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Abstract

Natural language processing is concerned with the ability of computers to under-
stand natural language texts, which is, arguably, one of the major bottlenecks in
the course of chasing the holy grail of general Artificial Intelligence. Given the un-
precedented success of deep learning technology, the natural language processing
community has been almost entirely in favor of practical applications with state-
of-the-art systems emerging and competing for human-parity performance at an
ever-increasing pace. For that reason, fair and adequate evaluation and compari-
son, responsible for ensuring trustworthy, reproducible and unbiased results, have
fascinated the scientific community for long, not only in natural language but also
in other fields. A popular example is the ISO-9126 evaluation standard for software
products, which outlines a wide range of evaluation concerns, such as cost, reliability,
scalability, security, and so forth. The European project EAGLES-1996, being the
acclaimed extension to ISO-9126, depicted the fundamental principles specifically
for evaluating natural language technologies, which underpins succeeding methodo-
logies in the evaluation of natural language.

Natural language processing encompasses an enormous range of applications,
each with its own evaluation concerns, criteria and measures. This thesis cannot hope
to be comprehensive but particularly addresses the evaluation in natural language
generation (NLG), which touches on, arguably, one of the most human-like natural
language applications. In this context, research on quantifying day-to-day progress
with evaluation metrics lays the foundation of the fast-growing NLG community.
However, previous works have failed to address high-quality metrics in multiple
scenarios such as evaluating long texts and when human references are not available,
and, more prominently, these studies are limited in scope, given the lack of a holistic
view sketched for principled NLG evaluation.

In this thesis, we aim for a holistic view of NLG evaluation from three com-
plementary perspectives, driven by the evaluation principles in EAGLES-1996: (i)
high-quality evaluation metrics, (ii) rigorous comparison of NLG systems for proper-
ly tracking the progress, and (iii) understanding evaluation metrics. To this end, we
identify the current state of challenges derived from the inherent characteristics of
these perspectives, and then present novel metrics, rigorous comparison approaches,
and explainability techniques for metrics to address the identified issues.

We hope that our work on evaluation metrics, system comparison and explaina-
bility for metrics inspires more research towards principled NLG evaluation, and
contributes to the fair and adequate evaluation and comparison in natural language
processing.
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Publications and Author
Contributions

This thesis is based on eight scientific papers completed within a three-year doctoral
program. Most of the papers have been published in top-tier international confer-
ences from the major NLP events such as ACL and EMNLP. All papers have joint
authorship. In the following, I list these papers in the order of their appearance in
the thesis, and provide the statements of author contributions in each paper.

Subpart A corresponds to the following papers:

Wei Zhao, Maxime Peyrard, Fei Liu, Yang Gao, Christian M. Meyer and
Steffen Eger. 2019b. MoverScore: Text Generation Evaluating with Contex-
tualized Embeddings and Earth Mover Distance. In Proceedings of the 2019
Conference on Empirical Methods in Natural Language Processing and the
9th International Joint Conference on Natural Language Processing (EMNLP-
IJCNLP). Hong Kong, China. Association for Computational Linguistics.

In this project, Maxime proposed the idea of combining Earth Mover Distance
(EMD) with better embeddings such as ELMO and BERT. I proposed further
ideas regarding how best to combine them: (a) n-gram EMD on the scale of
word mover up to sentence mover; (b) routing and power means for aggregating
word embeddings and (c) fine-tuning BERT. I also proposed a Proposition for
the theoretical comparison between BERTScore and MoverScore. I did all the
implementations (based on the scripts provided by Maxime), the experiments
and analyses. I drafted the paper. Yang, Christian joined the project at a later
time. Steffen was the advisor for this work. My advisor and all co-authors
provided thoughtful feedback that greatly improved the final texts. Fei wrote
the introduction and helped with related work (along with Maxime). All co-
authors helped revise the introduction, corrected grammar mistakes, rewrote
stylistically odd sentences, and helped shape the story. All authors agree with
the use of this paper as part of Wei’s cumulative doctoral thesis.

Wei Zhao, Michael Strube, and Steffen Eger. 2023. DiscoScore: Evaluating
Text Generation with BERT and Discourse Coherence. In Proceedings of the
17th Conference of the European Chapter of the Association for Computational
Linguistics. Dubrovnik, Croatia. Association for Computational Linguistics.
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This project encompassed my own spirits in ideas, writing, programming, ex-
periments, analyses, etc, which was undertaken in a way to assess my research
independence. Steffen was the advisor for this work. Michael and my advisor
provided several rounds of thoughtful feedback that greatly improved the final
texts. All authors agree with the use of this paper as part of Wei’s cumulative
doctoral thesis.

Wei Zhao, Haiyun Peng, Steffen Eger, Erik Cambria and Min Yang. 2019a.
Towards Scalable and Reliable Capsule Networks for Challenging NLP Ap-
plications. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence, Italy. Association for Computational
Linguistics.

This project was partially done when I did my internship at Nanyang Tech-
nological University, and completed at Darmstadt. Steffen and Erik were the
advisors for this work. I proposed the ideas, and did most of the implementa-
tions and all the analyses. Haiyun did a substantial part of data preprocessing,
and took most of the work on the literature review. Min did early experiments
for the QA task. I wrote the paper, and did the major revisions based on
thoughtful feedback from my advisors and all co-authors. All authors agree
with the use of this paper as part of Wei’s cumulative doctoral thesis.

Subpart B corresponds to the following papers:

Wei Zhao, Goran Glavaš, Maxime Peyrard, Yang Gao, Robert West and
Steffen Eger. 2020. On the Limitations of Cross-lingual Encoders as Exposed
by Reference-Free Machine Translation Evaluation. In Proceedings of the 58th
Annual Meeting of the Association for Computational Linguistics. Online.
Association for Computational Linguistics.

This project was partially done when I visited the University of Mannheim, and
completed at Darmstadt. Steffen and Goran were the advisors for this joint
work. I proposed the ideas, and completed all the experiments and analyses.
Steffen proposed two additional ideas regarding (a) combining metrics with
a target-side language model and (b) the analysis of metric preference. I
implemented these ideas, with the second idea completed in the camera ready
version. Maxime, Yang and Robert joined the project at a later time. I drafted
the paper, and did the revisions based on the iterations of thoughtful feedback
from my advisors and all co-authors. My advisors did the annotation work
for human judgments, rewrote the introduction and conclusion, restructured
and polished the paper. Steffen wrote the section of metric preference in the
final version. All authors agree with the use of this paper as part of Wei’s
cumulative doctoral thesis.

Wei Zhao, Steffen Eger, Johannes Bjerva, Isabelle Augenstein. Inducing
Language-Agnostic Multilingual Representations. 2021. In Proceedings of
*SEM 2021: The Tenth Joint Conference on Lexical and Computational Se-
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mantics. Bangkok, Thailand (online). Association for Computational Linguis-
tics.

This project was partially done when I did my internship at the University
of Copenhagen, and completed at Darmstadt. Steffen and Isabelle were the
advisors for this joint work. I proposed the ideas for analyzing the source
of cross-lingual ability. Johannes provided me with many insights based on
a crucial linguistic typology resource (WALS). Building upon these insights,
I proposed linguistic ideas in the form of text normalization. I did all the
experiments and preliminary analyses. Johannes provided linguistic analysis
to the results, which led to the iterations of the ideas. I proposed two addi-
tional ideas, and did all the experiments and analyses. I drafted the paper,
and did the major revisions in a way to address the iterations of thoughtful
feedback from my advisors and Johannes—who also helped finalize some texts
and shape the story. Johannes took the work for the literature review of lin-
guistic typology. My advisors rewrote the introduction, corrected grammatical
mistakes, and shortened the text. All authors agree with the use of this paper
as part of Wei’s cumulative doctoral thesis.

Wei Zhao and Steffen Eger. 2022. Constrained Density Matching and Mod-
eling for Cross-lingual Alignment of Contextualized Representations. In Pro-
ceedings of The 14th Asian Conference on Machine Learning. Hyderabad,
India. Proceedings of Machine Learning Research (PMLR).

This project was undertaken for assessing my research independence. Steffen
was the advisor for this work. I supervised a Hiwi student, Dan Liu, who ran
several baselines for the word alignment task. This project involved extensive
work in machine learning and statistics, to which my advisor provided in-depth
feedback. My advisor provided thoughtful feedback that greatly improved the
final texts. All authors agree with the use of this paper as part of Wei’s
cumulative doctoral thesis.

Subpart C corresponds to the following paper:

Maxime Peyrard, Wei Zhao, Steffen Eger and Robert West. 2021. Bet-
ter than Average: Paired Evaluation of NLP systems. In Proceedings of the
59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (ACL-
IJCNLP). Online. Association for Computational Linguistics.

This project was based on Maxime’s idea. Robert was the advisor for this work.
Maxime and I together did the implementations and extensive experiments on
296 NLP evaluation setups across 4 tasks and 18 evaluation metrics. Maxime
did the writing and revisions based on several iterations of the feedback from
other co-authors and me. I did the addition to this work: I applied the idea of
paired comparison to the evaluation of Eval4NLP shared tasks, and identified
a crucial limitation of this idea. I did all the experiments, analyses and writing
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in this matter. The results and texts have not been published yet. I add these
novel content to the appendix of Chapter 11 in the thesis for the interest of
completeness. All authors agree with the use of this paper as part of Wei’s
cumulative doctoral thesis.

Subpart D corresponds to the following paper:

Marvin Kaster, Wei Zhao and Steffen Eger. (2021). Global Explainability of
BERT-Based Evaluation Metrics by Disentangling along Linguistic Factors. In
Proceedings of the 2021 Conference on Empirical Methods in Natural Language
Processing. Online. Association for Computational Linguistics.

This project was initialized by Steffen, who was the advisor for this work.
Micha Dippel did early experiments for his Bachelor work, but showed no in-
terest in writing a joint paper. Marvin was a Hiwi student, taking over the
experiments after Micha. Marvin and my advisor took most of the writing. I
joined this project at a later time, contributing to the related work, experi-
ments, data processing, and feedback. I took the work for a crucial analysis
regarding the root causes of low R2 scores, but completed the work (including
ideas, experiments and writing) in the camera ready version. I corrected some
mistakes in Marvin’s implementation and the results in the final version. All
authors agree with the use of this paper as part of Wei’s cumulative doctoral
thesis.

The following publications are the outcomes of my contributions to the workshops
on Evaluation and Comparison of NLP Systems, co-located at EMNLP. Given my
contributions are mostly in the form of organization, these publications are not
included in the text of this thesis.

Marina Fomicheva, Piyawat Lertvittayakumjorn, Wei Zhao, Steffen Eger and
Yang Gao. The Eval4NLP Shared Task on Explainable Quality Estimation:
Overview and Results. 2021a. In Proceedings of the 2nd Workshop on Evalu-
ation and Comparison of NLP Systems. Association for Computational Lin-
guistics.

Gao Yang, Steffen Eger, Wei Zhao, Piyawat Lertvittayakumjorn and Marina
Fomicheva. 2021. In Proceedings of the 2nd Workshop on Evaluation and
Comparison of NLP Systems. Association for Computational Linguistics.

Steffen Eger, Yang Gao, Maxime Peyrard, Wei Zhao and Eduard Hovy. 2020.
In Proceedings of the First Workshop on Evaluation and Comparison of NLP
Systems. Association for Computational Linguistics.

The following papers are published during the course of my doctoral studies.
Some of the papers (for which my contributions are not substantial) are strongly
related to this thesis, whereas others are not. All these papers do not meet the
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Chapter 1

Introduction

1.1 Motivation

Natural language processing (NLP), as an engineering branch of computational lin-
guistics, is concerned with designing computational systems for accomplishing a
variety of practical tasks on natural language texts. Accordingly, system evaluation
and comparison come in pairs, aiming to evaluate how much a system’s behav-
ior deviates from anticipation and to affirm a system superior to the other. To
date, within deep learning revolution, reporting trustworthy and unbiased results
has become progressively challenging, as the majority of systems have trouble in
reproducibility and transparency. However, these issues have to be addressed in
order to properly track the advances in the fast-growing NLP community.

Fair and adequate evaluation and comparison have fascinated the scientific com-
munity for long, and the genesis of the field can be traced back to Woods (1977),
which sketched the blueprint for NLP evaluation from the following two perspectives:

• A system with a smaller size wins under the condition that two systems capture
the same amount of linguistic phenomena.

• A good NLP system should run faster than a bad system implemented cleverly.

However, given the shortage of computational power back then, the sketched blueprint
cannot carry out. Therefore, NLP researchers resorted to case studies on chosen ex-
amples and counterexamples for evaluating systems. Up until the late 90’s, with the
increased amount of computing power according to Moore’s law, Guida and Mauri
(1986) and Hollnagel (1986) introduced quality assurance concerning the assessment
of system performance in quantitative and diagnostic manners as listed below:

• Quantify the extent to which one system surpasses the other.

• Troubleshoot malfunctions of a system through case studies.
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Jones and Galliers (1995) sketched evaluation concerns from two perspectives,
i.e., intrinsic and extrinsic evaluation. While the former evaluates the desired func-
tionalities of the system itself, the latter evaluates the impact of a system on an
external task.

The European project EAGLES-19961, being the acclaimed extension to the
ISO-9126 standard for software quality evaluation, is, arguably, one of the most
comprehensive studies on the fundamental principles pertaining to evaluation con-
cerns, criteria and measures for evaluating natural language technologies. This lays
the foundations of succeeding methodologies in the evaluation of natural language.
In particular, EAGLES-1996 outlines evaluation principles from three complemen-
tary perspectives as follows:

• Adequacy Evaluation quantifies the extent to which a system is adequate for
intended use.

• Progress Evaluation investigates whether or not the current state of a system
achieves the state-of-the-art.

• Diagnostic Evaluation concerns the rationales on why system output deviates
from anticipation.

NLP encompasses an abundance of applications, each with its own evaluation
concerns, criteria and measures. In this thesis, we do not aim for a comprehen-
sive study but particularly focus on the evaluation in natural language generation
(NLG), which touches on, arguably, the most human-like NLP applications. We
hope that our research contributes to the evaluation of general language technolo-
gies. In the following, we sketch EAGLES-1996 evaluation principles in the form of
NLG evaluation.

Adequacy Evaluation → Evaluation Metrics. NLG systems aim for produc-
ing natural language outputs corresponding to the given inputs in various forms, be
it text, image or table. Jones (2001) acknowledged the importance of human eval-
uation, for which human experts are asked to judge the adequacy of system outputs
according to predetermined criteria. For instance, given a system translation and a
human reference, translators are asked to rate the translation in how adequately it
reflects the meaning of the reference. However, a well-designed human evaluation
requires a large investment of time and resources, thus not favored today by most.
In stark contrast, cost-efficient NLG evaluation metrics such as BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), evaluating system performance in seconds or
minutes, have received considerable attention, and they quantify day-to-day progress
and form the basis for ever-increasing NLG community. However, previous works
cannot address high-quality metrics in multiple scenarios, such as long texts and in
the absence of lexical overlap and human references.

1 https://www.issco.unige.ch/en/research/projects/ewg96/ewg96.html
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Progress Evaluation→ System Comparison. As for all tasks in NLP, a state-
of-the-art system, being a direct reflection of the most recent advances in the field,
has to be affirmed with no doubt. Leaderboards, arguably, are the standard eval-
uation hubs that benchmark competing systems with evaluation metrics, publish
their results and affirm a winner of the systems (Tague-Sutcliffe, 1992; Voorhees,
2003; Hu et al., 2020). However, high-quality metrics could misjudge the state-of-
the-art when systems are not compared in a rigorous manner, such as employing
inappropriate significance tests (Simpson, 2021) and reporting single-point estimate
of performance (Reimers and Gurevych, 2017).

Diagnostic Evaluation → Explainability. Explainability has been researched
for long in artificial intelligence, which not only concerns the understanding of model
process and model outputs, but also lays the foundations of identifying model’s lim-
itations, and as such is more comprehensive than the scope of diagnostic evaluation.
In NLG evaluation, though recent metrics based on blackbox language models ex-
hibit high quality levels, few work has touched on the understanding of these non-
transparent metrics. Therefore, the judgments from these metrics can hardly be
justified.

1.2 Research Objectives

Given the complementarity of evaluation metrics, system comparison and explain-
ability, it is evident that a holistic view of principled NLG evaluation from these
perspectives is required in order to ensure trustworthy, reproducible and unbiased
results. In the following, we outline the research questions driven by the current
state of challenges pertaining to the inherent characteristics of these perspectives.

Evaluation Metrics. As the cost-efficient alternative to human evaluation, au-
tomatic evaluation with its own criteria and metrics has received attention for two
decades. However, previous metrics correlate poorly with human judgment of text
quality in multiple scenarios. For instance, research showed that BLEU (Papineni
et al., 2002) and ROUGE (Lin, 2004), which count the n-gram matches between
system output and human reference, are inadequate in evaluating NLG systems in
the absence of lexical overlap between system and human pair (Reiter, 2018). As
a second example, though recent metrics building on contextualized representations
are shown to be high quality in reference-based evaluation, they could not show
advantages in the absence of human references and in evaluating long texts.

Recently, aiming to fuel more research on this topic, we organized the workshops
on Evaluation and Comparison of NLP Systems (Eger et al., 2020; Gao et al., 2021),
outlining the anticipated properties of evaluation metrics: (i) high correlation with
human assessments in both reference-based and reference-free evaluations and (ii)
robustness across lengths of input and output sequences. We now dissect these
properties into three research questions.

• RQ1. What are essential elements for reference-based metrics to be
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high quality in the absence of lexical overlap?

Recognizing lexical similarity is crucial in order for reference-based metrics to
properly judge system outputs, especially in the case where system output and
human reference lack lexical overlap. Research showed that text representations,
grounded in the distributional hypothesis (Harris, 1954), can address lexical simi-
larity with broader semantic relatedness of words in vector space (Hill et al., 2015).
However, little is known how best to exploit the powers of these representations
for achieving high-quality metrics in reference-based scenarios.

• RQ2. How to design reference-based metrics targeting the assessment
of text coherence for evaluating long texts?

Text coherence plays a vital role in the assessment of long texts. Research showed
that recent metrics based on contextualized representations cannot recognize text
coherence (Fabbri et al., 2020; Yuan et al., 2021; Sai et al., 2021). This is not sur-
prising as language models responsible for producing contextualized embeddings
mostly do not take account of the interdependence between sentences, such as
discourse phenomena in the inter-sentence context.

• RQ3: What are essential elements for reference-free metrics to be high
quality in the absence of human references?

In reference-free scenarios, evaluation metrics aim for unlimited evaluation by
means of removing the need for human references. However, the proposals of
reference-free metrics are in need of human ratings as supervision (Specia et al.,
2010) and language-specific preprocessing (Lo et al., 2014; Lo, 2019), which hinder
the broader use of these metrics. Further, research showed that the qualities of
these metrics are far below reference-based BLEU, invented two decades ago (Ma
et al., 2019).

System Comparisons. Evaluation metrics and system comparisons are interre-
lated, and both affect evaluation results. For instance, high-quality metrics can mis-
judge a state-of-the-art system on leaderboards in which systems are ranked accord-
ing to the average of instance-level evaluation scores. We show that global statistics
such as average and median cannot carry out rigorous comparison, as they ignore
the fact that systems are evaluated on the same test instances (see Chapter 11). We
now present the research question related to rigorous system comparison.

• RQ4: What is the rigorous comparison approach in order for leader-
boards to report correct system rankings?

Explainability for Evaluation Metrics. Unlike the advances in explainable ar-
tificial intelligence, few work has touched on the understanding of evaluation metrics
along the dimensions, such as (i) visualizing the process of evaluation metrics; (ii)
understanding what linguistic factors these metrics capture; (iii) providing rationales
as to why one metric is superior to another and (iv) providing justifications to the
judgments from these metrics. We now present the research question corresponding
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Principled NLG
Evaluation

Explainability
for Metrics

Explanation for
Metric Superiority Chapter 6

Visualization
Explanations Section 5.3.1

Explanation by
Simplification Chapter 12

System Com-
parison

Instance-
level Pairing Chapter 11

Evaluation Metrics

Reference-free
Evaluation

Subpart B

Reference-based
Evaluation

Subpart A

Figure 1.1: Classification of the contributions presented in this thesis 2.

to the explainability of evaluation metrics.

• RQ5. What insights can be drawn from explainable artificial intelli-
gence in order to understand non-transparent evaluation metrics?

1.3 Thesis Organization

Figure 1.1 provides the overview structure of the contributions presented in this
thesis. In Chapter 2, we provide an in-depth background on principled evaluation
in natural language generation from three complementary perspectives: evaluation
metrics, system comparison and explainability, and we summarize our contributions
that address the five research questions above.

In Subpart A, we introduce two evaluation metrics in the presence of human
references. In Chapter 5, we introduce MoverScore to address the absence of lexical
overlap with contextualized word embeddings, while we introduce DiscoScore to
address long-text evaluation based on word embeddings and discourse coherence in
Chapter 6. In Chapter 7, we propose the KDE routing for aggregating capsules
(another form of embeddings)—which we use to address the aggregation of word
embeddings across the layers of contextualized encoders for our evaluation metrics.

In Subpart B, we introduce XMoverScore, a parameterized metric in the absence
of human references, particularly to address reference-free machine translation evalu-
ation, i.e., comparing system translations with source language texts. XMoverScore

2 We adopt the standard classification of explainable artificial intelligence to distinguish the ex-
plainability techniques for understanding evaluation metrics (see more details in Section 4).
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can be parameterized with the choice of solutions to rectifying the vector space
of different languages—which results in high-quality cross-lingual embeddings. In
particular, we reduce language bias and rotate the vector space in Chapter 8. Chap-
ter 9 addresses the removal of language identity signals from the vector space, while
Chapter 10 addresses the vector space alignment for low-resource languages.

In Chapter 11, we propose pairwise comparison approaches for reporting correct
system rankings on leaderboards. Our contributions to the explainability for metrics
are manifold. We visualize the process of MoverScore in Section 5.3.1, and provide
rationales as to why one metric is superior to another in Chapter 6. Chapter 12 ad-
dresses understanding on what linguistic factors recently proposed metrics capture.
In Chapter 13, we conclude this thesis and present an outlook for future work.
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Chapter 2

Text Quality Evaluation

Natural language generation (NLG) systems aim for producing system outputs faith-
ful to the given source inputs in various forms, such as source language texts in
machine translation, documents in text summarization, and utterances in conversa-
tional dialog. Evaluating these systems has a long transition course from human-
centralized to automatic evaluation, both concerned with assessing the text quality
of system outputs. In this chapter, we start by outlining the progression of human
evaluation, and then introduce automatic evaluation that performs assessments with
low-cost evaluation metrics. Lastly, we summarize our contributions presented in
this thesis.

2.1 Human Evaluation

As for all tasks in NLG, system outputs are deemed open-ended, i.e., that multiple
outputs can be correct to a given input. For instance, a source language text allows
for numerous paraphrased system translations. In this context, the judgments of
human experts, e.g., professional translators, appear to be the gold standard for
evaluating system outputs, even though human experts often produce inconsistent
assessments after time-consuming work. We now outline the evaluation concerns,
criteria and guidelines responsible for ensuring high-quality human evaluation.

2.1.1 Evaluation Concerns and Criteria

NLG encompasses a range of tasks, each with its own course of human evaluation,
driven by the fundamental nature of the task. This section particularly discusses
the concerns and criteria of human evaluation in summarization and machine trans-
lation.

Text Summarization. Figure 2.1 shows the timeline and progression of human
evaluation criteria in summarization. In the following, we outline these criteria and
the major concerns of them. Table 2.1 shows evaluation corpora adopting these
criteria to carry out human evaluation.
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2018 Recent Edition of Readability (Grusky et al., 2018)
2005 Responsiveness (Dang, 2005)
2004 Content Coverage of Summary Content Units (Nenkova and Passonneau, 2004)
2004 Content Coverage of Factoids (Teufel and Halteren, 2004)
2003 Content Coverage of Discourse Units (Lin, 2001)
2003 Readability (Lin, 2001)

Figure 2.1: Timeline and progression of human evaluation criteria in summarization.

Corpora DiscoUnit Factoid SCU Resp Info Flu Rel Coh

REALSUM-2020 ✓
SummEval-2020 ✓ ✓ ✓ ✓
NewsRoom-2018 ✓ ✓ ✓ ✓
Rank2019 ✓
QAGS-2020 ✓
DUC-[01,02,03,04] ✓
DUC-2005 ✓ ✓
DUC-2006 ✓ ✓
DUC-2007 ✓ ✓
TAC-[08,09,10,11] ✓ ✓

Table 2.1: Relationships between human evaluation criteria and corpora in summa-
rization. SCU, Resp, Info, Flu, Rel, Coh mean Summary Content Unit (Pyramid),
Responsiveness, Informativeness, Fluency, Relevance, and Coherence. These cor-
pora consist of source language texts, system and human translations, as well as
human ratings according to the selected human evaluation criteria.

• Content Coverage of Discourse Units : Summary Evaluation Environment
(SEE) pioneered the human evaluation criterion in summarization. SEE starts
by extracting the elementary discourse units from human reference with SPADE1,
a discourse annotation tool, and then recruits human raters to underline the
sentences within system summary that are relevant to the extracted discourse
units, and finally denotes content coverage by the number of the marked sen-
tences (Lin, 2001) (see Figure 2.2). This criteria was adopted in the early
iterations of the evaluation campaigns in the Document Understanding Con-
ferences (DUC).

Limitation: Lin and Hovy (2002) acknowledged the inherent limita-
tions in SEE: (i) given a source document, SEE only offered a single
human reference, which falsely assumes a unique solution for system
summary, and (ii) given discourse tools are prone to mistakes, this
criterion cannot reach an acceptable agreement level between human
raters.

• Content Coverage of Factoids : to be able to overcome the issues in SEE, Teufel
and Halteren (2004) introduced a factoid-based, content coverage criterion,

1 https://www.isi.edu/publications/licensed-sw/spade/
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Figure 2.2: Summary Evaluation Environment (Lin, 2001).

which includes multiple human references for evaluating a system summary,
and asks humans to produce the factoids from the references and the system
summary. Consider the following example:

Example

Given the sentence “A man was accused of murdering his wife Jeniffer.”,
the corresponding factoids could be “The man is a killer.”, and “The man
is a husband of Jeniffer.”.

As such, content coverage denotes the number of factoid overlaps between sys-
tem and reference summaries. This criteria has been adjusted and adopted in
recent evaluation corpora such as SUMMEval (Fabbri et al., 2020), Rank2019 (Falke
et al., 2019), and QAGS (Wang et al., 2020).

• Content Coverage of Summary Content Units : Nenkova and Passonneau (2004)
introduced another content coverage criterion, the so-called Pyramid, which
evaluates system summary in multi-reference scenarios, and asks humans to
annotate Summary Content Units (SCUs) in system and human summaries.
Each SCU can be weighted and placed in a certain level of a pyramid ac-
cording to its occurrence in the reference summaries. Thus, content coverage
denotes the number of SCU overlaps between system and human summaries.
Fuentes et al. (2005) extended upon the idea of Pyramid by exploring ap-
proaches for automatic SCU annotation. Pyramid has been adopted in DUC-
2006 and DUC-2007 and in the evaluation campaigns in Text Analysis Con-
ferences (TAC)1, and the recent evaluation corpus— REALSUM (Bhandari
et al., 2020).

1 http://www.nist.gov/tac/
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Quizzes

1. About how many gross capitalization errors are there?
2. About how many sentences have incorrect word order?
3. About how many times does the subject fail to agree in number with the verb?
4. About how many of the sentences are missing important components (e.g. the subject,
main verb, direct object, modifier) causing the sentence to be ungrammatical, unclear, or
misleading?
5. About how many times are unrelated fragments joined into one sentence?
6. About how many times are articles (a, an, the) missing or used incorrectly?
7. About how many pronouns are there whose antecedents are incorrect, unclear, missing,
or come only later?
8. For about how many nouns is it impossible to determine clearly who or what they refer
to?
9. About how times should a noun or noun phrase have been replaced with a pronoun?
10. About how many dangling conjunctions are there, such as and and however ?
11. About many instances of unnecessarily repeated information are there?
12. About how many sentences strike you as being in the wrong place because they indicate a
strange time sequence, suggest a wrong cause-effect relationship, or just do not fit in topically
with neighboring sentences?

Table 2.2: Linguistic Quizzes for evaluating readability (Over and Liggett, 2002).

2016 Direct Assessment (Graham, 2015)
2014 Multidimensional Quality Metrics (Lommel et al., 2014)
2007 Relative Ranking (Callison-Burch et al., 2007)
2006 Translation Error Rate (Snover et al., 2006)
2004 Adequacy and Fluency (Annotation, 2002)
1994 Quality Panel (White et al., 1994)

Figure 2.3: Timeline and progression of human evaluation criteria in MT.

• Responsiveness : much unlike previous criteria, Dang (2005) introduced an
reference-free criterion, which removes the dependence on human summaries,
and compares system summary with the topic statement of source document,
aiming to measure the amount of information in the summary meeting the
information need expressed in the topic statement. Humans are asked to read
the topic statement and the associated summaries, and then rate the summary
on 5-point scale from worst to best. This criteria was adopted in the editions
of DUC from 2005 to 2007, and the TAC evaluation campaigns.

• Readability and Recent Edition: further, aiming to know whether system out-
puts conform to linguistic rules, the DUC-2002 evaluation campaign (Over
and Liggett, 2002) adopted the SEE environment to measure the readability
of system summaries by filling out twelve linguistic quizzes (see Table 2.2),
which is time-consuming, however. Accordingly, recent evaluation corpora,
such as SUMMEval (Fabbri et al., 2020) and RealSUM (Bhandari et al., 2020),
adopted a new edition of readability to judge system summaries, which focuses
on four aspects: informativeness, coherence, relevance and fluency, and as such
requires lower human effort.

Machine Translation. Figure 2.3 shows the timeline and progression of human
evaluation criteria in machine translation. In the following, we outline these criteria
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Corpora QP Adequacy Fluency RR DA HTER MQM

ARPA-1994 ✓
MTC-P4 ✓ ✓
OpenMT-2015 ✓ ✓
WMT-[14,15] ✓
WMT-[16,17,18,19,20] ✓ ✓
WMT-21 ✓ ✓
WMT-QE-[19,20] ✓ ✓ ✓
MLQE-2020 ✓
MLQE-PE-2020 ✓
Eval4NLP-2021 ✓

Table 2.3: Links between human evaluation criteria and corpora in machine transla-
tion. QP, RR, DA, HTER and MQM mean Quality Panel, Relative Ranking, Direct
Assessment, Human Translation Error Rate and Multidimensional Quality Metrics.
These corpora consist of source language texts, system and human translations, as
well as human ratings according to the selected human evaluation criteria.

and the major concerns of them. Table 2.3 shows evaluation corpora adopting these
criteria to carry out human evaluation.

• Quality Panel : professional translators are asked to judge system translations
through multi-round panel discussions along predefined linguistic criteria, such
as lexical choice, grammaticality, semantics, stylistics, fluency, and so forth.
ARPA2 recruited translators to perform human evaluation with these crite-
ria (White et al., 1994). While reliable, multi-round panel discussions are
extremely laborious, and thus do not exist for long.

• Adequacy and Fluency : aiming for low-cost human evaluation, Linguistics
Data Consortium introduced two criteria, namely Adequacy and Fluency on a
5-point Likert scale, which do not require internal discussion, but rather ask
translators to complete judgments independently (Annotation, 2002). The
annual Open Machine Translation campaigns3 adopted these criteria to carry
out human evaluation. Table 2.4 shows the 5-point scales of these criteria.

Adequacy: to what extent the information of professional human
translation is expressed in system translation?

Fluency: to what extent system translation is well-formed according
to the grammar of target language?

Limitation: given a 5-point scale, these criteria are inadequate to
discriminate system translations of varying qualities.

• Relative Ranking : in order to carry out nuanced, fine-grained human evalu-

2 The ARPA MT Initiative is part of the Human Language Technologies Program of the Advanced
Research Projects Agency Software and Intelligent Systems Technology Office.

3 https://www.nist.gov/itl/iad/mig/open-machine-translation-evaluation
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Adequacy Fluency

5: All 5: Flawless
4: Most 4: Good
3: Much 3: Non-native
2: Little 2: Disfluent
1: None 1: Incomprehensible

Table 2.4: Adequacy and Fluency on 5-point scales in MT human evaluation.

ation, Callison-Burch et al. (2007) recruited translators to rank translations
produced by multiple systems in pairs. For instance, given a source language
text and two translations at a time, translators are asked to judge which one
is superior to the other. Ties are allowed when two translations are of similar
qualities. This criterion has become popular in human evaluation, adopted
in recent iterations of the WMT metrics shared tasks (Bojar et al., 2017; Ma
et al., 2018, 2019; Mathur et al., 2020b).

Limitation: ranking translations in pairs cannot distinguish the mag-
nitude of the differences in translations quality (Bojar et al., 2011).

• Direct Assessment : further, to be able to quantify the differences in transla-
tion quality, Graham (2015) extended upon the idea of Adequacy by taking a
continuous scale from 0 to 100, showing that recruiting 15 professional trans-
lators can achieve an acceptable agreement between translators. This criterion
has been applied in recent editions of the WMT metrics shared tasks (Bojar
et al., 2017; Ma et al., 2018, 2019; Mathur et al., 2020b), and the WMT qual-
ity estimation shared task (Fonseca et al., 2019; Specia et al., 2020), and the
Eval4NLP shared task (Fomicheva et al., 2021b).

• Human Translation Error Rate: Snover et al. (2006) introduced a post-editing
criterion, which asks translators to underline edits, such as insertions, deletions
and replacements, needed for correcting a system translation, and computes
the ratio between the number of edits and the reference translation length.
This criterion has been adopted in the WMT shared tasks for quality estima-
tion (Fonseca et al., 2019; Specia et al., 2020), the MLQE (Fomicheva et al.,
2020b) and MLQE-PE (Fomicheva et al., 2020a) corpora.

• Multidimensional Quality Metrics : aiming for mastering the judgment of trans-
lation quality, Lommel et al. (2014) assembled over 100 translation errors in
the literature, and provided the taxonomy of these errors, termed the Mul-
tidimensional Quality Metrics (MQM) framework. The WMT shared tasks
for quality estimation (Fonseca et al., 2019; Specia et al., 2020) selected a
subset of translation errors from the MQM framework to perform fine-grained
human evaluation, such as assigning error types to mistranslated words. For
that reason, research showed that MQM is superior to coarse-grained Direct
Assessment in discriminating human and system translations (Freitag et al.,
2021). Figure 2.4 shows the overview structure of the MQM framework.
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Figure 2.4: High-level taxonomy of translation errors outlined in MQM.

2.1.2 Evaluation Guideline

Human judgments are notoriously subjective, inconsistent, not reproducible. As a
consequence, a well-designed guideline is required for ensuring high-quality human
evaluation. We discuss the major elements of an evaluation guideline as follows:

• The number of human raters recruited : in machine translation, research showed
that a number of 15 professional translators is at minimum in order to reach
an acceptable agreement level between translators when adopting Direct As-
sessment to judge system translations on segment level (Graham et al., 2015).
However, the minimum number has to increase to 100 when making judgments
on document level (Mathur et al., 2020b).

• Pre-qualification tests to filter out disqualified raters : in order to ensure high-
quality judgments, human raters are asked to participate in qualification tests.
Only raters who pass the tests are allowed to continue the evaluation process.
Research showed that disqualified raters can be recognized with demographic
characteristics, such as nationality and age (Downs et al., 2010), but the qual-
ification of these raters can be improved after training (Mitra et al., 2015).

• The number of assessment rounds : negotiation plays a vital role in the qual-
ity of human judgments. Research showed that, though human raters often
disagree with each other in the first round, they negotiate on the details of
evaluation criteria in follow-up meetings, and finally can result in an acceptable
agreement (Iskender et al., 2020).

• Experts vs non-experts : recruiting human experts or non-experts to carry out
human evaluation seems a controversy in the literature. For instance, research
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Scenarios Source Hypothesis Reference Human Rating

Evaluation without Supervision (✓) ✓ (✓)
Evaluation with Supervision (✓) ✓ (✓) ✓

Table 2.5: Classification of evaluation scenarios. Hypothesis means system output.
(✓) means the dependence on source text and human reference is optional.

showed that non-experts, such as crowdsourcing workers and laboratory stu-
dents, are indifferent from experts in quality when carrying out human evalua-
tion in text classification (Snow et al., 2008) and machine translation (Callison-
Burch, 2009). However, non-experts exhibit quality levels well below experts
in summarization (Gillick and Liu, 2010; Lloret et al., 2013). Iskender et al.
(2020) recently showed that the overall quality of non-experts can be consid-
erably improved in summarization by increasing the number of crowdsourcing
workers, but the study is limited in scope to German as the only language.

Inter-rater Agreement As discussed above, the consensus between human raters
determines the quality of human evaluation. We briefly outline the four common
measures of inter-rater agreement as follows:

• Percent Agreement refers to the percent of instances for which two human
raters agree with one another, but considers all instances equally.

• Cohen’s k (Cohen, 1960) builds on top of Percent Agreement, which considers
the odds of that two human raters arrive at the same judgments.

• Fleiss’s k (Fleiss, 1971) extends Cohen’s k to operate in multi-raters settings,
which computes the extent of observed agreements over the agreements ex-
pected by chance.

• Krippendorff’s α (Krippendorff, 1970) is a measure of inter-rater disagreement,
which computes the extent of observed disagreements over the disagreements
expected by chance.

2.2 Automatic Evaluation

Human evaluation carried out by following the instructions of a well-designed eval-
uation guideline requires a large investment of time and resources. For instance,
research showed that a cost of 3,000 hours is required for human raters to complete
evaluation in multi-documents summarization (Lin, 2004). Accordingly, automatic
evaluation emerged, which assesses system outputs in seconds or minutes with eval-
uation metrics, and as such has been favored by most today.

Table 2.5 shows two evaluation scenarios corresponding to two classes of eval-
uation metrics: unsupervised and supervised metrics, which are distinguished by
whether or not they use human rating as supervision. Both classes of metrics can
be deemed reference-based or reference-free, which depends on the input arguments
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Evaluation
Metrics

Unsupervised

Generation
Likelihood-

based
IBM1, PRISM,

BARTScore

Mask Filling BLANC

Factuality

Embedding-
based ESTIME

QA-based FEQA

Enailment-
based

FactCC, DAE

Discourse

Embedding-
based DiscoScore*

Features-based

RC/LC, En-
tityGraph,

LexicalGraph,
LexicalChain,

KoBE

Semantics

Synonym-
based

METEOR,
METEOR-

NEXT

Embedding-
based

w/o features

BERTr,
BERTScore,

WMD,
MoverScore*,

XMoverScore*,
SUPERT

w features

MEANT,
XMEAN2.0,
XMEANT,

Yisi

Lexicality

Char-level
CHRF,
CHRF+

Word-level

BLEU, NIST,
ROUGE,

CIDEr, WER,
TER, PER

Sentence-level Precision/Recall

Supervised

End-to-end

ESIM, RUSE,
BLEURT,
NUBIA,
COMET

Feature-based
BEER,

BLEND,
NNEval

Figure 2.5: Taxonomy of NLG evaluation metrics. (*) marks the metrics proposed
in this thesis.
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they take, i.e., either they compare system output with human reference or with
source text. In this section, we will outline unsupervised and supervised metrics.
Figure 2.5 shows the taxonomy of these metrics.

2.2.1 Evaluation without Supervision

As discussed above, unsupervised evaluation metrics judge the text quality of sys-
tem outputs without the access to human ratings. Often, recent surveys on NLG
evaluation classify unsupervised metrics into two classes: (i) lexical-based and (ii)
semantic-based (Celikyilmaz et al., 2020; Sai et al., 2022). We complement this
classification of unsupervised metrics with three extra classes: (iii) discourse-based;
(iv) factual-based and (v) generation-based. We now discuss these metrics under
each class as follows:

Lexical-based Metrics. Lexical-based evaluation metrics, comparing system out-
put with human reference or with source text on lexical level, are often termed
retrieval-based metrics, which treat text as a bag of words or sentences. We now
outline these metrics as follows:

• Precision and Recall (Kupiec et al., 1995) are sentence-level, reference-based
evaluation metrics, pioneered in summarization, which compares system sum-
mary with human reference with Recall and Precision. Recall computes the
fraction of the sentences in human reference that occur in system summary,
while Precision computes the faction of the sentences in system summary that
occur in human reference. Later on, Jing et al. (1998) extended Recall and
Precision to operate in multi-reference settings.

Limitation: these metrics counting sentence-level matches cannot rec-
ognize the extract word matches in system and reference pairs. Con-
sider the following example in which we underline the exact matches
on word level.

Example

• System output: The German Johannes Gutenberg introduced
printing to Europe, whose invention allowed for the production of
printed books.
• Human reference: Printing was introduced by the German Jo-

hannes Gutenberg, to Europe, which allowed the production of
printed books and open circulation of information.

Given the lack of sentence-level matches, Precision and Recall falsely
assign a score of 0 to the above system summary, despite the fact that
system and human summaries express similar meanings.

• BLEU (Papineni et al., 2002) is a precision-based valuation metric, which op-
erates Precision on word and phrase levels in reference-based scenarios, and
can be parametrized with the window size of words, termed n-gram. In par-
ticular, BLEU replaces the sentence-level matches with the n-gram matches
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between system output and human reference. Recent research extended upon
the idea of BLEU from multiple perspectives. Post (2018) proposed a stan-
dardized metric, the so-called sacreBLEU, which does not allow users to adjust
the metric configuration, such as the window size, the scheme of tokenization,
and so forth, as recommended in the annual Conference on Machine Transla-
tion (WMT). Galley et al. (2015) introduced △-BLEU, which rewards n-gram
matches between system output and high-quality reference, and penalizes the
matches with low-quality reference.

• NIST (Doddington, 2002) is a precision- and reference-based evaluation met-
ric, which counts the n-gram matches in system output and human reference,
much like BLEU. However, NIST weights each n-gram according to its infor-
mation gain on human reference, which rewards n-gram matches for which the
n-gram is deemed rare, and as such decreases the chance of manipulating the
metric with unimportant n-gram.

• ROUGE (Lin, 2004) is a recall-based evaluation metric, which operates Recall
on word and phrase levels in reference-based scenarios, and can be parametrized
with the window size of words and the weighting scheme. For instance,
ROUGE-N counts the n-gram matches between system output and human
reference, much like BLEU-N. ROUGE-L measures the longest common sub-
sequence (LCS) between system and reference pairs. ROUGE-W weights LCS
matches according to the consecutiveness of these matches.

• CHRF (Popović, 2015) is a n-gram based evaluation metric operating on char-
acter level, which does not require tokenization, but directly counts character
n-gram matches in system output and human reference, particularly useful
when system outputs are in morphologically rich languages. Popović (2017)
proposed CHRF+ considering n-gram matches on both word and character
levels.

• CIDEr (Vedantam et al., 2015) is a weighted n-gram based evaluation metric
for image captioning evaluation, which employs “term-frequency and inverse-
document-frequency” (TF-IDF) to weight each n-gram matches according to
its frequency not only in human reference, but also in the entire corpus con-
sisting of all references over images. In particular, CIDEr is in favor of rare
n-grams relevant to an image, and penalizes n-grams with high occurrences in
the corpus.

• Word Error Rate (WER) (Su et al., 1992) is reference-based evaluation metric,
which concerns the edits, such as the number of insertions, deletions, substitu-
tions, and so forth, required for correcting a system output. Research showed
that WER excessively punishes word order displacement, i.e., that correct-
ing a misplaced word requires a two-step correction: a deletion followed by
an insertion. As such, WER does not allow for high-quality system output
with different word ordering from human reference. To this end, Translation
Edit Rate (TER) (Snover et al., 2006) introduced one-step correction to ad-
dress word order difference. Position-independent Edit Rate (PER) (Tillmann
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et al., 1997) proposed to base the edits on the alignment of word pairs in
system output and human reference.

Limitation: as Lavie and Agarwal (2007) state, lexical metrics, operating
on surface level, have failed to recognize semantic similarity between sys-
tem output and human reference in the absence of exact n-gram matches.
Consider the following example in which the exact matches are underlined:

Example

• System output: This makes an increase in immigration unavoidable.
• Human reference: As a result, immigration will increase.
Given only two exact matches seen in the above system and human transla-
tions, lexical metrics cannot properly judge translation quality, notwithstand-
ing the identical meanings expressed in these two translations.

Semantic-based Metrics. Later on, evaluation metrics focusing on soft lexical
matching emerged, which address lexical similarity with (i) synonym matching and
(ii) broader word relatedness in vector space. We outline these metrics as follows:

• METEOR (Lavie and Agarwal, 2007) is a reference-based evaluation met-
ric, which allows for synonym matching in the absence of lexical overlap. In
particular, METEOR, considering both precision and recall, carry outs a se-
ries of matching operations, including exact word matches, stemmed word
matches, and synonym matches, over system and human pairs. Unlike n-
gram based metrics, METEOR only considers unigram matches, but it re-
wards longer contiguous matches with a penalty term called “fragmentation
penalty”. Denkowski and Lavie (2010) proposed METEOR-NEXT, which com-
putes weighted precision and recall by assigning different weights to different
matching operations.

• Word Mover Distance (WMD) (Kusner et al., 2015) is a distance-based eval-
uation metric, which computes the semantic distance between system output
and human reference by solving an optimization problem: given the Euclidean
distances between word embeddings pertaining to the system and reference
words, what is the minimum cost in order to transform the system words into
the reference words. WMD allows for one-to-many word transformation, i.e., a
word on one side can transform into multiple words on the other. Chow et al.
(2019) extended WMD with a penalty term, which controls the punishment
of word order difference.

• ROUGE-WE (Ng and Abrecht, 2015) is a reference-based metric, which ex-
tends upon the idea of ROUGE by leveraging pre-trained word2vec embed-
dings (Mikolov et al., 2013). ROUGE-WE computes the word relatedness in
vector space, thereby addressing the challenge of operating ROUGE in the
absence of lexical overlap between system and reference texts.
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• MEANT (Lo and Wu, 2013) attributes the difference between system output
and human reference into two aspects: structure and semantics. In particular,
MEANT employs a semantic parser to predict the role of each word in system
and reference texts, and then align role labels and role fillers with bipartite
graph matching based on word embeddings. Lastly, MEANT computes F-
score based on the matches of these role frames. XMEANT (Lo et al., 2014)
extends MEAT to operate in reference-free scenarios. MEANT2.0 (Lo, 2017)
weights each word with TF-IDF, aiming to reward content words and penalize
function words.

• Yisi (Lo, 2019) is a parametrized evaluation metric, with parameters on the de-
pendence of human reference and semantic parsers. YiSi-1 extends MEANT2.0
by replacing static word embeddings by recently proposed contextualized em-
beddings and making language-specific semantic parsers optional. In par-
ticular, YiSi-1 is a reference-based metric, which computes cosine similarity
between system and reference texts on n-gram level based on contextualized
embeddings, and optionally combines an additional semantic score based on
the matches of role labels and role fillers. YiSi-2 operates YiSi-1 in reference-
free scenarios, which compares system and source texts.

• SIMILE (Wieting et al., 2019) is a reference-based metric, which trains a
sequence-to-sequence based language model on paraphrase text pairs extracted
from ParaNMT, and then computes the cosine similarity of two sentence em-
beddings pertaining to system and reference texts. As in BLEU, SIMILE uses
a length penalty (LP) term to penalize needless word repetition.

• BERTr (Mathur et al., 2020a) is a recall-based evaluation metric, which starts
by assembling maximum cosine similarity scores between each word in human
reference and each word in system output based on contextualized word em-
beddings, and then take the average of these similarity scores as the metric
score. BERTr is based on the greedy one-to-one alignment (Rus and Lintean,
2012), which matches each word in human reference to the closest word in
system output based on the cosine similarity between the embeddings of these
words.

• BERTScore (Zhang* et al., 2020) is a reference-based evaluation metric, which
operates BERTr in forward and reverse directions to obtain precision and recall
scores from BERTr, aiming to ensure the symmetry of the metric.

• MoverScore (see Chapter 5) is a set-based evaluation metric as the extension
of WMD, which computes the similarity between two sets of word embeddings
corresponding to system output and human reference by solving an optimiza-
tion problem, as it is the case for WMD. Much unlike BERTScore, MoverScore
allows for one-to-many word matching, termed soft word alignment. XMover-
Score extends MoverScore to operate in reference-free scenarios (see Chapter
8).

• SUPERT (Gao et al., 2020) is a reference-free evaluation metric, which em-
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ploys graph-based approaches to extract pseudo reference summary from source
document, and compares system summary with the extracted pseudo reference
using MoverScore and contextualized representations.

Limitation: research showed that recent semantic-based metrics, such as
BERTScore and MoverScore, building on contextualized representations can-
not recognize text coherence, and fail to punish the incoherent elements in
system outputs (Fabbri et al., 2020). This is not surprising as language
models responsible for producing contextualized embeddings mostly do not
consider the interdependence between sentences, such as discourse phenom-
ena in the inter-sentence context.

Discourse-based Metrics. We now outline early discourse metrics, as well as
popular coherence models treated as metrics, which were initially proposed to judge
text coherence in discourse tasks.

• RC and LC (Wong and Kit, 2012) are reference-free, discourse metrics, which
require neither source texts nor references and use lexical cohesion devices
(e.g., repetition) within hypothesis to predict text coherence. LC computes
the proportion of words within hypothesis that are lexical cohesion devices,
while RC computes the proportion of times that lexical cohesion devices appear
in hypothesis.

• Entity Graph (Guinaudeau and Strube, 2013) and Lexical Graph (Mesgar
and Strube, 2016) are popular coherence models known to perform discourse
tasks such as essay scoring, both of which introduce a graph with nodes as
sentences and adjacency matrices as the connectivity between sentences. Here,
we use the average of adjacency matrices from the hypothesis as the proxy
of hypothesis coherence. While Entity Graph draws an edge between two
sentences if both sentences have at least one noun in common, Lexical Graph
draws an edge if two sentences have a pair of similar words in common, i.e.,
the cosine similarity between their embeddings greater than a threshold.

• Lexical Chain (Gong et al., 2015) is a reference-based discourse metric, which
extracts multiple lexical chains from hypothesis and reference. Each word is
associated to a lexical chain if a word appears in more than one sentence. A
lexical chain contains a set of sentence positions in which a word appears.
Finally, the metric performs soft matching to measure lexical chain overlap
between hypothesis and reference.

• DiscoScore (see Chapter 6) is a reference-based, parametrized discourse met-
ric, which builds upon contextualized representations, and models discourse
coherence through the lens of readers’ focus, driven by Centering theory. Dis-
coScore can be parameterized with the choices of focus modeling: (i) modeling
the frequency and semantics of foci, and compare the difference of foci in hy-
pothesis and reference and (ii) employing focus transitions over sentences to
model the interdependence between sentences.
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• KoBE (Gekhman et al., 2020) is a reference-free, discourse metric, which
counts the exact matches on entity level between system translations and
source language text. KoBE is inspired by the fact that a coreferent entity is
linked to a set of referring, language-agnostic expressions, and it addresses en-
tity matches in two steps: (i) resorting to a large-scale multilingual knowledge
base to extract entity mentions from system translation and source language
text, and (ii) employing Recall to measure the ratio of entity matches and the
number of entities in source text.

Factual-based Metrics. Apart from the inability to recognize discourse coher-
ence, semantic-based metrics also fail to recognize factuality, and as such cannot
punish the factual errors in system output (Maynez et al., 2020; Fabbri et al., 2020).
Recently factual-based evaluation metrics have been proposed to address factual
consistency evaluation. We now outline these metrics as follows:

• ESTIME (Vasilyev and Bohannon, 2021) is a reference-free, factual-based eval-
uation metric, which judges the factuality of system output by comparing it
with source text. In particular, ESTIME extracts word pairs in system and
source texts according to the word relatedness in vector space, and then counts
the number of word pairs for which the corresponding words are not identical,
which reflects factual inconsistency.

• DAE (Goyal and Durrett, 2020) is a reference-free evaluation metric, which
judges the text quality of system output in the form of textual entailment. In
particular, DAE begins with employing Stanford CoreNLP (Manning et al.,
2014) to extract the dependence tree from system output. Each arc in the tree
describes a relationship over two words in text. DAE predicts the probability
that the relationships are the logically necessary consequences of source text.

• FactCC (Kryscinski et al., 2020) is a reference-free, entailment-based evalua-
tion metric, which finetunes RoBERTa (Liu et al., 2019) on synthetic, textual
entailment data, and then employs the finetuned RoBERTa to produce the
probability that individual sentences in system output are factual consistent
to source text, and finally extracts a span of source text as justification to the
model prediction.

• FEQA (Durmus et al., 2020) is a reference-free evaluation metric, which judges
the factuality of system output in the form of question answering. FEQA starts
by producing the questions from system output, and then employs QA models
to extract the corresponding answers from source text and system output.
Non-matched answers on both sides reflect the factual inconsistency of system
output.

Generation-based Metrics. Much unlike previous metrics, generation-based met-
rics judge the text quality of system output in the form of text generation, based on
pre-trained language models. We discuss these metrics as follows:

• BLANC (Vasilyev et al., 2020) is a reference-free metric concerning to what
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degree system output can assist language models such as BERT in performing
cloze-test tasks. In particular, given the access to system output, BLANC asks
BERT to fill in the masked-out tokens in source text. The more correct words
fill in the masked places, the more system output is deemed informative.

