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abstract

Over the last years graphene research has branched into many fields and
sub-fields spanning from pure theory to technology. A first climax of this
development was the Nobel Prize in Physics 2010. Since then new milestones
have been reached increasingly focussing on the technological application of
graphene. Ideally, the extraordinary properties of graphene could be directly
transferred from laboratory to commercial devices. Such a straight route,
however, does not exist in most cases. Designing and manufacturing graphene-
based electronic devices on large scales rather poses additional questions and
challenges.

A major challenge is the control of dislocations and grain boundaries in
graphene. These defects are typically caused by large-scale synthesis methods
such as chemical vapour deposition. Defects often deteriorate pristine material
properties like mechanical strength, electric conductivity or electron mobility.
In this sense they are clearly undesired, but defects offer new possibilities as
well. They can be used to tune for example mechanical or electronic properties
and defect engineering has become an increasingly pursuit research area.

In this work, we study a specific type of defect in graphene: grain boundaries
at the nanometer scale. Graphene grain boundaries are extended defects
but in contrast to three-dimensional materials they are line not area defects.
The reduced dimensionality relates them closely to dislocations and other
topological defects. Topological defects, generally, change the connectivity
between atomic sites without necessarily changing the coordination. This
strongly affects the electronic properties of graphene and offers possibilities to
engineer electron transport that contrast with commonly used methods like
doping or chemical modifications.

A second source to modulate transport properties is mechanical strain. The
piezoresistive effect, i.e. the change of electric response upon mechanical
strain, is a well-known example. In graphene the piezoresistive effect offers
interesting application possibilities in the form of transparent strain sensors
due to graphene’s optical transparency and mechanical flexibility. The piezore-
sistive effect in graphene is also an interesting crossing point between electro-
mechanical properties and their interaction with grain boundaries.

Nanocrystalline graphene (NCG) shows a pronounced piezoresistivity sug-
gesting that the high grain boundary density contributes somehow to it. Un-
covering the role of grain boundaries for electron transport is invaluable, both
theoretically and experimentally. Transport at the length scales relevant in
NCG offers a quite interesting opportunity: The problem can be investigated
theoretically by quantum-mechanical methods while still accessible to experi-
mental probes. Such a complementary investigation is interesting in itself. We
must acknowledge, however, that the theoretical treatment in this thesis, still
uses several simplifications that cannot be mimicked in experiments, directly.
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abstract

First we study how the grain boundary structure influences electron trans-
port in graphene bicrystals. We find that there are generally two transport
regimes within the ballistic transport approximation: an energy gap region
and, at energies beyond this gap, an ohmic region. The size of the energy
gap depends on the bicrystal geometry and can be zero for some bicrystals.
The gap region is insensitive to structural variations while the ohmic region
is quite sensitive. This insight motivates a purely geometric picture of the
emergence and size of transport gaps in graphene bicrystals. Moreover, this
picture can be extended to describe a gap modulation by mechanical strain.
It is therefore a useful bridge from bicrystals to piezoresistivity in graphene
nanocrystals.

The final topic considered in this thesis is an approximation of electron
transport in nanocrystals under a uniaxial external strain. The approximate
nature lies mainly in the model construction: We use hexagonally shaped
grains to establish simple orientation relations between adjacent grains and to
reduce the number of additional degrees of freedom. By combining conven-
tional two-terminal transport calculations and transport samples embedded
in complex absorbing potentials we find that the grain boundary network ex-
hibits pronounced metallicity at low energies. This indicates that the enhanced
piezoresistivity of NCG may be attributed to a finite-size effect.

While a conclusive description of mechanically modulated conductivity
in NCG could not be presented, our work establishes important technical
insights into ballistic transport calculations of extended structures in general
and transport across graphene grain boundaries in particular.

viii



zusammenfassung

Im Laufe der letzten Jahre hat sich die Graphen-Forschung in viele Gebiete
und Untergebiete verzweigt. Diese reichen von Grundlagenforschung bis zu
technologischen Anwendungen. Ein erster Höhepunkt dieser Entwicklung
war die Verleihung des Physik-Nobelpreises 2010. Seit diesem Zeitpunkt sind
neue Meilensteine erreicht worden, die sich zunehmend mit der technologi-
schen Anwendung von Graphen auseinandersetzen. Idealerweise würden
die außergewöhnlichen Eigenschaften von Graphen direkt vom Labor auf
kommerzielle Anwendungen übertragbar sein. Ein derartiger geradliniger
Weg existiert jedoch in den meisten Fällen nicht. Entwurf und Herstellung von
graphen-basierten elektronischen Komponenten in großen Mengen bereiten
zudem weitere Herausforderungen.

Eine große Herausforderung ist die Kontrolle von Versetzungen und Korn-
grenzen in Graphen. Diese Defekte treten üblicherweise bei großskaligen
Synthesemethoden wie der chemischen Gasphasenabscheidung auf. Defekte
setzen die intrinsischen Materialeigenschaften wie mechanische Festigkeit,
elektrische Leitfähigkeit oder Elektronenmobilität häufig herab. In dieser Hin-
sicht sind sie zweifelsohne unerwünscht. Aber Defekte bieten auch neue Mög-
lichkeiten. Sie können beispielsweise benutzt werden, um mechanische oder
elektronische Eigenschaften gezielt zu verändern. Dieses sogenannte Defect
Engineering ist zu einem bedeutsamen Forschungsfeld geworden.

In dieser Arbeit betrachten wir einen speziellen Graphen-Defekttyp: Korn-
grenzen im Nanometerbereich. Graphen-Korngrenzen sind ausgedehnte De-
fekte, aber im Gegensatz zu dreidimensionalen Materialien sind sie keine
Flächendefekte. Die reduzierte Dimensionalität verbindet sie eng mit Verset-
zungen und anderen topologischen Defekten. Generell verändern topologische
Defekte die Konnektivität zwischen Atomen ohne notwendigerweise deren
Koordination zu verändern. Diese Tatsache beeinflusst die elektronischen Ei-
genschaften von Graphen enorm und bietet die Möglichkeit, Elektronentrans-
port in Graphen gezielt zu steuern, ohne auf übliche Verfahren wie Dotierung
oder chemische Modifikation angewiesen zu sein.

Eine zweite Quelle, um die Transporteigenschaften zu modulieren, ist me-
chanische Dehnung. Der piezoresistive Effekt, d. h. die Änderung der elektro-
nischen Antwort unter mechanischer Dehnung, ist ein bekanntes Beispiel. Der
piezoresistive Effekt bietet für Graphen interessante Anwendungsmöglichkei-
ten in Form transparenter Dehnungssensoren, da Graphen optisch transparent
und mechanisch flexibel ist. Der piezoresistive Effekt in Graphen stellt darüber
hinaus auch eine interessante Schnittstelle zwischen elektro-mechanischen
Eigenschaften und deren Wechselwirkung mit Korngrenzen da.

Nanokristallines Graphen zeigt eine besonders ausgeprägte Piezoresistivi-
tät, was darauf schließen lässt, dass die hohe Korngrenzdichte hierfür eine
Rolle spielt. Diese Rolle der Korngrenzen für den Elektronentransport zu be-
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zusammenfassung

leuchten, ist sowohl in theoretischer wie auch in experimenteller Hinsicht
wichtig. Transport bei den Längenskalen, die für nanokristallines Graphen
relevant sind, bietet auch eine interessante Möglichkeit: Das Problem kann
theoretisch durch quantenmechanische Methoden untersucht werden, ist aber
auch experimenteller Untersuchung zugänglich. Wie müssen allerdings be-
kennen, dass die theoretischen Untersuchungen in dieser Arbeit dennoch viele
Vereinfachungen nutzen müssen, die experimentell nicht direkt nachgebildet
werden können.

Zuerst untersuchen wir, wie die Atomstruktur der Korngrenze den Elektro-
nentransport in Graphenbikristallen beeinflusst. Wir kommen zu dem Resultat,
dass generell zwei Transportbereiche in der ballistischen Transportnäherung
existieren: ein Bereich mit einer Energielücke und bei Energien außerhalb
dieser Lücke ein ohmscher Bereich. Die Größe der Lücke hängt von der Bi-
kristallgeometrie ab und kann auch Null betragen für einige Bikristalle. Der
Lückenbereich ist unempfindlich gegenüber strukturellen Veränderungen,
während der ohmsche Bereich sehr empfindlich ist. Diese Erkenntnis moti-
viert, ein rein geometrisches Bild zu erstellen, das das Auftreten und die Größe
von Energielücken in Graphenbikristallen vorhersagen kann. Dieses Bild kann
darüber hinaus erweitert werden, um die Modulation von Lücken durch
mechanische Dehnung zu beschreiben. Es ist daher nützlich als Bindeglied
zwischen Bi- und Polykristallen.

Das abschließende Thema dieser Arbeit ist die Annäherung an Elektro-
nentransport in Nanokristallen unter uniaxialer mechanischer Dehnung. Die
Annäherung bezieht sich hauptsächlich auf die Modellerzeugung: Wir be-
nutzen sechseckige Körner, um eine vereinfachte Orientierungsbeziehung
zwischen benachbarten Körnern zu haben und die Anzahl zusätzlicher Frei-
heitsgrade zu reduzieren. Durch Kombination von konventionellen Zwei-
Elektroden-Transportrechnungen und Transportproben, die in ein komplexes
Absorptionspotential eingebettet sind, gelangen wir zu dem Schluss, dass
das Korngrenznetzwerk eine auffällige Metallizität bei niedrigen Energien
aufweist. Dies deutet darauf hin, dass die erhöhte Piezoresistivität von nano-
kristallinem Graphen ein Finite-Size-Effekt sein könnte.

Obwohl wir keine abschließende Beschreibung der mechanisch modulierten
Leitfähigkeit in nanokristallinem Graphen bieten können, hat unsere Arbeit
wichtige technische Erkenntnisse zu ballistischen Transportrechnungen in aus-
gedehnten Strukturen generell, und für Transport über Graphenkorngrenzen
im Besonderen, geliefert.
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1| introduction

Sensors, microchips and transistors are ubiquitous in our world. Within a few
decades electronic technology has become an integral part of society and the
pace at which electronics has advanced is staggering. This development is
exemplified by the miniaturization of electronic components. Well-known are
the images of computing machines around the middle of the last century that
filled large factory halls but offered a computing power far below personal
computers of the early 2000s. Miniaturization necessarily leads to the ultimate
boundaries of matter: the world of atoms and their quantum mechanical
interactions.

The technological exploration at the edge of length and time scales poses
enormous challenges on experimental and theoretical methods. Fundamen-
tal research in mesoscopic systems utilizes a large arsenal of synthesis and
analysis methods developed over the course of several decades. Many-body
perturbation theory offers sophisticated techniques to give complimentary the-
oretical analysis of experiments. How mature mesoscopic physics has become
is perhaps best illustrated by the dizzying speed of research activity around
graphene from fundamental aspects of condensed matter physics to various
technological applications [1–4]. Indeed, graphene research has not only bene-
fited from the evolution of mesoscopic physics but has itself advanced its state
substantially.

This thesis focuses on a small part of the graphene landscape. The desire to
synthesize graphene on large scales for cost-efficient use in electronic technol-
ogy has triggered a growing interest in various kinds of defects in graphene.
Grain boundaries (GBs), in particular, are in the spotlight of attention for two
reasons: First, GBs are practically inevitable defects in large scale graphene
sheets and second, they impact the properties of graphene substantially. There-
fore, graphene GB research itself has become a very active and large field over
the last years and consequently the focus of this work is still narrower: A theo-
retical investigation of electron transport in nanocrystalline graphene under
the influence of mechanical strain.

Nanocrystalline graphene (NCG) exhibits a strong change of resistivity
towards an external strain [5]. This piezoresistive effect is not exclusive to
nanocrystalline graphene but observed in macro- and singlecrystalline graphene
as well [6, 7]. However, nanocrystalline graphene shows response factors that
are at least an order of magnitude higher.

To provide some background on graphene and polycrystalline graphene,
Sec. 1.1 sketches significant historic developments of graphene research and ba-
sic properties of graphene. Section 1.2 introduces general aspects of graphene
GBs. The investigation of piezoresistivity in nanocrystalline graphene, though
interesting in itself, is motivated by its potential application in strain sensing—
especially, since nanocrystalline graphene is both flexible and transparent,

1



1. introduction

which is a strong advantage over the widely used indium-tin-oxide. Sec-
tion 1.3 discusses strain sensing in general, followed by the experimental
results on NCG that form the starting point of this work. The final section of
this chapter (Sec. 1.4) presents the main research questions of this work and
sketches how these questions will be addressed.

1.1 graphene: history, properties, challenges

0D: Fullerene

1D: Nanotube

2D: Graphene

3D: Graphite

Figure 1.1|Graphitic carbon
allotropes from zero to three
dimensions.

The explosion of research activity on graphene and other two-dimensional ma-
terials in the last years is commonly traced back to the experimental exfoliation
of few-layer graphene from graphite via micromechanical cleavage by Geim
and Novoselov in 2004 [8]. Subsequent electrical transport measurements of
monolayer graphene in 2005 revealed unexpected properties: an ambipolar
electric field effect with huge carrier mobilities [9] and the discovery of the
anomalous quantum Hall effect and Berry’s phase [10, 11]. The combination
of these exotic phenomena with an intrinsically 2D system triggered a race to
uncover more and more remarkable properties of graphene [1, 12–15].

The start of graphene research, however, dates back much further and is
generally linked to the theoretical description of the band structure of graphite
monolayers by Wallace in 1947 [16]. The first experimental evidence of iso-
lated graphite monolayers was given by Boehm, who later coined the term
graphene, in 1962 [17]. However, this work remained somewhat singular since
no systematic procedure existed to obtain graphene reproducibly and with a
sufficient quality to perform mesoscopic measurements.†

†The field of mesoscopic physics
itself was in its infancy at that
time.

Graphene, at least as a theoretical concept, received new attention with the
synthesis of novel carbon allotropes in the form of fullerenes [18] and especially
carbon nanotubes [19]. Together with graphite, these allotropes can all be
regarded emerging from graphene either by forming a ball (fullerene), rolling
up a cylinder (nanotube), or stacking along the out-of-plane axis (graphite)—
see Fig. 1.1. It was realized that the electronic structure of carbon nanotubes is
fundamentally related to the band structure of graphene [20–22]. Indeed, the
tight binding description of graphene has been an essential tool to describe
the electronic properties of carbon nanotubes qualitatively and to some extent
even quantitatively [23]. The close analogy of the electronic structure between
nanotubes and graphene nanoribbons—the so called multiples-of-three rule [24,
25]—is also shared by graphene GBs.

Graphene exhibits a linear dispersion in the low-energy region of its spec-
trum thus its charge carriers can be described by the Dirac equation. The
peculiar properties of such a two dimensional gas of Dirac fermions were an-
ticipated by several theoretical works [26–29]. With the reproducible isolation
of graphene it was possible to probe quantum electrodynamical phenomena
such as zitterbewegung and Klein tunneling directly [1, 30–34]—phenomena
that had not been observed in other condensed matter systems so far. A major
part of the low-energy electronic structure of graphene originates somewhat

2



1.1. graphene: history, properties, challenges

from a simple fact: Graphene has a two-dimensional hexagonal bipartite lat-
tice (Fig. 1.2). It follows that atoms from one sublattice ( -type) have only
atoms from the other sublattice ( -type) as nearest neighbors and next-nearest
neighbors are from the same sublattice type. Restricting interactions to nearest
neighbors the following second quantized Hamiltonian can be defined [35]:

H(r) = ∑
i

ϵ0ĉ†
i (r)ĉi(r) + ∑

⟨ij⟩
tĉ†

i (r)ĉj(r) + h.c. (1.1)

Here the first sum is over both sublattices and the second sum is between
the sublattices; ĉ(r) [ĉ†(r)] is the electron annihilation (creation) operator,
respectively. The parameter ϵ0 represents the so-called on-site energy which is
set to zero in this discussion without loss of generality and t is the energy for
electron transfer from one lattice site to a neighboring site.

a2

a1

Figure 1.2|Graphene lattice
and primitive unit cell. The
sublattices are indicated by
different coloring of lattice sites.

The energy spectrum, E±(k), is obtained by diagonalizing the Fourier trans-
formed Hamiltonian of Eq. (1.1), see Ref. [35],

E±(k) = ±t
√

3 − f (k), (1.2)

with

f (k) = 2 cos
(√

3kya
)
+ 4 cos

(√
3

2
kya

)
cos
(

3
2

kxa
)

. (1.3)

Equation (1.3) can be expanded to first order around the Dirac points K† by †The Dirac points are located at

K =

(
2π

3a
,

2π

3
√

3a

)

and

K′ =
(

2π

3a
,− 2π

3
√

3a

)
,

with lattice constant a.

defining the relative momentum q = K + k as

E± ≃ ±νFermi|q|+O
(
(q/K)2), (1.4)

where νFermi = 3ta/2 is the Fermi velocity in terms of the hopping parameter.
This expansion is an integral part of this thesis. In Ch. 4 it is shown that the
linearity of the Dirac cones is an excellent approximation for the treatment of
the electronic structure in polycrystalline graphene. Equation (1.4) is indeed
so convenient that it is the basis of a semi-analytical approach to the transport
gap problem for arbitrary graphene GBs presented in Ch. 6.

3



1. introduction

Γ M K Γ
−3t

−2t

−t

0
t

2t

3t

Brillouin zone path

En
er
gy

0.0 0.1 0.2 0.3
−3t

−2t

−t

0
t

2t

3t

Density of States (1/eV)

0

0

kx

k y

0

0

kx

(a) (b)

(c) (d)

Figure 1.3|Electronic structure of graphene based on a nearest neighbor tight-binding model
[Eq. (1.1)]. Band structure along high symmetry points of pristine graphene (a) and Brillouin
zone integrated density of states (b). Two-dimensional band structure at the valence band
maximum of unstrained (c) and strained (d) graphene. Strain displaces the Dirac cones from
the vertices of the Brillouin zone as indicated by the dashed circle in (d).

b1

b2

M
K

K′Γ

Figure 1.4|There exist two
Dirac points K and K′ with
different parity alternating at
the vertices of the hexagonal
Brillouin zone. These valleys
are degenerate without spin-
polarization.

