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Abstract	

To	 achieve	 great	 performance	 and	 ensure	 their	 long-term	 survival,	 organizations	 must	
successfully	act	in	and	adapt	to	the	reality	that	surrounds	them,	which	requires	organizations	to	
learn	effectively.	For	decades,	organizations	have	relied	exclusively	on	human	learning	for	this	
purpose.	 With	 today’s	 rise	 of	 machine	 learning	 (ML)	 systems	 as	 a	 modern	 form	 of	 artificial	
intelligence	 (AI)	 and	 their	 ability	 to	 autonomously	 learn	 and	 act,	 ML	 systems	 can	 now	 also	
contribute	 to	 this	 vital	 process,	 offering	 organizations	 an	 alternative	 way	 to	 learn.	 Although	
organizations	are	 increasingly	adopting	ML	systems	within	a	wide	range	of	processes,	we	still	
know	surprisingly	 little	about	how	the	 learning	of	humans	and	ML	systems	affects	each	other	
and	 how	 their	 mutual	 learning	 affects	 organizational	 performance.	 Although	 a	 significant	
amount	of	research	has	addressed	ML,	existing	research	 leaves	 it	 largely	unclear	whether	and	
when	humans	and	ML	systems	act	 as	beneficial	 complementarities	or	 as	mutual	 impediments	
within	the	context	of	learning.	This	is	problematic,	as	the	(mis)use	of	ML	systems	may	corrupt	
an	organization’s	central	process	of	learning	and	thus	impair	the	organizational	adaptation	that	
is	crucial	for	organizational	survival.	

To	 help	 organizations	 facilitate	 useful	 synergies	 of	 humans	 and	ML	 systems,	 this	 dissertation	
explores	humans’	and	ML	systems’	 idiosyncrasies	and	 their	bilateral	 interplay.	As	research	on	
organizational	 learning	has	demonstrated,	 the	key	 to	managing	 such	dynamics	 is	 the	effective	
coordination	 of	 the	 ones	 who	 learn.	 The	 studies	 that	 were	 conducted	 for	 this	 dissertation	
therefore	aim	to	uncover	virtuous	and	vicious	dynamics	between	humans	and	ML	systems	and	
how	these	dynamics	can	be	managed	to	increase	organizational	performance.	To	take	a	holistic	
perspective,	this	dissertation	explores	three	central	levels	of	analysis.	

The	 first	 level	 of	 analysis	 deals	 with	 performance	 impacts	 on	 the	 individual	 level.	 Here,	 the	
analysis	focuses	on	two	essential	issues.	First,	the	availability	of	ML	systems	as	an	alternative	to	
humans	requires	organizations	to	rethink	their	problem	delegation	strategies.	Organizations	can	
benefit	 the	 most	 from	 the	 relative	 strengths	 of	 humans	 and	 ML	 systems	 if	 they	 are	 able	 to	
delegate	problems	to	those	whose	expertise	and	capabilities	best	fit	the	problem.	This	requires	
organizations	to	develop	an	understanding	of	the	problem	characteristics	that	point	to	problems	
that	 are	 better	 (or	 less)	 suited	 to	 being	 solved	 by	 ML	 systems	 than	 by	 humans.	 Using	 a	
qualitative	interview	approach,	the	first	study	identifies	central	criteria	and	procedural	artifacts	
and	synthesizes	these	into	a	framework	for	identifying	and	evaluating	problems	in	ML	contexts.	
The	framework	provides	a	theoretical	basis	to	help	inform	research	about	delegation	decisions	
between	 humans	 and	 ML	 systems	 by	 unpacking	 problem	 nuances	 that	 decisively	 render	
problems	suitable	for	ML	systems.	Building	on	these	insights,	a	subsequent	qualitative	analysis	
explores	how	the	dependency	between	a	human	and	an	ML	system	with	respect	to	the	delegated	
problem	 affects	 performance	 outcomes.	 The	 theoretical	 model	 that	 is	 proposed	 explains	
individual	performance	gains	that	result	from	ML	systems’	use	as	a	function	of	the	fit	between	
task,	 data,	 and	 technology	 characteristics.	 The	model	 highlights	 how	 idiosyncrasies	 of	 an	ML	
system	can	affect	a	human	expert’s	task	execution	performance	when	the	expert	bases	her/his	
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task	execution	on	the	ML	system’s	contributions.	This	study	provides	first	empirical	evidence	on	
controllable	levers	for	managing	involved	dependencies	to	increase	individual	performance.	

The	second	 level	of	analysis	 focuses	on	performance	 impacts	on	the	group	level.	 In	contrast	 to	
traditional	(non-ML)	information	systems,	ML	systems’	unique	learning	ability	enables	them	to	
contribute	 independently	 to	 team	endeavors,	 joining	groups	as	active	members	that	can	affect	
group	dynamics	through	their	own	contributions.	Thus,	in	a	third	study,	a	digital	trace	analysis	is	
conducted	to	explore	the	dynamics	of	a	real-world	case	in	which	a	group	of	human	traders	and	a	
productively	 trading	 reinforcement	 ML	 system	 collaborate	 during	 trading.	 The	 studied	 case	
reveals	that	bilateral	learning	between	multiple	humans	and	an	ML	system	can	increase	trading	
performance,	which	appears	to	be	the	result	of	an	emerging	virtuous	cycle	between	the	humans	
and	the	ML	system.	The	findings	demonstrate	that	the	interactions	between	the	humans	and	the	
ML	system	can	lead	to	group	performance	that	outperforms	the	individual	trading	of	either	the	
humans	 or	 the	 ML	 system.	 However,	 in	 order	 to	 achieve	 this,	 organizations	 must	 effectively	
coordinate	the	knowledge	transfer	and	the	roles	of	the	involved	humans	and	the	ML	system.	

The	 third	 level	 of	 analysis	 focuses	 on	 performance	 impacts	 on	 the	 organization	 level.	 As	 ML	
systems	 increasingly	 contribute	 to	 organizational	 processes	 in	 all	 areas	 of	 the	 organization,	
changes	in	the	organization’s	fundamental	concepts	are	likely	to	occur,	and	these	may	affect	the	
organization’s	 overall	 performance.	 In	 a	 fourth	 study,	 a	 series	 of	 agent-based	 simulations	 are	
therefore	used	to	explore	the	dynamics	of	organization-wide	interactions	between	humans	and	
ML	 systems.	 The	 results	 imply	 that	ML	 systems	 can	 help	 stimulate	 the	 pursuit	 of	 innovative	
directions,	 liberating	humans	from	exploring	unorthodox	 ideas.	The	results	also	show	that	 the	
alignment	 of	 human	 learning	 and	 ML	 is	 largely	 beneficial	 but	 can,	 under	 certain	 conditions,	
become	 detrimental	 to	 organizations.	 The	 findings	 emphasize	 that	 effective	 coordination	 of	
humans	 and	ML	 systems	 that	 takes	 environmental	 conditions	 into	 account	 can	determine	 the	
positive	and	negative	impacts	of	ML	systems	on	organization-level	performance.	

The	 analyses	 included	 in	 this	 dissertation	 highlight	 that	 it	 is	 precisely	 the	 unique	 differences	
between	 humans	 and	 ML	 systems	 that	 often	 seem	 to	 make	 them	 better	 complements	 than	
substitutes	 for	 one	 another.	 The	 secret	 to	 unleashing	 the	 true	 potential	 of	 ML	 systems	 may	
therefore	lie	in	effectively	coordinating	the	differences	between	humans	and	ML	systems	within	
their	bilateral	relationship	to	produce	virtuous	cycles	of	mutual	improvement.	This	dissertation	
is	 a	 first	 step	 toward	developing	 theory	 and	 guidance	 on	 coordinating	 the	dynamics	 between	
humans	and	ML	systems,	with	the	aim	of	helping	to	rethink	collaboration	theory	in	the	era	of	AI.
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Abstract	(German	Version)	

Um	 hohe	 Leistungen	 zu	 erzielen	 und	 ihr	 langfristiges	 Überleben	 zu	 sichern,	 müssen	
Organisationen	erfolgreich	in	der	sie	umgebenden	Realität	agieren	und	sich	an	diese	anpassen,	
was	 ein	 effektives	 Lernen	 der	 Organisationen	 erfordert.	 Jahrzehntelang	 haben	 sich	
Organisationen	 dabei	 ausschließlich	 auf	 das	 Lernen	 von	 Menschen	 verlassen.	 Mit	 dem	
Aufkommen	des	maschinellen	Lernens	(ML)	als	moderne	Form	der	künstlichen	Intelligenz	(KI)	
und	 ihrer	 Fähigkeit,	 autonom	 zu	 lernen	 und	 zu	 handeln,	 können	 ML-Systeme	 nun	 auch	 zu	
diesem	wichtigen	Prozess	beitragen	und	Unternehmen	eine	alternative	Möglichkeit	des	Lernens	
bieten.	 Obwohl	 Unternehmen	 zunehmend	 ML-Systeme	 in	 einer	 Vielzahl	 von	 Prozessen	
einsetzen,	wissen	wir	nur	 erstaunlich	wenig	darüber,	wie	 sich	das	Lernen	von	Menschen	und	
ML-Systemen	 gegenseitig	 beeinflusst	 und	 wie	 ihr	 gemeinsames	 Lernen	 die	
Unternehmensleistung	 prägt.	 Obwohl	 es	 bereits	 viel	 Forschung	 zu	ML	 gibt,	 bleibt	weitgehend	
unklar,	ob	und	wann	Menschen	und	ML-Systeme	als	nützliche	Ergänzungen	oder	als	schädliche	
Hindernisse	beim	gemeinsamen	Lernen	wirken.	Dies	ist	insofern	problematisch,	als	der	Einsatz	
von	ML-Systemen	den	zentralen	Prozess	des	Lernens	beeinträchtigen	und	die	für	das	Überleben	
von	Organisationen	entscheidende	Anpassung	erschweren	kann.	

Um	Organisationen	dabei	zu	helfen,	nützliche	Synergien	zwischen	Menschen	und	ML-Systemen	
zu	 ermöglichen,	 erforscht	 diese	 Dissertation	 die	 Eigenarten	 von	Menschen	 und	ML-Systemen	
und	deren	bilaterales	Zusammenspiel.	Wie	die	Forschung	zum	organisationalen	Lernen	gezeigt	
hat,	 liegt	 der	 Schlüssel	 zur	 Bewältigung	 derartiger	 Dynamiken	 in	 der	 effektiven	 Koordination	
der	beteiligten	Lernenden.	Die	durchgeführten	Studien	zielen	daher	darauf	ab,	vorteilhafte	und	
schädliche	Dynamiken	von	Menschen	und	ML-Systemen	aufzudecken	und	zu	untersuchen,	wie	
diese	Dynamiken	koordiniert	werden	können,	um	die	organisationale	Leistung	zu	steigern.	Um	
eine	ganzheitliche	Perspektive	zu	fördern,	werden	drei	zentrale	Analyseebenen	erforscht.	

Die	 erste	 Ebene	 der	 Analyse	 befasst	 sich	 mit	 Leistungsauswirkungen	 auf	 individueller	Ebene.	
Hier	 konzentriert	 sich	 die	 Analyse	 auf	 zwei	 wesentliche	 Aspekte.	 Zunächst	 erfordert	 die	
Verfügbarkeit	 von	 ML-Systemen	 als	 Alternative	 zu	 Menschen,	 dass	 Organisationen	 ihre	
Delegationsstrategien	 überdenken.	 Unternehmen	 können	 am	 meisten	 von	 den	 Stärken	 von	
Menschen	und	ML-Systemen	profitieren,	wenn	sie	in	der	Lage	sind,	Probleme	an	diejenigen	zu	
delegieren,	deren	Fachwissen	und	Fähigkeiten	am	geeignetsten	für	die	Lösung	des	bestehenden	
Problems	sind.	Dies	setzt	voraus,	dass	Unternehmen	ein	Verständnis	für	Problemcharakteristika	
entwickeln,	die	auf	Probleme	hinweisen,	die	sich	besser	(oder	schlechter)	für	die	Lösung	mittels	
ML-Systemen	anstelle	von	Menschen	eignen.	Mithilfe	einer	qualitativen	Interviewstudie	werden	
zentrale	 Kriterien	 und	 Verfahrensartefakte	 identifiziert	 und	 zu	 einer	 Rahmenstruktur	 für	 die	
Identifizierung	 und	 Bewertung	 von	 Problemen	 in	 ML-Kontexten	 zusammengefasst.	 Die	
Rahmenstruktur	 bildet	 eine	 theoretische	 Grundlage	 für	 die	 Erforschung	 von	
Delegationsentscheidungen	zwischen	Menschen	und	ML-Systemen,	 indem	sie	die	wesentlichen	
Merkmale	 von	 Problemen	 herausarbeitet,	 die	 diese	 für	 die	 Anwendung	 von	 ML-Systemen	
geeignet	 erscheinen	 lassen.	 Aufbauend	 auf	 diesen	 Erkenntnissen	 wird	 in	 einer	 weiteren	
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qualitativen	 Analyse	 untersucht,	 wie	 sich	 die	 Abhängigkeit	 zwischen	 einem	 Menschen	 und	
einem	 ML-System	 bei	 delegierten	 Problemen	 auf	 die	 erzielte	 Leistung	 auswirkt.	 Es	 wird	 ein	
theoretisches	Modell	entwickelt,	das	individuelle	Leistungssteigerungen	aufgrund	des	Einsatzes	
von	 ML-Systemen	 als	 Funktion	 der	 Kompatibilität	 zwischen	 Aufgaben-,	 Daten-	 und	
Technologiemerkmalen	erklärt.	Das	Modell	verdeutlicht,	wie	die	Eigenarten	eines	ML-Systems	
die	 Leistung	 eines	 menschlichen	 Experten	 bei	 der	 Aufgabenausführung	 beeinflussen	 können,	
wenn	 sie/er	 ihre/seine	 Ausführung	 auf	 die	 Beiträge	 des	ML-Systems	 stützt.	 Die	 Studie	 liefert	
erste	 empirische	Evidenz	 für	 kontrollierbare	Einflussfaktoren,	 um	 zentrale	Abhängigkeiten	 zu	
managen	und	die	individuelle	Leistung	zu	steigern.	

Die	zweite	Ebene	der	Analyse	konzentriert	sich	auf	Leistungsauswirkungen	auf	Gruppenebene.	
Im	 Gegensatz	 zu	 konventionellen	 (Nicht-ML-)Informationssystemen	 können	 ML-Systeme	
aufgrund	 ihrer	 einzigartigen	 Lernfähigkeit	 eigenständig	 zu	 Teamvorhaben	 beitragen	 und	 sich	
Gruppen	als	aktive	Mitglieder	anschließen,	die	durch	ihre	eigenen	Beiträge	die	Gruppendynamik	
beeinflussen	 können.	 Um	 die	 entstehende	 Dynamik	 zu	 erforschen,	 wird	 eine	 Digital-Trace-
Analyse	eines	realen	Falles	durchgeführt,	 in	welchem	eine	Gruppe	von	menschlichen	Händlern	
und	 ein	 produktiv	 handelndes	 ML-System	 beim	 Wertpapierhandel	 zusammenarbeiten.	 Der	
untersuchte	 Fall	 zeigt,	 dass	 bilaterales	 Lernen	 zwischen	mehreren	Menschen	 und	 einem	ML-
System	die	Handelsleistung	steigern	kann,	was	aus	einem	sich	entwickelnden	positiven	Kreislauf	
zwischen	den	Menschen	und	dem	ML-System	zu	resultieren	scheint.	Die	Ergebnisse	zeigen,	dass	
die	Interaktionen	zwischen	den	Menschen	und	dem	ML-System	zu	einer	Gruppenleistung	führen	
können,	die	die	 individuelle	Leistung	der	Menschen	oder	des	ML-Systems	übertrifft.	Dies	setzt	
jedoch	 voraus,	 dass	 Organisationen	 den	 Wissenstransfer	 und	 die	 Rollen	 der	 beteiligten	
Menschen	und	des	ML-Systems	effektiv	koordinieren	können.	

Schließlich	 konzentriert	 sich	 die	 dritte	 Analyseebene	 auf	 Leistungsauswirkungen	 auf	
Organisationsebene.	 Da	ML-Systeme	 in	 zunehmendem	Maße	 zu	 organisationalen	 Prozessen	 in	
sämtlichen	 Bereichen	 einer	 Organisation	 beitragen,	 ist	 es	 wahrscheinlich,	 dass	 es	 zu	
Veränderungen	in	den	grundlegenden	Konzepten	der	Organisation	kommt,	was	sich	wiederum	
auf	 die	 Gesamtleistung	 der	 Organisation	 auswirken	 kann.	 Durch	 eine	 Reihe	 agentenbasierter	
Simulationen	 werden	 die	 Dynamiken	 der	 organisationsweiten	 Interaktionen	 zwischen	
Menschen	und	ML-Systemen	erforscht.	Die	Ergebnisse	deuten	darauf	hin,	dass	ML-Systeme	dazu	
beitragen	 können,	 die	 Verfolgung	 innovativer	 Richtungen	 anzuregen	 und	 Menschen	 von	 der	
Erprobung	 unkonventioneller	 Ideen	 zu	 entlasten.	 Darüber	 hinaus	 wird	 gezeigt,	 dass	 die	
Verbindung	 von	 menschlichem	 Lernen	 und	 ML	 weitgehend	 vorteilhaft	 ist,	 aber	 unter	
bestimmten	Bedingungen	auch	nachteilig	 für	Organisationen	sein	kann.	Die	Ergebnisse	zeigen,	
dass	eine	effektive	Koordination	von	Menschen	und	ML-Systemen	unter	Berücksichtigung	der	
Umweltbedingungen	 die	 positiven	 und	 negativen	 Auswirkungen	 von	 ML-Systemen	 auf	 die	
Leistung	von	Organisationen	maßgeblich	beeinflussen	kann.	

Die	enthaltenen	Analysen	verdeutlichen,	dass	es	gerade	die	einzigartigen	Unterschiede	zwischen	
Menschen	und	ML-Systemen	 sind,	 die	 dafür	 sorgen,	 dass	 sie	 einander	 oft	 besser	 ergänzen	 als	
ersetzen.	 Das	 Geheimnis	 zur	 Entfaltung	 des	 wahren	 Potenzials	 von	 ML-Systemen	 mag	 daher	
darin	liegen,	die	Unterschiede	zwischen	Menschen	und	ML-Systemen	innerhalb	ihrer	bilateralen	
Beziehung	effektiv	zu	koordinieren,	um	positive	Kreisläufe	der	gegenseitigen	Verbesserung	zu	
erzeugen.	Diese	Dissertation	ist	ein	erster	Schritt	zur	Entwicklung	einer	Theorie	und	Leitlinie	für	
die	 Koordinierung	 der	 Dynamiken	 zwischen	 Menschen	 und	 ML-Systemen	 und	 soll	 dazu	
beitragen,	Kollaborationstheorie	im	Zeitalter	der	KI	neu	zu	überdenken.	
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1 Introduction	

Artificial	intelligence	(AI)	is	disrupting	our	economy	and	society,	affecting	all	kinds	of	domains	
and	 industries	 (e.g.,	 Benbya	 et	 al.	 2021;	 Berente	 et	 al.	 2021;	 Brynjolfsson	 and	 Mcafee	 2016;	
Daugherty	 and	Wilson	 2018;	 Davenport	 and	 Kirby	 2016;	 Ransbotham	 et	 al.	 2020).	 However,	
although	AI	is	being	adopted	in	a	wide	variety	of	organizational	processes,	many	organizations	
struggle	to	achieve	the	promised	performance	gains	when	they	adopt	AI,	as	they	fail	to	exploit	
AI’s	 great	 potential	 (e.g.,	 Benbya	 et	 al.,	 2021;	 Berente	 et	 al.,	 2021;	 Fügener,	 Grahl,	 Gupta,	 &	
Ketter,	 2021;	 Ransbotham	 et	 al.,	 2020;	 Teodorescu	 et	 al.,	 2021).	 To	 help	 advance	 our	
understanding	of	 the	 impact	of	AI	on	organizational	performance	and	 to	provide	guidance	on	
how	to	effectively	manage	AI,	this	dissertation	explores	the	idiosyncrasies	of	AI,	the	influential	
role	of	the	bilateral	relationship	that	develops	between	humans	and	AI	and	gives	rise	to	virtuous	
or	vicious	dynamics	in	human–AI	collaborations,	and	the	resulting	managerial	implications.	

1.1 Overarching	Motivation	

To	 achieve	 great	 performance,	 organizations	must	 be	 able	 to	 act	 and	 adapt	 effectively,	which	
requires	 them	 to	 continuously	 learn	 about	 the	 reality	 that	 surrounds	 them	 (e.g.,	 Argote	 et	 al.,	
2021;	 Levitt	 &	 March,	 1988;	 March,	 1991).	 This	 makes	 learning	 a	 crucial	 core	 process	 for	
organizations	that	 forms	organizational	decisions,	routines,	and	 innovations—and	thereby	can	
even	determine	their	long-term	survival	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011;	
Huber,	1991;	Levitt	&	March,	1988).	However,	organizations	cannot	learn	on	their	own,	but	rely	
exclusively	on	the	learning	of	their	members	(e.g.,	March,	1991;	Simon,	1991).	Thus,	the	key	to	
enabling	 and	 sustaining	 worthwhile	 learning	 about	 their	 environment	 lies	 in	 organizations’	
facilitation	and	coordination	of	the	learning	and	interactions	of	their	members	(e.g.,	Argote	et	al.,	
2021;	 Fang	 et	 al.,	 2010;	 Levitt	 &	March,	 1988;	March,	 1991,	 2010;	 K.	 D.	Miller	 &	 Lin,	 2010).	
Unfortunately,	 the	 complex	 nature	 of	 reality	makes	 learning	 about	 its	 causal	 structure	 a	 very	
challenging	 endeavor	 (e.g.,	 Levinthal	 &	 March,	 1993;	 March,	 2010):	 Reality	 involves	 a	 mind-
boggling	and	ambiguous	number	of	variables,	variable	connections,	and	random	variations	(e.g.,	
Benbya	et	al.,	2020;	March,	1994,	2010),	which	creates	a	level	of	complexity	that	often	appears	
to	lie	beyond	reach	(e.g.,	Levinthal	&	March,	1993;	March,	2010;	G.	A.	Miller,	1956;	Simon,	1972).	
The	 unraveling	 of	 reality’s	 complex	 dynamics	 has	 therefore	 already	 become	 the	 nemesis	 of	
humanity’s	 greatest	 minds	 (e.g.,	 March,	 2006,	 2010;	 Simon,	 1972).	 The	 limits	 of	 human	
cognition,	which	only	allow	observing	and	analyzing	a	strongly	limited	number	of	the	variables,	
variable	connections,	and	random	variations	of	reality,	constitute	one	of	the	greatest	obstacles	to	
learning	 about	 reality,	 and	 thereby	 inhibit	 the	 effectiveness	 of	 the	 decisions,	 routines,	 and	
crafted	innovations	that	occur	(e.g.,	Levinthal	&	March,	1993;	March,	2010;	March	et	al.,	1991;	G.	
A.	Miller,	1956;	Simon,	1972).		

To	 overcome	 human	 limitations,	 an	 astounding	 number	 of	 technologies	 with	 increased	
analytical	 capabilities	 have	 been	 created	 (e.g.,	 Berente	 et	 al.,	 2021;	 Lindebaum	 et	 al.,	 2020;	
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March,	 2006).	 Presently,	 this	 endeavor	 has	 led	 to	 a	 particular	 form	 of	 modern	 AI	 known	 as	
machine	 learning	 (ML).	 Information	 systems	 (ISs)	 based	 on	 ML	 can	 learn	 on	 their	 own	 by	
deriving	patterns	from	data	to	create	models	of	reality	that	can	be	used	to	guide	future	behavior	
(Brynjolfsson	 &	 Mitchell,	 2017;	 Mitchell,	 1997;	 Russell	 &	 Norvig,	 2021).	 ML	 systems	 have	
recently	surpassed	human	intelligence	in	a	variety	of	tasks,	including	Go	(e.g.,	Silver	et	al.,	2017),	
object	 detection	 in	 images	 (e.g.,	 He	 et	 al.,	 2015),	 and	 complex	multiplayer	 online	 games	 (e.g.,	
Vinyals	et	al.,	2019).	ML	systems	are	therefore	often	praised	as	a	universal	panacea	to	overcome	
the	limits	of	human	cognition	(e.g.,	Benbya	et	al.,	2021;	Lindebaum	et	al.,	2020).	Attracted	by	this	
great	potential,	today’s	organizations	are	increasingly	adopting	ML	systems	(e.g.,	Brynjolfsson	&	
Mitchell,	2017;	Ransbotham	et	al.,	2020).	However,	some	recent	disasters	have	made	it	apparent	
that	ML	systems	may	not	be	a	universal	panacea	after	all	(e.g.,	Dolata	et	al.,	2022;	Fu	et	al.,	2022;	
Kordzadeh	&	Ghasemaghaei,	2022;	Marjanovic	et	al.,	2022;	Teodorescu	et	al.,	2021).	Indeed,	ML	
systems	come	with	their	own	strengths	and	weaknesses	(as	discussed	in	the	studies	included	in	
this	 dissertation),	 which	 appear	 to	 render	 ML	 systems	 not	 necessarily	 a	 better	 but	 rather	 a	
different	form	of	learners	than	humans	(e.g.,	Balasubramanian	et	al.,	2022;	Berente	et	al.,	2021;	
Ransbotham	et	al.,	2020).		

Due	to	the	wide-ranging	adoption	of	ML	systems,	humans	and	ML	systems	already	learn	side	by	
side	 in	 organizations	 to	 jointly	 help	 them	 learn	 about	 their	 environment	 in	 order	 to	 act	 and	
adapt	 effectively	 (e.g.,	 Brynjolfsson	 &	Mitchell,	 2017;	 Murray	 et	 al.,	 2021;	 Ransbotham	 et	 al.,	
2020;	Seidel	et	al.,	2019),	and	this	requires	organizations	to	effectively	coordinate	the	collective	
learning	 of	 interacting	 humans	 and	 ML	 systems	 (e.g.,	 Fügener,	 Grahl,	 Gupta,	 &	 Ketter,	 2021;	
Ransbotham	et	al.,	 2020;	Seidel	et	 al.,	 2019;	Sturm,	Gerlach,	 et	 al.,	 2021).	To	date,	however,	 it	
remains	 unclear	 whether	 and	 when	 humans’	 and	 ML	 systems’	 differences	 may	 be	
complementary	 or	 detrimental	 to	 one	 another	 (e.g.,	 Benbya	 et	 al.,	 2021;	 Berente	 et	 al.,	 2021;	
Fügener,	 Grahl,	 Gupta,	 &	 Ketter,	 2021;	 Schuetz	 &	 Venkatesh,	 2020).	 In	 the	 best	 case,	 the	
reciprocal	 interplay	 of	 humans	 and	 ML	 systems	 can	 generate	 helpful	 synergies	 to	 overcome	
their	 respective	 shortcomings	 (e.g.,	 Benbya	 et	 al.,	 2021;	 Schuetz	 &	 Venkatesh,	 2020;	 Sturm,	
Gerlach,	et	al.,	2021).	In	the	worst	case,	however,	they	may	corrupt	each	other	and	thus	possibly	
become	 detrimental	 to	 the	 organizational	 learning	 in	 its	 entirety,	 thereby	 threatening	
organizations’	performance	and	long-term	survival	(e.g.,	Balasubramanian	et	al.,	2022;	Fügener,	
Grahl,	Gupta,	&	Ketter,	2021;	Sturm,	Gerlach,	et	al.,	2021).		

