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Abstract 

This dissertation examines oxygen transfer dynamics of activated sludge aeration 
systems in wastewater treatment plants (WWTP). The method of ex situ off-gas testing 
and its measurement uncertainty when determining the α-factor were studied. The 
variation of the α-factor was measured in conventional activated sludge (CAS) and two-
stage systems with pilot-scale long-term ex situ off-gas testing. A data-driven approach 
to predict oxygen transfer based on supervised machine learning is presented. The key 
results of this cumulative dissertation and its three papers (P1-P3) are as follows:  

§ ASCE 18-18 describes the ex situ off-gas method as an alternative to in situ off-gas 
testing with off-gas hoods on the activated sludge surface. P1 showed that results 
from ex situ and in situ tests cannot be compared because sludge inflow into an ex 
situ bubble column systematically increased the α-factor. Still, ex situ off-gas testing 
offers unique advantages for piloting and research of oxygen transfer because 
operation of an external bubble column is more flexible than in situ off-gas testing.  

§ By comparing ex situ off-gas measurements under the same conditions, P1 
demonstrated that α-factors can be quantified at a relative standard deviation of 
about ± 2.8 %. This is significantly more accurate than previously reported 
uncertainties between ± 5 to 15 %. A sensitivity analysis in P1 revealed that 
recording the oxygen concentration in the off-gas was the most important parameter 
to conduct reliable oxygen transfer tests, exceeding the relevance of dissolved 
oxygen (DO) and airflow rate measurement by far.  

§ α-factors are generally higher in the second stage of a two-stage WWTP because 
oxygen transfer inhibiting substances, e.g., surfactants and TOC, are partially 
removed in the first stage. In P2, α-factors for design load cases were determined as 
0.45 for αmean and 0.33/0.54 for αmin/αmax in the first stage (HRAS), and as 0.80 for 
αmean and 0.69/0.91 for αmin/αmax in the second stage. α-factors in situ would be lower 
because these values were recorded with ex situ off-gas tests.  

§ The α0-factor was introduced in P3 to compare oxygen transfer in activated sludge 
from aerated and non-aerated zones. It considers differences of in situ and ex situ 
DO under non-steady state DO conditions. An increase of the α0-factor along an 
upstream anoxic tank of a CAS process was observed, thus suggesting biosorption 
and/or biodegradation of oxygen transfer inhibiting substances.  

§ The α0-factor was predicted by Random Forest models for different activated sludge 
stages within an RMSE (root-mean-square error) of 0.024 and 0.033 (R2 between 
0.84 and 0.92). Models were trained with 17 predictor variables based on WWTP 
operating data. The data-driven approach can consider potential interactions of 
influences on oxygen transfer, but the final models are typically unable to generalize 
for conditions not included in training data.   



 

 

Kurzfassung 

Im Rahmen dieser Dissertation wird der Sauerstoffeintrag von Belüftungssystemen im 
Belebtschlammverfahren von Abwasserbehandlungsanlagen (ABA) untersucht. Dabei 
wird die ex situ Abluftmessung und deren Messunsicherheit bei der Bestimmung des α-
Wertes betrachtet. Mit ex situ Abluftmessungen im halbtechnischen Maßstab wurden 
Schwankungen des α-Wertes im Betrieb konventioneller und zweistufiger 
Abwasserbehandlungsanlagen aufgezeichnet. Die datengetriebene Vorhersage des 
Sauerstoffeintrags basierend auf Modellen des überwachten maschinellen Lernens wird 
aufgezeigt. Die wesentlichen Ergebnisse der kumulativen Dissertation und der drei 
Publikationen (P1-P3) sind wie folgt:  

§ In ASCE 18-18 wird die ex situ Abluftmethode als Alternative zu in situ Messungen 
mit Ablufthauben auf der Oberfläche von Belebungsbecken beschrieben. In P1 
wurde aufgezeigt, dass Messergebnisse von ex situ und in situ Abluftmessungen 
nicht vergleichbar sind, da die Schlammzufuhr in eine externe Blasensäule den 
Sauerstoffeintrag, und damit den α-Wert, systematisch erhöhte. Dennoch bietet die 
ex situ Abluftmethode Vorteile für Pilotierungs- und Forschungszwecken, da diese 
flexibler betrieben werden kann als in situ Ablufthauben.  

§ Ein Direktvergleich von ex situ Abluftmessungen in P1 zeigte, dass α-Werte mit 
einer relativen Standardabweichung von etwa ± 2,8 % gemessen werden konnten. 
Diese Abweichung ist deutlich geringer als bisher bekannte Abweichungen 
zwischen ± 5 und 15 %. Anhand einer Sensitivitätsanalyse konnte die Messung der 
Sauerstoffkonzentration in der Abluft als wichtigste Einflussgröße für zuverlässige 
Abluftmessungen identifiziert werden. Diese war wesentlich entscheidender als die 
Messung der Gelöst-Sauerstoffkonzentration und des Luftvolumenstroms.  

§ In zweistufigen Belebungsbecken sind α-Werte in der zweiten Stufe höher, da in der 
Hochlaststufe Abwasserinhaltsstoffe, z.B. Tenside und TOC, teilweise entfernt 
werden, die den Sauerstoffeintrag hemmen. In P2 wurden α-Werte für Lastfälle 
bestimmt, darunter 0,45 für αmittel und 0,33/0,54 für αmin/αmax in der Hochlaststufe 
sowie 0,80 für αmittel und 0,69/0,91 für αmin/αmax in der zweiten Stufe. α-Werte im 
Belebungsbecken wären tendenziell niedriger, da diese Werte mit ex situ 
Abluftmessungen erhoben wurden.  

§ Der α0-Wert wurde in P3 eingeführt, um den Sauerstoffeintrag in Belebtschlamm 
aus belüfteten und unbelüfteten Beckenzonen zu untersuchen. Der Parameter 
berücksichtigt den Unterschied zwischen in situ und ex situ Sauerstoffkonzentration 
unter stationären und instationären Bedingungen. In einer konventionellen 
Belebungsanlage konnte ein Anstieg des α0-Wertes entlang der Beckenlänge einer 
vorgeschalteten anoxischen Beckenzone beobachtet werden. Dies weist auf einen 



 

 

Abbau und/oder eine Adsorption von Abwasserinhaltsstoffen hin, die den 
Sauerstoffeintrag hemmen.  

§ Der α0-Wert konnte mit Random Forest Modellen für verschiedene Belebtschlamm-
Stufen mit einem RMSE (root-mean-square error) zwischen 0,024 und 0,033 (R2 
zwischen 0,84 und 0,92) vorhergesagt werden. Die Modelle wurden mit 
17 Vorhersagevariablen aus Betriebsdaten der ABA trainiert. Der datengetriebene 
Ansatz kann mögliche Interaktionen zwischen Einflüssen auf den Sauerstoffeintrag 
berücksichtigen. Allerdings können Modelle im Allgemeinen keine zuverlässige 
Vorhersage für neue Bedingungen treffen, die nicht Bestandteil des Trainings-
Datensatzes waren. 
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force at std. conditions 
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1 Introduction 

Aeration of activated sludge is an essential process in biological wastewater treatment 
where aeration systems supply oxygen to aerobic microorganisms. This transfer of 
oxygen from gas into liquid phase is an energy-intensive process. In the last decades 
major advances were put into practice to improve energy efficiency of this process, e.g., 
the shift from surface to submerged aeration systems, from coarse to fine-bubble 
diffusers, and automation of dissolved oxygen control systems (Wagner and Stenstrom, 
2014). Nonetheless, aeration still accounts for more than half of the net energy 
consumption in most wastewater treatment plants (WWTP) (Baquero-Rodríguez et al., 
2018; Reardon, 1995; Rosso et al., 2011). Hence, even minor improvements of aeration 
efficiency can translate to significant cost savings for WWTP operators. This 
cumulative dissertation addresses research gaps in the field of aeration technology in 
three research papers as described below.  

Paper 1 (P1) addresses missing information about oxygen transfer testing procedures 
for the ex situ off-gas method that was used throughout this research work. Technical 
guidelines to quantify the oxygen transfer efficiency in clean water (ASCE/EWRI 2-06, 
2007; DWA-M 209, 2007; EN 12255-15, 2003) and process water (ASCE/EWRI 18-
18, 2018; DWA-M 209, 2007) exist to standardize measurement procedures. These 
allow to compare the efficiency of aeration systems and WWTP process layouts and are 
a critical tool for the development and design of aeration systems to improve aeration 
efficiency. However, oxygen transfer tests under process conditions are reported to 
produce results within an uncertainty of ± 5 to 15 % if conducted according to testing 
procedures (Capela et al., 2004; DWA, 2007; Mahendraker et al., 2005; Redmon et al., 
1983). Therefore, in P1 the parameters critical for measurement uncertainty are 
examined and discussed. An important oxygen transfer parameter is the α-factor that 
describes the ratio of oxygen transfer under process and clean water conditions. The α-
factor is determined by in situ or ex situ off-gas procedures based on a mass balance of 
oxygen transferred from gas to liquid phase. However, application experience with ex 
situ off-gas methods is limited. Hence, P1 discusses applications and limitations of the 
ex situ off-gas method.  

Paper 2 (P2) focusses on the oxygen transfer in two-stage activated sludge treatment 
plants. In this process layout a high-rate activated sludge system (HRAS) is followed 
by a second biological treatment stage (e.g., for nitrogen removal), that can be operated 
differently than a conventional activated sludge (CAS) system (Winkler and Widmann, 
1994). A key difference is the much lower wastewater load directed into the second 
stage after HRAS treatment. Recently, two-stage processes gained attention because the 
first stage enables the redirection of carbon into waste activated sludge (WAS) through 
biosorption, thus reducing the oxygen demand of aerobic biodegradation. While almost 
all CAS wastewater treatment plants operate in an energy-negative mode, two-stage 
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systems were reported to energy self-sufficiently remove nutrients (Kroiss and Klager, 
2018; Liu et al., 2020). Because two-stage systems are operated differently than CAS 
systems this also affects oxygen transfer. A lower α-factor due to high sludge loads is 
expected in HRAS systems followed by higher α-factors in the subsequent treatment 
stage. However, no comprehensive information about two-stage process and oxygen 
transfer is available yet. Therefore, P2 examines effects on oxygen transfer during 
operation in practice and defines static α-factors for design purposes based on long-term 
ex situ off-gas testing.  

Paper 3 (P3) presents a novel approach to model oxygen transfer in activated sludge. 
Oxygen transfer changes dynamically in activated sludge tanks depending on 
wastewater influent and process characteristics and this variance can result in failures 
of process design and operation (Amaral et al., 2017). Thus, modelling oxygen transfer 
parameters such as the α-factor could provide a useful tool to improve design and 
operation of aeration systems. Currently, no generally applicable oxygen transfer model 
exists (Baquero-Rodríguez et al., 2018). Previous approaches are limited to a small 
number of parameters describing the process, some of which are difficult to reliably 
quantify (e.g., sludge retention time) or measure in practice (e.g., bubble size). In recent 
years, data-driven methods were utilized in several modelling applications in the field 
of wastewater treatment (Alejo, 2021; Tyralis et al., 2019). In this research work, three 
different WWTPs with four different AS stages were examined in long-term ex situ off-
gas testing which provided a comprehensive dataset suitable for the application of data-
driven methods. The main idea behind P3 was to model the α-factor with a supervised 
machine learning algorithm based on operating data typically available for WWTP 
operators. P3 discusses the modelling process to predict the α-factor and limitations of 
this methodology.  

Prior to these papers, this thesis summarizes the state of the art in the field of aeration 
technology in chapter 2. The chapter presents concepts and terminology regarding the 
measurement and modelling of oxygen transfer parameters which is the main subject of 
this research work. Based on this background the objective of each paper is described 
in chapter 3. The chapter also outlines how the individual papers are linked with each 
other. Chapter 4 contains the papers that form the cumulative part of this thesis. Finally, 
the conclusions in chapter 5 cover the contributions of each individual paper in the 
context of this research work and combined findings derived from the papers. The 
chapter is concluded by an outlook proposing prospective future work beyond this 
thesis.   
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2 State of the Art – Aeration Technology 

Treatment of wastewater in municipal wastewater treatment plants (WWTP) uses 
mechanical and biological processes. Biological wastewater treatment is typically 
performed in the activated sludge process that has been utilized for more than 100 years 
(Jenkins and Wanner, 2014). Microorganisms are grown in an activated sludge tank 
using wastewater contaminants in the influent as a substrate. Water and sludge flows 
are controlled to maintain this microbial community at a high concentration to facilitate 
an effective removal of substrate via biological removal or solids separation in the 
subsequent clarifier. This solids separation returns activated sludge into the activated 
sludge tank or, partially, removes waste activated sludge (WAS) from the process to 
maintain a stable concentration of activated sludge in the tank measured as total 
suspended solids (TSS). Supernatant from the clarifier is either directed to further 
treatment stages or discharged from the WWTP.  

The activated sludge process can be separated into anaerobic and aerobic stages. The 
oxygen supply to microorganisms for aerobic biological treatment is typically provided 
by submerged diffusers or a mechanical surface aeration system that generate gas-liquid 
interfaces for oxygen transfer. For submerged aeration systems ambient air is 
compressed by blowers and delivered to diffusers installed on the bottom of an activated 
sludge tank where air bubbles are released through small orifices. Oxygen is transferred 
from the gas phase to the soluble phase as the bubbles rise in the activated sludge. 
Mechanical aeration systems submerge air below the surface of the activated sludge and 
shear the liquid surface into droplets with mixing devices to increase gas-liquid 
interface. Nowadays, fine-bubble diffusers are the most common aeration technology 
as they can be operated at higher standard aeration efficiency (SAE) which describes 
oxygen transfer per unit energy consumed (Wagner and Stenstrom, 2014). Diffusers are 
typically installed to evenly cover the bottom of the aerobic stage of an activated sludge 
tank. Here, the oxygen transfer is a three-phase system with air as the gas phase, sludge 
as the solid phase, and wastewater as the soluble phase. Aeration systems must provide 
oxygen for aerobic treatment and sufficient mixing to prevent sedimentation of 
activated sludge in the tank. Anoxic tank zones therefore typically require additional 
mixing devices. Aeration is an energy-intensive process, even though numerous 
advances in diffuser design and operation of WWTPs have been made. In most 
wastewater treatment plants (WWTP) it accounts for more than half of the net energy 
consumption (Baquero-Rodríguez et al., 2018; Reardon, 1995; Rosso et al., 2011). 
Energy costs for wastewater treatment account for approximately 0.7 to 1 % of total 
energy consumption in Germany (Maktabifard et al., 2018).  

In general, two aspects are optimized for energy-efficient operation of submerged 
aeration systems. Firstly, the oxygen transfer efficiency (OTE) should be as high as 
possible, i.e., the amount of oxygen transferred at bubble rise from release at the diffuser 
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to the activated sludge tank surface. OTE is usually higher at smaller bubble diameters 
that feature a larger specific interface between gas and liquid phase produce a low flow 
regime with less turbulence than coarse bubbles. Secondly, the diffuser pressure loss 
should be as low as possible, i.e., the counter-pressure applied by the perforated diffuser 
membranes. Diffuser pressure loss is typically higher for diffuser membranes with 
smaller slits producing finer bubbles. Therefore, the aim of diffuser design is to optimize 
the opposing parameters OTE and diffuser pressure loss. Definition and measurement 
of these parameters is described in chapter 2.1. In addition to diffuser specific 
parameters, the design and operation of the activated sludge tank can have a significant 
effect on OTE as well as described in chapter 2.2. 

2.1 Quantifying Oxygen Transfer 

Standard testing procedures in technical guidelines describe how to determine the 
oxygen transfer of an aeration system. The procedures aim to reduce the overall 
uncertainty to the instrument's errors and thereby increase comparability of results from 
different testing facilities. There are methods to measure oxygen transfer in clean water 
and activated sludge. Table 1 lists available technical guidelines for oxygen transfer 
testing and where they are applicable. 

Table 1: Overview of technical guidelines for oxygen transfer testing  

Region Clean Water Activated Sludge 

European Norm EN 12255-15 (2003) - 

German Standard DWA-M 209 (2007) DWA-M 209 (2007) 

American Standard ASCE 2-06 (2006) ASCE 18-18 (2018) 

The quantification of oxygen transfer parameters is crucial for proper design and 
operation of aeration systems which is further described in chapter Modelling Oxygen 
Transfer Dynamics. The methods in technical guidelines describe procedures to 
empirically determine the oxygen mass transfer from gas to liquid. Several mass transfer 
models exist in the theory of gas-liquid absorption with the stagnant two-film model 
(Lewis and Whitman, 1924), the penetration theory (Higbie, 1935) and the surface 
renewal model (Danckwerts, 1951) being the most common. The mass transfer models 
used in technical guidelines listed in Table 1 assume that interfacial films are stagnant 
with only diffusional transport across the interface (Lewis and Whitman, 1924) as 
described in the following chapters. It is worth noting, however, that more advanced 
gas transfer theories consider non-stagnant gas-liquid interfaces. Higbie's penetration 
theory suggests a continuous regeneration of the gas-liquid surface describing an 
exchange of fluid at the bubble's interface. Similarly, Danckwert's surface renewal 
model refines the theory by also considering the age of the gas-liquid surface. Applying 
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the theories requires the consideration of parameters such as the velocity of adsorption 
and interfacial gas-liquid, the surface element contact time, and the bubble diameter. 
While this is beneficial to account for the effect of turbulence in a tank on oxygen 
transfer, its shortcoming is that these parameters can generally not be measured in full-
scale setups. Consequently, the intricate details of non-stagnant gas-liquid interfaces 
and thereof resulting bubble mechanics are not included in oxygen transfer parameters 
calculated according to technical guidelines. In practice, this simplification can lead to 
a bias of results, e.g., when performing clean water and activated sludge comparison 
tests under different hydraulic conditions in the same test tank.  

2.1.1 Oxygen Transfer Testing in Clean Water 

Oxygen transfer testing of aeration systems in clean water is a standardized procedure 
to quantify the performance of diffusers. The procedure is conducted in a two-phase 
system with air bubbles rising in tap water. This provides the best reproducibility of test 
results because there are fewer variations influencing the oxygen transfer in clean water 
than in activated sludge. The test method determines the mass transfer coefficient kLa 
and the oxygen saturation concentration C*∞ which are the basis for all further oxygen 
transfer parameters. The procedure can be conducted either as a desorption or 
absorption test. For desorption testing, dissolved oxygen concentration is initially 
increased with pure oxygen and afterwards stripped with air until the oxygen saturation 
concentration is reached. For absorption testing, dissolved oxygen is initially 
chemically absorbed to lower DO close to zero and afterwards reoxygenated until the 
oxygen saturation concentration is reached. This results in a typical DO profile during 
an oxygen transfer test that follows a saturation curve, as described by the differential 
form:  

𝑑𝐶
𝑑𝑡  = 𝑘!𝑎 ∙ (𝐶"∗ − C$)	  (1) 

which yields the following exponential equation: 

𝐶t = 𝐶"∗ 	- (𝐶"∗ - 𝐶%) · 𝑒&'!(·(+&+")  (2) 

with:  
kLa:   apparent volumetric mass transfer coefficient under test conditions  

(h-1)  
Ct:   dissolved oxygen concentration at time t (mg·L-1)  
C*∞:   steady-state dissolved oxygen saturation concentration as time approaches 

infinity (mg·L-1)  
C0:  dissolved oxygen concentration at start of test (t = 0) (mg·L-1)  
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Figure 1 shows the DO profile of a desorption oxygen transfer test. The collected data 
is iteratively fitted by a nonlinear least squares (NLS) regression function of the form 
of equation 2 (blue line). This curve converges with the oxygen saturation concentration 
C*∞ (blue dotted line) under test conditions. Residuals represent the error of the NLS 
regression as the difference between the fitted value and each measured value at the 
same duration timestamp. Evenly and randomly distributed residuals indicate a reliably 
conducted test under sufficient mixing conditions.  

 
Figure 1: Dissolved oxygen profile of a desorption oxygen transfer test  

Water temperature, atmospheric pressure, and salinity of test water influence oxygen 
transfer and are therefore standardized. Temperature and salinity of volumetric mass 
transfer coefficient kLa are corrected to 20 °C in kLa20 and 1,000 mg·L-1 in kLa20,1000:  

𝑘!𝑎-% = 	𝑘!𝑎 ∙ 𝜃(-%&.)  (3) 

𝑘!𝑎-%,0%%% =
1.1 · 𝑘!𝑎-%

1 + 0.1 · 𝑇𝐷𝑆1,000
 (4) 

with: 
θ:   Temperature correction factor (theta), θ=1.024 (-)  
TDS:  Total dissolved solids, often approximated with the electrical conductivity 

(EC); a common conversion for TDS in mg·L-1 is:   
EC (in µS·cm-1) · 2,000 mg·L-1 TDS / 3,000 µS·cm-1 (DWA, 2007)  

kLa20:  volumetric mass transfer coefficient at 20 °C (h-1)  
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kLa20,1000:  volumetric mass transfer coefficient at 20 °C and 1,000 mg·L-1 TDS  
(h-1)  

Water temperature and atmospheric pressure of oxygen saturation concentration C*∞ are 
corrected to 20 °C and 101.325 kPa in C*20:  

𝐶1,.,1+ =
2234.34	(mg · L&0 · °𝐶)
(𝑇2 + 45.93)0.405%4

 (5) 

𝐶-%∗ = 𝐶"∗ · 𝜏 · 𝛺 = 𝐶1,67 ·
𝐶1,.,1+
9.09 ·

𝑝(+6
101.325

 (6) 

with: 
Tw:  Water temperature (°C)  
CS,T,St:  Oxygen saturation concentration at water temperature Tw (mg·L-1)  
CS,md:  Oxygen saturation concentration at mid-depth of tank 1(mg·L-1)  
τ:  Temperature correction (tau) of effective saturation concentration (-)  
Ω:  Pressure correction (omega) of effective saturation concentration (-)  
patm:  Atmospheric pressure (kPa)  
C*20:  Standardized effective oxygen saturation at process conditions  

(mg·L-1)  
ASCE 18-18 refers to tabulated values by Benson and Krause Jr (1984), the polynomial 
above is defined in DWA-M 229-1 (2017)and calculates these values. Typical oxygen 
transfer parameters in clean water (cw) are the standard oxygen transfer rate (SOTRcw) 
and standard oxygen transfer efficiency (SOTEcw): 

𝑆𝑂𝑇𝑅82 = 	
V · k9a-%,0%%% ∙ 𝐶-%∗

1,000	(g · kg&0)             (7) 

𝑆𝑂𝑇𝐸82 = 	
100	%	 ∙ 𝑆𝑂𝑇𝑅82

𝑄:;< ∙ 0.299	(kg · 𝑚4)  (7) 

with:  
V:   Volume of test tank (m3)  
QAFR:  Airflow rate, usually at standard temperature and pressure (Nm3·h-1)  
SOTRcw:  Standard oxygen transfer rate (kg·h-1)  
SOTEcw:  Standard oxygen transfer efficiency (%)  
0.299:  Mass of oxygen per volume of ambient air (1.429 kg O2 per m3 in pure 

oxygen equals 0.299 kg O2·m3 at 20.946 % oxygen concentration in ambient 
air)  
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It is worth noting that this testing procedure quantifies the overall oxygen transfer 
occurring in a test tank. The analysis of a DO profile in this non-steady state testing 
yields a volumetric mass transfer coefficient kLa. In this parameter kL corresponds to 
the gas-liquid diffusion coefficient and a corresponds to the specific surface area of the 
rising air bubbles (surface area per volume). Measuring diffusion at this phase boundary 
layer or measuring its surface area is usually not possible in practice. Therefore, the 
volumetric mass transfer coefficient kLa is used as a reference value to characterize the 
oxygen transfer (Eckenfelder Jr, 1959).  

2.1.2 Off-gas testing in Activated Sludge 

Oxygen transfer in full-scale activated sludge tanks can be determined with non-steady 
state methods like the clean water testing procedure described before. An absorption or 
desorption DO profile is created by changing power levels of blowers or adding H2O2, 
similarly to the pure oxygen desorption method in clean water testing. These methods, 
however, rely on constant oxygen uptake and the ongoing biodegradation of wastewater 
contaminants, the uncertain measurement of oxygen uptake rate, and the continuous 
wastewater inflow can introduce additional errors.  

Another established method is the off-gas measurement. In addition to dissolved oxygen 
sensors, it requires a gas analyzer to record oxygen concentrations in the off-gas of 
activated sludge tanks. With the in situ method off-gas is collected from fixed or floating 
hoods on the top of the activated sludge tank surface. An ex situ alternative exists where 
activated sludge is transferred into an adjacent aeration column. Both off-gas methods 
use a mass balance to calculate oxygen transfer efficiency under process conditions 
OTEf as follows: 

𝑂𝑇𝐸= =
𝑀𝑅> − N

𝑂-,?
1 − 𝑂-,? − 𝐶𝑂-,?

O

𝑀𝑅>
 (8) 

with: 
O2,e:   Oxygen concentration in off-gas, without water vapor and particle-free (%)  
CO2,e:  Carbon dioxide concentration in off-gas, without water vapor and particle-

free (%)  
MRi:   Molar ratio of oxygen to inert substances (-)  
OTEf:  Oxygen transfer efficiency under process conditions (%)  

𝑀𝑅𝑖 =

𝑂2,𝑖𝑛
1 − 𝐶𝑂2,𝑖𝑛

1 −
𝑂2,𝑖𝑛

1 − 𝐶𝑂2,𝑖𝑛

= 0.265  (9) 
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with: 
O2,in:  Inlet oxygen concentration of 20.946 %  
CO2,in:  Inlet carbon dioxide concentration of 0.0407 % 
The parameter is calculated depending on the gas analyzer output and/or off-gas 
conditioning. In the presented calculation off-gas concentrations were already pressure 
corrected to atmospheric pressure. For other variants the reader is referred to ASCE 18-
18 (2018) or DWA-M 209 (2007). For better comparison between measurements the 
oxygen transfer efficiency under process conditions is standardized to a water 
temperature of 20 °C, atmospheric pressure of 101.325 kPa, and zero DO to SOTEpw 
according to the following equations:  

𝑂𝑇𝐸@A,-% =
𝑂𝑇𝐸=
𝐶-%∗ − 𝐶+

· 𝜃-%&.#  (10) 

with: 
Ct:   Dissolved oxygen concentration in the ex situ column (mg·L-1)  
C*20:  Standardized effective oxygen saturation at process conditions  

(mg·L-1)  
θ:   Temperature correction factor (theta); θ = 1.024 (-)  
Tw:   Water temperature (°C)  
OTEsp,20:  Oxygen transfer efficiency per unit of driving force at std. conditions  

(%/(mg·L-1))  
The β-factor is the ratio of oxygen saturation in process water to clean water equivalent 
conditions of water temperature partial pressure:  

𝛽 = 1.00 − 0.01 ·
𝑇𝐷𝑆

1,000	mg · L&0  (11) 

with:  
TDS:   Total dissolved solids (mg·L-1)  
β:   β-factor (beta) (-)  
Combining these parameters yields the standardized oxygen transfer efficiency under 
process conditions:  

𝑆𝑂𝑇𝐸A2 = 𝑂𝑇𝐸@A-% · 𝐶-%∗ · 𝛽  (12) 

with:  
C*20:  Standardized effective oxygen saturation at process conditions (mg·L-1)  
SOTEpw:  Standard oxygen transfer efficiency under process conditions (%)  



 

State of the Art – Aeration Technology 10 

Oxygen transfer under process conditions in activated sludge is inhibited by several 
influencing factors as described in chapter Influences on Oxygen Transfer in the 
Activated Sludge Process. The sum of these influences is combined in the α-factor and 
calculated as a simple ratio of oxygen transfer efficiency in process water and clean 
water:  

𝛼 =
𝑆𝑂𝑇𝐸A2
𝑆𝑂𝑇𝐸82

 (13) 

with:  
SOTEcw:  Standard oxygen transfer efficiency in clean water (%)  
α:   α-factor (-)  
Diffuser related factors, such as fouling, scaling, and aging that reduce oxygen transfer 
are often separately considered by the fouling factor F and therefore stated as αF-factor, 
see section 2.2.6. Because wastewater contaminants inhibiting oxygen transfer cannot 
be determined a priori the resultant α-factor during operation may only be determined 
a posteriori with the above equations. Chapter 2.2 outlines these influences on oxygen 
transfer in the activated sludge process.  

2.2 Influences on Oxygen Transfer in the Activated Sludge Process 

Oxygen transfer in activated sludge is a highly dynamic process. Its variation affects air 
requirements of the activated sludge tank and thus operational cost. Influences on 
minimum and peak air requirement also affect equipment sizing and the design of 
aeration systems. The gas-liquid mass transfer in activated sludge tanks is measured as 
an oxygen transfer rate or efficiency (SOTR or SOTE) or, when compared with oxygen 
transfer in clean water, as an α-factor. Earliest studies were conducted several decades 
ago by Kessener and Ribbius (1934) and Eckenfelder and Barnhart (1961). Since then, 
numerous investigators have studied the influences on oxygen transfer in the activated 
sludge process. Modelling the mass transfer is particularly challenging in the three-
phase system as many factors are difficult to measure. This chapter gives an overview 
about influences on oxygen transfer separated into sections for solid, liquid, and gas 
phase. In addition, the effect of standardization parameters, activated sludge process 
characteristics related to operation, and diffuser related characteristics are summarized. 
It is worth noting that many parameters are interrelated with each other and could 
therefore be included in multiple sections.  

2.2.1 Solid Phase 

The solid phase in activated sludge comprises biomass in the form of activated sludge 
flocs and particulate matter not removed from wastewater inflow in mechanical 
wastewater treatment steps. This solid matter can be categorized into a wide range of 
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sizes from colloidal (0.001 to 1 µm), supracolloidal (1 to 100 µm), to settleable 
contaminants (> 100 µm) (Levine et al., 1991). In activated sludge it is typically 
measured as total suspended solids (TSS), also known as mixed liquor suspended solids 
(MLSS) with filters with 0.45 µm pore width. The presence of a solid phase 
distinguishes oxygen transfer in the activated sludge from clean water conditions. 
Hence, its effect on oxygen transfer efficiency in aeration tanks has been examined 
extensively in the past.  

Monitoring in Activated Sludge Tanks  

WWTP operators require information about the total biomass concentration within an 
activated sludge tank to monitor and control the treatment process. In addition, 
settleability of the activated sludge is monitored to ensure a proper phase separation in 
clarifiers.  

Total suspended solids (TSS in g·L-1) and total solids (TS in g·L-1) are typically 
measured in regular laboratory analysis according to the standard method that is valid 
in the location of the WWTP. In principle, TS is determined by the remaining weight 
of a sample after evaporation in an oven. For TSS the sample is filtered through a glass-
fiber filter before the residue is dried to constant weight. Total dissolved solids (TDS) 
are determined when the filtrate is examined by the same principle. TS is therefore the 
sum of TSS and TDS. Principles are described in standards such as Standard Methods 
for the Examination of Water and Wastewater (AWWA, 2017), EN 12880 (2000), and 
EN 15935 (2021). Online sensors can record data with a higher temporal resolution than 
laboratory-based analysis. Turbidity sensors measure the reduction of transparency in a 
liquid caused by the presence of undissolved matter as described in ISO 7027-1 (2016). 
Sensors can be calibrated for the use in activated sludge with different ranges of TSS 
concentration depending on the type of sludge.  

Settleability of activated sludge is characterized by sludge volume (in mL·L-1) and 
sludge volume index (SVI in mL·g-1). The sludge volume is the remaining volume of 
an activated sludge sample after 30 minutes settlement. SVI relates sludge volume to 
total suspended solids to describe the settleability of an activated sludge sample. The 
parameter is often determined manually although automated setups exist. Data is 
recorded with a low temporal resolution due to the settling time of 30 minutes.  

All laboratory methods face the challenge to take a representative sample of an activated 
sludge tank. Samples of the activated sludge tank are often taken adjacent to position of 
online sensors for validation and calibration purposes. Likewise, an online sensor is a 
point measurement within a three-dimensional reactor. Consequently, depending on the 
type of reactor and the mixing conditions the position of an online sensor or a sampling 
location might not represent the whole activated sludge tank. Rieger (2012) list potential 
sources of errors during sampling and of online sensors. These sources of errors are 
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site-specific and can increase the measurement uncertainty of an analysis above the 
expected level listed in technical standards.  

