a constant and ‖ · ‖X the corresponding norm. We denote the numerical approxi-
mation of the solution u by uh. For the functional case, we obtain

|F [uh]−F [u]| ≤ Ch TolH.

In summary, adaptive strategies control the error for a given tolerance and they usually reduce
the computational cost since the discretization is only locally refined where it is necessary and
not globally. Especially, fine uniform discretizations for complex problems can lead to a huge
computational effort. In the next chapters, we suppose that we have an adaptive deterministic
black box solver at hand since we only consider uncertainty quantification methods which reuse
the deterministic solver. Therefore, the computational costs are reduced immediately.

2.5 Gas Network Modeling

In this section, we describe the gas transportation in pipelines by isothermal Euler equations
in one spatial dimension. We derive a model hierarchy based on [24, 29] and supplement the
equations with appropriate boundary and coupling conditions. For more details on gas transport
in networks, we refer to [26]. Finally, we present an adaptive procedure in space, time and model
hierarchy developed for gas transport in [24, 29]. For the simulation therein, the IBOX scheme
discussed in Subsection 2.4.1 is used.

Considering the network described in Section 2.1, edges represent pipes and inner nodes are
junctions of pipes or network components as compressor stations or valves. The boundary nodes
are either sources where gas is injected into the network or sinks where gas is extracted from
the network. The flow direction of the gas does not have to coincide with the orientation of the
edges, but it is coupled to this. If the gas flows against the direction of the edge, then the flow
has a negative sign.
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2.5 Gas Network Modeling

2.5.1 Model Hierarchy for the Flow of Gas in Pipelines

Since gas pipelines are usually located in the ground, it is reasonable to assume that the tem-
perature is constant along the pipes. Therefore, we model the gas transport in each pipe by
isothermal Euler equations. For a general overview of the different models for gas transport in
pipelines and their applications we refer to [26, 61].

First, we consider the nonlinear isothermal Euler equations for a horizontal pipe:

∂t%+ ∂x(% v) = 0,

∂t(% v) + ∂x(p+ % v2) = −λ % v|v|
2Dp

,

where % is the density, v the velocity and p the pressure of the gas. We denote the diameter of the
pipe by Dp and the friction coefficient is represented by λ. In order to enhance the readability,
we omit the space and time dependence of the variables %, v and p. Since we have 2 equations
for 3 variables, the equations are supplemented by the equation of state for real gases

% =
p

z(p, T )Rg Tg
,

where Rg denotes the specific gas constant. The compressibility factor z = z(p, Tg) depends in
general on the constant temperature Tg and the pressure of the gas. Note that we have z = 1 for
ideal gases. In the following, we assume that the compressibility factor z is constant. Therefore,
we obtain a constant speed of sound c =

√
p/q =

√
zRg Tg and, hence, the pressure law

p = c2%.

The friction coefficient λ depends on the Reynolds number Re and the roughness of the pipe.
We focus on [26, Section 2.2] which provides a detailed overview about this topic. If Re < 2320,
the flow is laminar and the friction coefficient is computed by λ = 64/Re. For turbulent flow,
i.e. Re ≥ 2320, there exist several models to compute the friction coefficient. We use the
recommended formula of Colebrook which determines the friction coefficient implicitly by

1√
λ

= −2 log10

(
2.51

Re
√
λ

+
kp

3.71Dp

)
,

where kp is the roughness of the pipe. Note that the friction coefficient computed by the above
formula depends on the flow rate q, since the Reynolds number also depends on this quantity.

Now, we rewrite the equation in terms of the pressure p and the (volume) flow rate q at standard
conditions (1 atm air pressure, temperature of 0°C = 273.15K) given by

q =
% vA

%0
=
qm
%0
.

Here, qm is the mass flow, A the cross-sectional area of the pipe and %0 the density under standard
conditions. In Table 2.1, we list the gas quantities together with their units used in the presented
Euler models.
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Gas Quantity Variable Unit
Density %(x, t) [kg/m3]

Pressure p(x, t) [Pa] = 10−5[bar]

Flow rate at standard conditions q(x, t) [m3/s]

Mass flow qm(x, t) [kg/s]

Velocity v(x, t) [m/s]

Density at standard conditions %0 [kg/m3]

Speed of sound c [m/s]

Friction coefficient λ(q) [−]

Reynolds number Re [−]

Specific gas constant Rg [J/(kg ·K)]

Diameter of the pipe Dp [m]

Cross-sectional area of the pipe A [m2]

Roughness of the pipe kp [m]

Table 2.1: The main physical quantities in gas transport, variables as well as constants.

Using the pressure law p = c2% and the relation v = %0c
2q/(pA), the nonlinear isothermal Euler

equations which is our first and most complex modelM1 has the form:

M1 :


∂tp+

%0c
2

A
∂xq = 0,

∂tq + ∂x

(
A

%0
p+

%0c
2

A

q2

p

)
= −λ%0c

2

2ADp

q|q|
p
.

(2.16)

We can rewrite the term in the spatial derivative of the second equation of (2.16) as

A

%0
p+

%0c
2

A

q2

p
=
Ap

%0

(
1 +

v2

c2

)
.

For small flow rates |v| � c, we can approximate the term 1 + v2/c2 by 1 as suggested in [85]
which leads to the semilinear isothermal Euler equations

M2 :


∂tp+

%0c
2

A
∂xq = 0,

∂tq +
A

%0
∂xp = −λ%0c

2

2ADp

q|q|
p
.

For stationary flow, the gas transport is described by the stationary semilinear isothermal Euler
equations

%0c
2

A
∂xq(x) = 0,

A

%0
∂xp(x) = −λ%0c

2

2ADp

q(x)|q(x)|
p(x)

.

These equations depend only on the spatial parameter x and can be solved analytically since the
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2.5 Gas Network Modeling

pressure is always positive. The solution on the interval [a, b] is given by

q(x) = const.,

p(x) =

√
p(x0)2 +

λ%2
0c

2(x0 − x)

DpA2
|q(x)|q(x),

where x0 is an arbitrary point in [a, b]. Representing now the flow by the pressure difference
yields the Weymouth equation [26]. We consider this stationary model with time-dependent
variables resulting in the so-called quasi-stationary semilinear isothermal Euler equations as the
most simplest model

M3 :


%0c

2

A
∂xq = 0,

A

%0
∂xp = −λ%0c

2

2ADp

q|q|
p
.

(2.17)

In practice, quasi-stationary models are frequently used [24, 47].

Considering the network problem (2.11)–(2.15) for gas transport, we use one of the previously
presented models on each pipe Ωj separately. Therefore, we obtain the pipe-dependent quantities
u(j) =

(
p(j), q(j)

)
, A(j), D

(j)
p and λ(j). The model hierarchy is given byM = {M1,M2,M3} and

has decreasing fidelity. We recapitulate the modelsMPDE = {M1,M2} andMQS = {M3} in
the compact form used in the network problem (2.11)–(2.15):

• M1: Nonlinear isothermal Euler equations

FM1

(
u(j)
)

=


%0c

2

A(j)
q(j)

A(j)

%0
p(j) +

%0c
2

A(j)

(q(j))2

p(j)

 , GM1

(
u(j), x, t

)
=

 0

− %0c
2λ(j)

2A(j)D
(j)
p

q(j)|q(j)|
p(j)

 .

• M2: Semilinear isothermal Euler equations

FM2

(
u(j)
)

=


%0c

2

A(j)
q(j)

A(j)

%0
p(j)

 , GM2

(
u(j), x, t

)
= GM1

(
u(j), x, t

)
.

• M3: Quasi-stationary semilinear isothermal Euler equations

FM3

(
u(j)
)

= FM2

(
u(j)
)
, GM3

(
u(j), x, t

)
= GM1

(
u(j), x, t

)
.

In order to obtain the complete network problem (2.11)–(2.15) describing the gas transport in
pipelines, we now specify the boundary and coupling conditions.
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2.5.2 Boundary Conditions

For the aforementioned nonlinear, semilinear and quasi-stationary Euler equations, the boundary
conditions are analyzed in [24]. For each gas model, we have to pose exactly one condition at each
boundary node: Either the pressure p or the gas flow q is prescribed. Considering the nonlinear
and semilinear Euler equations, we always have one entering and one leaving characteristic at
each boundary. In a gas network, the boundary nodes are either inflow nodes (sources) V in

∂ ,
where gas is injected into the network or outflow nodes (sinks) V out

∂ , where gas is taken out of
the network.

Using the incidence matrix A, we define

V in
∂ :=

{
vi ∈ V∂ : q(j)(vi, t) ·Aij > 0 for j ∈ δ(vi)

}
,

V out
∂ :=

{
vi ∈ V∂ : q(j)(vi, t) ·Aij < 0 for j ∈ δ(vi)

}
as well as the corresponding index sets

Iin∂ :=
{
i : vi ∈ V in

∂

}
and Iout∂ :=

{
i : vi ∈ V out

∂

}
.

Therefore, we have V∂ = V in
∂ ∪̇ V out

∂ and I∂ = Iin∂ ∪̇ Iout∂ . A common choice is to prescribe the
pressure at the inflow nodes and the gas flow at the outflow nodes for t > 0. Then, the boundary
conditions written in the form of the operator Bb : R2 → R in (2.14) are given by

Bb
(
u(j)(vb, t)

)
:=

{
u

(j)
1 (vb, t) = p(j)(vb, t) for b ∈ Iin∂ , j ∈ δ(vb),

u
(j)
2 (vb, t) = q(j)(vb, t) for b ∈ Iout∂ , j ∈ δ(vb).

Consequently, we have IBC = I∂ . The function Hb : R+ → R prescribes the boundary values
depending on the time. For easier readability, we use the notation

Hb(t) ≡ pvb(t) and Hb(t) ≡ qvb(t), respectively.

2.5.3 Coupling Conditions

In order to complete the network problem (2.11)–(2.15), we need to specify the coupling condi-
tions at the inner nodes V0 following [9, 24]. If no additional auxiliary variables are used, the
number of coupling conditions at an inner node is equal to the number of pipes connected to the
considered node since we need exactly one boundary condition at each boundary of each pipe.
In gas networks, we distinguish between junctions Vju, compressor stations Vcs and valves Vva.
Compressor stations are used to increase the pressure if the pressure loss caused by friction in
the pipes gets too high. Valves control the gas flow in parts of the gas network.

Junctions. Let vc be a junction with ingoing edges {ek : k ∈ δ−(vc)} and outgoing edges
{ek : k ∈ δ+(vc)}. Junctions Vju are either pure branching nodes, sources or sinks. At branching
nodes, no gas is injected or extracted from the network.

First, we consider branching nodes and require the conservation of mass (Kirchhoff’s first rule)
by ∑

j∈δ+(vc)

q(j)(vc, t)−
∑

j∈δ−(vc)

q(j)(vc, t) = 0 ∀t > 0.
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This condition implies that the sum of the fluxes going into the node vc is equal to the sum of
fluxes going out of this node. Furthermore, we pose the continuity of pressure

p(j)(vc, t) = p(k)(vc, t) ∀j ∈ δ+(vc), k ∈ δ−(vc)

for all time t > 0. This condition is frequently used [9, 14, 35, 44, 48] and very common in
the engineering community. Other coupling conditions like the equality of enthalpy are discussed
in [19, 69, 75, 88]. The previous coupling conditions can be written in the form (2.15) by defining
the function Cc : R2Nc → RNc as

Cc
(
u(j1)(vc, t), . . . , u

(jNc )(vc, t)
)

:=



∑
j∈δ+(vc)

q(j)(vc, t)−
∑

j∈δ−(vc)

q(j)(vc, t)

p(j1)(vc, t)− p(j2)(vc, t)

p(j1)(vc, t)− p(j3)(vc, t)
...

p(j1)(vc, t)− p(jNc )(vc, t)


and Πc(t) := 0 ∈ RNc , where jk ∈ δ(vc) and Nc = |δ(vc)|.

Now, we extend the previous equation to inner nodes which are either sources or sinks. We
denote the gas flow going into or out of the network at node vc and the pressure at this node
by additional auxiliary variables qvc(t) and pvc(t), respectively. The conservation of mass is now
ensured by the coupling condition∑

j∈δ+(vc)

q(j)(vc, t)−
∑

j∈δ−(vc)

q(j)(vc, t) = qvc(t).

For the continuity of pressure, we require

p(j)(vc, t) = pvc(t), j ∈ δ+(vc), (2.18)

p(j)(vc, t) = pvc(t), j ∈ δ−(vc). (2.19)

Consequently, the coupling functions Cc : RNc → RNc+1 and Πc : RNc → RNc+1 in (2.15) have
the form

Cc
(
u(j1)(vc, t), . . . , u

(jNc )(vc, t)
)

:=


∑

j∈δ+(vc)
q(j)(vc, t)−

∑
j∈δ−(vc)

q(j)(vc, t)

p(j1)(vc, t)
...

p(jNc )(vc, t)


and

Πc(t) :=


qvc(t)
pvc(t)

...
pvc(t)


with jk ∈ δ(vc) and k = 1, . . . , |δ(vc)| = Nc. In total, we have Nc + 1 equations, but Nc + 2
unknowns. Therefore, we need to prescribe either the gas flow qvc(t) or the pressure pvc(t) at
node vc.
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Inserting edges of length 0 (i.e. short edges) can result in a network where sources and sinks are
always boundary nodes and no inner nodes. For the considered inner node vc, a source or a sink,
we would insert a short edge ek = (vc, vl) where the new node vl is a duplicate of vc. The node
vc would be transformed to a pure branching node and we would have to fulfill the algebraic
equations

p(k)(vc, t) = p(k)(vl, t) and q(k)(vc, t) = q(k)(vl, t), (2.20)

since the edge ek has length 0.

Compressor Stations. In this work, we concentrate on pressure-controlled compressor sta-
tions which have an electric motor consuming only electric power and no gas. For simplicity, we
consider a compressor station vc ∈ Vcs connecting two pipes ek and el. Moreover, we assume
that the gas flows from ek to el. The pressure increase generated by the compressor station is
described by the equation

p(l)(vc, t) = p(k)(vc, t) + ∆pc(t)

with a prescribed profile ∆pc(t) of the pressure difference. Due to the electric motor, the same
amount of gas which flows into the compressor station leaves it:

Ackq
(k)(vc, t) + Aclq

(l)(vc, t) = 0.

In summary, we have

Cc
(
u(k)(vc, t), u

(l)(vc, t)
)

:=

(
p(l)(vc, t)− p(k)(vc, t)

Ackq
(k)(vc, t) + Aclq

(l)(vc, t)

)
, Πc(t) :=

(
∆pc(t)

0

)
.

Valves. Let vc ∈ Vva ⊂ V0 be a valve which connects two edges ek and el. In practice, valves
are opened or closed slowly in order to regulate the gas flow in a smooth way. Due to modeling
issues, we model a valve with only two states: open or closed. An open valve behaves like a
branching node and is described by

Cc
(
u(k)(vc, t), u

(l)(vc, t)
)

:=

(
p(k)(vc, t)− p(l)(vc, t)

Ackq
(k)(vc, t) + Aclq

(l)(vc, t)

)
, Πc(t) :=

(
0
0

)
.

For a closed valve, we need to impose the condition

Cc
(
u(k)(vc, t), u

(l)(vc, t)
)

:=

(
q(k)(vc, t)

q(l)(vc, t)

)
, Πc(t) :=

(
0
0

)
.

In the case that more than two edges are connected to a valve or compressor station, the coupling
conditions can be easily adapted.

2.5.4 Adaptive Simulation in Space, Time and Model Hierarchy

In the following, we present the main aspects of the adaptive simulation strategy developed and
applied in several papers [24, 25, 27–31]. Based on a posteriori error estimates, the algorithm
provides an automatic control of the model distribution and the discretization in space and time
such that the model and the discretization errors are reduced up to a prescribed tolerance. In
regions where the dynamic of the solution is very low, the simplest model should be sufficient
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2.5 Gas Network Modeling

and in regions where we observe a high dynamical behavior, the model with the highest fidelity
should be needed.

Let an arbitrary initial distribution of gas transport models {m1, . . . ,mP } ⊂ {M1,M2,M3}P
be given. We solve the nonlinear and the semilinear Euler equations on each pipe using the
IBOX scheme, see Subsection 2.4.1. The quasi-stationary Euler equations M3 can be solved
analytically. However, we can also apply the IBOX scheme concerning the space discretization,
as discussed in [27, Section 6]. On each pipe Ωj = (aj , bj), we are able to use one of the three gas
transport models and a uniform space discretization with an individual spatial step size. For the
time discretization, we use for all pipes the same global temporal step size ∆t. Together with
the initial value, the coupling conditions and the boundary conditions, we obtain a nonlinear
systems of equations which has to be solved. Of course, the model and the spatial step size on
each pipe as well as the global temporal time step size can also be chosen to vary over time.

Now, the aim is to automatically control the resolution in space, time and model hierarchy
such that a prescribed accuracy of the simulation is achieved. We measure the influence of the
resolution on a user-defined output functional

F [u] =

∫
Ω×(0,T )

N(u) d(x, t) +
∑
v∈V

∫ T

0
Nv(u) dt ∈ R (2.21)

with Ω =
∏
ej∈E Ωj =

∏
ej∈E (aj , bj). The functions N and Nv are tracking-type cost functions

and depend on the solution u. Typical choices of this functional are the compressor costs and the
pressure at some sinks integrated over time. In order to control the resolution, we use a posteriori
error estimators ηx, ηt and ηm which approximate the discretization and the model errors. The
estimators are based on adjoint solutions of the discretized model equations [24, 29].

In order to reduce the effort, the simulation time [0, T ] is divided equidistantly into Nt time
blocks. For each time block [Tk−1, Tk], the model as well as the spatial discretization of each
pipe and the time step size do not vary over time. In order to determine the discretization
and the models successively, we compute the error estimators in [Tk−1, Tk] which provides an
approximation of the exact error

Fk[u]−Fk[uh] ≈ ηkx + ηkt + ηkm.

We denote the exact functional on time block [Tk−1, Tk] by Fk[u] and the functional of the
numerical solution uh by Fk[uh]. In the adaptation strategy, the relative error

|Fk[u]−Fk[uh]|
|Fk[u]|

≈
∣∣ηkx + ηkt + ηkm

∣∣
|Fk[uh]|

was considered so far. However, we consider the absolute error since in the stochastic setting
this error is the natural one due to error splitting in a deterministic and stochastic part, see
Chapters 4 and 5. Therefore, we modify the existing algorithm appropriately. Let TolH be the
total tolerance for the absolute error. Now, we need to distribute this tolerance over the time
blocks in order to obtain local tolerances for the error in each time block. We decide to split
the tolerance equally: TolHk = TolH/Nt for k = 1, . . . , Nt. In each time block, we successively
refine the resolution in space, time and model hierarchy until∣∣ηkx + ηkt + ηkm

∣∣ ≤ TolHk
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is satisfied. Therefore, we obtain at the end of the algorithm

|F [u]−F [uh]| ≤
Nt∑
k=1

|Fk[u]−Fk[uh]| ≈
Nt∑
k=1

∣∣ηkx + ηkt + ηkm
∣∣ ≤ Nt∑

k=1

TolHk = TolH.

The steps of the adaptive algorithm described in [24] are illustrated in Figure 2.3 and are based
on the classical adaption loop shown in Figure 2.2 in Subsection 2.4.2. For each time interval
[Tk−1, Tk], we evaluate the error estimators. First, we divide the total tolerance TolHk into a
tolerance for the temporal-spatial discretization error and a tolerance for the model error. If
the discretization error is too high, we check the temporal and the spatial discretization error
separately. The temporal discretization error is considered globally for the whole network. In the
case that this error exceeds the given bound, we mark the global time step size for refinement.
Then, we compute the spatial discretization error locally for each pipe and mark only the pipes
for uniform spatial refinement where the local estimator is not small enough. If any refinements
are required, the simulation for the current time block is recomputed and the errors are checked
again. If the discretization error is accepted whereas the model error exceeds the given tolerance,
we compute the model error estimator locally for each pipe. Then, we mark the pipes where
the corresponding model error estimate is greater than the given tolerance so that a model
enhancement is needed. In case of marked pipes, we adjust the model on the corresponding
pipes and recompute the simulation with the unchanged discretization in space and time. In the
case that the total error is smaller than the given tolerance, we check if the discretization meshes
can be coarsened and if the models can be switch down. Using the new discretization and model
distribution, the simulation for the next time block starts and the process is repeated. More
details on the refinement strategy are given in [24, Section 3.3] and [29, Section 5]. In [25], a
greedy-like refinement strategy is investigated and compared with the presented strategy in view
of computational cost.

The chosen a posteriori error estimators are only heuristic indicators such that no strict bounds
on the error are satisfied [29]. However, we can usually determine a constant Ch > 0 such that
the algorithm provides an upper bound on the error by

|F [u]−F [uh]| ≤ Ch TolH,

where Ch is usually close to 1. Eventually, the approximate solution uh refers to the given
tolerance TolH.
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Start: k = 1,
initial model distribution,

spatial and temporal
discretization

Solve for [Tk−1, Tk]

Compute a posteriori
error estimators:

ηkx, η
k
t , η

k
m

∣∣ηkx + ηkt
∣∣ ok ? Refine discretization

in space and/or time
NO

∣∣ηkx + ηkt + ηkm
∣∣

< TolHk ?

k = Nt ?

Stop

Coarsen discretization
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if possible

Adjust models

k = k + 1

YES

YES

YES

NO

NO

Figure 2.3: Scheme of the adaptive algorithm [24] for error control.
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Chapter 3

Stochastic Problem Setting

In this chapter, we extend the deterministic network problem given in the previous section by
uncertain data. First, we introduce the solution spaces and other mathematical preliminaries in
order to formulate the stochastic problem and its random entropy solution. Then, we parametrize
the problem such that the uncertain data is represented by a finite-dimensional space and we
define the corresponding stochastic entropy solution.

3.1 Preliminaries

For a brief introduction to probability theory and more details about the solution spaces, we
refer to [73]. In order to extend the previous network problem (2.11)–(2.15) by uncertainties,
we consider a complete probability space (Θ,Σ,P). The sample space Θ contains all possible
outcomes θ and Σ ⊂ P(Θ) denotes the sigma algebra, where P(Θ) is the power set of Θ. The
probability measure P : Σ→ [0, 1] maps every measurable set in Σ onto the interval [0, 1].

Let (Ψ,Y) be a measurable space. A Ψ-valued random variable (RV) is defined as a measurable
function X from Θ into Ψ. For a given θ ∈ Θ, the value X(θ) ∈ Ψ is called a realization of
the RV X. For Ψ = R, we call the mapping X real-valued and, for Ψ = Rd with d > 1, the
Rd-valued RV is a random vector. If Ψ is a function space, X is a function-valued RV which
we also call a random field. In literature, the definitions of random variables and random fields
are not necessarily consistent, see for example [13, 73, 76]. The previous definitions are mainly
based on [76].

Let (W, ‖·‖W) be a Banach space. The expected value of a Banach space-valued random variable
X : Θ→W is defined as

E[X] =

∫
Θ
X(θ) dP(θ) ∈ W.

Similar to the Lebesgue-Bochner spaces, the space of mean-square integrable RVs, also called
stochastic Bochner space, is defined as

L2(Θ,W) =
{
X : Θ→W : X measurable and E

[
‖X‖2W

]
<∞

}
.

The space L2(Θ,W) with the norm

‖X‖L2(Θ,W) = E
[
‖X‖2W

]1/2
=

(∫
Θ
‖X‖2W dP(θ)

) 1
2

is a Banach space [54].
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For W = R, the space L2(Θ,R) contains all real-valued RV with finite first and second moment
and is usually denoted by L2(Θ). Furthermore, the following property holds∥∥∥∥∫

Θ
X(θ) dP(θ)

∥∥∥∥
W
≤
∫

Θ
‖X(θ)‖W dP(θ), (3.1)

see [54, 73]. Applying the previous property and Jensen’s inequality leads to

‖E[X]‖W ≤ E [‖X‖W ] ≤ E
[
‖X‖2W

] 1
2 = ‖X‖L2(Θ,W) <∞

for a RV X ∈ L2(Θ,W).

If a Hilbert space (H, (·, ·)H) is used, then the space L2(Θ,H) is a Hilbert space [73] with inner
product

(X,Y )L2(Θ,H) = E
[
(X,Y )H

]
for X,Y ∈ L2(Θ,H).

The variance-like term

V [X] := ‖E[X]−X‖L2(Θ,W)

is finite for RVs X ∈ L2(Θ,W). Similar to [76], we use the inequality ‖a− b‖2 ≤ 2(‖a‖2 + ‖b‖2),
property (3.1) and Jensen’s inequality to show that

V [X] = ‖E[X]−X‖2L2(Θ,W) ≤ 2
(
‖E[X]‖2W + ‖X‖2L2(Θ,W)

)
≤ 2

(
E [‖X‖W ]2 + ‖X‖2L2(Θ,W)

)
≤ 4‖X‖2L2(Θ,W) <∞.

(3.2)
In the case of W = R, the variance-like term V [X] coincides with the variance

V[X] = E
[
(X − E[X])2

]
.

3.1.1 Finite-Dimensional Noise

In this part, we present the definition of finite-dimensional noise which will be needed to transform
the hyperbolic problem with random data in Section 3.2 from the abstract sample space Θ to a
finite-dimensional space. After a change of variable, we obtain a weighted solution space. The
following theory is based on [73].

Definition 3.1 (Finite-Dimensional Noise)
Let (W, ‖ · ‖W) be a Banach space and let ξi : Θ→ R be real-valued RVs with i = 1, . . . , N <∞.
We denote the image of the RVs by Γi := ξi(Θ). Let ξ : Θ→ Γ be the resulting finite-dimensional
random vector ξ := (ξ1, . . . , ξN ) with Γ := Γ1 × · · · × ΓN ⊂ RN . Then, a function v ∈ L2(Θ,W)
of the form v

(
ξ(θ)

)
∈ W for θ ∈ Θ is called finite-dimensional noise.

In summary, a finite-dimensional noise is a random field which depends on a finite number of
real-valued RVs. Obviously, real-valued RVs are finite-dimensional noise. A typical possibility to
obtain finite-dimensional noise is to truncate Karhunen-Loève expansions.

30



3.2 Hyperbolic Equations with Random Data

Additionally, we assume that the random vector ξ := (ξ1, . . . , ξN ) : Θ → Γ ⊂ RN has an
absolutely continuous distribution. Therefore, the random vector ξ has a joint probability density
function (PDF) ρ : Γ → R+. In order to obtain a straightforward computation of the expected
value of v, we can perform a change of variable

E[v] =

∫
Θ
v
(
ξ(θ)

)
dP(θ) =

∫
Γ
v(y) dPξ(y) =

∫
Γ
v(y)ρ(y) dy ∈ W,

where Pξ is the probability distribution of ξ. For a finite-dimensional noise v ∈ L2(Θ,W), the
previous change of variable provides

‖v‖2L2(Θ,W) =

∫
Θ
‖v
(
ξ(θ)

)
‖2W dP(θ) =

∫
Γ
‖v(y)‖2W dPξ(y) =

∫
Γ
‖v(y)‖2W ρ(y) dy.

This identity motivates to consider the weighted Bochner space

L2
ρ(Γ,W) =

{
v : Γ→W : v measurable and

∫
Γ
‖v(y)‖2W ρ(y) dy <∞

}
.

The weighted Bochner space equipped with the norm

‖v‖2L2
ρ(Γ,W) =

∫
Γ
‖v(y)‖2W ρ(y) dy =: E

[
‖v‖2W

]
is a Banach space. Usually, we denote L2

ρ(Γ,R) by L2
ρ(Γ). Due to the change of variable, we can

associate the finite-dimensional noise v ∈ L2(Θ,W) with v ∈ L2
ρ(Γ,W) by defining yi := ξi(θ)

and y = (y1, . . . , yN ).

If ρ ∈ L∞(Γ), then it holds C(Γ,W) ⊂ L2
ρ(Γ,W): Considering the function v ∈ C(Γ,W), then

applying Hölder’s inequality provides

‖v‖L2
ρ(Γ,W) =

∥∥‖v‖2W ρ
∥∥
L1(Γ)

≤
∥∥‖v‖2W∥∥L1(Γ)

‖ρ‖L∞(Γ).

Both terms on the right hand side of the above inequality are bounded, since ρ ∈ L∞(Γ) and
‖v‖2W ∈ C(Γ) ⊂ L1(Γ). Since Γ is compact, function v is measurable [54, Chapter 1].

3.2 Hyperbolic Equations with Random Data

In mathematical models, the input data can be subject to uncertainty due to measurements, a
lack of knowledge or imprecise data. In this work, we consider the case that the initial data
u0, the boundary data Hb and/or the coupling data Πc at inner network components in the
problem (2.11)–(2.15) are uncertain. The coupling conditions at pure branching nodes remain
deterministic. For example, if we consider gas networks with uncertain gas demands at exits
which are inner nodes, we have uncertain coupling conditions at these nodes. The uncertainty
of the input data propagates to the solution of the model such that the solution is uncertain
as well. We model the input data as random fields with given distributions. Moreover, the
flux function Fmj , the source term Gmj , the boundary operator Bb and the coupling function Cc
remain deterministic.
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Chapter 3 Stochastic Problem Setting

Consequently, we obtain the following random problem:

∂tu
(j)(x, t, θ) + ∂xFmj

(
u(j)(x, t, θ)

)
= Gmj

(
u(j)(x, t, θ), x, t

)
, mj ∈MPDE,

}
(3.3)

∂xFmj
(
u(j)(x, t, θ)

)
= Gmj

(
u(j)(x, t, θ), x, t

)
, mj ∈MQS,

x ∈ Ωj , (3.4)

u(j)(x, 0, θ) = u
(j)
0 (x, θ), x ∈ Ωj , (3.5)

for j = 1, . . . , P , t ∈ R+ and θ ∈ Θ. The problem is complemented by boundary and coupling
conditions

Bb
(
u(j)(vb, t, θ)

)
= Hb(t, θ), b ∈ IBC , j ∈ δ(vb), (3.6)

Cc
(
u(j1)(vc, t, θ), . . . , u

(jNc )(vc, t, θ)
)

= Πc(t, θ), c ∈ I0, jk ∈ δ(vc),
k = 1, . . . , Nc, (3.7)

for t ∈ R+, θ ∈ Θ and Nc := |δ(vc)|. The solution is represented as u(j)(x, t, θ) : Dj × Θ → Rd
with the deterministic physical domain Dj = Ωj × (0, T ). All input parameters in the problem
and the solution now depend on the additional variable θ ∈ Θ. On the one hand, we can
interpret the solution as a set of Rd-valued RVs u(j)(x, t, ·) : Θ → Rd with (x, t) ∈ Dj . On
the other hand, the solution is a function-valued random variable (random field): For a given
θ ∈ Θ, u(j)(·, ·, θ) : Dj → Rd is a deterministic function of space and time which is also called
a realization or sample of the random field u(j). Typically, the second interpretation is used.
This stochastic formulation of our network problem is the basis for the Monte Carlo approach in
Chapter 4. Similar to [76], we define the random solution of the previous problem by extending
Definition 2.5 of the deterministic problem in a path-wise manner. Furthermore, we assume the
existence and uniqueness of the random solution.

Definition 3.2 (Random Entropy Network Solution)
A random field u =

(
u(1), . . . , u(P )

)
: Θ→ C([0, T ], L1(Ω1,Rd))×· · ·×C([0, T ], L1(ΩP ,Rd)) is a

random entropy network solution of the stochastic problem (3.3)–(3.7) if, for P-almost all θ ∈ Θ,
u(θ) is an entropy network solution of the deterministic problem which results from inserting the
fixed variable θ into problem (3.3)–(3.7).

Assumption 3.3
There exists a unique random entropy network solution u of the problem (3.3)–(3.7) such that
u ∈ L2(Θ,Y) with Y = C

(
[0, T ], L1(Ω1,Rd)

)
× · · · × C

(
[0, T ], L1(ΩP ,Rd)

)
.

For scalar hyperbolic conservation laws with uncertain initial data, Mishra and Schwab [76]
have shown the existence and uniqueness of a random entropy solution. In [78], the setting was
extended by an uncertain flux function. Recently, well-posedness results for one-dimensional
systems of hyperbolic conservation laws with uncertain initial data and uncertain flux function
were presented in [41]. For multi-dimensional systems, the existence of the random entropy solu-
tion is an open problem since global results about existence and uniqueness of the deterministic
solution are not available.

3.3 Parametrized Hyperbolic Equations with Random Data

Next, we want to reduce the infinite-dimensional probability space to an N -dimensional space.
We perform the well-established approach including the common assumptions in order to obtain
the starting network problem for stochastic collocation methods, see for example [6, 73, 106,
114]. As mentioned in Subsection 3.1.1, we need the following assumption.
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Assumption 3.4 (Finite-Dimensional Noise & joint PDF)
The random input fields of the network problem, in our case u0, Hb and Πc, are finite-dimensional
noise (Definition 3.2): They are described by a finite number N of real-valued random variables
ξi : Θ → Γi ⊂ R. The resulting finite-dimensional random vector ξ := (ξ1, . . . , ξN ) : Θ → Γ,
with Γ := Γ1× · · ·×ΓN ⊂ RN , has an absolutely continuous distribution, i.e. it has a joint PDF
ρ : Γ→ R+. Additionally, it holds ρ ∈ L∞(Γ).

If the input data is modeled directly by a finite set of real-valued RVs, then the finite-noise
assumption is trivially satisfied. The random vector ξ generates a sigma algebra σ(ξ) ⊂ Σ
on the sample space Θ. Regarding the stochastic part, the random input fields are measurable
with respect to this sigma algebra because of the finite-dimensional noise assumption [73, Lemma
9.40]. Considering the random network solution u of (3.3)–(3.7), we assume that each component
u(j)(x, t, ·) is measurable with respect to the sigma algebra for every (x, t) ∈ Ωj × (0, T ). Now,
the Doob-Dynkin lemma [73, Lemma 4.46] provides that every solution component u(j)(x, t, ·)
is a function of the random vector ξ, i.e. u(j)(x, t, θ) = u(j)(x, t, ξ(θ)). Therefore, the solution
u is finite-dimensional noise and we can replace the outcome θ ∈ Θ by the realization ξ(θ) and
rewrite the network problem (3.3)–(3.7). For convenience, we omit the dependence on θ in the
rewritten problem

∂tu
(j)(x, t, ξ) + ∂xFmj

(
u(j)(x, t, ξ)

)
= Gmj

(
u(j)(x, t, ξ), x, t

)
, mj ∈MPDE,

}
∂xFmj

(
u(j)(x, t, ξ)

)
= Gmj

(
u(j)(x, t, ξ), x, t

)
, mj ∈MQS,

x ∈ Ωj ,

u(j)(x, 0, ξ) = u
(j)
0 (x, ξ), x ∈ Ωj ,

for j = 1, . . . , P , t ∈ R+ and θ ∈ Θ. The problem is complemented by boundary and coupling
conditions

Bb
(
u(j)(vb, t, ξ)

)
= Hb(t, ξ), b ∈ IBC , j ∈ δ(vb),

Cc
(
u(j1)(vc, t, ξ), . . . , u

(jNc )(vc, t, ξ)
)

= Πc(t, ξ), c ∈ I0, jk ∈ δ(vc),
k = 1, . . . , Nc,

for t ∈ R+, θ ∈ Θ and Nc := |δ(vc)|. The probability space corresponding to the rewritten
network problem is (Θ, σ(ξ),P). Note that the equations are still stochastic and that the abstract
definition of the expectation is not suitable for numerical computations.

Due to the finite-dimensional noise assumption, we can perform a change of variable as described
in Subsection 3.1.1. Defining y := ξ(θ) ∈ Γ leads to the purely deterministic, parametrized
problem

∂tu
(j)(x, t,y) + ∂xFmj

(
u(j)(x, t,y)

)
= Gmj

(
u(j)(x, t,y), x, t

)
, mj ∈MPDE,

}
(3.8)

∂xFmj
(
u(j)(x, t,y)

)
= Gmj

(
u(j)(x, t,y), x, t

)
, mj ∈MQS,

x ∈ Ωj , (3.9)

u(j)(x, 0,y) = u
(j)
0 (x,y), x ∈ Ωj , (3.10)

for j = 1, . . . , P , t ∈ R+ and y ∈ Γ. The problem is complemented by boundary and coupling
conditions

Bb
(
u(j)(vb, t,y)

)
= Hb(t,y), b ∈ IBC , j ∈ δ(vb), (3.11)

Cc
(
u(j1)(vc, t,y), . . . , u(jNc )(vc, t,y)

)
= Πc(t,y), c ∈ I0, jk ∈ δ(vc),

k = 1, . . . , Nc, (3.12)
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for t ∈ R+, y ∈ Γ and Nc := |δ(vc)|. In addition to space and time, this equation is also
parametrized with the stochastic parameter y ∈ Γ. Finally, we have transferred the problem
formulated for an abstract stochastic sample space to the finite-dimensional image space Γ of
the random vector ξ.

In this work, we restrict the setting to the common assumptions that the RVs ξi are independent
and have bounded support Γi.

Assumption 3.5 (Boundedness)
The image space Γi of the RV ξi is a bounded interval in R for all i = 1, . . . , N . Without loss of
generality, we assume Γi = [−1, 1].

Assumption 3.6 (Stochastic Independence)
The RVs ξi with image space Γi are independent RVs and have the PDFs ρi : Γi → R+ for
i = 1, . . . , N .

Because of the previous assumption, the joint PDF ρ : Γ → R+ of the random vector ξ is
given by ρ(y) =

∏N
i=1 ρi(yi). The problem including the assumptions is the basis for stochastic

collocation methods. Finally, we define the solution of the parametrized problem (3.8)–(3.12)
similar to Definition 3.2 and we assume the existence and uniqueness of this solution.