It	 is	 only	 recently	 that	 researchers	 have	 begun	 to	 examine	 how	 ML	 systems	 affect	 human	
behavior	 and	 vice	 versa	 (e.g.,	 Grønsund	 &	 Aanestad,	 2020;	 Lebovitz	 et	 al.,	 2021;	 Schuetz	 &	
Venkatesh,	2020;	Seidel	et	al.,	2019;	Teodorescu	et	al.,	2021).	Research	on	the	role	of	 learning	
within	 collaborations	 between	humans	 and	ML	 systems	 still	 remains	 scarce,	 and	 the	 scholars	
involved	in	such	research	strongly	emphasize	the	need	for	further	analyses	(e.g.,	Afiouni-Monla,	
2019;	Argote	et	al.,	2021;	Balasubramanian	et	al.,	2022;	Lyytinen	et	al.,	2021;	Ransbotham	et	al.,	
2020;	 Seidel	 et	 al.,	 2019;	 Sturm,	 Gerlach,	 et	 al.,	 2021;	 Sturm,	 Koppe,	 et	 al.,	 2021).	 As	
organizations	may	not	only	miss	out	on	ML	systems’	potential	but	may	even	risk	impeding	the	
learning	 processes	 that	 are	 vital	 to	 their	 organizational	 behavior	 and	 survival,	 our	 lack	 of	
understanding	on	how	 to	 effectively	 coordinate	 the	dynamics	of	humans	and	ML	 systems	 can	
have	 far-reaching	 consequences	 (e.g.,	 Balasubramanian	 et	 al.,	 2022;	 Berente	 et	 al.,	 2021;	
Lyytinen	et	al.,	2021;	Schuetz	&	Venkatesh,	2020;	Sturm,	Gerlach,	et	al.,	2021).	To	help	uncover	
virtuous	 and	 vicious	 dynamics	 between	 humans	 and	 ML	 systems	 and	 to	 help	 organizations	
effectively	manage	 these	 dynamics,	 I	 pursue	 the	 following	 overarching	 research	 objective:	 In	
order	 to	 increase	 organizational	 performance,	 how	 can	 organizations	 effectively	 coordinate	 the	
learning	of	their	human	members	and	ML	systems?	
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1.2 Research	Questions	

As	 widespread	 collaboration	 between	 humans	 and	 ML	 systems	 can	 be	 expected	 to	 affect	
different	parts	of	an	organization,	I	further	nuance	the	overarching	research	objective	with	the	
following	research	questions	(RQs)	to	capture	different	levels	of	analysis.	I	adopt	three	levels	of	
analysis	that	are	commonly	used	to	analyze	changes	in	organizational	behavior	to	help	provide	a	
holistic	perspective	on	 the	phenomenon	of	 collaboration	between	humans	and	ML	systems	 in	
organizations:	the	(1)	individual,	(2)	group,	and	(3)	organization	levels.		

When	organizations	introduce	ML	systems,	the	individual	level	is	affected	first	and	foremost.	As	
ML	systems	offer	a	different	form	of	 learning,	organizations	may	use	them	as	an	alternative	to	
human	 learning.	 Organizations	 should	 reap	 the	 most	 benefit	 from	 the	 different	 strengths	 of	
humans	and	ML	systems	if	they	are	able	to	delegate	learning	problems	to	those	whose	expertise	
best	 fits	 the	problem,	which	 requires	organizations	 to	 rethink	 their	delegation	strategies	 (e.g.,	
Brynjolfsson	&	Mitchell,	2017;	Fügener,	Grahl,	Gupta,	&	Keter,	2021;	Lyytinen	et	al.,	2021).	To	do	
so,	 organizations	must	develop	an	understanding	of	 the	problem	characteristics	 that	 can	help	
discern	 the	 better	 (or	 inferior)	 suitability	 of	 humans	 and	 ML	 systems	 for	 certain	 learning	
problems	in	order	to	guide	their	delegation	decisions	(e.g.,	Brynjolfsson	&	Mitchell,	2017;	Jordan	
&	Mitchell,	2015).	To	date,	it	remains	unclear	how	organizations	can	distinguish	among	learning	
problems	to	effectively	guide	their	delegation	of	these	problems	to	humans	or	ML	systems	(e.g.,	
Benbya	et	al.,	2021;	Berente	et	al.,	2021;	Fügener,	Grahl,	Gupta,	&	Keter,	2021;	Lyytinen	et	al.,	
2021).	 To	 help	 advance	 our	 understanding	 of	 how	 to	 delegate	 problems	 to	 humans	 or	 ML	
systems,	I	ask	the	following	RQ:	

RQ1.1:	 In	 order	 to	 increase	 individual	 performance,	 how	 can	 organizations	 effectively	 delegate	
learning	problems	between	a	human	and	an	ML	system?	

However,	delegation	between	humans	and	ML	systems	is	only	half	of	the	story	of	coordination	
on	 the	 individual	 level.	 The	 assumption	 of	 an	 “all-or-nothing”	 scenario	 neglects	 potential	
synergies	 that	 can	 emerge	 through	 the	 combination	 of	 humans	 and	 ML	 systems.	 If	 done	
correctly,	collaboration	can	be	more	 than	 just	 the	sum	of	 individual	contributions	by	virtue	of	
the	 additional	 value	 that	 can	 emerge	 from	 individuals’	 interactions	 (e.g.,	 Argote	 et	 al.,	 2021;	
Lyles	&	Fiol,	1985;	March,	1991).	Here,	research	on	task-technology	fit	(TTF)	offers	a	theoretical	
lens	that	is	a	good	fit	for	studying	the	interaction	of	a	human	and	an	ML	system	when	a	human	
bases	her/his	task	execution	on	the	outcomes	of	an	ML	system’s	actions.	TTF	theory	highlights	
that	the	better	a	technology	fits	an	individual’s	task,	the	more	likely	the	technology	is	to	increase	
the	 individual’s	 performance	 (Goodhue	&	Thompson,	 1995).	While	 research	 on	TTF	has	 been	
applied	to	a	wide	variety	of	technological	contexts	(e.g.,	group	support	and	mobile	ISs;	Gebauer	
et	 al.,	 2010;	 Zigurs	 &	 Buckland,	 1998),	 ML	 systems	 are	 as	 yet	 unexplored.	 Prior	 findings	 on	
similar	 technologies	 (e.g.,	 expert	 systems	 and	 data	 analytics;	 Ghasemaghaei	 et	 al.,	 2017;	
Wongpinunwatana	 et	 al.,	 2000)	 exist,	 but	 they	 are	 ill-suited	 to	 inform	 studies	 on	ML	 systems	
because	 they	 do	 not	 capture	 the	 idiosyncrasies	 of	ML	 systems.1	To	 investigate	 the	 conditions	
that	facilitate	potential	improvements	of	a	human’s	performance	through	interaction	with	an	ML	
system,	I	ask	the	following	RQ:	

RQ1.2:	 In	 order	 to	 increase	 individual	 performance,	 how	 can	 organizations	 enable	 effective	
collaboration	between	a	human	and	an	ML	system	on	a	shared	task?	

 
 
1	As	outlined	in	the	theoretical	background	and	further	detailed	in	paper	B.	
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To	understand	the	consequences	of	organizational	change	on	the	group	level,	it	does	not	suffice	
to	extrapolate	from	separate	individual	perspectives	(e.g.,	Argote	&	Miron-Spektor,	2011;	Lyles	
&	Fiol,	1985;	March,	1991).	Group-level	analysis	concerns	a	set	of	individuals	working	together	
to	reach	a	mutual	objective,	creating	value	beyond	the	sum	of	the	separate	individuals’	actions	
(e.g.,	 Lyles	 &	 Fiol,	 1985;	 March,	 1991).	 Here,	 the	 intertwined	 (either	 mutually	 nurturing	 or	
hindering)	 actions	 of	 multiple	 individuals	 often	 create	 novel	 dynamics	 that	 cannot	 be	 easily	
anticipated	from	the	individual	perspective	(e.g.,	Benbya	et	al.,	2020;	March,	1991).	Group-level	
dynamics	have	been	analyzed	in	a	wide	variety	of	contexts	(e.g.,	Sarker	&	Valacich,	2010;	Zigurs	
&	 Buckland,	 1998),	 including	 diverse	 usages	 of	 different	 ISs	 (e.g.,	 group	 support	 systems,	
corporate	repositories;	Alavi	&	Leidner,	2001;	Kane	&	Alavi,	2007).	To	date,	however,	ISs	have	
been	 viewed	 exclusively	 as	 a	 tool	 that	 only	 supports	 the	 learning	within	 human	 groups	 (e.g.,	
knowledge	 repositories	 that	 facilitate	 the	 accumulation	 and	 sharing	 of	 group	 members’	
knowledge;	Kane	&	Alavi,	2007).	As	ML	systems	are	capable	of	contributing	their	own	learning	
to	 group	 endeavors,	 ML	 systems	 may	 join	 groups	 as	 additional	 active	 group	 members	 (e.g.,	
Seeber	 et	 al.,	 2020).	 As	 a	 result,	 new	 group	 formations	 may	 emerge,	 potentially	 shifting,	
eliminating,	 and	 creating	 tasks	 and	 roles	within	 groups	 (e.g.,	 Fügener,	 Grahl,	 Gupta,	&	Ketter,	
2021;	 Schuetz	 &	 Venkatesh,	 2020;	 Seeber	 et	 al.,	 2020).	 Yet	 empirical	 evidence	 that	 allows	
unpacking	such	group	dynamics	between	humans	and	ML	systems	remains	scarce	(e.g.,	Fügener,	
Grahl,	Gupta,	&	Ketter,	 2021).	To	help	uncover	 virtuous	 and	vicious	 group	dynamics	between	
humans	and	ML	systems,	I	ask	the	following	RQ:	

RQ2:	 In	 order	 to	 increase	 group	 performance,	 how	 can	 organizations	 effectively	 coordinate	 the	
group	dynamics	of	humans	and	ML	systems?	

Organization-level	 research	 focuses	 on	 fundamental	 concepts,	 such	 as	 the	 evolution	 of	
organizational	norms,	cultures,	and	strategies,	that	can	have	wide-ranging	consequences	for	the	
organization	as	a	whole.	A	strong	cumulative	tradition	of	organization-level	research	exists	(e.g.,	
how	 ISs	 can	 support	organization-wide	knowledge	exchange	and	how	digitalization	 strategies	
can	be	reliably	aligned	with	organizational	visions;	Argote	et	al.,	2021;	Kohli	&	Melville,	2019).	
However,	 insights	 on	 the	 organization-level	 dynamics	 of	ML	 systems	 and	 their	 consequences	
have	 not	 yet	 been	 established	 (e.g.,	 Berente	 et	 al.,	 2021;	Murray	 et	 al.,	 2021).	 As	ML	 systems	
increasingly	 join	 humans	 in	 core	 learning	 processes	 and	 contribute	 what	 they	 have	 learned	
throughout	 the	 organization,	 changes	 in	 the	 organization’s	 collective	 knowledge	 are	 likely	 to	
emerge,	potentially	affecting	organization-wide	concepts	 (e.g.,	Lyytinen	et	al.,	2021;	Murray	et	
al.,	 2021;	 Teodorescu	 et	 al.,	 2021).	 To	 understand	when	 and	 how	 such	wide-ranging	 changes	
emerge	 from	 the	 learning	 of	 humans	 and	ML	 systems	 within	 an	 organization,	 an	 analysis	 of	
organization-wide	 dynamics	 can	 inform	 us	 about	 related	 consequences	 and	 potential	
countermeasures	(e.g.,	Kane	&	Alavi,	2007;	March,	1991).	To	help	understand	the	organization-
wide	role	of	learning	dynamics	between	humans	and	ML	systems,	I	ask	the	following	RQ:		

RQ3:	 In	 order	 to	 increase	 organization-wide	 performance,	 how	 can	 organizations	 effectively	
coordinate	humans	and	ML	systems	throughout	the	entire	organization?	

1.3 Structure	of	this	Dissertation	

Aiming	to	help	answer	the	RQs	introduced	above,	this	dissertation	includes	four	research	papers	
that	have	been	published	 in	peer-reviewed	outlets,	 including	 three	publications	 in	 conference	
proceedings	and	one	journal	article.	In	this	section,	the	contributions	and	research	approaches	
of	the	four	papers	are	summarized	and	integrated	into	the	overall	structure	of	this	dissertation.	
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Table	1	lists	the	four	papers,	referred	to	as	A,	B,	C,	and	D,	that	are	included	in	this	dissertation.	
Paper	A	addresses	RQ1.1,	 regarding	 individual	performance,	by	exploring	 relevant	procedural	
artifacts	and	key	 factors	 that	 can	 inform	 the	delegation	of	problems	between	humans	and	ML	
systems,	and	then	condenses	these	into	a	proposed	framework	that	allows	structured	ideation	
and	evaluation	of	problems	that	are	suited	to	be	solved	using	ML	systems.	Paper	B,	which	also	
focuses	 on	 individual	 performance,	 tackles	RQ1.2.	 This	 paper	 translates	 the	widely	 renowned	
TTF	 theory	 to	 a	 context	 in	 which	 a	 human	 bases	 her/his	 task	 execution	 on	 an	 ML	 system’s	
actions	and	thereby	develops	a	nuanced	version	of	TTF	to	capture	the	relevant	idiosyncrasies	of	
ML	systems.	The	proposed	 theoretical	model	explains	 individual	performance	gains	via	use	of	
ML	 systems	 as	 a	 function	 of	 the	 fit	 between	 task,	 data,	 and	 technology	 characteristics,	 thus	
contributing	to	a	better	understanding	of	the	potential	levers	for	generating	synergies	between	a	
human	and	an	ML	system.	Paper	C,	which	focuses	on	group-level	performance,	aims	to	answer	
RQ2.	Through	a	study	of	an	autonomously	trading	ML	system	that	joins	a	team	of	human	traders,	
this	paper	uncovers	several	virtuous	and	vicious	dynamics	between	the	human	traders	and	the	
ML	system.	The	observed	dynamics	uncover	coordination	designs	that	increase	the	group-level	
trading	 performance.	 Finally,	 paper	D	 focuses	 on	 organization-level	 performance	 and	 aims	 to	
answer	 RQ3	 by	 exploring	 organization-wide	 dynamics	 between	 humans	 and	ML	 systems	 and	
their	effects	on	organization-level	performance.	Different	coordination	setups	are	observed	over	
the	 lifetime	 of	 a	 simulated	 organization	 in	which	 humans	 and	ML	 systems	 learn	 side	 by	 side,	
jointly	affecting	the	organization’s	overall	stock	of	knowledge	(i.e.,	 its	procedures,	rules,	forms,	
and	 norms;	 March	 1991).	 The	 derived	 insights	 are	 contrasted	 in	 different	 environmental	
contexts	 to	 eventually	 inform	 organizational	 strategies	 for	 effective	 collaboration	 designs	
between	humans	and	ML	systems	that	will	likely	increase	organization-wide	performance.			

Table	1:	List	of	publications	included	in	this	dissertation	

Paper A: 
Individual-level 
performance 

Sturm, Timo, Fecho, Mariska, & Buxmann, Peter. (2021). To use or not to use artificial 
intelligence? A framework for the ideation and evaluation of problems to be solved 
with artificial intelligence. In Proceedings of the 54th Hawaii International Conference on 
System Sciences (HICSS), Virtual Conference.  
VHB-JQ32 Ranking: C 

Paper B: 
Individual-level 
performance 

Sturm, Timo, & Peters, Felix. (2020). The impact of artificial intelligence on individual 
performance: Exploring the fit between task, data, and technology. In Proceedings of 
the 28th European Conference on Information Systems (ECIS), a Virtual AIS Conference.  
VHB-JQ3 Ranking: B 

Paper C:  
Group-level 
performance 

Sturm, Timo, Koppe, Timo, Scholz, Yven, & Buxmann, Peter. (2021). The case of human-
machine trading as bilateral organizational learning. In Proceedings of the 42nd 
International Conference on Information Systems (ICIS), Austin, TX, USA.  
VHB-JQ3 Ranking: A 

Paper D: 
Organization-level 
performance 

Sturm, Timo, Gerlach, Jin P., Pumplun, Luisa, Mesbah, Neda, Peters, Felix, Tauchert, 
Christoph, Nan, Ning, & Buxmann, Peter. (2021). Coordinating human and machine 
learning for effective organizational learning. Management Information Systems 
Quarterly (MIS Quarterly), 45(3), 1581–1602. https://doi.org/10.25300/MISQ/2021/16543 
VHB-JQ3 Ranking: A+ (SJR: Q1 | Impact factor (2021): 8.553) 

 
 
2	The VHB-JOURQUAL3 (VHB-JQ3) ranking was selected by the Technical University of Darmstadt as the preferred source for 

assessing the quality of research papers in my doctoral study program. The VHB-JQ3 was published by the German Academic 
Association of Business Research in 2015, and this remained the latest VHB-JQ ranking at the time of writing this dissertation. 
For the journal publication, I also include two internationally recognized rankings to increase transparency: the SCImago Journal 
Rank (SJR) and the Institute for Scientific Information (ISI) impact factor.	
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Table	2	provides	a	detailed	overview	of	the	four	papers’	levels	of	analysis,	research	approaches,	
and	theoretical	backgrounds.	As	empirical	evidence	on	the	use	of	ML	systems	in	organizations	
remains	scarce,	a	variety	of	explorative	research	methods	are	used	within	the	four	papers,	with	
the	aim	of	contributing	theoretical	foundations	that	can	inspire	future	research	endeavors:	First,	
qualitative	content	analysis	is	used	in	papers	A	and	B.	Through	open-ended	questions,	qualitative	
content	analysis	allows	experts	 to	 freely	share	 their	experiences	and	opinions,	which	are	 then	
codified	 in	 order	 to	 nuance	 existing	 theory	 for	 novel	 contexts.	 In	 both	 essays,	 the	 content	
analysis	 is	 based	 on	 a	 series	 of	 interviews	 with	 experts	 who	 are	 frequently	 involved	 in	 ML	
initiatives.	The	two	studies	contribute	to	developing	a	fundamental	understanding	of	the	use	of	
ML	systems	and	 its	 impact	on	 individual	performance	by	condensing	 the	experts’	 experiences	
across	a	multitude	of	industries	and	use	cases.	The	uncovered	impacts	of	ML	systems’	perils	and	
pitfalls	on	a	human’s	performance	were	then	also	used	to	inspire	papers	C	and	D.	Second,	digital	
trace	analysis	is	used	in	paper	C.	Digital	trace	analysis	follows	an	abductive	reasoning	approach	
that	combines	multiple	 iterations	of	quantitative	and	qualitative	analyses.	For	the	quantitative	
data,	the	actual	trading	behaviors	of	both	human	traders	and	an	autonomous	ML	system	were	
collected,	analyzed,	and	then	contrasted	to	gradually	derive	working	hypotheses.	To	nuance	and	
validate	these	working	hypotheses,	we	then	reached	out	to	the	traders	and	presented	them	with	
the	derived	insights,	aiming	to	collect	collateral	qualitative	data	to	explain	the	quantified	trading	
behavior.	Insights	from	the	qualitative	analyses	then	stimulated	additional	working	hypotheses	
and	 quantitative	 analyses.	 This	 cycle	 of	 quantitative	 and	 qualitative	 analyses	 was	 performed	
until	 sufficiently	 justified	 hypotheses	 emerged.	 This	 approach	 allowed	 us	 to	 uncover	 the	
dynamics	between	 the	human	 traders	and	 the	ML	system	and	provide	 initial	 explanations	 for	
their	 emergence.	 Third,	 a	 series	 of	agent-based	simulations	 were	 used	 in	 paper	 D.	 Relying	 on	
agent-based	 simulation	 allows	 the	 pursuit	 of	 three	 objectives:	 (1)	 to	model	 a	 potential	 future	
state	of	an	organization	in	which	humans	and	ML	systems	learn	equally	side	by	side	throughout	
the	 organization,	 (2)	 to	 observe	 the	 evolution	 of	 processes	 over	 an	 organization’s	 complete	
lifetime	 (an	 observation	 that	 is	 largely	 obstructed	 in	 real-world	 empirical	 settings	 due	 to	
constraints	 in	 measuring	 capability	 and	 time),	 and	 (3)	 to	 adopt	 a	 holistic	 organization-wide	
perspective	on	emergent	dynamics	and	derivable	propositions.		

Table	2:	Outline	of	research	papers	

Paper Level of Analysis Research Approach Theoretical Base 

Paper A 
Individual Qualitative content analysis 

Problem solving 

Paper B Task-technology fit (TTF) 

Paper C Group Digital trace analysis 
Organizational learning 

Paper D Organization Agent-based simulation 

	

In	addition	to	the	four	papers	that	are	included	in	this	dissertation,	I	co-authored	the	following	
publications	in	the	fields	of	intelligent	transportation,	health	care,	and	computer	science:3	

 
 
3	Although	these	three	publications	are	related	to	 the	overarching	topic,	 they	are	not	 included	 in	 this	dissertation	because	

their	essential	focus	is	different	from	the	focus	of	this	dissertation	(i.e.,	exploring	the	impacts	of	human–AI	collaboration	
on	organizational	performance).	
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• Sturm,	T.,	Krupitzer,	C.,	Segata,	M.,	&	Becker,	C.	(2021).	A	taxonomy	of	optimization	
factors	for	platooning.	IEEE	Transactions	on	Intelligent	Transportation	Systems,	22(10),	
6097–6114.	https://doi.org/10.1109/tits.2020.2994537	
(VHB-JQ3:	–	|	SJR:	Q1	|	Impact	factor	(2021):	9.551)	

• Gawlitza,	J.,	Sturm,	T.,	Spohrer,	K.,	Henzler,	T.,	Akin,	I.,	Schönberg,	S.,	Borggrefe,	M.,	
Haubenreisser,	H.,	&	Trinkmann,	F.	(2019).	Predicting	pulmonary	function	testing	from	
quantified	computed	tomography	using	machine	learning	algorithms	in	patients	with	
COPD.	Diagnostics,	9(1),	1–13.	https://doi.org/10.3390/diagnostics9010033		
(VHB-JQ3:	–	|	SJR:	Q2	|	Impact	factor	(2021):	3.992)	

• Krupitzer,	C.,	Drechsel,	G.,	Mateja,	D.,	Pollkläsener,	A.,	Schrage,	F.,	Sturm,	T.,	Tomasovic,	
A.,	&	Becker,	C.	(2018).	Using	spreadsheet-defined	rules	for	reasoning	in	self-adaptive	
systems.	In	Proceedings	of	the	2018	IEEE	International	Conference	on	Pervasive	
Computing	and	Communications	Workshops	(PerCom	Workshops)	(pp.	289–294).	Athens,	
Greece.	https://doi.org/10.1109/PERCOMW.2018.8480283	

The	 rest	 of	 this	 dissertation	 is	 organized	 as	 follows.	 The	 overarching	 research	 context	 is	
discussed	in	Chapter	2.	Next,	the	four	papers	that	are	included	in	this	dissertation	are	presented	
in	Chapters	3–6.4	Finally,	Chapter	7	concludes	the	dissertation	with	a	discussion	of	the	studies’	
overarching	contributions	and	future	research	endeavors.	

 
 
4	The	papers	have	been	slightly	adapted	from	their	original	versions	to	have	a	consistent	layout	throughout	this	dissertation.	

They	 are	 written	 from	 the	 first-person	 plural	 perspective	 (i.e.,	 “we”),	 since	 several	 co-authors	 contributed	 to	 each	
publication.	
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2 Research	Context	and	Positioning	of	this	Dissertation	

This	chapter	introduces	the	overarching	concepts	and	theories	that	are	used	in	the	four	included	
papers.	 These	 include	 AI	 and	 ML,	 coordination	 and	 organizational	 performance,	 and	
organizational	 theories	 that	 are	 central	 to	 the	 four	 studies	 (i.e.,	 problem	 solving,	 task–
technology	fit,	and	organizational	learning).5	

2.1 Artificial	Intelligence	and	Machine	Learning	

This	 section	 introduces	 the	 overarching	 concept	 of	 AI	 and	 discusses	 related	 themes.	 It	 then	
defines	ML,	a	modern	AI	approach,	and	discusses	its	realization	in	organizations.	

2.1.1 Artificial	Intelligence	

The	term	artificial	intelligence	is	difficult	to	define.	Since	the	birth	of	AI	as	an	academic	discipline	
in	 1956	 during	 the	 famous	 and	 influential	 Dartmouth	 Summer	 Research	 Project	 on	 Artificial	
Intelligence	workshop	(McCarthy	et	al.,	1955,	2006),	numerous	definitions	of	AI	have	been	(and	
are	 still	 being)	proposed	 (e.g.,	Berente	et	 al.,	 2021;	Russell	&	Norvig,	2021;	Wang,	2019).	The	
continuing	 discussion	 of	 how	 to	 define	 AI	 appears	 to	 mainly	 result	 from	 an	 equally	 absent	
consensus	on	the	definition	of	 intelligence,	whose	definitional	challenges	are	transmitted	to	AI,	
which	aims	to	emulate	intelligence	(there	are	excellent	overviews	by,	e.g.,	Legg	&	Hutter,	2007).	
This	leaves	the	term	AI	without	a	clear	definition,	despite	numerous	redefinitions	(e.g.,	Berente	
et	 al.,	 2021;	 Wang,	 2019),	 proposed	 intelligence	 tests	 (e.g.,	 Searle,	 1980;	 Turing,	 1950),	 and	
reflections	(e.g.,	Benbya	et	al.,	2021;	Russell	&	Norvig,	2021).	

Yet	what	does	exist	today	is	a	substantial	consensus	on	major	concepts	of	artificial	entities	that	
are	widely	perceived	as	in	some	way	behaving	intelligently	(e.g.,	Russell	&	Norvig,	2021;	Schuetz	
&	Venkatesh,	2020).	One	central	concept	is	the	notion	of	the	rational	agent	proposed	by	Russel	
and	Norvig	(2021),	which	has	been	widely	accepted	by	scholars	across	disciplines	(e.g.,	Berente	
et	 al.,	 2021;	Nilsson,	1998;	Russell	&	Norvig,	 2021;	 Schuetz	&	Venkatesh,	2020).	According	 to	
this	concept,	an	intelligent	agent	can	be	defined	as	“anything	that	can	be	viewed	as	perceiving	its	
environment	through	sensors	and	acting	upon	that	environment	through	actuators”	(Russell	&	
Norvig,	2021,	p.	54).6	To	this	end,	intelligent	behavior	is	implemented	as	an	agent	function	that	
aims	to	select	the	seemingly	best	action	based	on	current	context	information	(Russell	&	Norvig,	
2021).	For	instance,	a	self-driving	car	constitutes	a	rational	agent	that	is	led	by	its	agent	function	
to	 make	 the	 most	 reasonable	 decision	 about	 its	 actions	 (e.g.,	 accelerating,	 braking,	 steering)	

 
 
5	This	section	mainly	presents	a	synthesis	of	the	theoretical	backgrounds	provided	in	papers	A	to	D.	While	major	aspects	are	

discussed	here,	please	refer	to	the	respective	papers	in	Chapters	3–6	for	further	details.	
6	Note	that	“environment”	and	“actions”	are	loosely	defined	in	this	definition.	For	instance,	a	solution	for	image	recognition	

also	fulfills	the	definition	of	an	intelligent	agent.	Here,	rather	counterintuitively,	the	environment	is	represented	by	a	set	
of	given	images,	and	actions	are	a	set	of	selectable	labels	to	describe	a	given	image	(Russell	&	Norvig,	2021).	
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based	on	data	about	its	driving	environment	(e.g.,	road	conditions,	the	position	of	pedestrians,	
the	 car’s	 velocity;	 Russell	 &	 Norvig,	 2021).	 There	 exist	 various	 approaches	 to	 realizing	 agent	
functions	(e.g.,	through	manually	defined	rules	or	statistics;	Russell	&	Norvig,	2021).	Today,	ML	
is	 a	prominent	 and	promising	approach	 to	 realizing	agent	 functions,	 as	 it	 enables	 ISs	 to	 learn	
agent	functions	on	their	own	(e.g.,	Brynjolfsson	&	Mitchell,	2017;	Russell	&	Norvig,	2021).	As	ML	
is	 an	 approach	 that	 has	 enabled	 recent	 AI	 advances	 (e.g.,	 He	 et	 al.,	 2015;	 Silver	 et	 al.,	 2017;	
Vinyals	et	al.,	2019)	and	spurred	 the	current	advent	of	AI	 in	organizations	 (e.g.,	Benbya	et	al.,	
2021;	Berente	et	al.,	2021;	Brynjolfsson	&	Mitchell,	2017),	 I	 focus	on	AI	as	an	intelligent	agent	
that	relies	exclusively	on	ML	(see	Section	2.1.2	for	further	details	about	ML)	in	this	dissertation.	