Figure 1.3 summarizes the electronic structure of graphene based on the
Hamiltonian of Eq. (1.1). The band structure [Fig. 1.3 (a)] is calculated along the
path Γ → M → K → Γ consisting of high symmetry points in the hexagonal
Brillouin zone (Fig. 1.4). The maximum band width at the Γ point is 6t. The
most pertinent feature of the band structure is the linear dispersion around
K where the bands cross. Associated with this band structure Fig. 1.3 (b)
shows the density of states. Here, three features stand out: (1) the van-Hove
singularities at ±t, (2) the zero density of states at the Fermi energy, (3) the
symmetry between electrons and holes. (1) and (2) are directly related to the
band structure, whereas (3) is a consequence of the nearest neighbor interaction.
In general, the inclusion of next-nearest neighbor interactions or irregularities
of the lattice break electron-hole symmetry [36, 37]. Another symmetry best

4



1.2. grain boundaries in graphene

seen in the two-dimensional view of the top-most valence band [Fig. 1.3 (c)]
is the so-called trigonal warping around the Dirac points [38]. This threefold
symmetry is a feature common to all low-dimensional forms of carbon—it
also occurs in nanotubes and ribbons. The warping will play a role in the
discussion of strain-induced transport gap modulation in Ch. 6 because it
determines how the Fermi velocity is affected by strain. In fact, the application
of strain generally shifts the Dirac points away from the high symmetry sites
and distorts the trigonal warping.

Pristine graphene is a semi-metal at zero temperature and a metal at finite
temperatures. While its ambipolar electric field effect and ultrafast charge
carrier mobility are interesting features for electronic amplification, graphene’s
gapless nature makes it unsuitable for applications in conventional digital
electronics [3]. Therefore, substantial efforts exist to create energy gaps in
graphene without sacrificing most of its extraordinary properties. Apart from
chemical [39–43] and strain engineering [44–47], quantum confinement is a
promising route for creating energy gaps. Quantum confinement is a concept
borrowed from the electronic structure of carbon nanotubes. The definite
circumference of a nanotube determines the periodicity of the wave functions.
This periodicity discretizes the momentum space so that not all wave numbers
are available anymore [24, 25]. The location of the Dirac points with regard
to the allowed wave numbers determines if a nanotube is metallic or semi-
conducting [21, 22].† The discretization of momentum space is also present in †The curvature can have an

additional influence, rendering
certain metallic nanotubes also
semi-conducting.

graphene nanoribbons [48, 49]. Indeed, the electronic structure of nanoribbons
can be used as a calculation tool for the electronic structure of nanotubes.
The experimental realization of graphene nanoribbons, however, is more
complicated. A considerable challenge is the control of edge roughness and
large scale synthesis of well-defined nanoribbons is currently not available [50].
Graphene GBs could provide a better alternative. They have an analogous
electronic structure while their preparation, especially at large scales, does not
require much effort. On the contrary, GBs are virtually inevitable for graphene
grown by conventional synthesis methods such as chemical vapour deposition
(CVD) [51–53].

1.2 grain boundaries in graphene

The ability to synthesize large area graphene is often considered to be one of
the most important steps towards graphene-based electronics. A promising
attempt into this direction is the growth of graphene by chemical vapour de-
position (CVD) from hydrocarbons on a metal substrate—such as Iridium [54],
Nickel or Copper [55, 56]. Important input parameters of the CVD process
are precursor material, temperature and pressure. On the output side the
yield, sheet size, and most importantly the quality of graphene are the relevant
parameters. Yield and sheet size are strongly influenced by the precursor
materials, the metal substrates and the process parameters (temperature and
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1. introduction

pressure). Detailed studies have been carried out to develop an understanding
of the underlying thermodynamics and kinetics [56].

The quality of the synthesized graphene is certainly a more vague concept
to assess. Commonly, electronic properties such as resistivity and charge
carrier mobility and the Raman spectrum are evaluated. Raman spectroscopy
is a powerful probe to characterize a variety of fundamental properties of
graphene samples in a non-invasive way [57]. It is an ideal tool to check the
quality of graphene grown by various synthesis methods at different scales
and is sensitive to the presence of defects [58] and perturbations from external
fields [59].

Improved control over the process parameters and the use of flexible sub-
strates have resulted in increasing graphene film sizes and additional transfer
processes to transparent polymer substrates [60]. These developments are
particularly relevant for transparent flexible electrodes used for example as
sensors in touch screens [61].

The presence of GBs in CVD-grown graphene samples has directed attention
to the interplay between GB structure and graphene’s intrinsic properties. In-
tuitively, GBs are expected to severely degrade properties such as the mechan-
ical strength or electrical conductivity. The impact of GBs on the mechanical
strength of graphene has been studied in various works [63–67] revealing that
GBs are not generally detrimental. Rather the specific GB structure leads to
either a weakening or even a strengthening of graphene [63, 65]. To appreciate
this counter-intuitive result a knowledge of the detailed structure of graphene
GBs is required. In the absence of extrinsic defects a threefold coordination
of the carbon atoms is energetically most favorable. Graphene GBs, due to
their 1D nature, can be specified by a rotation angle θ and a repeat length d.
Depending on the exact choice of θ and d the lattices of the participating grains
are either commensurate or incommensurate. For incommensurate lattices a
finite mismatch strain needs to be exerted on the grains. All rotations—apart
from highest symmetry rotations (0◦, 60◦ and multiples) which introduce no
misorientation at all—require the introduction of non-hexagonal polygons

(a) (b) (c)

Figure 1.5|Experimental scanning tunneling microscopy images of different graphene GBs.
Reprinted and adapted with permission from Ref. [62]. Copyright © 2014, American Chemical Society.
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1.2. grain boundaries in graphene

to connect adjacent grains. Experimental studies of graphene GBs generally
observe n-gons with n ∈ (5, 7, 8). Figure 1.5 shows experimental scanning
tunneling microscopy images of graphene polycrystals from a study by Yang
et al. [62]. With the exception of Fig. 1.5 (a), the GBs feature pentagons and
heptagons with different density and connectivity. Similarly, a combined ex-
perimental and theoretical study by Ophus et al. indicates that the majority of
GBs is a patchwork of pentagons and heptagons [68].

(a)

(b)

(c)

Figure 1.6|Genesis of pen-
tagon (a) [heptagon (c)] defect
from pristine (b) graphene via
removal (insertion) of a 60◦-
wedge (dashed lines). Adapted
from Ref. [69].

The prevalence of these polygons is motivated by the following geometrical
construction (Fig. 1.6): A semi-infinite 60◦-wedge inserted into (removed from)
the regular graphene lattice generates a positive (negative) disclination accom-
modated by a pentagon (heptagon) [69–71]. With these elementary building
blocks both dislocations and GBs can be explained as topological entities based
on a patchwork of disclinations. The topological nature of these defects has
many implications for the mechanical [72, 73] and functional properties [74–
76] of graphene polycrystals. Apart from the influence on mechanical strength
mentioned above, disclinations also play an important role for out-of-plane
buckling in graphene.

In this work all graphene models are flat, but it is known that even pristine
graphene is buckled at finite temperatures [77] since bond length fluctuations
induce instabilities. Polycrystalline graphene is generally buckled, too, as the
GBs act as a network of junctions between the differently corrugated grains.
From a mechanical viewpoint this is not surprising: Unresolved line forces
along the interfaces within the plane can only resolve along the out-of-plane
degree of freedom. A considerable body of literature connects this result from
standard elasticity theory with investigations into the atomic structure of
graphene [78–80].

Buckling has additional influences on mechanical stability and mechanical
reversibility—the latter aspect is relevant for strain sensing. Moreover, the
electronic properties of buckled graphene sheets may be profoundly differ-
ent compared to flat graphene. However, systematic investigations on the
interplay between buckling and electronic properties are scarce—an overview
is given in Ref. [81]. A theoretical treatment of this problem suffers from the
considerable increase of complexity: All simplifications from the reduced
dimensionality need to be abandoned; in particular simple model Hamilto-
nians that account only for the π − π bonds between carbon atoms must be
replaced by more complicated Hamiltonians. Computationally, this means
that the investigable system size shrinks notably. The situation may be further
complicated by graphene-substrate interactions. These added difficulties lead
to the old question of what constitutes a good model. Is buckling an essential
aspect of electron transport in graphene polycrystals? We believe that the most
dominant aspects of electron transport are governed by topological proper-
ties of the polycrystal: grain misorientation and grain size. This justifies to
investigate flat polycrystals and ignore additional effects of buckling bearing
in mind that our results are less valid for strongly corrugated graphene sheets
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1. introduction

or high mechanical strains.

1.3 nanocrystalline graphene for strain sensing

Sensors are an integral part of today’s technology and the demands on sensor
materials are high: Cost-efficient synthesis combined with often contradictory
properties. Transparent strain sensors, for example, should offer mechanical
flexibility, strength, optical quality, and high response factors. These sensors
are important for the expanding fields of bio-medical sensing and flexible
electronics.

Figure 1.7|Example of a simple
strain sensor: A linear strain
gauge can be realized with a
very thin meandering metal
stripe on a flexible polymer
substrate. The gauge combines
large contact pads (grey rectan-
gles) with fine metal stripes to
enhance the sensitivity.

From the above list of properties for strain sensors probably the most im-
portant is the response or strain gauge factor. Generally, a strain sensor relates
an electrical input signal ξ0 to an output signal ξ by a strain-dependent pro-
portionality factor: ξ ∝ α(ϵ)ξ0. The input and output signal is the electrical
resistance which for a specific geometry becomes the resistivity and is a mate-
rial property. It is easier, though, to measure electrical voltages and determine
the resistances indirectly. The Wheatstone bridge is the prototypical circuit
to measure resistance changes. Here, the input and output voltages and the
known resistances of all but one resistor allow to determine the unknown
resistance. This unknown resistance is, in the case of strain sensing, the strain-
dependent resistance of the strain gauge. The general proportionality relation
above translates for the Wheatstone bridge (Fig. 1.8) to

Vout = f [RSG(ϵ); λi]Vin, (1.5)

where the function f depends on the strain gauge resistance RSG and on
arbitrary other parameters λi of the sensing device.

A

B D

C

V

R1 R3

R2 Rx

Figure 1.8|Circuit diagram
of the Wheatstone bridge. The
unknown resistance Rx is given
by the resistance ratio Rx =
R2R3

R1
if the voltmeter shows

zero voltage.

In this thesis, we are concerned with the material specific aspects of the strain
gauge and this is mainly contained in RSG. To compare different materials and
eliminate all explicit dependencies on the system geometry a so-called gauge
factor is defined:

GF =
∆R/R0

ϵ
= 1 + 2ν +

∆ρ/ρ0

ϵ
. (1.6)

Equation (1.6) contains two contributions: a mechanical, i.e. the Poisson ratio
Type GF

SCG/MCG 1.5-7
NCG 20

Table of strain gauge factors for
single- (SCG) and microcrys-
talline (MCG) graphene from
Ref. [7] and nanocrystalline
graphene (NCG) from Ref. [5].

ν, and an electronic, i.e. the resistivity ρ (see Fig. 1.9). These contributions have
different weights depending on the material class. At constant temperature
the resistivity of a metal hardly changes making the second term in Eq. (1.6)
negligible. Thus, the gauge factor of metal-based strain gauges is almost
exclusively determined by geometric deformation via the Poisson ratio and
generally on the order of 1-5. On the other hand, strain gauges based on semi-
conductors reach much higher values. Here the mechanical contribution to the
gauge factor can be neglected since the resistivity changes considerably with
strain. This resistivity change is often related to a piezoresistive effect, i.e. the
electronic structure of the material changes notably under strain. For silicon,
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GF = ∆R/R0
ϵ = 1 + 2ν +

∆ρ/ρ0
ϵ

Geometric effect

∆l/l

ν = ∆d/d

Material property

Figure 1.9|The gauge factor contains a geometric and a material specific term. This factor is
the most important figure of merit to assess the quality of a strain gauge.

for example, this is the change of the intrinsic band gap. In this example the
piezoresistive effect is strongly temperature-dependent and strain sensors
operating at high temperatures need to use different sensing mechanisms.

2-8 nm

GF ≈ 20

0 0.05 0.1 0.15
Strain (%)

∆
R

/
R

Figure 1.10|Grain size in NCG
and strain gauge factor with
approximate data from Ref. [5].

From the experimentally observed high gauge factor of NCG (Fig. 1.10), it
is expected that the dominant contribution in Eq. (1.6) is the resistivity term.
How does the resistivity in graphene change with strain? Pristine graphene
is a semi-metal and at finite temperatures it behaves like a metal so that its
piezoresistivity is expected to be rather low. The enhanced piezoresistivity of
NCG may therefore be attributed to the presence of GBs. In principle, GBs
could have two effects here: a direct effect changing the electronic structure of
the polycrystal and an indirect finite size effect. Two theoretical studies have
received considerable attention as they demonstrated that GBs can induce
energy gaps for ballistic electron transport across the GB [82], and that such
gaps are modulated by external strains [83]. These findings give an interesting
hint that a strong piezoresistive effect in graphene polycrystals stems from
the GBs—this speaks for a direct effect. That NCG has a higher strain gauge
factor than microcrystalline graphene is then, of course, the effect of a higher
GB density.

1.4 research questions

Although theoretical works have demonstrated that GBs can evoke semi-
conducting behavior as mentioned in the last section, drawing a direct connec-
tion between these findings and the enhanced piezoresistivity in NCG may be
premature. The above implications are based on ballistic electron transport
across bicrystal GBs and as such only strictly applicable within these approxi-
mations. With average grain sizes of a few nanometer, however, electrons may
propagate quite freely in NCG—at least if disorder at GBs is not dominant.

We use ballistic transport across bicrystal GBs as the starting point of our
work. In Ch. 5 we address the question to what extent electron transport is
affected by the local atomic GB structure. To investigate electron transport, we

9



1. introduction

first present the essentials of the calculation tools: Chapter 2 surveys the basic
aspects of density functional theory (DFT) and the tight binding approach.
Both electronic structure methods are used for transport calculations within
the Green function formalism outlined in Ch. 3. The preparation of GB models
via structural optimization of graphene grain patchworks is addressed in Ch. 4
along a general geometric description of graphene GBs.

Aside from the sensitivity of electron transport on the GB structure the ballis-
tic approximation suggests a substantial abstraction of the essential transport
properties of arbitrary bicrystals and external strains. In Ch. 6 we implement
this abstraction to predict the strain modulation of electronic transport gaps.
Chapters 5 and 6 discuss import aspects of GBs from the perspective of bicrys-
tals relevant to the more complicated situation in NCG. Of course, transport
across bicrystal GBs corresponds only to transport from one grain to another in
NCG. Transport along GBs is thus not covered until Ch. 7 and there indirectly.
The results of the bicrystal chapter will therefore primarily give qualitative
guides on the transport behavior of the polycrystals.

Chapter 7 examines simplified structural models of NCG. The main simpli-
fication consists of the hexagonally shaped grains which lead to triple point
junctions usually present in realistic polycrystals. The simplified models allow
us to consider fixed and well-defined misorientations that are easier to relate
to the bicrystal models than arbitrary interfaces. The central question of this
chapter is therefore to what extent the insights of bicrystal transport are trans-
ferable to polycrystals and what features emerge from the more complicated
GB network. In this regard the three results chapters of this work can be
grouped into two areas of electron transport: Transport across individual GBs
(Chs. 5 and 6), and transport within a network of GBs.

Figure 1.11 gives a schematic summary of the main questions addressed in
this thesis.
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GB

Chapter 5
GB structure

Chapter 6
Electron transport in
arbitrary bicrystals

Chapter 7
Hexagonal polycrystals

abstraction
application

Figure 1.11|Decomposition of the problem of mechanically modulated electron transport in
NCG into: the influence of the local GB structure on transport (Ch. 5), abstraction of bicrystal
transport to arbitrary misorientations and strains (Ch. 6), ballistic transport in structurally
simplified polycrystal models (Ch. 7).
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2| electronic structure calculations

The ground-state electronic structure is a prerequisite for transport calculations.
In this chapter we sketch two methods to compute the electronic structure:
density functional theory (DFT) and the tight binding (TB) approximation.
DFT calculations carried out in this work are based on the open source Fortran
code siesta [84, 85]. After a brief summary of general DFT in Sec. 2.1, we show
specific features of siesta DFT calculations relevant to our work in Sec. 2.2.
This concerns the nature of the siesta Hamiltonian and how the band structure,
density of states and the atomic forces are calculated.

Conceptually, the TB approximation is closely related to the linear combina-
tion of atomic orbitals (LCAO) used by siesta to generate the system’s wave
functions. In fact, the TB approximation is usually understood to be just a
simplified LCAO model based on empirical data. This simplification means
that TB Hamiltonians typically deal with nearest-neighbor couplings only and
that there is no overlap between different atomic wave functions. In Sec. 2.3,
we illustrate these aspects of the TB method with numerical calculations of
simple models (1D atomic chain, pristine graphene) using the open source
Python code sisl [86].

In a broader sense the TB approximation is the foundation of all transport
calculations performed in this work. Chapter 3 will make this clearer.

2.1 density functional theory

Increasing computer power and efficient numerical algorithms have made DFT
the standard method for electronic structure calculations used in solid state
research today. At the heart of DFT lies a publication from 1964 by Hohenberg
and Kohn [87]. It states the following two theorems:

Theorem 2.1.1 The ground-state electron density n0(r) determines the external
potential Vext uniquely, apart from a constant.

Theorem 2.1.2 There exists a functional of the electron density E[n(r)] which is
minimized by the ground-state density n0(r). This functional corresponds to the
ground-state energy.

The Hohenberg-Kohn theorems establish that the electron density can re-
place the ground-state wave function [88]. However, the exact form of the
ground-state density functional is generally unknown. Reformulating the
many-body problem in terms of the electron density therefore does not yield
an immediate gain.

Practical DFT calculations need a specific set of equations to minimize
the energy functional numerically. Kohn and Sham proposed an ansatz in
which the many-body wave function is decomposed into one-particle wave
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2. electronic structure calculations

functions subject to an effective potential [89, 90]. In this way, the n-body
Schrödinger equation separates into n single-particle Schrödinger equations
(see also Fig. 2.1):

Vext

Veff

Figure 2.1|The Kohn-Sham
ansatz transforms the difficult
problem of interacting particles

within an external potential
to the simpler problem of non-
interacting particles within
an effective potential. Adapted
from Ref. [91].