• IBM1 (Popović et al., 2011) is a reference-based metric judging translation
quality, which trains a bag-of-word translation model on machine translation
corpora, and then computes the likelihood that system output is the transla-
tion of source language text.

• PRISM (Thompson and Post, 2020) is a reference-based metric, which trains
a sequence-to-sequence language model on paraphrased text pairs, and then
employs the language model to compute the likelihood that system output and
human reference are paraphrases.

• BARTScore (Yuan et al., 2021) is a parameterized evaluation metric, with pa-
rameters regarding the dependence on human reference or on source text.
In reference-based scenarios, BARTScore finetunes BART on CNN/Daily-
Mail (Hermann et al., 2015), and then employs the finetuned BART to measure
how likely system output and reference are paraphrased according to the prob-
ability of one given the other, as it is the case for PRISM. In reference-free
scenarios, BARTScore employs the finetuned BART to measure the likelihood
that system output and source text are relevant.

2.2.2 Evaluation with Supervision

As evaluation metrics aim for imitating the behavior of human raters, supervised
metrics have been studied, which builds on regression models trained with human
ratings as supervision. Often, these metrics can be distinguished by the inputs
arguments they take: (i) feature-based: heuristic features, such as the evaluation
scores obtained from unsupervised metrics and linguistic features extracted from
text, and (ii) end-to-end: system output and reference (or source text) without the
need for any features. We outline these metrics as follows:

• BEER (Stanojević and Sima’an, 2014) is a feature-based evaluation metric
trained on machine translation corpora with human rated translation quality
as supervision, which linearly combines statistical measures, such as precision
and recall scores on both character and word levels, and the features derived
from permutation trees (Zhang and Gildea, 2007) to consider word ordering
in system output and human reference.

• BLEND (Ma et al., 2019) is a feature-based metric trained on machine trans-
lation corpora, which uses an SVM regression model to combine metric scores
from a total of 57 evaluation metrics, falling under three categories: lexical
metrics such as BLEU and ROUGE, syntactic metrics from the Asiya toolkit
(Giménez and Marquez, 2010), and discourse metrics focusing on name enti-
ties, semantic roles and discourse representation.
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• NNEval (Sharif et al., 2018) is a feature-based metric trained on image cap-
tioning corpora, which uses a multi-layer neural network to combine lexical
and semantic based metrics, and produces the probability that system caption
exhibits quality levels similar to human.

• ESIM (Chen et al., 2017) is a sequence-to-sequence BiLSTM model initially
proposed to perform natural language inference, which has been recently adapted
to predicting translation quality. Mathur et al. (2019) introduced an end-to-
end, supervised metric based on ESIM, which uses ESIM to encode sentence
embeddings of system and reference texts, and then trains a neural model on
these embeddings to rate system translations.

• RUSE (Shimanaka et al., 2018) is an end-to-end evaluation metric trained on
machine translation corpora, which removes the need for evaluation metrics
as input features, and uses a neural regression model to predict translation
quality based on a combination of three pre-trained sentence embeddings: In-
ferSent (Conneau et al., 2017), Quick-Thought (Logeswaran and Lee, 2018),
and Universal Sentence Encoder (Cer et al., 2018).

• BLEURT (Sellam et al., 2020) is an end-to-end, supervised evaluation metric
predicting translation quality based on finetuned BERT embeddings. BLEURT
finetunes BERT on synthetic sentence pairs and machine translation corpora in
succession, in which the synthetic pairs are produced by perturbing Wikipedia
sentences via (i) mask-filling; (ii) back-translation and (iii) randomly drop-
ping words. Pu et al. (2021) extended BLEURT with RemBERT to operate
in reference-free scenarios.

• NUBIA (Kane et al., 2020) is an end-to-end, supervised evaluation metric
trained on machine translation (or image captioning) corpora, which dissects
the assessment of text quality into three sub-tasks: (i) NUBIA finetunes
RoBERTa (Liu et al., 2019) embeddings on STS corpora (Cer et al., 2017)
to predict the sentence similarity between system and reference texts; (i) NU-
BIA finetunes RoBERTa embeddings on MNLI corpora (Wang et al., 2018)
to infer the relationship between system and reference texts; and (iii) NUBIA
uses GPT-2 (Radford et al., 2018) to rate system output, which produces per-
plexity score reflecting text fluency. Lastly, NUBIA uses a neural regression
model to aggregate these three scores.

• COMET (Rei et al., 2020) is an end-to-end, reference-free evaluation met-
ric trained on machine translation corpora, which builds on XLM-RoBERTa
and can be parametrized with the form of human ratings as supervision: (i)
COMET-DA uses Direct Assessment as supervision, (ii) COME-HTER uses
Human Translation Edit Rate (HTER) and (iii) COME-HTER uses Multi-
dimensional Quality Metrics and (iv) COMET-Rank uses Relative Ranking.
Bhosale et al. (2020) extended COMET with a triplet of input arguments
considering source, system and reference texts.
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Limitation: given the poor generalization being the fundamental issue
in supervised training, supervised evaluation metrics trained towards one
NLG task generalize poorly towards another, and thus are often termed
task-specific metrics.

2.2.3 Meta-Evaluation

As Lin and Hovy (2002) state, evaluation metrics aim for correlating highly, pos-
itively and consistently with human judgment of text quality. As a consequence,
performance gains by metrics can truly reflect improved text quality of system out-
puts. We list the following common correlation measures, which concern a meta-level
evaluation for evaluation metrics as opposed to evaluating system outputs.

• Spearman’s r quantifies the monotonic relationship between metric and human
scores assigned to system outputs.

• Pearson’s ρ, on the other hand, quantifies the linear relationship between
metric and human scores.

• Kendall’s τ quantifies the ordinal association, i.e., the relationship between
the rankings pertaining to metric and human scores.

In NLG, there appears to be a tradition carrying out meta-evaluation for evalu-
ation metrics on two levels: system and instance levels as follows:

• System Level : as for all tasks in NLG, evaluation metrics are responsible for
comparing systems, i.e., affirming the ranking of these systems. In this context,
system-level correlation between judgments by humans and by metrics aims
for quantifying how much the ranking of the systems is trustworthy. This
setup has to assemble system-level metric and human scores—both are the
average of instance-level scores weighted by the number of references.

• Instance Level : in order to complement meta-evaluation on system level,
instance-level correlation between evaluation metrics and human judgments is
introduced, which aims for investigating metric behaviors on individual cases,
such as the extent to which evaluation metrics discriminate system outputs
of varying text qualities, and in which cases metrics misjudge text quality by
assigning high scores to low-quality texts and vice versa.

2.3 Our Contributions

2.3.1 Reference-based Evaluation

Evaluation metrics, as low-cost alternatives to human evaluation, has become the
standard for evaluating the performance of text generation systems. The major, if
not utmost, concern in evaluation metrics is the magnitude that these metrics cor-
relate with human ratings, as the higher the correlations are, the more performance
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gains by metrics can genuinely reflect improved text quality of system outputs.
However, previous n-gram based metrics such as BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004), which have been extensively employed in recent NLG eval-
uation (Ma et al., 2018, 2019), cannot recognize semantic similarity when system
output and human reference have no lexical overlap. Building upon these insights,
we present the research question as follows:

RQ1. What are essential elements for reference-based metrics to be
high quality in the absence of lexical overlap?

In Chapter 5, aiming to design high-quality metrics in the absence of lexical
overlap, we propose MoverScore for system output assessment, which addresses lex-
ical overlap with semantic relatedness of words in vector space derived from recently
proposed contextualized representations. MoverScore consists of four essential ele-
ments: (i) leveraging strong contextualized encoders such as BERT (Devlin et al.,
2018); (ii) employing Earth Mover Distance to compute the similarity between sys-
tem output and reference, based on BERT embeddings; (iii) aggregating the word
embeddings across the layers of BERT and (iv) finetuning the embeddings on Natu-
ral Language Inference and Paraphrase corpora. We show that MoverScore strongly
correlates with human assessment in machine translation, summarization and image
captioning, surpassing BLEU by up to 25 correlation points.

However, MoverScore and other recently proposed metrics based on BERT,
known as sentence-level metrics, cannot recognize coherence and fail to punish in-
coherent elements in system outputs, and as such are inadequate to evaluate long
texts. We present the following research question.

RQ2. How to design reference-based metrics targeting the assess-
ment of text coherence for evaluating long texts?

In Chapter 6, we begin with investigating the extent to which recent BERT-based
evaluation metrics can recognize text coherence. We show that these metrics corre-
late much worse with human rated coherence than early discourse metrics such as
RC and LC (Wong and Kit, 2012), invented a decade ago. To this end, we propose
DiscoScore targeting text coherence assessment, which uses BERT to model dis-
course coherence through the lens of readers’ focus of attention, driven by Centering
theory (Grosz et al., 1995). We show that DiscoScore achieves strong system-level
correlation with human ratings, not only in coherence but also in factual consistency
and other aspects.

Aggregation of embeddings. Contextualized word embeddings have been shown
to be responsible for the successful stories of recent BERT-based metrics. However,
the selection of word embeddings can be challenging, as contextualized encoders pro-
duce considerably different embeddings across the layers of the encoders. Research
addressed this issue by either selecting the word embeddings from an intermedi-
ate layer or linearly combining word embeddings across layers with task-dependent
supervisions (Tenney et al., 2019; Liu et al., 2018, 2019)
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In Section 5.3.2, we apply the KDE routing to the aggregation of word embed-
dings across the layers of contextualized encoders for our evaluation metrics. In
Chapter 7, we elaborate on the KDE routing, a kernel-based density estimator, used
to aggregate capsules (another form of embeddings) across layers without supervi-
sion. The routing process uses an adaptive optimizer for adjusting the number of
times to perform aggregation.

2.3.2 Reference-free Evaluation

While recent BERT-based evaluation metrics achieve strong correlation with human
judgment of text quality, the majority of these metrics require costly human refer-
ences, and thus are limited to language pairs with available parallel data (source and
reference pairs), especially in machine translation evaluation. In contrast, reference-
free metrics removes the dependence of human references by directly comparing
system translations with source language texts, aiming for unlimited, web-scale eval-
uation of natural language generation (NLG) systems. In this context, we present
the following research question:

RQ3. What are essential elements for reference-free metrics to be
high quality in the absence of human references?

Indeed, each NLG task has its own challenges driven by the inherent character-
istics of the task. In this thesis, we particularly address reference-free evaluation in
machine translation (MT). In Chapter 8, we outline the challenges stemming from
the absence of human references in MT:

Resource and typology disparities across languages. We extend MoverScore
to operate in reference-free setups, which compares system translations with source
language texts based on their BERT-based, multilingual embeddings. However,
these embeddings (responsible for high-quality reference-based metrics) could not
show advantages in a cross-lingual setup. This is because these embeddings exhibit
a strong language bias with the qualities considerably different across languages.
This issue results in the poor qualities of reference-free metrics with the translations
to be assessed in low-resource languages and in languages dissimilar to the source.
Besides, we show that these metrics have the inability to punish “translationese”,
i.e., low-quality word-by-word translations.

To address this issue, we introduce XMoverScore, a parameterized metric to
address reference-free MT evaluation. XMoverScore can be parameterized with the
choice of solutions to rectifying the vector space of different languages—which results
in high-quality cross-lingual embeddings. In the following, we briefly outline these
solutions:

In Chapter 8, we propose two supervised approaches with the one rotating the
vector space, with another reducing “language bias” by subtracting embeddings from
a language-dependent bias vector. Besides, we couple XMoverScore with a target-
side language modeling to penalize unnatural word-by-word translations. XMover-
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Score surpasses reference-based BLEU, constituting the new frontier in reference-free
machine translation evaluation.

In Chapter 9, we propose three approaches to rectify the vector space: (i) re-
mapping the vector space of target languages (all together) to a pivot source lan-
guage with large parallel data as supervision; (ii) normalizing vector space by remov-
ing language-specific means and variances, which yields better discriminativeness of
embeddings as a by-product and (iii) normalizing input texts by removing mor-
phological contractions and sentence reordering, which aims to increase typological
similarity across languages. Our findings are manifold: First, normalizing vector
spaces is surprisingly effective, rivals much more resource-intensive approaches such
as re-mapping, and leads to more consistent gains. Second, text normalization yields
benefits in the setups where language-dependent, linguistic phenomena do exist in
input texts. Lastly, the three approaches are orthogonal and their gains often stack.

In Chapter 10, we propose weakly supervised and unsupervised approaches to re-
map the vector space of different languages, which remove the need for large parallel
data, thereby addressing the data scarcity issue for low-resource languages. We ex-
pose the two limitations of previous resource-intensive approaches: (i) the inability
to sufficiently leverage data and (ii) these approaches are not trained properly. To
address these issues, we introduce weakly supervised and unsupervised density-based
approaches, which dissect the re-mapping of vector space into density matching and
density modeling. Besides, we propose two validation criteria to guide both super-
vised and unsupervised training. Our experiments demonstrate the effectiveness of
our approaches in the scenarios of limited and no parallel data. First, our supervised
approach trained on 20k parallel data mostly surpasses previous resource-intensive
approaches trained on much larger parallel data. Second, parallel data can be re-
moved without sacrificing performance when integrating our unsupervised approach
in our bootstrapping procedure, which is theoretically motivated to enforce equality
of multilingual subspaces.
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System Comparison

System comparison, aiming for rigorously affirming one system over another, plays
an essential role, as evaluation metrics do, in NLG evaluation. For instance, high-
quality evaluation metrics could misjudge the state-of-the-art system when systems
are not compared in a rigorous manner, such as employing inappropriate significance
tests. Few work has surveyed the methodologies responsible for ensuring unbiased
and trustworthy comparison results. Here, we dissect methodologies into multiple
classes (see Figure 3.1). We now discuss them under each class.

• Statistics for the trustworthiness of results, via appropriate significance tests.

• Comparing score distributions instead of single-point estimates.

• Comparing systems under a given computational budget.

• Reporting consistent evaluation results with parameterized evaluation metrics.

3.1 Significance Testing

Significance testing is a long-lasting topic in statistics, which concerns the possibil-
ity that experimental results are coincidental. As for all tasks in NLP, when the
performances of two systems only differ by a small amount according to evaluation
metrics, researchers resort to report significance results in order to justify the su-
periority of one system over the other. However, research showed that results can
be misleading when employing inappropriate significance tests or carrying out them
incorrectly (Simpson, 2021). In statistics, significance tests fall under two categories:
parametric and non-parametric tests.

For (i) parametric tests, evaluation scores have to follow a well-known distri-
bution with predefined parameters. A popular example was given by Student’s
t-test (Fisher, 1935), which assumes that evaluation scores follow a Gaussian dis-
tribution, and computes the difference between two population means of evaluation
scores pertaining to two systems. For (ii) non-parametric tests, no assumption is

34



3.2. Reporting Multi-Run Results

System Com-
parison

Consistent Results
with Parame-
terized Metrics

SacreROUGE
Deutsch and
Roth (2020)

SacreBLEU Post (2018)

Computational
Budget

Trade-off between
performance and

computing resource

Ethayarajh and
Jurafsky (2020)

BERT over
its successors

Liu et al. (2019)

Linear regression
over neural systems

Dodge et al.
(2019)

Multi-Run Results Reporting score
distribution

Reimers and
Gurevych
(2017); Li
and Tal-

walkar (2020)

Significance Testing When the test
set size is small

Dror et al.
(2018)

Figure 3.1: Classification of methodologies for rigorous system comparison.

required. For instance, Sign Test computes the percent of instances for which one
system surpasses the other. Wilcoxon Signed Rank Test (Wilcoxon, 1945) assem-
bles the score differences of two pairs of evaluation scores, and justifies whether the
distribution of the score differences is symmetric around zero.

While parametric tests have much stronger statistical power than non-parametric
counterparts, the data assumption of parametric tests cannot be justified. Accord-
ingly, Dror et al. (2018) suggested to use non-parametric tests for reporting signif-
icance results when the test set size is small, and provided examples of performing
these tests in a proper manner (Collins et al., 2005; Chan et al., 2007; Rush et al.,
2012).

3.2 Reporting Multi-Run Results

The NLP community has been entirely in favor of neural systems for long. However,
given the randomness in weight initialization, data shuffling and dropout techniques,
the results of neural systems are not reproducible (Zhuang et al., 2021). As an ex-
ample, after carrying out a randomization study by testing 86 seed values, Reimers
and Gurevych (2017) showed that the choice of random seed value can result in
the significant difference (p < 10−4) between the best and worse performance of
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a state-of-the-art NLP system. To this end, they recommended comparing score
distributions assembled from the results of multiple runs. Li and Talwalkar (2020)
pointed out the issue that, given the randomness of neural networks, it is challeng-
ing for a state-of-the-art neural system to reproduce the results in different comput-
ing environments. Thus, they recommended reporting score distribution instead of
single-run performance.

3.3 Not Forgetting Computational Budget

Research showed that a large computational budget, such as the training time, com-
puting resources, the parameter size and data size, sometimes outranks advanced
techniques in system performance. For instance, an inferior linear regression system
can outperform a superior neural system when restricting the parameter sizes of the
two systems to be equal (Dodge et al., 2019). In a second study, Liu et al. (2019)
showed that the BERT (Devlin et al., 2018) language model endowed with larger
computational budget (e.g., involving more training data) can surpass the subse-
quent, more advanced language models such as XLNet (Yang et al., 2019). More-
over, as Ethayarajh and Jurafsky (2020) state, much unlike performance-centralized
leaderboards, NLP practitioners concern the trade-off between system performance
and computing resources. Given these three examples, it is evident that comparing
NLG systems under a given computational budget is crucial for fair and energy-
efficient comparison.

3.4 Evaluation Metrics are Parameterized

Recent research acknowledged that evaluation metrics can be parametrized by the
choice of hyperparameters and the text preprocessing scheme. Accordingly, evalua-
tion scores pertaining to a metric vary by a large amount under different parameter
configurations. For instance, as Post (2018) states, BLEU is a parameterized met-
ric, consisting of five parameters: (i) the number of references used, (ii) the length
penalty, (iii) the maximum n-gram length, (iv) smoothing for zero n-gram overlaps,
and (v) the text preprocessing scheme, which concerns tokenization, splitting com-
pound words, removing stopwords and special characters, and so forth. All these
factors play vital roles in metric scores. For that reason, parameterized metrics, if
not handled properly, could yield biased evaluation results of NLG systems. To this
end, SacreBLEU (Post, 2018) and SacreROUGE (Deutsch and Roth, 2020) emerged,
which propose to use official evaluation scripts to compute BLEU (Papineni et al.,
2002) and ROUGE (Lin, 2004) scores, i.e., preventing users from adjusting the con-
figuration of parameters.

3.5 Our Contributions

Evaluation metrics and system comparison are interrelated, and both affect eval-
uation results. For instance, if text generation systems on leaderboards are not
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rigorously compared, then evaluation metrics can misjudge the state-of-the-art sys-
tem. Oftentimes, NLG systems are compared on a common set of test instances, and
ranked in a way according to the average of instance-level evaluation scores. How-
ever, we argue average is notoriously sensitive to outliers, which undermines the
reliability of comparison results. We now present the research question concerning
rigorous system comparison:

RQ4. What is the rigorous comparison approach in order for leader-
boards to report correct system rankings?

In Chapter 11, we show global statistics such as average and median cannot
carry out rigorous comparison, as they ignore the fact that systems are evaluated
on the same test set. We propose pairwise comparison approaches based on the
Bradley Terry (BT) model (Bradley and Terry, 1952) to compare systems in pairs
on instance level, which base the prediction of system strengths on the probability
of one system over the other on the same test set. We comparably evaluate our
approaches, average and median across four text generation tasks and 18 evaluation
metrics, and show that they yield different conclusions as to which systems are state
of the art in about 30% of the setups. Lastly, we employ our approaches to perform
paired evaluation of Eval4NLP shared tasks, and expose the limitation of such paired
evaluation: it could fail to show a clear winner, which is in line with the Arrow’s
impossibility theorem (Arrow, 1950).
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Chapter 4

Explainability

4.1 From Artificial Intelligence to Evaluation Met-
rics

Given the extraordinary success of deep learning technologies, artificial intelligence
has engaged steadily in the human decision making and aims to make decisions
on the behalf of human experts in the long run. As Ridgeway et al. (1998) state,
human decisions are interpretable and logically defensible, which underpins the im-
portance of explainable artificial intelligence providing justifications to ensure le-
gitimate model decisions. Further, when in cooperation with artificial intelligence,
humans cannot make critical decisions without the understanding of model predic-
tions (Lipton, 2018). For instance, to carry out a medical diagnosis, doctors demand
more information from a model than binary predictions (Tjoa and Guan, 2020).

Arrieta et al. (2020) dissected the goal of explainable artificial intelligence into
multiple essential characteristics, such as Trustworthiness, Causality, Transferability,
Ethical Concerns, and so forth. In the following, we briefly outline two of these
characteristics, and discuss them in the context of NLG evaluation metrics.

Trustworthiness. According to (Lipton, 2018), trustworthiness is not a matter of
model performance, but rather concerns the confidence that a model makes a correct
prediction, which results in research towards model selection in artificial intelligence.
For instance, when making crucial decisions, humans are shown to be in favor of
the trade-off between model performance and model trustworthiness, instead of the
state-of-the-art model (Došilović et al., 2018).

NLG Evaluation: the confidence of text quality judgment is not yet a
property of off-the-shelf evaluation metrics. This poses a problem, as know-
ing the confidence of judgments made on individual cases with evaluation
metrics can be crucial for ensuring unbiased evaluation, such as excluding
low-confidence judgments in the comparison of NLG systems.
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Figure 4.1: Taxonomy of explainability techniques for evaluation metrics.

Ethical Consideration. Humans with different cultures and traditions exhibit
cognitive prejudices for individuals in minoritized groups, such as gender bias in
career choice, and religion bias in violence. As a consequence, these prejudices are
reflected in human-produced data, and then influence the model decisions given by
data-driven artificial intelligence (Lauscher, 2021). For that reason, the European
Parliament released the Data Protection Regularization, aiming to make artificial
intelligence conform to ethical standards, and foster explainable artificial intelligence
providing explanations to individuals who affected by model decisions (Goodman
and Flaxman, 2017).

NLG Evaluation: much like artificial intelligence, ethical concerns also
occur in NLG evaluation. For instance, when reference-free metrics are used
to judge system translations, they aim to carry out unbiased judgments
for translations in any language, and as such underpin the inclusion and
democratization of NLG technologies. However, given resource and typology
disparities of languages, recent metrics based on multilingual representations
exhibit a strong language bias, resulting in the different qualities of these
metrics across languages (see Chapter 9).

4.2 Post-hoc Explainability Techniques

Transparent and Non-transparent Models Modern artificial intelligence be-
gan with statistical machine learning, which studies statistics-driven algorithms im-
proved through experience, i.e., the number of training examples that algorithms
have seen (Mitchell, 1997). Popular examples are Linear Regression, Decision Trees,
and Bayesian Models, all of which can directly explain the model decisions with
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Figure 4.2: Classification of explainability techniques for artificial intelligence.
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Figure 4.3: Classification of explainability techniques for evaluation metrics.

simple ideas such as feature importance, hierarchical structure and conditional prob-
ability, thereby placed under the umbrella of transparent models. By the time large
amount of data and computing resources came to be accessible, artificial intelligence
entered into the new frontier of machine learning, i.e., data-driven deep learning,
which trains neural networks on given inputs to perform a specific task. Hornik
et al. (1990) proved that any task being a function of inputs can be well-performed
by neural networks. However, this comes with the cost of complexity due to huge
parametric space, such as dozens of layers and millions of parameters. As such,
neural networks are overcomplicated for humans to comprehend, thereby termed
blackbox models. For that reason, explainability techniques emerged.

Arrieta et al. (2020) dissected explainability techniques for artificial intelligence
into multiple classes. We follow Arrieta et al. (2020) and adopt this classification
(see Figure 4.2), as the authors managed to distinguish over 160 techniques under
this umbrella. In the following, we start by briefly outlining each of the classes, and
discuss them in the context of evaluation metrics. Figure 4.1 shows the taxonomy
of explainability techniques for evaluation metrics.

• Explanation by Simplification is achieved by training simpler models, such as
Linear Regression and Decision Tree, aiming to mimic the outputs of complex
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models. Given the transparency nature of simpler models, they can be em-
ployed to explain the process of non-transparent models. Zhang et al. (2019)
presented an approach to interpret convolutional neural networks, which em-
ploys decision tree to decompose feature representations within convolutional
layers, and serves as rule-based rationales providing information on model
predictions.

NLG Evaluation: in order to comprehend and mimic the judgments
obtained from recent non-transparent metrics based on blackbox lan-
guage models, we employ linear regression to dissect metric scores into
four linguistic factors, including semantics, syntax, morphology, and
lexical overlap (see Chapter 12).

• Visual Explainations provide understanding on the level of model parameters,
or on the level of input representations encoded by models—–shown to be ef-
fective for identifying model limitations. For instance, research demonstrated
the misalignment of multilingual subspaces by visualizing multilingual embed-
dings in a shared vector space with dimensionality reduction techniques (Cao
et al., 2020). Other work showed that the visualization of self-attention weights
of language models can interpret word relations, such as a pronoun and its an-
tecedent.

NLG Evaluation: there are several transparent and semi-transparent
evaluation metrics, which we can visualize their process of text qual-
ity judgment. For instance, BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) counting word overlaps between system output
and human reference are transparent metrics. MoverScore (see Chap-
ter 5) and BERTScore (Zhang* et al., 2020) based on blackbox lan-
guage models are semi-transparent, as these metrics can align word
pairs in system output and human reference—which are indicative of
their judgments. Figure 4.4 shows word overlap and word alignment.

• Feature Importance Explanations are rationales in the form of importance dis-
tribution, i.e., how important each input feature is for model output. For
instance, given the input text “I like your website” and the output {positive}
as a gold label, the rationale is said to be a distribution of word-level impor-
tance with ‘like’ at peak.

NLG Evaluation: we organized a shared task at Eval4NLP21, which
concerns the probability distribution of words being mistranslated in
system translation used to explain human judgment of translation qual-
ity (Fomicheva et al., 2021b). For instance, given a system translation
“this is not a dog” and a source text “Das ist ein Hund”, the desired
rationale is a probability distribution with ‘not’ at peak on system
translation, accounting for translation errors.
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• Local Explainations are concerned with the identification of certain features
highly relevant to model output, which can be derived from a distribution of
feature importance (see Feature Importance Explanations). Popular examples
are LIME (Ribeiro et al., 2016) and SHAP (Lundberg and Lee, 2017), which
identify prominent features through input perturbation. Concretely, when
minimal changes to a feature results in a noticeable change in model output,
the feature is deemed important.

NLG Evaluation: the Eval4NLP21 shared task provided two base-
lines, one with SHAP and one with LIME, both of which identify promi-
nent words termed translation errors through masking out words in
system translation (Fomicheva et al., 2021a). Rubino et al. (2021) and
Treviso et al. (2021) identified translation errors by placing attention
mechanism over text embeddings pertaining to source and translation
pairs. Eksi et al. (2021) investigated a class of gradient-based meth-
ods, which assigns gradients obtained from backpropagation to words
in system translation, and then considers the words associated to high
gradients as translation errors. Kabir and Carpuat (2021) presented an
approach employing Divergence-mBERT (Briakou and Carpuat, 2020)
to underline the words in system translation that are likely mistrans-
lated.

• Text Explanations are rationales, either in the form of generated texts pro-
viding justifications to model decisions (Bennetot et al., 2019), or in the form
of generated rules providing understanding on the process of decision mak-
ing (Arrieta et al., 2020). Consider the following example:
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Example

• Generated text: the news article classified as sports entertainment
is because the keywords detected in the article are football teams and
players.
• Generated rule: given the input x, the output is y because x1 > α

and x2 < β.

NLG Evaluation: such rationales could be “the translation receives
a rating score of 0.7 because word A, word B and word C are mistrans-
lated.”

4.3 Our Contributions

Recent years have seen rapid advances in BERT-based evaluation metrics with much
better qualities than traditional metrics such as BLEU for text quality evaluation.
However, these metrics build upon black-box language models, which makes their
judgments of text quality hardly understandable. Based on the insights of the ex-
plainable artificial intelligence literature, we present the following research question:

RQ5. What insights can be drawn from explainable artificial intel-
ligence in order to understand non-transparent evaluation metrics?

In Section 5.3.1, we visualize the process of MoverScore by picturing the align-
ment of word pairs in system output and human reference. In Chapter 12, we propose
a simple regression based explainability technique to dissect metric scores into se-
mantics, syntax, morphology, and lexical overlap. We show that recent BERT-based
metrics are similar to BLEU and ROUGE in a way that they all are substantially
sensitive to lexical overlap. Accordingly, these metrics cannot discriminate semanti-
cally non-sensical word-by-word translations and paraphrases, which we show in an
adversarial test scenario. In Chapter 6, we address the understanding of metric su-
periority as to why one metric outperforms another. In particular, we derive simple
features from the inherent characteristics of non-transparent metrics, and show that
these features are responsible for the performance gaps between the metrics. We
find that the more discriminative the features are in separating system output from
human reference, the better the metrics perform. This attributes the superiority of
a metric to the fact that the feature can better separate hypothesis and reference.
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Abstract

A robust evaluation metric has a profound im-
pact on the development of text generation sys-
tems. A desirable metric compares system out-
put against references based on their seman-
tics rather than surface forms. In this paper
we investigate strategies to encode system and
reference texts to devise a metric that shows a
high correlation with human judgment of text
quality. We validate our new metric, namely
MoverScore, on a number of text generation
tasks including summarization, machine trans-
lation, image captioning, and data-to-text gen-
eration, where the outputs are produced by
a variety of neural and non-neural systems.
Our findings suggest that metrics combining
contextualized representations with a distance
measure perform the best. Such metrics also
demonstrate strong generalization capability
across tasks. For ease-of-use we make our
metrics available as web service.1

1 Introduction

The choice of evaluation metric has a significant
impact on the assessed quality of natural language
outputs generated by a system. A desirable met-
ric assigns a single, real-valued score to the sys-
tem output by comparing it with one or more ref-
erence texts for content matching. Many natural
language generation (NLG) tasks can benefit from
robust and unbiased evaluation, including text-
to-text (machine translation and summarization),
data-to-text (response generation), and image-to-
text (captioning) (Gatt and Krahmer, 2018). With-
out proper evaluation, it can be difficult to judge
on system competitiveness, hindering the develop-
ment of advanced algorithms for text generation.

It is an increasingly pressing priority to develop
better evaluation metrics given the recent advances
in neural text generation. Neural models provide

1Our code is publicly available at http://tiny.cc/vsqtbz

the flexibility to copy content from source text as
well as generating unseen words (See et al., 2017).
This aspect is hardly covered by existing metrics.
With greater flexibility comes increased demand
for unbiased evaluation. Diversity-promoting ob-
jectives make it possible to generate diverse nat-
ural language descriptions (Li et al., 2016; Wise-
man et al., 2018). But standard evaluation met-
rics including BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) compute the scores based pri-
marily on n-gram co-occurrence statistics, which
are originally proposed for diagnostic evaluation
of systems but not capable of evaluating text qual-
ity (Reiter, 2018), as they are not designed to mea-
sure if, and to what extent, the system and refer-
ence texts with distinct surface forms have con-
veyed the same meaning. Recent effort on the ap-
plicability of these metrics reveals that while com-
pelling text generation system ascend on standard
metrics, the text quality of system output is still
hard to be improved (Böhm et al., 2019).

Our goal in this paper is to devise an auto-
mated evaluation metric assigning a single holistic
score to any system-generated text by comparing
it against human references for content matching.
We posit that it is crucial to provide a holistic mea-
sure attaining high correlation with human judg-
ments so that various neural and non-neural text
generation systems can be compared directly. In-
tuitively, the metric assigns a perfect score to the
system text if it conveys the same meaning as the
reference text. Any deviation from the reference
content can then lead to a reduced score, e.g., the
system text contains more (or less) content than
the reference, or the system produces ill-formed
text that fails to deliver the intended meaning.

We investigate the effectiveness of a spectrum
of distributional semantic representations to en-
code system and reference texts, allowing them
to be compared for semantic similarity across
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multiple natural language generation tasks. Our
new metric quantifies the semantic distance be-
tween system and reference texts by harnessing
the power of contextualized representations (Pe-
ters et al., 2018; Devlin et al., 2018) and a power-
ful distance metric (Rubner et al., 2000) for better
content matching. Our contributions can be sum-
marized as follows:

• We formulate the problem of evaluating genera-
tion systems as measuring the semantic distance
between system and reference texts, assuming
powerful continuous representations can encode
any type of semantic and syntactic deviations.

• We investigate the effectiveness of existing con-
textualized representations and Earth Mover’s
Distance (Rubner et al., 2000) for comparing
system predictions and reference texts, lead-
ing to our new automated evaluation metric
that achieves high correlation with human judg-
ments of text quality.

• Our metric outperforms or performs compara-
bly to strong baselines on four text generation
tasks including summarization, machine trans-
lation, image captioning, and data-to-text gen-
eration, suggesting this is a promising direction
moving forward.

2 Related Work

It is of fundamental importance to design evalua-
tion metrics that can be applied to natural language
generation tasks of similar nature, including sum-
marization, machine translation, data-to-text gen-
eration, image captioning, and many others. All
these tasks involve generating texts of sentence or
paragraph length. The system texts are then com-
pared with one or more reference texts of similar
length for semantic matching, whose scores indi-
cate how well the systems perform on each task.
In the past decades, however, evaluation of these
natural language generation tasks has largely been
carried out independently within each area.

Summarization A dominant metric for summa-
rization evaluation is ROUGE (Lin, 2004), which
measures the degree of lexical overlap between a
system summary and a set of reference summaries.
Its variants consider overlap of unigrams (-1), bi-
grams (-2), unigrams and skip bigrams with a max-
imum gap of 4 words (-SU4), longest common sub-
sequences (-L) and its weighted version (-W-1.2),
among others. Metrics such as Pyramid (Nenkova
and Passonneau, 2004) and BE (Hovy et al., 2006;

Tratz and Hovy, 2008) further compute matches
of content units, e.g., (head-word, modifier) tu-
ples, that often need to be manually extracted
from reference summaries. These metrics achieve
good correlations with human judgments in the
past. However, they are not general enough to ac-
count for the relatedness between abstractive sum-
maries and their references, as a system abstract
can convey the same meaning using different sur-
face forms. Furthermore, large-scale summariza-
tion datasets such as CNN/Daily Mail (Hermann
et al., 2015) and Newsroom (Grusky et al., 2018)
use a single reference summary, making it harder
to obtain unbiased results when only lexical over-
lap is considered during summary evaluation.

Machine Translation A number of metrics are
commonly used in MT evaluation. Most of these
metrics compare system and reference translations
based on surface forms such as word/character
n-gram overlaps and edit distance, but not the
meanings they convey. BLEU (Papineni et al.,
2002) is a precision metric measuring how well a
system translation overlaps with human reference
translations using n-gram co-occurrence statistics.
Other metrics include SentBLEU, NIST, chrF,
TER, WER, PER, CDER, and METEOR (Lavie
and Agarwal, 2007) that are used and described in
the WMT metrics shared task (Bojar et al., 2017;
Ma et al., 2018). RUSE (Shimanaka et al., 2018) is
a recent effort to improve MT evaluation by train-
ing sentence embeddings on large-scale data ob-
tained in other tasks. Additionally, preprocessing
reference texts is crucial in MT evaluation, e.g.,
normalization, tokenization, compound splitting,
etc. If not handled properly, different preprocess-
ing strategies can lead to inconsistent results using
word-based metrics (Post, 2018).

Data-to-text Generation BLEU can be poorly
suited to evaluating data-to-text systems such as
dialogue response generation and image caption-
ing. These systems are designed to generate texts
with lexical and syntactic variation, communicat-
ing the same information in many different ways.
BLEU and similar metrics tend to reward systems
that use the same wording as reference texts, caus-
ing repetitive word usage that is deemed undesir-
able to humans (Liu et al., 2016). In a similar vein,
evaluating the quality of image captions can be
challenging. CIDEr (Vedantam et al., 2015) uses
tf-idf weighted n-grams for similarity estimation;
and SPICE (Anderson et al., 2016) incorporates
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synonym matching over scene graphs. Novikova
et al. (2017) examine a large number of word- and
grammar-based metrics and demonstrate that they
only weakly reflect human judgments of system
outputs generated by data-driven, end-to-end nat-
ural language generation systems.

Metrics based on Continuous Representations
Moving beyond traditional metrics, we envision
a new generation of automated evaluation metrics
comparing system and reference texts based on se-
mantics rather than surface forms to achieve better
correlation with human judgments. A number of
previous studies exploit static word embeddings
(Ng and Abrecht, 2015; Lo, 2017) and trained
classifers (Peyrard et al., 2017; Shimanaka et al.,
2018) to improve semantic similarity estimation,
replacing lexical overlaps.

In contemporaneous work, Zhang et al. (2019)
describe a method comparing system and refer-
ence texts for semantic similarity leveraging the
BERT representations (Devlin et al., 2018), which
can be viewed as a special case of our metrics and
will be discussed in more depth later. More re-
cently, Clark et al. (2019) present a semantic met-
ric relying on sentence mover’s similarity and the
ELMo representations (Peters et al., 2018) and
apply them to summarization and essay scoring.
Mathur et al. (2019) introduce unsupervised and
supervised metrics based on the BERT represen-
tations to improve MT evaluation, while Peyrard
(2019a) provides a composite score combining re-
dundancy, relevance and informativeness to im-
prove summary evaluation.

In this paper, we seek to accurately measure the
(dis)similarity between system and reference texts
drawing inspiration from contextualized represen-
tations and Word Mover’s Distance (WMD; Kus-
ner et al., 2015). WMD finds the “traveling dis-
tance” of moving from the word frequency distri-
bution of the system text to that of the reference,
which is essential to capture the (dis)similarity be-
tween two texts. Our metrics differ from the con-
temporaneous work in several facets: (i) we ex-
plore the granularity of embeddings, leading to
two variants of our metric, word mover and sen-
tence mover; (ii) we investigate the effectiveness
of diverse pretrained embeddings and finetuning
tasks; (iii) we study the approach to consolidate
layer-wise information within contextualized em-
beddings; (iii) our metrics demonstrate strong gen-
eralization capability across four tasks, oftentimes
outperforming the supervised ones. We now de-

scribe our method in detail.

3 Our MoverScore Meric

We have motivated the need for better metrics ca-
pable of evaluating disparate NLG tasks. We now
describe our metric, namely MoverScore, built
upon a combination of (i) contextualized repre-
sentations of system and reference texts and (ii)
a distance between these representations measur-
ing the semantic distance between system outputs
and references. It is particularly important for a
metric to not only capture the amount of shared
content between two texts, i.e., intersect(A,B), as
is the case with many semantic textual similarity
measures (Peters et al., 2018; Devlin et al., 2018);
but also to accurately reflect to what extent the
system text has deviated from the reference, i.e.,
union(A,B) - intersect(A,B), which is the intuition be-
hind using a distance metric.

3.1 Measuring Semantic Distance
Let x = (x1, . . . , xm) be a sentence viewed as a
sequence of words. We denote by xn the sequence
of n-grams of x (i.e., x1 = x is the sequence of
words and x2 is the sequence of bigrams). Fur-
thermore, let fxn ∈ R|x

n|
+ be a vector of weights,

one weight for each n-gram of xn. We can as-
sume fT

xn1 = 1, making fxn a distribution over
n-grams. Intuitively, the effect of some n-grams
like those including function words can be down-
played by giving them lower weights, e.g., using
Inverse Document Frequency (IDF).

Word Mover’s Distance (WMD) (Kusner et al.,
2015), a special case of Earth Mover’s Dis-
tance (Rubner et al., 2000), measures semantic
distance between texts by aligning semantically
similar words and finding the amount of flow trav-
eling between these words. It was shown use-
ful for text classification and textual similarity
tasks (Kusner et al., 2015). Here, we formulate a
generalization operating on n-grams. Let x and
y be two sentences viewed as sequences of n-
grams: xn and yn. If we have a distance metric
d between n-grams, then we can define the trans-
portation cost matrix C such that Cij = d(xni , y

n
j )

is the distance between the i-th n-gram of x and
the j-th n-gram of y. The WMD between the two
sequences of n-grams xn and yn with associated
n-gram weights fxn and fyn is then given by:

WMD(xn,yn) := min
F∈R|xn|×|yn|

〈C,F 〉,

s.t. F1 = fxn , F ᵀ1 = fyn .
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where F is the transportation flow matrix with Fij
denoting the amount of flow traveling from the i-
th n-gram xni in xn to the j-th n-gram ynj in yn.
Here, 〈C,F 〉 denotes the sum of all matrix entries
of the matrix C � F , where � denotes element-
wise multiplication. Then WMD(xn,yn) is the
minimal transportation cost between xn and yn

where n-grams are weighted by fxn and fyn .
In practice, we compute the Euclidean dis-

tance between the embedding representations of
n-grams: d(xni , y

n
j ) = ||E(xni ) − E(ynj )||2 where

E is the embedding function which maps an n-
gram to its vector representation. Usually, static
word embeddings like word2vec are used to com-
pute E but these cannot capture word order or
compositionality. Alternatively, we investigate
contextualized embeddings like ELMo and BERT
because they encode information about the whole
sentence into each word vector.

We compute the n-gram embeddings as the
weighted sum over its word embeddings. For-
mally, if xni = (xi, . . . , xi+n−1) is the i-th n-gram
from sentence x, its embedding is given by:

E(xni ) =
i+n−1∑

k=i

idf(xk) · E(xk) (1)

where idf(xk) is the IDF of word xk computed
from all sentences in the corpus and E(xk) is its
word vector. Furthermore, the weight associated
to the n-gram xni is given by:

fxn
i
=

1

Z

i+n−1∑

k=i

idf(xk) (2)

where Z is a normalizing constant s.t. fT
xn1 = 1,

In the limiting case where n is larger than the
sentence’s size, xn contains only one n-gram: the
whole sentence. Then WMD(xn,yn) reduces to
computing the distance between the two sentence
embeddings, namely Sentence Mover’s Distance
(SMD), denoted as:

SMD(xn,yn) := ||E(xlx1 )− E(y
ly
1 )||

where lx and ly are the size of sentences.

Hard and Soft Alignments In contempora-
neous work, BERTScore (Zhang et al., 2019) also
models the semantic distance between system and
reference texts for evaluating text generation sys-
tems. As shown in Figure 1, BERTScore (pre-
cision/recall) can be intuitively viewed as hard

System x: A guy with a red jacket is standing on a boat

guy

man

wearing

lifevest

sitting

canoe

red

jacket

standing

boat

guy

man

wearing

lifevest

sitting

canoe

red

jacket

standing

boat

Word Embeddings Word Embeddings

Ref y: A man wearing a lifevest is sitting in a canoe

𝒱 𝒱

BERTScore (precision/recall) MoverScore(unigram)

Figure 1: An illustration of MoverScore and BERTScore.

alignments (one-to-one) for words in a sentence
pair, where each word in one sequence travels to
the most semantically similar word in the other
sequence. In contrast, MoverScore goes beyond
BERTScore as it relies on soft alignments (many-
to-one) and allows to map semantically related
words in one sequence to the respective word in
the other sequence by solving a constrained opti-
mization problem: finding the minimum effort to
transform between two texts.

The formulation of Word Mover’s Distance pro-
vides an important possibility to bias the metric
towards precision or recall by using an asymmet-
ric transportation cost matrix, which bridges a gap
between MoverScore and BERTScore:

Proposition 1 BERTScore (precision/recall) can
be represented as a (non-optimized) Mover Dis-
tance 〈C,F 〉, where C is a transportation cost
matrix based on BERT and F is a uniform trans-
portation flow matrix.2

3.2 Contextualized Representations

The task formulation naturally lends itself to deep
contextualized representations for inducing word
vectorsE(xi). Despite the recent success of multi-
layer attentive neural architectures (Devlin et al.,
2018; Peters et al., 2018), consolidating layer-wise
information remains an open problem as different
layers capture information at disparate scales and
task-specific layer selection methods may be lim-
ited (Liu et al., 2018, 2019). Tenney et al. (2019)
found that a scalar mix of output layers trained
from task-dependent supervisions would be effec-
tive in a deep transformer-based model. Instead,
we investigate aggregation functions to consol-
idate layer-wise information, forming stationary
representations of words without supervision.

Consider a sentence x passed through contextu-
alized encoders such as ELMo and BERT with L
layers. Each layer of the encoders produces a vec-

2See the proof in the appendix.
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tor representation for each word xi in x. We de-
note by zi,l ∈ Rd the representation given by layer
l, a d-dimensional vector. Overall, xi receives L
different vectors (zi,1, . . . ,zi,L). An aggregation
φ maps these L vectors to one final vector:

E(xi) = φ(zi,1, . . . ,zi,L) (3)

where E(xi) is the aggregated representation of
the word xi.

We study two alternatives for φ: (i) the con-
catenation of power means (Rücklé et al., 2018)
as a generalized pooling mechanism, and (ii) a
routing mechanism for aggregation (Zhao et al.,
2018, 2019). We relegate the routing method to
appendix, as it does not yield better results than
power means.

Power Means Power means is an effective gen-
eralization of pooling techniques for aggregating
information. It computes a non-linear average of a
set of values with an exponent p (Eq. (4)). Follow-
ing Rücklé et al. (2018), we exploit power means
to aggregate vector representations (zi,l)

L
l=1 per-

taining to the i-th word from all layers of a deep
neural architecture. Let p ∈ R ∪ {±∞}, the p-
mean of (zi,1, . . . ,zi,L) is:

h
(p)
i =

(
zpi,1 + · · ·+ zpi,L

L

)1/p

∈ Rd (4)

where exponentiation is applied elementwise.
This generalized form can induce common named
means such as arithmetic mean (p = 1) and geo-
metric mean (p = 0). In extreme cases, a power
mean reduces to the minimum value of the set
when p = −∞, and the maximum value when
p = +∞. The concatenation of p-mean vectors
we use in this paper is denoted by:

E(xi) = h
(p1)
i ⊕ · · · ⊕ h

(pK)
i (5)

where⊕ is vector concatenation; {p1, . . . , pK} are
exponent values, and we use K = 3 with p =
1,±∞ in this work.

3.3 Summary of MoverScore Variations
We investigate our MoverScore along four dimen-
sions: (i) the granularity of embeddings, i.e., the
size of n for n-grams, (ii) the choice of pretrained
embedding mechanism, (iii) the fine-tuning task
used for BERT3 (iv) the aggregation technique (p-
means or routing) when applicable.

3ELMo usually requires heavy layers on the top, which
restricts the power of fine-tuning tasks for ELMo.

Granularity We used n = 1 and n = 2 as well
as full sentences (n = size of the sentence).

Embedding Mechanism We obtained word em-
beddings from three different methods: static em-
bedding with word2vec as well as contextualized
embedding with ELMo and BERT. If n > 1, n-
gram embeddings are calculated by Eq. (1). Note
that they represent sentence embeddings when
n = size of the sentence.

Fine-tuning Tasks Natural Language Inference
(NLI) and paraphrasing pose high demands in
understanding sentence meaning. This moti-
vated us to fine-tune BERT representations on
two NLI datasets, MultiNLI and QANLI, and one
Paraphrase dataset, QQP—the largest datasets in
GLUE (Wang et al., 2018). We fine-tune BERT
on each of these, yielding different contextualized
embeddings for our general evaluation metrics.

Aggregation For ELMo, we aggregate word
representations given by all three ELMo layers,
using p-means or routing (see the appendix). Word
representations in BERT are aggregated from the
last five layers, using p-means or routing since the
representations in the initial layers are less suited
for use in downstream tasks (Liu et al., 2019).

4 Empirical Evaluation

In this section, we measure the quality of dif-
ferent metrics on four tasks: machine transla-
tion, text summarization, image captioning and di-
alogue generation. Our major focus is to study the
correlation between different metrics and human
judgment. We employ two text encoders to embed
n-grams: BERTbase, which uses a 12-layer trans-
former, and ELMOoriginal, which uses a 3-layer
BiLSTM. We use Pearson’s r and Spearman’s ρ to
measure the correlation. We consider two variants
of MoverScore: word mover and sentence mover,
described below.

Word Mover We denote our word mover
notation containing four ingredients as: WMD-
Granularity+Embedding+Finetune+Aggregation.
For example, WMD-1+BERT+MNLI+PMEANS
represents the semantic metric using word mover
distance where unigram-based word embeddings
fine-tuned on MNLI are aggregated by p-means.

Sentence Mover We denote our sentence
mover notation with three ingredients as:
SMD+Embedding+Finetune+Aggregation. For
example, SMD+W2V represents the semantic

51



568

metric using sentence mover distance where
two sentence embeddings are computed as the
weighted sum over their word2vec embeddings
by Eq. (1).

Baselines We select multiple strong baselines
for each task for comparison: SentBLEU, ME-
TEOR++ (Guo et al., 2018), and a supervised
metric RUSE for machine translation; ROUGE-
1 and ROUGE-2 and a supervised metric S3

best

(Peyrard et al., 2017) for text summarization;
BLEU and METEOR for dialogue response gen-
eration, CIDEr, SPICE, METEOR and a super-
vised metric LEIC (Cui et al., 2018) for image cap-
tioning. We also report BERTScore (Zhang et al.,
2019) for all tasks (see §2). Due to the page limit,
we only compare with the strongest baselines, the
rest can be found in the appendix.

4.1 Machine Translation
Data We obtain the source language sentences,
their system and reference translations from the
WMT 2017 news translation shared task (Bojar
et al., 2017). We consider 7 language pairs: from
German (de), Chinese (zh), Czech (cs), Latvian
(lv), Finnish (fi), Russian (ru), and Turkish (tr),
resp. to English. Each language pair has approxi-
mately 3,000 sentences, and each sentence has one
reference translation and multiple system transla-
tions generated by participating systems. For each
system translation, at least 15 human assessments
are independently rated for quality.

Results Table 1: In all language pairs, the best
correlation is achieved by our word mover met-
rics that use a BERT pretrained on MNLI as the
embedding generator and PMeans to aggregate
the embeddings from different BERT layers, i.e.,
WMD-1/2+BERT+MNLI+PMeans. Note that our
unsupervised word mover metrics even outper-
forms RUSE, a supervised metric. We also find
that our word mover metrics outperforms the sen-
tence mover. We conjecture that important infor-
mation is lost in such a sentence representation
while transforming the whole sequence of word
vectors into one sentence embedding by Eq. (1).

4.2 Text Summarization
We use two summarization datasets from the
Text Analysis Conference (TAC)4: TAC-2008 and
TAC-2009, which contain 48 and 44 clusters, re-
spectively. Each cluster includes 10 news articles

4http://tac.nist.gov

(on the same topic), four reference summaries,
and 57 (in TAC-2008) or 55 (in TAC-2009) sys-
tem summaries generated by the participating sys-
tems. Each summary (either reference or system)
has fewer than 100 words, and receives two human
judgment scores: the Pyramid score (Nenkova and
Passonneau, 2004) and the Responsiveness score.
Pyramid measures how many important semantic
content units in the reference summaries are cov-
ered by the system summary, while Responsive-
ness measures how well a summary responds to
the overall quality combining both content and lin-
guistic quality.

Results Tables 2: We observe that lexical met-
rics like ROUGE correlate above-moderate on
TAC 2008 and 2009 datasets. In contrast, these
metrics perform poorly on other tasks like Di-
alogue Generation (Novikova et al., 2017) and
Image Captioning (Anderson et al., 2016). Ap-
parently, strict matches on surface forms seems
reasonable for extractive summarization datasets.
However, we still see that our word mover met-
rics, i.e., WMD-1+BERT+MNLI+PMeans, per-
form better than or come close to even the super-
vised metric S3

best.

4.3 Data-to-text Generation

We use two task-oriented dialogue datasets:
BAGEL (Mairesse et al., 2010) and SFHOTEL
(Wen et al., 2015), which contains 202 and 398
instances of Meaning Representation (MR). Each
MR instance includes multiple references, and
roughly two system utterances generated by dif-
ferent neural systems. Each system utterance re-
ceives three human judgment scores: informa-
tiveness, naturalness and quality score (Novikova
et al., 2017). Informativeness measures how much
information a system utterance provides with re-
spect to an MR. Naturalness measures how likely
a system utterance is generated by native speak-
ers. Quality measures how well a system utterance
captures fluency and grammar.