Interacting Mechanisms influencing Oxygen Transfer  

It is often stated that TSS is inversely correlated with the α-factor. This relationship has 
been demonstrated extensively for membrane bioreactors (MBR) where sludge 
rheology at TSS up to 30 g∙L-1 is the primary influence on oxygen transfer (Cornel et 
al., 2003; Germain et al., 2007; Krampe and Krauth, 2003). Henkel (2010) adds that 
especially the organic fraction of suspended solids (mixed liquor volatile suspended 
solids - MLVSS) causes oxygen transfer inhibition. Based on these studies the inverse 
relationship measured in MBRs was extrapolated to describe mechanisms in CAS 
systems, where typical TSS concentrations are lower than 6 g∙L-1. More recent studies 
additionally consider the concept of biosorption that describes interactions of soluble 
and solid substances. This link between the solid and liquid phase is the adsorption of 
oxygen transfer inhibiting soluble substances on the suspended sludge flocs. 
Biosorption therefore decreases concentration of organic substances in the liquid phase 
and hence also reduces accumulation of oxygen transfer inhibiting substances at the 
gas-liquid interface (Ahmed et al., 2021a; Odize, 2018). Under conditions where 
biosorption is the dominant impact on oxygen transfer, higher TSS can be positively 
correlated with the α-factor as biosorption is increasing. Baquero-Rodríguez et al. 
(2018) formulate this positive correlation between TSS concentrations up to 6 g∙L-1 and 
the α-factor. However, Ahmed et al. (2021b) conclude that so far no robust relationship 
between TSS and the α-factor exists for CAS systems.  

Other parameters to describe characteristics of the solid phase exist and have been 
related to oxygen transfer. These parameters outlined below have in common that they 
are not typically measured in full-scale WWTP operation and therefore remain 
unknown to the operator.  

§ Solid holdup of a three-phase system is a common parameter in chemical 
engineering and describes the bulk volume of solids as a percentage of the total 
volume. Sludge volume does not represent solid holdup because particle mass is not 
densely separated. Therefore, Henkel et al. (2011) introduced hydrostatic floc 
volume (HFV) as an alternative where biomass is inactivated with a biocide to 
prevent denitrification and settling time is increased to 48 hours. Like TSS, an 
increase of HFV reduced the α-factor in Henkel’s experiments in MBRs.  

§ TSS does not distinguish organic from inorganic matter. Henkel (2010) has 
demonstrated that the organic fraction VSS (volatile suspended solids) primarily 
inhibits oxygen transfer. However, this organic matter is not divided into fractions 
of active and inactive biomass. These aspects directly affect the oxygen uptake rate 
as a higher proportion of active biomass also increases total oxygen consumption 
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under otherwise constant conditions. The resultant difference of DO also changes 
the dissolved oxygen diffusion gradient and thus indirectly affects oxygen transfer 
efficiency.  

§ Extracellular polymeric substances (EPS) are an important component for floc 
structure. EPS are a mixture of polymers excreted by microorganisms, adsorbed 
organic matter from wastewater, and substances produced from cell lysis that hold 
microbial aggregates together in a three-dimensional matrix (Sheng et al., 2010). 
Steinmetz (1996) demonstrated a negative correlation between EPS concentration 
and the α-factor in batch-scale experiments. Germain et al. (2007) conducted pilot 
and full-scale experiments with MBRs and in addition to EPS concentration 
considered the effect of chemical oxygen demand (COD) concentration of the 
soluble microbial products, and TSS, on the α-factor. They found that in MBRs TSS 
concentration still was the dominating influence on α-factor decrease, followed by 
COD concentration of the soluble microbial products and EPS concentration.  

§ TSS does not distinguish particle size distribution of flocs in activated sludge. The 
link between carbon removal and particle size distribution has been examined before 
in wastewater applications (Arslan-Alaton et al., 2009; Houghton et al., 2002; 
Levine et al., 1991). Li and Stenstrom (2017) examined particle size distribution of 
five full-scale WWTPs and found a positive correlation with SRT as mean particle 
size increased with higher SRT. As higher SRT generally also increases oxygen 
transfer efficiency, particle size distribution can be indirectly related to oxygen 
transfer. However, implications of particle size distribution on oxygen transfer have 
not been examined so far.  

§ Finally, it is worth noting that the dosage of chemicals for flocculation and 
precipitation impact floc structure, adsorption capacity, settleability, and total 
suspended solids concentration (Rahman et al., 2016; Schuler et al., 2001). So far, 
no comprehensive research has been conducted to examine their influence on 
oxygen transfer.  

It is worth emphasizing that the typical monitoring of the solid phase in an activated 
sludge tank is missing to describe several of its characteristics. The mechanisms 
depicted above alter the liquid-solid interface, thus also influencing the gas-liquid and 
gas-solid interface. As a conclusion, oxygen transfer models based exclusively on TSS 
as the typically available information about the solid phase in an activated sludge tank 
greatly oversimplify the three-phase system.  

2.2.2 Liquid Phase 

The liquid phase in activated sludge can be categorized as bulk water and as water held 
within capillaries or on particle surfaces by adsorption (Katsiris and Kouzeli-Katsiri, 
1987). In activated sludge systems the liquid holdup has the largest share of total volume 
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compared to solid and gas holdup. Besides water, the liquid phase consists of soluble 
substances such as dissolved salts and non-dissolved matter like colloids and free 
moving bacteria. Among the most important oxygen transfer inhibitors in the liquid 
phase are soluble fractions of COD in general and surfactants in specific.  

Monitoring in Activated Sludge Tanks  

Most soluble contaminants are typically characterized in the activated sludge tank's 
influent and effluent flows with online sensors and/or routinely performed laboratory 
analytics. Monitoring parameters representing carbon, nitrogen, and phosphorus 
concentrations is required to control the activated sludge process and evaluate its 
treatment performance for regulatory compliance of emissions. Among the most 
common parameters are total organic carbon (TOC), chemical oxygen demand (COD), 
and biological oxygen demand (BOD) to account for carbon as well as total Kjeldahl 
nitrogen (TKN), ammonia NH4-N, nitrate NO3-N, and total nitrogen (Ntot) for nitrogen 
and phosphate (PO4-P), and total phosphorus (Ptot) for phosphorus. These parameters 
are defined in basic literature (inter alia, Henze et al., 2008; Tchobanoglous et al., 2014) 
and analysis procedures are described in technical standards such as Standard Methods 
for the Examination of Water and Wastewater (AWWA, 2017). Vanrolleghem and Lee 
(2003) give an overview of available instruments for online measurement. The scope of 
analysis at a WWTP to monitor the process varies with plant size, its process 
requirements, and local regulatory requirements. Rieger (2012) outlines sources of 
errors due to installation of instruments for online measurement and sampling 
procedures and describes methods for data reconciliation for modelling applications.  

However, unlike the solid phase that is routinely measured as TSS in activated sludge 
tanks, it is not common to examine soluble wastewater contaminants in the liquid phase 
of the activated sludge. For the aeration process this means that concentrations of 
oxygen transfer inhibiting soluble substances in the three-phase system are largely 
unknown at the point of impact, i.e., the bubble rising in activated sludge. Instead, 
current modelling of oxygen transfer requires assumptions about dilution, distribution, 
and biodegradation of oxygen transfer inhibiting contaminants within the activated 
sludge tank. These are based on the available information about influent and effluent 
parameters as well as activated sludge process characteristics, see section 2.3.  

Aeration control systems require online sensors for process control. Electrochemical 
cells and optical sensors can monitor DO in aerobic tank zones. To control aeration for 
nutrient removal, in-situ ion-selective electrodes (ISE) can monitor ammonium and 
nitrate. These are an alternative to ex situ automated wet chemistry analyzers in influent 
and effluent with a faster response time (Vanrolleghem and Lee, 2003). The location of 
these sensors in the activated sludge tank or its influent and effluent flows depends of 
the aeration control scheme (Åmand et al., 2013).  



 

State of the Art – Aeration Technology 15 

COD Wastewater Load  

Overall, a negative correlation between chemical oxygen demand (COD) load in 
wastewater inflow and oxygen transfer efficiency in the activated sludge tank exists. 
This has been shown by Günkel-Lange (2013) for four different WWTP treatment 
processes in pilot-scale, by Leu et al. (2009) based on real-time off-gas measurements 
in a full-scale CAS system, and by Germain et al. (2007) for pilot and full scale MBRs. 
Jiang et al. (2017) concluded a negative logarithmic relationship between the α-factor 
and COD based on additional data from full-scale treatment plants with higher COD 
load. Ahmed et al. (2021a) further distinguished COD load into acetate as readily 
biodegradable substrate and cellulose as slowly biodegradable substrate in batch-scale 
experiments. They found that, depending on airflow rate, readily biodegradable acetate 
decreased α-factor more than slowly biodegradable cellulose. The drastic inhibition of 
oxygen transfer by surfactants as a fraction of overall COD is outlined separately in the 
next section.  

In contrast to COD influent load, Steinmetz (1996) found no correlation between 
dissolved organic carbon (DOC) in the activated sludge and the α-factor. However, she 
concluded that DOC samples did not include wastewater contaminants adsorbed to 
sludge flocs due to the filtration process. Nonetheless, these findings emphasize that 
considering the interaction of oxygen transfer inhibiting soluble substances and the 
solid phase is crucial to understand the overall oxygen transfer process, see section 
2.2.1.  

The Role of Surfactants  

The oxygen transfer inhibiting effect of surfactants has long been observed (Kessener 
and Ribbius, 1934; Mancy and Okun, 1960) and therefore has been the subject of 
numerous studies in aeration technology (inter alia: Henkel, 2010; Jimenez et al., 2014; 
Loubière and Hébrard, 2004; Rosso, 2005; Rosso and Stenstrom, 2006; Sardeing et al., 
2006; Wagner and Pöpel, 1996). Surfactants such as fatty acids, soaps, and detergents 
are amphiphilic substances with hydrophilic and lipophilic properties, which have two 
effects on gas-liquid interfaces. On the one hand, a decrease of dynamic surface tension 
produces smaller bubbles, thus increasing specific interfacial area and oxygen transfer. 
On the other hand, the surfactants accumulate on the hydrophobic gas-liquid interface 
and reduce diffusion kL and renewal of interfacial area as bubbles become more rigid 
(Eckenfelder Jr, 1959; Mancy and Okun, 1960). The latter effect inhibiting oxygen 
transfer is usually predominant for fine-bubble diffusers with lower flow regimes and 
rise velocities of bubbles. Residence times of fine bubbles are longer, and surfactants 
can accumulate more on the gas-liquid interface than under more turbulent conditions 
produced by coarse bubble diffusers or high airflow rates (Rosso and Stenstrom, 2006a; 
Stenstrom and Gilbert, 1981). Although, surfactants usually account for a small fraction 
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of overall COD in wastewater inflow, their effect on oxygen transfer inhibition can be 
drastic. Consequently, modifications of the activated sludge process design that reduce 
the negative effect of surfactants on oxygen transfer have been investigated, see section 
2.2.5.  

2.2.3 Gas Phase 

Even though aeration systems provide the gas phase in the three-phase system of aerobic 
activated sludge treatment, not much is known about the gas holdup's characteristics in 
full-scale applications.  

Gas Holdup in a three-phase System  

The gas holdup is defined as a percentage share of gas phase volume of total volume of 
the three-phase system. Babaei et al. (2015) used electrical resistance tomography to 
measure gas holdup in three-phase systems with various total suspended solids 
concentrations (TSS between 0.712 – 15.86 g·L-1) and various superficial gas velocities 
(airflow rate between 0.163 – 1.303 cm·s-1) in a bubble column. As expected, airflow 
rate and gas holdup followed a linear trend. However, for increasing TSS the overall 
gas holdup increased until about 2.15 g·L-1 and was followed by a decreasing gas 
holdup for higher TSS concentrations. This trend was primarily attributed to the effect 
of increasing solid holdup on the rheological characteristics of the activated sludge. 
Transferring findings by Babaei et al. (2015) allows to estimate the overall gas holdup 
of typical activated sludge processes as well below 1 %, even at high-rate activated 
sludge systems with volume specific airflow rates of about 2 Nm3·m-3·h-1. 
Consequently, in a CAS aeration tank operated at about 0.5 Nm3·m-3·h-1 the overall gas 
holdup would be four times lower.  

Bubble Characteristics  

Any additional characteristics of the gas holdup such as bubble shape, size and rise 
velocity, or coalescence of bubbles is impossible to measure in a three-phase system. 
Some relationships between these characteristics and other measurable quantities were 
studied before. Typically, for a given orifice size the higher the airflow rate the larger 
the bubble diameter (Clift et al., 1978). Additionally, perforated slits of fine-bubble 
diffuser membranes widen at higher airflow rates, thus releasing larger bubbles (U.S. 
EPA, 1989). Similarly, the higher the airflow rate the higher the overall turbulence due 
to the bubble flow regime will be in an activated sludge tank. In general oxygen transfer 
efficiency of coarse bubble aeration is lower than fine bubble aeration (Groves et al., 
1992). But because turbulence influences renewal of phase boundary, this becomes 
increasingly important at high concentrations of surfactants that inhibit gas transfer at 
the gas-liquid interface. In this case, higher turbulence produced by coarse bubbles can 
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improve oxygen transfer (Rosso, 2005). These examples have in common that they are 
related to diffuser specifications and are further outlined in section 2.2.6.  

Monitoring in Activated Sludge Tanks  

Besides these diffuser related characteristics, measurement of the airflow rate is the only 
parameter that characterizes the gas phase in the activated sludge process. Instruments 
for flow measurement can record airflow rate with low response time. An interval of 1 
to 5 minutes is required for an optimized aeration control (Rieger, 2012), so temporal 
resolution of data is not limited to monitor the process. However, many aeration control 
schemes in practice do not measure the spatial distribution of total airflow rate within 
an activated sludge tank. Instead, only a total airflow rate for a treatment stage is 
recorded without individual airflows into different aeration zones. For power-
minimizing control strategies, pressure in air headers is monitored in each aeration zone. 
For example, when a most-open-valve (MOV) principle is used, valves for each aeration 
zone are controlled to minimize pressure in air headers by almost completely opening 
the most open valve (Alex et al., 2002). Nonetheless, gas holdup or airflow rate cannot 
be estimated based on pressure in air headers for each aeration zone. In addition, most 
other aeration control strategies focus on monitoring oxygen in the dissolved state 
instead of the airflow rate (Olsson et al., 2018). In any case, state-of-the-art monitoring 
and control of aeration systems in activated sludge processes does not record 
characteristics of gas phase. Consequently, including information about the gas phase 
to model oxygen transfer processes is currently limited as described in chapter 2.3.  

2.2.4 Standardization Parameters 

Oxygen transfer parameters are standardized to a water temperature of 20 °C and 
atmospheric pressure of 101.325 kPa (ASCE 2-06, 2007; DWA-M 209, 2007; EN 
12255-15, 2003). German technical guideline DWA-M 209 (2007) also standardizes 
total dissolved solids to 1,000 mg·L-1 and approximates the salinity by electric 
conductivity. Operating data for standardization is recorded at most WWTPs. The effect 
on oxygen transfer is summarized below.  

Water Temperature 

Higher water temperature in activated sludge not only affects oxygen uptake of 
microorganisms due to increased activity but also decreases solubility of oxygen. The 
effect of water temperature on oxygen saturation concentration is standardized to 20 °C 
in oxygen transfer parameters using a temperature correction factor θ (theta) = 1.024. 
This parameter was empirically determined in a range between 1.008 to 1.047 
(Stenstrom and Gilbert, 1981), with ranges from 1.020 to 1.028 deemed reasonable 
according to United States Environmental Protection Agency (1989). It is worth noting 
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that an increase of water temperature often correlates with ambient air temperature 
which also decreases the capacities of blowers (Jenkins, 2013).  

Atmospheric Pressure  

Atmospheric pressure directly affects oxygen saturation concentration and is therefore 
standardized to 101.325 kPa in a linear fashion to determine standard oxygen transfer 
parameters. Its impact on the oxygen transfer efficiency has not been studied yet 
(Baquero-Rodríguez et al., 2018). The parameter is important to evaluate blower 
performance and resultant energy requirements as air density and atmospheric pressure 
are correlated. This evaluation depends on blower type, control techniques, and 
operating conditions (Rosso, 2018).  

Salinity  

Salinity as total dissolved solids (TDS) can be approximated by electrical conductivity. 
DWA-M 209 (2007) applies a conversion from TDS to electrical conductivity of 
2 mg·L-1 TDS = 3 µS·cm-1. This factor of 0.67 was confirmed by Behnisch et al. (2021) 
who determined a mean of 0.7 for different salts, whereas AWWA standard methods 
list a range between 0.55 and 0.9 (AWWA, 2017). Higher salinity slightly decreases 
oxygen transfer saturation (Benson and Krause Jr, 1984). This effect is negligible and 
therefore not considered in clean water and off-gas testing. On the other hand, the 
generally positive effect of salts on oxygen transfer due to inhibition of bubble 
coalescence is considered when standardizing kLa20 to a TDS concentration of 
1,000 mg·L-1 for kLa20,1000 in clean water. Nonetheless, the effect on α-factor 
determination under process conditions is negligible at the salt concentrations expected 
in municipal wastewater. Some uncertainty about this standardization with the β-factor 
remains, as Eckenfelder et al. (1956) report β-factors as approximately 0.95 in 
municipal wastewater and ASCE 18-18 states variations between 0.8 to 1.0 are possible, 
but that β-factor is generally close to 1.0. Baquero-Rodríguez et al. (2018) conclude that 
the β-factor for wastewater with a TDS concentration below 1,500 mg·L-1 is 
approximately 0.99 and for industrial wastewater with about 10,000 mg·L-1 is estimated 
at 0.94.  

Relevance of Standardization Parameters for Oxygen Transfer Models  

Discussing standardization parameters in the context of oxygen transfer modelling is 
relevant for two reasons. Firstly, the parameters are determined empirically and 
therefore might introduce an error in a model as depicted above for θ and β-factor. 
Secondly, water temperature, atmospheric pressure, and electrical conductivity might 
provide information about other characteristics of the activated sludge process state as 
the following examples show. Even though a water temperature is standardized to 20 °C 
in the context of oxygen transfer parameters it could still provide additional information 
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about the activity of biomass in the activated sludge tank. As another example, 
stormwater inflow often correlates with a sudden drop of water temperature, ambient 
pressure, and salinity thus changing wastewater inflow regarding soluble substances 
and particulate matter.  

2.2.5 Activated Sludge Process Characteristics  

There are numerous variations of process layout and operation of an activated sludge 
tank mostly depending on site-specific wastewater characteristics and treatment target. 
These aspects can alter the three-phase system in the activated sludge tank and thus 
influence the oxygen transfer. This section summarizes impacts related to operational 
adjustments, such as sludge retention time (SRT) and internal recirculation, and related 
to design aspects, such as the activated sludge tank length, upstream selectors, and 
primary screening.  

Sludge Retention Time  

The sludge retention time (SRT), also referred to as mean cell retention time (MCRT) 
or sludge age describes the retention time of biomass in the activated sludge reactor and 
is related to the treatment target. It is a function of tank volume and its biomass 
concentration TSS as well as all effluent flows with their respective TSS, such as waste 
activated sludge. Although SRT is a basic process parameter defining design, operation, 
and control of activated sludge systems its determination can be unreliable when WAS 
is withdrawn intermittently (Balbierz and Knap, 2017). In addition, a temperature based 
correction of SRT should be used (compare Clara et al., 2005) because biomass activity 
depends on activated sludge temperature. Nonetheless, SRT has been discussed in the 
context of aeration efficiency, as it is related to oxygen requirement and oxygen transfer 
efficiency. Operating an activated sludge tank at a high SRT increases oxygen 
requirements, whereas the advanced treatment generally increases the α-factor because 
of removal of readily biodegradable COD and surfactants (Gillot and Héduit, 2008; 
Günkel-Lange, 2013; Rosso and Stenstrom, 2006b).  

SRT has been related to the α-factor because it is a key parameter that can differentiate 
activated sludge tank designs and treatment processes on a basic level. Rosso et al. 
(2005) compared results from 372 off-gas measurements on the sites of 30 WWTPs. 
They found a logarithmic dependency between the α-factor and a parameter that is 
defined by the ratio of SRT and the airflow rate for the aerobic tank volume covered by 
diffusers. Overall, for various diffuser types it was shown that the α-factor increases 
with SRT.  

Reactor Type  

The concentration of oxygen transfer inhibiting substances decreases with increased 
treatment time due to biodegradation as described in section 2.2.2. In plug flow reactors 
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(PFR) this results in a decrease of overall concentration of contaminants and an increase 
of biosorption on sludge flocs along the length of an activated sludge tank, hence, the 
α-factor increases in flow direction (Rosso, 2018). For example, Rosso et al. (2005) 
found a significant increase of α-factor in aerobic zones in flow direction of tank length 
in two similar activated sludge tanks operating at different SRT. The examined tank had 
a downstream denitrification zone. In this case no removal of oxygen transfer inhibiting 
substrate could occur prior to the aerated tank zones. Tapered aeration is often installed 
in plug flow reactors because oxygen demand is highest and α-factor is generally lowest 
in the influent zone. A higher diffuser density in the inlet zone than in subsequent zones 
provides the required oxygen to maintain stable DO in all tank zones (Baquero-
Rodríguez et al., 2018).  

In contrast, in continuous stirred tank reactors (CSTR) concentrations of wastewater 
contaminants are more uniform within the tank and also result in a uniform α-factor in 
different tank zones (Brade and Shahid, 1993; Rosso, 2018). Therefore, in a sequencing 
batch reactor (SBR) an increase of the α-factor with reaction time should be considered 
for the design and operation of this type of reactor (Ahmed et al., 2021b).  

Treatment Processes located before aerated Activated Sludge Zones  

Oxygen is transferred exclusively in aerated zones of activated sludge tanks for aerobic 
treatment. Treatment processes that alter the characteristics of the wastewater or the 
activated sludge before it is aerated in aerobic zones can positively influence the oxygen 
transfer efficiency. The mechanisms to improve aeration efficiency include the removal 
of oxygen transfer inhibiting wastewater contaminants or the biosorption on activated 
sludge flocs before the aerobic reactor. In particular, the removal of surfactants prior to 
the aeration zone has been examined in previous studies. For example, Petrovic and 
Barceló (2004) estimated that 90 to 95 % of overall surfactants are removed in 
conventional wastewater treatment as a result of adsorption to primary and secondary 
sludge and biodegradation in the aerobic treatment; Mohan et al. (2006) concluded that 
biodegradation of some surfactants is also possible under aerobic and anoxic conditions; 
and Garrido-Baserba et al. (2020) investigated the effect of biosorption of surfactants, 
colloidal, and soluble fractions on aeration efficiency in various process layouts and 
found an increase of surfactant removal by 27 to 56 % with biosorption configurations 
(contact stabilization or anaerobic selector). In this context, denitrification zones, 
selectors, and primary screening have been examined in other studies.  

Rosso and Stenstrom (2005) demonstrated the advantages of nitrification/denitrification 
systems compared to conventional and nitrification systems in a comparative economic 
analysis. Besides the oxygen credit due to the denitrification process, a higher α-factor 
can be expected at higher SRT. Rosso et al. (2008) determined an increase of the α-
factor from 0.37 to 0.48 to 0.59 for conventional, nitrification, and 
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nitrification/denitrification systems. When combined, these effects overcame the 
additional oxygen requirements caused by a higher SRT and ultimately reduced the 
operating costs of aeration systems. However, it remains unclear how much of this 
positive effect can be attributed to the overall increase of SRT or the anoxic 
biodegradation of wastewater contaminants before the aerobic zone.  

The latter effect has also been examined as a potential advantage of anaerobic and 
anoxic selectors. Selectors are implemented as upstream tanks to mix influent 
wastewater with return activated sludge before an activated sludge tank. Their primary 
function is to prevent the proliferation of filamentous bacteria. Like upstream 
denitrification zones, selectors could remove some readily biodegradable COD and 
surfactants and thus improve α-factors in subsequent aerobic activated sludge treatment. 
Fisher and Boyle (1999) found no improvement of the α-factor after adding a selector 
for test plants operated at an SRT of 7 to 10 days. Mueller et al. (2000) compared a CAS 
with a contact stabilization process using a selector and found an improvement of the 
α-factor by 10 to 15 %. Overall, Rosso et al. (2008) concluded that nutrient-removing 
selectors were able to further increase aeration efficiency due to the mechanisms stated 
above. Compared with high-rate activated sludge systems, Garrido-Baserba et al. 
(2020) found that contact stabilization and anaerobic selectors could improve the α-
factor by 46 and 54 % based on tests in batch-scale reactors.  

Similarly, enhanced carbon redirection in mechanical wastewater treatment offers the 
possibility to operate a subsequent activated sludge tank more energy-efficiently due to 
reduced oxygen requirements and increased aeration efficiency. Primary screening and 
filtration technologies redirect a larger share of colloidal and particulate fraction of 
carbon from biological treatment into the anaerobic sludge treatment process 
(Caliskaner et al., 2014; Franchi and Santoro, 2015; Ruiken et al., 2013). Regarding the 
effect on the α-factor, Pasini et al. (2020) found an improvement of aeration efficiency 
of 20 and 27 % when comparing screened and non-screened primary effluent in full-
scale and pilot-scale, respectively. Like with upstream mechanical treatment, carbon 
redirection can also be enhanced with high-rate activated sludge processes (HRAS) of 
two-stage activated sludge systems. The expected low α-factors in the HRAS stage are 
subject of paper P.2.  

2.2.6 Diffuser related Characteristics  

For submerged aeration systems diffusers are installed on the bottom of activated sludge 
tanks. Designers select diffusers to meet minimum and maximum oxygen supply in the 
activated sludge tank. Within this specified range of demand the selection of diffusers 
aims to optimize energy efficiency during operation. Therefore, diffuser manufacturers 
optimize oxygen transfer efficiency (OTE) and diffuser pressure loss of their products. 
Diffuser pressure loss is defined as the pressure difference across the diffuser operated 
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under submerged conditions. Both parameters are affected by the specifications of a 
diffuser and inevitable changes of diffuser properties during operation in activated 
sludge as described below.  

Diffuser Specifications and Operation  

Nowadays fine-bubble diffusers are equipped with a thin flexible membrane with fine 
orifices that produce bubbles with a diameter between 2 and 5 mm. In contrast coarse-
bubble diffusers produce generally larger bubbles in a broader range of diameter. Higher 
airflow rates produce slightly larger bubbles as the membrane and its orifices are 
stretched more (U.S. EPA, 1989). Smaller bubbles are preferred because of the higher 
specific interfacial area increasing oxygen transfer efficiency. Groves et al. (1992) 
measured a 30 % higher OTE with fine-bubble diffusers compared with coarse-bubble 
diffusers. However, diffuser headloss in membranes with small orifices is generally 
higher and must be considered to evaluate overall energy efficiency. For most 
applications in conventional activated sludge systems fine-bubble diffusers are used 
(Baquero-Rodríguez et al., 2018).  

Diffuser types for submerged aeration systems exist in various shapes such as plate, 
tube, and disc diffusers. Behnisch et al. (2020) compared oxygen transfer results in 
clean water of 65 fine-bubble diffusers and found slightly lower oxygen transfer 
efficiencies for disc diffusers than for tube or plate diffusers in a pilot-scale tank.  

Diffuser density describes the number of installed diffusers as the ratio of total 
perforated area of diffusers and the bottom area of the activated sludge tank floor. 
Diffusers are typically distributed evenly across the tank bottom in grid layouts in each 
zone to avoid spiral rolls (Groves et al., 1992). In tapered aeration designs the diffuser 
density decreases across the tank length with decreasing oxygen requirements. 
However, a separate control of airflow rate by valves in each zone should still be 
implemented to more flexibly meet the actual oxygen demand (Åmand et al., 2013). A 
higher diffuser density also increases the oxygen transfer efficiency (Behnisch et al., 
2020). Overall, there are diminishing returns as OTE increase is minimal at very high 
diffuser densities, which has to be evaluated in each individual case according to design 
criteria (U.S. EPA, 1989).  

Diffuser Properties during Operation  

During operation in activated sludge diffuser performance changes because of organic 
fouling and inorganic scaling phenomena. Fouling is caused by biofilm growth on the 
surface of diffuser membranes and in its orifices whereas scaling is caused by 
accumulation of inorganic precipitates such as calcium carbonate or silica inside 
diffuser orifices (Tchobanoglous et al., 2014; U.S. EPA, 1989). These effects generally 
result in an increase of pressure loss of diffusers which also increases energy demand 
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of blowers. Aging of diffusers can also increase rigidity and hardness of membrane 
material thus leading to higher diffuser pressure loss (Kaliman et al., 2008; Rosso et al., 
2008b; Wagner and von Hoessle, 2004). Fouling and scaling can be reduced by 
periodical cleaning of diffusers. Rosso (2015) suggests cleaning at least once every two 
years to minimize biofilm growth. Often, change of diffuser pressure loss at a certain 
airflow rate over time is used as a surrogate parameter to describe fouling, scaling, and 
aging in one parameter. To distinguish biofilm growth from aging and scaling related 
factors, Garrido-Baserba et al. (2016) determined DNA concentration per area of 
diffuser membrane by sampling and analyzing cutouts of used diffusers.  

The relationship between fouling and scaling with the oxygen transfer efficiency is less 
conclusive. USEPA (1989) distinguish a positive relationship between OTE and 
diffuser pressure loss as Type I fouling from a negative relationship as Type II fouling. 
A positive effect of fouling and scaling on oxygen transfer efficiency can result from 
clogging of orifices that decreases the size of forming bubbles. On the other hand, 
excess biofilm growth on top of the membrane surface can hinder detachment of 
bubbles and result in coalescence of bubbles. Both mechanisms affect the respective 
bubble size and thereof resultant specific interfacial area, thus influencing OTE. Both 
types of fouling have been reported, e.g., Groves et al. (1992) observed a 20 % decrease 
of OTE of membrane diffusers after 3.5 years and, in contrast, Mueller et al. (2002) 
described a positive relationship between OTE and diffuser pressure loss. Both types of 
fouling occur but usually Type II fouling prevails which leads to a reduction of OTE 
(Baquero-Rodríguez et al., 2018; Garrido-Baserba et al., 2017). Some diffuser 
membrane materials such as silicone and PTFE+EPDM showed resistance to fouling 
compared to conventional materials such as EPDM and polyurethane (Rosso, 2015). 
The resultant effect on the fouling factor affecting oxygen transfer efficiency remained 
less conclusive as an increase of DNA concentration on the diffuser membrane did not 
always reduce the fouling factor (Garrido-Baserba et al., 2016). So far, the effect of 
fouling, scaling, and aging cannot be predicted in advance because they depend on 
diffusers, and site-specific conditions such as wastewater characteristics and 
maintenance efforts (Baquero-Rodríguez et al., 2018). Therefore, (Rosso et al., 2012) 
proposed on-site column testing of diffusers to determine performance of diffusers in 
situ. They suggested to conduct the testing procedure during the design and construction 
stage to consider site-specific effects for the selection of diffusers.  

2.3 Modelling Oxygen Transfer Dynamics 

Constant α-factors are, to date, a common practice in design of aeration systems 
worldwide. However, as outlined in the previous sections the α-factor dynamically 
changes in the activated sludge tank and this variance can result in failures of process 
design and operation (Amaral et al., 2017). Modelling these variations would be 
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immensely useful to avoid these failures. However, at the current state of knowledge, 
no oxygen transfer model has been developed that can generally predict the α-factor for 
any kind of WWTP process layout and wastewater characteristics (Amaral et al., 2017; 
Baquero-Rodríguez et al., 2018). Numerous studies developed simple regression 
models to model the α-factor based on few input parameters. As outlined in the previous 
sections of chapter 2.2, oxygen transfer efficiency in the three-phase system involves 
many interacting mechanisms. To consider this level of complexity, models to predict 
oxygen transfer dynamics must also become more complex and involve more input 
parameters.  