HKSϕi = ϵiϕi. (2.1)

The Kohn-Sham Hamiltonian HKS reads as: HKS = T[n] + Veff with Veff =
VH[n] + Vne[n] + Vxc[n]. All operators depend on the electron density. The
kinetic energy operator T[n] is expressed using single particle wave functions
instead of the kinetic energy of the homogeneous electron gas thereby curing
a major defect of the Thomas-Fermi approximation [92, 93]. The effective
potential Veff consists of the Hartree potential VH[n] = e2

∫
d3r′ n(r′)

r−r′ , the exter-
nal potential between the nuclei and the electrons Vne[n], and the exchange-
correlation potential Vxc[n] which comprises all many-body effects. The kinetic
energy of the nuclei and the electrostatic potential between the nuclei do not
explicitly enter the Kohn-Sham Hamiltonian due to the Born-Oppenheimer
approximation.† The total energy therefore depends only parametrically on

†The Born-Oppenheimer ap-
proximation states that the elec-
tronic degrees of freedom are
decoupled from the nuclear de-
grees of freedom owing to the
large mass difference between
electron and proton.

these quantities. The electron density is obtained from the one particle wave
functions, ϕi(r), as

n(r) =
N

∑
i

fi|ϕi(r)|2, (2.2)

where fi is the occupation number.
An important step from the Hohenberg-Kohn theorems to the Kohn-Sham

equations is the introduction of the exchange-correlation energy, Vxc = δExc/δn.
Since Exc by definition contains all many-body effects of the interacting elec-
tron gas it seems that the difficulties have just been shifted. Again a practical
calculation needs a concrete form of Exc. To this day no exact form for the
exchange-correlation energy is known, however, and approximations are re-
quired. A first approximation of Exc is to consider local properties of the
homogeneous electron gas leading to the local density approximation (LDA)

ELDA
xc =

∫
dr ϵxc[n(r)]n(r), (2.3)

where ϵxc is the exchange-correlation energy per particle. Surprisingly, the
LDA is already a very good approximation yielding accurate results for many
systems. This property of the LDA results from an implicit sum rule: Given an
electron at a point r, the electron density around this point of all other electrons
is reduced with regard to the average density such that integrated with the
hole density it is unity [90]. Often, however, the LDA can be improved by more
involved techniques to yield more accurate values of specific quantities—for
example lattice parameters. Such an improvement consists in expanding the
electron density in a gradient series. The generalized gradient approximation
(GGA) is such a refined approximation for the exchange-correlation energy.
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2.2. dft calculations with siesta

In the case of graphene studied with siesta we found a lattice parameter of
1.442 Å for GGA while LDA gives 1.453 Å which is atypical since LDA is known
to generally underestimate the lattice parameters [88]. Therefore, we use the
GGA exchange-correlation functional for all subsequent DFT calculations in
the parametrization of Perdew, Burke, and Ernzerhof [94].

2.2 dft calculations with siesta

The evaluation of the matrix elements of the single-particle operators in
Eq. (2.1) requires a specific set of basis functions. There are many different
schemes available, but three popular choices are: expansion in plane waves,
finite differences, and expansion with linear combination of atomic orbitals
(LCAO). The LCAO is used by siesta [95]. The electron density is determined
self-consistently from the one particle wave functions starting with some trial
wave functions—for example a superposition of atomic wave functions. A
useful quantity that expresses the electron density via the atomic orbitals is
the density matrix:

ρµν = ∑
i

cµiniciν. (2.4)

Here, cµ and cν are expansion coefficients of the ith wave function Ψi =

∑µ ϕµ(r)cµi with atomic orbitals ϕµ(r) and occupation number ni.
The representation of core states requires a large number of basis functions

because of the oscillatory character of these states. Rather than simply use
more basis functions, which is computationally expensive, it is more sensible
to separate core and valence states. While the latter are described by basis
functions, the former are included into an additional potential—the pseu-
dopotential. In siesta norm-conserving Troullier-Martins pseudopotentials
are used. For a norm-conserving pseudopotential the integrals of real and
pseudo charge density are identical between 0 and radius r if r is bigger than
some core radius rc [96]. This is the case for all valence states and represents
the norm conserving property. Additional properties of norm-conserving
pseudopotentials are:

• (i) real and pseudo valence eigenvalues are identical for a particularly
chosen atomic configuration;

• (ii) real and pseudo atomic wave functions are the same beyond rc;

• logarithmic derivative and first energy derivative of real and pseudo
wave function fit for r > rc [97].

In siesta the pseudopotential is decomposed into a local and a non-local
part. The non-local pseudopotential takes the form proposed by Kleinman
and Bylander [98]. The neutral-atom potential hides the local part of the
pseudopotential. To screen the local pseudopotential beyond a cutoff radius

15



2. electronic structure calculations

an atomic screening potential is used consisting of the electron density of the
specific atom—taking into account the basis set. In other words, VNA

I (r) =
Vlocal

I (r) + Vatom
I (r).

The basis of all DFT codes are the Kohn-Sham equations [Eq. (2.1)], but the
specific form of the Hamilton operator and the wavefunctions differs among
codes. The Kohn-Sham Hamiltonian in siesta, incorporating the pseudopo-
tential formalism, takes the form

Ĥ = T[n] + ∑
I

VKB
I + ∑

I
VNA

I (r) + δVH(r) + Vxc(r), (2.5)

where T[n] is the kinetic energy operator, VKB is the non-local part of the
pseudopotential (see above), VNA is the neutral-atom potential, δVH is a mod-
ified Hartree potential, and Vxc(r) is the exchange-correlation potential. The
index I refers to atoms. The Hartree potential is computed from the electron
density difference δρ(r) between self-consistent electron density ρ(r) and the
superposition of atomic densities ρatoms = ∑I ρatom

I (r). The kinetic energy and
the Kleinman-Bylander potential are determined from two-center integrals.
Here, the matrix elements usually involve the overlap matrix between basis
functions or possible other functions. The overlap matrix is determined from
a convolution of basis functions in reciprocal space and tabulated as a func-
tion of distance before the self-consistent calculations take place. Arbitrary
points between tabulated values are obtained by a spline interpolation. The
remaining terms in Eq. (2.5) are computed on a real-space grid. The neutral
atom potential is tabulated for each atom I at various distances. The Hartree
and the exchange-correlation potentials are obtained from the charge density
which is expressed from the density matrix and the basis functions at a point r
as

ρ(r) = ∑
µν

ρµνϕ∗
ν(r)ϕµ(r). (2.6)

The Hartree potential is then calculated by solving the Poisson equation using
Fast-Fourier-Transformation. The mesh grid size is the parameter used in the
siesta input file to tune the fineness of the real space grid; it is specified
as a cutoff energy for the maximum Fourier component of the plane wave
expansion.

The basis set used in siesta to expand the single-particle wave functions are
numerical atomic orbitals. This means that an atomic orbital ϕIlmn(r) is the
product of a numerical radial function ϕ(∆r) and a spherical harmonic Y as

ϕIlmn(r) = ϕIln(r − RI)Ylm(rI/r), (2.7)

where the combined index Ilmn stands for atom I, angular momentum lm,
and principal quantum number n. The radial function is centered around
the nuclear position RI . Multiple ζ orbitals are included to improve the ba-
sis size convergence in a variational way [95]. Polarization orbitals provide
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2.2. dft calculations with siesta

a larger angular freedom for bond formation and are usually necessary to
achieve a better approximation for the bonds observed in solids under various
environments such as surfaces, defects or grain boundaries.

The most common outputs of electronic structure calculations are the k-de-
pendent energy eigenvalues, i.e. the band structure, the density of states via
a weighted sum of the eigenvalues in the first Brillouin zone,† and the total †The efficient evaluation of Bril-

louin zone integrals comprises
many different techniques that
also depend on particular mate-
rial classes. For our calculations
we use the Monkhorst-Pack
scheme [99].

energy. The latter is the basis for numerous derived quantities which in the
context of this work are forces and stresses for structural relaxation (see below)
and formation energies for grain boundaries and surfaces (see Ch. 5). The
Kohn-Sham total energy in siesta is

EKS = ∑
µν

Hµνρνµ −
1
2

∫
VH(r)ρ(r)d3r

+
∫
[ϵxc(r)− Vxc(r)]ρ(r)d3r + ∑

I<J

ZI ZJ

RI J
.

(2.8)

Here, Hµν and ρνµ are the Hamiltonian from Eq. (2.5) and the density matrix
defined in Eq. (2.4), respectively; ϵxc(r)ρ(r) is the exchange-correlation energy
density and the last term refers to the nuclear electrostatic potential between
atom I and J with corresponding pseudoatom charges ZI and ZJ . Due to the
long-range Coulomb interaction this last term is actually further transformed.
We will not present these technicalities here, the detailed transformation steps
are given in Ref. [84].

The total energy calculated in Eq. (2.8) is the basis for structural relaxations
and thermodynamic calculations. Usually, the atomic positions and cell pa-
rameters of the input structure originate either from experimental data or from
atomistic calculations. But even if the structure is obtained from another DFT
code an optimization of the internal and external degrees of freedom for a
given atomic basis set, pseudopotential and exchange-correlation functional is
required. The theoretical foundation for structural relaxations is the Hellmann-
Feynman (HF) theorem [100, 101]. It states that the derivative of the energy
for some parameter λ can be obtained from the Hamiltonian:

〈
ϕ

∣∣∣∣
∂H
∂λ

∣∣∣∣ϕ
〉

=
∂E
∂λ

. (2.9)

The HF theorem allows to compute for example the forces a particle experi-
ences due to the presence of all other particles directly from the Hamiltonian—
in this case λ in Eq. (2.9) is the particle position. The forces are then minimized
with some optimization routine by successive displacement of the atoms. Struc-
tural relaxation thus comprises two steps: (1) a ground-state DFT calculation
with force output, (2) a displacement of atomic positions according to a mini-
mization routine. Apart from the relaxation of internal degrees of freedom,
namely the atom positions, the crystal cell may be relaxed as well. Cell degrees

17



2. electronic structure calculations

Trial wave functions
ϕ0(r) = ϕ(r)Ylm

Charge density
ρ(r) = ∑µν ρµνϕ∗

ν(r)ϕµ(r)

Matrix elements: T[n], VH, . . .

HKSΨ = EΨ

converged?

Total energy, Forces, band structure, . . .

compute density

two-center integrals,
grid integration

solve Kohn-Sham equations

no
yes

SC
F-
cy

cl
e

Figure 2.2|Flow chart of a ground-state siesta DFT calculation. A large range of input param-
eters control individual steps with much more detail. The essence of a ground-state calculation
is the self-consistency loop.

of freedom can be relaxed either by a parametrical scaling and fitting to an
equation of state, or by evaluation of stresses from the Hamiltonian.

A flow chart of a ground-state siesta DFT calculation is given in Fig. 2.2
summarizing the governing equations described above.

2.3 tight binding

The tight binding (TB) approach to the electronic structure problem starts by
writing the Hamiltonian in terms of atomic-orbital like wave functions,††A concise and thorough discus-

sion of the TB method is given
in chapter 5 of Ref. [102]. Our
notation follows that reference.

H = ∑
i
|ϕi⟩ ϵi ⟨ϕi|+ ∑

ij
|ϕi⟩Vij ⟨ϕj| . (2.10)

The matrix elements of the Hamiltonian in Eq. (2.10) can be obtained by
different methods: using tabulated values like the well-known Slater-Koster
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tables [103], via empirical data, or fitting to other electronic structure meth-
ods [104]. Multiplying Eq. (2.10) by ⟨ϕi| from the left and by

∣∣ϕj
〉

from the
right, the matrix elements of the Hamiltonian are

〈
ϕi
∣∣H
∣∣ϕj
〉
= ϵiδij + Vij. (2.11)

The matrix elements of Eq. (2.11) are of two types: the ϵi are onsite energies
that is the potential energies of individual atoms. The second type are hopping
matrix elements that represent the electron transfer integral between atoms i
and j.

In principle, the TB model is not limited to any number of interactions and
in this sense it can achieve the same precision as a DFT calculation. The price
for this increased accuracy is the density of the Hamiltonian which increases
the computational cost. Therefore, the idea behind the LCAO method for
DFT and the TB approximation is the use of sparse Hamiltonians that can be
diagonalized efficiently.

A simple and quasi-tridiagonal form of the Hamiltonian is achieved by the
following assumptions:

• all ϵi are the same—since there is only one chemical species—and can be
set to zero for convenience,

• the hopping integral Vij decays fast enough that it is zero beyond nearest-
neighbor distances.

ϵ

t t

a

Figure 2.3|One dimensional
homogeneous chain.

To illustrate the TB approach, we first consider the homogeneous 1D chain
(Fig. 2.3). Here, atoms are connected to each other along one space direction
with a bond length a. We assume periodic boundary conditions in this direction
such that the primitive cell contains one atom. To start, we consider that every
atom has one orbital orthogonal to all other atoms, and that interactions are
only between nearest neighbors. The onsite energy is defined to be ϵ = 0,
the nearest neighbor hopping term is t and all other Vij = 0. In this case the
spectrum of the 1D chain takes the following form with the 1D wave vector k:

E(k) = ϵ + teika + te−ika = ϵ + 2t cos(ka). (2.12)

The density of states (DOS) is defined as D(Ē) = ∑k δ[Ē − E(k)]. Inserting
E(k) from Eq. (2.12) leads to

D(Ē) = ∑
k

δ[Ē − ϵ − 2t cos(ka)]

≈ 2
π

∫

FBZ
dk δ[Ē − ϵ − 2t cos(ka)] =

θ(1 − |Ē|/2)
2π
√

1 − (Ē/2)2
,

(2.13)

where we ultimately dropped ϵ because we set it priorly to zero. The 1D
chain has a cosine-like spectrum with a band width of 4t. Figure 2.4 shows the
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Figure 2.4|Numerically calculated band structure (a) and density of states (b) in the full
Brillouin zone of the homogeneous 1D chain. The dashed line represents the density of states
for a system with two atoms in the unit cell, the solid line is normalized to one orbital.

spectrum together with the density of states (DOS). The DOS has two maxima,
i.e. van Hove singularities at −2t and +2t for the occupied and unoccupied
states. These singularities mark the band on- and offset. Figure 2.4 also displays
the effect of making the unit cell larger—here containing two atoms instead of
one. Since the real space cell is doubled in length the reciprocal space cell is
half as long as in the first case. Therefore, the part of the cosine-band extending
beyond the new first Brillouin zone is folded back creating a second band
(open circles) and band degeneracies at the zone edges. The unnormalized
DOS [Fig. 2.4 (b)] shows twice as many states as in the first case, as expected.
In other words, the integrated DOS over the energy to the Fermi level yields
the number of electrons per unit cell.

It is insightful to consider the 1D chain with the following modifications: (a)
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Figure 2.5|Band structure (a) and DOS (b) for the following modifications of the 1D chain: dif-
ferent onsite energies (solid line), next-nearest-neighbor coupling (dashed line), non-orthogonal
basis (dotted line).

20



2.3. tight binding

different onsite energies ϵ1 ̸= ϵ2, (b) couplings beyond nearest neighbors, (c)
non-orthogonal orbitals. Figure 2.5 presents the band structure and the DOS
for these cases. (a) Different onsite energies shift valence and conduction band
rigidly and here for ϵ1 = −ϵ2 a band gap of 2ϵ opens. (b) Coupling beyond
nearest-neighbors (here second nearest neighbors) results in an asymmetry
of valence and conduction band. (c) Non-orthogonal orbitals also lead to
such an asymmetry. In general, a better agreement of the TB approach com-
pared to first-principles electronic structure methods is reached by including
more interactions and non-orthogonal orbitals. Obviously, these modifications
make the corresponding matrices denser diminishing the advantage of the TB
method with regard to accessible system sizes. Moreover, certain technical
definitions, e.g. self-doping, or bond-currents (see Ch. 3), are only strictly
valid for orthogonal orbitals.

Based on the modifications of the 1D chain we now consider graphene. The
influence of next-nearest neighbor interactions and non-orthogonal orbitals
for graphene is illustrated in Fig. 2.6. We show the band structure along the
zigzag direction of pristine graphene in a rectangular unit cell. For compar-
ison the full band structure from a siesta DFT calculation with a single-ζ
basis set is depicted in Fig. 2.6 (a). Bands with a dominant pz-character are
highlighted by solid lines. Figure 2.6 (b) compares these bands against the
conventional nearest-neighbor TB model (TB nn), a next-nearest neighbor TB
model (TB nnn), and a non-orthogonal next-nearest neighbor TB model (TB
non-orthogonal). The numerical parameters of the TB models are taken from
Ref. [105]. The zigzag direction contains two important points in reciprocal
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Figure 2.6|DFT (a) vs. tight binding (b) band structure of pristine graphene along the zigzag
direction of the rectangular unit cell. The TB models use the following levels of approximation:
Nearest neighbor orthogonal (TB nn), next-nearest neighbor orthogonal (TB nnn), and next-
nearest neighbor non-orthogonal (TB non-orthogonal). The dashed lines in (a) indicate bands
with non-pz-character.
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2. electronic structure calculations

space: the Γ-point and the K- or Dirac-point. Focusing first on the Dirac-point,
Fig. 2.6 (b) shows that the TB nn model fits the DFT bands quite well. The TB
nnn model, in contrast, exhibits a slight energy shift around the Dirac point,
while the TB non-orthogonal model approximates the DFT bands decently. It
is important that the orthogonal nearest-neighbor TB model already gives a
very close fit on the Dirac point. Since low-energy electron transport occurs
around this point, this result indicates that the simple TB approximation is
sufficient in this energy regime.

Moving from the Dirac-point to the Γ-point shows that the TB nn model
cannot capture the band dispersion properly anymore. Foremost, the nearest-
neighbor interaction imposes a symmetry between valence and conduction
band that is not present when including interactions from further neighbor
shells. Evidently, the other two TB models, which account for second-nearest
neighbors, give better approximations to the bands in the vicinity of the Γ-point.
However, also these models show pronounced deviations from the DFT bands.
There are several reasons for this result: The nnn and non-orthogonal model
mix the band character of s- and p-orbitals resulting in effective bands that
do no necessarily fit the distinct s- or p-bands of the DFT band structure. For
instance the lowest p-band in the energy interval from −7 eV to −4 eV is not
well captured by the non-orthogonal TB model because this model implicitly
mixes s-bands with higher energy into an effective band. Showing only the
band structures of a DFT and a TB calculation can therefore be misleading
since Brillouin zone integrated quantities could be better represented by TB
models that appear inadequate.

Summary Over the years, a large arsenal of methods has been devel-
oped to derive TB models from first-principles electronic structure calcu-
lations [23, 105, 106]. These methods range from fitting to band structures
to the Wannier function formalism. In the last paragraphs of this chapter
we have shown how simple modifications of TB parameters impact the
electronic structure qualitatively. Already the 1D-chain exhibits the essential
features: Implicit band symmetries in nearest-neighbor models are broken
by including additional neighbor shells; onsite energies can shift bands
rigidly or open band gaps when site-dependent; non-orthogonal TB models
further evoke band asymmetries and energy shifts. These results are directly
relatable to graphene. The important conclusion from these computational
experiments is that a rather fine tuning of the band structure is obtained
by simple means whose physical meaning is clear. More refined tuning,
on the other hand, sacrifices this clarity. In this regard the choice for the
nearest-neighbor pz-orbital model in graphene is not only motivated by
computational efficiency but also by the fact that such a model is physically
intuitive and captures the essential electronic properties at low energies
around the Fermi level. This energy region, after all, is the most relevant
for low bias electron transport.
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3| transport calculations with green functions

Macroscopically, Ohm’s law describes the linear response of bulk materials
towards an electric bias. With the ongoing reduction of the feature size of
electronic components it is clear that quantum mechanical effects become
significant below certain length scales and that Ohm’s law is no longer directly
applicable. Phrased differently, at the atomic level current flow is a non-
equilibrium, quantum-mechanical many-body problem. While this sounds
intimidating, for many practical purposes approximations of varying degrees
can be used. These approximations simplify the quantum mechanical transport
problem considerably.