Results Tables 3: Interestingly, no metric pro-
duces an even moderate correlation with human
judgments, including our own. We speculate that
current contextualizers are poor at representing
named entities like hotels and place names as well
as numbers appearing in system and reference
texts. However, best correlation is still achieved
by our word mover metrics combining contextual-
ized representations.
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Direct Assessment
Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

BASELINES
METEOR++ 0.552 0.538 0.720 0.563 0.627 0.626 0.646 0.610
RUSE(*) 0.624 0.644 0.750 0.697 0.673 0.716 0.691 0.685
BERTSCORE-F1 0.670 0.686 0.820 0.710 0.729 0.714 0.704 0.719

SENT-MOVER

SMD + W2V 0.438 0.505 0.540 0.442 0.514 0.456 0.494 0.484
SMD + ELMO + PMEANS 0.569 0.558 0.732 0.525 0.581 0.620 0.584 0.595
SMD + BERT + PMEANS 0.607 0.623 0.770 0.639 0.667 0.641 0.619 0.652
SMD + BERT + MNLI + PMEANS 0.616 0.643 0.785 0.660 0.664 0.668 0.633 0.667

WORD-MOVER

WMD-1 + W2V 0.392 0.463 0.558 0.463 0.456 0.485 0.481 0.471
WMD-1 + ELMO + PMEANS 0.579 0.588 0.753 0.559 0.617 0.679 0.645 0.631
WMD-1 + BERT + PMEANS 0.662 0.687 0.823 0.714 0.735 0.734 0.719 0.725
WMD-1 + BERT + MNLI + PMEANS 0.670 0.708 0.835 0.746 0.738 0.762 0.744 0.743
WMD-2 + BERT + MNLI + PMEANS 0.679 0.710 0.832 0.745 0.736 0.763 0.740 0.743

Table 1: Absolute Pearson correlations with segment-level human judgments in 7 language pairs on WMT17 dataset.

TAC-2008 TAC-2009
Responsiveness Pyramid Responsiveness Pyramid

Setting Metrics r ρ r ρ r ρ r ρ

BASELINES

S3
best (*) 0.715 0.595 0.754 0.652 0.738 0.595 0.842 0.731

ROUGE-1 0.703 0.578 0.747 0.632 0.704 0.565 0.808 0.692
ROUGE-2 0.695 0.572 0.718 0.635 0.727 0.583 0.803 0.694
BERTSCORE-F1 0.724 0.594 0.750 0.649 0.739 0.580 0.823 0.703

SENT-MOVER

SMD + W2V 0.583 0.469 0.603 0.488 0.577 0.465 0.670 0.560
SMD + ELMO + PMEANS 0.631 0.472 0.631 0.499 0.663 0.498 0.726 0.568
SMD + BERT + PMEANS 0.658 0.530 0.664 0.550 0.670 0.518 0.731 0.580
SMD + BERT + MNLI + PMEANS 0.662 0.525 0.666 0.552 0.667 0.506 0.723 0.563

WORD-MOVER

WMD-1 + W2V 0.669 0.549 0.665 0.588 0.698 0.520 0.740 0.647
WMD-1 + ELMO + PMEANS 0.707 0.554 0.726 0.601 0.736 0.553 0.813 0.672
WMD-1 + BERT + PMEANS 0.729 0.595 0.755 0.660 0.742 0.581 0.825 0.690
WMD-1 + BERT + MNLI + PMEANS 0.736 0.604 0.760 0.672 0.754 0.594 0.831 0.701
WMD-2 + BERT + MNLI + PMEANS 0.734 0.601 0.752 0.663 0.753 0.586 0.825 0.694

Table 2: Pearson r and Spearman ρ correlations with summary-level human judgments on TAC 2008 and 2009.

4.4 Image Captioning

We use a popular image captioning dataset: MS-
COCO (Lin et al., 2014), which contains 5,000
images. Each image includes roughly five refer-
ence captions, and 12 system captions generated
by the participating systems from 2015 COCO
Captioning Challenge. For the system-level hu-
man correlation, each system receives five human
judgment scores: M1, M2, M3, M4, M5 (Ander-
son et al., 2016). The M1 and M2 scores mea-
sure overall quality of the captions while M3, M4
and M5 scores measure correctness, detailedness
and saliency of the captions. Following Cui et al.
(2018), we compare the Pearson correlation with
two system-level scores: M1 and M2, since we fo-
cus on studying metrics for the overall quality of
the captions, leaving metrics understanding cap-
tions in different aspects (correctness, detailedness
and saliency) to future work.

Results Table 4: Word mover metrics outper-
form all baselines except for the supervised metric

LEIC, which uses more information by consider-
ing both images and texts.

4.5 Further Analysis

Hard and Soft Alignments BERTScore is the
harmonic mean of BERTScore-Precision and
BERTScore-Recall, where both two can be de-
composed as a combination of “Hard Mover Dis-
tance” (HMD) and BERT (see Prop. 1).

We use the representations in the 9-th BERT
layer for fair comparison of BERTScore and
MoverScore and show results on the machine
translation task in Table 5. MoverScore outper-
forms both asymmetric HMD factors, while if they
are combined via harmonic mean, BERTScore
is on par with MoverScore. We conjecture that
BERT softens hard alignments of BERTScore
as contextualized embeddings encode information
about the whole sentence into each word vec-
tor. We also observe that WMD-BIGRAMS slightly
outperforms WMD-UNIGRAMS on 3 out of 4 lan-
guage pairs.
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BAGEL SFHOTEL
Setting Metrics Inf Nat Qual Inf Nat Qual

BASELINES

BLEU-1 0.225 0.141 0.113 0.107 0.175 0.069
BLEU-2 0.211 0.152 0.115 0.097 0.174 0.071
METEOR 0.251 0.127 0.116 0.111 0.148 0.082
BERTSCORE-F1 0.267 0.210 0.178 0.163 0.193 0.118

SENT-MOVER

SMD + W2V 0.024 0.074 0.078 0.022 0.025 0.011
SMD + ELMO + PMEANS 0.251 0.171 0.147 0.130 0.176 0.096
SMD + BERT + PMEANS 0.290 0.163 0.121 0.192 0.223 0.134
SMD + BERT + MNLI + PMEANS 0.280 0.149 0.120 0.205 0.239 0.147

WORD-MOVER

WMD-1 + W2V 0.222 0.079 0.123 0.074 0.095 0.021
WMD-1 + ELMO + PMEANS 0.261 0.163 0.148 0.147 0.215 0.136
WMD-1 + BERT + PMEANS 0.298 0.212 0.163 0.203 0.261 0.182
WMD-1 + BERT + MNLI + PMEANS 0.285 0.195 0.158 0.207 0.270 0.183
WMD-2 + BERT + MNLI + PMEANS 0.284 0.194 0.156 0.204 0.270 0.182

Table 3: Spearman correlation with utterance-level human judgments for BAGEL and SFHOTEL datasets.

Setting Metric M1 M2

BASELINES

LEIC(*) 0.939 0.949
METEOR 0.606 0.594
SPICE 0.759 0.750
BERTSCORE-RECALL 0.809 0.749

SENT-MOVER

SMD + W2V 0.683 0.668
SMD + ELMO + P 0.709 0.712
SMD + BERT + P 0.723 0.747
SMD + BERT + M + P 0.789 0.784

WORD-MOVER

WMD-1 + W2V 0.728 0.764
WMD-1 + ELMO + P 0.753 0.775
WMD-1 + BERT + P 0.780 0.790
WMD-1 + BERT + M + P 0.813 0.810
WMD-2 + BERT + M + P 0.812 0.808

Table 4: Pearson correlation with system-level human judg-
ments on MSCOCO dataset. ’M’ and ’P’ are short names.

Metrics cs-en de-en fi-en lv-en

RUSE 0.624 0.644 0.750 0.697

HMD-F1 + BERT 0.655 0.681 0.821 0.712
HMD-RECALL + BERT 0.651 0.658 0.788 0.681
HMD-PREC + BERT 0.624 0.669 0.817 0.707

WMD-UNIGRAM + BERT 0.651 0.686 0.823 0.710
WMD-BIGRAM + BERT 0.665 0.688 0.821 0.712

Table 5: Comparison on hard and soft alignments.

Distribution of Scores In Figure 2, we take a
closer look at sentence-level correlation in MT.
Results reveal that the lexical metric SENTBLEU
can correctly assign lower scores to system trans-
lations of low quality, while it struggles in judg-
ing system translations of high quality by assign-
ing them lower scores. Our finding agrees with
the observations found in Chaganty et al. (2018);
Novikova et al. (2017): lexical metrics correlate
better with human judgments on texts of low qual-
ity than high quality. Peyrard (2019b) further
show that lexical metrics cannot be trusted because
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Figure 2: Score distribution in German-to-English pair.
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Figure 3: Correlation in similar language (de-en) and distant
language (zh-en) pair, where bordered area shows correla-
tions between human assessment and metrics, the rest shows
inter-correlations across metrics and DA is direct assessment
rated by language experts.

they strongly disagree on high-scoring system out-
puts. Importantly, we observe that our word mover
metric combining BERT can clearly distinguish
texts of two polar qualities.

Correlation Analysis In Figure 3, we ob-
serve existing metrics for MT evaluation attaining
medium correlations (0.4-0.5) with human judg-
ments but high inter-correlations between them-
selves. In contrast, our metrics can attain high
correlations (0.6-0.7) with human judgments, per-
forming robust across different language pairs. We
believe that our improvements come from clearly
distinguishing translations that fall on two ex-
tremes.

Impact of Fine-tuning Tasks Figure 4 com-
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Figure 4: Correlation is averaged over 7 language pairs.

pares Pearson correlations with our word mover
metrics combining BERT fine-tuned on three dif-
ferent tasks. We observe that fine-tuning on
closely related tasks improves correlations, espe-
cially fine-tuning on MNLI leads to an impressive
improvement by 1.8 points on average.

4.6 Discussions

We showed that our metric combining contextual-
ized embeddings and Earth Mover’s Distance out-
performs strong unsupervised metrics on 3 out of
4 tasks, i.e., METEOR++ on machine translation
by 5.7 points, SPICE on image captioning by 3.0
points, and METEOR on dialogue response gen-
eration by 2.2 points. The best correlation we
achieved is combining contextualized word em-
beddings and WMD, which even rivals or exceeds
SOTA task-dependent supervised metrics across
different tasks. Especially in machine translation,
our word mover metric pushes correlations in ma-
chine translation to 74.3 on average (5.8 points
over the SOTA supervised metric and 2.4 points
over contemporaneous BERTScore). The major
improvements come from contextualized BERT
embeddings rather than word2vec and ELMo, and
from fine-tuning BERT on large NLI datasets.
However, we also observed that soft alignments
(MoverScore) marginally outperforms hard align-
ments (BERTScore). Regarding the effect of n-
grams in word mover metrics, unigrams slightly
outperforms bigrams on average. For the effect
of aggregation functions, we suggested effective
techniques for layer-wise consolidations, namely
p-means and routing, both of which are close to
the performance of the best layer and on par with
each other (see the appendix).

5 Conclusion

We investigated new unsupervised evaluation met-
rics for text generation systems combining contex-
tualized embeddings with Earth Mover’s Distance.
We experimented with two variants of our metric,
sentence mover and word mover. The latter has

demonstrated strong generalization ability across
four text generation tasks, oftentimes even outper-
forming supervised metrics. Our metric provides
a promising direction towards a holistic metric
for text generation and a direction towards more
‘human-like’ (Eger et al., 2019) evaluation of text
generation systems.

In future work, we plan to avoid the need
for costly human references in the evaluation of
text generation systems, and instead base evalua-
tion scores on source texts and system predictions
only, which would allow for ‘next-level’, unsuper-
vised (in a double sense) and unlimited evaluation
(Louis and Nenkova, 2013; Böhm et al., 2019).
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Florian Böhm, Yang Gao, Christian M. Meyer, Ori
Shapira, Ido Dagan, and Iryna Gurevych. 2019. Bet-
ter rewards yield better summaries: Learning to
summarise without references. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing, Hong Kong, China.

Ondrej Bojar, Yvette Graham, and Amir Kamran.
2017. Results of the WMT17 metrics shared task.
In Proceedings of the Conference on Machine Trans-
lation (WMT).

Arun Chaganty, Stephen Mussmann, and Percy Liang.
2018. The price of debiasing automatic metrics in
natural language evalaution. In Proceedings of the
56th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
643–653.

Elizabeth Clark, Asli Celikyilmaz, and Noah A. Smith.
2019. Sentence mover’s similarity: Automatic eval-
uation for multi-sentence texts. In Proceedings of

55



572

the 57th Annual Meeting of the Association for Com-
putational Linguistics, pages 2748–2760, Florence,
Italy. Association for Computational Linguistics.

Dorin Comaniciu and Peter Meer. 2002. Mean shift:
A robust approach toward feature space analysis.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, (5):603–619.

Yin Cui, Guandao Yang, Andreas Veit, Xun Huang,
and Serge Belongie. 2018. Learning to evaluate im-
age captioning. In Proceedings of the IEEE Confer-
ence on Computer Vision and Pattern Recognition,
pages 5804–5812.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: pre-training of
deep bidirectional transformers for language under-
standing. arXiv:1810.04805.
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Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2010. Phrase-based statistical language generation

56



573

using graphical models and active learning. In Pro-
ceedings of the 48th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 1552–
1561. Association for Computational Linguistics.

Nitika Mathur, Timothy Baldwin, and Trevor Cohn.
2019. Putting evaluation in context: Contextual em-
beddings improve machine translation evaluation.
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
2799–2808, Florence, Italy. Association for Compu-
tational Linguistics.

Ani Nenkova and Rebecca J. Passonneau. 2004. Evalu-
ating content selection in summarization: The pyra-
mid method. In Proceedings of the 2004 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 145–152. Association for
Computational Linguistics.

Jun-Ping Ng and Viktoria Abrecht. 2015. Better sum-
marization evaluation with word embeddings for
rouge. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Process-
ing, pages 1925–1930, Lisbon, Portugal. Associa-
tion for Computational Linguistics.

Jekaterina Novikova, Ondřej Dušek, Amanda Cer-
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A Supplemental Material

A.1 Proof of Prop. 1

In this section, we prove Prop. 1 in the paper about viewing BERTScore (precision/recall) as a (non-
optimized) Mover Distance.

As a reminder, the WMD formulation is:

WMD(xn,yn) := min
F∈R|xn|×|yn|

∑

i,j

Cij · Fij

s.t. 1ᵀF ᵀ1 = 1, 1ᵀF1 = 1.

where F ᵀ1 = fnx and F1 = fny . Here, fnx and fny denote vectors of weights for each n-gram of xn and
yn.

BERTScore is defined as:

RBERT =

∑
y1i ∈y1 idf(y1i )maxx1j∈x1 E(x1j )

ᵀE(y1i )∑
y1i ∈y1 idf(y1i )

PBERT =

∑
x1j∈x1 idf(x1j )maxy1i ∈y1 E(y1i )

ᵀE(x1j )∑
x1j∈x1 idf(x1j )

FBERT = 2
PBERT ·RBERT

PBERT +RBERT
.

Then, RBERT can be formulated in a “quasi” WMD form:

RBERT(x
1,y1) :=

∑

i,j

Cij · Fij

Fij =

{
1
M if xj = argmaxx̂1j∈x1 E(y1i )

ᵀE(x̂1j )

0 otherwise

Cij =

{
M
Z idf(y1i )E(x1j )

ᵀE(y1i ) if xj = argmaxx̂1j∈x1 E(y1i )
ᵀE(x̂1j )

0 otherwise

where Z =
∑

y1i ∈y1 idf(y1i ) andM is the size of n-grams in x1. Similarly, we can have PBERT in a quasi
WMD form (omitted). Then, FBERT can be formulated as harmonic-mean of two WMD forms of PBERT
and RBERT.

A.2 Routing

In this section, we study the aggregation function φ with a routing scheme, which has achieved good
results in other NLP tasks (Zhao et al., 2018, 2019). Specifically, we introduce a nonparametric clustering
with Kernel Density Estimation (KDE) for routing since KDE bridges a family of kernel functions with
underlying empirical distributions, which often leads to computational efficiency (Zhang et al., 2018),
defined as:

min
v,γ

f(z) =
L∑

i=1

T∑

j=1

γijk(d(vj − zi,j))

s.t. ∀i, j : γij > 0,
L∑

j=1

γij = 1.
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where d(·) is a distance function, γij denotes the underlying closeness between the aggregated vector vj
and vector zi in the i-th layer, and k is a kernel function. Some instantiations of k(·) (Wand and Jones,
1994) are:

Gaussian : k(x) , exp (−x
2
), Epanechnikov : k(x) ,

{
1− x x ∈ [0, 1)

0 x ≥ 1.

One typical solution for KDE clustering to minimize f(z) is taking Mean Shift (Comaniciu and Meer,
2002), defined as:

∇f(z) =
∑

i,j

γijk
′(d(vj , zi,j))

∂d(vj , zi,j)

∂v

Firstly, vτ+1
j can be updated while γτ+1

ij is fixed:

vτ+1
j =

∑
i γ

τ
ijk
′(d(vτj , zi,j))zi,j∑

i,j k
′(d(vτj , zi,j))

Intuitively, vj can be explained as a final aggregated vector from L contextualized layers. Then, we
adopt SGD to update γτ+1

ij :

γτ+1
ij = γτij + α · k(d(vτj , zi,j))

where α is a hyperparameter to control step size. The routing process is summarized in Algorithm 1.

Algorithm 1 Aggregation by Routing
1: procedure ROUTING(zij , `)
2: Initialize ∀i, j : γij = 0
3: while true do
4: foreach representation i and j in layer ` and `+ 1 do γij ← softmax (γij)

5: foreach representation j in layer `+ 1 do
6: vj ←

∑
i γijk

′(vj ,zi)zi/
∑

i k
′(vi,zi)

7: foreach representation i and j in layer ` and `+ 1 do γij ← γij + α · k(vj ,zi)

8: loss← log(
∑

i,j γijk(vj,zi))

9: if |loss− preloss| < ε then
10: break
11: else
12: preloss← loss

13: return vj

Best Layer and Layer-wise Consolidation Table 6 compares our word mover based metric com-
bining BERT representations on different layers with stronger BERT representations consolidated from
these layers (using p-means and routing). We often see that which layer has best performance is task-
dependent, and our word mover based metrics (WMD) with p-means or routing schema come close to
the oracle performance obtained from the best layers.

Experiments Table 7, 8 and 9 show correlations between metrics (all baseline metrics and word
mover based metrics) and human judgments on machine translation, text summarization and dialogue
response generation, respectively. We find that word mover based metrics combining BERT fine-tuned
on MNLI have highest correlations with humans, outperforming all of the unsupervised metrics and even
supervised metrics like RUSE and S3

full. Routing and p-means perform roughly equally well.
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Direct Assessment
Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en

WMD-1 + BERT + LAYER 8 .6361 .6755 .8134 .7033 .7273 .7233 .7175
WMD-1 + BERT + LAYER 9 .6510 .6865 .8240 .7107 .7291 .7357 .7195
WMD-1 + BERT + LAYER 10 .6605 .6948 .8231 .7158 .7363 .7317 .7168
WMD-1 + BERT + LAYER 11 .6695 .6845 .8192 .7048 .7315 .7276 .7058
WMD-1 + BERT + LAYER 12 .6677 .6825 .8194 .7188 .7326 .7291 .7064

WMD-1 + BERT + ROUTING .6618 .6897 .8225 .7122 .7334 .7301 .7182
WMD-1 + BERT + PMEANS .6623 .6873 .8234 .7139 .7350 .7339 .7192

Table 6: Absolute Pearson correlations with segment-level human judgments on WMT17 to-English translations.

Direct Assessment
Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

BASELINES

BLEND 0.594 0.571 0.733 0.594 0.622 0.671 0.661 0.635
RUSE 0.624 0.644 0.750 0.697 0.673 0.716 0.691 0.685
SENTBLEU 0.435 0.432 0.571 0.393 0.484 0.538 0.512 0.481
CHRF++ 0.523 0.534 0.678 0.520 0.588 0.614 0.593 0.579
METEOR++ 0.552 0.538 0.720 0.563 0.627 0.626 0.646 0.610
BERTSCORE-F1 0.670 0.686 0.820 0.710 0.729 0.714 0.704 0.719

WORD-MOVER

WMD-1 + W2V 0.392 0.463 0.558 0.463 0.456 0.485 0.481 0.471
WMD-1 + BERT + ROUTING 0.658 0.689 0.823 0.712 0.733 0.730 0.718 0.723
WMD-1 + BERT + MNLI + ROUTING 0.665 0.705 0.834 0.744 0.735 0.752 0.736 0.739
WMD-2 + BERT + MNLI + ROUTING 0.676 0.706 0.831 0.743 0.734 0.755 0.732 0.740
WMD-1 + BERT + PMEANS 0.662 0.687 0.823 0.714 0.735 0.734 0.719 0.725
WMD-1 + BERT + MNLI + PMEANS 0.670 0.708 0.835 0.746 0.738 0.762 0.744 0.743
WMD-2 + BERT + MNLI + PMEANS 0.679 0.710 0.832 0.745 0.736 0.763 0.740 0.743

Table 7: Absolute Pearson correlations with segment-level human judgments on WMT17 to-English translations.

TAC-2008 TAC-2009
Responsiveness Pyramid Responsiveness Pyramid

Setting Metrics r ρ r ρ r ρ r ρ

BASELINES

S3
full 0.696 0.558 0.753 0.652 0.731 0.552 0.838 0.724
S3
best 0.715 0.595 0.754 0.652 0.738 0.595 0.842 0.731

TF∗IDF-1 0.176 0.224 0.183 0.237 0.187 0.222 0.242 0.284
TF∗IDF-2 0.047 0.154 0.049 0.182 0.047 0.167 0.097 0.233
ROUGE-1 0.703 0.578 0.747 0.632 0.704 0.565 0.808 0.692
ROUGE-2 0.695 0.572 0.718 0.635 0.727 0.583 0.803 0.694
ROUGE-1-WE 0.571 0.450 0.579 0.458 0.586 0.437 0.653 0.516
ROUGE-2-WE 0.566 0.397 0.556 0.388 0.607 0.413 0.671 0.481
ROUGE-L 0.681 0.520 0.702 0.568 0.730 0.563 0.779 0.652
FRAME-1 0.658 0.508 0.686 0.529 0.678 0.527 0.762 0.628
FRAME-2 0.676 0.519 0.691 0.556 0.715 0.555 0.781 0.648
BERTSCORE-F1 0.724 0.594 0.750 0.649 0.739 0.580 0.823 0.703

WORD-MOVER

WMD-1 + W2V 0.669 0.559 0.665 0.611 0.698 0.520 0.740 0.647
WMD-1 + BERT + ROUTING 0.729 0.601 0.763 0.675 0.740 0.580 0.831 0.700
WMD-1 + BERT + MNLI + ROUTING 0.734 0.609 0.768 0.686 0.747 0.589 0.837 0.711
WMD-2 + BERT + MNLI + ROUTING 0.731 0.593 0.755 0.666 0.753 0.583 0.827 0.698
WMD-1 + BERT + PMEANS 0.729 0.595 0.755 0.660 0.742 0.581 0.825 0.690
WMD-1 + BERT + MNLI + PMEANS 0.736 0.604 0.760 0.672 0.754 0.594 0.831 0.701
WMD-2 + BERT + MNLI + PMEANS 0.734 0.601 0.752 0.663 0.753 0.586 0.825 0.694

Table 8: Correlation of automatic metrics with summary-level human judgments for TAC-2008 and TAC-2009.
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578

BAGEL SFHOTEL
Setting Metrics Inf Nat Qual Inf Nat Qual

BASELINES

BLEU-1 0.225 0.141 0.113 0.107 0.175 0.069
BLEU-2 0.211 0.152 0.115 0.097 0.174 0.071
BLEU-3 0.191 0.150 0.109 0.089 0.161 0.070
BLEU-4 0.175 0.141 0.101 0.084 0.104 0.056
ROUGE-L 0.202 0.134 0.111 0.092 0.147 0.062
NIST 0.207 0.089 0.056 0.072 0.125 0.061
CIDER 0.205 0.162 0.119 0.095 0.155 0.052
METEOR 0.251 0.127 0.116 0.111 0.148 0.082
BERTSCORE-F1 0.267 0.210 0.178 0.163 0.193 0.118

WORD-MOVER

WMD-1 + W2V 0.222 0.079 0.123 0.074 0.095 0.021
WMD-1 + BERT + ROUTING 0.294 0.209 0.156 0.208 0.256 0.178
WMD-1 + BERT + MNLI + ROUTING 0.278 0.180 0.144 0.211 0.252 0.175
WMD-2 + BERT + MNLI + ROUTING 0.279 0.182 0.147 0.204 0.252 0.172
WMD-1 + BERT + PMEANS 0.298 0.212 0.163 0.203 0.261 0.182
WMD-1 + BERT + MNLI + PMEANS 0.285 0.195 0.158 0.207 0.270 0.183
WMD-2 + BERT + MNLI + PMEANS 0.284 0.194 0.156 0.204 0.270 0.182

Table 9: Spearman correlation with utterance-level human judgments for BAGEL and SFHOTEL datasets.
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Chapter 6

DiscoScore: Evaluating Text
Generation with BERT and
Discourse Coherence
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Abstract

Recently, there has been a growing interest
in designing text generation systems from a
discourse coherence perspective, e.g., mod-
eling the interdependence between sentences.
Still, recent BERT-based evaluation metrics
are weak in recognizing coherence, and thus
are not reliable in a way to spot the discourse-
level improvements of those text generation sys-
tems. In this work, we introduce DiscoScore,
a parametrized discourse metric, which uses
BERT to model discourse coherence from dif-
ferent perspectives, driven by Centering theory.
Our experiments encompass 16 non-discourse
and discourse metrics, including DiscoScore
and popular coherence models, evaluated on
summarization and document-level machine
translation (MT). We find that (i) the majority
of BERT-based metrics correlate much worse
with human rated coherence than early dis-
course metrics, invented a decade ago; (ii)
the recent state-of-the-art BARTScore is weak
when operated at system level—which is par-
ticularly problematic as systems are typically
compared in this manner. DiscoScore, in con-
trast, achieves strong system-level correlation
with human ratings, not only in coherence but
also in factual consistency and other aspects,
and surpasses BARTScore by over 10 correla-
tion points on average. Further, aiming to un-
derstand DiscoScore, we provide justifications
to the importance of discourse coherence for
evaluation metrics, and explain the superiority
of one variant over another. Our code is avail-
able at https://github.com/AIPHES/
DiscoScore.

1 Introduction

In discourse, coherence refers to the continuity of
semantics in text. Often, discourse relations and
lexical cohesion devices, such as repetition and
coreference, are employed to connect text spans,
aiming to ensure text coherence. Popular theories
in the linguistics community on discourse were pro-

vided by Grosz et al. (1995) and Mann and Thomp-
son (1988). They formulate coherence through the
lens of readers’ focus of attention, and rhetorical
discourse structures over sentences. Later on, co-
herence models as computational approaches of
these theories emerged to judge text coherence in
discourse tasks such as sentence ordering and es-
say scoring (Barzilay and Lapata, 2008; Lin et al.,
2011; Guinaudeau and Strube, 2013).

While humans also often use text planning at
discourse level prior to writing and speaking, up
until recently, the majority of natural language gen-
eration (NLG) systems, be it text summarization
or document-level MT, has performed sequential
word prediction without considering text coherence.
For instance, MT systems mostly do not model the
interdependence between sentences and translate a
document at sentence level, and thus produce many
incoherent elements such as coreference mistakes
in system outputs (Maruf et al., 2021). Only more
recently has there been a surge of interest towards
discourse based summarization and MT systems,
aiming to model inter-sentence context, with a fo-
cus on pronominal anaphora (Voita et al., 2018;
Liu et al., 2021) and discouse relations (Miculicich
et al., 2018; Xu et al., 2020).

However, there appears a mismatch between dis-
course based NLG systems and non-discourse NLG
evaluation metrics such as MoverScore (Zhao et al.,
2019) and BERTScore (Zhang et al., 2020) which
have recently become popular for MT and sum-
marization evaluation. As these metrics base their
judgment on semantic similarity (and lexical over-
lap (Kaster et al., 2021)) between hypotheses and
references—which by design does not target text
coherence—it is not surprising that they do not
correlate well with human rated coherence (Fabbri
et al., 2021; Yuan et al., 2021; Sai et al., 2021). Re-
cently, BARTScore (Yuan et al., 2021) receives
increasingly attention, which uses sequence-to-
sequence language models to measure the likeli-
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Chelsea have made an offer for FC Tokyo forward Yoshinori Muto. The 22-
year-old will join Chelsea 's Dutch partner club Vitesse Arnhem on loan 
next season if he completes a move to Stamford Bridge. Chelsea signed a 
£200million sponsorship deal with Japanese company Yokohama Rubber 
in February.

Hypothesis

Naoki Ogane says that Chelsea have made an offer for Yoshinori Muto. 
The 22-year-old forward has one goal in 11 games for Japan. Muto admits 
that it is an 'honour' to receive an offer from the Blues. Chelsea have 
signed a £200m sponsorship deal with Yokohama Rubber. Muto graduated 
from university with an economics degree two weeks ago. He would 
become the first Japanese player to sign for Chelsea.

Reference

t1 t2 t3 t4 t5 ...
Chelsea 1 0 0 0 0 1
offer 0 0 0 0 1 0
...

...
...

...
...

...
...

(a) FocusDiff

s1 s2 s3
s1 0 1 0.5
s2 0 0 1
s3 0 0 0

(b) SentGraph

Figure 1: Sample hypothesis and reference from SUM-
MEval. Each focus1is marked in a different color, cor-
responding to multiple tokens as instances of a focus.
Foci shared in Hypothesis and Reference are marked in
the same color. (a)+(b) are adjacency matrices used to
model focus-based coherence for Hypothesis; for sim-
plicity, adjacency matrices for Reference are omitted.
FocusDiff and SentGraph are the variants of DiscoScore.
For FocusDiff, we use (a) to depict the relations be-
tween foci and tokens, reflecting focus frequency. For
SentGraph, we use (b) to depict the interdependence be-
tween sentences according to the number of foci shared
between sentences and the distance between sentences.

hood that hypothesis and reference are paraphrases,
and that cannot contrast text pairs at discourse level.

In this work, we fill the gap of missing discourse
metrics in MT and summarization evaluation, par-
ticularly in reference-based evaluation scenarios.
We introduce DiscoScore, a parametrized discourse
metric, which uses BERT to model discourse co-
herence through the lens of readers’ focus, driven
by Centering theory (Grosz et al., 1995). The Dis-
coScore variants can be distinguished in how we
use focus—see Figure 1: (i) we model focus fre-
quency and semantics, and compare their differ-
ence between hypothesis and reference and (ii) we
use focus transitions to model the interdependence
between sentences. Building upon this, we present
a simple graph-based approach to compare hypoth-
esis with reference.

We compare DiscoScore with a range of base-
lines, including discourse and non-discourse met-

1The formal definition of focusing in discourse is given
on two levels (Grosz et al., 1977): (i) readers are said to be
globally focusing on a set of entities relevant to the overall
discourse, and (ii) readers focus on a particular entity that an
utterance locally concerns most. Section 3 elaborates on focus
as a key ingredient of DiscoScore.

rics, and coherence models on summarization and
document-level MT datasets. Our contributions
and findings are summarized as follows:

• Recent BERT-based metrics and the state-of-
the-art BARTScore (Yuan et al., 2021) are all
weak in system-level correlation with human
ratings, not only in coherence but also in other
aspects such as factual consistency. Most of
them are even worse than very early discourse
metrics, RC and LC (Wong and Kit, 2012)—
which require neither source texts nor refer-
ences and use discourse features to predict
hypothesis coherence.

• DiscoScore strongly correlates with human
rated coherence and many other aspects, over
10 points (on average across aspects) better
than BARTScore and two strong baselines RC
and LC in the single and multi-references set-
tings. This indicates that either leveraging
contextualized encoders or finding discourse
features is not sufficient, suggesting to com-
bine both as DiscoScore does.

• We demonstrate the importance of including
discourse signals in the assessment of system
outputs, as the discourse features derived from
DiscoScore can strongly separate hypothesis
from reference. Further, we show that the
more discriminative these features are, the
better the metrics perform, which allows for
interpreting the performance gaps between the
variants of DisoScore.

• We investigate two focus choices popular in
the discourse community, i.e., noun (Elsner
and Charniak, 2011) and semantic entity (Mes-
gar and Strube, 2016). Our results show that
entity as focus is not always helpful, but when
it helps, the gain is big.

2 Related work

Evaluation Metrics. Traditional metrics such as
BLEU (Papineni et al., 2002) and ROUGE (Lin,
2004) measure lexical n-gram overlap between a
hypothesis and a human reference. As they fail
to measure semantic similarity in the absence of
lexical overlap, several metrics have been proposed
to overcome this issue, which carry out soft lexical
matching with static word embeddings (Ng and
Abrecht, 2015) and synonym matching (Lavie and
Agarwal, 2007). However, none of those metrics
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can properly judge text coherence (Kryscinski et al.,
2019; Zhu and Bhat, 2020).

Recently, a class of novel metrics based on
BERT (Devlin et al., 2019) has received a surge
of attention, as they correlate strongly with human
judgment of text quality in both reference-based
and reference-free scenarios (Zhao et al., 2019;
Zhang et al., 2020; Sellam et al., 2020; Rei et al.,
2020; Gao et al., 2020; Thompson and Post, 2020;
Zhao et al., 2020; Pu et al., 2021; Chen et al., 2021).
While strong at sentence-level, these metrics are
weak in recognizing coherence in inter-sentence
contexts (just like BLEU and ROUGE), as BERT
and the majority of BERT variants2 that these met-
rics build on only capture discourse phenomena to a
certain extent (Koto et al., 2021; Laban et al., 2021;
Beyer et al., 2021). Thus, they are not suitable
for evaluating long texts as in document-level MT
evaluation. Works that either (i) average sentence-
level evaluation scores as document score or (ii)
assign a score to the concatenation of sentences
within a document (Xiong et al., 2019; Liu et al.,
2020; Saunders et al., 2020) do not factor interde-
pendence between sentences into a document score,
e.g., do not explicitly punish incoherent elements,
thus are also inadequate.

Several attempts have been made towards dis-
course metrics in MT evaluation. Wong and Kit
(2012); Gong et al. (2015); Cartoni et al. (2018)
use the frequency of lexical cohesion devices (e.g.,
word repetition) over sentences to predict coher-
ence of hypothesis translations, while Guzmán et al.
(2014) and Joty et al. (2017) suggest to compare the
difference of rhetorical structures between hypothe-
sis and reference translations. Recently, Jiang et al.
(2021) measure the inconsistency between hypoth-
esis and reference translations in several aspects
such as verb tense and named entities. However,
these metrics do not leverage strong contextualized
encoders, as has been shown to be a key ingre-
dient for recent success of BERT-based metrics.
Most recently, BARTScore (Yuan et al., 2021) uses
sequence-to-sequence pretrained language models
such as BART (Lewis et al., 2020) to measure how
likely hypothesis and reference are paraphrased ac-
cording to the probability of one given the other.
While BARTScore constitutes the recent state-of-
the-art in sentence-level correlation with human
ratings in several aspects (incl. discourse), we find

2Recently, several discourse BERT variants such as Con-
pono (Iter et al., 2020) have been proposed, but they are not
always helpful for evaluation metrics—see Table 2 (appendix).

that (i) it performs still poorly at system level—
which is particularly problematic as systems are
typically compared in this manner. (ii) As based
on a ‘blackbox’ language model, it cannot offer
insights towards how it models coherence and what
discourse phenomena it does (not) capture.

Coherence Models. In discourse, there have
been many computational models (Barzilay and
Lapata, 2008; Guinaudeau and Strube, 2013; Pitler
and Nenkova, 2008; Lin et al., 2011) for text co-
herence assessment, the majority of which differ
in regularities that they use to distinguish coherent
from incoherent text, driven by different linguistic
theories, v.i.z., a pattern of (i) focus transitions in
adjacent sentences (Grosz et al., 1995) and (ii) text
organization regarding discourse relations over sen-
tences (Mann and Thompson, 1988). For instance,
Barzilay and Lapata (2008) and Guinaudeau and
Strube (2013) use the distribution of entity tran-
sitions over sentences to predict text coherence,
while Pitler and Nenkova (2008) and Lin et al.
(2011) suggest to produce discourse relations over
sentences with a discourse parser, showing that the
relations are indicative of text coherence. In the
last few years, neural coherence models have been
explored. Popular examples are Tien Nguyen and
Joty (2017), Mesgar and Strube (2018) and Moon
et al. (2019). As they and the recent state-of-the-
art (Mesgar et al., 2021) all have been trained on
text readability datasets, with readability labels as
supervision, they may suffer issues of domain shift
when applied to MT and summarization evaluation.
More importantly, they judge hypothesis coherence
in the absence of reference, thus are not sufficient
for reference-based evaluation. Our experiments in-
volve two popular, unsupervised coherence models,
entity graph (Guinaudeau and Strube, 2013) and
lexical graph (Mesgar and Strube, 2016) treated as
discourse metrics with the advantages on robust-
ness (Lai and Tetreault, 2018).

Discourse Test Sets. Apart from evaluation met-
rics, there have been several discourse-focused test
sets proposed to compare NLG systems, most of
which have been studied in MT evaluation. For
instance, the DiscoMT15 shared task (Hardmeier
et al., 2015) compares MT systems, not based on
translation adequacy but on the accuracy of pro-
noun translation for English-to-French, i.e., count-
ing the number of correctly translated pronouns,
given the annotated ones in reference. Bawden
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et al. (2018) extend this by labeling both anaphoric
pronouns and lexical cohesion devices on test
sets, while Voita et al. (2018) construct English-
to-Russian test sets focusing on deixis, ellipsis and
lexical cohesion. Guillou et al. (2018); Lopes et al.
(2020) construct English-to-German and English-
to-French test sets targeting pronouns. While reli-
able, these test sets involve costly manual annota-
tion, thus are limited to few language pairs.

In this work, we introduce DiscoScore to judge
system outputs, which uses BERT to model read-
ers’ focus within hypothesis and reference, and
thus clearly outlines the discourse phenomena be-
ing captured, serving as low-cost alternatives to
discourse test sets for comparing discourse based
NLG systems. More prominently, we derive dis-
course features from DiscoScore, which we use to
understand the importance of discourse for evalua-
tion metrics, and explain why one metric is supe-
rior to another. This parallels recent effort towards
explainability for non-discourse evaluation met-
rics (Kaster et al., 2021; Fomicheva et al., 2021).
Finally, we show that simple features can be indica-
tive of the superiority of a metric, which fosters
research towards finding insightful features with
domain expertise and building upon these insights
to design high-quality metrics.

3 Our Approach

In the following, we elaborate on the two variants
of DiscoScore, FocusDiff and SentGraph, which
we refer to as DS-FOCUS and DS-SENT.

Focus Difference. In discourse, there have been
many corpus-based studies towards modeling fo-
cus transitions over sentences, showing that fo-
cus transition patterns are indicative of text coher-
ence (Barzilay and Lapata, 2008; Guinaudeau and
Strube, 2013). When reading a document, readers
may have multiple focus of attention,

each associated to a group of expressions: (i)
referring expressions such as pronouns and (ii) se-
mantically related elements such as [Berlin, capi-
tal].

Here, we assume two focus based conditions that
a coherent hypothesis should meet in reference-
based evaluation scenarios:

• A large number of focus overlaps between a
hypothesis and a reference.

• Each focus overlap is nearly identical in terms
of semantics and frequency, where frequency

shows how often a focus is mentioned in a
hypothesis or in a reference.

In the following, we present focus modeling to-
wards semantics and frequency, according to which
we compare hypothesis with reference.

For a hypothesis, we introduce a bipartite graph
Ghyp = (V,S,Ahyp), where V and S are two sets
of vertices corresponding to a set of foci and all
tokens (per occurrence a word is a separate token)
within a hypothesis. Let A = {0, 1}n×m be an
adjacency matrix where n and m are the number of
foci and tokens respectively, and Aij equals 1 if and
only if the i-th focus associates to the j-th token.
Let Fhyp ∈ Rn×d be a matrix of focus embeddings
and Zhyp ∈ Rm×d be a matrix of contextualized
token embeddings with d as the embedding size.
Similarly, we use notation Gref , Fref and Zref for a
human reference.

We use contextualized encoders such as BERT
to produce token embeddings Zhyp and Zref . We
use a simple approach to model both semantics and
frequency of a focus. That is, we assign per focus v
an embedding by summing token embeddings that
a focus is associated to:

Fhyp
v =

∑

u∈N (v)

Zhyp
u , Fref

v =
∑

u∈N (v)

Zref
u (1)

where N (v) is a set of tokens (e.g., a group of
semantically related expressions) associated with a
focus v. In matrix notation, we rewrite Eq. (1) to
Fhyp = AhypZhyp, similarly for Fref .

Next, we measure the distance between a com-
mon set of foci Ω in a hypothesis and reference pair
based on their embeddings:

DS-FOCUS(hyp, ref) =
1

N

∑

u∈Ω
∥Fhyp

u − Fref
u ∥

(2)
where DS-FOCUS is scaled down by the factor of
N , the number of foci in hypothesis.

Sentence Graph. Few contextualized encoders
can produce high-quality sentence embeddings in
the document context, as they do not model inter-
dependence between sentences. According to Cen-
tering theory (Grosz et al., 1995), two sentences
are marked continuous in meaning when they share
at least one focus, on the one hand; one marks a
meaning shift for two sentences when no focus ap-
pears in common, on the other hand. From this,
one can aggregate sentence embeddings for which
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corresponding sentences are considered continu-
ous. In the following, we present a graph-based
approach to do so.

For a hypothesis3, let Shyp ∈ Rn×d be a matrix
of sentence embeddings with n and d as the number
of sentences and the embedding size. We introduce
a graph Ghyp = (V,Ahyp) where V is a set of sen-
tences and Ahyp is an adjacency matrix weighted
according to the number of foci shared between
sentences and the distance between sentences as
listed below to depict two variants of Ahyp:

• unweighted: Ahyp
ij = 1/(j − i) if the i-th and

the j-th sentences have at least one focus in
common (otherwise 0), where j−i denotes the
distance between two sentences and Ahyp

ij =
0 when j ≤ i.

• weighted: Ahyp
ij = a/(j − i), where a is the

number of foci shared in the i-th and the j-th
sentences, with the same constraints on j and
i as above.

Analyses by Guinaudeau and Strube (2013) indi-
cate that global statistics (e.g., average) over such
adjacency matrices can distinguish incoherent from
coherent text to some degree. Here we depict adja-
cency matrices as a form of sentence connectivity
derived from focus transitions over sentences. We
use them to aggregate sentence embeddings from
hypothesis and from reference:

Ŝhyp = (Ahyp + I)Shyp, Ŝref = (Aref + I)Sref

where I is an identity matrix that adds a self-loop
to a graph so as to include self-embeddings when
updating them.

Next, we derive per graph an embedding with
simple statistics from Ŝhyp and Ŝref , i.e., the con-
catenation of mean-max-min-sum embeddings. Fi-
nally, we compute the cosine similarity between
two graph-level embeddings:

DS-SENT(hyp, ref) = cosine(Ghyp,Gref) (3)

Choice of Focus. In discourse, often four popu-
lar choices are used to describe a focus: (i) a noun
that heads a NP (Barzilay and Lapata, 2008), (ii)
a noun (Elsner and Charniak, 2011), (iii) a coref-
erent entity associated with a set of referring ex-
pressions (Guinaudeau and Strube, 2013) and (iv)

3For simplicity, we omit the notation Sref and Gref for a
reference.

a semantic entity associated with a set of lexical
related words (Mesgar and Strube, 2016).

In this work, we investigate two focus choices:
noun (NN) and semantic entity (Entity). Linguis-
tically speaking, the latter is a lexical cohesion
device in the form of repetition. From this, NN
as focus yields few useful coherence signals but
a lot of noise, while Entity as focus uses ‘signal
compression’ by means of aggregation to produce
better signals. To produce entities, we first extract
all nouns in hypothesis (or reference), and aggre-
gate them into different semantic entities if their
cosine similarities based on Dep2Vec word embed-
dings (Levy and Goldberg, 2014) is greater than a
threshold—assuming that nouns with high similar-
ity refer to the same semantic entity.

4 Experiments

4.1 Evaluation Metrics
In the following, we list all of the evaluation met-
rics, and elaborate on them in Appendix A.1.

Non-discourse Metrics. We consider BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004),
BERTScore (Zhang et al., 2020), Mover-
Score (Zhao et al., 2019), SBERT (Reimers and
Gurevych, 2019), S3-pyr (Peyrard et al., 2017),
BLEURT (Sellam et al., 2020), BARTScore (Yuan
et al., 2021), PRISM (Thompson and Post, 2020).

Discourse Metrics. We consider RC and
LC (Wong and Kit, 2012) and Lexical Chain (Gong
et al., 2015). We consider two coherence models,
EntityGraph (Guinaudeau and Strube, 2013) and
LexicalGraph (Mesgar and Strube, 2016), and treat
them as discourse metrics.

DiscoScore. DS-FOCUS can be parameterized
with two focus choices: noun (NN) or semantic
entity (Entity). DS-SENT can be parameterized not
only with focus, but also with the choices of un-
weighted (-U) and weighted (-W). For DS-FOCUS,
we use Conpono (Iter et al., 2020) that finetuned
BERT with a novel discourse-level objective re-
garding sentence ordering. For DS-SENT, we use
BERT-NLI. This is because we find this configura-
tion performs best after initial trials—see Table 2
(appendix). Figure 5 (appendix) shows all vari-
ants of DiscoScore. Concerning the threshold of
Dep2Vec to produce entities, after experimenting
with several alternatives we set it to 0.8 for DS-
FOCUS (Entity) in all setups, and to 0.8 in summa-
rization and to 0.5 in MT for DS-SENT (Entity).
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4.2 Datasets
We consider two datasets in summarization: Sum-
mEval (Fabbri et al., 2021) and NeR18 (Grusky
et al., 2018), and one dataset in document-level
MT: WMT20 (Mathur et al., 2020). Note that these
datasets consist of hypotheses paired with human-
written references, where hypotheses are machine-
generated texts of varying qualities given by neural
and non-neural, extractive and abstractive language
models. We outline these datasets in Appendix A.2,
and provide data statistics in Table 9 (appendix).

5 Results

We first examine the importance of discourse for
evaluation metrics—which underpins the useful-
ness of discourse metrics, and then benchmark Dis-
coScore on summarization and MT datasets.

Importance of Discourse. DS-FOCUS and DS-
SENT concern the modeling of discourse coher-
ence on two different levels: (i) the occurrences
of foci, and (ii) the interdependence between sen-
tences driven by focus transitions, both reflecting
the discourse characteristics of a text. In the fol-
lowing, we describe these discourse features, and
examine their importance for assessing system out-
puts by contrasting the discourse patterns of hy-
pothesis and reference.

• Focus Frequency, denoted by FREQ(x),
equals the ratio between the total frequencies
of foci and the number of foci in a text x,
where x is hypothesis or reference. We ex-
clude foci occurring only once.

• Sentence Connectivity, denoted by
CONN(x), equals the average of all elements
in adjacency matrix representing the inter-
dependence between sentences in a text x
(hypothesis/reference).

• As in DiscoScore, we consider two focus
choices (NN and Entity) and the choices of
unweighted (-U) and weighted (-W) for these
discourse features. Figure 5 (appendix) shows
the links between DiscoScore and the features.

Figure 2 shows that the scales on FREQ(ref)
and FREQ(hyp) in summarization differ by a large
amount, i.e., from 0.5 to 2.5 on y-axis and up to
6 on x-axis. This means that hypothesis and ref-
erence can be strongly distinguished by FREQ(x),
which underpins the usefulness of including such
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Figure 2: Scatter plot to display FREQ(hyp) (based on
NN) on x-axis and FREQ(ref) on y-axis on SUMMEval.
Each point contains two frequencies from a pair of hy-
pothesis and reference. The points below the auxiliary
line are the ones for which FREQ(hyp) > FREQ(ref).

discourse signals in the assessment of system out-
puts when references are available. Further, the
larger scale on FREQ(hyp) indicates that foci in
hypothesis are more repetitive than in reference, as
a result of needless repetition in poor summaries—
in line with previous studies on incoherent machine
translations (Guillou, 2013; Voita et al., 2019). The
results for other discourse features are similar, we
provide them in Figure 6 (appendix).

Overall, these results show discourse features
can separate hypothesis from reference.

5.1 Text Summarization

Correlation Results. Table 1 compares metrics
on SUMMEval on system level. Most of non-
discourse metrics have a lowest correlation with
human rated coherence among four quality aspects.
Even worse, ROUGE-L and SBERT do not corre-
late with coherence whatsoever. BARTScore, the
recent state-of-the-art metric, is very weak when
operated on system level, notwithstanding that it
has been fine-tuned on “document-to-summary”
parallel data from CNN/DailyMail—which SUM-
MEval is constructed from. We note that SUM-
MEval uses multiple references. BARTScore by
default compares a hypothesis with one refer-
ence at a time, then takes the average of multiple
evaluation scores as a final score. Table 8 (ap-
pendix) shows that we can improve system-level
BARTScore to some degree by replacing ‘average’
with ‘max’ (i.e., taking the maximum score), but
DS-FOCUS is still much better overall, i.e., sur-
passing BARTScore by ca. 10 points on average.

Table 7 (appendix) reports correlation results on
NeR18 that uses single reference. We find that
half of hypotheses do not contain ‘good foci’, and
as such the foci-based discourse features outlined
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Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

Non-discourse metrics

ROUGE-1 9.09 27.27 18.18 9.09 15.91
ROUGE-L 0.00 36.36 21.21 18.18 18.94
BERTScore 30.30 30.30 51.52 54.55 41.67
MoverScore 36.36 42.42 63.64 60.61 50.76
SBERT 3.03 33.33 30.30 27.27 23.48
BLEURT 45.45 51.52 72.73 63.64 58.33
BARTScore 60.61 36.36 45.45 48.48 47.73
PRISM 51.52 39.39 72.73 69.70 58.33
S3-pyr 18.18 24.24 9.09 6.06 14.39

m(hyp)

Discourse metrics

RC 45.45 51.52 54.55 57.58 52.27
LC 51.52 45.45 48.48 57.58 50.76
Entity Graph 42.42 12.12 15.15 18.18 21.97
Lexical Graph 48.48 6.06 15.15 18.18 21.97

m(hyp, ref)

Lexical Chain 42.42 6.06 9.09 18.18 18.94
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00
DS-FOCUS (Entity) 69.70 57.58 72.73 75.76 68.94
DS-SENT-U (NN) 48.48 54.55 63.64 60.61 56.82
DS-SENT-U (Entity) 54.55 60.61 75.76 66.67 64.39
DS-SENT-W (NN) 51.52 51.52 66.67 63.64 58.33
DS-SENT-W (Entity) 51.52 57.58 66.67 63.64 59.85

Table 1: System-level Kendall correlations between metrics and human ratings of summary quality on SUMMEval.
We bold numbers that significantly outperform others according to paired t-test (Fisher et al., 1937). m is a metric.

previously are less discriminative on NeR18 than
on SUMMEval—see Table 9 (appendix). However,
DS-FOCUS is still strong, ca. 20 points better than
BARTScore in all aspects, despite that DS-FOCUS

uses a much smaller contextualized encoder4. We
note that the ‘F-score’ version of DS-FOCUS seems
extremely strong on NeR18, but it is not robust
across datasets, e.g., much worse than the original,
precision-based DS-FOCUS on SUMMEval.

On a side note, coherence (mostly) strongly cor-
relates with the other rating aspects on both SUM-
MEval and NeR18—see Figure 3. Thus, it is not
surprising that both DS-FOCUS and DS-SENT cor-
relate well with these aspects, despite that we have
not targeted them. While strong on system level,
DiscoScore could not show advantages on sum-
mary level—see Table 5 (appendix), but we argue
that system-level correlation deserves the highest
priority as systems are compared in this manner.

Overall, these results show that BERT-based
non-discourse metrics correlate weakly with hu-
man ratings on system level. BARTScore also
does so, though we improve it to some degree
in multi-references settings. DiscoScore, partic-
ularly DS-FOCUS, performs consistently best in
both single- and multi-references settings, and it is

4DS-FOCUS uses Conpono on the same size of BERTBase.
BARTScore uses BARTLarge finetuned on CNN/DailyMail.

equally strong in all aspects.
As for discourse metrics, RC and LC that use dis-

course features are strong baselines as they outper-
form most of non-discourse metrics and coherence
models (i.e., Entity and Lexical Graph) without
the access to source texts and references. How-
ever, they are worse than both DS-FOCUS and DS-
SENT. This confirms the inadequacy of RC and LC
in that they do not leverage strong contextualized
encoders and judge hypothesis in the absence of
references. Moreover, we compare DiscoScore to
a combination of two strong, complementary base-
lines, BARTScore and RC—a simple solution to
address text coherence of non-discourse metrics.
To combine them, we simply average their scores.
We see the gains are additive in all aspects but co-
herence. DS-FOCUS wins all the time by a large
margin—see Table 10 (appendix).

Taken together, these results show that any of
the three—(i) leveraging contextualized encoders
as in BERT-based metrics and BARTScore; (ii)
leveraging discourse features as in RC and (iii)
the ensemble of (i) and (ii) by averaging—is not
sufficient, suggesting to combine (i) and (ii) as
DiscoScore does.

Understanding DiscoScore. As for all variants
of DiscoScore, we provide understanding on why
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one variant is superior to another with the discourse
features outlined in Figure 5 (appendix). To this
end, we begin with defining the discriminativeness
of these features as the magnitude of separating
hypothesis from reference:

DR(hyp, ref) :=
|{(hyp, ref)|R(ref) < R(hyp)}|

N
(4)

where N is a normalization term,R is any one of
the discourse features in Figure 5 (appendix).

Figure 4 shows that the discriminativeness of
these features strongly correlate with the results
of the DiscoScore variants, i.e., that the more dis-
criminative the features are, the better the metrics
perform. This attributes the superiority of a met-
ric to the fact that the discourse feature can better
separate hypothesis and reference.