Definition 3.7 (Stochastic Entropy Network Solution)
The function u =

(
u(1), . . . , u(P )

)
: Γ → C([0, T ], L1(Ω1,Rd)) × · · · × C([0, T ], L1(ΩP ,Rd)) is a

stochastic entropy network solution of the parametrized problem (3.8)–(3.12) if, for all y ∈ Γ,
u(y) is an entropy network solution of the deterministic problem which results from inserting the
fixed variable y into problem (3.8)–(3.12).

Assumption 3.8
There exists a unique stochastic entropy network solution u of problem (3.8)–(3.12) such that
u ∈ L2

ρ(Γ,Y) with Y = C
(
[0, T ], L1(Ω1,Rd)

)
× · · · × C

(
[0, T ], L1(ΩP ,Rd)

)
.
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Chapter 4

Adaptive Multi-Level Monte Carlo
Method

In this chapter, we present a fully adaptive multi-level Monte Carlo method. Monte Carlo
methods are used to approximate the expected value of a quantity of interest depending on the
solution of problem (3.3)–(3.7). Moreover, these methods are standard sampling methods and
are very robust because no further regularity assumptions on the quantity of interest (QoI) are
necessary. However, we make some assumptions on the QoI for the convergence and complexity
analysis.

First, we describe the fully adaptive single-level Monte Carlo (SLMC) approach where the QoI
is the solution of problem (3.3)–(3.7). The developed strategy is called fully adaptive because
of its adaptive manner in the stochastic as well in the physical space. We combine an adaptive
choice of the number of samples with adaptive computations of each sample computed for a given
physical tolerance. Then, we extend the method by a multi-level (ML) structure and analyze its
complexity. Both approaches are controlled by a prescribed total accuracy. Finally, the expected
value of functionals of the solution are considered and the implementation of the method is
explained.

A similar approach was presented for random elliptic problems in [64] where only Hilbert space-
valued random variables were considered and all samples on the coarsest level were computed
with the same initial discretization. Therefore, the number of levels usually increases with the
prescribed total accuracy. In contrast to [64], we analyze the more general case of Banach
space-valued random variables and choose a fixed number of levels independently from the total
accuracy, see Section 4.4.

We recall that problem (3.3)–(3.7) in Section 3.2 is given by

∂tu
(j)(x, t, θ) + ∂xFmj

(
u(j)(x, t, θ)

)
= Gmj

(
u(j)(x, t, θ), x, t

)
, mj ∈MPDE,

}
∂xFmj

(
u(j)(x, t, θ)

)
= Gmj

(
u(j)(x, t, θ), x, t

)
, mj ∈MQS,

x ∈ Ωj ,

u(j)(x, 0, θ) = u
(j)
0 (x, θ), x ∈ Ωj ,

for j = 1, . . . , P , t ∈ R+ and θ ∈ Θ. The problem is complemented by boundary and coupling
conditions

Bb
(
u(j)(vb, t, θ)

)
= Hb(t, θ), b ∈ IBC , j ∈ δ(vb),

Cc
(
u(j1)(vc, t, θ), . . . , u

(jNc )(vc, t, θ)
)

= Πc(t, θ), c ∈ I0, jk ∈ δ(vc),
k = 1, . . . , Nc,

for t ∈ R+, θ ∈ Θ and Nc := |δ(vc)|. The random solution field u =
(
u(1), . . . , u(P )

)
with

u(j)(x, t, θ) : Dj ×Θ→ Rd is defined on the underlying complete probability space (Θ,Σ,P).



Chapter 4 Adaptive Multi-Level Monte Carlo Method

4.1 Single-Level Structure

The idea of the Monte Carlo estimator is to compute the average of deterministic samples of the
considered QoI (see e.g. [13] or [18]). We start with the general definition of the Monte Carlo
estimator considering an arbitrary random variable.

Definition 4.1 (Monte Carlo Estimator)
LetW be a Banach space and let v ∈ L2(Θ,W). The Monte Carlo (MC) estimator of the random
variable v is defined as

EM [v] =
1

M

M∑
n=1

vn

with M ∈ N+ and random variables vn ∈ L2(Θ,W) which are independent of each other and
have the same probability distribution as v (i.i.d.).
A Monte Carlo estimate is a realization of the MC estimator denoted by

ÊM [v] := EM [v](θ̄) =
1

M

M∑
n=1

vn(θ̄) ∈ W

for a given θ̄ ∈ Θ and realizations vn(θ̄) of vn. The realizations v1(θ̄), . . . , vM (θ̄) are also called
independent and identically distributed (i.i.d.) samples of the random variable v.
To enhance the readability, we use the more common notation: M i.i.d. samples are denoted by
v(θ1), . . . , v(θM ) with pairwise distinct θ1, . . . , θM ∈ Θ.

From the previous definition, we conclude directly that the MC estimator EM [v] is a mean-square
integrable random variable and is unbiased:

EM [v] ∈ L2(Θ,W), E
[
EM [v]

]
= E[v].

Since the random variables in Definition 4.1 are independent and identically distributed, the
strong law of large numbers [54, 73] guarantees that the MC estimator EM [v] converges P-
almost surely to the mean E[v]. In Definition 4.1, we strictly distinguish between estimator and
estimate, because the estimator is a random variable and is analyzed in the theory. In contrast,
the MC estimate is an element of W and is computed in the implementation.

Now, we consider the random entropy solution u of the stochastic problem (3.3)–(3.7). The
expected value of u could be approximated by the MC estimator EM [u]. However, the exact
random entropy solution u and thus its samples are in general not available. Therefore, we
consider an approximate random field uh of the solution u and compute the MC estimator
EM [uh]. Each realization uh(θ) is a finite-dimensional physical approximation of the solution
u(θ) of a deterministic network problem which has the same form as (2.11)–(2.15) and arises from
inserting the fixed θ into (3.3)–(3.7). Since the MC estimate contains M i.i.d samples of uh, we
get M decoupled deterministic problems which differ in the input data. For the computation
of uh(θn), we usually solve the deterministic network problem by applying a numerical method
(e.g. a finite volume method or an implicit box scheme as described in Section 2.4) to each edge
of the network while taking the imposed boundary and coupling conditions into account. A very
common approach is to predefine a uniform discretization in time and space, see for example [76].
Now, we assume that we have an adaptive solver which adaptively refines the spatial, temporal
and model discretizations until the error estimate is less than a prescribed physical tolerance
TolH > 0. Consequently, each realization uh(θ) has a sample-adaptive resolution in the physical
space, i.e. in space, time and model hierarchy. Therefore, the samples could have different
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4.1 Single-Level Structure

resolutions in time and space. In this case, we need to interpolate all samples onto a common fine
spatial-temporal grid. The approximate random field uh refers to a given tolerance TolH and is
also called random numerical solution. The general aspects of adaptive strategies were described
in Subsection 2.4.2 and an adaptive algorithm developed for gas transport was presented in
Subsection 2.5.4.

Assumption 4.2 (Adaptive Physical Approximation)
(i) Let u be the random entropy solution of problem (3.3)–(3.7). For θ ∈ Θ, let uh(θ) be the

physical approximation of u(θ) computed for a given tolerance TolH > 0 by an adaptive
solver using a space-time-model discretization. Then, there exists a physical constant ch :
Θ→ R+ with E[ch] <∞ such that uh(θ) satisfies

‖u(θ)− uh(θ)‖L1 ≤ ch(θ)TolH (4.1)

P-almost surely.

(ii) It holds uh ∈ L2(Θ,L1).

From this assumption, it follows

E
[
‖u− uh‖L1

]
≤ Ch TolH (4.2)

with Ch := E[ch] =
∫

Θ ch(θ) dP(θ) by integrating the inequality (4.1) over the sample space.
Note that the constant Ch is independent of the stochastic parameter θ ∈ Θ.

In order to show that the approximation of the expected value of the random entropy solution u
converges to the MC estimator of the approximate solution uh, we investigate the overall error
E[u]− EM [uh] in more detail. Using the triangle inequality, we obtain the splitting

‖E[u]− EM [uh]‖L2(Θ,L1) ≤ ‖E[u]− E[uh]‖L2(Θ,L1)︸ ︷︷ ︸
I) physical error

+ ‖E[uh]− EM [uh]‖L2(Θ,L1)︸ ︷︷ ︸
II) stochastic error

.

The first term on the right-hand side of the above inequality represents the deterministic phys-
ical error. This error results from the approximation of the random entropy solution u by a
random numerical solution uh and depends on the chosen resolution in space, time and model
hierarchy. The second term is the stochastic sampling error which we get by using the MC
estimator to approximate the expected value. We can bound the error terms as stated in the fol-
lowing two Lemmata. Hence, we can formulate an estimate for the overall error, see Theorem 4.6.

Lemma 4.3
Suppose Assumptions 3.3 and 4.2 hold. Then, the deterministic physical error is bounded by

‖E[u]− E[uh]‖L2(Θ,L1) ≤ Ch TolH

with constant Ch = E[ch].

Proof. For Banach space-valued random variables, it holds (3.1):

‖E[u]− E[uh]‖L2(Θ,L1) = ‖E[u− uh]‖L1 ≤ E[‖u− uh‖L1 ].

By Assumption 4.2, we can use inequality (4.2) and obtain

‖E[u]− E[uh]‖L2(Θ,L1) ≤ E[ch]TolH.
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Chapter 4 Adaptive Multi-Level Monte Carlo Method

The following analysis of the stochastic sampling error is based on [76, 89]. We observe that the
physical space L1 will not lead directly to a convergence bound. From the Definition 4.1 of the
MC estimator, it follows

‖E[uh]−EM [uh]‖2L2(Θ,L1) =

∥∥∥∥E[uh]−
M∑
n=1

1

M
uh,n

∥∥∥∥2

L2(Θ,L1)

=
1

M2

∥∥∥∥ M∑
n=1

(E[uh]− uh,n)

∥∥∥∥2

L2(Θ,L1)

,

where the random variables uh,n are independent of each other and have the same probability
distribution as uh. Then, using the triangle inequality and the property that the random variables
uh,n are i.i.d., we obtain

1

M2

∥∥∥∥ M∑
n=1

(E[uh]− uh,n)

∥∥∥∥2

L2(Θ,L1)

≤ 1

M2

(
M∑
n=1

‖E[uh]− uh,n‖L2(Θ,L1)

)2

= ‖E[uh]− uh‖2L2(Θ,L1).

Unfortunately, the resulting bound is independent of the number M of samples and cannot
provide the convergence of the stochastic error for M → ∞. However, in the case of a random
variable vh ∈ L2(Θ,H) with a Hilbert space H, the error satisfies the identity [13]

‖E[vh]− EM [vh]‖2L2(Θ,H) =
1

M
‖E[vh]− vh‖2L2(Θ,H). (4.3)

This equation is mainly used in the MC theory of elliptic PDEs for the Hilbert spaces L2 or H1.
The idea to guarantee the convergence of the stochastic error with respect to M is to bound the
L2(Θ,L1)-norm by the L2(Θ,L2)-norm and to use the previous identity. Therefore, we make the
following assumption on uh.
Assumption 4.4
The approximate solution uh satisfies

uh ∈ L2(Θ,L∞)

with L∞ = L∞((0, T )× Ω1,Rd)× · · · × L∞((0, T )× ΩP ,Rd).
Lemma 4.5
Suppose Assumptions 4.2 (ii) and 4.4 hold. Then, the stochastic error satisfies the inequality

‖E[uh]− EM [uh]‖L2(Θ,L1) ≤
√
CT,Ω

1√
M
‖E[uh]− uh‖L2(Θ,L2)

with CT,Ω = d T
∑P

j=1 |Ωj |.

Proof. Since Assumption 4.4 is fulfilled, it follows immediately

E[uh] ∈ L∞ and EM [uh] ∈ L2(Θ,L∞).

Hence, it holds E[uh]−EM [uh] ∈ L2(Θ,L∞) ⊂ L2(Θ,L2), especially the error E[uh]−EM [uh](θ)
is P-almost surely an element of L2. Applying Lemma 2.4 P-almost surely leads to

‖E[uh]− EM [uh]‖2L2(Θ,L1) =

∫
Θ
‖E[uh]− EM [uh](θ)‖2L1 dP(θ)

≤ CT,Ω
∫

Θ
‖E[uh]− EM [uh](θ)‖2L2 dP(θ)

= CT,Ω ‖E[uh]− EM [uh]‖2L2(Θ,L2).
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4.1 Single-Level Structure

Since L2 is a Hilbert space, we can apply the identity (4.3) and obtain

‖E[uh]− EM [uh]‖2L2(Θ,L1) ≤ CT,Ω
1

M
‖E[uh]− uh‖2L2(Θ,L2).

Combining the Lemmata 4.3 and 4.5 gives us the following estimation of the overall error.

Theorem 4.6
Suppose Assumptions 3.3, 4.2 and 4.4 are fulfilled. Then, it holds

‖E[u]− EM [uh]‖L2(Θ,L1) ≤ Ch TolH +
√
CT,Ω

1√
M
‖E[uh]− uh‖L2(Θ,L2). (4.4)

Note that the variance-like term ‖E[uh]− uh‖L2(Θ,L2) in the estimation of the MC error is finite,
see (3.2).

In our convergence analysis, the goal is to guarantee that the overall error ‖E[u]−EM [uh]‖L2(Θ,L1)

satisfies a user-prescribed accuracy ε > 0. We balance the terms on the right-hand side of
inequality (4.4) such that each term is equal to ε/2. Consequently, the physical tolerance and
the number of samples depend on ε and are given by

TolH =
ε

2Ch
and M =

⌈
4CT,Ω ‖E[uh]− uh‖2L2(Θ,L2)

ε2

⌉
. (4.5)

4.1.1 Complexity Analysis

The total computational cost CMC of the single-level MC method is the sum of the single costs to
compute each sample uh(θn) of uh for tolerance TolH. For a small accuracy ε, the computational
effort of the MC method is usually very high since we need to strongly refine the physical
discretization of each sample while significantly increasing the number of samples, see (4.5).
These two processes lead to higher costs. Let Wh be an upper bound for the cost of each sample
of uh. Then, we get

CMC :=

M∑
n=1

cost
(
uh(θn)

)
≤MWh,

where cost
(
uh(θn)

)
denotes the cost to compute the n-th sample uh(θn). Precisely, the quantity

CMC is the cost of a fixed realization of the MC estimator and therefore depends on different
θ1, . . . , θM ∈ Θ. The right side of the inequality is independent of the considered realization and
thus the following analysis is valid for every realization of the MC estimator and especially for
the expected value of the total computational cost. If only the expected cost is interesting, then
it is sufficient to have an upper bound Wh for the expected cost E[cost(uh)].

In order to link the computational complexity with the total accuracy ε, we require the following
assumption.

Assumption 4.7
Let Wh be an upper bound for the cost to compute an MC sample of the approximate solution uh
for tolerance TolH > 0. Then, there exists a constant γ > 0 such that

Wh ≤ CW TolH−γ

with constant CW independent of γ and TolH.

39



Chapter 4 Adaptive Multi-Level Monte Carlo Method

Using the previous theorem for the overall error of the MC method, we can estimate the compu-
tational cost CMC

ε , also called complexity, needed to achieve the accuracy ε for the MC estimator.
For the complexity analysis, we introduce the notation a . b to denote the relation a ≤ Cb with
a constant C independent of the physical tolerance TolH, the number of samples M and the
accuracy ε. In the case that a . b and a & b, we write a h b.

Lemma 4.8
Let Assumptions 3.3, 4.2, 4.4 and 4.7 be fulfilled. Then, for any ε < 1, there exists a physical
tolerance TolH > 0 and M ∈ N+ such that

‖E[u]− EM [uh]‖L2(Θ,L1) ≤ ε
and

CMC
ε . ε−2−γ .

Proof. As stated in (4.5), the error satisfies the given accuracy ε if we choose

TolH =
ε

2Ch
and M =

⌈
4CT,Ω ε

−2 ‖E[uh]− uh‖2L2

⌉
.

Inserting the formula of the number of samples and Assumption 4.7 provide the inequality

CMC
ε ≤MWh ≤

(
4CT,Ω ε

−2 ‖E[uh]− uh‖2L2 + 1
)
CW (2Ch)γε−γ . ε−2−γ

because ε < 1 and γ > 0.

Remark 4.9
Instead of the full space-time solution u, we can also choose a possibly nonlinear function of the
solution as our QoI. Some possible options are a single component of the solution, the solution
integrated over the time or the spatial space and the solution evaluated at a fixed point in time
t̄ ∈ [0, T ] or at a fixed spatial point x̄ ∈ Ω̄j.
For the error of the i-th components ui, all previous results are valid without additional assump-
tions because it holds

‖E[ui]− EM [(uh)i](θ)‖L1((0,T )×Ω1)×···×L1((0,T )×ΩP ) ≤ ‖E[u]− EM [uh](θ)‖L1

P-almost surely. The same argument applies to the quantities
∑P

j=1

∫
[0,T ] u

(j)(·, t, ·) dt and∫
Ωj
u(j)(x, ·, ·) dx using Fubini’s theorem and the linearity of the MC estimator.

Analyzing the MC error of u(j)(x, t̄, θ) for a fixed t̄ ∈ [0, T ] requires that the pointwise evaluation
in time of the approximate solution is defined P-almost surely. Therefore, we assume

uh ∈ L2
(
Θ, L1(Ω1, H

1((0, T ),Rd))× · · · × L1(ΩP , H
1((0, T ),Rd))

)
.

Assumptions 4.2, 4.4 and 4.7 have to hold for the considered quantity u(j)
h (x, t̄, θ). Then, the

convergence and complexity analysis of the error

‖E[u(j)(·, t̄, ·)]− EM [u
(j)
h (·, t̄, ·)]‖L2(Θ,L1(Ωj ,Rd))

can be performed analogously to this section. The constant CT,Ω in Lemma 4.5 will change to
CΩ = d |Ωj |.
In the case of the approximate solution u(j)

h (x̄, t, θ) evaluated at a fixed spatial point x ∈ Ω̄j, we
need to assume that u and uh belong to the space

L2
(
Θ, L1((0, T ), H1(Ω1,Rd))× · · · × L1((0, T ), H1(ΩP ,Rd))

)
.
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4.2 Multi-Level Structure

If Assumptions 4.2, 4.4 and 4.7 are fulfilled for u(j)
h (x̄, t, θ), we can analyze the error

‖E[u(j)(x̄, ·, ·)]− EM [u
(j)
h (x̄, ·, ·)]‖L2(Θ,L1((0,T ),Rd))

as shown in this section. In the stochastic error estimate in Lemma 4.5, we will get the constant
CT = d T instead of CT,Ω.

Remark 4.10
Following the previous analysis, we get the same results for the mean squared error (MSE)
‖E[u] − EM [uh]‖2L2(Θ,L1). If we consider the L2-norm instead of the L1-norm, then the MSE
is usually considered. In the error analysis [13], equality now holds in the splitting inequality of
the MSE into the squared physical and the squared sampling error:

‖E[u]− EM [uh]‖2L2(Θ,L2) = ‖E[u]− E[uh]‖2L2(Θ,L2) +
1

M
‖E[uh]− uh‖2L2(Θ,L2).

In addition, the constant CT,Ω in Lemma 4.5 vanishes because identity (4.3) holds. Finally, we
obtain the physical tolerance

√
2TolH and M/(2CT,Ω) as the number of samples, where TolH

and M are defined by (4.5). The estimation of the complexity remains the same.

4.2 Multi-Level Structure

The Monte Carlo method is now extended by a multi-level structure in order to reduce the
computational effort. At first, Heinrich [53] and Giles [42] independently developed a multi-level
strategy for MC methods which was then applied to PDEs with random data by Barth et al.
[10], Charrier et al. [15] and Cliffe et al. [18]. The basic idea is to couple approximate solutions of
different physical accuracies such that approximate solutions with lower physical accuracies are
sampled more often whereas the ones with higher accuracies are sampled less often. Typically,
the computational cost for computing one sample increases with the accuracy of the sample.

Let {TolHk}Kk=0 be a sequence of physical tolerances with

1 ≥ TolH0 > TolH1 > · · · > TolHK > 0

and K ∈ N+. Note that we would obtain the single-level (SL) approach for K = 0. Each
integer k ∈ {0, . . . ,K} refers to an approximate random field uhk : Θ → L1. Each realization
uhk(θ) is computed with a sample-dependent space-time-model resolution which is controlled
by TolHk via an adaptive strategy and gets finer with increasing k and fixed θ. We formulate
Assumptions 4.2 and 4.4 for the sequence of these approximate solutions.

Assumption 4.11 (Sequence of Adaptive Physical Approximations)
(i) Let u be the random entropy solution of problem (3.3)–(3.7) and uhk(θ) be the numerical

approximation of u(θ) with a space-time-model discretization provided by an adaptive solver
for a given TolHk > 0 and θ ∈ Θ. Then, for all k = 0, . . . ,K there exists a physical constant
ck : Θ→ R+ with E[ck] <∞ such that the approximate solution uhk(θ) satisfies

‖u(θ)− uhk(θ)‖L1 ≤ ck(θ)TolHk (4.6)

P-almost surely.

(ii) It holds uhk ∈ L2(Θ,L∞) for k = 0, . . . ,K.
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Chapter 4 Adaptive Multi-Level Monte Carlo Method

We can formulate the approximate solution uhK with the highest accuracy as the telescoping
sum of approximations with lower physical accuracies

uhK =
K∑
k=0

uhk − uhk−1

with u−1 := 0. Considering the expected value of uhK , we obtain the following simplification
using the previous equation and the linearity of the mean:

E[uhK ] = E

[
K∑
k=0

(uhk − uhk−1
)

]
=

K∑
k=0

E[uhk − uhk−1
].

Now, we estimate each expected value of the difference by a Monte Carlo estimator introduced in
Definition 4.1. This provides the following definition of the multi-level Monte Carlo estimator.

Definition 4.12 (Multi-Level Monte Carlo Estimator)
Let uhk ∈ L2(Θ,L1) be approximate solutions and uh−1 = 0. The multi-level Monte Carlo
(MLMC) estimator is defined as

EK [uhK ] =
K∑
k=0

EMk
[uhk − uhk−1

]

with Mk ∈ N+. The sequence k = 0, . . . ,K referring to Mk as well as to the corresponding MC
estimator EMk

of the difference uhk − uhk−1
is called levels. The number of levels is given by

K + 1.
A multi-level Monte Carlo estimate is a realization of the MLMC estimator denoted by

ÊK [uhK ] := EK [uhK ](θ̄) =
K∑
k=0

EMk
[uhk − uhk−1

](θ̄) =
K∑
k=0

1

Mk

Mk∑
n=1

dk,n(θ̄) ∈ L1,

where θ̄ ∈ Θ is given and dk,1, . . . , dk,Mk
are i.i.d. random variables of dk := uhk − uhk−1

for
each level k. In order to enhance the readability as in Definition 4.1, we denote the n-th sample
dk,n(θ̄) by dk(θkn). Using this common notation, the MLMC estimate has the form

ÊK [uhK ] =
K∑
k=0

1

Mk

Mk∑
n=1

dk(θ
k
n) =

K∑
k=0

1

Mk

Mk∑
n=1

uhk(θkn)− uhk−1
(θkn)

with different θkn ∈ Θ.

Note that the MC estimators EMk
used in the previous definition are pairwise independent.

This means that the random variables dk,i on level k ∈ {0, . . . ,K} and dk+1,j on level k + 1 are
independent for all i = 1, . . . ,Mk and j = 1, . . . ,Mk+1. Therefore, the samples used on level
k are different from those on the other levels. More precisely, each sample computed for the
MLMC estimate corresponds to a different, unique deterministic network problem (2.11)–(2.15).
However, on level k > 0, the sample dk(θki ) = uhk(θki )− uhk−1

(θki ) is the difference between two
approximate solutions of the same deterministic problem computed for two different physical
tolerances, namely TolHk and TolHk−1. Since the samples of all levels do not have the same
discretization in time and space, we need to interpolate them onto an underlying fine spatial-
temporal grid. Similar to the single-level approach, it follows directly from the definition that
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4.2 Multi-Level Structure

the multi-level Monte Carlo estimator EK [uhK ] is a mean-square integrable random variable and
unbiased:

EK [uhK ] ∈ L2(Θ,L1), E
[
EK [uhK ]

]
= E[uhK ].

For the convergence analysis, we consider the error between the MLMC estimator EK [uhK ] and
the expected value of the random entropy solution. As in the single-level MC approach, we split
the error into a deterministic physical and a stochastic sampling error:

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ ‖E[u]− E[uhK ]‖L2(Θ,L1)︸ ︷︷ ︸
I) physical error

+ ‖E[uhK ]− EK [uhK ]‖L2(Θ,L1)︸ ︷︷ ︸
II) stochastic error

. (4.7)

The physical and the sampling error can be estimated further and we obtain the following
estimation on the overall MLMC error.
Theorem 4.13
Let Assumptions 3.3 and 4.11 be fulfilled. Then, the error of the MLMC estimator can be bounded
by

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ CH TolHK +

√√√√CT,Ω

K∑
k=0

1

Mk
‖E[dk]− dk‖2L2(Θ,L2)

with dk = uhk − uhk−1
.

Proof. We start to consider the first term on the right-hand side of (4.7), the deterministic
physical error. Integrating the assumed estimation (4.6) over the sample space Θ leads to

E[‖u− uhk‖L1 ] ≤ CH TolHk for k = 0, . . . ,K

with the constant CH := maxk=0,...,K E[ck] which is independent of θ. Using the same arguments
as in the proof of Lemma 4.3, we obtain

‖E[u]− E[uhK ]‖L2(Θ,L1) ≤ E
[
‖u− uhK‖L1

]
≤ CH TolHK .

Next, the stochastic sampling error is estimated. Due to Assumption 4.11 (ii), it holds P-almost
surely that E[uhK ] − EK [uhK ](θ) ∈ L∞ ⊂ L2. Therefore, Lemma 2.4 can be applied P-almost
surely:

‖E[uhK ]− EK [uhK ]‖2L2(Θ,L1) =

∫
Θ
‖E[uhK ]− EK [uhK ](θ)‖2L1 dP(θ)

≤ CT,Ω
∫

Θ
‖E[uhK ]− EK [uhK ](θ)‖2L2 dP(θ)

= CT,Ω ‖E[uhK ]− EK [uhK ]‖2L2(Θ,L2).

Then, it holds [13, Theorem 3.1]

‖E[uhK ]− EK [uhK ]‖2L2(Θ,L2) =

K∑
k=0

1

Mk
‖E[uhk − uhk−1

]− (uhk − uhk−1
)‖2L2(Θ,L2)

because L2 is a Hilbert space and the random variables (uhk − uhk−1
)nk in Definition 4.12 are

i.i.d. for all k = 0, . . . ,K and nk = 1, . . . ,Mk.
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As in the single-level context, the variance-like term

V [uhk − uhk−1
] := ‖E[uhk − uhk−1

]− (uhk − uhk−1
)‖2L2(Θ,L2)

is finite, since uhk − uhk−1
∈ L2(Θ,L2) and therefore (3.2) holds.

One approach to distribute the samples over the levels is to choose the number of samples Mk

depending on the physical tolerance TolHK such that the stochastic error has the same size as
the physical error. This strategy was used in [10] to obtain the same order of the error parts and
in [67, 106] for an ML stochastic collocation method. Due to the previous theorem, we balance
the two terms on the right-hand side by choosing

Mk ≤ CT,Ω V [uhk − uhk−1
](K + 1)(CH TolHK)−2.

It follows ‖E[u] − EK [uhK ]‖L2(Θ,L2) ≤ 2CH TolHK so that the MLMC error converges for
TolHK → 0. Let ε > 0 be a user-prescribed accuracy for the MLMC error. In order to achieve this
accuracy, both terms on the right-hand side of the estimate in Theorem 4.13 have to be bounded
by ε/2. For the considered approach, we obtain the physical tolerance TolHK = ε/(2CH) with
the number of samples Mk defined as above.

Another approach is to choose the number Mk of samples on each level so that the computa-
tional cost of the method is minimized and the MLMC error satisfies the desired accuracy ε [18,
106]. The resulting complexity theorems are often formulated for a different setting where only
uniform spatial refinements are considered instead of an adaptive and error-controlled algorithm.
Therefore, a starting resolution for all samples of uh0 has to be chosen beforehand, see for ex-
ample [13, 18, 106]. This approach is adapted to our fully adaptive method and is shown in the
following part.

4.2.1 Complexity Analysis

Let Wk be an upper bound for the cost of a single sample of uhk for k = 0, . . . ,K. The total
computational cost of the multi-level Monte Carlo estimator is given by

CMLMC =
K∑
k=0

Mk∑
n=1

cost
(
uhk(θkn)

)
+ cost

(
uhk−1

(θkn)
)
≤

K∑
k=0

Mk (Wk +Wk−1) (4.8)

with W−1 := 0 and different θkn ∈ Θ.

We want to choose the number of samples on each level optimally in such a way that the total
cost CMLMC

ε needed to achieve the accuracy ε for the MLMC estimator is minimized. For the
following analysis, the physical tolerance TolHk needs to converge to zero for k →∞.

Theorem 4.14
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, let Assumptions 3.3 and 4.11 be fulfilled. Then, for any ε > 0, there exists a number
K = K(ε) ∈ N+ and a sequence of number of samples {Mk}k=0,...,K such that

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ ε
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and

CMLMC
ε ≤ 4CT,Ω ε

−2
( K∑
k=0

(Wk +Wk−1)1/2 V [uhk − uhk−1
]1/2
)2

+
K∑
k=0

(Wk +Wk−1).

The optimal choice for the number of samples Mk is given by

Mk =

⌈
4

ε2
CT,Ω

(
V [uhk − uhk−1

]

Wk +Wk−1

)1/2 K∑
j=0

(Wj +Wj−1)1/2 V [uhj − uhj−1
]1/2
⌉
.

Proof. Considering the ML error, the above Theorem 4.13 provides the estimation

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ CH TolHK +

√√√√CT,Ω

K∑
k=0

1

Mk
V [uhk − uhk−1

]

with

V [uhk − uhk−1
] = ‖E[uhk − uhk−1

]− (uhk − uhk−1
)‖2L2(Θ,L2).

In order to achieve an accuracy ε > 0, we first choose an appropriate K ∈ N+ such that
CH TolHK ≤ ε/2. This choice determines the number K = K(ε) as a function of ε and can
always be made since {TolHk}k=0,1,... is a null sequence.

Now, we want to minimize the overall costs CMLMC
ε needed to achieve the accuracy ε. Due to

our choice of K, we impose the equation√√√√CT,Ω

K∑
k=0

1

Mk
V [uhk − uhk−1

] = ε/2

as a constraint. Together with the upper bound (4.8) for the total cost of the MLMC estimator,
this leads to the minimization problem

min
M0,...,MK

K∑
k=0

Mk (Wk +Wk−1)

s.t. CT,Ω

K∑
k=0

1

Mk
V [uhk − uhk−1

] =
ε2

4
,

which we solve by the Lagrangian multiplier method as in [106]. Note that Mk is treated as a
continuous variable. The Lagrange function is given by

L(M0, . . . ,MK , α) =

K∑
k=0

Mk (Wk +Wk−1) + α

CT,Ω K∑
j=0

1

Mj
V [uhj − uhj−1

]− ε2

4


with the Lagrange multiplier α ∈ R. In order to find an extremum, we impose the condition
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∇L(M0, . . . ,MK , α)
!

= 0 which implies the equations

∂L
∂Mk

= Wk +Wk−1 − αCT,ΩM−2
k V [uhk − uhk−1

] = 0, k = 0, . . . ,K, (4.9)

∂L
∂α

= CT,Ω

K∑
j=0

1

Mj
V [uhj − uhj−1

]− ε2

4
= 0. (4.10)

First, we solve the equations (4.9) for Mk:

Mk =
(
αCT,Ω V [uhk − uhk−1

] (Wk +Wk−1)−1
)1/2

, k = 0, . . . ,K. (4.11)

Inserting this relation into (4.10) and solving the resulting equation for
√
α lead to

α1/2 =
4

ε2
√
CT,Ω

K∑
j=0

V [uhj − uhj−1
]1/2(Wj +Wj−1)1/2.

Then, substituting this formula for the parameter α into equation (4.11) results in the optimal
number of samples

Mk =
4

ε2
CT,Ω

(
V [uhk − uhk−1

]

Wk +Wk−1

)1/2 K∑
j=0

(Wj +Wj−1)1/2 V [uhj − uhj−1
]1/2,

which we round up to the next integer M∗k = dMke. Using the chosen number of samples M∗k
satisfying Mk ≤M∗k ≤Mk + 1, we obtain for the ε-cost the estimation

CMLMC
ε ≤

K∑
k=0

(Mk + 1)(Wk +Wk−1)

= 4 ε−2CT,Ω

(
K∑
k=0

(Wk +Wk−1)1/2 V [uhk − uhk−1
]1/2

)2

+
K∑
k=0

(Wk +Wk−1).

(4.12)

Note that the rounded number of samples M∗k ensures that the stochastic error is bounded by
ε/2 since √√√√CT,Ω

K∑
k=0

1

M∗k
V [uhk − uhk−1

] ≤

√√√√CT,Ω

K∑
k=0

1

Mk
V [uhk − uhk−1

] =
ε

2
.

Next, we assume that the upper bound Wk is bounded in the same way as in Assumption 4.7 in
the single-level approach. This additional condition provides a slightly modified formula for the
number of samples on each level which we use in the implementation of the MLMC method in
Section 4.4.

Assumption 4.15
Let Wk be an upper bound for the cost to compute an MC sample of the approximate solution
uhk for tolerance TolHk > 0. There exists a constant γ > 0 with

Wk ≤ CW TolH−γk

for all k = 0, . . . ,K. The constant CW > 0 is independent of k, θ and γ.
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4.2 Multi-Level Structure

Corollary 4.16
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, suppose Assumptions 3.3, 4.11 and 4.15 hold. Then, for any ε > 0, there exists a
number K = K(ε) ∈ N+ and a sequence of number of samples {Mk}k=0,...,K such that

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ ε

and

CMLMC
ε ≤ C1ε

−2

(
K∑
k=0

Gk(γ)1/2 V [uhk − uhk−1
]1/2

)2

+ CW

K∑
k=0

Gk(γ)

with C1 := 4CT,ΩCW and

Gk(γ) := TolH−γk + (1− δk0)TolH−γk−1. (4.13)

As usual, the Kronecker delta δk0 is defined as δk0 = 1 for k = 0 and δk0 = 0 otherwise. The
optimal choice for the number Mk of samples is given by

Mk =

⌈
4 ε−2CT,Ω V [uhk − uhk−1

]1/2Gk(γ)−1/2
K∑
j=0

Gj(γ)1/2 V [uhj − uhj−1
]1/2
⌉
, k = 0, . . . ,K.

(4.14)

Proof. We prove the stated results analogously to the proof of Theorem 4.14. Due to Assump-
tion 4.15, the considered optimization problem modifies to

min
M0,...,MK

CW

K∑
k=0

Mk

(
TolH−γk + (1− δk0)TolH−γk−1

)
s.t. CT,Ω

K∑
k=0

1

Mk
V [uhk − uhk−1

] =
ε2

4
.

Here, we use the Kronecker delta because on the coarsest level k = 0 there are only samples of
uh0 and the overall cost on this level is bounded by CW M0 TolH

−γ
0 . Alternatively, we could

set TolH−1 = 0 analogously to the cost bound W−1 = 0 in (4.8), however we define TolH−1 in
Chapter 5 differently and we want to keep the notation consistent in this work.

In the following, we concentrate on physical tolerances characterized by a geometric design such
that TolHk = qk TolH0 with a positive reduction factor q < 1. Furthermore, we suppose that
the variance-like term V [uhk − uhk−1

] decrease with level k and then we prove the improvement
in the asymptotic cost over the single-level approach.

Assumption 4.17 (Variance Reduction)
There exits a constant β > 0 with

V [uhk − uhk−1
] ≤ CV TolHβ

k for k > 0,

where CV is a positive constant independent of k, θ and β.
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Theorem 4.18
Let a null sequence of physical tolerances {TolHk}k=0,1,... be given by TolHk = qk TolH0 with
TolH0 ∈ (0, 1] and a reduction factor q ∈ (0, 1). Further, let Assumptions 3.3, 4.11, 4.15 and
4.17 be fulfilled. Suppose that the rates γ of Assumption 4.15 and β of Assumption 4.17 satisfy
the condition 2 ≥ min(γ, β). Then, for any ε ∈ (0, 1/e], there exists a number K = K(ε) ∈ N+

and a sequence {Mk}k=0,...,K such that

‖E[u]− EK [uhK ]‖L2(Θ,L1) ≤ ε

and

CMLMC
ε .


ε−2 if β > γ,

ε−2(log ε)2 if β = γ,

ε−2−(γ−β) if β < γ.

Proof. Due to the supposed assumptions, the first statement follows from Corollary 4.16. For
the choice of the value K, we get the condition CH TolHK = CH q

KTolH0 ≤ ε/2. We choose

K :=

⌈
logq

(
ε

2CH TolH0

)⌉
+K0 (4.15)

with the smallest possible constant K0 ∈ N such that K ∈ N+. It follows

CH TolHK ≤ qK0+1ε/2 ≤ ε/2

since qK0+1 < 1 and K ≤ logq(ε/(2CH TolH0)) + 1 +K0. In addition, Corollary 4.16 provides

CMLMC
ε ≤ 4CT,ΩCW ε−2 F (γ)2

︸ ︷︷ ︸
=: (I)

+CW

K∑
k=0

Gk(γ)︸ ︷︷ ︸
=: (II)

(4.16)

with

F (γ) :=
K∑
k=0

Gk(γ)1/2 V [uhk − uhk−1
]1/2 and Gk(γ) := TolH−γk + (1− δk0)TolH−γk−1.