In this chapter we consider the Green function formalism as a technique
for transport calculations. This formalism covers a broad range of complexity
from static quasi non-interacting to dynamic multiple-interaction transport.
Here, however, we will not discuss the Green function formalism beyond the
elementary level of quantum transport without phase or momentum relaxation.
The computational analysis of electron transport in nanocrystalline graphene
in this work is thus based on the ballistic transport approximation. As just
mentioned, we neglect any inelastic contributions such as electron-electron or
electron-phonon scattering.

Section 3.1 sketches a transport theory due to Landauer that establishes
basic facts about ballistic transport. The Landauer approach is a prelude to the
more involved Green function formalism on which the transport calculations
of this work are built upon. In Sec. 3.2 we summarize important definitions
and concepts of the Green function formalism from the perspective of the
computer codes siesta, tbtrans, and sisl used in this work. Using pristine
graphene and the Stone-Wales defect as model systems we show how the
relevant equations—Hamiltonians, density matrices, transport functions—are
implemented.

Under non-equilibrium the transmission function can be used to generate
current-voltage characteristics. These characteristics probably come closest
to conventional experimental transport measurements. We present briefly in
Sec. 3.3 the Landauer-Büttiker formula to obtain the current from the trans-
mission function and the electrode Fermi distribution functions. Since bias
calculations require to solve the Poisson equation self-consistently we apply
them only to small-sized problems. For large scale structures like polycrystals
we use bond current maps to complement the global transmission function
or density of states. The concept of bond currents is outlined in Sec. 3.4 again
using a Stone-Wales defect as example.
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3. transport calculations with green functions

3.1 landauer approach to transport

In a 1957 paper [107], Landauer made the following point: It is generally
not valid to assume a homogeneous field distribution when obtaining the
conductivity—in particular if the sample contains localized scatterers. He
proposed to consider electron transport based on transmission probabilities
instead of the external electric field. Effectively, this viewpoint swaps the
perspective: Instead of taking the response of a sample towards a macroscopic
electric field and define the conductivity then as the proportionality factor
between the field strength and the current, the conductivity is thought to
be composed of individual microscopic channels that pass electrons with a
specific probability.

In the absence of any scattering Landauer’s transport picture is particularly
simple: the so-called ballistic limit. Here, the conductivity is proportional
to the number of modes M, i.e. transmission channels, with the quantum of
conductance, G0 = 2e2/h, as a prefactor: G = G0M.† Every mode transmits†Our presentation is based

on chapter 2 of the book by
Datta [108] and chapter 3 of the
book by Di Ventra [109]. Since
conceptual aspects are empha-
sized, mathematical derivations
are left out. The cited books,
especially by Di Ventra, give a
more rigorous account of the
Landauer approach and should
be consulted for further refer-
ence.

electrons ideally which means that the transmission probability is one. An
experimentally established fact, however, is that a ballistic conductor exhibits
a finite conductivity. Apparently, this contradicts the ideal transmission of a
ballistic conductor. In fact it has been realized that the contact resistance causes
a finite conductivity in accordance with the experimental observations. The
resistance can be written as: R = h/2e2M. The resistance thus decreases with
increasing number of modes and if only one mode is available the resistance
takes the value: R0 = h/2e2 ≈ 12.9 kΩ. The number of modes is, to a first ap-
proximation, proportional to the width W‡ and the Fermi wave length kF of the

‡In the 2D case. In 3D this would
be the contact area.

conductor. Metals, for instance, have a low contact resistance because of their
short Fermi wave lengths and corresponding large number of modes. Semi-
conductors, on the other hand, have considerably fewer transverse modes.
This fact motivated several experiments in the 1980s on semi-conductor struc-
tures which showed conductance quantization via point contact transport
measurements [110, 111].

If the transmission probability T for electrons is less than unity, for example
due to reflections, the conductance formula is modified as:

G =
2e
h

MT. (3.1)

Equation (3.1) is the Landauer equation.
The conductance is affected by the number of modes and the transmission

probability. It is, however, more practical to calculate a transmission function
T(E), that is the average transmission probability per mode times the number
of modes. In most of the transport calculations to follow, this function will
be of keen interest. Redefining quantities is, however, not enough. We need
the computational tools to calculate transmission functions from electronic
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3.2. green function based transport

structure calculations. The next section gives details about this process based
on the Green function formalism.

3.2 green function based transport

Green functions are a versatile tool in mathematical physics. In the context of
transport calculations, however, we use them in a narrow sense, defined as the
inverse operators of a Schrödinger-like equation. Actually, Green functions
used in this way are not Green functions in the original sense within the theory
of differential equations, but the name has been used for historic reasons.

The Schrödinger equation for a transport problem takes into account both
the special geometry of an electrode-device setup and the associated boundary
conditions. The simplest transport setup is the two terminal configuration
shown in Fig. 3.1. The corresponding Hamiltonian can be written symbolically
in a matrix representation

H =




HL + ΣL VLD 0
V†

LD HD VDR
0 V†

DR HR + ΣR


 , (3.2)

which contains the following submatrices: the (bulk) Hamiltonians of the left
electrode (HL), the device (HD), and the right electrode (HR), the coupling

pe
rio

di
c

di
re
ct
io
n

transport direction

HL + ΣL VLD 0

V†
LD HD VDR

0 V†
DR HR + ΣR







Figure 3.1|Two-terminal transport calculation setup for a graphene bicrystal. The bicrystal
is decomposed into electrode-device-electrode segments. Electrodes are comprised of bulk
graphene while the device contains the GB. The full Hamiltonian contains the individual
Hamiltonians and coupling terms as expressed in Eq. (3.2).
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3. transport calculations with green functions

matrices between left/right electrode and device (VL/R,D), and the self energy
matrices ΣL/R. Whereas the Hamiltonians and the coupling matrices have
straightforward meanings, the meaning of the self-energies might not be im-
mediately clear. The given transport problem assumes electrodes that extend
semi-infinitely into the positive and negative transport direction. The effect of
a semi-infinite coupling is generated by the self-energy which renormalizes
the spectrum of the electrode. Since the self-energy is in general not Hermitian
its eigenvalues are complex and the states injected by the electrons can be
regarded as quasi-particles with finite life-time.

To illustrate the Green function transport formalism specifically, two ex-
amples are used: (i) transport in pristine graphene, (ii) transport through a
Stone-Wales defect in graphene. Both examples are treated within the TB
approximation and under zero bias.

Transport in pristine graphene

The band structure and DOS of pristine graphene (see Fig. 1.3, p. 4) show two
prominent features: (1) No states exist at the Fermi level and (2) van-Hove
singularities appear at ±t, with t = −2.7 eV. With these features we expect
that transmission is suppressed at the Fermi energy and exhibits local extrema
at the van-Hove singularities. For a simple system like pristine graphene the
transmission function should therefore follow the DOS closely.

Figure 3.2 shows the result of a transport calculation using tbtrans. The
transport setup consists entirely of pristine graphene with the transport direc-
tion coinciding with the armchair direction. Periodic boundary conditions are
applied along the y direction. The transmission function [Fig. 3.2 (b)] confirms
that no transport occurs at the Fermi level and that transmission maxima are
located at ±t. In Fig. 3.2 (c) the transmission eigenvalue at the Γ point is shown.
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Figure 3.2|Bulk transport in graphene. (a) Both device and electrode regions consist of pristine
graphene. Transport is along the x direction, periodic boundary conditions apply along the
y direction. (b) Transmission function averaged over k-points perpendicular to the transport
direction. (c) Transmission eigenvalue at the Γ-point.
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3.2. green function based transport

Transmission eigenvalues can be regarded as probabilities—assuming values
between 0 and 1—for transport and together with the number of modes they
form the total transmission. Notably, at the Γ point the transmission has a
large gap of 2t that can easily be inferred from the DOS resolved in momentum
space perpendicular to the transport direction (Fig. 3.3).
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Figure 3.3|Momentum-resolved
DOS along the perpendicular
transport direction of pristine
graphene.

We use this specific transmission eigenvalue to illustrate how it can be
computed from the building blocks of transport calculations based on Green
functions, that is the Green, self-energy and spectral-density functions (see
below). We choose the Γ point quite arbitrarily only to exclude explicit k-
point integration that must in the general case be performed. To represent the
components and operations of transport calculations we employ numerical
matrices that can readily be implemented for example in python.

The two-terminal transport problem can be expressed as a quantum me-
chanical problem. Instead of the Schrödinger equation, however, we formulate
the problem in terms of a Green function G as

G = [ES − H]−1, (3.3)

where E is the energy, S is the overlap matrix—in our tight binding model
this is the unit matrix—, and H is the Hamiltonian. Equation 3.3 means that
the Green function is the differential operator that solves the Schrödinger
equation. Formulating the problem in terms of a Green function does not
help us immediately. The underlying problem is that the electrodes extend
semi-infinitely in the transport direction, so that the matrices are infinite. It is
primarily this peculiar boundary condition that motivates the use of Green
functions.

The key ingredients to approach the semi-infinite boundary condition prob-
lem are the self-energies ΣL,R determined for the left and right electrode, respec-
tively. The self-energy is in general a non-Hermitian matrix, contrary to the
Hamiltonian. Put in other words this means that Σ has complex eigenvalues
that can be associated with states possessing a finite life time—analogous to
the general complex solutions of a damped oscillator. This property is exactly
what we try to model: Injection of electron states with finite life time that prop-
agate through a device region. The self-energy is a concept that has historically
featured prominently within quantum field theory [112]. From this theory
we can borrow the concept of renormalization into the transport problem
which expresses that the self energy renormalizes the electronic structure of
the electrode to account for its semi-infinite extension. Therefore, all k-point
dependence along the transport direction is integrated out and the self-energy
only depends on the energy and possibly transverse k-points. To calculate
the self-energy a widely used iterative procedure exists that computes sur-
face Green functions by a so-called decimation approach [113]. Details of this
method are technical and we assume in this section that such a method is
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Figure 3.4|Components of Green function based transport calculations. (a) Trace of imaginary
part of the Green function (solid line) and broadening function (dotted line). (b) Spectral density
of states from Eq. (3.7) (solid line) and from tbtrans (dashed line). (c) Transmission eigenvalues
calculated by Eq. (3.10). Open circles represent a tbtrans based calculation.

directly available to us. With the self-energies we rewrite Eq. (3.3) as

G(r) = [ES − HD − ΣL − ΣR]
−1, (3.4)

with the device Hamiltonian HD (see Fig. 3.1).
In Eq. (3.4) the semi-infinite boundary conditions are accounted for with the

self energies and the Green function becomes finite. All physical properties
of the electrode-device-electrode system are encoded in G—which we write
in the following in matrix form Gij for convenience. For instance, the total
density of states is given as

DOS(E) = − 1
π

Tr Im[Gij(E)]. (3.5)

Figure 3.4 (a) shows Eq. (3.5) applied to Γ point transport in bulk graphene. The
DOS [solid line in Fig. 3.4 (a)] resembles the DOS obtained from a conventional
electronic structure calculation. This is no surprise as we are probing pris-
tine graphene with pristine graphene electrodes whose boundary conditions
effectively establish full periodic boundary conditions.

An important ingredient to obtain the transmission function is the broad-
ening function ΓL,R(E) for the left/right electrode. This function is defined in
terms of the self energy as

ΓL,R(E) = i[ΣL,R(E)− Σ†
L,R(E)]. (3.6)

It describes the coupling strength between electrodes and device. In Fig. 3.4 (a)
it is plotted by a dashed line. The broadening function is peaked at the Fermi
energy, which means that the coupling is weak and the energy is well localized.
Since at this energy no states exist, there is no transport. On the other hand,
around ±t the coupling strength increases and beyond the energy gap of 2t
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3.2. green function based transport

states are propagated. Similar information is provided by the spectral density
of states AL,R(E) defined as

AL,R(E) = G(E)ΓL,R(E)G†(E). (3.7)

Equation 3.7 describes the coupling strength in a more general fashion which
is related to spectral theory. It can, for example, also express the total density
of states [see Fig. 3.4 (b)]:

DOS(E) =
1

2π
Tr Aij

L,R(E). (3.8)

The actual transmission function T(E) is given by the quadruple matrix
product,

T(E) = Tr
[
ΓL(E)G†(E)ΓR(E)G(E)

]
, (3.9)

that can be written in a more compressed way as

T(E) = Tr[ΓL AR]. (3.10)

The physical interpretation of the matrix product in Eq. (3.10) is not intu-
itive [108]. However, AR can be regarded as a generalized density of states
and ΓL as the number of modes such that Eq. (3.10) is analogous to Eq. (3.1)
from the Landauer formalism.

Eventually, we can compute the transmission eigenvalue at the Γ-point from
the previously defined matrices. The result is shown in Fig. 3.4 (c) together
with the transmission obtained directly from tbtrans. The exact matching
confirms that the matrices are correctly implemented. The purpose of this
section was to show that the Green function technique for transport problems
is no black art. The ingredients are rather straightforward and bear in most
cases a clear physical meaning. Naturally, only general aspects of the Green
function formalism have been discussed here. But practically all applications
in this work require merely the above set of equations.

Transport through a Stone-Wales defect

(a)

(b)

Figure 3.5|Stone-Wales defects
in device region. (a) The Stone-
Wales defect is symmetrical
along the transport direction
(SW-I). (b) The defect breaks the
symmetry along the transport
direction (SW-II).

Transport in pristine graphene is not spectacular. By inserting a Stone-Wales
type of defect into the device region a more interesting case is investigated.
Apart from examining the computational probes of transport calculations
this subsection addresses general aspects of topological defects for transport
characteristics that are relevant to graphene GBs as well.

Figure 3.5 (a) shows how the device region is modified compared to Fig. 3.2 (a).
In Fig. 3.5 (b) the Stone-Wales defect is placed such that the symmetry along
the transport direction is broken. This case is examined at last. Figure 3.6 (a)
shows the DOS of the device region together with the electrode DOS. The
electrode is pristine graphene and the DOS shows nothing unfamiliar so far.
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Figure 3.6|Transport through Stone-Wales defect. (a) Comparison of electrode DOS (pristine
graphene, dashed line) and spectral DOS (solid line). (b) Transmission function of Stone-Wales
defect (solid line) and pristine graphene (dashed line). (c) First two transmission eigenvalues
of Stone-Wales defect.

The device DOS, on the other hand, shows a strong resonance in the vicinity
of the Fermi level indicating the defective nature of the sample. Moreover, the
symmetry between electrons and holes is broken. This symmetry-breaking is
a consequence of the topological nature of the Stone-Wales defect. It means
that not the coordination but the connectivity among lattice sites is altered
compared to pristine graphene. In other words, the sublattice symmetry is
broken. This feature is also present in graphene GBs because GBs exhibit a
topological nature as well (see Ch. 4). Consequently, the transmission function
and the transmission eigenvalues are distorted compared to pristine graphene
[Fig. 3.6 (b) and (c)] and the overall transmission is notably reduced.

Lastly, we observe how transport is affected if the Stone-Wales defect breaks
the symmetry along the transport direction. Effectively, this setup means a ro-
tation of the transport direction. Figure 3.7 compares the Green function DOS,
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Figure 3.7|Transport through a rotated Stone-Wales defect. Comparison of Green function
DOS (a), transmission function (b), and first transmission eigenvalue (c) between SW-I (dashed
line) and SW-II (solid line).

30



3.3. bias calculations

transmission and transmission eigenvalues of the two differently oriented
Stone-Wales defects. Because the defect type has not changed the quantities
share many similarities, for instance the kinks of the transmission functions.
Differences occur at the exact energy location of these features. These differ-
ences are reflected in the spectral density of left and right electrode (Fig. 3.8).
Until the last structure this DOS has always been identical because of the
structural symmetry along the transport direction. Figure 3.8 shows that this
is not the case for the setup of Fig. 3.5 (b).

−4 −2 0 2 4
0

0.2

0.4

0.6

E − EF (eV)

A
D
O
S
(1
/e

V)

left
right

Figure 3.8|Spectral density of
states of left and right electrode
for the asymmetric Stone-Wales
defect.

In this last example the effect of transport direction on transport properties
may appear trivial. It should, however, be kept in mind that transport direction
can be an important factor for transport through structures with topological
defects. This observation, among other considerations, motivates the use of
different transport setups discussed in Ch. 7.

3.3 bias calculations

The power of the Green function technique unfolds more significantly for non-
equilibrium calculations. For transport calculations this mostly translates to
calculations at finite bias voltages—although thermal transport is another pop-
ular application field. We sketch here the main equations for biased transport
calculations following the canonical references of the siesta and transiesta
method [114, 115].

For non-equilibrium calculations it is advantageous to resort to density
matrices (see Ch. 2). The density matrix represents the statistical ensemble of
the system states. It is given in terms of the spectral density matrix and the
electrode Fermi distribution function nL,R

F (ϵ) as

ρ =
1

2π

∫∫

BZ
dk dϵ Aij,knL/R

F (ϵ)e−ik·R. (3.11)

Under non-equilibrium the density matrix can be split into an equilibrium
part and a correction term:

ρ = ρ
eq
L/R + ∆R/L. (3.12)

Note that the non-equilibrium density matrix of the left (right) electrode con-
tains the correction term from the right (left) electrode. The equilibrium density
matrix can be obtained purely from the Green functions,

ρ
eq
L/R =

1
2π

∫∫

BZ
dk dϵ

[
Gij,k(z)− G†

ij,k(z)
]

nL/R
F (ϵ)e−ik·R, (3.13)

with the complex energy z.
From the density matrix the energy spectrum, forces and the electron density

can be calculated under non-equilibrium boundary conditions. This allows to
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3. transport calculations with green functions

determine the self-consistent charge redistribution with an applied bias or to
perform structural relaxation under an external bias.

The calculation of currents is similar to the calculation of conductance at
zero bias. Apart from the quadruple matrix product, containing the non-
equilibrium quantities, the electrode distribution functions nF,L/R are required.
The distribution functions are located at the electrochemical potential ±V/2
for a given bias V. The current is therefore written as

IL/R(V) =
2G0

e

∫∫
dk dϵ TL/R,k [nF,R(ϵ)− nF,L(ϵ)] , (3.14)

where the quadruple matrix product of Eq. (3.9) has been condensed into
TL/R,k.

3.4 bond currents

The transmission function, the spectral density of states and the Green function
based density of states are typically the most important quantities in transport
studies. They give a good overview of transport characteristics because of
their global nature.† In many cases global transport properties need to be†Global nature refers to the k-

point averaged quantities. supplemented with local transport information to have more insight into the
relationship between structure and transport behavior. It is obviously impor-
tant for our work to discriminate between grain and GB transport properties.