Table 2: Literature overview of oxygen transfer models  

Source Model 
prediction Input parameters Database/ 

Experimental setup Comments 

Rosso et al., 
2005 

α-factor and 
αSOTE 

MCRT, airflow rate, 
diffuser area, diffuser 

submergence 

Database of 372 off-
gas tests on 30 full-

scale WWPTs 

No evidence for different 
α-factors for different 

diffuser types 

Gillot and 
Héduit, 2008 α-factor 

Equivalent contact 
time based on 

MCRT, airflow rate, 
diffuser submergence 

Database of 27 off-gas 
tests on 14 full-scale 

WWPTs 

Linear model based on 
equivalent contact time 

Henkel et al., 
2011 α-factor SRT, MLVSS 

Literature reference 
data and batch-scale 
off-gas data (88 L) 

Two separate linear models 
based on SRT and MLVSS 

Pittoors et 
al., 2014 

kLa in 
activated 
sludge 

Volume, height, 
diameter, (diffuser) 
surface area, airflow 

rate, diffuser 
submergence, bubble 

size, TSS 

18 tests in batch-scale 
cylindrical tanks  

(3-9 L) 

Dimensional analysis with 
kLa in clean water and 

activated sludge similar to 
Gillot et al. (2005) 

Jiang et al., 
2017 

α-factor 
(dynamic 

prediction) 
COD load full-scale off-gas data 

from 3 WWTPs 

Prediction of α-factor is 
incorporated into a model 

to predict the required 
airflow rate 

Ahmed et al., 
2021a 

α-factor 
(dynamic 

prediction) 
Soluble COD Batch-scale SBR off-

gas data (850 L) 

Prediction of α-factor is 
incorporated into a model 

to predict the required 
airflow rate 

Ahmed et al., 
2021b 

α-factor 
(dynamic 

prediction) 

Reactor type (PFR, 
CSTR, step-feed 

PFR, MBR), soluble 
COD, influent COD, 

MLSS 

Batch-scale SBR off-
gas data (850 L) and 
simulated data from 

reactor models 

Comparison of three 
separate models based on 

soluble COD, influent 
COD, and MLSS 

Bencsik et 
al., 2022 

α-factor 
(dynamic 

prediction) 

SRT, influent COD, 
anoxic zones, 

diffuser depth, MLSS 

Literature reference 
data and full-scale off-

gas data 

Spatial and temporal 
variation of α-factor is 

considered 
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Table 2 compares an excerpt of studies that included more than one input parameter to 
predict the α-factor (and related oxygen transfer parameters) for various WWTP 
processes or studies that presented approaches to dynamically predict the α-factor in 
real-time in activated sludge systems. As discussed in the previous sections, the current 
capability of oxygen transfer models is limited. Remaining knowledge gaps are outlined 
below:  

§ In practice, the oxygen transfer inhibition is not only subject to wastewater 
contaminants inhibiting oxygen transfer as expressed by the α-factor but also fouling 
and scaling processes on the diffuser membrane as expressed by the fouling factor F 
(see section 2.2.6). This further complicates experimental design and procedures 
when gradual fouling must be considered or prevented to examine a “pure” α-factor. 
Otherwise, analysis of oxygen transfer inhibition is often combined to an αF-factor, 
especially in full-scale measurements, where the individual effects cannot be 
separately observed. Unfortunately, many studies do not explicitly distinguish α-
factor results from αF-factor results.  

§ Interactions between mechanisms or parameters influencing the α-factor as 
described in previous chapters often have not been examined before. Most studies 
have varied only a subset of the operating parameters or wastewater characteristics 
in experimental design, thus potentially overlooking effects occurring in practice. 
For example, standardization of oxygen transfer parameters considers the direct 
physical effect on the oxygen transfer process. However, a change of wastewater 
temperature might also correlate with other effects that additionally influence 
oxygen transfer (see section 2.2.5).  

§ The amount of variation of site-specific process layouts and wastewater 
characteristics that can influence oxygen transfer dynamics leads to a high 
complexity that models usually cannot represent. Many models are related to SRT 
or sum parameters that simplify influences on oxygen transfer. For example, for 
models related to COD influent concentration some uncertainty remains because 
two different wastewaters with the same COD concentration could have different 
oxygen transfer inhibiting effects in an activated sludge tank because the respective 
wastewater composition differs in concentration of surfactants or other 
contaminants. Consequently, models are not generally applicable and must be 
calibrated to adjust for site-specific conditions.  

§ Although the scope of laboratory analysis and online sensor measurements is 
extensive, its focus is to monitor the overall treatment performance of the activated 
sludge process instead of the aeration efficiency. As a result, the influences on 
oxygen transfer at the point of impact, the bubble rising in activated sludge, are 
largely unknown. It remains unclear whether the currently collected operating data 
is sufficient to properly model the oxygen transfer process or if additional 
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experimental data is required. For example, the use of low temporal resolution 
laboratory analysis data might not be suitable for real-time dynamic prediction 
models. It remains unclear whether the available data from online sensors and 
analyzers is sufficient to feed a dynamic α-factor prediction model.  

Finally, it must be stated that any data describing oxygen transfer efficiency under 
process conditions is based on off-gas tests. Without the information about oxygen mass 
balance in the activated sludge reactor, no models can be developed and no conclusions 
about oxygen transfer dynamic can be drawn. Consequently, the implementation of off-
gas measurements in full-scale applications is a requirement to advance modelling of 
oxygen transfer.   
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3 Objectives and Outline of Papers 

My focus in this dissertation was to investigate the dynamics of oxygen transfer in 
activated sludge and the potential of oxygen transfer modelling based on long-term ex 
situ off-gas measurements. The dissertation is a cumulative research work with three 
peer-reviewed papers published in scientific journals. Although each paper answers 
individual research questions, the publications are linked with each other as outlined in 
detail below. In short, P1 and P2 comprehensively investigate the methodology of ex 
situ off-gas measurements and the oxygen transfer dynamics in the special process 
layout of two-stage WWTPs, respectively. P3 then expands on these findings and 
applies a machine learning approach to dynamically predict the oxygen transfer in 
activated sludge tanks. My combined contribution to the research field of aeration 
technology and prospective applications of my research findings are summarized in the 
final chapter 5.  

Paper 1 (P1)  

The paper "Determination of alpha factors for monitoring of aeration systems with the 
ex situ off-gas method: experience from practical application and estimation of 
measurement uncertainty" deals with determination of oxygen transfer parameters such 
as the α-factor. I used pilot scale reactors with full-scale water depth of 5.8 m that apply 
the ex situ off-gas method to measure oxygen transfer parameters in activated sludge 
for all experiments in this dissertation. This method is presented in technical guideline 
ASCE/EWRI 18-18 (2018). However, its description is limited to an Annex (D.1.4.4) 
with less than two pages of content. After more than four years of operation with 
continuous off-gas testing and clean water oxygen transfer comparison tests in practice, 
I gained operational experience with this method that is not mentioned in technical 
guidelines so far. The paper therefore presents limitations of the ex situ off-gas 
methodology and compares it with the more common in situ off-gas testing using off-
gas hoods on the activated sludge tank surface. In addition, sensitivity and uncertainty 
analysis were performed to estimate the ex situ off-gas method's measurement 
uncertainty. Measurement uncertainty of the α-factor determined with the ex situ pilot 
plant was estimated by a theoretical error propagation approach and comparison 
measurements. The available information on measurement uncertainty of the off-gas 
method in literature was neither accurate nor comprehensive enough for the purpose of 
this thesis. In this regard, the experiments and results of P1 prepared the evaluation of 
prediction performance of a machine learning model in P3. Estimating the measurement 
uncertainty of the pilot plant in P1 was important to compare it with the model 
prediction error in P3. The paper was published in the journal Environmental Science 
and Pollution Research, 29, pages 87950–87968 (2022).  
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Paper 2 (P2)  

The paper "Oxygen Transfer in Two-Stage Activated Sludge Wastewater Treatment 
Plants" presents results of long-term off-gas tests in two-stage activated sludge systems. 
Two-stage WWTPs are an interesting research object because operation differs 
tremendously from CAS systems which also affects the aeration efficiency. Conditions 
in a high-rate activated sludge tank with short retention times and high sludge loading 
produce a wastewater-sludge-matrix that drastically inhibits oxygen transfer. 
Nonetheless, the increased biosorption of wastewater contaminants in this stage can 
result in an energy-efficient operation of biological wastewater treatment under certain 
conditions. Optimizing operation and control strategies for the two-stage process 
recently sparked new interest in the research community. But no comprehensive study 
of oxygen transfer dynamics in two-stage activated-sludge was available, yet. I 
collected off-gas data over a period of 13 months on the site of a two-stage WWTP 
treating municipal wastewater (1.35 Mio. PE). Based on these long-term experiments, 
loading cases of the α-factor for the static design of aeration systems in two-stage 
systems were defined. These complement α-factor loading cases in German technical 
guideline DWA-M 229-1 (2017) to design aeration systems. In addition, the influences 
on oxygen transfer inhibition in the two activated sludge stages were discussed based 
on their different operation. For example, the fate of surfactants in the two-stage process 
and their effect on oxygen transfer inhibition was elucidated. For WWTP operators, the 
change of α-factor during rainy and dry weather was discussed as well as the potential 
of reverse flexing as a maintenance technique to reduce diffuser fouling in the respective 
treatment stages. Collecting and analyzing extensive off-gas data for a two-stage system 
in P2 was especially relevant for P3, because the presented methodology to develop 
oxygen transfer models included an unusual WWTP process layout. Otherwise, it would 
have remained unclear whether the prediction models developed in P3 were suitable for 
process layouts other than the conventional systems. The paper was published in the 
journal Water 2021, 13(14), 1964.  

Paper 3 (P3)  

The paper " Dynamic alpha factor prediction with operating data - a machine learning 
approach to model oxygen transfer dynamics in activated sludge" presents a novel 
approach to model oxygen transfer in activated sludge. In the last decades, many studies 
examined specific influences on oxygen transfer as presented in chapter 2.3. However, 
no conclusive and generally applicable models were defined to model oxygen transfer 
dynamics so far. Many influencing parameters are superimposed and specific to a 
WWTP's wastewater characteristics. Most models to dynamically predict α-factors are 
based on typically discussed influences on spatial and temporal variation of the α-factor 
in the activated sludge tank, such as COD influent concentration, total suspended solids, 
and sludge retention time. These models still require laborious parameterization to 
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consider site-specific parameters of full-scale processes and laboratory analysis. 
Furthermore, focusing on a few influencing parameters might miss the full potential of 
available operating data. Nowadays, monitoring of activated sludge tanks with in-situ 
sensors and ex situ analyzers collects operating data with high temporal resolution. 
Nonetheless, it was unclear if operating data typically available to WWTP operators is 
sufficient to describe the complex mechanisms involved with the oxygen transfer in a 
three-phase system as outlined in chapter 2.2. However, there is an abundance of online 
sensor data at large WWTPs that has not been utilized to its full potential to develop 
oxygen transfer models before. After long-term off-gas measurements collecting 
extensive datasets on the sites of three different WWTPs, I was able to apply a data-
driven approach to develop oxygen transfer models. For the first time, a supervised 
machine learning approach was used to dynamically predict α-factors with predictor 
variables based exclusively on operating data available to WWTP operators. The results 
for four different activated sludge stages were presented and the limitations of the black 
box machine learning approach was discussed. The paper was published in the journal 
Water Research (Volume 231, 1 March 2023, 119650).   
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P.1.1 Abstract 

Performance of aeration systems in wastewater treatment plants (WWTP) under process 
conditions can be monitored with off-gas tests. The ex situ off-gas method transfers 
activated sludge from an adjacent aeration tank into aerated columns to determine 
oxygen transfer parameters (e.g., the α-factor). This method is an alternative to in situ 
off-gas testing with hoods at the tank surface; however, its application and measurement 
uncertainty have not been examined yet. We outline our experience from long-term off-
gas testing with two pilot-scale test reactors (8.3 m3 volume). Global variance-based 
sensitivity analysis using Sobol’ indices revealed oxygen concentration in off-gas and 
dissolved oxygen as the most important input quantities to determine α-factors 
accurately. Measurement uncertainty of other instruments was negligible. These 
findings are transferable to in situ off-gas hoods because the methods are similar. 
Random measurement error of α-factors was estimated with uncertainty analysis and 
comparison measurements to a relative standard deviation of about ± 2.8 % for our ex 
situ pilot setup. Diffuser fouling, biofilm growth, or sensor drift caused systematic 
errors avoidable by maintenance. Additional mixing of bubble column due to sludge 
inflow into ex situ tanks led to a systematic overestimation of α-factors at lower airflow 
rates. Hence, the ex situ off-gas method is not suitable to determine α-factors for the 
design of aeration systems but offers unique possibilities for research of oxygen transfer 
dynamics and development of aeration equipment because ex situ columns can be 
operated independently from a full-scale activated sludge tank.  

P.1.2 Introduction 

Aeration is an energy-intensive process in activated sludge (AS) biological wastewater 
treatment. Measurement of oxygen transfer parameters in activated sludge tanks is 
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essential for design and operation of aeration systems. Clean water testing is an 
established method to determine oxygen transfer performance of diffusers (ASCE 2–06 
2007; EN 12255–15 2003). Still, wastewater treatment plant (WWTP) operators face a 
decline of oxygen transfer under process conditions in activated sludge tanks. This is 
caused by inhibitory effects of wastewater and activated sludge components in the 
soluble and solid phase as well as the impact of fouling, scaling, and aging of diffusers 
resulting in poor bubble formation and rise as reviewed by Baquero-Rodríguez et al. 
(2018). The α-factor summarizes these oxygen transfer inhibiting effects as the ratio of 
oxygen transfer in process water to clean water. Design and operation of aeration 
systems must consider oxygen transfer in process conditions, which can be measured 
with off-gas methods (ASCE 18–18, 2018; DWA-M 209 2007). 

P.1.2.1 Off-gas testing in wastewater treatment 

Off-gas testing methods have been used for numerous applications in design and 
operation of aeration systems as well as research of gas transfer in activated sludge, as 
the following examples show. In several studies, off-gas tests were used to examine 
impacts on oxygen transfer by activated sludge characteristics or WWTP operation and 
process layout (Leu et al. 2009; Rosso et al. 2008, 2005; Schuchardt et al. 2005). Studies 
of this type allow to model aspects of the oxygen transfer. For example, Jiang et al. 
(2017) proposed a dynamic model to predict α-factors based on the relationship between 
the α-factor and chemical oxygen demand (COD). Off-gas tests can be part of the design 
process of the aeration system. Rosso et al. (2012) performed on-site testing of various 
diffusers to determine the influence of process specific wastewater properties on oxygen 
transfer (and pressure loss) during design phase to enable more accurate design of 
aeration systems. Off-gas tests can also be utilized to monitor the operation of a WWTP. 
Trillo et al. (2004) applied off-gas hoods for a feed-forward dissolved oxygen (DO) 
control to reduce aeration energy costs. Leu et al. (2010) measured oxygen and carbon 
dioxide transfer rates to predict effluent ammonia. Hellinga et al. (1996) already argued 
that in contrast to selective point measurements with sensors, off-gas measurements in 
treatment plants with covered aeration tanks could be a worthwhile addition to liquid 
phase analysis to monitor the overall biological treatment process. This application of 
off-gas testing could also be combined with monitoring of emissions in the future. 
Myers et al. (2021) measured dissolved and off-gas nitrous oxide (N2O) in a 
conventional activated sludge (CAS) WWTP and estimated volumetric mass transfer 
coefficient of nitrous oxide based on the mass transfer coefficient for oxygen. Baeten et 
al. (2021) used off-gas analysis to detect several emissions (CO2, CH4, N2O) in an 
aerobic granular sludge WWTP. So far, off-gas analyses have been used in numerous 
studies, but application of gas analyzers is not part of the typical instrumentation on 
WWTPs yet. 
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P.1.2.2 Comparison of off-gas methods 

The off-gas method with off-gas hoods on the surface of aeration tanks is first described 
by Redmon et al. (1983) and explained in ASCE/EWRI 18–18 (2018) and DWA-M 209 
(2007). It allows to measure oxygen transfer efficiency from which an oxygen uptake 
rate (OUR) can be calculated based on a dissolved oxygen mass balance. Boyle et al. 
(1989) demonstrate the possibilities of off-gas measurements for OUR online 
monitoring without the necessity of error-prone ex situ batch OUR respirometry 
devices. The Redmon Engineering Company used ex situ off-gas column tests to 
determine α-factors in the 1980s. The method is first described by Rieth and Polta 
(1987) and included in ASCE 18–18, section D.1.4.4. We refer to the method as ex situ 
column off-gas testing. It is an alternative to in situ off-gas hoods that allows to examine 
oxygen transfer in activated sludge transferred from an adjacent AS tank into a separate 
column. The off-gas measurement is therefore independent from the operation of the 
activated sludge tank and its aeration system. Both the in situ off-gas hood and the ex 
situ column method allow to determine the same oxygen transfer parameters, e.g., 
standard oxygen transfer rate (SOTR), standard oxygen transfer efficiency (SOTE), 
OUR, and the α-factor. However, the application differs in certain aspects of the 
methodology and operation. 

Placing multiple off-gas hoods to cover an activated sludge tank is generally less 
expensive than using ex situ columns to reach the same coverage. Determination of an 
overall α-factor of the process design is especially relevant in plug-flow reactors, 
tapered aeration or tanks with varying oxygen concentrations in different tank areas 
(Rosso et al. 2005; Stenstrom et al. 2006). Additionally, more sensors and flow 
measurements are necessary with the ex situ off-gas measurement compared to off-gas 
hoods which increases maintenance effort. In situ off-gas hoods are more convenient 
for a WWTP operator to monitor an installed aeration system’s performance over long 
periods or estimate it with single off-gas test series. However, a variation of the oxygen 
transfer cannot be attributed distinctly to either activated sludge related (α) or fouling 
related (F) causes. In contrast, ex situ columns allow to mitigate fouling by regular 
cleaning of diffusers and therefore distinguish the α-factor from the fouling factor. In 
addition, clean water testing is mandatory to determine the α-factor and easier to 
perform in ex situ columns than in a full-scale AS tank. Overall, an ex situ column 
allows to change certain properties of the aeration system and operation without 
interfering with the WWTP operation. Applications for research purposes could include 
varying tank geometry (especially blow-in depth), changing diffusers to find suitable 
types for a certain application, examining the effect of maintenance methods (e.g., 
reverse flexing, high-pressure cleaning, and acid injection) on reinstating pressure loss 
of diffusers, or performing spiking experiments to change wastewater characteristics 
and study the resulting effect on oxygen transfer. While off-gas hoods can only be 
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placed in aerated zones, the ex situ method allows to transfer sludge from non-aerated 
zones into the column and determine oxygen transfer parameters. This also allows to 
determine oxygen transfer parameters for activated sludge in tanks without submerged 
aeration systems or covered tanks where hoses for sludge transfer can be installed unlike 
off-gas hoods. This represents a unique advantage of the ex situ off-gas method to 
research potential emissions from non-aerated zones in the future. 

P.1.2.3 Estimation of measurement uncertainty 

Technical guidelines such as ASCE 18–18 or DWA-M 209 define measurement models 
to determine oxygen transfer parameters, e.g., oxygen transfer rate (OTR), oxygen 
transfer efficiency (OTE), or the α-factor. These measurement models define a 
functional relationship between several input quantities recorded by sensors or 
instruments and an output quantity, e.g., the α-factor as a measurand. Currently, 
guidelines are missing a stochastic component that considers measurement uncertainty 
of instruments recording input quantities. Instead, guidelines propose a measurement 
uncertainty to be expected for results if the applied method was conducted according to 
standard. For the use of in situ off-gas hoods DWA-M 209 (2007) estimated a 
measurement uncertainty of ± 5 to 10 % for SOTR in activated sludge depending on 
tank shape and size. ASCE 18–18 (2018) referred to a comparison of several methods 
by Capela et al. (2004) and Mahendraker et al. (2005) and concluded that the examined 
methods estimated oxygen transfer parameters in activated sludge within 10 to 15 % of 
each other depending on the examined method. Redmon et al. (1983) originally reported 
a reproducibility of ± 10 % for OTE with in situ off-gas tests in activated sludge which 
primarily depended on changing conditions at a sampling point rather than accuracy of 
the analytical system. 

None of the studies examined the ex situ column off-gas method. In addition, it remains 
unclear which measured input quantity is most important when determining oxygen 
transfer parameters or the α-factor. Another detail that is often accepted without further 
revision is the use of correction terms for standardization. For off-gas methods β and θ 
correction factors are applied to consider the effect of salts on the effective oxygen 
saturation and temperature on the oxygen transfer, respectively. These empirically 
determined correction terms are also estimates of quantities which are known 
imperfectly and could vary between applications of off-gas tests (Stenstrom and Gilbert 
1981). Sensitivity analysis is a method to examine these issues. Its principle is to 
identify the effect of changes or uncertainty of input quantities on the model output 
(Turányi 1990). Variance-based methods such as Sobol’s method (Sobol’ 1993) aim to 
explain the effect of variance in model inputs on variance in model outputs. The thereby 
calculated sensitivity indices distinguish first-order and total effects indices. A first-
order index represents the influence of an individual input quantity on the variance of 
the model output quantity. A second-order index explains interactions between two 
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input quantities on the model output which cannot be explained by the sum of their first-
order effects. Total effects indices summarize all higher-order indices (including 
second-order and above) to represent the total impact of an input quantity on output 
variance (Homma and Saltelli 1996). Sensitivity indices are represented by values 
between 0 and 1. When comparing sensitivity indices of input parameters, a higher 
value indicates a stronger influence of the input quantity on the model output. It is 
therefore more important to define or measure accurately to yield reasonable results. 
The methodology of sensitivity analysis (SA) using Sobol’ indices is described, e.g., in 
Saltelli et al. (2004) or Sobol’ and Kucherenko (2005). 

P.1.2.4 Objectives 

Our study describes the setup and operation of the ex situ column off-gas method in-
depth and thereby complements information missing in technical standards. In addition, 
there are three objectives to improve future applications of the ex situ column off-gas 
method: (1) we determine the most influential input quantities for determination of α-
factors according to ASCE 18–18 with a sensitivity analysis, (2) we estimate the 
method’s random and systematic measurement error, and (3) we discuss causes of these 
errors and other constraints of the ex situ column off-gas method. 

P.1.3 Methods 

P.1.3.1 Design and operation of ex situ columns 

Pilot-scale test reactors were used to determine oxygen transfer parameters applying an 
off-gas method described in Appendix D.1.4.4 of ASCE/EWRI 18–18 (2018). The 
method is a variant of the steady-state oxygen uptake rate (OUR) technique, where OUR 
is measured within the ex situ columns with off-gas analysis instead of an additional 
respirometry device. Figure P.1.1 shows a flow diagram of the process for one ex situ 
aeration tank. Our pilot plant featured two aeration tanks with duplicate machinery and 
instruments to examine two AS tank zones in parallel. 

 
Figure P.1.1 Flow diagram of an ex situ setup for steady-state off-gas measurements 

Tank dimensions were 1.2 m × 1.2 m × 5.8 m (L × W × H) with a volume of 8.3 m3. The 
tank height was chosen to resemble typical water depths of AS tanks and therefore 
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bubble rise conditions in the column. Columns were equipped with fine-bubble disc 
diffusers with a diffuser density of 13.5 % (ELASTOX-T EPDM TYP B, WILO GVA, 
Wülfrath, Germany). Oil-free rotary vane vacuum blowers (CB.40, D.V.P. Vacuum 
Technology spa, Italy) were controlled by frequency converters to set airflow rates 
(specified for aerated tank volume − qVol,aer) between 0.5 and 2.5 Nm3∙m−3∙h−1. Airflow 
rate was standardized (101.325 kPa, air temperature of 0 °C, dry air) and measured with 
thermal mass flowmeters (t-mass 150, Endress + Hauser AG, Reinach, Switzerland) in 
the inflow only. As with in situ off-gas hoods, this assumes that inert gas constituents 
such as nitrogen are conservative within the reactor and therefore net transfer of these 
gases is negligible. Pressure in air pipes (Cerabar PMC21, Endress + Hauser AG, 
Reinach, Switzerland) was measured after blowers and before diffuser distribution 
frame to determine pipe pressure loss and diffuser pressure loss. Sludge transfer pumps 
(AGNM02 NEMO®, NETZSCH Holding, Selb, Germany) pumped AS from a nearby 
AS tank through DN 100 hoses into the columns at the height of the disc diffusers. 
Depending on the examined AS tank zone a hose length of up to 100 m was installed 
and the maximum transfer time of the AS to the test columns was 90 s. Sludge flow was 
measured with electromagnetic flowmeters (Promag W 400, Endress + Hauser AG, 
Reinach, Switzerland) and transfer pumps controlled by frequency converters to set a 
constant hydraulic retention time (HRT) of 15 min as recommended by ASCE/EWRI 
18–18. Effluent sludge was directed in free flow through a DN 150 hose from an 
overflow edge back into the nearby AS tank downstream of sludge intake. 

Determining oxygen transfer parameters of AS in the columns required further sensors 
and instruments for measurement. Atmospheric pressure (Cerabar PMC21, 
Endress + Hauser AG, Reinach, Switzerland), atmospheric temperature (Omnigrad T 
TST434, Endress + Hauser AG, Reinach, Switzerland), and electrical conductivity in 
AS (Indumax CLS50D, Endress + Hauser AG, Reinach, Switzerland) were measured 
for standardization of oxygen transfer parameters (20 °C water temperature, 
101.325 kPa atmospheric pressure, 1.000 mg·L−1 total dissolved solids). Off-gas 
concentrations of oxygen (paramagnetic sensor) and carbon dioxide (NDIR) were 
recorded with a gas analyzer (X-STREAM Enhanced, Emerson Electric Co., MO, USA) 
that received dry off-gas free of particles from a gas conditioning unit (CSS-V, M&C 
TechGroup, Ratingen, Germany). Off-gas was collected from the sealed column hood. 
To quickly monitor changing process conditions, a low hood height of 0.2 m above 
water surface was implemented on top of the columns. Depending on airflow rate 
setting the mean gas sample residence time in the hood was between 2 and 4 min, which 
included off-gas transport from hood to gas analyzer. Foaming could complicate off-
gas collection in low hoods. Thus, the pilot plant was equipped with a U-shaped off-gas 
pipe that withheld foam from off-gas collection.  

Sensors were cleaned twice a week to prohibit biofilm growth and solids deposition 
affecting optical instruments and calibrated as necessary. Because of its relevance for 
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the off-gas method, two-point calibration of the off-gas analyzer was performed twice 
a week using calibration gases with 5 % CO2, 16 % O2, and 100 % N2 for zero point. 
Potential biofilm build-up on the reactor tank walls was prevented with monthly 
cleaning and visual inspection to ensure only suspended biomass transferred from the 
adjacent full-scale AS tanks was examined in the ex situ reactors for off-gas 
measurements. 

P.1.3.2 Data recording and processing 

A suitable interval for data compression must be short enough to record changes in 
WWTP operation or wastewater composition that could affect oxygen transfer and long 
enough to produce distinguishable datapoints for further analysis. Depending on the 
response time of equipped sensors in a pilot plant, determining α-factors in intervals of 
a few minutes is possible. A typical measurement period for off-gas testing is 30 min to 
2 h (ASCE 2018). From the recorded data, a mean α-factor and a dispersion coefficient 
(e.g., standard deviation) is determined to estimate uncertainty of measurement or 
steady-state conditions. In continuous ex situ measurements these α-factors form a time 
series that describes the change of oxygen transfer in the continuous stirred tank reactor 
(CSTR). However, the determined oxygen transfer parameter or α-factor does represent 
not only the oxygen transfer of the sludge inflow at that moment but also of the 
previously transferred activated sludge already in the column. Therefore, determination 
of α-factors in an ex situ CSTR requires longer intervals depending on hydraulic 
retention time (HRT) and the resulting residence time distribution of the activated 
sludge in the columns. From our experience sufficient mixing was provided by aeration 
in the columns. An airflow rate of 2.2 Nm3·m−2·h−1 (0.38 Nm3·m−3·h−1), which is a 
commonly used design criterion to maintain solids in suspension (Water Environment 
Federation, 2018), was exceeded during off-gas testing. Additionally, a constant lateral 
flow of activated sludge transferred into the tank potentially mixed dead space beneath 
the diffuser distribution frame. Unless a sensor drift occurred, DO sensors showed the 
same DO concentration in the reactors. Therefore, ideal mixing conditions within the 
columns can be assumed and the residence time distribution (t) in a single ideal CSTR 
can be expressed as a cumulative distribution function as 

F($) = 1 − e&
$

BCD (P.1.1) 

Based on this ideal relationship, in our pilot plant, 63 % of activated sludge transferred 
into the test column was exchanged within the HRT of 15 min. Accordingly, after 30, 
45, and 60 min, 86 %, 95 %, and 98 % of sludge were replaced. As a result, a 1-h 
interval is a suitable interval for data compression for an ex situ reactor operated at an 
HRT of 15 min to determine α-factors. 
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To maintain steady-state conditions within a selected interval of data compression, 
some parameters (i.e., reactor influent flow, influent DO, DO in reactor, oxygen uptake 
rate, and oxygen transfer rate) should remain constant to determine oxygen transfer 
parameters (Boyle 1983). Therefore, ex situ columns allow to control reactor inflow 
and internal DO. Influent DO is steady if the examined activated sludge tank is 
controlled to a DO setpoint. However, oxygen uptake rate and oxygen transfer rate 
depend on wastewater composition and operation of AS process. Both are variable 
throughout a longer measurement period. Consequently, a test period to determine α-
factors must be long enough to collect data sufficiently and short enough to keep steady-
state conditions. 

In our setup, data was recorded in 30-s intervals by online sensors and compressed as 
1-h averages. This results in high resolution data that can detect variations within the 
diurnal cycle of WWTP operation. It also prevents autocorrelation of measured values 
and converts the collected time series data to resemble a cross-sectional dataset. From 
our experience, the required constant conditions as described above were met within a 
1-h interval unless airflow rate or DO setpoint were changed manually or according to 
a schedule within an interval. 

P.1.3.3 Determination of oxygen transfer parameters 

Determination of the α-factor and other oxygen transfer parameters is based on the well-
established equation for actual oxygen transfer rate under process conditions (AOTR) 
which represents the transfer of oxygen without any standardization in activated sludge 
(United States Environmental Protection Agency 1989). The equation contains several 
factors to consider the influence of wastewater characteristics and varying ambient 
conditions during off-gas testing. Rearranged for the α-factor it is expressed as: 

𝛼 =
𝐴𝑂𝑇𝑅

𝐹 · 𝑘!𝑎82,-% · (𝛽 · 𝜏 · 𝛺 · 𝐶-%∗ − 𝐶(+)) · 𝜃.&-% · 𝑉
 (P.1.2) 

In off-gas measurements, AOTR (g·h−1) is calculated from the oxygen transfer 
efficiency (OTE) at a certain airflow rate. ASCE 18–18 describes how OTE is 
calculated from a mass balance of inlet and outlet oxygen and carbon dioxide 
concentrations measured with an off-gas analyzer. It also defines dimensionless 
standardization parameters to calculate standard oxygen transfer rate (SOTR) where τ 
is the oxygen saturation ratio at operating temperature and at 20 °C, Ω is the oxygen 
saturation pressure correction factor for 101.325 kPa, β is the ratio of oxygen saturation 
in process water and clean water, and θ is the temperature correction coefficient for 
water temperatures of 20 °C. Although ASCE 18–18 provides a general description of 
the ex situ column method, we provide further explanations based on practical 
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experience below and added all equations to determine the α-factor in Appendix 1 of 
this paper.  

Fouling factor — F ( −) 

The fouling factor is defined as the ratio of oxygen transfer performance of used and 
new diffusers. During long-term off-gas measurements in activated sludge, diffuser 
performance is reduced because of scaling, fouling, and aging of diffusers. Ex situ 
columns could be used to specifically determine the fouling factor F if diffusers were 
not cleaned periodically. Significant increases of fouling measured by pressure loss are 
rare within the first three months without maintenance (Rosso 2015; Rosso et al. 2012). 
On the other hand, ex situ columns allow to maintain diffuser performance and therefore 
to determine α-factors with minimal impact of fouling if maintained properly within 
shorter intervals. To mitigate fouling, regular pressure cleaning and reverse flexing of 
diffusers and acid addition into air pipes can be performed (Odize et al. 2017; Rosso 
2018; Wagner and Stenstrom 2014). Because our objective was to determine oxygen 
transfer as α-factor instead of αF-factor, reverse flexing was performed twice a week 
and membrane surface of diffusers was cleaned with high pressure once a month. A 
previous study has shown that the effect of fouling during long-term off-gas 
measurements could be kept low when applying this maintenance (Schwarz et al. 2021). 
Here, clean water tests repeated over a period of 13 months revealed a decrease of 
SOTR of 2 to 6 % depending on airflow rate and a dynamic wet pressure increase of 
about 1 kPa. For even longer periods, an exchange of diffusers seems advisable. 

Clean water testing — kLacw,20 

Clean water (cw) testing is required to determine the denominator of the α-factor which 
is based on the linear relationship between airflow rate and SOTR in clean water. We 
used different probes in clean water and process water because clean water tests 
required faster dissolved oxygen (DO) probes than off-gas measurements at high 
airflow rates. Electrochemical DO probes (Oxymax COS51D, Endress + Hauser AG, 
Reinach, Switzerland) with a fast response time t90 of 30 s were used. Slower optical 
DO probes Oxymax COS61D, Endress + Hauser AG, Reinach, Switzerland) produced 
similar results but at lower accuracy. These were used in process conditions as long-
term testing did not require a fast response time and their lower maintenance allowed 
more reliable operation in activated sludge. Furthermore, off-gas measurements were 
performed at a steady sludge inflow, while non-steady-state clean water tests were not. 
Consequently, differences of bubble rise and gas holdup in the columns could have 
occurred between test methods as discussed later. A steady-state clean water test is 
neither described in technical guidelines nor practically feasible at the setup’s scale. 
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Oxygen saturation concentration — C*20 

Steady-state off-gas cannot provide an estimate of effective oxygen saturation 
concentration C*20 which would result in the activated sludge at zero respiration rate. 
Therefore, it was estimated by a mid-depth model also considering influence of 
temperature and pressure (i.e., τ, Ω) (compare with Jiang and Stenstrom 2012). 
However, the effect of soluble total dissolved solids (TDS) as estimated by the β-factor 
cannot be determined in continuous off-gas testing. Instead, it is estimated from 
electrical conductivity by a conversion factor of 2 mg·L−1 TDS/3 µS·cm−1 (see DWA-
M 209, 2007). 