For further estimation of the complexity CMLMC
ε , we need the following property of a geometric

sum with q ∈ (0, 1) and α > 0:

K∑
k=0

qαk =
1− qα(K+1)

1− qα
<

1

1− qα
(4.17)

since qα < 1. Together with the formula (4.15) for K, it follows

K∑
k=0

q−αk =

K∑
k=0

(qα)k−K = q−αK
K∑
k=0

(
qα
)k
<

q−αK

1− qα

. q−α (logq(ε/(2CHTolH0))+1+K0) h ε−α.

(4.18)

First, we consider the second term (II) on the right-hand side of (4.16). The assumed geometric
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design of TolHk = qk TolH0 and inequality

(II) = CW

K∑
k=0

TolH−γk + (1− δk0)TolH−γk−1 = CW TolH−γ0

K∑
k=0

q−γk + (1− δk0) q−γ(k−1)

≤ CW TolH−γ0

(
1 + (1− δk0) qγ

) K∑
k=0

q−γk .
q−γK

1− qγ
h ε−γ . (4.19)

For the sum F (γ) in the term (I) of estimation (4.16), the relation TolHk = qk TolH0 and
Assumption 4.17 yield

F (γ) =
K∑
k=0

(
TolH−γk + (1− δk0)TolH−γk−1

)1/2
V [uhk − uhk−1

]1/2

≤ TolH−γ0

(
V [u0]1/2 +

K∑
k=1

(
q−γk + q−γ(k−1)

)1/2
√
CV TolH

β
k

)

= TolH−γ0

(
V [u0]1/2 + C

1/2
V TolH

β/2
0 (1 + qγ)1/2

K∑
k=1

q−γk/2qβk/2

)

. 1 +

K∑
k=1

qk(β−γ)/2 h
K∑
k=0

qk(β−γ)/2.

Consequently, we get

(I) . ε−2

(
K∑
k=0

qk(β−γ)/2

)2

. (4.20)

Now, we consider the geometric sum (G) :=
∑K

k=0

(
q(β−γ)/2

)k for the following three different
cases:

(i) β − γ > 0:
For this case, inequality (4.17) provides that the geometric sum (G) is bounded by a
constant independent of K. Therefore, we have (I) . ε−2 and it follows

CMLMC
ε . ε−2 + ε−γ . ε−2

since ε < 1 and 2 ≥ min(β, γ) = γ.

(ii) β − γ = 0:
Inserting formula (4.15) into the geometric sum (G) gives

(G) =
K∑
k=0

(
q(β−γ)/2

)k
= K + 1 ≤ logq

(
ε

2CH TolH0

)
+ 2 +K0 . | log(ε)|

because it holds | log(ε)| ≥ 1 due to ε ≤ e−1. It follows

(I) . ε−2 log(ε)2

and finally
CMLMC
ε . ε−2 log(ε)2 + ε−γ . ε−2 log(ε)2

since β = γ ≤ 2.
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Chapter 4 Adaptive Multi-Level Monte Carlo Method

(iii) β − γ < 0:
Using inequality (4.18), we obtain (G) . ε−(γ−β)/2. Therefore, we have

(I) . ε−2ε−(γ−β).

Combining the estimations for the terms (I) and (II) yields

CMLMC
ε . ε−2−(γ−β) + ε−γ . ε−2−(γ−β)

because β = min(γ, β) ≤ 2 and thus 2 + (γ − β) > γ.

As in [18, 106], we interpret the complexity result of the previous theorem by considering (4.12)
or directly (4.20). Moreover, we show the benefit of the ML approach by comparing the results
with the complexity of the single-level MC approach proved in Lemma 4.8. In the optimal
case β > γ, the variance-like term V [uhk − uhk−1

] decreases faster with k than the cost Wk

increases. Hence, the terms (Wk +Wk−1)V [uhk − uhk−1
] in (4.12) and qk(β−γ)/2 in (4.20) are the

largest for k = 0. Therefore, the most of the computational effort will be on the coarsest level
k = 0 computing EM0 [uh0 ]. Comparing with the single-level MC approach, the cost savings are
CMC
ε /CMLMC

ε h ε−γ . If the variance-like term V [uhk − uhk−1
] decreases slower with k than the

cost Wk increases, i.e. β < γ, the most of the computational effort is required on the finest level
k = K. The savings in cost are CMC

ε /CMLMC
ε h ε−β . In the last case β = γ, the computational

effort is distributed equally across the levels and the cost savings are up to a log factor of the
order ε−γ .

If we neglect the condition 2 ≥ min(γ, β) in the previous theorem, then the term ε−γ does not
vanish and remains in the complexity estimates [13, 94]. Note that this term is generated by
rounding up the number Mk of samples, see (4.12) and (4.19).

The previous complexity theorem is formulated for a given sequence of physical tolerances and
determines the number K ∈ N+. In our case, we have access to an adaptive physical solver which
works with an arbitrary physical tolerance as input parameter. Therefore, we can first choose a
fixed K ∈ N+ and then the physical tolerance TolHK depending on CH and the desired total
accuracy ε:

TolHK =
ε

2CH
.

The remaining tolerances are defined by TolHk = qk−KTolHK . The choice of the number of
samples and the complexity analysis are performed as before.

Remark 4.19
In order to generalize the previous theorem using an arbitrary Banach space W for the physical
space, Assumption 4.17 has to be replaced by

‖E[uhk − uhk−1
]− EMk

[uhk − uhk−1
]‖2L2(Θ,W) ≤ CM

−1
k TolHβ

k k = 1, . . . ,K

with a constant C > 0 independent of Mk and uhk . Since the MC estimator is unbiased, the term
on the left-hand side is equal to V [EMk

[uhk − uhk−1
]] and can be interpreted as a variance-like

term of the Monte Carlo estimator of the difference uhk − uhk−1
.

If Assumption 4.11 also holds for the L2-norm, then we can obtain β = 2 by following the proof
of Theorem 3.1 in [64].
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4.3 Real-Valued Quantity of Interest

In application, a functional, also possibly nonlinear, of the solution is a typical QoI. In this
section, we mainly follow the work of Cliffe et al. [18] and adapt the complexity analysis from
the previous sections of this chapter to real-valued QoIs.

We consider a functional F : L1 → R and define the real-valued QoI Φ : Θ→ R by

Φ : θ 7→ F [u(θ)],

where u is the random entropy solution. The functional of a random numerical approximation
uh of the solution u is denoted by Φh with Φh(θ) := F [uh(θ)] for θ ∈ θ and it obviously
approximates Φ.

4.3.1 Single-Level Structure

Analogously to the single-level approach considering the random entropy solution u, the expected
value of the QoI Φ is approximated by the Monte Carlo estimator of the approximation Φh. For
the definition of the MC estimator, we refer to Definition 4.1.

Similar to the solution case, we compute numerical approximations Φh(θ) by using an adaptive
physical solver which computes the approximate solution uh(θ) with a sample-dependent resolu-
tion in space, time and model hierarchy. This resolution is refined until the error estimate for Φ
is smaller than a given tolerance TolH. For the convergence and complexity analysis, we assume
therefore the following properties.

Assumption 4.20 (Adaptive Physical Approximation)
(i) Let u be the random entropy solution of problem (3.3)–(3.7). For θ ∈ Θ, let Φh(θ) be the

functional Φ of the physical approximation uh(θ) computed for a given tolerance TolH > 0
by an adaptive solver using a space-time-model discretization. Then, there exists a physical
constant ch : Θ→ R+ with E[ch] <∞ such that Φh(θ) satisfies

|Φ(θ)− Φh(θ)| ≤ ch(θ)TolH (4.21)

P-almost surely.

(ii) The functions Φ and Φh belong to the space L2(Θ).

From this assumption, it follows

E [|Φ− Φh|] ≤ Ch TolH

with Ch := E[ch] by integrating the inequality (4.21) over the sample space. Note that the
constant Ch is finite and independent of θ ∈ Θ. In addition, Jensen’s inequality yields

|E[Φ− Φh]| ≤ E [|Φ− Φh|] ≤ Ch TolH. (4.22)
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For the convergence analysis, we consider the mean squared error (MSE) of the MC estimator
of the QoI Φ and expand the error to

‖E[Φ]− EM [Φh]‖2L2(Θ) = E
[(
E[Φ]− EM [Φh]

)2]
=
(
E[Φ]− E[Φh]

)2︸ ︷︷ ︸
I) deterministic error

+E
[(
E[Φh]− EM [Φh]

)2]︸ ︷︷ ︸
II) stochastic error

.

(4.23)

The previous identity holds because the MC estimator is unbiased. If we consider the root mean
squared error (RMSE), the previous splitting is an inequality. Therefore, in contrast to the
Sections 4.1 and 4.2, we consider the MSE in this section. Investigating both error terms and
supposing the above assumption give the following theorem.

Theorem 4.21
Suppose Assumptions 3.3 and 4.20 hold. Then, the MSE can be bounded by

E
[(
E[Φ]− EM [Φh]

)2] ≤ C2
h TolH

2 +
1

M
V[Φh]. (4.24)

Proof. First, we consider the deterministic physical error. Due to inequality (4.22), we have(
E[Φ]− E[Φh]

)2
= E[Φ− Φh]2 ≤ C2

h TolH
2.

Next, the stochastic error depends on the variance of the MC estimator:

E
[(
E[Φh]− EM [Φh]

)2]
= E

[(
E[EM [Φh]]− EM [Φh]

)2]
= V

[
EM [Φh]

]
=

1

M2
V
[ M∑
n=1

Φh,n

]
=

1

M
V[Φh]

(4.25)

because the random variables Φh,n are independent and identically distributed. Combining both
error parts results in

E
[(
E[Φ]− EM [Φh]

)2]
= E[Φ− Φh]2 +

1

M
V[Φh] ≤ C2

h TolH
2 +

1

M
V[Φh].

Since Φ ∈ L2(Θ), inequality (3.2) holds such that V[Φh] <∞.

In order to guarantee an accuracy ε2 > 0 of the MSE, we balance both terms on the right-hand
side of inequality (4.24) and obtain

TolH =
ε√

2Ch
and M =

⌈
2V[Φh]

ε2

⌉
. (4.26)

Note that this choice is not exactly the same as in (4.5) derived for the MC error of the full
solution. The difference arises from the identity in (4.23).

The analysis of the total computational cost of the MC method for the QoI Φ is performed anal-
ogously to the solution case, in Section 4.1. Before we can analyze the computational complexity
CMC
ε required to achieve the desired accuracy ε2, we need the following assumption on the cost

of each sample of the approximated QoI Φh.
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Assumption 4.22
Let Wh be an upper bound for the cost to compute an MC sample of Φh for tolerance TolH > 0.
Then, there exists a constant γ > 0 such that

Wh ≤ CW TolH−γ

with a constant CW > 0 independent of γ and TolH.

Lemma 4.23
Let Assumptions 3.3, 4.20 and 4.22 be fulfilled. Then, for any ε < 1, there exists a physical
tolerance TolH > 0 and an integer M ∈ N+ such that

E
[(
E[Φ]− EM [Φh]

)2] ≤ ε2
and

CMC
ε ≤ ε−2−γ .

Proof. The proof is analogous to the proof of Lemma 4.8.

Obviously, the RMSE also achieves the prescribed accuracy ε. Due to Jensen’s inequality and
Lemma 4.23, the mean absolute error satisfies

E
[∣∣E[Φ]− EM [Φh]

∣∣] ≤ E
[(
E[Φ]− EM [Φh]

)2]1/2
≤ ε. (4.27)

4.3.2 Multi-Level Structure

In the following, we apply the multi-level Monte Carlo estimator defined in Definition 4.12 to a
sequence of functionals Φhk of the approximate solution uhk , i.e. Φhk(θ) := F [uhk(θ)] for θ ∈ Θ.
As in Section 4.2, the physical tolerances fulfill

1 ≥ TolH0 > · · · > TolHK > 0

and each approximation Φhk is computed for tolerance TolHk using an adaptive solver.

Assumption 4.24 (Sequence of Adaptive Physical Approximations)
(i) Let u be the entropy solution of problem (3.3)–(3.7). For θ ∈ Θ, let Φhk(θ) be the functional

of the numerical approximation uhk(θ) computed for a given TolHk > 0 by an adaptive
solver. Then, for all k = 0, . . . ,K there exists a physical constant ck : Θ → R+ with
E[ck] <∞ such that Φhk(θ) satisfies

|Φ(θ)− Φhk(θ)| ≤ ck(θ)TolHk (4.28)

P-almost surely.

(ii) It holds Φ,Φhk ∈ L2(Θ) for k = 0, . . . ,K.

Analogously to the single-level approach, we split the MSE into a deterministic and the stochastic
error. Due to the previous assumption, we can state the following theorem mainly based on [18].
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Theorem 4.25
Let Assumptions 3.3 and 4.24 be fulfilled. Then, the error of the MLMC estimator of Φ satisfies

E
[(
E[Φ]− EK [ΦhK ]

)2] ≤ C2
H TolH

2
K +

K∑
k=0

1

Mk
V[Φhk − Φhk−1

]. (4.29)

Proof. This proof is mainly based on [18]. Using the unbiasedness of the MLMC estimator, the
independence of the MC estimators EMk

and the linearity of the expected value implies that

E
[(
E[Φ]− EK [ΦhK ]

)2]
= E

[(
E[Φ]− E[ΦhK ]

)2]
+ E

[(
E[ΦhK ]− EK [ΦhK ]

)2]
=
(
E[Φ]− E[ΦhK ]

)2
+

K∑
k=0

E
[(
E[Φhk − Φhk−1

]− EMk
[Φhk − Φhk−1

]
)2]

.

(4.30)

Analogous to equation (4.25), we obtain

E
[(
E[Φ]− EK [ΦhK ]

)2]
= E[Φ− ΦhK ]2 +

K∑
k=0

V
[
EMk

[Φhk − Φhk−1
]
]

= E[Φ− ΦhK ]2 +
K∑
k=0

1

Mk
V
[
Φhk − Φhk−1

]
.

The variance V[Φhk − Φhk−1
] is finite since Φhk − Φhk−1

belongs to L2(Θ), see (3.2). Similar to
(4.22), integrating the assumed inequality (4.28) over the sample space Θ and using Jensen’s
inequality lead to

|E[Φ− Φhk ]| ≤ E[|Φ− Φhk |] ≤ CH TolHk for k = 0, . . . ,K

with CH := maxk=0,...,K E[ck]. Therefore, the deterministic error satisfy the estimation

E[Φ− ΦhK ]2 ≤ C2
H TolH

2
K .

In order to achieve a total accuracy ε2 < 1 of the MSE, we have to bound both terms on the
right-hand side of (4.29) by ε2/2. We can reformulate the error and complexity statements of the
MLMC error of the full solution for the solution functional Φ. Nevertheless, the upper bound for
the complexity and the number of samples differ by a factor of 2 from the results in Section 4.2
since the analysis here is based on the identity (4.30) instead of the inequality (4.7). Now, let
Wk be an upper bound for the cost of a single sample of Φhk for k = 0, . . . ,K.

Theorem 4.26
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, let Assumptions 3.3 and 4.24 be fulfilled. Then, for any ε > 0, there exists a number
K = K(ε) ∈ N+ and a sequence of number of samples {Mk}k=0,...,K such that

E
[(
E[Φ]− EK [ΦhK ]

)2] ≤ ε2
and

CMLMC
ε ≤ 2 ε−2

(
K∑
k=0

(Wk +Wk−1)1/2 V[Φhk − Φhk−1
]1/2

)2

+

K∑
k=0

(Wk +Wk−1).
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The optimal choice for the number of samples Mk is given by

Mk =

⌈
2

ε2

(V[Φhk − Φhk−1
]

Wk +Wk−1

)1/2 K∑
j=0

(Wj +Wj−1)1/2 V[Φhj − Φhj−1
]1/2
⌉
.

Proof. We proceed similar as in the proof of Theorem 4.14 by considering the error estimate
(4.29) of the previous theorem. We choose K ∈ N+ such that CH TolHK ≤ ε/

√
2.

Next, we assume that the upper bound Wk of the cost of one sample of Φhk increases with
level k. The resulting formula for Mk is used in the implementation of the MLMC method in
Subsection 4.4.1. In order to complete the complexity analysis, the variance of the difference
Φhk − Φhk−1

is assumed to converge with rate β.

Assumption 4.27 (Variance Reduction)
(i) Let Wk be an upper bound for the cost to compute an MC sample of Φhk for tolerance

TolHk > 0. There exists a constant γ > 0 with

Wk ≤ CW TolH−γk

for all k = 0, . . . ,K. The constant CW > 0 is independent of k, θ and γ.

(ii) There exists a constant β > 0 with

V[Φhk − Φhk−1
] ≤ CV TolHβ

k for k > 0,

where CV is a positive constant independent of k, θ and β.

Corollary 4.28
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, suppose Assumptions 3.3, 4.24 and 4.27 (i) hold. Then, for any ε > 0, there exists a
number K = K(ε) ∈ N+ and a sequence of number of samples {Mk}k=0,...,K such that

E
[(
E[Φ]− EK [ΦhK ]

)2] ≤ ε2
and

CMLMC
ε ≤ 2CW ε−2

( K∑
k=0

Gk(γ)1/2 V[Φhk − Φhk−1
]1/2
)2

+
K∑
k=0

Gk(γ)

with
Gk(γ) := TolH−γk + (1− δk0)TolH−γk−1.

The optimal choice for the number of samples Mk is given by

Mk =

⌈
2 ε−2

(V[Φhk − Φhk−1
]

Gk(γ)

)1/2 K∑
j=0

Gj(γ)1/2 V[Φhj − Φhj−1
]1/2
⌉
. (4.31)

Proof. This statement is proved analogously to the proof of Corollary 4.16 by considering the
error estimate (4.29).
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Theorem 4.29
Let a null sequence of physical tolerances {TolHk}k=0,1,... be given by TolHk = qk TolH0 with
TolH0 ∈ (0, 1] and a reduction factor q ∈ (0, 1). Further, let Assumptions 3.3, 4.24 and 4.27 be
fulfilled. Suppose that the rates γ and β of Assumption 4.27 satisfy the condition 2 ≥ min(γ, β).
Then, for any ε ∈ (0, 1/e], there exists a number K = K(ε) ∈ N+ and a sequence {Mk}k=0,...,K

such that
E
[(
E[Φ]− EK [ΦhK ]

)2] ≤ ε2
and

CMLMC
ε .


ε−2 if β > γ,

ε−2(log ε)2 if β = γ,

ε−2−(γ−β) if β < γ.

Proof. This follows from the proof of Theorem 4.18 by continuing with the results of the previous
corollary.

For details about the interpretation of the previous complexity result and the cost savings com-
pared to the single-level approach, we refer to the discussion in Subsection 4.2.1.

Since we have a physical adaptive solver for the functional Φ of the solution u in the implemen-
tation, we choose first the number K ∈ N+ and then we define the physical tolerance TolHK for
the first level by

TolHK =
ε√

2CH
.

The remaining tolerances {TolHk}K−1
k=0 follow from the relation TolHk = qk−KTolH0. The choice

of the number of samples and the complexity analysis remain the same.

Furthermore, we can even show that Assumption 4.24 provides that Assumption 4.27 (ii) is
fulfilled with β = 2.
Lemma 4.30
Suppose Assumption 3.3 holds. Further, let Assumption 4.24 be fulfilled with E[c2

k] < ∞. If
the physical tolerances have a geometric design TolHk = qk TolH0, then there exists a constant
CV > 0 independent of k such that

V[Φhk − Φhk−1
] ≤ CV TolH2

k for k > 0.

Proof. We consider in this proof always k > 0 since V[Φh0 − Φh−1 ] = V[Φh0 ]. The variance can
be bounded by

V[Φhk − Φhk−1
] = E

[(
E[Φhk − Φhk−1

]− (Φhk − Φhk−1
)
)2]

= E
[(

Φhk − Φhk−1

)2]− E[Φhk − Φhk−1
]2

≤ E
[(

Φhk − Φhk−1

)2] (4.32)

since Φhk ,Φhk−1
∈ L2(Θ) and thus |E[Φhk − Φhk−1

]| ≤ |E[Φhk ]| + |E[Φhk−1
]| < ∞. Due to the

triangle inequality, Assumption 4.24 and the geometric design of the tolerances TolHk, we obtain
for almost all θ ∈ Θ

|Φhk(θ)− Φhk−1
(θ)| ≤ |Φ(θ)− Φhk(θ)|+ |Φ(θ)− Φhk−1

(θ)|
≤ ck(θ)(1 + q−1)TolHk.
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By integrating the square of the previous inequality over the sample space Θ, we can derive the
following estimation from (4.32):

V[Φhk − Φhk−1
] ≤ E

[(
Φhk − Φhk−1

)2]
=

∫
Θ

(
Φhk(θ)− Φhk−1

(θ)
)2

dP(θ) ≤ ĈH (1 + q−1)2 TolH2
k

with ĈH = maxk=0,...,K E[c2
k] > 0.

4.4 Implementation

We describe the algorithm of our single-level and multi-level Monte Carlo method. Both algo-
rithms are fully error-controlled such that the provided approximation achieves an accuracy close
to the user-prescribed accuracy ε.

First, we draw Minit different samples În := I(θn) of the random input data field I according
to its given distribution, for example the random initial value or random boundary data. For
each sample În, we obtain a deterministic problem of the form (2.11)–(2.15). The resulting M
deterministic problems are decoupled and different from each other because the MC estimate is
defined with samples of i.i.d. random variables. Therefore, the computation of the corresponding
numerical solutions can be parallelized in the implementation.

As explained in the previous sections, we assume to have an adaptive black box solver at hand
which is called for each drawn sample of the random input field and for a given physical tolerance
TolH > 0. Then, this algorithm numerically solves the deterministic network problem corre-
sponding to the given sample of the random input field such that the numerical solution satisfies
the accuracy requirement in Assumption 4.2. We denote the adaptive solver by ADet(·, ·) and
the physical approximation by

ûh,n := uh(θn) = ADet(În, T olH)

which is a sample of the random numerical solution uh.

Let ε be a user-prescribed accuracy for the error of the MC approximations. According to the
error analysis in Section 4.1, we need to choose the tolerance TolH and the number of samples
M as in (4.5). The constant Ch can be estimated by a pre-study of a few samples for a small
sequence of relatively coarse physical tolerances. For the computation of M , we use the initial
set of Minit samples and estimate the variance-like term V [uh] = ‖E[uh] − uh‖2L2(Θ,L2) in (4.5)
by the following estimator.

Definition 4.31 (Variance Estimator)
Let v be an element of the space L2(Θ,W) with Banach space W and let v1, . . . , vM ∈ L2(Θ,W)
be i.i.d. random variables with the same probability distribution as v. The variance estimator is
defined as

VM [v] =
1

M − 1

M∑
n=1

‖vn − EM [v]‖2W =
1

M − 1

M∑
n=1

∥∥∥∥vn − 1

M

M∑
j=1

vj

∥∥∥∥2

W
,

where EM [v] is the MC estimator defined in Definition 4.1.
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Similar to (3.2), we obtain VM [v] ∈ L2(Θ) since the MC estimator EM [v] is also a mean-square
integrable random variable. Using this estimator, we can compute the required number of sam-
ples M . If additional samples are now needed, we compute new samples and finally the MC
estimate including all computed samples of uh. The resulting SLMC algorithm is also described
in Algorithm 4.1. In the implementation, the estimates Eh and Vh are realizations of the estima-
tors EM [uh] and VM [uh], respectively. Note that, all samples În are different from each other so
that in general the samples ûh,n differ as well. In Chapter 7, we set Minit = 10. For a control of
the quality of the MC estimate, the term Vh and the number of samples M are usually recom-
puted in the end of the algorithm. If the recomputed number of samples is significantly higher
than the number of the already drawn samples, it is reasonable to draw additional samples and
to recompute the corresponding MC estimate.

Algorithm 4.1 Adaptive single-level Monte Carlo method for the approximation of the expected
value E[u].

1: procedure ASinglelevelMC(ε,Minit, ADet)

2: Estimate Ch
3: TolH = ε/(2Ch)

4: Draw Minit samples În of random input data

5: Compute samples of uh:

ûh,n = ADet(În, T olH), for n = 1, . . . ,Minit

6: Eh = 1/Minit
∑

n=1,...,Minit
ûh,n

7: Vh = 1/(Minit − 1)
∑

n=1,...,Minit
‖ûh,n − Eh‖2L1

8: M =
⌈
4 ε−2CT,Ω Vh

⌉
.

9: if M > Minit then

10: Draw new samples {În}n=Minit+1,...,M

11: Compute new samples of uh:

ûh,n = ADet(În, T olH), for n = Minit + 1, . . . ,M

12: Eh = 1/M
∑

n=1,...,M ûh,n

13: end if

14: return Eh

15: end procedure

The implementation of the fully adaptive MLMC method is described in Algorithm 4.2. For each
level k = 0, . . . ,K, we start again with drawing Minit samples Î kn := I(θkn) of the random input
data I for n = 1, . . . ,Minit. Note that all (K + 1)Minit samples are different from each other.
The numerical solution computed by the adaptive physical solver ADet(·, ·) for the sample I kn
and for a given physical tolerance TolHk is denoted by

û khk,n := uhk(θkn) = ADet(Î kn , T olHk).

For TolHk−1, we define analogously

û khk−1,n
:= uhk−1

(θkn) = ADet(Î kn , T olHk−1).
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Algorithm 4.2 Adaptive multi-level Monte Carlo method for the approximation of the expected
value E[u].

1: procedure AMultilevelMC(ε, q,K,Minit, ADet)

2: Estimate CH and γ

3: TolHK = ε/(2CH)

4: TolHk = qk−KTolHK , for k = 0, . . . ,K − 1

5: Draw Minit samples Î kn for each level k = 0, . . . ,K

6: û 0
h0,n

= ADet(Î 0
n , T olH0), for n = 1, . . . ,Minit

7: E0 = 1/Minit
∑

n=1,...,Minit
û 0
h0,n

8: V0 = 1/(Minit − 1)
∑

n=1,...,Minit
‖û 0

h0,n
− E0‖2L1

9: for k = 1, . . . ,K do

10: û khk,n − û
k
hk−1,n

= ADet(Î kn , T olHk)−ADet(Î kn , T olHk−1),

for n = 1, . . . ,Minit

11: Ek = 1/Minit
∑

n=1,...,Minit
(û khk,n − û

k
hk−1,n

)

12: Vk = 1/(Minit − 1)
∑

n=1,...,Minit
‖(û khk,n − û

k
hk−1,n

)− Ek‖2L1

13: end for

14: Mk =
⌈
4 ε−2CT,Ω V

1/2
k Gk(γ)−1/2

∑
j=0,...,K Gj(γ)1/2 V

1/2
j

⌉
with Gk(γ) as in (4.13)

for k = 0 . . . ,K

15: if M0 > Minit then

16: Draw new samples {Î 0
n }n=Minit+1,...,M0

17: û 0
h0,n

= ADet(Î 0
n , T olH0), for n = Minit + 1, . . . ,M0

18: E0 = 1/M0
∑

n=1...,M0
û 0
h0,n

19: end if

20: for k = 1, . . . ,K do

21: if Mk > Minit then

22: Draw new samples {Î kn }n=Minit+1,...,Mk

23: û khk,n = ADet(Î kn , T olHk), for n = Minit + 1, . . . ,Mk

24: û khk−1,n
= ADet(Î kn , T olHk−1), for n = Minit + 1, . . . ,Mk

25: Update Ek = 1/Mk
∑

n=1,...,Mk
(û khk,n − û

k
hk−1,n

)

26: end if

27: end for

28: return EK =
∑K

k=0Ek

29: end procedure

Since K is fixed, we choose TolHK = ε/(2CH) and the samples Mk as in (4.14). As in the com-
plexity theorem 4.18, we consider a sequence of physical tolerances characterized by a geometric
design such that TolHk = qk TolH0 with a positive reduction factor q < 1. The constant CH and
the rate γ can be estimated as before using a few samples for a small sequence of relatively coarse
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physical tolerances. If the samples studied in the SL approach for Ch are available, then they
can be reused to estimate γ and Ch can be used as an estimation for CH as well. Additionally,
we need to estimate the variance-like term of the difference uhk − uhk−1

on each level k by the
variance estimator introduced in the previous definition. If necessary, we compute additional
samples and update the corresponding MC estimates. Finally, we sum up the MC estimates on
each level providing the MLMC estimate. The estimates Ek, Vk and EK are again realizations
of the estimators EMk

[uhk − uhk−1
], VMk

[uhk − uhk−1
] and EK [uhK ], respectively.

4.4.1 Real-Valued Quantity of Interest

The previous implementation of the SLMC and MLMC algorithm for the solution can be easily
transferred to the functional Φ of the solution u. In the functional setting, the physical solver
ADet numerically solves deterministic network problems such that the functional of the nu-
merical solution now satisfies the accuracy requirement in Assumption 4.20 or Assumption 4.24.
These approximations are samples of Φh and they are denoted by

Φ̂h,n := Φh(θn) = ADet(În, T olH) and Φ̂ k
hj ,n

:= Φhj (θ
k
n) = ADet(Î kn , T olHj)

with j ∈ {k, k − 1}. According to the analysis in Section 4.3, the formula for the tolerances
and for the number of samples changes slightly since the MSE and not its root is considered.
The physical tolerances increase by a factor

√
2 and in the formula for the number of samples,

the constant CT,Ω vanishes and the factor 4 reduces to 2. Moreover, the variance-like term V [·]
coincides with the variance V[·] for Φh and for the ML difference Φhk−Φhk−1

. The corresponding
variance estimator is unbiased E[VM [·]] = V[·] since the random variables in Definition 4.31 are
independent of each other.

Algorithm 4.3 Adaptive single-level Monte Carlo method for the approximation of the expected
value E[Φ].

1: procedure ASinglelevelMC(ε,Minit, ADet)
2: Estimate Ch
3: TolH = ε/(

√
2Ch)

4: Draw Minit samples În of random input data
5: Compute samples of Φh:

Φ̂h,n = ADet(În, T olH), for n = 1, . . . ,Minit

6: Eh = 1/Minit
∑

n=1,...,Minit
Φ̂h,n

7: Vh = 1/(Minit − 1)
∑

n=1,...,Minit
(Φ̂h,n − Eh)2

8: M =
⌈
2 ε−2 Vh

⌉
.

9: if M > Minit then
10: Draw new samples {În}n=Minit+1,...,M

11: Compute new samples of Φh:
Φ̂h,n = ADet(În, T olH), for n = Minit + 1, . . . ,M

12: Eh = 1/M
∑

n=1,...,M Φ̂h,n

13: end if
14: return Eh

15: end procedure
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Algorithm 4.4 Adaptive multi-level Monte Carlo method for the approximation of the expected
value E[Φ].

1: procedure AMultilevelMC(ε, q,K,Minit, ADet)

2: Estimate CH and γ

3: TolHK = ε/(
√

2CH)

4: TolHk = qk−KTolHK , for k = 0, . . . ,K − 1

5: Draw Minit samples Î kn for each level k = 0, . . . ,K

6: Φ̂ 0
h0,n

= ADet(Î 0
n , T olH0), for n = 1, . . . ,Minit

7: E0 = 1/Minit
∑

n=1,...,Minit
Φ̂ 0
h0,n

8: V0 = 1/(Minit − 1)
∑

n=1,...,Minit
(Φ̂ 0

h0,n
− E0)2

9: for k = 1, . . . ,K do

10: Φ̂ k
hk,n
− Φ̂ k

hk−1,n
= ADet(Î kn , T olHk)−ADet(Î kn , T olHk−1),

for n = 1, . . . ,Minit

11: Ek = 1/Minit
∑

n=1,...,Minit
(Φ̂ k

hk,n
− Φ̂ k

hk−1,n
)

12: Vk = 1/(Minit − 1)
∑

n=1,...,Minit

(
(Φ̂ k

hk,n
− Φ̂ k

hk−1,n
)− Ek

)2

13: end for

14: Mk =
⌈
2 ε−2 V

1/2
k Gk(γ)−1/2

∑
j=0,...,K Gj(γ)1/2 V

1/2
j

⌉
with Gk(γ) as in (4.13)

for k = 0 . . . ,K

15: if M0 > Minit then

16: Draw new samples {Î 0
n }n=Minit+1,...,M0

17: Φ̂ 0
h0,n

= ADet(Î 0
n , T olH0), for n = Minit + 1, . . . ,M0

18: E0 = 1/M0
∑

n=1...,M0
Φ̂ 0
h0,n

19: end if

20: for k = 1, . . . ,K do

21: if Mk > Minit then

22: Draw new samples {Î kn }n=Minit+1,...,Mk

23: Φ̂ k
hk,n
− Φ̂ k

hk−1,n
= ADet(Î kn , T olHk)−ADet(Î kn , T olHk−1),

for n = Minit + 1, . . . ,Mk

24: Update Ek = 1/Mk
∑

n=1,...,Mk
(Φ̂ k

hk,n
− Φ̂ k

hk−1,n
)

25: end if

26: end for

27: return EK =
∑K

k=0Ek

28: end procedure
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Chapter 5

Adaptive Multi-Level Stochastic
Collocation Method

In the previous chapter, we analyzed the adaptive multi-level Monte Carlo method. Another
sampling method is the stochastic collocation (SC) method which determines the samples in a
structured way. In contrast to Monte Carlo (MC) methods, SC methods are able to exploit
any smoothness or special structure in the stochastic dependence. Therefore, the stochastic
collocation method is usually an effective alternative which reduces the number of samples and
the total computational effort. The stochastic collocation method is based on an interpolation
in the usually multi-dimensional stochastic space. Consequently, we obtain an approximation
of the considered quantity of interest (QoI) and not only statistical quantities of the QoI like
in the Monte Carlo methods. However, stochastic collocation methods suffer from the curse of
dimensionality meaning that the number of samples increases rapidly with the dimension of the
stochastic space [106].

First, we introduce the idea of the SC method and present the interpolation based on sparse grids
in the stochastic space as well as the development of an adaptive strategy in detail. Next, the
(single-level) SC method is combined with adaptive strategies in the stochastic and the physical
space such that we get a fully error-controlled method. Finally, we extend this method by a
multi-level structure and analyze its convergence and complexity following the same concept as
in the analysis of the MC methods in Chapter 4.

The SC method in this work focuses on the parametrized network problem (3.8)–(3.12) which
we obtained in Section 3.3 under Assumption 3.4:

∂tu
(j)(x, t,y) + ∂xFmj

(
u(j)(x, t,y)

)
= Gmj

(
u(j)(x, t,y), x, t

)
, mj ∈MPDE,

}
∂xFmj

(
u(j)(x, t,y)

)
= Gmj

(
u(j)(x, t,y), x, t

)
, mj ∈MQS,

x ∈ Ωj ,

u(j)(x, 0,y) = u
(j)
0 (x,y), x ∈ Ωj ,

for j = 1, . . . , P , t ∈ R+ and y ∈ Γ. The problem is complemented by boundary and coupling
conditions

Bb
(
u(j)(vb, t,y)

)
= Hb(t,y), b ∈ IBC , j ∈ δ(vb),

Cc
(
u(j1)(vc, t,y), . . . , u(jNc )(vc, t,y)

)
= Πc(t,y), c ∈ I0, jk ∈ δ(vc),

k = 1, . . . , Nc,
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for t ∈ R+, y ∈ Γ and Nc := |δ(vc)|. As a reminder, we have parametrized the uncertainty of the
input into N independent random variables ξi : Θ→ Γi. We have assumed that each variable ξi
has a probability density function (PDF) ρi : Γi → R+ and that Γi = [−1, 1], see Assumptions
3.5 and 3.6. The stochastic parameter space Γ = Γ1 × · · · × ΓN = [−1, 1]N is the image space of
the random vector ξ = (ξ1, . . . , ξN ) and thus the product of the image spaces Γi.

The SC method applied to our parametrized network problem is characterized by the following
steps:

• Choose Q collocation points yi ∈ Γ for a discretization of the stochastic parameter space
Γ. These points are realizations of the random vector ξ = (ξ1, . . . , ξN ).

• Insert each point yi into the network problem and solve these decoupled Q problems.
Indeed, the exact solution u(j)(x, t,yi) is usually unknown and therefore the problems are
solved by a numerical method in order to get approximations u(j)

h (x, t,yi).

• Interpolate the physical approximations u(j)
h (x, t,yi) to obtain a continuous representa-

tion of the approximate stochastic solution u(j)
h (x, t,y). The interpolation points are the

collocation points yi chosen in the first step.

• Compute statistical quantities using the obtained interpolant.

In practice, the QoI is often a functional of the solution and not the full solution itself. In
this case, we need to modify the previous procedure: In the second step, the functional of each
approximation u

(j)
h (x, t,yi) is computed. The third and the fourth steps are applied to the

functional analogously.

In this work, we use global polynomials for the interpolation and so we require a certain smooth-
ness of the solution in the stochastic space. In contrast to hyperbolic PDEs, the theory of the
elliptic PDEs is well studied (see for example [6]): The regularity in the physical space of the so-
lution guarantees the smoothness of the solution in the stochastic space. In the case of hyperbolic
PDEs, discontinuities in the spatial dimension could be transferred to the stochastic space. In
this case, the solution is not smooth in the stochastic space and oscillations may appear because
of using a global interpolation. Therefore, we assume appropriate regularity of the solution in
the stochastic space.