Local transport characteristics can be obtained with different approaches.
Perhaps the easiest is to use a local density of states. Here the already computed
density of states (spectral or from the Green function) is projected onto either
position wave functions or atomic wave functions. The choice depends on the
intent: the DOS resolved either structurally or in energy space. A drawback
of the local density of states is the choice of appropriate projection functions.
While in LCAO-based DFT calculations the projection functions are usually
just the atomic orbitals, tight-binding based calculations can use different
forms of projection functions such as Slater-type atomic orbitals or Gaussians.
A particular choice, therefore, depends on additional factors.

Another approach is to calculate bond currents. Here all ingredients are
available from the conventional transport calculation: the spectral density
of states Aij(E) and the Hamiltonian Hij(E). In other words, no additional
projection functions need to be introduced, nor a complicated extraction must
be performed.

The bond current Jij, associated with the left/right electrode, between or-
bitals i and j is defined as [116, 117]

JL/R
ij,k =

1
h̄

Im
[

AL/R
ij,k Hji,k − AL/R

ji,k Hij,k

]
, (3.15)

32



3.4. bond currents

where all quantities depend on energy. When displaying bond currents, the
k-point dependence is typically integrated out over the first Brillouin zone:

JL/R
ij =

∫

FBZ
dk JL/R

ij,k . (3.16)

Strictly speaking, bond currents are only defined for orthogonal basis sets
because the orbital population for such a basis set is unambiguous. It follows
that the resulting bond current is uniquely determined as well. In the general
case of non-orthogonal basis functions, however, a definite orbital population
depends on the choice of projection functions. The overlap matrix Sij would
then enter Eq. (3.15) but the equation would be invalid in a strict sense. In this
work we will not deal with this complication since all bond currents are calcu-
lated for tight binding models with orthogonal basis functions. Nevertheless,
if the models are extended to include buckling or defect absorption resulting
in non-orthogonal basis sets, the aforementioned point must be kept in mind.
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Figure 3.9|(a) Stone-Wales
defect embedded in a sheet of
pristine graphene. (b) Average
transmission function of the
structure from (a) (solid line)
and pristine graphene transmis-
sion (dashed line).

We illustrate the usage of bond currents with the already familiar Stone-
Wales defect. We embed a Stone-Wales defect in a large sheet of pristine
graphene [see Fig. 3.9 (a)]. The transmission function in Fig. 3.9 (b) suggests
four energies of interest: (A) −1 eV, (B) −0.6 eV, (C) 0.5 eV, (D) 1.0 eV. Already
from the k-averaged transmission function it is apparent that the Stone-Wales
defect breaks the electron-hole symmetry that is present in pristine graphene
with a nearest neighbour tight binding model (see Ch. 4 for an additional
discussion of this matter).

To investigate further Fig. 3.10 shows the bond currents corresponding to the
highlighted energies in Fig. 3.9. We combine a vector current representation
with the net current on each atom. This means that the line width of each
arrow indicates how much current flows through this bond. Bear in mind,
however, that the bond currents are obtained from an unbiased calculation and
are therefore no physical currents. In Fig. 3.10 (a) the energy is −1 eV meaning
that we are considering hole transport. At this energy and at lower energies
the transmission slope is bulk graphene like. The transmission itself is reduced
by nearly a constant. We see that major transport channels are open below
and above the Stone-Wales defect. Since the defect is very localized these
bulk-like transport channels are nearly unperturbed, but of course the trans-
mission is reduced compared to pristine graphene since the middle channels
are unavailable. Closer to the Fermi level, Fig. 3.10 (b) shows the bond currents
at −0.6 eV, the transmission slope starts to deviate from the bulk case. The
corresponding bond currents show reduced current flow along the pristine
graphene channels and more localization around the Stone-Wales defect. The
defect itself has low transmission. Fig. 3.10 (c) and (d) depict bond currents
for electron transport. While the general transport behavior is analogous to
hole transport the broken electron-hole symmetry is reflected in the details of
the bond currents. Figure. 3.10 (c) in particular shows a strong localization of
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Figure 3.10|Bond currents of a Stone-Wales defect at energies selected from Fig. 3.9 (b).

current flow within the pentagons of the Stone-Wales defect. At 1.0 eV current
starts again to flow primarily along the pristine transport channels.

The example of transport through a Stone-Wales defect is simple-minded.
Yet it shows that bond currents yield an insightful complementary picture to
averaged transport quantities such as the transmission function. In many cases
the bond currents can confirm or dismiss the importance of certain structural
features for overall transport.

Figure. 3.10 also indicates a challenge for the analysis of transport via bond
currents: an adequate visualization. The first approach for visualizing bond
currents is presented in Fig. 3.10, namely utilizing vectors and possibly line
width to represent current magnitude. This approach is viable for structures
containing at most a few hundred atoms. In the case of the structure of
Fig. 3.9 (a) this seems to be already the limit. In Ch. 7 we deal with systems con-
taining a few thousand atoms. Using little arrows in these cases is insensible.
Instead, we average over individual atoms resulting in faceted bond current
maps. This approach has been developed in the work of Calogero [118] and
adopted for our purposes. For the system discussed in this chapter this ap-
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3.4. bond currents

proach is shown in Fig. 3.11. Because the system contains only a few hundred
atoms the averaged bond current map is here rather coarse.
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Figure 3.11|Bond current map
at 0.5 eV of the structure from
Fig. 3.9 (a). The bond currents
are averaged over atomic sites
and indicated qualitatively.

Summary In this chapter we outlined quantum mechanical transport calcu-
lations based on the Green function formalism. We emphasized the practical
side of such calculations from a user perspective. As example systems we
used pristine graphene and graphene sheets containing Stone-Wales defects
to illustrate how the pertinent equations look for specific transport prob-
lems relevant to this work. It is important for this chapter and for the rest of
this work that all transport equations are represented as matrix equations.
This means that wave functions are most naturally based on atomic orbitals
or the tight binding approximation and that operators are used within a
finite difference representation. The matrix form of the transport equations
is especially useful for numerical calculations since several computationally
efficient algorithms exist for various matrix operations.

Starting from the Hamiltonians of the electrode-device-electrode system
we built up the equations towards the transmission function. This function,
both averaged over k-points and k-point resolved, takes the central role in
the analysis of transport of bi- and polycrystals in our work. To a lesser
extent we regard current-voltage characteristics (see Ch. 5). Biased calcula-
tions require DFT calculations within our setup so that the Poisson equation
can be solved self-consistently. While this is computationally feasible for
the bicrystals analysed in Ch. 5, it is unfeasible for the polycrystals treated
in Ch. 7. Instead, we complement the transmission function in polycrystals
with bond current maps. These maps give insight into the relation between
structural features, e.g. the GB network, and transport behavior and are
particularly useful for extended structures. The basics of bond currents
were shown in this chapter for a Stone-Wales defect. We showed how bond
currents are calculated from the spectral density matrices and the Hamilto-
nian and how bond currents reveal that structural features—here the Stone
Wales defect— affect the transport properties.

For the analysis of ballistic transport we therefore have primarily the
transmission function, possibly at a finite bias, and bond currents. As an
auxiliary quantity we have the spectral density function which is closely
related to the density of states and the bond currents.
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4| graphene grain boundaries: properties and model
generation

Due their 1D nature, graphene grain boundaries (GBs) have a distinct compo-
sition and offer different properties compared to GBs in bulk 3D materials. The
reduced dimensionality also motivates a specific notation based on geometric
relations of the honeycomb lattice. Such a notation is at first sight different
from the coincidence site lattice (CSL) picture conventionally used to classify
grain boundaries.† †There exists a one-to-one re-

lation between CSL theory
and the graphene GB nota-
tion described here, see for
example Ref. [72]. CSL the-
ory in graphene only covers
symmetric GBs and is thus not
suited for an analysis of general
graphene GBs.

Section 4.1 takes again the Stone-Wales (SW) defect to illustrate how non-
hexagonal polygons within the atomic structure affect the electronic structure.
These polygons, such as pentagons and heptagons, are the main constituents
of graphene GBs. To classify graphene bicrystals this sections also introduces
a specific notation commonly used in the literature. The construction of bi-
and polycrystal models requires to assign an atomic structure to the interface
region where the pristine graphene grain lattices interpenetrate each other.
Here, a simulated-annealing-type optimization is presented that prepares all
graphene GB models studied in this work. The optimization is outlined in
Sec. 4.2 alongside example structures of bi- and nanocrystals.

4.1 structure of grain boundaries

Chapter 1 has introduced graphene GBs on a phenomenological basis. In this
section we look more closely at structural aspects of GBs, outline a practical
notation for general graphene bicrystals, and consider the relation between
atomic and electronic structure of the GB.

Figure 4.1|A bond rotation
changes the connectivity of the
sublattices. A black atom has
now two white and one black
nearest neighbors instead of
only white nearest neighbors as
in the pristine system.

Grain boundaries that are only composed of n-gons and hexagons have an
important property: All atoms are threefold coordinated just as in pristine
graphene. The SW defect in Fig. 4.1 illustrates this fact nicely.

This defect is generated by a 90◦-rotation of a carbon-carbon bond. In
effect, the four hexagons sharing the initial bond are transformed into two
pentagons and two heptagons.‡ This operation does not change the individual

‡In fact, Fig. 4.2 (a) shows two
pentagons and two octagons
due to the short x dimension
of the supercell. If one or more
unit cells are added along the x
direction, the octagons become
heptagons.

coordination of atoms because two of the initial hexagons loose a vertex and
two hexagons receive a vertex such that the total number of vertices—and
thus the coordination—is unaffected compared to the pristine configuration.

If the SW defect does not change the coordination compared to pristine
graphene it is perhaps not immediately clear why such a defect changes the
electronic structure at all, as seen in Fig. 4.2 (b). Within the nearest neighbor TB
model every atom is still connected to three other atoms, only the bond angles
and bond distances have changed. However, a static hopping integral value
ignores these changes. The reason for the strong impact of the SW defect or in
general of the presence of n-gons in graphene is that the sublattice symmetry
is broken. As stated in Ch. 1 graphene consists of two hexagonal sublattices.
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Figure 4.2|Influence of a Stone-Wales defect on the electronic structure of graphene. (a)
Emergence of the SW defect from pristine graphene in a 1 × 2 rectangular graphene cell. (b)
Band structure along ky in the rectangular first Brillouin zone and density of states over the
full first Brillouin zone for pristine graphene (solid line) and the SW defect (dashed line).

Although there is only one kind of atom, namely carbon, each sublattice can be
seen as containing one type of atom, -type and -type. In pristine graphene a

-type atom is directly surrounded by -type atoms only. Now the SW defect
breaks this symmetry, or in other words changes the topology (Fig. 4.1). This
topological nature of graphene GBs has already been mentioned in Ch. 1 under
the perspective of disclinations. The changed sublattice connectivity induced
by n-gons is another aspect of the topological nature of these defects.

While n-gons are important to the electronic structure in graphene, a char-
acterization of GBs solely based on the patchwork of n-gons is not useful.
Instead, polycrystals are better characterized by the interface dimension and
orientation relation of the grains. We consider bicrystals in the following but
an application to polycrystals is straightforward, if irregular GBs are ruled
out.

In a bicrystal two pristine grains are stacked next to each other. These grains
define the misorientation angle θ and the interface length d. The interface
is assumed to be a straight line segment of length d—the actual interface,
however, might be wavy and, if straightened out, larger than d. In a supercell
bicrystal model the interface length is also the repeat length since the bicrystal
is extended infinitely along the GB direction.† It is convenient to express†Technically, this is achieved by

periodic boundary conditions. the misorientation angle θ measured against the x direction individually for

38



4.1. structure of grain boundaries

ZZ

ZZ

AC

AC

a2

a1

a2

a1 a′1 a′2

d(5,0) (3,3)

(n, m) (n′, m′)

(a) (b)

Figure 4.3|High symmetry directions—armchair (AC) and zigzag (ZZ)—in the graphene
lattice (a) and GB notation for a (5, 0)|(3, 3) bicrystal (b).

each grain, that is θ = θL + θR. With these definitions a GB notation can be
established that consists of a vector for each grain that represents the interface
length and the misorientation angle in terms of the graphene primitive unit
cell. With the integers m, n, m′, n′ this notation takes the form: (m, n)|(m′, n′).

Figure 4.3 shows this construction for a (5, 0)|(3, 3) bicrystal. The starting
point is the hexagonal graphene lattice with the armchair direction arbitrarily
chosen along the x axis. The hexagonal symmetry implies that the zigzag
direction lies 30◦ against the armchair direction and that a second armchair
and zigzag direction within the first quadrant are located at 60◦ and 90◦,
respectively. All possible bicrystal misorientations lie therefore in the interval
[0◦, 60◦]. An arbitrary interface line—that is a line of given angle θ and length
d—can be constructed on the hexagonal grid based on an integer combination
of the basis vectors of the primitive graphene unit cell:

rGB[θ; d] = ma1 + na2. (4.1)

Due to the restriction that m and n are integers, it is clear that arbitrary repeat
lengths and misorientation angles can only be reached approximately, leading
to potentially huge super cells that would not be observed in real samples.† †The epitome of this case are

armchair-zigzag GBs which will
be discussed at length in Ch. 5.

Intrinsic lattice incommensurability of the grains of a finite bicrystal evokes
a mismatch strain that can be reduced by increasing the repeat length. Only
in the limit of infinite repeat length, though, would this strain approach zero.
In reality, the mismatch strain would be resolved at some repeat length by an
additional dislocation.

Equation (4.1) suggests that a graphene bicrystal can be constructed from
two grains which share the vector rGB while having different values for m and
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Figure 4.4|Repeat lengths, misorientation angle, and mismatch strain for different GB classes
in graphene following Ref. [82]. Open circles represent symmetrical bicrystals, filled circles
asymmetrical bicrystals.

n. This further motivates the notation (m, n)|(m′, n′) for arbitrary bicrystals.
Expressing graphene GBs in terms of integer linear combinations of the hexag-
onal basis vectors has the advantage that many interesting properties of GBs
can be related to particular values of these integers (see also Ch. 5). To be able
to relate the integers m and n to the usually specified quantities for GBs, the
repeat length d and the misorientation angle θ, the following equations are
used:

d = dCC
√

3
√

m2 + mn + n2 (4.2)
and

θ = arctan
(

2m + n√
3n

)
. (4.3)

Figure 4.4 gives an overview of the repeat length as a function of mis-
orientation angle and mismatch strain for different classes of GBs given as
combinations of the integers m, n, m′, n′.

In Ch. 2 it was remarked that the electronic structure of graphene GBs is to
a large extent determined by the low energy (linear) dispersion around the
Dirac points. This assertion is justified by considering the band structure of
pristine graphene in a rectangular unit cell with different repeat lengths along
the y axis (Fig. 4.5). This setup corresponds to an (n, 0) grain in in a bicrystal
and is representative for other grains due to the isotropic nature of the Dirac
cones at low energies.

For any repetition n where n ̸= 3q with integer q the Dirac cone lies at 2/3
of the Brillouin zone. If n = 3q the Dirac cone lies at the Γ point. This can be
seen by translating for instance K′ in Fig. 4.5 (a) by twice the vector from Γ to
the dash-dotted zone boundary. Twice this vector is a reciprocal lattice vector
of one third of the original Brillouin zone. The translation puts K′ exactly at
the Γ point within the one-dimensional Brillouin zone Γ → Y. Independent
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Figure 4.5|Graphene band structure along ky for multiplications of 1× to 4× of the rectangular
unit cell along the zigzag direction. (a) Zone boundaries in the two dimensional schematic
Brillouin zone. The dash type corresponds to the calculated band structures in (b).

of the location of the Dirac cone, Fig. 4.5 (b) clearly shows that the dispersion
of the maximum valence band and minimum conduction band are to a good
approximation linear for half of the Brillouin zone. This is sufficient since the
electronic structure of a bicrystal will be determined by two Dirac cones—one
associated with each grain—such that the maximum intersection distance
between the Dirac cones is in the middle of the Brillouin zone.

4.2 simulated annealing

initial configuration

Optimized
initial configuration

manipulation

Optimized
manipulated configuration

En < En−1?

Output configuration

relaxation

identify
target atoms

relaxation

no
yes

Figure 4.6|Flow diagram for
optimization.

In this work GBs are optimized by simulated annealing. We use an in-house
computer code (see Fig. 4.6) that is based on molecular static structural opti-
mization and energy calculation [119] and a set of structure manipulations to
minimize a target energy. The optimization program takes an initial atomic
configuration. This system is decomposed into two groups: (1) atoms that are
not manipulated and fixed during the first structural relaxation run, (2) atoms
that can be manipulated and that are relaxed during the first molecular static
optimization. Apart from the structure input the optimization code takes a
set of weights for the individual structural operations and target values for
atomic composition and coordination. Lastly, the number of run steps and the
Boltzmann factor β are set. Every optimization begins by a molecular static
structural relaxation of the initial configuration. This relaxation itself consists
of two runs. The first run relaxes only atoms of group (2), the second run both
groups. Additional constraints such as completely fixed atoms can be specified
within the first group. The energy optimization is typically constrained by
a target composition or a target coordination. For the case of graphene GBs
considered in this work we aim for ideal threefold coordination. Therefore,
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Figure 4.7|Simulated annealing optimization of an armchair-zigzag grain boundary.

only the target coordination is set. The initial relaxation is succeeded by an
identification of atoms which are falsely coordinated. For this identification
the radial distribution function is computed. The cutoff for the inclusion of
nearest neighbors is the mean between the first two peaks of the radial distri-
bution function. This cutoff is used to determine the neighbor list of all atoms
within group (2). Atoms that do not fulfill the target coordination are added
into a manipulation group for the current run step. By drawing two random
numbers one or more atoms of the manipulation group and one operation are
chosen. The operations consist of two types: the first type comprises addition
of a new neighbor or deletion of the selected atom. The second type comprises
geometric operations of the selected atoms and its immediate neighborhood:
mirroring, reflection, translation. After the manipulation a new molecular
static run is performed from which the new energy (for example interface
energy) is calculated and accepted if it is lower than the previous energy or
accepted with a Boltzmann factor. If neither cases are fulfilled the structure is
rejected. This process is iterated for the desired number of run steps.