Volume V 

Volume of tanks should be measured accurately because it directly affects SOTR. Clean 
water and off-gas testing should be conducted with the same water volume to prevent a 
systematic error. 

α-Factor 

To determine the α-factor in the aeration tank, the airflow rate in the columns has to be 
adjusted to set DO in the ex situ columns within the range of DO in the examined 
aeration tank (ASCE 2018; Boyle 1983). This operation preserves steady-state 
conditions of DO and aims to reproduce the gas transfer found in the aeration tank as 
close as possible in the ex situ test column. In this case the setup resembles the in situ 
off-gas hood method, provided that the same diffuser type, diffuser density, and tank 
depth are implemented as in the examined aeration tank. 

P.1.3.4 Sensitivity analysis of ex situ off-gas measurements 

ASCE 18–18 gives little information about measurement uncertainty of the off-gas 
method. It remains unclear which input quantity is most important to produce accurate 
results. The principle of sensitivity analysis (SA) is to identify the effect of changes of 
input quantities on the model output (i.e., the α-factor) (Turányi 1990). Examined input 
quantities to determine the α-factor as described above were off-gas oxygen (O2,e) and 
carbon dioxide concentrations (CO2,e), water temperature (Tw), dissolved oxygen (DO 
and C(t)), electrical conductivity (EC) of the AS, atmospheric pressure (patm), and the 
airflow rate (qair). In the underlying model to determine α-factors, some input quantities 
are correlated (especially O2,e, CO2,e, DO), e.g., higher CO2,e values generally correlate 
with lower O2,e values. The model is non-additive because input quantities interact with 
each other. This means that changing two inputs has a different effect on the output than 
the sum of their individual effects which must be considered in sensitivity analysis 
(Saltelli et al. 2004). Instead of simulating this dependency in the input quantities during 
the sampling process with individual models, we collected results of long-term 
measurements in a conventional activated sludge (CAS) WWTP with 700,000 
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population equivalent treating municipal wastewater over a period of 11 months. The 
resulting dataset contains 10,700 recorded α-factors as 1-h intervals. In this dataset 
distribution of input, quantities represent typical operation of a CAS plant including 
seasonal variations and therefore cover the range of input quantities required for a global 
sensitivity analysis (Saltelli et al. 2004; Sudret 2007). 

Applying the methodology of sensitivity and uncertainty analysis, we examined the 
following aspects of α-factor determination with the ex situ off-gas method: 

Method 1: Examine the individual influence of measured input quantities 

An elementary “one factor at a time” (OAT) analysis only considers the relationship 
between the output and the variation of one individual input quantity around one 
baseline case where all other input quantities are kept at their nominal values (Saltelli 
1999). This local method would be restricted to one observation of input quantities at a 
time (baseline case) to determine the α-factor. To consider the range of input quantities, 
we performed the analysis for our whole dataset and reported average deviations of the 
α-factor. The results were generated by varying all observations of a specific input 
quantity by ± 1.0 % and ± 5.0 % from their nominal values (baseline cases) and 
recalculating the average α-factor of the dataset. The baseline cases are the input 
quantities and corresponding α-factors as determined by ASCE 18–18 (2018) from our 
dataset. Relative percentage change of this value and the average α-factor of the dataset 
was calculated for comparison of variations of all input parameters. In elementary OAT, 
any interactions of input quantities are discounted. Nonetheless, this elementary OAT 
analysis can be performed if the variation of input quantities is small (Saltelli 1999; 
Saltelli et al. 2019). The small variation of ± 1.0 % and ± 5.0 % is chosen to represent 
typical measurement uncertainties of the input quantities. 

Method 2: Examine the individual influence of correction factors 

We applied the same method as in Method 1 and varied the correction factors θ and β 
as well as the conversion factor for TDS/EC according to their ranges found in literature. 

Method 3: Estimate measurement uncertainty of our setup 

We performed an uncertainty analysis to estimate the measurement uncertainty to 
expect when determining α-factors with our ex situ off-gas columns. The measurement 
uncertainty of the α-factor was affected by the measurement uncertainty of all 
instruments involved to measure input quantities. A common approach is to use a 
derivative based method for error propagation to determine a combined standard 
uncertainty (Joint Committee for Guides in Metrology 2008). However, this uncertainty 
would only be valid locally for an individual measurement and does not consider the 
distribution of errors. To take these aspects into account, we estimated the uncertainty 
for all measurements in our dataset by the following steps: To create a base for 
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comparison, all observations of recorded input quantities and thereof determined α-
factors in our dataset were regarded as “true” values, i.e., reference quantity values. 
Random measurement error of instruments was simulated by sampling 4000 values of 
every input quantity according to the instrument’s individual measurement uncertainty 
for every observation in our dataset (n = 10,700). A detailed overview of a priori 
instrument measurement uncertainties and their distributions which are specific to our 
pilot setup is listed in Appendix 2 of this paper and technical information of each 
instrument is also provided by manufacturers online. Most measurement uncertainties 
were chosen according to technical information by the manufacturer. However, because 
optical sensors for measurement of dissolved oxygen were operated in activated sludge 
the uncertainty of ± 1 % of reading stated by manufacturer was considerably lower than 
our own measurements. Therefore, we assumed an uncertainty of ± 0.1 mg·L−1 (uniform 
distribution) ± 5 % of reading (± SD, normal distribution) as described in Appendix 2. 
In total, 42 million theoretical α-factors were determined based on the instrument 
measurement uncertainty that represented the expected uncertainty of the α-factors 
defined as “true” values. Finally, theoretical α-factors were compared with the 
measured “true” α-factors in our dataset. 

Method 4: Examine the individual influence of measured input quantities in 
our setup 

Sobol’ sensitivity indices were determined in a global sensitivity analysis. The global 
SA estimated the output uncertainty due to the uncertainty of individual input quantities 
or combinations thereof. Sobol’ indices were calculated from a decomposition of the 
output’s variance. The aim was to identify the impact of input quantities on 
measurement uncertainty of α-factors for our specific pilot plant. As in Method 3, the 
results are based on the specific measurement uncertainties related to the instruments 
and sensors used in our pilot plant (see Appendix 2) and illustrate the importance of all 
input quantities’ measurement uncertainty when performing off-gas tests with the ex 
situ method. The general concept is described in Saltelli et al. (2004) and first 
introduced by Sobol’ (1993). We used a Monte Carlo estimation of Sobol’ indices with 
improved formulas of Jansen (1999) and Saltelli et al. (2010) to determine first-order 
and total effects Sobol’ sensitivity indices. A practical application of this SA can be 
found in Jadun et al. (2017), who compared variance-decomposition methods on a real 
model and evaluated it as most suitable to determine total effects indices. 

Statistics and visualization were done using R 3.6.3 (R Core Team 2020), tidyverse 
package (v1.3.0) for visualization (Wickham et al. 2019), data.table package (v1.14.0) 
for data handling (Dowle and Srinivasan 2021) and sensitivity package (v1.26.1) to 
perform sensitivity analysis (Iooss et al. 2021). 
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P.1.4 Results and discussion 

First, we discuss the results of the sensitivity analysis to point out theoretical causes of 
measurement uncertainty. Afterwards, we present our results from a direct comparison 
of α-factors measured simultaneously in two pilot reactors from the same AS zone. 
Based on this, we discuss possible causes of random and systematic error affecting the 
ex situ off-gas method’s measurement uncertainty. 

P.1.4.1 OAT sensitivity analysis of α-factor determination 

An average α-factor of 0.70 was calculated according to ASCE 18–18 for our whole 
dataset of measured input quantities. Table P.1.1 displays the relative change from this 
average when all observations of an individual input quantity were adjusted by ± 1 % 
or ± 5 %, see Method 1. The mean value ± standard deviation (SD) of all input 
quantities is listed to characterize the dataset underlying the analysis. 

Table P.1.1 OAT sensitivity analysis: relative percentage change of mean α-factor for 
adjusted input parameters 

Input parameter  Mean ± SD 

α-factor: 
rel. perc. change (%) calculated 

with input quantities adjusted by 
- 5 % - 1 % + 1 % + 5 % 

O2 in off-gas (O2,e) 17.9 ± 0.7 % + 31.2 + 6.3 - 6.3 - 31.9 

Water temperature (Tw) 18.4 ± 2.9 °C + 1.8 + 0.4 - 0.4 - 1.7 

Atmospheric pressure (patm) 1,013 ± 9 hPa + 1.3 + 0.3 - 0.2 - 1.2 

Dissolved oxygen (DO) 2.1 ± 1.4 mg·L-1 - 1.2 - 0.3 + 0.3 + 1.3 

CO2 in off-gas (CO2,e) 2.2 ± 0.4 % + 0.7 + 0.1 - 0.1 - 0.7 

Vol. spec. airflow rate (qair) 1.5 ± 0.3 Nm3·m-3·h-1 + 0.5 + 0.1 - 0.1 - 0.5 

Electrical conductivity (EC) 1,380 ± 360 µS·cm-1 + 0.1 0.0 0.0 - 0.1 

The input quantities are sorted by descending absolute influence on the α-factor 
determination. When nominal values of O2 in off-gas were reduced by 5 % across all 
measured observations, the mean α-factor increased by 31.2 % based on the mean α-
factor of 0.70. In contrast, a decrease of electrical conductivity by 5 % increased α-
factor negligibly by 0.1 %. The exact relative percentage changes obtained by the 
analysis depend on the underlying dataset. The OAT sensitivity analysis confirms that 
the oxygen concentration in the off-gas is by far the most influential input quantity to 
determine the α-factor. Thus, maintenance and calibration of the gas analyzer is 
essential for off-gas testing. Adjusting water temperature, atmospheric pressure, and 
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dissolved oxygen by up to ± 5 % had similar impacts on the average α-factor. This 
theoretical approach ignores the fact that each sensor recording these input quantities 
has a different measurement uncertainty. Errors of more than ± 5 % are common for 
airflow meters or DO sensors when used in AS. Additionally, the closer water 
temperatures were to 20 °C the lower the relative percentage change of α-factor, 
because of its standardization to 20 °C. 

In Method 2, the same approach is applied to analyze the impact of correction factors 
for standardization. Inexact values of theses constants could be an additional source of 
measurement uncertainty (Joint Committee for Guides in Metrology 2008). Table P.1.2 
lists the relative or absolute percentage changes from the average α-factor of the dataset 
for variations of three standardization correction factors as input quantities.  

Table P.1.2 OAT SA: relative/absolute percentage change of mean α-factor for adjusted 
standardization factor 

Standardization 
factor   Adjustments of nominal value (-)  

Rel./abs. change of α-factors (%) 

θ temp. correction 
factor (theta) 

Input (-) 1.008 1.02 1.024 1.028 1.047 
Abs. perc. change of α-factors (%)* 4.2 1.1 - 1.1 6.3 

TDS/EC  
conversion factor  

Input (-) 0.55 0.62 0.67 0.72 0.90 
Rel. perc. change of α-factors (%) + 0.2 + 0.1 - - 0.1 - 0.3 

β-factor (beta) 
Input (-) 0.9 0.95 0.991 0.994 0.998 
Rel. perc. change of α-factors (%) - 9.2 - 4.1 - + 0.3 + 0.7 

* Absolute percentage change of α-factor was determined for variations of θ because deviations 
changed from positive to negative (and vice versa) at water temperatures of 20 °C. 

The temperature correction factor θ applies a geometric correction to standardize mass 
transfer of oxygen to 20 °C. It is set to 1.024, but the empirically determined factor 
attempts to combine several effects such as changes in diffusivity of oxygen, viscosity, 
or surface tension. Reported values range from 1.008 to 1.047 (Stenstrom and Gilbert 
1981), while ranges from 1.020 to 1.028 are reasonable according to US Environmental 
Protection Agency (1989). As theta is influenced by turbulence, it depends on the type 
of aeration system. Changing theta to a different factor requires support of substantial 
data (Stenstrom and Gilbert 1981). Within the range of 1.024 ± 0.004, the average α-
factor of our dataset deviated by 1.1 %. However, temperature correction becomes more 
influential for off-gas measurements at more extreme temperatures than present in our 
dataset (18.4 ± 2.9 °C).  

The conversion from total dissolved solids to electrical conductivity is 2 mg·L−1 
TDS = 3 µS·cm−1 (DWA 2007), see Appendix 1, equation A5. The factor 0.67 is 
confirmed by Behnisch et al. (2021) who determined an average of 0.7 for various salts. 
AWWA standard methods list a broader range between 0.55 and 0.9 (AWWA, 2017). 
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However, the effect on α-factor determination is negligible (below ± 0.3 %) at the salt 
concentrations expected in municipal wastewater. In this case, an adjustment of the β-
factor also has low impact on the resulting α-factors. In our dataset, a mean β-factor of 
0.991 was determined by equation A5. Uncertainty about the correct estimate of the β-
factor in municipal wastewater remains as Eckenfelder et al. (1956) report β as 
approximately 0.95 and ASCE 18–18 states that it can vary from 0.8 to 1.0, but is 
generally close to 1.0. An adjustment of β to 0.95 or 0.9 results in a relative change of 
α-factor of − 4.1 % and − 9.2 %, respectively. If equation A5 did not consider the effect 
of salts on effective oxygen saturation concentration correctly, it would directly impact 
the α-factor. For certain industrial (and possibly municipal) wastewaters, this could 
introduce a systematic error when determining the α-factor. 

P.1.4.2 Variance-based sensitivity analysis of the ex situ off-gas method 

The OAT sensitivity analysis described before did not consider possible interactions of 
input quantities on the α-factor and only selectively compared importance of input 
quantities for fixed variations of ± 1 % and ± 5 %. Sobol’ indices based on variance 
decomposition detected interactions of input quantities and considered their differing 
measurement uncertainties (see Method 4). The resultant first-order and total effects 
Sobol’ sensitivity indices for all input quantities are sorted in descending importance 
from left to right in Figure P.1.2. Boxplots visualize the distribution of indices for all 
10.500 samples of the underlying dataset instead of adding bootstrap confidence 
intervals for every index. 

 
Figure P.1.2 Comparison of first order and total effects Sobol’ sensitivity indices for 
input quantities to determine α-factors: oxygen in off-gas (O2,e), dissolved oxygen (DO), 
airflow rate (qair), water temperature (TW), carbon dioxide in off-gas (CO2,e), 
atmospheric pressure (patm), and electrical conductivity (EC)  

Oxygen concentration in off-gas (O2,e) has the highest first-order Sobol’ index followed 
by dissolved oxygen (DO). These Sobol’ indices show the influence of each input 
quantities’ measurement uncertainty on the variance of the output (i.e., the α-factor). 
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Compared with the previous OAT sensitivity analysis (see Table P.1.1), this confirms 
the importance of oxygen concentration in the off-gas whereas the impact of dissolved 
oxygen is higher than before. Hence, we can conclude that accurate measurement of 
oxygen in off-gas and dissolved oxygen must be prioritized for reliable off-gas testing 
with the instruments used in our pilot setup. In contrast, all other input quantities have 
low first-order and total effects indices which means that their measurement uncertainty 
had a negligible effect on the uncertainty of the α-factor. 

The output was primarily influenced by first-order effects because these were equal to 
total effects. Although the model is non-additive, no significant interactions were 
present when sampling input quantities within their measurement uncertainty. 
Otherwise, total effects indices would be larger than first-order indices. Interactions 
were present in the model although larger deviations of input quantities were tested 
(data not shown). On average, sum of first-order and total effects Sobol’ indices were 
close to 1, which also confirms that interactions between input quantities were 
negligible. Some first-order Sobol’ indices were negative for the less influential input 
quantities. This was not caused by correlated input quantities because sampling was 
random. Negative first-order Sobol’ indices can occur when the sample size is 
insufficient (Glen and Isaacs 2012) or when output is not distributed normally (Menberg 
et al. 2016). Nonetheless, indices can be assumed zero because they were distributed 
evenly around zero. Although the first-order indices could be not as robust as under 
perfect conditions, they still demonstrate a distinct difference in the input quantities’ 
importance as discussed above. 

P.1.4.3 Random measurement error of ex situ off-gas tests 

We simulated random measurement error of our setup based on the input quantities’ 
individual measurement uncertainty as described in Method 3. The resulting difference 
of the “true” α-factors and sampled α-factors produce random measurement errors to 
estimate the measurement uncertainty across a dataset of long-term measurements. The 
average α-factor and its standard deviation was 0.70 ± 0.025 (relative standard deviation 
of ± 3.7 %). 

Next, we estimated the measurement uncertainty of our setup by considering 
measurement error from comparison measurements. Our dataset included periods where 
both pilot reactors were operated at the same airflow rate and hydraulic retention time 
while transferring AS from the same aeration zone. In total, 1400 pairs of 
simultaneously determined α-factors collected at 1-h intervals provided a direct 
comparison to estimate the pilot setup’s measurement uncertainty. This direct 
comparison of two identically equipped and operated ex situ off-gas columns was a 
suitable method to estimate the method’s measurement uncertainty because no activated 
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sludge with a known α-factor can be used for calibration. The results are shown in 
Figure P.1.3. 

 
Figure P.1.3 Comparison of α-factors simultaneously determined in two ex situ off-gas 
columns 

Figure P.1.3 is divided into five separate diagrams. The upper diagrams display the 
difference of α-factor #1 and α-factor #2 over a long-term measurement period (left) 
and their resulting distribution (center). The lower counterparts show the relative 
difference (ratio of difference and common mean of both α-factors) for the mean α-
factor of both setups (left) and the resulting distribution (center). The right diagram 
directly compares each pair of α-factors. Dashed lines represent the ideal case without 
any difference (black), the average of all observations of our dataset (red) and ± 2 SD 
around the mean or the corresponding 95 %-prediction interval (blue). This comparison 
of two pilot setups shows that individual measurements of α-factors approximately 
follow a normal distribution with a SD of ± 4 % of relative difference, whereas long-
term testing provides more consistent results. The average of all observations (red 
dashed line) is close to the ideal case (black dashed line) with a relative difference lower 
than 1 %. 

The measurement error equals random measurement error plus systematic measurement 
error. As discussed in the next section, systematic measurement errors could not be 
excluded or corrected as the offset shifted between measurement periods. Figure P.1.3 
thus visualizes spread and distribution of random and systematic error values. Based on 
these the measurement uncertainty of the individual setups was estimated. One 
assumption therefore is the normal distribution of the observed differences of α-factors 
(compare Figure P.1.3, center top) and the differences of α-factor #1 and #2 with the 
ideal case. This assumption is common for random error of measurements. If the 
distribution is the same for both setups their mean (µ) and standard deviation (σ) can be 
derived from: 

𝒩(𝜇EF@, 𝜎EF@- ) = 𝒩(𝜇0, 𝜎0-) −𝒩(𝜇-, 𝜎--)  (P.1.3) 
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with: 

𝒩(𝜇EF@, 𝜎EF@- ):  
Normal distribution of the observed (measured) differences of α-factors as shown in 
Figure P.1.3 with mean μobs = μ1 − μ2 = −0.0044 ≈ 0 and standard deviation σobs = 0.026 

𝒩Z𝜇0,-, 𝜎0,-- [:  
Normal distribution of the individual setups determining α-factor #1 and #2. 

Because standard deviations for the individual setups (σ1 and σ2) were assumed identical 
they can be calculated as follows: 

𝜎EF@- = 𝜎0- + 𝜎-- = 2𝜎0,--   (P.1.4) 

𝜎0,- = \G$%&
'

-
= 0.018	  (P.1.5) 

While the difference of means μ1 and μ2 was close to zero, the standard deviations σ1 
and σ2 were calculated from Eq. (P.1.5) as 0.018 for α-factors in the dataset of the 
comparison. At an average α-factor of 0.66 in the dataset, the mean relative standard 
deviation was ± 2.8 %. The lower left diagram in Figure P.1.3 shows that relative 
difference of α-factors does not change significantly at lower or higher α-factors, which 
indicates that the relative standard deviation can estimate measurement uncertainty 
across the whole range of possible α-factors. Table P.1.3 compares these measurement 
error results of measured values from two pilot setups with the results simulated with 
the uncertainty analysis (see Method 3).  

Table P.1.3 Comparison of measurement uncertainty based on simulation and 
measurements of ex situ off-gas tests  

Data source and analysis Simulated  
in uncertainty analysis 

Parallel measurement in 
two ex situ pilot reactors 

Number of observations in dataset n = 10.500 n = 1.400 (in each reactor) 

Mean α-factor of dataset 0.70 0.66 

Mean standard deviation (-) ± 0.025 ± 0.018 
Mean relative standard deviation (%) ± 3.7 ± 2.8 

The average values of standard deviation and relative standard deviation are similar for 
both approaches. However, data analyzed from parallel measurement in two ex situ pilot 
reactors was compressed to 1-h intervals. In contrast, the values simulated in the 
uncertainty analysis represented the random error of measurement expected for 
instrument readings within the overall response time of all instruments. This period is 
shorter than one hour and cannot be determined exactly for our setup because response 
time of instruments varied, and gas sampling was dependent on airflow rate. The values 
simulated in the uncertainty analysis overestimate uncertainty, because more than one 
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distinct measurement could take place within 1 h and thereby decrease the overall 
random measurement error. 

Repeating off-gas measurements is generally recommendable due to random 
measurement errors. Our results show that a considerable measurement error could 
remain if only a single 1-h interval of an α-factor was determined. Repeated long-term 
measurements can compensate for this as the following example illustrates: In the case 
of our pilot reactors, a single measurement of an α-factor of 0.66 would be associated 
with a relative standard deviation of ± 2.8 %. Repeating this measurement 5, 10, or 20 
times would decrease relative standard deviation to 1.3 %, 0.9 %, or 0.6 %, 
respectively. This example is valid under the assumption of a pure random measurement 
error. However, a systematic measurement error influencing multiple observations in 
sequence could still have a larger impact than demonstrated here. 

P.1.4.4 Systematic measurement error of ex situ off-gas tests 

Comparative measurements were performed in five distinct periods of more than 
10 days that are separated in Figure P.1.4 The titles of the individual diagrams state the 
period of measurement, average relative difference (%), and the number of recorded 1-
h intervals (n) within that period (maintenance excluded). Diagrams on top present the 
distribution of relative difference with a rug marking individual datapoints while 
diagrams on the bottom show the direct comparison of each pair of α-factors. As in 
Figure P.1.2, dashed lines indicate the ideal case of no deviation (black) the mean within 
that period (red) and ± 2 SD around the mean or the 95 %-prediction interval (blue). 

 

 
Figure P.1.4 α-factor comparison split into five off-gas measurement periods 

The comparison shows that the distribution of relative differences and their average 
varied between measurement periods. Relative differences were not always normally 
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distributed. This suggests that the ex situ off-gas measurement was subject to systematic 
measurement errors that changed between or within measurement periods. The 
systematic measurement error as a relative difference was within a range lower 
than ± 1.5 % in our setup. It is worth mentioning that this cannot identify systematic 
measurement errors occurring at the same time and evenly in both setups. Therefore, a 
systematic measurement error could be higher than the reported relative difference 
of ± 1.5 %. 

Systematic measurement error could be caused, among other reasons, by fouling of 
diffusers, biofilm growth, sensor drift, or imperfect clean water testing and therefore 
reduced by proper maintenance of the setup and extensive clean water testing. Based on 
our data, systematic measurement error could not be quantitatively attributed to 
potential causes as discussed below. Consequently, an unknown systematic 
measurement error cannot be corrected when estimating the measurement uncertainty. 
The comparison in Figure P.1.4 and thereof derived relative difference of up to ± 1.5 % 
could not conclusively distinguish random measurement error from systematic 
measurement error. Nonetheless, it exemplarily demonstrates the effect and 
acknowledging the potential causes listed below may help to minimize systematic 
measurement errors when performing ex situ off-gas measurements. 

Fouling, scaling, and aging of diffusers affects the oxygen transfer performance of an 
aeration system. Odize et al. (2017) found that reverse flexing helped to reduce pressure 
loss during operation but did not improve fouling factor effectively. Therefore, the 
membrane surface of diffusers was cleaned with high pressure before the individual 
measurement periods to mitigate fouling. Within the long-term off-gas testing period of 
11 months, pressure loss increased on average by 2 kPa for both pilot reactors, but 
pressure loss and relative deviations of α-factors were not correlated. 

Preventing excessive biofilm growth within the reactors is critical. Sessile biomass in 
the ex situ columns increases overall oxygen respiration and therefore alters DO 
concentrations and oxygen driving force in the columns when compared to suspended 
biomass in the AS tank. Consequently, ex situ columns could fail to accurately measure 
oxygen transfer conditions in an AS tank because of this systematic error. Reactor tank 
walls were cleaned regularly concurrently with diffusers to prevent this effect. Overall, 
no significant biofilm production was observed during testing. However, the impact of 
biofilm growth remains an unquantifiable source of error. 

Sensor drift of off-gas analyzer or DO sensors could result in a systematic measurement 
error. A small drift of oxygen concentrations in the off-gas would have a 
disproportionate effect on the α-factor as shown by the sensitivity analysis. Regular 
calibration depending on the gas analyzer’s requirement is advisable. Outliers in 
collected data could be identified a posteriori by large drifts marked in a calibration 
protocol. Moreover, biofilm growth on DO sensors submerged in AS affected their 
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accuracy and required regular cleaning. A duplicate or triplicate measurement is 
advisable as it allows to identify outliers of single defective sensors a posteriori. Once 
these outliers were detected and removed from our dataset, no correlation with the 
relative difference of the α-factor was apparent. From our experience, other sensors and 
instruments involved in the measurement were less error-prone. Details on 
implementations in our setup are stated in the “Methods” section. 

Clean water testing results are the denominator of the α-factor. Results of linear 
regression equations (SOTR ~ qair) were similar for both reactors, but deviations were 
more probable at extreme airflow rates. Extensive clean water testing beyond the usual 
range of set airflow rates is advisable. Nonetheless, at airflow rates below 
0.5 Nm3·m−3·h−1 accuracy of the airflow meter was insufficient in our setup. Once α-
factors determined at low airflow rates were excluded, no correlation with the relative 
deviation between pilot reactors was apparent. 

Water volume directly affects determination of oxygen transfer parameters and should 
be kept constant during testing as described in the “Methods” section. In our setup, no 
deviation related to differences of tank volume was expected because of the identical 
geometry of aeration columns. 

P.1.4.5 Limitations of the ex situ off-gas method 

Unlike in situ measurements with off-gas hoods at the surface of an aeration tank, 
oxygen transfer in the AS is examined ex situ with the method discussed here. Sludge 
transfer from an AS tank and aeration in a column with a different geometry than the 
AS tank could skew the α-factors determined with ex situ off-gas measurements under 
certain conditions. 

Firstly, the positioning of sludge transfer hoses in the AS tank limits the zone that can 
be examined with the ex situ columns. In situ off-gas hoods are similarly restricted to 
cover small areas of an aeration tank. In the case of insufficient mixing in the AS tank, 
sludge characteristics at the sampling point could result in an undetected error. 
Therefore, sludge transfer hoses should be positioned in a sufficiently mixed zone. 

Secondly, during transfer of aerated AS in sludge transfer hoses additional oxygen is 
dissolved from the gas phase while oxygen consumption of the biomass reduces it. In 
our dataset, oxygen transfer rates in the ex situ columns were on average 
71 ± 16 g·m−3·h−1 and oxygen uptake rates were similar at 68 ± 17 g·m−3·h−1. However, 
it remains unclear whether the two opposing effects were balanced in the sludge transfer 
hoses. It is possible that more oxygen is dissolved than consumed under turbulent flow 
conditions in the hoses, which would result in an overestimation of the α-factor. 
Therefore, hose lengths should either be as short as possible or of the same length to 
reduce a potential systematic measurement error. In our application, hose lengths of up 
to 100 m were used. 
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Thirdly, the sludge transfer into the column produces a lateral flow at the height of the 
diffusers that is only present during off-gas testing, not during clean water testing. 
Figure P.1.5 shows the relationship of α-factor and volume specific airflow rate for our 
setup where off-gas testing was performed during dry weather in the same aeration zone 
of a CAS WWTP. Off-gas tests were performed at a constant sludge inflow with a HRT 
of 15 min so that turbulence in the columns was only influenced by airflow rate. The 
same data is depicted as individual data points with a local polynomial regression fit as 
a dashed line (left) and boxplots (right). 

 
Figure P.1.5 α-factors at specific airflow rates in the ex situ column at constant sludge 
inflow 

Both diagrams show that α-factor increases at lower airflow rates. During off-gas testing 
in AS, oxygen transfer is improved by higher turbulence as the rising bubble plume is 
additionally mixed by the sludge inflow. Consequently, a systematic overestimation of 
α-factors is possible, especially at low airflow rates where gas–liquid ratio is 
particularly low. The effect can be reduced by setting higher airflow rates that create a 
similarly high turbulence in off-gas and clean water testing. Nonetheless, this 
systematic error is setup specific and should be quantified for each ex situ column. 
Although Figure P.1.5 suggests that a further decrease of α-factor is limited at high 
airflow rates, the “true” α-factor in the AS tank is difficult to determine with the ex situ 
method. Nonetheless, an off-gas measurement with in situ off-gas hoods is preferable 
if α-factors are determined to design the aeration system of the examined AS tank. 

Fourthly, determination of standard aeration efficiency (SAE) relies on accurate 
measurement of power consumption of blowers. Blowers equipped in a pilot-scale ex 
situ setup cannot accurately represent the power consumption of aeration in a full-scale 
AS tank. In contrast, in situ off-gas measurements with off-gas hoods use the blowers 
of the AS tank and should therefore be preferred to determine SAE. 
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P.1.5 Conclusions 

Below, we summarize our findings about the application of ex situ column off-gas 
testing and its measurement uncertainty to determine α-factors in activated sludge tanks. 

§ We determined the most important input quantities of the ex situ off-gas method 
with a “one factor at a time” (OAT) sensitivity analysis and a global variance-based 
sensitivity analysis using Sobol' indices. The analysis was based on measurement 
uncertainties of required instruments and revealed that oxygen concentration in off-
gas was the most important input quantity to determine oxygen transfer parameters 
(e.g., the α-factor). It was followed by dissolved oxygen concentration because its 
measurement in activated sludge could be unreliable. The uncertainties of all other 
input quantities were negligible. 

§ We performed an uncertainty analysis for a dataset of long-term measurements 
based on the measurement uncertainties of instruments in our pilot setup and 
estimated measurement uncertainty of the α-factor as a relative standard deviation 
of about ± 3.7 %. A direct comparison of α-factors from parallel operation of ex situ 
pilot reactors under the same conditions transferring AS from the same aeration zone 
resulted in a similar relative standard deviation of about ± 2.8 %. This value 
represents the measurement uncertainty of a single value recorded with the ex situ 
off-gas method. The theoretically determined relative standard deviation of ± 3.7 % 
and the relative standard deviation of ± 2.8 % determined from practice in our pilot 
setup are lower than a measurement uncertainty of ± 5 to 10 % estimated in literature 
before. Thus, a more accurate off-gas measurement seems possible. We recommend 
estimating the measurement uncertainty of α-factors theoretically for the installed 
instruments when planning an ex situ pilot setup as shown in Method 3. In any case, 
repeating measurements is advisable to produce more accurate results and reporting 
a measurement uncertainty of the method is beneficial to interpret results. 
Nonetheless, systematic measurement errors can be present and caused, e.g., by 
fouling of diffusers, biofilm growth, sensor drift, or imperfect clean water testing. 
In our experience, systematic measurement errors of about ± 1.5 % of α-factor can 
be caused by these issues which can rarely be identified a posteriori and only 
reduced by proper maintenance of the setup. 

§ The α-factor is standardized with correction factors to consider the influence of 
temperature and total dissolved solids on oxygen transfer according to standard 
guidelines. OAT sensitivity analysis revealed that impact of correction factors on 
the α-factor was lower than measurement uncertainty of the most important input 
quantities (oxygen concentration in off-gas and activated sludge). However, 
temperature correction factor θ became increasingly important when off-gas testing 
was conducted in activated sludge at water temperatures deviating from 20 °C. 
Because θ was empirically estimated as 1.024, an unknown systematic measurement 
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error could result when comparing oxygen transfer results from tests at significantly 
different temperatures. The influence of salts on the effective saturation 
concentration as represented by the β-factor was estimated with a formula that has 
negligible effect on α-factor. Nonetheless, for off-gas tests in AS treating industrial 
wastewater with high salt contents the β-factor should be validated by additional 
tests to avoid a systematic measurement error. 

§ In general, the findings for the ex situ off-gas method are transferable to in situ off-
gas hoods because the same instruments are used to determine the α-factor. We 
outlined systematic influences that differentiate the methods from each other, such 
as changes of oxygen balance in inflow or higher turbulence in ex situ columns due 
to sludge transfer. We conclude that the ex situ method is not suitable to determine 
α-factors to design aeration systems because a systematic overestimation of α-factor 
at low airflow rates is probable. In contrast, off-gas hoods are suitable to monitor 
oxygen transfer in activated sludge tanks, e.g., for compliance testing, because 
resulting α-factors represent in situ conditions. In addition, full coverage of tanks is 
less expensive and operation easier to maintain than with ex situ reactors. However, 
the possibility to operate ex situ reactors independently from AS tanks offers unique 
possibilities for research of oxygen transfer dynamics in AS and development of 
aeration equipment. It could see a future application in the parallel measurement of 
oxygen transfer and greenhouse gas emissions (such as nitrous oxide) in aerated and 
non-aerated zones. 