The key part of the SC method is the computation of the QoI (the solution or a functional of the
solution) for every collocation point which is realized by solving the corresponding deterministic
network problem and, hence, the underlying PDEs numerically. For complex PDE models as
well as for sufficiently fine spatial and time discretizations, the numerical simulations can be very
expensive and therefore we want to reduce the computational cost by using as few collocation
points as possible. In the next section, we present such an interpolation in an N -dimensional
space using sparse grids of collocation points and an adaptive algorithm which iteratively adds
points to the grid, namely in regions where the QoI changes the most.

5.1 Sparse Grid Interpolation

In this section, we first present the interpolation in the multi-dimensional parameter space
[−1, 1]N based on tensor products. Then, the Smolyak sparse grid interpolation proposed by
Smolyak [102] and the generalized formula from Gerstner and Griebel [39] are considered. Then,
we state the main properties of the general sparse grid operator and discuss how we can use
the interpolant to compute statistical quantities. Furthermore, we give an overview of common
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5.1 Sparse Grid Interpolation

collocation points and explain the idea, the implementation and our modifications of the adap-
tive sparse grid algorithm introduced by Gerstner and Griebel [38] and extended by Nobile et al.
[81].

In order to cover the treatment of the solution u of problem (3.8)–(3.12) and of a functional of the
solution simultaneously, we consider a general function f := (f1, . . . , fN ) : Γ→W with Banach
space (W, ‖ · ‖W). We suppose that the space W is either R or a function space containing
functions w : G→ Rd with domain G and d ≥ 1. In the latter case, we will skip the dependence
on the variable z ∈ G during this section because we focus on the interpolation in the stochastic
space Γ.

For each univariate function fn ∈ C(Γn,W) with Γn = [−1, 1], we consider one-dimensional
interpolation operators which are needed for the construction of an interpolation of the function f
in the multi-dimensional space. We approximate the function fn by a global interpolation using
Lagrange polynomials. However, there is no restriction in the method on this type of interpolation
polynomials, for example piecewise linear basis functions with local support can also be used [74].
The interpolation points are called collocation points and are given by the set

Zm(in) :=
{
y

(in)
j , j = 1, . . . ,m(in)

}
⊂ [−1, 1],

where the points y(in)
j are distinct. The index in ∈ N+ determines the number of collocation

points m(in) via the function m : N+ → N+ which satisfies

m(1) = 1, m(k) < m(k + 1) for k ≥ 1.

Let Pm(in)−1(Γn) be the space of all one-dimensional polynomials p : Γn → R of degree at most
m(in)− 1. The interpolation operator U (in) : C(Γn,W)→ Pm(in)−1(Γn)⊗W has to satisfy the
property that the function is exactly interpolated at the nodes y(in)

j :

U (in) [fn]
(
y

(in)
j

)
= fn

(
y

(in)
j

)
for all j = 1, . . . ,m(in). Therefore, the operator Uin is defined by

U (in)[fn](y) :=

m(in)∑
j=1

fn

(
y

(in)
j

)
L

(in)
j (y),

using function evaluations in the collocation points and the Lagrange polynomials L(in)
j as basis

functions of Pm(in)−1(Γn). The Lagrange polynomial L(in)
j : Γn → R corresponding to node y(in)

j

has degree m(in)− 1 and is constructed by

L
(in)
j (y) =

m(in)∏
k=1
k 6=j

y − y(in)
k

y
(in)
j − y(in)

k

such that L(in)
j

(
y

(in)
k

)
= δjk for k = 1, . . . ,m(in). Obviously, the interpolation operator Um(in)

reproduces all polynomials contained in Pm(in)−1(Γn).
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Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

Now, we consider the N -dimensional hypercube Γ = [−1, 1]N with N > 1 and the multivariate
function f ∈ C(Γ,W). Let i = (i1, . . . , iN ) ∈ NN+ be a multi-index where the component
ik determines the number of collocation points in k-th direction, namely mk(ik). By means of
tensor products, we combine the one-dimensional interpolation operators U (ik)

k of each dimension
k ∈ {1, . . . , N} and their corresponding grids Zmk(ik). In order to avoid a complicated notation,
we consider the case m = m1 = m2 = · · · = mN resulting in U (ik)

k = U (ik) and Zmk(ik) = Zm(ik).
The following presentation can be transferred to the general case straightforwardly.

The full tensor product is now defined by

Ti[f ](y) :=
(
U (i1) ⊗ · · · ⊗ U (iN )

)
[f ](y)

=

m(i1)∑
j1=1

· · ·
m(iN )∑
jN=1

f
(
y

(i1)
j1

, . . . , y
(iN )
jN

)
L

(i1)
j1

(y1) · · ·L(iN )
jN

(yN )
(5.1)

with y = (y1, . . . , yN ) ∈ Γ and collocation points y(ik)
jk
∈ Zm(ik) in the k-th dimension for

k = 1, . . . , N . The full tensor product is called isotropic if the number of collocation points in
each direction coincide, i.e. i1 = i2 = · · · = iN . In order to write the tensor product in a shorter
form, let yi

j = (y
(i1)
j1

, . . . , y
(iN )
jN

) be the multivariate collocation points and Lij = L
(i1)
j1
· · ·L(iN )

jN
be the corresponding multi-dimensional Lagrange polynomials. Then, we can describe the full
tensor product by

Ti[f ](y) =

m(i)∑
j=1

f
(
yi
j

)
Lij(y), (5.2)

where we set m(i) := (m(i1), . . . ,m(iN )). The set of the collocation points yi
j used for the full

tensor product builds the tensor grid

Ti := Zm(i1) × Zm(i2) × · · · × Zm(iN )

=
{
y

(i1)
j1

}m(i1)

j1=1
×
{
y

(i2)
j2

}m(i2)

j2=1
× · · · ×

{
y

(iN )
jN

}m(iN )

jN=1
,

which contains m(i1) ·m(i2) · . . . ·m(iN ) points. In the isotropic case, the number of collocation
points is given by m(i1)N and grows exponentially with the dimension N of the space Γ. This
behavior is called the curse of dimensionality. Consequently, the needed function evaluations
increase very rapidly with the stochastic dimension and will be too expensive for high dimensions.
The sparse grid construction reduces this strong dependence on the dimension N by using tensor
products with relatively small grids as building blocks of the interpolation operator.

5.1.1 Smolyak Sparse Grid Construction

For the Smolyak formula [39, 102], we define the difference of two consecutive one-dimensional
interpolation formula by

∆(in) := U (in) − U (in−1)

for in ∈ R+ with the convention that

U (0) := 0.
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5.1 Sparse Grid Interpolation

This operator is often called hierarchical surplus (operator) and represents the benefit of using the
next more accurate interpolation rule. Using the hierarchical surplus, the univariate interpolation
operators can be written as a telescoping sum U (kn) =

∑kn
jn=1 ∆(jn) and the full tensor product

has the representation

Tk =
k∑

j=1

∆(j1) ⊗ · · · ⊗∆(jN )

for k ∈ RN+ . The idea is now to truncate this sum such that the underlying grid contains signifi-
cantly fewer points as a full tensor product. This construction delays the curse of dimensionality
and will be introduced next. For the tensor product of the one-dimensional hierarchical surpluses,
also called hierarchical surplus, we often use the shortened notation

∆i := ∆(i1) ⊗ · · · ⊗∆(iN ) =
N⊗
n=1

(
U (in) − U (in−1)

)
.

Definition 5.1 (Isotropic Smolyak Interpolant)
The isotropic Smolyak formula is defined as

Sw :=
∑
i∈NN+
|i|≤w+N

∆i,

where |i| = i1 + · · ·+ iN gives the sum over all entries of the multi-index i. The parameter w ∈ N
is called the level of Smolyak formula and starts with w = 0.

For w = 0 the Smolyak formula includes only the multi-index i = (1, . . . , 1) such that a single
collocation point is used. For Smolyak levels w > 0, we can write

Sw = Sw−1 +
∑
i∈NN+
|i|=w+N

∆i.

The formula is called isotropic, because all directions are treated equally. Inserting the dif-
ference operators, the formula can be written as a linear combination of tensor products of
one-dimensional interpolation operators [112]:

Sw =
∑
i∈NN+

w+1≤|i|≤w+N

(−1)w+N−|i|
(

N − 1

w +N − |i|

)
·
(
U (i1) ⊗ · · · ⊗ U (iN )

)
. (5.3)

Using the short notation (5.2) introduced for the tensor products provides the representation

Sw[f ](y) =
∑
i∈NN+

w+1≤|i|≤w+N

ci ·

m(i)∑
j=1

f
(
yi
j

)
Lij(y)



with the constants ci = (−1)w+N−|i|( N−1
w+N−|i|

)
∈ Z.
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Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

In Figure 5.1, we compare the grid of the isotropic Smolyak interpolant Sw with the one of
the corresponding full tensor product T(w+1,w+1). We consider the Clenshaw-Curtis nodes (see
Subsection 5.1.5), a two-dimensional parameter space Γ = [−1, 1]2 and the level w = 5. The
tensor grid contains 332 = 1089 points and the grid of the Smolyak formula, also called sparse
grid, contains only 145 points. Hence, a significant reduction of the number of collocation points
is achieved. Note that the Smolyak interpolant has a lower polynomial exactness than the
full tensor product, see Subsection 5.1.3 and Figure 5.2. However, this disadvantage is usually
compensated by the reduction in computation time.
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Figure 5.1: Collocation points used for the Smolyak formula of level w = 5 (left). Corresponding
tensor grid T(6,6) with 33 points in each direction (right). In both cases, Clenshaw-Curtis nodes
are used.

5.1.2 General Sparse Grid Construction

One drawback of the isotropic Smolyak interpolant is that it handles all stochastic dimensions
equally by using the same collocation points in each dimension. Therefore, the number of col-
location points increases quickly with the Smolyak level w for higher dimensions N , but still
significantly slower than in the case of the full tensor product. If coarser refinements are already
sufficient for some dimensions, this approach is inefficient because more collocation points than
required are used in these dimensions. Consequently, function evaluations and thus computation
time could be saved. One approach to take a varying influence of the stochastic dimensions on
the function f into account is the anisotropic Smolyak formula, see for example [80] for elliptic
PDEs. Each dimension is separately weighted by multiplying each index in with a positive weight
an ∈ R+ so that the multi-indices have to satisfy |a · i| = a1i1 + · · ·+ aN iN ≤ w +N . However,
we need some a priori knowledge about the function f and the possible anisotropy in order to
choose the weighting parameters an appropriately. In order to allow more general anisotropic
structures, Gerstner and Griebel [38] presented a generalized sparse grid construction using a set
of multi-indices i ∈ Λ such that the telescoping sum expansion of the general sparse grid formula
remains valid and no interpolation rule is skipped in between.

Definition 5.2 (Downward Closed Index Set)
A multi-index set Λ ⊂ NN+ is called downward closed or admissible, if

∀i ∈ Λ : i− ej ∈ Λ for all j = 1, . . . , N with ij > 1.
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5.1 Sparse Grid Interpolation

Definition 5.3 (General Sparse Grid Interpolant)
Let Λ be a downward closed multi-index set. The generalized sparse grid interpolation operator
is defined as

GΛ :=
∑
i∈Λ

∆i =
∑
i∈Λ

(
∆(i1) ⊗ · · · ⊗∆(iN )

)
.

The general sparse grid interpolant can be written as a linear combination of tensor products
(5.1) of one-dimensional interpolation operators:

GΛ[f ] =
∑
i∈Λ

ciTi[f ] =
∑
i∈Λ

ci

(
U (i1) ⊗ · · · ⊗ U (iN )

)
[f ] (5.4)

with
ci =

∑
j∈{0,1}N

(−1)|j|1Λ(i + j) ∈ Z, (5.5)

see for example [39, 112]. This simplified representation is usually used in implementations. The
coefficients ci may also be equal to zero, for example if i + j ∈ Λ for all j ∈ {0, 1}N . Note
that each hierarchical surplus ∆i is independent of the index set Λ. Therefore, the hierarchical
surpluses will not change if Λ is enlarged. However, some coefficients ci will obviously change.
For example, if an index k ∈ NN+ is added to the set Λ, then the coefficient ci only changes if
there exists an integer j ∈ {0, 1}N such that it holds k = i + j.

The computation of the previous formula (5.4) requires function evaluations of f on a finite set
of collocations points, the so-called sparse grid HΛ ⊂ Γ. The sparse grid corresponding to GΛ is
built by the union of all tensor grids contained in (5.4) with a nonzero coefficient ci:

HΛ :=
⋃
i∈Λ
ci 6=0

Zm(i1) × · · · × Zm(iN ) ⊂ Γ.

Obviously, the Smolyak sparse grid formula is a general sparse grid interpolant with the index
set ΛSMO(w) := {i ∈ NN+ : |i| ≤ w + N}. In this case, formula (5.4) reduces to (5.3) and the
sparse grid is given by

HΛSMO(w) =
⋃

i∈NN+
w+1≤|i|≤w+N

Zm(i1) × · · · × Zm(iN ) (5.6)

since ci = 0 if |i| ≤ w. The full tensor product which corresponds to the above Smolyak formula
with level w is described by the downward closed index set {i ∈ NN+ : maxn=1,...,N (in − 1) ≤ w}.
This tensor grid is the smallest one which contains all collocation points used for the Smolyak
interpolant with level w. In Figure 5.2, we show three examples of a downward closed index
set Λ and their corresponding sparse grid.
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(a) Isotropic full tensor product T(4,4).
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(b) Isotropic Smolyak formula S3.
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(c) Arbitrary anisotropic formula.

Figure 5.2: Downward closed index sets (left) and the corresponding grids using Clenshaw-
Curtis nodes which will be introduced in Subsection 5.1.5 (middle). The grey and blue squares
represent the downward closed index set Λ. The blue squares correspond to the indices for which
the coefficient ci in (5.4) does not vanish. The right plots show the corresponding polynomial
exactness discussed in the next Subsection.

Remark 5.4
Sparse Grids are also often used for numerical integration of multivariate integrals∫

[−1,1]N
f(y)w(y) dy

with weight function w(y) = w1(y1) · · ·wN (yN ) [39]. In order to approximate this integral, we
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follow the procedure of the previous sections by replacing the interpolation operators U (in) by
univariate quadrature operators Q(in). The quadrature operators are given by

Q(in)[fn] :=

m(in)∑
jn=1

fn

(
q

(in)
jn

)
w

(in)
n,jn
≈
∫ 1

−1
fn(y)wn(y) dy

with quadrature points q(in)
jn

and weights w(in)
n,jn

. Analogously to Definition 5.3, we combine the
quadrature operators using hierarchical surpluses and define the general sparse grid quadrature
formula by

QΛ =
∑
i∈Λ

N⊗
n=1

(
Q(in) −Q(in−1)

)
.

Similar to (5.2) and (5.4), the operator can be written as

QΛ[f ] =
∑
i∈Λ

ci

(
Q(i1) ⊗ · · · ⊗ Q(in)

)
[f ] =

∑
i∈Λ

ci

m(i)∑
j=1

f
(
qi
j

)
wi
j (5.7)

with constants ci =
∑

k∈{0,1}N (−1)|k|1Λ(i + k), quadrature points qi
j =

(
q

(i1)
j1

, . . . , q
(iN )
jN

)
and

product weights wi
j =

∏N
n=1w

(in)
n,jn

. In order to get a very short representation, we enumerate all
distinct quadrature points and denote them by {qk}QΛ

k=1 such that we get the common quadrature
form

QΛ[f ] =

QΛ∑
k=1

f(qk)ŵk.

Note that the weights ŵk of the sparse grid quadrature formula can be negative even if the uni-
variate operators Q(in) have positive weights [39] and that they include the corresponding product
weights wi

j and coefficients ci. Furthermore, enlarging the multi-index set Λ does not change the
weights {wi

j}j=1,...,m(i) for i ∈ Λ and thus recomputations of these weights are not necessary in
the implementation. However, the coefficients ci can change and therefore also the weights ŵk.
Obviously, the polynomial exactness of the sparse grid quadrature depends on the chosen quadra-
ture operators Q(in) and the index set Λ. For example, if we use Clenshaw-Curtis quadrature and
the index set ΛSMO(w), the corresponding sparse grid quadrature has at least a degree 2w + 1 of
exactness [83].

In the stochastic collocation context, the considered integral coincides with the expected value of
the random field f if the weight function wi is chosen as the PDF ρi of the underlying independent
random variable ξi for all i = 1, . . . , N .

5.1.3 Nested Nodes and Properties of the Interpolant

In order to increase the accuracy of the interpolant, the multi-index Λ has to be enhanced which
implies a larger sparse grid. This requires new evaluations of the function f . The number of
these evaluations can be highly reduced by using nested points. In the following, we address the
advantage of nested points on the computational effort as well as the resulting property of the
general sparse grid interpolant. Moreover, we investigate the polynomial exactness of the sparse
grid interpolation.
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Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

The collocation points can be strictly divided into two categories: nested and non-nested points.

Definition 5.5
The univariate collocation points y(in)

j ∈ Zm(in) with in ∈ N+ are called nested if it holds

y
(in)
j ∈ Zm(in+1) for all j = 1, . . . ,m(in), i.e. Zm(in) ⊂ Zm(in+1). Otherwise, they are non-
nested points.

If the univariate collocation points are nested, then the corresponding sparse grids are also nested
such that each node used for a sparse grid interpolant with index set Λ belongs to the sparse
grid of the interpolant with any larger index set Ξ ⊃ Λ, i.e. HΛ ⊂ HΞ. This is a great advantage
because we can reuse all previous evaluations computed for the smaller grid and thus we only
need to evaluate the function f at the newly added point set instead of for the whole new and
larger grid. In contrast to non-nested grids, the sparse grid interpolation operator constructed
with nested points satisfies the interpolation property

GΛ[f ]
(
yi
j

)
= f

(
yi
j

)
for all yi

j ∈ HΛ, see [11, 65]. For nested points the sparse grid in (5.6) of the Smolyak formula
simplifies to

HΛSMO(w) =
⋃

i∈NN+
|i|=w+N

Zm(i1) × · · · × Zm(iN ).

Focusing completely on nested points, it is useful to choose hierarchical Lagrange polynomials
instead of nodal Lagrange polynomials which we consider in this work. If new collocation points
are added, then the already computed hierarchical Lagrange polynomials do not have to be
recomputed, see for example [95].

For considering the polynomial exactness of the general sparse grid formula, we define the poly-
nomial space

PΛ(Γ) :=
∑
i∈Λ

(
Pm(i1)−1(Γ1)⊗ · · · ⊗ Pm(iN )−1(ΓN )

)
.

The following properties are satisfied [20, 49, 65]:

Proposition 5.6
1. For all f ∈ C(Γ,W), it holds GΛ[f ] ∈ PΛ(Γ)⊗W.

2. The general sparse grid operator GΛ is exact on the space PΛ(Γ) ⊗W, i.e. GΛ[f ] = f for
all f ∈ PΛ(Γ)⊗W.

For the Smolyak sparse grid construction, the polynomial space PΛSMO(w)(Γ) is simplified to

PΛSMO(w)(Γ) =
∑
i∈NN+
|i|=w+N

(
Pm(i1)−1(Γ1)⊗ · · · ⊗ Pm(iN )−1(ΓN )

)
,

see [11, 82]. Consequently, the Smolyak interpolation operator with a fixed level w has the same
monomial exactness as the corresponding full tensor product, i.e. all monomials ym(w+1)−1

n for
n = 1 . . . , N are reproduced exactly. However, the Smolyak formula has a reduced exactness for
the mixed-terms polynomials due to its construction, for example ym(w+1)−1

1 y
m(w+1)−1
2 can be
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5.1 Sparse Grid Interpolation

interpolated exactly by the full tensor product, but not by the Smolyak formula (see Figure 5.2).
If it holds m(i) ≥ i for i ∈ N+, the Smolyak interpolant is exact for all polynomials of total
degree w, see [83] where a similar statement for Smolyak quadrature is proven. For example, if
we use the Clenshaw-Curtis nodes introduced in Subsection 5.1.5, then the formula S2 reproduces
the polynomials

y4
j , y

3
j , y

2
j , yj , 1, y

2
j y

2
k, y

2
j yk, yjy

2
k, yjyk

for j, k ∈ {1, . . . , N}. The considered formula is exact for all polynomials of total degree 2.

5.1.4 Statistical Quantities

The sparse grid interpolant (Definition 5.3) of function f can be used further to approximate
statistical quantities of f . We consider the function f as a random variable depending on the
initially introduced random vector ξ = (ξ1, . . . , ξN ) with image space Γ. The components of ξ
are independent real-valued random variables and each component ξi has a probability density
function (PDF) ρi. Therefore, the random vector ξ has the joint PDF ρ = ρ1 · · · ρN : Γ → R+.
In the following, we present the computation of the expected value, higher moments as well as
the variance of f using the interpolant GΛ[f ](y). If the function f depends on space and time,
then these statistical quantities are also time- and space-dependent. In addition, the PDF of a
real-valued function f can be approximated by a kernel density estimation which we study in
Chapter 6.

Considering (5.4) and the notation introduced in (5.2), we obtain the detailed form

GΛ[f ](y) =
∑
i∈Λ

ciTi[f ](y) =
∑
i∈Λ

ci

m(i)∑
j=1

f
(
yi
j

)
Lij(y). (5.8)

We integrate the sparse grid interpolant GΛ multiplied by the joint PDF ρ over Γ in order to
obtain an approximation of the mean E[f ] ∈ W of the function f ∈ C(Γ,W) by

E[f ] ≈ E
[
GΛ[f ]

]
=
∑
i∈Λ

ci

∫
Γ
Ti[f ](y)ρ(y) dy︸ ︷︷ ︸

=E[Ti]

.

As mentioned before, the joint PDF ρ is given by the product ρ(y) = ρ1(y1) · · · ρN (yN ) and,
hence, we get

E
[
Ti[f ]

]
=

∫
Γ
Ti[f ](y)ρ(y) dy =

m(i)∑
j=1

∫
Γ
f
(
yi
j

)
Lij(y)ρ(y) dy

=

m(i)∑
j=1

f
(
yi
j

)∫
Γ
L

(i1)
j1

(y1) · · ·L(iN )
jN

(yN )ρ(y) dy

=

m(i)∑
j=1

f
(
yi
j

) N∏
n=1

∫
Γn

L
(in)
jn

(y)ρn(y) dy.

Now, we need to approximate weighted integrals of one-dimensional Lagrange polynomials in-
stead of multi-dimensional polynomials. These integrals can be approximated by appropriate
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quadrature rules. The common choice is to use the interpolation points of the corresponding
direction as quadrature points.

Therefore, the numerical integration is given by

∫
Γn

L
(in)
jn

(y)ρn(y) dy ≈
m(in)∑
k=1

L
(in)
jn

(
y

(in)
k

)
w

(in)
n,k = w

(in)
n,jn

, (5.9)

where w(in)
n,k are the weights of the univariate quadrature rule for an integral with the weight

function ρn and quadrature points y(in)
k . The quadrature weights depend in general on the

PDF ρn, but not on the function f . If we consider the PDF of a uniform distribution and a
quadrature rule which has at least a degree of m(in)− 1, then (5.9) holds exactly. The expected
value E[f ] can be approximated by

EΛ[f ] :=
∑
i∈Λ

ci

m(i)∑
j=1

f(yi
j)

N∏
n=1

w
(in)
n,jn

=
∑
i∈Λ

ci

m(i)∑
j=1

f(yi
j)w

i
j ≈ E

[
GΛ[f ]

]
(5.10)

with wi
j =

∏N
n=1w

(in)
n,jn

. Therefore, we want to use univariate collocation points which provide
a good quadrature rule and are suitable for Lagrange interpolation. Additionally, they have to
be chosen according to the probability measure on Γn. In the following subsection, we present
appropriate collocation points. Comparing (5.10) with the sparse grid quadrature formula (5.7)
in Remark 5.4, we see that the formulas are equivalent if the collocation points coincide with the
quadrature points and the PDFs ρi are chosen as the weight functions wi since the interpolation
is based on global Lagrange polynomials. Additionally, it holds EΛ[f ] = QΛ

[
GΛ[f ]

]
. Of course,

we can apply the sparse grid quadrature (5.7) directly to f to approximate its expected value.
In this case, we would not obtain an approximation of f .

Often, higher moments of the function f are of interest as well. The approach is to apply the
sparse grid interpolation operator (5.8) computed for f to f r. We get the approximation

f r(y) ≈ GΛ[f r](y) =
∑
i∈Λ

ci

m(i)∑
j=1

f r
(
yi
j

)
Lij(y).

Performing the same steps as before, the r-th moment E[f r] can be approximated by

EΛ[f r] =
∑
i∈Λ

ci

m(i)∑
j=1

f r
(
yi
j

)
wi
j.

The coefficients ci and the evaluations f(yi
j) are already calculated since we use the same col-

location points and Lagrange polynomials as for the interpolation of f . The weights wi
j are the

same for all moments and thus they have to be calculated only once.

Besides the moments of the function f , the variance is a typical statistical quantity. Proceeding
analogously to the prior case, the variance can be estimated by

V[f ] = E
[
(f − E[f ])2

]
≈ EΛ

[
(f − EΛ[f ])2

]
=
∑
i∈Λ

ci

m(i)∑
j=1

(
f
(
yi
j

)
− µ̂

)2
wi
j
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with µ̂ := EΛ[f ]. For a bounded second moment E[f2], we can use the expanded and simplified
estimation

V[f ] = E[f2]− E[f ]2 ≈ EΛ[f2]− EΛ[f ]2.

5.1.5 The Choice of Collocation Points

In general, arbitrary choices of the collocation points and of the function m are possible. How-
ever, we want to fulfill mainly three requirements. First, we want to obtain good interpolation
properties. Using global Lagrange interpolation with equidistant points, the interpolant can di-
verge even if f is smooth, see for example [50, 108]. This is the so-called Runge’s phenomen
where oscillations near the boundary of the interval occur. Consequently, it is recommended to
choose more collocation points close to the boundary. Secondly, we want to use good quadrature
rules for the computation of the expected value and other statistical quantities as pointed out in
the previous section. We need to compute one-dimensional, weighted integrals which have the
general form ∫ 1

−1
Lp(y)w(y) dy,

where the weight function w coincides with a PDF and the function Lp is a one-dimensional
Lagrange polynomial, see (5.9). To this end, we want to apply quadrature rules using the inter-
polation points as quadrature points. If the random variable is uniformly distributed on [−1, 1],
then the weight function is constant (w = 0.5) and we directly consider the unweighted case
(w = 1) since we only need to halve the weights of the unweighted case to get the weights for
w = 0.5. For integration over the interval [a, b] where the weight function w coincides with a
PDF defined on the same interval, we only need to scale the collocation points which belong to
the PDF of the same distribution on [−1, 1]. The corresponding weights can be taken without
modifications. As the third condition, we prefer nested collocation points because all function
evaluations computed for the collocation points of the current sparse grid can then be reused if
new collocation points are added.

In the following, we give a short overview of common collocation points which are listed in
Table 5.1 based on [81]. Basically, there are three classes: Clenshaw-Curtis, (extended) Gauss
and Leja points.

Clenshaw-Curtis Nodes. The most common and well-established collocation points are the
Clenshaw-Curtis points. For stochastic collocation methods using sparse grids, they have been
utilized intensively in [49, 80, 106, 114]. We also select them in the numerical examples in
Chapter 7. The one-dimensional Clenshaw-Curtis points are the extrema of Chebyshev polyno-
mials [17]. They are given by

y
(i)
j = − cos

(
π · (j − 1)

m(i)− 1

)
for j = 1, · · · ,m(i), (5.11)

and with m(i) > 0. In order to generate nested point sets, we define

m(i) = 2i−1 + 1 for i > 1, m(1) = 1 with y
(1)
1 := 0

so that all function evaluations computed for the collocation points of the current sparse grid can
be reused if further collocation points are added. In addition, these points are located closer to
the boundary than to the center of the interval. The Clenshaw-Curtis points are often used for
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Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

Points Typical Measure Domain Nested? m(i)

Clenshaw-Curtis Uniform [−1, 1] Yes 2i−1 + 1

Gauss-Legendre Uniform [−1, 1] No i

Gauss-Patterson Uniform [−1, 1] Yes 2i − 1

Leja Uniform [−1, 1] Yes m(i) = i or m(i) = 2i− 1

Gauss-Hermite Gaussian (−∞,∞) No i

Genz-Keister Gaussian (−∞,∞) Yes m(i) = 1, 3, 9, 19, 35

Weighted Leja Gaussian (−∞,∞) Yes i

Table 5.1: Common choices for collocation points.

uniformly distributed random variables, but can also be applied for an arbitrary PDF ρ, see [95,
103] for a derivation of the formula of the weights. The collocation points remain the same and
only the weights depend on the weight function. The numerical integration with Clenshaw-Curtis
points has a polynomial exactness of m(i)− 1 [103].

Gauss Formulas. One alternative is Gauss quadrature which provides the highest possible
polynomial exactness of 2m(i) − 1. The Gauss-Legendre rule is used for uniform distributions
and the Gauss-Hermite rule for Gaussian distributions. However, the corresponding quadrature
points are non-nested. In [87], Patterson presented a recursion of the Gauss-Legendre formula
in order to construct nested quadrature points, the Gauss-Patterson rule. This leads to the
function m(i) = 2i − 1 and a quadrature formula of degree (3m(i) − 1)/2 [72]. For example,
these points are applied in the context of sparse grids in [39]. The extension to arbitrary weight
functions is in general complicated and not always possible [95]. Considering the PDF of Gaussian
distributions as weight function, the Gauss-Hermite quadrature can be extended in a similar way
to a rule with nested nodes, the Genz-Keister nodes [37].

Leja Sequences. Another recent choice for the uniform distribution are Leja sequences which
are defined by a recursive formula [70]. In [79], Leja points are extended for arbitrary non-
constant weight functions and additionally on unbounded domains, so for example for Gaussian
distributed random variables. In contrast to Clenshaw-Curtis, the weighted Leja nodes depend
on the weight function, i.e. on the PDF. In both cases, the points can be easily computed and
are nested due to their recursive construction. In Table 5.1, we list the typical choice of the
function m which, however, can be arbitrarily chosen.

Focusing on numerical integration, the Clenshaw-Curtis nodes could cause convergence prob-
lems for some high-dimensional functions while the Gauss-Patterson quadrature achieve a high
accuracy [39, 72]. For a more detailed comparison of Gauss and Clenshaw-Curtis quadrature,
we refer to [109]. In [79], it was observed that the Gauss-Patterson formula performs well for
numerical integration, but not for interpolation since it was primarily developed for the ap-
proximation of integrals. Additionally, numerical examples have shown that, on the one hand,
Leja sequences are better suited for interpolation than Clenshaw-Curtis nodes and, on the other
hand, Clenshaw-Curtis nodes are superior to Leja sequences in the case of numerical integration.
Finally, we can conclude, that using Clenshaw-Curtis nodes is an adequate compromise if both
applications, interpolation and integration, will be considered.
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5.1 Sparse Grid Interpolation

5.1.6 Adaptive Sparse Grid Algorithm

In order to compute a sparse grid interpolation of f which achieves a desired accuracy TolY > 0,
we need to choose the multi-index set Λ and thereby the number of collocation points appro-
priately. To this end, we need error estimates for the stochastic directions. The first approach
is based on a priori error estimates, see for example [6, 8, 81]. Before computing sparse grid
approximations, the multi-index set is determined by using analytical error estimates which usu-
ally require strong assumptions. In most application settings, these assumptions are not fulfilled.
Therefore, we decide on a posteriori error estimations which are based on computations of sparse
grid approximations. The common procedure is to start with an initial multi-index set and then
to enrich this set during runtime deciding in an iterative and greedy-like strategy which region
should be refined next. This adaptive algorithm is typically more flexible and robust [81].

Gerstner and Griebel [38] developed an adaptive algorithm for quadrature which automatically
detects which stochastic parameter has the most influence in the QoI f and adds more collocation
points in this direction. One extension of this algorithm is to control the anisotropy of the
sparse grid by an additional parameter [60]. This modification is not considered in this work
because some a priori knowledge about the QoI is needed to choose the parameter appropriately.
Nobile et al. [81] considered sparse grid interpolation and extended the algorithm from Gerstner
and Griebel [38] to non-nested points which we will present in the following. Additionally,
they provide an open-source MATLAB® implementation Sparse Grid Matlab Kit of sparse grids
including their adaptive algorithm [7, 104].

The idea of the a posteriori adaptive algorithm is to successively add multi-indices to the current
index set used to build the sparse grid such that the sparse grid interpolant changes the most. As
previously mentioned, we always want to construct downward closed index sets for the general
sparse grid formula in Definition 5.3. If we add a multi-index i ∈ NN+ to a downward closed index
set Λ such that the new index set Ξ := Λ ∪̇ {i} remains downward closed, then the new sparse
grid operator satisfies

GΞ[f ] = GΛ[f ] + ∆i[f ].

This formulation proposes that each hierarchical surplus ∆i can serve as a local error indicator
for the multi-index i. Now, we measure the sparse grid approximation error by a non-negative
sublinear functional J : C(Γ,W)→ R+ which means that the conditions

J [αw] = αJ [w] ∀α ∈ R+ and w ∈ C(Γ,W),

J [v + w] ≤ J [v] + J [w] ∀v, w ∈ C(Γ,W)

are fulfilled. One typical example for this functional is the L2
ρ(Γ,W)-norm. We will show further

examples and their computations later. Supposing that we have f = GNN+ [f ] =
∑

i∈NN+
∆i[f ], we

obtain that the error depends on the hierarchical surpluses:

J
[
f − GΛ[f ]

]
= J

[∑
i6=Λ

∆i[f ]
]
≤
∑
i6=Λ

J
[
∆i[f ]

]︸ ︷︷ ︸
≈ g(i)

.

In general, the error contributions J
[
∆i[f ]

]
∈ R+ cannot be computed exactly and so we need

to approximate these terms. We denote the non-negative approximation of J
[
∆i[f ]

]
by g(i),

the so-called profit of multi-index i. This profit can be used as a local error indicator since
it represents the gain which we obtain if we add this multi-index to our existing index set.
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Chapter 5 Adaptive Multi-Level Stochastic Collocation Method

Finally, the main step of the algorithm is to improve the sparse grid approximation by iteratively
choosing the multi-indices with the highest profit. Another reasonable choice for the profit
is to combine the error contributions with the number of evaluations required for adding the
hierarchical surplus ∆i[f ] to the sparse grid approximation, see [39, 60, 81]. In this case, the
required work is also taken into account in the decision which index should be added next. In
the following, we will focus on adaptive refinements in the stochastic space which are completely
controlled by the error contributions and therefore we decide for the first choice g(i) ≈ J

[
∆i[f ]

]
.

Note that the error indicators are only heuristic estimates and no classical error estimators.

Since we only allow downward closed index sets, we consider here a downward closed set O and
define the reduced margin of O by

RO :=
{
i ∈ NN+ \ O : i− en ∈ O, ∀n = 1, . . . , N with in > 1

}
.

This index set contains all multi-indices i such that O ∪̇ {i} is downward closed. Moreover, the
neighboring indices, or short neighbors, of an index i ∈ O (with respect to O) are given by

neigh(i,O) :=
{
j ∈ NN+ \ O : j = i + ek for k ∈ {1, . . . , N}

}
.

We call a neighbor j ∈ neigh(i,O) admissible, if O ∪̇ {j} is again downward closed. The reduced
margin of O contains all admissible neighbors of the indices i ∈ O. Figure 5.3 illustrates an
example of a downward closed multi-index set and its reduced margin.

1 2 3 4 5

i
1

1

2

3

4

i 2

Figure 5.3: A downward-closed multi-index set O is given by the grey squares. The correspond-
ing reduced margin RO contains the multi-indices assigned to the blue squares. The index (2, 3)
represented by the orange square is a neighbor of index (2, 2) ∈ O, but it is not admissible since
index (1, 3) is not contained in O. Consequently, we have (2, 3) /∈ RO.

As motivated above, we want to add the index to the current set O which has the largest profit
and is contained in the set RO as well. To this end, we have to compute hierarchical surpluses
and profits for the whole set RO. For each index i ∈ RO, the profit g(i) can be computed using
the two sparse grid approximations with the index sets O ∪ {i} and O since it is based on the
hierarchical surplus ∆i = GO∪{i} − GO. Choosing the index imax ∈ RO with the highest profit,
we obtain the sparse grid interpolation built for the index set O ∪ {imax} as an approximation
for f . In this case, we omit all functions evaluations computed anyway for the profits of the other
indices i ∈ RO \ {imax} which we could have used to improve our sparse grid approximation.
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5.1 Sparse Grid Interpolation

Since this behavior is not efficient, we successively add the indices i ∈ RO to the currently used
index set starting with the set O and compute the corresponding profit by using the sparse grid
approximation of the new index set and of the previous one. Note that the hierarchical surplus ∆i

and thereby profit g(i) are independent of the index set to which i is added. Consequently, the
hierarchical surplus and the profit do not change when further indices are added to the current
index set and therefore the profits for RO can be computed in any arbitrary order. Finally, we
obtain the sparse grid approximation for the disjoint union Λ := O ∪RO instead of O ∪ {imax},
where imax := argmaxj∈RO g(j). In the next iteration step, we determine all admissible neighbors
of the index ia with respect to O ∪ {imax}, compute their profits as before and choose the index
with the highest profit contained in RO∪{imax}.