To illustrate the procedure the (7, 0)|(4, 4) system is considered. Initially,
two grains of armchair and zigzag orientation are placed next to each other
such that no atoms overlap. This arrangement is the initial configuration
for the optimization procedure. Figure 4.7 shows that the initial structure
has five atoms (marked red) that are falsely coordinated. An atom is falsely
coordinated (in this example) if it has not three neighbors within a cutoff
of 1.6 Å—the bulk carbon-carbon bond length being 1.42 Å. Before further
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(a) (b)

Figure 4.8|Structural optimization of a graphene polycrystal comprised of hexagonally shaped
grains. (a) Initial structure prior to optimization. (b) Final structure after 78 iterations repre-
senting a local minimum of the potential energy landscape. Grey atoms are kept fixed during
optimization while blue atoms are manipulated and relaxed by molecular statics calculations.
Red atoms represent miscoordinated atoms.

manipulations of the atomic structure an initial structural relaxation (molecular
statics) is performed. There exist several choices for interatomic potentials
of carbon-based materials. A rather popular is the bond-order potential by
Brenner et al. [120]. The simulated annealing method requires high through-put
molecular static optimizations for systems containing up to several thousand
atoms. Additionally, we require only a minimum accuracy to ensure threefold
coordination. Taking these considerations together we choose a Tersoff-type
silicon-carbide potential by Erhart and Albe [121] instead of the bond order
potential gaining roughly a factor of four in speed. The initial relaxation
already reduces the number of miscoordinated atoms to three. Apart from the
orientation relation between the grains the relative displacement along the
interface determines the (initially) falsely coordinated atoms. In the current
example this displacement already minimizes the number of miscoordinated
atoms. The initial relaxation is succeeded by a random choice of operations
that manipulate the atomic structure around falsely coordinated atoms. Since
in the given example all three falsely coordinated atoms are close to each
other the insertion of an additional atom already renders all remaining atoms
perfectly coordinated. In this case the simulated annealing consisted of one
step.

The optimization shown in Fig. 4.7 can in principle be carried out entirely
manually. It serves thus, in the first place, to demonstrate the core steps
during the simulated annealing optimization. A more involved example is
the optimization of a polycrystal as shown in Fig. 4.8. Figure 4.8 (a) depicts
the polycrystal as initially constructed. In Ch. 7 the detailed construction
procedure is presented. Here, it is only relevant to see that the initial interfaces
are badly connected. Blue atoms represent atoms that will be subjected to
the optimization run and red atoms show miscoordinated atoms. The gray
atoms, which mainly form the grain interiors, are fixed. It is evident that
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the initial density of miscoordinated atoms is high since GBs are cut sharply
per construction. Optimizing the polycrystal via the simulated annealing
technique yields after 78 iterations the structure shown in Fig. 4.8 (b). It is
noteworthy that no perfect coordination is achieved after 78 iterations. A
remedy could be to simply append more iterations. On the other hand, the
optimization may get stuck around peculiar structures. In any case, it may
be justified to include some structural irregularities since real polycrystalline
samples exhibit many irregularities themselves. In this work, however, we
target perfect coordination as much as possible since we have no tight binding
model of the various structural defects.

Summary We have established several simple yet important properties
of graphene GBs that will indirectly appear in many of the subsequent
chapters dealing with explicit transport calculations. GBs are topological
defects and the profound impact of this fact on the electronic structure could
already be demonstrated with a Stone-Wales defect. For graphene bicrystals
a dedicated notation apart from the commonly used coincidence site lattice
is useful. We employ the GB repeat length and the misorientation angle
throughout Chs. 5 and 6. The generation of reasonable structure models is
the basis for all calculations. Whereas bicrystals could be created manually,
stitching together thousands of atoms in a graphene polycrystal by hand is
hopeless. We have therefore sketched a simulated annealing optimization
that we use in our work to ensure threefold coordination at the GB. All
structures treated in Ch. 7 are generated by this method.
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5| structure-dependence of transport across grain
boundaries

In this chapter the influence of the local atomic grain boundary (GB) structure
on the electronic transport properties of graphene bicrystals is investigated.
Since the repeat length and the misorientation angle only fix the macroscopic
grain cells, the detailed realization of the GB is subject to some degree of free-
dom. In Sec. 5.1 we show different realizations of armchair-zigzag bicrystals
studied in the further course of this chapter. To characterize these systems
thermodynamically, we calculate the GB formation energies in Sec. 5.2. While
it is established in the literature that transport gaps are determined by the
geometric parameters of a graphene bicrystal, we take this ballistic transport
picture to separate the transmission function into two regimes: a structure-
independent gap regime and an ohmic region that depends on the structure.
This distinction is presented at zero bias in Sec. 5.3. In Sec. 5.4 we supplement
our calculations by current-voltage characteristics that allow, in principle, a
direct comparison with experimental transport measurements. In the final
section, Sec. 5.5, we try to relate structural features at the GB to prominent
transport features. The results of this chapter have been published in D. Perera
and J. Rohrer, Physical Review B 98, 155432 (2018) [122].

5.1 models

The freedom of choosing a specific atomic composition of the GB, while the
misorientation relation is fixed, is the starting point of this chapter. When we
employ the simulated annealing optimization (Ch. 4), we can stop at arbitrary
optimization steps and extract different GB configurations. In this chapter we
focus exclusively on the armchair-zigzag misorientation relation. Figure 5.1
shows the armchair-zigzag graphene bicrystal models studied in this chapter.
Structure A is a well-known model discussed by Yazyev and Louie [82], while
structures B and C are new structures. Bicrystal B has been generated with
a method suggested by Ophus et al. [68] while bicrystal C is obtained from
our simulated annealing optimization. The latter method is also used for the
remaining structures D-G′ which have already been identified by Schusteritsch
and Pickard [123] using a similar approach.
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Figure 5.1|Graphene bicrystal models studied in this chapter. The models are all armchair-
zigzag bicrystals with a repeat length of 12.7 Å (A-C) and 17.4 Å (D-G′). Every GB consists
of a distinct patchwork of pentagons (blue) and heptagons (red). The coordination defect in
structures G and G′ is highlighted in orange.
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Figure 5.2|Mismatch of
armchair-zigzag graphene GBs.

Armchair-zigzag GBs have a mismatch strain along the interface direction
due to the incommensurability of the lattices. This mismatch arises from the
geometric fact that the ratio of the basis vectors of the rectangular graphene
unit cell is

√
3. To minimize the mismatch strain, the two supercell multiples

of the grains, m and m′, need to be chosen such that their ratio m/(
√

3m′) → 1.
Of course, no integers exist that make the limit exact. For the bicrystals in
Fig. 5.1 m = 5 and m′ = 3 for the first GB group and m = 7, m′ = 4 for the
second group. The second group has a smaller mismatch strain since 7/4 is
a closer approximation to

√
3 than 5/3. With the GB notation introduced in

Ch. 4 the armchair-zigzag systems read as (m, 0)|(m′, m′). Using this notation
Eqs. (4.2) and (4.3) can readily be applied.† Figure 5.2 shows the mismatch†Equation (4.3) has a singular-

ity for an (m, 0) grain which
is reflected by the grain being
oriented 90◦ towards the x axis.
Note, however, that the equiva-
lent direction in graphene is 30◦

which is obtained by inserting
(0, m) into Eq. (4.3).

strain for different combinations of m and m′ in a similar fashion than Fig. 4.4,
p. 40, but restricted to armchair-zigzag systems. Beyond the (7, 0)|(4, 4) all
bicrystals have a mismatch strain below 1%. However, the repeat length of the
next GB with substantially lower mismatch strain than the (7, 0)|(4, 4) GB is
already too large for calculations on the DFT level. For the model construction
we use the mean value of the GB length from the respective armchair and
zigzag grain.
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5.2. gb formation energies

5.2 gb formation energies

Since different types and arrangements of n-gons at the GB can be chosen
for a given repeat length and misorientation angle, the formation energy of
each system serves as a criterion of relative stability. For a periodic system we
define the GB formation EGB as

EGB =
Etot − nE0

2l
, (5.1)

where Etot is the total energy, E0 is the bulk graphene energy, n is the number of
atoms, and l is the length of the GB .† As we are dealing with a two-dimensional †For a periodic system two GBs

are present resulting in the
factor 2 in Eq. (5.1).

system the formation energies have the dimension of force and not of force
per length as in the more familiar three-dimensional cases.

We regard bicrystals that are not periodic perpendicular to the GB direction.
To calculate the properties of a single GB two surfaces are introduced as shown
in Fig. 5.3 (a). Surface states from dangling bonds are reduced by saturating
the edge atoms with hydrogen. For this setup we can compute the formation
energy of a single GB with Eq. (5.1) by adding surface energy terms. Here
these terms are zigzag and armchair surface energies saturated with hydrogen
atoms—again these are dimensionally forces. Including the terms σac, σzz and
the chemical potential of hydrogen µH, Eq. (5.1) becomes

EGB =
Etot − nE0 − mµH

l
− σzz − σac. (5.2)

Table 5.1 shows the GB formation energies for all bicrystals of Fig. 5.1. We
split the energies into two types: formation energies with strain contribution
and without strain contribution. Formation energies calculated without strain
contribution do not include the mismatch strain of the bicrystal within the
surface terms. As a result, these formation energies can only be compared
within a given GB family, for instance only within the (5, 0)|(3, 3) GBs. By
including strain in the surface terms a comparison among all bicrystals is
possible. The data of Tab. 5.1 reveal that the mismatch strain strongly influ-
ences the formation energy. Apart from the defective structures, G and G′,

(a) (b)

va
cu

um

va
cu

um

σac σzzγGB Electrode Device Electrode

Figure 5.3|System setups to calculate GB formation energies (a) and transport properties (b)
of graphene bicrystals.
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5. structure-dependence of transport across grain boundaries

Table 5.1| Calculated GB formation energies γ (without strain contribution) and γ̃ (with strain
contribution) of all structures investigated in this work.

GB type Structure γ (meV/Å) γ̃ (meV/Å)
(5, 0)|(3, 3) A 417 560

B 500 650
C 289 439

(7, 0)|(4, 4) D 431 433
E 394 395
F 310 312
G 694 694
G′ 565 564

all (7, 0)|(4, 4) GBs have a lower formation energy than their counterparts
with smaller repeat length. Within a GB family meandering GBs have lower
formation energies than straighter interfaces. The explanation for this result
is related to the mismatch strain. A meandering interface accommodates the
interface strain over an effectively longer interface line which reduces the
strain per unit length and thereby the formation energy.

5.3 zero-bias transmission

The electron transmission function T of the bicrystal models is calculated with
the methods described in Ch. 3. First, we consider the transmission of bicrystal
(A) in detail. This means to look at the transmission function and the density
of states, calculated from the Green function, resolved in momentum space.
Since the bicrystal is periodic only along the GB the resulting Brillouin zone is
one-dimensional.

Figure 5.4 (a) shows the transmission function averaged in momentum
space. Most notably, the transmission function has an energy gap of roughly
1 eV. Above the gap the transmission function rises monotonically while
below the gap it is not monotonous. To better understand the energy gap in
the transmission function—for short the transmission gap—, we consider the
momentum-resolved transmission function [Fig. 5.4 (b)]. Here, two triangles
can be identified.† We make three observations based on the schematized†Closer inspection reveals sec-

ondary triangles resulting from
higher order Brillouin zones.
This detail, however, is not re-
garded further.

transmission function [Fig. 5.4 (c)]:

1. The triangle peaks are separated by the energy gap size.

2. The triangle edges are rather sharp.

3. The triangles are nearly mirrored around the Fermi energy.

The first observation suggests that the total bicrystal transmission is composed
of the individual grain transmissions and since both grains are rotated against
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5.3. zero-bias transmission
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Figure 5.4|Detailed transport properties of GB (A). Electron transmission function averaged
in momentum space (a) and k-resolved (b). (c) Abstraction of the k-resolved transmission
function. Density of states averaged in momentum space (d) and k-resolved (e). (f) Schematic
DOS indicating the location of Dirac cones from individual grains and their overlap within
the first Brillouin zone. The overlap region determines the transmission window of (c) due to
energy and momentum conservation.

each other these grain transmissions are partially suppressed. The sharp edges
and the mirrored appearance of the triangles indicate that Dirac cones might
be involved.

The location of the Dirac cones of the individual grains can be observed in
the Green function based density of states, given in Figs. 5.4 (d-f). Surprisingly,
the k-averaged density of states shows a peak within the energy gap. On
first sight this seems contradictory since no traces of this peak appear in the
transmission. The k-resolved density of states [Fig. 5.4 (e)] and its schematic
reduction [Fig. 5.4 (f)] help to understand what is going on: Each grain rep-
resents pristine graphene with an associated Dirac cone that we name ZZ
for a zigzag orientated grain and AC for an armchair orientated grain. The
AC Dirac cone is located at the Γ point of the Brillouin zone, while the ZZ
Dirac cone lies at 2/3 of the one dimensional Brillouin zone. Note, however,
that due to the mismatch strain, the ZZ Dirac cone is slightly shifted from
its theoretical location. The crucial point is that the AC and ZZ Dirac cones
are displaced within the shared Brillouin zone. An incoming electron state,
say from the AC grain, propagates into the ZZ grain, if its energy and mo-
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5. structure-dependence of transport across grain boundaries
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Figure 5.5|Electron transmission functions for (5, 0)|(3, 3) (a) and (7, 0)|(4, 4) (b) bicrystals. (c)
Semi-logarithmic transmission functions of selected systems. The structure labels correspond
to Fig. 5.1. Primed system labels refer to additional tight binding calculations.

mentum are matched by the ZZ Dirac cone. Geometrically, this means that
an overlap between the two Dirac cones [hatched areas in Figs. 5.4 (c) and (f)]
is necessary to enable electron transport. Assuming that the Dirac cones are
isotropic at low energies, the smallest energy separation, i.e. the transport
gap, lies in the middle between AC and ZZ Dirac cone momentum. Now it is
clear that the density of states peak within the transport gap plays no role in
the transmission: Any states with these energies cannot propagate through
the bicrystal. The use of energy and momentum conservation combined with
the mismatch of Dirac cones to explain transport gaps has been established
by Yazyev and Louie [82]. Novel aspects of this idea are discussed in the
following paragraphs by considering how the local GB structure enters the
transport properties.

In Fig. 5.5 we compare the transmission functions of structurally different
bicrystals with the same orientation relation and two different repeat lengths.
Keeping in mind that low-energy transport is governed by the overlap of
the grain Dirac cones, it is expected that the transport gap size is not affected
by the individual structure of the GB. Figure 5.5 confirms the expectation
and shows zero transmission within a constant energy window determined
by the repeat length. More interesting is the transport regime beyond the
transport gap: Here, the GB structure has a considerable influence on the
transmission. For the (5, 0)|(3, 3) the situation above the Fermi-level—which
is the more relevant region for electronic application—is straightforward. For
all individual bicrystals the transmission rises monotonically, only the slopes
are different. Thus, the (5, 0)|(3, 3) bicrystals behave like ohmic conductors
with different resistances. On the other hand, the situation is quite different
for the (7, 0)|(4, 4) bicrystals. Here, the transmission functions can behave
monotonically [bicrystal (D)] or non-monotonically [bicrystals (E-G′)]. The
presence of defects [bicrystals (G) and (G′)] has virtually no effect on the
transmission.

50



5.4. bias transmission

The semi-logarithmic transmission plot [Fig. 5.5 (c)] summarizes nicely how
the gap size is changed by the repeat length. Moreover, it shows that transmis-
sion onset is narrowly localized on the energy scale such that at the gap edge
transmission really switches from off to on.

An interesting side note is the localized peak at the Fermi energy. This
peak may be interpreted as leakage transmission. We do not know its origin
exactly—potential causes can be the finite scattering region, strain effects or
too coarse k-point sampling. However, since the leakage is small and very
localized it shall not concern us further.

5.4 bias transmission

From a practical perspective zero-bias transmission is mainly interesting as a
material property, the zero-bias conductance. In real devices a bias voltage is
applied across the sample and current-voltage characteristics are measured.
To mimic such experiments on the computer, we calculate the transmission
function under non-equilibrium conditions based on the non-equilibrium
Green function (NEGF) formalism (see Sec. 3.3, p. 31). Figure 5.6 shows current-
voltage curves of all bicrystals discussed so far. The most prevalent feature of
these curves is the current suppression within the transport gap. This region
is highlighted by the hatched area in Figs. 5.6 (a) and (b). From the preceding
section it is clear that the zero current window size is only determined by
the repeat length and not by the individual GB structure. Conversely, the
current-voltage curves beyond the threshold bias are strongly affected by the
individual GBs. In contrast to the zero-bias transmission function, however,
the overall impression of the current-voltage curves is more homogeneous.
All curves are monotonic and differ only in the slope.

A qualitative understanding of biased transport can be gained from snap-
shots at specific bias levels of the momentum-resolved transmission function
and density of states. Figure 5.6 (c) shows the evolution of the density of states
at three different bias voltages. We use as the starting point the zero-bias state
already discussed in Sec. 5.3. At zero bias, i.e. at the Fermi level, the Dirac
cones do not overlap and therefore no current passes. The next snapshot is
taken at 0.4 V. The individual Dirac cones are displaced out of equilibrium by
±0.2 V along the y axis. Still, there is no overlap of the Dirac cones within the
energy integration region so that no current passes through the bicrystal. The
final snapshot is taken at 1.4 V. This voltage is notably beyond the transport
gap. As a consequence, the Dirac cones overlap within the energy interval,
the energy integral is finite or with other words—current flows. In Fig. 5.6 (d)
the effective overlap of the Dirac cones over the energy interval of ±2 eV is
shown—this is just the transmission function. From these pictures it can be
concluded that a continuous transmission within the applied bias window
is required for current to flow. This requirement is only fulfilled at 1.4 V in
Fig. 5.6.
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Figure 5.6|Transmission under external bias voltage. Current-voltage characteristics of
(5, 0)|(3, 3) (a) and (7, 0)|(4, 4) (b) bicrystals. Momentum resolved DOS (c) and transmission
(d) at different bias voltages.

5.5 electronic structure at the gb

The transport gap size is governed by the geometric properties of the bicrystals.
Outside the gap region, however, the local structure of the GB strongly affects
the overall transport properties. Section 5.3 has shown that the transmission
function can already look very differently for minor changes of the interface
composition. The sensitivity of the transmission function is averaged out
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Figure 5.7|Atom-projected density of states for the bicrystals of the (5, 0)|(3, 3) type. The DOS
of highlighted atoms is limited to those belonging to penta- or heptagons (solid line). The
grain DOS (dashed) is obtained from all remaining atoms. Open circles represent the respective
transmission functions.

when finite biases are considered and the impact of the local structure on
the current-voltage characteristics is more subtle. It is still interesting to look
in detail if individual features of the GB can be related to notable points in
the electronic structure. To carry out such an analysis we use the DOS of the
bicrystal projected onto individual atoms. Figure 5.7 shows this DOS with the
following grouping: atoms belonging to the GB (colored atoms) or to a grain
(uncolored atoms). The largest deviations between grain and GB DOS occurs
in all cases around the transport gap edges—of course any resonances within
the gap are irrelevant for transport, for instance the local peak in Fig. 5.7 (a) at
0.3 eV. There is, however, no correlation between resonances of the DOS and
local extrema of the transmission function. While at first sight this may seem
surprising, it must be remembered that the transmission function is obtained
from the triple matrix product of the broadening matrix and the device Green
function (see Eq. (3.9), p. 29). The DOS itself, on the other hand, is generated
directly from the Green function. In this sense the DOS indicates possible
transmission states but the coupling between electrodes and device determine
actual transmission states.