From this, we can interpret the performance gaps
between the DiscoScore variants, namely (i) DS-
FOCUS over DS-SENT: given Focus Frequency
is more discriminative than Sentence Connectivity,
it is not surprising that DS-FOCUS modeling dis-
course coherence with the former outperforms DS-
SENT modeling with the latter, and (ii) DS-Focus
(NN) outperforms DS-Focus (Entity) because Fre-
quency (NN) can better separate hypothesis from
reference than Frequency (Entity).

Analyses. We provide analyses on the configu-
ration of DiscoScore from three perspectives—see
Appendix A.3: (i) the choice of BERT variants to-
wards discourse- versus non-discourse BERT; (ii)
the impact of adjacency matrices accounting for
the interdependence between sentences and (iii)
that we compare statistics- and alignment-based
approaches to examine the best configuration for
DS-SENT. Our results show the advantages of ad-
jacency matrices and statistics based approach, and
that discourse BERT only helps for DS-FOCUS.

5.2 Document-level Machine Translation

Correlation Results. Table 12 (appendix) com-
pares metrics on WMT20. We see that non-
discourse metrics seem much better, but these re-
sults are not consistent to the discriminativeness of
the discourse features—see Table 11 (appendix).
For instance, in cs-en, the discourse features (Fre-
quency and Connectivity) corresponding to DS-
FOCUS and DS-SENT clearly separate hypothesis
from reference due to the probability of D > 0 be-
ing over 70%. However, both DS-FOCUS and DS-
SENT correlate weakly with human rated adequacy.
Recently, Freitag et al. (2021a) provide justifica-
tion to the inadequacy of the ‘adequacy’ ratings,
as ‘adequacy’ sometimes cannot distinguish hu-
man from system translations and correlates weakly
with multiple aspects (e.g., fluency and accuracy).
Thus, they re-annotate WMT20 with the MQM and
pSQM rating schemes, which has been subsumed
into the annotation guideline of the most recent
WMT evaluation campaign (Freitag et al., 2021b).
Here, we perform an extra study on these ratings
on both document- and system-levels. Note that
system-level ratings are said to be the average of
document-level ones in our setting. Table 6 (ap-
pendix) shows that DS-SENT is much better than
BARTScore on system level, surpassing it by 25
points in terms of MQM and 14 points in pSQM.

Overall, these results in MT are consistent with
those in summarization, i.e., DiscoScore is strong
on system levels for both tasks, but it cannot show
gains on fine-grained levels. Section A.4 (ap-
pendix) show inter-correlations between metrics.

6 Conclusions

Given the recent growth in discourse based NLG
systems, evaluation metrics targeting the assess-
ment of text coherence are essential next steps for
properly tracking the progress of these systems.
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Although there have been several attempts made
towards discourse metrics, they all do not leverage
strong contextualized encoders which have been
held responsible for the recent success story of
NLP. In this work, we introduced DiscoScore that
uses BERT to model discourse coherence from two
perspectives of readers’ focus: (i) frequencies and
semantics of foci and (ii) focus transitions over
sentences used to predict interdependence between
sentences. We find that BERT-based non-discourse
metrics cannot address text coherence, even much
worse than early feature-based discourse metrics
invented a decade ago. We also find that the recent
state-of-the-art BARTScore correlates weakly with
human ratings on system level. DiscoScore, on
the other hand, performs consistently best in both
single- and multi-reference settings, equally strong
in coherence and several other aspects such as fac-
tual consistency, despite that we have not targeted
them. More prominently, we provide understand-
ing on the importance of discourse for evaluation
metrics, and explain the superiority of one met-
ric over another with simple features, in line with
recent work on explainability for evaluation met-
rics (Kaster et al., 2021; Fomicheva et al., 2021).

Scope for future research is huge, e.g., devel-
oping reference-free discourse metrics comparing
source text to hypothesis, improving discourse
metrics on fine-grained levels5, and ranking NLG
systems via discourse metrics and rigorous ap-
proaches (Peyrard et al., 2021; Kocmi et al., 2021).

7 Impact and Limitation

To our knowledge, we, for the first time, combine
the elements of discourse and BERT representa-
tions to design an evaluation metric (DiscoScore)
for text quality assessment in summarization and
MT. While our experiments are conducted on En-
glish datasets, DiscoScore could adapt to many
other languages in which references and foci are
available. We believe that this work fosters fu-
ture research on text generation systems endowed
with the ability to produce well-formed texts in
discourse.

However, we acknowledge several limitations
5Recently, Steen and Markert (2022) introduce a fine-

grained evaluation setup to compute summary-level correla-
tion, which performs computing over summaries not produced
by multiple systems, but rather by a single system. This is be-
cause systems sometimes substantially differ in quality, which
implies that involving multiple systems could result in inac-
curate evaluation outcomes in the presence of system-level
confounders.

of this work, which require further investigation in
future. We now discuss them in the following:

Entity as Focus. We follow the idea of Mes-
gar and Strube (2016) in the discourse community,
which clusters nouns into entities based on their
static word embeddings. Although simple, it some-
times helps for DiscoScore. However, alternatives
aiming to produce better entities have not been
explored in this work, e.g., replacing static with
contextualized embeddings, and weighting entities
by their occurrences in hypothesis/reference.

Weakness on Fine-Grained Assessment. In
summarization and MT, we show that our novel
DiscoScore largely outperforms the current state-
of-the-art BARTScore on system levels for both
tasks, while it cannot show advantages on finer-
grained levels such as document- and summary-
levels. This might be because modeling focus alone
is insufficient to perform much more challenging,
finer-grained assessment of text quality. Future
work could also factor other discourse phenomena
(e.g., discourse connectives and coreference) into
the assessment of text coherence.
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A Appendix

A.1 Evaluation Metrics
Non-discourse Metrics. We consider the follow-
ing non-discourse metrics.

• BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) are precision- and
recall-oriented metrics respectively, both of
which measure n-gram overlap between a
hypothesis and a reference.

• BERTScore (Zhang et al., 2020) and Mover-
Score (Zhao et al., 2019) are set-based metrics
used to measure the semantic similarity be-
tween hypothesis and reference. BERTScore
uses greedy alignment to compute the simi-
larity between two sets of BERT-based word
embeddings from hypothesis and from refer-
ence, while MoverScore uses optimal align-
ments based on Word Mover’s Distance (Kus-
ner et al., 2015) to do so.

• SBERT (Reimers and Gurevych, 2019) fine-
tunes BERT on the NLI datasets and uses
pooling operations to produce sentence em-
beddings. We compute the cosine similarity
between two sentence representations from
hypothesis and from reference.

• S3-pyr and S3-resp (Peyrard et al., 2017)
are supervised metrics that linearly combine
ROUGE, JS-divergence and ROUGE-WE
scores, trained on the TAC datasets with hu-
man annotated pyramid and responsiveness
scores as supervision.

• BLEURT (Sellam et al., 2020) is another su-
pervised metric that fine-tunes BERT on the
concatenation of WMT datasets and synthetic
data in the MT domain, with human judgment
of translation quality as supervision.

• BARTScore (Yuan et al., 2021) and
PRISM (Thompson and Post, 2020) depict
sequence-to-sequence language models as
metrics to compare hypothesis with reference.
In reference-based settings, they both measure
the likelihood that hypothesis and reference
are paraphrases, but differ in the language
models they rely on. PRISM has been based
on a neural MT system trained from scratch
on parallel data in MT, while BARTScore
uses BART (Yuan et al., 2021) that has been

fine-tuned on CNN/DailyMail (Hermann
et al., 2015)—which is parallel data in
summarization. We use the ‘F-score’ version
of BARTScore as recommended in Yuan et al.
(2021).

Discourse Metrics. We consider the following
discourse metrics (including ours and coherence
models).

• RC and LC (Wong and Kit, 2012) require nei-
ther source texts nor references and use lexi-
cal cohesion devices (e.g., repetition) within a
hypothesis to predict text coherence. LC com-
putes the proportion of words within hypothe-
sis that are lexical cohesion devices, while RC
computes the proportion of times that lexical
cohesion devices appear in hypothesis.

• Entity Graph (Guinaudeau and Strube, 2013)
and Lexical Graph (Mesgar and Strube, 2016)
are popular coherence models used to perform
discourse tasks such as essay scoring, both of
which introduce a graph with nodes as sen-
tences and adjacency matrices as the connec-
tivity between sentences. Here, we use the
average of adjacency matrices from the hy-
pothesis as the proxy of hypothesis coherence.
While Entity Graph draws an edge between
two sentences if both sentences have at least
one noun in common, Lexical Graph draws
an edge if two sentences have a pair of simi-
lar words in common, i.e., the cosine similar-
ity between their embeddings greater than a
threshold.

• Lexical Chain (Gong et al., 2015) extracts
multiple lexical chains from hypothesis and
from reference. Each word is associated to a
lexical chain if a word appears in more than
one sentence. A lexical chain contains a set
of sentence positions in which a word appears.
Finally, the metric performs soft matching to
measure lexical chain overlap between hypoth-
esis and reference.

• FocusDiff and SentGraph are the two variants
of DiscoScore, which use BERT to model se-
mantics and coherence of readers’ focus in
hypothesis and reference. In particular, Focus-
Diff measures the difference between a com-
mon set of foci in hypothesis and reference in
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terms of semantics and frequency, while Sent-
Graph measures the semantic similarity be-
tween two sets of sentence embeddings from
hypothesis and reference—which are aggre-
gated according to the number of foci shared
across sentences and the distance between sen-
tences.

A.2 Datasets
We outline two datasets in summarization, and one
in document-level MT.

Text Summarization. While DUC6 and TAC7

datasets with human rated summaries, constructed
one decade ago, were the standard benchmarks for
comparing evaluation metrics in summmarization,
they collect summaries only from extractive sum-
marization systems. In the last few years, abstrac-
tive systems have become popular; however, little is
known how well metrics judge them. Recently, sev-
eral datasets based on CNN/DailyMail have been
constructed to address this. For instance, Sum-
mEval (Fabbri et al., 2021), REALSumm (Bhan-
dari et al., 2020), XSum (Maynez et al., 2020) and
FEQA (Durmus et al., 2020) all collect summaries
from both extractive and abstractive systems, but
differ in the aspects human experts rate summaries.
In this work, we consider the following two com-
plementary summarization datasets.

• SummEval has been constructed in multiple-
references settings, i.e., that each hypothesis is
associated to multiple references. It contains
human judgments of summary coherence, fac-
tual consistency, fluency and relevance. We
only consider abstractive summaries as they
have little lexical overlap with references.

• NeR18 (Grusky et al., 2018), in contrast, has
been constructed in single-reference settings.
It contains human judgments of summary co-
herence, fluency, informativeness and rele-
vance. As majority of summaries are extrac-
tive, we include both extractive and abstrac-
tive for the inclusive picture.

Document-level Machine Translation. As
document-level human ratings in MT are particu-
larly laborious, hardly ever have there been MT
datasets directly addressing them. First attempts
suggested to use the average of much cheaper

6https://duc.nist.gov/data.html
7https://tac.nist.gov/data/

Metrics Encoders Average

DS-FOCUS (NN)
+ BERT 71.97
+ BERT-NLI 70.45
+ Conpono 75.00

DS-SENT-U (NN)
+ BERT 35.61
+ BERT-NLI 56.82
+ Conpono 23.48

Table 2: Results of three contextualized encoders on
SUMMEval. Results are averaged across four aspects.

Metrics Average

DS-SENT-U (NN) 56.82
w/o sentence aggregation 46.21

Table 3: Ablation study on the use of adjacency matrix
to aggregate sentence embeddings on SUMMEval.

sentence-level ratings as a document score for
comparing document-level metrics (Comelles
et al., 2010; Wong and Kit, 2012; Gong et al.,
2015). However, human experts were asked to rate
sentences in isolation within a document. Thus,
human ratings at both sentence and document
levels cannot reflect inter-sentence coherence.
Recently, the WMT20 workshop (Mathur et al.,
2020) asks humans to rate each sentence translation
in the document context, and follows the previous
idea of ‘average’ to yield document scores.

In this work, we use the WMT20 dataset with ‘ar-
tificial’ document-level ratings. Note that WMT20
comes with two issues: (i) though sentences are
rated in the document context, averaging sentence-
level ratings may zero out negative effects of inco-
herent elements on document level and (ii) unlike
SummEval and NeR18, WMT20 only contains hu-
man judgment of translation adequacy (which may
subsume multiple aspects), not coherence.

For simplicity, we exclude system and reference
translations with lengths greater than 512—the
number of tokens at maximum allowed by BERT,
as only a small portion of instances is over the to-
ken limit. Note that it is effortless to replace BERT
with Longformer (Beltagy et al., 2020) to deal with
longer documents for DiscoScore.

A.3 Analyses on Text Summarization
Choice of BERT Variants. Table 2 compares
the impact of three BERT variants on DiscoScore.
Conpono, referred to as a discourse BERT, has fine-
tuned BERT with a novel discourse-level objective
regarding sentence ordering. While strong on dis-
course evaluation benchmarks (Chen et al., 2019),
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Metrics Mechanisms Average

DS-SENT-U (NN)
+ greedy align 21.97
+ optimal align 26.52
+ mean-max-min-sum 56.82

Table 4: Averaged results of SentGraph variants based
on three mechanisms on SUMMEval.

Metrics SUMMEval NeR18

BARTScore 14.13 24.78
PRISM 14.92 18.89
DS-FOCUS (NN) 10.81 10.42
DS-SENT-U (NN) 15.71 3.81

Table 5: Summary-level averaged Kendall correlations
across all rating aspects.

Conpono is not always helpful, e.g., BERT-NLI is
better for DS-SENT. These results suggest the best
configuration for DiscoScore.

Impact of Sentence Connectivity. Table 3
shows an ablation study on the use of sentence
connectivity. Aggregating sentence embeddings
with our adjacency matrices (see Eq.3) helps con-
siderably. This confirms the usefulness of aggrega-
tion from which we include coherence signals in
sentence embeddings.

SentGraph Variants. Table 4 compares three
DS-SENT variants as to how we measure the dis-
tance between two sets of sentence embeddings
from hypothesis and reference. In particular, we re-
fer to BERTScore (Zhang et al., 2020) as a ‘greedy
align’ mechanism used to compute the similarity
between two sets of sentence embeddings. As for
‘optimal align’, we use MoverScore (Zhao et al.,
2019) to do so. While the two alignments directly
measure the distance between the two sets, the sim-
ple statistics, i.e., mean-max-min-sum, derives a
graph embedding from each set and computes the
cosine similarity between two graph embeddings.
We see that the ‘statistics’ wins by a big margin,
and thus adopt this DS-SENT variant in all setups.

DiscoScore DiscoFeatures

DS-FOCUS (NN)

DS-FOCUS (Entity)

DS-SENT-U (NN)

DS-SENT-U (Entity)

DS-SENT-W (NN)

DS-SENT-W (Entity)

FREQ (NN)

FREQ (Entity)

CONN-U (NN)

CONN-U (Entity)

CONN-W (NN)

CONN-W (Entity)

Figure 5: Links between the DiscoScore variants and
discourse features.

Sys-level Doc-level
Metrics MQM pSQM MQM pSQM

BARTScore 45.57 55.50 34.90 28.96
*DS-FOCUS (NN) 42.12 40.89 19.10 9.98
DS-SENT-U (NN) 70.77 69.74 19.98 14.49

Table 6: Document-level Kendall and system-level Pear-
son correlations between metrics and MQM/pSQM rat-
ings on WMT20 in Chinese-to-English—which is the
only language pair with such ratings in reference-based
settings. *DS-FOCUS (NN) excludes focus that occurs
only once in hypothesis/reference.

A.4 Analyses on MT
Correlation between Metrics. Figure 7 shows
inter-correlations between metrics on WMT20
across languages. Overall, correlations are mostly
high between non-discourse metrics, much weaker
between discourse and non-discourse metrics—
which confirms the orthogonality of them in that
they rate translations in different aspects. We note
that DS-FOCUS has the lowest correlations with
all other metrics. For instance, DS-FOCUS is al-
most orthogonal to BERTScore and MoverScore.
We investigated whether combining them receives
additive gains. We find that a combination of DS-
FOCUS and BERTScore (or MoverScore) provides
little help in correlation with adequacy.
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Settings Metrics Coherence Fluency Informative Relevance Average

m(hyp, ref)

BARTScore 42.58 42.58 23.80 33.33 35.57
PRISM 51.52 42.58 42.86 52.38 47.33
DS-FOCUS (NN) 61.90 61.90 42.86 52.38 54.76
DS-FOCUS* (NN) 80.95 80.95 100.00 90.47 88.09
DS-SENT-U (NN) 14.29 14.29 14.29 23.81 16.67

Table 7: System-level Kendall correlations between metrics and human ratings on NeR18. DS-FOCUS* is the
‘F-score’ version of DS-FOCUS.

Settings Metrics Coherence Consistency Fluency Relevance Average

m(hyp, ref)

BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (original) 60.61 36.36 45.45 48.48 47.73

FocusDiff (NN) 75.76 63.64 78.79 81.82 75.00
FocusDiff (Entity) 69.70 57.58 72.73 75.76 68.94
SentGraph-u (NN) 48.48 54.55 63.64 60.61 56.82
SentGraph-u (Entity) 54.55 60.61 75.76 66.67 64.39

Table 8: System-level Kendall correlations between metrics and human ratings on SUMMEval in multi-reference
settings. BARTScore (original) compares a hypothesis with one reference at a time, and takes the average of
evaluation scores as a final score, while BARTScore (max) takes the maximum score.

WMT20
SUMMEval NeR18 cs-en de-en ja-en ru-en

Number of references 11 1 1 1 1 1
Number of systems 12 7 13 14 11 13
Number of hypothesis per system 100 60 102 118 80 91
Number of sentences per hypothesis 3.13 1.90 15.21 13.84 11.29 9.46
Average number of foci in hypothesis 15.18 12.85 62.01 56.68 57.09 44.99
Average number of ‘good foci’ in hypothesis 2.47 2.56 13.16 13.37 15.07 9.95
Percent of hypotheses with ‘good foci’ 80.50% 43.80% 100% 98.60% 100% 100%

Table 9: Characteristics of summarization and MT datasets. ‘good foci’ denotes a focus appearing more than once
in hypothesis. The more often a focus appears, the stronger the discourse signals are.

Metrics Coherence Consistency Fluency Relevance Average

RC 45.45 51.52 54.55 57.58 52.27
BARTScore (max) 78.79 48.48 63.64 72.73 65.91
BARTScore (max) + RC 66.67 54.55 69.70 78.79 67.42
DS-FOCUS (NN) 75.76 63.64 78.79 81.82 75.00

Table 10: Ensemble of non-discourse and discourse metrics (BARTScore + RC) vs DiscoScore.

cs-en de-en ja-en ru-en
DiscoFeatures D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0 D > 0 D = 0 D < 0

Frequency (NN) 74.18 2.00 23.82 57.38 9.65 32.97 53.04 2.63 44.33 52.77 7.31 39.92
Frequency (Entity) 76.17 1.76 22.07 59.74 8.38 31.88 52.38 1.48 46.14 53.61 7.31 39.08
Connectivity-u (NN) 78.05 0.35 21.60 63.11 8.29 28.60 59.61 5.25 35.14 52.04 10.03 37.93
Connectivity-u (Entity) 79.46 0.35 20.19 62.02 8.20 29.78 59.44 5.09 35.47 52.87 9.40 37.72
Connectivity-w (NN) 77.93 0.24 21.83 64.85 4.64 30.51 59.12 0.49 40.39 59.98 5.12 34.90
Connectivity-w (Entity) 80.40 0.23 19.37 63.48 4.73 31.79 60.76 0.33 38.91 60.82 4.60 34.58

Table 11: Statistics of discourse features on WMT20. D > 0 denotes the percent of ‘reference-hypothesis’ pairs for
which R(ref) > R(hyp) with R as any one of these features, similarly for the definitions of D = 0 and D < 0.
We exclude the pairs for which hypothesis and reference are the exact same.
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Figure 6: Distribution of discourse features over hypothesis and reference on SUMMEval.
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Figure 7: Pearson Correlations between metrics on WMT20 in cs-en, de-en, ja-en and ru-en (from left to right).

Direct Assessment (Adequacy)
Settings Metrics cs-en de-en ja-en ru-en Average

m(hyp, ref)

Non-discourse metrics

BLEU 7.44 57.52 41.48 10.74 29.30
BERTScore 10.82 60.38 46.95 13.08 32.81
MoverScore 15.40 61.69 42.12 13.78 33.25
BARTScore 10.82 60.26 46.30 14.95 33.09
PRISM 8.64 58.83 32.48 15.42 28.84
SBERT 13.20 55.26 33.44 10.04 27.99
BLEURT 12.01 58.83 37.94 18.22 31.75
S3-pyr 6.25 58.83 42.44 13.78 30.33
S3-resp 5.85 58.59 47.26 14.71 31.61

m(hyp)

Discourse metrics

RC 5.85 7.19 8.68 9.34 7.77
LC 9.23 1.72 3.53 6.07 5.14
Entity Graph 5.06 43.24 3.53 10.51 15.59
Lexical Graph 2.28 43.60 5.14 13.55 16.15

m(hyp, ref)

Discourse metrics

Lexical Chain 21.54 35.15 15.11 16.12 21.99
FocusDiff (NN) 7.64 33.13 19.29 2.57 15.66
FocusDiff (Entity) 6.45 33.73 19.94 1.64 15.44
SentGraph-u (NN) 7.64 57.16 39.22 18.22 30.56
SentGraph-u (Entity) 7.65 57.17 39.23 18.22 30.57
SentGraph-w (NN) 7.65 57.18 39.22 18.21 30.57
SentGraph-w (Entity) 7.65 57.17 39.23 18.22 30.57

Table 12: Document-level Kendall correlations between metrics and human rated translation quality on WMT20.
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Abstract

Obstacles hindering the development of cap-
sule networks for challenging NLP applica-
tions include poor scalability to large out-
put spaces and less reliable routing processes.
In this paper, we introduce (i) an agreement
score to evaluate the performance of routing
processes at instance level; (ii) an adaptive
optimizer to enhance the reliability of rout-
ing; (iii) capsule compression and partial rout-
ing to improve the scalability of capsule net-
works. We validate our approach on two NLP
tasks, namely: multi-label text classification
and question answering. Experimental results
show that our approach considerably improves
over strong competitors on both tasks. In ad-
dition, we gain the best results in low-resource
settings with few training instances.1

1 Introduction

In recent years, deep neural networks have
achieved outstanding success in natural language
processing (NLP), computer vision and speech
recognition. However, these deep models are data-
hungry and generalize poorly from small datasets,
very much unlike humans (Lake et al., 2015).

This is an important issue in NLP since sen-
tences with different surface forms can convey the
same meaning (paraphrases) and not all of them
can be enumerated in the training set. For exam-
ple, Peter did not accept the offer and Peter turned
down the offer are semantically equivalent, but use
different surface realizations.

In image classification, progress on the gener-
alization ability of deep networks has been made
by capsule networks (Sabour et al., 2017; Hinton
et al., 2018). They are capable of generalizing to
the same object in different 3D images with vari-
ous viewpoints.

1Our code is publicly available at http://bit.ly/311Dcod

Jerry completed his 
project.

Jerry managed to finish 
his project. Jerry succeeded in 

finishing his project.

Extrapolate

Extrapolated sentences

Unseen sentences

Observed sentences

Extrapolate operation

Extrapolation regime

Jerry is sleeping.

Figure 1: The extrapolation regime for an observed
sentence can be found during training. Then, the un-
seen sentences in this regime may be generalized suc-
cessfully.

Such generalization capability can be learned
from examples with few viewpoints by extrapo-
lation (Hinton et al., 2011). This suggests that
capsule networks can similarly abstract away from
different surface realizations in NLP applications.

Figure 1 illustrates this idea of how observed
sentences in the training set are generalized to un-
seen sentences by extrapolation. In contrast, tra-
ditional neural networks require massive amounts
of training samples for generalization. This is
especially true in the case of convolutional neu-
ral networks (CNNs), where pooling operations
wrongly discard positional information and do not
consider hierarchical relationships between local
features (Sabour et al., 2017).

Figure 2: Outputs attend to a) active neurons found by
pooling operations b) all neurons c) relevant capsules
found in routing processes.
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Capsule networks, instead, have the poten-
tial for learning hierarchical relationships be-
tween consecutive layers by using routing pro-
cesses without parameters, which are clustering-
like methods (Sabour et al., 2017) and additionally
improve the generalization capability. We contrast
such routing processes with pooling and fully con-
nected layers in Figure 2.

Despite some recent success in NLP
tasks (Wang et al., 2018; Xia et al., 2018;
Xiao et al., 2018; Zhang et al., 2018a; Zhao et al.,
2018), a few important obstacles still hinder the
development of capsule networks for mature NLP
applications.

For example, selecting the number of iterations
is crucial for routing processes, because they iter-
atively route low-level capsules to high-level cap-
sules in order to learn hierarchical relationships
between layers. However, existing routing algo-
rithms use the same number of iterations for all
examples, which is not reliable to judge the con-
vergence of routing. As shown in Figure 3, a rout-
ing process with five iterations on all examples
converges to a lower training loss at system level,
but on instance level for one example, convergence
has still not obtained.

Additionally, training capsule networks is more
difficult than traditional neural networks like CNN
and long short-term memory (LSTM) due to the
large number of capsules and potentially large
output spaces, which requires extensive computa-
tional resources in the routing process.

In this work, we address these issues via the fol-
lowing contributions:

• We formulate routing processes as a proxy
problem minimizing a total negative agreement
score in order to evaluate how routing processes
perform at instance level, which will be dis-
cussed more in depth later.

• We introduce an adaptive optimizer to self-
adjust the number of iterations for each example
in order to improve instance-level convergence
and enhance the reliability of routing processes.

• We present capsule compression and partial
routing to achieve better scalability of capsule
networks on datasets with large output spaces.

• Our framework outperforms strong baselines on
multi-label text classification and question an-
swering. We also demonstrate its superior gen-
eralization capability in low-resource settings.
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Figure 3: left) System-level routing evaluation on all
examples; right) Instance-level routing evaluation on
one example.

2 NLP-Capsule Framework

We have motivated the need for better capsule net-
works being capable of scaling to large output
spaces and higher reliability for routing processes
at instance level. We now build a unified cap-
sule framework, which we call NLP-Capsule. It
is shown in Figure 4 and described below.

2.1 Convolutional Layer

We use a convolutional operation to extract fea-
tures from documents by taking a sliding window
over document embeddings.

Let X ∈ Rl×v be a matrix of stacked v-
dimensional word embeddings for an input docu-
ment with l tokens. Furthermore, let W a ∈ Rl×k
be a convolutional filter with a width k. We ap-
ply this filter to a local region Xᵀ

i:i+k−1 ∈ Rk×l to
generate one feature:

mi = f(W a ◦Xᵀ
i:i+k−1)

where ◦ denotes element-wise multiplication, and
f is a nonlinear activation function (i.e., ReLU).
For ease of exposition, we omit all bias terms.

Then, we can collect allmi into one feature map
(m1, . . . ,m(v−k+1)/2) after sliding the filter over
the current document. To increase the diversity of
features extraction, we concatenate multiple fea-
ture maps extracted by three filters with different
window sizes (2,4,8) and pass them to the primary
capsule layer.

2.2 Primary Capsule Layer

In this layer, we use a group-convolution opera-
tion to transform feature maps into primary cap-
sules. As opposed to using a scalar for each ele-
ment in the feature maps, capsules use a group of
neurons to represent each element in the current
layer, which has the potential for preserving more
information.
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Figure 4: An illustration of NLP-Capsule framework.

Using 1×1 filters W b = {w1, ..., wd} ∈ Rd, in
total d groups are used to transform each scalarmi

in feature maps to one capsule pi, a d- dimensional
vector, denoted as:

pi = g(pi1 ⊕ pi2 ⊕ · · · ⊕ pid) ∈ Rd

where pij = mi · wj ∈ R and ⊕ is the concatena-
tion operator. Furthermore, g is a non-linear func-
tion (i.e., squashing function). The length ||pi|| of
each capsule pi indicates the probability of it be-
ing useful for the task at hand. Hence, a capsule’s
length has to be constrained into the unit interval
[0, 1] by the squashing function g:

g(x) =
||x||2

1 + ||x||2
x

||x||

Capsule Compression One major issue in this
layer is that the number of primary capsules be-
comes large in proportion to the size of the in-
put documents, which requires extensive compu-
tational resources in routing processes (see Sec-
tion 2.3). To mitigate this issue, we condense the
large number of primary capsules into a smaller
amount. In this way, we can merge similar cap-
sules and remove outliers. Each condensed cap-
sule ui is calculated by using a weighted sum over
all primary capsules, denoted as:

ûi =
∑

j

bjpj ∈ Rd

where the parameter bj is learned by supervision.

2.3 Aggregation Layer

Pooling is the simplest aggregation function rout-
ing condensed capsules into the subsequent layer,
but it loses almost all information during aggre-
gation. Alternatively, routing processes are in-
troduced to iteratively route condensed capsules

into the next layer for learning hierarchical re-
lationships between two consecutive layers. We
now describe this iterative routing algorithm. Let
{u1, . . . , ûm} and {v1, . . . ,vn} be a set of con-
densed capsules in layer ` and a set of high-level
capsules in layer `+1, respectively. The basic idea
of routing is two-fold.

First, we transform the condensed capsules into
a collection of candidates

{
ûj|1, . . . , ûj|m

}
for

the j-th high-level capsule in layer ` + 1. Fol-
lowing Sabour et al. (2017), each element ûj|i is
calculated by:

ûj|i = W cui ∈ Rd

where W c is a linear transformation matrix.
Then, we represent a high-level capsule vj by a

weighted sum over those candidates, denoted as:

vj =

m∑

i=1

cijûj|i

where cij is a coupling coefficient iteratively up-
dated by a clustering-like method.

Our Routing As discussed earlier, routing algo-
rithms like dynamic routing (Sabour et al., 2017)
and EM routing (Hinton et al., 2018), which use
the same number of iterations for all samples, per-
form well according to training loss at system
level, but on instance level for individual exam-
ples, convergence has still not been reached. This
increases the risk of unreliability for routing pro-
cesses (see Figure 3).

To evaluate the performance of routing pro-
cesses at instance level, we formulate them as a
proxy problem minimizing the negative agreement
score (NAS) function:

min
c,v

f(u) = −
∑

i,j

cij〈vj ,uj|i〉

s.t. ∀i, j : cij > 0,
∑

j

cij = 1.
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The basic intuition behind this is to as-
sign higher weights cij to one agreeable pair
〈vj ,uj|i〉 if the capsule vj and uj|i are close to
each other such that the total agreement score∑

i,j cij〈vj ,uj|i〉 is maximized. However, the
choice of NAS functions remains an open prob-
lem. Hinton et al. (2018) hypothesize that the
agreeable pairs in NAS functions are from Gaus-
sian distributions. Instead, we study NAS func-
tions by introducing Kernel Density Estimation
(KDE) since this yields a non-parametric density
estimator requiring no assumptions that the agree-
able pairs are drawn from parametric distributions.
Here, we formulate the NAS function in a KDE
form.

min
c,v

f(u) = −
∑

i,j

cijk(d(vj ,uj|i)) (1)

where d is a distance metric with `2 norm, and k is
a Epanechnikov kernel function (Wand and Jones,
1994) with:

k(x) =

{
1− x x ∈ [0, 1)

0 x ≥ 1

The solution we used for KDE is taking Mean
Shift (Comaniciu and Meer, 2002) to minimize the
NAS function f(u):

∇f(u) =
∑

i,j

cijk
′(d(vj ,uj|i))

∂d(vj ,uj|i)

∂v

First, vτ+1
j can be updated while cτ+1

ij is fixed:

vτ+1
j =

∑
i,j c

τ
ijk
′(d(vτj , ûj|i))uj|i∑

i,j k
′(d(vτj ,uj|i))

Then, cτ+1
ij can be updated using standard gradient

descent:

cτ+1
ij = cτij + α · k(d(vτj ,uj|i))

where α is the hyper-parameter to control step
size.

To address the issue of convergence not being
reached at instance level, we present an adaptive
optimizer to self-adjust the number of iterations
for individual examples according to their neg-
ative agreement scores (see Algorithm 1). Fol-
lowing Zhao et al. (2018), we replace standard
softmax with leaky-softmax, which decreases the
strength of noisy capsules.

Algorithm 1 Our Adaptive KDE Routing

1: procedure ROUTING(uj|i, `)
2: Initialize ∀i, j : cij = 1/n`+1

3: while true do
4: foreach capsule i, j in layer `, `+ 1 do
5: cij ← leaky-softmax(cij)

6: foreach capsule j in layer `+ 1 do
7: vj ←

∑
i cijk

′(d(vj ,uj|i))ûj|i∑n
i=1 k

′(d(vi,uj|i))

8: foreach capsule i, j in layer `, `+ 1 do
9: cij ← cij + α · k(d(vj ,uj|i))

10: foreach capsule j in layer `+ 1 do
11: aj ← |vj |
12: NAS = log(

∑
i,j cijk(d(vj,uj|i)))

13: if |NAS− Last NAS| < ε then
14: break
15: else
16: Last NAS← NAS

17: return vj , aj

2.4 Representation Layer
This is the top-level layer containing final cap-
sules calculated by iteratively minimizing the NAS
function (See Eq. 1), where the number of final
capsules corresponds to the entire output space.
Therefore, as long as the size of an output space
goes to a large scale (thousands of labels), the
computation of this function would become ex-
tremely expensive, which yields the bottleneck of
scalability of capsule networks.

Partial Routing As opposed to the entire out-
put space on data sets, the sub-output space cor-
responding to individual examples is rather small,
i.e., only few labels are assigned to one document
in text classification, for example. As a conse-
quence, it is redundant to route low-level capsules
to the entire output space for each example in the
training stage, which motivated us to present a
partial routing algorithm with constrained output
spaces, such that our NAS function is described
as:

min
c,v
−
∑

i

(
∑

j∈D+

cij〈vj ,uj|i〉

+λ ·
∑

k∈D−
cik〈vk,uk|i〉)

where D+ and D− denote the sets of real (pos-
itive) and randomly selected (negative) outputs
for each example, respectively. Both sets are
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far smaller than the entire output space. λ is
the hyper-parameter to control aggregation scores
from negative outputs.

3 Experiments

The major focus of this work is to investigate the
scalability of our approach on datasets with a large
output space, and generalizability in low-resource
settings with few training examples. Therefore,
we validate our capsule-based approach on two
specific NLP tasks: (i) multi-label text classifica-
tion with a large label scale; (ii) question answer-
ing with a data imbalance issue.

3.1 Multi-label Text Classification
Multi-label text classification task refers to assign-
ing multiple relevant labels to each input docu-
ment, while the entire label set might be extremely
large. We use our approach to encode an input
document and generate the final capsules corre-
sponding to the number of labels in the represen-
tation layer. The length of final capsule for each
label indicates the probability whether the docu-
ment has this label.

Dataset #Train/Test/Labels Avg-docs

RCV1 23.1K/781.2K/103 729.67
EUR-Lex 15.4K/3.8K/3.9K 15.59

Table 1: Characteristics of the datasets. Each label of
RCV1 has about 729.67 training examples, while each
label of EUR-Lex has merely about 15.59 examples.

Experimental Setup We conduct our experi-
ments on two datasets selected from the extreme
classification repository:2 a regular label scale
dataset (RCV1), with 103 labels (Lewis et al.,
2004), and a large label scale dataset (EUR-Lex),
with 3,956 labels (Mencia and Fürnkranz, 2008),
described in Table 1. The intuition behind our
datasets selection is that EUR-Lex, with 3,956 la-
bels and 15.59 examples per label, fits well with
our goal of investigating the scalability and gener-
alizability of our approach. We contrast EUR-Lex
with RCV1, a dataset with a regular label scale,
and leave the study of datasets with extremely
large labels, e.g., Wikipedia-500K with 501,069
labels, to future work.

Baselines We compare our approach to the fol-
lowing baselines: non-deep learning approaches

2https://manikvarma.github.io

using TF-IDF features of documents as inputs:
FastXML (Prabhu and Varma, 2014), and PD-
Sparse (Yen et al., 2016), deep learning ap-
proaches using raw text of documents as inputs:
FastText (Joulin et al., 2016), Bow-CNN (Johnson
and Zhang, 2014), CNN-Kim (Kim, 2014), XML-
CNN (Liu et al., 2017)), and a capsule-based ap-
proach Cap-Zhao (Zhao et al., 2018). For eval-
uation, we use standard rank-based measures (Liu
et al., 2017) such as Precision@k, and Normalized
Discounted Cumulative Gain (NDCG@k).

Implementation Details The word embeddings
are initialized as 300-dimensional GloVe vec-
tors (Pennington et al., 2014). In the convolu-
tional layer, we use a convolution operation with
three different window sizes (2,4,8) to extract fea-
tures from input documents. Each feature is trans-
formed into a primary capsule with 16 dimensions
by a group-convolution operation. All capsules in
the primary capsule layer are condensed into 256
capsules for RCV1 and 128 capsules for EUR-Lex
by a capsule compression operation.

To avoid routing low-level capsules to the entire
label space in the inference stage, we use a CNN
baseline (Kim, 2014) trained on the same dataset
with our approach, to generate 200 candidate la-
bels and take these labels as a constrained output
space for each example.

Experimental Results In Table 2, we can see a
noticeable margin brought by our capsule-based
approach over the strong baselines on EUR-Lex,
and competitive results on RCV1. These results
appear to indicate that our approach has superior
generalization ability on datasets with fewer train-
ing examples, i.e., RCV1 has 729.67 examples per
label while EUR-Lex has 15.59 examples.

In contrast to the strongest baseline XML-CNN
with 22.52M parameters and 0.08 seconds per
batch, our approach has 14.06M parameters, and
takes 0.25 seconds in an acceleration setting with
capsule compression and partial routing, and 1.7
seconds without acceleration. This demonstrates
that our approach provides competitive computa-
tional speed with fewer parameters compared to
the competitors.

Discussion on Generalization To further study
the generalization capability of our approach, we
vary the percentage of training examples from
100% to 50% on the entire training set, leading
to the number of training examples per label de-
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Datasets Metrics FastXML PD-Sparse FastText Bow-CNN CNN-Kim XML-CNN Cap-Zhao NLP-Cap Impv

RCV1
PREC@1 94.62 95.16 95.40 96.40 93.54 96.86 96.63 97.05 +0.20%
PREC@3 78.40 79.46 79.96 81.17 76.15 81.11 81.02 81.27 +0.20%
PREC@5 54.82 55.61 55.64 56.74 52.94 56.07 56.12 56.33 -0.72%
NDCG@1 94.62 95.16 95.40 96.40 93.54 96.88 96.63 97.05 +0.20%
NDCG@3 89.21 90.29 90.95 92.04 87.26 92.22 92.31 92.47 +0.17%
NDCG@5 90.27 91.29 91.68 92.89 88.20 92.63 92.75 93.11 +0.52%

EUR-Lex
PREC@1 68.12 72.10 71.51 64.99 68.35 75.65 - 80.20 +6.01%
PREC@3 57.93 57.74 60.37 51.68 54.45 61.81 - 65.48 +5.93%
PREC@5 48.97 47.48 50.41 42.32 44.07 50.90 - 52.83 +3.79%
NDCG@1 68.12 72.10 71.51 64.99 68.35 75.65 - 80.20 +6.01%
NDCG@3 60.66 61.33 63.32 55.03 59.81 66.71 - 71.11 +6.59%
NDCG@5 56.42 55.93 58.56 49.92 57.99 64.45 - 68.80 +6.75%

Table 2: Comparisons of our NLP-Cap approach and baselines on two text classication benchmarks, where ’-’
denotes methods that failed to scale due to memory issues.
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Figure 5: Performance on EUR-Lex by varying the per-
centage of training examples (X-axis).

Method #Training PREC@1 PREC@3 PREC@5

XML-CNN 100% examples 75.65 61.81 50.90

NLP-Capsule
50% examples 73.69 56.62 44.36
60% examples 74.83 58.48 46.33
70% examples 77.26 60.90 47.73
80% examples 77.68 61.06 48.28
90% examples 79.45 63.95 50.90
100% examples 80.20 65.48 52.83

Method #Training NDCG@1 NDCG@3 NDCG@5

XML-CNN 100% examples 75.65 66.71 64.45

NLP-Capsule
50% examples 73.69 66.65 67.36
60% examples 74.83 67.87 68.62
70% examples 77.26 69.79 69.65
80% examples 77.67 69.43 69.27
90% examples 79.45 71.64 71.06
100% examples 80.21 71.11 68.80

Table 3: Experimental results on different fractions of
training examples from 50% to 100% on EUR-Lex.

creasing from 15.59 to 7.77. Figure 5 shows that
our approach outperforms the strongest baseline
XML-CNN with different fractions of the training
examples.

This finding agrees with our speculation on gen-
eralization: the distance between our approach
and XML-CNN increases as fewer training data
samples are available. In Table 3, we also find
that our approach with 70% of training examples
achieves about 5% improvement over XML-CNN
with 100% of examples on 4 out of 6 metrics.

Routing Comparison We compare our routing
with (Sabour et al., 2017) and (Zhang et al.,

2018b) on EUR-Lex dataset and observe that it
performs best on all metrics (Table 4). We spec-
ulate that the improvement comes from enhanced
reliability of routing processes at instance level.

3.2 Question Answering

Question-Answering (QA) selection task refers to
selecting the best answer from candidates to each
question. For a question-answer pair (q, a), we use
our capsule-based approach to generate two final
capsules vq and va corresponding to the respec-
tive question and answer. The relevance score of
question-answer pair can be defined as their cosine
similarity:

s(q, a) = cos(vq,va) =
vᵀ

qva

||vq|| · ||va||

Experiment Setup In Table 5, we conduct our
experiments on the TREC QA dataset collected
from TREC QA track 8-13 data (Wang et al.,
2007). The intuition behind this dataset selection
is that the cost of hiring human annotators to col-
lect positive answers for individual questions can
be prohibitive since positive answers can be con-
veyed in multiple different surface forms. Such is-
sue arises particularly in TREC QA with only 12%

Method PREC@1 PREC@3 PREC@5

XML-CNN 75.65 61.81 50.90
NLP-Capsule + Sabour‘s Routing 79.14 64.33 51.85
NLP-Capsule + Zhang‘s Routing 80.20 65.48 52.83
NLP-Capsule + Our Routing 80.62 65.61 53.66
Method NDCG@1 NDCG@3 NDCG@5

XML-CNN 75.65 66.71 64.45
NLP-Capsule + Sabour‘s Routing 79.14 70.13 67.02
NLP-Capsule + Zhang‘s Routing 80.20 71.11 68.80
NLP-Capsule + Our Routing 80.62 71.34 69.57

Table 4: Performance on EUR-Lex dataset with differ-
ent routing process.
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Dataset #Questions #QA Pairs %Positive

Train/Dev/Test 1229/82/100 53417/1148/1517 12%

Table 5: Characteristic of TREC QA dataset. %Posi-
tive denotes the percentage of positive answers.

positive answers. Therefore, we use this dataset to
investigate the generalizability of our approach.

Baselines We compare our approach to the fol-
lowing baselines: CNN + LR (Yu et al., 2014b)
using unigrams and bigrams, CNN (Severyn and
Moschitti, 2015) using additional bilinear similar-
ity features, CNTN (Qiu and Huang, 2015) using
neural tensor network, LSTM (Tay et al., 2017) us-
ing single and multi-layer, MV-LSTM (Wan et al.,
2016), NTN-LSTM and HD-LSTM (Tay et al.,
2017) using holographic dual LSTM and Capsule-
Zhao (Zhao et al., 2018) using capsule networks.
For evaluation, we use standard measures (Wang
et al., 2007) such as Mean Average Precision
(MAP) and Mean Reciprocal Rank (MRR).

Implementation Details The word embeddings
used for question answering pairs are initialized
as 300-dimensional GloVe vectors. In the con-
volutional layer, we use a convolution operation
with three different window sizes (3,4,5). All 16-
dimensional capsules in the primary capsule layer
are condensed into 256 capsules by the capsule
compression operation.

Experimental Results and Discussions In Ta-
ble 6, the best performance on MAP metric is
achieved by our approach, which verifies the ef-
fectiveness of our model. We also observe that
our approach exceeds traditional neural models
like CNN, LSTM and NTN-LSTM by a noticeable
margin.

This finding also agrees with the observation

Method MAP MRR

CNN + LR (unigram) 54.70 63.29
CNN + LR (bigram) 56.93 66.13
CNN 66.91 68.80
CNTN 65.80 69.78
LSTM (1 layer) 62.04 66.85
LSTM 59.75 65.33
MV-LSTM 64.88 68.24
NTN-LSTM 63.40 67.72
HD-LSTM 67.44 75.11
Capsule-Zhao 73.63 70.12
NLP-Capsule 77.73 74.16

Table 6: Experimental results on TREC QA dataset.

we found in multi-label classification: our ap-
proach has superior generalization capability in
low-resource setting with few training examples.
In contrast to the strongest baseline HD-LSTM
with 34.51M and 0.03 seconds for one batch, our
approach has 17.84M parameters and takes 0.06
seconds in an acceleration setting, and 0.12 sec-
onds without acceleration.

4 Related Work

4.1 Multi-label Text Classification

Multi-label text classification aims at assigning a
document to a subset of labels whose label set
might be extremely large. With increasing num-
bers of labels, issues of data sparsity and scalabil-
ity arise. Several methods have been proposed for
the large multi-label classification case.

Tree-based models (Agrawal et al., 2013; We-
ston et al., 2013) induce a tree structure that re-
cursively partitions the feature space with non-
leaf nodes. Then, the restricted label spaces at
leaf nodes are used for classification. Such a so-
lution entails higher robustness because of a dy-
namic hyper-plane design and its computational
efficiency. FastXML (Prabhu and Varma, 2014)
is one such tree-based model, which learns a hi-
erarchy of training instances and optimizes an
NDCG-based objective function for nodes in the
tree structure.

Label embedding models (Balasubramanian
and Lebanon, 2012; Chen and Lin, 2012; Cisse
et al., 2013; Bi and Kwok, 2013; Ferng and Lin,
2011; Hsu et al., 2009; Ji et al., 2008; Kapoor
et al., 2012; Lewis et al., 2004; Yu et al., 2014a)
address the data sparsity issue with two steps:
compression and decompression. The compres-
sion step learns a low-dimensional label embed-
ding that is projected from original and high-
dimensional label space. When data instances
are classified to these label embeddings, they will
be projected back to the high-dimensional label
space, which is the decompression step. Re-
cent works came up with different compression
or decompression techniques, e.g., SLEEC (Bha-
tia et al., 2015).

Deep learning models: FastText (Joulin et al.,
2016) uses averaged word embeddings to clas-
sify documents, which is computationally effi-
cient but ignores word order. Various CNNs in-
spired by Kim (2014) explored MTC with dy-
namic pooling, such as Bow-CNN (Johnson and
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Zhang, 2014) and XML-CNN (Liu et al., 2017).
Linear classifiers: PD-Sparse (Yen et al., 2016)

introduces a Fully-Corrective Block-Coordinate
Frank-Wolfe algorithm to address data sparsity.

4.2 Question and Answering
State-of-the-art approaches to QA fall into two
categories: IR-based and knowledge-based QA.

IR-based QA firstly preprocesses the question
and employ information retrieval techniques to
retrieve a list of relevant passages to questions.
Next, reading comprehension techniques are
adopted to extract answers within the span of re-
trieved text. For answer extraction, early methods
manually designed patterns to get them (Pasca). A
recent popular trend is neural answer extraction.
Various neural network models are employed to
represent questions (Severyn and Moschitti, 2015;
Wang and Nyberg, 2015). Since the attention
mechanism naturally explores relevancy, it has
been widely used in QA models to relate the ques-
tion to candidate answers (Tan et al., 2016; Santos
et al., 2016; Sha et al., 2018). Moreover, some
researchers leveraged external large-scale knowl-
edge bases to assist answer selection (Savenkov
and Agichtein, 2017; Shen et al., 2018; Deng et al.,
2018).

Knowledge-based QA conducts semantic pars-
ing on questions and transforms parsing results
into logical forms. Those forms are adopted to
match answers from structured knowledge bases
(Yao and Van Durme, 2014; Yih et al., 2015; Bor-
des et al., 2015; Yin et al., 2016; Hao et al., 2017).
Recent developments focused on modeling the in-
teraction between question and answer pairs: Ten-
sor layers (Qiu and Huang, 2015; Wan et al., 2016)
and holographic composition (Tay et al., 2017)
have pushed the state-of-the-art.

4.3 Capsule Networks
Capsule networks were initially proposed by Hin-
ton (Hinton et al., 2011) to improve representa-
tions learned by neural networks against vanilla
CNNs. Subsequently, Sabour et al. (2017) re-
placed the scalar-output feature detectors of CNNs
with vector-output capsules and max-pooling with
routing-by-agreement.

Hinton et al. (2018) then proposed a new it-
erative routing procedure between capsule layers
based on the EM algorithm, which achieves bet-
ter accuracy on the smallNORB dataset. Zhang
et al. (2018a) applied capsule networks to relation

extraction in a multi-instance multi-label learning
framework. Xiao et al. (2018) explored capsule
networks for multi-task learning.

Xia et al. (2018) studied the zero-shot intent
detection problem with capsule networks, which
aims to detect emerging user intents in an unsu-
pervised manner. Zhao et al. (2018) investigated
capsule networks with dynamic routing for text
classification, and transferred knowledge from the
single-label to multi-label cases. Cho et al. (2019)
studied capsule networks with determinantal point
processes for extractive multi-document summa-
rization.

Our work is different from our predecessors in
the following aspects: (i) we evaluate the perfor-
mance of routing processes at instance level, and
introduce an adaptive optimizer to enhance the re-
liability of routing processes; (ii) we present cap-
sule compression and partial routing to achieve
better scalability of capsule networks on datasets
with a large output space.

5 Conclusion

Making computers perform more like humans is
a major issue in NLP and machine learning. This
not only includes making them perform on similar
levels (Hassan et al., 2018), but also requests them
to be robust to adversarial examples (Eger et al.,
2019) and generalize from few data points (Rücklé
et al., 2019). In this work, we have addressed the
latter issue.

In particular, we extended existing capsule net-
works into a new framework with advantages con-
cerning scalability, reliability and generalizability.
Our experimental results have demonstrated its ef-
fectiveness on two NLP tasks: multi-label text
classification and question answering.

Through our modifications and enhancements,
we hope to have made capsule networks more suit-
able to large-scale problems and, hence, more ma-
ture for real-world applications. In the future, we
plan to apply capsule networks to even more chal-
lenging NLP problems such as language modeling
and text generation.
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Abstract

Evaluation of cross-lingual encoders is usually
performed either via zero-shot cross-lingual
transfer in supervised downstream tasks or
via unsupervised cross-lingual textual simi-
larity. In this paper, we concern ourselves
with reference-free machine translation (MT)
evaluation where we directly compare source
texts to (sometimes low-quality) system trans-
lations, which represents a natural adversarial
setup for multilingual encoders. Reference-
free evaluation holds the promise of web-scale
comparison of MT systems. We systemati-
cally investigate a range of metrics based on
state-of-the-art cross-lingual semantic repre-
sentations obtained with pretrained M-BERT
and LASER. We find that they perform poorly
as semantic encoders for reference-free MT
evaluation and identify their two key limita-
tions, namely, (a) a semantic mismatch be-
tween representations of mutual translations
and, more prominently, (b) the inability to
punish “translationese”, i.e., low-quality literal
translations. We propose two partial remedies:
(1) post-hoc re-alignment of the vector spaces
and (2) coupling of semantic-similarity based
metrics with target-side language modeling. In
segment-level MT evaluation, our best metric
surpasses reference-based BLEU by 5.7 cor-
relation points. We make our MT evaluation
code available.1

1 Introduction

A standard evaluation setup for supervised machine
learning (ML) tasks assumes an evaluation metric
which compares a gold label to a classifier predic-
tion. This setup assumes that the task has clearly
defined and unambiguous labels and, in most cases,
that an instance can be assigned few labels. These
assumptions, however, do not hold for natural lan-
guage generation (NLG) tasks like machine trans-

1https://github.com/AIPHES/
ACL20-Reference-Free-MT-Evaluation

lation (MT) (Bahdanau et al., 2015; Johnson et al.,
2017) and text summarization (Rush et al., 2015;
Tan et al., 2017), where we do not predict a single
discrete label but generate natural language text.
Thus, the set of labels for NLG is neither clearly
defined nor finite. Yet, the standard evaluation
protocols for NLG still predominantly follow the
described default paradigm: (1) evaluation datasets
come with human-created reference texts and (2)
evaluation metrics, e.g., BLEU (Papineni et al.,
2002) or METEOR (Lavie and Agarwal, 2007) for
MT and ROUGE (Lin and Hovy, 2003) for sum-
marization, count the exact “label” (i.e., n-gram)
matches between reference and system-generated
text. In other words, established NLG evaluation
compares semantically ambiguous labels from an
unbounded set (i.e., natural language texts) via hard
symbolic matching (i.e., string overlap).