The whole adaptive procedure is described in detail in Algorithm 5.1. The algorithm starts with
the initial multi-index imax = 1 = (1, . . . , 1) which induces one collocation point and allows to
reproduce constant functions exactly. We compute the sparse grid interpolant GΛ and its expected
value EΛ for Λ = {i}. Additionally, we set O = {imax} andR = ∅. Next, we explore the neighbors
of imax which are given by ik = imax + ek for k = 1 . . . , N : If index ik is admissible, then we
add ik to Λ and compute the corresponding sparse grid quantities (interpolant, expected value
and evaluations) in order to get the profit g(ik). Additionally, we add the index ik to the set R.
After having explored all indices ik, we obtain Λ = R∪̇O = {j : j = 1+ek for k = 1, . . . , N}. At
this point, the set R is equal to the reduced margin RO of the set O. Next, we update the global
error indicator η which serves as an approximation of the total error and naturally depends on
the values of the profits. We choose the maximum profit as global error indicator

η := max
j∈R

g(j).

Another typical indicator η is the sum of all profits [38]. For this indicator, we observe for higher
dimensional functions that the indicator is often more pessimistic meaning that the indicator
differs from the error by at least one order of magnitude more than for our choice. In order to
prepare the next iteration step, we already select the index imax out of the active set R which
has the highest profit. In the beginning of the next step, the stopping criterion is checked: The
global error indicator has to be smaller than a user-prescribed tolerance TolY > 0. The stopping
criterion often includes the condition that the number of collocation points are smaller than a
user-prescribed upper bound [81]. If the global error indicator η is still larger than the prescribed
tolerance TolY , then index imax is added to O and removed from R such that we can start to
explore the neighboring indices of imax with respect to O. Otherwise, the algorithm stops and
returns the current as well as the previous sparse grid interpolant and their approximate expected
values.

The index set O is called the inactive (or old) set and contains all indices whose neighbors have
already been explored. The remaining indices i ∈ R used for the sparse grid approximation are
called active because these indices have already been explored, but their neighbors have remained
unexplored so far. Of course, this set contains the index with the highest profit which will be
considered next by exploring its neighboring indices. In each iteration step, the updated index
set Λ contains all indices used to built the sparse grid and it holds Λ = O ∪ R. Note that O
and Λ are always downward closed.
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Algorithm 5.1 Adaptive sparse grid algorithm.
1: procedure ASpaGrid(f, TolY , profitName)
2: imax = (1, . . . , 1)
3: O = ∅
4: Λ = {imax}
5: R = {imax}
6: Gold = GΛ[f ]
7: Eold = EΛ[f ]
8: η =∞
9: while η > TolY do

10: R = R \ {imax}
11: O = O ∪ {imax}
12: aN b = {j : j ∈ neigh(imax,O) and O ∪ {j} is downward closed}
13: for i ∈ aN b do
14: Λ = Λ ∪ {i}
15: G = GΛ[f ]
16: E = EΛ[f ]
17: if using nested points then
18: N ew = HΛ \HΛ\{i}
19: eN ew = evaluations of f on each y ∈ N ew
20: else
21: N ew = Ti

22: eN ew = evaluations of G on each y ∈ N ew
23: end if
24: eold = evaluations of Gold on each y ∈ N ew
25: g(i) = ComputeProfits(profitName, eN ew, eold,G,Gold, E , Eold)
26: R = R∪ {i}
27: Gold = G
28: Eold = E
29: end for . R = RO
30: if aN b 6= ∅ then
31: Update η based on the profits: η = maxj∈R g(j)
32: end if
33: Select index imax from R with highest profit: imax := argmaxj∈R g(j)
34: end while
35: return Gold, Eold, η,G, E
36: end procedure
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Choices of J for Computing the Profits

In this part, we consider the most common cases for the non-negative sublinear functional J
and discuss how to compute the profits g(i) defined as approximations of the error contribu-
tions J

[
∆i[f ]

]
. The computation of the profits is outlined as pseudocode in Algorithm 5.2. The

two cases ExVal and Ltwo are particularly relevant in our adaptive SL and ML stochastic col-
location approach, presented in the following sections. Let I be an arbitrary index set to which
we add the index i such that we denote the new set by J := I ∪̇ {i}. As discussed before, we
consider only downward closed sets I,J. We denote the error contribution J

[
∆i[f ]

]
by e(i).

• J [·] = ‖E[·]‖W → ExVal
In this case, we are interested in the error of the expected value of the sparse grid approx-
imation. We approximate the quantity e(i) by approximating the expected values of the
sparse grid interpolants as shown in Subsection 5.1.4. This provides the profit

g(i) := ‖EJ[f ]− EI[f ]‖W ≈
∥∥E[GJ[f ]− GI[f ]

]∥∥
W =

∥∥E[∆i[f ]
]∥∥
W = e(i).

• J [·] = ‖ · ‖C(Γ,W) →Max
This choice measures the point-wise accuracy of the approximation. We approximate the
norm by evaluating the hierarchical surplus for a finite point set Ẑ ⊂ Γ such that the profit
is given by

g(i) := max
ŷ∈Ẑ
‖∆i[f ](ŷ)‖W ≈ e(i).

As in [81], we distinguish between nested and non-nested collocation points. For nested
points, we have HI ⊂ HJ and the sparse grid interpolant is interpolatory. Therefore, it
holds ∆i[f ](y) = GJ[f ](y) − GI[f ](y) = 0 for any y ∈ HI. However, for any newly added
collocation points y ∈ HJ \ HI the hierarchical surplus does not vanish which leads us
to Ẑ := HJ \ HI. In addition, the point set Ẑ is independent of the set I because of
the downward closed property of the index sets. Using non-nested points, we choose as
point set Ẑ the full tensor grid Ti associated to i since the interpolation property is not
satisfied anymore and it holds in general HI 6⊂ HJ. When adding the index i to I, the new
collocation points y ∈ HJ \HI at which we have not yet evaluated the function f depend
in general on the current set I.

An alternative procedure to construct a finite set Ẑ is to randomly sample a finite number
of points in the stochastic space Γ according to the PDF ρ, as proposed in [49].

• J [·] = ‖ · ‖L2
ρ(Γ,W) → Ltwo

Finally, we consider the hierarchical surplus in the typical L2
ρ(Γ,W)-norm:

e(i) = E
[
‖GJ[f ]− GI[f ]‖2W

]1/2
.

As in [34], a classical Monte Carlo integration where we fix a finite point set Ẑ ⊂ Γ leads
to the profit

g(i)2 :=
1

|Ẑ|

∑
ŷ∈Ẑ

‖GJ[f ](ŷ)− GI[f ](ŷ)‖2W ≈ e(i)2.

Analogously to the previousMax case, we suggest to generate the point set Ẑ by randomly
sampling points in the stochastic space Γ according to the given PDF ρ.
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Another possibility to approximate e(i) may be to use an appropriate quadrature rule
using evaluations of the sparse grid approximations, for example the rule induced by the
collocation points.

Algorithm 5.2 Algorithm to compute the profits.
1: procedure ComputeProfits(profitName, eN ew, eold,G,Gold, E , Eold)
2: switch profitName do
3: case ExVal
4: g = ‖E − Eold‖W
5: case Max
6: g = max ‖eN ew − eold‖W
7: case Ltwo
8: Generate a finite sampling set Ẑ ⊂ Γ
9: ê = evaluations of G on each y ∈ Ẑ

10: êold = evaluations of Gold on each y ∈ Ẑ
11: g =

(
1

|Ẑ|

∑
‖ê− êold‖2W

)1/2

return g
12: end procedure

Modifications

We modify the original adaptive algorithm included in the MATLAB® package Sparse Grid
Kit [7, 104] regarding two aspects.

First Modification. The first modification is realized in lines 30 - 32 in Algorithm 5.1. If the
current considered index i with the highest profit has no admissible neighbors (aN b = ∅), then
the index set Λ and therefore the sparse grid and the corresponding interpolant do not change.
Therefore, we want to ensure that the error indicator also remains the same and is not updated.
In the original algorithm, the error indicator is updated even if there is no change in the sparse
grid.

In order to illustrate this behavior, we consider the two-dimensional function

f(y1, y2) =
10

y2
1 + 15y2

2 + 0.3

and the case that the underlying random variables ξ1, ξ2 : Θ→ R are independent and uniformly
distributed on [−1, 1]. We recall that y = (y1, y2) with yi = ξi(θ) ∈ [−1, 1]. We use the
Clenshaw-Curtis nodes (5.11) as collocation points and ExVal for computing the profits since
we want to approximate the expected value E[f ] =

∫
Γ f(y)ρ(y) dy where ρ : Γ→ R is the joint

PDF of the random vector ξ = (ξ1, ξ2).

In Figure 5.4(a), we show the error estimates of the algorithm for tolerances TolY = 10−i for
i = 2, 3, . . . , 6. For the two different tolerances 10−4 and 10−5, the original algorithm return
the same sparse grid interpolant and the same number of collocation points. However, the error
indicators differ from each other. In order to understand this behavior, we take a closer look
inside the algorithm executed for tolerance 10−5. We start with the iteration after which the
algorithm would stop for the smaller tolerance 10−4 which means that the error indicator η
becomes smaller than 10−4, but is still larger than 10−5. This is equivalent to the final iteration
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of the algorithm with TolY = 10−4. The corresponding index sets Λ,O,R as well as the current
index with the highest profit, (5, 7), are shown in Figure 5.4(c). In the next iteration step, the
selected index (5, 7) has no admissible neighbors and so the approximations G, E and the index
set Λ remain the same. However, the error indicator η is updated and is now smaller than 10−5

such that the algorithm stops. Note that the index sets R and O change since the index with
the next highest profit is selected, see Figure 5.4(e).

Having implemented the modification described above, the algorithm behaves differently which
is shown in Figure 5.4(b): For the tolerance 10−5, we obtain a different sparse grid than for
10−4. In the first iteration step in which the error indicator is smaller than 10−4 and larger than
10−5, the considered index (5, 7) has no admissible neighbors. Up to this point, both versions
of the algorithm provide the same results such that the index sets shown in Figure 5.4(d) are
the same as for the original version in Figure 5.4(c). Due to lines 30 - 32 in Algorithm 5.1 the
error indicator does not change this time. Since the error indicator is still larger than 10−5,
we choose the next index with the highest profit which is (6, 1). This index has admissible
neighbors, (6, 2) and (7, 1), which we explore such that the index sets Λ and O enlarge, see
Figure 5.4(f). Additionally, we get a new sparse grid and new approximations G, E . The error
indicator is updated and becomes smaller than 10−5. Consequently, the algorithm stops and
returns a different sparse grid and error estimate than for TolY = 10−4. In summary, our first
modification could provide a slightly larger sparse grid for a given tolerance, but we can now
guarantee that each resulting sparse grid is assigned to exactly one error indicator.

Second Modification. The second modification which we adopt from [67] is to return the sparse
grid interpolant and its expected value which are computed without the hierarchical surpluses
added in the last iteration step, see line 35 in Algorithm 5.1. Note that we do not adapt the
profits and the error indicator. Computing the error based on these values, the error indicator
η which is the highest profit, gets more practical and reasonable. Therefore, the convergence
behavior in the single-level and multi-level approach can be better investigated. However, the
final values would be used in most realistic applications, because they are computed with more
collocation points and the required computations are already at hand.

As an example, we consider the function

f(y1, y2) = exp

(
−

2∑
i=1

a2
i (yi − ui)2

)
(5.12)

with a = (0.3, 0.5) and u = (0.2, 0.6). Similar to the previous example, we are interested in the
expected value of f where the underlying random variables ξ1, ξ2 are independent of each other
and uniformly distributed on [−1, 1]. We use the Clenshaw-Curtis nodes (5.11) as collocation
points and ExVal for computing the profits.

In Figure 5.5, the error estimates and errors of the expected value E[f ] are shown for tolerances
TolY = 10−i, i = 2, 3, . . . , 7 computed with the original algorithm as well as for the version
including the second modification. In both cases, the error is always smaller than the error
estimate. We compute a reference solution with an isotropic Smolyak formula of level w = 15.
Using the original algorithm, the errors are up to two orders of magnitude smaller than the error
estimates. In contrast, our second modification causes that the error and error estimate are very
close to each other. They differ for each TolY only by a factor smaller than 10. Therefore, the
error indicator provided by our modified algorithm serves as a more accurate approximation of
the error than before.
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(a) Original adaptive algorithm.
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(b) Modified adaptive algorithm.

1 2 3 4 5 6 7 8

i
1

1

2

3

4

5

6

7

8

9

i 2

(c) Multi-index set for TolY = 10−4.
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(d) Multi-index set for TolY = 10−4.
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(e) Multi-index set for TolY = 10−5.
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(f) Multi-index set for TolY = 10−5.

Figure 5.4: Adaptive sparse grid algorithm applied to f(y1, y2) = 10/(y2
1 + 15y2

2 + 0.3) for
tolerances TolY = 10−i, i = 2, 3, . . . , 6 using Clenshaw-Curtis nodes and ExVal for computing
the profits, see (a) and (b). The resulting multi-index sets are shown in the subfigures (c)–(f).
The grey squares are elements of the inactive set O. The set R is assigned to the red squares
and the cross indicates the index which has the current highest profit and will be explored in the
next iteration. All squares (red and grey) represent the set Λ which is used to build the current
sparse grid for the approximation. Subfigures (a), (c), (e) correspond to the original adaptive
algorithm and (b), (d), (f) to the first modified version.
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Figure 5.5: Adaptive sparse grid algorithm applied to function (5.12) for TolY = 10−i,
i = 2, 3, . . . , 7 using Clenshaw-Curtis and ExVal for computing the profits. The left figure
corresponds to the original algorithm and the right figure to the version incorporating the sec-
ond modification.

5.2 Single-Level Structure

In this section, we consider the solution u of problem (3.8)–(3.12) as our function-valued QoI
and present a fully adaptive single-level stochastic collocation (SLSC) method. Additionally, we
analyze the error of the resulting approximation and the complexity of the method. We follow
the approach given in [67, 68].

In the SC setting (3.8)–(3.12) derived in Section 3.3, the stochastic space Γ = [−1, 1]N is the im-
age space of the underlying random vector ξ : Θ→ Γ which has a PDF ρ : Γ→ R+. The stochas-
tic parameter y denotes the elements of Γ which are realizations of ξ. Note that we assumed
ρ ∈ L∞(Γ) in Assumption 3.4 which provides C(Γ,L1) ⊂ L2

ρ(Γ,L1), see Subsection 3.1.1.

We recall that the SC method approximates the QoI, here the full solution u, by an interpolation
in the stochastic parameter space Γ based on deterministic sample points {yi}Qi=1 ∈ Γ. Inserting
the points into the SC problem (3.8)–(3.12) provides Q decoupled deterministic network prob-
lems of the form (2.11)–(2.15) which differ in the input data and depend only on space and
time. Since the solutions u(yi) of the deterministic network problems are in general unknown,
we compute finite-dimensional space-time approximations uh(yi) of the solution using numerical
methods (e.g. a finite volume method or an implicit box scheme as described in Section 2.4).
A very common approach is to predefine a uniform discretization, see for example [80]. Similar
to the Monte Carlo approach, we now assume that we have access to an adaptive black box
solver which computes the numerical approximations uh(yi) by adaptively refining the spatial,
temporal and model discretizations until the error estimate is less than a prescribed physical
tolerance TolH > 0. Consequently, each sample uh(yi) has a sample-adaptive resolution in
the physical space, i.e. in space, time and model hierarchy. Therefore, the samples could have
different resolutions in time and space. In this case, we need to interpolate all samples onto a
common fine spatial-temporal grid. The approximate solution uh refers to the tolerance TolH
and still depends on the stochastic variable y. The general aspects of adaptive strategies were
described in Subsection 2.4.2 and an adaptive algorithm developed for gas transport was pre-
sented in Subsection 2.5.4. Next, we formulate the described error control of uh in the following
assumption.
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Assumption 5.7 (Adaptive Physical Approximation)
(i) Let u be the stochastic entropy solution of problem (3.8)–(3.12). For y ∈ Γ, let uh(y)

be a physical approximation of u(y) with a space-time-model discretization computed for
a given tolerance TolH > 0 by an adaptive solver. Then, there exists a physical constant
ch : Γ→ R+ with E[c2

h] <∞ such that the approximation uh(y) satisfies

‖u(y)− uh(y)‖L1 ≤ ch(y)TolH (5.13)

for all y ∈ Γ.

(ii) It holds uh ∈ C(Γ,L1) ⊂ L2
ρ(Γ,L1).

Based on the numerical approximations uh(yi), the so-called samples, we approximate uh by an
interpolation in the stochastic space Γ. The resulting interpolant serves as an approximation
to the solution u of problem (3.8)–(3.12). Let AQ : C(Γ,L1) → L2

ρ(Γ,L1) be an interpolation
operator using Q points in the stochastic space Γ which fulfills the following assumption.

Assumption 5.8 (Adaptive Stochastic Approximation)
For each stochastic tolerance TolY > 0, there exists a number of collocation points Q > 0 and a
positive constant Cy such that the approximation AQ[uh] satisfies the error estimate

‖uh −AQ[uh]‖L2
ρ(Γ,L1) ≤ Cy TolY. (5.14)

The constant Cy does not depend on h meaning that it is independent of the physical tolerance
TolH and thus on the physical resolution of every uh(y).

In order to construct this operator, we apply the adaptive sparse grid algorithm introduced in
the previous section and described in detail in Algorithm 5.1. We use heuristic error indicators,
also called profits, which are computed for the case Ltwo in Algorithm 5.2 since the L2

ρ(Γ,L1)-
norm is considered in (5.14). For a given stochastic tolerance TolY > 0, the adaptive algorithm
returns a sparse grid operator (Definition 5.3)

AQ := GΛ : C(Γ,L1)→ L2
ρ(Γ,L1)

as soon as the heuristic error estimate is smaller than TolY . The index set Λ determines the
number of collocation points Q. We denote the corresponding sparse grid by HA := HΛ ⊂ Γ
with |HA| = Q. Moreover, the algorithm provides an approximation of E[AQ[uh]]. In the error
analysis, the overall SLSC error (u − AQ[uh]) is usually investigated in the L2

ρ(Γ,L1)-norm.
Using the triangle inequality, we split the error into the sum of a physical error and a stochastic
interpolation error:

‖u−AQ[uh]‖L2
ρ(Γ,L1) ≤ ‖u− uh‖L2

ρ(Γ,L1)︸ ︷︷ ︸
I) physical error

+ ‖uh −AQ[uh]‖L2
ρ(Γ,L1)︸ ︷︷ ︸

II) stochastic error

. (5.15)

The physical error arises from the resolution in space, time and model hierarchy which is used
for the computation of the approximations uh(y). The SLSC error can be bounded as follows:

Theorem 5.9
Suppose Assumptions 3.8, 5.7 and 5.8 hold for given tolerances TolH > 0 and TolY > 0. Then,
the SLSC error satisfies

‖u−AQ[uh]‖L2
ρ(Γ,L1) ≤ Ch TolH + Cy TolY, (5.16)
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where the constant Ch > 0 is independent of y and the constant Cy > 0 independent of h.

Proof. Starting with the physical error, we integrate the square of the assumed inequality (5.13)
multiplied by the PDF ρ over the stochastic space Γ and get

‖u− uh‖L2
ρ(Γ,L1) = E

[
‖u− uh‖2L1

] 1
2 ≤ Ch TolH

with Ch := ‖c2
h‖L2

ρ(Γ) independent of the stochastic parameter y ∈ Γ. Using inequality (5.15)
and Assumption 5.8 for the stochastic error yield the stated estimate.

Let ε > 0 be a user-prescribed accuracy for the overall error ‖u−AQ[uh]‖L2
ρ(Γ,L1). The common

approach is to bound the physical error and the stochastic error in the splitting (5.15) equally
by ε/2. Due to Theorem 5.9, we need to bound the two terms on the right-hand side of the error
estimate (5.16) by ε/2. Therefore, the desired accuracy ε is achieved by the choices

TolH =
ε

2Ch
and TolY =

ε

2Cy
. (5.17)

5.2.1 Complexity Analysis

The total computational cost CSC of the single-level SC method is the sum of the single costs to
compute the samples uh(yi) of uh for tolerance TolH. Let Wh be an upper bound for the cost
of each sample of uh. Then, we get

CSC :=

Q∑
i=1

cost
(
uh(yi)

)
≤ QWh,

where cost
(
uh(yi)

)
denotes the cost to compute the sample uh(yi) for each collocation point

yi ∈ HA ⊂ Γ. Since the collocation points are determined using a fixed structure and not
randomly, the cost CSC does not depend on y.

In order to compute the SC samples, we use the same deterministic solver as for the MC methods
in Chapter 4. Therefore, we have the same upper boundWh and suppose the same cost rate γ as
in Assumption 4.7. Moreover, we require that the stochastic tolerance decrease with the number
of collocation points.
Assumption 5.10
(i) Let Wh be an upper bound for the cost to compute a sample of the approximate solution uh

for tolerance TolH > 0. Then, there exists a constant γ > 0 such that

Wh ≤ CW TolH−γ

with constant CW > 0 independent of y, T olH and γ.

(ii) There exists a constant µ > 0 such that

Cy TolY = CI(N)Q−µ ‖uh‖L2
ρ(Γ,L1).

The constant CI(N) > 0 is independent of y, Q and µ.

The second assumption ensures that the stochastic approximation in (5.14) converges with re-
spect to the number of collocation points. For elliptic PDEs, the convergence of the sparse grid
approximation and the deterioration of the rate µ for increasing N was shown in [6, 81].
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Now, we can estimate the computational cost CSC
ε of the SL method required to achieve an

accuracy ε for the SL interpolant AQ[uh]. For the complexity analysis, we introduce the notation
a . b to denote the relation a ≤ Cb with a constant C independent of the physical tolerance
TolH, the stochastic tolerance TolY and the accuracy ε. In the case that a . b and a & b, we
write a h b.

Lemma 5.11
Let Assumptions 3.8, 5.7, 5.8 and 5.10 be fulfilled. Then, for any ε < 1, there exists a physical
tolerance TolH > 0 and a stochastic tolerance TolY > 0 such that

‖u−AQ[uh]‖L2
ρ(Γ,L1) ≤ ε

and
CSC
ε . ε

−γ− 1
µ .

Proof. Theorem 5.9 and Assumption 5.10 (ii) provide the error estimate

‖u−AQ[uh]‖L2
ρ(Γ,L1) ≤ Ch TolH + CI Q

−µ ‖uh‖L2
ρ(Γ,L1).

In order to achieve an accuracy ε for the SLSC error, we bound the two terms on the right-hand
side of the previous inequality by ε/2 such that we have to choose

TolH =
ε

2Ch
and Q =


(

2CI ‖uh‖L2
ρ(Γ,L1)

ε

) 1
µ

 .
Using this choice and Assumption 5.10 (i), we obtain

CSC
ε ≤ QWh ≤

((
CI ‖uh‖L2

ρ(Γ,L1)

) 1
µ
ε
− 1
µ + 1

)
CW (2Ch)γε−γ . ε

−γ− 1
µ .

Obviously, combining the obtained number of samples with Assumption 5.10 (ii) results in the
same stochastic tolerance as stated in (5.17):

TolY = CI C
−1
y Q−µ ‖uh‖L2

ρ(Γ,L1) =
ε

2Cy
.

Remark 5.12
As discussed for the Monte Carlo approach in Remark 4.9, we can also choose a non-scalar
function of the solution as our QoI instead of the full solution u. Some possible options are a
single component of the solution, the solution integrated over the time or the spatial space and
the solution evaluated at a fixed point in time t̄ ∈ [0, T ] or at a fixed spatial point x̄ ∈ Ω̄j. We
now transfer Remark 4.9 to the SC setting.

For the error of the i-th components ui, all previous results are valid without additional assump-
tions because it holds

‖ui(y)−AQ[(uh)i](y)‖L1((0,T )×Ω1)×···×L1((0,T )×ΩP ) ≤ ‖u(y)−AQ[uh](y)‖L1

for y ∈ Γ. The same argument applies to the quantities
∑P

j=1

∫
[0,T ] u

(j)(·, t, ·) dt and∫
Ωj
u(j)(x, ·, ·) dx using the linearity of the interpolation operator AQ. Analyzing the stochas-

tic collocation error of u(j)(x, t̄,y) for a fixed t̄ ∈ [0, T ] requires that the pointwise evaluation in
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time of the approximate solution is defined for all y ∈ Γ. Therefore, we assume

uh ∈ C
(
Γ, H1((0, T ), L1(Ω1,Rd))× · · · ×H1((0, T ), L1(ΩP ,Rd))

)
.

Assumptions 5.7, 5.8 and 5.10 have to hold for the considered quantity u(j)
h (x, t̄,y). Then, the

convergence and complexity analysis of the error

‖u(j)(·, t̄, ·)−AQ[u
(j)
h (·, t̄, ·)]‖L2

ρ(Γ,L1(Ωj ,Rd))

can be analogously performed as before. In the case of the approximate solution u
(j)
h (x̄, t,y)

evaluated at a fixed spatial point, we need to assume that u and uh belong to the space

C
(
Γ, L1((0, T ), H1(Ω1,Rd))× · · · × L1((0, T ), H1(ΩP ,Rd))

)
.

If Assumptions 5.7, 5.8 and 5.10 are fulfilled for u(j)
h (x̄, t,y), we can analyze the error

‖u(j)(x̄, ·, ·)−AQ[u
(j)
h (x̄, ·, ·)]‖L2

ρ(Γ,L1((0,T ),Rd))

as shown in this section.

5.3 Multi-Level Structure

The SC method is now extended to a multi-level structure in order to further reduce the com-
putational complexity. First of all, the multi-level strategy was developed independently in the
context of MC methods in [42, 53]. Afterwards, the ML extension was transferred to stochastic
collocation methods and applied to elliptic PDEs with random data using a hierarchy based on
the spatial uniform mesh and the number of collocation points [106]. Therefore, the curse of
dimensionality could be further delayed. Recently, Lang et al. [67] developed a novel multi-level
method by combining adaptive sparse grids in the stochastic space and adaptive mesh refine-
ments for the spatial approximation with the multi-level structure. In a collaboration between
the author, Lang and Domschke in [68], the fully adaptive MLSC approach has already been
extended to uncertain gas transport problems considering functionals of the solution. The hier-
archy of sample-dependent spatial discretizations in the elliptic case in [67] is replaced by a more
complex hierarchy of discretizations in space, time and model hierarchy. Proceeding similar to
the extension in [68], we extend the fully adaptive MLSC approach to the solution of general
hyperbolic PDEs with random data on networks.

The main idea of the multi-level structure is to couple physical approximate solutions of different
accuracies with different stochastic interpolation operators such that less accurate interpolation
operators are used on more accurate physical approximate solutions. This means that we need
to compute less samples on fine meshes and with high fidelity models. Accordingly, the most
accurate interpolation operator would be used on the least accurate physical approximation.
Since the computational cost for computing one sample increases with the required accuracy of
the sample, we expect to obtain a reduction of the computational cost.

Let {TolHk}Kk=0 be a sequence of physical tolerances with

1 ≥ TolH0 > TolH1 > · · · > TolHK > 0

and K ∈ N+. Each index k ∈ {0, . . . ,K} refers to a numerical approximation uhk of the
solution u which is constructed as in the previous section on the single-level structure: The
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physical approximation uhk(y) is computed with a sample-dependent resolution in space, time
and model hierarchy controlled by the tolerance TolHk. This error-controlled behavior is realized
by an adaptive black box solver which uses numerical methods to compute each sample uhk(y)
and which adaptively refines the spatial, temporal and model discretizations until the error
estimate is less than the prescribed tolerance TolHk. Since the physical tolerances are constructed
as a decreasing sequence, the space-time-model resolution of a fixed sample uhk(y) gets finer with
increasing k. Now, we assume the following property of the error control of uhk .

Assumption 5.13 (Sequence of Adaptive Physical Approximations)
(i) Let u be the stochastic entropy solution of problem (3.8)–(3.12). For y ∈ Γ, let uhk(y) be

a physical approximation computed by an adaptive solver for a given tolerance TolHk > 0.
Then, for all k = 0, . . . ,K there exists a physical constant ck : Γ → R+ with E[c2

k] < ∞
such that the approximate solution uhk(y) satisfies

‖u(y)− uhk(y)‖L1 ≤ ck(y)TolHk (5.18)

for all y ∈ Γ.

(ii) It holds uhk ∈ C(Γ,L1) ⊂ L2
ρ(Γ,L1) for k = 0, . . . ,K.

We rewrite the approximate solution uhK with the highest physical accuracy as the telescoping
sum of approximations with lower physical accuracies

uhK =
K∑
k=0

uhk − uhk−1
,

where we set uh−1 = 0. Instead of applying a stochastic interpolation operator only to the most
accurate approximation uhK , we interpolate each term (uhk − uhk−1

) of the telescoping sum
separately. To this end, we introduce a second sequence of (stochastic) tolerances {TolYk}Kk=0

where each TolYk relates to an interpolation operator AQk : C(Γ,L1) → L2
ρ(Γ,L1) which uses

Qk points and fulfills the following assumption.
Assumption 5.14 (Sequence of Adaptive Stochastic Approximations)
There exists a sequence of number of collocation points {Qk}k=0,...,K and a positive constant CY
which does not depend on k such that

‖(uhk − uhk−1
)−AQk [uhk − uhk−1

]‖L2
ρ(Γ,L1) ≤ CY TolYk (5.19)

for k = 0, . . . ,K.

As in the single-level approach, we apply the adaptive sparse grid algorithm presented in Subsec-
tion 5.1.6 in order to construct these interpolation operators. Since the algorithm computes the
approximation AQk [uhk − uhk−1

] by successively adding collocation points until a heuristic error
estimate is lower than a given stochastic tolerance TolYk, the previous assumption is justified.
Considering these interpolation operators together with the telescoping sum, we can define the
multi-level interpolant u(ML)

K .

Definition 5.15 (Multi-Level Interpolant)
The multi-level interpolant of u is defined as

u
(ML)
K :=

K∑
k=0

AQk [uhk − uhk−1
]

with uh−1 := 0.
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Under Assumption 5.13, we obtain u(ML)
K ∈ L2

ρ(Γ,L1). Integrating the square of inequality (5.18)
with respect to the PDF ρ, we get the error estimate

‖u− uhk‖L2
ρ(Γ,L1) ≤ CH TolHk, k = 0, . . . ,K, (5.20)

with the constant

CH = max
k=0,...,K

E
[
c2
k

]1/2
= max

k=0,...,K
‖ck‖L2

ρ(Γ)

which is independent of y and k. This estimate provides ‖uhk − uhk−1
‖L2

ρ(Γ,L1) ≤ 2CHTolHk−1

which decreases for k → ∞. Therefore, we expect to need less accurate interpolation operators
for more accurate physical approximations which means that we need to compute less samples on
fine meshes and with high fidelity models. This is the main reason to use the multi-level structure
for stochastic collocation methods. In order to analyze the convergence of the ML interpolant
u

(ML)
K to the solution u, we split the multi-level stochastic collocation (MLSC) error into a

deterministic physical and a stochastic interpolation error by using the triangle inequality:

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ ‖u− uhK‖L2
ρ(Γ,L1)︸ ︷︷ ︸

I) physical error

+ ‖uhK − u
(ML)
K ‖L2

ρ(Γ,L1)︸ ︷︷ ︸
II) stochastic error

. (5.21)

Theorem 5.16
Suppose Assumptions 3.8, 5.13 and 5.14 are fulfilled. Then, it holds

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ CH TolHK + CY

K∑
k=0

TolYk, (5.22)

where the constants CH , CY are positive and independent of k and y.

Proof. Due to the error splitting in (5.21), it is sufficient to bound the physical and the stochastic
error term separately. According to the inequality (5.20), the physical error is bounded by

‖u− uhK‖L2
ρ(Γ,L1) ≤ CH TolHK

with CH = maxk=0,...,K ‖ck‖L2
ρ(Γ). The stochastic interpolation error which is the second term on

the right-hand side of (5.21) can be rewritten by inserting Definition 5.15 of the ML interpolant
and the identity uhK =

∑K
k=0(uhk − uhk−1

). Using additionally the triangle inequality and
Assumption 5.14, we obtain

‖uhK − u
(ML)
K ‖L2

ρ(Γ,L1) =

∥∥∥∥uhK − K∑
k=0

AQk [uhk − uhk−1
]

∥∥∥∥
L2
ρ(Γ,L1)

=

∥∥∥∥ K∑
k=0

(uhk − uhk−1
)−AQk [uhk − uhk−1

]

∥∥∥∥
L2
ρ(Γ,L1)

≤
K∑
k=0

‖uhk − uhk−1
−AQk [uhk − uhk−1

]‖L2
ρ(Γ,L1) ≤ CY

K∑
k=0

TolYk

with constant CY > 0 independent of k and y.
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In order to achieve that the stochastic error has the same size as the physical error, we choose
the stochastic tolerances {TolYk} depending on the physical tolerances {TolHk}. One straight-
forward approach is to balance both error terms, see [67, 106]. Due to the error estimate (5.22)
in the previous theorem, we choose

TolYk = CH TolHK (CY (K + 1))−1 for k = 0, . . . ,K.

From this, it follows ‖u − u
(ML)
K ‖L2

ρ(Γ,L1) ≤ 2CH TolHK which ensures that the MLSC error
converges for TolHK → 0. If we now want to achieve a user-prescribed accuracy ε > 0 for
the MLSC error, both terms on the right-hand side of estimate (5.22) have to be bounded by
ε/2. For the considered approach, we obtain the physical tolerance TolHK = ε/(2CH) with the
tolerances TolYk defined as above.

Another strategy is to choose the tolerances TolYk on each level so that the computational cost
of the method is minimized and the MLSC error satisfies the desired accuracy ε [18, 67, 106]. In
the following, we concentrate on this cost minimization approach.

5.3.1 Complexity Analysis

In the following, we investigate in detail the complexity of the MLSC method and we mainly
follow the analysis given in [67]. The complexity analysis of the adaptive MLMC method in
Section 4.2 was performed in a similar way.

Let Wk be an upper bound for the cost of a single sample uhk(yi) for k = 0, . . . ,K. We can
bound the total computational cost of the multi-level approximation by

CMLSC =
K∑
k=0

Qk∑
i=1

cost
(
uhk(yi)

)
+ cost

(
uhk−1

(yi)
)
≤

K∑
k=0

Qk(Wk +Wk−1) (5.23)

with W−1 := 0.

Similar to Assumption 5.10, we need to link the stochastic tolerances with the number of colloca-
tion points. Thus, we suppose the following assumption such that the stochastic approximations
in (5.19) converge with respect to the number of collocation points.

Assumption 5.17
There exist positive constants CI(N) and µ such that for all k = 0, . . . ,K it holds

CY TolYk = CI(N)Q−µk TolHk−1

with TolH−1 := ‖uh0‖L2
ρ(Γ,L1). The constant CI(N) is independent of y, k and µ.

Now, we can estimate the computational cost CMLSC
ε of the MLSC method required to achieve

an accuracy ε for the multi-level approximation u(ML)
K . Note that the physical tolerance TolHk

needs to converge to zero for k →∞.
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Theorem 5.18
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, suppose Assumptions 3.8, 5.13, 5.14 and 5.17 hold. Then, for any ε > 0, there exists a
number K = K(ε) ∈ N+ and a sequence of tolerances {TolYk}k=0,...,K in (5.19) such that

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ ε

and

CMLSC
ε ≤ Ĉ ε−

1
µF (µ)

µ
µ+1 +

K∑
k=0

Gk

with Ĉ = (2CI)
1
µ and

F (µ) =

K∑
k=0

G
µ
µ+1

k

(
TolHk−1

) 1
µ+1 , Gk = Wk +Wk−1.

The optimal stochastic tolerances TolYk are given by

TolYk = ε
(
2CY F (µ)

)−1
G

µ
µ+1

k

(
TolHk−1

) 1
µ+1 .

Proof. This proof follows the same approach as the proof of Theorem 4.14. Considering the
MLSC error, the error estimate (5.22) and Assumption 5.17 provide

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ CH TolHK + CI

K∑
k=0

Q−µk TolHk−1.

In order to achieve a total accuracy ε > 0, we ensure that the physical discretization and
the stochastic interpolation error contribution are bounded by ε/2. First, we choose a suitable
integer K ∈ N+ such that CH TolHK ≤ ε/2 is satisfied. Note that this choice defines the number
K = K(ε) as a function of ε and can be always made since {TolHk}k=0,1,... is a null sequence.
Concerning the stochastic error, we require

CI

K∑
k=0

Q−µk TolHk−1 =
ε

2

and want to determine the number of samples in such a way that the upper bound (5.23) of the
total cost of the MLSC approximation is minimized. Consequently, we consider the following
minimization problem

min
Q0,...,QK

K∑
k=0

Qk (Wk +Wk−1)

s.t. CI

K∑
k=0

Q−µk TolHk−1 =
ε

2
.

We solve this problem by the Lagrangian multiplier method considering Qk as a continuous
variable. The Lagrangian function is given by

L(Q0, . . . , QK , α) =

K∑
k=0

Qk (Wk +Wk−1) + α

(
CI

K∑
k=0

Q−µk TolHk−1 −
ε

2

)
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with the Lagrangian multiplier α ∈ R. The next step is to find an extremum of the function by
imposing the condition ∇L(Q0, . . . , QK , α)

!
= 0. This provides the equations

∂L
∂Qk

= Wk +Wk−1 − αµCI Q−µ−1
k TolHk−1 = 0 k = 0, . . . ,K, (5.24)

∂L
∂α

= CI

K∑
k=0

Q−µk TolHk−1 −
ε

2
= 0. (5.25)

Now, we solve the equation (5.24) for Qk:

Qk =

(
αµCI TolHk−1

Wk +Wk−1

) 1
µ+1

. (5.26)

Inserting this formula into (5.25) and solving the resulting equation for α, we get

α = µ−1C
− 1
µ

I

(
2 ε−1F (µ)

)µ+1
µ

with

F (µ) :=

K∑
k=0

G
µ
µ+1

k

(
TolHk−1

) 1
µ+1 and Gk := Wk +Wk−1.