Figures 5.7 (a) and (c) suggest similarities between the shape and position
of DOS resonances and shared structural elements at the GB. The shared
structure element is the alternation of pentagons and heptagons. In contrast
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5. structure-dependence of transport across grain boundaries

to this, Fig. 5.7 (b) presents a GB with disconnected pentagons and heptagons.
Interestingly, for this structure the resemblance with pristine graphene is the
strongest.

Summary While the transport gap is determined solely by the overlap of
the adjacent Dirac cones and thus any local structure effects are suppressed,
transport beyond the gap is notably affected by the composition of the GB.
With regard to sensing application this raises the question which transport
region is more relevant. From the current-voltage characteristics the region
influenced by the GB structure appears ohmic. An ohmic regime exhibits
rather low response factors in strain gauges comparable to pure metals. It
seems therefore that the gap region would be more interesting for sensing
operating on the on/off edge of the I − V curve. To this end the next
chapters considers the emergence and strain modulation of transport gaps
for arbitrary GBs in more detail.
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6| geometric approach to transport gap modulation

In Ch. 5 we established that the detailed atomic structure of the grain boundary
(GB) does not affect the transport gaps around the Fermi level. In most techno-
logical applications this is the most relevant energy regime, and we consider
the properties of transport gaps in bicrystals now in detail. In particular, we
address how external mechanical strain modulates the transport gap which
is a key issue of piezoresistivity. Based on the ballistic transport picture from
Ch. 5 the size and modulation of transport gaps are determined by the repeat
length d and misorientation angle θ of the GB. In other words, the transport
gap properties can be inferred by combining geometrical analysis with the
bulk graphene band structure. Additionally, by computing the effect of a
general two-dimensional strain on the bulk band structure, we can determine
the strain-induced transport gap modulation. The major part of this chapter
deals with the details of what we call semi-analytical method for transport
gaps in graphene bicrystals. In Sec. 6.1 we survey how strain modulates the
transport gap of graphene using a specific bicrystal as an example. Since the
semi-analytical approach is based on transformation of both the electronic
structure and the lattice geometry of graphene under strain, Sec. 6.2 presents
the relevant definitions and equations. In Sec. 6.3 these definitions and equa-
tions are synthesized into the semi-analytical method to calculate transport
gap modulations. Finally, Sec. 6.4 shows the application of the semi-analytical
method on various bicrystals and strain states. The results of this chapter have
been published in D. Perera and J. Rohrer, Nanoscale 13, 7709-7713 (2021) [124].

6.1 bicrystal transport gap under strain

The key ingredients to calculate transport gaps in graphene bicrystals implicitly
are the position and slope of the Dirac cones associated with the individual
grains. Taking the familiar (5, 0)|(3, 3) bicrystal from Ch. 5, Fig. 6.1 (a) depicts
where the Dirac cones of the (5, 0) grain and the (3, 3) grain are located within
the one-dimensional GB Brillouin zone. The (5, 0) grain has zigzag orientation
along k|| and the Dirac cone lies at 2/3 of the GB Brillouin zone. For the (3, 3)
grain the Dirac cone is located at the Γ point of the GB Brillouin zone. Since
ballistic transport can only occur in the overlap region of the Dirac cones, as
shown in Sec. 5.3 of Ch. 5, the transport gap lies in the middle between 2/3d
and the Γ point, i.e. at 1/3d.† The size of the transport gap is determined by †The given values are only ide-

ally true. In the real bicrystal
the mismatch strain displaces
the Dirac cones from the ideal
positions. Moreover, the slopes
of the respective cones may
not be identical such that the
crossing point does not lie in
the middle. These points are
discussed in Sec. 6.2.

the slope of the Dirac cones. Since the projection of the Dirac cones onto the
plane results in line segments, the transport gap is effectively given by the
crossing of these lines.

Under an external mechanical strain the Brillouin zones and the Dirac cones
of the graphene grains are deformed. The position of the strained Dirac cones
are, however, in general not at the vertices of the deformed Brillouin zone as
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Figure 6.1|Effect of uniaxial strain on an armchair/zigzag GB. (a) Unstrained bicrystal. (b)
Strained bicrystal. The white and black Dirac cones correspond to the first Brillouin zone. The
light gray shade indicates the Dirac cone overlap while the dark gray shade represents higher
order Brillouin zone contributions.

indicated in Fig. 6.1 (b). Since the transport gap is still given by the overlap of
the Dirac cones, the strain modulation of gaps is just a function of the Dirac
cone positions and slopes under strain. In Fig. 6.2 we show the position and
slopes (i.e. the Fermi velocities) as functions of strain for the (5, 0)|(3, 3) GB.0
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sented in this chapter.

By applying an external strain perpendicular to the GB, the Dirac cone of the
(5, 0) grain moves along k|| whereas the Dirac cone of the (3, 3) grain remains
stationary. The Dirac cone of this grain moves along the perpendicular GB
direction, i.e. parallel to the strain, and thus all modulations are projected out.
Similarly, the Fermi velocity is only affected along k|| for the (5, 0) grain, but
not as strongly as the Dirac cone position. Taken together, the transport gap
modulation is only determined by the strain modulation of the (5, 0) grain
and specifically by the modulation of the Dirac cone position along the GB BZ.
This finding implies a complex but in principle trackable picture of transport
in more extended polycrystalline graphene structures under strain: Transport
gaps open or close, modulations of the electronic structure of individual grains
might be completely projected out depending on the orientation relation and
in summary transport paths across GBs fluctuate.

Since the transport gap modulation is determined by geometric parameters
(strain direction, lattice deformation) and the electronic structure under strain,
the remainder of this chapter deals with the problem how these quantities can
be computed without explicit transport calculations. With such a method the
gap modulation for arbitrary GBs and strains can easily be obtained.
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6.2. strained graphene

6.2 strained graphene

Electronic structure under strain

Graphene has no intrinsic band gap up to a strain of ≈29 % [45]. For most ap-
plications such high strains are unfeasible and we restrict the strain magnitude
to 10 % for the following analysis—which means that no intrinsic gap opens.
The position of the Dirac cones inside the Brillouin zone as well as the Fermi
velocity around the Dirac points, on the other hand, change considerably even
under small strain. It may seem that the Dirac cones at the vertices of the
hexagonal Brillouin zone are simply shifted to the vertices of the deformed
Brillouin zone. This intuitive notion, though, is incorrect (see Fig. 6.3).

Γ

Γ

Unstrained

Strained

Figure 6.3|Pristine graphene
band structure in two dimen-
sions. The Dirac cones do not,
generally, coincide with the
Brillouin zone vertices under
strain.

Instead, the Dirac cones move away from the vertices of the Brillouin zone.
Within a tight binding nearest neighbor approximation the strain-dependent
position of the Dirac cones can be calculated analytically [45, 83]. For our
study, however, we prefer to compute the (strain-dependent) bulk electronic
structure numerically. This approach has two advantages:

1. Any modulation of the electronic structure can be modelled.

2. Any electronic structure method can be used depending on the desired
accuracy.

In the context of this chapter, we employ a tight binding level description of
the electronic structure and consider strain-induced modulation.

While first-principles calculations automatically include strain effects, tight
binding models require an explicitly strain-dependent hopping integral t.
However, there exists no general implementation rule. Harrison proposed a
strain-dependence of t as a function of interatomic distance r in relation to the
equilibrium bond distance r0 of the form: t(r) ∝ (r/r0)

−2 [104]. Although this
relation has been used for graphene [83], a graphene-specific dependence has
been suggested by Pereira and Castro Neto [45]: t(r) = t0 exp[−α(r/r0 − 1)].
This relation reproduces experimental differential current voltage curves via
the parameter α. For an equilibrium carbon-carbon bond distance r0 = 1.42 Å
it is set to 3.37. Figure 6.4 shows a comparison of the different parametrizations
as a function of interatomic distance.
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Figure 6.4|Quadratic vs expo-
nential scaling of the hopping
integral.

Lattice deformation

Geometrically seen, applying a strain ε at an angle ϕ transforms the unit cell
vectors ai of the hexagonal primitive cell by the following equation (see Fig. 6.5
for definitions):

ai(θ, ε, ϕ) = [εS(ϕ) + I2] · [R(θ) · a0
i ]. (6.1)

In Eq. (6.1) R(θ) is a two-dimensional rotation matrix, † I2 is the two-dimen- †We define
R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.
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6. geometric approach to transport gap modulation

sional identity matrix, and S(ϕ) is given by (see Ref. [45]):

S(ϕ) =
(

cos2 ϕ − ν sin2 ϕ (1 + ν) cos ϕ sin ϕ

(1 + ν) cos ϕ sin ϕ sin2 ϕ − ν cos2 ϕ

)
, (6.2)

The elastic properties along the high symmetry directions in graphene, i.e.
armchair and zigzag direction, are not identical. However, their elastic moduli
are very similar until 5% strain and we disregard the differences when we deal
with possible mismatches between grains in polycrystals.† There are two more†Practically, this means that we

use the mean value of the lattice
constants instead of a weighted
mean.

mechanical effects that are not included in our analysis of strain-dependent
transport properties: Poisson contraction and buckling. The Poisson ratio in
graphene is ν = 0.15 [125]. Within our tight binding model we calculated
that Poisson contraction affects the transport behavior not more than 10 meV
and therefore we ignore it. Neglecting the buckling of the polycrystalline
graphene sheet is a pragmatic decision, although real graphene is buckled at
finite temperatures even as a single crystal due to unstable in-plane modes [77].
Buckling, however, drastically complicates parametrized electronic structure
calculations. For large-scale tight binding calculations we have no generic
parametrization of the hopping integral between sites that are displaced out-
of-plane.
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Figure 6.5|Pristine graphene
lattice subjected to a general
strain state with strain ampli-
tude ε and strain angle ϕ. The
unit cell is rotated by an angle
θ.

k||

Figure 6.6|Schematic illus-
tration of the Dirac points
in strained bulk graphene
(open circles) and the zone
folded Dirac point positions
(filled circles) within the one-
dimensional GB BZ. For one
of the unfolded Dirac points
the folding and projecting onto
the GB BZ (k||) is indicated by
dashed arrows.

6.3 semi-analytical method for transport gap modulation

By calculating the electronic structure of bulk graphene strained by the strain
state (ε, ϕ) and applying a rotation by θ we obtain the positions of the six Dirac
points shown as open circles in Fig. 6.6. From the explicit calculation of the
two-dimensional band structure of pristine graphene [Fig. 6.7 (a)] we get the
dispersion around any of the Dirac cones. We assume that all Dirac points are
equivalent for our purposes so that the particular choice of a Dirac point is
arbitrary. The Fermi velocity νFermi is determined by a linear fit to the band
as shown in Fig. 6.7 (c). This is valid at low energies close to the Dirac point
based on the expansion to first order [35] in Eq. (6.3),

E±(q) ≈ ±νFq + O[(q/K)2], (6.3)

where the momentum q is measured with respect to the Dirac point K and
we set h̄ = 1. Thereby, the Fermi velocity νF is the slope along k|| as shown in
Fig. 6.7 (c) of highest occupied valence band or lowest unoccupied conduction
band around one of the Dirac points.

With this procedure we know kDirac and νFermi for bulk graphene strained by
(ε, ϕ) and rotated by θ. In other words, we know the relevant quantities that
determine transport gaps in bicrystals for one grain. The effective kDirac and
νFermi within the bicrystal are fixed by the repeat length d. Therefore the Dirac
points are folded into and projected onto the one-dimensional BZ, which is
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Figure 6.7|Electronic structure of graphene under strain. (a) Calculated dispersion of the
highest valence band in the two-dimensional BZ of the grain in Fig. 6.5 based on a nearest
neighbor tight binding model. The Fermi velocity is determined within the magnified area (b)
marked by the black rectangle and the band structure along k|| (c).

depicted by the dashed arrows and the filled circles in Fig. 6.6. Similarly, the
Fermi velocity is fitted along k|| as seen in Fig. 6.7 (b) and (c).

Based on kDirac and νFermi for arbitrary ε, ϕ and θ, we obtain the following
relation for transport gap momentum kgap and transport energy gap Egap in a
bicrystal,

kgap =
νL

F |kL| − νR
F |kR|

νL
F − νR

F
(6.4)

and
Egap = 2νL

F (kgap − |kL|). (6.5)

In Eqs. (6.4) and (6.5) we use the superscripts L and R to denote left and right
grain, respectively. Of course this choice is completely arbitrary. Note that
the factor 2 in Eq. (6.5) results from the electron-hole symmetry of the nearest
neighbor tight binding model.

6.4 application to various bicrystals

The semi-analytical method presented for a (5, 0)|(3, 3) GB in Sec. 6.2 is now
applied to a selection of other bicrystals and external strains. First, we compare
the transport gap modulations obtained by the semi-analytical method (solid
line in Fig. 6.8) with explicit tight binding transport calculations (filled circles
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Figure 6.8|Transport gap modulation of different graphene bicrystals. We compare our semi-
analytical method to full transport calculations based on tight binding and DFT and results
from the literature. The structure models above the modulation curves depict the region around
the GB. The bicrystals in (a)-(c) are subjected to a strain perpendicular to the GB, whereas the
strain angle in (d) is π/4 with respect to the x axis. DFT calculations for (c) are computationally
too expensive due to the size of the full transport setup and are not included.

in Fig. 6.8). For all investigated bicrystals both methods yield identical modu-
lation behavior. Numerical deviations arise in two forms: (1) displacements
around the maxima of the transport gaps, (2) nearly constant offsets for the
overall modulation. We assign these deviations to technicalities involved in
the determination of the transport gap from calculated transmission functions.
The calculated transmission function is sampled on a finite energy grid and
we use a threshold value to determine the energy points (left and right to the
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6.4. application to various bicrystals

Fermi energy) below which the transmission is assumed to be zero. The abso-
lute difference between the energy points yields the transport gap. However,
we use a strain-independent threshold value which can systematically over- or
underestimate the transport gap.

The validity of all tight binding based calculations is shown by a close
agreement with DFT calculations. These calculations were conducted for all
systems in Fig. 6.8 except for Fig. 6.8 (c). Here, the fully periodic electrodes
lead to a very large transport system that is computationally too challenging.
Differences between tight binding and DFT calculations may be attributed to
the electron-hole asymmetry for the DFT calculations. This asymmetry has a
more profound influence in Fig. 6.8 (a) than in Fig. 6.8 (b) and (d) and could be
related to the lattice mismatch strain for this bicrystal. While there is a lattice
mismatch also present for the system in Fig. 6.8 (b) it is notably lower there
since the lattice mismatch strain decays with the GB repeat length d as 1/d.
The systems in Fig. 6.8 (c) and (d) have commensurate lattices.

Summary Transport gaps in graphene bicrystals arise from the overlap of
the Dirac cones of adjacent grains. In this chapter we have developed a semi-
analytical method that can compute transport gaps for arbitrary bicrystal
misorientation relations without the need for explicit transport calculations.
This method is particularly interesting for the strain-induced modulation
of transport gaps. The essence of our method is not affected by any field-
induced alterations: We still project the Dirac cones of pristine graphene
onto the GB Brillouin and determine the gap from the resulting Dirac cone
overlap. In a strained bicrystal these input parameters are merely strained
as well. Strain is, of course, only one possibility of external perturbation
and our method works in principle for any field-induced modulation.

Our approach also emphasizes that the seemingly difficult transport char-
acteristics of a defective graphene structure, namely a GB, can be reduced
to essentially geometrical relationships which is conceptually more elegant
than brute computations.

61
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In this chapter we try to understand the piezoresistive response of nanocrys-
talline graphene (NCG) using simplified graphene polycrystal models. Our
models consist of a few thousand atoms with grain sizes between 2 nm to
4 nm—close to the lower bound of experimentally observed structures. In
Sec. 7.1 we present the model preparation and in Sec. 7.2 the transport setup.
Sections 7.3 deals with transport characteristics of a graphene polycrystal and
draws comparisons with bicrystals. To supplement the classical two-terminal
transport setup we introduce in Sec. 7.4 a setup that uses a complex absorb-
ing potential. In this configuration the scattering region can be completely
encapsulated with an absorbing electrode. Such a setup does not enforce
periodic boundary conditions and can be seen as an alternative approach to
ballistic transport calculations for structurally complex systems. The complex
transport character of a single polycrystal suggests a more statistical approach.
Sec. 7.5 presents this approach for differently sized polycrystals. Finally, to
address the main question of this thesis, we calculate strain gauge factors for
graphene polycrystals in Sec. 7.6.

7.1 construction of simplified graphene polycrystals

A common method to construct polycrystal models is by Voronoi tesselation.
In two dimensions the grain centers are placed randomly in the plane ensuring
a minimal distance between them. To obtain the polygon forming a grain, the
grain centers are connected with each other and the perpendicular bisector
of all connection lines is constructed. The intersections of the bisectors define
the vertices of the desired polygons. The result of this construction is seen in
Fig. 7.1.

Figure 7.1|Voronoi tesselation
of randomly distributed points
in the plane. The points can be
regarded as grain centers and
the surrounding polygons as
grains.

While Voronoi tesselation can easily be used to construct graphene poly-
crystals, such polycrystals would generally have complicated GBs because the
grain sizes are inhomogeneous. To avoid this complication we use a simpler
approach summarized in Fig. 7.2: We place the grain centers on a rigid hexag-
onal grid. The Voronoi tesselation is trivial in this case yielding hexagonally
shaped grains with uniform size rgrain. Additionally, we use a rectangular
unit cell—although a hexagonal unit cell would be a more natural choice.
While transport calculations for non-orthogonal cells can be performed with
tbtrans, analysis and the application of strain is easier with orthogonal cells.

The smallest rectangular cell containing fully periodic hexagons is a
√

3 × 3
cell in units of rgrain—denoted in the following simply as a 1× 1 cell [Fig. 7.2 (a)].
This cell contains two seeds per unit cell. With periodic boundary conditions
in the xy-plane both grains are in direct contact to their periodic images. Trans-
port along the x direction would lead to two bulk strips where states could
propagate without crossing any GB. In contrast, transport along the y direction
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7. ballistic transport in graphene nanocrystals

(a)

rgrain

(b)

Figure 7.2|Construction of a simplified graphene polycrystal. All crystallites are distributed
on a regular hexagonal lattice; thus the grain size is fixed to a specific value rgrain. Each grain
is rotated by an angle ϕ against the x axis. The interface regions are optimized by simulated
annealing to enforce threefold coordination of all atomic sites.

resembles a mirrored bicrystal configuration with two GB segments also being
mirror images of each other. In this case scattering states would cross GBs.
Keeping the x direction as the transport direction a simple fix is to tile the unit
cell. In this sense, the minimum cell size is a 2 × 1 cell [Fig. 7.2 (b)].