The first remedy is to replace the hard symbolic
comparison of natural language “labels” with a
soft comparison of texts’ meaning, using seman-
tic vector space representations. Recently, a num-
ber of MT evaluation methods appeared focusing
on semantic comparison of reference and system
translations (Shimanaka et al., 2018; Clark et al.,
2019; Zhao et al., 2019). While these correlate
better than n-gram overlap metrics with human as-
sessments, they do not address inherent limitations
stemming from the need for reference translations,
namely: (1) references are expensive to obtain; (2)
they assume a single correct solution and bias the
evaluation, both automatic and human (Dreyer and
Marcu, 2012; Fomicheva and Specia, 2016), and
(3) limitation of MT evaluation to language pairs
with available parallel data.

Reliable reference-free evaluation metrics, di-
rectly measuring the (semantic) correspondence
between the source language text and system trans-
lation, would remove the need for human refer-
ences and allow for unlimited MT evaluations: any

97



1657

monolingual corpus could be used for evaluating
MT systems. However, the proposals of reference-
free MT evaluation metrics have been few and far
apart and have required either non-negligible super-
vision (i.e., human translation quality labels) (Spe-
cia et al., 2010) or language-specific preprocessing
like semantic parsing (Lo et al., 2014; Lo, 2019),
both hindering the wide applicability of the pro-
posed metrics. Moreover, they have also typically
exhibited performance levels well below those of
standard reference-based metrics (Ma et al., 2019).

In this work, we comparatively evaluate a num-
ber of reference-free MT evaluation metrics that
build on the most recent developments in multilin-
gual representation learning, namely cross-lingual
contextualized embeddings (Devlin et al., 2019)
and cross-lingual sentence encoders (Artetxe and
Schwenk, 2019). We investigate two types of cross-
lingual reference-free metrics: (1) Soft token-level
alignment metrics find the optimal soft alignment
between source sentence and system translation us-
ing Word Mover’s Distance (WMD) (Kusner et al.,
2015). Zhao et al. (2019) recently demonstrated
that WMD operating on BERT representations (De-
vlin et al., 2019) substantially outperforms baseline
MT evaluation metrics in the reference-based set-
ting. In this work, we investigate whether WMD
can yield comparable success in the reference-free
(i.e., cross-lingual) setup; (2) Sentence-level simi-
larity metrics measure the similarity between sen-
tence representations of the source sentence and
system translation using cosine similarity.

Our analysis yields several interesting find-
ings. (i) We show that, unlike in the monolingual
reference-based setup, metrics that operate on con-
textualized representations generally do not outper-
form symbolic matching metrics like BLEU, which
operate in the reference-based environment. (ii)
We identify two reasons for this failure: (a) firstly,
cross-lingual semantic mismatch, especially for
multi-lingual BERT (M-BERT), which construes a
shared multilingual space in an unsupervised fash-
ion, without any direct bilingual signal; (b) sec-
ondly, the inability of the state-of-the-art cross-
lingual metrics based on multilingual encoders
to adequately capture and punish “translationese”,
i.e., literal word-by-word translations of the source
sentence—as translationese is an especially per-
sistent property of MT systems, this problem is
particularly troubling in our context of reference-
free MT evaluation. (iii) We show that by execut-
ing an additional weakly-supervised cross-lingual

re-mapping step, we can to some extent alleviate
both previous issues. (iv) Finally, we show that the
combination of cross-lingual reference-free metrics
and language modeling on the target side (which
is able to detect “translationese”), surpasses the
performance of reference-based baselines.

Beyond designating a viable prospect of web-
scale domain-agnostic MT evaluation, our findings
indicate that the challenging task of reference-free
MT evaluation is able to expose an important lim-
itation of current state-of-the-art multilingual en-
coders, i.e., the failure to properly represent corrupt
input, that may go unnoticed in simpler evaluation
setups such as zero-shot cross-lingual text classifi-
cation or measuring cross-lingual text similarity not
involving “adversarial” conditions. We believe this
is a promising direction for nuanced, fine-grained
evaluation of cross-lingual representations, extend-
ing the recent benchmarks which focus on zero-
shot transfer scenarios (Hu et al., 2020).

2 Related Work

Manual human evaluations of MT systems undoubt-
edly yield the most reliable results, but are expen-
sive, tedious, and generally do not scale to a mul-
titude of domains. A significant body of research
is thus dedicated to the study of automatic evalu-
ation metrics for machine translation. Here, we
provide an overview of both reference-based MT
evaluation metrics and recent research efforts to-
wards reference-free MT evaluation, which lever-
age cross-lingual semantic representations and un-
supervised MT techniques.

Reference-based MT evaluation. Most of the
commonly used evaluation metrics in MT com-
pare system and reference translations. They are
often based on surface forms such as n-gram over-
laps like BLEU (Papineni et al., 2002), SentBLEU,
NIST (Doddington, 2002), chrF++ (Popović, 2017)
or METEOR++(Guo and Hu, 2019). They have
been extensively tested and compared in recent
WMT metrics shared tasks (Bojar et al., 2017a; Ma
et al., 2018a, 2019).

These metrics, however, operate at the surface
level, and by design fail to recognize semantic
equivalence lacking lexical overlap. To overcome
these limitations, some research efforts exploited
static word embeddings (Mikolov et al., 2013b)
and trained embedding-based supervised metrics
on sufficiently large datasets with available hu-
man judgments of translation quality (Shimanaka
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et al., 2018). With the development of contextual
word embeddings (Peters et al., 2018; Devlin et al.,
2019), we have witnessed proposals of semantic
metrics that account for word order. For exam-
ple, Clark et al. (2019) introduce a semantic met-
ric relying on sentence mover’s similarity and the
contextualized ELMo embeddings (Peters et al.,
2018). Similarly, Zhang et al. (2019) describe a
reference-based semantic similarity metric based
on contextualized BERT representations (Devlin
et al., 2019). Zhao et al. (2019) generalize this line
of work with their MoverScore metric, which com-
putes the mover’s distance, i.e., the optimal soft
alignment between tokens of the two sentences,
based on the similarities between their contextual-
ized embeddings. Mathur et al. (2019) train a su-
pervised BERT-based regressor for reference-based
MT evaluation.

Reference-free MT evaluation. Recently, there
has been a growing interest in reference-free MT
evaluation (Ma et al., 2019), also referred to as
“quality estimation” (QE) in the MT community.
In this setup, evaluation metrics semantically com-
pare system translations directly to the source sen-
tences. The attractiveness of automatic reference-
free MT evaluation is obvious: it does not require
any human effort or parallel data. To approach
this task, Popović et al. (2011) exploit a bag-of-
word translation model to estimate translation qual-
ity, which sums over the likelihoods of aligned
word-pairs between source and translation texts.
Specia et al. (2013) estimate translation quality us-
ing language-agnostic linguistic features extracted
from source lanuage texts and system translations.
Lo et al. (2014) introduce XMEANT as a cross-
lingual reference-free variant of MEANT, a metric
based on semantic frames. Lo (2019) extended
this idea by leveraging M-BERT embeddings. The
resulting metric, YiSi-2, evaluates system trans-
lations by summing similarity scores over words
pairs that are best-aligned mutual translations. YiSi-
2-SRL optionally combines an additional similar-
ity score based on the alignment over the semantic
structures (e.g., semantic roles and frames). Both
metrics are reference-free, but YiSi-2-SRL is not
resource-lean as it requires a semantic parser for
both languages. Moreover, in contrast to our pro-
posed metrics, they do not mitigate the misalign-
ment of cross-lingual embedding spaces and do not
integrate a target-side language model, which we
identify to be crucial components.

Recent progress in cross-lingual semantic sim-
ilarity (Agirre et al., 2016; Cer et al., 2017) and
unsupervised MT (Artetxe and Schwenk, 2019)
has also led to novel reference-free metrics. For in-
stance, Yankovskaya et al. (2019) propose to train
a metric combining multilingual embeddings ex-
tracted from M-BERT and LASER (Artetxe and
Schwenk, 2019) together with the log-probability
scores from neural machine translation. Our work
differs from that of Yankovskaya et al. (2019) in
one crucial aspect: the cross-lingual reference-free
metrics that we investigate and benchmark do not
require any human supervision.

Cross-lingual Representations. Cross-lingual
text representations offer a prospect of model-
ing meaning across languages and support cross-
lingual transfer for downstream tasks (Klementiev
et al., 2012; Rücklé et al., 2018; Glavaš et al., 2019;
Josifoski et al., 2019; Conneau et al., 2020). Most
recently, the (massively) multilingual encoders,
such as multilingual M-BERT (Devlin et al., 2019),
XLM-on-RoBERTa (Conneau et al., 2020), and
(sentence-based) LASER, have profiled themselves
as state-of-the-art solutions for (massively) multi-
lingual semantic encoding of text. While LASER
has been jointly trained on parallel data of 93 lan-
guages, M-BERT has been trained on the concate-
nation of monolingual data in more than 100 lan-
guages, without any cross-lingual mapping signal.
There has been a recent vivid discussion on the
cross-lingual abilities of M-BERT (Pires et al.,
2019; K et al., 2020; Cao et al., 2020). In par-
ticular, Cao et al. (2020) show that M-BERT often
yields disparate vector space representations for
mutual translations and propose a multilingual re-
mapping based on parallel corpora, to remedy for
this issue. In this work, we introduce re-mapping
solutions that are resource-leaner and require easy-
to-obtain limited-size word translation dictionaries
rather than large parallel corpora.

3 Reference-Free MT Evaluation Metrics

In the following, we use x to denote a source sen-
tence (i.e., a sequence of tokens in the source lan-
guage), y to denote a system translation of x in
the target language, and y? to denote the human
reference translation for x.

3.1 Soft Token-Level Alignment

We start from the MoverScore (Zhao et al., 2019),
a recently proposed reference-based MT evaluation
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metric designed to measure the semantic similarity
between system outputs (y) and human references
(y?). It finds an optimal soft semantic alignments
between tokens from y and y? by minimizing the
Word Mover’s Distance (Kusner et al., 2015). In
this work, we extend the MoverScore metric to op-
erate in the cross-lingual setup, i.e., to measure the
semantic similarity between n-grams (unigram or
bigrams) of the source text x and the system trans-
lation y, represented with embeddings originating
from a cross-lingual semantic space.

First, we decompose the source text x into a se-
quence of n-grams, denoted by xn = (xn1 , . . . , xnm)
and then do the same operation for the system
translation y, denoting the resulting sequence of
n-grams with yn. Given xn and yn, we can
then define a distance matrix C such that Cij =
‖E(xni )−E(ynj )‖2 is the distance between the i-th
n-gram of x and the j-th n-gram of y, where E is
a cross-lingual embedding function that maps text
in different languages to a shared embedding space.
With respect to the function E, we experimented
with cross-lingual representations induced (a) from
static word embeddings with RCSLS (Joulin et al.,
2018)) (b) with M-BERT (Devlin et al., 2019) as
the multilingual encoder; with a focus on the latter.
For M-BERT, we take the representations of the
last transformer layer as the text representations.

WMD between the two sequences of n-grams
xn and yn with associated n-gram weights 2 to
fxn ∈ R|xn| and fyn ∈ R|yn| is defined as:

m(x,y) := WMD(xn,yn) = min
F

∑

ij

Cij · Fij ,

s.t. F1 = fxn , F ᵀ1 = fyn ,

where F ∈ R|xn|×|yn| is a transportation matrix
with Fij denoting the amount of flow traveling
from xni to ynj .

3.2 Sentence-Level Semantic Similarity

In addition to measuring semantic distance between
x and y at word-level, one can also encode them
into sentence representations with multilingual sen-
tence encoders like LASER (Artetxe and Schwenk,
2019), and then measure their cosine distance

m(x,y) = 1− E(x)ᵀE(y)

‖E(x)‖ · ‖E(y)‖ .

2We follow Zhao et al. (2019) in obtaining n-gram embed-
dings and their associated weights based on IDF.

3.3 Improving Cross-Lingual Alignments
Initial analysis indicated that, despite the multilin-
gual pretraining of M-BERT (Devlin et al., 2019)
and LASER (Artetxe and Schwenk, 2019), the
monolingual subspaces of the multilingual spaces
they induce are far from being semantically well-
aligned, i.e., we obtain fairly distant vectors for
mutual word or sentence translations.3 To this end,
we apply two simple, weakly-supervised linear pro-
jection methods for post-hoc improvement of the
cross-lingual alignments in these multilingual rep-
resentation spaces.

Notation. Let D = {(w1
` , w

1
k), . . . , (wn

` , w
n
k )}

be a set of matched word or sentence pairs from
two different languages ` and k. We define a re-
mapping function f such that any f(E(w`)) and
E(wk) are better aligned in the resulting shared
vector space. We investigate two resource-lean
choices for the re-mapping function f .

Linear Cross-lingual Projection (CLP). Fol-
lowing related work (Schuster et al., 2019), we
re-map contextualized embedding spaces using lin-
ear projection. Given ` and k, we stack all vectors
of the source language words and target language
words for pairs D, respectively, to form matrices
X` and Xk ∈ Rn×d, with d as the embedding di-
mension and n as the number of word or sentence
alignments. The word pairs we use to calibrate M-
BERT are extracted from EuroParl (Koehn, 2005)
using FastAlign (Dyer et al., 2013), and the sen-
tence pairs to calibrate LASER are sampled directly
from EuroParl.4 Mikolov et al. (2013a) propose to
learn a projection matrix W ∈ Rd×d by minimiz-
ing the Euclidean distance beetween the projected
source language vectors and their corresponding
target language vectors:

min
W
‖WX` −Xk‖2.

Xing et al. (2015) achieve further improvement on
the task of bilingual lexicon induction (BLI) by
constraining W to an orthogonal matrix, i.e., such
that W ᵀW = I. This turns the optimization into
the well-known Procrustes problem (Schönemann,
1966) with the following closed-form solution:

Ŵ = UV ᵀ,UΣV ᵀ = SVD(X`X
ᵀ
k )

3LASER is jointly trained on parallel corpora of different
languages, but in resource-lean language pairs, the induced
embeddings from mutual translations may be far apart.

4While LASER requires large parallel corpora in pretrain-
ing, we believe that fine-tuning/calibrating the embeddings
post-hoc requires fewer data points.
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We note that the above CLP re-mapping is known to
have deficits, i.e., it requires the embedding spaces
of the involved languages to be approximately iso-
morphic (Søgaard et al., 2018; Vulić et al., 2019).
Recently, some re-mapping methods that reportedly
remedy for this issue have been suggested (Glavaš
and Vulić, 2020; Mohiuddin and Joty, 2020). We
leave the investigation of these novel techniques
for our future work.

Universal Language Mismatch-Direction
(UMD) Our second post-hoc linear alignment
method is inspired by the recent work on removing
biases in distributional word vectors (Dev and
Phillips, 2019; Lauscher et al., 2019). We adopt
the same approaches in order to quantify and
remedy for the “language bias”, i.e., representation
mismatches between mutual translations in the
initial multilingual space. Formally, given ` and
k, we create individual misalignment vectors
E(wi

`) − E(wi
k) for each bilingual pair in D.

Then we stack these individual vectors to form
a matrix Q ∈ Rn×d. We then obtain the global
misalignment vector vB as the top left singular
vector of Q. The global misalignment vector
presumably captures the direction of the represen-
tational misalignment between the languages better
than the individual (noisy) misalignment vectors
E(wi

`) − E(wi
k). Finally, we modify all vectors

E(w`) and E(wk), by subtracting their projections
onto the global misalignment direction vector vB:

f(E(w`)) = E(w`)− cos(E(w`), vB)vB.

Language Model BLEU scores often fail to re-
flect the fluency level of translated texts (Edunov
et al., 2019). Hence, we use the language model
(LM) of the target language to regularize the cross-
lingual semantic similarity metrics, by coupling
our cross-lingual similarity scores with a GPT lan-
guage model of the target language (Radford et al.,
2018). We expect the language model to penalize
translationese, i.e., unnatural word-by-word trans-
lations and boost the performance of our metrics.5

4 Experiments

In this section, we evaluate the quality of our MT
reference-free metrics by correlating them with hu-
man judgments of translation quality. These quality

5We linearly combine the cross-lingual metrics with the
LM scores using a coefficient of 0.1 for all setups. We choose
this value based on initial experiments on one language pair.

judgments are based on comparing human refer-
ences and system predictions. We will discuss this
discrepancy in §5.3.

Word-level metrics. We denote our word-
level alignment metrics based on WMD as
MOVERSCORE-NGRAM + ALIGN(EMBEDDING),
where ALIGN is one of our two post-hoc cross-
lingual alignment methods (CLP or UMD). For
example, MOVER-2 + UMD(M-BERT) denotes
the metric combining MoverScore based on bigram
alignments, with M-BERT embeddings and UMD
as the post-hoc alignment method.

Sentence-level metric. We denote our sentence-
level metrics as: COSINE + ALIGN(EMBEDDING).
For example, COSINE + CLP(LASER) measures
the cosine distance between the sentence embed-
dings obtained with LASER, post-hoc aligned with
CLP.

4.1 Datasets
We collect the source language sentences, their sys-
tem and reference translations from the WMT17-19
news translation shared task (Bojar et al., 2017b;
Ma et al., 2018b, 2019), which contains predictions
of 166 translation systems across 16 language pairs
in WMT17, 149 translation systems across 14 lan-
guage pairs in WMT18 and 233 translation systems
across 18 language pairs in WMT19. We evaluate
for X-en language pairs, selecting X from a set
of 12 diverse languages: German (de), Chinese
(zh), Czech (cs), Latvian (lv), Finnish (fi), Russian
(ru), and Turkish (tr), Gujarati (gu), Kazakh (kk),
Lithuanian (lt) and Estonian (et). Each language
pair in WMT17-19 has approximately 3,000 source
sentences, each associated to one reference transla-
tion and to the automatic translations generated by
participating systems.

4.2 Baselines
We compare with a range of reference-free metrics:
ibm1-morpheme and ibm1-pos4gram (Popović,
2012), LASIM (Yankovskaya et al., 2019), LP
(Yankovskaya et al., 2019), YiSi-2 and YiSi-2-srl
(Lo, 2019), and reference-based baselines BLEU
(Papineni et al., 2002), SentBLEU (Koehn et al.,
2007) and ChrF++ (Popović, 2017) for MT eval-
uation (see §2).6 The main results are reported
on WMT17. We report the results obtained on
WMT18 and WMT19 in the Appendix.

6The code of these unsupervised metrics is not released,
thus we compare to their official results on WMT19 only.
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Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

m(y∗,y)
SENTBLEU 43.5 43.2 57.1 39.3 48.4 53.8 51.2 48.1
CHRF++ 52.3 53.4 67.8 52.0 58.8 61.4 59.3 57.9

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 22.7 37.1 34.8 26.0 26.7 42.5 48.2 34.0
COSINE + LASER 32.6 40.2 41.4 48.3 36.3 42.3 46.7 41.1

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) 33.4 40.5 42.0 48.6 36.0 44.7 42.2 41.1
COSINE + UMD(LASER) 36.6 28.1 45.5 48.5 31.3 46.2 49.4 40.8

Cross-lingual Alignment for Word Embedding

MOVER-1 + RCSLS 18.9 26.4 31.9 33.1 25.7 31.1 34.3 28.8
MOVER-1 + CLP(M-BERT) 33.4 38.6 50.8 48.0 33.9 51.6 53.2 44.2
MOVER-2 + CLP(M-BERT) 33.7 38.8 52.2 50.3 35.4 51.0 53.3 45.0
MOVER-1 + UMD(M-BERT) 22.3 38.1 34.5 30.5 31.2 43.5 48.6 35.5
MOVER-2 + UMD(M-BERT) 23.1 38.9 37.1 34.7 33.0 44.8 48.9 37.2

Combining Language Model

COSINE + CLP(LASER) ⊕ LM 48.8 46.7 63.2 66.2 51.0 54.6 48.6 54.2
COSINE + UMD(LASER) ⊕ LM 49.4 46.2 64.7 66.4 51.1 56.0 52.8 55.2
MOVER-2 + CLP(M-BERT) ⊕ LM 46.5 46.4 63.3 63.8 47.6 55.5 53.5 53.8
MOVER-2 + UMD(M-BERT) ⊕ LM 41.8 46.8 60.4 59.8 46.1 53.8 52.4 51.6

Table 1: Pearson correlations with segment-level human judgments on the WMT17 dataset.
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Figure 1: Average results of our best-performing met-
ric, together with reference-based BLEU on WMT17.

4.3 Results
Figure 1 shows that our metric MOVER-2 +
CLP(M-BERT) ⊕ LM, operating on modified
M-BERT with the post-hoc re-mapping and com-
bining a target-side LM, outperforms BLEU by
5.7 points in segment-level evaluation and achieves
comparable performance in the system-level evalu-
ation. Figure 2 shows that the same metric obtains
15.3 points gains (73.1 vs. 57.8), averaged over 7
languages, on WMT19 (system-level) compared to
the the state-of-the-art reference-free metric YiSi-2.
Except for one language pair, gu-en, our metric
performs on a par with the reference-based BLEU
(see Table 8 in the Appendix) on system-level.

In Table 1, we exhaustively compare results for
several of our metric variants, based either on M-
BERT or LASER. We note that re-mapping has
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Figure 2: Average results of our metric best-performing
metric, together with the official results of reference-
free metrics, and reference-based BLEU on system-
level WMT19.

considerable effect for M-BERT (up to 10 points
improvements), but much less so for LASER. We
believe that this is because the underlying embed-
ding space of LASER is less ‘misaligned’ since it
has been (pre-)trained on parallel data.7 While the
re-mapping is thus effective for metrics based on
M-BERT, we still require the target-side LM to out-
perform BLEU. We assume the LM can address
challenges that the re-mapping apparently is not
able to handle properly; see our discussion in §5.1.

Overall, we remark that none of our metric com-
7However, in the appendix, we find that re-mapping

LASER using 2k parallel sentences achieves considerable
improvements on low-resource languages, e.g., kk-en (from
-61.1 to 49.8) and lt-en (from 68.3 to 75.9); see Table 8.
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binations performs consistently best. The reason
may be that LASER and M-BERT are pretrained
over hundreds of languages with substantial differ-
ences in corpora sizes in addition to the different
effects of the re-mapping. However, we observe
that MOVER-2 + CLP(M-BERT) performs best
on average over all language pairs when the LM
is not added. When the LM is added, MOVER-2
+ CLP(M-BERT) ⊕ LM and COSINE + UMD
(LASER) ⊕ LM perform comparably. This indi-
cates that there may be a saturation effect when it
comes to the LM or that the LM coefficients should
be tuned individually for each semantic similarity
metric based on cross-lingual representations.

5 Analysis

We first analyze preferences of our metrics based
on M-BERT and LASER (§5.1) and then examine
how much parallel data we need for re-mapping our
vector spaces (§5.2). Finally, we discuss whether it
is legitimate to correlate our metric scores, which
evaluate the similarity of system predictions and
source texts, to human judgments based on system
predictions and references (§5.3).

5.1 Metric preferences
To analyze why our metrics based on M-BERT and
LASER perform so badly for the task of reference-
free MT evaluation, we query them for their pref-
erences. In particular, for a fixed source sentence
x, we consider two target sentences ỹ and ŷ and
evaluate the following score difference:

d(ỹ, ŷ;x) := m(x, ỹ)−m(x, ŷ) (1)

When d > 0, then metric m prefers ỹ over ŷ, given
x, and when d < 0, this relationship is reversed.
In the following, we compare preferences of our
metrics for specifically modified target sentences
ỹ over the human references y?. We choose ỹ to
be (i) a random reordering of y?, to ensure that
our metrics do not have the BOW (bag-of-words)
property, (ii) a word-order preserving translation of
x, i.e., (ii-a) an expert reordering of the human y?

to have the same word order as x as well as (ii-b)
a word-by-word translation, obtained either using
experts or automatically. Especially condition (ii-
b) tests for preferences for literal translations, a
common MT-system property.

Expert word-by-word translations. We had an
expert (one of the co-authors) translate 50 Ger-

man sentences word-by-word into English. Ta-
ble 2 illustrates this scenario. We note how bad
the word-by-word translations sometimes are even
for closely related language pairs such as German-
English. For example, the word-by-word transla-
tions in English retain the original German verb
final positions, leading to quite ungrammatical En-
glish translations.

Figure 3 shows histograms for the d statistic for
the 50 selected sentences. We first check condi-
tion (i) for the 50 sentences. We observe that both
MOVER + M-BERT and COSINE+LASER prefer
the original human references over random reorder-
ings, indicating that they are not BOW models,
a reassuring finding. Concerning (ii-a), they are
largely indifferent between correct English word
order and the situation where the word order of the
human reference is the same as the German. Fi-
nally, they strongly prefer the expert word-by-word
translations over the human references (ii-b).

Condition (ii-a) in part explains why our met-
rics prefer expert word-by-word translations the
most: for a given source text, these have higher lex-
ical overlap than human references and, by (ii-a),
they have a favorable target language syntax, viz.,
where the source and target language word order
are equal. Preference for translationese, (ii-b), in
turn is apparently a main reason why our metrics
do not perform well, by themselves and without a
language model, as reference-free MT evaluation
metrics. More worryingly, it indicates that cross-
lingual M-BERT and LASER are not robust to the
‘adversarial inputs’ given by MT systems.

Automatic word-by-word translations. For a
large-scale analysis of condition (ii-b) across differ-
ent language pairs, we resort to automatic word-by-
word translations obtained from Google Translate
(GT). To do so, we go over each word in the source
sentence x from left to right, look up its transla-
tion in GT independently of context and replace
the word by the obtained translation. When a word
has several translations, we keep the first one of-
fered by GT. Due to context-independence, the GT
word-by-word translations are of much lower qual-
ity than the expert word-by-word translations since
they often pick the wrong word senses—e.g., the
German word sein may either be a personal pro-
noun (his) or the infinitive to be, which would be
selected correctly only by chance; cf. Table 2.

Instead of reporting histograms of d, we define a
“W2W” statistic that counts the relative number of
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x Dieser von Langsamkeit geprägte Lebensstil scheint aber ein Patentrezept für ein hohes Alter zu sein.
y? However, this slow pace of life seems to be the key to a long life.
y?-random To pace slow seems be the this life. life to a key however, of long
y?-reordered This slow pace of life seems however the key to a long life to be.
x′-GT This from slowness embossed lifestyle seems but on nostrum for on high older to his.
x′-expert This of slow pace characterized life style seems however a patent recipe for a high age to be.

x Putin teilte aus und beschuldigte Ankara, Russland in den Rücken gefallen zu sein.
y? Mr Putin lashed out, accusing Ankara of stabbing Moscow in the back.
y?-random Moscow accusing lashed Putin the in Ankara out, Mr of back. stabbing
y?-reordered Mr Putin lashed out, accusing Ankara of Moscow in the back stabbing.
x′-GT Putin divided out and accused Ankara Russia in the move like to his.
x′-expert Putin lashed out and accused Ankara, Russia in the back fallen to be.

Table 2: Original German input sentence x, together with the human reference y?, in English, and a randomly
(y?-random) and expertly reordered (y?-reordered) English sentence as well as expert word-by-word translation
(x′) of the German source sentence. The latter is either obtained by the human expert or by Google Translate (GT).
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Figure 3: Histograms of d scores defined in Eq. (1). Left: Metrics based on LASER and M-BERT favor gold over
randomly-shuffled human references. Middle: Metrics are roughly indifferent between gold and reordered human
references. Right: Metrics favor expert word-by-word translations over gold human references.

times that d(x′,y?) is positive, where x′ denotes
the described literal translation of x into the target
language:

W2W :=
1

N

∑

(x′,y?)

I( d(x′,y?) > 0 ) (2)

Here N normalizes W2W to lie in [0, 1] and a high
W2W score indicates the metric prefers transla-
tionese over human-written references. Table 3
shows that reference-free metrics with original em-
beddings (LASER and M-BERT) either still prefer
literal over human translations (e.g., W2W score of
70.2% for cs-en) or struggle in distinguishing them.
Re-mapping helps to a small degree. Only when
combined with the LM scores do we get adequate
scores for the W2W statistic. Indeed, the LM is ex-
pected to capture unnatural word order in the target
language and penalize word-by-word translations
by recognizing them as much less likely to appear
in a language.

Note that for expert word-by-word translations,
we would expect the metrics to perform even worse.

Metrics cs-en de-en fi-en

COSINE + LASER 70.2 65.7 53.9
COSINE + CLP(LASER) 70.7 64.8 53.7
COSINE + UMD(LASER) 67.5 59.5 52.9
COSINE + UMD(LASER) ⊕ LM 7.0 7.1 6.4

MOVER-2 + M-BERT 61.8 50.2 45.9
MOVER-2 + CLP(M-BERT) 44.6 44.5 32.0
MOVER-2 + UMD(M-BERT) 54.5 44.3 39.6
MOVER-2 + CLP(M-BERT) ⊕ LM 7.3 10.2 6.4

Table 3: W2W statistics for selected language pairs.
Numbers are in percent.

5.2 Size of Parallel Corpora

Figure 4 compares sentence- and word-level re-
mapping trained with a varying number of parallel
sentences. Metrics based on M-BERT result in the
highest correlations after re-mapping, even with a
small amount of training data (1k). We observe
that COSINE + CLP(LASER) and MOVER-2 +
CLP(M-BERT) show very similar trends with a
sharp increase with increasing amounts of paral-
lel data and then level off quickly. However, the
M-BERT based Mover-2 reaches its peak and out-
performs the original baseline with only 1k data,
while LASER needs 2k before beating the corre-
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Figure 4: Average results of our metrics based
on sentence- and word-based re-mappings of vector
spaces as a function of different sizes of parallel cor-
pus (x-axis).

sponding original baseline.

5.3 Human Judgments

The WMT datasets contain segment- and system-
level human judgments that we use for evaluat-
ing the quality of our reference-free metrics. The
segment-level judgments assign one direct assess-
ment (DA) score to each pair of system and human
translation, while system-level judgments associate
each system with a single DA score averaged across
all pairs in the dataset. We initially suspected the
DA scores to be biased for our setup—which com-
pares x with y—as they are based on comparing
y? and y. Indeed, it is known that (especially) hu-
man professional translators “improve” y?, e.g., by
making it more readable, relative to the original x
(Rabinovich et al., 2017). We investigated the valid-
ity of DA scores by collecting human assessments
in the cross-lingual settings (CLDA), where anno-
tators directly compare source and translation pairs
(x,y) from the WMT17 dataset. This small-scale
manual analysis hints that DA scores are a valid
proxy for CLDA. Therefore, we decided to treat
them as reliable scores for our setup and evaluate
our proposed metrics by comparing their correla-
tion with DA scores.

6 Conclusion

Existing semantically-motivated metrics for
reference-free evaluation of MT systems have so
far displayed rather poor correlation with human
estimates of translation quality. In this work, we
investigate a range of reference-free metrics based
on cutting-edge models for inducing cross-lingual
semantic representations: cross-lingual (contex-
tualized) word embeddings and cross-lingual

sentence embeddings. We have identified some
scenarios in which these metrics fail, prominently
their inability to punish literal word-by-word
translations (the so-called “translationese”). We
have investigated two different mechanisms for
mitigating this undesired phenomenon: (1) an
additional (weakly-supervised) cross-lingual
alignment step, reducing the mismatch between
representations of mutual translations, and (2)
language modeling (LM) on the target side, which
is inherently equipped to punish “unnatural”
sentences in the target language. We show that
the reference-free coupling of cross-lingual
similarity scores with the target-side language
model surpasses the reference-based BLEU in
segment-level MT evaluation.

We believe our results have two relevant implica-
tions. First, they portray the viability of reference-
free MT evaluation and warrant wider research
efforts in this direction. Second, they indicate that
reference-free MT evaluation may be the most chal-
lenging (“adversarial”) evaluation task for multi-
lingual text encoders as it uncovers some of their
shortcomings—prominently, the inability to cap-
ture semantically non-sensical word-by-word trans-
lations or paraphrases—which remain hidden in
their common evaluation scenarios.

We release our metrics under the name XMover-
Score publicly: https://github.com/AIPHES/

ACL20-Reference-Free-MT-Evaluation.
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by the Eliteprogramm of the Baden-Württemberg-
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A Appendix

A.1 Zero-shot Transfer to Resource-lean
Language

Our metric allows for estimating translation qual-
ity on new domains. However, the evaluation is
limited to those languages covered by multilingual
embeddings. This is a major drawback for low-
resource languages—e.g., Gujarati is not included
in LASER. To this end, we take multilingual USE
(Yang et al., 2019) as an illustrating example which
covers only 16 languages (in our sample Czech,
Latvian and Finish are not included in USE). We
re-align the corresponding embedding spaces with
our re-mapping functions to induce evaluation met-
rics even for these languages, using only 2k trans-
lation pairs. Table 4 shows that our metric with
a composition of re-mapping functions can raise
correlation from zero to 0.10 for cs-en and to 0.18
for lv-en. However, for one language pair, fi-en,
we see correlation goes from negative to zero, in-
dicating that this approach does not always work.
This observation warrants further investigation.

Metrics cs-en fi-en lv-en

BLEU 0.849 0.834 0.946

COSINE + LAS -0.001 -0.149 0.019
COSINE + CLP(USE) 0.072 -0.068 0.109
COSINE + UMD(USE) 0.056 -0.061 0.113
COSINE + CLP ◦ UMD(USE) 0.089 -0.030 0.162
COSINE + UMD ◦ CLP(USE) 0.102 -0.007 0.180

Table 4: The Pearson correlation of merics on segment-
level WMT17. ’◦’ marks the composition of two re-
mapping functions.
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Setting Metrics cs-en de-en fi-en lv-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 0.971 0.923 0.903 0.979 0.912 0.976 0.864 0.933
CHRF++ 0.940 0.965 0.927 0.973 0.945 0.960 0.880 0.941

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.408 0.905 0.570 0.571 0.855 0.576 0.816 0.672
COSINE + LASER 0.821 0.821 0.744 0.754 0.895 0.890 0.676 0.800

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) 0.824 0.830 0.760 0.766 0.900 0.942 0.757 0.826
COSINE + UMD(LASER) 0.833 0.858 0.735 0.754 0.909 0.870 0.630 0.798

Cross-lingual Alignment for Word Embedding

MOVER-1 + RCSLS -0.693 -0.053 0.738 0.251 0.538 0.380 0.439 0.229
MOVER-1 + CLP(M-BERT) 0.796 0.960 0.879 0.874 0.894 0.864 0.898 0.881
MOVER-2 + CLP(M-BERT) 0.818 0.971 0.885 0.887 0.878 0.893 0.896 0.890
MOVER-1 + UMD(M-BERT) 0.610 0.956 0.526 0.599 0.906 0.538 0.898 0.719
MOVER-2 + UMD(M-BERT) 0.650 0.973 0.574 0.649 0.888 0.634 0.901 0.753

Combining Language Model

COSINE + CLP(LASER) ⊕ LM 0.986 0.909 0.868 0.968 0.858 0.910 0.800 0.900
COSINE + UMD(LASER) ⊕ LM 0.984 0.904 0.861 0.968 0.850 0.922 0.817 0.901
MOVER-2 + CLP(M-BERT) ⊕ LM 0.977 0.923 0.873 0.944 0.863 0.880 0.803 0.895
MOVER-2 + UMD(M-BERT) ⊕ LM 0.968 0.934 0.832 0.951 0.871 0.862 0.821 0.891

Table 5: Pearson correlations with system-level human judgments on the WMT17 dataset.

Setting Metrics cs-en de-en et-en fi-en ru-en tr-en zh-en Average

m(y∗,y)
SENTBLEU 0.233 0.415 0.285 0.154 0.228 0.145 0.178 0.234
YISI-1 0.319 0.488 0.351 0.231 0.300 0.234 0.211 0.305

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.005 0.229 0.179 0.115 0.100 0.039 0.082 0.107
COSINE + LASER 0.072 0.317 0.254 0.155 0.102 0.086 0.064 0.150

Cross-lingual Alignment for Word Embedding

COSINE + CLP(LASER) 0.093 0.323 0.254 0.151 0.112 0.086 0.074 0.156
COSINE + UMD(LASER) 0.077 0.317 0.252 0.145 0.136 0.083 0.053 0.152
COSINE + UMD ◦ CLP(LASER) 0.090 0.337 0.255 0.139 0.145 0.090 0.088 0.163
COSINE + CLP ◦ UMD(LASER) 0.096 0.331 0.254 0.153 0.122 0.084 0.076 0.159

Cross-lingual Alignment for Sentence Embedding

MOVER-1 + CLP(M-BERT) 0.084 0.279 0.207 0.147 0.145 0.089 0.122 0.153
MOVER-2 + CLP(M-BERT) 0.063 0.283 0.193 0.149 0.136 0.069 0.115 0.144
MOVER-1 + UMD(M-BERT) 0.043 0.264 0.193 0.136 0.138 0.051 0.113 0.134
MOVER-2 + UMD(M-BERT) 0.040 0.268 0.188 0.143 0.141 0.055 0.111 0.135
MOVER-1 + UMD ◦ CLP(M-BERT) 0.024 0.282 0.192 0.144 0.133 0.085 0.089 0.136
MOVER-1 + CLP ◦ UMD(M-BERT) 0.073 0.277 0.208 0.148 0.142 0.086 0.121 0.151
MOVER-2 + CLP ◦ UMD(M-BERT) 0.057 0.283 0.194 0.149 0.137 0.069 0.114 0.143

Combining Language Model

COSINE + UMD ◦ CLP(LASER) ⊕ LM 0.288 0.455 0.226 0.321 0.263 0.159 0.192 0.272
COSINE + CLP ◦ UMD(LASER) ⊕ LM 0.283 0.457 0.228 0.321 0.265 0.150 0.198 0.272
MOVER-1 + CLP ◦ UMD(M-BERT) ⊕ LM 0.268 0.428 0.292 0.213 0.261 0.152 0.192 0.258
MOVER-2 + CLP ◦ UMD(M-BERT) ⊕ LM 0.254 0.426 0.285 0.203 0.251 0.146 0.193 0.251

Table 6: Kendall correlations with segment-level human judgments on the WMT18 dataset.

111



1671

Setting Metrics cs-en de-en et-en fi-en ru-en tr-en zh-en Average

m(y∗,y)
BLEU 0.970 0.971 0.986 0.973 0.979 0.657 0.978 0.931
METEOR++ 0.945 0.991 0.978 0.971 0.995 0.864 0.962 0.958

m(x,y)

Baseline with Original Embeddings

MOVER-1 + M-BERT -0.629 0.915 0.880 0.804 0.847 0.731 0.677 0.604
COSINE + LASER -0.348 0.932 0.930 0.906 0.902 0.832 0.471 0.661

Cross-lingual Alignment for Sentence Embedding

COSINE + CLP(LASER) -0.305 0.934 0.937 0.908 0.904 0.801 0.634 0.688
COSINE + UMD(LASER) -0.241 0.944 0.933 0.906 0.902 0.842 0.359 0.664
COSINE + UMD ◦ CLP(LASER) 0.195 0.955 0.958 0.913 0.896 0.899 0.784 0.800
COSINE + CLP ◦ UMD(LASER) -0.252 0.942 0.941 0.908 0.919 0.811 0.642 0.702

Cross-lingual Alignment for Word Embedding

MOVER-1 + CLP(M-BERT) -0.163 0.943 0.918 0.941 0.915 0.628 0.875 0.722
MOVER-2 + CLP(M-BERT) -0.517 0.944 0.909 0.938 0.913 0.526 0.868 0.654
MOVER-1 + UMD(M-BERT) -0.380 0.927 0.897 0.886 0.919 0.679 0.855 0.683
MOVER-2 + UMD(M-BERT) -0.679 0.929 0.891 0.896 0.920 0.616 0.858 0.633
MOVER-1 + UMD ◦ CLP(M-BERT) -0.348 0.949 0.905 0.890 0.905 0.636 0.776 0.673
MOVER-1 + CLP ◦ UMD(M-BERT) -0.205 0.943 0.916 0.938 0.913 0.641 0.871 0.717
MOVER-2 + CLP ◦ UMD(M-BERT) -0.555 0.944 0.908 0.935 0.911 0.551 0.863 0.651

Combining Language Model

COSINE + UMD ◦ CLP(LASER) ⊕ LM 0.979 0.967 0.979 0.947 0.942 0.673 0.954 0.919
COSINE + CLP ◦ UMD(LASER) ⊕ LM 0.974 0.966 0.983 0.951 0.951 0.255 0.961 0.863
MOVER-1 + CLP ◦ UMD(M-BERT) ⊕ LM 0.956 0.960 0.949 0.973 0.951 0.097 0.954 0.834
MOVER-2 + CLP ◦ UMD(M-BERT) ⊕ LM 0.959 0.961 0.947 0.979 0.951 -0.036 0.952 0.815

Table 7: Pearson correlations with system-level human judgments on the WMT18 dataset.

Direct Assessment
Setting Metrics de-en fi-en gu-en kk-en lt-en ru-en zh-en Average

m(y∗,y) BLEU 0.849 0.982 0.834 0.946 0.961 0.879 0.899 0.907

m(x,y)

Existing Reference-free Metrics

IBM1-MORPHEME(Popović, 2012) 0.345 0.740 - - 0.487 - - -
IBM1-POS4GRAM(Popović, 2012) 0.339 - - - - - - -
LASIM(Yankovskaya et al., 2019) 0.247 - - - - 0.310 - -
LP(Yankovskaya et al., 2019) 0.474 - - - - 0.488 - -
YISI-2(Lo, 2019) 0.796 0.642 0.566 0.324 0.442 0.339 0.940 0.578
YISI-2-SRL(Lo, 2019) 0.804 - - - - - 0.947 -

Baseline with Original Embeddings

MOVER-1 + M-BERT 0.358 0.611 -0.396 0.335 0.559 0.261 0.880 0.373
COSINE + LASER 0.217 0.891 -0.745 -0.611 0.683 -0.303 0.842 0.139

Our Cross-lingual based Metrics

MOVER-2 + CLP(M-BERT) 0.625 0.890 -0.060 0.993 0.851 0.928 0.968 0.742
COSINE + CLP(LASER) 0.225 0.894 0.041 0.150 0.696 -0.184 0.845 0.381
COSINE + UMD ◦ CLP(LASER) 0.074 0.835 -0.633 0.498 0.759 -0.201 0.610 0.277

Our Cross-lingual based Metrics ⊕ LM

COSINE + CLP(LASER) ⊕ LM 0.813 0.910 -0.070 -0.735 0.931 0.630 0.711 0.456
COSINE + UMD(LASER) ⊕ LM 0.817 0.908 -0.383 -0.902 0.929 0.573 0.781 0.389
MOVER-2 + CLP(M-BERT) ⊕ LM 0.848 0.907 -0.068 0.775 0.963 0.866 0.827 0.731
MOVER-2 + UMD(M-BERT) ⊕ LM 0.859 0.914 -0.181 -0.391 0.970 0.702 0.874 0.535

Table 8: Pearson correlations with system-level human judgments on the WMT19 dataset. ’-’ marks the numbers
not officially reported in (Ma et al., 2019).
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Abstract

Cross-lingual representations have the poten-
tial to make NLP techniques available to the
vast majority of languages in the world. How-
ever, they currently require large pretraining
corpora or access to typologically similar lan-
guages. In this work, we address these ob-
stacles by removing language identity signals
from multilingual embeddings. We exam-
ine three approaches for this: (i) re-aligning
the vector spaces of target languages (all to-
gether) to a pivot source language; (ii) remov-
ing language-specific means and variances,
which yields better discriminativeness of em-
beddings as a by-product; and (iii) increas-
ing input similarity across languages by re-
moving morphological contractions and sen-
tence reordering. We evaluate on XNLI and
reference-free MT across 19 typologically di-
verse languages. Our findings expose the limi-
tations of these approaches—unlike vector nor-
malization, vector space re-alignment and text
normalization do not achieve consistent gains
across encoders and languages. Due to the ap-
proaches’ additive effects, their combination
decreases the cross-lingual transfer gap by 8.9
points (m-BERT) and 18.2 points (XLM-R) on
average across all tasks and languages, how-
ever. Our code and models are publicly avail-
able.1

1 Introduction

Cross-lingual text representations (Devlin et al.,
2019; Conneau et al., 2019) ideally allow for trans-
fer between any language pair, and thus hold the
promise to alleviate the data sparsity problem for
low-resource languages. However, until now, cross-
lingual systems trained on English appear to trans-
fer poorly to target languages dissimilar to English
(Wu and Dredze, 2019; Pires et al., 2019) and for

1https://github.com/AIPHES/
Language-Agnostic-Contextualized-Encoders
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Figure 1: Zero-shot performance on XNLI and RFE-
val vs. language similarity to English (top), and data
sizes in Wikipedia (bottom). Each point is a language;
brackets give the Pearson correlation of points on the x-
and y-axis. Zero-shot performance is based on the last
layer of m-BERT and is standardized (zero mean, unit
standard deviation) for better comparison.

which only small monolingual corpora are available
(Conneau et al., 2019; Hu et al., 2020; Lauscher
et al., 2020), as illustrated in Fig. 1.2

As a remedy, recent work has suggested to
train representations on larger multilingual corpora
(Conneau et al., 2019) and, more importantly, to re-
align them post-hoc so as to address the deficits of
state-of-the-art contextualized encoders which have
not seen any parallel data during training (Schuster
et al., 2019; Wu and Dredze, 2019; Cao et al., 2020).
However, re-mapping (i) can be costly, (ii) requires
parallel data on word or sentence level, which may
not be available abundantly in low-resource set-

2We consider language similarity as the cosine similarity
between the average representations of two languages over
monolingual corpora from Wikipedia.
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tings, and (iii) its positive effect has not yet been
studied systematically.

Here, we explore normalization as an alternative
to re-mapping. To decrease the distance between
languages and thus allow for better cross-lingual
transfer, we normalize (i) text inputs to encoders
before vectorization to increase cross-lingual sim-
ilarity, e.g., by reordering sentences according to
typological features, and (ii) the representations
themselves by removing their means and standard
deviations, a common operation in machine and
deep learning (LeCun et al., 1998; Rücklé et al.,
2018). We evaluate vector normalization and post-
hoc re-mapping across a typologically diverse set
of 19 languages from five language families with
varying sizes of monolingual corpora. However,
input normalization is examined on a smaller sam-
ple of languages, as it is not feasible for languages
whose linguistic features cannot be obtained au-
tomatically. We investigate two NLP tasks, and
two state-of-the-art contextualized cross-lingual
encoders—multilingual BERT (Devlin et al., 2019)
and XLM-R (Conneau et al., 2019). Further, we
provide a thorough analysis to investigate the ef-
fects of these techniques: (1) across layers; (2) to
decrease the cross-lingual transfer gap, especially
for low-resource and dissimilar languages; and (3)
to eliminate language identity signals from multi-
lingual representations and thus induce language-
agnostic representations.

We evaluate on two cross-lingual tasks of vary-
ing difficulty: (1) zero-shot cross-lingual natural
language inference (XNLI) measures the transfer
ability of inference from source to target languages,
where only the source language is annotated;and
(2) reference-free machine translation evaluation
(RFEval) measures the ability of multilingual em-
beddings to assign adequate cross-lingual semantic
similarity scores to text from two languages, where
one is frequently a corrupt automatic translation.

Our contributions: We show that: (i) input nor-
malization leads to performance gains of up to
4.7 points on two challenging tasks; (ii) normal-
izing vector spaces is surprisingly effective, rivals
much more resource-intensive methods such as re-
mapping, and leads to more consistent gains; (iii)
all three techniques—vector space normalization,
re-mapping and input normalization—are orthog-
onal and their gains often stack. This is a very
important finding as it allows for improvements on
a much larger scale, especially for typologically

dissimilar and low-resource languages.

2 Related Work

Cross-lingual Transfer Static cross-lingual rep-
resentations have long been used for effective cross-
lingual transfer and can even be induced without
parallel data (Artetxe et al., 2017; Lample et al.,
2018). In the monolingual case, static cross-lingual
embeddings have recently been succeeded by con-
textualized ones, which yield considerably better re-
sults. The capabilities and limitations of the contex-
tualized multilingual BERT (m-BERT) representa-
tions is a topic of vivid discourse. Pires et al. (2019)
show surprisingly good transfer performance for m-
BERT despite it being trained without parallel data,
and that transfer is better for typologically similar
languages. Wu et al. (2019) show that language rep-
resentations are not correctly aligned in m-BERT,
but can be linearly re-mapped. Extending this, Cao
et al. (2020) find that jointly aligning language
representations to be more useful than language-
independent rotations. However, we show that the
discriminativeness of the resulting embeddings is
still poor, i.e., random word pairs are often assigned
very high cosine similarity scores by the upper lay-
ers of original encoders, especially for XLM-R.

Libovický et al. (2019) further observe that m-
BERT representations of related languages are
seemingly close to one another in the cross-lingual
embedding space. They show that removing
language-specific means from m-BERT can elimi-
nate language identity signals. In contrast, we re-
move both language-specific means and variances
as well as morphological contractions, and reorder
sentences to reduce linguistic gaps between lan-
guages. In addition, our analysis covers more lan-
guages from a typologically broader sample, and
shows that vector space normalization is as effec-
tive as other recently proposed fixes for m-BERT’s
limitations (especially re-mapping), but is much
cheaper and orthogonal to other solutions (e.g., in-
put normalization) in that gains are almost additive.

Linguistic Typology in NLP. Structural prop-
erties of many of the world’s languages can be
queried via databases such as WALS (Dryer and
Haspelmath, 2013). O’Horan et al. (2016); Ponti
et al. (2019) suggest to inject typological informa-
tion into models to bridge the performance gap
between high- and low-resource languages. Bjerva
and Augenstein (2018); de Lhoneux et al. (2018);
Bjerva and Augenstein (2021) show that cross-
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Figure 2: Histograms of cosine similarity scores of word pairs.

lingual transfer can be more successful between
languages which share, e.g., morphological prop-
erties. We draw inspiration from Wang and Eisner
(2016), who use dependency statistics to generate a
large collection of synthetic languages to augment
training data for low-resource languages. This in-
tuition of modifying languages based on syntac-
tic features can also be used in order to decrease
syntactic and morphological differences between
languages. We go further than using syntactic fea-
tures, and remove word contractions and reorder
sentences based on typological information from
WALS.

3 Language-Agnostic Representations

Analyses by Ethayarajh (2019) indicate that ran-
dom words are often assigned high cosine simi-
larities in the upper layers of monolingual BERT.
We examine this in a cross-lingual setting, by ran-
domly selecting 500 German-English mutual word
translations and random word pairs within paral-
lel sentences from Europarl (Koehn, 2005). Fig. 2
(left) shows histograms based on the last layers of
m-BERT (Devlin et al., 2019) and XLM-R (Con-
neau et al., 2019), respectively, which show that
XLM-R wrongly assigns nearly perfect cosine sim-
ilarity scores (+1) to both mutual word transla-
tions (matched word pairs) and random word pairs,
whereas m-BERT sometimes assigns low scores
to mutual translations. This reaffirms that both m-
BERT and XLM-R have difficulty in distinguishing
matched from random word pairs. Surprisingly,
vector space re-mapping does not seem to help for
XLM-R, but better separates random from matched
pairs for m-BERT (Fig. 2 (middle)). In contrast,
the joint effect of normalization and re-mapping
leads to adequate separation of the two distribu-
tions for both m-BERT and XLM-R, increasing the
discriminative ability of both encoders.

3.1 Vector space re-alignment
m-BERT and XLM-R induce cross-lingual vector
spaces in an unsupervised way—no parallel data is
involved at training time. To improve upon these
representations, recent work has suggested to re-
map them, i.e., to use small amounts of parallel
data to restructure the cross-lingual vector spaces.
We follow the joint re-mapping approach of Cao
et al. (2020), which has shown better results than
rotation-based re-mapping.

Notation. Suppose we have k parallel corpora
C1, . . . , Ck, i.e., Cν = {(s1, t1), . . . , (sn, tn)} is
a set of corresponding sentence pairs from source
and target languages, for ν = 1, . . . , k. We denote
the alignments of words in a sentence pair (s, t)
as a(s, t) = {(i1, j1), . . . , (im, jm)}, where (i, j)
denotes that si and sj are mutual translations. Let
f(i,u) be the contextual embedding for the i-th
word in a sentence u.

Joint Alignment via Fine-tuning. We align the
monolingual sub-spaces of a source and target lan-
guage by minimizing the distances of embeddings
for matched word pairs in the corpus Cν :

L(Cν , fΘ)

=
∑

(s,t)∈Cν

∑

(i,j)∈a(s,t)

‖fΘ(i, s)− fΘ(j, t))‖22

(1)

where Θ are the parameters of the encoder f . As in
Cao et al. (2020), we use a regularization term to
avoid for the resulting (re-aligned) embeddings to
drift too far away from the initial encoder state f0:

R(Cν , fΘ) =
∑

t∈Cν

len(t)∑

i=1

‖fΘ(i, t)− f0(i, t)‖22
(2)

Like for the multilingual pre-training of m-BERT
and XLM-R, we fine-tune the encoder f on the con-
catenation of k parallel corpora to handle resource-
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lean languages, which is in contrast to offline align-
ment with language-independent rotations (Aldar-
maki and Diab, 2019; Schuster et al., 2019). As-
sume that English is a common pivot (source lan-
guage) in all our k parallel corpora. Then the fol-
lowing objective function orients all non-English
embeddings toward English:

min
Θ

k∑

ν=1

L(Cν , fΘ) +R(Cν , fΘ) (3)

In §5, we refer to the above described re-
alignment step as JOINT-ALIGN.