Substituting the formula for the parameter α into equation (5.26) provides the optimal number
of samples

Qk = C
1
µ

I

(
2 ε−1F (µ)

) 1
µ
(
TolHk−1G

−1
k

) 1
µ+1

which we round up to the next integer Q∗k. Using the chosen number of samples which satisfies
Q∗k ≤ Qk + 1, we obtain for the ε-cost the estimation

CMLSC
ε ≤

K∑
k=0

(Qk + 1)(Wk +Wk−1)

=
K∑
k=0

(
C

1
µ

I

(
2 ε−1 F (µ)

) 1
µ
(
TolHk−1G

−1
k

) 1
µ+1 + 1

)
Gk

=
(
2CI ε

−1
) 1
µ F (µ)

µ
µ+1 +

K∑
k=0

Gk.

Combining the obtained optimal number of samples with Assumption 5.17, the optimal choice
of tolerances TolYk is determined by

TolYk = CI C
−1
Y Q−µk TolHk−1 = ε

(
2CY F (µ)

)−1
Gk(µ)

µ
µ+1
(
TolHk−1

) 1
µ+1 > 0

which guarantees the accuracy ε/2 of the stochastic error since

K∑
k=0

CY TolYk =
ε

2
F (µ)−1

K∑
k=0

Gk(µ)
µ
µ+1
(
TolHk−1

) 1
µ+1

︸ ︷︷ ︸
=F (µ)

=
ε

2
.
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We assume that the upper bound Wk is bounded in the same way as in Assumption 5.10 in the
single-level approach such that we obtain a slightly modified formula for the stochastic tolerances
TolY on each level which we use in the implementation of the MLSC method.

Assumption 5.19
Let Wk be an upper bound for the cost to compute a sample of the approximate solution uhk for
tolerance TolHk > 0. There exists a constant γ > 0 with

Wk ≤ CW TolH−γk ,

where CW is a positive constant independent of y, k and γ.

Corollary 5.20
Let {TolHk}k=0,1,... be a strictly decreasing null sequence of physical tolerances TolHk ∈ (0, 1].
Further, let Assumptions 3.8, 5.13, 5.14, 5.17 and 5.19 be fulfilled. Then, for any ε > 0, there
exists a number K = K(ε) ∈ N+ and a sequence {TolYk}k=0,...,K in (5.19) such that

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ ε

and

CMLSC
ε ≤ Ĉ ε−

1
µ F (µ, γ)

µ+1
µ + CW

K∑
k=0

Gk(γ)

with Ĉ := CW (2CI)
1
µ and

F (µ, γ) =
K∑
k=0

Gk(γ)
µ
µ+1
(
TolHk−1

) 1
µ+1 with Gk(γ) = TolH−γk + (1− δk0)TolH−γk−1 . (5.27)

As usual, the Kronecker delta δk0 is defined as δk0 = 1 for k = 0 and δk0 = 0 otherwise. The
optimal stochastic tolerances TolYk are given by

TolYk = ε
(
2CY F (µ, γ)

)−1
Gk(γ)

µ
µ+1
(
TolHk−1

) 1
µ+1 . (5.28)

Proof. We prove the stated results analogously to the proof of Theorem 5.18. According to
Assumption 5.19, the considered optimization problem modifies to

min
Q0,...,QK

CW

K∑
k=0

Qk

(
TolH−γk + (1− δk0)TolH−γk−1

)
s.t. CI

K∑
k=0

Q−µk TolHk−1 =
ε

2
.

Here, the use of the Kronecker delta is essential because on the coarsest level k = 0 there are
only samples of uh0 and the overall cost on this level is bounded by CW Q0 TolH

−γ
0 . Note that

we define TolH−1 = ‖uh0‖L2
ρ(Γ,L1) in Assumption 5.17 and therefore we cannot handle this issue

analogously to the previous case where we set W−1 = 0.

Next, we focus on physical tolerances generated via a geometric design TolHk = qk TolH0 using
a positive reduction factor q < 1. With the previous results, we can now analyze the complexity
of the MLSC method which is smaller than the complexity of the SLSC method.
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Theorem 5.21
Let a null sequence of physical tolerances {TolHk}k=0,1,... be given by TolHk = qk TolH0 with
TolH0 ∈ (0, 1] and a reduction factor q ∈ (0, 1). Further, let Assumptions 3.8, 5.13, 5.14, 5.17
and 5.19 be fulfilled. Then, for any ε ∈ (0, 1/e], there exists a number K = K(ε) ∈ N+ and a
sequence {TolYk}Kk=0 such that

‖u− u(ML)
K ‖L2

ρ(Γ,L1) ≤ ε

and

CMLSC
ε .


ε
− 1
µ if γµ < 1,

ε
− 1
µ | log ε|1+ 1

µ if γµ = 1,

ε−γ if γµ > 1.

Proof. We transferred the proof of [106, Theorem 4.2] to our fully adaptive setting. This proof is
very similar to the proof of Theorem 4.18 for adaptive MLMC methods. Corollary 5.20 implies
the first statement of this theorem including the condition CH TolHK = CH q

K TolH0 ≤ ε/2 for
K. We choose

K :=

⌈
logq

(
ε

2CH TolH0

)⌉
+K0 (5.29)

with the smallest possible constant K0 ∈ N such that K ∈ N+. It follows

CH TolHK ≤ qK0+1ε/2 ≤ ε/2

since qK0+1 < 1 and K ≤ logq
(
ε/(2CH TolH0)

)
+ 1 +K0. In addition, Corollary 5.20 provides

the estimate

CMLSC
ε ≤ CW (2CI)

1
µ ε
− 1
µ

(
F (µ, γ)

)µ+1
µ

︸ ︷︷ ︸
=: (I)

+CW

K∑
k=0

Gk(γ)︸ ︷︷ ︸
=: (II)

, (5.30)

where we set

F (µ, γ) =

K∑
k=0

Gk(γ)
µ
µ+1
(
TolHk−1

) 1
µ+1

with

Gk(γ) = TolH−γk + (1− δk0)TolH−γk−1.

In order to estimate the complexity CMLSC
ε further, we need the following property of a geometric

sum with q ∈ (0, 1) and α > 0:

K∑
k=0

qαk =
1− qα(K+1)

1− qα
<

1

1− qα
(5.31)

since qα < 1. Together with the formula (5.29) for K, it follows

K∑
k=0

q−αk =
K∑
k=0

(
qα
)k−K

= q−αK
K∑
k=0

(
qα
)k
<

q−αK

1− qα

. q−α (logq(ε/(2CHTolH0))+1+K0) h ε−α.

(5.32)
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5.3 Multi-Level Structure

First, we consider the second term (II) on the right-hand side of (5.30). The assumed geometric
design of TolHk = qk TolH0 and inequality (5.32) yield

(II) = CW

K∑
k=0

TolH−γk + (1− δk0)TolH−γk−1 = CW TolH−γ0

K∑
k=0

q−γk + (1− δk0) q−γ(k−1)

≤ CW TolH−γ0

(
1 + (1− δk0) qγ

) K∑
k=0

q−γk .
q−γK

1− qγ
h ε−γ .

For the sum F (µ, γ) in the estimation (5.30) of the total cost, the relation TolHk = qk TolH0

leads to

F (µ, γ) =
K∑
k=0

(
TolH−γk + (1− δk0)TolH−γk−1

) µ
µ+1

(TolHk−1)
1

µ+1

= TolH
− γµ
µ+1

0 TolH
1

µ+1

−1 + TolH
1−γµ
µ+1

0

K∑
k=1

(
q−γk + q−γ(k−1)

) µ
µ+1

q
k−1
µ+1

= TolH
− γµ
µ+1

0 TolH
1

µ+1

−1 + TolH
1−γµ
µ+1

0

(
1 + qγ

) µ
µ+1 q

− 1
µ

K∑
k=1

q
−k γµ

µ+1 q
k
µ+1

. 1 +

K∑
k=1

q
k 1−γµ
µ+1 h

K∑
k=0

q
k 1−γµ
µ+1

with TolH−1 being constant. Therefore, we get for the term (I) in (5.30) the estimate:

(I) = CW (2CI)
1
µ ε
− 1
µF (µ, γ)

µ+1
µ . ε

− 1
µ

(
K∑
k=0

q
k 1−γµ
µ+1

)µ+1
µ

. (5.33)

Now, we consider the geometric sum (G) :=
∑K

k=0

(
q

1−γµ
µ+1

)k
for the following three different

cases:

(i) 1− γµ > 0:
For this case, inequality (5.31) provides that the geometric sum (G) is bounded by a
constant independent of K. Therefore, we have (I) . ε

− 1
µ and it follows

CMLSC
ε . ε

− 1
µ + ε−γ . ε

− 1
µ

since ε < 1 and 1/µ > γ.

(ii) 1− γµ = 0:
Inserting the formula (5.29) for K gives

(G) =

K∑
k=0

(
q

1−γµ
µ+1

)k
= K + 1 ≤ logq

(
ε

2CH TolH0

)
+ 2 +K0 . | log(ε)|

because it holds | log(ε)| ≥ 1 due to ε ≤ e−1. From this, it follows

(I) . ε
− 1
µ | log(ε)|

µ+1
µ
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and finally
CMLSC
ε . ε

− 1
µ | log(ε)|

µ+1
µ + ε−γ . ε

− 1
µ | log(ε)|1+ 1

µ

since γ = 1/µ and | log(ε)| > 1.

(iii) 1− γµ < 0:
Using inequality (5.32), we obtain (G) . ε

1−γµ
µ+1 . Therefore, we have

(I) . ε
− 1
µ

(
ε

1−γµ
µ+1

)µ+1
µ h ε−γ .

Combining the estimations for the terms (I) and (II) yields

CMLSC
ε . ε−γ + ε−γ h ε−γ .

Similar to [106], we interpret the complexity result of the previous theorem by considering (5.33).
Moreover, we show the benefit of the ML approach by comparing the results with the complexity
of the single-level SC approach proved in Lemma 5.11. In the first case γµ < 1, the term
qk(1−γµ)/(µ+1) in (5.33) decreases with increasing k since q ∈ (0, 1). Therefore, the most of
the computational effort will be on the coarsest level k = 0 computing AQ0 [uh0 ]. Comparing
with the single-level SC approach, the cost savings are CSC

ε /CMLSC
ε h ε−γ . If γµ > 1, the

most of the computational effort is required on the finest level k = K and the cost savings are
CSC
ε /CMLSC

ε h ε−1/µ. In the case γµ = 1, the term qk(1−γµ)/(µ+1) in (5.33) is equal to one and,
hence, the computational effort is distributed equally across the levels. The cost savings are up
to a log factor of the order ε−γ .

The previous complexity theorem is formulated for a given sequence of physical tolerances and
determines the number K ∈ N+. In our case, we have access to an adaptive physical solver which
works with an arbitrary physical tolerance as input parameter. Therefore, we can first choose a
fixed K ∈ N+ and then the physical tolerance TolHK depending on CH and the desired total
accuracy ε:

TolHK =
ε

2CH
. (5.34)

The remaining tolerances are defined by TolHk = qk−KTolHK . The choice of the stochastic
tolerances and the complexity analysis are performed as before.

5.4 Real-Valued Quantity of Interest

In many applications, a typical QoI is a functional of the solution which can be linear or nonlinear.
We define the considered QoI Φ : Γ→ R by

Φ : y 7→ F [u(y)],

where F : L1 → R is a functional and u is the stochastic entropy solution of problem (3.8)–
(3.12).

The natural error norm is the L2
ρ(Γ)-norm equivalent to the L2

ρ(Γ,L1)-norm considering the
solution. For this norm, the SC theory for the full solution u presented in the two previous
sections can be completely transferred to the functional case. However, one is usually inter-
ested in the expected value of the functional of the solution such that we consider the error
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|E[Φ − Φ̃]|, where Φ̃ denotes the SLSC or MLSC approximation of Φ. Note that Jensen’s in-
equality provides

|E[Φ− Φ̃]| ≤ E
[
|Φ− Φ̃|

]
≤ E

[
|Φ− Φ̃|2

]1/2
= ‖Φ− Φ̃‖L2

ρ(Γ).

Therefore, the results of the error analysis and complexity analysis performed for the L2
ρ(Γ)-

norm are also valid for |E[Φ − Φ̃]|. Typically, the analysis is adapted directly to the error of
the expected value of the QoI Φ by formulating Assumptions 5.8, 5.10 and 5.14, concerning the
stochastic approximations, for the expected value.

In this section, we only present the main aspects and results of the adaptive SLSC and the
adaptive MLSC method applied to a functional of the solution. In the context of gas networks, a
detailed presentation of the adaptive MLSC method applied directly to functionals of the solution
have already been published in [68].

From the previous sections, we recall that a physical tolerance TolH > 0 is given. We compute
numerical approximations Φh(y) := F [uh(y)] of Φ(y) by using an adaptive physical solver which
computes the approximate solution uh(y) with a sample-dependent resolution in space, time
and model hierarchy. This resolution is refined until the error estimate for Φh is smaller than
the tolerance TolH. For the multi-level structure, we consider a sequence of physical tolerances
{TolHk}Kk=0 with

1 ≥ TolH0 > TolH1 > · · · > TolHK > 0

and K ∈ N+. We set Φh−1 := 0 and compute the approximations Φhk(y) := F [uhk(y)] by
the adaptive physical solver for tolerance TolHk for k = 0, . . . ,K. The single-level and the
multi-level interpolation operator are defined as

Φ
(SL)
h := AQ[Φh],

Φ
(ML)
K :=

K∑
k=0

AQk [Φhk − Φhk−1
],

where AQ : C(Γ)→ L2
ρ(Γ) is an interpolation operator using Q points in the stochastic space Γ.

If the functional F and the interpolation operators are linear, then we have

Φ
(SL)
h (y) = F

[
AQ[uh(y)]

]
and Φ

(ML)
K (y) = F

[
u

(ML)
K (y)

]
for y ∈ Γ [106].

Starting with the single-level approach, we suppose that Assumption 5.7 holds for the approxi-
mated QoI Φh and Assumption 5.8 for the expected value of this approximation. If we choose
TolH = ε/(2CH) and TolY = ε/(2CY ) as in (5.17), the SLSC error achieves the prescribed accu-
racy ε > 0. For the complexity of the SLSC method, we obtain the estimate CSC

ε . ε−γ−1/µ with
convergences rates γ and µ supposed in Assumption 5.10 replacing the norm of the approximate
solution by the absolute value of the expected value of the approximated QoI Φh.

Before we state the multi-level complexity theorem, we formulate the required assumptions which
are similar to Assumptions 5.13, 5.14, 5.17 and 5.19, but now adapted for the expected value
of Φhk .
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Assumption 5.22
There exist a physical constant ck : Γ → R+ with E[ck] < ∞ and further positive constants
γ, µ, CY , CW , CI such that for all k ∈ {0, . . . ,K} it holds

(i) |Φ(y)− Φhk(y)| ≤ ck(y)TolHk for all y ∈ Γ,

(ii) Φhk ∈ C(Γ) ⊂ L2
ρ(Γ),

(iii)
∣∣E[(Φhk−Φhk−1

)−AQk [Φhk−Φhk−1
]
]∣∣ ≤ CY TolYk, where the constant CY does not depend

on k and y ∈ Γ,

(iv) CY TolYk = CI(N)Q−µk TolHk−1 with TolH−1 := |E[Φh0 ]| and CI(N) is independent of k
and µ,

(v) Wk ≤ CW TolH−γk , where Wk is an upper bound for the cost of each sample of Φhk and
CW is independent of k and γ.

Similar to the first part of the proof of Theorem 5.16, Assumption 5.22 (i) provides

|E[Φ− Φhk ]| ≤ CH TolHk (5.35)

with the constant CH = maxk=0,...,K E[ck]. In order to realize Assumption 5.22 (iii), we apply
the adaptive sparse grid algorithm from Subsection 5.1.6 which uses heuristic error indicators.
These indicators are computed for the case ExVal in Algorithm 5.2 so that they are consistent
with the considered error. If we choose the stochastic tolerance TolYk analogously to (5.28), then
we obtain the desired accuracy ε for the MLSC error and the following complexity estimate.

Theorem 5.23
Let a null sequence of physical tolerances {TolHk}k=0,1,... be given by TolHk = qk TolH0 with
TolH0 ∈ (0, 1] and a reduction factor q ∈ (0, 1). Further, let Assumptions 3.8 and 5.22 be
fulfilled. Then, for any ε ∈ (0, 1/e], there exists a number K = K(ε) ∈ N+ and a sequence
{TolYk}Kk=0 such that ∣∣∣E [Φ− Φ

(ML)
K

]∣∣∣ ≤ ε
and

CMLSC
ε .


ε
− 1
µ if γµ < 1,

ε
− 1
µ | log ε|1+ 1

µ if γµ = 1,

ε−γ if γµ > 1.

Proof. The proof is analogous to the proof of Theorem 5.21.

For details about the interpretation of the previous complexity result and the cost savings com-
pared to the single-level approach, we refer to the discussion in Subsection 5.3.1.

5.5 Implementation

In this section, we describe the algorithm of our single-level and multi-level stochastic collocation
methods. Both algorithms are self-adaptive and fully error-controlled such that the provided
approximation achieves an accuracy close to the user-prescribed accuracy ε. We mainly follow
the algorithmic concepts described for functionals of the solution in [67, 68].
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5.5 Implementation

As mentioned in the previous sections, we have an adaptive black box solver at our disposal
which is called for a fixed collocation point yi ∈ Γ and physical tolerance TolH > 0. This
algorithm numerically solves the deterministic network problem resulting from inserting yi into
the stochastic network problem (3.8)–(3.12) such that the resulting numerical approximation
satisfies the accuracy requirement in Assumptions 5.7 and 5.13. We denote the adaptive solver
by ADet(·, ·) and the provided physical approximations of u(yi) by

uh(yi) = ADet(yi, T olH), uhk(yi) = ADet(yi, T olHk).

Regarding the stochastic approximations in Assumptions 5.8 and 5.14, we use the adaptive
sparse grid algorithm ASpaGrid described in Algorithm 5.1 (Subsection 5.1.6) with tolerance
TolY > 0. In order to compute the samples, we run the physical black box solver ADet with a
given physical tolerance for each point yi ∈ Γ. The algorithm returns the corresponding sparse
grid approximation as well as an approximation of its expected value. Since the error of the
solution is considered in the L2

ρ(Γ,L1)-norm, we compute the heuristic error indicators of the
sparse grids by choosing Ltwo as ’profitName’ in Algorithm 5.2.

Let ε > 0 be a user-prescribed accuracy for the error of the SC approximation. Now, choosing
the tolerances TolH, TolY as in (5.17) depending on ε delivers the SLSC method illustrated
in Algorithm 5.3. The multi-level algorithm is described in Algorithm 5.4 and determines the
stochastic tolerances as in (5.28). The constant TolH−1 in line 6 in Algorithm 5.4 can be
computed by the adaptive sparse grid algorithm ASpaGrid with Ltwo as ’profitName’. In
order to obtain a sufficiently accurate approximation with acceptable cost, we choose TolH0

as the user-prescribed stochastic tolerance. As in the complexity theorem 5.21, we focus on
physical tolerances TolHk = qk TolH0 with a positive reduction factor q < 1 where we choose
TolHK = ε/(2CH) as in (5.34). The samples uh0(yi) computed in line 5 can be reused for the
computations on the coarsest level k = 0 in line 8. Furthermore, the samples uhk(yi) computed
on level k can be reused on level k + 1.

Algorithm 5.3 Adaptive single-level stochastic collocation method for the approximation of the
solution u.
1: procedure ASinglelevelSC(ε, ADet)
2: Estimate Ch and Cy
3: TolH = ε/(2Ch)

4: TolY = ε/(2Cy)

5: AQ[uh] = ASpaGrid(ADet(·, T olH), T olY,Ltwo)

6: return AQ[uh]

7: end procedure

In order to estimate the parameters CH , CY , µ and γ, we study a few samples with relatively
coarse resolutions in a pre-processing step. For the physical constant CH and rate γ, we compute
the QoI for a decreasing sequence of physical tolerances using a fixed isotropic Smolyak grid of
a small level w. The parameters CY and µ which characterize the convergence rate and the
quality of the error estimates of the algorithm ASpaGrid are estimated by choosing a decreasing
sequence of stochastic tolerances and a fixed coarse physical tolerance. The rates γ and µ are
estimated via a least square fit applied to Assumption 5.17 andAssumption 5.19, respectively.
The estimations CH and CY are also estimates for Ch and Cy in the single-level approach,
respectively. Note that the sparse grid returned for the stochastic tolerance TolYk does not use
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exactly the rounded value of the optimal number of samples, Qk, since an adaptive sparse grid
corresponding to this value does not necessarily exist.

Algorithm 5.4 Adaptive multi-level stochastic collocation method for the approximation of the
solution u.
1: procedure AMultilevelSC(ε, q,K, ADet)

2: Estimate CH , CY , γ and µ

3: TolHK = ε/(2CH)

4: TolHk = qk−KTolHK , for k = 0, . . . ,K − 1

5: AQ−1 [uh0 ] = ASpaGrid(Adet(·, T olH0), T olH0,Ltwo)

6: TolH−1 = ‖AQ−1 [uh0 ]‖L2
ρ(Γ,L1)

7: TolYk = ε (2CY F (µ, γ))−1Gk(γ)
µ
µ+1 TolH

1
µ+1

k−1 with F (µ, γ) and Gk(γ) as in (5.27),

for k = 0, . . . ,K

8: AQ0 [uh0 ] = ASpaGrid(ADet(·, T olH0), T olY0,Ltwo)

9: AQk [uhk − uhk−1
] = ASpaGrid(ADet(·, T olHk)−ADet(·, T olHk−1), T olYk,Ltwo),

for k = 1, . . . ,K

10: u
(ML)
K = AQ0 [uh0 ] +

∑K
k=1AQk [uhk − uhk−1

]

11: return u
(ML)
K

12: end procedure

5.5.1 Real-Valued Quantity of Interest

The SLSC and the MLSC algorithm for the approximation of functionals of the solution analyzed
in Section 5.4 differ slightly from the previous algorithms. First, the adaptive physical solver
ADet provides a numerical approximation of Φ(yi) := F [u(yi)] which satisfies the accuracy
property in Assumption 5.22 and is denoted by

Φh(yi) = ADet(yi, T olH) or Φhk(yi) = ADet(yi, T olHk).

As in the previous algorithms, we use the adaptive sparse grid algorithm ASpaGrid from Sub-
section 5.1.6 which calls, for each collocation point, the physical solver with a given physical
tolerance. Since we consider the error of the expected value of the functional of the solution,
the heuristic error indicators are computed by choosing ExVal in Algorithm 5.2. Additionally,
the algorithm yields the approximate expected value of the functional, see Subsection 5.1.4. We
approximate the expected value of the SLSC and the MLSC approximation of the QoI by

E[Φ
(SL)
h ] ≈ EQ[Φh ],

E[Φ
(ML)
K ] =

K∑
k=0

E
[
AQk [Φhk − Φhk−1

]
]
≈

K∑
k=0

EQk [Φhk − Φhk−1
].

The previous remarks about the reuse of samples and the estimation of the constants CH , CY
and the rates µ, γ remain valid.
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5.5 Implementation

Algorithm 5.5 Adaptive single-level stochastic collocation method for the approximation of the
expected value E[Φ].

1: procedure ASinglelevelSC(ε, ADet)
2: Estimate Ch and Cy
3: TolH = ε/(2Ch)

4: TolY = ε/(2Cy)

5: EQ[Φh ] = ASpaGrid(ADet(·, T olH), T olY,ExVal)
6: return EQ[Φh ]

7: end procedure

Algorithm 5.6 Adaptive multi-level stochastic collocation method for the approximation of the
expected value E[Φ].

1: procedure AMultilevelSC(ε, q,K, ADet)

2: Estimate CH , CY , γ and µ

3: TolHK = ε/(2CH)

4: TolHk = qk−KTolHK , for k = 0, . . . ,K − 1

5: TolH−1 = |EQ−1 [Φh0 ]| = |ASpaGrid(Adet(·, T olH0), T olH0,ExVal)|

6: TolYk = ε (2CY F (µ, γ))−1Gk(γ)
µ
µ+1 TolH

1
µ+1

k−1 with F (µ, γ) and Gk(γ) as in (5.27),

for k = 0, . . . ,K

7: EQ0 [Φh0 ] = ASpaGrid(ADet(·, T olH0), T olY0,ExVal)

8: EQk [Φhk − Φhk−1
] = ASpaGrid(ADet(·, T olHk)−ADet(·, T olHk−1), T olYk,ExVal),

for k = 1, . . . ,K

9: E(ML)
K [ΦhK ] =

∑K
k=0 EQk [Φhk − Φhk−1

] ≈ E[Φ
(ML)
K ]

10: return E(ML)
K [ΦhK ]

11: end procedure
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Chapter 6

Kernel Density Estimator

In this chapter, we introduce the kernel density estimator (KDE) which is a sample-based ap-
proach to estimate the (usually unknown) probability density function (PDF) of a random vari-
able (RV). Furthermore, we analyze its convergence to the exact PDF and describe how to
approximate probabilities of the random variables. In addition, we show the convergence also
for the approximated probabilities and consider computational aspects for a common choice of
the KDE. In the case of bounded random variables, we consider a boundary correction method
which provides an approximated PDF with the same support as the exact PDF. Finally, we apply
the presented methods to an SC approximation such that we obtain a cost-efficient approach to
validate the feasibility of the approximation in a post-processing step of an SC method.

The first two sections and Section 6.5 are mainly based on [46]. Some parts of Section 6.4 are
already published by the author in collaboration with Schuster, Gugat and Lang in [98] where
the KDE was applied to probabilistic constrained optimization problems.

Let (Θ,Σ,P) be a probability space with sample space Θ, sigma algebra Σ ⊂ P(Θ), where P(Θ)
is the power set of Θ, and probability measure P : Σ → [0, 1]. We consider an n-dimensional
Rn-valued random variable (RV) X : Θ→ Rn which we assume to have an absolutely continuous
distribution. Therefore, the RV has a PDF ρX : Rn → R+ which however can be unknown. Now,
we want to approximate this function by using a kernel density estimator which is based on a
sampling set of the RV. First, we define the KDE in a general form including the univariate and
multivariate case [46, 99].

Definition 6.1 (Kernel Function)
We define a kernel (function) as an integrable and Borel measurable function Kn : Rn → R+

which satisfies ∫
Rn
Kn(z) dz = 1. (6.1)

Definition 6.2 (Kernel Density Estimator)
Let X be an Rn-valued random variable with an absolutely continuous distribution and PDF
ρX : Rn → R+. Moreover, let X = {X(1), . . . , X(S)} ⊂ Rn be a finite, independent and identically
distributed sampling of the random variable X where each sample X(i) is a realization of X. Then,
the kernel density estimator kS : Rn → R+ is defined as

kS(z) =
1

S det(H)1/2

S∑
i=1

Kn
(
H−1/2

(
z −X(i)

))
(6.2)

with a symmetric positive definite bandwidth matrix H = H(S,X ) ∈ Rn×n and a kernel function
Kn : Rn → R+.
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The KDE can be interpreted as a weighted sum of single kernels Kn centered at samples X(i).
In general, the matrix H depends on the number of samples and on the data X(i), but not on z
and not directly on the RV X.

The KDE kS is a PDF on Rn since it is a non-negative and integrable function which integrates
to one. The latter property follows from the definition of kernel functions and the change of
variables zi = H1/2ti +X(i):∫

Rn
kS(z) dz =

1

S · det(H)1/2

S∑
i=1

∫
Rn
Kn
(
H−1/2

(
zi −X(i)

))
dzi (6.3)

=
1

S · det(H)1/2
det(H1/2)

S∑
i=1

∫
Rn
Kn (ti) dti︸ ︷︷ ︸

=1

= 1. (6.4)

Note that we obtain det(H1/2) = det(H)1/2, since the matrix H is positive definite.

6.1 Univariate Case

For the univariate case n = 1, it is common to set H(S,X ) = h2 with h > 0. This leads to the
KDE

kS(z) =
1

Sh

S∑
i=1

K1

(
z −X(i)

h

)
, (6.5)

where K1 : R → R+ a univariate kernel and h is called the bandwidth or smoothing parameter.
The construction of the kernel density estimation for three different bandwidths is illustrated in
Figure 6.1. For the analysis of the KDE and the choice of the bandwidth, further conditions are
often imposed on the kernel function. In [46, 99], the kernel function has to be symmetric and
to satisfy ∫

zK1(z) dz = 0 (mean zero)∫
z2K1(z) dz <∞ (bounded variance).

The most common kernel functions are listed in Table 6.1 where 1A is the indicator function.
These functions fulfill the previous conditions and have bounded support, except the Gauss
kernel. However, the Gauss kernel is frequently used because the resulting KDE is continuous
and differentiable.

Kernel Name K1(z)

Gauss (Normal) (2π)−1/2 exp(−z2/2)

Uniform (Box) 1/2 1[0,1)(|z|)
Triangular (1− |z|) 1[0,1)(|z|)
Epanechnikov 2/4 (1− z2) 1[0,1)(|z|)

Table 6.1: Typical univariate kernel functions.
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Figure 6.1: Kernel density estimations using the Gaussian kernel are plotted in blue for S = 6
and three different bandwidths h = 0.1, 0.4, 0.8. The samples X(i) (red points) are drawn from
the Gaussian distribution N (0, 0.5). Each dotted, black line is a Gaussian kernel belonging to a
single sample X(i) and weighted by S−1. The exact Gaussian PDF is plotted in orange.

Beside the kernel function, we have to specify the bandwidth h in the formulation (6.5) of the
KDE. The choice of the bandwidth has a much higher influence on the quality of the KDE than
the choice of the kernel [46, 99]. In Figure 6.1, we illustrate the influence of the bandwidth h
on the kernel and on the overall density estimation. We use the Gaussian kernel and 6 samples
drawn from a Gaussian distribution to compute the kernel density estimation for three different
bandwidths. For the bandwidth h = 0.1, the KDE has several peaks and is thus undersmoothed.
In contrast, the bandwidth h = 0.8 has a oversmoothing behavior such that the width of the
resulting KDE gets too large. Consequently, the bandwidth should neither be too small nor too
large, because then the KDE is not a good approximation of the PDF ρX . The computation of
the optimal bandwidth is a challenging and complex task which is not a focus of this work. An
overview of the different methods can be found in [51, 52, 110]. For the Gaussian kernel, we use
a heuristic formula, the so-called rule-of-thumb [51, 99]

h = h(S,X ) =

(
4

3S

) 1
5

σX ≈ 1.06 σX S−
1
5 (6.6)

with the standard deviation σX ∈ R+ of the sampling set X which is an estimate of the standard
deviation of the RV X. For the derivation of this bandwidth selection, it is assumed that the
unknown PDF ρX is a normal density. Härdle et al. [51] states that this rule also provides
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Chapter 6 Kernel Density Estimator

acceptable results if the distribution of the RV X has no fat tail and is almost symmetric as well
as unimodal, i.e. the PDF has only one peak/maximum. In Section 6.3, we show that the KDE
converges P-almost surely for the chosen bandwidth (6.6). So we can conclude the following
relation: The larger the sampling set the lower the influence of the bandwidth choice on the
accuracy of the KDE. Summing up, it is reasonable to use the rule-of-thumb for a PDF which
looks roughly like a normal PDF.

6.2 Multivariate Case

For the multivariate case n > 1, we need to choose a multivariate kernel function Kn : Rn → R+

and a symmetric positive definite bandwidth matrix H. There are two common approaches how
to construct the multivariate kernels from univariate kernels [46, 51]. The first technique is to
define the multivariate kernel Kn as product kernel

Kn(z) =
n∏
j=1

K1(zj)

with the univariate kernel K1 : R→ R+. Hence, the multivariate KDE in (6.2) has the form

kS(z) =
1

S det(H)1/2

S∑
i=1

n∏
j=1

K1

((
H−1/2(z −X(i))

)
j

)
. (6.7)

The other approach is to use radially symmetric kernel functions which are generated by
Kn(z) = c(K1, n)K1(‖z‖). The constant c(K1, n) ∈ R is determined by condition (6.1) for
kernel functions. Due to their construction, these kernels have the same value for all points on
a n-dimensional sphere around zero. In Table 6.2, we extend the univariate kernels listed in Ta-
ble 6.1. Note that the multivariate Gaussian kernel coincides with the product kernel composed
of the univariate Gaussian kernel. As mentioned in the univariate case, it is common to choose
the standard multivariate normal density as kernel Kn since the resulting KDE is continuous and
differentiable.

Kernel Name Kn(z)

Gauss (Normal) (2π)−d/2 exp(−‖z‖2/2)

Uniform (Box) π−d/2 Γ(1 + d/2) 1[0,1)(‖z‖)
Triangular (d+ 1)π−d/2 Γ(1 + d/2)(1− ‖z‖) 1[0,1)(‖z‖)
Epanechnikov π−d/2 Γ(2 + d/2)(1− ‖z‖2) 1[0,1)(‖z‖)

Table 6.2: Typical radially symmetric multivariate kernel functions. Here, Γ(·) denotes the
Gamma function and ‖ · ‖ the euclidean norm.

Similar to the univariate KDE, the choice of the bandwidth matrix H is an important task
since it influences the orientation and shape of the kernels [46]. The bandwidth matrices H can
be divided into three classes which are presented below. In [111], the classes are compared for
several two-dimensional PDFs using the same kernel.

The simplest choice is H = h2
sIn×n with hs > 0. Since we use the same smoothing parameter hs

in each dimension, this approach is only adequate if the spread of the data is approximately the
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6.2 Multivariate Case

same in each dimension. But this condition is in many datasets not fulfilled [46].

An extension of the previous class is to use different parameter hi in each dimension such that we
have a diagonal bandwidth matrix H = diag(h2

1, · · · , h2
n) with hi = hi(S,X ) > 0 for i = 1, . . . , n.

For this case, the KDE has the form

kS(z) =
1

S
∏n
j=1 hj

S∑
i=1

Kn

(
z1 −X(i)

1

h1
, · · · , zn −X

(i)
n

hn

)
.

These bandwidth matrices are often suitable and should be the minimum requirement for the
KDE since they allow a flexible smoothing by different parameters [111]. The heuristic rule (6.6)
from the univariate case can be extended to the diagonal bandwidth matrix H = diag(h2

1, . . . , h
2
n)

with

hi =

(
4

(n+ 2)S

)1/(n+4)√
(ΣX )ii (6.8)

for i = 1, . . . , n where ΣX denotes the covariance matrix of the sampling set X [46, 99]. Since
the RV X has an absolutely continuous distribution, it holds (ΣX)ii > 0 which ensures that the
matrix H is positive definite and H−1/2 exists. In practice, the product kernel combined with
a diagonal bandwidth matrix is actually recommended and adequate [99]. For this case, the
estimator is given by

kS(z) =
1

S
∏n
j=1 hj

S∑
i=1

n∏
j=1

K1

(
zj −X(i)

j

hj

)
. (6.9)

If we choose the multivariate Gaussian kernel with a diagonal bandwidth matrix, then we get
immediately the product kernel with the standard univariate normal density K1:

kS(z) =
1

(
√

2π)nS
∏n
j=1 hj

S∑
i=1

n∏
j=1

exp

(
−
(
zj −X(i)

j

)2
2hj

)
. (6.10)

In some situations, the use of bandwidth matrices of the previous two classes could be insufficient,
for example, for asymmetric data with a north-west orientation. Therefore, a dense bandwidth
matrix has to be chosen because the corresponding KDE should provide the best estimation of
the exact PDF of the RV X [46]. One reasonable choice is a matrix which depends on the sample
covariance matrix. Assuming that the sample covariance matrix is positive definite, the previous
heuristic formula (6.8) can be generalized to a bandwidth matrix given by

H =

(
4

(n+ 2)S

)2/(n+4)

ΣX , (6.11)

see [46]. If we use full bandwidth matrices, then the KDEs have a complex structure, a high
computational effort and a difficult analysis. In order to simplify the estimation, we can pre-scale
the data using the whitening transformation Y (i) := Σ

−1/2
X X(i) such that the covariance matrix

of the transformed data is equal to the unit matrix [46, 101]. Then, we can use a KDE with
only one smoothing parameter hs > 0 for the transformed data (i.e. H = h2

sIn×n). However,
this procedure is not practical for every dataset and thus it should not used thoughtless as an
automatic tool [46].
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6.3 Convergence of the Kernel Density Estimator

In this section, we show under which conditions the kernel density estimator converges to the
exact PDF for n ≥ 1. First, we consider the KDE (6.2) with bandwidth matrix H = h2

sIn×n
and hs = hs(S,X ) > 0. Devroye and Györfi proved the L1-convergence of this estimator in [23,
Chapter 6, Theorem 1].

Theorem 6.3
Let kS be a KDE with H = h2

sIn×n. Additionally, let hs : (S,X ) → R+ be a Borel measurable
function of S and the samples. If

(
hs + (Shns )−1

)
→ 0 P-almost surely as S →∞ , then

‖kS − ρX‖L1 =

∫
Rn
|kS(z)− ρX(z)| dz S→∞−−−−→ 0 P-almost surely.

The previous theorem is only formulated for kernel density estimators with a single smoothing
parameter hs. Therefore, we generalize the result to estimators using a more general bandwidth
matrix H = h2

sAspd with parameter hs = hs(S,X ) > 0 and symmetric positive definite matrix
Aspd.

Theorem 6.4
Let kS be a KDE with bandwidth matrix H = h2

sAspd where Aspd is a symmetric positive definite
matrix and hs : (S,X )→ R+ is a Borel measurable function depending on S and the data X . If(
hs + (Shns )−1

)
→ 0 P-almost surely as S →∞, then

‖kS − ρX‖L1

S→∞−−−−→ 0 P-almost surely.