AI	 research	 distinguishes	 two	 major	 scopes	 of	 AI,	 namely,	 narrow	 AI	 and	 artificial	 general	
intelligence	(AGI).	Narrow	AI	refers	to	AI	that	can	only	perform	a	single	task	in	a	specific	domain	
(Benbya	 et	 al.,	 2021;	 Brynjolfsson	&	Mitchell,	 2017;	 Jordan	&	Mitchell,	 2015).	 For	 instance,	 a	
single	narrow	AI	cannot	cover	the	three	tasks	of	classifying	images,	recommending	a	song,	and	
playing	chess;	rather,	this	requires	building	an	individual	AI	for	each	of	the	three	tasks	(e.g.,	He	
et	al.,	2015;	Liebman	et	al.,	2019;	Silver	et	al.,	2017).	While	some	narrow	AIs	are	able	to	reach	
superhuman	 performance	 in	 their	 specialized	 tasks,	 such	 AI	 cannot	 be	 applied	 beyond	 the	
specific	 task	 and	 domain	 for	which	 it	was	 developed	 (de	 Bruyn	 et	 al.,	 2020).	 Narrow	AI	 also	
encompasses	the	concept	of	weak	AI	(in	contrast	to	strong	AI)—that	is,	AI	that	can	only	simulate	
intelligent	thinking	but	cannot	perform	the	actual	thinking	process	that	occurs	in	brains	(Searle,	
1980).	In	contrast	to	narrow	AI,	AGI	is	a	general-purpose	AI	(Benbya	et	al.,	2021;	Brynjolfsson	&	
Mitchell,	2017;	Raisch	&	Krakowski,	2021).	AGI	aims	for	a	more	generalist	 focus,	 that	 is,	being	
able	 to	 perform	a	wide	 variety	 of	 complex	 tasks	 in	 various	 different	 domains.	 For	 example,	 a	
single	AGI	may	clean	rooms,	design	airplanes,	and	compose	music—just	as	humans	can.	AGI	is	
often	assumed	to	also	entail	 the	concept	of	strong	AI,	 that	 is,	being	able	 to	perform	the	actual	
thinking	process	that	occurs	in	brains	instead	of	only	simulating	it	(Searle,	1980).	While	AGI	is	
still	limited	to	the	utopian	and	dystopian	futures	portrayed	by	science-fiction	authors,	narrow	AI	
has	 already	 entered	 today’s	 reality,	 changing	 our	 societies	 and	 economies	 (Brynjolfsson	 &	
Mitchell,	2017;	 Jordan	&	Mitchell,	2015;	Russell	&	Norvig,	2021).	Since	 it	 is	unclear	when	and	
whether	humanity	will	 ever	 actually	 create	AGI,	 I	 focus	my	analyses	 and	 contributions	 in	 this	
dissertation	on	narrow	AI	and	thereby	also	adopt	the	focus	of	current	research	on	organizational	
AI	(e.g.,	Benbya	et	al.,	2021;	Berente	et	al.,	2021;	Brynjolfsson	&	Mitchell,	2017;	de	Bruyn	et	al.,	
2020;	Raisch	&	Krakowski,	2021).	

2.1.2 Machine	Learning	

ML	algorithms	enable	ISs	to	derive	patterns	from	data,	which	are	then	used	to	create	ML	models	
(Brynjolfsson	&	Mitchell,	2017;	Jordan	&	Mitchell,	2015;	Mitchell,	1997;	Russell	&	Norvig,	2021).	
As	ML	models	can	act	as	solutions	to	real-world	problems,	ML	represents	a	new	programming	
paradigm:	 In	 traditional	 ISs	without	ML,	 human	 experts	must	 solve	 given	 problems	 and	 then	
translate	 their	 solutions	 into	 code	 to	 craft	 ISs	 for	 certain	 tasks	 (e.g.,	 humans	defining	 rules	 to	
design	 a	 vacuum	 robots’	 fixed	 routines;	 Russell	 &	 Norvig,	 2021).	 With	 ML,	 it	 is	 not	 human	
experts	but	the	ML	systems	themselves	that	define	solutions	based	on	the	patterns	they	derive	
from	data	(e.g.,	ML	systems	learning	how	to	detect	credit	card	fraud	from	business	transactions;	
Ala’raj	&	Abbod,	2016;	Kruppa	et	al.,	2013).	By	doing	so,	ML	can	render	manual	programming	
obsolete	for	certain	tasks	(Samuel,	1959).	

Three	major	types	of	ML	can	be	distinguished	(Bishop,	2006;	Mitchell,	1997;	Russell	&	Norvig,	
2021).	First,	 supervised	learning	 aims	 to	 learn	a	model	 from	a	collection	of	 input–output	pairs	
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(i.e.,	 labeled	 data;	 Russell	 &	Norvig,	 2021)	 that	 can	 assign	 output	 to	 new	 input	 data	 (Bishop,	
2006;	Russell	&	Norvig,	2021).	Examples	of	supervised	learning	tasks	include	classification	and	
regression	problems	(i.e.,	assigning	nominal	or	numerical	outcomes	to	input	data;	Bishop,	2006;	
Mitchell,	 1997)	 that	underlie	 applications	 such	 as	 image	 classification	 and	 revenue	prediction	
(e.g.,	Brynjolfsson	&	Mitchell,	 2017).	 Second,	unsupervised	learning	 aims	 to	 learn	a	model	 that	
captures	 commonalities	 in	 known	 data	 inputs	 (i.e.,	 unlabeled	 data;	 Russell	 &	 Norvig,	 2021),	
allowing	a	response	to	the	absence	or	presence	of	the	learned	commonalities	in	new	input	data	
(Bishop,	 2006;	 Russell	 &	 Norvig,	 2021).	 As	 an	 example,	 clustering	 represents	 a	 classic	
unsupervised	 learning	 problem	 (Bishop,	 2006)	 that	 enables,	 for	 instance,	 autonomously	
grouping	documents	with	similar	topics	(e.g.,	Jain	et	al.,	1999).	Third,	in	reinforcement	learning,	
an	agent	aims	to	interact	with	its	environment	to	learn	a	policy	for	choosing	future	actions	that	
maximize	 the	 rewards	 received	 (Bishop,	 2006;	Russell	&	Norvig,	 2021).	Application	 examples	
include	 autonomous	 driving	 (e.g.,	 Michels	 et	 al.,	 2005),	 trading	 (e.g.,	 Dempster	 &	 Leemans,	
2006),	 and	 playing	 (video)	 games	 (e.g.,	 Silver	 et	 al.,	 2017;	 Togelius	 et	 al.,	 2009).	While	 those	
three	 types	of	ML	are	 currently	prevalent	 in	 theory	and	practice,	 hybrid	approaches	and	new	
types	 of	 ML	 have	 also	 been	 discussed	 (e.g.,	 Berthelot	 et	 al.,	 2019;	 Lan	 et	 al.,	 2020).	 In	 this	
dissertation,	I	aim	to	abstract	the	derived	contributions	beyond	specific	ML	types,	with	the	hope	
of	informing	research	on	all	types	of	ML.			

ML	 systems	 are	 developed	 iteratively	 (e.g.,	 Kurgan	 &	 Musilek,	 2006;	 Wirth	 &	 Hipp,	 2000).	
Humans	choose	a	problem,	select	and	prepare	problem-related	data,	select	and	parametrize	ML	
algorithms,	evaluate	the	implemented	alternatives,	and	iterate	between	these	tasks	to	eventually	
craft	the	best-performing	ML	system	possible.	By	doing	so,	humans	define	the	conditions	under	
which	 an	 ML	 system	 learns	 to	 develop	 its	 own	 understanding	 of	 a	 problem	 solution	 (e.g.,	
Amershi	et	al.,	2019;	Sturm,	Gerlach,	et	al.,	2021).	Humans	continually	 repeat	 these	actions	 to	
reconfigure	ML	systems	as	the	problem	or	available	knowledge	about	it	changes	over	time.	The	
behavior	 of	 the	 resulting	 ML	 systems	 therefore	 strongly	 depends	 on	 the	 understanding	 of	
problems	and	anticipated	solutions	of	humans	involved	in	the	development	process.	The	more	
those	who	 are	 involved	 know	 about	 the	 problem,	 the	 better	 they	 can	 set	 up	 the	ML,	 and	 the	
higher	the	ML	system	quality	will	be.	In	contrast,	a	lack	of	expertise	on	the	part	of	the	involved	
humans	can	introduce	incorrect	or	biased	ideas	about	a	problem	into	an	ML	system	(Choudhury	
et	 al.,	 2021;	 Diakopoulos,	 2016;	 Schuetz	 &	 Venkatesh,	 2020).	 Management	 of	 the	 human	
expertise	that	 is	used	to	craft	and	reconfigure	ML	systems	should	thus	be	a	major	concern	for	
organizations	when	using	ML	systems.	In	this	dissertation,	I	therefore	explore	the	effects	of	the	
initial	creation	(see	papers	A,	B,	and	D)	and	the	continual	reconfiguration	(see	papers	A,	C,	and	
D)	of	ML	systems	with	special	attention	paid	to	the	human	expertise	that	is	involved.	

2.1.3 Human–AI	Collaboration	

Traditionally,	 ISs	were	 regarded	 exclusively	 as	 a	 tool	 to	 support	 humans	 in	 completing	 their	
tasks	 (e.g.,	 Alavi	 &	 Leidner,	 2001;	 Goodhue	 &	 Thompson,	 1995;	 Kane	 &	 Alavi,	 2007).	 For	
instance,	 email	 and	 knowledge	 repositories	 are	 used	 to	 support	 human	 communication	 and	
store	 human	 knowledge	 rather	 than	 communicating	 and	 creating	 their	 own	 knowledge	 (e.g.,	
Kane	 &	 Alavi,	 2007).	 With	 ML	 systems’	 capability	 to	 learn	 their	 own	 problem	 solutions,	 ML	
systems	 challenge	 this	 assumption	 as	 they	 have	 greater	 autonomy	 in	 executing	 tasks,	 thus	
shifting	 ISs	 into	more	autonomous	 roles	 in	organizations	 (e.g.,	Berente	et	 al.,	 2021;	Schuetz	&	
Venkatesh,	 2020).	 This	 has	 stimulated	 a	 broad	 discussion	 on	whether	 and	when	ML	 systems	
should	 be	 used	 to	 automate	 or	 augment	 human	 task	 execution	 (e.g.,	 Brynjolfsson	 &	 Mcafee,	
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2016;	Daugherty	&	Wilson,	2018;	Davenport	&	Kirby,	2016).	In	particular,	the	shrinking	role	of	
humans	 and	 the	 threat	 of	 their	 replacement	 have	 become	widely	 discussed	 topics	 of	 concern	
(e.g.,	 Brynjolfsson	 &	 Mitchell,	 2017;	 Faraj	 et	 al.,	 2018;	 Tschang	 &	 Almirall,	 2021).	 Yet	 the	
automation–augmentation	narrative	is	not	without	flaws.	In	their	 influential	paper,	Raisch	and	
Krakowski	(2021)	show	that	the	distinction	between	automation	and	augmentation	involves	a	
fundamental	paradox:	When	enlarging	the	perspective	along	space	and/or	time,	an	ML	system	
that	 appears	 to	 automate	 a	 task	 may	 also	 augment	 a	 task	 at	 the	 same	 time	 (or	 vice	 versa)	
without	changing	anything	about	the	use	of	the	ML	system,	which	simultaneously	places	the	ML	
system	into	automating	and	augmenting	roles	(e.g.,	one	subtask	may	be	fully	automated	by	an	
ML	system	which	may	then	be	combined	with	other	human-performed	subtasks	to	augment	an	
overall	 task).	 Thus,	 after	 years	 of	 discussion	 and	 more	 available	 empirical	 evidence,	 the	
narrative	has	once	again	recently	shifted,	and	humans	and	ML	systems	are	now	viewed	in	major	
discussions	 on	 AI	 as	 counterparts	 that	 collaborate	 with	 each	 other	 in	 organizations	 (e.g.,	
Fügener,	Grahl,	Gupta,	&	Ketter,	2021;	Kane	et	al.,	2021;	Raisch	&	Krakowski,	2021;	Ransbotham	
et	al.,	2020;	Seidel	et	al.,	2019;	Sturm,	Gerlach,	et	al.,	2021;	Teodorescu	et	al.,	2021;	Tschang	&	
Almirall,	2021).	In	this	dissertation,	I	therefore	adopt	the	view	that	humans	and	ML	systems	can	
act	as	 collaborators	 that	aim	 to	 jointly	achieve	organizational	objectives.	Abstracting	 from	 the	
automation–augmentation	distinction	allows	me	to	focus	my	analyses	on	the	core	change	behind	
the	use	of	ML	systems,	which	is	that	ML	systems	do	not	simply	support	humans,	but	rather,	both	
humans	and	ML	systems	are	now	able	 to	create	and	share	 their	own	contributions	within	 the	
organization.	 In	doing	so,	 I	 join	recent	research	on	organizational	AI	 that	aims	to	advance	our	
understanding	 of	 the	 role	 of	 humans	 and	 ML	 systems	 (e.g.,	 Ågerfalk,	 2020;	 Fügener,	 Grahl,	
Gupta,	 &	 Keter,	 2021;	 Grønsund	 &	 Aanestad,	 2020;	 Jussupow	 et	 al.,	 2021;	 Kane	 et	 al.,	 2021;	
Raisch	&	Krakowski,	2021;	Ransbotham	et	al.,	2020).	

2.2 Coordination	and	Organizational	Performance	

An	organization	is	not	a	single	entity	with	its	own	objectives,	desires,	and	abilities.	 Instead,	an	
organization	 constitutes	 a	 complex	 system	 of	 multiple	 interacting	 agents	 that	 aim	 to	 jointly	
define	and	work	towards	collective	goals	(e.g.,	March,	1991;	Nickerson	&	Zenger,	2004).	If	done	
correctly,	the	effective	collaboration	of	the	agents	is	worthwhile	as	it	allows	more	than	just	the	
sum	 of	 the	 individuals’	 successes	 to	 be	 achieved	 through	 exploiting	 achievable	 synergies	
through	 their	 interactions	 (e.g.,	 Lyles	&	 Fiol,	 1985;	March,	 2010).	 This	 requires	 the	 agents	 to	
agree	on	 the	same	goals	and	support	one	another,	as	well	as	having	agents	work	on	the	 tasks	
that	fit	their	abilities	best	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011;	Grant,	1996;	
Levitt	&	March,	 1988;	March,	 1991).	When	 agents	 are	well	 organized,	 virtuous	 dynamics	 can	
emerge	that	help	foster	the	agents’	abilities	to	jointly	exceed	the	organization’s	objectives	(e.g.,	
Argote	 et	 al.,	 2021;	 Argote	 &	 Miron-Spektor,	 2011;	 March,	 1991;	 K.	 D.	 Miller	 et	 al.,	 2006).	
However,	 if	 agents	 are	 ill-organized,	 they	 may	 pursue	 contradictory	 goals	 and	 hinder	 one	
another’s	actions,	potentially	creating	vicious	dynamics	and	detrimental	chaos	(e.g.,	Argote	et	al.,	
2021;	Argote	&	Miron-Spektor,	2011;	Levinthal	&	March,	1993;	March,	1991,	2006).	The	means	
to	organize	agents’	dynamics	is	effective	coordination,	that	is,	“the	act	of	making	all	the	people	
involved	 in	 a	 plan	 or	 activity	 work	 together	 in	 an	 organized	 way”	 (University	 of	 Cambridge,	
2022).	 Unfortunately,	 it	 is	 not	 easy	 to	 achieve	 effective	 coordination	 (e.g.,	 Levinthal	&	 Rerup,	
2021;	March,	1991;	Weick	et	al.,	2005).	Agents’	peculiarities	and	manifold	 interactions	render	
foreseeing	 and	 controlling	 emerging	 dynamics	 a	 very	 complex	 endeavor	 (e.g.,	 Benbya	 et	 al.,	
2020;	Grant,	1996;	Levinthal	&	March,	1993).	For	 this	reason,	although	research	has	analyzed	
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coordination	 for	 decades,	 research	 continues	 to	 study	 its	 manifold	 consequences	 and	
mechanisms	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011;	Huber,	1991;	Lyles	&	Fiol,	
1985).		

Organizational	 performance	 reflects	 the	 efficiency,	 effectiveness,	 and/or	 quality	 of	 task	
performance	 in	 organizations,	 revealing	 organizations’	 productivity	 (Goodhue	 &	 Thompson,	
1995).	Performance	is	vital	to	organizations,	as	poorly	performing	organizations	cannot	survive	
for	 long	 in	 a	 competitive	 environment	 (e.g.,	 Levinthal	 &	 March,	 1993;	 March,	 1991).	
Coordination	 is	 strongly	 connected	 to	 organizational	 performance	 (e.g.,	 Grant,	 1996;	 March,	
1991).	 The	 better	 an	 organization’s	 agents	 are	 coordinated,	 the	 better	 the	 agents’	 actions	 are	
integrated	 and	 complemented,	 which	 increases	 the	 organization’s	 performance	 (e.g.,	 Grant,	
1996;	March,	1991).	Along	the	three	levels	of	analysis	pursued	in	this	dissertation,	three	types	of	
performance	can	be	distinguished:	individual-,	group-,	and	organization-level	performance.	The	
connection	 between	 the	 three	 types	 of	 performance	 is	 nontrivial.	 Effective	 coordination	 that	
increases	 individual-level	 performance	 may	 at	 the	 same	 time	 be	 detrimental	 to	 group-	 or	
organization-level	performance	(and	vice	versa;	e.g.,	Fang	et	al.,	2010;	March,	2006;	Schilling	&	
Fang,	 2014).	 For	 instance,	 while	 sharing	 unique	 expertise	 with	 teammates	 may	 reduce	 an	
individual’s	relative	performance,	it	may	increase	the	group	performance	(e.g.,	Fang	et	al.,	2010;	
March,	 2006).	 This	 prevents	 a	 simple	 translation	 of	 findings	 between	 levels,	making	 separate	
analyses	of	the	three	levels	necessary.	

2.3 Theoretical	Foundations	

To	analyze	the	coordination	of	humans	and	ML	systems	along	the	three	levels	of	analysis,	I	apply	
different	 theoretical	 perspectives	 in	 this	 dissertation.	 For	 the	 individual	 level,	 I	 first	 rely	 on	 a	
problem-solving	 perspective	 to	 unpack	 the	 notion	 of	 ML	 systems	 as	 a	 new	 form	 of	
organizational	 problem	 solvers.	 Here,	 problem-solving	 research	 helps	 inform	 the	
characterization	 of	 problems	 and	 the	 process	 of	 identifying	 and	 evaluating	 problems	 that	 are	
suited	to	be	solved	by	ML	systems.	Next,	 to	emphasize	 interactions,	 I	 turn	to	research	on	TTF.	
TTF	 theory	 offers	 a	 powerful	 theoretical	 framework	 for	 capturing	 the	 interplay	 between	 an	
individual	and	a	technology	with	regard	to	 individual	performance.	The	use	of	this	 framework	
helps	uncover	the	conditions	for	effective	collaboration	between	a	human	and	an	ML	system	on	
a	 shared	 task.	 For	 analyzing	 group-	 and	 organization-level	 performance,	 I	 rely	 on	 an	
organizational	learning	perspective.	Learning	not	only	captures	ML	systems’	unique	capabilities	
but	 is	 also	 the	 essential	 process	 that	 connects	 humans’	 and	 ML	 systems’	 behavior,	 and	
organizational	learning	research	provides	a	fruitful	theoretical	basis	to	help	capture	and	explain	
the	 dynamics	 that	 arise	 from	 interactions	 between	 multiple	 agents—no	 matter	 whether	 the	
agents	 are	 humans	 or	 ML	 systems.	 In	 what	 follows,	 I	 explain	 the	 three	 applied	 theoretical	
perspectives	in	more	detail.		

2.3.1 Problem	Solving	

Problem	 solving	 is	 a	 crucial	 key	 activity	 in	 organizations	 (e.g.,	 Björk,	 2012;	 Lang	 et	 al.,	 1978;	
Lyles	&	Mitroff,	 1980),	 as	 it	 stimulates	 organizational	 change	 through	 the	 generation	 of	 new,	
suitable	ideas	(i.e.,	problems,	solutions,	and	solution	implementations;	e.g.,	Basadur	et	al.,	1982;	
E.	 Mumford,	 1998;	 Reiter-Palmon	 &	 Robinson,	 2009;	 van	 den	 Ende	 et	 al.,	 2015).	 A	 widely	
accepted	model	that	synthesizes	activities	involved	in	the	problem-solving	process	(e.g.,	Lang	et	
al.,	 1978;	 E.	 Mumford,	 1998;	 Reiter-Palmon	 &	 Robinson,	 2009;	 Smith,	 1989)	 is	 the	 one	 by	
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Basadur	 et	 al.	 (1982)	 that	 is	 based	on	Leavitt’s	 (1975)	 three-phase	model:	 First,	 the	phase	of	
problem	finding	 covers	 the	 recognition,	 identification,	and	construction	of	problems	 to	make	a	
set	 of	 potentially	 solvable	 problems	 available	 (Chi	 et	 al.,	 1981).	 Second,	 based	 on	 selected	
problems,	the	problem-solving	phase	focuses	on	searching	suitable	solutions	(M.	Mumford	et	al.,	
1994).	 Finally,	 the	phase	of	 solution	implementation	 aims	 to	 craft	 implementations	of	 selected	
solutions,	 integrating	them	into	organizational	processes	(M.	D.	Mumford	et	al.,	1997).	Each	of	
the	 three	main	phases	 further	 involves	 two	 subphases	 following	Osborn’s	 (1953)	divergence-
convergence	dualism	(Basadur	et	al.,	1982;	Osborn,	1953):	First,	 ideation	aims	to	uncover	and	
collect	ideas	on	potential	problems,	solutions,	or	implementations	respectively.	The	subsequent	
evaluation	 screens	 identified	 ideas	 to	distinguish	 good	 ideas	 from	bad	ones.	 If	 done	 right,	 the	
problem-solving	process	allows	organizations	to	continuously	improve	over	time,	ensuring	long-
term	success	through	effective	solutions	to	substantial	problems.		

The	 problem-solving	 process	 offers	 a	 valuable	 perspective	 for	 analyzing	 the	 ML	 systems	 in	
organizations	 because	ML	 systems,	with	 their	 ability	 to	 derive	 their	 own	 solutions	 from	 data	
(Mitchell,	1997;	Russell	&	Norvig,	2021),	can	be	viewed	as	a	new	form	of	organizational	problem	
solver.	 Since	 human	 problem	 finding	 remains	 relevant	 in	 ML	 contexts,	 as	 humans	 must	 still	
define	 the	 problems	 for	 ML	 systems	 (e.g.,	 Amershi	 et	 al.,	 2019;	 Diakopoulos,	 2016;	 Sturm,	
Gerlach,	 et	 al.,	 2021;	 see	 also	 Section	 2.1.2),	 an	 exploration	 of	 the	 problem-finding	 phase	 can	
particularly	 help	 organizations	 reflect	 on	 relevant	 aspects	 and	 conditions	 when	 they	 use	 ML	
systems	as	problem	solvers	and	gain	insights	regarding	how	to	enable	an	effective	delegation	of	
problems	 to	ML	 systems	 (e.g.,	 Brynjolfsson	 &	Mitchell,	 2017;	 Fügener,	 Grahl,	 Gupta,	 &	 Keter,	
2021).	Paper	A	therefore	adopts	a	problem-finding	perspective	to	synthesize	experts’	notions	of	
the	nature	of	problems	suited	to	be	solved	by	ML	systems	and	how	to	identify	such	problems.	

2.3.2 Task–Technology	Fit	

Originally	 referred	 to	 as	 the	 “technology-to-performance	 chain,”	 the	 now	 seminal	 TTF	 theory	
was	 proposed	 by	 Goodhue	 and	 Thompson	 (1995)	 to	 model	 the	 link	 between	 IT	 use	 and	
individual	performance.	In	this	theory,	Goodhue	and	Thompson	(1995)	conceptualized	a	simple	
but	 powerful	 observation:	 To	 improve	 individual	 performance,	 the	 IT	 that	 is	 used	must	 be	 a	
good	 fit	 for	 the	 tasks	 it	 supports.	To	nuance	 this	observation,	Goodhue	and	Thompson	(1995)	
built	the	TTF	theory	from	five	main	constructs:		

• the	characteristics	of	tasks	that	individuals	perform	to	turn	inputs	into	outputs;	

• the	characteristics	of	technologies	that	support	individuals	in	performing	the	tasks;	

• the	task-technology	fit,	or	how	well	a	technology	supports	individuals’	tasks;	

• the	utilization	as	the	individual	usage	behavior	of	IT	that	is	used	to	perform	tasks;	and	

• the	 performance	 impacts	 on	 individuals’	 tasks	 as	 some	 combination	 of	 improved	
efficiency,	effectiveness,	and/or	quality.	

TTF	 theory	 indicates	 that	 (1)	 the	 task	 and	 technology	 characteristics	 jointly	 affect	 the	 task-
technology	fit,	 (2)	 increasing	 the	 task-technology	fit	 tends	 to	 increase	both	 the	utilization	 of	 IT	
and	individual	performance	impacts,	and	(3)	increasing	the	utilization	of	IT	can	also	increase	the	
performance	impacts.	The	task-technology	fit	can	thus	have	both	a	positive	direct	and	a	positive	
indirect	effect	(through	the	mediating	utilization	construct)	on	performance	impacts.		



2	Research	Context	and	Positioning	of	this	Dissertation	 26	

TTF	 theory	 has	 been	 used	 to	 analyze	 performance	 impacts	 in	 numerous	 technology	 contexts,	
such	 as	 group	 support	 systems	 (e.g.,	 Dennis	 et	 al.,	 2001;	 Fuller	 &	 Dennis,	 2009;	Maruping	 &	
Agarwal,	 2004;	 Zigurs	 &	 Buckland,	 1998),	 mobile	 IS	 (e.g.,	 Gebauer	 et	 al.,	 2010;	 Gebauer	 &	
Ginsburg,	2009;	Junglas	et	al.,	2008;	Lee	et	al.,	2007),	expert	systems	(e.g.,	Wongpinunwatana	et	
al.,	 2000),	 data	 analytics	 (e.g.,	 Ghasemaghaei	 et	 al.,	 2017;	 Karimi	 et	 al.,	 2004),	 and	 decision	
support	systems	(e.g.,	Parkes,	2013).	So	far,	TTF	theory	has	not	been	translated	to	the	context	of	
ML	 systems.	As	TTF	 theory	provides	 a	powerful	 theoretical	 structure	 to	 analyze	how	 the	 link	
between	an	individual	and	IT	affects	individual	performance,	paper	B	contextualizes	TTF	theory	
to	capture	ML	systems’	impact	on	individual	performance.	

2.3.3 Organizational	Learning	

In	their	seminal	paper	on	organizational	 learning,	Levitt	and	March	(1988)	view	organizations	
as	 “learning	 by	 encoding	 inferences	 from	 history	 into	 routines	 that	 guide	 behavior”	 (p.	 319).	
Following	this	notion,	organizations	continuously	learn	from	past	actions	to	gradually	improve	
their	future	actions	over	time	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011;	Levitt	&	
March,	 1988).	 As	 organizations	 must	 be	 able	 to	 effectively	 act	 and	 adapt	 to	 survive	 in	 their	
competitive	 environments,	 organizational	 learning	 is	 vital	 to	 organizations	 as	 it	 defines	 such	
adaptive	 organizational	 behavior	 (e.g.,	 Argote	 &	 Miron-Spektor,	 2011;	 Levitt	 &	 March,	 1988;	
March,	1991,	2010).	Yet	organizations	cannot	learn	by	themselves,	but	must	rely	on	the	learning	
of	 their	 members	 (e.g.,	 Huber,	 1991;	 Levitt	 &	 March,	 1988;	 March,	 1991).	 Over	 time,	
organizational	 members	 accumulate	 experience	 through	 their	 individual	 actions,	 formulate	
beliefs	 based	 on	 their	 experience	 of	 chosen	 actions	 and	 associated	 outcomes,	 and	 share	 their	
developed	knowledge	with	other	 individuals	(e.g.,	Argote	&	Miron-Spektor,	2011).	 In	this	way,	
organizational	learning	is	more	than	just	the	sum	of	individual	learning,	because	the	transfer	of	
knowledge	 itself	 creates	 value	 (e.g.,	 by	 stimulating	 further	 learning	 endeavors	 and	 combining	
knowledge;	 Argote	 &	Miron-Spektor,	 2011;	 Lyles	 &	 Fiol,	 1985;	 Nonaka,	 1994).	 Organizations	
utilize	their	members’	learning	by	storing	these	in	routines	and	knowledge	repositories	to	apply	
and	share	the	developed	knowledge	(March,	1991).	Therefore,	from	an	organizational	learning	
perspective,	an	organization	represents	a	complex	system	of	interacting	individuals	who	learn	to	
collectively	make	 sense	of	 the	organization’s	 environment	 (Levitt	&	March,	 1988).	To	 achieve	
great	learning	performance,	organizations	must	be	able	to	effectively	coordinate	the	individual	
and	mutual	 learning	of	their	members	to	avoid	the	emergence	of	detrimental	chaos	within	the	
learning	 system	 (e.g.,	 Grant,	 1996;	 Lavie	 et	 al.,	 2010;	March,	 1991).	Decades	 of	 research	have	
emphasized	 that	 ineffective	 coordination	 of	 organizational	 learning	 can	 therefore	 have	wide-
ranging	 consequences	 for	 organizational	 performance	 and	 can	 even	 threaten	 organizations’	
long-term	survival	(e.g.,	Argote	&	Miron-Spektor,	2011;	Gupta	et	al.,	2006).	