P.1.6 Appendix  

P.1.6.1 Equations to determine the α-factor from measured input 
quantities 

This annex contains all equations used to determine the α-factor with the ex situ method. 
Most notable are the adjustments made to allow a determination of the α-factor based 
on online sensor data (estimating TDS from electrical conductivity and calculating 
CS,T,St from a polynomial). With these a reader can replicate the sensitivity analysis 
discussed above with own data.  
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MRi:  Molar ratio of oxygen to inert substances  

𝑀𝑅> =
(',*+
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0&
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,-.(',*+

= 0.265	          (A1) 

with: 

O2,in:  Inlet oxygen concentration of 20.946 %  

CO2,in:  Inlet carbon dioxide concentration of 0.0407 %  

 

CS,T,St: Oxygen saturation concentration at water temperature Tw (mg·L-1)  

𝐶1,.,1+ =
--45.45

(.#H5I.J4),.0,1"0
	          (A2) 

with: 

Tw:  Water temperature (°C)  

ASCE 18-18 refers to tabulated values by Benson and Krause Jr, (1984), the polynomial 
above is defined in DWA-M 229-1 and calculates these values (DWA, 2017).  

 

CS,md: Oxygen saturation concentration at mid-depth and standard conditions 
(mg·L-1)  

𝐶1,67 = 9.09 · K2
-·0%.4I

	           (A3) 

with: 

hD:  Blow-in depth (m)  

Mid-depth saturation model based on DWA-M 209 (DWA, 2007), the mid-depth model 
is also recommended in Jiang and Stenstrom (2012). The effective saturation depth is 
setup-specific and was about 50 % of blow-in depth in our setup, which was determined 
in clean water tests by comparison with oxygen saturation at the surface according to 
DWA-M 209 (2007).  
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OTEf: Oxygen transfer efficiency under process conditions (%)  

𝑂𝑇𝐸= =
L<*&M
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N
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		          (A4) 

with: 

O2,e:  Oxygen concentration in off-gas (%)  

CO2,e:  Carbon dioxide concentration in off-gas (%)  

The parameter is calculated depending on the gas analyzer output and/or off-gas 
conditioning. For other variants the reader is referred to ASCE 18-18 (2018) or DWA-
M 209 (2007).  

 

β: β-factor (beta) (-)  

the ratio of oxygen saturation in process water to clean water at equivalent conditions 
of water temperature partial pressure  

𝛽 = 1.00 − 0.01 · .O1
0%%%

	  or 𝛽 = 1.00 − 0.01 ·
'
0·PQ

0%%%
	     (A5) 

with: 

TDS:  Total dissolved solids (mg·L-1)  

EC:  Electrical conductivity (µS·cm-1)  

Online monitoring requires continuous measurement of TDS. It is therefore 
approximated with the electrical conductivity. A common conversion is 2,000 mg·L-1 
TDS = 3,000 µS·cm-1 (DWA, 2007).  

 

C*20: Standardized effective oxygen saturation at process conditions (mg·L-1)  

𝐶-%∗ = 𝐶1,67 · 𝜏 · 𝛺 = 𝐶1,67 ·
Q4,5,46
J.%J

· A768
0%0.4-I

      (A6) 

with: 

τ:  Temperature correction (tau) of effective saturation concentration (-)  

Ω:  Pressure correction (omega) of effective saturation concentration (-)  

patm: Atmospheric pressure (kPa)  
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OTEsp,20: Oxygen transfer efficiency per unit of driving force at std. conditions 
(%/mg·L-1)  

𝑂𝑇𝐸@A,-% =
R.P9

Q'"∗ &Q(6)
· 𝜃-%&.#        (A7) 

with: 

C(t):  Dissolved oxygen concentration in the ex situ column (mg·L-1)  

θ:  Temperature correction factor (theta) = 1.024 (-)  

 

SOTEpw: Standard oxygen transfer efficiency under process conditions (%)  

𝑆𝑂𝑇𝐸A2 = 𝑂𝑇𝐸@A-% · 𝐶-%∗ · 𝛽        (A8) 

 

SOTRpw: Standard oxygen transfer rate in process water (g·h-1)  

𝑆𝑂𝑇𝑅A2 = 𝑞(>S · 299.3 · 𝑆𝑂𝑇𝐸A2       (A9) 

with: 

qair:  Airflow rate, e.g., volume specific (Nm3·m-3·h-1)  

 

α:  α-factor (alpha) (-)   

Ratio of kLapw in process water to kLacw in clean water at equivalent conditions of tank 
geometry, mixing, etc.  

𝛼 = 1R.<=#
1R.<>#

                   (A10) 

with: 

SOTRcw: Standard oxygen transfer rate in clean water (g·h-1) measured at the same 
airflow rate qair as in process water, see also ASCE 2-06 (2007), EN 12255-15 (2004) 
or DWA-M 209 (2007). It is linearly dependent on the airflow rate and can therefore be 
calculated from a setup-specific linear regression model.  

 

P.1.6.2 Measurement uncertainty of input quantities to determine α-
factors 

Below the measurement uncertainty of all sensors and instruments is listed that were 
used in the uncertainty analysis and sensitivity analysis. If not specified otherwise a 
normal distribution is assumed with a coverage factor of 1 (± 1 SD).  
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O2,e – Oxygen concentration in off-gas  

Paramagnetic sensor X-STREAM Enhanced, XEGP-C-14-B40-0-B40-0-O26-0-O26-
0-000-0-3-0-8-0-0-1-0-0-B-B (Emerson Electric Co., Missouri, USA)  

± 0.5 % of reading (repeatability, confirmed by own measurements at ambient air)  

 

CO2,e – Carbon dioxide concentration in off-gas  

Nondispersive infrared sensor X-STREAM Enhanced, XEGP-C-14-B40-0-B40-0-
O26-0-O26-0-000-0-3-0-8-0-0-1-0-0-B-B (Emerson Electric Co., Missouri, USA)  

± 0.5 % of upper range limit of 5 % (repeatability, confirmed by own measurements in 
ambient air)  

 

DO - Dissolved oxygen C(t) 

Digital, optical measurement of dissolved oxygen based on fluorescence quenching 
COS61D-1009/0-AAA1A4 (Endress+Hauser AG, Reinach, Switzerland)  

According to technical information by the manufacturer measurement uncertainty is 
stated as 0.01 mg·L-1 or ± 1 % of reading. However, this accuracy recorded under 
laboratory calibration conditions is far from the readings we measured in activated 
sludge. Even under laboratory conditions Helm et al. (2018) found a drift of ± 0.2 mg·L-

1 of optical sensors within 1 month of use. Näykki et al. (2013) conservatively estimated 
uncertainty of measurement at ± 0.15 mg·L-1 (± SD) for reference DO measurements in 
interlaboratory comparison for several types of DO sensors. Based on own 
measurements with two or three sensors operated in the same reactor column (though 
at different depth of submergence) we defined a reasonable measurement uncertainty 
of optical DO sensors in activated sludge as ± 0.1 mg·L-1 (uniform distribution) ± 5 % 
of reading (± SD, normal distribution). This is a conservative estimate because the mean 
value of two or three sensors is used to determine the α-factor.  

 

Tw – Water temperature  

Temperature probe in digital dissolved oxygen sensor based on fluorescence quenching 
COS61D-1009/0-AAA1A4 (Endress+Hauser AG, Reinach, Switzerland)  

± 0.75 % of reading (uniform distribution, based on own measurements with two or 
three sensors operated in the same reactor column, no information provided by 
manufacturer)  
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EC - Electrical conductivity in activated sludge  

Toroidal potentiometric conductivity sensor Indumax CLS50D -10M7/0-AA1B31 
(Endress+Hauser AG, Reinach, Switzerland)  

± (5 µS·cm-1 + 0.5 % of reading) (maximum measured error, a uniform distribution is 
applied for sampling)  

 

patm - Atmospheric pressure at blower air intake 

Absolute and gauge pressure Cerabar PMC21-21W0/0-AAl U2KBWBJA 
(Endress+Hauser AG, Reinach, Switzerland)  

± 0.3 % of upper range limit of 2 bar (maximum measured error, a uniform distribution 
is applied for sampling)  

 

qair – Airflow rate  

Thermal mass flow meter t-mass A 150-14D9/0-6AAB15 (Endress+Hauser AG, 
Reinach, Switzerland)  

± 4 % of reading (uncertainty increases at airflow rates below 6 Nm3·h-1 that were not 
set)  
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P.2.1 Abstract 

Aeration is an energy-intensive process of aerobic biological treatment in wastewater 
treatment plants (WWTP). Two-stage processes enable energy-efficient operation, but 
oxygen transfer has not been studied in depth before. In this study, α-factors were 
determined with long-term ex situ steady-state off-gas measurements in pilot-scale test 
reactors (5.8 m height, 8.3 m3) coupled to full-scale activated sludge basins. A two-
stage WWTP with more than 1 Mio population equivalent was studied over 13 months 
including rain and dry weather conditions. Operating data, surfactant concentrations 
throughout the two-stage process, and the effect of reverse flexing on pressure loss of 
diffusers were examined. The values of αmean, αmin, and αmax for design load cases of 
aeration systems were determined as 0.45, 0.33, and 0.54 in the first high-rate carbon 
removal stage and as 0.80, 0.69, and 0.91 in the second nitrification stage, respectively. 
The first stage is characterized by a distinct diurnal variation and decrease in α-factor 
during stormwater treatment. Surfactants and the majority of the total organic carbon 
(TOC) load are effectively removed in the first stage; hence, α-factors in the second 
stage are higher and have a more consistent diurnal pattern. Proposed α-factors enable 
more accurate aeration system design of two-stage WWTPs. Fouling-induced diffuser 
pressure loss can be restored effectively with reverse flexing in both treatment stages. 

P.2.2 Introduction 

Aeration is an essential process in aerobic biological wastewater treatment. In most 
wastewater treatment plants (WWTPs), it accounts for more than half of the net energy 
consumption (Baquero-Rodríguez et al., 2018; Reardon, 1995; Rosso et al., 2011). 
Engineers rely on technical standards providing design guidelines to properly design 
aeration systems (DWA, 2017; United States Environmental Protection Agency, 1989; 
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Water Environment Federation, 2018). Various WWTP process configurations are 
possible depending on wastewater composition and required effluent target. Each 
process configuration demands individual design considerations for the aeration system. 
Technical guidelines, therefore, provide α-factors to consider inhibiting effects on 
oxygen transfer in the activated sludge (AS). The α-factor determines oxygen transfer 
efficiency as the ratio of oxygen transfer under process conditions compared to clean 
water. However, comprehensive research on oxygen transfer in two-stage AS processes 
is not available. This study provides planners with α-factors required for the design of 
aeration systems in a two-stage configuration. We discuss the impact of stormwater 
treatment and fluctuations of operating parameters such as TOC F/M ratio on oxygen 
transfer in the individual treatment stages. Furthermore, surfactant removal within a 
two-stage process and the effectiveness of reverse flexing to restore pressure loss of 
diffusers in the different treatment stages are examined.  

P.2.2.1 Energy Efficiency of Two-Stage Activated Sludge Systems 

Currently, almost all conventional activated sludge (CAS) wastewater treatment plants 
operate in an energy-negative mode. When an HRAS system is followed by a second 
biological treatment stage (e.g., for nitrogen removal), it can be operated differently 
than a CAS system (Winkler and Widmann, 1994). In this case, the first stage can 
redirect carbon into waste activated sludge (WAS) through biosorption and energy self-
sufficiently remove nutrients (Kroiss and Klager, 2018; Liu et al., 2020). Liu et al. 
(2020) presented a variety of A-B process designs, and Jimenez et al. (2015) described 
design parameters to optimize carbon redirection. They defined a typical operation 
range of HRAS systems as SRT < 1 day, HRT ≈ 30 min, DO < 1 mg O2∙L−1, and very 
high sludge-specific organic loading rates that result in a concentration of influent 
particulate, colloidal, and soluble chemical oxygen demand (COD) into the WAS 
through biosorption. This improves direct energy recovery from carbon-loaded sludge 
through biogas production (Sancho et al., 2019; Wan et al., 2016). Moreover, in-plant 
energy consumption is reduced by lower oxygen demand for aerobic carbon removal 
and higher overall aeration efficiency (Kroiss and Klager, 2018). The separation of 
carbon- and nitrogen-removing biomass potentially reduces overall oxygen supply by 
more precise aeration control according to the respective biomass’s specific oxygen 
demand (Svardal and Kroiss, 2011). Depending on the wastewater composition, not 
enough soluble COD to ensure complete denitrification may be a critical limitation of 
two-stage processes that is aggravated by additional carbon redirection. Therefore, two-
stage WWTPs are recommended for high-carbon or low-nitrogen wastewater treatment; 
alternatively, they require side-stream short-cut nitrogen removal processes (e.g., 
nitritation-denitritation or partial nitritation-anammox) to decrease carbon requirement 
of nitrogen removal (Liu et al., 2020). Nonetheless, two-stage activated sludge 
configurations are a sustainable option in the ongoing shift from conventional treatment 
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by removal in WWTPs to more energy-efficient treatment and resource recovery in 
water resource recovery facilities (WRRFs) (Liu et al., 2020).  

P.2.2.2 Influences on Oxygen Transfer in Two-Stage Activated Sludge 
Systems 

The α-factor is determined as the ratio of volumetric oxygen mass transfer coefficient 
in process water compared to clean water as described in ASCE 18-18 (ASCE, 2018) 
and DWA-M 209 (DWA, 2007). The use of a separate fouling factor (F or αF) to 
distinguish between diffuser- and wastewater-specific effects on oxygen transfer is 
described by EPA (United States Environmental Protection Agency, 1989). Recent 
review articles summarize the influences on oxygen transfer in process conditions. 
Baquero-Rodríguez et al. (2018) reviewed a variety of factors including diffuser aging 
and fouling, influent wastewater variability, and airflow rates for fine-pore diffuser 
aeration. Amaral et al. (2019) focused on the modeling aspect of the gas-liquid transfer 
in activated sludge. Both studies concluded that the development of a model to consider 
all factors affecting oxygen transfer in activated sludge systems would be extremely 
valuable. So far, the complexity of interactions between factors complicates the 
development of a comprehensive α-model. To achieve this goal, more knowledge about 
the involved processes has to be acquired.  

Therefore, one path to gain deeper insight is to look at extreme variations of activated 
sludge process designs such as two-stage configurations. The biosorption mechanism 
utilized for carbon redirection in HRAS stages describes surface adsorption of 
particulate and colloidal organic matter on sludge flocs and storage of soluble COD 
inside of biomass (Guellil et al., 2001; Majone et al., 1999). This can have a positive 
effect on oxygen transfer as substances inhibiting gas-transfer at the bubble-bulk 
interface are removed or adsorbed on sludge flocs. Garrido-Baserba et al. (2020) 
discussed strategies to increase oxygen transfer efficiency through biosorption, inter 
alia by specifically removing surfactants. The amphiphilic structure of surfactants 
causes a negative effect on oxygen transfer at low concentrations in clean water 
(Wagner and Pöpel, 1996a) and activated sludge (Rosso et al., 2006). High biosorption 
of surfactants in a first treatment stage could improve oxygen transfer in a subsequent 
treatment stage. The overall energy efficiency of an aeration system is determined not 
only by oxygen transfer in the bulk liquid, but also by pressure loss of diffuser elements. 
This pressure loss resembles the extra resistance that blowers have to overcome to 
widen membranes and diffuse air through the membrane perforation. Pressure loss 
increases due to fouling, aging, and scaling of membranes, and it also negatively affects 
oxygen transfer efficiency (Garrido-Baserba et al., 2016; Rosso and Stenstrom, 2006). 
Reverse flexing is a mechanical cleaning method where diffuser membranes are relaxed 
by turning off the blowers and releasing pressure from the air pipes. This causes a rapid 
collapse of the diffuser membrane onto the diffuser’s frame under hydrostatic pressure. 
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Turning on the blowers flexes the diffuser’s membrane and reopens its slits, which 
removes biofilm and particulate matter from the membrane surface. As a result, 
previously built-up pressure loss is mitigated which enables more energy-efficient 
operation of the aeration system (Odize et al., 2017; Rosso, 2015).  

P.2.2.3 Goals of this Study 

Factors relevant for energy-efficient operation of aeration systems have been studied 
for CAS systems; however, comprehensive research is not available for two-stage AS 
processes. This paper addresses this research gap and defines α-factors for design load 
cases applicable to design aeration systems of two-stage AS systems by measuring 
oxygen transfer on a pilot scale. Most importantly, the underlying measurements 
include variations of diurnal cycle of WWTP operation and influent characteristics, rain 
and dry weather, and seasonal variations affecting oxygen transfer and the α-factor. The 
resultant dataset covers various load cases of a two-stage WWTP. Some procedures to 
design aeration systems use static α-factors, whereas the approach of German guideline 
DWA-M 229-1 (DWA, 2017), as described in Wagner and Stenstrom (2014), 
distinguishes three load cases with αmean, αmin, and αmax factors that we determined 
accordingly. We also quantified surfactant concentrations in samples throughout the 
treatment process to examine the distribution of surfactants in the treatment stages of a 
two-stage configuration. Additionally, different operation of treatment stages within a 
two-stage system affects bioflocculation capability and resultant sludge composition, 
which could have an effect on diffuser fouling. We investigated operation and 
maintenance of fine-bubble diffusers in those conditions through a series of diffuser 
pressure loss measurements after reverse flexing to determine if fouling can be 
mitigated effectively in two-stage processes.  

P.2.3 Materials and Methods 

P.2.3.1 Design and Operation of Pilot-Scale Test Reactors 

Long-term ex situ steady-state off-gas monitoring was conducted in pilot-scale test 
reactors as described in ASCE/EWRI 18-18 (2018). Tank dimensions were 1.2 m × 
1.2 m × 5.8 m (L × W × H) with a volume of 8.3 m3. Two reactors were operated to 
examine both AS stages of a two-stage process in parallel. Both reactors were equipped 
with fine-bubble disc diffusers (ELASTOX-T EPDM TYP B, WILO GVA, Wülfrath, 
Germany) with a diffuser density of 13.5 %. Unlike off-gas measurements using off-
gas hoods, the airflow rate within an ex situ reactor can be varied independently from 
the operation of the WWTP it receives its sludge from. A range of airflow rates 
(specified for aerated tank volume—qVol,aer) between 0.75 and 2.25 Nm3∙m−3∙h−1 was 
set, covering typical ranges of two-stage WWTPs. Sludge transfer pumps (AGNM02 
NEMO®, NETZSCH Holding, Selb, Germany) were operated to maintain a constant 
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hydraulic retention time (HRT) of 15 min as recommended by ASCE/EWRI 18-18. 
Sludge flow was measured with electromagnetic flowmeters (Promag W 400, Endress 
+ Hauser AG, Reinach, Switzerland). Mixing conditions within the tanks can be 
assumed close to an ideal continuous stirred tank reactor (CSTR), because of the 
combined energy input of aeration and sludge transfer.  

Mean values of clean water tests of standard oxygen transfer rate (SOTR) were used as 
a denominator for the α-factor. Clean water tests were conducted with electrochemical 
dissolved oxygen (DO) probes (Oxymax COS51D, Endress + Hauser AG, Reinach, 
Switzerland) with a fast response time t90 of 30 s. Slower optical DO probes Oxymax 
COS61D, Endress + Hauser AG, Reinach, Switzerland) were used in process 
conditions, as long-term testing did not require a fast response time, and their lower 
maintenance offers more reliable DO measurement in activated sludge operation. While 
off-gas measurements require a steady inflow, clean water tests were conducted without 
continuous inflow. In our pilot plant lateral sludge inflow improved oxygen transfer at 
low airflow rates, which resulted in overestimates of the α-factor. As a consequence, 
only airflow rates above 0.75 Nm3∙m−3∙h−1 were considered in this study. Clean water 
tests were conducted before and after a long-term off-gas measurement period to 
evaluate diffuser conditions. This revealed a decrease in SOTR of 2 – 6 % depending 
on airflow rate and a dynamic wet pressure increase of about 1 kPa. These results 
primarily indicate inevitable aging of diffusers and secondarily indicate scaling and 
fouling. Overall, the effect of scaling and fouling during the long-term off-gas 
measurement was kept low due to monthly pressure cleaning and reverse flexing of disc 
diffusers twice a week. Therefore, in this study, the oxygen transfer is reported as an α-
factor instead of an αF-factor. Additionally, potential biofilm build-up on the reactor 
tank walls was prevented with monthly cleaning and visual inspection to ensure only 
suspended biomass transferred from the adjacent full-scale AS tanks was examined in 
the ex situ reactors for off-gas measurements. Online sensors were cleaned twice a week 
to prohibit solids deposition and biofilm growth affecting optical instruments.  

Other parameters and their sensors and instruments for off-gas measurements were 
airflow rate measured with thermal mass flowmeters (Proline t-mass A 150, Endress + 
Hauser AG, Reinach, Switzerland), off-gas concentrations of oxygen (paramagnetic 
sensor) and carbon dioxide (NDIR) measured with a gas-analyzer (X-STREAM 
Enhanced, Emerson Electric Co., MO, USA) that receives dry off-gas free of particles 
(CSS-V, M&C TechGroup, Ratingen, Germany), atmospheric pressure (Cerabar 
PMC21, Endress + Hauser AG, Reinach, Switzerland), atmospheric temperature 
(Omnigrad T TST434, Endress + Hauser AG, Reinach , Switzerland), and electrical 
conductivity (Indumax CLS50D, Endress + Hauser AG, Reinach, Switzerland). Data 
were recorded in 30 s intervals by online sensors and summarized as 15 min averages. 
This resulted in high-resolution data that matched the HRT of the test reactors and the 
interval of operating data provided by the WWTP operator. However, residence time 
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distribution in an ideal CSTR yields a 63 % replacement of activated sludge in the 
reactors at HRT of 15 min and 98 % at 1 h, respectively. Therefore, for final analysis, 
1 h intervals were composed to prevent autocorrelating observations. In total, α-factors 
were recorded for 9 months in long-term off-gas measurements covering a period of 
13 months.  

P.2.3.2 Design and Operation of Examined Two-Stage WWTP 

The examined two-stage activated sludge WWTP has a design capacity of more than 
1 Mio PE. It has a mean dry weather influent flow of 2.6 m3∙s−1 and a maximum wet 
weather influent flow of almost 7 m3∙s−1 of mostly municipal wastewater, complying 
with German effluent standards. Raw wastewater is first treated in screens (width 
10 mm) and an aerated grit chamber before it flows into the primary clarifier with a 
mean HRT of 60 min that ranges from 35 to 100 min depending on influent flow. 
Biological wastewater treatment is split into a first high-rate activated sludge stage for 
carbon removal and a subsequent second stage for nitrification with a fivefold larger 
tank volume. Both aerated stages are plug flow reactors with tapered aeration, while 
25 % of tank volume of the second stage is a continuously mixed upstream 
denitrification zone. Both treatment stages have no internal recirculation and are 
followed by clarifiers that return activated sludge into the respective stages. A bypass 
line can pass 0.2 m3∙s−1 of primary effluent into the second stage to redirect organic 
carbon required for biological nutrient removal in the upstream denitrification. A 
recirculation line can recirculate 0.5 to 0.55 m3∙s−1 of nitrate containing final clarifier 
effluent into the first stage. This relieves the final downstream denitrification 
(biofiltration) which removes remaining nitrate. These concepts are described in more 
detail in Jimenez et al. (2015) and Wandl et al. (2006).  

Influent wastewater load is diluted in activated sludge tanks and the concentration of 
removable substances changes within AS tank zones during treatment, especially in 
plug flow reactors. Therefore, determining the α-factor of a whole plug flow reactor 
tank at a certain time requires off-gas testing across all subsequent aeration zones 
(Redmon et al., 1983; Rosso et al., 2005). However, to closely monitor the diurnal cycle 
of oxygen transfer, activated sludge was transferred from the front aeration zone of both 
plug flow aerated stages into the pilot-scale test reactors. Operating data of the first and 
second stage of the examined two-stage activated sludge WWTP are summarized in 
Table P.2.1.  
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Table P.2.1 Operating data of examined two-stage WWTP 

Parameter  
(Abbreviation) Unit 

First Stage Second Stage 

Mean 
± Std. Dev. 

5th – 95th 
Percentile 

Mean 
± Std. Dev. 

5th – 95th 
Percentile 

Volume Specific Airflow Rate 
(qVol,aer)  Nm3·m-3·h-1 1.8 ± 0.5 0.9 – 2.3 0.7 ± 0.2 0.5 – 1.0 

Dissolved Oxygen (DO)  mg·L-1 0.6 ± 0.3 0.2 – 1.0 3.2 ± 0.2 3.0 – 3.4 

Actual Hydraulic Retention Time 
(HRTa)  h 0.7 ± 0.1 0.5 – 0.9 1.9 ± 0.3 1.4 – 2.4 

Nominal Hydraulic Retention 
Time (HRTn)  h 2.0 ± 1.0 0.9 – 3.6 6.2 ± 2.6 2.8 – 10.5 

Sludge Retention Time (SRT)  d 1.9 ± 0.7 0.7 – 3.2 311 ± 7.3 21 – 44 

Total Solids in AS (TS)  g∙kg-1 3.0 ± 0.4 2.4 – 3.7 6.1 ± 0.6 5.1 – 7.1 

Volatile Fraction in AS 
(MLVSS/MLSS)  % 72 ± 6 63 – 85 59 ± 4 53 – 65 

TOC Inflow Concentration 
(TOCin)  mg·L-1 75 ± 22 44 – 113 18 ± 5.4 12 – 25 

Water Temperature (TW)  °C 17 ± 3 13 – 22 17 ± 3 13 – 22 

Total Suspended Solids in Effluent 
(TSSeffluent)  mg·L-1 25 ± 12 12 – 46 4.1 ± 1.7 2.1 – 7.6 

Sludge Volume Index (SVI) mL·g-1 99 ± 35 51 – 164 49 ± 5.5 41 – 56 

1 Median value; for all other parameters the median deviates by less than 10 % from the 
above listed means  
The sample standard deviation marks the dispersion from mean values during standard 
operation of the WWTP, while the 5th and 95th percentiles are stated to describe 
reasonable minimum and maximum operation conditions that are only exceeded in 
exceptional cases. Volume specific airflow rate qVol,aer is specified in relation to aerated 
basin volume. The reported sludge retention time is temperature-corrected to 15 °C 
(correction coefficient = 1.072, compare Clara et al. (2005)), and outliers outside 1.5 
times the interquartile range above and below Q1 and Q3 quartiles were removed. A 
rolling mean was calculated of the remaining data spanning 2 days for the first stage 
and 30 days for the second stage. These chosen timespans resemble the median SRT in 
the respective stages. Online turbidity sensors (SOLITAX sc, Hach Lange GmbH, 
Düsseldorf, Germany) measuring mixed liquor suspended solids are calibrated for total 
solids (TS) and regularly compared with laboratory analysis (according to EN 12880). 
Mixed liquor suspended solids (MLSS) are not measured regularly. On average, MLSS 
was 0.8 g·L−1 lower than TS. Total organic carbon (TOC) inflow concentration (TOCin) 
considers all inflows of a treatment stage (e.g., supernatant of return activated sludge 
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and bypass flows) proportional to their respective water flow. This combination is 
required because effluent TOC of the intermediate clarifier recycled into the first stage 
with return activated sludge has a share of about 30 % of total TOC inflow in the first 
stage. TOC concentrations are measured by ex situ online analyzers (QuickTOC, LAR, 
Berlin, Germany) in the influent and effluent of the first stage and drift-corrected to 
match laboratory analysis (EN 1484). We used TOC as a suitable sum parameter to 
describe influent wastewater characteristics instead of COD, because ex situ online 
analyzers of TOC are common in larger WWTPs and enable an analysis with higher 
temporal resolution than COD laboratory analysis. For comparison, TOC/COD ratios 
based on laboratory analysis were 0.33 ± 0.05 in the influent of the first stage and 0.46 
± 0.10 in the influent of the second stage. TSSeffluent is recorded in the supernatant of the 
respective clarifier (2 µm pore size). Hydraulic retention time (HRT) refers to the 
retention time in activated sludge tanks, not the whole treatment stage with clarifiers. It 
is stated either as nominal HRTn which considers only influent flow or as actual HRTa, 
which includes recirculation flows, as well as main wastewater inflow (compare 
nomenclature in Henze et al. (2008)). The TOC F/M (feed to mass) ratio is typically 
derived from TOC concentration in the inflow, MLSS in the AS, and volume of 
biological treatment stage. To account for dilution in the AS tank and return TOC load 
of recirculation flows, we use the volume proportional TOCin and HRTa as described 
above. To simplify comparison, TS is assumed as given in units of g∙L−1 similar to 
MLSS. Thus, we derived an actual TOC F/Ma ratio from parameters given in Table 
P.2.1 as follows: 

TOC	F/MT	ratio	 = 	TOCUV ∙ TS&0 ∙ HRTT&0			(in	kg ∙ kg&0 ∙ d&0)  (P.2.1) 

The use of actual HRTa, volume proportional TOCin, and resultant TOC F/Ma ratio 
reflects organic load in the AS tanks more reasonably regarding their effect on oxygen 
transfer in the front aerated zones than the nominal HRTn and TOC F/M ratio.  

P.2.3.3 Separate Rain and Dry Weather Conditions 

This study distinguished rain and dry weather conditions to examine their impact on 
oxygen transfer in the AS tanks. WWTP operators typically record all-day weather 
conditions; however, these do not reflect the diurnal inflow dynamic. Instead, we 
assigned a weather category on the basis of the diurnal variations of collected inflow 
data. Figure P.2.1 shows the inflow course during diurnal cycle as smoothed functions 
of percentiles of the inflow represented by the lines. Top and bottom lines describe the 
percentiles at 0 % and 100 %, while the lines in between depict percentiles from 5 % to 
95 % in 10 % steps. The dashed line serves as a distinction where data above were 
assigned as rain and data below were assigned as dry weather category. It represents the 
80th percentile of inflow data based on recorded weather conditions. In the operating 
data of the examined two-stage WWTP, 77 % of days were recorded as dry weather 
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(dry and frost conditions), while the remaining 23 % were recorded as rain weather 
(e.g., rainfall, snowfall, and discharge from stormwater retention basins). Therefore, the 
80th percentile was chosen to clearly separate rainfall periods from regular operation. 
A wastewater inflow of 3 m3∙s−1 is considered as rain weather at 6:00 and as dry weather 
at 12:00. The 85th and 95th percentiles are categorized as rain weather but have a 
distinct diurnal inflow pattern. While a single rainfall runoff does not follow this pattern, 
on average, light rainfall is added on the dry weather pattern. In contrast, the 100th 
percentile represents maximum inflow capacity of the WWTP and is constant 
throughout the diurnal cycle.  

 
Figure P.2.1 Assigning weather category on the basis of diurnal variations of total 
wastewater inflow 

P.2.3.4 Surfactant Analysis 

Surfactant concentrations of successive treatment stages of the two-stage AS WWTP 
were measured with Hach cuvette tests (Hach Lange GmbH, Düsseldorf, Germany) for 
anionic (LCK 332), nonionic (LCK 333), and cationic surfactants (LCK 331) in a 
spectrophotometer (DR 3900, Hach Lange GmbH, Düsseldorf, Germany). Accordingly, 
24 h composite samples were taken from primary clarifier influent, first-stage influent, 
second-stage influent, and second-stage effluent. Grab samples were taken from the 
first- and second-stage activated sludge tank and settled before taking an aliquot from 
the supernatant to analyze. The samples were not centrifuged or filtered. However, 
when taking an aliquot, intake of particles was avoided. Overall, surfactant cuvette tests 
are error-prone because other surfactant types may cause low-bias results according to 
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working procedure information by the manufacturer. Duplicate measurements of each 
sample with a recovery were conducted according to the manufacturer’s working 
procedure. The measurement series was repeated three times over the course of 1 year. 
In total, at least five evaluable tests per surfactant type are available for each sample 
location with a recovery between 80 % and 120 %.  

P.2.3.5 Dynamic Wet Pressure Measurement and Reverse Flexing 
Procedure 

Dynamic wet pressure (DWP), also known as pressure drop, pressure loss, or diffuser 
headloss, is the pressure difference of a submerged diffuser calculated as the difference 
between pressure in the air pipe close to the diffuser and the hydrostatic pressure. DWP 
increases with higher airflow rates; therefore, it is usually specified at a specific airflow 
rate. Pressure was measured with a capacitive digital pressure transmitter in the air pipes 
close to the diffuser frame (Cerabar PMC21, Endress + Hauser AG, Reinach, 
Switzerland). DWP was calculated as the difference of this sensor reading and the 
hydrostatic pressure in the reactor defined by blow-in water depth, which is limited by 
an overflow in the test reactors. 