Proof. The KDE kS is based on the sampling X = {X(1), . . . , X(S)} of the RV X. First, we
transform the samples X(i) to Y (i) := Aspd

−1/2X(i) which are now samples of the transformed
RV Y := Aspd

−1/2X. Due to this bijective transformation, the KDE can be written as

kS(z) =
1

S det(h2
sAspd)

1/2

S∑
i=1

Kn
(

(h2
sAspd)

−1/2
(
z −X(i)

))
= det(Aspd)

−1/2 1

S · hns

S∑
i=1

Kn
((
Aspd

−1/2z − Y (i)
)
/hs

)
= det(Aspd)

−1/2 ktS(Aspd
−1/2z),

where ktS is the KDE for the transformed RV Y with bandwidth matrix H = h2
sIn×n. Fur-

thermore, the transformation theorem [59, Theorem 1.101] shows that the exact PDF ρX of the
random variable X and ρtX of the transformed random variable Y are related by

ρX(z) = det(Aspd)
−1/2 ρtX(Aspd

−1/2z).

Using the two previous relations and integration by substitution, we get

‖kS − ρX‖L1 =

∫
Rn
|kS(z)− ρX(z)| dz =

∫
Rn
|ktS(Aspd

−1/2z)− ρtX(Aspd
−1/2z)| det(Aspd)

−1/2 dz

=

∫
Rn
|ktS(y)− ρtX(y)| det(Aspd)

−1/2 · det(Aspd)
1/2 dy = ‖ktS − ρtX‖L1 .
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The convergence of the estimator kS follows from Theorem 6.3 which states that the L1 er-
ror ‖ktS − ρtX‖L1 converges P-almost surely if the parameter hs satisfies the condition that(
hs + (Shns )−1

)
→ 0 P-almost surely as S →∞.

Considering the heuristic bandwidth rules (6.6), (6.8) and (6.11), we notice that the rules have
the required form with

hs =

(
4

(n+ 2)S

) 1
n+4

.

Applying now the previous theorem, we get convergence of the KDE since the parameter hs
converges:

hs + (Shns )−1 =

(
4

n+ 2

) 1
n+4

S−
1

n+4 +

(
n+ 2

4

)n+1
n

S−
4

n+4
S→∞−−−−→ 0.

6.4 Approximation of Probabilities

The kernel density estimator is an approximation of the PDF of X and converges for a suitable
bandwidth. Therefore, it is reasonable to use this estimator in order to compute probabilities for
the RV X. The convergence can be ensured under the same conditions as in Section 6.3. Finally,
we consider how to compute the probability using the Gaussian kernel with diagonal bandwidth
matrix by means of MATLAB®.

The probability that the RV X takes values in a Borel set B ⊂ Rn is given by

P(X ∈ B) := P ({θ ∈ Θ : X(θ) ∈ B}) =

∫
B
ρX(z) dz.

This probability can be approximated by integrating the estimator kS over the set B. We denote
this approximation by

PS(X ∈ B) :=

∫
B
kS(z) dz.

For the same setting as in Theorem 6.4, we show the convergence of the approximated probability
towards the exact probability.

Theorem 6.5 (Convergence of Probability Estimation)
Let kS be a KDE with bandwidth matrix H = h2

sAspd where Aspd is a symmetric positive definite
matrix and hs : (S,X )→ R+ is a Borel measurable function depending on S and the data X . If(
hs + (Shns )−1

)
→ 0 P-almost surely as S →∞, then it holds

|PS(X ∈ B)− P(X ∈ B)| ≤ 1

2
‖kS − ρX‖L1

S→∞−−−−→ 0 P-almost surely

for any Borel set B ⊂ Rn.

Proof. A short sketch of this proof is already published by the author in collaboration with
Schuster, Gugat and Lang in [98, Section 2.1]. Let B be the class of all Borel sets of Rn.
Scheffé’s lemma [23, Chapter 1] provides the equation

sup
B̃∈B

∣∣∣∣∫
B̃
kS(z) dz −

∫
B̃
ρX(z) dz

∣∣∣∣ =
1

2

∫
Rn
|kS(z)− ρX(z)| dz.
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Therefore, we obtain the estimate

|PS(X ∈ B)− P(X ∈ B)| =
∣∣∣∣∫
B
kS(z) dz −

∫
B
ρX(z) dz

∣∣∣∣
≤ 1

2

∫
Rn
|kS(z)− ρX(z)| dz

for any Borel set B ∈ B. From Theorem 6.5, the convergence of the approximation PS to the
exact probability follows directly.

6.4.1 Computational Aspects using Gaussian Kernel

In the following, we consider the probability that the RV X takes values in a n-dimensional
rectangle:

P(X ∈ Rn) with Rn := [a1, b1]× · · · × [an, bn],

where ai < bi and ai, bi ∈ R for i = 1, . . . , n. This probability is usually of interest if each
component of X has to be between a prescribed upper and lower bound. In order to approximate
this probability by

PS (X ∈ Rn) =

∫
Rn

kS(z) dz, (6.12)

we consider the KDE kS with Gaussian kernel and a diagonal bandwidth matrix
H = diag(h2

1, . . . , h
2
n) with hi > 0, given in (6.10). First, we show an efficient way to nu-

merically compute the integral of the KDE in (6.12) using the Gauss error function. In the
context of gas networks, this approach has already been presented by the author in collaboration
with Schuster, Gugat and Lang in [98, Section 2.3]. Finally, we also consider other possibilities
to compute the integral using MATLAB® functions and compare their computation times with
each other.

Integrating the KDE kS over the rectangle Rn leads to the approximated probability

PS (X ∈ Rn) =
1

S
∏n
j=1 hj

S∑
i=1

1√
2π

∫
Rn

n∏
j=1

exp

−1

2

(
zj −X(i)

j

hj

)2
 dz. (6.13)

Since the KDE kS is continuous, we can apply Fubini’s theorem so that only one-dimensional
integrals are contained in the formula:

PS (X ∈ Rn) =
1

S
∏n
j=1 hj

S∑
i=1

∫ b1

a1

· · ·
∫ bn

an

n∏
j=1

1√
2π

exp

−1

2

(
zj −X(i)

j

hj

)2
 dzn · · · dz1

(6.14)

=
1

S
∏n
j=1 hj

S∑
i=1

n∏
j=1

∫ bj

aj

1√
2π

exp

−1

2

(
zj −X(i)

j

)2

h2
j

 dzj . (6.15)
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From integration by substitution with t = τij(zj) =
zj−X

(i)
j√

2hj
, it follows

PS (X ∈ Rn) =
1

S
∏n
j=1 hj

S∑
i=1

n∏
j=1

1√
2π

∫ τij(bj)

τij(aj)
exp

(
−t2
)√

2hj dt

=
1

S

S∑
i=1

n∏
j=1

1√
π

∫ τij(bj)

τij(aj)
exp

(
−t2
)

dt.

The integrals of the last formula can be formulated by the Gauss error function [3]

erf(x) :=
2√
π

∫ x

0
exp(−t2) dt (6.16)

and therefore, we finally get

PS (X ∈ Rn) =
1

S 2n

S∑
i=1

n∏
j=1

(
erf(τij(bj))− erf(τij(aj))

)
.

The Gauss error function is a common function in several fields of mathematics (e.g. probability
theory) and physics. Usually, this function is already implemented in a programming language
such that an accurate approximation is provided. Therefore, we expect that the required com-
putation gets significantly faster.

In MATLAB®, the Gauss error function can be computed by the MATLAB® function erf.
Next, we consider three other MATLAB® function which can also be used to compute the
approximated probability PS(X ∈ Rn):

• mvksdensity:
The MATLAB® function mvksdensity(x,X , ’Bandwidth’, [h1, . . . , hn], ’Function’, ’cdf’)
computes the integral ∫ x1

−∞
· · ·
∫ xn

−∞
kS(z) dzn · · · dz1,

where kS is the KDE based on the Gaussian kernel, the data X and the bandwidth matrix
H = diag(h2

1, . . . , h
2
n). In order to compute the integral of the KDE over the n-dimensional

rectangular Rn, it is necessary to call this MATLAB® function for different suitable val-
ues x.

• mvncdf:
The MATLAB® function mvncdf(xl, xu, µ,Σ) computes the cumulative distribution func-
tion of the multivariate Gaussian distribution with mean µ ∈ Rn and covariance matrix Σ
over the n-dimensional rectangle R̃n = [xl(1), xu(1)]× · · · × [xl(d), xu(d)] with xl, xu ∈ Rn,
i.e. ∫

R̃n

1

det(Σ)
√

(2π)n
exp

(
−1

2
(z − µ)Σ−1(z − µ)T

)
dz.

Choosing R̃n = Rn, µ = X(i) and Σ = diag(h2
1, . . . , h

2
n), the function mvncdf computes the

n-dimensional integrals in (6.13).
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• normcdf:
The MATLAB® function normcdf(x, µ, σ) computes the evaluation of the cumulative dis-
tribution function of the Gaussian distribution with mean µ and standard deviation σ > 0
at value x, i.e.

1

σ
√

2π

∫ x

−∞
exp

(
−1

2

(z − µ)2

σ2

)
dz.

Since it holds
∫ bj
aj

=
∫ bj
−∞−

∫ aj
−∞, we can compute each integral in (6.15) using this

MATLAB® function with input parameters x ∈ {aj , bj}, µ = X(i) and σ = hj .

For the four approaches presented above, we compare the computation time needed to compute
the approximation PS(X ∈ Rn). We consider a random variable X ∼ N (µ,Σ) with mean
µ ∈ Rn+ and a full, positive definite covariance matrix Σ ∈ Rn×n. We generate samples from
this Gaussian distribution and consider the KDE using the Gaussian kernel and the bandwidth
matrix H = diag(h2

1, . . . , h
2
n) with hi given in (6.8). All calculations have been performed with

MATLAB® version R2022a on a Intel(R) Xeon(R) Gold E5-4650 CPU running at 2.7 GHz.

In Table 6.3, we compare the approaches for dimension n = 2, 3, 4 using 6 · 108 samples. As
expected, the higher the dimension n, the larger the computation time for each MATLAB®

function. Using the MATLAB® function erf, we get the fastest computation which is about
4-times faster than using normcdf. In the case of mvksdensity and mvncdf, we notice that the
time grows faster with the dimension than for erf and normcdf. We suppose that this difference
results from computing n-dimensional integrals instead of one-dimensional integrals as in erf and
normcdf. The absolute value of the difference between the approximations of PS was less than
10−7. Because of the short computation time, we recommend to use the MATLAB® function
erf to compute PS .

MATLAB® Fct. Dimension n
2 3 4

mvksdensity 308.39 s 704.69 s 1538.1 s
erf 61.16 s 89.49 s 116.16 s

normcdf 259.67 s 378.68 s 489.64 s
mvncdf 328.38 s 1188.12 s > 1 h

Table 6.3: Computation times which are needed to compute the approximation PS(kS ∈ Rn).
We consider four different MATLAB® functions and the dimension n = 2, 3, 4. The KDE kS is
based on 6 · 108 samples drawn from a Gaussian distribution with full covariance matrix.

If we use a full bandwidth matrix with the Gaussian product kernel, the computations are similar
except that the MATLAB® function mvksdensity cannot be used because it is implemented only
for diagonal bandwidth matrices. In general, the use of a KDE with a product kernel instead
of a radially symmetric kernel simplifies the computation of the approximated probability (6.12)
since the n-dimensional integral in (6.12) reduces to a product of one-dimensional integrals.
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6.5 Boundary Correction Method

In many practical applications, the RV X is bounded since, for example, physical quantities like
the pressure or the density of gas cannot be negative. This property is not maintained in the
previous presented kernel density estimation approach. If we use a Gaussian kernel, then the
resulting KDE has always an unbounded support. For kernels with bounded support, the KDE
usually has a larger support than X since the kernel functions are centered at the samples. If
bounds of the RVs X are known, we want to take this information into account and to construct
an approximation of the PDF with the same support. One naive approach would be to cut the
KDE kS in (6.2) at the bound and then to normalize it such that the new estimate integrates
to one again. This strategy is not recommended since it is in general not clear how to scale the
truncated KDE accurately. In the following, we consider the simple approach to reflect the KDE
kS at the given bounds [97]. We follow the presentation in [46], but we formulate the correction
method also for unsymmetric kernels.

For simplicity, we start with the univariate case n = 1 and the KDE kS with kernel K1 and
bandwidth h, see (6.5). First, we consider the case that the RV has a lower bound X l

∗ ∈ R.
The basic idea is that the part of each kernel K1 which lies in (−∞, X l

∗) is reflected into the
admissible domain [X l

∗,∞). In Figure 6.2, we illustrate the approach for the kernel function
K1(h−1(z −X(i))) centered at the sample X(i), close to X l

∗. We reflect this function about the
vertical line z = X l

∗. Then, we define a new function by adding the kernel and its reflection
in the admissible domain and setting to zero otherwise. Since the function K1 is a kernel, the
new function integrates to one and is therefore also a kernel, the so-called boundary corrected
kernel. In order to get an estimate of the PDF which has the desired support [X l

∗,∞), we use
the boundary corrected kernels instead of the kernels K1 in the formula (6.5) of the KDE. The
resulting estimator krS is called the reflection estimator and is equivalent to directly reflecting
the KDE kS at the bound X l

∗. Using the indicator function, the left-side boundary correction is
given by

krS(z) =
1

Sh

S∑
i=1

[
K1

(
z −X(i)

h

)
+K1

(
−z + 2X l

∗ −X(i)

h

)]
1[Xl

∗,∞)(z)

=
(
kS(z) + kS(−z + 2X l

∗)
)
1[Xl

∗,∞)(z).

For an upper bound Xu
∗ , the right-side boundary correction only differs in the subset for which

the indicator function is defined:

krS(z) =
1

Sh

S∑
i=1

[
K1

(
z −X(i)

h

)
+K1

(
−z + 2Xu

∗ −X(i)

h

)]
1(−∞,Xu

∗ ](z).

The extension for a RV X with image [X l
∗, X

u
∗ ] is straightforward:

krS(z) =
1

Sh

S∑
i=1

[
K1

(
z −X(i)

h

)
+K1

(
−z + 2X l

∗ −X(i)

h

)

+K1

(
−z + 2Xu

∗ −X(i)

h

)]
1[Xl

∗,X
u
∗ ](z).

(6.17)
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Figure 6.2: Construction of the boundary corrected kernel. A Gaussian kernel (blue) centered
at the sample X(i) = 3 is reflected about z = X l

∗ = 1. The reflected kernel (dashed blue) is
centered at 2X l

∗ −X(i) = −1. In [X l
∗,∞), the boundary corrected kernel (red) is the sum of the

kernel and its reflection. Otherwise, the new kernel (red) vanishes.

In the multivariate case, the boundary correction of the KDE kS given in (6.2) is performed
analogously. For illustration, we consider the case of a two-dimensional RV X which takes values
in A := [L,∞)× (−∞, U ] with L,U ∈ R. The reflection estimator has the form

krS(z) =
(
kS(z1, z2)+kS(z1,−z2+2U)+kS(−z1+2L, z2)+kS(−z1+2L,−z2+2U)

)
1A(z) (6.18)

with z = (z1, z2).

Furthermore, the reflection estimators krS are PDFs on Rn since they are non-negative and
integrable functions which integrate to one, similar to (6.3). For the product kernel approach,
generating the estimator krS by reflecting the d-dimensional kernels Kn is equivalent to reflecting
the one-dimensional kernels K1.

As in Section 6.4, the reflection estimator krS can be used to approximate probabilities:

PS(X ∈ B) =

∫
B
krS(z) dz ≈ P(X ∈ B)

for a Borel set B ⊂ Rn. If we use the Gaussian kernel and a diagonal bandwidth matrix
H = diag(h2

1, . . . , h
2
n) with hi > 0, then we can efficiently compute the approximated probability

with the Gauss error function (6.16). For this case, the previous two-dimensional estimator krS
can be written as

krS(z) =
1

S det(H)1/2

S∑
i=1

2∏
j=1

K1

(
zj −X(i)

j

hj

)
+K1

(
−zj + 2X∗,j −X(i)

j

hj

)
1Aj (zj)

with X∗ = (L,U), A1 := [L,∞), A2 := (−∞, U ] and the Gaussian kernel K1. The approximation
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of the probability that X takes values in [a1, b1]× [a2, b2] is now given by

PS(X ∈ [a1, b1]× [a2, b2]) =
1

S 2n

S∑
i=1

(
erf(τi1(b1))− erf(τi1(ã1)) + erf(τ̂i1(̃b2))− erf(τ̂i1(a2))

)
·
(

erf(τi2(b1))− erf(τi2(ã1)) + erf(τ̂i2(̃b2))− erf(τ̂i2(a2))
)

with τij =
zj−Xi
√

2hj
, τ̂ij =

−zj+2X∗,j−Xi
√

2hj
, ã1 = max(a1, L) and b̃2 = min(b2, U).

6.6 Post-Processing Step of SC Methods: Feasibility Check

The SC methods presented in Chapter 5 can provide an approximation Φ̃ of a real-valued function
Φ : Γ→ R, also called the quantity of interest (QoI). If the approximated QoI Φ̃ is computed by
a general sparse grid (Subsection 5.1.2), we have Φ̃ = GΛ[Φ]. For the single-level (Section 5.2)
and the multi-level approach (Section 5.3), we have

Φ̃ = Φ
(SL)
h and Φ̃ = Φ

(ML)
K ,

respectively. We recall that stochastic collocation (SC) methods deal with parametrized problems
obtained by a transformation from a probability space to the image space Γ of the underlying
random vector ξ : Θ→ Γ.

Under the assumption that the QoI Φ has a PDF ρΦ, we apply the KDE to approximate its
PDF in a post-processing step. First, we independently draw S samples yi of the random
vector ξ according to its given distribution. At each sample, we evaluate the SC approximation
Φ̃, i.e. Φ̃(i) := Φ̃(yi). This evaluation is extremely cheap and has the advantage that no
further deterministic problems have to be solved. Now, we use the generated sampling set
X = {Φ̃(1), . . . , Φ̃(S)} to compute the recommended KDE kS with Gaussian kernel and diagonal
bandwidth matrix given in (6.10). In order to consider the feasibility of the QoI, we require
the probability that the QoI takes values between the prescribed lower and upper bound. As
described in Section 6.4, we approximate this probability by integrating the KDE kS over the
given bounds. Since we focus on the KDE (6.10), the usage of the Gauss error function offers
an efficient way to compute the probability as pointed out in Subsection 6.4.1. If the QoI is a
bounded RV with known bounds, the application of the boundary correction method provides
an approximated PDF with the same support as the exact PDF ρΦ, see Section 6.5.

Another choice of the QoI in SC methods is the full solution u. In this case, the KDE can be
applied to a vector-valued function Ψ(ũ) : Γ → Rn, where ũ is the solution approximated by
an SC method. For example, the minimum and maximum pressure at the exits over the time
period. Obviously, the application is similar to the previous case of a real-valued QoI.

To some extent, the PDF can also be approximated in a post-processing step of MC methods. The
samples of the QoI which are already computed can be obviously reused. But if more samples are
needed, we have to compute new samples by numerically solving further deterministic problems.
These computations can be expensive, especially for complex problems.
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Chapter 7

Application to Uncertain Gas
Transport

In this chapter, we apply the adaptive multi-level stochastic collocation (MLSC) method to
uncertain gas transport through pipeline networks and compare the result to the single-level
stochastic collocation (SLSC) approach and to the adaptive Monte Carlo methods. In a post-
processing step, we use the kernel density estimator (KDE) approach described in Chapter 6
to validate the feasibility of the pressure at the exit nodes. We consider the two gas network
instances: GasLib-11 and GasLib-40, parts of the real German gas network, which are taken from
the public gas library gaslib.zib.de [96]. The deterministic settings are extended by uncertain
gas demands at the exit nodes.

As deterministic scenario, we consider a smooth transformation from an initial stationary state
uA to a new stationary state uB which differs mainly in the gas demands. For such scenarios,
suitable optimization tools can provide a feasible operational control of the compressor stations
and valves such that for example lower and upper pressure bounds are fulfilled over the whole
selected time period. These conditions and penalties in case of violation are specified in contracts
between gas company and consumer. Therefore, we assume that a feasible and optimized control
for each network is given which provides the pressure jumps, realized by the compressors, and
the status of the valves (open/closed). Deterministic scenarios are now extended by uncertain
gas demand at the exit nodes in the final state uB while the optimal control is fixed. We will
investigate the influence of these uncertainties on the compressor costs and validate the pressure
of the delivered gas.

For GasLib-11 and GasLib-40, our developed methods were recently applied to such scenarios
with uncertain gas transport by the author in collaboration with Lang et al. [68]. The uncertain
gas demands were modeled linearly in the stochastic variables and the stochastic collocation
(SC) methods outperformed the MC methods. Moreover, the single-level SC approach performed
already very efficiently since extremely few collocation points were sufficient to obtain the desired
accuracies. Therefore, we suppose that the considered quantity of interest (QoI) depended almost
linearly on the stochastic variables. In this thesis, we want to investigate the potential of our
adaptive MLSC method for uncertain gas demands which depend nonlinearly on the stochastic
variables. The scenarios considered in this chapter are therefore based on [68].

The implementation of the adaptive MLSC and MLMC methods are described in Sections 4.4
and 5.5. In both cases, it is based on the deterministic black box solver ADet which computes
an approximate solution of the deterministic network problem (2.11)–(2.15) such that the cor-
responding error is reduced up to a prescribed accuracy. For the modeling of gas transport in
pipelines, we use the model hierarchy of the Euler equations combined with suitable boundary
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and coupling conditions which is completely presented in Section 2.5. The adaptive algorithm
described in Subsection 2.5.4 is implemented in our in-house software package Anaconda and
therefore is used as solver ADet. For details of the implementation of Anaconda, we refer to
[62]. Furthermore, the adaptive sparse grid algorithm ASpaGrid needed for the SC implementa-
tions is provided by the open-source MATLAB® package Sparse Grid Kit [104] which we slightly
modified, see Subsection 5.1.6. We have performed all calculations on a Intel(R) Xeon(R) Gold
6130 CPU running at 2.1 GHz and worked with MATLAB® version R2022a.

7.1 A Small Gas Network with Compressor Stations and Valve
(GasLib-11)

As first example, we consider the GasLib-11 which is illustrated in Figure 7.1. This network has
3 sources, 3 exits, 2 compressor stations, 1 valve and 8 pipes which have all the same length
of 55 km [96]. For a well-arranged illustration of the network in Section 2.5, edges of length 0,
so-called short edges, are used. This artificial construct can in general be easily integrated into
numerical solvers and even simplify its implementation by using the algebraic equations (2.20).
In order to obtain a network problem as described in Section 2.5 which contains only edges of
length L > 0, we remove the short edges and merge all nodes connected continuously by short
edges into a new single node with a corresponding combined coupling condition. The pipes, i.e.
edges of positive length, which are connected to these nodes are maintained. For the network in
Figure 7.1, this degeneration would concern the nodes S2, C1, J1, V 1, J4 as well as J3, C2, J5
identified by new nodes with ingoing pipes e1, e8 and e4, e5 as well as outgoing edges e2, e5 and
e6, e7, respectively.

S1 S2

S3

E1

E2

E3

J1

J2

J4

J3 J5

C1 C2

V 1

e1

e2

e8

e3

e4

e5

e6

e7

Figure 7.1: Schematic description of the gas network GasLib-11 with 8 pipes (lines with an
arrow: e1 − e8), 3 sources (green diamonds: S1, S2, S3), 3 exits (blue squares: E1, E2, E3),
2 compressor stations (C1, CS) and 1 valve (V 1). The dashed lines represent additional edges
of length 0 leading to a well-arranged network illustration. The arrows indicate the orientation
of the edges and is used to identify the flow direction: If the gas flows against the direction of
the edge, then the flow has a negative sign.

The stationary initial state uA and the final state uB are defined by the prescribed data given
in Table 7.1. The simulation starts with the stationary initial state u0 = uA which implies that
the quasi-stationary semilinear isothermal Euler equations M3, see (2.17), are initially chosen
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for each pipe. After t = 4h, the prescribed values for the exits, sources and control of the
compressor stations are linearly changed such that the new values determined by the final state
uB are reached at t = 6h. The initially open valve is closed at time point t = 4.5h. The total
simulation time is T = 24h with initial time step size ∆t = 1h and initial spatial step size
∆x = 10, 000m. We divide the time interval [0, T ] into 6 time blocks of 4h and perform the
adaptive strategy described in Subsection 2.5.4.

Prescribed data State uA State uB
(t = 0− 4h) (t = 6− 24h)

Source S1 S2 S3 S1 S2 S3

Pressure p [bar] 70 65 70 48 46 54

Exit E1 E2 E3 E1 E2 E3

Flow rate q [m3/s] 38 38 38 23.6 23.6 23.6

Compressor station C1 C2 C1 C2

Pressure jump ∆p [bar] 0 0 5 15

Valve V 1 V 1

Status open closed

Table 7.1: GasLib-11 : Prescribed data for sources (S1, S2, S3), exits (E1, E2, E3) and control
data for compressor stations (C1, C2), valve (V 1) for the initial state uA and final state uB.

We extend the deterministic final state uB by uncertain gas demand at all three exits E1, E2, E3.
The controls and the remaining boundary conditions remain deterministic, including the initial
value. We assume that the three consumers behave independently from each other such that we
parametrize the uncertain behavior by the stochastic variable y = (y1, y2, y3) ∈ [−1, 1]3 =: Γ
which is a realization of the random vector ξ = (ξ1, ξ2, ξ3) : Θ→ Γ. The random vector ξ consists
of three independent and uniformly distributed random variables (RVs) ξi ∼ U [−1, 1]. In detail,
we modify the prescribed deterministic gas demands

qEid (t) =


38 for t < 4h,

38− 7.2(t− 4) for 4h ≤ t ≤ 6h,

23.6 for t > 6h

to uncertain conditions

qEi(t,y) =


38 for t < 4h,

38 + (t− 4)
(
− 12.2 + 10(exp(yi − 1) + 0.5 exp(−2))

)
for 4h ≤ t ≤ 6h,

13.6 + 20
(

exp(yi − 1) + 0.5 exp(−2)
)

for t > 6h

(7.1)

for t ∈ [0, T ],y ∈ Γ = [−1, 1]3 and i = 1, 2, 3. Consequently, the uncertain gas demands at the
exits have the same distribution and are stochastically independent of each other. The expected
values of qEi are equal to the gas demand in the deterministic setting: E[qEi] = qEid . Figure 7.2
illustrates the deterministic and the uncertain gas demand at the exit nodes.

The extension to uncertainties and its parametrization lead to a parametrized network problem
of the form (3.8)–(3.12) where Assumptions 3.4, 3.5 and 3.6 are fulfilled and SC methods can be
applied. Without the transformation to the finite-dimensional space Γ, we obtain the classical
random network problem of the form (3.3)–(3.7), the basis for MC methods.
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GasLib-11: Prescribed Data at Exits E1, E2 and E3
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Figure 7.2: GasLib-11 : Prescribed deterministic gas demand qEid (t) at the exit node Ei for
i = 1, 2, 3 (blue line). Time-dependent samples of the uncertain gas demand qEi(t,y) are plotted
as black dotted lines. The blue shaded area represents the image space of the uncertain gas
demand.

As mentioned in Subsection 2.5.3, we consider pressure-controlled compressor stations which
consume only electric power since they have an electric motor as drive. The drive provides the
power which is required for the compression of the gas by the station and the electric energy
consumed for this process by the drive is given by the specific energy consumption. Therefore, we
can interpret the specific energy consumption Gc(u) of the drive needed to power the compressor
station c as the corresponding compressor costs. Consequently, we define the deterministic output
functional (2.21) in the adaptation process as

F [u(y)] = α
∑
c∈Vcs

∫ T

0
Gc
(
u(t,y)

)
dt for y ∈ Γ

with the condensed notation u(t,y) = (u(1)(·, t,y), . . . , u(P )(·, t,y)) and a scaling constant α ∈ R.
We denote the set of compressor stations in the network by Vcs. Our real-valued QoI Φ : Γ→ R
is then defined by

Φ(y) = F [u(y)].

The specific energy consumption Gc can be estimated by a quadratic fit

Gc
(
u(t,y)

)
= gc,0 + gc,1Pc

(
u(t,y)

)
+ gc,2Pc

(
u(t,y)

)2
with given compressor-dependent constants gc,0, gc,1, gc,2 and power Pc consumed by the com-
pressor station c [91, 96]. The power Pc required by the compressor station c ∈ Vcs for the
compression of the gas flow is given by

Pc
(
u(t,y)

)
= cc,P |qc,in(t,y)| z

(
pc,in(t,y)

)((pc,out(t,y)

pc,in(t,y)

)κ−1
κ

− 1

)
(7.2)

with in- and outgoing pressure pc,in, pc,out and ingoing flow rate qc,in [91]. Since the compressor
is controlled by the prescribed pressure increase ∆pc(t), it holds pc,out(t,y) = pc,in(t,y)+∆pc(t).
The parameter cc,P is a compressor specific constant, κ the isentropic coefficient of the gas
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and z
(
pc,in(t,y)

)
the compressibility factor from the equation of state for real gases. For the

compressor stations in GasLib-11, we have gc,0 = 5000, gc,1 = 2.5 and gc,2 = 0. Moreover, we set
α = 10−10 in order to scale the expected value of Φ to the order of 0.1.

In order to consider the stochastic dependency of the QoI Φ in advance, we approximate Φ on a
17× 17× 17 tensor product grid of Clenshaw-Curtis points for TolH = 10−5. We integrate the
QoI with respect to a single stochastic variable yi for all i = 1, 2, 3 which allows to visualize well
the influence of the uncertainties. The plots in Figure 7.3 show a nonlinear dependency of the
QoI on all three stochastic variables. We observe the same dependency on y2 as on y3 since the
exits E2 and E3 have the same modeling of uncertain gas demand (7.1) and a similar position
in the gas network.
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Figure 7.3: GasLib-11 : Integration of an approximation of the QoI Φ with respect to one
stochastic variable yi ∈ [−1, 1] for i = 1, 2, 3. Integrating over the second dimension provides
the same result as for the third dimension.

Now, we consider our adaptive single-level and our adaptive two-level stochastic collocation
method with a reduction factor q = 0.1 and Clenshaw-Curtis nodes. The aim is to approximate
the expected value of the compressor costs Φ. The implementation of both methods is described
by the Algorithms 5.5 and 5.6. First, we start estimating the parameters Ch, CH , Cy, CY , γ and
µ following the steps in [67].

The quality of the physical error estimation process of Anaconda is investigated by using
physical tolerances TolH = 10−2, 3 · 10−3, 10−3, 3 · 10−4, 10−4 and a fixed isotropic Smolyak grid
of level w = 2 (25 collocation points). We take the expected value of the QoI Φh∗ associated
with TolH∗ = 10−5 as reference value and approximate the physical errors by

|E[Φ]− E[Φh]| ≈ |EΛSMO(w)[Φh∗ ]− EΛSMO(w)[Φh]|.

Furthermore, we calculate the average of the physical error estimates over the selected isotropic
sparse grid and show the results with respect to the computation time in Figure 7.4. We note
that the prescribed physical tolerances are always satisfied. In contrast, the error estimate does
not always provide an upper bound for the numerical error, but they are very close to each
other. For (5.35), we estimate CH = Ch = 0.1. However, we consider the average of the ratios
between the error and the corresponding tolerances instead of the maximum value, since we
observe smaller ratios for smaller tolerances. A least-squares fit provides the rate γ = 0.8 in
Assumption 5.22 (v).
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Figure 7.4: GasLib-11 : Physical errors and averaged physical error estimates using physical
tolerances TolH = 10−2, 3 · 10−3, 10−3, 3 · 10−4, 10−4 and a fixed isotropic Smolyak sparse grid
of level w = 2. The estimated order of convergence for TolH in terms of computation time is
−1/γ = −1.25.

The constant CY and rate µ which characterize the convergence rate and the quality of the
error estimates of the algorithm ASpaGrid are estimated by choosing the stochastic tolerances
TolY = 3 · 10−4, 10−4, 3 · 10−5, 10−5 and a fixed physical tolerance TolHfix = 10−4. We take the
expected value of the QoI Φhfix associated with TolY ∗ = 10−5 as reference value and approximate
the stochastic errors by ∣∣E[Φh]− E

[
AQ[Φh]

]∣∣ ≈ |EQ∗ [Φhfix ]− EQ[Φhfix ]|.

In Figure 7.5, we show the results with respect to the number of collocation points. The pre-
scribed stochastic tolerances are always satisfied and the error estimates provide always an upper
bound for the error. However, the ratio between the error and the error estimate is about one
order of magnitude. Similar to the estimation of CH , we choose CY = Cy = 0.05 by averaging
the ratio between the error and the stochastic tolerance. A least-squares fit provides the rate
µ = 2.4 in Assumption 5.22 (iv).
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Figure 7.5: GasLib-11 : Adaptive sparse grid algorithm ASpaGrid with stochastic tolerances
TolY = 3 · 10−4, 10−4, 3 · 10−5 and fixed physical tolerance TolH = 10−4. The estimated order
of convergence for E[Φ] in terms of collocation points is −2.4.
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7.1 A Small Gas Network with Compressor Stations and Valve (GasLib-11)

Next, we run the single-level and the two-level stochastic collocation method for accuracy re-
quirements of ε = 10−4, 10−5, 10−6. We consider the errors

|E[Φ]− E[Φ
(SL)
h ]| ≈ |EQref [Φhref ]− EQ[Φh]|,

|E[Φ]− E[Φ
(ML)
K ]| ≈ |EQref [Φhref ]− E(ML)

K [ΦhK ]|,

where we compute a reference solution EQref [Φhref ] = 0.120643668591124 by the single-level SC
method with ε = 10−7. The computation of the reference solution requires 73 collocation points.
The physical tolerances are given by TolHk = ε qk−1/(2CH) with CH = 0.1 and the stochastic
tolerances by (5.28) with CY = 0.05, µ = 2.4, and γ = 0.8 for k = 0, 1. The number of the
samples taken by the SC methods are given in Table 7.2. The ML approach needs less samples
on the fine level k = 1 than on the coarse level k = 0. The top-left plot of Figure 7.6 shows that
both methods provide always approximations which have a higher accuracy than the prescribed
one, but not more than a factor of 5. This effect could be caused by cancellations which we omit
since we split the total error into two parts and control them separately. We observe that the
errors of the two-level method are smaller than the errors of the single-level method for the same
accuracy requirements. For the lowest accuracy ε = 10−4, the single-level approach needs a few
seconds less, but the error of the two-level estimation is smaller. Both approaches perform very
reliably. The single-level SC method works already sufficiently fast for low accuracies. For high
accuracies, the two-level method needs significantly less computation time - around a factor of
1/3 faster. We would expect a higher difference in the computation time, especially for lower
accuracy levels, if the needed computation time of the deterministic solver would be larger and
would increase faster with accuracy.

ε
SLSC Two-Level SC
Q Q0 Q1

10−4 7 15 7
10−5 25 25 7
10−6 41 41 7

ε
SLMC Two-Level MC
M M0 M1

10−3 42 83 10
3 · 10−4 284 988 41

10−4 5,539 6,623 179
3 · 10−5 51,423 69,259 1,747

Table 7.2: GasLib-11: Number of collocation points used by the SLSC and two-level SC methods
(left) and averaged number of samples used by the SLMC and two-level MC methods (right).

The theoretical orders of the computational cost in terms of the accuracy ε are given in Sec-
tion 5.4: rMLSC = −γ = −0.8 and rSLSC = −γ − 1/µ ≈ −1.22. The top-right plot of Figure 7.6
shows that the theoretical rates approximate the observed asymptotic rates quite well. Consid-
ering the error in terms of the computational cost in the top-left plot of Figure 7.6, the orders of
convergence are predicted by pMLSC = 1/rMLSC ≈ −1.25 and pSLSC = 1/rSLSC ≈ −0.82. A least-
squares fit of our results provides slightly smaller orders: p̃MLSC = −0.94 and p̃SLSC = −0.73.
We expect that the difference between the observed and the theoretical convergence orders would
be smaller, if we would have reliable a posteriori error estimators instead of heuristic error indi-
cators.

Next, we perform the adaptive single-level and the adaptive two-level (K = 1) Monte Carlo
method following the implementation in Subsection 4.4.1. We will compare the results with
the previous SC approximations. The estimates for the physical constants CH , Ch and rate γ
which we approximated for the SC methods can be reused since the deterministic solver does
not change. We choose Minit = 10 as the number of initial samples which are used to estimate
the variance in (4.26) as well as in (4.31) and thus the number of samples at each level.
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Figure 7.6: GasLib-11 : Top Left: Errors of the approximated expectations EQ[Φh] and
E(ML)
K [ΦhK ] obtained by the adaptive single-level (blue circles) and two-level (blue triangles,
K = 1) SC methods for ε = 10−4, 10−5, 10−6 (green lines). The predicted convergence orders
are −0.82 and −1.25, respectively (dashed black lines). Top Right: Computational cost of the
SC methods versus the inverse of the prescribed accuracy. Bottom Left: Mean absolute errors of
the approximated expectations EM [Φh] and EK [ΦhK ] obtained by the adaptive single-level (blue
circles) and two-level (blue triangles, K = 1) MC methods for ε = 10−3, 3 · 10−4, 10−4, 3 · 10−5

(green lines). The predicted convergence orders are −0.36 and −0.48, respectively (dashed black
lines). Bottom Right: Computational cost of the MC methods versus the inverse of the prescribed
accuracy.