3.2 Vector space normalization

We add a batch normalization layer that constrains
all embeddings of different languages into a distri-
bution with zero mean and unit variance:

f̄(i, s) =
f(i, s)− µβ√

σ2
β + ε

(4)

where ε is a constant value for numerical stability,
µβ and σβ are mean and variance, serving as per
batch statistics for each time step in a sequence.
In addition to a common effect during training,
i.e., reducing covariate shift of input spaces, this
additional layer in the cross-lingual setup may al-
low for 1) removing language identity signals, e.g.
language-specific means and variances, from multi-
lingual embeddings; and 2) increasing the discrim-
inativeness of embeddings so that they can distin-
guish word pairs with different senses, as shown
in Fig. 2 (right). We apply batch normalization
to the last layer representations of m-BERT and
XLM-R, and use a batch size of 8 across all se-
tups. In §5, we refer to the above batch normal-
ization step as NORM and contrast this with layer
normalization. The latter yields batch-independent
statistics, which are computed across all time steps
for individual input sequences in a batch. This is
predominantly used to stabilize the training process
of RNN (Ba et al., 2016) and Transformer-based
models (Vaswani et al., 2017).

3.3 Input normalization

In addition to joint alignment and vector space
normalization, we investigate decreasing cross-
linguistic differences between languages via the
following surface form manipulation of input texts.

Removing Morphological Contractions. In
many languages, e.g. Italian, prepositions and defi-
nite articles are often contracted. For instance, de
il (‘of the’) is usually contracted to del. This leads
to a mismatch between, e.g., English and Italian in
terms of token alignments, and increases the cross-
lingual difference between the two. We segment an
orthographic token (e.g. del) into several (syntac-
tic) tokens (e.g. de il).3 This yields a new sentence
which no longer corresponds to typical standard
Italian grammar, but which we hypothesise reduces
the linguistic gap between Italian and English, thus
increasing cross-lingual performance.

Sentence Reordering. Another typological fea-
ture which differs between languages, is the order-
ing of nouns and adjectives. For instance, WALS
shows that Romance languages such as French
and Italians often use noun-adjective ordering, e.g.,
pomme rouge in French, whereas the converse is
used in English. Additionally, languages differ
in their ordering of subjects, objects, and verbs.
For instance, according to WALS, English firmly
follows the subject-verb-object (SVO) structure,
whereas there is no dominant order in German.
We apply this reordering in order to decrease the
linguistic gap between languages. For instance,
when considering English and French, we reverse
all noun-adjective pairings from French to match
English. This alignment is done while considering
a dependency tree. We re-align according to the
typological features from WALS. Since such fea-
ture annotations are available for a large amount of
languages, and can be obtained automatically with
high accuracy (Bjerva et al., 2019a), we expect
this method to scale to languages for which basic
dependencies (such as noun-adjective attachment)
can be obtained automatically. In §5, we refer to
the above re-alignment step as TEXT.

4 Experiments

4.1 Transfer tasks

Cross-lingual embeddings are usually evaluated
via zero-shot cross-lingual transfer for supervised
text classification tasks, or via unsupervised cross-
lingual textual similarity. For zero-shot transfer,
fine-tuning of cross-lingual embeddings is done
based on source language performance, and eval-
uation is performed on a held-out target language.

3We use UDPipe (Straka et al., 2016), which is a pipeline
trained on UD treebank 2.5 (Nivre et al., 2020).
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Language Lang.
family

Distance
(EN-X)

Wiki-articles
(in millions)

Sim
level

Res
level

Tagalog α 29.3 0.08 low low
Javanese α 26.5 0.06 low low
Bengali γ 24.8 0.08 low low
Marathi γ 24.0 0.06 low low
Estonian η 23.8 0.20 low middle
Hindi γ 22.2 0.13 middle low
Urdu γ 21.7 0.15 middle middle
Finnish η 20.1 0.47 middle middle
Hungarian η 19.8 0.46 middle middle
Afrikaans β 19.6 0.09 middle low
Malay α 19.2 0.33 middle middle
Spanish δ 18.5 1.56 high high
French δ 18.2 2.16 high high
Italian δ 18.0 1.57 high high
Indonesian α 17.7 0.51 high middle
Dutch β 16.3 1.99 high high
Portuguese δ 16.2 1.02 high high
German β 15.6 2.37 high high
English β 0.0 5.98 high high

Table 1: Languages used, with their language families:
Austronesian (α), Germanic (β), Indo-Aryan (γ), Ro-
mance (δ), and Uralic (η). The cosine distances be-
tween target languages and English are measured using
m-BERT.

This is, however, not likely to result in high quality
target language embeddings and gives a false im-
pression of cross-lingual abilities (Libovický et al.,
2020). Zhao et al. (2020) use the more difficult task
of reference-free machine translation evaluation
(RFEval) to expose limitations of cross-lingual
encoders, i.e., a failure to properly represent fine-
grained language aspects, which may be exploited
by natural adversarial inputs such as word-by-word
translations.

XNLI. The goal of natural language inference
(NLI) is to infer whether a premise sentence en-
tails, contradicts, or is neutral towards a hypothesis
sentence. Conneau et al. (2018) release a multilin-
gual NLI corpus, where the English dev and test
sets of the MultiNLI corpus (Williams et al., 2018)
are translated to 15 languages by crowd-workers.

RFEval. This task evaluates the translation qual-
ity, i.e. similarity of a target language translation
and a source language sentence. Following Zhao
et al. (2020), we collect source language sentences
with their system and reference translations, as well
as human judgments from the WMT17 metrics
shared task (Bojar et al., 2017), which contains
predictions of 166 translation systems across 12
language pairs in WMT17. Each language pair has
approximately 3k source sentences, each associ-

ated with one human reference translation and with
the automatic translations of participating systems.
As in Zhao et al. (2019, 2020), we use the Earth
Mover Distance to compute the distances between
source sentence and target language translations,
based on the semantic similarities of their contex-
tualized cross-lingual embeddings. We refer to this
score as XMoverScore (Zhao et al., 2020) and re-
port its Pearson correlation with human judgments
in our experiments.

4.2 A Typologically Varied Language Sample
We evaluate multilingual representations on two
sets of languages: (1) a default language set with 4
languages from the official XNLI test sets and 2 lan-
guages from the WMT17 test sets; (2) a diagnostic
language set which contains 19 languages with dif-
ferent levels of data resources from a typologically
diverse sample4 covering five language families
(each with at least three languages): Austronesian
(α), Germanic (β), Indo-Aryan (γ), Romance (δ),
and Uralic (η). For RFEval, we resort to pairs of
translated source sentences and system translations.
The former ones are translated from English human
reference translations into 18 languages, obtained
from Google Translate. For XNLI, we use trans-
lated test sets of all these languages from (Hu et al.,
2020). Tab. 1 shows the overview of 19 languages
which are labeled with 1) Similarity Level, i.e., the
degree of similarity between target languages and
English; and 2) Resource Level, i.e., the amount of
data resources available in Wikipedia.

4.3 Cross-lingual Encoders
Our goal is to improve the cross-lingual abilities
of established contextualized cross-lingual embed-
dings. These support around 100 languages and are
pre-trained using monolingual language modeling.

m-BERT (Devlin et al., 2019) is pre-trained on
104 monolingual corpora from Wikipedia, with: 1)
a vocabulary size of 110k; 2) language-specific tok-
enization tools for data pre-processing; and 3) two
monolingual pre-training tasks: masked language
modeling and next sentence prediction.

XLM-R (Conneau et al., 2019) is pre-trained
on the CommonCrawl corpora of 100 lan-
guages, which contain more monolingual data than
Wikipedia corpora, with 1) a vocabulary size of
250k; 2) a language-agnostic tokenization tool,

4This sample was chosen as it yields a large typological
variety, with representatives from several language families
across the world.
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Figure 3: Results on RFEval are averaged over two lan-
guage pairs (de-en and fi-en) from the WMT17 human
translated test sets. Likewise, results on XNLI are av-
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en-hi and en-es) from XNLI human translated test sets.
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Sentence Piece (Kudo and Richardson, 2018) for
data pre-processing; and 3) masked language mod-
eling as the only monolingual pre-training task. We
apply NORM, TEXT, JOINT-ALIGN and the combi-
nations of these to the last layer of m-BERT and
XLM-R, and report their performances on XNLI
and RFEval in §5. To investigate the layer-wise
effect of these modifications, we apply the modifi-
cations to individual layers and report the perfor-
mances in §6. See the appendix for implementation
details.

5 Results

Unlike re-mapping and vector space normalization,
scaling input normalization to a large language sam-
ple is more difficult, as typological features differ
across languages. Thus, we report the results of
re-mapping and vector space normalization across
19 languages, while text normalization is evaluated
on a smaller sample of languages.

Re-mapping and Vector Space Normalization.
In Tab. 2, we show results on machine translated
test sets. The m-BERT space modified by JOINT-

ALIGN ⊕ NORM achieves consistent improve-
ments on RFEval (+10.1 points) and XNLI (+7.6
points) on average. However, effects are different
for XLM-R. The modified XLM-R outperforms
the baseline XLM-R on RFEval by the largest mar-
gin (+33.5 points), but the improvement is much
smaller (+2.8 points) on XNLI. These gains are not
an artefact of machine-translated test sets: we ob-
serve similar gains on human-translated data (see
Fig. 3).

In Tab. 3, we tease apart the sources of improve-
ments. Overall, the impacts of NORM and JOINT-
ALIGN are substantial, and their effect is additive
and sometimes even superadditive (e.g., m-BERT
improves by 10.1 points on RFEval when both
NORM and JOINT-ALIGN are applied but only by
1.7 and 7.6 points individually). We note that the
improvement from NORM is more consistent across
tasks and encoders, despite its simplicity and negli-
gible cost. In contrast, JOINT-ALIGN has a positive
effect for m-BERT but it does not help for XLM-R
on the XNLI task, notwithstanding the minor dif-
ference of two encoders, e.g., much larger training
data and a different tokenizer used in XLM-R. We
believe the poor discriminative ability of XLM-R,
viz., that it cannot distinguish word translations
from random word pairs, leads to the inconsistent
behavior of JOINT-ALIGN. As a remedy, negative
examples such as random pairs could be included
in Eq. (3) during training so as to decrease the
discriminative gap between m-BERT and XLM-R.
This suggests that future research efforts should
focus on the robustness of cross-lingual alignments.

Batch vs. Layer Normalization. Unsurpris-
ingly, the choice of batch size greatly influences
XNLI performance when applying batch normal-
ization for m-BERT and XLM-R (Fig. 4). We find
that (i) the larger the batch size is, the smaller the
impacts on XNLI, and (ii) a batch size of 8 per-
forms best. Interestingly, layer normalization does
not help for XNLI, even though it yields batch-
independent statistics and is effective in stabilizing
the training process (Vaswani et al., 2017). We note
that per batch sequences with varying time steps
(i.e., sentence length) are often padded with zero
vectors in practice. This leads to inaccurate batch-
independent statistics, as they are computed across
all time steps, unlike batch normalization with per
batch statistics for individual time steps. In addi-
tion to batch and layer normalizations, other nor-
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Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4
Original cross-lingual embeddings
M-BERT 38.0 - 36.6 - 40.4 - 28.2 - 49.8 - 34.8 -
XLM-R 12.9 - 13.5 - 17.4 - 2.9 - 25.9 - 11.6 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 48.1 +10.1 45.9 +9.3 47.5 +7.1 32.4 +4.2 53.4 +3.6 46.0 +11.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 46.4 +33.5 46.5 +33.0 48.2 +30.8 37.0 +34.1 53.8 +27.9 47.2 +35.6

(a) Cross-lingual Semantic Text Similarity on the RFEval task

Language Families
Model Avg 4 α(4) 4 β(3) 4 γ(4) 4 δ(4) 4 η(3) 4
Original cross-lingual embeddings
M-BERT 64.7 - 60.8 - 69.1 - 57.9 - 73.1 - 63.4 -
XLM-R 74.8 - 72.4 - 76.3 - 70.9 - 78.4 - 76.1 -

Modified cross-lingual embeddings
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 72.3 +7.6 72.3 +11.5 75.8 +6.7 65.2 +7.3 77.4 +4.3 72.0 +8.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 77.6 +2.8 74.8 +2.4 79.6 +3.3 73.7 +2.8 80.9 +2.5 78.8 +2.7

(b) Cross-lingual Zero-shot transfer on the XNLI task

Table 2: Overall results of established cross-lingual baselines and our modifications, for RFEval and XNLI. Brack-
ets denote the number of languages per group. Results are averaged per group. 4 is the difference between the
performance of the original and the modified encoders.
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Figure 5: Performance gains on RFEval and XNLI obtained by three types of TEXT operations .

Model XNLI RFEval

M-BERT ⊕ NORM +1.9 +1.7
M-BERT ⊕ JOINT-ALIGN +5.2 +7.6
M-BERT ⊕ JOINT-ALIGN ⊕ NORM +7.6 +10.1
XLM-R ⊕ NORM +2.5 +27.1
XLM-R ⊕ JOINT-ALIGN −0.2 +11.6
XLM-R ⊕ JOINT-ALIGN ⊕ NORM +2.8 +33.5

Table 3: Ablation tests of our modified encoders. Per-
formance gains are averaged over all languages.

malizers such as GroupNorm (Wu and He, 2018)
and PowerNorm (Shen et al., 2020) also receive
attention in many communities. This raises another
concern towards a systematic investigation of nor-
malizers for future work.

Linguistic Manipulation. We apply input modi-
fications to language pairs that contrast in either of

Model XNLI RFEval Avg

M-BERT 17.4 24.5 21.0
XLM-R 11.1 37.8 24.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 9.8 14.4 12.1
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 8.4 4.3 6.3

Table 4: Performance gap (lower is better) for cross-
lingual classification transfer, and reference-based and
reference-free MT.

three typological features: word contractions, noun-
adjective and object-verb orderings. Fig. 5 shows
that reducing the linguistic gap between languages
by TEXT can sometimes lead to improvements
(exemplified by m-BERT). Both French and Italian
benefit considerably from both removing contrac-
tions (a) and reversing the order of adjectives and
nouns (b), with no changes observed for Spanish.
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Figure 6: Results of m-BERT and XLM-R and our modifications across layers on the RFEval and XNLI tasks.
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Figure 7: Results of m-BERT across layers on RFEval.

As for reversing object-verb order (c), we again see
improvements for 2 out of 3 languages. We hypoth-
esize that the few cases without gains are due to the
differing frequencies of occurrences of linguistic
phenomena in XNLI and RFEval. Another error
source is the automatic analysis from Straka et al.
(2016), and improving this pre-processing step may
further increase the performance of TEXT.

6 Analysis

(Q1) How sensitive are normalization and post-hoc
re-mapping across layers?

In Fig. 6, rather than checking results for the last
layer only, we investigate improvements of our
three modifications on RFEval across all layers of
and XLM-R for one high-resource language pair
(de-en) and one low-resource pair (jv-en) (see ap-
pendix). This reveals that, (1) for XNLI, applying
JOINT-ALIGN, NORM and TEXT to the last layer
of m-BERT and XLM-R consistently results in the
best performance. This indicates that the modi-
fications to the last layer could be sufficient for
supervised cross-lingual transfer tasks. (2) How-
ever, the best results on RFEval are oftentimes
obtained from an intermediate layer. Further, (3)
we observe that JOINT-ALIGN is not always effec-
tive, especially for XLM-R. E.g., it leads to the
worst performance across all layers on XNLI for
XLM-R, even below the baseline performance. (4)
Reporting improvements on only the last layer may

sometimes give a false and inflated impression, es-
pecially for RFEval. E.g., the improvement (on
RFEval) of the three modifications over the orig-
inal embeddings is almost 30 points for the last
layer of XLMR, but it is less than 15 points for
the penultimate layer. (5) Normalization and re-
mapping typically stabilize layer-wise variances.
(6) The gains of the three modifications are largely
complementary across layers. (see also Fig. 7).

(Q2) To what extent can our modifications decrease
the cross-lingual transfer gap, especially in low-
resource scenarios and dissimilar languages?

Tab. 4 shows that applying re-mapping and vec-
tor space normalization5 to the last layer of m-
BERT and XLM-R considerably reduces perfor-
mance gaps viz.: a) zero-shot transfer performance
on XNLI between the English test set and the aver-
age performance on the other 18 languages; b) the
difference between mono- and cross-lingual textual
similarity on RFEval, i.e., the difference between
the average correlations of XMoverScore and hu-
man judgments on 19 languages obtained from
reference-based6 and reference-free MT evaluation
setups. Although smaller, the remaining gaps in-
dicates further potential for improvement. Fig. 9
shows the largest gains are on (1) low-resource lan-
guages and (2) languages most distant to English.

(Q3) Are our modifications to contextualized cross-
lingual encoders language-agnostic?

Fig. 8 (a) shows that the centroid vectors7 of lan-
guages within the same language family lie closely
in the vector space, further showing that language

5We do not apply text normalization in this setup because
not all languages are covered in UDPipe.

6Reference-based evaluation assigns semantic similarity
scores to pairs of system and reference translations in English.

7Language centroids are representative (sentence) embed-
dings of languages averaged over monolingual Wikipedia data,
as in Libovický et al. (2019). Although they use language fam-
ilies as a proxy, recent work shows that structural similarities
of languages are a more likely candidate (Bjerva et al., 2019b).
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(a) Original Space (b) Re-aligned Space (c) Normalized Space

Figure 8: t-SNE distributions of language centroids based on the last m-BERT layer.
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Figure 9: Performance gains across language groups
for M-BERT ⊕ JOINT-ALIGN ⊕ NORM.

Model τ r ρ

M-BERT 53.2 74.7 71.8
XLM-R 54.4 70.1 73.5
M-BERT ⊕ JOINT-ALIGN ⊕ NORM 17.5 57.3 21.2
XLM-R ⊕ JOINT-ALIGN ⊕ NORM 15.9 57.7 26.0

Table 5: Correlations (Kendall τ , Pearson r and Spear-
man ρ) between language similarities induced by m-
BERT/XLM-R and WALS for 19 languages.

identity signals are stored in the m-BERT embed-
dings. Fig. 8 (b)+(c) shows that these signals are di-
minished in both re-aligned and normalized vector
spaces, suggesting that the resulting embeddings in
them are more language-agnostic.

(Q4) To what extent do the typological relations
learned from contextualized cross-lingual encoders
deviate from those set out by expert typologists?

Tab. 5 shows that language similarities, between
English and other 18 languages, obtained from m-
BERT and XLM-R have high correlations with
structural language similarities8 obtained from
WALS9 via the syntactic features listed, indicat-
ing that language identifiers stored in the original
embeddings are a good proxy for the annotated
linguistic features. In contrast, this correlation is
smaller in the modified embedding spaces, which

8The language similarity induced by WALS is the frac-
tion of structural properties that have the same value in two
languages among all 192 properties.

9WALS covers approximately 200 linguistic features over
2500 languages, annotated by expert typologists.

we believe is because language identity is a much
less prominent signal in them.

7 Conclusion

Cross-lingual systems show striking performance
for transfer, but their success crucially relies on two
constraints: the similarity between source and tar-
get languages and the size of pre-training corpora.
We comparatively evaluate three approaches to ad-
dress these challenges, removing language-specific
information from multilingual representations, thus
learning language-agnostic representations. Our
extensive experiments, based on a typologically
broad sample of 19 languages, show that (vector
space and input) normalization and re-mapping are
oftentimes complementary approaches to improve
cross-lingual performance, and that the popular
approach of re-mapping leads to less consistent im-
provements than the much simpler and less costly
normalization of vector representations. Input nor-
malization yields benefits across a small sample of
languages; further work is required for it to achieve
consistent gains across a larger language sample.
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Abstract
Multilingual representations pre-trained with monolingual data exhibit considerably unequal task
performances across languages. Previous studies address this challenge with resource-intensive
contextualized alignment, which assumes the availability of large parallel data, thereby leaving
under-represented language communities behind. In this work, we attribute the data hungriness
of previous alignment techniques to two limitations: (i) the inability to sufficiently leverage data
and (ii) these techniques are not trained properly. To address these issues, we introduce supervised
and unsupervised density-based approaches named Real-NVP and GAN-Real-NVP, driven by
Normalizing Flow, to perform alignment, both dissecting the alignment of multilingual subspaces into
density matching and density modeling. We complement these approaches with our validation criteria
in order to guide the training process. Our experiments encompass 16 alignments, including our
approaches, evaluated across 6 language pairs, synthetic data and 5 NLP tasks. We demonstrate the
effectiveness of our approaches in the scenarios of limited and no parallel data. First, our supervised
approach trained on 20k parallel data (sentences) mostly surpasses Joint-Align and InfoXLM
trained on over 100k parallel sentences. Second, parallel data can be removed without sacrificing
performance when integrating our unsupervised approach in our bootstrapping procedure, which is
theoretically motivated to enforce equality of multilingual subspaces. Moreover, we demonstrate the
advantages of validation criteria over validation data for guiding supervised training1.
Keywords: Multilingual Embeddings; Cross-lingual Alignment

1. Introduction

Multilingual text encoders such as m-BERT (Devlin et al., 2019) and XLM-R (Conneau et al., 2020)
have been profiled as the de facto solutions to modeling languages at scale. However, research showed
that such encoders pre-trained with monolingual data have failed to align multilingual subspaces,
and exhibit strong language bias, i.e., the quality of these encoders largely differs across languages,
particularly for dissimilar and low-resource languages (Pires et al., 2019; Zhao et al., 2021).

For that reason, supervised alignment techniques emerged, aiming to rectify multilingual rep-
resentations post-hoc with cross-lingual supervision (Cao et al., 2020; Zhao et al., 2020; Chi et al.,
2021), but previous studies are limited in scope to high-resource languages requiring large-scale par-

1. Our code and models are available at https://github.com/AIPHES/DensityAlign

© 2022 W. Zhao & S. Eger.
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allel data. In contrast, unsupervised alignment removing the dependence on parallel data allows for
unlimited use in all languages (Artetxe et al., 2017, 2018). However, previous studies of unsupervised
alignment focusing on static embeddings have not touched on contextualized representations.

In this work, we address cross-lingual alignment for contextualized representations, termed
contextualized alignment, particularly in the scenarios of limited and no parallel data. In supervised
settings, we identify two limitations responsible for the ineffectiveness of previous resource-intensive
contextualized alignments: (i) the inability to sufficiently leverage data, i.e., that these techniques do
not target the modeling of data density, and (ii) that they are not properly trained due to a lack of
validation criteria—recent techniques, such as Wu and Dredze (2020) and Cao et al. (2020), have
been trained for several epochs without access to any criteria for model selection, coming at the risk
of being mistrained. To this end, we start by introducing a density-based, contextualized alignment,
which dissects the alignment of multilingual subspaces into two sub-problems with one solution:
density modeling and density matching, addressed by Normalizing Flows (Dinh et al., 2017). Second,
in order to guide the training process, we present two validation criteria for model selection during
training, and demonstrate the superiority of these criteria over validation data.

In unsupervised settings, aiming for unsupervised, contextualized alignment, we carry out
density modeling and density matching in the form of adversarial learning (Goodfellow et al., 2014),
and complement this learning process with the validation criteria mentioned previously to guide
unsupervised training. Further, we identify a statistical issue of density matching in the unsupervised
case: density matching only leads to a weak notion of equality of multilingual subspaces, viz.,
equality in distribution. Accordingly, we present a bootstrapping procedure enhancing unsupervised
alignment by promoting equality of multilingual subspaces. We evaluate our approaches across 6
language pairs, synthetic data and 5 NLP tasks. Our major findings are summarized as follows:

• With 20k parallel data we provided, our supervised alignment mostly surpasses Joint-Align
(Cao et al., 2020) and InfoXLM (Chi et al., 2021) trained on much larger parallel data.
This confirms the effectiveness of the conflation of density matching and density modeling
as our alignment does. Second, our unsupervised alignment integrated in bootstrapping
procedure rivals supervised counterparts, showing that parallel data can be removed without
sacrificing performance. But we admit that these alignments, be it supervised or not, are poor
in generalization (see §4.3), calling for an improvement in future work.

• Not only are validation criteria crucial for guiding unsupervised training, but also for super-
vised training. Given the performance on validation data and external tasks often correlates
weakly, validation data is inappropriate for guiding supervised training. Above all, guiding
contextualized alignment with validation criteria is challenging, as the model performances
across tasks exhibit negative correlations in about 30% setups in our experiments, i.e., the
better the alignment performs in one task, the worse it performs in the other. Thus, we base the
evaluation of validation criteria on the model performances in all tasks. We find that validation
criteria correlate much better than validation data (treated as criterion) with model performance
on average across tasks for guiding supervised training.

2. Related Work

Recent advances in multilingual representations, such as m-BERT and XLM-R, boost the perfor-
mance of cross-lingual NLP systems. However, such systems exhibit weak(er) performance for
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dissimilar languages (Pires et al., 2019) and low-resource languages (Zhao et al., 2021). Accordingly,
contextualized alignment emerged. Aldarmaki and Diab (2019) show that language-dependent
rotation can linearly rectify m-BERT representations. Cao et al. (2020) find that jointly aligning
multiple languages performs better. Zhao et al. (2020) show that removing language bias in multi-
lingual representations mitigates the vector space misalignment between languages. More recently,
Mengzhou et al. (2021) show that gradient-based alignment is effective for the languages not covered
during pre-training in XLM-R. Alqahtani et al. (2021) use optimal transport to finetune multilingual
representations, while Chi et al. (2021) finetune them with translation language modeling as the
learning objective. However, these studies focused on supervised, resource-intensive alignment
techniques and required from 250k to ca. 2M parallel sentences (or a large-scale analogy corpus) in
each language pair for substantial improvement. As early attempts to remove the use for parallel data,
Libovický et al. (2020) and Zhao et al. (2021) find applying vector space normalization is helpful
to yield language-neural representations. However, there lacks a thorough study on unsupervised,
contextualized alignment for multilingual representations.

As for unsupervised alignment, previous studies have predominantly focused on static embed-
dings, which mostly rely on iterative procedures in two steps, aiming to derive bilingual lexicons as
cross-lingual supervision: (i) inducing seed dictionaries with different approaches, such as adver-
sarial learning (Lample et al., 2018), similarity based heuristics (Artetxe et al., 2018) and identical
strings (Artetxe et al., 2017), and (ii) applying Procrustes to augment induced lexicons (Lample et al.,
2018) in an iterative fashion.

In this work, we present a principled, iterative procedure to enhance our unsupervised alignment
on contextualized representations, which employs density-based approaches to induce bilingual
lexicons, and then applies our bootstrapping procedure, theoretically grounded in statistics for
equality of multilingual subspaces, to iteratively augment lexicons. Lastly, we complement the
iterative procedure with validation criteria to guide unsupervised training. We contrast our approaches
with other domain adaptation techniques in Section 6.

3. Contextualized Alignment

Let two random variables X and Y with densities PX and PY describe two populations of contextual
word embeddings pertaining to two languages ℓ1 and ℓ2, with Ωℓ1 and Ωℓ2 as two lexicons. Each
occurrence of a word is associated to a separate entry in the lexicons. X maps all entries in Ωℓ1 to
real-valued m-dimensional embedding vectors, denoted by X : Ωℓ1 → Rm, and similarly for Y . A
bilingual lexicon Ω describes a set of translations between Ωℓ1 and Ωℓ2 .

Empirical inference. Assume a function f : Rm→ Rm perfectly maps m-dimensional embedding
vectors from X to Y . As standard in machine learning, a mapping function fθ can be empirically
inferred from data, with θ as model parameters. To this end, we assume data Mℓ1 ∈ Rn×m and
Mℓ2 ∈Rn×m are given, corresponding to two sets of contextual word embeddings with a common size
of n for simplicity. Let a permutation matrix P ∈ {0,1}n×n (P1n = 1n and P⊤1n = 1n) be a realization
of Ω, serving as cross-lingual supervision when available. A random variable Ỹ with density PỸ is a
prediction of Y given X , i.e., Ỹ = fX→Y (X) where the subscript denotes mapping direction.
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3.1. Supervised Alignment

When parallel data is available, a permutation matrix P can be effortless induced from parallel data
with word alignment tools (Dyer et al., 2013; Jalili Sabet et al., 2020). We introduce a density-based
mapping function focusing on two components: density matching and density modeling. To do
so, we start by depicting the alignment of multilingual subspaces in the form of density matching
between PỸ and PY :

KL(PỸ ,PY ) = CE(PỸ ,PY )−Ey∼PY [logPY (y)]

= ∥ fX→Y (Mℓ1)−PMℓ2∥2−Ey∼PY [logPX( f−1
X→Y (y))|det(▽θ f−1

X→Y (y))|]
(1)

where fX→Y is the trainable mapping function from X to Y . Given PY intractable to compute, previous
supervised alignments always minimize the cross-entropy term alone by solving the least squares
problem. Note that the density PY can be rewritten to PX( f−1

X→Ỹ (y))|det(▽θ f−1
X→Ỹ (y))| by using the

change-of-variable rule (assuming f is an invertible function). However, the density PY is still
intractable given the unknown density PX . We overcome this by introducing a generative model
named Real-NVP (Dinh et al., 2017) as use case of Normalizing Flows (Rezende and Mohamed,
2015). Real-NVP is a popular example of invertible neural networks, which can be thought of as
a bijective function between two domains of data points (e.g., random noise and real data). Here,
we use Real-NVP to address density estimation, i.e., inferring the unknown distribution of word
embeddings X and Y from a normal distribution of random noise via the change-of-variable rule.

To do so, we introduce a latent variable Z ∼N (0,I) with the normal density PZ to describe ran-
dom noise. We then use Real-NVP to infer PY from PZ , denoted by PY (y)=PZ( f−1

Z→Y (y))|det(▽θ f−1
Z→Y (y))|

with fZ→Y as a trainable mapping function from Z to Y . Lastly, we rewrite the entropy term in Eq. 1
to:

Ey∼PY [logPY (y)] = Ey∼PY [logN ( f−1
Z→Y (y),0,I)]+Ey∼PY [log |det(▽θ f−1

Z→Y (y))|] (2)

To consider density estimation (modeling) on both PX and PY , we perform a dual form of density
matching based on JS divergence. We omit the definition for simplicity. In §4, we refer to the above
described approach as Real-NVP.

3.2. Unsupervised Alignment

When P is not given due to a lack of parallel data, we apply adversarial learning to align the two
densities PỸ and PY . As standard in adversarial training, we involve a min-max game between
two components to perform density matching: (a) a discriminator distinguishing source and target
word embeddings after mapping them and (b) a mapping function aligning source and target word
embeddings in order to fool the discriminator. We use a popular adversarial approach, the Wasserstein
GAN (Arjovsky et al., 2017), which aligns the densities PỸ and PY by minimizing the Earth Mover
distance (EMD) between these densities. To better leverage data, we include density estimation
(modeling) based on Real-NVP in the procedure of adversarial training, which maximizes the data
likelihood of X and Y . Taken together, we denote our density-based learning objective by:

EMD(PỸ ,PY ) = min
fX→Y

max
hϕ

Ey∼PY [hϕ(y)]−Eỹ∼PỸ
[hϕ(ỹ))]+Ey∼PY [logPY (y)] (3)
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where hϕ is a 1-Lipschitz constrained discriminator, ỹ = fX→Y (x) mapping X to Y . Note that fX→Y

is the composition of fX→Z and fZ→Y , and the last entropy term aims to maximize the data log-
likelihood of Y . As in the supervised case, we use a dual form of Eq. 3. In §4, we refer to the above
described approach as GAN-Real-NVP.

Bootstrapping procedure. After adversarial learning Y and Ỹ are ideally equal in distribution,
denoted by Y dist

= Ỹ . However, this is not sufficient. For instance, let Y ∼Uniform(−1,1) and Ỹ =−Y .
Clearly, Y and Y are equal in distribution, but they are identical only at the origin. Here, we derive the
two following conditions that promote the equality of Y and Ỹ and enhance unsupervised alignment.

Proposition 1 Given Y dist
= Ỹ , Ỹ and Y are equal if one of the following conditions is met:

(i) Y = UỸ , where U is invertible and Ui j ≥ 0 ∀i, j.

(ii) cor(Ỹi,Yi) = 1 for ∀i, where Ỹi and Yi represent the i-th component in Ỹ and Y .

Proof
(i) P(Y ≤ y) = P(Ỹ ≤ y) for all y, due to Y dist

= Ỹ . If Y = UỸ , then P(Ỹ ≤ y) = P(Y ≤ y) =
P(UỸ ≤ y). If U ≥ 0, then P(UỸ ≤ y) = P(Ỹ ≤ U−1y). Thus, P(Ỹ ≤ U−1y) = P(Ỹ ≤ y) for all y.
This implies that U = I. Thus, Ỹ = Y .

(ii) If cor(Ỹi,Yi) = 1 for ∀i, then Var[( Ỹi
σỹi
− Yi

σyi
)] = 0, thus E[( Ỹi

σỹi
− Yi

σyi
)2]−E[( Ỹi

σỹi
− Yi

σyi
)]

2
= 0.

However, the second term equals to 0 by using E[( Ỹi
σỹi
− Yi

σyi
)] = E[Ỹi]

σỹi
− E[Yi]

σyi
= 0 due to Ỹi

dist
= Yi. Thus,

E[( Ỹi
σỹi
− Yi

σyi
)2] = 0, and this implies Ỹi

σỹi
= Yi

σyi
since the non-negative ( Ỹi

σỹi
− Yi

σyi
)2 must be zero if its

expectation is 0. Note that σỹi = σyi due to Ỹi
dist
= Yi. This implies that Ỹi = Yi for ∀i.

To design computational approaches meeting the above conditions, we introduce additional
notation and the following lemma. Let MX , MY be embeddings from X and Y , and MỸ = fθ(MX).

Lemma 2 If MỸ M⊺
Ỹ = MY M⊺

Y and MỸ is invertible, then Y = UỸ .

Proof If MỸ M⊺
Ỹ = MY M⊺

Y and MỸ is invertible, then MY = MỸ M−1
Ỹ MY . Let U = M−1

Ỹ MY . Then,
MY = MỸ U. If this holds for all MỸ and MY , then Y = UỸ .

In the following, we describe our computational approaches, and then include them as constraints
in the adversarial training in order to promote the equality of Y and Ỹ . Lastly, we discuss the
connection of these constraints with canonical correlation and language isomorphism.

Graph structure. We depict MỸ and MY as m-dimensional vertices in two graphs, with MỸ M⊺
Ỹ

and MY M⊺
Y as the weighted adjacency matrices on these graphs. As Lemma 2 states, minimizing the

difference between these adjacency matrices allows to meet Prop.1(i). Thus, the objective becomes:

EMD(PỸ ,PY )+∥MỸ M⊺
Ỹ −MY M⊺

Y∥2 (4)

However, we admit that Prop.1(i) cannot be strictly met, as guaranteeing U≥ 0, i.e., M−1
Ỹ MY ≥ 0 is

not trivial. This might explain why graph structure is worse than cross-correlation in our experiments.
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Cross-correlation. We maximize Pearson cross-correlation between de-meaned MỸ and MY in
order to realize Prop.1(ii). The objective becomes:

EMD(PỸ ,PY )+∥
diag(M⊺

Ỹ MY )

diag(M⊺
Ỹ MỸ )diag(M⊺

Y MY )
− #»

1 ∥2 (5)

Concerning the construction of MY and MỸ , we use CSLS (Lample et al., 2018) to induce them
from monolingual data, and then update them in an iterative fashion with Algorithm 1.

Algorithm 1: Bootstrapping Procedure
Input: MX ,MY ← population word embeddings of X and Y
Input: n← number of bootstrapping iterations ▷ simulation: n = 10; real data: n = 3
Input: fX→Y ← an identity matrix as initial mapping function
for i← 1 to n do

MỸ ← fX→Y (MX)
P← CSLS(MY ,MỸ ) ▷ induce permutation matrix
fX→Y ← EMD(PỸ ,PY )+g(MY ,PMỸ ) ▷ g is a function of our constraints (see Eq. 4+5)

end
Output: fX→Y

Connection with canonical correlation. Often, cross-correlation between random vectors are
computed using Canonical Correlation Analysis (CCA). Research showed that CCA is useful to
improve static embeddings, but it requires finding k primary canonical variables (Faruqui and Dyer,
2014). In contrast, our solution is much cheaper to compute cross-correlation without the need for
canonical variables (see Eq. 5).

Connection with language isomorphism. In graph theory, two graphs are called isomorphic when
the two corresponding adjacency matrices are permutation similar. According to Eq. 4, our solution
aims to minimize the difference between adjacency matrices, and as such lays the foundation of
graph isomorphism—which is termed language isomorphism in the multilingual community. Taken
together, our solution allows for yielding isomorphic multilingual subspaces for non-isomorphic
languages such as typologically dissimilar languages.

4. Experiments

4.1. Baselines and Our Approach

Supervised alignments. (a) Rotation (Aldarmaki and Diab, 2019; Zhao et al., 2021): a linear
orthogonal-constrained transformation; (b) GBDD (Zhao et al., 2020): subtracting a global language
bias vector from multilingual representations; (c) FCNN: an architecture that contains three fully-
connected layers followed by a tanh activation function each; (d) Joint-Align (Cao et al., 2020): jointly
aligning many languages via fine-tuning; (e) InfoXLM (Chi et al., 2021): finetuning multilingual
representations with translation language modeling and contrastive learning; (f) our Real-NVP.

Unsupervised alignments. (a) MUSE: the unsupervised variant of Rotation (Lample et al., 2018);
(b) VecMap: a heuristic unsupervised approach based on the assumption that word translations have
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similar distributions on word similarities (Artetxe et al., 2018); (c) vector space normalization (Zhao
et al., 2021): removing language-specific means and variances of multilingual representations. MUSE
and VecMap are popular unsupervised alignments on static embeddings; (d) our GAN-Real-NVP.
For bootstrapping procedure, we use the notation: [Method]+[Constraint], where [Method] is MUSE
or GAN-Real-NVP, and [Constraint] is Cross-Correlation or Graph-Structure or Procrustes—known
to enhance unsupervised alignment on static embeddings.

Except for Joint-Align, InfoXLM, and Normalization, the others are trained individually across
language pairs.

4.2. Validation Criterion

We present two validation criteria, and compare them with no-criteria (i.e., training for several
epochs) in both supervised and unsupervised settings. In particular, we induce the 30k most confident
word translations from monolingual data with CSLS, and then compute the two following criteria on
these word translations.

• Semantic criterion was proposed for guiding the training of unsupervised alignment on static
embeddings. Lample et al. (2018) assemble the 10k most frequent source words and generate
target translations of these words. Next, they average cosine similarities on these translation
pairs treated as validation criterion.

• Structural Criterion: we compute the difference between two ordered lists of singular values
obtained from source and target word embeddings pertaining to the 30k most confident
word translations. This criterion was initially proposed to measure language isomorphism
(Dubossarsky et al., 2020).

4.3. Simulation

Bilingual Lexicon Induction (BLI) is a popular internal task known to evaluate alignment on static
embeddings, as it covers ca. 100 language pairs and focuses on the understanding of the alignment
itself other than its impact on external tasks. In particular, BLI bases the induction of bilingual
lexicons on static word embeddings, and compares the induced lexicons with gold lexicons.

However, contextual embeddings lack such evaluation tasks. As Artetxe et al. (2020) state, when
not evaluated under similar conditions, the lessons learned from static embeddings cannot transfer to
contextual ones. To this end, we perform simulation to construct synthetic data as the contextual
extension of BLI (CBLI), which focuses on evaluating the alignment of multilingual subspaces of
contextualized embeddings.

We split CBLI data to train, validation and test sets, and report Precision@K, as in BLI evaluation.
Our creation procedure is two-fold: First, we sample source embeddings from a two-dimensional
Gaussian (normal) mixture distribution, and then perform different transformations on them to
produce target embeddings. By doing so, we mimic typologically dissimilar languages—see Figure 1.

As for the construction of simulation setups, we adjust three parameters: (a) the occurrence for a
word k, k ∈ {5,10, . . . ,100}—we use 20 words in all setups; (b) the degree of language isomorphism
t ∈ {1, . . . ,10}—which mimics different language pairs and (c) the distance ϵ between embeddings
in train and test sets, ϵ ∈ {0,0.2, . . . ,5}—which reflects different similarities between train and
test domains. For the i-th word, in order to reflect word occurrence, we sample contextualized
embeddings from a normal distribution N (µi,I) for train sets, and from N (µi + ϵ,I) for validation
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Figure 1: Eight figures are constructed in simulation. Each depicts two languages pertaining to two
subspaces, colored in blue and red. Each subspace consists of up to 3 densities with each representing
a word. Each density contains a number of data points sampled from a two-dimensional Gaussian
distribution, as a reflection of word occurrence.

and test sets, based on the insights from the visualized m-BERT space: different instances of a word
appear to follow a normal distribution (Cao et al., 2020). µi denotes a mean vector sampled uniformly
from [−5,5] for each component. For isomorphic languages (t = 1), we transform source into target
embeddings with a rotation matrix. For non-isomorphic languages (t > 1), we alternate rotation with
translation t times, assuming the more often we alternate, the more dissimilar two languages become.
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Figure 2: Absolute Pearson correlation between task performance and (a) word frequency (occur-
rence) and (b) similarity between train and test domains (the distance between embeddings on train
and test sets). We set frequency bins k ∈ {5,10, . . . ,100}, and similarity bins ϵ ∈ {0,0.2, . . . ,5}. We
set t to 1 in all isomorphic settings, and t to 5 in non-isomorphic settings. (c)+(d) compares the
generalization of approaches. Results are averaged across 10 runs.

Generalization to unseen words. Research showed that word frequency has a big impact on task
performance for static embeddings (Czarnowska et al., 2019). However, Figure 2 (a)+(b) show that,
in the contextual case, task performance often does not correlate with word frequency but strongly
correlates with domain similarities between train and test sets. On a side note, Figure 2(b) shows
that Rotation correlates poorly with embedding distance in “isomorphy”, but rather highly in “non-
isomorphy”. This is because isomorphic spaces can be perfectly aligned via Rotation, independent of
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the degree of embedding distance. For non-isomorphic spaces, the bigger the embedding distance is,
the worse Rotation performs, which results in a high absolute correlation.

Analyses by Glavaš et al. (2019) showed that linear alignments are much better than non-linear
counterparts on static embeddings. In the following, we contrast linear with non-linear alignments
on contextualized embeddings, aiming to understand in which cases one is superior to another.

In isomorphic settings, Figure 2 (c) shows that linear alignments, Rotation and MUSE, clearly
win in both supervised and unsupervised settings. This means a simple, linear transformation is
sufficient to align vector spaces for isomorphic languages. We mark this as a sanity test, as languages
mostly are non-isomorphic (Søgaard et al., 2018).

In non-isomorphic settings, Figure 2 (d) shows that non-linear alignments, Real-NVP and GAN-
Real-NVP, win by a large margin when train and test domains are similar. However, when train and
test domains are dissimilar, linear alignments are indeed better. As such, non-linear alignments suffer
from the issue of generalization.

Overall, we show that alignment on static and contextual embeddings yield different conclusions
on word frequency and the superiority of linear over non-linear alignments. By contrasting them, we
hope to provide better understanding on each.

No alignment - P@1: 2.3 Rotation - P@1: 45.0 MUSE - P@1: 41.3

Real-NVP - P@1: 64.3 FCNN - P@1: 68.0 GAN-Real-NVP - P@1: 51.3
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Figure 3: (I) shows how well two languages are aligned according to a visual introspection (subspace
overlaps) and Precision@1; (II) compares unsupervised approaches (MUSE and GAN-Real-NVP)
with the supervised counterparts (Rotation and Real-NVP) in non-isomorphic settings (t = 5). We
set the occurrence per word k to 100.

Importance of bootstrapping procedure for unsupervised alignment. Figure 3 (I) shows how
well two languages are aligned when train and test domains are similar. In this context, Real-NVP
and GAN-Real-NVP win, and the resulting vector spaces are better overlapped (aligned) than
others. This confirms the effectiveness of our density-based approaches. However, we still see a big
performance gap between supervised and unsupervised approaches, especially for Real-NVP (64.3)
vs. GAN-Real-NVP (51.3), notwithstanding large overlap in subspaces and small differences in
model architectures. This confirms that density matching alone is not sufficient. Figure 3 (II) shows
that after bootstrapping GAN-Real-NVP rivals Real-NVP. We also see similar results by contrasting
Rotation with MUSE. Cross-correlation helps best in all cases, while graph-structure and Procrustes
yield less consistent gains across approaches.

Overall, these results show that bootstrapping procedure plays a vital role in order for unsuper-
vised alignments to rival supervised counterparts.
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4.4. Experiments on Real Data

XTREME (Hu et al., 2020) has recently become popular for evaluating multilingual representations.
However, it does not address word-level alignment as CBLI and BLI do, but rather focus on how
multilingual representations impact cross-lingual systems. In this work, we evaluate both internal
and external strengths of alignment, i.e., the internal alignment results on CBLI, and the impact of
alignment on external tasks: (i) Align, RFEval and Tatoeba that require no supervised classifiers, and
(ii) XNLI that requires a supervised classifier. We outline these tasks in the following:

• CBLI is the contextualized extension of BLI. Both contain a bilingual lexicon per language
pair, but CBLI marks each occurrence of a word as an entry in lexicon. For each language pair,
we extract 10k word translations from parallel sentences using FastAlign (Dyer et al., 2013).
We report Precision@1. Note that we provide two complementary CBLI data: one is gold but
simulated, while the other is real but contains noises.

• Alignment (Align) is a bilingual word retrieval task. Each language pair contains gold standard
2.5k word translations annotated by human experts. We use SimAlign (Jalili Sabet et al., 2020)
to retrieve word translations from parallel sentences based on contextualized word embeddings.
We report F-score that combines precision and recall.

• Reference-free evaluation (RFEval) measures the Pearson correlation between human and
automatic judgments of translation quality. We use XMover (Zhao et al., 2019, 2020) to
yield automatic judgment, which compares system translation with source sentence based on
contextualized word embeddings. We exclude the target-side language model from XMover.
Each language pair contains 3k source sentences.

• Tatoeba is a bilingual sentence retrieval task taken from XTREME. Each language pair contains
1k sentence translations. Given a source sentence, we retrieve the nearest translation from
a pool of candidates based on cosine similarities between sentence embeddings. We report
Precision@1.

• XNLI is a cross-lingual transfer task taken from XTREME, which aims to infer the relationship
between a sentence pair of premise and hypothesis. Often, XNLI is evaluated in a zero-shot
transfer setup, which measures the transfer ability from source to target languages, with
cross-lingual systems trained on source language only. We report accuracy.

Tatoeba, CBLI and RFEval consist of six languages: German, Czech, Latvian, Finnish, Russian
and Turkish, paired to English. In this work, we train alignments for these language pairs. Align
considers two language pairs: German/Czech-to-English, and XNLI considers three: English-to-
German/Russian/Turkish, as the other languages are not available. We consider two choices of
multilingual representations: m-BERT and XLM-R.

Setup. To contrast supervised with unsupervised approaches, we consider two data scenarios: (i)
limited parallel data and (ii) no parallel data. In case (i), we sample 20k (compared to ca. 250k
often used in previous studies) parallel sentences from News-Commentary (Tiedemann, 2012) for
Russian/Turkish-to-English, and from EuroParl (Koehn, 2005) for other languages. We use FastAlign
to induce word translations from parallel sentences. Building upon these translations, we construct
a permutation matrix P as cross-lingual supervision. In case (ii), we unpair the word translations
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obtained from (i) by removing the use for the permutation matrix. As such, we compare supervised
and unsupervised approaches under similar conditions, viz., with similar scale of data.

How to select the best model. We compare two choices of model selection: (i) CBLI as validation
data and (ii) our validation criteria.

Figure 4 (I) shows that the results on CBLI and on other tasks correlate poorly (even negatively)
in both supervised and unsupervised settings. This means validation data is inappropriate for guiding
both supervised and unsupervised training.
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Figure 4: Pearson correlation between task performances (I) and between validation criteria and task
performance given by Real-NVP (II). Results are averaged across languages and encoders. For each
task, we collect model performances and criteria scores over 20 epochs.

Settings Alignments [−1,0] (0,0.4] (0.4,1]

Supervised
FCNN-20k 50% 0% 50%
Real-NVP-20k 33% 17% 50%

Unsupervised
MUSE-20k 17% 66% 17%
GAN-Real-NVP-20k 17% 50% 33%

Table 1: Correlation statistics: the last three columns split the Pearson’s ρ range into three intervals.
Each entry denotes the percent of task pairs in which the correlation between model performances is
in one of the intervals. For instance, the performances across tasks exhibit negative correlations in
17%-50% task pairs. For each task, we collect the model performances over 20 epochs. Results are
averaged across language pairs and encoders.

Table 1 reports correlation statistics across approaches, showing that the model performances
across tasks exhibit negative correlations in about 30% setups, i.e., the better the alignment performs
in one task, the worse it performs in the other. This means that (i) guiding contextualized alignment
with validation criteria is challenging, and (ii) the evaluation of validation criteria should consider
the performances in all tasks. As a running example, we evaluate the two validation criteria and
validation data (CBLI) treated as criterion, based on Real-NVP. Figure 4 (II) shows that both
validation criteria correlate much better than validation data with the model performances across
tasks. Further, semantic criterion wins by a large margin (0.86 versus 0.44 and -0.12). This means
semantic criterion is the best option for guiding Real-NVP. We also see similar results on other
approaches. Thus, we adopt semantic criterion to perform model selection in all setups.
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Overall, these results show that (i) not only are validation criteria important for guiding unsuper-
vised training, but also for guiding supervised training, and (ii) the evaluation of validation criteria
should be based on the model performances in all tasks.

4.5. Results on Real Data

Table 2 contrasts unsupervised with supervised approaches. For ease of reading, we provide the aver-
age results across languages, and break them down into individual languages in Table 4 (appendix).

m-BERT XLM-R
Alignments RFEval Tatoeba CBLI Align RFEval Tatoeba CBLI Align

Original 27.23 49.35 50.9 61.54 26.42 63.40 48.58 59.77

Supervised mapping functions
Rotation-20k 38.73 55.28 58.45 62.83 34.67 68.60 53.67 60.85
FCNN-20k (semantic criterion) 42.72 61.18 55.30 61.50 36.67 80.20 50.88 59.87
FCNN-20k (5 epochs) 38.40 58.97 54.02 61.02 33.50 77.98 50.48 59.50
Real-NVP-20k (semantic criterion) 42.32 62.87 57.62 62.59 44.17 80.08 61.63 62.84
Real-NVP-20k (5 epochs) 40.12 60.70 58.52 61.80 42.24 78.75 61.76 61.20
GBDD-20k 28.77 52.28 51.42 61.71 27.13 68.85 48.42 59.81
Joint-Align-100k (3 epochs) 41.23 59.13 64.67 62.30 - - - -
InfoXLM-42GB (150K training steps) - - - - 37.60 76.10 60.80 62.94

Unsupervised mapping functions
Normalization 30.08 61.28 54.88 62.54 39.52 79.75 59.03 62.55
VecMap-20k (∼500 epochs) 30.77 55.00 64.42 62.50 - - - -
MUSE-20k (5 epochs) 29.20 50.20 52.30 61.56 25.21 63.42 50.20 60.20
MUSE-20k (semantic criterion) 31.23 51.42 52.48 61.64 27.55 65.72 50.00 60.01
+ Cross-Correlation 35.25 52.90 52.87 62.63 32.05 69.23 49.80 60.49
+ Graph Structure 33.22 51.65 53.10 62.17 29.48 68.33 50.18 60.46
+ Procrustes 36.85 54.13 55.22 62.71 33.37 68.82 50.37 60.59
GAN-Real-NVP-20k (5 epochs) 32.24 59.10 56.79 61.80 39.61 77.77 60.83 60.90
GAN-Real-NVP-20k (semantic criterion) 33.90 61.20 57.03 62.33 41.72 79.67 61.00 62.81
+ Cross-Correlation 35.33 62.32 58.00 62.70 42.60 80.50 61.23 63.15
+ Graph Structure 34.32 61.82 56.65 62.52 41.55 80.02 60.83 62.99
+ Procrustes 36.93 53.95 56.05 62.79 33.78 67.95 51.60 60.51

Table 2: Results are averaged across language pairs. We bold numbers that significantly outperform
others according to paired t-test. Joint-Align uses 100k parallel data per language pair; others only
use 20k data. InfoXLM uses 42GB parallel data in total. Rotation, GBDD and Normalization with
closed-form solutions do not require validation criteria for model selection.

Supervised settings. FCNN and Real-NVP training for 5 epochs are worse than those training with
semantic criterion in almost all setups. This demonstrates the importance of validation criteria. We
find that, though Joint-Align training with 100k parallel data wins on internal CBLI, it is worse than
Real-NVP training with (i) merely 20k data and (ii) semantic criterion in the external tasks. This
means Joint-Align overfits CBLI. We see similar results by contrasting VecMap with GAN-Real-NVP.

We see that the gains from all alignments on Align are much smaller than on others. This might
be because SimAlign (used to induce word alignments) or the dataset cannot recognize the improved
contextualized embeddings after alignment.
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Real-NVP seems the strongest approach, which helps considerably for both m-BERT and XLM-R
and surpasses recent InfoXLM by a large margin. InfoXLM training with much larger parallel data
for 150k training steps cannot show advantages in the absence of validation criteria. Note that we
do not apply validation criteria to Joint-Align and InfoXLM for further improvements, as these
resource-intensive approaches have not been designed for low-resource languages, e.g., that the
improvements by Joint-Align appear to vanish in the setup of limited parallel data Cao et al. (2020).