One	 of	 the	 most	 essential	 concepts	 in	 coordinating	 organizational	 learning	 is	 the	 distinction	
between	exploitative	and	explorative	learning	(e.g.,	Gupta	et	al.,	2006;	Lavie	et	al.,	2010;	March,	
1991;	Raisch	et	al.,	2009).	Exploitation	focuses	on	the	incremental	search	for	and	refinement	of	
ideas,	 aiming	 to	 remain	 in	 the	 reliable	 near	 neighborhood	 of	 extant	 knowledge.	 In	 contrast,	
exploration	 aims	 to	 shift	 away	 from	 extant	 knowledge	 by	 searching	 for	 unorthodox	 ideas,	
attempting	 to	 “look	outside	 the	box”	 (e.g.,	Gupta	et	al.,	 2006;	Lavie	et	al.,	 2010;	March,	1991).	
March	(1991)	showed	that	the	secret	for	a	high	level	of	long-term	effectiveness	lies	in	balancing	
exploitation	and	exploration—a	 notion	 that	 has	 spurred	 thousands	 of	 studies	 confirming	 and	
nuancing	March’s	essential	observation	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011;	
Gupta	et	al.,	2006;	Lavie	et	al.,	2010;	March,	1991;	Raisch	et	al.,	2009).	If	organizations	strongly	
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exploit	 ideas	 but	 neglect	 exploring,	 they	 risk	 becoming	 trapped	 in	 stagnation	 and	 failing	 to	
continue	 to	 adapt.	 If	 organizations	 explore	 extensively	 but	 do	 not	 exploit,	 they	 will	 fail	 to	
develop	 specific	 competences	 that	 are	 required	 to	 survive	 in	 competitive	 environments	 (e.g.,	
Gupta	et	al.,	2006;	March,	1991;	Raisch	et	al.,	2009).		

Finding	a	good	balance	between	the	two	processes	of	exploitation	and	exploration	has	proved	to	
be	a	serious	challenge	for	research	and	practice.	Numerous	flaws	of	organizational	learning	have	
made	it	difficult	for	organizations	and	scholars	to	put	forth	a	universal	solution	for	achieving	a	
well-balanced	 state	 of	 great	 organizational	 performance	 (e.g.,	 Argote	 et	 al.,	 2021;	 Argote	 &	
Miron-Spektor,	2011;	Gupta	et	al.,	2006;	Levinthal	&	March,	1993;	March,	2006,	2010;	Raisch	et	
al.,	 2009).	 One	 of	 the	most	 discussed	 flaws	 is	 learning	myopia,	 that	 is,	 the	 tendency	 to	 favor	
exploitation	 over	 exploration	 (Levinthal	 &	 March,	 1993).	 Due	 to	 the	 uncertain	 benefits	 of	
experimenting	with	new	and	ambiguous	ideas,	learners	prefer	to	utilize	ideas	that	have	already	
proved	 to	 be	 reliable	 in	 the	 past	 (e.g.,	 Levinthal	 &	 March,	 1993;	 March,	 2006).	 There	 exist	
various	 factors	 that	 tend	 to	 either	promote	 (e.g.,	 rewarding	 successes	 and	penalizing	 failures;	
March,	2010)	or	alleviate	(e.g.,	increasing	team	diversity;	March,	1991)	learning	myopia,	adding	
to	the	complexity	that	is	involved	in	achieving	the	crucial	exploration–exploitation	balance	(e.g.,	
Levinthal	&	March,	1993;	March,	1991,	2010).		

Organizational	learning	has	been	analyzed	in	numerous	contexts	(excellent	overviews	exist;	see,	
e.g.,	 Argote	 et	 al.,	 2021;	 Argote	 &	 Miron-Spektor,	 2011;	 Huber,	 1991).	 Yet	 research	 on	
organizational	 learning	 in	 the	 IS	 context	 is	 still	 in	 its	 infancy	 (Argote	 et	 al.,	 2021;	 Argote	 &	
Miron-Spektor,	2011).	To	date,	there	exist	only	a	handful	of	studies	on	organizational	learning	in	
the	IS	context	(e.g.,	Balasubramanian	et	al.,	2022;	Dodgson	et	al.,	2013;	Kane	&	Alavi,	2007),	even	
though	 the	 potential	 of	 IS	 to	 support	 learning	 and	 the	 accumulation	 of	 knowledge	 has	 been	
widely	 acknowledged	 (Alavi	 &	 Leidner,	 2001;	 Argote	 et	 al.,	 2021;	 Argote	 &	 Miron-Spektor,	
2011).	The	role	of	 ISs	has	always	been	assumed	 to	be	exclusively	passive,	with	 ISs	only	being	
able	 to	 support	 human	 learning	 (e.g.,	 Argote	 &	 Miron-Spektor,	 2011).	 With	 the	 rise	 of	 ML	
systems	and	given	their	unique	ability	to	learn,	ML	systems	can	contribute	their	own	learning	to	
organizational	learning	processes,	increasingly	shifting	ML-based	ISs	towards	a	more	active	role	
(e.g.,	 Argote	 et	 al.,	 2021;	 Lindebaum	 et	 al.,	 2020;	 Mateja	 &	 Heinzl,	 2021;	 Ransbotham	 et	 al.,	
2020).	Despite	the	rising	role	of	ML	systems,	research	on	ML	systems	in	organizational	learning	
remains	 scarce	 (i.e.,	 Afiouni-Monla,	 2019;	Balasubramanian	 et	 al.,	 2022;	 Lyytinen	 et	 al.,	 2021;	
Ransbotham	et	al.,	2020;	Seidel	et	al.,	2019).	Insights	about	organizational	learning	may	help	to	
further	unpack	ML	 systems’	 unique	 learning	 capabilities	 and	may	offer	 an	 informative	 link	 to	
human	 behavior	 (e.g.,	 Lyytinen	 et	 al.,	 2021;	 Ransbotham	 et	 al.,	 2020;	 Seidel	 et	 al.,	 2019).	 In	
addition,	organizational	 learning	provides	powerful	theory	and	research	instruments	that	may	
help	to	unfold	and	explain	the	complex	dynamics	between	humans	and	ML	systems	(e.g.,	Argote	
et	 al.,	 2021;	 Lyytinen	 et	 al.,	 2021;	 Sturm,	 Gerlach,	 et	 al.,	 2021).	 For	 instance,	 organizational	
learning	 research	has	contributed	a	 rich	set	of	 conceptualized	 learning	patterns	 (e.g.,	 learning	
myopia	or	superstitious	learning;	Levinthal	&	March,	1993;	March,	2010)	and	simulation	models	
(e.g.,	 Gavetti	 &	 Levinthal,	 2000;	 Levinthal,	 1997;	 March,	 1991).	 This	 allows	 abstracting	 from	
complex	 dynamics	 and	 focusing	 analyses	 on	 relevant	 variables,	 helping	 to	 better	 explain	 the	
evolution	of	dynamics	within	the	complex	context	of	learning	(e.g.,	Balasubramanian	et	al.,	2022;	
Sturm,	 Gerlach,	 et	 al.,	 2021).	 Papers	 C	 and	 D	 therefore	 use	 the	 organizational	 learning	
perspective	to	help	observe	and	unpack	humans’	and	ML	systems’	behaviors	and	to	coordinate	
their	intertwined	learning	dynamics.	
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3.1 Introduction	

In	 recent	 years,	 advances	 in	 artificial	 intelligence	 (AI)	 allowed	machines	 to	master	 problems	
previously	 dominated	 by	 humans:	 AIs	 defeated	 world's	 best	 human	 GO	 player	 (Silver	 et	 al.,	
2017),	recognized	images	better	than	the	average	human	(He	et	al.,	2015),	and	beat	some	of	the	
greatest	human	StarCraft	II	players	(Vinyals	et	al.,	2019).	Due	to	success	stories	like	these,	more	
and	more	 organizations	 aim	 to	 explore	 how	 to	 use	 AIs'	 disruptive	 potential	 to	 improve	 their	
organizational	performance	(e.g.,	Bean,	2019;	Forbes	Insights,	2018;	Schmelzer,	2019).	

The	 technology	 that	 underlies	 such	modern	 AI	 information	 systems	 (IS)	 is	 machine	 learning	
(ML)	 (Brynjolfsson	 &	 Mitchell,	 2017;	 Jordan	 &	 Mitchell,	 2015).	 Such	 ML-based	 AIs	 use	 ML	
algorithms	to	derive	patterns	from	data	and	apply	these	patterns	to	new	data	to	perform	actions	
(Brynjolfsson	&	Mitchell,	2017;	Mitchell,	1997;	Russell	&	Norvig,	2021).	ML	 thus	constitutes	a	
new	programming	paradigm:	With	ML,	algorithms	derive	solutions	from	data,	instead	of	having	
humans	manually	solving	problems	and	translating	their	solutions	into	code	anymore	(Samuel,	
1959).	The	resulting	handover	of	problem-solving	activities	to	data-driven	algorithms	therefore	
requires	us	to	reassess	the	role	of	IS	in	organizations	and	our	knowledge	on	how	to	manage	IS	
successfully	(e.g.,	Rai	et	al.,	2019;	Rzepka	&	Berger,	2018).	

One	process	that	essentially	drives	and	ensures	an	organization's	progress	and	is	thus	crucial	for	
its	 long-term	survival	 is	the	act	of	problem	solving	(Kolb,	1976;	Lyles	&	Mitroff,	1980);	that	is,	
the	act	of	finding,	solving,	and	implementing	solutions	for	problems	(Basadur	et	al.,	1982;	H.	J.	
Leavitt,	 1975).	 For	 decades,	 scholars	 from	 various	 disciplines	 have	 analyzed	 problem	 solving	
from	 different	 perspectives	 (e.g.,	 Delbecq	 &	 van	 de	 Ven,	 1971;	 Lang	 et	 al.,	 1978).	 Yet,	 such	
organizational	 studies	 have	 commonly	 assumed	 that	 the	 solver	 of	 organizations'	 problems	 is	
only	 human.	 With	 ML-based	 AI	 essentially	 representing	 a	 technology	 for	 machine-driven	
problem	solving	that	organizations	increasingly	adopt	(Brynjolfsson	&	Mitchell,	2017;	Mitchell,	
1997;	Russell	&	Norvig,	2021),	this	core	assumption	must	be	fundamentally	questioned.	

To	take	a	first	step	to	better	understand	how	organizations	can	manage	problem	solving	in	the	
AI	age,	we	explore	how	problem	finding,	which	precedes	the	core	problem	solving	activity	and	
aims	to	identify	relevant	problems,	translates	to	contexts	where	AIs	act	as	problem	solvers.	To	
achieve	 this,	 we	 conducted	 a	 qualitative	 study	 with	 24	 experts	 that	 frequently	 conduct	 AI	
initiatives.	We	thus	aim	to	answer:	

(1)	How	can	organizations	find	problems	that	are	likely	suited	to	be	solved	by	ML-based	AIs,	and	
(2)	which	central	factors	likely	determine	ML-based	AIs'	suitability	for	solving	a	problem?	

3.2 Theoretical	Background	

Below,	 we	 first	 present	 key	 concepts	 and	 related	 work	 of	 problem	 solving	 and	 AI.	 We	 then	
integrate	both	research	streams	to	form	our	study’s	objective.	

3.2.1 The	Process	of	Problem	Solving	

Problem	solving,	the	act	of	uncovering	problems	and	searching	for	effective	solutions	(Hippel	&	
Krogh,	2016;	Simon	&	Newell,	1971;	Smith,	1989;	Taylor,	1975),	is	considered	a	key	activity	in	
organizations	(Lang	et	al.,	1978;	Lyles	&	Mitroff,	1980).	This	process	 involves	generating	new,	
suitable	 ideas	(i.e.,	both	problems	and	solutions)	at	 its	core	(Basadur	et	al.,	1982;	E.	Mumford,	
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1998;	 Reiter-Palmon	 &	 Robinson,	 2009),	 playing	 an	 essential	 role	 for	 organizations	 (Björk,	
2012)	as	ideas	stimulate	organizational	change	(van	den	Ende	et	al.,	2015).	

One	model	 that	 represents	a	 solid	 synthesis	of	 the	widespread	consensus	of	 general	 stages	of	
problem-solving	processes	(e.g.,	Lang	et	al.,	1978;	E.	Mumford,	1998;	Reiter-Palmon	&	Robinson,	
2009;	Smith,	1989)	 is	 the	one	originally	proposed	by	Basadur	et	al.	 (1982)	based	on	Leavitt's	
(1975)	suggested	tripartite	model.	Figure	1	illustrates	this	process	that	we	describe	below.	

	
Figure	1:	Problem-Solving	Process	(Basadur	et	al.,	1982)	

The	 problem-solving	 process	 comprises	 three	 steps:	 First,	 the	 initial	 problem	finding	 aims	 to	
recognize,	 identify,	 and	 construct	 problems.	 Then,	 the	problem	solving	 includes	 the	 search	 for	
suitable	solutions	by	exploring	potentially	 fitting	solutions	for	given	problems	(M.	Mumford	et	
al.,	 1994).	 Finally,	 the	 solution	 implementation	 pursues	 to	 integrate	 selected	 solutions	 into	
organizational	 processes	 (M.	 D.	 Mumford	 et	 al.,	 1997).	 Following	 Osborn’s	 (1953)	 widely	
adopted	divergence-convergence	dualism	(i.e.,	uncover	choices	and	screen	choices),	each	of	the	
three	 above-mentioned	 stages	 also	 comprises	 a	 two-step	 subprocess	 (Basadur	 et	 al.,	 1982;	
Osborn,	1953):	First,	ideation	aims	to	explore	ideas.	Depending	on	the	three	stages	in	Figure	1,	
this	 respectively	 refers	 to	 uncovering	 and	 constructing	 potential	 problems,	 solutions,	 and	
solution	 implementations.	 The	 subsequent	 evaluation	 then	 assesses	 the	 respective	 ideas	 that	
yielded	from	the	ideation	to	distinguish	good	ideas	from	bad	ones.	

This	process	helps	us	to	better	understand	the	essential	role	of	problem	finding.	Within	this	step,	
humans	 identify	 and	 construct	 problems	 on	 the	 basis	 of	 domain	 knowledge	 and	 prior	
experiences	 (Chi	 et	 al.,	 1981)	 to	 uncover	 problems	 together	 with	 related	 goals,	 possible	
problem-solving	 approaches,	 and	 restrictions	 (Reiter-Palmon	 &	 Robinson,	 2009).	 Since	 ill-
defined	problems	can	contain	characteristics	 that	 lead	 to	unexpected	or	unsatisfactory	results	
(e.g.,	 selecting	unsuitable	approaches	or	missing	relevant	aspects),	problem	finding	essentially	
affects	the	success	of	problem-solving	activities	(Hippel	&	Krogh,	2016;	Simon,	1973).		

For	 decades,	 scholars	 have	 examined	how	human	problem	 solving,	 and	 in	particular	 problem	
finding,	translates	to	different	contexts,	such	as	the	individual	or	group-level	(e.g.,	Delbecq	&	van	
de	Ven,	1971;	Lang	et	al.,	1978).	In	recent	years,	research	has	also	started	to	examine	problem	
finding	 for	 creating	 solutions	with	 digital	 technologies.	 As	 a	 result,	 several	 frameworks	were	
proposed	 that	 focus	on	digital	 technologies	 in	general	 (e.g.,	Benta	et	al.,	2017;	Bremser,	2018;	
Kayser	 et	 al.,	 2018).	 For	 instance,	 most	 closely	 related	 to	 our	 study,	 Vanauer	 et	 al.	 (2015)	
propose	an	ideation	framework	for	Big	Data	solutions.	They	found	multiple	procedural	artifacts	
that	comprise	two	ideation	alternatives	and	several	suitability	assessments.	Although	ML-based	
AI	 also	 represents	 a	 digital	 technology,	 the	 existing	 frameworks	 neglect	 particularities	 that	
result	from	the	unique	problem-solving	capabilities	of	ML-based	AI.	
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3.2.2 Artificial	Intelligence	&	Machine	Learning	

A	widely	used	conceptualization	of	AI	is	the	intelligent	agent;	that	is,	anything	that	can	perceive	
context	 information	 and	 autonomously	 act	 upon	 that	 through	 actuators	 (Russell	 &	 Norvig,	
2021).	The	technique	that	organizations	increasingly	use	to	implement	such	agents’	behavior	is	
ML	(Brynjolfsson	&	Mitchell,	2017):	 Intelligent	agents	based	on	ML—by	us	 referred	 to	as	ML-
based	AI—are	based	on	algorithms	that	can	identify	patterns	in	data	and	use	these	patterns	to	
act	on	new	data	(Mitchell,	1997).	Without	ML,	humans	solve	problems	manually	and	codify	their	
solutions	 into	 traditional	 non-ML	 IS.	 In	 contrast,	ML-based	AIs	 derive	 their	 own	 solutions	 for	
defined	 problems	 exclusively	 from	 data,	 rendering	 manual	 programming	 unnecessary	
(Brynjolfsson	 &	 Mitchell,	 2017;	 Samuel,	 1959).	 While	 artificial	 general	 intelligence	 remains	
beyond	 reach,	 organizations	 increasingly	 use	 ML-based	 AI	 to	 solve	 narrow	 problems	
(Brynjolfsson	 &	 Mitchell,	 2017),	 sometimes	 achieving	 solutions	 that	 even	 surpass	 human	
problem-solving	 capabilities	 (e.g.,	 He	 et	 al.,	 2015;	 Silver	 et	 al.,	 2017;	 Vinyals	 et	 al.,	 2019).	
Especially	 in	 contexts	where	 tasks	 comprise	 a	 limited	 execution	 clarity,	ML-based	 AI	 offers	 a	
great	potential	to	explore	available	alternatives	and	evaluate	their	properties	more	extensively	
and	 precisely	 than	 their	 human	 counterparts	 that	 are	 more	 limited	 in	 their	 information	
processing	capabilities	(Brynjolfsson	&	Mitchell,	2017).	

To	exploit	this	potential,	organizations	must	understand	how	they	can	use	ML-based	AI	to	solve	
problems	within	their	organizational	contexts.	Yet,	existent	research	has	only	partially	unveiled	
how	organizations	can	use	ML-based	AI	 for	 their	problem-solving	activities.	Thus	 far,	 scholars	
have	 intensively	 focused	on	understanding	AI-driven	problem	solving	 to	develop	solutions	 for	
given	 problems:	 Professionals	 select	 and	 prepare	 data	 and	 also	 select	 and	 parametrize	 ML	
algorithms	 to	 frame	a	given	problem	and	restrict	potential	 solution	designs.	Next,	 they	 let	 the	
algorithms	 derive	 possible	 ML-based	 AI	 solutions	 and	 then	 evaluate	 the	 solutions.	 The	
professionals	 iteratively	 perform	 this	 process	 to	 eventually	 identify	 the	 best	 derivable	 AI	
solution	(Brynjolfsson	&	Mitchell,	2017;	Domingos,	2012;	Mitchell,	1997).	Existing	research	has	
proposed	multiple	frameworks	to	capture	this	process	from	different	perspectives	(e.g.,	Amershi	
et	al.,	2019;	Domingos,	2012;	Kurgan	&	Musilek,	2006).		

Although	 this	 research	 generally	 expects	 problems	 to	 exist	 that	 must	 be	 solved,	 only	 a	 few	
studies	 stand	out	 that	 explore	 how	organizations	 can	 actually	 uncover	 problems	 to	 be	 solved	
with	ML-based	AI.	The	most	applicable	study	is	the	one	of	Brynjolfsson	and	Mitchell	(2017),	in	
which	 they	name	basic	 criteria	 to	 identify	 suitable	 tasks	 for	applying	ML-based	AI,	but	do	not	
provide	procedural	guidance	and	only	consider	a	single	ML	type	(i.e.,	supervised	ML).	Besides,	
existing	studies	either	regard	this	topic	from	a	more	strategic	perspective	to	provide	factors	for	
ML-based	 AI	 adoption	 (e.g.,	 Kruse	 et	 al.,	 2019;	 Pumplun	 et	 al.,	 2019;	 Sturm	 &	 Peters,	 2020;	
Traumer	 et	 al.,	 2017),	 or	 focus	 on	 separate	 AI	 particularities,	 such	 as	 research	 on	 fair	 (e.g.,	
Afrashteh	et	al.,	2020;	Martin,	2019;	Rhue,	2019)	and	transparent	AI	(e.g.,	Diakopoulos,	2016;	T.	
Miller,	2019;	Peters	et	al.,	2020).	

3.2.3 The	Need	to	Revisit	Problem	Finding	

The	problem-solving	process	by	Basadur	et	al.	(1982)	offers	a	solid	basis	for	exploring	problem-
solving	activities	in	different	contexts.	Despite	decades	of	research,	humans	have	generally	been	
considered	 the	 only	 actor	 that	 performs	 the	 second	 step	within	 this	 process;	 that	 is,	 deriving	
appropriate	 solutions.	 As	we	 are	 interested	 in	 understanding	 how	 the	 initial	 problem	 finding	
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step	translates	to	contexts	where	solutions	are	created	by	ML-based	AI,	we	must	reassess	the	fit	
of	existent	research	with	this	novel	context.		

Moreover,	research	on	the	use	of	ML-based	AI	 in	organizational	contexts	has	widely	neglected	
the	 process	 of	 problem	 finding.	 Although	 AI	 research	 has	 conceptualized	 the	 development	 of	
ML-based	AI	solutions,	the	act	of	 finding	suitable	problems	has	been	widely	overlooked	so	far.	
While	 some	 exceptions	 exist,	 corresponding	 studies	 do	 not	 provide	 procedural	 artifacts	 and	
mostly	 provide	 factors	 for	 more	 abstract	 or	 specific	 areas.	 Lastly,	 while	 problem-finding	
frameworks	 for	 digital	 technologies	 exist,	 they	 neglect	 to	 include	 relevant	 ML-based	 AI’s	
particularities	due	to	their	divergent,	more	general	technological	focus.		

So	 far,	 we	 miss	 insights	 to	 sufficiently	 explain	 how	 organizations	 can	 perform	 the	 initial,	
operative	 act	 of	 finding	 problems	 to	 be	 solved	 with	 ML-based	 AI.	 We	 therefore	 decided	 to	
conduct	 an	 explorative	 study	 to	 gather	 first	 evidence	 and	 propose	 a	 basic	 framework	 for	
problem	finding	within	this	novel	context.	

3.3 Qualitative	Research	Methodology	

To	 explore	 central	 factors	 that	 influence	 the	 suitability	 of	 organizational	 problems	 for	 being	
suited	to	be	solved	with	ML-based	AI,	we	applied	a	qualitative	research	approach.	In	particular,	
we	interviewed	experts	from	the	operational	and	management	levels	of	different	organizations	
that	are	highly	involved	in	AI	initiatives	(Flick,	2004).	We	then	followed	the	steps	of	a	directed	
content	 analysis	 (Hsieh	 &	 Shannon,	 2005)	 to	 contextualize	 problem	 finding	 for	ML-based	 AI.	
According	to	Weber	(1990),	content	analysis	can	be	used	to	categorize	and	evaluate	qualitative	
data.	

Based	 on	 the	 proposed	 principles	 by	 Sarker	 et	 al.	 (2013),	 we	 formulated	 a	 semi-structed	
interview	guideline	that	we	used	to	lead	the	interviews.	A	high	degree	of	coherence	was	ensured	
by	discussing	our	definition	of	ML-based	AI	and	selected	use	cases	with	each	expert	before	every	
interview.	We	 used	 semi-structured	 questions	 as	 they	 ensure	 that	 all	 relevant	 questions	 are	
posed,	 while	 allowing	 the	 experts	 to	 freely	 share	 own	 experiences	 and	 opinions	 (Myers	 &	
Newman,	2007).	To	examine	various	 factors	and	procedural	artifacts,	our	 interview	questions	
followed	both	an	organizational	and	technological	perspective	to	examine	the	essential	ideation-
evaluation	 process	 underlying	 problem	 finding	 (Basadur	 et	 al.,	 1982).	 Finally,	 our	 interview	
guide	covered	 the	 following	 five	sections:	general	 information	about	 the	experts,	ML-based	AI	
particularities,	 organizational	 and	 technical	 requirements,	 identification	 and	 evaluation	 of	 AI	
usage	scenarios,	and	potential	benefits	and	risks	related	to	the	adoption	of	AI	in	organizational	
processes.	The	iterative	approach	during	the	interviews	allowed	a	continuous	adaptation	of	the	
initially	 defined	 questions.	 Thus,	 on	 the	 one	 hand,	 the	 focus	 of	 the	 investigation	 could	 be	
sharpened	 while,	 on	 the	 other	 hand,	 individual	 perceptions	 could	 be	 considered	 (Myers	 &	
Newman,	2007).	

We	 selected	 interview	 partners,	 who	 have	 detailed	 experience	 in	 solving	 organizational	
problems	 with	 ML-based	 AI.	 We	 conducted	 23	 interviews	 with	 24	 experts	 from	 Europe	 and	
North	America,	 including	nine	experts	 from	user	 firms	(i.e.,	 that	mainly	purchase	AI	products)	
and	15	experts	 from	provider	 firms	to	comply	with	data	 triangulation	rules	(Flick,	2004).	One	
interview	 included	 two	 experts.	 The	 experts	 cover	 developers,	 data	 scientists,	managers,	 pre-
sales	consultants,	and	technical	consultants,	who	regularly	deal	with	the	design	and	integration	
of	prototypical	or	productive	systems	 in	different	organizational	contexts.	We	noticed	 that	we	
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reached	 theoretical	 saturation	 (Flick,	 2004)	during	 the	 last	 five	 interviews	 as	 they	 yielded	no	
further	insights	and	thus	stopped	interviewing.	

The	interviews	were	conducted	either	by	telephone	or	face-to-face	between	December	2018	and	
April	2019.	On	average,	each	interview	lasted	56	minutes.	They	were	recorded,	transcribed,	and	
analyzed	using	 the	NVivo	12	software.	 In	 line	with	Saldaña	(2009),	we	performed	an	 iterative	
multi-cycle	coding	process	consisting	of	two	coding	cycles.	The	first	cycle	covered	three	types	of	
coding:	 First,	we	used	 (1)	 attribute	 coding	 to	 extract	 essential	 information	 about	 participants	
and	 organizations.	 Then,	 we	 employed	 (2)	 hypothesis	 coding	 to	 determine	 and	 structure	
potential	factors	along	insights	of	human	problem	finding.	This	step	allowed	us	to	stimulate	code	
derivation	by	objectives	and	approaches	of	human	problem	finding	that	might	be	generalizable	
or	 ill-suited	 to	 the	 AI	 context.	 Finally,	 we	 applied	 (3)	 descriptive	 coding	 to	 identify	 new	
procedural	 artifacts	 and	 key	 factors	 that	 might	 extend	 the	 initial	 problem-finding	 process,	
allowing	 us	 to	 uncover	 AI-related	 particularities	 more	 independently	 from	 human	 problem	
finding.	 Since	 the	 first	 coding	 cycle	 resulted	 in	 a	 large	 number	 of	 factors	 (i.e.,	 11	 procedural	
artifacts	 and	 37	 key	 factors),	 we	 used	 pattern	 coding	 in	 a	 second	 cycle	 to	 cluster	 similar	
constructs	 to	 form	mutually	exclusive	and	collectively	exhaustive	procedural	artifacts	and	key	
factors.		

This	 two-cycle	 coding	 process	 was	 performed	 individually	 and	 independently	 by	 two	 of	 the	
authors	 and	 two	 student	 assistants.	 All	 results	 were	 compared	 and	 integrated	 in	 discussions	
with	 all	 four	 parties	 until	 a	 consensus	 was	 reached:	 an	 initial	 framework	 emerged	 in	 which	
procedural	artifacts	were	integrated	into	phases	of	problem	finding	and	each	procedural	artifact	
was	 fortified	 with	 associated	 key	 factors.	 To	 achieve	 research	 rigor,	 the	 coding	 process	 and	
initial	 framework	 were	 validated	 in	 subsequent	 discussions	 between	 five	 IS	 researchers	 and	
three	 student	 assistants	 (Flick,	 2004).	 Additional	 data	 sources	 regarding	 problem	 finding	 for	
digital	technology	contexts	and	the	use	of	AI	in	organizations	(i.e.,	Agrawal	et	al.,	2017;	Benta	et	
al.,	2017;	Bremser,	2018;	Brynjolfsson	&	Mitchell,	2017;	Fedyk,	2016;	Kayser	et	al.,	2018;	Satell,	
2018;	Traumer	et	al.,	2017;	Vanauer	et	al.,	2015)	were	also	considered	to	compare	results	with	
existing	 knowledge.	 Based	 on	 this	 data	 and	 investigator	 triangulation	 (Flick,	 2004),	 the	 final	
framework	was	formed.	

3.4 Results	

With	our	study,	we	explored	how	problem	finding	translates	to	a	context,	in	which	the	problem	
is	 aimed	 to	 be	 solved	 with	 ML-based	 AI.	 Our	 results	 show	 first	 evidence	 for	 fundamental	
procedural	 artifacts	 and	 related	 key	 factors.	 In	 our	 interviews,	 it	 got	 apparent	 that	 the	
fundamental	phases	of	problem	finding	in	a	human	solver	context	(i.e.,	ideation	and	evaluation)	
remain	valid	for	an	ML-based	AI	context.	Moreover,	we	found	that	finding	a	problem	for	being	
solved	with	ML-based	AI	 is	determined	by	three	central	aspects;	 that	 is,	a	clear	organizational	
purpose,	 available	 data,	 and	 technical	 particularities	 of	 ML-based	 AI.	 A	 model	 for	 problem	
finding	in	an	ML-based	AI	context	should	therefore	essentially	follow	an	ideation	and	evaluation	
phase,	while	considering	subphases	driven	by	factors	of	the	three	central	aspects.		