In order to compare the SC and MC approaches more precisely, we consider the mean absolute
error instead of the mean squared error analyzed in the theory part. Due to (4.27), the mean
absolute error fulfills the accuracy requirements as well. As reference value for E[Φ], we use again
the SLSC approximation EQref [Φhref ] computed for ε = 10−7. We approximate the mean of the
absolute error by an MC estimate with 10 different realizations of EM [Φh] and EK [ΦhK ]:

E
[
|E[Φ]− EM [Φh]|

]
≈ Ê10

[
|EQref [Φhref ]− EM [Φh]|

]
=

1

10

10∑
m=1

|EQref [Φhref ]− ÊM [Φh]|,

E
[
|E[Φ]− EK [ΦhK ]|

]
≈ Ê10

[
|EQref [Φhref ]− EK [ΦhK ]|

]
=

1

10

10∑
m=1

|EQref [Φhref ]− ÊK [ΦhK ]|.

(7.3)

Consequently, we compute 10 independent realizations of the MC and MLMC estimator which
means that we perform 10 simulations of both algorithms. The averaged number of the samples
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7.1 A Small Gas Network with Compressor Stations and Valve (GasLib-11)

used by the MC methods are given in Table 7.2. We observe that the MLMC method needs
significantly less samples on the fine level k = 1 than on the coarse level k = 0.

The bottom-left plot of Figure 7.6 shows the SLMC and MLMC error for accuracy ε = 10−3,
3 · 10−4, 10−4, 3 ·10−5. For both methods, the achieved accuracy is almost always better than the
prescribed one. The computation time needed for the ML approximations is smaller than for the
SL approach, except for the lowest accuracy. For the highest accuracy, the MLMC method pro-
vides nearly the same approximation as for the next lower accuracy while increasing significantly
the computation time. This inefficient behavior can occur if the error indicators underestimate
the exact errors. Comparing the bottom-left plot with the top-left plot of Figure 7.6, we see that
the SC methods significantly outperform the MC methods.

The theoretical rate of the computational cost for the SL approach is given by Lemma 4.23:
rSLMC = −2− γ = −2.8. In order to get the theoretical rate for the MLMC method in The-
orem 4.29, we estimate the rate β in Assumption 4.27 a posteriori. We average the variance
over the 10 simulations and obtain β = 0.7 by a least-squares fit. Consequently, we have
rMLMC = −2 − (γ − β) = −2.1. In the bottom-right plot of Figure 7.6, the theoretical rates
of the computational cost in terms of the prescribed accuracy are clearly visible which points
the improvement of ML structures out. Note that the observed rate β differs from the result
of Lemma 4.30 where β = 2 was proved. One possible reason could be a slow decrease of the
variance in Assumption 4.27 caused by switching the models in the deterministic solver.

7.1.1 Feasibility Check of the Pressure at the Exits

In order to check the feasibility of the pressure at the three exit nodes E1, E2 and E3, we want
to compute the probability that the pressure bounds are satisfied at all exits simultaneously:

P
(
pEi(t, ·) ∈ [pmin, pmax] for all t ∈ [0, T ] and i ∈ {1, 2, 3}

)
. (7.4)

We denote the lower pressure bound by pmin ∈ R+ and the upper bound by pmax ∈ R+. The
previous joint probability specifies how likely the contractual pressure bounds are violated for at
least one of the three exits. In order to compute the probability, we will use the KDE approach
presented in Chapter 6 where we also briefly described the main aspects of its application in a
post-processing step of SC methods (Section 6.6). In order to keep the computational cost low,
we generate the required samples of the pressures at the exits by evaluating the corresponding
SC approximation p̃Ei of pEi which are computed by our SC method.

Using the SC approximations, the probability (7.4) can be rewritten as

P
(

min
t∈[0,T ]

p̃Ei(t, ·) ∈ [pmin, pmax] and max
t∈[0,T ]

p̃Ei(t, ·) ∈ [pmin, pmax] ∀i ∈ {1, 2, 3}
)
. (7.5)

The computation of the previous probability requires the probability density function (PDF) of
the six-dimensional random vector

X :=
(
pE1, pE1, pE2, pE2, pE3, pE3

)
,

where we set

pEi(y) = min
t∈[0,T ]

p̃Ei(t,y) and pEi(y) = max
t∈[0,T ]

p̃Ei(t,y), i = 1, 2, 3.
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Chapter 7 Application to Uncertain Gas Transport

A short formulation of probability (7.5) is therefore P(X ∈ [pmin, pmax]6). In order to check
whether the dimension of the PDF of X can be reduced, we compute the 6 single probabilities

P
(
pEi ∈ [pmin, pmax]

)
and P

(
pEi ∈ [pmin, pmax]

)
for i = 1, 2, 3. If a probability is equal to one, then we can remove the corresponding RV from
the vector X since the pressure bounds are always satisfied for this single quantity. For dynamic
flow network problems with known exact solution, the computation of probability (7.5) based
on a KDE has already been discussed by the author in collaboration with Schuster, Gugat and
Lang [98, Chapter 3], but without the dimension reduction.

In order to approximate the time-dependent pressure at the three exits, we use the adaptive
sparse grid obtained for the compressor costs Φ by our adaptive SLSC method for the accuracy
ε = 10−6. Since the pressures at the exit nodes influence the compressor cost, we expect that
the approximate pressures have a sufficiently adequate accuracy. We denote the multi-index
set corresponding to the sparse grid by ΛΦ. Using the sparse grid formula (5.8) yields the SC
approximation

p̃Ei(t,y) := GΛΦ

[
pEih (t, ·)

]
(y) =

∑
i∈ΛΦ

∆i

[
pEih (t, ·)

]
(y) =

∑
i∈ΛΦ

ci

m(i)∑
j=1

pEih

(
t,yi

j

)
Lij(y)

 ,

(7.6)
where yi

j ∈ HΛΦ
are the used collocation points and ci ∈ Z are given by (5.5). Consequently, we

can compute the minimum of the SC approximation (7.6) over time:

min
t∈[0,T ]

p̃Ei(t,y) = min
t∈[0,T ]

(
GΛΦ

[
pEih (t, ·)

]
(y)
)

= min
t∈[0,T ]

∑
i∈ΛΦ

ci

m(i)∑
j=1

pEih

(
t,yi

j

)
Lij(y)

 .

The computation of the maximum of (7.6) over time is performed in the same way. Another
possibility is to apply the sparse grid operator GΛΦ

directly to the minimum or maximum pressure
over time. For the minimum pressure, the SC approximation is then given by

m̃in
t∈[0,T ]

pEi(t,y) := GΛΦ

[
min
t∈[0,T ]

pEih (t, ·)
]

(y) =
∑
i∈ΛΦ

∆i

[
min
t∈[0,T ]

pEih (t, ·)
]

(y)

=
∑
i∈ΛΦ

ci

m(i)∑
j=1

min
t∈[0,T ]

pEih

(
t,yi

j

)
Lij(y)

 .

(7.7)

The SC approximation of the maximum pressure is defined analogously. Note that the minimum
or maximum pressure over time can have kinks or discontinuities in the stochastic space, even if
the time-dependent pressure has a certain stochastic smoothness. This situation can occur if the
minimum of the pressure is taken at different time points for different points yi ∈ Γ. If we directly
interpolate the minimum and maximum pressure over the time as in (7.7), possible kinks and
discontinuities in the stochastic space could not be reconstructed since global polynomials are
used for the sparse grid interpolation. Consequently, we could obtain an inaccurate interpolant
and compute falsified probabilities. For exit node E2, we observe that both approaches provide
different approximations of mint p

E2(t,y). The left plot in Figure 7.7 shows the minimum of
the SC approximation (7.6) of the pressure which is evaluated at y3 = 1 and has a kink in the
stochastic space. In contrast, the SC approximation (7.7) of the minimum of the pressure is
constant since we obtain only the same minimum value for each collocation point, see right plot
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Figure 7.7: GasLib-11 : Left: Minimum of the SC approximation of the pressure at exit E2
over the time plotted versus y1 and y2 for fixed y3 = 1, i.e. mint∈[0,T ] p̃

E2(t, y1, y2, 1). Right: For
the same exit and y3 = 1, SC approximation of the minimum of the pressure at exit E2 over the
time, i.e. m̃int∈[0,T ]p

E2(t, y1, y2, 1). In both cases, the sparse grid HΛΦ
which we obtain for the

expectation of the compressor cost is reused.

in Figure 7.7. In this case, the reused sparse grid HΛΦ
which we originally obtain for the expected

valued of the compressor cost does not detect the kink.

Before we blindly apply the KDE approach, we want to check whether the minimum and max-
imum pressure over time at each exit are even RVs which have an absolutely continuous distri-
bution and thus a PDF. We independently draw S = 503 samples y(j) of the random vector
ξ = (ξ1, ξ2, ξ3) according to its distribution. The components ξi are defined by ξi ∼ U [−1, 1] and
are used to model the uncertain gas demands (7.1). At each sample y(j), we evaluate the SC
approximations p̃Ei(t,y(j)) and compute its minimum and maximum over the time period [0, T ].
For GasLib-11, we prescribe the pressure bounds pmin = 43 bar and pmax = 64 bar.

In Figure 7.8, we illustrate 30 of these evaluations. Due to the pressure bounds, we are already
expecting that the quantities pE1, pE2, pE3 are feasible. Since the RV ξ is bounded, the uncertain
gas demand and the pressure at the exit nodes are bounded as well. If the number of samples
are sufficiently large, we can determine the bounds by computing the minimum and maximum
of the samples p̃Ei(t,y(i)) for each time point t ∈ [0, T ] and i = 1, 2, 3 which are also shown
in Figure 7.8. The minimum and maximum of these values over the time points are again the
bounds for the RV pEi and pEi. Considering Figure 7.8, we observe that the minimum of the
plotted samples of p̃E2 is always equal to the constant initial pressure p̃E2

0 . However, the lower
bound of pE2 is smaller than the initial pressure. Therefore, we have a mixed RV: It has a discrete
as well as a continuous part and its cumulative distribution function has a jump discontinuity
at the value of the initial pressure. This mixed RV has a kink in the stochastic space shown in
left plot of Figure 7.7 and no PDF exists. For pE3, we observe the same property. One approach
to compute the single probability is to start with the discrete part and to determine the jump
height by counting the samples which are equal to the initial pressure. For exit E2 and E3, the
initial pressure is taken with probability

P
(
pEi(·) = p̃Ei0

)
≈ 0.9989

with i = 1, 2. Therefore, it is not necessary to consider the continuous part in detail and we can
approximate the mixed RV by a discrete one with P

(
pEi(y) ∈ [pmin, pmax]

)
≈ 1.
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Figure 7.8: GasLib-11 : Samples of the pressure at exits E1, E2 and E3 with their lower and
upper bound (dashed black line). The pressure bounds pmin = 43 bar and pmax = 64 bar are
plotted as red dotted lines and are violated by some samples.

Furthermore, we note that pE1, pE1, pE2 and pE3 take only values in an interval that does not
contain the initial pressure at the corresponding exit. Therefore, we can assume that the quanti-
ties have an absolutely continuous distribution and thus have an unknown PDF. We approximate
each PDF of the RVs pE1, pE1, pE2 and pE3 by the one-dimensional smooth KDE (6.5) with Gaus-
sian kernel and bandwidth (6.6). The previously computed samples generate the sampling set
X for the KDE, e.g. X = {pE1(y(1)), . . . , pE1(y(S))}. As aforementioned, the RVs pE1, pE1, pE2

and pE3 are bounded. In order to maintain this property in the approximated PDF, we use the
two-side boundary correction (6.17) of the previous KDEs which is presented in Section 6.5 and
provides a discontinuous approximated PDF.

In Figure 7.9, we compare the classic KDE and its boundary correction, i.e. the reflection
estimator. We observe that the approximated PDFs of the maximum pressure at the exits E2
and E3 coincide due to the structure of the gas network and to the uncertain gas demands
(7.1). If many samples are close to the bounds as for the maximum pressure at the exit E1, the
boundary correction produces an approximation which differs significantly from the classic KDE
around the lower and upper bound. Otherwise, the classic KDE and its boundary correction are
very similar which we observe for the other RVs. The difference between the two KDEs has only
an influence on the probability if at least one pressure bound is close to the initial pressure. In
order to realize an automatic validation check for arbitrary pressure bounds, we prefer to use the
boundary correction method directly even if its application would not be necessary.

130



7.1 A Small Gas Network with Compressor Stations and Valve (GasLib-11)

36 38 40 42 44 46 48 50

0

0.05

0.1

0.15

0.2

0.25

0.3
K

e
rn

e
l 
d
e
n
s
it
y
 e

s
ti
m

a
to

r
GasLib-11: KDE for Minimum Pressure at Exit E1

Classic KDE

Boundary correction

54.2 54.3 54.4 54.5 54.6 54.7 54.8

0

1

2

3

4

5

6

7

K
e
rn

e
l 
d
e
n
s
it
y
 e

s
ti
m

a
to

r

GasLib-11: KDE for Maximum Pressure at Exit E1

Classic KDE

Boundary correction

59 60 61 62 63 64 65

0

0.1

0.2

0.3

0.4

0.5

K
e
rn

e
l 
d
e
n
s
it
y
 e

s
ti
m

a
to

r

GasLib-11: KDE for Maximum Pressure at Exit E2

Classic KDE

Boundary correction

59 60 61 62 63 64 65

0

0.1

0.2

0.3

0.4

0.5

K
e
rn

e
l 
d
e
n
s
it
y
 e

s
ti
m

a
to

r

GasLib-11: KDE for Maximum Pressure at Exit E3

Classic KDE

Boundary correction

Figure 7.9: GasLib-11 : Smooth Kernel density estimators (blue solid line) and its discontinuous
two-side boundary correction (orange dashed line) for the minimum pressure at E1 and the
maximum pressure at E1, E2 and E3. The lower and upper bound of the random variables are
plotted as black dotted lines.

Using the approximated PDF of pE1, pE1, pE2, pE3, we compute the single probabilities by in-
tegrating the KDE and its boundary correction over the pressure bounds, see Section 6.4 and
Section 6.5, respectively. As pointed out in Subsection 6.4.1, we use the MATLAB® function erf
due to lower computation times. For both approximated PDFs, we obtain the same probabilities:

P
(
pE1 ∈ [pmin, pmax]

)
≈ PS

(
pE1 ∈ [pmin, pmax]

)
= 0.89,

P
(
pEi ∈ [pmin, pmax]

)
≈ PS

(
pEi ∈ [pmin, pmax]

)
=


1 for i = 1,

0.90 for i = 2,

0.90 for i = 3.

The desired joint probability (7.5) can be rewritten to

P
(
pE1 ∈ [pmin, pmax] and pEi ∈ [pmin, pmax] for i = 2, 3

)
since we can omit the quantities which are always feasible, i.e. quantities with probability of 1.
The random vector X is reduced to

Xr := (pE1, pE2, pE3).
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In order to approximate the previous probability, we need to compute the PDF of the RV Xr

by applying the three-dimensional KDE (6.10) with Gaussian kernel and diagonal bandwidth
matrix (6.8). Of course, the previous samples of pE1, pE2 and pE3 can be used as samples for
Xr. Finally, we obtain the required probability

P
(
Xr ∈ [pmin, pmax]3

)
≈ PS

(
Xr ∈ [pmin, pmax]3

)
= 0.730. (7.8)

The KDE with boundary correction provides the same probability, since the prescribed pressure
bounds are again far enough from the bounds of the RV Xr.

Another equivalent formulation of the probability (7.5) is

P

 min
t∈[0,T ],
i=1,2,3

p̃Ei(t, ·) ∈ [pmin, pmax] and max
t∈[0,T ],
i=1,2,3

p̃Ei(t, ·) ∈ [pmin, pmax]

 . (7.9)

Here, we always have a two-dimensional RV. However, taking minimum or maximum over all
exits can result in a RV which has no PDF even if mint p̃

Ei and maxt p̃
Ei have a PDF. Therefore,

this reduction step has to be performed carefully and not in a fully automatic way. In our case,
the images of mint p̃

Ei and maxt p̃
Ei are either equal or disjoint intervals for all three exits, see

Figure 7.8. Consequently, we obtain

min
t∈[0,T ],
i=1,2,3

p̃Ei(t, ·) = min
t∈[0,T ]

p̃E1(t, ·) and max
t∈[0,T ],
i=1,2,3

p̃Ei(t, ·) = max
t∈[0,T ]

p̃E2(t, ·) = max
t∈[0,T ]

p̃E3(t, ·)

which defines a two-dimensional RV with a PDF. We approximate the PDF by the two-dimen-
sional KDE (6.10) and its boundary correction. Both approximations yield the same probability
of 0.753 which differs slightly from the result in (7.8). Since the considered RV is now two-
instead of three-dimensional and we reuse all drawn random values y(i) from the beginning,
we can assume that this probability is more accurate. Nevertheless, the difference between the
probabilities (7.8) and (7.9) should decrease with increasing the number of samples.

7.2 A Large Gas Network with Compressor Stations (GasLib-40)

The second example is GasLib-40 which is shown in Figure 7.10. It consists of 3 sources, 29 exits,
6 compressor stations and 39 pipes. The pipes have a length between 3.1 km and 86.7 km which
is not represented in Figure 7.10. For a well-arranged illustration of the network, we use again
edges of length 0 (short edges). The transformation to a network problem without short edges
is described in detail for the example GasLib-11 in the previous section. In this case, we would
perform the degeneration to single nodes for the node sets {C1, E16}, {C2, E26}, {C3, J4, E28},
{C4, J2, S3}, {C5, S2} and {C6, E21}.

We divide the 29 exits into 8 different local regions (REs):

RE1 = E1− E2, RE2 = E3− E12, RE3 = E13− E15, RE4 = E16− E20,

RE5 = E21− E22, RE6 = E23− E26, RE7 = E27, RE8 = E28− E29.

Each region is characterized by equal gas demand and uncertainties.
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Figure 7.10: Schematic description of the gas network GasLib-40 with 39 pipes (lines with
arrows), 3 sources (green diamonds: S1, S2, S3), 29 exits (colored squares: E1 − E29) and
6 compressor stations (C1−C6). The dashed lines represent additional pipes of edges 0 leading
to a well-arranged network illustration. The arrows indicate the orientation of the edges and is
used to identify the flow direction: If the gas flows against the direction of the edge, then the
flow has a negative sign.

The stationary initial state uA and the final state uB are defined by prescribing the data from
Table 7.3 at the corresponding sources, exits and compressor stations. The simulation starts with
the stationary initial state u0 = uA which implies that the quasi-stationary semilinear isothermal
Euler equationsM3, see (2.17), are used as initial model on each pipe. The prescribed data for the
gas demand at the exits and for the control of the compressor stations are shown in Figure 7.11.
For the sources S1 and S2, the prescribed values are linearly changed after t = 4h such that
the new values determined by the final state uB are reached at t = 6h. The total simulation
time is T = 12h with initial time step size ∆t = 0.5h and initial spatial step size ∆x = 1, 000m.
We divide the time interval [0, T ] into 4 time blocks of 3h and perform the adaptive strategy
described in Subsection 2.5.4.

Next, we extend the deterministic final state uB by uncertain gas demand for all eight exit
regions RE1−RE8. The controls and the other prescribed data remain deterministic, including
the initial value. We assume that the consumers of different exit regions behave independently
from each other such that we parametrize the uncertain behavior by the stochastic variable
y = (y1, . . . , y8) ∈ [−1, 1]8 =: Γ which is a realization of the random vector ξ = (ξ1, . . . , ξ8).
The random vector ξ : Θ → Γ consists of eight independent and uniformly distributed RVs
ξi ∼ U [−1, 1]. We describe the uncertain flow rate in the final state uB at all exits of region REi
by

qREi(uB,y) = qREid (uB)
(
1 + 0.3 · cos(π yi)

)
, i = 1, . . . , 8,

where qREid (uB) is the corresponding deterministic flow rate for state uB given in Table 7.3.
Additionally, we have E[qREi(uB, ·)] = qREid (uB) for i ∈ {1, . . . , 8}.
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Prescribed data Initial state uA Final state uB
Source S1 S2 S3 S1 S2 S3

Pressure p [bar] 70 60
Flow rate q [m3/s] 53.2 53.2 58 53.2
Exit region RE1 RE2 RE3 RE4 RE5 RE1 RE2 RE3 RE4 RE5

Flow rate q [m3/s] 5.5 5.5 5.5 5.5 5.5 8.5 8.0 6.0 6.0 6.5
Exit region RE6 RE7 RE8 RE6 RE7 RE8

Flow rate q [m3/s] 5.5 5.5 5.5 4.0 7.5 7.0
Compressor station C1 C2 C3 C4 C5 C1 C2 C3 C4 C5

Pressure jump [bar] 0 0 5 0 0 5 15 7 12 5
Compressor station C6 C6

Pressure jump [bar] 0 12

Table 7.3: GasLib-40 : Prescribed data for sources (S1, S2, S3), exit regions (RE1−RE8) and
control data for compressor stations (C1− C6) for the initial state uA and final state uB.
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Figure 7.11: GasLib-40 : Prescribed time-dependent gas demand at the exit regions RE1−RE8
(left) and control of the compressor stations C1 − C6 (right) for a transition from state uA to
uB.

The QoI Φ is again defined by the specific energy consumption of the compressor stations repre-
senting the compressor costs. As described for GasLib-11, we have

Φ(y) = F [u(y)] = α
∑
c∈Vcs

∫ T

0
gc,0 + gc,1Pc

(
u(y)

)
+ gc,2Pc

(
u(y)

)2
dt

with Vcs = {C1, . . . , C6} and gc,0 = 2629, gc,1 = 2.47428571429, gc,2 = 1.37142857143 · 10−5 for
all compressor stations in GasLib-40. The power Pc(u(y)) required by the compressor station
c is defined in (7.2). In order to obtain an expected value of Φ in the order of 0.1, we choose
α = 10−10.

Now, we apply our adaptive single-level and our adaptive two-level stochastic collocation method
with a reduction factor q = 0.1 and Clenshaw-Curtis nodes in order to approximate the expected
value of the compressor costs Φ. We estimate the parameters Ch, CH , Cy, CY , γ and µ as in the
first example where we follow the steps in [67].
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In order to estimate the constant CY and rate µ, we apply the adaptive sparse grid algorithm
ASpaGrid for tolerances TolY = 3 · 10−3, 10−3, 3 · 10−4, 10−4, 3 · 10−5 and a fixed physical
tolerance TolH = 10−4. We take the expected value of the QoI Φ for TolY = 3 · 10−5 as
reference value. In Figure 7.12, the prescribed stochastic tolerances are always satisfied and the
error estimates provide always an upper bound for the error. Compared to the first example, the
error and the error estimate are now closer such that we get CY = Cy = 0.4. A least-square fit
provides the rate µ = 1.1 in Assumption 5.22 (iv).

In order to estimate the constants CH and γ, we compute the expected value of Φ for a
fixed isotropic Smolyak grid of level w = 2 (142 collocation points) and physical tolerances
TolH = 10−2, 10−3, 10−4, 10−5. The approximation of E[Φ] for TolH = 10−5 is taken as ref-
erence value. The numerical errors and the average of the physical error estimates are shown
with respect to the computation time in Figure 7.12. We observe that the prescribed physical
tolerances are always satisfied and the error estimate provides always an upper bound for the
numerical error. For (5.35), we estimate CH = Ch = 0.3. Figure 7.12 suggests that the order
of convergence for small tolerances TolH in terms of computation time is slower than for large
tolerances. Therefore, we consider the results only for TolH = 10−3, 10−4 and set γ = 1.2 in
Assumption 5.22 (v).
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Figure 7.12: GasLib-40 : Errors and corresponding error estimates: Adaptive sparse grid al-
gorithm ASpaGrid with stochastic tolerances TolY = 3 · 10−3, 10−3, 3 · 10−4, 10−4 and fixed
physical tolerance TolH = 10−4 (left). The estimated order of convergence for E[Φ] in terms of
collocation points is −1.1. Isotropic Smolyak sparse grid of level w = 2 with physical tolerances
TolH = 10−2, 10−3, 10−4 (right).

Next, we run the single-level and the two-level stochastic collocation method for total accuracies
of ε = 10−3, 10−4, 10−5. We compute a reference solution EQref [Φhref ] = 0.120726272394500 by
the single-level SC method with ε = 10−6 which requires 273 collocation points. The number
of the samples taken by the SC methods are given in Table 7.4. The ML approach needs less
samples on the fine level k = 1 than on the coarse level k = 0. The physical tolerances are
given by TolHk = ε qk−1/(2CH) with CH = 0.3 and the stochastic tolerances by (5.28) with
CY = 0.4, µ = 1.1, and γ = 1.2 for k = 0, 1. The errors for the expected value of Φ versus
the computational cost are shown in the top-left plot of Figure 7.13. The two-level SC method
performs very reliably: It provides always approximations which have a higher accuracy than
the prescribed one. In contrast, the achieved accuracy of the single-level method is partially
higher than the required one, but only up to a factor of 3. For the lowest accuracy ε = 10−3,
the single-level approach needs only half of the computation time, but the error of the two-level
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estimation is smaller. We observe that the errors of the two-level method are always smaller
than the errors of the single-level method for the same accuracy requirements, but only up to a
factor of 10. As in the first example, the single-level SC method works sufficiently fast for low
accuracies. For the highest accuracy, the two-level method needs significantly less computation
time - around a factor of 1/3 faster.

ε
SLSC Two-Level SC
Q Q0 Q1

10−3 17 23 17
10−4 53 127 23
10−5 143 151 43

ε
SLMC Two-Level MC
M M0 M1

10−3 10 11 10
3 · 10−4 39 99 10

10−4 314 428 11
3 · 10−5 3,066 4,079 31

Table 7.4: GasLib-40 : Number of collocation points used for SLSC and two-level SC methods
(left) and averaged number of samples used for SLMC and two-level MC methods (right).

The orders of the computational cost in terms of the accuracy ε are predicted in Section 5.4:
rMLSC = −γ ≈ −1.2 and rSLSC = −γ−1/µ ≈ −2.1. The top-right plot of Figure 7.13 shows that
the theoretical rate for the ML method approximate the observed asymptotic rate quite well. The
observed rate for the SL method is significantly better than the theoretical rate. Considering
the error in terms of the computational cost in the top-left plot of Figure 7.13, the orders
of convergence are predicted by pMLSC = 1/rMLSC ≈ −0.83 and pSLSC = 1/rSLSC ≈ −0.47.
However, a least-squares fit results in a faster convergence order p̃MLSC = p̃SLSC = −1.2 for
both approaches. One possible reason could be cancellations which are overlooked in the error
splitting.

Next, we perform the adaptive single-level and the adaptive two-level (K = 1) Monte Carlo
method as described for the first example. We reuse the physical constants CH , Ch = 0.3 and
rate γ = 1.2 which we estimated for the SC methods. We choose Minit = 10 as the number
of initial samples which are used to estimate the variance in (4.26) and in (4.31) and thus the
number of samples at each level. Instead of the mean squared error, we consider the absolute
error of the expected value of the MC estimators which fulfills the accuracy requirements as
well, see (4.27). We approximate the mean of the SLMC and MLMC estimator by averaging
over 10 independent realizations like in (7.3). As reference value for E[Φ], we use again the
SLSC approximation EQref [Φhref ] computed for ε = 10−6. The averaged number of the samples
required by the MC methods are listed in Table 7.4. The MLMC method uses almost always
less samples on the fine level k = 1 than on the coarse level k = 0.

The bottom-left plot of Figure 7.13 shows the SLMC and the MLMC error for accuracy
ε = 10−3, 3 · 10−4, 10−4, 3 · 10−5. For both methods, the achieved accuracy is always better than
the prescribed accuracy. The advantage of the two-level structure arises only after ε = 10−4.
Comparing the bottom-left plot with the top-left plot of Figure 7.13, we observe that the SC
methods outperform the SLMC method after ε = 10−4 and the MLMC method only after
ε = 3 · 10−4. For a prescribed accuracy which is lower than ε = 10−4, the MC and SC methods
perform similar. We suppose that the stochastic variations of the QoI could be smoothed out
by considering the expected value of the QoI such that few samples are sufficient to get a good
approximation.
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Figure 7.13: GasLib-40 : Top Left: Errors of the approximated expectations EQ[Φh] and
E(ML)
K [ΦhK ] obtained by the adaptive single-level (blue circles) and two-level (blue triangles,
K = 1) SC methods for ε = 10−3, 10−4, 10−5 (green lines). The predicted convergence orders
are −0.47 and −0.83, respectively (dashed black lines). Top Right: Computational cost of the
SC methods versus the inverse of the prescribed accuracy. Bottom Left: Mean absolute errors of
the approximated expectations EM [Φh] and EK [ΦhK ] obtained by the adaptive single-level (blue
circles) and two-level (blue triangles, K = 1) MC methods for ε = 10−3, 3 · 10−4, 10−4, 3 · 10−5

(green lines). The predicted convergence orders are −0.31 and −0.5, respectively (dashed black
lines). Bottom Right: Computational cost of the MC methods versus the inverse of the prescribed
accuracy.

The theoretical rate of the computational cost for the single-level MC approach is given by
rSLMC = −2 − γ = −3.2, see Lemma 4.23. In order to get the theoretical rate for the MLMC
method in Theorem 4.29, we estimate a posteriori the rate β in Assumption 4.27. We average the
variance over the 10 simulations and obtain β = 1.4 by a least-squares fit. Consequently, we have
rMLMC = −2. In the bottom-right plot of Figure 7.13, the theoretical rates of the computational
cost in terms of the accuracy are quite well visible.
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Chapter 8

Conclusion and Outlook

In order to conclude this work, we summarize the content and emphasize the main results and
their underlying ideas. Finally, we give an outlook on two interesting topics for future research.

8.1 Conclusion

In this work, we have considered hyperbolic PDEs with random data on networks. We have
developed and extensively analyzed a fully error-controlled quantification of the transport of
uncertainties through the network. For Monte Carlo (MC) and stochastic collocation (SC)
methods, we have successfully combined adaptive strategies in the stochastic and physical space
with a multi-level structure such that a prescribed accuracy of the simulation was achieved while
the computational effort was reduced. Moreover, we have proposed a cost-efficient approach to
validate the feasibility of relevant output quantities.

We focused on MC and SC methods since they allow to reuse existing deterministic solvers. We
assumed that the physical approximations are computed with a sample-dependent resolution
in space, time and model hierarchy which can be controlled by a user-given physical tolerance
due to a posteriori error estimates. First, we developed an adaptive single-level (SL) approach
of both methods where we efficiently combine adaptive strategies in the stochastic space with
adaptive physical approximations. The extension to a multi-level (ML) structure was realized by
coupling physical approximations with different accuracies such that the computational cost was
minimized. As quantity of interest (QoI), we considered not only a functional of the uncertain
solution but also the solution itself.

Considering MC methods, we determined the number of samples and the physical tolerance
needed to achieve the prescribed total accuracy in the SL strategy. For the multi-level structure,
we determined the physical tolerances and the optimal number of samples at each level such
that the total computational cost is minimized and a prescribed accuracy is again achieved.
The complexity analysis provided an upper bound for the computational cost and showed the
improved asymptotic rates of the ML strategy.

For the SC methods, we realized the adaptive stochastic strategy by adaptive sparse grids with
a posteriori error estimates such that we were able to control the discretization of the stochastic
approximations by user-given stochastic tolerances. Compared to the MC approach, we followed
the same concept for the convergence analysis and determined the optimal stochastic tolerances
instead of the number of samples at each level. From the complexity analysis, we obtained again
an upper bound for the computational cost and determined the order of the computational cost
in terms of the prescribed accuracy under certain assumptions on the convergence of the adaptive
strategies.
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Moreover, we developed an efficient approach for the validation of real-valued and function-
valued output quantities: In order to compute the probability that the output quantity meets
some prescribed bounds, we approximated its usually unknown probability density function
(PDF) by a kernel density estimator (KDE) and integrated this estimator over the prescribed
bounds. We proved the convergence of the KDE as well as of the computed probability. In
addition, we computed the probability using different MATLAB® functions and gained the
fastest computation time for the Gauss error function erf. In order to generate the samples for
the KDE with low cost, we recommend to perform the algorithm in a post-processing step of SC
methods since SC methods provide an approximation of the output quantity, in contrast to MC
methods. In this case, we only need to evaluate the SC approximation instead of numerically
solving further deterministic problem.

We applied our developed adaptive single-level and multi-level methods to two examples of
gas networks. For both examples, we considered uncertain gas demands at the exits. The
error-controlled SC methods as well as the MC methods performed very reliable, especially
for high accuracies. As expected, the SC methods always outperformed the MC methods for
high accuracy requirements. Moreover, the extension to the multi-level structure significantly
improved the asymptotic rates of the complexity compared to the corresponding SL methods.
On the one hand, we observed that it is sufficient to choose the SLSC approach for low accuracy
levels since the computation time was only a few minutes. On the other hand, the MLSC method
applied for high accuracy levels led to a significant reduction of the computation time and thus
revealed its potential. However, the theoretical convergence orders of the error in terms of the
computation time did not always coincide with the observed ones. We expect to achieve the
theoretical convergence orders if we had reliable a posteriori error estimators instead of heuristic
error indicators. Furthermore, we demonstrated the applicability of the KDE approach as a
post-processing step of the SC method and checked the feasibility of the pressure at the exits of
the gas network.

8.2 Outlook

For the SC methods, we have focused on global Lagrange polynomials for the interpolation
such that we had to consider QoIs which are sufficiently smooth with respect to the stochastic
variables. In the case of discontinuities or kinks in the stochastic space, the convergence of the
method can be very slow or even fail. The accuracy of the sparse grid approximation could
decline. For example, in gas networks, a sample-dependent regulation of the gas flow or pressure
realized by control valves and compressor stations could lead to output quantities having kinks or
discontinuities in the stochastic space. In Subsection 7.1.1, we have observed for a deterministic
control of the compressor stations that taking the minimum of the pressure at exits over time
can already cause kinks in the stochastic space (see Figure 7.7). Consequently, a future work is
to extend our developed adaptive SC methods to discontinuous QoIs.

In [74], the authors developed an adaptive sparse grid method which uses piecewise linear func-
tions and adaptively adds more collocation points in stochastic discontinuity regions which can
be detected by the hierarchical surpluses. Recently, this method was extended to cubic splines
applied in smoother regions in order to achieve a faster convergence [12] and to high-order piece-
wise polynomials [105]. Besides locally adaptive sparse grids, there are also other approaches.
In [36], piecewise polynomial functions defined on simplices are used to approximate QoIs with
kinks in the stochastic space. The resulting simplex SC method was applied to stationary gas
networks with uncertain demands. Furthermore, Jakeman et al. [56] proposed a multi-element
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SC method including a polynomial annihilation technique which locates the stochastic disconti-
nuities based on sparse grids. For the further development of our error-controlled adaptive SC
methods, we would suggest to focus on locally adaptive sparse grids equipped with error indica-
tors and to combine it with an automatic detection of discontinuities or kinks in the stochastic
space.

Moreover, we have demonstrated the application of the KDE to compute the probability that
a chosen QoI is feasible, i.e. meets the prescribed bounds. The samples needed for the KDE
can be generated cost-efficiently by evaluating the sparse grid approximation of the QoI in a
post-processing step of an SC method. A future extension could be to investigate probabilistic
constrained optimization problems [100] of the form

min ψ(c),

s.t. P
(
gi(uh, c) ≥ 0 ∀i ∈ {1, . . . , k}

)
≥ α ∈ (0, 1)

(8.1)

with the control variable c, the constraint function g : L2(Θ,L1) × Rm → Rk, the objective
function ψ and the stochastic solution uh of a partial differential equation problem with random
data given for a fixed control c. The included probability can be computed by integrating the
PDF of g which is usually unknown. In this case, we can approximate the PDF by applying
the KDE approach which leads to an approximated probabilistic constraint and therefore to an
approximated optimization problem. An advanced application for dynamic gas networks with
uncertain demands would be to compute (deterministic) optimal controls of compressor stations
such that the probability for the pressure at the exit nodes to be between the given bounds for
the full time period is at least the requested probability level α. In the context of stationary gas
networks and transient flow networks, the KDE has already been used to compute probabilities
in probabilistic constrained optimization problems where the upper pressure bound is minimized,
see the work of the author in collaboration with Schuster, Gugat and Lang [98]. However, the
samples were still generated by a classical MC sampling and not so far by evaluating the sparse
grid approximation from an SC method since the exact analytical solution of each deterministic
problem was known. The usage of the KDE allowed to approximate and differentiate probabilistic
constraints for time-dependent problems and to derive necessary optimality conditions for the
approximated problem [98].

If the exact solutions of the deterministic problems are unknown, we could use our error-controlled
adaptive SC methods for the KDE sampling and also investigate how the error of KDE can
be controlled. Further open questions are how the solution of the approximated optimization
problem can be computed for a prescribed accuracy and whether an adjoint approach can be
realized to improve the efficiency of the solution algorithm. Furthermore, an alternative to
probabilistic constraints is to incorporate the probability as a weighted penalty term into the
objective function. For this setting, the above-mentioned open questions remain the same.
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List of Acronyms

IBOX Implicit BOX
i.i.d. Independent and identically distributed
KDE Kernel density estimator
MC Monte Carlo
ML Multi-level
MLMC Multi-level Monte Carlo
MLSC Multi-level stochastic collocation
MSE Mean squared error
PDE Partial differential equation
PDF Probability density function
QoI Quantity of interest
RMSE Root mean squared error
RV Random variable
SC Stochastic collocation
SG Stochastic Galerkin
SL Single-level
SLMC Single-level Monte Carlo
SLSC Single-level stochastic collocation
UQ Uncertainty quantification
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