Reverse flexing was performed twice a week during maintenance of the pilot reactors, 
which resulted in a period of 3 to 4 days since the last procedure. To perform reverse 
flexing, blowers were shut off for up to 2 h and relative pressure in the air pipes was 
reduced to 0 kPa. The diffusers remained sealed during the long-term measurements as 
no water leakages were detected in the diffuser frame. Because DWP increases with 
airflow rate, long-term measurement series were conducted at a constant airflow rate 
for better comparison. Activated sludge from the first stage was aerated at constant 
airflow rate of 1.5 and 1.9 Nm3∙m−3∙h−1, and sludge from the second stage was aerated 
at constant airflow rate of 0.8 and 1.0 Nm3∙m−3∙h−1. Tests at lower airflow rates were 
run for 36 days and those at higher airflow rates were run for 26 days. Diffusers were 
cleaned with high pressure before each measurement series. 

P.2.4 Results and Discussion 

P.2.4.1 Effect of Rainfall and Diurnal Cycle on Oxygen Transfer 

The oxygen transfer in the AS process is subject to a multitude of influence factors that 
vary seasonally and within daily cycles. Additionally, hydraulic and organic loading 
differ tremendously between rain and dry conditions, thus affecting oxygen transfer in 
the activated sludge tanks. Table P.2.2 presents all α-factors measured within this study 
as described in Section P.2.3 for mean ± standard deviation and 5th and 95th percentiles. 
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Table P.2.2 α-factors determined with ex situ off-gas measurements in a two-stage 
WWTP 

Parameter  
(Abbreviation) Unit 

First Stage Second Stage 

Mean ± SD 5th – 95th 
Percentile Mean ± SD 5th – 95th 

Percentile 

α-Factor  
(ex situ measurement) - 0.43 ± 0.06 0.33–0.54 0.80 ± 0.07 0.69–0.91 

Figure P.2.2A divides α-factors by treatment stage and weather conditions in an 
empirical cumulative distribution. The horizontal dashed lines mark the 5th and 95th 
percentiles. Lower mean α-factors were measured in the first stage (0.43) than in the 
second stage (0.80), as indicated by the vertical dashed lines. Kroiss and Klager (2018) 
stated similar α-factors of 0.45 and 0.7 in first and second stages of the Vienna main 
wastewater treatment plant. Overall, influences affecting oxygen transfer differ 
tremendously between the first and second stage in a two-stage AS configuration. In 
particular, the first high-rate stage cannot be compared with CAS systems, where α-
factors for systems with nitrification and denitrification typically fall into the range of 
0.6 to 0.75 (Rosso et al., 2008a). Additionally, the distinction of rain and dry weather 
reveals that α-factors in the first stage decreased during high inflows of rainwater, 
whereas no such effect was apparent in the second stage. The effect of stormwater 
runoff on oxygen transfer has not been discussed in the literature so far. However, rain 
events have an impact on multiple parameters potentially affecting oxygen transfer in 
the activated sludge tank, as shown before. Stormwater runoff affects the hydraulic and 
influent load of a WWTP. A first flush often brings a high load due to washout of sewer 
sediments followed by slightly contaminated rainwater afterward (Larsen et al., 1998). 
Wilén et al. (2006) concluded that biological processes in the sewer system are more 
aerobic at high flows and more anaerobic at low flows, thus changing wastewater 
properties. Typical effects of rain events also include lower conductivity and water 
temperature with increased total inflow (data not shown), which is compensated for by 
standardization to norm conditions when determining α-factors. 
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Figure P.2.2 Empirical cumulative distribution (A) and diurnal variation (B) of α-factors 
as percentiles (solid lines) and means (dashed lines) in the examined two-stage AS 
WWTP 

Figure P.2.2B shows the diurnal variation of recorded α-factors in both stages. The lines 
represent the course of percentiles from 5% to 95% as described in Section P.2.3.3 for 
Figure P.2.1. The first stage was characterized by a distinct peak of the α-factor at noon, 
regularly fluctuating between 0.39 and 0.48, as indicated by the dashed line representing 
the mean α-factor. Peak α-factors are measured during daytime instead of nighttime due 
to a long retention time of wastewater in a large sewer system. In contrast, α-factors in 
the second stage had a smoother course without a distinct peak. Here, α-factors 
fluctuated on average between 0.78 and 0.83 within a day. The influent load into the 
second stage was decreased and buffered by the preceding HRAS tank and upstream 
denitrification zone, resulting in a smoother diurnal cycle of α-factors. This also 
explains the different extent of rain effects on oxygen transfer in two-stage AS treatment 
stages, as further discussed below. 

The diurnal cycle of α-factor observed in the first stage was previously described by an 
inverse relationship of α-factor and influent load (Jiang et al., 2017; Leu et al., 2009). 
For operators of WWTPs, this negative correlation means that oxygen transfer is 
generally at its lowest when oxygen demand is highest. To illustrate this relationship, 
Figure P.2.3 displays the volume specific airflow rate (qVol,aer) in the full-scale AS tanks 
as the dependent variable of TOC inflow concentrations (TOCin) and α-factor. Blowers 
were controlled by DO in the aeration basins to set the airflow rate. First, Figure P.2.3A 
shows that volume specific airflow rate was increased in response to higher TOCin to 
meet resulting oxygen demand of biomass in both stages. Secondly, lower α-factors 
forced operators to increase airflow rates to meet this oxygen demand, as shown in 
Figure P.2.3B. This figure also reveals that this relationship was more distinct in the 
first stage than the second. The two stages also differed during rain weather, where 
lower α-factors coincided with higher airflow rates in the first stage, but no significant 
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decrease in α-factor was apparent in the second stage. It is important to note that α-
factor is usually not affected by airflow rate directly, but rather coincides with changes 
in oxygen demand due to influent load (Gillot and Héduit, 2000; Rosso et al., 2005). 

 
Figure P.2.3 Volume specific airflow rate of full-scale aeration basins for TOCin (A) and 
α-factor (B) grouped for treatment stages and weather conditions 

In Figure P.2.3 the individual points represent mean data recorded within 1 h intervals. 
Colors distinguish between rain and dry weather periods as specified in Section P.2.3. 
To visualize the two-dimensional distribution of the resulting clusters, they were 
divided by three density lines with each interval containing 25 % of the respective 
cluster data. A smaller area enclosed within these density lines denoted a higher density 
of the contained data points. 

Overall, these results show that oxygen transfer in the second stage was more stable 
than in the first stage. It is important to emphasize the resultant effect on the required 
airflow rate to meet oxygen demand in the treatment stages; the described daily 
fluctuation of α-factor from 0.48 to 0.39 in the first stage required an increase of 22 % 
of the airflow rate to compensate for oxygen transfer inhibition. In comparison, a 
decrease from 0.83 to 0.78 in the second stage required adjustment of airflow rates of 
only 6 % within a typical day. Moreover, Table P.2.2 and Figure P.2.2 reveal the range 
and distribution of potential α-factors in the two stages caused by various influences on 
oxygen transfer. 

P.2.4.2 Influence of Organic Loading on Oxygen Transfer 

Below, we further examine influences that resulted in the presented range of α-factors. 
The TOC F/M ratio is a suitable aggregate parameter that correlates with oxygen 
transfer inhibition (Günkel-Lange, 2013). Figure P.2.4 displays four scatterplots of 
measured α-factors for TOC F/Ma ratio and its individual components: actual hydraulic 
retention time (HRTa), TOC inflow concentration (TOCin), and total solids (TS). 
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Figure P.2.4 The α-factors for HRTa (A), TOCin (B) TS (C), and the aggregated parameter 
TOC F/Ma ratio (D) grouped for treatment stages of a two-stage WWTP and weather 
conditions 

Figure P.2.4A shows the α-factors recorded in the first and second treatment stages at 
their respective HRTa. The treatment stages of the examined two-stage WWTP were 
operated differently and, as a result, all diagrams in Figure P.2.4 clearly distinguish both 
stages from each other. Moreover, rain and dry weather categories were clearly 
separated within treatment stages, as HRTa reflects high and low water inflow. Overall, 
lower α-factors were recorded in the first treatment stage with its shorter HRTa. The 
longer HRTa within the first stage indicated slightly higher α-factors, while no such 
effect could be seen in the second stage. Although water inflow and the resultant HRTa 
have no known direct impact on oxygen transfer, a change of hydraulics in a WWTP 
affects other parameters that have an impact on the α-factor. 

TOC inflow concentrations in the first stage were higher and spread over a wider range 
than in the second stage, as displayed in Figure P.2.4B. Roughly two-thirds of TOC 
influent load was removed in the first stage. While Figure P.2.3 suggests a clear 
correlation between α-factor and TOC influent concentration, Figure P.2.4B shows that 
it was less evident within the respective treatment stages. However, looking at both 
treatment stages, a negative correlation between TOC inflow concentration and oxygen 
transfer can still be confirmed. Jiang et al. (2017) concluded a similar negative 
logarithmic relationship between α and COD on the basis of measurements in three 
WWTPs. Ahmed et al. (2021) applied a power function to fit an α-model for SBR 
reactors. Both approaches came to similar results to this study but examined different 
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WWTP process configurations that are not directly comparable to the examined two-
stage process. The major difference between α-factors in treatment stages can be 
attributed to the oxygen transfer inhibiting characteristics of readily biodegradable 
substrate (Ahmed et al., 2021), especially accumulation of surfactants on the bubble 
surface (Rosso et al., 2008a; Wagner and Pöpel, 1996b). During rain periods, α-factors 
observed in the first treatment stage were lower than in dry conditions, although TOC 
inflow concentrations were similar or lower. However, TOC load increased when 
considering the increased water flow and organic load of a first flush in the sewer system 
as a result of a rainfall event, thus explaining lower α-factors. This effect was not 
apparent in the second stage. Here, TOC inflow concentration was slightly higher 
during rainy weather as some organic load remained untreated at low HRTa in the first 
stage. Nonetheless, α-factors in the second stage did not decrease because most influent 
organic load was buffered in the first stage and the upstream denitrification zone of the 
second stage. The implementation of an upstream denitrification stage has been reported 
as advantageous for oxygen transfer in CAS systems (Rosso and Stenstrom, 2005). 
Thus, the high α-factors in the second stage can be attributed in part to this, even though 
some readily biodegradable substrate was passed into the second stage by the bypass 
line. 

Figure P.2.4C displays α-factors for total solids (TS). The α-factors and TS in the second 
stage were higher than in the first stage and high for activated sludge process in general. 
Within the second stage, no correlation with TS was indicated, while a slight decrease 
in α was apparent in the first stage, coinciding with rain weather. This outcome is 
discussed in more detail below.  

TOC F/Ma ratio in Figure P.2.4D combines the previously discussed parameters. Its 
course was similar to TOCin in Figure P.2.4B except for the first stage during rainfall 
events. Here, high water inflow and TOC concentration produced higher TOC F/Ma 
ratios with a negative effect on α-factor. Günkel-Lange (2013) examined the 
relationship between COD F/M ratio and α-factor for extended aeration, nitrogen-
removal, and carbon-removal CAS systems and proposed an inverse linear correlation. 
Again, the examined two-stage WWTP is different from CAS systems and complicates 
direct comparison. However, the presented data complement the understanding of 
oxygen transfer dynamics in more complex WWTP process configurations. 

According to the diagrams in Figure P.2.4, oxygen transfer in the second treatment stage 
was seemingly unaffected by any variation of the presented parameters. However, this 
cannot be concluded from the above analysis with certainty, as at most only two 
interactions were taken into account in each diagram. Furthermore, the combined 
parameter TOC F/Ma ratio obscured variation of its individual components (e.g., 
100 kg/h TOC load at 3 g/L TS would result in the same TOC F/M ratio as 200 kg/h 
TOC load at 6 g/L TS, but the resulting conditions would affect oxygen transfer 
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differently). Considering both treatment stages, our results confirm the inverse 
relationship between TOCin or TOC F/Ma ratio and α-factor, as presented in previous 
studies. However, no single parameter illustrated in Figure P.2.4 correlated significantly 
with the α-factor when considering oxygen transfer in individual treatment stages. 

P.2.4.3 Interaction of Suspended Solids and Hydraulic Load with 
Oxygen Transfer 

Generally, TSS concentration, usually measured as mixed liquor suspended solids 
(MLSS), inversely correlates with the α-factor. This has been extensively demonstrated 
for membrane bioreactors (MBR), where different rheology of thick sludge at MLSS 
up to 30 g∙L−1 has an influence on gas transfer dynamics (Cornel et al., 2003; Germain 
et al., 2007; Krampe and Krauth, 2003). Henkel (2010) proposed that the volatile 
fraction of suspended solids (mixed liquor volatile suspended solids—MLVSS) in 
particular causes oxygen transfer inhibition. These studies extrapolated the inverse 
relationship measured in MBRs into conventional activated sludge systems (CAS), 
where typical MLSS concentrations are below 6 g∙L−1. In contrast, newer studies stated 
that biosorption decreases the concentration of organic substances in the soluble phase, 
thereby reducing oxygen transfer and inhibiting accumulation in the gaseous phase 
(Ahmed et al., 2021; Odize, 2018). Higher MLSS increases the biosorption of organic 
matter in CAS, which additionally improves carbon redirection in HRAS stages 
(Jimenez et al., 2015; Rahman et al., 2016). As a consequence of biosorption as the 
dominant impact on oxygen transfer, a positive correlation between MLSS 
concentrations up to 6 g∙L−1 and α-factor was proposed by Baquero-Rodríguez et al. 
(2018). Overall, there seems to be no robust relationship between MLSS and α-factor 
for CAS (Ahmed et al., 2021). Modeling α from MLSS does not include possible 
influences of floc structure on oxygen transfer, which vary inevitably between WWTPs. 
It is probable that floc size (e.g., measured as particle size distribution), settling 
characteristics (SVI), or addition of precipitants (e.g., for phosphorus removal) alter the 
liquid-solid interface, thus also influencing the gas-liquid and gas-solid interfaces. To 
summarize, MLSS or TS as typical parameters in wastewater treatment cannot describe 
all properties of the solid and liquid phase that are relevant to the dynamic of oxygen 
transfer once the gas phase is added. 

Below, we discuss various parameters to describe the solid and liquid phase in the 
treatment stages of the examined two-stage WWTP and their potential influence on the 
α-factor. As shown in Figure P.2.3C, total solids were overall higher in the second stage 
(6.1 ± 0.6 g∙kg−1) than in the first stage (3.0 ± 0.4 g∙kg−1). In contrast, the volatile 
fraction of the respective sludges was higher in the first stage (72 ± 6 %) than in the 
second stage (59 ± 4 %). Although Henkel (2010) argued that the inverse relationship 
between the α-factor and the solid phase is better described by MLVSS than MLSS, this 
is not immediately obvious when comparing the absolute MLVSS in the two-stage 
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WWTP. Here, MLVSS was still higher in the second stage (~3.6 g∙L−1) than in the first 
stage (~2.2 g∙L−1), even though α-factors were higher in the second stage. Thus, in our 
results, a potential negative effect of organic content of sludge measured as MLVSS 
was superimposed by enhanced biosorption in the second stage, ultimately increasing 
oxygen transfer. This is supported by various characteristics that could be beneficial to 
oxygen transfer in the second stage compared to its preceding first stage, such as better 
sludge settling (SVI of 49 ± 5.5 mL∙g−1 compared to 99 ± 35 mL∙g−1). This would also 
result in lower total suspended solids in effluent (4.1 ± 1.7 mg∙L−1 in second stage 
instead of 25 ± 12 mg∙L−1 in first stage). The activated sludge was also altered by 
addition of sodium aluminate as precipitant for phosphorus removal in the influent and 
effluent of the second stage. Overall, this also affected the liquid phase, which had a 
visually distinguishable higher turbidity of supernatant from the first-stage activated 
sludge compared to the clear supernatant of sludge samples from the second stage. SVI, 
TSSeffluent, precipitant use, or turbidity of supernatant have not previously been used to 
explain oxygen transfer in the AS process. Their individual influence on oxygen transfer 
cannot be quantified, because only two stages with opposed characteristics were 
examined in our study. However, these parameters further describe characteristics of 
the solid phase within the two-stage process that could explain the overall difference of 
α-factors between the first and second stage. 

Within the second stage, no correlation of α-factor with TS was indicated, whereas a 
slight decrease in α was apparent in the first stage, coinciding with rain weather, as 
depicted in Figure P.2.3C. Rainfall affected TS concentrations differently in the 
treatment stages of the two-stage WWTP. Figure P.2.5A illustrates the relationship 
between TS and HRTa for both rain and dry weather inflow in the respective treatment 
stage. At lower HRTa and high hydraulic load during rainy weather, TS decreased in 
the second stage, while it remained stable in the first stage. This is unexpected as 
processes with higher HRT and SRT are generally less susceptible to biomass washout 
due to stormwater flows (McMahan, 2006; Tchobanoglous et al., 2014). Examining 
operating data indicated that this may have been caused by washout of TS from the 
primary clarifier into the first stage at shorter HRTa (data not shown). However, the 
elevated TS concentrations might not have been the only cause of lower α-factors during 
stormwater treatment in the first stage. HRTa represents the possible adsorption contact 
time of soluble and colloidal organic substances with sludge flocs within the AS tank. 
Once this organic load is adsorbed on sludge flocs, it is removed through waste activated 
sludge in the clarifier, and it is also less likely to inhibit oxygen transfer in the gas phase. 
Jimenez et al. (2015) determined optimal operating conditions of an HRAS system 
(260 L, CSTR) for removal of soluble, colloidal, and particulate COD at HRTs of 
>15 min, >30 min, and >45 min, respectively. As a conclusion, low HRTa caused by 
rainwater inflow decreased biosorption capacity in the first stage which left more 
soluble and colloidal organic substances that could accumulate in the gas phase, thus 
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decreasing the α-factor. On the contrary, the α-factor did not drop at lower HRTa and 
TS in the second stage (see Figure P.2.3A,C). However, as the second stage received 
low organic load (see Figure P.2.3B), biosorption mechanisms most probably were 
much less pronounced than in the first stage. 

 
Figure P.2.5 TS for HRTa (A) and α-factor for volatile fraction in activated sludge as daily 
mean (B), grouped for both treatment stages of a two-stage WWTP and weather 
conditions 

The α-factors are summarized as daily mean values in Figure P.2.5B and compared with 
volatile fraction determined from grab samples of activated sludge. Overall, the volatile 
fraction was lower in the second stage than the first stage due to lower load, higher SRT, 
and the addition of sodium aluminate as precipitant for phosphorus removal. Within the 
treatment stages, the regression line surrounded by 95 % confidence intervals revealed 
a negative correlation of α-factor with volatile fraction in the first stage. While an effect 
potentially remained, no significant correlation was apparent in the second stage. 
Operating data revealed a slightly elevated volatile fraction in activated sludge, as well 
as return activated sludge, at lower HRTa (data not shown), which could have further 
decreased α-factor during rainy weather. As a conclusion, the suggested negative 
correlation of α-factor with the volatile fraction of solids by Henkel (2010) is one of the 
mechanisms determining oxygen transfer dynamics within the first stage. A stronger 
impact of volatile fraction was demonstrated in the first stage, whereas, in the second 
stage, it was superimposed by other influences. 

It is worth mentioning that the individual impact of wastewater parameters on α-factor 
discussed in this study cannot be derived and quantified from the above analysis. In 
contrast to a controlled experimental design in which all examined parameters are 
varied systematically, we measured oxygen transfer of an operating full-scale WWTP. 
The resulting dataset describes only a combination of parameters occurring in real 
conditions. Additionally, building a mechanistic model of influences on oxygen transfer 
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with a multivariate analysis produces unreliable results when based only on two AS 
stages that are operated as differently as in the examined two-stage WWTP. The 
diagrams in Figure P.2.3 show no overlap between α-factors measured in the treatment 
stages and their process parameters. Hence, complementing our results with further data 
from CAS systems is necessary to fill these gaps and enable more general inference 
from wastewater treatment parameters on oxygen transfer dynamics. Lastly, although 
treatment capacity and overall oxygen demand certainly change throughout seasons, no 
strong seasonality of α-factor can be derived from our results thus far. Nonetheless, our 
results allow a complete assessment of α-factors for aeration system design purposes in 
a two-stage WWTP. 

P.2.4.4 Design Load Cases for Aeration Systems of Two-Stage WWTPs 

The design of aeration systems of WWTPs specifies the number of diffusers and airflow 
rates to meet oxygen demand in activated sludge tanks. Diffuser manufacturers state 
standardized oxygen transfer parameters determined in clean water. However, to 
consider oxygen transfer inhibition occurring in activated sludge, these parameters have 
to be multiplied by the α-factor. This design process has been described in various 
technical guidelines and reference books (DWA, 2019; United States Environmental 
Protection Agency, 1989; Water Environment Federation, 2018). Oxygen transfer 
inhibition depends on the WWTP’s treatment goal and various processes, among other 
factors. However, no α-factors have been proposed for two-stage WWTP process 
configurations thus far. Therefore, according to our results from long-term 
measurements, we propose α-factors for the design of aeration systems in two-stage 
systems. 

The design approach of German standard DWA-M 229-1 (DWA, 2017), based on 
Günkel-Lange (2013), applies mean, minimum, and maximum α-factors to define load 
cases. The αmean represents the average operation conditions of a WWTP. We, therefore, 
calculated αmean as the average of all α-factors measured during dry weather operation 
at the examined two-stage WWTP that fell between the mean ± standard deviation of 
HRTa, TS, and TOCin, as stated in Table P.2.1. From this, we derived αmean values of 
0.45 and 0.80 for the first and second stages, respectively. Because no rainy weather 
was considered for αmean, it was slightly higher than the average of all measurements 
in the first stage (0.43), while there was no difference in the second stage (0.80, compare 
Table P.2.2). The αmin and αmax values describe oxygen transfer inhibition during high 
and low load of the WWTP, respectively. We defined these α-factors on the basis of a 
comprehensive dataset including seasonal variation, as well as rain and dry weather 
conditions, measured within a 13 month period of conducting long-term off-gas 
measurements. Hence, we approximated αmin and αmax as the 5th and 95th percentiles 
of the full dataset, respectively. These percentiles were chosen with a remaining 
measurement uncertainty in mind. If the design process requires otherwise, the full set 
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of measured data is shown in Figure P.2.2. Our proposed α-factors to design aeration 
systems in two-stage configurations are summarized in Table P.2.3. These results are 
applicable for the design of aeration systems in two-stage WWTPs similar to the one 
examined in this study. 

Table P.2.3 The α-factors for design load cases of two-stage activated sludge WWTPs 

Treatment Stage αmean (-) αmin (-) αmax (-) 

First Stage (HRAS)  0.45 0.33 0.54 

Second Stage 0.80 0.69 0.91 

P.2.4.5 Removal of Surfactants in Two-Stage WWTPs 

Surfactants have a negative effect on oxygen transfer even at low concentrations due to 
their amphiphilic structure. They adsorb on the gas-liquid interface of bubbles, as well 
as on the solid phase of sludge flocs and other particles. Quantifying surfactant loads 
throughout the wastewater treatment process allows identifying which treatment stage 
is particularly affected by oxygen transfer inhibition and which treatment process 
eliminates surfactants. Although a decrease in surfactant concentrations with each 
treatment stage is expected, the extent of such a reduction is not obvious in two-stage 
configurations. Effluent quality of a HRAS stage is poor because it is followed by a 
second treatment stage. First-stage settling tank effluent is characterized by a visible 
turbidity, remaining mean TOC of 48 mg∙L−1, and TSSeffluent of 25 mg∙L−1 (see Table 
P.2.1). Thus, the remaining surfactant concentration passing into the second stage 
cannot be neglected for oxygen transfer and has to be measured. 

Figure P.2.6 shows boxplots of surfactant concentrations of successive treatment stages 
of the examined two-stage WWTP divided into three surfactant types. The median of 
each surfactant type in a sample is summed and connected by a dashed line (median 
total). Boxplots and the trendline show that surfactant concentrations decreased 
throughout the treatment stages. Most importantly, total surfactant concentration 
decreased about 70 % from first-stage influent to second-stage influent, and a dilution 
of influent concentration in both treatment stages was apparent, as concentrations in the 
activated sludge supernatant were lower than the preceding influent concentrations. 
Anionic and nonionic surfactants were more prevalent in the samples, which is typical 
for municipal wastewater composition (Fraunhofer Institut UMSICHT, 2003; Petrovic 
and Barceló, 2004). Although absolute concentrations of individual cuvette tests are 
unreliable, the performed measurement series provides a reasonable span of 
concentrations for each treatment stage. In comparison, Odize (2018) measured anionic 
surfactants in HRAS influent (8 ± 2 mg∙L−1) and effluent (1 ± 0.1 mg∙L−1), both of 
which are within the above described surfactant concentration range. The overall 
surfactant removal of more than 95 % within the WWTP is in line with other studies 
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(Petrovic and Barceló, 2004). The high surfactant concentrations measured in the first 
treatment stage correspond to low α-factors (0.43 ± 0.06), as well as lower surfactant 
concentrations and higher α-factors (0.80 ± 0.07) in the second stage. Hence, the 
previously described higher alpha values in the second stage can also partially be 
attributed to the adsorption and biological removal of surfactants in the first stage. 

 
Figure P.2.6 Surfactant concentrations of successive treatment stages divided into 
surfactant types 

P.2.4.6 Reverse Flexing in Two-Stage Processes 

Influencing factors on fouling in biological wastewater treatment have been studied 
extensively for membrane bioreactors (Le-Clech et al., 2006), whereas the effect of 
fouling on diffuser membranes has focused primarily on quantifying economic 
implications (Garrido-Baserba et al., 2017, 2016; Rosso et al., 2008b). Knowledge 
about site-specific wastewater characteristics and WWTP operation on fouling of 
diffuser membranes is sparse. Thus, Rosso et al. (2012) even suggested implementing 
on-site long-term column testing of various diffusers as part of the design procedure to 
take site-specific fouling effects into account when selecting diffusers. As discussed 
before, inflow wastewater characteristics in the treatment stages of the examined two-
stage WWTP and their operation differ; therefore, sludge characteristics differ as well. 
The resulting separated biomasses with higher content of heterotrophic organisms in 
the first stage for high-rate carbon removal and autotrophic organisms in the second 
stage for nitrification could affect fouling behavior of diffusers differently. So far, it is 
unknown whether existing diffuser maintenance procedures can be applied to mitigate 
the pressure loss of diffusers in two-stage WWTPs. 

Figure P.2.7 shows the boxplots of measured DWP within 12 h intervals after reverse 
flexing was performed. Median values revealed an expected increase of DWP within 
the typical 3.5 day interval between maintenance. Most interquartile ranges spanned 
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less than 1 kPa of DWP difference except the test series in the first stage at 
1.9 Nm3∙m−3∙h−1, where airflow rate fluctuated by ± 0.5 Nm3∙m−3∙h−1 due to blower 
limits. Within the test series, no systematic increase in DWP during multiple cleaning 
intervals was observed (data not shown), which would be expected over longer periods 
without periodic pressure cleaning (Rosso, 2015; Rosso and Stenstrom, 2006). 
According to these test series, we can conclude that pressure loss can be restored 
effectively with reverse flexing in both treatment stages of a two-stage WWTP. In 
conclusion, operators of a two-stage WWTP do not have to adapt different diffuser 
maintenance intervals or procedures for the two treatment stages. 

 
Figure P.2.7 Increase in DWP of disc diffusers since last reverse flexing procedure during 
operation in activated sludge from first and second stage and at two specific airflow 
rates (Nm3∙m−3∙h−1) 

P.2.5 Conclusions 

On the basis of our long-term off-gas measurements, we summarize below our findings 
relevant for design and operation of aeration systems in two-stage activated sludge 
WWTPs. 

§ This paper defined α-factors for the first and second stages of a two-stage WWTP. 
The underlying off-gas measurements on a pilot scale covered a typical range of 
operation conditions of such a process, as detailed in Table P.2.1, including seasonal 
variation, as well as dry and wet weather conditions. As a result, α-factors for design 
load cases were derived for practical application to design aeration systems more 
accurately. They were determined as 0.45 for αmean and 0.33/0.54 for αmin/αmax in the 
first stage (HRAS), and as 0.80 for αmean and 0.69/0.91 for αmin/αmax in the second 
stage. Because different process configurations of two-stage processes exist, these 
α-factors can be transferred to configurations similar to the one examined in this 
study. No range of α-factors for two-stage processes was previously proposed. 
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§ Our results show how key operating parameters influence the oxygen transfer in the 
activated sludge system. Most importantly, the impact of high TOC concentrations 
in inflow resulting in lower oxygen transfer rates can be confirmed and quantified 
for a two-stage activated sludge process. TS and HRTa in the treatment stages were 
affected differently by stormwater treatment. As a result, α-factor decreased in the 
first stage, whereas the second stage remained unaffected during high wastewater 
inflow. Hence, engineers can more accurately decide whether an aeration system 
design meets the demands of a similar WWTP to that examined in this study. 
Nonetheless, individual wastewater parameters cannot describe α-factor due to 
various interacting influences. Therefore, applying machine learning methods to 
predict oxygen transfer is a multivariate approach that we will examine in the future. 

§ Inflow surfactant concentrations measured in 24 h composite samples revealed that 
surfactant load was significantly lower in the second stage compared to the first 
stage. Surfactants had a disproportionate influence on oxygen transfer compared 
with TOC. Lower α-factors in the first stage could be attributed to this effect but not 
quantified specifically for surfactants compared to TOC in general. 

§ The positive effect of reverse flexing as a maintenance method to restore dynamic 
wet pressure was observed in both stages. There was no significant difference in 
fouling effect on diffusers, although sludge composition differed tremendously 
between the high rate and nitrification stage. Therefore, operators of two-stage 
WWTPs do not have to adapt different maintenance intervals when planning a 
reverse flexing schedule. 
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P.3.1 Abstract 

Aeration is an energy-intensive process of aerobic biological wastewater treatment. An 
accurate model of oxygen transfer dynamics in activated sludge tanks would improve 
design and operation of aeration systems. Such a model should consider spatial and 
diurnal variation of α-factor as well as site-specific conditions that impact oxygen 
transfer. For this dynamic prediction a machine learning approach was used for the first 
time. The data-driven method was based on long-term ex-situ off-gas measurements 
with pilot-scale reactors (5.8 m height, 8.3 m3 volume) coupled to full-scale activated 
sludge tanks on the sites of two conventional and a two-stage activated sludge treatment 
plant. The ex-situ off-gas method allowed to quantify theoretical off-gas parameters in 
non-aerated zones and thus consider the whole activated sludge tank. We introduced 
the α0-factor to compare aerated and non-aerated zones under nonsteady-state 
conditions. Like the established α-factor for steady-state conditions, the α0-factor 
describes oxygen transfer inhibiting effects in activated sludge. α0-factor was lowest in 
upstream denitrification zones. This indicates an anoxic elimination of oxygen transfer 
inhibiting wastewater contaminants which improved oxygen transfer in subsequent 
aerobic zones. Random Forest models predicted α0-factor reliably in all examined 
activated sludge tanks even for stormwater events and seasonal variation. Model 
development only required online sensor data already available to operators. Our results 
suggest that machine learning models can dynamically predict α-factors in a variety of 
activated sludge processes, thus considering site-specific conditions in model training 
without manual calibration.  
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P.3.2 Introduction 

The oxygen transfer in activated sludge systems depends on a wastewater treatment 
plant’s (WWTP) process layout as well as wastewater and activated sludge 
characteristics and can be summarized as a three-phase system. These phases consist of 
rising air bubbles as the gas phase, wastewater with dissolved substances as the liquid 
phase and particulate substances, especially activated sludge flocs, as the solid phase. 
Accurately modeling the oxygen transfer in activated sludge can lead to significant 
energy savings (Bencsik et al., 2022; Jiang et al., 2017) as aeration is an energy-
intensive process in biological wastewater treatment (Reardon, 1995; Rosso et al., 
2011). The α-factor is used to summarize oxygen transfer inhibiting effects as the ratio 
of oxygen transfer in process water and clean water and can be measured with off-gas 
methods (ASCE 18-18, 2018; DWA-M 209, 2007).  