Figure	2	illustrates	the	framework	that	emerged	from	our	interviews.	Its	main	structure	follows	
a	two-phase	character:	An	ideation	phase	first	aims	to	uncover	potential	problems.	Within	this	
phase,	 problems	 are	 explored	 aiming	 to	 fulfill	 both	 a	 clear	 organizational	 purpose	 and	
availability	of	required	data.	The	subsequent	two-step	evaluation	phase	then	aims	to	assess	the	
suitability	 of	 envisioned	 problems.	 The	 phase	 starts	 with	 evaluating	 problem	 substance	 of	
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uncovered	problems;	that	is,	to	generally	be	suited	for	ML-based	AI.	If	this	essential	suitability	
can	 be	 confirmed,	 evaluating	 problem	 particularities	 follows	 to	 clarify	whether	 and	 to	which	
extent	special	features	of	ML-based	AI	solutions	fit	given	problems.		

	
Figure	2:	A	framework	for	the	ideation	and	evaluation	of	problems	to	be	solved	with	ML-based	AI	

Note	that	this	evaluation	phase	focuses	on	narrowing	down	problems	based	on	their	suitability	
for	 being	 solved	with	ML-based	AI	 from	a	 technical	 point	 of	 view,	which	our	 experts	deemed	
central	to	problem	evaluation	in	the	AI	context.	As	with	human	problem	finding,	construct	and	
content-wise	 organizational	 evaluations	 likely	 extend	 our	 conceptualized	 evaluation	 phase	 to	
further	assess	problems’	adequacy	for	being	solved	with	respect	to	an	organization’s	objectives.	
As	this	is	out	of	our	study’s	scope,	we	leave	it	to	future	research	to	analyze	potential	aspects	for	
such	problem	evaluation	foci	while	we	abstract	these	hereinafter.	

Below,	 we	 present	 the	 derived	 concepts.	 As	 each	 concept	 is	 grounded	 on	 some	 degree	 of	
consensus	between	the	experts,	we	also	 indicate	this	degree	as	percentage	of	experts	 focusing	
each	respective	concept.	

3.4.1 Ideation	Phase	

Within	 our	 interviews,	 it	 got	 apparent	 that	 a	 worthwhile	 ML-based	 AI	 solution	 unites	 a	
reasonable	organizational	purpose,	available	required	data,	and	the	fulfillment	of	ML-based	AIs'	
technical	particularities.	Otherwise,	even	if	the	defined	problem	is	basically	suited	to	be	solved	
with	ML-based	AI,	an	implemented	solution	may	end	up	not	being	used	if	no	clear	organizational	
purpose	 is	 included	 or	 the	 implementation	 may	 fail	 if	 the	 required	 data	 turns	 out	 to	 be	
insufficient	to	create	a	functioning	solution.	

To	 increase	 the	 likelihood	of	 finding	 suitable	problems	 already	 in	 an	 early	 stage,	 the	 ideation	
phase	should	involve	three	essential	elements:	organizational	exploration,	data	exploration,	and	
an	AI-specific	 problem	 substance.	While	 the	 organizational	 and	 data	 exploration	 guide	where	
the	 organization	 aims	 its	 ideation,	 the	 problem	 substance	 defines	 what	 the	 organization	 is	
searching	for;	that	is,	a	set	of	factors	that	must	be	fully	satisfied.	We	introduce	them	as	part	of	a	
core	 assessment	 of	 the	 evaluation	 phase	 in	 section	3.4.2.1.	 Yet,	 these	 factors	 are	 also	 used	 to	
already	 guide	 the	 ideation.	We	 further	 found	 that	 such	 ideation	 can	 be	 performed	 either	 in	 a	
purpose-	or	data-driven	manner,	which	differ	 in	the	two	explorations’	order	and	focus.	Below,	
we	first	introduce	the	two	explorations	and	then	integrate	them	into	two	ideation	alternatives.	

3.4.1.1 Organizational	Exploration	

Our	 interviews	yielded	 that	problem	finding	 for	ML-based	AI	should	 involve	an	exploration	of	
organizational	contexts	to	identify	problems	with	a	real	and	relevant	organizational	purpose.	If	
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such	a	purpose	 for	an	ML-based	AI	solution	 is	missing,	 the	experts	emphasize	 that	 it	becomes	
unlikely	that	the	solution	adds	any	value	to	the	organization.	While	this	may	seem	obvious,	the	
majority	of	experts	(63%)	also	highlight	that	organizations	often	fail	to	question	the	added	value	
of	having	ML-based	AI	solutions	for	their	problems.	

To	face	this	issue,	the	experts	point	out	that	organizations	can	actively	search	for	organizational	
purposes	 by	 pursuing	 two	 alternative	 trajectories:	 First,	 organizations	 can	 focus	 on	 exploring	
how	ML-based	AI	may	(1)	replace	existing	solutions	(79%).	In	this	case,	organizations	revisit	
established	 routines	 and	 offerings	 to	 explore	whether	ML-based	 AI	may	 offer	 better	ways	 to	
solve	 underlying	 problems.	 The	 experts	 agree	 that	 ML-based	 AIs	 can	 often	 offer	 valuable	
alternatives	especially	in	domains	in	which	designed	solutions	are	bounded	by	humans’	limited	
information	 processing	 capabilities	 or	 involved	 safety	 issues,	 or	 when	 their	 execution	 covers	
extensive	manual	efforts:	

“‘Do	 I	 need	 to	 increase	 profit	 by	 selling	more	 or	 do	 I	 have	 a	 lot	 of	 production	 costs?’	 Such	
analysis	needs	to	be	done.	Whether	it’s	manufacturing,	banking,	or	retail,	I	need	to	know	what	
my	business	 is	and	where	 I	can	 improve	given	solutions.	Then,	we	can	 focus	on	how	ML	can	
help.”	(i9)	

Second,	 organizations	 can	 use	ML-based	AI	 to	 (2)	explore	new	problem	domains	 (71%)	 to	
form	 entirely	 new	 offerings	 or	 routines.	 In	 this	 case,	 organizations	 can	 use	ML-based	 AI	 as	 a	
driver	 to	 uncover	 problems	 that	 were	 previously	 out	 of	 the	 organization's	 scope.	 While	 this	
certainly	 includes	 to	 explore	 completely	 new	 processes	 and	 offerings,	 the	 experts	 stress	 that	
organizations	 can	 often	 benefit	 from	 AI	 through	 revisiting	 problems	 that	 were	 previously	
unsolvable	due	to	manual,	technical,	or	economic	limitations:	

“I	 think	 you	 get	 two	 broad	 categories	 of	 either:	 trying	 to	 solve	 a	 problem	 that	 rendered	
unsolvable	so	far	or	looking	for	new	opportunities	that	you	didn’t	know	existed	by	analyzing	
your	environment	in	an	open-minded	way.”	(i10)	

3.4.1.2 Data	Exploration	

An	ML-based	AI’s	 possible	 solution	 space	 and	 thus	 framing	 of	 potential	 problems	 is	 basically	
determined	by	consumable	data.	The	experts	(88%)	thus	state	that	organizations	can	also	guide	
their	 ideation	 by	 exploring	 usable	 data,	 using	 different	 foci:	 First,	 organizations	 can	 uncover	
potentially	frameable	problems	along	their	data	availability.	The	experts	state	that	organizations	
usually	start	exploring	data	already	available	in	electronic	form.	Then,	they	widen	their	focus	to	
further	 sources	 like	 existing	 analog,	 public,	 purchasable,	 user,	 or	 newly	 recordable	 data	 (e.g.,	
through	 adding	 novel	 sensors).	 The	 experts	 emphasize	 that	 organizations	 should	 pay	 special	
attention	to	high-volume	data	sources	as	this	may	imply	a	greater	extent	of	potentially	captured	
problem	instances	and	thus	a	higher	likeliness	of	uncovering	representative	data	bases.	Yet,	the	
experts	further	stress	that	this	allows	organizations	to	especially	uncover	problem	domains	for	
which	 rather	 non-exhaustive,	 manually	 performed	 solutions	 exist	 due	 to	 humans’	 limited	
information	 processing	 capabilities	 that	 impede	 the	 analysis	 of	 extensive	 data	 volumes	 in	 a	
precise,	 comprehensive	 manner.	 In	 any	 case,	 the	 experts	 emphasize	 that	 organization	 must	
consider	 internal	 and	 external	 access	 restrictions	 (e.g.,	 privacy	 issues	 or	 data	 ownership)	 to	
identify	any	access	gaps	as	early	as	possible:	

“‘What	data	can	we	use?’	Sounds	trivial,	but	this	is	a	huge	problem.	[...]	Often,	organizations	do	
not	even	know	the	data	they	have,	or	it	is	distributed	over	so	many	systems	that	it	would	take	
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forever	 to	 gather	 it.	 [...]	What	 further	 data	 can	we	 collect?	What	 data	 can	we	 additionally	
purchase?”	(i4)	

3.4.1.3 Purpose-	&	Data-driven	Ideation	

While	organizational	and	data	exploration	should	be	covered	eventually,	our	interviews	indicate	
that	 both	 represent	 alternative	 starting	 points	 for	 the	 ideation	 phase.	 For	 both	 approaches,	
organizational	 and	 data	 exploration	 represent	 necessary	 investigations	 to	 ensure	 clarification	
and	 inclusion	 of	 an	 organizational	 purpose	 and	 required	 data.	 However,	 depending	 on	 the	
selected	approach,	the	experts	also	agree	that	the	two	exploration	types	are	used	for	a	different	
purpose;	 that	 is,	 either	 for	 the	 initial	 identification	 of	 potential	 problems	 or	 the	 respective	
subsequent	exploration	of	a	fitting	organizational	purpose	or	usable	data.		

The	 experts	 (92%)	 state	 that,	 when	 following	 a	 (1)	 purpose-driven	 ideation,	 potential	
problems	 are	 initially	 derived	 from	 an	 organizational	 context.	 For	 each	 derived	 problem,	
potentially	usable	data	is	then	explored	to	grasp	the	available	technical	foundation.	The	experts	
further	 stress	 that,	 if	 the	 required	 data	 is	 not	 available	 and	 cannot	 be	 made	 available	 in	 a	
reasonable	manner,	 the	 identified	 potential	 problem	 should	 be	 dismissed	 or	 postponed	 to	 be	
solved	with	AI:	

“The	customer	must	have	a	real	problem.	This	could	be:	‘We	have	to	plan	10,000	products,	but	
we	do	not	have	the	resources	to	do	that.’	Then,	this	is	a	real	problem.	You	can	then	check:	‘How	
could	we	solve	this	with	ML?’	and:	‘Do	I	have	enough	historic	data	to	automate	it?’”	(i4)	

Yet,	 the	 experts	 (88%)	 highlight	 that,	 when	 following	 a	 (2)	 data-driven	 ideation	 instead,	
potential	problems	are	 first	explored	 that	build	on	available	data.	Then,	organizations	explore	
expected	organizational	value	of	 its	solution.	 If	no	significant	purpose	can	be	 identified	at	 this	
point,	solving	the	problem	should	be	dismissed	or	postponed	due	to	its	missing	added	value:	

“We	 started	with	 data.	We	 accessed	 the	 data	 and	 investigated	whether	we	 can	 find	 things	
where	we	think	that	we	can	build	something	out	of	it.	[...]	If	you	do	this	without	business,	then	
this	will	not	get	you	very	far.	You	need	domain	knowledge	to	verify	or	falsify	your	hypotheses.	
Otherwise,	it	could	be	that	you	built	something	that	works,	but	then	they	say:	‘Thank	you,	but	
this	does	not	help	us	at	all.’”	(i6)		

3.4.2 Evaluation	Phase	

While	the	initial	ideation	phase	aims	to	uncover	potential	problems,	the	experts	(92%)	further	
outline	a	subsequent	evaluation	phase	that	aims	to	assess	the	likeliness	of	a	problem’s	particular	
nature	and	context	being	suited	to	be	solved	with	ML-based	AI:		

“After	letting	our	thoughts	run	freely	for	a	little	bit	to	explore	potential	cases,	we	then	narrow	
them	down	at	an	early	stage.	We	try	to	strongly	intervene	to	ensure	that	it	does	not	go	into	
every	 direction	 as	 this	may	 result	 in:	 ‘It’s	 a	 nice	 idea,	 but	 this	 is	 not	 really	 suitable	 for	 this	
approach.’”	(i5)	

Our	interviews	indicate	that	this	can	be	achieved	with	two	evaluations	that	allow	assessing	the	
likeliness	of	a	problem’s	suitability	to	be	solved	with	ML-based	AI.	Besides,	the	evaluation	phase	
also	yields	first	indications	for	basic	design	decisions	regarding	ML-based	AI	particularities	(as	
we	will	discuss).	As	Figure	2	illustrates,	 the	evaluation	phase	comprises	two	evaluations:	With	
our	 interviews,	we	 found	 that	 the	evaluation	phase	usually	 starts	with	 (1)	evaluating	problem	
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substance;	that	is,	the	assessment	of	hard	key	factors	that	must	be	fulfilled	to	render	a	problem	
potentially	solvable	with	ML-based	AI.	We	further	found	that	organizations	then	usually	proceed	
with	 (2)	 evaluating	problem	particularities;	 that	 is,	 the	 assessment	 of	 rather	 soft	 factors	 that	
must	be	fulfilled	in	a	certain	degree	special	to	a	given	problem	to	render	AI	solutions	favorable	
and	useful.	Below,	we	detail	the	two	identified	assessments	of	the	evaluation	phase.	

3.4.2.1 Evaluating	Problem	Substance	

With	our	interviews,	we	identified	key	factors	that	the	experts	considered	to	form	the	substance	
that	 a	 problem	must	 fulfill	 to	 be	 generally	 suited	 to	 be	 solved	with	ML-based	AI.	We	 refer	 to	
them	as	 “substance”	 as	 they	 represent	hard	 evaluation	 criteria	 that	must	 be	 satisfied	by	 each	
problem.	Otherwise,	a	problem	renders	generally	unsuited	 to	be	solved	with	AI.	We	 identified	
five	key	factors	that	likely	form	the	problem	substance:	

First,	the	factor	that	the	experts	(83%)	most	frequently	highlighted	is	the	(a)	indefinability	of	
sufficient	 human-designed	 rules.	 The	 experts	 stress	 that	 if	 it	 is	 possible	 and	 feasible	 for	
humans	to	derive	a	sufficient	solution	and	translate	 it	 into	a	set	of	rules,	 then	 it	 is	usually	not	
favorable	to	solve	the	problem	using	ML-based	AI,	but	to	create	a	solution	performed	manually	
or	by	a	non-ML	IS	instead.	This	is,	because	ML-based	AI	solutions	entail	potentially	detrimental	
properties	that	can	render	them	less	useful	and	even	impractical	in	certain	contexts	(see	section	
3.4.2.2.).	The	experts	therefore	emphasize	that	organizations	should	consider	ML-based	AI	as	a	
second-choice	problem	solver	that	becomes	only	employed	for	problems	for	which	their	human	
counterparts	 fail	 to	 derive	 or	 articulate	 sufficient	 solutions.	 For	 instance,	 this	 is	 the	 case	 if	
humans	can	only	define	rules	that	cover	a	problem	partially	or	must	spent	extensive	efforts	to	
update	defined	rules	over	time:	

“First,	I	always	ask:	‘Do	we	really	need	ML?’	If	I	can	define	sufficient	rules,	then	I	would	always	
use	these	to	better	guarantee	correct	solution	behavior.	Only	if	such	human-defined	solutions	
are	insufficient	or	come	with	high	maintenance	efforts,	I	would	try	to	solve	it	with	ML.”	(i4)	

Second,	 a	 factor	 that	 the	experts	 (71%)	also	highlight	 is	 a	problem’s	 (b)	self-containment	 in	
terms	of	its	framing.	The	experts	stress	that	organizations	must	be	able	to	make	data	available	
that	 describes	 the	 aspects	 that	 are	 key	 to	 a	 problem.	 That	 is,	 because	ML-based	AIs	 can	 only	
observe	a	problem	through	the	data	that	they	consume	and	cannot	consider	any	non-captured	
aspects	 in	 their	 solutions.	 The	 experts	 further	 stress	 that	 a	 representative,	 self-contained	
problem	 framing	 does	 not	 only	 depend	 on	 an	 organization’s	 data	 availability	 and	 quality,	 but	
also	on	the	problem’s	nature	itself.	If	a	problem	solution	requires	capabilities	hardly	capturable	
with	statistics	(e.g.,	intuition,	long	logic	chains,	or	common	sense)	an	ML-based	AI	will	likely	fail	
to	find	a	reasonable	solution	within	the	data:	

“The	AI	must	be	able	to	consider	all	information	that	I	need	to	make	a	decision.	[...]	Sometimes,	
you	want	to	use	an	AI	for	all	steps,	but	you	missed	the	multiple	logical	steps	involved	that	can’t	
be	solved	by	a	single	AI.”	(i13)	

Third,	 the	experts	(71%)	also	 frequently	highlight	 that	organizations	must	become	aware	that	
ML-based	 AIs	 only	 solve	 problems	 by	 deriving	 inferences	 through	 induction,	 i.e.,	 deriving	
general,	 statistical	 patterns	 from	 specific	 observations	 to	 solve	 a	 problem.	 The	 experts	 thus	
stress	 that	 organizations	 must	 be	 able	 to	 frame	 their	 problems	 in	 such	 a	 way	 that	 a	 (c)	
generalization	 is	 aimed	 as	 solution.	 They	 further	 emphasize	 that	 organizations	 should	
deliberately	evaluate	whether	they	can	expect	any	derivable	patterns	that	might	be	 integrated	



3	Paper	A:	Artificial	Intelligence	and	Individual-level	Performance	(Focus:	Problem	Solving)	 38	

into	 a	 general	 problem	 solution.	 Otherwise,	 it	 becomes	 likely	 that	 their	 ML-based	 AI	 cannot	
derive	a	sufficient	solution:	

“Many	projects	 fail	 because	you	cannot	generalize	 related	aspects	well	 enough.	 It’s	 just	 like	
that.	You	should	carefully	assess	upfront	whether	processes,	that	you	expect	to	follow	a	certain	
structure,	are	really	likely	to	do	it.”	(i6)	

Fourth,	another	factor	stated	by	the	experts	(58%)	is	that	organizations	must	be	able	to	define	a	
(d)	 clear,	 measurable	 goal	 of	 a	 problem	 to	 allow	 for	 an	 ML-based	 AI	 solution.	 Due	 to	 the	
usually	large	solution	space	that	ML-based	AIs	explore,	the	experts	stress	the	necessity	of	clearly	
defining	a	goal	and	 related	metrics.	Otherwise,	 an	ML-based	AI	will	not	be	able	 to	distinguish	
between	good	and	bad	outcomes,	essentially	stopping	it	from	producing	an	optimized	solution.	
The	experts	thus	highlight	that	problems	for	which	an	organization’s	members	cannot	agree	on	
the	correctness	of	potential	outcomes	and	how	to	measure	the	outcome’s	quality	are	not	suited.	
Especially	 in	 subjective	 problem	domains	 (e.g.,	 rating	 beauty;	 Rhue,	 2019),	 the	 experts	 stress	
that	an	agreement	on	what	the	organization	perceives	to	be	correct	is	inevitable:	

“You	must	 precisely	 define	 the	problem:	 ‘What	 exactly	 is	 the	goal	 you’re	 trying	 to	achieve?’	
and	 to	 define	 an	 evaluation	 metric	 for	 that	 goal	 to	 grasp	 and	 agree	 on	 how	 a	 sufficient	
solution	would	look	like.”	(i10)	

Finally,	a	fifth	key	factor	that	the	experts	(54%)	emphasized	is	that	organizations	must	be	able	
to	ensure	a	(e)	continuous	adaptation	of	an	ML-based	AI’s	solution.	In	particular,	they	stress	
that	organizations	must	ensure	a	 frequent	monitoring,	data	collection,	and	retraining	on	more	
current	or	comprehensive	data	bases	to	let	ML-based	AI	solutions	evolve	over	time.	Otherwise,	
the	organizations	cannot	ensure	well-performing	solutions	 if	 the	conditions	 that	affect	 related	
problems	change	or	relevant	exceptions	are	mistreated	by	the	solutions.	The	experts	stress	that	
this	 adaptation	 represents	 a	 necessity	 for	 keeping	 the	 solution	 useful,	 emphasizing	 that	
organizations	must	evaluate	whether	the	context	allows	for	continuous	monitoring	and	revision	
of	ML-based	AI	solutions:	

“I	must	be	able	 to	evaluate	 the	 results	 regularly	 to	 see	 if	 the	 solution	 still	makes	 sense.	 Just	
because	 nobody	 checked	 if	 the	 data	 or	 business	 processes	 had	 changed,	 one	 of	 our	 well-
working	AIs	rendered	completely	useless	over	time.”	(i4)		

3.4.2.2 Evaluating	Problem	Particularities	

While	 the	 factors	 that	 comprise	 problem	 substance	 represent	 hard	 factors	 required	 to	 be	
fulfilled,	 the	 experts	 also	 described	 rather	 soft	 factors	 that	 might	 be	 acceptable	 in	 various	
degrees	as	long	as	a	problem-specific	minimum	can	be	ensured.	We	refer	to	them	as	“problem	
particularities”	as	the	required	form	of	such	factors	is	specific	to	a	problem’s	particular	context.	
Based	 on	 our	 interviews,	 we	 identified	 five	 factors	 that	 emerged	 to	 likely	 form	 key	 problem	
particularities.	 We	 found	 that	 such	 factors	 are	 usually	 evaluated	 subsequent	 to	 confirming	 a	
problem’s	substance.	

First,	as	an	ML-based	AI	solution	is	based	on	statistical	generalizations,	it	will	certainly	produce	
errors	 at	 some	point	 (Brynjolfsson	&	Mitchell,	 2017).	Thus,	 the	 experts	 (92%)	 stress	 that	 the	
degree	 of	 (a)	 tolerable	 erroneousness	 for	 each	 problem	 context	 has	 to	 be	 evaluated.	 In	
particular,	 organizations	 should	 explore	 potential	 error	 types	 along	 with	 their	 degree	 of	
severity.	The	organizations	should	then	clarify	each	type’s	maximum	tolerable	rate	that	must	be	
ensured	by	a	solution.	The	experts	also	emphasize	that	organizations	must	understand	whether	
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the	absolute	avoidance	of	certain	errors	is	vital	for	a	problem’s	solution	to	avoid	a	detrimental	
ML-based	AI	solution.	This	can	also	be	the	case	if	the	maximum	tolerable	rate	is	not	expected	to	
be	 achievable	 or	 no	 reasonable	 mechanisms	 to	 intercept	 such	 errors	 can	 be	 identified	 (e.g.,	
humans	revising	AIs’	outputs):	

“ML	will	always	make	some	mistakes.	So	I	have	to	ask	myself:	Can	I	allow	errors	to	occur?	How	
much	worse	 is	a	 false	negative	compared	to	a	 false	positive	and	with	which	error	rate	am	I	
willing	to	live?	[...]	Which	protective	layers	can	I	build	around	it?”	(i1)	

Second,	 the	 experts	 (83%)	 state	 that	 organizations	 should	 evaluate	 the	 relevance	 of	 (b)	
transparency	of	the	inner	workings	and	reliability	of	ML-based	AI	solutions.	As	the	achievable	
transparency	 level	 varies	 across	 algorithms	 (Diakopoulos,	 2016),	 the	 experts	 stress	 that	
organizations	 must	 understand	 their	 transparency	 requirements	 for	 each	 specific	 problem	
context.	Depending	on	the	problem,	a	solution	must	also	offer	 the	possibility	 to	explain	why	a	
result	 is	 being	 provided.	 The	 experts	 warn	 that	 if	 organizations	 ignore	 any	 transparency	
requirements,	 their	 absence	may	 create	 distrust	 among	 users,	 potentially	 even	 resulting	 in	 a	
complete	 usage	 refusal.	 Providing	 transparency	 may	 also	 be	 required	 to	 meet	 regulatory	
requirements:	

“The	lack	of	understanding	of	what	is	happening	in	the	AI	might	be	critical	as	algorithms	may	
pay	 attention	 to	 completely	 different	 things	 than	 what	 we	 think	 they	 pay	 attention	 to.	
However,	if	and	how	big	a	problem	this	is	actually	depends	on	the	context	of	its	intended	use.”	
(i21)	

Yet,	 some	 experts	 (38%)	 also	 emphasize	 that	 organizations	 often	 ask	 for	 ungrounded,	 high	
transparency	levels,	even	if	they	are	not	required.	The	experts	warn	that	asking	for	excessively	
high	transparency	may	restrict	or	even	hinder	achievable	solutions	as	this	can	limit	the	design	of	
AI	 solutions.	 Organizations	 should	 therefore	 carefully	 explore	 given	 problem	 contexts	 to	
uncover	actual	transparency	needs:	

“It’s	 interesting	 that	 AIs’	 transparency	 is	 seen	 so	 critical,	 as	 we’ve	 already	 given	 up	
understanding	 many	 things	 that	 happen	 in	 our	 world—hardly	 anyone	 knows	 how	 their	
refrigerator	 works.	 We	 can	 evaluate	 AIs	 statistically.	 For	 many	 contexts	 this	 is	 completely	
sufficient	to	know.”	(i6)	

Third,	 a	 further	 factor	 that	 the	 experts	 (67%)	 highlight	 is	 (c)	 fairness	 of	 AI	 solutions.	 The	
experts	 stress	 that	 organizations	 can	 use	 ML-based	 AI	 to	 actively	 promote	 more	 objectivity	
through	 reducing	 individuals’	 habits	 (e.g.,	 prejudices	 or	 corruption)	 by	 generalizing	 over	
multiple	individuals’	behavior.	Yet,	the	use	of	ML-based	AI	solutions	may	also	create	new	ethical	
issues	if	AIs	create	discriminating	behavior	due	to	data	being	biased	towards	certain	preferences	
and	prejudices,	or	ethnical	and	social	groups	being	badly	represented	 in	the	data.	The	experts	
thus	emphasize	to	carefully	assess	existent	or	potentially	arising	ethical	issues	within	data	and	
organizational	contexts	that	may	affect	or	be	affected	by	ML-based	AIs’	fairness:	

“Any	systemically	 incorporated	data	bias	will	be	adopted	by	AIs.	For	example,	 such	AIs	may	
discriminate	 customers	 that	 a	 bank’s	 employees	 used	 to	 discriminate	 against	 traditionally.	
This	needs	special	attention,	but	not	everyone	is	aware	of	existing	or	potentially	arising	biases.	
So,	we	must	take	deliberate	action	to	uncover	discriminatory	biases.”	(i9)	

Fourth,	while	manual	 solutions	 or	 IS	 that	 are	 based	 on	 human-designed	 rules	 can	 be	 usually	
easily	 adapted	 to	 fulfill	 specific	 requirements,	 the	experts	 (46%)	 stress	 that	 solutions	derived	
with	 ML-based	 AI	 may	 only	 offer	 a	 limited	 (d)	 customizability.	 Although	 it	 is	 possible	 to	
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customize	an	AI	solution	by	adding	rules	which	modify	its	input	or	output,	a	fundamental	change	
of	the	model-driven	behavior	can	become	problematic	depending	on	the	applied	ML	algorithm;	
that	 is,	 because	 conducting	 adaptations	 of	 more	 complex,	 non-transparent	 algorithms	 (e.g.,	
neural	networks)	requires	indirect	changes	through	retraining	AIs	with	a	changed	goal	or	data	
and	 thus	 knowledge	 of	 data-science	 techniques	 in	 combination	 with	 domain	 and	 data	
understanding.	 The	 experts	 therefore	 emphasize	 that	 organizations	 must	 carefully	 assess	
whether	 problems	 have	 to	meet	 any	 potential	 requirements	 that	might	 be	 too	 specific	 to	 be	
ensured	at	the	core	of	an	AI	solution:	

“Our	AI	recognized	a	billion	documents	correctly,	but	then	we	had	one	type	that	didn’t	want	to	
work	 right.	 It	 can	 be	 an	 incredible	 effort	 to	 also	 correctly	 get	 this	 type	while	 ensuring	 the	
correctness	of	the	other	cases.	In	traditional	programming,	I	can	just	add	a	rule	to	handle	this.	
But	if	I	treat	exceptions	in	my	AI,	I	can't	just	handle	that	exception,	I	actually	start	to	solve	the	
problem	all	over	again.”	(i17)	

Lastly,	a	 fifth	 factor	stated	by	 the	experts	 (42%)	 is	 the	achievable	(e)	response	time	of	an	AI	
solution.	Depending	on	the	data	volume	that	has	to	be	processed	and	ML	algorithms’	processing	
time,	 the	 experts	 stress	 that	 a	 solution’s	 response	 time	 may	 vary	 widely.	 As	 with	 human	
solutions	however,	organizations	must	ensure	to	provide	a	response	as	soon	as	it	is	required	in	
the	 specific	 context.	A	gradual	 solution	might	not	only	 render	produced	outcomes	useless	but	
may	 even	 cause	 fatal	 consequences	 (e.g.,	 delayed	 warnings).	 Thus,	 organizations	 should	
carefully	 evaluate	 required	 minimum	 response	 times	 to	 clarify	 whether	 available	 data	 and	
algorithms	likely	allow	for	a	fitting	solution:	

“If	an	organization	wants	to	get	a	result	every	five	minutes,	then,	of	course,	it	has	to	be	ready	
within	 five	minutes.	That's	 something	you	must	always	actively	examine:	 ‘How	often	do	you	
need	a	result?	What	is	the	time	horizon?	Is	it	even	realistic	that	we	do	the	inference	in	time?’	
Depending	on	the	ML	algorithm	you	want	to	use,	the	inference	can	take	a	while.”	(i18)		

3.5 Discussion	

With	our	study,	we	explored	how	problem	finding	translates	to	organizational	contexts	in	which	
solutions	 are	 not	 purely	 derived	 by	 humans,	 but	 by	 ML-based	 AIs.	 Through	 interviewing	 24	
experts	 that	 regularly	 conduct	 AI	 initiatives,	we	 found	 first	 evidence	 for	 essential	 procedural	
artifacts	and	related	key	factors.	We	synthesized	our	findings	to	propose	a	basic	problem-finding	
framework	that	is	contextualized	for	ML-based	AI	problem	solving.	