Unsupervised settings. Validation criteria are crucial: MUSE and GAN-Real-NVP with semantic
criterion largely outperform those training for 5 epochs.

Much unlike the results in simulation, we see small performance gaps between supervised and
unsupervised approaches, such as the gap between Real-NVP and GAN-Real-NVP (2 points vs
13 points in simulation). Thus, it is not surprising that the gains from the bootstrapping procedure
are small in these tasks. Overall, we see cross-correlation is better than graph structure on MUSE
and GAN-Real-NVP. The results for Procrustes are similar as in simulation—it improves MUSE
but harms GAN-Real-NVP. GAN-Real-NVP training with semantic criterion and cross-correlation
always wins, rivaling the best supervised approach Real-NVP.

Overall, these supervised and unsupervised results show that (i) validation criterion plays an
essential role; (ii) density-based approaches targeting density matching and density modeling are
effective in both supervised and unsupervised settings, and (iii) after bootstrapping unsupervised
approaches are able to rival supervised counterparts.

m-BERT
Alignments DE RU TR

Original 70.3 68.2 60.0

Rotation-20k 70.6 68.1 60.5
FCNN-20k (semantic criterion) 70.8 68.1 59.9
Real-NVP-20k (semantic criterion) 73.6 72.7 62.9
Joint-Align-100k (3 epochs) 72.9 72.1 62.4

GAN-R-NVP-20k (semantic criterion) 73.5 72.2 61.5
+ Cross-Correlation 73.4 72.1 61.3
+ Graph Structure 73.4 72.3 61.2
+ Procrustes 70.4 68.3 60.2

Table 3: Results on XNLI in a zero-shot cross-lingual setup from English to German/Russian/Turkish.
After rectifying m-BERT with alignments we finetune m-BERT (coupled with a supervised classifier)
on XNLI English train data. We restrict the evaluation to 3 languages, as the other languages on
XNLI are not covered in our alignments.

Downstream Task. Table 3 shows the impacts of our approaches coupled with a supervised
classifier to perform zero-shot text classification on the downstream task XNLI. While Rotation
and FCNN yield better results in Table 2, their impacts vanish on XNLI. This might be because (i)
rectifying m-BERT with 20k parallel data is not adequate to reflect improvements on downstream
tasks, or (ii) alignment results may be orthogonal to downstream zero-shot performance. However,
Real-NVP and GAN-Real-NVP trained on the same scale of data with Rotation and FCNN exhibit
strong impacts on XNLI, on par with Joint-Align trained with 100k parallel data. Thus, 20k data is
sufficient for our approaches to yield improvements on XNLI.
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5. Conclusion

Given resource and typology disparities across languages, multilingual representations exhibit
unequal capabilities between languages. Research showed that contextualized alignments overcome
this challenge by producing language-agnostic representations. However, these techniques demand
large parallel data, and thus cannot address the data scarcity issue in low-resource languages. Our
contributions in this work are manifold. We start by introducing supervised and unsupervised density-
based approaches, Real-NVP and GAN-Real-NVP, both dissecting the alignment of multilingual
subspaces into density matching and density modeling in order to sufficiently leverage data. Second,
we investigate the usefulness of validation criteria for guiding the training process of our approaches.
Further, we present a bootstrapping procedure to enhance our unsupervised approach, which is
theoretically grounded for promoting equality of multilingual subspaces. We demonstrated the
effectiveness of our alignments in the scenarios of limited and no parallel data. With 20k parallel
data we provided, our supervised approach mostly outperforms Joint-Align and InfoXLM trained
on much larger parallel data. Next, we showed that validation criteria are imperative for guiding
both supervised and unsupervised training. Finally, we demonstrated that parallel data could be
removed without the loss of model performances after integrating our unsupervised approach in the
bootstrapping procedure.

6. Broader Impact

As a class of domain adaptation techniques, density-based approaches have been shown useful in a
range of cross-domain applications, such as image-captioning (Mahajan et al., 2020), image-to-image
translation (Grover et al., 2020), alignment on static embeddings (Zhou et al., 2019) and machine
translation (Setiawan et al., 2020). In this work, we showed that (i) density-based approaches could
overfit validation data in the absence of validation criteria, and are weak in generalization (see §4.3),
but (ii) bootstrapping procedures can improve these density-based approaches. While our analyses
are limited in scope to contextualized alignment as the only cross-domain application, we hope that
our results fuel future research towards effective domain adaptation techniques in other applications.
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Abstract
Evaluation in NLP is usually done by com-
paring the scores of competing systems inde-
pendently averaged over a common set of test
instances. In this work, we question the use
of averages for aggregating evaluation scores
into a final number used to decide which sys-
tem is best, since the average, as well as alter-
natives such as the median, ignores the pair-
ing arising from the fact that systems are eval-
uated on the same test instances. We illus-
trate the importance of taking the instance-
level pairing of evaluation scores into account
and demonstrate, both theoretically and em-
pirically, the advantages of aggregation meth-
ods based on pairwise comparisons, such as
the Bradley–Terry (BT) model, a mechanism
based on the estimated probability that a given
system scores better than another on the test
set. By re-evaluating 296 real NLP evalua-
tion setups across four tasks and 18 evaluation
metrics, we show that the choice of aggrega-
tion mechanism matters and yields different
conclusions as to which systems are state of
the art in about 30% of the setups. To facil-
itate the adoption of pairwise evaluation, we
release a practical tool for performing the full
analysis of evaluation scores with the mean,
median, BT, and two variants of BT (Elo and
TrueSkill), alongside functionality for appro-
priate statistical testing.

1 Introduction

Research is driven by evaluation results, with at-
tention and resources being focused on methods
identified as state of the art (SotA). The proper
design of evaluation methodology is thus crucial
to ensure progress in the field. In NLP, evalua-
tion usually consists in comparing the averaged
scores of competing systems over a common set
of test instances. Indeed, averaging scores inde-
pendently for each system and declaring the one
with the highest average to be best is particularly
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Figure 1: Motivating example (synthetic data). Eval-
uation scores of systems A, B, and C for five test in-
stances. All systems have the same mean. C is better
than A on all instances but one, so BT declares C > A
Also, B is better than A on all instances but one, so BT
declares B> A, whereas the median of A is greater, and
the means are the same. Overall, mean and median fail
to capture the complex instance-level pairing.

simple, well understood, and mirrors the expected
risk minimization paradigm used to train systems.

Here, we critically assess the specific choice of
the average to aggregate evaluation scores. In par-
ticular, we emphasize that there is a natural in-
stance-level pairing between the evaluation scores
of systems, which aggregation mechanisms such
as the mean or median fail to take into account: as
they produce a score for each system independently,
systems that have the same set of scores (but poten-
tially in different order) cannot be distinguished.

Consider the three systems A, B, and C compared
on five test instances in Fig. 1. Despite a complex
pairing structure, they all have the same mean score
across test instances. Moreover, even though B
is better than A on all test instances but one, the
median of A is greater than the median of B.

In this work, we discuss an alternative aggrega-
tion mechanism: the Bradley–Terry (BT) model
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(Bradley and Terry, 1952). BT compares sys-
tems for each test instance and estimates the latent
strength of systems based on how frequently one
system scores higher than another. Such paired
mechanisms have already been successfully used
to aggregate human judgments (Novikova et al.,
2018; Sedoc and Ungar, 2020); for example, WMT
evaluation protocols regularly employ TrueSkill
(Herbrich et al., 2007), a Bayesian variant of BT
(Sakaguchi et al., 2014).

Contributions. We contribute the first comprehen-
sive analysis of the BT model (especially vis-à-vis
mean and median) as an aggregation mechanism
for comparing system scores in NLP.

(i) We illustrate the importance of accounting for
instance-level pairing and discuss the conditions
under which the mean, median, and BT disagree
about the ordering of systems. In Sec. 3, we draw
parallels with the field of statistical testing, where
paired statistical tests are recommended when com-
paring paired variables. Thus, we argue that paired
aggregation mechanisms such as BT are more ro-
bust alternatives to the mean and median. We sup-
port this argument with simulations in Sec. 4.

(ii) We show that the differences between mean,
median, and BT matter in practice. By re-evalu-
ating 296 real NLP evaluation setups across four
tasks and 18 evaluation metrics, different aggrega-
tion mechanisms yield different conclusions as to
which systems are SotA in about 30% of the setups
(Sec. 5). These results hold when replacing BT by
the Elo (Elo, 1978) and TrueSkill variants.

(iii) We discuss further advantages and potential
limitations of BT, alongside possible resolutions,
in Sec. 7.

(iv) We recommend replacing the mean by BT
in future evaluations of NLP systems. To ease
the adoption of more robust aggregation mecha-
nisms, we release Pairformance,1 a practical tool
for performing full analyses of evaluation scores
with mean, median, BT, and two variants of BT
(Elo and TrueSkill). The tool reports paired evalua-
tion results alongside appropriate statistical testing
for all five aggregation mechanisms and various
visualization functionalities to elucidate the pairing
structure between system scores.

Code and data for replicating our analyses and
experiments is available online.2

1https://github.com/epfl-dlab/
pairformance

2https://github.com/epfl-dlab/BT-eval

2 Aggregation of evaluation results

In this section, we briefly present the three aggre-
gation mechanisms we consider.

2.1 Terminology
A standard evaluation setup typically consists of
four elements:

1. At least two systems, A and B, to compare,
with latent strengths λA and λB that we aim to
estimate.

2. A test set T =
{

(xl,yl) : l = 1, . . . ,n
}

consist-
ing of n test instances, where xl is the input
and yl is the ground-truth target output.

3. An evaluation metric M for scoring system
outputs based on target outputs yl , resulting
in the sequence of evaluation scores MA =
〈M(A(xl),yl) : l = 1, . . . ,n〉 for system A.

4. An aggregation mechanism Θ that decides
whether system A is better than B based on
the evaluation scores of the two systems. We
use ΘT,M(A,B) = Θ(MA,MB) to denote the
comparison mechanism between A and B on
the test set T with evaluation metric M. Here,
Θ outputs its guess about which system is the
best (or declares the comparison inconclusive
if the difference is not statistically significant).
For simplicity, we drop the dependency on T
and M in the notation, simply writing Θ(A,B).

For example in text summarization, xl is a source
document from the test set, yl its correspond-
ing reference summary, and M might be ROUGE

(Lin, 2004). The decision mechanism Θ usually
compares the individual systems’ mean evaluation
scores, where the system with the highest mean
score (here mean ROUGE score) is declared better.

Consistent evaluation result. We say that the out-
come of such an evaluation is consistent if it recov-
ers the ordering of systems implied by the inherent
strengths of systems: Θ(A,B) = A ⇐⇒ λA > λB.

Probabilistic model. As commonly done in the lit-
erature on statistical testing, we view the evaluation
scores of a system A as n indexed random variables:
X (l)

A , l = 1, . . . ,n, where n is the size of the test set.
Note that this sequence of random variables is not
necessarily i.i.d. Furthermore, even though systems
A and B are independent, their evaluation scores
are not, since there is an instance-level pairing. In-
tuitively, knowing the score of A on an instance
(xl,yl) can provide information about the expected
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performance of B. For example, if A scores highly
because (xl,yl) is an easy instance, one might ex-
pect B to also score highly.

2.2 Aggregation mechanisms
We now introduce three aggregation mechanisms Θ.
We investigate their properties in subsequent sec-
tions.

Mean. This is the current standard: the system
with the highest average score is declared the
strongest. We denote this aggregation mechanism
as MEAN. The average score of system A is com-

puted as EA = 1
n

n∑
l=1

X (l)
A .

Median. The median is an interesting alternative to
the mean because it is robust to outliers. Here, the
system with the highest median score is declared to
be the strongest. The median score MA of a system
A is the central value in the sorted list of evaluation
scores of A. We denote this aggregation mechanism
as MEDIAN.

Bradley-Terry. The third option examined here is
the Bradley–Terry (BT) model (Bradley and Terry,
1952). While MEAN and MEDIAN compute scores
for systems A and B independently, BT is a func-
tion of the joint random variable

(
X (l)

A ,X (l)
B

)
. BT

estimates the relative strengths λ̂A and λ̂B of the
two systems A and B, by comparing the evaluation
scores for each test instance:

P(A> B) =
λ̂A

λ̂A + λ̂B
. (1)

Intuitively, P(A> B) is the probability that, for any
given test instance, A scores higher than B. The BT
model chooses λ̂A and λ̂B in order to best explain
the observations. The system with the highest λ̂ is
declared strongest.

When considering only two systems, the la-
tent strength λ̂A is the number of instances for
which A scores better than B (and similarly for
λ̂B). When the number of systems is greater than
two, BT solves an iterative optimization algorithm
that is guaranteed to converge to a unique solu-
tion (Bradley and Terry, 1952). We give details
about BT and its computation in the general case
in Appendix E.

We denote as BT the decision mechanism based
on the BT model. While it is much less common
than MEAN and MEDIAN, we will see below that
BT satisfies interesting properties making it a more
robust alternative.

3 Comparison of assumptions

Since the roles played by A and B are symmetri-
cal, we now assume without loss of generality that
system A is better, i.e., λA > λB.

Proposition 1. If λA > λB then

• MEAN consistent ⇐⇒ EA−EB > 0,
• MEDIAN consistent ⇐⇒ MA−MB > 0,
• BT consistent ⇐⇒ MA−B > 0,

where ES and MS are the mean and median of the
evaluation scores of system S, and MA−B is the
median of the differences between the evaluation
scores of A and B. Note that ES,MS, and MA−B are
all random variables.

The proof is given in Appendix B. Note that,
whereas the expectation is linear (EA−EB = EA−B),
the median is not (in general, MA−MB 6= MA−B).

Robustness to ouliers. The mean is not robust to
outliers: EA−B can be swayed above or below the
threshold of 0 by a small number of test instances
for which the difference between system scores
is large. On the contrary, the median is a robust
statistic that cannot be easily influenced by outliers.
Similarly, BT is robust to outliers because its deci-
sion is based on the median of differences MA−B.

Importance of pairing. The critical difference
between BT, MEAN, and MEDIAN, is that only BT

preserves the pairing information. Both MEAN and
MEDIAN compute a statistic from the (unordered)
set of scores X (l)

A and X (l)
B independently and then

compare the aggregate statistics, losing the pairing
structure. If the pairing actually does not matter,
any permutation of the indices of system scores
leaves the distribution of paired evaluation scores
unchanged. This happens, for example, when both
X (l)

A and X (l)
B are i.i.d.3

However, in the general case, the pairing mat-
ters. One particular example is when there exist
different types of test instances and systems behave
differently for different types, e.g., when there are
easy instances on which all systems have higher
scores. For example, consider the three systems
and their evaluation scores on five test instances in
Fig. 1. System A is worse than C on all instances
but one, so C > A according to BT, yet the median
of A is greater than the median of C (10 vs. 7). At
the same time, B outperforms C on all instances

3More generally, when the two sequences of random vari-
ables are exchangeable.
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but one, so B >C according to BT. For MEDIAN

and MEAN, which ignore the pairing, A and B are
completely equivalent, even though there is a clear
difference regarding which system is more likely to
be the best. This difference is revealed in the pair-
ing structure. In general, any mechanism ignoring
the pairing cannot capture the difference between
A and B.

Choosing an aggregation mechanism. In Prop. 1,
we stated the conditions for each mechanism to be
consistent. Choosing an aggregation mechanism
for a specific evaluation setup boils down to de-
ciding what condition is more likely to hold in the
setup. Note that none of the conditions implies any
other condition in Prop. 1.

When comparing BT against MEAN (or ME-
DIAN), there are three possible scenarios: (i) BT

agrees with MEAN (or MEDIAN), (ii) BT is consis-
tent but MEAN (or MEDIAN) is not, and (iii) MEAN

(or MEDIAN) is consistent but BT is not.

In case (i), it does not matter whether we use BT

or MEAN (or MEDIAN).

In case (ii), for most instances, the better system
has a higher score than the worse system, but MEAN

(or MEDIAN) fails. For example, MEAN may be
swayed by outliers, and MEDIAN may be swayed
by jumps in score lists as in the example above.

In case (iii), for most instances, the better system
has a lower score than the worse system, yet par-
ticular variations in the marginals make the MEAN

or MEDIAN get the ordering correct. This is a very
peculiar scenario: for MEAN, it implies that on the
few instances on which the better system did bet-
ter, the difference between evaluation scores was
large enough to lift the mean of the better system
above the other. We argue that if one really be-
lieves that the evaluation setup is likely to be in
case (iii), then one does not trust the evaluation
setup in the first place. It corresponds to assuming
that the observed scores are inconsistent for the
majority of test instances. If this is the case, one
should rather improve the evaluation setup (e.g.,
metric, test set) in order to be more representative
of the phenomena that one desires to capture.

Overall, the condition making BT consistent ap-
pears to be the most natural one. Trusting MEAN

or MEDIAN more than BT implies holding an un-
intuitive belief about the evaluation setup, namely
that the better system does worse than the worse
system on a majority of test instances.

From another perspective, the random variables
EA−EB (MEAN) and MA−MB (MEDIAN) are less
likely to be (correctly) greater than zero in the pres-
ence of (i) complex pairing structures or (ii) out-
liers. The variable MA−B (BT), on the contrary, is
not affected by complex pairings or outliers.

3.1 Graphical criterion
Fig. 2 summarizes the problem of ignoring the pair-
ing and offers a graphical criterion to understand
the decisions made by MEAN, MEDIAN, and BT.
In each plot, the densities are estimated by placing
test instances at coordinates given by the evaluation
scores of the two systems. The evaluation scores
of A (green) are on the x-axis, and the evaluation
scores of B (blue) on the y-axis. We also plot the
marginal distributions of evaluation scores, from
which we can read off means and medians. When
the mean of X (l)

B is greater than that of X (l)
A , the two

extended lines representing the means meet in the
upper triangle (above the line XA = XB), and analo-
gously for the median. But mean and median being
only functions of the marginals, they completely ig-
nore the pairing. Fig. 2 illustrates this by depicting
three completely different pairing structures where
the marginals (and thus the means and medians)
of A and B remain unchanged. (In Appendix A.1,
we explain how to generate infinitely many such
examples.) On the contrary, BT, being a property
of the pairing (the 2D density), predicts that B is
better than A when there is more mass in the upper
triangle, i.e., more instances for which B scores
higher than A. In the middle figure, the pairing
indicates that A is better than B, in disagreement
with the decisions of MEAN and MEDIAN.

3.2 Connection with statistical testing
The above discussion about the differences between
MEAN, MEDIAN, and BT has interesting parallels
with statistical testing.

When comparing the means of two systems over
the same test set, the recommended statistical test
is the paired t-test (Fisher, 1935). When comparing
medians instead of means, the appropriate test is
the sign test, which measures whether the median
of the difference is significantly differerent from
zero. Interestingly, the statistic of the sign test
is precisely the one in the condition for BT to be
consistent (see Prop. 1). Wilcoxon’s signed-rank
test (Wilcoxon, 1945) is often used as an alternative
to the sign test because it has more statistical power
(at the cost of making more assumptions). However,
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Figure 2: These 2D plots represent the distribution of test instances with coordinates given by the scores of the two
systems being compared, i.e., the x-axis is the score X (l)

A of system A on some test instance (xl ,yl), and the y-axis is
the score X (l)

B of system B on the same instance. While the 3 plots represent different instance-level performances
of A and B, the marginal (unpaired) distribution of scores of A and B remain unchanged. From such 2D plots, not
only do we see the global structure of the pairing between the scores of A and B, we can also read off the decision
of MEAN, MEDIAN and BT based on simple geometrical criteria: (i) if the prolongation of the means intersect
above the XA = XB line, then MEAN predicts that A is better, (ii) if the prolongation of the medians intersect above
the XA = XB line, then MEDIAN predicts that A is better, (iii) if there is more mass in the upper-left triangle, then
BT predicts that system A is better. The latter case corresponds to most of the test instances being located in the
upper-left triangle (A> B). The half-space with more mass is shaded.

Divine et al. (2018) showed that Wilcoxon’s signed-
rank test does not always properly account for the
pairing of data, unlike the sign test.

When performing statistical testing, it seems ob-
vious that we should use the paired version of tests
when the data is naturally paired (Rankel et al.,
2011). Even works discussing statistical testing in
NLP recommend Wilcoxon’s signed-rank test (Gra-
ham, 2015; Owczarzak et al., 2012; Dror et al.,
2018). Yet, to obtain aggregated scores for sys-
tems, the community still mostly uses aggregation
mechanisms that ignore the pairing, such as MEAN.
MEDIAN is the outlier-resistant version of MEAN,
and BT is the paired variant of MEDIAN. Whenever
one recommends a paired test of medians, such as
the sign test or Wilcoxon’s signed-rank test, to ob-
tain p-values, one should use BT to compare system
scores.

4 Simulations with synthetic data

Next, we perform simulations to extend the anal-
ysis of the previous section to (i) N > 2 systems,
(ii) finitely many test samples, (iii) a practical im-
plementation of BT (for N > 2 systems, BT is an
iterative optimization algorithm, as discussed in
Appendix E).

We synthesize evaluation scores with various
properties starting with systems of predefined im-
plicit strengths λi. To create situations where the
pairing of evaluation scores matters, we introduce

multiple test instance types. For each type, systems
perform differently but still have the same relative
strength (P(A > B)), differing only by an added
offset. For example, the evaluation scores obtained
by A and B could be sampled from N (λA,σ)
and N (λB,σ) for one test instance type, and by
N (λA + ε,σ) and N (λB + ε,σ) for another type,
with ε being the offset. We sample evaluation se-
tups by varying the following properties: the num-
ber of systems, the number of test instances, the
percentage of outliers, the numbers of test instance
types, and the level of noise. This results in 2,880
simulated evaluation setups. In Appendix A.2, we
give the detailed algorithm and parameters used to
generate the data.

In Fig. 3, we report Kendall’s τ between the la-
tent scores λi and the aggregated scores estimated
by MEAN, MEDIAN, and BT. When the evaluation
setup does not present any difficulty (Fig. 3(a, b)),
all aggregation mechanisms work equally well
(within each other’s 95% error bounds), improv-
ing with more samples (Fig. 3(b)) and deteriorat-
ing with more systems (Fig. 3(a)). Unsurprisingly,
MEAN fails in the presence of outliers, whereas
MEDIAN and BT are unaffected (Fig. 3(c, e, f)).
When several types of test instances are considered,
MEDIAN begins to fail (Fig. 3(d)), which is made
worse when outliers are also present (Fig. 3(f)).
Overall, BT is more robust and does not fail when
the pairing matters Fig. 3(g, h).
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Figure 3: The y-axis is the Kendall’s τ correlation between latent scores λi of systems and the scores obtained
after aggregating simulated evaluation scores with MEAN, MEDIAN, or BT. Fig. 3(a) and Fig. 3(b) corresponds to
the intuitive case where no problem occurs (no outliers, no pairing issues). Fig. 3(c) adds outlier problems only,
and Fig. 3(d) adds pairing issues only by increasing the number of types of test instances. Fig. 3(e) and (f) show
the combined effect of outliers and pairing issues. Finally, Fig. 3(g) and Fig. 3(h) collect all the simulations. The
error bars represent 95% confidence intervals obtained with bootstrap resampling.

5 Analysis of empirical data

In this section, we perform large-scale experi-
ments using real evaluation scores from four NLG
tasks. For summarization, we use the TAC-08,
TAC-09, TAC-11 and CNN/DM (Hermann et al.,
2015) datasets. For machine translation, we use
the shared tasks of WMT-17 (Bojar et al., 2017),
WMT-18 (Ma et al., 2018), and WMT-19 (Ma et al.,
2019). For image captioning, we use the MSCOCO
(Lin et al., 2014) dataset, and for dialogue, we
use the PersonaChat and TopicalChat (Mehri and
Eskenazi, 2020) datasets. The evaluation scores
are obtained with a total of 18 different evaluation
metrics: BLEU-[1,2,3,4] (Papineni et al., 2002),
ROUGE-[1,2,L] (Lin, 2004), ROUGE-WE-[1,2]
(Ng and Abrecht, 2015), JS-[1,2] (Lin et al., 2006),
S3-[pyr, resp] (Peyrard et al., 2017), CIDEr (Vedan-
tam et al., 2015), Chrfpp (Popovic, 2017), ME-
TEOR (Lavie and Agarwal, 2007), MoverScore
(Zhao et al., 2019), and BERTScore (Zhang et al.,
2020). Some metrics are only available for some
task; e.g., CIDEr, METEOR are only available
for the image captioning task. We provide details
about datasets, metrics, and their statistics in Ap-
pendix A.3.

Overall, across datasets and metrics we have
296 evaluation setups, 73,471 pairs of systems, and
91,197 test instances. We also experiment with
sub-sampling different sizes of test sets (see Ap-
pendix A.3) to simulate varying train/dev/test splits
or cross-validation.

5.1 Comparison of BT, MEAN, and MEDIAN

In Table 1, we report the disagreement between ag-
gregation mechanisms over all the data with three
measures: the percentage of pairs ranked in a differ-
ent order (rescaled version of Kendall’s τ ), the per-
centage of setups where the state-of-the-art (SotA)
systems are different, and the percentage of se-
tups where the top 3 systems are different (com-
pared as sets). A significant fraction of pairs of
systems (about 10%) are ranked differently by dif-
ferent mechanisms. More importantly, top systems
are often different (in about 40% of setups for top
1 and 50% for top 3). We can conclude that the
choice of aggregation mechanism has a real impact
on evaluation outcome. The observed disagreement
between the three aggregation metrics implies that
we are not in the case depicted by Fig. 3(a) and
Fig. 3(b), i.e., the pairing matters and there are out-
liers in real data. In the next paragraphs, we break
down the disagreement per evaluation metric, task,
and test set size. Detailed results are provided in
Appendix C.

Which metrics are impacted most? We report
in Fig. 4(a) the percentage of disagreement between
aggregation mechanisms per metric averaged over
datasets, when subsampling test sets of different
sizes uniformly (see Appendix A.3 for details).
While most metrics are available for all four tasks,
METEOR and CIDEr are only available for the
captioning task. Therefore, the observed disagree-
ments for these metrics may be a feature of the task
instead of the metrics. Interestingly, recent metrics
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Disagree 6= SotA 6= Top-3

MEAN vs.MEDIAN 4% 18% 30%
MEAN vs. BT 9% 40% 49%
MEDIAN vs. BT 9% 41% 55%

Table 1: Disagreement between aggregation mecha-
nisms. The first column shows the percentage of sys-
tem pairs ordered differently by two aggregation mech-
anisms. The second column shows the percentage of
setups where two aggregation mechanisms find differ-
ent SotA, and the third column shows the percentage of
setups where the top-3 systems are different (compared
as sets).

such as BERTScore and MOVERScore seem less
affected. On the other hand, BLEU variants are
the most impacted, particularly when comparing
MEAN or MEDIAN against BT. The disagreement
between MEAN and MEDIAN is stable across met-
rics. In general, MEAN and MEDIAN are more in
agreement with one another than they are with BT,
which indicates that pairing issues have a stronger
effect than outliers.

Which tasks are impacted most? Fig. 4(b) sum-
marizes an analysis as above, but across tasks in-
stead of metrics. Again, to control for the fact that
some tasks may have larger datasets, we subsample
uniformly from various test set sizes. The results
are averaged over evaluation metrics. Machine
translation and summarization suffer the least while
dialogue and image captioning display larger dis-
agreement between aggregation mechanisms. This
suggests important future research directions to
improve the evaluation setups in these tasks.

Importance of dataset size. In Fig. 4(c), we re-
port disagreement across test set sizes, while av-
eraging over datasets and evaluation metrics. It
is reassuring to observe that with larger test sets,
the different mechanisms tend to agree more, such
that it matters less which one is actually chosen.
However, for MEAN vs. BT and MEDIAN vs. BT,
the disagreement does not continue to decrease be-
low 10% with more test instances. For MEAN and
BT the disagreement is lower but exhibits the same
behavior, never falling below a certain threshold.

Different perspectives on uncertainty. In stan-
dard evaluation setups, not only system scores are
reported but also whether the differences are sta-
tistically significant (Dror et al., 2018). Therefore,
we ask how often differences that are statistically
significant for one test are also statistically signif-

icant for another. The details of this experiments
are presented in Appendix D and show, perhaps un-
surprisingly, different behavior for different tests.
In particular, the paired t-test is the one that most
often finds differences to be significant (for 41%
of pairs); Mood’s test, an unpaired test to compare
medians, finds significance for only 21% of pairs;
and the sign test and Wilcoxon’s sign-rank test (re-
lated to BT) are in between (for 35% and 40% of
the pairs, respectively).

Sources of disagreement. Based on the analysis
of Sec. 3, we know that the difference between
MEAN and MEDIAN is due to the presence of sta-
tistical outliers, while the difference between ME-
DIAN and BT is due to the presence of different
test instance types (Fig. 3). With real NLP datasets,
in Fig. 4, we observe some discrepancy between
MEAN and MEDIAN, indicating the presence of out-
liers. There is even more disagreement between
MEDIAN and BT, indicating the presence of differ-
ent types of test instances, as illustrated in Fig. 3.

6 Related work

Several studies have made a critical assessment
of the standard evaluation methodologies. For ex-
ample, Freitag et al. (2020) demonstrate the ad-
vantages of carefully choosing which references
to use for NLG evaluation. Mathur et al. (2020)
show that outliers matter in practice. Recently, Gra-
ham et al. (2020) draws attention on test set size.
Several works have emphasized the importance
of careful statistical testing (Rankel et al., 2011;
Owczarzak et al., 2012; Graham, 2015; Dror et al.,
2018). They recommend paired statistical tests.
Finally, Novikova et al. (2018) report that “rela-
tive rankings yield more discriminative results than
absolute assessments”, which further motivates ag-
gregation mechanisms like BT.

Aggregations. Pairwise comparison mechanisms
date back to Thurstone (1927). Subsequently, the
Bradley-Terry (BT) model has become a standard
pairwise comparison model (Bradley and Terry,
1952). In NLP, BT-inspired mechanisms have
sometimes been used to aggregate human assess-
ments. For instance, Deriu et al. (2020) ranked
chatbots regarding their ability to mimic conversa-
tional behavior of humans. Item response theory
(IRT) has a similar formulation as BT, but also
estimates the difficulty of each test instances us-
ing a latent-variable Bayesian model (Dras, 2015).
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Figure 4: This figure measures the percentage of disagreement between each pair of aggregation mechanisms
across different dimensions with real evaluation setups. Fig. 4(a) shows the disagreement per evaluation metric
averaged over tasks and uniformly subsampled test set sizes, Fig. 4(b) shows the disagreement per task averaged
over evaluation metrics and uniformly subsampled test set sizes, and Fig. 4(c) shows the disagreement across test
set sizes averaged over tasks and evaluation metrics.

IRT has been applied to perform dataset filtering
(Lalor et al., 2016, 2019), evaluate chatbots from
human assessments (Sedoc and Ungar, 2020), and
aggregate human assessments in machine transla-
tion (Dras, 2015). Elo (Elo, 1978) and TrueSkill
(Herbrich et al., 2007) are famous extensions of
the BT model commonly used to rate players in
the context of gaming or sports events. Elo views
player strengths as normally distributed random
variables. TrueSkill is a Bayesian variant of Elo.
Since 2015, the Workshop on Machine Translation
(WMT) has been using TrueSkill to rank models
based on human assessments following the method-
ology of Sakaguchi et al. (2014). We provide a
detailed presentation and comparison of BT, Elo,
and TrueSkill in Appendix G, and make both Elo
and TrueSkill available as alternatives to BT in the
released tool. The arguments in favor of BT made
in this work transfer to its variants, including IRT,
Elo, and TrueSkill, and the conclusions drawn from
the experiments of Sec. 5 still hold when replacing
BT by Elo or TrueSkill (Appendix G). Our work
extends previous works that has considered BT vari-
ants by analyzing the potential causes for disagree-
ment with MEAN and MEDIAN and by measuring
the disagreement in real NLP evaluation setups.

7 Discussion

We briefly discuss some possible questions raised
by the use of BT-like metrics, with more details
provided in Appendix E, F, G, and H.

Extension to other evaluation setups. The exper-
iments of Sec. 5 focus on reference-based NLG
evaluation metrics. However, the arguments laid
out throughout the paper apply beyond this setup.
Any comparison of systems based on score aggre-
gation is susceptible to suffer from outliers and
complex pairing structures (e.g., Fig. 2). Future
work should replicate our experimental setup for
reference-free NLG (Zhao et al., 2020), classifica-
tion, or regression tasks.

Type imbalance. Imagine a test set with a major-
ity of easy instances and few hard ones. A system
A could perform slightly worse than B on easy in-
stances but much better on hard ones and will be
declared worse by BT. If one views this decision
as problematic then one should probably acknowl-
edge that the test set is not representative of what
should be measured. If hard instances matter more
there should be a majority of them in the test set.
Hoping that MEAN will be swayed to output the
intuitive ordering of systems from a minority of test
instances is a peculiar expectation to have about the
evaluation setup. To diagnose such pathological
cases, our tool, Pairformance, offers the possibility
to view pairwise plots (as in Fig. 2) and histograms

154



2309

of score differences. More generally, better ag-
gregation mechanisms such as BT do not solve all
potential problems of evaluation methodologies.
Other aspects (such as choosing evaluation metrics
or meaningful, representative, and large test sets)
are all independent of the choice of aggregation
mechanism, but also critical to the quality of the
evaluation.

Transitivity. BT is not computed independently
for each system, and it can happen that adding or
removing a baseline impacts the scores of other sys-
tems. We explain this phenomenon in Appendix F
and show that it is rarely a problem in real data.
More generally, we discuss the connection with
Arrow’s impossibility theorem in the context of the
aggregation of social preferences (Arrow, 1950).
The Pairformance tool gets around this difficulty
by offering the possibility of analyzing each pair
of systems independently.

Relaxing assumptions. BT assumes that the rel-
ative strengths of systems remain constant across
test instances. This might not always be true, es-
pecially when some systems are crafted for some
specific kind of instances but perform badly on oth-
ers. In such cases, BT still produces meaningful and
easily interpretable results but fails to capture the
latent structure of system strengths. Several refine-
ments of BT are possible; e.g., item response theory
extends BT by modeling instance difficulty, and Elo
and TrueSkill allow system strengths to be stochas-
tic and vary across instances. These refinements
come at the cost of introducing new parameters,
and it remains unclear how to choose these param-
eters in practice. Future work should investigate
systematic ways to choose these parameters.

Tool description. We release Pairformance, a tool
for performing full diagnostic analyses based on
an evaluation dataframe made of the evaluation
scores of systems and baselines. It can perform
the analysis based on MEAN, MEDIAN, BT, Elo,
and TrueSkill. For each aggregation technique, it
outputs a full pairwise analysis of all pairs of sys-
tems. For MEAN and MEDIAN it compares score
differences for pairs of systems. For BT, Elo, and
TrueSkill, it estimates the probability that one sys-
tem is better than another. All analysis is accompa-
nied by appropritate statistical testing. See Fig. 5
for an example based on the BT mechanism. Fur-
thermore, the tool can plot the histogram of paired
differences X (l)

A −X (l)
B , allowing for the direct iden-
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Figure 5: Pairwise system comparison with BT for ma-
chine translation with ROUGE-1, as output by the Pair-
formance tool released as part of this work.

tification of pathological patterns such as those
discussed above.

8 Conclusion

We performed a critical assessment of the standard
NLP evaluation methodology based on averaged
scores, which ignores the natural instance-level
pairing of evaluation scores when comparing sys-
tems. We showed the importance of the pairing and
demonstrated the advantages of paired mechanisms
such as Bradley–Terry (BT) over more standard ag-
gregation schemes such as the mean or median.
The choice of aggregation mechanism matters in
real evaluation setups, and we therefore recom-
mend BT as a robust aggregation mechanism. To
facilitate adoption, we release Pairformance, a new
tool to perform full analyses of system scores using
BT and two of its variants, Elo and TrueSkill.
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type 1 type 2 type 3 type 4 type 5

S 23 50 40 70 60
B 28 45 30 65 50

Table 2: Example of two systems S and B with their
strengths λti,S and λti,B, i∈ [1,5] associated to each type
of test instances. types.

A Reproducibility

In this section, we give additional details to ensure
the reproducibility of our experiments. Further-
more, the code and data to reproduce each fig-
ure and table of the main paper is available at:
https://github.com/epfl-dlab/BT-eval.

A.1 Pairing examples

It is straightforward to generate examples where
the marginal distribution of the evaluation scores
of two systems remain unchanged even when the
pairing varies.

To do so, one can define k types of test instances.
For each type ti, each system has a probability dis-
tribution of scores for this type: N (λti,S,1). So for
instances of type ti, the system S has score λti,S in
expectation with a variance of σ2 = 1. Similarly,
another system B can have different λti,B parame-
ters. An example is given in Table 2.

Now, observe that permuting the columns of S
without changing the row B leaves the marginal
distribution of S and B unchanged but changes the
pairing. Then, one can simply iterate over all per-
mutations of the row S to obtain many different
pairings with fixed marginal distributions.

A.2 Simulation

We discuss the synthetic data and experiments de-
picted in Fig. 3.

To introduce pairing issues, we create a variable
number of test instance types: Ntypes. For each
test type, each system has a different distribution
of scores. On test type ti, the system s j has a nor-
mal distribution of scores: N (λi, j,σ

2), where we
fix σ2 = 1 throughout our experiments. For each
system, the λi, j are sampled uniformly from [0,1].
Depending on the values of λi, j, the score distribu-
tion of system s j can become multimodal. When,
there is only one test type, the score of each sys-
tem s j is a normal N (λ j,σ

2). In that case, the
pairing can be ignored and MEAN and MEDIAN are
expected to work well.

For outliers, we define f as the fraction of test
instances on which systems’ scores are not drawn
from their distribution scores. For such instances,
we first draw the scores for each systems according
to their distribution and then perform a random
permutation, so that each system receives a score
that is not sampled from its score distribution.

Then, we vary the number of systems present
in the evaluation Nsys and the number of test in-
stances M. Each choice of Ntypes, f ,Nsys, and M
gives a dataframe corresponding to an evaluation
setup on which we can compare MEAN, MEDIAN,
and BT against the true latent strengths of systems
λi, j. The evaluation and the y-axis in Fig. 3 is
then the Kendall’s τ between the ordering resulting
from MEAN, MEDIAN, or BT against the ordering
resulting from the λi, j.

We consider the following variations for the pa-
rameters of the experiments:

• Ntypes ∈ {1,3,5,10},
• f ∈ {0.,0.01,0.025},
• Nsys ∈ {2,3,5,10,25,50},
• M ∈ {10,30,100,200}.

In total, we have: 4 · 3 · 6 · 4 = 288 parameter
choices. For each we sample 10 datasets result-
ing in 2,880 synthetic evaluation setups.

A.3 Real data
Each of the dataset we use contains the evaluation
results of a varying number of systems for a varying
number of evaluation metrics:

Summarization: CNN/DM (Hermann et al.,
2015): 11,432 test instances, 12 summarization
systems, and 13 evaluation metrics. TAC-08: 48
test instances, 58 summarization systems, and 13
evaluation metrics. TAC-09: 44 test instances, 55
summarization systems, and 13 evaluation met-
rics. TAC-11: 44 test instances, 50 summarization
systems, and 13 evaluation metrics. Captioning:
MSCOCO (Lin et al., 2014): 40,504 test instances,
12 systems, and 7 evaluation metrics. Dialogue:
Topical-Chat (Mehri and Eskenazi, 2020): 60 test
instances, 5 systems, and 13 evaluation metrics.
Persona-Chat (Mehri and Eskenazi, 2020): 60 test
instances, 4 systems, and 13 evaluation metrics.
MT: WMT-17 (Bojar et al., 2017): evaluated with
11 evaluation metrics, we have the following pairs:
lv-en (2,001 instances, 9 systems), de-en (3,004
instances, 11 systems), ru-en (3,001 instances, 9
systems), tr-en (3,007 instances, 10 systems), and
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zh-en (2,001 instances, 16 systems). WMT-18 (Ma
et al., 2018): evaluated with 13 evaluation metrics
we have the following pairs: de-en (2,998 instances,
16 systems), et-en (2,000 instances, 14 systems),
fi-en (3,000 instances, 9 systems), ru-en (3,000 in-
stances, 8 systems), and zh-en (3,981 instances,
14 systems). WMT-19 (Ma et al., 2019): evalu-
ated with 13 evaluation metrics we have the fol-
lowing pairs: de-en (2,000 instances, 16 systems),
fi-en (1,996 instances, 12 systems), gu-en (1,016
instances, 12 systems), kk-en (1,000 instances, 11
systems), lt-en (1,000 instances, 11 systems), ru-
en (2,000 instances, 14 systems), and zh-en (2,000
instances, 15 systems).

The evaluation metrics considered are: BLEU-
[1,2,3,4] (Papineni et al., 2002), ROUGE-[1,2,L]
(Lin, 2004), ROUGE-WE-[1,2] (Ng and Abrecht,
2015), JS-[1,2] (Lin et al., 2006), S3-[pyr, resp]
(Peyrard et al., 2017), CIDEr (Vedantam et al.,
2015), Chrfpp (Popovic, 2017), METEOR (Lavie
and Agarwal, 2007), MoverScore (Zhao et al.,
2019), and BERTScore (Zhang et al., 2020). This
is a total of 18 metrics.

Sub-sampling test set sizes. In experiments re-
ported by Fig. 4 the results are averaged after re-
sampling test sets of different sizes. The test set
sizes used are: [10,50,100,500,1000,5000]. Re-
sults broken down per dataset and per metric that
does not need resampling of test set sizes is pro-
posed in Appendix C.

A.4 Implementations

We implement BT with scipy.org and numpy. For
the statistical tests, we use the default implemen-
tation from scipy.org. For Elo, we implement a
wrapper around existing code: https://github.

com/ddm7018/Elo. Similarly, for TrueSkill, we im-
plement a wrapper around existing code: https:

//pypi.org/project/trueskill/.

B Proof of Proposition 1

Proof. We observe that the case of the MEAN and
the MEDIAN are direct by definition.

MA−B > 0 is equivalent to saying that for more
than 50% of instances, X (l)

A > X (l)
B , i.e., A is better

than B on more than 50% of instances. On the
other hand, BT correctly gives A better than B ⇐⇒
P(A> B)> P(B> A) ⇐⇒ P(A> B)> 1

2 , i.e., A
is better than B on more than 50% of instances. So,
BT is consistent ⇐⇒ A is better than B on more
than 50% of instances ⇐⇒ MA−B > 0.

C Disagreement breakdown

Compared to experiments in the main paper, we
provide a more detailed breakdown of the disagree-
ment in Table 3.

D Different view on uncertainty

As argued in the main paper ( Sec. 3.2), the choice
of aggregation mechanism bears strong similarities
with the choice of statistical test. Thus, we measure
in how many setups difference between systems
that are statistically significant according to one
test are also significant according to another.

We compare: paired t-test (usually to compare
means), the Mood’s median test, and the sign test
(consistent with BT). We also add the Wilcoxon
sign-rank test as it was often recommended by pre-
vious work (Owczarzak et al., 2012; Dror et al.,
2018).

In Fig. 6, we plot the frequency with which test
j yields a significant difference among the pairs
of systems for which the test i has already yielded
a significant difference. The diagonal depicts the
overall percentage of pairs of systems for which
the test finds a significant difference. Note that the
matrix is not symmetric.

Interestingly, when the Mood’s median test says
the difference between two system is significant,
98% of the times it is also the case for the paired
t-test and 89% of the times it is also the case for
the Sign test. So the Mood’s median is the most
restrictive, finding less often significant difference
than the other two. In comparison, the Sign test
and the Wilcoxon’s sign-rank test find significant
differences between systems much more frequently.
In general, the paired t-test is the one finding dif-
ferences the most frequently.

E Details about the Bradley–Terry model

Given a pair of systems Si and S j, the Bradley–
Terry model estimates the probability pi, j that the
system Si is better than the system S j based on their
relative strengths: λi

λi+λ j
.

BT estimates these parameters λi for each of the
n systems from the observed results of evaluation.
We denote as ωi, j the number of instances for which
Si scores higher than S j. Note that, in our setup,
there is one comparison per test instance. In the
main paper, we said that the solutions for λ̂ are
found in closed-form for n = 2. When the number
of systems is greater than 2, the parameters are
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BLEU ROUGE ROUGE-WE MoverScore BERTScore
Mean/BT Med/BT Mean/Med Mean/BT Med/BT Mean/Med Mean/BT Med/BT Mean/Med Mean/BT Med/BT Mean/Med Mean/BT Med/BT Mean/Med

TAC08
Disagree. .09 .13 .15 .07 .13 .14 .12 .06 .13 .05 .11 .12 .05 .11 .12
6= SotA .43 .73 .47 .33 .52 .47 .58 .20 .47 .10 .50 .47 .13 .17 .27
6= Top3 .73 .77 .77 .61 .80 .81 .87 .65 .80 .43 .73 .70 .60 .93 .87

TAC09
Disagree. .08 .13 .13 .08 .16 .16 .07 .15 .16 .06 .14 .13 .06 .12 .12
6= SotA .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6= Top3 .70 .70 .70 .63 .87 .82 .48 .73 .75 .33 .70 .70 .43 .73 .67

TAC11
Disagree. .07 .12 .12 .06 .13 .12 .05 .13 .12 .04 .11 .10 .04 .11 .10
6= SotA .37 .67 .50 .42 .64 .61 .33 .67 .65 .40 .63 .63 .27 .73 .63
6= Top3 .73 .87 .83 .58 .88 .87 .60 .93 .92 .57 .87 .80 .43 .87 .83

CNN/DM
Disagree. .14 .17 .12 .08 .07 .02 .06 .05 .02 .07 .06 .08 .08 .08 .04
6= SotA .53 .80 .83 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00 .00
6= Top3 .97 .97 .90 .73 .49 .24 .90 .42 .48 .00 .00 .00 .90 .90 .06

WMT17
Disagree. .07 .08 .05 .07 .07 .04 .07 .08 .04 .03 .04 .03 .03 .04 .03
6= SotA .17 .19 .14 .28 .42 .23 .35 .40 .19 .22 .15 .24 .15 .22 .24
6= Top3 .43 .57 .40 .56 .63 .29 .57 .67 .40 .26 .37 .37 .23 .27 .33

WMT18
Disagree. .09 .09 .03 .11 .11 .04 .12 .12 .04 .06 .06 .04 .06 .06 .03
6= SotA .67 .63 .24 .55 .65 .26 .61 .67 .66 .47 .49 .18 .43 .47 .31
6= Top3 .77 .74 .25 .56 .69 .39 .66 77 .40 .57 .58 .33 .57 .58 .19

WMT19
Disagree. .07 .08 .04 .10 .11 .04 .11 .11 .05 .05 .04 .05 .04 .04 .05
6= SotA .32 .36 .25 .44 .45 .18 .46 .48 .16 .32 .25 .33 .31 .17 .35
6= Top3 .54 .42 .30 .48 .54 .30 .51 .54 .33 .54 .41 .46 .39 .26 .39

TC
Disagree. .26 .22 .34 .24 .19 .24 .27 .28 .22 .28 .19 .29 .18 .24 .20
6= SotA .53 .43 .66 .52 .46 .40 .53 .63 .45 .63 .33 .53 .30 .40 .27
6= Top3 .57 .60 .63 .57 .56 .60 .62 .55 .47 .63 .60 .60 .53 .57 .57

PC
Disagree. .28 .24 .32 .25 .23 .22 .21 .22 .22 .12 .20 .19 .13 .12 .13
6= SotA .50 .50 .63 .42 .53 .43 .28 .33 .30 .33 .47 .50 .30 .37 .43
6= Top3 .33 .33 .43 .42 .60 .55 .37 .72 .63 .23 .30 .27 .27 .20 .07

MSCOCO
Disagree. .20 .18 .12 .18 .14 .03 - - - - - - - - -
6= SotA 1.0 1.0 .00 .03 .03 .00 - - - - - - - - -
6= Top3 1.0 1.0 .17 1.0 1.0 .47 - - - - - - - - -

Table 3: Disagreement between aggregation mechanisms per dataset and per metric.
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(BT)

Sign test
(BT)

Mood’s test
(Median)

paired t-test
(Mean)

0.42 0.50 0.74 0.94

0.98 0.21 0.89 0.98

0.89 0.55 0.35 0.90

0.96 0.51 0.76 0.41

Figure 6: In this matrix, the cell in row i and column
j indicates the frequency with which the test j finds
a difference significant among the pairs of systems for
which the test i has found the difference significant. For
example, when the Mood’s median test finds a signifi-
cant difference between a pair, 98% of the times, the
paired t-test also finds the difference significant.

found by an iterative optimization algorithm that
maximizes the following log-likelihood:

L (λ) =
n∑

i=1

n∑

j=1

ωi, j log(λi)−ωi, j log(λi +λ j),

(2)
where λ= [λ1, . . . ,λn].

Denote Wi as the number of comparison in which
system i is better: Wi =

∑
jωi, j. Then, the algo-

rithm iteratively performs the following two up-

dates (at step t):

λ̂i = Wi


∑

i6= j

ωi, j +ω j,i

λ
(t)
i +λ

(t)
j



−1

, ∀i, (3)

λ
(t+1)
i =

λ̂i∑
k λ̂k

, ∀i. (4)

It can be shown that starting from a random λ this
algorithm improves the log-likelihood at every iter-
ation and converges to a unique maximum.

For the practical implementation, only a thresh-
old ε defining when to stop has to be decided. We
choose to stop iterating when at step t, if the new
vector of parameter λ remains close to the previous
one: ‖λ(t+1)−λ(t)‖2 < ε. Throughout our experi-
ments, we always set ε= 1 ·10−9.

F Transitivity with BT and Arrow’s
theorem

One possibly counter-intuitive behaviour of BT is
that adding or removing a baseline can impact the
scores and ordering of other systems. For example,
consider two systems A and B with the following
scores: MA = [1,2,3] and MB = [2,3,1]. Then,
BT identifies system B has better with a relative
strengths of 2

3 . Now suppose another system C is
added with scores MC = [3,2,1], running BT on
these 3 systems together gives the result that all
systems have an equal strength, so now B is not
seen as better than A.
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We search for triple of systems which exhibit
this pattern in our data and couldn’t find any as
long as we use more than 10 test instance.

Can we hope to fix this weakness? Arrow’s im-
possibility theorem says no (Arrow, 1950). Our
setup matches very well the problem of aggregat-
ing social preferences from voters. In this context,
Arrow (1950) proved that no aggregation mecha-
nism with more than 2 voters and 3 possibilities can
simulataneously meet the 3 following criterion: (i)
monotonicity: if every voter prefers X over Y , then
the aggregation ranks X above Y , (ii) (IAA) the
aggregated preference between X and Y should re-
main unchanged if voter preferences between other
pairs change, and (iii) no dictators: the outcome is
not decided by a single voter. In our framework,
voters are test instance and preferences are given
by the evaluation metrics. BT can fail on the second
criteria, and MEAN and MEDIAN can be dictatorial
(as seen in the paper). A way around this problem
is to remain with pairwise comparisons of systems
n< 3 and use BT. In that case, there is no possibil-
ity for BT to fail on IIA.

G Variants of BT: Elo and TrueSkill

BT has been extended in various ways. We discuss
here two important variants that we incorporate in
our analysis tool: Elo and TrueSkill.

G.1 Elo ratings
The Elo rating (Elo, 1978) is variant of the BT
with an online update rule, i.e., the rating of sys-
tems (players) is updated as new test instances (new
games) arrive. As BT, Elo computes the probability
that systems Si beats system S j. Now, the t-th test
instance arrives and system Si receives the score si

and system S j receives the score s j. We update the
rating R based on this observed difference δi, j:

R(t+1)
k = R(t) + K

(
δi, j−

Qi

Qi + Q j

)
, (5)

where K is parameter that has to be chosen, R the
rating of some system, and Q plays a role analo-
gous to λk in BT. K controls how much each new
instance can change the ratings. It can be shown
that, implicitly, Elo corresponds to a version of BT

where the strength of systems is represented by a
normal distribution: λi + εi, εi ∼N (0,σ2), with
a variance σ2 shared by all players (Elo, 1978). In
our implementation, we provide the user with the
ability to choose K and set it to 20 by default.

Disagree. 6= SotA 6= Top-3

MEAN vs. MEDIAN 4% 18% 30%
MEAN vs. BT 9% 40% 49%
MEDIAN vs. BT 9% 41% 55%
MEAN vs. Elo 20% 55% 84%
MEDIAN vs. Elo 19% 56% 84%
MEAN vs. TrueSkill 18% 44% 76%
MEDIAN vs. TrueSkill 17% 46% 79%
BT vs. Elo 16% 38% 75%
BT vs. TrueSkill 18% 53% 72%
Elo vs. TrueSkill 18% 45% 71%

Table 4: Global disagreement (as in Table 1) be-
tween aggregation mechanisms repeated with Elo and
TrueSkill.

G.2 TrueSkill
TrueSkill (Herbrich et al., 2007) is Bayesian variant
of the Elo rating system. It also updates the ratings
of systems online, i.e., ratings change as new test
instances arrive. Now, the strength of a system Si

is represented by a normal distribution, N (λi,σ
2
i ).

In contrast to Elo, each player has its own variance.
The update follows Bayes rule, but is intractable
in general, so message passing approximation are
often employed.