Recent reviews in the research field of aeration technology discussed several influences 
on oxygen transfer based on the α-factor (Baquero-Rodríguez et al., 2018) and general 
modeling of mass transfer in activated sludge (Amaral et al., 2019). Research findings 
from studies conducted over the past decades examined and modeled various influences 
on oxygen transfer. For example, Wagner and Pöpel (1998) investigated the influence 
of different submergence depths and diffuser densities on oxygen transfer efficiency in 
clean water oxygen transfer tests; Gillot et al. (2005) performed a dimensional analysis 
with parameters that describe the tank geometry; Rosso et al. (2005) modeled the effect 
of specific airflow rate and sludge retention time (SRT) on α-factors from a database of 
off-gas measurements collected over 15 years from 30 different activated sludge tanks; 
Rosso and Stenstrom (2005) reported improved aeration efficiency in conventional 
activated sludge (CAS) systems with an upstream denitrification stage; Jiang et al. 
(2017) considered diurnal variations by modelling dynamic α-factors based on COD 
concentrations; Henkel (2010) developed a model that provides a negative correlation 
between total suspended solids (TSS) concentration and α-factor for TSS > 6 g·L-1, 
while Baquero-Rodríguez et al. (2018) argued that for TSS < 6 g·L-1 a positive 
correlation with the α-factor exists due to biosorption of oxygen transfer inhibiting 
substances; Amaral et al. (2017) discussed the necessity to include blower performance, 
pressure drop of pipes and diffusers, and other tank geometry and controller specific 
parameters to model gas transfer; and Bencsik et al. (2022) combined several factors 
into a model (e.g., COD, SRT, TSS, and position in activated sludge tank) to account 
for spatial and temporal variations of the α-factor.  

From a practical point of view, reliable modeling of α-factors would enable more 
accurate design and more energy-efficient operation of aeration systems than assuming 
constant α-factors (Ahmed et al., 2021; Bencsik et al., 2022). However, although many 
parameters have been investigated, no generally valid model to determine the α-factor 
has been found yet (Amaral et al., 2019). Published results are fragmented and differ 
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regarding essential parameters (e.g., geometry and type of aeration system, aeration tank 
layout, WWTP process layout, and wastewater characteristics). Consequently, there is 
still no sufficient data base to develop a mechanistic model of oxygen transfer that can 
be generally applied to aeration systems of any WWTP.  

In recent years, application of online measurement for continuous monitoring and 
process control of WWTPs has increased tremendously as sensors have become more 
reliable. Online sensors record primary parameters that describe the mass balance of the 
activated sludge process (e.g., flow rates, influent, and effluent concentrations of 
wastewater contaminants) and secondary parameters that describe further process 
conditions (e.g., dissolved oxygen concentration (DO), pressure, water temperature, 
electrical conductivity). These parameters are commonly used to describe the biological 
treatment process in WWTPs as mechanistic, white-box models, e.g., activated sludge 
models (ASM) (Henze et al., 2000). In contrast, data-driven machine learning (ML) 
methods produce black-box models where the exact function between an output 
(dependent or response variable) and inputs (predictor variables or features) is 
unknown. A dataset in supervised machine learning consists of pairs of predictor and 
response variables and is separated into training and test data for cross-validation. 
Regression methods apply algorithms to find associations between predictor and 
response variables in numerical training data and thereof produce black-box models to 
quantitatively predict a response variable. The effectiveness of a model is evaluated by 
a performance parameter that is computed from the error between the measured and 
predicted response variable (Bishop, 2006; James et al., 2013). A typical application in 
wastewater treatment is the forecast of an effluent or influent concentration with a 
regression model (supervised ML). However, most studies built predictive models 
based on similar or the same input parameters as ASM models. Thus, the potential to 
build more robust data-driven models by including further available parameters was not 
exhausted so far (Alejo, 2021).  

In this study we transfer this idea to the outlined challenge of oxygen transfer modelling 
and use methods of supervised ML to predict α-factors based on long-term off-gas 
measurements and operating data of three WWTPs. Ideally, a model to predict the α-
factor is based on parameters that describe the three phases involved in oxygen transfer. 
But many such parameters are not easily measurable in activated sludge (e.g., bubble 
size distribution, turbulence, surfactant concentration). On the other hand, secondary 
variables may correlate with conditions that impact the oxygen transfer such as 
changing wastewater properties due to stormwater runoff from combined sewers 
(Larsen et al., 1998; Schwarz et al., 2021; Wilén et al., 2006). Although the α-factor 
standardizes activated sludge water temperature and electrical conductivity, typical 
decrease due to stormwater inflow could represent rainfall events in a dataset in more 
detail. As a result, including operating data that has previously been overlooked in 
models has the potential to improve prediction performance.  
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For this study ex-situ off-gas measurements were performed for over three years to 
collect enough data to use ML methods. Oxygen transfer dynamics of various WWTP 
process designs were examined, including a two-stage AS treatment plant and two CAS 
WWTPs executed as a plug-flow reactor (PFR) and a closed-loop reactor (CLR). The 
objectives of this study were to (1) compare the range of α-factors in various WWTP 
process designs and discuss influence of typical wastewater and activated sludge 
characteristics on oxygen transfer; (2) examine the spatial variation of α-factor within 
activated sludge tanks especially due to upstream anoxic denitrification zones in PFR 
and CLR processes; and (3) predict α0-factors with a machine learning model (Random 
Forest) based on operating data of WWTPs.  

P.3.3 Methodology 

P.3.3.1 Determination of α-factors with ex-situ off-gas columns 

Oxygen transfer parameters and the α-factor were determined with pilot-scale test 
reactors performing ex-situ off-gas tests as described in ASCE/EWRI 18-18 (2018). 
The oxygen uptake rate (OUR) is measured within the ex-situ columns at steady-state 
conditions of dissolved oxygen (DO) by a mass balance of off-gas analysis and DO 
concentration to determine oxygen transfer parameters in activated sludge. A flow 
diagram of the process is shown in Figure P.3.1 Two aeration tanks with duplicate 
machinery and instruments were used to examine two AS zones simultaneously. 

 
Figure P.3.1 Flow diagram of an ex-situ column for steady-state off-gas testing 

A detailed description of the pilot reactors can be found in (Schwarz et al., 2022) and 
most notable characteristics are summarized below. Reactors of dimensions 1.2 m x 
1.2 m x 5.8 m (L x W x H) with a volume of 8.3 m3 were equipped with fine-bubble 
disc diffusers with a density of 13.5 %. Blowers were operated to set airflow rates 
(specified for tank volume) within a range of 0.5 to 2.5 Nm3∙m-3∙h-1. Sludge transfer was 
controlled to maintain a hydraulic retention time (HRT) of 15 minutes according to 
ASCE/EWRI 18-18. Pressure cleaning to remove biofilm growth on diffuser surface 
and reactor walls was performed monthly and reverse flexing of disc diffusers twice a 
week to reduce effects of scaling and fouling during long-term off-gas measurements. 
Therefore, the α-factor is reported without a fouling factor in this study. Twice a week, 
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online sensors were cleaned, and gas analyzer was calibrated to ensure proper data 
recording of instruments. Clean water oxygen transfer measurements were performed 
three times at each examined WWTP and averaged to be used as a denominator to 
determine the α-factor. Pressure loss of diffusers during long-term measurements at 
each WWTP increased by about 1 kPa due to fouling and scaling. A comparison 
measurement has shown that the pilot-setup could record α-factors with a mean relative 
standard deviation of about ± 2.8 %. 

P.3.3.2 Introduction of α0-factor for off-gas testing under nonsteady-
state conditions 

The ex-situ method allows to operate the blowers of the ex-situ columns independently 
from the examined activated sludge tank. Usually, activated sludge is transferred from 
an aerated zone into an ex-situ column and the airflow rate is controlled to maintain DO 
at steady-state conditions to replicate conditions of in-situ off-gas measurements using 
off-gas hoods (ASCE, 2018; Boyle, 1983). DO in the ex-situ column is maintained at 
the same concentration as DO in the activated sludge tank zone (DOzone) and the α-
factor is determined as the ratio of standard oxygen transfer rate in process water 
(SOTRpw in g·h-1) and SOTR in clean water (SOTRcw in g·h-1):  

𝛼 = 	 1R.<=#
1R.<>#

	   (steady-state)               (P3.1) 

Activated sludge can also be transferred from non-aerated tanks. This approach 
therefore allows to determine theoretical α-factors in anoxic or anaerobic tank zones. 
Under these nonsteady-state conditions DO in the activated sludge tank (DOzone) and 
the ex-situ off-gas column differ. To compare α-factors in aerated and non-aerated 
zones the mass balance to determine the α-factor must be adjusted to consider DOzone 
in the transferred sludge as follows: 

𝛼% =
1R.<=#	&	(OR?$+3	·	X@4)

1R.<>#
	  (nonsteady-state)              (P3.2) 

This adjustment subtracts DO in the examined activated sludge tank zone (DOzone in 
g·m-3) that is transferred to the ex-situ column (QAS in m3·h-1) from SOTR in process 
water (SOTRpw in g·h-1). When operating an ex-situ reactor with sludge from a non-
aerated zone (zero DOzone), no adjustment is made. This calculation produces α0-factors 
that are generally lower than α-factors, especially the higher the oxygen concentration 
in the aeration tank is. Another difference is the oxygen diffusion gradient in the 
activated sludge tank and ex-situ reactor under nonsteady-state conditions. This 
difference is considered by standardizing the oxygen transfer efficiency to an oxygen 
transfer at a base of zero DO according to ASCE 18-18. Still, activated sludge from an 
aerated tank zone inevitably includes a gas phase while activated sludge from a non-
aerated tank zone does not, which results in slightly higher α0-factors in aerated zones 
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than in non-aerated zones. To summarize, using the α0-factor improves the comparison 
of oxygen transfer results between aerated and non-aerated zones considerably 
compared to the α-factor. α-factors based on off-gas measurements under steady-state 
conditions are still required to design aeration systems. This study exclusively presents 
results as the α0-factor because of its focus on the oxygen transfer dynamics in different 
WWTP processes and activated sludge tank zones. For further details and a comparison 
of the α0 and α-factor based on parallel measurements see supplementary information 
section P.3.7.1.  

P.3.3.3 Overview of examined wastewater treatment plants and 
operating data 

The pilot reactors were operated over a period of more than three years to perform long-
term off-gas measurements on the sites of three different WWTPs. Process designs 
included a two-stage activated sludge system (WWTP A1 and A2) and two CAS 
systems designed as a plug-flow reactor (WWTP B) and a closed-loop reactor 
(WWTP C). Figure P.3.2 presents a flow diagram of the WWTPs with layout of 
biological treatment stages, clarifiers, and connecting wastewater and sludge flows such 
as return activated sludge (RAS), waste activated sludge (WAS), and internal 
recirculation. It also includes the position of the sludge transfer points across the tank 
length of each activated sludge tank as a percentage of its total length from inflow to 
effluent. In WWTP B and WWTP C α0-factors were measured in different tank zones 
while in WWTP A1 and A2 only the inlet zone of each stage was measured.  

The two-stage activated sludge plant is separated into a first high-rate activated sludge 
stage (A1, red) and a second stage for nitrification (A2, yellow). It has a bypass and 
recirculation flow and both stages have no internal recirculation. Nitrate is partially 
removed in an upstream denitrification zone of the second stage that is also fed with 
readily biodegradable substrate from the inflow via a bypass. The remaining nitrate is 
removed in a downstream denitrification (DN) filter. A full description of the two-stage 
WWTP A1/A2 can be found in (Schwarz et al., 2021). WWTP B (green) and C (blue) 
are both separated into anoxic, aerobic, and transition zones. The aeration system in the 
transition zone is controlled depending on ammonia effluent concentration and can be 
turned off completely. During dry weather WWTP B has a relative share of recirculation 
and RAS of about 82 % compared to the inflow and the closed-loop reactor of WWTP 
C is operated with agitators at an estimated circulation time of about 35 minutes to 
prevent sedimentation. About one third of wastewater inflow of WWTP B was from 
industrial sources, while WWTP A and C were primarily treating municipal wastewater 
from a combined sewer system. 
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Figure P.3.2 Overview of examined WWTPs and sludge transfer points for ex-situ off-
gas testing in each activated sludge tank 

Table P.3.1 lists key operating data to further characterize the examined WWTPs in the 
upper part as well as operation of ex-situ columns and the amount of collected off-gas 
data in the lower part. Data is stated as approximate values (~) or as mean values ± 
standard deviation (SD).  

The volume specific airflow rate in the activated sludge (AS) tank refers to the 
respective aerobic tank volume. Blowers in the ex-situ columns were operated to match 
the airflow rate in the AS tank for operation at WWTP A1 and A2. However, at the sites 
of WWTP B and C higher airflow rates were set in the ex-situ columns because 
operation in anoxic zones required higher oxygen transfer to exceed a DO concentration 
of 0.3 mg·L-1 required for off-gas testing. A limitation of the ex-situ off-gas method is 
that the airflow rate in the ex-situ column affects the determined α-factor (Schwarz et 
al., 2022). Therefore, a narrow range of volume specific airflow rates was set in the ex-
situ tanks to avoid a bias of the α0-factor. At each WWTP site off-gas data was collected 
over a period that included a seasonal shift of conditions and resultant changes of 
operation (e.g., water temperature, TSS, and SRT). Collected off-gas data was 
compressed to 1-hour intervals. This interval is suitable because under ideal mixing 
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conditions at an HRT of 15 minutes in the ex-situ columns about 98 % of activated 
sludge is replaced within 1 hour (Schwarz et al., 2022). 

Table P.3.1 Overview of key operating parameters of examined WWTPs and ex-situ 
column operation 

Parameter Unit WWTP 
A1 

WWTP 
A2 

WWTP  
B 

WWTP  
C 

Population equivalent (PE) - > 1 Mio. > 1 Mio. ~ 700,000 ~ 250,000 

Sludge retention time (SRT)  d ~ 2 ~ 30 ~ 15 ~ 25 

Wastewater inflow (dry weather)  m3·s-1 2.6 2.6 1.2 0.5 

Maximum inflow (rain weather) m3·s-1 7.0 7.0 4.0 1.2 

Total org. carbon (TOC) inflow  mg·L-1 144 ± 37 46 ± 10 189 ± 59 141 ± 39 

Total suspended solids (TSS) g·L-1 2.2 ± 0.4 5.4 ± 0.5 4.0 ± 0.3 5.6 ± 0.5 

Vol. spec. airflow rate (AS tank) Nm3·m-3·h-1 1.8 ± 0.5 0.7 ± 0.2 0.7 ± 0.2 0.5 ± 0.1 

Vol. spec. airflow rate (ex-situ)  Nm3·m-3·h-1 1.8 ± 0.2 0.9 ± 0.1 1.5 ± 0.1 1.0 ± 0.0 

Period of measurement months 13 13 11 7 

Collected off-gas data days 105 110 342 214 

 

In total 17 parameters were chosen as predictor variables to train a machine learning 
model. All parameters were derived from continuous operating data from in-situ online 
sensors or ex-situ online analyzers. These typical instruments were used by WWTP 
operators for process control and routinely validated and calibrated via laboratory 
analysis. Data reconciliation was conducted according to the IWA Good Modelling 
Practice Guidelines (Rieger, 2012). In general, the predictor variables collected at all 
three WWTP sites represented the following criteria:  

§ wastewater influent concentrations (carbon as TOC, nitrogen as NH4-N and NO3-N, 
phosphorus as PO4-P),  

§ mass balance of activated sludge tank with influent and effluent wastewater and 
sludge recirculation flows,  

§ state of the activated sludge process (airflow rate, DO, pH),  

§ standardization parameters (water temperature, electrical conductivity (EC), 
atmospheric pressure),  

§ position along the activated sludge tank.  
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Some of these basic parameters were further processed to include predictor variables 
that are typically used for oxygen transfer modelling or to consider measurement related 
effects. These feature engineering approaches included:  

§ calculation of TOC load and TOC F/M ratio because these parameters are common 
to describe oxygen transfer inhibition in activated sludge,  

§ dilution of wastewater inflow due to internal recirculation and return activate sludge 
(e.g., TOC represents the concentration in wastewater inflow whereas TOCin 
considers all inflows of a treatment stage, i.e., supernatant of return activated sludge, 
internal recirculation, and bypass flows, proportional to their respective water flow),  

§ time shift to consider delay between online sensor measurement in inflow and off-
gas monitoring in ex-situ column (especially when examining rear tank zones, see 
supplementary information section P.3.7.2).  

To improve comparability the predictor variables were standardized where possible 
(e.g., by using a volume specific airflow rate instead of a total airflow rate). 
Nonetheless, these predictor variables cannot be identical between the WWTP datasets 
because operators used different sensors or calibration methods. For a full list of 
predictor variables with units, values ± SD and a short description see supplementary 
information section P.3.7.3.  

P.3.3.4 Training of a Random Forest model to predict the α0-factor 

17 predictor variables as described above and listed in supplementary information 
section P.3.7.3 were used to train a machine learning model to predict the α0-factor as 
a response variable. All predictor variables were derived from operating data as 
provided by the WWTP operators. The α0-factor was measured with the ex-situ off-gas 
pilot reactors. The applied machine learning method was the Random Forest (RF) 
algorithm which is a decision tree-based method (Breiman, 2001). Random Forest trains 
an ensemble of decision trees which are created by randomly sampling from the training 
dataset (bootstrap sample). In addition, a split at each node can only use one predictor 
variable of a randomly selected subset. Repeating this procedure (recursive binary 
splitting) grows trees that are not pruned until a split creates a terminal node which 
cannot be split without falling below a minimum node size (number of remaining 
observations from the training dataset). Once the ensemble of trees is trained, the final 
prediction is made by aggregating an average of the predictions of all trees. Random 
Forest was chosen as a machine learning method for the α0 prediction model because 
of its proven prediction performance in related fields and its capability to cope with 
interactions and correlations of predictor variables which are typical in operating data 
describing wastewater composition (Tyralis et al., 2019).  
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The dataset used in our study includes about 20,000 complete observations of predictor 
and response variables as 1-h intervals (divided for the three WWTPs as given in 
Table 1). 20 % of the data were randomly sampled from the dataset and retained as a 
test dataset to quantify the prediction performance of the developed Random Forest 
models. No additional data preprocessing was performed, as no transformation of 
distribution or normalization is required for the application of the Random Forest 
algorithm (Kuhn and Johnson, 2019). The number of trees in the ensemble (ntree) was 
set to 500 and the terminal node size (nodesize) to 5. The number of randomly selected 
predictor variables at each node (mtry) was determined by grid search tuning based on 
lowest RMSE (root-mean-square error) with a 10-fold cross-validation and 5 repeats. 
To determine the performance of the model the mean values of the parameters RMSE, 
R2 (coefficient of determination) and MAE (mean absolute error) were determined.  

Random Forest offers the possibility to determine the relative importance of predictor 
variables (Svetnik et al., 2003). However, these variable importance measures are 
biased towards correlated predictor variables (Strobl et al., 2008) which complicates 
design of a parsimonious Random Forest prediction model (Genuer et al., 2010). 
WWTP operating data contains many correlated variables, e.g., parameters 
characterizing wastewater contaminants. See supplementary information section 
P.3.7.5 for a correlation matrix of all predictor and response variables. Therefore, the 
number of predictor variables in the model is not reduced because of a potential bias in 
predictor variable selection. This has the advantage that model performance for each 
WWTP can be directly compared based on the same predictor variable set.  

Instead of examining variable importance, we examined the effect of missing predictor 
variables on model performance in case a WWTP operator cannot use a parameter 
implemented in our prediction models. Each type of instrument defines a set of predictor 
variables. For example, dissolved oxygen sensors are required to determine DO in the 
examined tank zone as well as the average across all aerobic zones. Both predictor 
variables would be missing to train a Random Forest model, if no DO sensors were 
available at a WWTP. The method to consider missing instruments deleted a set of 
predictor variables, retrained and tuned the Random Forest model as described above, 
and then compared the model error of the reduced and original model. The model error 
was calculated as a percentage increase of RMSE of the reduced model with missing 
predictor variables and the original model with all predictor variables of Random Forest 
predictions on test data.  

Statistics and visualization were done using R 3.6.3 (R Core Team, 2020), tidyverse 
package (v1.3.0) for visualization (Wickham et al., 2019), data.table package (v1.14.0) 
for data handling (Dowle and Srinivasan, 2021), caret package (v6.0-90) for feature 
selection, cross-validation and model training (Kuhn, 2021), and randomForest package 
(v4.7-1) to train regression based Random Forest models (Liaw and Wiener, 2002).  
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P.3.4 Results and Discussion 

P.3.4.1 Overview of WWTP operation and resulting α0-factors 

The activated sludge stages of the examined WWTPs differed in process layout, 
operation, and wastewater composition which resulted in a different range of α0-factors 
(see Figure P.3.3B). A principal component analysis (PCA) was performed on a subset 
of 8 predictor variables to visualize their correlation in one diagram (Figure P.3.3A). 
The first two principal components (PC1 and PC2) cover a total variance of 65 % and 
predictor variables are represented as arrows (loadings). Loadings pointing in the same 
direction are positively correlated and vice vera. The data points represent the operating 
data where an α0-factor was recorded with the ex-situ off-gas method. 5,000 randomly 
sampled data points of each WWTP are colored to distinguish the WWTPs and 
complemented by three density lines for each WWTP containing 25 %, 50 % and 75 % 
of the available data. Overall, PCA shows four clusters of operating data which 
visualizes that many predictor variables do not overlap between WWTP datasets. As an 
example, the high-rate activated sludge WWTP A1 was operated at significantly higher 
airflow rates and TOC F/M ratios, whereas the second stage was operated at higher DO 
setpoints. Figure P.3.3B shows the resulting α0-factors as an empirical cumulative 
distribution diagram of the whole dataset. The high-rate activated sludge system A1 and 
its second stage A2 had the lowest and highest range of α0-factors, respectively. Overall, 
WWTPs with clusters close to each other in the PCA also had α0-factors in a similar 
range.  

 
Figure P.3.3 PCA of operating data showing clusters of WWTPs (3A) and empirical 
cumulative distribution of resulting α0-factors (3B) 

Although our data represents the examined WWTP’s operation in practice, Figure P.3.3 
shows that the available datasets are fragmented and therefore insufficient to develop 
an oxygen transfer prediction model that is generally applicable to all types of WWTPs. 
Instead, individual models for each WWTP were trained to analyze if a prediction of 
the α0-factor based on operating data was possible.  
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P.3.4.2 Spatial and diurnal variation of α0-factor  

Ex-situ off-gas measurements were performed in aerated and non-aerated tank zones to 
determine α0-factors in successive tank zones of three WWTPs divided into anoxic, 
transition, and aerobic zones at different intervals of tank length. The data presented in 
Figure P.3.4 was collected only during dry weather conditions for better comparison 
and the amount of data is indicated by a number below the boxplots. On average, α0-
factors increased across the tank length in all reactor types. In WWTP B a significant 
increase was only detected after the initial inflow zone whereas subsequent zones 
showed similar ranges of α0-factors. Removal of wastewater contaminants by 
biosorption and biodegradation in an activated sludge tank across the tank length 
reduced oxygen transfer inhibition causing a spatial variation of the α0-factor. For the 
first time, this effect could also be confirmed by off-gas measurements in anoxic zones, 
which suggests an anoxic removal that improved oxygen transfer in down-stream 
aerated zones. Based on the data the respective impact of biosorption and 
biodegradation on oxygen transfer improvement cannot be differentiated. The concept 
of spatial variation of α-factors, although known for decades, has just recently been 
included by Bencsik et al. (2022) in dynamic oxygen transfer modelling. The 
composition of the wastewater-sludge matrix within an activated sludge tank is rarely 
monitored, however, the position in a tank is a possible surrogate parameter to describe 
spatial variation. Therefore, the tank zone is also included as a predictor variable in our 
machine learning approach.  

 
Figure P.3.4 Spatial variation of α0-factor along the activated sludge reactors of WWTP 
A2, B and C with number of 1-h observations below each boxplot 

In addition to spatial variation, α0-factors of the examined WWTPs followed a diurnal 
cycle, see Figure P.3.5. For WWTP A1 (red) and A2 (yellow) α0-factors in the aerobic 
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inflow zone of the aeration tank are plotted. For WWTP B (green) and WWTP C (blue), 
in addition to the anoxic inflow zone, all subsequent aeration and transition zones are 
summarized in one diagram (other zones). The lines represent the course of the 
percentiles from 5th to 95th percentile, the dashed line represents the mean value 
throughout the day. The lines were determined as smoothed functions of the percentiles 
or mean values of 15-min interval data. The peak α0-factors were measured during the 
daytime rather than at night due to the long residence time of wastewater in the sewer 
network.  

 
Figure P.3.5 Diurnal variation of α0-factor 

WWTP A1 shows a distinct peak of the α0-factor, whereas diurnal variation of α0-factor 
in the other WWTPs had a more uniform pattern with a less pronounced peak. In 
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WWTP A2 the influent load was reduced and buffered by the upstream high-rate 
activated sludge stage (A1) and the upstream denitrification zone. In WWTP B and 
particularly in the closed loop reactor of WWTP C influent wastewater was diluted by 
internal recirculation flows which led to a similar pattern in the anoxic inflow zone and 
the subsequent zones. Overall, this confirms that the higher the internal recirculation is 
within an activated sludge tank, the flatter the diurnal variation is due to a distribution 
of the wastewater load (Rosso and Stenstrom, 2007).  

In our machine learning approach time of day was not included as a predictor variable 
to describe the diurnal pattern of α0-factor. Bencsik et al. (2022) have shown that a 
sinusoidal pattern of α-factors fails to predict oxygen transfer correctly during 
stormwater events. Instead, in our machine learning approach predictor variables such 
as TOCin were used to consider dilution effects that differ during dry and wet weather 
conditions.  

P.3.4.3 Influence of wastewater load on α0-factor  

Chemical oxygen demand (COD) is a key parameter to calibrate oxygen transfer 
prediction models as wastewater load changes dynamically during a day (Bencsik et al., 
2022; Jiang et al., 2017). In our study, we used TOC to describe influent wastewater 
characteristics, because ex-situ TOC online analyzers are common in larger WWTPs 
and produce a higher temporal resolution than COD laboratory analysis. Similarly, an 
inverse relationship between TOC F/M ratio and α-factor exists (Günkel-Lange, 2013).  

Figure P.3.6 compares α0-factor with TOC F/M ratio and its individual components, 
i.e., the actual hydraulic retention time in activated sludge tanks including recirculation 
flows (HRTa), TOC influent concentration including recirculation flows (TOCin) and 
total suspended solids (TSS). The TOC F/M ratio is plotted on a logarithmic scale. Data 
points are colored and surrounded by density lines as in Figure P.3.3 to distinguish the 
examined WWTPs.  

The inverse relationship between α-factor and wastewater influent load has been 
described in previous studies (Jiang et al., 2017; Leu et al., 2009). For WWTP operators, 
this negative correlation means that oxygen transfer is generally lowest when oxygen 
demand is highest during high load. Our collected results from four different activated 
sludge stages confirm this for TOCin (Figure P.3.6A) and TOC F/M ratio (Figure 
P.3.6D). However, within one WWTP this relationship is superimposed by various 
other impacts resulting in a less clear relationship. It is worth emphasizing that Figure 
P.3.6 presents the available datasets used for machine learning based model 
development but is not suitable to derive simple linear regression models from it.  
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Figure P.3.6 Comparison of α0-factor with predictor variables TOCin (6A), TSS (6B), HRTa 
(6C), and the thereof aggregated parameter TOC F/M ratio (6D) 

A positive relationship between α-factor and TSS was proposed by Baquero-Rodríguez 
et al. (2018). They argued that higher TSS improves oxygen transfer due to increased 
biosorption of oxygen transfer inhibiting substances on sludge flocs. Although our 
results show this positive relationship between α0-factor and TSS concentrations up to 
6 g·L-1 (Figure P.3.6B), this influence could not be examined isolated from other 
impacts. Overall, the relevance of this relationship in one individual activated sludge 
tank remains unclear, as TSS is usually kept within a narrow range during operation.  

The high-rate activated sludge system A1 is operated at significantly lower HRTa than 
the other WWTPs (Figure P.3.6C). Increased wastewater inflow during rain lowers 
HRTa, but a distinct impact on α0-factor cannot be spotted in our data. HRTa is not a 
suitable parameter to describe all wastewater characteristics that change oxygen transfer 
during stormwater inflow. Models should distinguish first flush with highly loaded 
wastewater from diluted stormwater.  

Overall, the bivariate diagrams in Figure P.3.6 demonstrate that no individual parameter 
can be used to reliably predict the α0-factor. Instead, a multivariate approach should be 
used to model oxygen transfer to consider various superimposed impacts and interaction 
effects. Below, we present such a data-driven methodology.  
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3.4 Predicting the α0-factor with Random Forest  

Four separate Random Forest models were trained to predict α0-factors based on 17 
predictor variables. Figure P.3.7 shows a comparison of the α0-factors predicted with 
the Random Forest models and the α0-factors measured with the ex-situ off-gas method 
from the test dataset. Diagrams on the left are separated into the four activated sludge 
stages and scaled within the same range. WWTPs are further distinguished by color and 
a dashed black linear regression is added in each diagram. A density distribution of the 
prediction error is shown on the right.  

 
Figure P.3.7 Comparison of predicted α0-factors with test dataset 

Random Forest successfully predicted the α0-factor for all WWTP processes. The 
regression line indicates that in each case the prediction of high α0-factors was 
underestimated, and low α0-factors were overestimated. This regression towards the 
mean value occurs because prediction results are averaged at each terminal node in 
training and across the ensemble of trees for each prediction by Random Forest 
algorithm. In addition, in the upper and lower ranges of the α0-factor fewer training data 
was available for model training, thus potentially reducing model performance. A 
learning curve confirms that model accuracy would benefit from even more training 
data (see supplementary information section P.3.7.6).  

An important constraint of many data-driven methods is that they are unable to 
generalize, meaning that extrapolation for conditions that are not covered by the training 
dataset is difficult to accomplish. Consequently, the presented Random Forest models 
would lose their predictive power once the WWTP operation or wastewater 
composition is altered significantly from the observed training data. Nonetheless, the 
high potential of oxygen transfer predictions with a machine learning method is 
demonstrated by our results, as these are based on long-term measurements that include 
rain weather conditions and seasonal variation. Furthermore, α0-prediction error is in 
the same range as the density distribution in Figure P.3.7 shows, even though different 
WWTP process layouts and resultant α0-factors were examined. The Random Forest 
performance parameters are listed in Table P.3.2. Better model accuracy is indicated by 
lower RMSE and MAE and higher R2.  
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Table P.3.2 Overview of Random Forest performance parameters RMSE (root-mean-
square error), MAE (mean absolute error), and R2 (coefficient of determination) 

WWTP RMSE MAE R2 

A1 0.024 0.017 0.855 

A2 0.033 0.024 0.840 
B 0.033 0.023 0.911 

C 0.031 0.022 0.880 
 

In our previous study we discussed the measurement uncertainty of ex-situ off-gas 
testing and quantified the standard deviation of measurement uncertainty for a series of 
comparison measurements in WWTP B to ± 0.018 (Schwarz et al., 2022). A prediction 
performance undercutting the measurement error would suggest an overfitting model. 
In our case, the determined RMSE of 0.031 of the Random Forest model for WWTP B 
is in the range of the error of the ex-situ off-gas method suggesting that prediction 
performance could be limited by the measurement uncertainty of the off-gas method.  

Predictor variables were selected because they are typically available to monitor the 
activated sludge process at WWTPs. Some predictor variables correlate with the α0-
factor (see supplementary information section P.3.7.5). Even without such a correlation, 
a parameter could be relevant to consider interaction effects. The Random Forest 
algorithm does not require careful selection of predictor variables and can cope with 
correlated predictor variables (Guyon and Elisseeff, 2003). It allows to include 
parameters that have not been used to predict oxygen transfer before such as water 
temperature and atmospheric pressure. Hence, the model potentially considers relevant 
information that has previously been ignored when modelling oxygen transfer.  

In practice, a type of instrument used in this study might not be available to include as 
a predictor variable for model development. In some cases, this can reduce the model 
performance as Figure P.3.8 shows. It illustrates the percentage increase of RMSE if a 
Random Forest model is trained without a specified set of predictor variables.  
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Figure P.3.8 RMSE increase of RF models with different sets of missing predictor 
variables compared to a RF model with complete set of predictor variables 

For example, not including the predictor variable tank zone in a Random Forest model 
for WWTP B increases RMSE by more than 60 % compared to the Random Forest 
model with all predictor variables, thus reducing overall model performance. The 
importance of some predictor variables differs between WWTPs. Most notably, the 
spatial variation of α0-factor as described by tank zone is only relevant in models of 
WWTP B and C that were trained with data from various tank zones (see Figure P.3.4). 
Likewise, tank zone was not relevant in WWTP A1 and A2 because only a small section 
of the tanks was covered with off-gas measurements (see Figure P.3.2). In some 
instances, predictor variable sets that are highly correlated with each other (e.g., TOC, 
N, P) improved model performance if left out. Here, a more parsimonious model 
improved RMSE by up to 4 %. A similar improvement was possible with recursive 
feature elimination (see supplementary information section P.3.7.4).  