We	can	offer	several	theoretical	contributions.	To	the	best	of	our	knowledge,	we	are	among	the	
first	to	study	how	the	essential	problem	finding	translates	to	organizational	ML-based	AI	solver	
contexts.	By	providing	initial	findings	on	how	to	identify	problems	and	evaluate	their	suitability	
to	 be	 solved	 with	 ML-based	 AI,	 we	 answer	 recent	 calls	 for	 research	 on	 how	 to	 manage	 the	
emerging	 human-machine	 symbioses	 in	 cognitive	 organizational	 contexts	 (e.g.,	 Coombs	 et	 al.,	
2020;	 Rai	 et	 al.,	 2019;	 Rzepka	 &	 Berger,	 2018;	 Schuetz	 &	 Venkatesh,	 2020).	 Moreover,	 our	
findings	 qualify	 the	 recently	 emerging	 lines	 of	 IS	 research	 that	 examine	 ML-based	 AI	
particularities,	such	as	research	on	 fair	 (e.g.,	Afrashteh	et	al.,	2020;	Martin,	2019;	Rhue,	2019)	
and	explainable	AI	(e.g.,	Diakopoulos,	2016;	T.	Miller,	2019;	Peters	et	al.,	2020),	and	confirm	the	
relevance	 of	 their	 consideration	 even	 at	 the	 earliest	 project	 stage	 of	 problem	 finding.	 Our	
findings	further	confirm	that	the	fundamental	ideation	and	evaluation	phases	of	purely	human-
driven	problem	finding	also	form	key	phases	in	AI	solver	contexts.	Lastly,	as	we	identified	key	
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characteristics	of	AI-suited	problems,	we	hope	to	inform	future	research	on	innovation,	design,	
and	diffusion	of	ML-based	AI	in	organizations.	

Our	study	also	comprises	significant	contributions	for	practitioners.	Organizations	can	use	our	
findings	 to	 better	 manage	 their	 problem-solving	 activities	 when	 their	 humans	 and	 machines	
jointly	 contribute	 to	 problem	 solving.	 In	 particular,	 organizations	 can	 apply	 the	 proposed	
framework	to	explore	and	evaluate	problems	underlying	potential	AI	initiatives	in	a	structured	
manner.	Our	findings	can	help	organizations	to	better	uncover	possibilities	to	exploit	ML-based	
AIs’	potential	for	enhancing	processes	and	offerings.	Organizations	can	also	use	the	framework	
to	protect	themselves	already	at	an	early	stage	from	mistakenly	promoting	AI-driven	problem-
solving	initiatives	that	are	not	suited	for	deploying	ML-based	AI.		

Of	course,	our	study	is	subject	to	some	limitations.	First,	we	did	not	perform	empirical	testing	of	
the	proposed	 framework.	Here,	 future	 studies	 should	 focus	on	evaluating	both	 the	procedural	
artifacts	and	 identified	key	 factors.	As	we	chose	to	pursue	a	rather	general	perspective,	 future	
studies	 can	 test	 our	 findings’	 applicability	 in	 contexts	 with	 special	 requirements	 to	 further	
contextualize	the	model	(e.g.,	highly	serious	or	subjective	contexts,	such	as	medical	or	recruiting	
solutions).	 Second,	 while	 we	 tried	 to	 ensure	 a	 wide-ranging	 analysis,	 the	 resulting	 set	 of	
proposed	 factors	 is	 rather	a	non-exhaustive	 list.	As	we	 focused	on	exploring	key	artifacts	 and	
factors,	 further	 analyses	 that	 offer	 additional	 explorable	 contexts	 and	problem	 characteristics	
represent	 fruitful	 avenues	 for	 future	 research.	 Third,	 although	 our	 interviewees	 cover	 a	wide	
range	 of	 roles	 and	 industries,	we	 cannot	 completely	 rule	 out	 any	 data	 biases.	 To	 reveal	 such	
biases,	quantitative	studies	in	varying	contexts	can	be	used	to	further	validate	our	framework’s	
applicability.	

Presently,	we	do	not	 know	much	about	how	ML-based	AI	will	 change	organizational	problem	
solving.	Yet,	history	showed	us	that	ML-based	AI	is	able	to	build	brilliant	solutions	if	applied	to	
the	 right	 problems.	 Furthering	 our	 understanding	 of	 how	 to	 effectively	 uncover	 suitable	
problems	may	therefore	play	a	crucial	role	in	ultimately	unlocking	the	full	potential	of	AI.		
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4.1 Introduction	

In	recent	years,	artificial	intelligence	(AI)	has	beaten	the	world's	best	human	Go	player	(Silver	et	
al.,	2017),	managed	 to	 recognize	objects	better	 than	 the	average	human	(He	et	al.,	2015),	 and	
just	defeated	the	world's	best	professional	players	in	a	complex	strategic	online	game	(Vinyals	et	
al.,	 2019).	 Whereas	 these	 examples	 highlight	 most	 advanced	 technological	 accomplishments,	
comparable	 AI	 is	 not	 only	 subject	 to	 exceptional	 research	 projects	 anymore;	 AI	 already	
influences	our	lives	crucially	by	helping	us	to	diagnose	diseases	(Kourou	et	al.,	2015)	and	control	
natural	 disasters	 (Pourghasemi	 et	 al.,	 2020).	 Due	 to	 its	 widely	 recognized	 transformative	
potential,	 organizations	 have	 already	 started	 to	 adopt	 AI	 in	 a	 wide	 variety	 of	 their	 business	
functions	to	increase	their	efficiency	and	effectiveness	(e.g.,	Bean,	2019;	Forbes	Insights,	2018).	
However,	high	uncertainty	remains	on	how	to	manage	this	new	technology	 to	 leverage	 its	 full	
disruptive	potential	(Rai	et	al.,	2019;	Rzepka	&	Berger,	2018).	With	machine	learning	(ML)	being	
the	major	driver	of	modern	AI-based	information	systems	(ISs),	the	uncertainty	of	managing	AI	
is	 further	 spurred:	 ML	marks	 an	 alternative	 programming	 paradigm	 that	 allows	 to	 derive	 IS	
functionality	from	data	instead	of	having	humans	explicitly	translating	their	solutions	into	code	
(Samuel,	1959).	AIs	that	make	use	of	data	and	ML	algorithms	–	by	us	referred	to	as	ML-based	AI	
–	 perform	 intelligent	 behavior	 by	 deriving	 patterns	 from	data	which	 are	 then	 applied	 to	 new	
data	to	perform	actions	(Bishop,	2006).	The	resulting	handover	of	solution	design	to	data-driven	
algorithms	and	arising	technological	particularities	(which	we	will	discuss)	make	it	necessary	to	
revisit	 our	 existing	 knowledge	 on	 how	 to	 manage	 IS	 successfully.	 Especially	 with	 AI	 being	
frequently	 praised	 as	 a	 universal	 panacea	 for	 increasing	 organizations’	 performance	 (e.g.,	
Schmelzer,	 2019),	 the	 actual	 impact	 of	 ML-based	 AI	 on	 organizations’	 success	 must	 be	
fundamentally	questioned	and	extensively	examined.	

With	today’s	individuals	relying	more	and	more	on	IS	to	perform	their	organizations’	tasks,	the	
linkage	between	ISs	and	individual	performance	remains	a	key	concern	in	IS	research	(Gebauer	
et	 al.,	 2010;	 Goodhue	 &	 Thompson,	 1995).	 In	 1995,	 Goodhue	 and	 Thompson	 argued	 that,	 in	
conjunction	 with	 utilization,	 information	 technology	 (IT)	 must	 be	 a	 good	 fit	with	 the	 tasks	 it	
supports	 to	 positively	 impact	 individual	 performance.	They	proposed	 a	 theoretical	model	 that	
solidifies	 this	 core	 idea	 and	 allows	 to	 empirically	 explore	 the	 impact	 of	 IS	 on	 individual	
performance	 (Goodhue	 &	 Thompson,	 1995).	 To	 date,	 this	 model	 is	 widely	 known	 as	 “task-
technology	 fit”	 (TTF)	 theory.	 Their	 results	 have	 prompted	 a	 dwell	 of	 research	 demonstrating	
that	it	is	vital	for	organizations	to	focus	on	promoting	TTF	when	managing	technology	use	(e.g.,	
Dennis	 et	 al.,	 2001;	 Gebauer	 et	 al.,	 2010;	 Zigurs	&	 Buckland,	 1998).	 Otherwise,	 organizations	
may	even	hinder	 their	 individuals’	 performance,	 potentially	 contributing	 to	 the	organizations’	
degradation	in	the	long	run.	In	the	ML-based	AI	context,	managing	this	task-technology	interplay	
becomes	relevant	when	individuals	place	their	tasks	on	AI-produced	groundwork:	if	physicians	
base	their	patients’	treatments	on	AIs’	medical	diagnoses	(de	Fauw	et	al.,	2018;	McKinney	et	al.,	
2020)	 or	 bankers	 manage	 credits	 based	 on	 AIs’	 credit	 assignments	 (Ala’raj	 &	 Abbod,	 2016;	
Kruppa	 et	 al.,	 2013),	 their	 performance	 depends	 on	 ML-based	 AIs	 that	 augment	 their	 work,	
potentially	causing	expensive	or	even	deadly	consequences	if	the	AIs	fail	to	fit	individuals’	task	
requirements.	 However,	 can	 organizations	 evaluate	 potential	 AI-related	 performance	 impacts	
based	on	traditional	TTF	constructs	given	ML-based	AI’s	data-driven	design?	Or	is	it	required	to	
incorporate	resulting	ML-based	AI	particularities	(e.g.,	system	transparency	or	data	bias)	when	
deciding	on	system	design	to	increase	individual	performance?	To	the	best	of	our	knowledge,	it	
remains	 unclear	 to	 which	 extent	 existing	 knowledge	 on	 TTF	 also	 applies	 to	 ML-based	 AI	 or	
whether	new	insights	are	required.		
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With	individual	performance	being	the	most	fundamental	and	direct	level	on	which	technology’s	
impact	on	organizations’	performance	can	be	explored,	it	renders	suitable	to	derive	a	foundation	
for	analyzing	ML-based	AI’s	impact	on	organizations’	performance.	With	this	study,	we	therefore	
seek	 to	 understand	 the	 impact	 of	 managerial	 decisions	 regarding	 ML-based	 AI	 adoption	 on	
individual	performance.	Only	recently,	researchers	have	started	to	investigate	the	impact	of	AI	
diffusion	 in	organizations	(Brynjolfsson	&	Mitchell,	2017;	Rzepka	&	Berger,	2018).	Due	to	 this	
contexts’	scarce	literature,	this	study	explores	factors	through	a	qualitative	interview	approach	
with	 24	 experts	 that	 are	 frequently	 involved	 in	 AI	 initiatives.	 Building	 on	 TTF	 as	 conceptual	
framework,	we	aim	to	answer:	

Regarding	 individual	performance,	 (1)	which	central	characteristics	render	tasks	 favorable	to	be	
supported	with	ML-based	AI,	(2)	which	central	technology	characteristics	determine	ML-based	AI	
use,	and	(3)	which	central	 factors	determine	the	degree	of	 fit	between	individuals’	tasks	and	ML-
based	AI?	

The	remainder	of	 this	paper	 is	organized	as	 follows:	 first,	we	define	ML-based	AI,	present	 the	
TTF	theory,	and	discuss	related	work.	Next,	we	present	our	research	method,	covering	our	study	
design	and	sample.	Then,	we	derive	empirical	results	which	we	integrate	into	the	TTF	theory.	To	
provide	a	first	step	towards	a	theory	on	the	impact	of	ML-based	AI	on	individual	performance,	
we	 propose	 an	 extended,	 contextualized	 theoretical	 model	 based	 on	 the	 TTF	 theory	 that	
comprises	key	characteristics	of	involved	constructs.	We	conclude	by	discussing	and	integrating	
our	 key	 findings	 into	 existent	 research	 to	 provide	 scholars	 a	 foundation	 for	 future	 research	
possibilities	 and	 managers	 essential	 guidance	 on	 how	 to	 design	 ML-based	 AI	 initiatives	 to	
effectively	promote	AI	diffusion	within	organizations.	

4.2 Theoretical	Background	

In	the	following,	we	first	define	ML-based	AI	as	a	form	of	AI-based	IS	and	present	related	work	
on	AI	diffusion	in	organizations.	Second,	we	present	the	task-technology	fit	theory	and	highlight	
related	 extensions	 and	 applications.	 Third,	 we	 combine	 both	 research	 streams	 to	 form	 our	
study’s	objective.	

4.2.1 Artificial	Intelligence,	Intelligent	Agents,	and	Machine	Learning	

One	of	the	most	widely	accepted	conceptualizations	of	intelligent	behavior	in	AI	research	is	the	
one	of	the	“intelligent	agent”	(Legg	&	Hutter,	2007;	Nilsson,	1998;	Poole	et	al.,	1998;	Russell	&	
Norvig,	 2021),	 which	 is	 “anything	 that	 can	 be	 viewed	 as	 perceiving	 its	 environment	 through	
sensors	and	acting	upon	that	environment	through	actuators”	(Russell	&	Norvig,	2021,	p.	34).	It	
defines	intelligent	behavior	as	an	agent	function	that	selects	executable	actions	based	on	current	
context	 information	 (Russell	 &	 Norvig,	 2021).	 This	 function	 can	 be	 realized	 with	 various	
approaches,	e.g.,	manually	defined	rules	or	statistics	(Russell	&	Norvig,	2021).	The	approach	that	
enabled	recent	AI	advances	(e.g.,	He	et	al.,	2015;	Heess	et	al.,	2017;	Silver	et	al.,	2017)	is	ML,	the	
concept	of	 learning	from	experience	through	algorithms:	ML	algorithms	are	trained	on	data	to	
create	models	 capturing	 contained	 patterns.	 Trained	models	 are	 then	 applied	 to	 new	 data	 to	
perform	 a	 task	 (Bishop,	 2006;	Mitchell,	 1997).	Without	ML,	 solutions	 are	 codified	 entirely	 by	
humans,	e.g.,	humans	designing	rules	to	define	robots’	routines	(Russell	&	Norvig,	2021).	With	
ML,	 solutions	 result	 from	 statistical	 correlations	derived	 from	data,	 e.g.,	 algorithms	 that	 learn	
how	to	detect	credit	card	fraud	from	business	transactions	(Ala’raj	&	Abbod,	2016;	Kruppa	et	al.,	
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2013).	Thus,	ML	 renders	manual	programming	unnecessary	 (Samuel,	 1959).	 In	 our	 study,	we	
focus	on	AI	as	intelligent	agents	that	rely	on	ML,	i.e.,	ML-based	AI.		

Although	calls	for	more	research	on	collaboration	between	humans	and	ML-based	AI	exist	(e.g.,	
Rai	 et	 al.,	 2019),	 work	 concerning	 its	 impact	 on	 individual	 performance	 is	 rare	 so	 far.	 Most	
existing	research	approaches	the	topic	from	a	very	practice-oriented	perspective,	covers	aspects	
such	as	AI’s	 impact	on	decision-making	 (Agrawal	et	al.,	2017),	 identification	of	business	cases	
(Fedyk,	2016),	or	success	factors	for	implementing	AI	projects	(Satell,	2018).	Only	a	few	papers	
contribute	 to	 this	 area	 on	 a	 more	 abstract	 and	 theoretical	 level.	 Rzepka	 and	 Berger	 (2018)	
determine	factors	that	influence	user	interaction	with	AI-enabled	systems.	They	mention	two	fit	
types	 that	 affect	 human-machine	 relationships:	 fit	 between	 user	 and	 system	 and	 fit	 between	
technology	 and	 task.	 Brynjolfsson	 and	Mitchell	 (2017)	 examine	 labor	 implications	 caused	 by	
ML-based	AI’s	diffusion.	The	authors	name	criteria	 for	 tasks	 that	make	 them	favorable	 for	ML	
application,	e.g.,	the	existence	of	well-defined	inputs	and	outputs	and	the	acceptance	of	systems’	
potential	 black	 box	 behavior.	 Then,	 labor	 implications	 are	 discussed	 by	 examining	 effects	 on	
established	economic	factors	(e.g.,	substitution,	price	elasticity).	

4.2.2 Task-Technology	Fit	

In	 1995,	 Goodhue	 and	 Thompson	 proposed	 the	 technology-to-performance	 chain	 –	 today	
primarily	 known	 as	 TTF	 theory	 –	 as	 a	 theoretical	 model	 to	 better	 understand	 the	 linkage	
between	 IT	 and	 individual	 performance.	 They	 argued	 that,	 to	 positively	 impact	 individual	
performance,	 IT	 must	match	 the	 tasks	well	 that	 it	 supports	 when	 being	 utilized.	 They	 further	
argue	that	TTF	combined	with	utilization	can	thus	be	applied	as	appropriate	surrogate	to	predict	
individual	 performance	 (Goodhue	&	Thompson,	 1995).	 Figure	 3	 shows	 the	 TTF	 theory	which	
comprises	five	main	constructs:	(i)	characteristics	of	tasks	that	are	performed	by	individuals	to	
turn	 some	 inputs	 into	 outputs;	 (ii)	 characteristics	 of	 technologies	 that	 support	 individuals	 in	
performing	their	tasks;	(iii)	task-technology	fit	as	degree	of	how	well	a	technology	can	support	
an	individual’s	tasks;	(iv)	utilization	as	individual’s	usage	behavior	of	the	technology	to	perform	
tasks	(measurable	with,	e.g.,	usage	 frequency);	 (v)	performance	 impacts	as	accomplishment	of	
the	 individual’s	 tasks	 with	 higher	 performance	 implying	 some	 combination	 of	 improved	
efficiency,	effectiveness,	and/or	quality	(Goodhue	&	Thompson,	1995).	According	to	the	theory,	
task	 and	 technology	 characteristics	 affect	 the	 perceived	 task-technology	 fit.	 This	 fit	 then	
positively	 impacts	 performance	directly	 and	 indirectly	 via	 the	mediating	 utilization	 construct.	
This	theory	has	been	extended	and	utilized	in	various	contexts.	Hereafter,	we	summarize	work	
related	to	TTF.	

	
Figure	3:	The	TTF	Theory	as	Conceptual	Base	(Goodhue	&	Thompson,	1995)	

Previous	TTF	research	focused	on	numerous	technologies	and	performance	measures.	The	first	
technology	 that	 TTF	 was	 applied	 to	 are	 group	 support	 systems	 (GSSs).	 Zigurs	 and	 Buckland	
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(1998)	developed	a	TTF-based	theory	to	explain	GSS	effectiveness.	In	this	context,	the	authors	
used	group	performance	as	target	variable	and	developed	different	models	 for	 five	task	types:	
simple,	problem,	decision,	judgment,	and	fuzzy	tasks.	For	each	task,	specific	GSS	functionalities	
were	 included	 as	 technology	 characteristics	 (e.g.,	 communication	 support,	 information	
processing).	 In	 later	work,	TTF	was	used	as	one	of	 two	 factors	explaining	group	performance,	
the	other	factor	being	appropriation	effects	(Dennis	et	al.,	2001).	For	this	integrated	model,	TTF	
was	shown	to	positively	influence	outcome	effectiveness	(e.g.,	decision	quality).	Further	work	in	
the	 area	 of	 GSSs	 built	 on	 TTF	 to	 identify	 an	 effect	 of	 fit	 between	 ICT	 functionality	 and	
communication	requirements	on	 team	performance	(Maruping	&	Agarwal,	2004).	This	study’s	
target	 variable	was	 short-term	 team	viability,	 as	measured	by	 satisfaction,	 team	commitment,	
and	group	 cohesion.	 In	 further	 research,	 Fuller	 and	Dennis	 (2009)	 found	 that	 short-term	TTF	
effects	 on	 team	 performance	 did	 not	 sustain	 in	 the	 long	 term,	 as	 poor-fit	 teams	 appropriate	
technology	over	time,	resulting	in	improved	perceived	fit	and	performance.	Another	context	that	
is	 widely	 studied	 using	 TTF	 is	 the	 one	 of	 mobile	 IS	 (e.g.,	 Gebauer	 et	 al.,	 2010;	 Gebauer	 &	
Ginsburg,	2009;	Junglas	et	al.,	2008;	Lee	et	al.,	2007).	Here,	researchers	mainly	aimed	to	develop	
models	based	on	TTF	to	examine	performance	variables	such	as	managerial	task	performance.	
To	account	for	the	specific	particularities	of	mobile	IS,	developed	models	oftentimes	included	a	
context	 construct	 in	addition	 to	 the	established	TTF	model	 components	 (Gebauer	et	al.,	2010;	
Gebauer	&	Ginsburg,	2009).	In	their	research,	Gebauer	et	al.	(2010)	measured	this	construct	by	
three	variables:	degree	of	distraction,	connection	quality,	and	mobility	of	the	user.	

TTF	has	been	applied	to	areas	similar	to	ML-based	AI,	namely	non-ML-based	AI,	data	analytics,	
and	decision	support	systems	(DSS).	Here,	we	refer	to	non-ML-based	AI	as	AI	that	is	not	based	
on	 ML	 but	 has	 different	 underlying	 technologies	 (e.g.,	 expert	 systems).	 Within	 this	 context,	
previous	 research	 aimed	 to	 examine	 individual	 task	 performance	 and	 intention	 to	 use	 IT.	
Regarding	 the	 first	 target	variable,	Wongpuninwatana	et	al.	 (2000)	developed	a	model	 for	 the	
impact	 of	 fit	 between	 an	 auditing	 task	 and	 an	 expert	 system	 on	 two	 variables	 related	 to	
individual	performance,	namely	user’s	performance	on	problem	solving	and	user’s	uncertainty	
of	 the	 correctness	 of	 their	 solutions.	 Another	 study	 integrated	 TTF	 and	 the	 Technology	
Acceptance	Model	 (TAM)	 in	order	 to	examine	 intention	 to	use	 intelligent	agents	 in	web-based	
auction	processes	(Chang,	2008).	The	authors	found	TTF	to	be	a	suitable	predecessor	to	the	TAM	
constructs	 (e.g.,	 perceived	 usefulness,	 perceived	 ease	 of	 use)	 for	 the	 specific	 tasks	 of	 price	
negotiation	and	item	acquisition.	TTF	was	also	used	to	examine	effects	regarding	use	of	data	in	
general,	and	data	analytics	in	particular.	It	was	shown	that	the	TTF	model	can	be	used	to	explain	
user	satisfaction	with	data	(Karimi	et	al.,	2004).	Moreover,	TTF	was	established	as	one	of	three	
factors	 that	 positively	 moderate	 the	 relationship	 between	 data	 analytics	 use	 and	 firm	 agility	
(Ghasemaghaei	 et	 al.,	 2017).	 Finally,	 Parkes	 (2013)	 developed	 a	 model	 that	 demonstrated	 a	
positive	effect	of	TTF	on	individual	performance	in	the	context	of	a	DSS	applied	for	insolvency	
legislation.	

4.2.3 Summary	of	Literature	Review	

The	theory	of	TTF	has	been	used	in	many	different	contexts	and	for	a	diverse	set	of	technologies.	
This	underlines	the	suitability	of	the	theory	for	examining	the	relationship	between	technology	
use	 and	performance	 impacts	 on	 an	 individual,	 team,	 or	 organization	 level.	Although	TTF	has	
been	applied	for	technologies	that	have	some	resemblance	to	ML-based	AI	(e.g.,	expert	systems,	
DSS),	 findings	 from	 these	 contexts	 cannot	 simply	 be	 transferred.	 This	 is	 mainly	 due	 to	 two	
unique	characteristics	of	ML-based	AI:	First,	ML-based	AI	has	to	be	differentiated	from	non-ML-
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based	AI	approaches,	such	as	expert	systems,	and	other	automation	technologies	as	it	does	not	
rely	 on	 human-defined	 rules	 but	 statistical	 patterns	 in	 data.	 Second,	 its	 focus	 on	 providing	
intelligent	behavior	rather	than	aiming	for	manual	extraction	of	insights	distinguishes	ML-based	
AI	 from	 approaches	 like	 data	 mining	 or	 analytics.	 Hence,	 existing	 research	 on	 TTF	 is	 not	
sufficient	for	the	context	of	ML-based	AI.	Since	there	is	not	enough	evidence	available	regarding	
ML-specific	factors	that	influence	the	TTF,	we	employ	an	explorative	focus	for	this	study.	Here,	
our	goal	is	to	identify	the	most	important	TTF	factors	to	enable	empirical	research	in	this	area.	
In	the	following	section,	we	will	describe	the	applied	methodology.	

4.3 Qualitative	Research	Methodology	

With	this	study,	we	aim	to	provide	initial	evidence	regarding	general	factors	affecting	the	impact	
of	 ML-based	 AI	 on	 individual	 performance	mediated	 by	 TTF.	 To	 achieve	 this,	 we	 questioned	
experts	from	operational	and	managerial	levels	of	different	organizations.	As	justified	above,	we	
chose	 to	 pursue	 an	 explorative	 approach	 using	 interviews	 to	 study	 particularities	 associated	
with	 the	use	of	ML-based	AI	 in	 this	particular	 context	 (Flick,	 2004).	 Following	Weber	 (1990),	
content	analysis	can	be	used	to	evaluate	collected	qualitative	data,	making	it	suitable	to	assess	
open-ended	questions.	We	thus	apply	content	analysis	by	following	the	steps	proposed	by	Hsieh	
and	 Shannon	 (2005):	 First,	 we	 chose	 to	 use	 the	 TTF	 theory	 as	 a	 conceptual	 basis	 for	 our	
investigations.	We	made	 this	 decision	 as	 the	TTF	 theory	 represents	 a	widely	 accepted	 theory	
which	 has	 been	 empirically	 proven	 in	 many	 different	 contexts	 and	 focuses	 on	 performance	
impacts	 of	 the	 interplay	 between	 tasks	 and	 technologies	 in	 which	 we	 are	 interested	 in.	 We	
extracted	 its	main	 constructs	 as	 initial	 categories	 for	 potential	 factors.	 Second,	we	 conducted	
and	 recorded	 the	 interviews.	 Third,	 we	 transcribed,	 coded,	 and	 analyzed	 the	 interviews	
considering	 studies	 related	 to	 ML-based	 AI’s	 particularities	 through	 triangulation	 (Hsieh	 &	
Shannon,	2005),	 including	the	rather	practical-oriented	studies	which	we	presented	as	related	
work	above.	Thus,	we	combine	directed	and	conventional	analysis,	where	the	directed	approach	
aims	to	draw	on	codes	extracted	from	existent	theory	(i.e.,	the	TTF	theory)	and	the	conventional	
analysis	aims	to	derive	information	directly	from	gathered	data,	since	we	focus	initial	evidence	
regarding	factors	associated	with	ML-based	AI	in	the	context	of	TTF	(Hsieh	&	Shannon,	2005).		