Based on the 2× 1 cell the construction of the polycrystal proceeds as follows:
A bulk graphene seed is placed on the four seed sites of the macroscopic cell.
While the grain size is fixed by the choice of the macroscopic cell, the rotation
angle of individual grains is a free parameter. We focus on the two cases shown
in Fig. 7.3 for the transport analysis. To identify the atoms in the interface
region, we loop over all atoms and classify atoms that are close to more than
one grain center within a tolerance as interface atoms. The interface regions
are then optimized with the simulated annealing procedure outlined in Ch. 4.

(b)

(a)

Transport

Figure 7.3|Orientation of the
hexagonal grains with respect
to the transport direction.

7.2 transport setup

The transport setup for graphene polycrystals is not conceptually different to
the setup for bicrystals. After initial preparation and optimization of the poly-
crystal, it is attached to bulk graphene electrodes and the resulting interface
between bulk and polycrystal is optimized subsequently. The optimization
target is again threefold coordination of all atoms.

After the optimization the transport models are rescaled to a carbon-carbon
bond length of 1.42 Å which is in line with the conventionally used tight
binding transfer integral [23]. Transport calculations themselves are performed
in the same fashion as for bicrystals (see Ch. 5).

The interface between electrodes and scattering region cuts through the
polycrystal grains and creates artificial boundaries. Most of the scattering
states are therefore injected directly at such a boundary. This situation is more
pronounced for smaller grain sizes where a significant portion of the scattering
region consists of this additional interface.
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7.3. transport characteristics of a graphene polycrystal

bulk electrodes

artificial interface

Figure 7.4|Two-terminal transport setup for a graphene polycrystal. The electrodes are bulk
graphene. The grain diameter is chosen to closely match the electrode dimension so that
interface strain is minimized.

Figure 7.4 shows a polycrystal at the largest grain size investigated in this
chapter. After structural optimization the grain orientation deviates from the
initial orientation angle within a few degrees. Additionally, a slight curvature
of GBs emerges.

7.3 transport characteristics of a graphene polycrystal

We survey the transport characteristics of one polycrystal in detail. This poly-
crystal has the orientation indicated in Fig. 7.3 (a). Figure 7.5 shows the trans-
mission function and the DOS per atom of this polycrystal. For reference the
bulk transmission function and DOS are shown alongside (dashed lines in
Fig. 7.5).

Generally, the polycrystal transmission is more reduced and noisy compared
to the bulk. The electron-hole symmetry, present in pristine graphene for a
nearest-neighbor TB model, is broken. The noisy transmission function results
mainly from single scattering sources, i.e. states injected at the artificial GB.
In an experimental setting this effect would be smoothened out. Such an
effect could be achieved by phase relaxation via additional virtual probes. The
implementation of this method, however, is not straight-forward and adds
a considerable computational cost to transport calculations. Even without
smoothening it can be seen that the transmission function is monotonically
rising above the Fermi level. No clear energy gap region can be identified.
This result suggests that transport along GBs is strong enough to create notable
electron transfer.
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Figure 7.5|Transport properties of a selected polycrystal model of Fig. 7.11. The transmission
function (semi-logarithmic and regular y axis) of polycrystal (solid line) and pristine graphene
(dashed line) are compared. The density of states per atom is shown for the polycrystal (solid
line) and pristine graphene (white circles) alongside. Additionally, color maps of zero-bias
bond currents at specific energies above the Fermi level are presented.

A closer inspection of the semi-logarithmic transmission function together
with color maps of zero-bias bond currents at selected energies shows ad-
ditional details: At the Fermi level there is no conducting channel, thus the
semi-metallic nature of bulk graphene is also present in the polycrystal. At
energies below 0.5 eV the transmission is very low but rather noisy, so that
current leakage at these energies is expected. At 0.5 eV the bond-current map
shows enhanced transmission at the GBs. Compared to the higher energy
regime at 1.5 eV this suggests that transport is initiated through the GB net-
work at first. With increasing energy more transport channels are opened
including grain interiors. At energies beyond 1.5 eV no detailed transmission
paths can be discriminated but both GBs and grain interiors participate in
transport. Therefore, the transmission function rises almost monotonically
above this energy entering an ohmic regime. The total DOS [Fig. 7.5] confirms
the asymmetry between conduction and valence band not present in the bulk.
However, the polycrystal DOS resembles the bulk DOS more closely than the
transmission functions. Apparently, the total k-averaged DOS gives only a
rough idea about the electronic structure of the polycrystal.

A more insightful DOS analysis is presented in Fig. 7.6. Here, the DOS is
split into different classes of atoms [Fig. 7.6 (a)]. The polycrystal DOS consists
of the grain DOS and the GB DOS. In general, the most pronounced differences
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Figure 7.6|Density of states analysis of a graphene polycrystal. (a) The DOS is resolved for
different groups of atoms based on the classification during structure generation. (b) DOS as a
means to identify GB atoms. Coloring corresponds to the DOS deviation compared to pristine
graphene.

between bulk and polycrystal DOS are within ±1 eV of the Fermi level. This
energy window is usually the most relevant for sensing applications and elec-
tronics in general. The GB DOS exhibits the largest deviations from the pristine
graphene DOS and it is also responsible for the broken electron-hole symmetry.
This is expected remembering that topological changes from carbon hexagons
break this symmetry (see Sec. 2.3, p. 18) and GBs typically contain large arrays
of pentagons and heptagons. The grain DOS, in consequence, fits the pristine
graphene DOS quite well—especially beyond ±0.5 eV which indicates that
the grain size is sufficiently large. Deviations at smaller energies are therefore
traces of the grain edges. The DOS of the complete polycrystal naturally re-
sembles more the grain DOS than the GB DOS due to the significantly higher
fraction of grain atoms. But the GB impacts the polycrystal strongly. It breaks
the electron-hole symmetry of the overall structure and provides a notable
defect density of states.

Figure 7.6 (b) emphasizes an important observation, present in virtually all
polycrystal models: The GB consists not exclusively of atoms that possess a
GB-like electronic structure. This finding means that there are bulk holes that
can connect the different grains and in consequence additional transmission
paths are opened. To some extent this can be seen in the right-most bond
current map of Fig. 7.5.
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7. ballistic transport in graphene nanocrystals

7.4 interlude: transport with complex absorbing potentials

A complementary perspective on transport in extended structures such as
polycrystals is the investigation of finite samples. In such a transport setup
no artificial contact interfaces are introduced such as those described in the
two-terminal configuration of Sec. 7.3. To obtain physically meaningful results,
however, states injected within the sample need to leave it reflectionless. To en-
sure a reflectionless boundary the application of complex absorbing potentials
(CAPs) is convenient (Fig. 7.7).

CAP

polycrystal

Figure 7.7|Schematic depic-
tion of a complex absorbing
potential surrounding a poly-
crystal. States injected into the
polycrystal leave the device
reflectionless.

We use a formulation suggested by Xie et al. [126] where the position-
dependent complex absorption potential W(x) takes the form

W(x) =
ih̄2

2m

(
2π

∆x

)2

f (x), (7.1)

with f (x) given as

f (x) =
4
c2

[(
∆x

x2 − 2x1 + x

)2

+

(
∆x

x2 − x

)2

− 2

]
. (7.2)

In Eq. (7.2) x1 and x2 mark the beginning and ending position of the CAP and
∆x = x2 − x1; the constant c is set to one.

Here, and in the following, we use the CAP not only as an absorbing layer
but as an electrode. To illustrate how CAPs are used as electrodes we consider
again the one-dimensional carbon chain (see Sec. 2.3, p. 18). Figure 7.8 shows
the transmission function and the density of states of a one-dimensional carbon
chain within the nearest neighbor tight binding approximation. We plot the
transmission function and DOS for different lengths of the CAP region and
compare the results with a conventional two-terminal transport calculation.
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Figure 7.8|Convergence of transmission function (a) and density of states (b) of CAP electrodes
with increasing size (dashed line styles) compared to conventional semi-infinite electrodes
(solid line).
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(a)

(b)

t = const

t ∝ exp(−r/r0)

10 nm

Figure 7.9|Transport in a polycrystal via complex absorbing potential. The tight binding
model uses constant (a) and strain-dependent (b) hopping. Color brightness indicates the bond
current value, where high values are associated with bright color.

Apparently, both the transmission function and the DOS converge against
the normal values with increasing CAP size. This result indicates that the
simplicity of the electronic structure of the electrode, containing only the
position dependent imaginary diagonal term of Eq. (7.1), is bought at the price
of larger electrodes.

Figure 7.9 shows a bond current map of a transport setup where a single
state is injected into the center of the device (red dot). We compare a fixed tight
binding parameter with a strain-dependent parameter. The fixed hopping
setup [Fig. 7.9 (a)] shows far reaching currents with significant contributions of
the GBs. Taking the strain-dependence of the hopping parameter into account
[Fig. 7.9 (b)] the bond currents are more confined to the center of the structure
but transport via GBs still dominates.

From the results of Fig. 7.9 the question may arise how these observations
are affected by the location of the injection site. Figure 7.10 shows four con-
figurations in which electrons are injected north, south, east and west with
respect to the grain center. Apart from injection at the south, the bond current
maps look very similar. Apparently, the GB at the east is most conductive and
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Figure 7.10|Influence of injection sites on bond currents. The central scheme shows injection
sites (filled red circles) relative to the grain center. Color maps of bond currents are shown
correspondingly.

states injected at the north, west and east are transported via this GB. In the
case of injection at the south the states reach another GB first and thus bypass
the GB at the east. The general impression of enhanced conductivity at GBs is,
however, uncontested if injection sites are changed.

The CAP transport setup demonstrates that GBs exhibit enhanced conduc-
tivity at low energies. All bond current maps in this section have been obtained
at the Fermi-level. These calculations therefore support the impression already
gained in Sec. 7.3 based on the conventional two-terminal setup.

7.5 transport statistics of graphene polycrystals

The noisy transmission function that may be caused by multiple effects—the
artificial electrode-device interface, pronounced transmission along the GB,
holes in the GBs—challenges our initial plan to relate the polycrystal trans-
port to a network of individual bicrystal transports severely. We expected
that distinct transmission regimes could be discriminated in which individ-
ual bicrystal transport sets on. In the remaining sections of this chapter we
therefore resort to a statistical analysis of the transmission function in order to
eventually compute strain gauge factors (Sec. 7.6).

We first consider the transport characteristics of polycrystals with grain
orientation from Fig. 7.3 (a), in the following called A-orientation. We have
chosen grain sizes between 1.48 nm to 3.93 nm and place the individual grains
with random rotation. The rotation is drawn from the interval of 0◦ − 30◦

because of the intrinsic mirror plane in the setup. As shown in Fig. 7.11 the
grains are constructed in such a fashion that an integer multiple of armchair
graphene unit cells can be used as an electrode.
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Figure 7.11|Polycrystal structures for two-terminal transport calculations. The models are
adapted to fit pristine graphene leads. On the left side of each structure the number of armchair
graphene units is indicated.

Figure 7.12 shows the (logarithmic) transmission function averaged over
differently oriented grains for a fixed grain size. Compared to the noisy trans-
mission of a single polycrystal (Fig. 7.5), the statistical averaging has led to a
notable smoothing. Nevertheless, no remarkable onset regions can be iden-
tified. Rather we see a grain size effect: For the polycrystals with grains at
3.93 nm diameter the transmission is very smooth but resembles neither bulk
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Figure 7.12|Averaged transmission functions for the polycrystal setups in Fig. 7.3 (a) at different
grain sizes. Twenty structures per grain size were are used for the averaging.
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Figure 7.13|Averaged transmission functions for the polycrystal setups in Fig. 7.3 (b) at different
grain sizes. Ten structures per grain size were are used for the averaging.

graphene nor exhibits any pronounced features. The smoothing of the trans-
mission functions with increasing grain size may be related to the increased
bulk content.

Transport with the orientation based on Fig. 7.3 (b)—B-orientation for short—
presents a very similar picture. Due to the hexagonally shaped grains the grain
sizes for the B-orientation are slightly larger given the same pristine graphene
electrode size. As for the A-orientation we show the smallest grain size together
with a medium and the largest size in Fig. 7.13. The grain size effect on the
smoothness of the transmission function corresponds to Fig. 7.12. However,
the transmission functions are somewhat coarser so that the 3.98 nm grains in
Fig. 7.13 resemble rather the 2.46 nm grains in Fig. 7.12. This difference may
be related to the fact that within the B-orientation, GBs are not aligned along
the transport direction. Since Secs. 7.3 and 7.4 have indicated that low energy
transmission along GBs is significant, the B-orientation may therefore show
reduced transmission at low energies compared to the A-orientation for the
corresponding grain size.

7.6 piezoresistivity of nanocrystals

For the two sets of polycrystal orientations and grain sizes we compute the
transmission function under a strain up to 0.5%. In Fig. 7.14 the strain gauge
factors for the grain sizes of Fig. 7.12 and the orientations of Fig. 7.3 are shown
as a function of strain. We determine these strain gauge factors from the
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Figure 7.14|Averaged strain gauge factor based on zero-bias conductance for differently sized
polycrystals in A-orientation (a) and B-orientation (b).

zero-bias conductance [108, 127]

G0 =
2e
h

∫
dE T(E)

[
−∂ f0(E)

∂E

]
, (7.3)

where T(E) is the zero-bias transmission function and f0 is the equilibrium
Fermi distribution function. Since we are interested only in relative changes
of G0 at different strains, we drop the prefactor that ensures that G0 is dimen-
sionally a conductance.

Ideally, the gauge factor is constant with a high value. Figure 7.14 shows that
the gauge factor is somewhat constant within a strain interval between 0.2%
and 0.4% for most grain sizes and particularly for the B-orientation. The largest
deviation occurs in the polycrystals with smallest and largest grain diameter.
Of course, since the gauge factors are displayed on a semi-logarithmic scale
the detailed values vary significantly. But here we are more interested in the
order of magnitude. Comparing our gauge factors with experimental results
(Fig. 1.10, p. 9) shows that nearly all polycrystals that we studied exceed
experimental gauge factors considerably. Similar to these measurements our
gauge factors drop at increasing strain. Unfortunately, we observe no trend
with regard to the grain size. A possible explanation is that our models are too
small to pass the threshold where a finite size effect can be identified.

Despite the missing size trend for our gauge factor and with some caution
we are inclined to see the increased piezoresistive response of nanocrystalline
graphene as a finite size effect: The higher density of GB atoms impacts both the
transmission and the transmission under strain to a larger extent than in larger
graphene samples. We believe that especially the significant contribution
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of transport along the GB network to the overall transport behavior is an
argument for the finite size effect.

Summary In this chapter we have investigated the enhanced piezoresistive
response in nanocrystalline graphene. We reduced the structural complex-
ity of real-world samples by designing hexagonally shaped grains with
well defined orientation relations. Although structurally simple, transport
calculations of the polycrystal revealed significant noise that we attribute
to additional point scattering not present in bicrystals. In this context our
initial plan to use the results of Ch. 6 to infer the transport characteristics of
the polycrystal was premature. Transport in polycrystals at low energies is
dominated by transmission along the GB network supported by an analysis
using complex absorbing potential as a complementary transport setup. To
remedy the transmission noise we averaged the transmission function at
various grain sizes over a statistical ensemble of randomly orientated grains.
This averaging smoothes the transmission curves but does not reveal any
prominent transport regimes. Similarly, a grain size effect on the strain
gauge factor could not clearly be identified. The absolute magnitude of
the gauge factor is, however, large for the smaller grains which indicates
that a size effect may cause the enhanced piezoresistivity of nanocrystalline
graphene.
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conclusion & outlook

To explain all nature is too
difficult a task for any one man or
even for any one age. ’Tis much
better to do a little with certainty,
& leave the rest for others that
come after you, than to explain all
things by conjecture without
making sure of any thing.

Isaac Newton

Admittedly, we have not explained all nature, not even all graphene! But our
goal was more modest from the beginning: We tried to explain the enhanced
piezoresistivity of nanocrystalline graphene, observed experimentally, based
on a quantum mechanical ballistic transport model.

To start, we considered graphene bicrystals with armchair/zigzag orien-
tation. This orientation is interesting because it allows to tune the interface
length without changing the orientation relation. Leaving the geometric as-
pects of the grain boundary (GB) aside, we focussed on the influence of local
structural modifications at the GB on transport characteristics. We found that
the transport response decomposes into two regimes that show very different
sensitivity to the local structure. An energy gap region around the Fermi
energy is completely insensitive to the detailed atomic structure at the GB,
while the transmission and current-voltage characteristics beyond the energy
gap are strongly affected.

The dependence of the transport energy gap solely on the geometric param-
eters of the bicrystal has motivated a more abstract treatment of the emergence
and strain modulation of transport gaps for arbitrary graphene bicrystals.
With this treatment we could show that transport gap modulations can be
completely deduced by combining the electronic structure of pristine graphene
with geometric manipulations without resorting to explicit transport calcu-
lations. This semi-analytical approach may be extended into arbitrary other
field-dependent response functions in future work.

The detailed investigation of bicrystal transport properties has served as
a prelude to the study of transport in polycrystalline graphene. In such ex-
tended structures the complexity of description increases drastically. To cope
with these difficulties we employed a simple tight binding based electronic
structure description and performed two-terminal transport calculations as
well as more sophisticated calculations based on complex absorbing potentials.
We used these transport configurations eventually to determine how strain
modulates the conductivity in structurally simplified graphene polycrystals.
We computed strain gauge factors for these systems bringing us technically
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close to experimentally determined gauge factors of nanocrystalline graphene.
While we were unable to find a straightforward dependence of strain gauge

factors on structural features of the polycrystal or completely reduce the trans-
port behavior of a polycrystal to an equivalent resistor network, we could
demonstrate that GBs play a decisive role at low bias electron transport due to
their metallic nature induced by defect resonances of the density of states. A
statistical analysis of transport in differently sized grains has shown an increas-
ingly non-bulk behavior with decreasing grain size. From this observation
we conclude that the enhanced piezoresistivity of nanocrystalline graphene is
primarily a finite size effect.

We left out some aspects of the transport problem in nanocrystalline gra-
phene for the sake of conceptual simplicity. Also, it is clear that a complex
problem such as non-equilibrium quantum dynamics on extended defective
structures can only be tackled step by step. New levels of complexity, however,
can be added systematically based on the results and methods used in this
work.

A prominent example is the buckling of the graphene sheet. The main
difficulty for treating this problem is an efficient but realistic description of
the electronic structure. Ideally, a parametrical tight-binding description,
similar to the inclusion of strain dependence (Sec. 6.2) could be found. Having
established a proper electronic structure of the buckled system, our transport
models could be used directly.

Another interesting outlook is provided by the use of complex absorbing
potentials (CAPs) in our polycrystal transport study. Indeed, CAPs have
obtained specialized interest because they can be easily used in time-dependent
transport problems. The emerging field of terahertz spectroscopy would be
an interesting play-field for our methods.

Certainly, there are plenty of further details and questions that emerge from
our work. As so often in science, we were able to provide answers to some of
the questions that motivated our work initially, altered many questions during
our work, and leave questions for new work.
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