H Comparison of Elo, TrueSkill, and BT

We repeat the experiments of Table 1 from the main
paper by replacing BT with Elo and TrueSkill with
their default parameters. The results are shown in
Table 4. With Elo and TrueSkill, the same conclu-
sions from the main paper hold, i.e., paired aggrega-
tion mechanisms exhibit significant disagreement
with MEAN and MEDIAN. Some discrepancies be-
tween BT, Elo, and TrueSkill remain which calls for
further investigations about which one to choose.
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de-zh ro-en et-en ru-de

source.ap-scores 9% 14% 7% 3%
source.auc-scores 3% 7% 9% 0%
source.rec-topk-scores 38% 20% 23% 14%
target.ap-scores 4% 10% 2% 2%
target.auc-scores 2% 8% 4% 0%
target.rec-topk-scores 31% 19% 13% 13%

Table 11.1: Disagreement of system rankings between mean and BT across six eval-
uation metrics and four language pairs. Each cell shows the percent of system pairs
ordered differently by mean and BT according to the recalled version of Kendall’s
τ supported on [0, 1]. Higher scores indicate higher disagreement.

11.8 Appendix: Application to Eval4NLP Shared
Task

In the Eval4NLP shared task (Fomicheva et al., 2021a), systems are ranked according
to their global independent statistics, e.g., mean AUC scores of different systems
over a common set of test instances. However, aggregation mechanisms such as the
mean ignores which system beats others over individual instances, and thus may
lead to false conclusions. Here, we adopt BT to conduct rigorous comparison for
competing systems. Recall that BT leverages instance-level pairing of metric scores
from different systems, and assumes that a winning system should beat others over
the majority of instances. In the concrete case – the shared task – this would mean
that a system could have very high AUC scores on few instances, which inflate its
mean AUC, but otherwise performs worse in the majority of instances.

We analyze whether mean and BT yield similar results on the shared task. First,
we quantify the disagreement between mean and BT. Table 11.1 shows that mean
and BT often disagree on the ranking of systems, especially for “source.rec-topk-
scores” and “target.rec-topk-scores”. This might undermine the reliability of these
recall-based metrics, as they are very sensitive to the aggregation scheme (BT vs.
mean), unlike ‘ap-scores’ and ‘auc-scores’ that consider both precision and recall.

We then provide justifications to understand the judgments of BT and mean on
German-Chinese as use case (see Figure 11.1). We find that BT and mean both
may yield wrong judgments as to which system is the state-of-the-art. We illustrate
this below:

• mean might be wrong (Fig. 11.1, top): Considering plausibility of explanations
on source sentences, mean declares Kyoto-1 as the best system; however, it
significantly outperforms merely 3 out of 9 systems according to pairwise com-
parison. This indicates that MEAN results are very likely wrong. In contrast,
BT chooses Unbabel-18 according to that it wins in 8 out of 9 cases.

• BT might be wrong (Fig. 11.1, bottom): Considering plausibility of explana-
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Baseline:_TransQuest-LIME_1

Gringham6
Tasnim6

Baseline:_Random_1

CUNI_Prague_7

NICT_Kyoto_1

OsakaUNLP_11

Baseline:_XMOVER-SHAP_1

IST/Unbabel_2

IST/Unbabel_18

Baseline:_TransQuest-L
IME_1

Gringham6

Tasnim6

Baseline:_Random_1

CUNI_Prague_7

NICT_Kyoto_1

OsakaUNLP_11

Baseline:_XMOVER-SHAP_1

IST/Unbabel_2

IST/Unbabel_18

- 0.19* 0.19* 0.23* 0.18* 0.06* 0.20* 0.25* 0.18* 0.15*

0.81* - 0.24* 0.34* 0.22* 0.52* 0.22* 0.35* 0.18* 0.18*

0.81* 0.76* - 0.31* 0.19* 0.49 0.21* 0.32* 0.16* 0.13*

0.77* 0.66* 0.69* - 0.67* 0.40* 0.17* 0.21* 0.15* 0.10*

0.82* 0.78* 0.81* 0.33* - 0.50 0.20* 0.34* 0.11* 0.15*

0.94* 0.48* 0.51 0.60* 0.50 - 0.50 0.60* 0.46* 0.45*

0.80* 0.78* 0.79* 0.83* 0.80* 0.50 - 0.31* 0.15* 0.17*

0.75* 0.65* 0.68* 0.79* 0.66* 0.40* 0.69* - 0.59* 0.54*

0.82* 0.82* 0.84* 0.85* 0.89* 0.54* 0.85* 0.41* - 0.18*

0.85* 0.82* 0.87* 0.90* 0.85* 0.55* 0.83* 0.46* 0.82* -

Baseline:_TransQuest-LIME_1

Gringham6
Tasnim6

Baseline:_Random_1

CUNI_Prague_7

OsakaUNLP_11

NICT_Kyoto_1

Baseline:_XMOVER-SHAP_1

HeyTUDa_3

IST/Unbabel_2

IST/Unbabel_18

Baseline:_TransQuest-L
IME_1

Gringham6

Tasnim6

Baseline:_Random_1

CUNI_Prague_7

OsakaUNLP_11

NICT_Kyoto_1

Baseline:_XMOVER-SHAP_1

HeyTUDa_3

IST/Unbabel_2

IST/Unbabel_18

- 0.12* 0.13* 0.16* 0.13* 0.10* 0.03* 0.13* 0.16* 0.09 0.10

0.88* - 0.19* 0.29* 0.17* 0.16* 0.39* 0.25* 0.28* 0.12* 0.18*

0.87* 0.81* - 0.34* 0.21* 0.22* 0.41* 0.30* 0.32* 0.17* 0.21*

0.84* 0.71* 0.66* - 0.62* 0.15* 0.32* 0.18* 0.23* 0.14* 0.13*

0.87* 0.83* 0.79* 0.38* - 0.22* 0.47 0.33* 0.36* 0.12* 0.22*

0.90* 0.84* 0.78* 0.85* 0.78* - 0.43* 0.32* 0.35* 0.17* 0.21*

0.97* 0.61* 0.59* 0.68* 0.53 0.57* - 0.64* 0.67* 0.48* 0.54*

0.87* 0.75* 0.70* 0.82* 0.67* 0.68* 0.36* - 0.28* 0.58* 0.62*

0.84* 0.72* 0.68* 0.77* 0.64* 0.65* 0.33* 0.72* - 0.57* 0.58*

0.91 0.88* 0.83* 0.86* 0.88* 0.83* 0.52* 0.42* 0.43* - 0.29*

0.90 0.82* 0.79* 0.87* 0.78* 0.79* 0.46* 0.38* 0.42* 0.71* -

Figure 11.1: Results of pairwise comparison according to (top) “source.rec-topk-
scores” and (bottom) “target.rec-topk-scores” over system pairs for German-Chinese.
Each cell denotes the percent of the instances in which one system (in rows) beats
another (in columns). We mark cells for which system pairs have significant differ-
ences according to Sign test with ‘*’. Systems have been ranked reversely by BT,
e.g., systems in final rows are declared the best. mean declares Kyoto-1 as the best
in both (top) and (bottom) settings.
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tions on target sentences, BT declares Unbabel-18 as the best, as it beats 7
out of 10 systems with clear wins. On the other hand, Kyoto-1 (ranked 5th
according to BT ) wins in 9 out of 10 systems, and it also beats Unbabel-18.
This means Kyoto-1 might be the winner, but that BT nevertheless favors
Unbabel-18 most as BT considers the number of instances of one system su-
perior to another. Concretely, though Kyoto-1 beats the greatest number of
systems, it outperforms these systems on slightly over half of instances, which
reflects the weak strength from a BT perspective. In contrast, Unbabel-18
wins globally on the greatest number of instance-level pairs assembled across
all systems. We depict this issue of BT as the inconsistency between global
and local judgments, i.e., that one locally beats another in the case of two
systems, but the judgment of system superiority may change in the global
view when involving more systems in the comparison. Indeed, the ‘inconsis-
tency’ can hardly be addressed according to the Arrow’s impossibility theorem
(Arrow, 1950).

Our analysis shows how subtle the evaluation of systems in the case of the shared
task can be and that there is no clear winner, as none of the systems beats all other
systems according to pairwise comparison.
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Abstract

Evaluation metrics are a key ingredient for
progress of text generation systems. In recent
years, several BERT-based evaluation metrics
have been proposed (including BERTScore,
MoverScore, BLEURT, etc.) which correlate
much better with human assessment of text
generation quality than BLEU or ROUGE, in-
vented two decades ago. However, little is
known what these metrics, which are based
on black-box language model representations,
actually capture (it is typically assumed they
model semantic similarity). In this work, we
use a simple regression based global explain-
ability technique to disentangle metric scores
along linguistic factors, including semantics,
syntax, morphology, and lexical overlap. We
show that the different metrics capture all as-
pects to some degree, but that they are all sub-
stantially sensitive to lexical overlap, just like
BLEU and ROUGE. This exposes limitations
of these novelly proposed metrics, which we
also highlight in an adversarial test scenario.

1 Introduction

Evaluation metrics are a key ingredient in assess-
ing the quality of text generation systems, be it
machine translation, summarization, or conversa-
tional AI models. Traditional evaluation metrics in
machine translation and summarization, BLEU and
ROUGE (Papineni et al., 2002a; Lin, 2004), have
measured lexical n-gram overlap between system
prediction and a human reference. While simple
and easy to understand, early on, limitations of
such lexical overlap metrics have been recognized
(Callison-Burch et al., 2006), e.g., in that they can
only measure surface level similarity, and they are
especially inadequate when it comes to assessing
current high-quality text generation systems (Rei
et al., 2020; Mathur et al., 2020; Marie et al., 2021).

Recently, a class of novel evaluation metrics
based on BERT and its variants has been explored
that correlates much better with human assessments

of translation quality. For example, BERTScore
(Zhang et al., 2020), MoverScore (Zhao et al.,
2019), BLEURT (Sellam et al., 2020), XMover-
Score (Zhao et al., 2020), and COMET (Rei et al.,
2020) all use large-scale pretrained language mod-
els, but differ in whether they compare hypotheses
to references, to source texts, to both, on the one
hand, and whether they use human scores for super-
vision or not, on the other. Since these models all
leverage large-scale language models which have
pushed the state-of-the-art in many areas of NLP,
their success comes with little surprise.

To better understand these novel metrics based
on black-box language representations is a prereq-
uisite for identifying their limitations, e.g., to adver-
sarial inputs. For example, if an evaluation metric
is sensitive to lexical overlap, it can be fooled by
using the same words but in different order.

In this work, we fill the existing ‘explainability
gap’ and introspect linguistic properties encoded in
BERT-based evaluation metrics. Although there is
already considerable work on introspecting and un-
derstanding BERT (see Rogers et al. (2020) for an
overview), e.g., via probing (Tenney et al., 2019),
analyzes by Hewitt and Liang (2019); Eger et al.
(2020); Ravichander et al. (2021) indicate that prob-
ing results (based on supervision) are not always
trustworthy. More importantly, the modern evalu-
ation metrics sketched above rely on at least two
factors: BERT (or its variants) and different ag-
gregation schemes, such as Earth Mover Distance
(Kusner et al., 2015; Zhao et al., 2019) or greedy
alignment (Zhang et al., 2020), on top of BERT.
Understanding BERT alone is thus not sufficient
for explaining BERT-based evaluation metrics.

Here, we present a simple global explanation
technique of BERT-based evaluation metrics which
disentangles them on prominent linguistic factors,
viz., syntax, semantics, morphology and lexical
overlap. We find that all metrics capture these
linguistic aspects to certain (but differing) degrees,
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and they are particularly sensitive to lexical over-
lap, which makes them prone to similar adversarial
fooling (cf. Li et al., 2020; Eger et al., 2019; Keller
et al., 2021) as BLEU-based lexical overlap metrics.
Overall, our contributions are:

• We disentangle a multitude of current BERT-
based evaluation metrics on four linguistic fac-
tors using linear regression.

• We show that all metrics are sensitive to all fac-
tors and especially to lexical overlap, as con-
firmed both by the linear regression and an ad-
versarial experiment.

• Based on the insight that different metrics cap-
ture different linguistic factors to varying degrees,
we ensemble metrics and identify an average im-
provement of between 8 and 13% for the most
heterogeneous metrics.

2 Related work

Our work concerns reference-based and reference-
free metrics, on the one hand, and model introspec-
tion (or ‘explainability’), on the other.

Evaluation metrics for Natural Language Gen-
eration In the last few years, several strong per-
forming evaluation metrics have been proposed,
the majority of which is based on BERT and
similar high-quality text representations. They
can be differentiated along two dimensions: (i)
the input arguments they take, and (ii) whether
they are supervised or unsupervised. Reference-
based metrics compare human references to sys-
tem predictions. Popular metrics are BERTScore
(Zhang et al., 2020), MoverScore (Zhao et al.,
2019), and BLEURT (Sellam et al., 2020). In
contrast, reference-free metrics directly compare
source texts to system predictions, thus they are
more resource-lean. Popular examples are XMover-
Score (Zhao et al., 2020), Yisi-2 (Lo, 2019), KoBE
(Gekhman et al., 2020), and SentSim (Song et al.,
2021). Rei et al. (2020) use all three information
signals: source text, hypotheses and human refer-
ences. There are also reference-free metrics out-
side the field of machine translation; for exam-
ple, SUPERT (Gao et al., 2020) for summarization.
Supervised metrics train on human sentence-level
scores, e.g., Direct Assessment (DA) scores or post-
editing effort (HTER) for MT. These metrics in-
clude BLEURT and COMET (Rei et al., 2020). In
MT, most metrics from the so-called ‘Quality Esti-
mation’ (QE) tasks are also supervised reference-

free metrics, e.g., TransQuest (Ranasinghe et al.,
2020) and BERGAMOT-LATTE (Fomicheva et al.,
2020b). Unsupervised metrics require no such su-
pervisory signal (e.g., MoverScore, BERTScore,
XMoverScore, SentSim).

Model introspection There has been a recent
surge in interest in explaining deep learning mod-
els. The techniques for explainability differ in
whether they provide justification or information
for model outputs on individual instances (local
explainability) or focus on a model as a whole and
disclose its internal structure (global explainabil-
ity) (Danilevsky et al., 2020). Popular examples for
local explainability are LIME (Ribeiro et al., 2016)
and SHAP (Lundberg and Lee, 2017) that find fea-
tures from the input (such as particular words) rele-
vant to model outputs.

Concerning (global) interpretability of text rep-
resentations, previous works (Adi et al., 2017;
Conneau et al., 2018) introspect the properties en-
coded in vector representations through probing
classifiers—trained on external data to perform a
certain linguistic task, such as inducing the depen-
dency tree depth from a text representation (of a
sentence). Tenney et al. (2019) extend this idea
by inspecting BERT representations layer-by-layer,
and find that BERT captures more semantic in-
formation in its higher layers and more syntactic
and morphological information in its lower layers.
However, probing results are not always trustwor-
thy due to the sensitivity to probing design choices,
e.g., data size and classifier choices (Eger et al.,
2020), and data artefacts (Ravichander et al., 2021).
More importantly, evaluation metrics use BERT
differently: some are supervised and others are
unsupervised, some fine-tune BERT on semantic
similarity datasets, and they generally differ on how
they aggregate and compare BERT representations.
This means to understand these metrics it does not
suffice to understand BERT alone.

In our work, we disentangle BERT based evalu-
ation metrics along linguistic factors as a form of
global explainability of those metrics. This yields
insights into which linguistic information signals
specific metrics use, in general, and may expose
their limitations.

3 Our approach

In our scenario, we consider different metrics m
taking two arguments and assigning them a real-
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valued score

m : (x, y) 7→ sm ∈ R

where x and y are source text and hypothesis text,
respectively (for so-called reference-free metrics)
or alternatively x and y are reference and hypothe-
sis text, respectively (for so-called reference-based
metrics). The scores s that metrics assign to x and
y can be considered the similarity between x and
y or adequacy of y given x. In our experiments
in Section 4, we will focus on machine translation
(MT) as use case; it is arguably the most popular
and prominent text generation task. Thus, x is ei-
ther a (sentence-level) source text in one language
and y the corresponding MT output, or x is the
human reference for the original source text.

To better understand evaluation metrics, we de-
compose their scores sm along multiple linguistic
factors. An example is outlined in Table 1.

We follow a long line of research in the applied
sciences, and use a linear model to explain a tar-
get variable (in our case, the metric score), also
called response variable, in terms of multiple re-
gressors, also called explanatory variables. That
is, we estimate the linear regression

m(x, y) = α · sem(x, y) + β · syn(x, y)

+ γ · lex(x, y) + δ · morph(x, y) + ε
(1)

Here, sem(x, y), syn(x, y), morph(x, y) and
lex(x, y) are scores which describe the semantic,
syntactic, morphological, and lexical similarity be-
tween the two argument sentences. The real coef-
ficients α, β, γ and δ are the regressors’ weights,
estimated from data. Finally, ε is an error term.

Linear regression assumes a linear relationship
between the target variable and the regressors. It
may fail when the relationship is non-linear, but
its simple model structure provides interpretability:
a larger positive coefficient means the respective
regressor has higher positive impact on the target
variable (fixing all other variables), a coefficient
close to zero means no linear relationship, and a
larger negative coefficient means an inverse linear
relationship between regressor and target variable.

The coefficient of determination R2 describes
how well the regression model reflects the data. It
is defined as

R2 = 1− SSE
SST

where SSE denotes the sum of squared errors and
SST denotes the sum of squared totals. They are

defined as

SSE =
∑

i

(yi − ŷi)2, SST =
∑

i

(yi − yi)2

respectively, where ŷi is the prediction of the
model, yi is the true score, and yi is the mean,
yi = 1

N

∑N
i yi. R2 is 1 for a perfect fit, 0 if it

always predicts the mean and negative if the model
is worse than this baseline.

To ensure comparability of the different regres-
sions, we normalize the scores of our regressors
and the response variable with the z-normalization,
i.e., subtracting the mean and dividing by the stan-
dard deviation, per variable. In the following, we
define our regressors.

Semantic score (SEM) The semantic scores are
provided by the datasets and were annotated by
humans who rated e.g. the translation quality. See
Section 4.2 for details.

Syntactic score (SYN) To measure the syntactic
similarity of the argument sentences x and y, we
compare their dependency trees. Both sentences
are parsed by the Stanford dependency parser
(Chen and Manning, 2014). Then, the tree edit
distance (TED) (Bille, 2005) between the result-
ing trees is calculated. As an extension of string
edit distance, TED measures how many operations
are necessary to transform one tree into the other.
Only the structures of the trees are considered in
the calculation. We ignore the actual words.

We normalized the TED to ensure comparability
between sentences with different lengths (Zhang
and Shasha, 1989). The final score is calculated as

syn(x, y) = 1− TED
lx + ly

where lx and ly are the lengths of the sentences.
Figure 1 shows an example of the TED calculation
for sentences in the same language (monolingual)
and Figure 2 shows a cross-lingual example.

Lexical overlap score (LEX) We measure the
lexical overlap between x and y by the BLEU score
(Papineni et al., 2002b): BLEUn calculates the pre-
cision based on how many n-grams of one sentence
can be found in the other sentence. In the exper-
iments below, we use BLEU1. Using unigrams
assures that word order is ignored. The simple pre-
cision count is modified so that identical words are
only counted once.
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Hypothesis (y) Reference/Source (x) SEM SYN LEX MOR

It is a boy , likes to sport , but it cannot
do it because of their very.

He is a boy, he likes sports but he can’t
take part because of his knee.

-1.57 0.98 -0.59 -0.87

Zwei Besatzungsmitglieder galten als
vermisst.

Two crew members were regarded as
missing.

0.83 0.99 0.46 -2.40

Table 1: Example setups with normalized semantic, syntactic, lexical overlap and morphological scores.

knew

him

about

little

very

He

X

X

X

X

X

X

X

X

X

XX
X

XXX

unknowable

verywashe

Figure 1: Monolingual tree edit distance example. The left-most tree is the first sentence of the sentence pair and
the right-most tree is the second. To transform the left-most sentence into the right-most sentence, two leaves are
removed. The unnormalized tree edit distance is thus 2. The normalized score is 1− 2

6+4 = 0.8.

For monolingual reference-based metrics, the
BLEU score is calculated directly on the sentence
pairs. To use BLEU for cross-lingual reference-
free metrics, we choose to translate the non-English
sentences into English via Google Translate, as it
remains unclear how else to define lexical over-
lap between sentences from different languages.
We compute BLEU scores on original English and
translated sentence pairs.

Word 1 Word 2 UD Tags

reached combined Tense=Past VerbForm=Part
stay sein VerbForm=Inf

Table 2: Example of a morphological lexicon that con-
tains word pairs with identical morphological UD tags,
on which we finetune FastText word embeddings.

Morphological score (MOR) We introduce a
morphological score morph(x, y). To do so, we
use static FastText word embeddings (Bojanowski
et al., 2017) and increase morphological informa-
tion in the original embeddings: (a) first, we pro-
duce two morphological lexicons based on words
from WMT and STS, each containing word pairs
with identical UD morphological tags (Nivre et al.,
2020) (see Table 2). (b) Then, we finetune/retrofit
the embeddings on the morphological lexicons us-
ing the method described in Faruqui et al. (2015),
so that words with the same morphological tags
have more similar representations.

The final morphological score for a sentence
pair is the cosine similarity between two averaged
sentence embeddings over refined word vectors

of each sentence. Note that, while we refer to
these embeddings as morphological, they actually
capture multiple linguistic factors and can only be
considered more morphological than standard static
vector spaces.

If the overlap of morphological features between
a language pair is very low, the morphological
score will not be meaningful. We exclude the mor-
phological score for such language pairs.

4 Experiments

We analyze different evaluation metrics by calcu-
lating their score for sentence pairs. We use both
reference-based metrics, which operate in a mono-
lingual space, and reference-free metrics, which
operate in a cross-lingual space.

4.1 Metrics
Reference-based metrics We consider the fol-
lowing reference-based metrics.

• BERTScore (Zhang et al., 2020) aggregates and
compares BERT embeddings by determining a
greedy alignment between words in two sen-
tences and summing up the cosine similarities
of representations of aligned words.

• MoverScore (Zhao et al., 2019) computes an op-
timal alignment between words in the two sen-
tences using word mover distance (Kusner et al.,
2015) on top of BERT representations.

• Sentence BERT (SBERT) (Reimers and
Gurevych, 2019) fine-tunes Siamese BERT
networks on NLI data, and produces sentence
embeddings by using pooling on top of BERT
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mother

greataisit

X

XXXX

X

X

X

XX

X

X

XX

X

ist

Mutter

großartigeeine

Sie

Figure 2: Cross-lingual tree edit distance example. To transform the left-most into the right-most sentence, two
leaves (shown in red and blue) are moved to other locations. This takes 2 operations. The normalized score is
1− 2

5+5 = 0.8.

representations. We compute the cosine
similarity between SBERT representations.

• SBERT-WK (Wang and Kuo, 2020) is a variant of
SBERT which weighs different layers of BERT.

• In contrast to the others, BLEURT (Sellam et al.,
2020) is a supervised metric and fine-tunes BERT
on the WMT datasets with available human as-
sessment of translation quality.

Reference-free metrics We consider the follow-
ing reference-free metrics:

• Multilingual Sentence BERT (mSBERT)
(Reimers and Gurevych, 2020) is a multilingual
version of Sentence BERT trained on parallel
data with multilingual knowledge distillation. A
teacher model trained on STS and NLI provides
English sentence embeddings. mSBERT (student
model) is trained to produce embeddings for the
English sentence and its translation which are
close to the embeddings of the teacher model.

• Multilingual Universal Sentence Encoder
(MUSE) (Yang et al., 2019) is a multilingual
sentence embedding. It is a dual-encoder model
which was trained on multiple tasks such as NLI
and translation ranking. MUSE was trained on
mono- and multilingual data.

• LaBSE (Feng et al., 2020) is a dual-encoder
framework. The encoders re-use pre-trained
BERT and finetune it with Masked Language
Modeling and Translation Language modeling
on monolingual and parallel data.

• LASER (Artetxe and Schwenk, 2019) is a BiL-
STM encoder trained on parallel corpora. It pro-
duces language-agnostic representations. The
encoder-decoder architecture is trained jointly on
different languages.

• XMoverScore (Zhao et al., 2020) extends Mover-
Score to operate in the cross-lingual setup, and
relies on re-aligned multilingual BERT represen-
tations. Note that we exclude a target-side lan-

guage model integrated in XMoverScore to have
a similar setup as for MoverScore.

Except for XMoverScore, all metrics are based on
calculation of cosine similarity between the source-
language and target-language sentence embeddings.
Except for MUSE and LASER, all metrics are
based on BERT representations. Note that some
multilingual reference-free metrics can also be used
in the monolingual reference-based case, especially
those based on calculating cosine similarity on top
of sentence embeddings, thus we will include them
in both settings.

4.2 Datasets

We use the datasets of the WMT shared task and
the Semantic Text Similarity Benchmark (STSB)
in our experiments. In the appendix, Table 8 shows
the statistics in each dataset, and Table 9 shows
examples for the sentences of the dataets.

WMT The WMT datasets contain an input sen-
tence in the source language, the hypothesis trans-
lation of an MT system and a human reference
sentence in the target language. Humans have rated
the similarity between human reference and MT hy-
pothesis using so-called ‘direct assessment’ (DA)
scores which are framed in terms of one sentence
‘adequately expressing the meaning’ of another. We
use these ratings as semantic scores in our setup.

For the reference-based case, we use the hypothe-
ses and the references as sentence pairs. This data
is collected over multiple language pairs which
have English as target language (so both the hu-
man reference and the hypothesis are in English)
of WMT15-WMT17. For the reference-free sce-
nario, we pair the source texts with MT hypotheses
and use the corresponding reference-to-hypothesis
DA scores for similarity score. For German, we
take the data from WMT15 (Bojar et al., 2015),
WMT16 (Bojar et al., 2016) and WMT17 (Bojar
et al., 2017). Chinese is only available in WMT17.
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STSB The Semantic Text Similarity Benchmark
(Cer et al., 2017) consists of English sentence pairs
and a semantic similarity score for each pair. The
scores were annotated by humans. The score is
used as semantic score in the regression. In contrast
to WMT, some sentence pairs in STSB are designed
to have a different structure but a similar meaning.

While we use the sentence pairs directly for the
monolingual case, we translate the sentences in the
cross-lingual case using Google Translate, follow-
ing Chidambaram et al. (2018).

5 Results

Reference-based Metrics Table 3 shows the re-
sults for the reference-based metrics. The R2 val-
ues range from 0.43 to 0.76 on WMT, and from
0.58 to 0.91 on STS. This means we can reasonably
well explain the metrics from our four explanatory
variables and using a linear model. mSBERT can
best be explained with an R2 value of 0.91 on STS;
however, since it has been trained on STS, this
merely indicates overfitting. All metrics have posi-
tive coefficients for SEM, indicating that they all re-
flect semantic similarity and (semantic) ‘adequacy’
(as measured by DA), respectively: the weights
range from 0.19 to 0.48 on WMT and from 0.12 to
0.76 on STS (ignoring mSBERT). The SYN coeffi-
cients are much lower and range from -0.05 to 0.16
for WMT and from -0.03 to 0.24 on STS. Mover-
Score and BERTScore are most affected by syntac-
tic similarity (0.11 to 0.24), while the sentence em-
bedding based techniques have coefficients around
zero. The coefficients for MOR are low on STS,
except for SBERT-WK, and moderate for WMT.

All metrics have comparatively large coefficients
for lexical overlap, especially on WMT: the coeffi-
cient values range from 0.24 to 0.64 on WMT and
from 0.14 to 0.67 on STS. Especially LEX domi-
nates for MoverScore and BERTScore, indicating
that these two metrics are most sensitive to lexical
adversaries, potentially making them vulnerable to
inputs such as ‘man bites dog’ vs. ‘dog bites man’.

Reference-free Metrics Table 4 shows the re-
sults for ZH-EN in the reference-free setup (omit-
ting the score for MOR as indicated earlier). Many
SYN coefficients are now zero or negative, mean-
ing that a larger syntactic difference between the
input arguments leads to a higher metric score, in-
dicating that metrics are sensitive to syntactic lan-
guage differences. LEX is still significant in all
cases. SEM has higher coefficient values than LEX

in 6 out of 10 cases, and when it ‘wins’, it wins by
a large margin. However, we note that the R2 are
low: they range from 0.3-0.39 on WMT and from
0.24-0.59 on STS. This means we can either not
(well) explain the metrics given our current regres-
sors or the relationship is not well explained by a
linear model. The results for DE-EN are similar;
we provide them in Table 10 (appendix).

To explore why R2 scores are now lower, we
note that reference-free metrics based on BERT
might contain a form of cross-lingual bias (CLB) in
that they do not properly score mutual translations,
as Cao et al. (2020) and many others have shown
that the multilingual subspaces induced by BERT
are mis-aligned. We thus include a factor CLB as
a regressor to measure how significant this bias
is in different metrics. Note that the metrics use
either different BERT variants or other represen-
tations such as LASER, which points to different
sources of CLB. Therefore, we realize CLB differ-
ently across metrics. For each metric regression,
we use the same metric but take a parallel sentence,
i.e., source text and Google translation (as we as-
sume that Google Translate has very high quality
in general), as input arguments, and take the metric
score as a proxy of the CLB factor. If a metric does
not contain cross-lingual bias, it should assign al-
most full scores to parallel sentences; this constant
would then be meaningless in the regression.

In Table 5, we show that including the CLB fac-
tor in the regression improves the R2. We substan-
tially improve the R2 for XMoverScore (from 0.39
to 0.68), but observe little improvements for the
remaining metrics (especially on STS). This is be-
cause XMoverScore is more problematic than the
other metrics in terms of properly scoring mutual
translations, given that the other metrics use BERT
variants (or LASER) that have been finetuned (or
trained) on parallel sentences. Apart from CLB,
both SEM and LEX are the dominating factors in
the regression. The DE-EN results are similar—see
Table 11 (appendix).

Limitations The R2 scores for the WMT dataset
are almost always lower than the corresponding
STS scores. One may not forget that STS sentences
are in a sense artificial sentences of the form ‘a girl
is playing a guitar’ while WMT contains more re-
alistic sentences as well as their (possibly faulty,
non-grammatical) translations. The WMT datasets
are furthermore inhomogeneous in that we used
different years from 2015 to 2017, which has dif-
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WMT
Metric SEM SYN LEX MOR R2

MoverScore 0.28 0.15 0.64 -0.06 0.76
BERTScore 0.27 0.16 0.61 -0.01* 0.74
LASER 0.19 0.04 0.33 0.32 0.53
SBERT 0.37 -0.02* 0.22 0.22 0.42
SBERT-WK 0.30 -0.02 0.32 0.33 0.58
LaBSE 0.31 0.00* 0.36 0.22 0.53
mSBERT 0.41 -0.05 0.24 0.18 0.43
BLEURT 0.48 0.07 0.30 0.05 0.57
mUSE 0.27 -0.03 0.39 0.19 0.49

STS
Metric SEM SYN LEX MOR R2

MoverScore 0.30 0.24 0.45 0.04 0.61
BERTScore 0.12 0.11 0.67 0.06 0.69
LASER 0.55 0.05 0.28 0.09 0.63
SBERT 0.73 -0.03 0.14 -0.06 0.60
SBERT-WK 0.26 0.04 0.31 0.30 0.55
LaBSE 0.60 0.07 0.27 0.06 0.67
mSBERT 0.93 -0.02 0.04 0.00* 0.91
BLEURT 0.62 0.08 0.19 0.03* 0.58
mUSE 0.76 0.00* 0.22 -0.11 0.68

Table 3: Regression results for reference-based metrics. Coefficient values for linguistic regressors and R2 values.
* denotes p ≥ 0.05 (non-significance). Intercept coefficients are small values and we omit them for clarity.

WMT
Metric SEM SYN LEX R2

XMoverScore 0.37 -0.08* 0.40 0.39
LASER 0.29 -0.03* 0.38 0.30
mUSE 0.34 0.01* 0.35 0.33
LaBSE 0.47 -0.05* 0.17 0.30
mSBERT 0.42 -0.04* 0.25 0.31

STS
Metric SEM SYN LEX R2

XMoverScore 0.09 -0.12 0.46 0.24
LASER 0.59 0.02* 0.27 0.51
mUSE 0.72 0.02* 0.12 0.59
LaBSE 0.63 0.08 0.26 0.56
mSBERT 0.87 -0.01* 0.05 0.80

Table 4: Regression results for Chinese-English reference-free metrics.

WMT
Metric SEM SYN LEX CLB R2

XMoverScore 0.18 0.10 0.18 0.59 0.68
LASER 0.18 -0.02* 0.32 0.34 0.43
mUSE 0.26 0.00* 0.25 0.30 0.40
LaBSE 0.37 -0.05* 0.14 0.30 0.40
mSBERT 0.35 -0.04* 0.16 0.31 0.40

STS
Metric SEM SYN LEX CLB R2

XMoverScore 0.08 0.16 0.36 0.48 0.53
LASER 0.56 0.03* 0.28 0.17 0.55
mUSE 0.72 0.02* 0.12 0.14 0.61
LaBSE 0.63 0.09 0.25 0.10 0.58
mSBERT 0.87 -0.01* 0.05* 0.07 0.81

Table 5: Regression results for Chinese-English reference-free metrics. We add the CLB factor in the regression.

ferent participating MT systems as well as slightly
different task definitions, corresponding to an ag-
gregation of different domains. The STS dataset is
monolingual and was translated by Google Trans-
late for the cross-lingual scenario. The latter may
lower the quality of the data, but WMT data also
contains translations.

The WMT scores measure the similarity between
the reference and the hypothesis but we compare
the source with the hypothesis in the cross-lingual
scenario, which reflects a mismatch. Fomicheva
et al. (2020a) provide a dataset which gives human
DA scores between source and hypothesis. We re-
peated the experiments with this dataset. The full
results are shown in Table 12 in the appendix (omit-
ting the CLB factor). The R2 scores of 3 out of 5
metrics improve (slightly) compared to the WMT
dataset for German-English but all R2 scores are
lower for Chinese-English. This means that mis-
matched DA scores are apparently not the main
reason for our low regression fits. With the new

DA scores, all coefficients for SEM are consider-
ably lower. They are in the range of range 0.06 to
0.14 compared to the maximum of 0.47 for WMT.
In contrast, all SYN (0-0.12) scores are higher es-
pecially vof German. All MOR (0.16-0.33) and
most LEX scores are higher but they are still in a
similar range as for the original DA scores.

6 Analysis

Lex(A,B) Lex(A,C) Size

Freitag et al. (2020) 0.49 0.99 1452
PAWS 0.84 0.94 100

Table 6: Averaged lexical overlap and size of the
datasets for the adversarial experiments.

In the following, we analyze two observations
from our previous experiments in more depth: (i)
the sensitivity of metrics to lexical overlap; (ii)
the orthogonality of metrics in that they capture
different linguistic signals.
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PAWS
Sentence A Sentence B Sentence C

Later in 2014 , Dassault Systèmes
was bought by Quintiq.

Dassault Systèmes was bought in
2014 by Quintiq.

In 2014 , Quintiq was bought by
Dassault Systèmes.

They are high , built of concrete
faced with small blocks of stone.

They are high built of concrete with
small stone blocks.

They are small , built of concrete
with high stone blocks.

Freitag et al. (2020) translated
Sentence A Sentence B Sentence C

Shark injures 13-year-old on lobster
dive in California

A 13-year-old is injured by a shark
while diving for lobsters in Califor-
nia

Shark injures 13-year-old on dive
lobster in California

Kovacic did a quick give-and-go at
midfield.

Kovacic managed a quick one-two
in midfield.

Kovacic did a quick midfield at give-
and-go.

Table 7: Selected sentences for the adversarial experiments.

Figure 3: Distribution of m(A,B) vs. m(A,C). Top: Dataset from Freitag et al. (2020). Bottom: PAWS dataset.

6.1 Adversarial experiments

According to our results, all metrics rely on lexical
overlap, which indicates that they may not be ro-
bust to adversarial examples. We check this by an
additional experiment, for reference-based metrics,
in which we query their pairwise preferences over
three sentences: Sentence A is the anchor sentence;
sentence B is a paraphrase of sentence A with lit-
tle lexical overlap; sentence C is a non-paraphrase
with high lexical overlap. A good metric m would
have m(A,B) > m(A,C) but the high lexical over-
lap between A and C makes this task difficult.

Freitag et al. Sentences A are taken as source
sentences from WMT19. Freitag et al. (2020)
provided alternative references for WMT19; they
instructed human professional translators to para-
phrase the references as much as possible in terms
of lexical choice and sentence structure but keep
the same semantics. We take these as sentences
B. We produce sentences C from sentences A: for
each sentence A, we detect the nouns within the
sentence using the NLTK POS tagger, and then
we randomly permute them to produce a sentence

C. Since Freitag et al. (2020) provided sentences
in German, we translate all sentences into English
using Google translate. We note that by inspection
the translations are generally of high quality and
satisfy our constraints of inducing paraphrases with
low lexical overlap and non-paraphrases with high
lexical overlap. Examples are shown in Table 7
and statistics in Table 6.

PAWS We complement the analysis with the na-
tive English PAWS dataset (Zhang et al., 2019)
which consists of paraphrase and non-paraphrase
pairs that have high lexical overlap. For each sen-
tence in the dataset, there are multiple paraphrases
and non-paraphrases. For a given sentence A, we
use the paraphrase with the smallest amount of lex-
ical overlap as sentence B and sentence C is the
non-paraphrase with the highest amount of lexical
overlap with A. We note that PAWS is more prob-
lematic as even the paraphrases B with minimum
amount of lexical overlap do have considerable lex-
ical overlap. Therefore, we select the 100 sentence
pairs with the smallest amount of lexical overlap
between sentence A and B. Table 6 shows the lex-
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ical overlap and the size of the datasets. Indeed,
for PAWS, sentences B have only a little less lex-
ical overlap with A than sentences C, while the
dataset of Freitag et al. (2020) has a much clearer
separation between B and C in this respect.

Figure 3 shows the distribution of m(A,B) and
m(A,C) for selected metrics m. Overall, the ad-
versarial results on translated and non-translated
datasets point in a similar direction. We see that
metrics clearly prefer the high lexical overlap sen-
tences which are non-paraphrases (sentences C) in
the translated dataset of Freitag et al. (2020). For
non-translated PAWS, metrics are at least to some
degree indifferent, but tend to prefer B on average,
with MoverScore and BERTScore having higher
preference for C than mSBERT and SBERT, which
confirms our linear regression results.

Overall, these experiment show that metrics are
indeed not robust to lexical adversarial examples.

6.2 Ensemble of Models

Our experiments in Section 4 show that the differ-
ent metrics use different information signals, even
when they use the same underlying BERT repre-
sentations. For example, BERTScore relies more
on lexical overlap and mSBERT relies more on se-
mantics; BERTScore and MoverScore both capture
syntax, while the other metrics are less sensitive to
it. This means that the metrics are to some degree
orthogonal. Thus, we suspect that a combination
of metrics yields a considerably better metric. We
check this hypothesis through an extra experiment.
We combine especially BERTScore and Mover-
Score with SBERT and mSBERT based metrics.

We evaluate the metrics on segment-level. In
segment-level evaluation, each sentence pair gets a
score from m. The Pearson correlation coefficient
is then calculated between these scores and the
human judgement, disregarding the systems which
generated the translations. To combine metrics, we
simply average their scores. In the evaluation, we
use the best performance of the single metrics as
baseline and compare it to our combined metrics.

Table 13 (appendix) shows the improvements
for different language pairs. In the reference-free
case, the two best ensembles combine XMover-
Score with mSBERT and LaBSE—the latter two
rely less on lexical overlap than the first—leading
to big improvements of 11-13% over the best in-
dividual metric. Combining metrics relying on
similar factors shows less improvement, and often

even leads to worse results. In the reference-based
case, we combine BERTScore with mSBERT and
observe an improvement of 8%, more than for any
other combination we tested. These results show
that combing metrics relying on different factors
can largely improve their performance.1

7 Conclusions

We disentangled BERT-based evaluation metrics
along four linguistic factors: semantics, syntax,
morphology, and lexical overlap. The results in-
dicate that (i) the different metrics capture these
different aspects to different degrees but (ii) they
all rely on semantics and lexical overlap. The first
observation indicates that combining metrics may
be helpful, which we confirmed: simple parameter-
free averaging of hetereogenous metric scores can
improve correlations with humans by up to more
than 13% in our experiments. The second observa-
tion shows that these metrics may be prone to adver-
sarial fooling, just like BLEU and ROUGE, which
we confirmed in an additional experiment in which
we queried metric preferences over paraphrases
with little lexical overlap and non-paraphrases with
high lexical overlap. Future metrics should espe-
cially take this last aspect into account, and im-
prove their robustness to adversarial conditions.

There is much scope for future research, e.g., in
developing better global explanations for reference-
free metrics (as we cannot yet well explain these
metrics), better linguistic factors (e.g., a clearer
conceptualization of morphological similarity of
two sentences) and in developing local explainabil-
ity techniques for evaluation metrics (Fomicheva
et al., 2021a,b).2
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Ondřej Bojar, Rajen Chatterjee, Christian Federmann,
Yvette Graham, Barry Haddow, Matthias Huck,
Antonio Jimeno Yepes, Philipp Koehn, Varvara
Logacheva, Christof Monz, Matteo Negri, Aure-
lie Neveol, Mariana Neves, Martin Popel, Matt
Post, Raphael Rubino, Carolina Scarton, Lucia Spe-
cia, Marco Turchi, Karin Verspoor, and Marcos
Zampieri. 2016. Findings of the 2016 conference
on machine translation. In Proceedings of the First
Conference on Machine Translation, pages 131–198,
Berlin, Germany. Association for Computational
Linguistics.
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8 Appendix

The following tables contain remaining experimen-
tal results.

Dataset English Chinese German

WMT 8595 560 1620
STSB 5749 5749 5749

Table 8: Number of sentence pairs in each dataset and
language pair.

WMT
Sentence 1 Sentence 2 SEM

Why is it such a difference? Why such a difference? 0.94
There are coincidences. Zufälle gibt es. 0.57

STS

Some men are fighting. Two men are fighting. 4.25
A woman is writing. Eine Frau schwimmt. 0.1

Table 9: Example of WMT and STS datasets.
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WMT
Metric SEM SYN LEX MOR R2

XMoverScore 0.37 -0.07* 0.33 -0.01* 0.31
LASER 0.21 -0.08 0.31 0.31 0.29
mUSE 0.19 -0.00* 0.40 0.08 0.25
LaBSE 0.30 -0.03* 0.26 0.07 0.21
mSBERT 0.39 -0.06* 0.22 0.05* 0.26

STS
Metric SEM SYN LEX MOR R2

XMoverScore 0.08 -0.02* 0.51 0.03 0.30
LASER 0.54 0.00* 0.28 0.15 0.54
mUSE 0.71 0.00* 0.09 0.07 0.6
LaBSE 0.60 0.05 0.29 0.04 0.60
mSBERT 0.89 -0.02 0.05 0.02 0.84

Table 10: Regression results for German-English reference-free metrics. Coefficient values for linguistic regressors
and R2 values. * denotes p ≥ 0.05 (non-significance).

WMT
Metric SEM SYN LEX MOR CLB R2

XMoverScore 0.14 0.08 0.16 -0.03* 0.63 0.61
LASER 0.11 -0.03* 0.28 0.19 0.40 0.46
mUSE 0.19 0.02* 0.28 0.03* 0.35 0.34
LaBSE 0.29 0.00* 0.14 0.00* 0.45 0.38
mSBERT 0.36 -0.02* 0.09 0.02* 0.36 0.36

STS
Metric SEM SYN LEX MOR CLB R2

XMoverScore 0.09 0.25 0.43 -0.09 0.40 0.54
LASER 0.51 0.01* 0.32 0.12 0.11 0.58
mUSE 0.70 0.02* 0.12 0.05* 0.11 0.61
LaBSE 0.59 0.06 0.30 0.02* 0.12 0.62
mSBERT 0.88 -0.02* 0.05* 0.02* 0.03* 0.85

Table 11: Regression results for German-English reference-free metrics. Coefficient values for linguistic regressors
and R2 values. * denotes p ≥ 0.05 (non-significance). We add the CLB factor in the regression.

German-English
Metric SEM SYN LEX MOR R2

XMoverScore 0.16 0.05* 0.33 0.16 0.20
LASER 0.12 0.08 0.30 0.46 0.41
mUSE 0.12 0.12 0.25 0.43 0.35
LaBSE 0.10 0.08 0.23 0.51 0.41
mSBERT 0.14 0.06* 0.21 0.33 0.22

Chinese-English
Metric SEM SYN LEX R2

XMoverScore 0.14 0.04* 0.35 0.15
LASER 0.06* 0.03* 0.35 0.14
mUSE 0.12 0.05* 0.42 0.21
LaBSE 0.16 0.04* 0.43 0.23
mSBERT 0.24 0.00* 0.31 0.17

Table 12: Regression results for reference-free metrics on the Fomicheva et al. (2020a) dataset which contains DA
scores comparing sources and hypotheses (rather than references and hypotheses). Coefficient values for linguistic
regressors and R2 values. * denotes p ≥ 0.05 (non-significance).

cs-en de-en fi-en lv-en ru-en tr-en zh-en Avg

Reference-based
BERTScore + mSBERT 8% 15% 7% 7% 11% 2% 4% 8%
SBERT + MoverScore 3% 10% 1% 11% 6% -1% 1% 4%
SBERT + LASER 6% 6% 0% 2% 5% 3% 10% 5%
SBERT + mUSE 5% 10% 4% 2% 8% 4% 2% 5%
Reference-free
XMoverScore + mSBERT 9% 19% 11% 12% 18% 13% 12% 13%
XMoverScore + LaBSE 8% 14% 5% 10% 17% 9% 17% 11%
mSBERT + LASER 8% 9% -2% 1% 3% 0% 12% 4%
LaBSE + LASER 7% 15% -4% 2% 1% -2% 4% 3%
XMoverScore + LASER 0% 7% -5% 2% 4% 1% 13% 3%
mSBERT + LaBSE 3% 7% -11% -6% -7% -6% 2% -3%

Table 13: Performance gains from the ensemble metrics over single best metrics.
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Chapter 13

Conclusion

Given the unprecedented success of deep learning technology, state-of-the-art nat-
ural language generation (NLG) systems compete for human-parity performance
at an ever-increasing pace, and as such fair and adequate evaluation plays a vital
role for properly tracking the progress of NLG systems. In this work, we sketch
a holistic view of principled NLG evaluation from three complementary perspec-
tives: (i) evaluating the adequacy of NLG systems with high-quality evaluation
metrics; (ii) comparing NLG systems for properly tracking the progress and (iii)
providing the understanding of evaluation metrics, all of which are driven by the
evaluation principles, pertaining to adequacy, progress and diagnostic, outlined in
the European project EAGLES-1996 for evaluating natural language technologies.
In particular, we identify a series of challenges derived from the inherent charac-
teristics of these perspectives, and address the identified issues by proposing novel
evaluation metrics, rigorous comparison approaches and explainability techniques
for understanding non-transparent metrics.

Reference-based Evaluation. As the low-cost alternatives to human evaluation,
traditional evaluation metrics such as BLEU and ROUGE, evaluating the perfor-
mance of NLG systems in seconds or minutes, have been extensively adopted in
recent NLG evaluation campaigns. However, these metrics have failed to judge the
text quality of system outputs when system output and human reference have no
lexical overlap. Thus, the challenge of addressing lexical similarity in the absence
of lexical overlap has become the major bottleneck in reference-based evaluation
(RQ1). In Chapter 5, we proposed MoverScore, a reference-based evaluation metric,
to overcome this challenge, which addresses the lexical similarity by using broader
semantic relatedness of words in vector space. We demonstrated that MoverScore
strongly correlates with human ratings in machine translation, summarization and
image captioning, surpassing BLEU by up to 25 correlation points.

In relation to RQ2, we investigated the extent to which recent BERT-based
metrics can recognize text coherence for evaluating long texts. In Chapter 6, we
showed that these metrics cannot penalize incoherent elements in system outputs,
and correlate poorly with human rated coherence. To address this issue, we proposed
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DiscoScore, a reference-based metric, targeting the assessment of text coherence,
driven by Centering theory. We showed that DiscoScore achieves strong system-level
correlation with human ratings, not only in coherence but also in factual consistency
and other aspects.

In Section 5.3.2, we showed that the selection of word embeddings across the
layers of BERT is of importance for the performance of BERT-based evaluation
metrics. We proposed to aggregate word embeddings across layers by using the
KDE routing. In Chapter 7, we elaborate on the KDE routing, a kernel-based
density estimator, used to aggregate capsules (another form of embeddings) across
layers without supervision.

Reference-free Evaluation. Much unlike reference-based metrics, reference-free
metrics remove the need for human reference by directly comparing system out-
put with source text, allowing for unlimited evaluation of NLG systems. There-
fore, reference-free metrics have been researched for long. However, the proposal
of previous metrics required human ratings as supervision and language-dependent
preprocessing, hindering the wide applicability of these metrics.

In Subpart B, we particularly addressed reference-free evaluation in machine
translation, and showed that contextualized encoders such as BERT (responsible
for the success of reference-based metrics) cannot show advantages in the absence
of human reference. In relation to RQ2, we proposed XMoverScore, a parameter-
ized, reference-free evaluation metric, which operates MoverScore in a cross-lingual
setup. XMoverScore can be parameterized by the choice of solutions to address high-
quality cross-lingual embeddings, which we identify to be crucial for XMoverScore
surpassing reference-based BLEU.

Regarding the choice of solutions, we proposed to rotate the vector space and to
reduce “language bias” in Chapter 8. Chapter 9 addressed the removal of language
identity signals from the vector space, while Chapter 10 addressed the vector space
alignment with density-based approaches for low-resource languages.

System Comparison. Proper evaluation concerns not only the designing of eval-
uation metrics, but also the comparison of NLG systems. In relation to RQ4, we
questioned the use of average to report system rankings—see Chapter 11. In partic-
ular, we showed that global statistics such as average and median of instance-level
evaluation scores cannot carry out rigorous comparison, as they ignore the fact that
systems are evaluated on the same test instances. To address this issue, we in-
troduced pairwise comparison approaches to compare text generation systems on
instance level, which bases the prediction of system strengths on the probability of
one system over the other.

Explainability for Evaluation Metrics. Recent evaluation metrics building on
contextualized encoders exhibit much better quality levels than traditional metrics
such as BLEU and ROUGE. However, given the complexity and non-transparency
of the encoders, understanding these metrics is challenging (RQ5). In this thesis,
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we provided several explainability techniques to address this issue, inspired by the
recent advances in explainable artificial intelligence.

In Section 5.3.1, we visualized the process of MoverScore by picturing the align-
ment of word pairs in system output and human reference. In Chapter 6, we pro-
vided justifications to the superiority of one metric over another, showing that the
more discriminative the features (derived from the metrics) are in separating system
output from human reference, the better the metrics perform. In Chapter 12, we
provided understanding on what linguistic factors evaluation metrics capture, and
showed that both reference-based and reference-free metrics based on BERT are
sensitive to lexical overlap, much like BLEU and ROUGE.

To summarize, in this thesis, we have acknowledged the importance of three
complementary perspectives constituting the holistic view of principled evaluation
in NLG: (i) evaluation metrics, (ii) system comparison and (iii) explainability for
metrics. To this end, we have outlined the current state of challenges pertaining to
the inherent characteristics of these perspectives.

We have addressed these challenges through individual studies and the proposals
of novel metrics, rigorous comparison approaches, explainability techniques for eval-
uation metrics. Given text generation encompassing an enormous range of tasks,
we acknowledge that our research cannot hope to be a comprehensive treatment for
solving evaluation in all tasks, but we have made significant contributions to machine
translation and text summarization evaluation, paving the path towards fair and ad-
equate evaluation in other tasks, such as dialogue generation, story generation, and
so forth.

Building upon our work, the scope for future work is huge. We now outline only
a few possible directions:

As long-text generation keeps growing continuously, recognizing text coherence
has become crucial in the assessment of system outputs, not only for reference-based
evaluation (see Chapter 6). In relation to (RQ2), we intend to design discourse
metrics by freeing themselves from the need for human reference. As an exam-
ple in machine translation, we will start by understanding discourse coherence in a
cross-lingual setup (Menzel et al., 2017), such as how coherence is realized across lan-
guages. We then design reference-free discourse metrics by modeling such language-
dependent coherence phenomena in source language texts and system translations.

In relation to (RQ4), we intend to study how to rigorously compare evaluation
metrics. Evaluation metrics are often compared according to the correlation be-
tween metric and human scores. For system-level correlation, one has to assemble
system-level metric and human scores by averaging instance-level scores. As average
cannot properly compare NLG systems (see Chapter 11), we suspect that comparing
evaluation metrics in this manner is also problematic. To this end, we will investi-
gate a range of aggregation mechanisms such as median and BT, as it is the case
for our studies in comparing NLG systems. Further, we will pair evaluation metrics
with aggregation mechanisms, such as {ROUGE, average} and {BLEU, BT}, and
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then compare such pairs for ensuring rigorous comparison of evaluation metrics.

We hope that the contributions presented in this thesis fuel and inspire more
research towards principled NLG evaluation responsible for ensuring trustworthy,
reproducible and unbiased results.
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