4.3.1 Research	Design	

We	conducted	 semi-structured	 interviews	with	 experts	 of	 different	 organizations	 and	 varying	
experience	 in	 using	ML-based	AI	within	 organizational	 contexts	 and	used	 these	 interviews	 as	
our	 key	 information	 source.	While	doing	 so,	we	used	 the	principles	proposed	by	 Sarker	 et	 al.	
(2013)	to	guide	our	interview	preparation	and	execution.	Prior	to	each	interview,	we	discussed	
our	 definition	 of	 ML-based	 AI	 and	 a	 set	 of	 related	 example	 applications	 with	 each	 expert	 to	
ensure	 a	 shared	 understanding.	 During	 the	 interviews,	 we	 used	 open	 questions	 to	 enable	
experts	to	freely	share	experiences	and	views	related	to	our	research	objective.	We	designed	the	
interview	questions	along	the	TTF	theory	by	varying	the	questions’	 focus	on	the	different	TTF	
constructs	to	explore	relevant	task,	technology,	and	fit	characteristics	and	related	dependencies	
both	 in	 isolation	 and	 in	 combination	 with	 one	 another.	 In	 addition,	 we	 used	 the	 above	
highlighted	TTF	and	ML-based	AI	literature	to	further	shape	the	questions’	focus.	As	a	result,	our	
interview	 guide	 covers	 five	 sections.	 The	 first	 section	 targets	 general	 information	 about	 the	
experts’	 position,	 responsibilities,	 and	 past	 experiences	 with	 applying	 ML-based	 AI	 in	
organizational	 contexts.	 While	 this	 section	 was	 primarily	 designed	 to	 familiarize	 the	 experts	
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with	the	interview	situation,	many	statements	already	provided	useful	insights	as	some	experts	
began	to	mention	value	and	challenges	of	conducted	AI	initiatives.	The	second	section	focuses	on	
exploring	characteristics	that	are	special	to	ML-based	AIs.	To	achieve	this,	we	primarily	ask	to	
describe	problems	that	are	suited	to	be	solved	with	ML-based	AI	and	to	differentiate	them	from	
manually	programmed	solutions.	The	third	section	aims	at	organizational	requirements	as	well	
as	organizational	and	technical	challenges	related	to	data	and	algorithms	for	creating	ML-based	
AIs.	The	fourth	section	focuses	on	how	organizations	identify	usage	scenarios	for	applying	ML-
based	 AIs	 in	 their	 organizational	 processes.	 Finally,	 the	 fifth	 section	 explores	 achieved	 and	
pursued	benefits	as	well	as	potential	risks	and	negative	consequences	related	to	the	adoption	of	
ML-based	AI	in	organizational	processes.	Resulting	from	the	pursued	semi-structured	approach,	
initially	 defined	 questions	were	 gradually	 adjusted	 to	meet	 each	 expert’s	 individual	 expertise	
and	to	develop	the	focus	during	the	interview	process.		

4.3.2 Data	Collection	and	Coding	Concept	

We	based	the	selection	of	the	experts	on	a	key	informant	approach.	To	comply	with	the	rules	of	
data	 triangulation,	we	 included	 both	 provider	 and	 user	 firms	 (Flick,	 2004).	We	 conducted	 23	
interviews	with	24	experts	within	Europe	and	Northern	America,	including	fifteen	experts	from	
provider	 and	nine	 experts	 from	user	 firms	 (i.e.,	 firms	 that	mainly	purchase	AI	 products).	One	
interview	included	two	experts.	During	the	last	five	interviews,	we	noticed	that	additional	data	
discontinued	 to	 add	 new	 insights	 which	 implied	 that	 we	 had	 reached	 theoretical	 saturation	
(Flick,	2004)	and	therefore	decided	to	stop	interviewing.	The	interviews	were	held	face-to-face	
or	by	telephone	and	lasted	56	mins	on	average.	They	were	conducted	from	December	2018	to	
April	2019.	With	our	interviews,	we	aimed	to	capture	experiences	related	to	both	technical	and	
organizational	 topics	 to	avoid	an	elite	bias	 (Miles	et	al.,	2013)	and	 to	enable	a	combination	of	
both	viewpoints	which	is	essential	to	the	TTF	theory.	All	experts	work	or	have	worked	as	data	
scientist	and	thus	have	basic	to	advanced	knowledge	in	data	analysis.	Our	sample	includes	data	
scientists,	 managers,	 technical	 consultants,	 presales	 consultants,	 and	 developers	 that	 are	
frequently	 involved	 in	 AI	 initiatives.	 Each	 expert	 regularly	 deals	 with	 the	 implementation	 of	
prototypical	 or	 productive	 systems	 in	 different	 organizational	 contexts,	 being	 especially	
involved	 in	 conducting	 data	 exploration	 and	management,	 algorithmic	 design	 and	 evaluation,	
and	use	case	identification	and	definition.	The	experts’	experiences	with	AI	initiatives	comprise	
19	industries	with	special	focus	on	the	finance	(48%),	manufacturing	(48%),	health	care	(29%),	
railway	 (29%),	and	automotive	 (24%)	 industries.	Each	expert	has	 three	 to	 twelve	 (mean:	 six)	
years	of	experience	 in	one	 to	 ten	(mean:	 three)	different	 industries.	Table	3	provides	detailed	
information	on	the	involved	experts.	
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Table	3:	Experts	who	participated	in	the	study	

ID Age Gender AI Experience Profession Firm 

i1 51 Male 6 years in 2 industries Data scientist Provider firm 

i2 39 Male 6 years in 2 industries Data scientist Provider firm 

i3 33 Male 7 years in 5 industries Manager Provider firm 

i4 31 Female 7 years in 5 industries Presales consultant Provider firm 

i5 44 Male 3 years in 1 industry Developer User firm 

i6 28 Male 3 years in 6 industries Presales consultant Provider firm 

i7 30 Female 3.5 years in 4 industries Technical consultant Provider firm 

i8 33 Male 6 years in 10 industries Manager Provider firm 

i9 35 Male 5 years in 3 industries Technical consultant Provider firm 

i10 32 Male 9 years in 4 industries Data scientist User firm 

i11 25 Female 3 years in 1 industry Manager User firm 

i12 34 Male 6 years in 3 industries Data scientist User firm 

i13 32 Male 7.5 years in 1 industry Data scientist User firm 

i14 32 Male 10 years in 4 industries Technical consultant Provider firm 

i15 52 Female 4 years in 3 industries Data scientist Provider firm 

i16 32 Male 10 years in 7 industries Manager Provider firm 

i17 30 Male 5 years in 6 industries Presales consultant Provider firm 

i18 37 Male 5 years in 3 industries Data scientist Provider firm 

i19 36 Male 8 years in 1 industry Manager User firm 

i20 35 Male 12 years in 2 industries Data scientist Provider firm 

i21 37 Male 7.5 years in 3 industries Data scientist Provider firm 

i22 
41 Male 3 years in 1 industry Developer User firm 

39 Male 3 years in 1 industry Developer User firm 

i23 35 Male 6 years in 4 industries Technical consultant User firm 

	

All	interviews	were	recorded	and	transcribed	in	agreement	with	the	interviewees.	Following	the	
recommendations	 in	 Saldaña	 (2009),	 we	 conducted	 two	 coding	 cycles	 using	 the	 NVivo	 12	
software	to	evaluate	the	transcripts.	In	the	first	cycle,	we	employed	attribute	coding,	hypothesis	
coding,	 and	 descriptive	 coding.	 Attribute	 coding	 was	 used	 to	 extract	 information	 about	 the	
collected	data,	e.g.,	participant	and	organization	characteristics.	Subsequently,	hypothesis	coding	
was	conducted	with	the	aim	of	identifying	relevant	dimensions	for	the	original	TTF	constructs,	
i.e.,	assigning	codes	to	task,	technology,	and	task-technology	fit	characteristics.	The	first	coding	
cycle	 was	 concluded	 by	 applying	 descriptive	 coding	 to	 identify	 additional	 constructs	 and	
construct	dimensions	 that	might	 extend	 the	base	 theory	 (here,	TTF).	The	 second	coding	 cycle	
consisted	 of	 pattern	 coding,	 which	 was	 used	 to	 condense	 the	 identified	 codes	 into	 a	 smaller	
number	of	mutually	exclusive	and	collectively	exhaustive	constructs	and	dimensions.	The	coding	
process	 was	 validated	 in	 discussion	 between	 five	 IS	 researchers	 and	 student	 assistants.	
Furthermore,	we	incorporated	additional	data	sources,	i.e.,	articles	on	ML-based	AI	use	(Agrawal	
et	al.,	2017;	Brynjolfsson	&	Mitchell,	2017;	Fedyk,	2016;	Satell,	2018),	to	compare	our	findings	
with	 existent	 knowledge	 (see	 section	 4.4),	 eliminating	 any	 ungrounded	 discrepancies.	 Thus,	
research	rigor	was	ensured	by	performing	both	data	and	investigator	triangulation	(Flick,	2004).	
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4.4 Results	

With	our	study,	we	found	first	evidence	for	key	characteristics	of	tasks,	data,	ML-based	AIs,	and	
related	 fits	 that	 likely	affect	utilization	and	 individual	performance.	We	solidified	our	 findings	
based	on	 the	TTF	 theory	and	propose	an	extended,	 contextualized	 theoretical	model	which	 is	
illustrated	in	Figure	4.	

	
Figure	4:	Extended	and	contextualized	theoretical	model	of	TTF	in	the	context	of	ML-based	AI		

(due	to	brevity,	we	abbreviate	“ML-based	AI”	with	“AI”	in	the	construct	names)	

As	utilization	can	be	well	measured	in	empirical	studies	with	actual	AI	users	(e.g.,	through	actual	
usage	 frequency),	 we	 chose	 to	 not	 investigate	 utilization	 because	 experts’	 assessments	 of	
utilization	 may	 be	 of	 less	 value.	 Instead,	 we	 focused	 on	 exploring	 the	 impact	 on	 individual	
performance	that	results	directly	from	the	fit	between	tasks	and	ML-based	AIs	which	is	rather	
difficult	 to	measure.	However,	 following	 the	 original	 TTF	 theory,	 it	 is	 likely	 that	 an	 impact	 of	
task-AI-fit	 on	 utilization	 exists.	 We	 thus	 leave	 it	 to	 future	 studies	 to	 explore	 the	 impact	 on	
utilization	in	more	detail	while	we	abstract	this	effect	hereinafter.	Due	to	ML-based	AIs’	strong	
dependence	 on	 data,	 the	 experts	 clearly	 stressed	 the	 importance	 of	 the	 availability	 of	 high-
quality	 data	 for	 implementing	ML-based	 AIs.	 As	ML-based	 AIs	 that	 support	 individuals’	 tasks	
must	 act	 on	 data	 collected	 through	 or	 related	 to	 the	 tasks’	 executions,	 the	 experts	 frequently	
highlighted	that	organizations	must	understand	how	well	their	data	can	actually	describe	their	
tasks	before	they	plan	to	support	them	with	ML-based	AIs.	Only	as	a	next	step,	it	makes	sense	to	
assess	whether	an	ML-based	AI	of	sufficient	quality	can	be	derived	from	organizations’	data.	We	
therefore	 added	 data	 characteristics	 as	 an	 additional	 construct	 to	 reflect	 different	 data	
properties’	 impact	 on	 the	 interplay	 between	 organizations’	 data	 and	 the	 tasks	 it	 aims	 to	
describe.	Moreover,	to	characterize	this	interplay	and	to	include	related	effects,	we	introduced	
task-data	 fit	 as	 a	 further	 construct.	 Throughout	 our	 interviews,	 task	 and	 technology	
characteristics	emerged	 that	 appeared	 to	be	 central	 to	 the	use	of	ML-based	AIs.	We	 therefore	
contextualized	 the	 task	 and	 technology	 characteristic	 constructs	 to	 hold	 such	 related	
characteristics.	 To	 indicate	 the	 specialized	 focus,	we	 refined	 “technology	 characteristics”	with	
“AI	characteristics”.	Due	to	the	mentioned	importance	of	data,	we	found	task-data	fit	to	impact	
task-AI	fit	besides	task	and	AI	characteristics.	Lastly,	we	contextualized	“task-technology	fit”	as	
“task-AI	 fit”	 and	 assigned	 characteristics	 that	 emerged	 to	mainly	determine	 task-AI	 fit	 and	 its	
impact	on	individual	performance.	Below,	we	will	discuss	each	construct	in	more	detail.	
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4.4.1 Data	Characteristics	

Availability.	 Data	 availability	 was	 viewed	 as	 a	 major	 concern	 in	 nearly	 all	 interviews	 and	
literature	 as	 it	 limits	 the	useable	data	basis	 to	describe	 task	 executions	 (Agrawal	 et	 al.,	 2017;	
Fedyk,	2016;	 Satell,	 2018).	According	 to	 the	 experts,	 organizations	 face	 two	major	 issues	 that	
comprise	availability.	First,	organizations	must	understand	which	data	they	already	capture	and	
which	they	could	further	collect:		

“ML-based	 AI	 is	 hungry	 for	 data.	 If	 you're	 planning	 something	 like	 this,	 you	 need	 to	 think	
about	where	I'm	staying	regarding	data	collection	and	digitalizing	my	processes.	Even	if	it's	a	
paper	 that	moves	 around	 or	 somebody	 clicking	 somewhere	 –	 is	 there	 a	 digital	 system	 that	
captures	it	in	form	of	data?”	(i9)	

Second,	 organizations	 must	 comprehend	 which	 captured	 and	 capturable	 data	 is	 actually	
accessible	as	data	ownership	of	internal	and	external	parties	emerged	as	major	obstacle	for	data	
access.	 Especially	 data	 privacy	 restrictions	 (e.g.,	 of	 EU’s	 GDPR)	 often	 render	 individuals’	 data	
inaccessible	 if	 it	 captures	 sensitive	 information.	 If	 organizations	 hold	 data	 owned	 by	 other	
organizations,	 its	 access	 is	 likely	 legally	 restricted	 to	 clearly	 defined	 purposes	 while	
organizations’	internal	parties	(e.g.,	teams	or	departments)	may	further	restrict	the	use	of	data	
managed	by	them:	

“How	sensitive	is	the	data?	Often,	we	simply	didn’t	get	the	data.	All	our	concepts	were	great,	
but	in	the	end,	we	could	not	use	the	data	due	to	privacy	restrictions.”	(i5)	

“When	they	ask	the	other	team,	they	say:	‘No,	we	have	our	own	system.	Don't	touch	that!’.	So,	
this	data	cannot	be	accessed.”	(i12)	

Quality.	 Both	 the	 reviewed	 literature	 and	 our	 experts	 frequently	 highlight	 that	 even	 if	
organizations	 hold	 much	 available	 data	 related	 to	 task	 executions,	 its	 quality	 determines	 its	
actual	informativeness	(Agrawal	et	al.,	2017;	Clarke,	2016;	Ghasemaghaei	et	al.,	2018).	However,	
organizations’	data	is	often	incorrect,	imprecise,	incomplete,	or	hard	to	combine,	which	reduces	
the	truthfulness	and	coverage	of	captured	information.	Furthermore,	organizations’	data	is	often	
stored	 in	 different	 forms,	 granularity,	 and	 split	 across	 multiple	 sources	 which	 often	 leads	 to	
coarse	 and	non-combinable	 data,	 potentially	 reducing	 the	 extent	 to	which	 organizations’	 data	
can	capture	elements	involved	in	task	executions:	

“As	of	data	quality,	you	basically	want	to	ensure	that	each	data	point	captures	something	that	
actually	 happened,	 there	 are	 no	 duplicates,	 no	 missing	 data,	 and	 the	 data	 is	 truthful	 and	
doesn't	get	mixed	up	somehow	due	to	processing	errors.	If	it	is	encrypted	or	compressed,	it	can	
result	in	some	loss	of	information.”	(i10)	

Hence,	we	posit:	

Proposition	1:	In	the	context	of	ML-based	AI,	data	availability	and	quality	likely	are	the	central	
data	characteristics	that	impact	task-data	fit.	

4.4.2 Task	Characteristics	

Repetitiveness.	We	found	that	ML-based	AIs	are	generally	used	to	support	individuals’	tasks	by	
doing	task-related	groundwork	in	an	automated	manner,	i.e.,	by	carrying	out	subtasks	to	provide	
interim	 results	 of	 individuals’	 tasks	 (Agrawal	 et	 al.,	 2017;	 Brynjolfsson	 &	 Mitchell,	 2017;	
Traumer	et	al.,	2017).	This	allows	individuals	to	base	subsequent	subtasks	on	the	AI’s	output	to	
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complete	their	tasks.	Literature	and	experts	agree	on	ML-based	AI	being	a	tool	for	automation	
used	by	organizations	 to	 reduce	workload	 in	 their	 individuals’	 tasks	 (Brynjolfsson	&	Mitchell,	
2017;	Satell,	2018).	Thus,	we	found	that	the	more	repetitive	supported	tasks	are,	the	greater	AIs’	
potential	 impact	 on	 individuals’	 workload	 may	 become.	 High-level	 repetitiveness	 therefore	
likely	amplifies	 the	effect	on	 individuals’	performance	 that	 results	 from	the	actual	 fit	between	
individuals’	tasks	and	supporting	ML-based	AIs:	

“We	assess	the	task’s	frequency:	Where	does	an	expert	lose	a	lot	of	his	time	due	to	a	repetitive	
task?	That’s	where	we	have	a	big	automation	potential	 for	which	 I	may	use	ML.	 It	 has	 less	
impact	in	very	diverse,	very	versatile,	very	specialized	task	contexts.”	(i18)	

“High	value	is	where	AIs	can	take	care	of	a	lot	of	repeated	things	most	of	the	time,	so	that	you	
only	need	to	address	the	last	20%	of	situations	that	are	somewhat	difficult	[for	the	AI].”	(i8)	

Clarity.	 According	 to	 our	 experts	 and	 reviewed	 literature,	ML-based	 AIs	 are	most	 suitable	 to	
support	tasks	which	comprise	some	uncertainty	on	how	to	transform	given	input	into	potential	
output,	 i.e.,	non-trivial	tasks	in	which	the	actual	connection	between	input	and	output	remains	
largely	unclear	(Agrawal	et	al.,	2017;	Brynjolfsson	&	Mitchell,	2017).	It	further	became	apparent	
that	 this	 uncertainty	 generally	 results	 when	 tasks	 allow	 a	 great	 number	 of	 potential	 input-
output	connections	from	which	the	most	optimal	one	must	be	chosen.	The	experts	view	them	as	
non-trivial,	 as	 comparing	all	possibilities	 is	 at	 least	very	 tedious	or	even	 impossible	while	 the	
best	 option	 remains	 non-obvious.	 It	 got	 apparent	 that	 individuals	 more	 strongly	 rely	 on	
gathered	 experience	 and	 instinct	 when	 executing	 such	 higher	 complexity	 tasks.	 The	 experts	
further	 agree	 that	 using	 ML-based	 AI	 to	 support	 tasks	 for	 which	 humans	 can	 articulate	 a	
sufficient	solution	by	defining	a	clear	set	of	rules	may	lead	to	a	worse	fit	with	the	supported	task	
as	 ML-based	 AIs	 introduce	 characteristics	 resulting	 from	 giving	 up	 control	 over	 systems’	
operating	principles	(see	TTF	characteristics).	The	experts	even	view	it	as	second-choice	tool	if	
it	is	possible	to	create	a	rule-based	IS	that	produces	comparable	results	to	retain	better	system	
control:	

“It	should	be	problems	where	the	functional	relationship	is	widely	unknown,	so	that	I	cannot	
program	 it	 directly.	 They	must	 be	 so	 complex	 that	 one	 cannot	 recognize	 a	 correct	 solution	
without	more	ado.	[...]	If	possible,	I	would	always	prefer	to	use	the	known	rules	because	then	I	
know	 that	 the	 things	will	happen	 that	 I	would	 like	 to	 see	and	do	not	have	 to	hope	 that	 the	
algorithm	learns	what	it	should	learn	instead.”	(i1)	

Therefore,	we	propose:	

Proposition	2:	 In	 the	 context	of	ML-based	AI,	 repetitiveness	and	clarity	 likely	are	 the	 central	
task	characteristics	that	impact	task-data	and	task-AI	fit.	

4.4.3 Task-Data	Fit	

Representativity.	 In	 our	 interviews	 and	 literature	 review,	 it	 became	 clear	 that	 organizations’	
available	 data	must	 be	 as	 representative	 as	 possible	 for	 some	 task’s	 execution,	 i.e.,	 reflect	 as	
much	relevant	aspects	as	possible	that	determine	a	task’s	real-world	execution	(Traumer	et	al.,	
2017).	 If	 it	misses	or	 falsifies	 relevant	 aspects	or	describes	 aspects	 that	 are	 irrelevant	 for	 the	
task’s	execution,	contained	correlations	may	miss	to	reflect	or	may	even	imply	wrong	relations	
in	the	task’s	execution.	It	therefore	became	apparent	that	the	representativity	of	data	does	not	
only	 depend	on	organizations’	 capability	 of	 collecting	data	 but	 also	 on	 the	nature	 of	 the	 task.	
Especially,	 if	 individuals	 use	 general	 knowledge	 or	 subjective	 judgment	 to	 make	 decisions	
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involved	in	a	task,	related	data	likely	insufficiently	represents	the	task’s	execution	when	the	task	
itself	does	not	allow	to	collect	data	that	grasps	such	elements.	Thus,	the	experts	highlight	that	a	
lack	 of	 representativity	 of	 organizations’	 available	 data	 for	 tasks’	 execution	 may	 mislead	
resultant	ML-based	AIs	in	executing	subtasks	to	support	individuals:	

“In	machine	learning,	the	data	you	have	is	really	at	the	core	of	the	problem	of	how	to	define	it	
and,	 more	 importantly,	 how	 to	 solve	 it.	 I	 think	 any	 solution	 can	 only	 be	 as	 good	 as	 how	
representative	the	data	is	of	the	problem	that	you're	trying	to	solve.	If	you're	trying	to	build	an	
AI	 for	 predicting	 customer	 churn,	 but	 you	 don't	 have	 any	 data	 about	 customer	 complaints,	
then	you	might	not	be	so	successful.”	(i10)	

“In	 the	 best	 case,	 an	 AI	 may	 extract	 many	 or	 all	 possible	 information	 from	 the	 data	 that	
describes	a	task	execution.	However,	this	also	depends	on	the	nature	of	the	task.	For	example,	
if	you	do	not	have	the	right	sensors,	the	AI	may	not	be	able	to	derive	important	information.	If	
there	are	important	occurrences	that	are	not	represented	in	the	data,	then	the	AI	will	have	no	
chance	to	determine	these	based	on	the	data.”	(i2)	

Generalizability.	Both	literature	and	experts	frequently	state	that	even	if	organizations	are	able	
to	 capture	 tasks	 with	 representative	 data,	 the	 task’s	 nature	 itself	 may	 render	 it	 non-
generalizable	 (Brynjolfsson	 &	 Mitchell,	 2017;	 Fedyk,	 2016;	 Satell,	 2018).	 This	 is	 the	 case,	 if	
aspects	 related	 to	 task	 execution	 change	 significantly	 over	 time.	 This	 temporal	 change	 may	
render	 available	 historic	 data	 insufficient	 to	 describe	 today’s	 task	 execution	 when	 derivable	
relations	do	not	hold	true	anymore	and	thus	cannot	be	used	to	generalize	task	execution:		

“But	in	the	AI	world,	there	is	the	extra	level	of	complexity:	the	data	is	always	funny	and	you	
never	know	whether	or	not	the	distributions	of	data	are	going	to	change	over	time	or	if	the	AI	
problem	itself	is	going	to	change	over	time	both	from	my	data	but	also	from	my	business	point	
of	view.”	(i8)	

Besides,	if	involved	decisions	are	rather	driven	by	individuals’	instincts	instead	of	knowledge	or	
gathered	experience,	their	task	execution	may	follow	no	consistent	logic,	rendering	the	task	non-
generalizable	due	to	the	lack	of	derivable	reoccurring	structures	of	the	task’s	execution:		

“Of	course,	you	have	to	expect	a	fitting	pattern	in	the	data.	If	you	expect	no	connection	to	be	
existent	at	all,	if	everything	is	random,	you	cannot	hope	that	ML	will	find	any	patterns.	So,	you	
have	 to	 expect	 that	 patterns	 exist,	 and	 they	 have	 to	 be	 so	 complicated	 that	 you	 cannot	
manually	recognize	them	easily.”	(i1)	

We	thus	posit:	

Proposition	3:	In	the	context	of	ML-based	AI,	representativity	and	generalizability	likely	are	the	
central	task-data	fit	characteristics	that	impact	task-AI	fit.	

4.4.4 AI	Characteristics	

Data-driven	 functionality.	 The	 functionality	 of	ML-based	 AIs	 bases	 on	 derived	 data	 patterns	
instead	 of	 having	 humans	 manually	 specifying	 a	 rule	 set	 that	 defines	 the	 IS’s	 functionality	
(Bishop,	2006;	Samuel,	1959).	The	experts	highlight	that	this	alternative	programming	approach	
changes	 the	possible	customization	of	 the	resulting	 IS’s	system	behavior.	While	rule-based	 ISs	
allow	 to	manually	 adapt	 their	 system	 behavior	 by	 adding,	modifying,	 or	 removing	 rules,	ML-
based	AIs’	behavior	can	only	be	manually	adapted	by	adding	human-defined	rules	that	act	on	the	
AI’s	input	and	output.	Both	experts	and	literature	stress	that	most	ML	algorithms	do	not	allow	a	
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manual	adaptation	of	the	core	of	an	ML-based	AI’s	behavior,	i.e.,	its	pattern-based	agent	function	
that	connects	the	AI’s	inputs	and	outputs	(Brynjolfsson	&	Mitchell,	2017).	Instead,	a	new	AI	has	
to	be	created	that	bases	on	other	data,	algorithm,	or	parameters	of	the	algorithm	to	modify	its	
behavior.	 Therefore,	 the	 customization	 can	 only	 be	 performed	 indirectly	 by	 organizations.	
However,	 this	 likely	 changes	 the	AI’s	overall	operating	principles	 instead	of	adapting	 targeted	
functionality	in	isolation:	

“If	you	have	certain	cases	that	the	AI	treats	in	a	wrong	way,	then	it	may	be	an	incredible	effort	
to	change	the	AI’s	behavior	 in	such	a	way	that	 it	 treats	them	correctly	without	changing	its	
treatment	of	other	 cases	 too.	Without	ML,	 I	 could	 simply	add	 some	 if-else	 rule	 to	adapt	 the	
system’s	behavior.	With	ML,	I	cannot	simply	treat	certain	cases	in	isolation,	but	actually	have	
to	solve	the	entire	problem	from	the	beginning	again.”	(i17)	

Due	 to	 this,	 the	 experts	 further	 state	 that	 an	ML-based	 AI’s	 functionality	 gets	 shaped	 by	 the	
characteristics	 of	 the	 ML	 algorithm	 utilized	 to	 create	 it.	 This	 includes	 the	 algorithm’s	
transparency,	 capturable	 complexity,	 capabilities	 of	 handling	 data	 bias,	 and	 latency	 that	
appeared	 to	 form	 the	 ML-based	 AI’s	 reliability,	 fairness,	 comprehensibility,	 and	 production	
timeliness	(i.e.,	task-AI	fit	characteristics).	

Level	of	automation.	ML-based	AIs	support	individuals	by	automating	parts	of	their	tasks.	We	
found	that	this	support	can	be	realized	in	different	forms	depending	on	the	ML-based	AI’s	level	
of	 automation	 (Agrawal	 et	 al.,	 2017;	 Traumer	 et	 al.,	 2017).	 Throughout	 our	 interviews,	 the	
experts	frequently	discussed	two	main	forms.	As	of	a	rather	low	level	of	automation,	ML-based	
AIs	 may	 support	 individuals	 by	 offering	 a	 list	 of	 recommendations	 ordered	 along	 the	 AI’s	
estimated	 likeliness	 of	 being	 an	 accurate	 output	 for	 the	 subtask.	 The	 number	 of	 included	
recommendations	 varies	with	 the	minimum	 of	 offering	 a	 single	 recommendation.	 At	 a	 rather	
high	 level	 of	 automation,	ML-based	AIs	may	 also	 support	 individuals	 by	 autonomously	 acting	
upon	 their	 own	 derived	 subtask-related	 output.	 With	 a	 higher	 level	 of	 automation,	 the	
individuals	appear	to	become	more	dependent	on	ML-based	AIs.	As	little	automated	ML-based	
AIs	allow	individuals	to	explore	their	recommendations	before	basing	their	entire	tasks	on	the	
AI’s	output,	highly	automated	ML-based	AIs	rather	force	individuals	to	exploit	the	AI’s	output	for	
their	resulting	task	execution.	Thus,	with	little	automated	ML-based	AI,	individuals	have	a	better	
chance	to	evaluate	the	fit	between	the	ML-based	AIs’	output	and	the	individuals’	task	execution	
(e.g.,	evaluate	the	ML-based	AIs’	output	correctness).	One	expert	exemplified	this	as	follows:	

“In	the	context	of	predictive	maintenance:	If	my	AI	has	identified	a	failure,	it	may	say:	‘In	the	
next	two	weeks,	your	pump	will	be	leaking.	Do	something!’.	Instead,	it	could	also	recommend:	
‘Someone	has	to	go	there.’	or	it	could	even	send	someone	directly.”	(i3)	

Thereby,	we	propose:	

Proposition	4:	In	the	context	of	ML-based	AI,	data-driven	functionality	and	level	of	automation	
likely	are	the	central	AI	characteristics	that	impact	task-AI	fit.	