Overall, this comparison reveals that some of the standardization parameters (e.g., water 
temperature, atmospheric pressure, electrical conductivity) provided relevant 
information to improve a Random Forest based α0-prediction model. In contrast, 
parameters usually used in oxygen transfer modelling (e.g., DO, TOC, water and sludge 
flow) were less important due to high correlation. Including all of them did not benefit 
model accuracy, therefore, a prediction model could still be developed even though 
certain instruments were not available at a WWTP. It is worth noting that Figure P.3.8 
only demonstrates which parameters were important for the model predictions in the 
trained Random Forest models and cannot evaluate the actual relationship between 
parameters and α0-factor. Overall, the application of the machine learning based 
prediction of oxygen transfer is not limited due to missing instruments and sensors to 
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record predictor variables but because off-gas testing to monitor the activated sludge 
tank is rarely implemented in WWTPs. 

P.3.4.4 Comparison with the current state of dynamic oxygen transfer 
modelling  

The dynamic prediction of α-factors is a recent focus in the field of aeration technology 
as dynamic α prediction models by Bencsik et al. (2022) or Jiang et al. (2017) show. 
Instead of relying on static values, dynamic models can improve design and operation 
of aeration systems as site-specific influences on oxygen transfer are considered. 
However, it was not possible to develop a generally applicable oxygen transfer model 
yet. Previously reported models required calibration and validation based on site-
specific full-scale WWTP data to predict oxygen transfer, similarly to our approach. 
Consequently, the machine learning model presented in this study could not fill this gap 
either but has unique advantages during model development. Some examples include:  

§ Previously reported dynamic oxygen transfer models relied on sludge retention time 
(SRT) to develop or calibrate model parameters. SRT is often difficult to determine 
reliably and especially at high temporal resolution varies significantly when waste 
activated sludge is withdrawn intermittently (Balbierz and Knap, 2017). In addition, 
Rosso et al. (2005) demonstrated the broad range of average α-factors for a given 
SRT at numerous WWTPs. Instead of relying on the definition of a WWTP’s SRT, 
our method can consider all parameters involved in SRT as individual predictor 
variables of a model.  

§ A kinetic model based on municipal wastewater would have to be extended by new 
model components in case of industrial wastewaters containing significant amounts 
of non-biodegradable surfactants (Bencsik et al., 2022). In contrast, a ML model is 
automatically adjusted to site-specific wastewater characteristics if these are 
included in a training dataset.  

§ A ML model could consider effects of fouling and scaling of diffusers on oxygen 
transfer by including diffuser pressure loss as a predictor variable in a time series 
analysis. This effect was not examined in our study as regular maintenance of 
diffuser membranes prevented excessive fouling during the experiments.  

§ Selection and engineering of predictor variables could involve additional site-
specific parameters (e.g., dosage of precipitation chemicals) that could further 
improve prediction performance.  

P.3.5 Conclusions 

A novel oxygen transfer model was presented by applying machine learning methods 
to predict the α0-factor. The data-driven approach was based on long-term ex-situ off-
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gas testing that was conducted on three WWTPs, including a two-stage and two CAS 
systems with different reactor types. The key findings are outlined below:  

§ The spatial and diurnal variation of the α0-factor was confirmed in various reactor 
types, which included ex-situ off-gas measurements in non-aerated anoxic zones for 
the first time. We therefore introduced the α0-factor to compare off-gas data from 
aerated and non-aerated activated sludge tank zones measured with pilot-scale ex-
situ off-gas reactors. This suggests that biosorption and biodegradation of 
wastewater contaminants in upstream denitrification zones increase α0-factor in 
successive aerated zones.  

§ Random Forest models to predict the α0-factor were trained exclusively with online 
operating data available to the WWTP operators and did not require extensive 
laboratory analysis. This multivariate approach considered wastewater 
characteristics, treatment plant operation, standardization parameters, and the spatial 
variation within an activated sludge tank as predictor variables that were not 
included in oxygen transfer modelling before.  

§ Model prediction was reliable with an RMSE between 0.024 and 0.033 (R2 between 
0.84 and 0.92) even though the examined activated sludge stages differed regarding 
their wastewater characteristics or operation. The Random Forest models 
dynamically predicted α0-factors for regular WWTP operation, during stormwater 
events, and seasonal variation. Like previously reported dynamic oxygen transfer 
models, the machine learning methodology could not create models to reliably 
predict oxygen transfer under conditions not included in training data.  

§ The machine learning approach we presented in our study did not require calibration 
of model parameters. The methodology simplifies model development if enough 
data is available to train a data-driven model and therefore benefits from big 
datasets. We reported results for α0-factors to include theoretical spatial variation 
within the whole activated sludge tank. The methodology is also applicable to 
predict α-factors in aerobic stages.  

Overall, this article invites operators of wastewater treatment facilities to implement 
continuous off-gas monitoring in the activated sludge process. Even though it is 
possible to develop an initial model based on temporarily conducted off-gas testing, 
highest accuracy can be accomplished when continuous off-gas monitoring is 
implemented in the activated sludge tank. Multi-objective optimizations with a 
predictive instead of reactive control of the aeration system would benefit from such a 
model. A prospective application of machine learning based oxygen transfer prediction 
models could be in WWTPs with digital twins and supervisory control strategies with 
multiple control loops for activated sludge tanks. Collecting off-gas data today is going 
to enable operators to implement better aeration control strategies tomorrow.  
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P.3.7 Supplementary Information 

P.3.7.1 Comparison of α0 and α-factor  

The ex-situ off-gas method enables to examine oxygen transfer in aerated and non-
aerated activated sludge tank zones. The α0-factor considers the different oxygen 
transfer when sludge with or without a gas phase is transferred to the ex-situ reactors 
by an adjusted mass balance. Figure P.3.9 shows a direct comparison of the two types 
of α-factors. In this parallel measurement, one ex-situ reactor was operated in a non-
aerated zone (α0 or α-factor on abscissa) and one ex-situ reactor in an adjacent aerated 
zone (α0 or α-factor on ordinate). The determined α-factors are shown in yellow and the 
α0-factors in blue and are divided into three diagrams for different WWTPs. Linear 
regression lines are added for each of the two calculations. Note the different axis scales 
of the diagrams because of the different ranges of α-factors of the three WWTPs.  

 
Figure P.3.9 Comparison of α0 and α-factor in aerated and non-aerated zones 

If the oxygen transfer in the adjacent tank zones does not change significantly, a 
distribution of the measured α-factors along the angle bisector (gray dashed line) is to 
be expected. For both the α0-factor and the α-factor, the measured values are higher in 
the aerated zone than in the non-aerated zone. However, this effect is more pronounced 
for the α-factor. The adjustment of the mass balance at the α0-factor thus improves 
comparability of the oxygen transfer in aerated and non-aerated zones compared to the 
α-factor without adjustment. Nevertheless, a systematic difference between α0-factors 
from aerated and non-aerated zones remains. For WWTP A2 (upstream CSTR 
denitrification zone followed by PFR nitrification zone) and WWTP B (two consecutive 
cascades in the transition zone), a non-aerated zone was compared with a downstream 
aerated zone. In WWTP C (aerobic zone of a closed loop reactor), a non-aerated zone 
followed an aerated zone in the flow direction of the loop reactor. In both cases, higher 
α0-factors are measured in aerated zones than in non-aerated zones. Accordingly, a 
possible change in the wastewater activated sludge matrix (e.g., due to further 
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degradation of substances that inhibit oxygen transfer) between the adjacent aeration 
tank zones is not primarily causing different α0-factors. The remaining difference 
between α0-factors in aerated and non-aerated zones results from the intake of the gas 
phase into sludge transfer hoses, which distinguishes aerated from non-aerated zones. 
Nonetheless, Figure P.3.9 shows that using the α0-factor improves the comparison of 
oxygen transfer results between aerated and non-aerated zones considerably.  

P.3.7.2 Time shift: delay between sensor measurement in inflow and 
ex-situ off-gas monitoring  

Many online sensors and ex-situ analyzers are operated in the influent or effluent of an 
activated sludge (AS) tank. In contrast, ex-situ off-gas measurements can be conducted 
across the whole AS tank length by positioning sludge transfer hoses in various tank 
zones. In plug-flow reactors (PFR) a delay results between a measured influent or 
effluent parameter and the α-factor from off-gas measurements. This temporal delay 
should be considered when predicting the oxygen transfer because wastewater 
composition is subject to a diurnal change.  

Figure P.3.10 shows an AS tank as PFR schematically as an arrow from influent to 
effluent. Somewhere in between the influent and effluent parameters an α-factor can be 
measured with an ex-situ off-gas column. Depending on the hydraulic retention time 
(HRT) in the AS tank and the position of off-gas measurement the time shift to be 
considered changes. Figure P.3.10 exemplarily shows that an α-factor measured at the 
middle of an AS tank that has an overall HRT of 120 minutes at dry weather requires a 
time shift of t-60 for influent parameters and t60 for effluent parameters. In this case an 
α-factor measured at time t0 is correlated with parameters that were measured in the 
influent 60 minutes earlier (t-60) and effluent parameters that were measured in the 
effluent 60 minutes later (t60).  

 
Figure P.3.10 Time shift between influent/effluent parameters and α-factor at dry and 
rain weather  
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Consequently, HRT in the AS tank changes when wastewater inflow changes. This is 
especially relevant when HRT is reduced by stormwater inflow. As shown exemplarily 
in the lower part of Figure P.3.10 (in blue), HRT is reduced by half and thus the time 
shift to be considered changes with it. To account for this time shift in the training 
datasets we shifted operating data according to HRT in intervals of 15 minutes. Figure 
P.3.11 shows an α-factor and parameters measured at the position of sludge transfer 
(ASP) in a table. Data obtained at t0 are marked by an “n”, while earlier data at t-15 is 
marked with “n-1”, etc. In this example influent (IP) and effluent parameters (EP) were 
recorded 30 minutes earlier or later (HRT of ± 30 min). Thus, the α-factor and ASPs at 
t0 are linked with IPs at t-30 and EPs at t30 and so on.  

 
Figure P.3.11 Tabular example of time shift linking measured data of α-factor with 
activated sludge parameters (ASP), influent parameters (IP) and effluent parameters 
(EP) for a HRT of ± 30 min 

P.3.7.3 Overview of predictor variables to train a Random Forest model 
to predict the α0-factor  

Table P.3.3 gives an overview of the predictor variables used to train a Random Forest 
model to predict the α0-factor. The α0-factor as the response variable of Random Forest 
regression is listed below the predictor variables. The table lists mean values alongside 
the sample standard deviation (SD) during standard operation of the WWTP. 
Additionally, the 5th and 95th percentiles are given to describe minimum and maximum 
conditions of WWTP operation that are only exceeded infrequently.  
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Table P.3.3 Overview of predictor variables and response for model training  

Predictor/ 
Response 
Variables 

Set Description Unit 

WWTP A1  
(First Stage) 

WWTP A2  
(Second Stage) WWTP B WWTP C 

mean ± SD 5th – 95th  
percentile mean ± SD 5th – 95th  

percentile mean ± SD 5th – 95th  
percentile mean ± SD 5th – 95th  

percentile 

DO Zone 1/12 
Dissolved oxygen in 

the examined AS tank 
zone 

mg·L-1 0.3 ± 0.3 0.1 - 0.9 2.5 ± 1.2 0 - 3.4 0.6 ± 0.5 0 - 1.5 0.5 ± 0.6 0.1 - 1.9 

DO 1 
Mean dissolved oxygen 
in aerobic zones of AS 

tank 
mg·L-1 0.6 ± 0.3 0.2 - 0.9 3.2 ± 0.2 3.1 - 3.4 1.3 ± 0.3 1 - 1.7 1 ± 0.6 0.3 - 2.0 

AFR 2 
Volume specific 

airflow rate in aerobic 
AS Tank zones 

Nm3· 
m-3·h-1 1.8 ± 0.5 0.9 - 2.3 0.7 ± 0.2 0.5 - 1 0.7 ± 0.2 0.3 - 1.1 0.5 ± 0.1 0.4 - 0.7 

Qin 3 Volume specific 
wastewater inflow L·m-3·h-1 416 ± 183 191 - 832 189 ± 72 93 - 376 46 ± 34 18 - 142 40 ± 18 22 - 86 

HRTa 3 
Actual hydraulic 

retention time in AS 
tank (excl. clarifier) 

h 0.7 ± 0.1 0.5 - 0.9 2 ± 0.3 1.4 - 2.4 2.5 ± 0.3 1.7 - 2.7 0.6 ± 0.0 0.5 - 0.6 

N 4 
NH4-N and/or NO3-N 
influent concentration 
considering time shift 

mg·L-1 36.2 ± 10.1 16.7 - 51.6 28.5 ± 7.7 14.8 - 41.6 65.9 ± 22.9 26.7 - 98.8 46.5 ± 11.9 19.9 - 63.4 

P 5 
PO4-P influent 
concentration 

considering time shift 
mg·L-1 3.6 ± 0.9 1.8 - 4.9 2.1 ± 0.9 0.8 - 3.7 9.5 ± 3.5 3.6 - 15.2 4.3 ± 1.5 1.5 - 6.4 

TOC 6 
TOC influent 
concentration 

considering time shift 
mg·L-1 144 ± 37 89 - 217 46.3 ± 9.9 26.3 - 60.5 189 ± 59 83 - 281 141 ± 39 74 - 210 

TOCin 3/6 
TOCin concentration in 

influent considering 
time shift and dilution 

mg·L-1 83.7 ± 20.9 52 - 125 22.9 ± 4.9 15.4 - 30.9 23.9 ± 8.3 13.2 - 38.6 13.9 ± 3.4 9.9 - 20.9 

TOC load 3/6 TOC load in influent 
considering time shift t·d-1 32.9 ± 14.6 12.7 – 58.7 13.6 ± 5.8 6.3 – 25.6 15.9 ± 8.7 6.5 – 31.9 2.5 ± 1.4 1.1 – 5.4 

TOC FM 3/6/7 
TOC F/M ratio in 

influent considering 
time shift 

g·kg-1·d-1 641 ± 274 252 - 1089 41 ± 22 17 - 89 49 ± 27 20 - 98 25 ± 18 10 – 61 

TSS 7 Total suspended solids 
(TSS) g·L-1 2.2 ± 0.4 1.6 - 2.9 5.4 ± 0.5 4.2 - 6.3 4 ± 0.3 3.6 - 4.6 5.6 ± 0.5 4.6 - 6.3 

patm 8 Atmospheric pressure mbar 1010 ± 11 992 - 1028 1013 ± 10 994 - 1030 1013 ± 9.5 996 - 1028 1015 ± 11 995 - 1029 

Tw 9 Water temperature in 
activated sludge °C 18.3 ± 2.5 13.3 - 21.2 18.5 ± 3 13.6 - 22.1 18.2 ± 3 13.4 - 23 14.5 ± 1.4 12.2 - 16.9 

EC 10 Electrical conductivity µS·cm-1 1255 ± 226 749 - 1539 1106 ± 190 698 - 1309 1404 ± 347 714 - 1849 1218 ± 217 718 - 1465 

pH 11 pH in activated sludge – 7.6 ± 0.2 7.4 - 8 7.3 ± 0.1 7.1 - 7.4 7 ± 0.2 6.6 - 7.3 6.9 ± 0.2 6.6 - 7.1 

α0-factor – Recorded with ex-situ 
off-gas columns – 0.40 ± 0.06 0.31 - 0.52 0.80 ± 0.08 0.65 - 0.94 0.66 ± 0.11 0.48 - 0.84 0.75 ± 0.08 0.61 - 0.88 

 

An additional predictor variable (Tank Zone, Set 12) is the position of sludge transfer 
as a percentage of tank length in flow direction (compare with Figure P.3.2 in main 
text). At this position the dissolved oxygen DO_zone is measured. The predictor 
variable Tank Zone considers that oxygen transfer dynamics change locally depending 
on operation of AS tank zones (anoxic/aerobic) and continuous biodegradation of 
wastewater contaminants that inhibit oxygen transfer. In total, 17 predictor variables 
were selected for ML model training. In the trained Random Forest models, no effluent 
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parameters were used as predictor variables because information about future effluent 
conditions cannot be implemented in a predictive model for real-time applications.  

The column “Set” marks all predictor variables that were recorded with the same type 
of sensor or instrument. For example, both predictor variables DO and DO zone require 
dissolved oxygen sensors in the activated sludge tank and are therefore in the same set. 
These sets were defined to determine importance of certain instruments to develop 
Random Forest models for prediction of the α0-factor.  

0.6 % of the final dataset was missing that included all relevant predictor variables and 
the α0-factor as response variable. k-nearest neighbors (KNN) as a multiple imputation 
technique was used to impute the missing values (k = 5, Euclidean distance, scaled data) 
(Kuhn and Johnson, 2013; Troyanskaya et al., 2001). 

TOC concentration in influent was measured by ex-situ online analyzers. The parameter 
had a low signal to noise ratio (SNR). It was therefore additionally smoothed by 
applying a 3-h moving average. This parameter was then used in all other TOC related 
predictor variables. All other predictor variables remained as 1-h intervals of the 
operating data.  

P.3.7.4 Algorithm for recursive feature elimination with external 
resampling  

Random Forest offers the possibility to determine the relative importance of predictor 
variables (features) (Svetnik et al., 2003). Based on feature importance a subset of 
features can be determined to design a parsimonious Random Forest prediction model 
(Genuer et al., 2010; Guyon and Elisseeff, 2003). The algorithm below was used for 
recursive feature elimination (RFE) with the training dataset to build a parsimonious 
Random Forest model. RFE implemented an external resampling step for predictor 
variable selection to improve model performance on new observations that considered 
the variability caused by predictor variable selection. The selection of predictor 
variables was determined based on the best model performance as measured by the 
lowest RMSE of the RF models with a 10-fold cross-validation and 5 repeats. Training 
of the Random Forest models was then performed with the selected subset of predictor 
variables.  
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1 For each resampling iteration do  
2 

  

Partition data into training and validation set via resampling  
3 Train the RF model on the training set with all features  
4 Predict the validation set data  
5 Calculate feature importance 
6 For each feature subset Fi with i = 1…n do  
7 

  
Keep Fi most important variables 

8 Train the model on the training set with Fi predictors  
9 Predict the validation set data  
10 End  
11 End   
12 Calculate the RMSE performance for all Fi for the validation data  
13 Determine the appropriate number of features by lowest RMSE  
14 Fit the final model based on the optimal number of features Fi for the original training set  

Modified from “The caret Package” (Kuhn, 2019), 
https://topepo.github.io/caret/index.html (last access 2022/05/20); see section 20 
“Recursive Feature Elimination” for further details on code implementation.  

 

Table P.3.4 compares performance parameters of Random Forest models with all 17 
predictor variables and the models after recursive feature elimination. In these 9 to 12 
predictor variables remained (Rem. Var.) and RMSE improved by up to 7 % compared 
with the base models.  

 

Table P.3.4 Comparison of Random Forest performance parameters with all predictor 
variables and remaining variables after RFE 

WWTP RMSE R2 MAE  RMSE R2 MAE Rem. Var. 

 All Predictor Variables  Recursive Feature Elimination 

A1 0.024 0.856 0.017  0.023 0.866 0.017 12 

A2 0.033 0.840 0.023  0.032 0.849 0.022 9 

B 0.031 0.922 0.022  0.029 0.929 0.020 9 
C 0.030 0.886 0.023  0.028 0.891 0.022 9 

 

P.3.7.5 Correlation matrix of response and predictor variables  

Diagrams below show correlation matrices of response and predictor variables using 
the non-parametric Kendall’s rank correlation. The non-parametric approach was used 
instead of parametric Pearson’s rank correlation because some parameters were not 
normally distributed and not all relationships between variables were linear.  
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Variables as described in Table P.3.3 are listed at the horizontal and diagonal axis. For 
each pair of variables, the correlation is indicated by a colored shape. Shapes stretch 
from a high-contrast line marking a high correlation near ± 1 to a pale circle marking a 
low correlation near 0. Colors range from red for negative correlations (- 1 to 0) to blue 
for positive correlations (0 to +1) as indicated by the vertical axis.  

 
Figure P.3.12 Correlation matrices of response and predictor variables for all examined 
WWTPs 

P.3.7.6 Learning Curve  

Figure P.3.13 shows learning curves of Random Forest models for each WWTP 
distinguished by color. The three diagrams are divided into RMSE, MAE, and R2 to 
visualize the model’s prediction performance if only smaller datasets were available for 
model training. The performance parameters at 100 % of the training dataset equal the 
values reported in Table P.3.2 of the main text for the models using all available off-
gas data for model training. Random Forest models were trained with random 
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subsamples of the available training data to examine how the prediction performance 
changes when fewer off-gas measurements were available as training data. Random 
Forest models were trained with these restricted datasets but with the same 
hyperparameters as the full model as reported in section P.3.3.4 of the main text. As the 
share of the training dataset decreases, lower prediction performances were determined. 
For example, R2 was significantly lower when using only 25 % of the available data to 
train a Random Forest model. Or else, the more training data was available for model 
training the better the prediction performance was. The learning curves are shaped as 
saturation curves that have not converged to the saturation value. This suggests that the 
presented methodology would benefit from even larger datasets to develop an even 
more accurate prediction model for the α0-factor.  

 

 
Figure P.3.13 Learning curves for RF models of each WWTP divided into RMSE, MAE, 
and R2 

P.3.7.7 Training and test performance parameters of Random Forest 
models  

Table P.3.5 compares the performance results for training and test datasets. The model 
results for test datasets are reported in the main document in Table P.3.2 as these 
represent the performance of models expected for new input data collected under the 
same conditions as the training dataset. The performance results for training datasets 
are generally better than for test datasets due to overfitting of the Random Forest models 
to the training dataset. The higher the difference between training and test performance 
parameter the more overfitting of the model to operating conditions only present in the 
training dataset occurred. The spread of results in Table P.3.5 suggest that some 
overfitting is still present. Potential solutions to reduce this overfitting include further 
model tuning or selection of a different supervised machine learning method for model 
training.  
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Table P.3.5 Overview of Random Forest performance parameters 

WWTP RMSE 
Training 

RMSE 
Test 

MAE 
Training 

MAE 
Test 

R2 

Training 
R2 

Test 

A1 0.010 0.024 0.007 0.017 0.979 0.855 
A2 0.013 0.033 0.010 0.024 0.978 0.840 

B 0.014 0.033 0.010 0.023 0.986 0.911 

C 0.012 0.031 0.009 0.022 0.983 0.880 

 

P.3.7.8 Additional references in supplementary information  
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Guyon, I., Elisseeff, A., 2003. An introduction to variable and feature selection. J. 
Mach. Learn. Res. 3, 1157–1182. 

Kuhn, M., Johnson, K., 2013. Applied predictive modeling. Springer. 

Svetnik, V., Liaw, A., Tong, C., Christopher Culberson, J., Sheridan, R.P., Feuston, 
B.P., 2003. Random Forest: A Classification and Regression Tool for Compound 
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5 Conclusions and Outlook 

The focus of my dissertation was to examine oxygen transfer dynamics in activated 
sludge and the potential of oxygen transfer modelling based on a data-driven machine 
learning approach. Summarized below are the key conclusions and prospective 
applications of each paper individually. Papers in this cumulative work follow a logical 
sequence. Starting with an in-depth analysis of the ex situ off-gas method used 
throughout this work (P1) and followed by a study of oxygen transfer in two-stage 
systems as a special variant of activated sludge processes (P2), the dissertation 
concludes with the introduction of a data-driven prediction of oxygen transfer in various 
activated sludge systems (P3). However, papers in this cumulative work were not 
published in this sequence. P2 was published before P1 because a two-stage WWTP 
was examined at first. P1 was later published when a sufficient data basis was available 
that included more typical oxygen transfer conditions in a CAS system. Therefore, 
sections below also show how the papers are linked with each other and describe 
findings that were recognized in hindsight. Finally, an outlook summarizes next steps 
to improve our understanding of oxygen transfer dynamics and its modelling.  

Paper 1  

Novel insights how to properly conduct and evaluate ex situ off-gas measurements were 
published in P1. Oxygen concentration in the off-gas was determined as the most 
important input quantity for reliable off-gas measurement exceeding all other 
parameters. Off-gas collection and analysis should therefore be given special attention 
when designing pilot setups. An uncertainty analysis revealed that measurement 
uncertainty of ex situ off-gas tests to determine the α-factor can be lower than previously 
reported measurement uncertainty of ± 5 to 10 %. This theoretical approach can be used 
to evaluate the measurement uncertainty of pilot setups a priori. P1 also demonstrated 
that α-factors recorded with the ex situ method are systematically increased by 
additional mixing in the pilot reactor through the lateral sludge inflow. Consequently, 
oxygen transfer results obtained with the ex situ method differ from results of the in situ 
method and should clearly be stated as ex situ derived results.  

Overall, my findings in P1 provide complementary information missing in technical 
guidelines regarding the ex situ off-gas method that is crucial for future applications of 
the ex situ off-gas method. In general, findings regarding the estimation of measurement 
uncertainty are transferable to the in situ off-gas method because the same type of 
instruments are used in both methods.  

Paper 1 and Paper 2 

Static α-factors to design aeration systems in two-stage processes were quantified in P2. 
However, P1 demonstrated that results from ex situ and in situ measurements cannot be 
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compared because lateral sludge inflow systematically increases α-factors in the ex situ 
setup. This limitation of the ex situ method was unknown when P2 was published 
because the in-depth analysis of the methodology was conducted later as part of P1.  

As a conclusion, the α-factors reported in P2 were too high although the experiments 
were explicitly conducted as described in ASCE/EWRI 18-18 (2018). Future 
experiments to determine α-factors for design purposes should therefore use in situ off-
gas measurements.  

Paper 1 and Paper 3  

I discussed several conditions and constraints of the ex situ off-gas method in P1 that I 
had to consider to develop oxygen transfer models and validate their results in P3.  

Firstly, a direct comparison of measurements under the same conditions exemplarily 
demonstrated that α-factors recorded with the pilot setup have a relative standard 
deviation of about ± 2.8 %. This provided an important threshold that allowed me to 
further validate results in P3. Here, a prediction of α-factors undercutting the 
measurement uncertainty of the ex situ method would indicate overfitting of the 
underlying machine learning model. This was not the case with the Random Forest 
method presented in P3. It is advisable to estimate the measurement uncertainty of the 
response variable in the underlying training data to validate performance parameters of 
machine learning models.  

Secondly, I discussed that repeating off-gas measurements is recommended due to the 
methodology’s inherent measurement uncertainty and systematic measurement errors 
that can be caused, e.g., by fouling of diffusers, biofilm growth, sensor drift, or 
imperfect clean water testing. It is possible that a Random Forest model detects 
systematic measurement errors in a specific measurement period, thus overfitting to the 
training data. Therefore, the oxygen transfer modelling approach using Random Forest 
models as presented in P3 should use training data from long-term off-gas 
measurements spanning multiple months for each examined WWTP.  

Thirdly, P1 showed the systematic bias of α-factors due to lateral sludge inflow 
depending on airflow rate in the ex situ reactor. Consequently, α-factors recorded at 
different WWTPs and airflow rates could not be compared in a universal model. 
Therefore, individual models were trained for each activated sludge stage of the 
examined WWTPs in P3.  

Paper 2  

In P2, α-factors for design load cases were determined as 0.45 for αmean and 0.33/0.54 
for αmin/αmax in the first stage (HRAS), and as 0.80 for αmean and 0.69/0.91 for αmin/αmax 
in the second stage. The absolute values of these α-factors would differ in situ as 
described above. However, P2 demonstrated for the first time that oxygen transfer 
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dynamics differ tremendously in the two stages of a two-stage activated sludge process. 
In addition, a decrease of α-factors was observed in the first stage during wet weather 
conditions, thus suggesting that oxygen transfer is more susceptible to changing inflow 
characteristics in HRAS than in CAS systems. My observations in P2 generally 
confirmed the inverse relationship between TOC and the α-factor. Analysis of inflow 
surfactant concentrations showed that surfactant load was significantly lower in the 
second stage than in the first stage. Lower α-factors in the first stage could be attributed 
to the oxygen transfer inhibiting effect of surfactants but not quantified specifically for 
surfactants compared with TOC in general. Overall, considering these findings can 
improve the design of aeration systems in two-stage processes.  

Paper 2 and Paper 3  

Long-term off-gas measurements in P2 covered a typical range of WWTP operation 
conditions including seasonal variation, as well as dry and wet weather conditions. A 
range of α-factors was measured in both stages as expressed by the derived α-factors 
for design load cases. Even though general relationships between the α-factor and TOC 
were confirmed, the total variation of measured values could not be explained by simple 
correlations with operating parameters. It is important to recognize that many 
interacting factors influence oxygen transfer in the activated sludge at the same time. 
Based on this analysis, I concluded that a modelling approach based on multiple 
predictor variables would be required to advance modelling the oxygen transfer which 
led to my work presented in P3.  

Paper 3  

A machine learning approach was used to model oxygen transfer dynamics for the first 
time in P3. The data-driven method was developed and tested based on long-term ex 
situ off-gas testing conducted on a variety of WWTP process layouts, including a two-
stage and two CAS systems with different reactor types. Additionally, the ex situ 
method allowed to observe potential influences on oxygen transfer throughout the 
whole activated sludge tank including non-aerated zones. I introduced the α0-factor to 
examine spatial variation of oxygen transfer inhibition in aerated and non-aerated 
activated sludge tank zones and, thus, include the characteristics of these process 
layouts in my analysis.  

Most oxygen transfer models designed so far are limited to few parameters, usually 
focusing on the influence of SRT, COD, and TSS on oxygen transfer (see section 2.3). 
The Random Forest models were trained with 17 predictor variables which included 
parameters such as water temperature, atmospheric pressure, and electrical conductivity 
that were previously only used for standardization of oxygen transfer parameters. 
Therefore, this approach allows to include additional parameters which can describe the 
conditions affecting oxygen transfer in the activated sludge tank that have been 
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overlooked so far. Most importantly, the method only relies on operating data as 
predictor variables for model training that WWTP operators already measure.  

The machine learning model predictions for the different activated sludge stages ranged 
between an RMSE of 0.024 and 0.033 (R2 between 0.84 and 0.92). Whether this 
prediction performance is considered good enough depends on the prospective 
application and cannot be evaluated conclusively within this work. With my findings in 
P3 I want to encourage the aeration research community to include more parameters 
than “the usual suspects” to develop oxygen transfer models in the future.  

Outlook 

In recent years, the use of whole plant models has increased to enable process engineers 
to examine interactions between unit processes (Rieger, 2012). Oxygen transfer in the 
activated sludge is not only affected by the inflow wastewater characteristics, but also 
by operation of the activated sludge process and other influent flows from sludge 
treatment processes. Consequently, operators are confronted with multiple options to 
adjust the treatment process, each potentially affecting oxygen transfer in the activated 
sludge tank. In such a multi-objective optimization problem the implementation of a 
comprehensive oxygen transfer prediction model is required to find solutions and 
control the aeration system of an activated sludge tank accordingly. In this case, 
continuous off-gas measurements could improve monitoring of aeration systems and a 
dynamic prediction of α-factors based on a machine learning model could be utilized to 
control aeration systems as part of a digital twin in the future. To accomplish this, 
further research should focus on the aspects detailed below.  

§ Model input data: Information about influences on oxygen transfer contained in 
operating data is limited as described in section 2.2. For example, point 
measurements by online sensors can inevitably only represent local conditions 
within an activated sludge tank depending on the mixing conditions. Information 
about oxygen transfer inhibiting wastewater contaminants is only collected in 
influent and effluent flows and not available at the actual point of impact, the bubble 
rising in the activated sludge. In addition, some parameters oversimplify potential 
influences on the oxygen transfer. For example, the sum parameter COD cannot 
distinguish different types of wastewater contaminants such as surfactants that can 
differently inhibit oxygen transfer or TSS concentration estimated by a turbidity 
sensor cannot distinguish organic from inorganic matter or particle size distribution. 
Continuous development of sensor capabilities, increasing the number of 
measurements, and improving sensor reliability could add further information 
relevant to describe oxygen transfer dynamics in the future.  

§ Model output data: Oxygen transfer efficiency under process conditions is based on 
off-gas tests. So far, off-gas analyses have been used in numerous studies, but 
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application of gas analyzers is not part of the typical instrumentation on WWTPs. 
The implementation of in situ off-gas measurements in full-scale is required to 
model oxygen transfer for a WWTP, because no generally applicable model exists 
so far. Continuous off-gas testing would also allow to adjust models once 
wastewater or process characteristics of a treatment plant change. Moreover, more 
accurate off-gas measurements would reduce uncertainty about the state of oxygen 
transfer and enable more precise model development. Overall, better model input 
and output data describing and quantifying the oxygen transfer would benefit the 
development of mechanistic and machine learning models.  

§ Model performance and reliability: The supervised machine learning approach 
presented in this work is often unable to generalize under conditions not included in 
training data. Therefore, prediction errors could be caused by defective sensors or 
changing process characteristics. Hence, future applications in practice should 
consider strategies to increase resilience to a change of the system that could result 
in a faulty prediction of oxygen transfer. With my work I want to invite researchers 
to replicate the machine learning methodology with existing off-gas datasets from 
long-term measurement campaigns. Next steps include the comparison and coupling 
of mechanistic models with machine learning models and the implementation of an 
oxygen transfer prediction model into an aeration control scheme.  
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