4.4.5 Task-AI	Fit	

Reliability.	As	ML-based	AIs	 act	 on	 generalized	patterns	 that	 cannot	handle	 every	possibility,	
they	will	 certainly	 produce	 errors	 at	 some	 point	 (e.g.,	 Bishop,	 2006;	 Brynjolfsson	 &	Mitchell,	
2017).	 Therefore,	 when	 organizations	 consider	 to	 supporting	 tasks	 with	 ML-based	 AIs,	 they	
must	understand	which	consequences	of	potential	errors	may	arise	for	individuals	as	they	likely	
perform	tasks	wrongly	if	they	base	them	on	AIs’	erroneous	behavior	(Agrawal	et	al.,	2017).	The	
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experts	 stress	 that,	 to	 evaluate	 fit,	 organizations	must	 therefore	 understand	 consequences	 of	
AIs’	error	rate	in	the	task	context:	

“Can	 I	 make	 one	 error	 out	 of	 hundreds?	 Sounds	 very	 reasonable,	 but	 it	 depends.	 If	 I	 am	
predicting	 a	 cancer	 patient,	 I	 cannot	 make	 a	 false	 prediction.	 But	 if	 I'm	 trying	 to	 predict	
whether	 a	 customer	 is	 going	 to	 convert,	 nobody	 is	 going	 to	 lose	 his	 life.	 So,	 there	 you	 can	
actually	make	more	than	20%	error.”	(i12)	

A	high	AI	error	rate	may	reduce	the	quality	of	individuals’	task	outcomes	if	the	errors	transfer	to	
the	 individuals	 and	 thus	may	 negatively	 affect	 their	 effectiveness.	 Individuals’	 efficiency	may	
also	 be	 reduced	 when	 they	 must	 evaluate	 the	 correctness	 of	 AIs’	 outputs	 and	 adjust	 errors,	
creating	 additional	 effort.	 Besides	 different	 error	 rates,	 the	 experts	 stress	 that	 different	 error	
types	may	impact	individual	performance	differently.	Organizations	should	therefore	assess	the	
different	error	types’	consequences	to	understand	which	error	types	are	more	severe	in	the	task	
context.	 As	ML-based	 AIs	 can	 be	 designed	 to	 favor	 different	 types	 of	 errors	while	 sacrificing	
others,	the	experts	highlight	that	their	designed	balance	of	error	types	should	be	considered	to	
match	the	task	best,	as	exemplified	in	the	following	quote:	

“The	classic	example	is	the	AIDS	test.	Of	course,	you'd	much	rather	have	a	false	positive	than	a	
false	 negative,	 and	 then	 you'd	 say,	 ‘I	 do	 it	 in	 such	 a	 way	 that	 I	 weight	 a	 mistake	 in	 one	
direction	a	hundred	thousand	times	more	relevant	than	the	other.’	And	that's	just	how	it	is	in	
the	 business	 case.	 It	 always	 depends	 on	 the	 consequences	 of	 my	 decision	 and	 you	 have	 to	
balance	them	in	such	a	way	that	you	achieve	the	result	that	you	want.	Of	course,	you	cannot	
judge	 every	 wrong	 decision	 equally.	 This	 usually	 makes	 no	 sense	 from	 a	 business	 point	 of	
view.”	(i20)	

Therefore,	 the	 experts	 suggest	 that	 organizations	 should	 compare	 potentially	 ML-based	 AI-
related	 saved	 efforts	with	 possible	 additional	 efforts	 resulting	 from	ML-based	 AIs’	 erroneous	
behavior	in	the	task	context,	e.g.,	by	measuring	the	variance	of	error	rates	with	and	without	ML-
based	AI:	

“If	my	alternative	solution,	that	was	based	on	humans,	had	60%	of	success	and	the	AI	solution	
is	95%,	then	it	is	better	than	my	alternative	solution	and	I'm	definitely	going	for	that.	[...]	You	
basically	compare	it	to	the	baseline	that	you	have	to	identify	whether	it	is	the	right	solution	or	
not.”	(i9)	

Fairness.	 If	 ethnical	 or	 social	 groups	 are	 underrepresented	 or	 human	 preferences	 and	
prejudices	are	captured	 in	data,	an	ML-based	AI	 that	 is	 trained	on	 it	may	discriminate	against	
certain	 entities	 due	 to	 contained	 data	 bias	 (e.g.,	 Angwin	 et	 al.,	 2016;	 Chouldechova,	 2017).	
Therefore,	 experts	 frequently	 highlight	 that	 organizations	must	 assess	whether	ML-based	AIs	
may	promote	discrimination	in	supported	tasks	and	have	to	understand	which	injustices	likely	
result	in	specific	task	contexts,	as	demonstrated	in	the	following	quote:	

	“Minorities	 always	 come	 of	 badly	 or	 are	 not	 considered	 at	 all	 in	 an	ML	model	 as	 they	 are	
statistically	 less	 relevant.	 That	 is	 a	 big	 problem	 and	 you	 have	 to	 be	 aware	 of	 it	 to	 weight	
minorities	correctly	in	these	algorithms.	For	example,	a	Portuguese	minority	in	some	country	
may	be	much	more	affine	for	loans	which	also	always	reliably	repays,	but	by	being	a	minority,	
they	are	 less	well	 rated	 [by	 the	AI].	This	means	 that	 they	will	get	a	bad	credit,	 even	 though	
they	are	actually	very	good	credit	customers.”	(i14)	

However,	the	experts	further	emphasize	that	ML-based	AI	may	also	remove	existing	individual	
injustice	when	standardizing	the	execution	of	some	existing	task:	
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“It	may	be	the	case	that	certain	data	reflects	prejudices.	I	also	find	it	interesting	that	you	can	
use	AI	to	show	which	prejudices	you	had	to	deal	with	so	far.”	(i4)	

Thus,	 organizations	 must	 reflect	 on	 possible	 injustice	 involved	 in	 their	 individuals’	 tasks	 to	
evaluate	 whether	 an	 ML-based	 AI	 likely	 improves	 or	 harms	 its	 individuals’	 fairness.	 As	 with	
erroneous	 behavior,	 a	 misfit	 between	 the	 ML-based	 AIs’	 fairness	 and	 the	 task	 context	 may	
negatively	impact	individuals’	effectiveness	and	efficiency	when	task	outcomes	reflect	injustice	
and	thus	require	individuals	to	actively	assess	and	restore	justice,	while	a	good	fit	may	positively	
impact	an	organization’s	fairness.	

Comprehensibility.	 Depending	 on	 the	 ML	 algorithms	 used	 to	 create	 AIs,	 their	 working	
principles	may	remain	unknown	to	their	users	as	it	 is	the	case	with,	e.g.,	neural	networks,	and	
thus	 constitute	 “black	 box”	 behavior	 (Brynjolfsson	 &	 Mitchell,	 2017;	 Guidotti	 et	 al.,	 2018;	 T.	
Miller,	 2019).	 Individuals	 therefore	 can	 have	 difficulty	 in	 assessing	ML-based	AIs’	 output	 and	
behavior.	 The	 experts	 frequently	 stress	 that	 organizations	 must	 therefore	 understand	 which	
degree	 of	 comprehensibility	 must	 be	 offered	 by	 ML-based	 AIs	 to	 provide	 individuals	 with	
sufficient	 information	 to	 support	 their	 tasks.	However,	 they	 further	 highlight	 that	 this	 degree	
fundamentally	depends	on	the	supported	tasks:	

“If	 you	 want	 your	 car’s	 camera	 to	 recognize	 traffic	 signs,	 the	 model's	 comprehensibility	
doesn't	really	matter	as	you	don't	have	time	to	understand	it	anyway	while	driving.	But	if	you	
have	a	model	 that	 tells	 you	whether	a	 customer	 is	 likely	 to	 churn	or	not,	 then	 you	want	 to	
know	why.	 If	 the	 customer	 is	 likely	 to	 churn,	 is	 it	 because	 the	 customer	 pays	 too	much	 or	
because	the	customer	got	some	bad	support?	What	kind	of	activities	can	you	take	to	keep	the	
customer	from	churning?	Then	it's	all	about	comprehensibility.”	(i18)	

Hence,	experts	state	that	organizations	must	understand	how	much	information	ML-based	AIs	
must	 provide	 about	 how	 they	 produced	 their	 output	 to	 equip	 individuals	 with	 sufficient	
information	to	support	their	 tasks.	 If	ML-based	AIs	cannot	provide	required	 information,	 their	
support	likely	becomes	useless	as	it	is	the	case	in	the	above	quote’s	example.	In	the	worst	case,	
ML-based	 AIs	may	 even	 prevent	 individuals	 from	 conducting	 their	 tasks	 if	 the	ML-based	 AIs	
hinder	 them	 from	 accessing	 required	 information.	 A	 bad	 fit	 between	 ML-based	 AIs’	
comprehensibility	 and	 tasks’	 required	 information	 may	 thus	 harm	 individuals’	 effectiveness.	
They	further	highlight	that	an	ML-based	AI’s	comprehensibility	does	not	only	include	to	render	
their	working	principles	appropriately	transparent,	but	further	comprises	the	interpretability	of	
its	output’s	content	and	quality.	If	individuals	fail	to	comprehend	ML-based	AIs’	output	correctly,	
they	 likely	 base	 their	 tasks	 on	wrong	 assumptions,	 leading	 to	 individuals	 using	 output	 in	 the	
wrong	way	as	part	of	their	task	execution.	Moreover,	if	individuals	fail	to	interpret	ML-based	AIs’	
quality	measures	correctly	because	they	are	presented	in	a	format	that	is	not	understandable	to	
them,	their	ability	to	evaluate	an	ML-based	AIs’	trustworthiness	may	become	limited,	potentially	
preventing	them	from	recognizing	ML-based	AIs’	erroneous	or	unfair	behavior:		

“An	AI	may	tell	 the	user:	 ‘This	 is	now	a	90%	probability’.	But	how	does	the	user	know	what	
that	means?	In	the	end,	there	may	have	to	be	a	traffic	light	or	something	like	that	–	but	that	
always	makes	users	believe	that	there	is	a	certain	level	of	reliability,	which	may	not	even	be	
there.”	(i16)	

Thus,	the	experts	warn	that	wrong	interpretations	of	both	AIs’	output	and	quality	measures	may	
lead	to	individuals	adopting	AIs’	wrong	or	unfair	behavior	in	their	task	execution.	

Production	timeliness.	Goodhue	and	Thompson	(1995)	already	proposed	production	timeliness	
as	a	 fit	characteristic	 in	their	original	TTF	paper.	 In	our	 interviews,	 it	got	apparent	that	 it	also	
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constitutes	a	key	characteristic	for	ML-based	AI	which	can	have	a	significant	impact	on	the	other	
fit	factors	(as	we	will	discuss	in	the	next	paragraph).	Depending	on	the	input	data’s	volume	that	
has	 to	be	processed	and	 the	data	volume	and	algorithm(s)	used	 to	 create	an	ML-based	AI,	 its	
latency	 when	 being	 used	 can	 vary	 significantly	 (Cheng	 et	 al.,	 2016).	 The	 experts	 therefore	
highlight	 that	 the	 timeliness	 of	 ML-based	 AIs’	 support	 has	 to	 be	 aligned	 with	 the	 required	
latency	 of	 the	 supported	 tasks.	 Slow	 AIs	 may	 slow	 down	 individuals’	 task	 execution	 when	
individuals	have	to	wait	for	the	AIs’	responses	to	base	their	tasks	on	their	outputs.	Moreover,	if	
AIs	fail	to	act	within	time	frames	required	by	their	supported	tasks,	their	produced	outputs	may	
become	useless	for	the	individuals,	as	demonstrated	by	the	following	quote:		

“What’s	always	a	major	issue:	When	is	an	AI’s	latency	really	helpful?	This	strongly	depends	on	
the	use	case.	One	may	say	‘I	have	offshore	wind	turbines.	This	means	that	I	need	to	know	about	
any	 damages	 three	months	 in	 advance	 to	 be	 there	 in	 time.’,	 while	 another	 says	 ‘I’m	 in	 the	
production	hall	and	can	react	within	ten	seconds.	Thus,	it	would	be	enough	if	the	AI	predicts	
any	damage	within	twenty	seconds.’”	(i3)	

As	highlighted	by	the	experts,	organizations	must	therefore	understand	the	required	production	
timeliness	 of	 individuals’	 tasks	 to	 align	 AIs	 accordingly.	 Otherwise,	 their	 individuals	may	 not	
benefit	 from	 the	AIs’	 support	which	may	 even	 harm	 the	 individuals’	 efficiency	 and	may	 even	
hinder	task	execution.	

Cross-characteristic	 dependencies.	 Lastly,	 the	 experts	 strongly	 stress	 that	 interrelations	
between	 the	 different	 characteristics	 have	 to	 be	 considered	 when	 assessing	 task-AI	 fit.	 They	
highlight	 that,	 to	 adjust	 single	 task-AI	 fit	 characteristics,	 it	 is	 usually	 necessary	 to	 alter	 used	
algorithms	 or	 data.	 As	 a	 result,	 organizations	 often	 have	 to	 face	 resulting	 trade-offs	 between	
different	 task-AI	 characteristics.	 For	 example,	 literature	 and	 experts	 stress	 that,	 while	 both	
fairness	and	reliability	can	be	controlled	by	letting	the	AI	focus	more	on	specific	aspects,	related	
adjustments	 may	 create	 a	 dilemma	 as	 changes	 to	 reduce	 certain	 errors	 may	 create	 unfair	
behavior	 in	 other	 aspects	 or	 even	 decrease	 predictive	 performance	 (Corbett-Davies	 &	 Goel,	
2018).	 Production	 timeliness	 may	 render	 overly	 complex	 and	 slow	 AIs	 insufficient	 and	 may	
require	organizations	to	trade	faster	reacting	AIs	against	more	reliable,	fair,	and	comprehensible	
ones	if	faster	algorithms	support	these	issues	less	well	(Russell	&	Norvig,	2021).	While	complex	
algorithms	 may	 result	 in	 higher	 predictive	 performance	 (Kaplan	 et	 al.,	 2020),	 their	 complex	
operating	 principles	may	 reduce	 their	 comprehensibility	 (T.	Miller,	 2019),	 potentially	 forcing	
organizations	to	sacrifice	comprehensibility	for	less	erroneous	and	unfair	behavior	of	ML-based	
AIs:	

“Maybe	this	approach	is	five	percent	less	reliable	than	neural	networks,	but	it	at	least	allows	
you	 to	 comprehend	 why	 something	 happens.	 If	 it	 is	 less	 relevant	 that	 a	 human	 can	
comprehend	 what	 happens,	 then	 I	 can	 go	 with	 neural	 networks	 and	 trade	 high	
comprehensibility	 with	 higher	 reliability.	 But	 then,	 I	 give	 up	 that	 certain	 things	 can	 be	
understood.”	(i6)	

Thus,	we	posit:	

Proposition	 5:	 In	 the	 context	 of	 ML-based	 AI,	 reliability,	 fairness,	 comprehensibility,	 and	
production	 timeliness	 likely	 are	 the	 central	 task-AI	 fit	 characteristics	 that	 impact	 individual	
performance.	

Proposition	 6:	 In	 the	 context	 of	 ML-based	 AI,	 cross-characteristic	 dependencies	 likely	 cause	
trade-offs	between	task-AI	fit	characteristics	that	impact	individual	performance.	
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4.5 Discussion	

In	 this	 study,	 we	 examined	 the	 relationship	 between	 ML-based	 AI	 use	 and	 individual	
performance.	We	developed	a	theoretical	model	for	this	linkage,	which	has	not	yet	been	studied	
on	 an	 abstract	 level	 in	 IS	 research.	 Due	 to	 our	 study’s	 explorative	 nature,	 we	 followed	 a	
qualitative	 research	 approach.	 We	 used	 data	 from	 24	 expert	 interviews	 and	 AI	 literature	 to	
deduct	a	theoretical	model	that	can	be	used	for	empirical	research.	Building	on	the	widely	used	
TTF	 model,	 we	 developed	 dimensions	 for	 the	 TTF	 constructs	 before	 expanding	 it	 with	 new	
components	 to	 fit	 the	AI	 context.	 In	 detail,	we	 added	 the	data	characteristics	and	 task-data	fit	
constructs	as	data	availability	and	quality	largely	determine	AI	technology’s	suitability	for	given	
tasks	according	to	literature	and	our	experts.	Task-data	fit	and	AI	characteristics	then	determine	
task-AI	fit,	 i.e.,	 the	match	between	AI	particularities	and	given	tasks.	According	to	our	analysis,	
task-AI	fit	should	be	the	main	predictor	for	utilization	and	individual	performance.	

Our	 study	 makes	 several	 theoretical	 contributions.	 Besides	 implementations	 for	 specific	 use	
cases	 (e.g.,	 Kumar	 et	 al.,	 2018;	 Liebman	 et	 al.,	 2019),	 IS	 research	 on	ML-based	 AI	 has	 so	 far	
mostly	 focused	 on	 user	 interaction	 with	 AI	 systems	 (Rzepka	 &	 Berger,	 2018)	 and	 ethical	
considerations,	 such	as	 transparency	(e.g.,	Chai	&	Li,	2019;	Fernandez	et	al.,	2019)	or	 fairness	
(e.g.,	Haas,	2019;	van	den	Broek	et	al.,	2019).	To	the	best	of	our	knowledge,	we	are	among	the	
first	to	study	the	linkage	between	ML-based	AI	use	and	performance	impacts,	thus	answering	a	
call	for	research	regarding	human-AI	hybrid	systems	(Rai	et	al.,	2019).	We	propose	a	theoretical	
model	based	on	a	rigorously	conducted	qualitative	research	approach	that	explains	performance	
gains	through	AI	use	as	a	function	of	task,	data,	and	technology	characteristics.	In	addition,	we	
conceptualize	 the	 main	 theoretical	 constructs	 using	 data	 from	 our	 expert	 interviews	 by	
identifying	 the	 most	 relevant	 subdimensions	 for	 each	 construct.	 Thus,	 we	 enable	 empirical	
testing	 of	 our	 model	 in	 various	 contexts	 where	 ML-based	 AI	 might	 be	 applied	 to	 support	
humans.	 Although	 we	 focused	 on	 individual	 performance,	 the	 proposed	 model	 should	 be	
transferable	to	group-	or	even	organization-level	analyses	of	TTF-related	performance	impacts.	
Our	results	also	confirm	the	TTF	model’s	flexibility,	which	has	already	been	applied	in	a	variety	
of	 contexts	 ranging	 from	GSS	 (e.g.,	 Zigurs	&	Buckland,	1998)	 to	mobile	 IS	 (e.g.,	Gebauer	et	al.,	
2010).	 Our	 study’s	 findings	 also	 comprise	 significant	 contributions	 for	 practitioners.	 The	
reasoning	behind	our	model	can	be	used	to	validate	possible	initiatives	to	introduce	ML-based	
AI	 for	 specific	 use	 cases.	 In	detail,	 decision-makers	 can	 examine	 characteristics	 of	 tasks,	 data,	
and	available	AI	technology	to	estimate	fit	and	subsequently	performance	impacts	for	given	use	
cases.	 Going	 back	 to	 the	 examples	 from	 the	 introduction,	 physicians	 could,	 e.g.,	 identify	 data	
availability	as	the	main	challenge	for	applying	AI	for	medical	diagnostics	successfully	(e.g.,	due	to	
privacy	 concerns)	 and	 bankers	 could	 assess	 comprehensibility	 to	 be	 the	 central	 issue	 in	 the	
credit	 scoring	 context	 (e.g.,	 due	 to	 regulatory	 requirements).	 As	 the	model	 is	 built	 on	diverse	
experience	of	experts	from	practice,	we	can	assume	its	applicability	for	a	variety	of	industries.		

Of	course,	our	study	is	subject	to	some	limitations.	First,	we	did	not	perform	empirical	testing	of	
the	proposed	model.	Here,	future	studies	should	focus	on	the	perspective	of	affected	individuals	
to	allow	evaluating	the	impact	on	individuals	directly.	This	is	also	needed	to	verify	whether	the	
corresponding	user	perspective	 is	 sufficiently	 represented,	 as	our	model	 is	mostly	based	on	a	
managerial	 and	 IT	 professional	 perspective	 due	 to	 the	 interviewees’	 background.	 Second,	
although	we	 aimed	 to	 cover	many	 industries	 and	 use	 cases	 when	 selecting	 interviewees,	 we	
cannot	 eliminate	 potential	 data	 biases	 towards	 specific	 industries	 completely.	 Again,	
quantitative	 studies	 in	 varying	 contexts	 should	 help	 to	 uncover	 such	 biases	 to	 validate	 the	
model’s	applicability.	
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5.1 Introduction	

In	 recent	 years,	 numerous	 breakthroughs	 in	 artificial	 intelligence	 (AI)	 have	 uncovered	 AI’s	
potential	to	surpass	human	performance	in	various	contexts	(e.g.,	He	et	al.,	2015;	Vinyals	et	al.,	
2019).	In	the	light	of	such	breakthroughs,	more	and	more	organizations	strive	to	use	AI	in	their	
processes	to	improve	their	organizational	performance	(e.g.,	Bean,	2019;	Forbes	Insights,	2018).	
In	doing	so,	today’s	organizations	focus	on	using	AI	to	automate	(sub-)tasks	within	routines	(e.g.,	
Brynjolfsson	 &	 Mitchell,	 2017).	 To	 date,	 it	 is	 undeniable	 that	 the	 rise	 of	 such	 AI-enabled	
automation	already	transforms	organizations’	routines,	especially	when	AI	takes	over	tasks	that	
were	 formerly	performed	by	humans	(e.g.,	Raisch	&	Krakowski,	2021).	 In	 this	regard,	existent	
discussions	 mainly	 deal	 with	 achievable	 cost	 savings	 and	 error	 reduction	 with	 AI-enabled	
automation	 (e.g.,	 Kellogg	 et	 al.,	 2020),	 shifting	 humans	 to	 other	 ‘higher-value’	 roles	 (e.g.,	
Brynjolfsson	 &	 Mitchell,	 2017),	 or	 emerging	 social	 challenges	 such	 as	 ethical	 AI	 (e.g.,	 Rhue,	
2019).	Only	recently,	discussions	began	to	stress	the	great	importance	of	the	reciprocal	interplay	
between	humans	 and	 intelligent	machines	 for	 their	 coordination	 and	 its	 consequences	within	
organizations	 (e.g.,	 K.	 Leavitt	 et	 al.,	 2021;	 Murray	 et	 al.,	 2021;	 Rai	 et	 al.,	 2019;	 Schuetz	 &	
Venkatesh,	2020).	While	a	few	researchers	have	already	begun	to	examine	how	human	actions	
affect	 AI	 and	 vice	 versa	 and	 how	 organizations	 may	 coordinate	 this	 relationship,	 related	
research	still	remains	in	its	infancy	and	emphasizes	the	need	for	further	analyses	(e.g.,	Grønsund	
&	 Aanestad,	 2020;	 Lyytinen	 et	 al.,	 2021;	 Seidel	 et	 al.,	 2019;	 Sturm,	 Gerlach,	 et	 al.,	 2021).	
Surprisingly,	 one	 aspect	 has	 received	 little	 attention,	 even	 though	 it	 is	 central	 not	 only	 to	 the	
technology	 behind	 modern	 AI,	 but	 also	 to	 its	 relationship	 with	 humans	 and	 organizational	
routines:	learning.		

The	technology	that	enables	modern	AI	is	machine	learning	(ML).	AI	systems	based	on	ML—by	
us	referred	 to	as	ML	systems—use	ML	algorithms	to	derive	patterns	 from	data	and	 then	apply	
these	patterns	to	new	data	in	order	to	act	(Mitchell,	1997;	Russell	&	Norvig,	2021).	By	doing	so,	
ML	systems	do	not	require	us	to	manually	solve	and	translate	our	solutions	into	code	anymore	
but	 derive	 solutions	 on	 their	 own	 from	 given	 data	 (Samuel,	 1959).	 In	 other	 words,	 ML	
algorithms	grant	information	systems	(IS)	the	ability	to	learn	autonomously	to	act	intelligently	
(Brynjolfsson	&	Mitchell,	2017).	With	their	ability	to	learn,	ML	systems	join	the	central	process	
of	organizational	learning	 beside	 human	 learners	 (e.g.,	 Argote	 et	 al.,	 2021;	Ransbotham	 et	 al.,	
2020).	 Organizational	 learning	 is	 the	 fundamental	 driver	 that	 controls	 how	 strongly	 an	
organization	 relies	 on	 and	 adapts	 established	 routines	 and	 how	 strongly	 it	 adopts	 new	 ones	
(March,	 1991).	 Organizational	 learning	 thus	 controls	 how	 an	 organization	 adapts	 itself	 to	 its	
environment	 and,	 by	 doing	 so,	 defines	 an	 organization’s	 performance	 (e.g.,	 Argote	 &	 Miron-
Spektor,	2011).	Organizational	 learning	 is	based	on	a	complex	system	of	 learners	that	 interact	
with	 one	 another,	 which	 requires	 coordination	 (March,	 1991).	 Due	 to	 its	 high	 complexity,	
optimal	 coordination	 of	 organizational	 learning	 constitutes	 a	 difficult	 endeavor	 (e.g.,	 Levitt	 &	
March,	1988).	Despite	decades	of	research,	however,	literature	has	largely	assumed	the	learner	
to	be	purely	human	(e.g.,	Argote	et	al.,	2021).	With	ML	being	able	to	learn	as	well	while	differing	
significantly	from	human	learning	(as	we	will	discuss),	the	rise	of	ML	denies	this	assumption	and	
requires	 us	 to	 fundamentally	 rethink	 organizational	 learning	 theory.	 Yet,	 we	 only	 know	 little	
about	how	ML	systems	actually	affect	organizational	learning	(Argote	et	al.,	2021).	As	the	result	
of	organizational	learning	is	more	than	only	the	sum	of	individual	learning	but	also	subsists	of	
the	 individuals’	 interactions	(Argote	et	al.,	2021;	March,	1991),	mutual	 learning	 that	builds	on	
humans’	and	ML	systems’	 individual	 learning	should	not	be	neglected.	Organizational	 learning	
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thus	 constitutes	 a	 promising	 context	 for	 analyzing	 the	 bilateral	 relationship	 between	 humans	
and	learning	machines	that	collaborate	within	their	organization	(Sturm,	Gerlach,	et	al.,	2021).	

To	help	unravel	 the	 complex	bilateral	 human-machine	 relationship	 in	organizational	 learning,	
we	 conducted	 a	 case	 study	 at	 Allianz	 Global	 Investors,	 a	 global	 asset	 management	 firm	 that	
introduced	 an	 autonomous	 ML	 system	 for	 trading	 financial	 instruments	 next	 to	 its	 human	
traders.	Trading	constitutes	a	fruitful	context	to	study	organizational	learning	as	learning	lies	at	
the	heart	of	trading:	organizations	aim	to	 learn	about	the	complex	causal	structure	of	markets	
and	related	trading	strategies	in	order	to	optimize	their	future	investment	endeavors.	Moreover,	
such	trading	is	executed	in	a	purely	digital	world	in	which	market	states	and	trading	actions	are	
naturally	 tracked	 and	 are	 rich	 in	 information.	 By	 exploring	 digital	 trace	 data,	we	 thus	 aim	 to	
answer	 the	 following	 research	 questions	 (RQs):	 In	the	context	of	trading,	(1)	how	does	ML	and	
human	 learning	 affect	 each	 other	 in	 organizational	 learning,	 and	 (2)	 how	 can	 organizations	
leverage	their	bilateral	relationship	to	improve	organizational	performance?		

To	answer	the	RQs,	we	rely	on	an	abductive,	pragmatist	approach	for	human-machine	pattern	
recognition	to	analyze	the	(interconnected)	dynamics	of	 the	humans’	and	ML	system’s	 trading	
behavior.	 In	 doing	 so,	 we	 explore	 how	 idiosyncrasies	 of	 human	 learning	 and	 ML	 contribute	
differently	 to	 trading	 and	 how	 their	 synthesis	 affects	 the	 organization’s	 trading	 performance.	
Our	 case	 study	 offers	 empirical	 insights	 about	 how	 organizational	 learning	 depends	 on	 the	
coordination	 of	 both	 human	 learning	 and	ML,	which	 can	 help	 organizations	 to	 craft	 effective	
human-AI	collaboration	designs	and	stimulate	related	research	endeavors.	

5.2 Theoretical	Background	

We	 first	 introduce	 organizational	 learning	 and	 ML	 along	 related	 work.	 Next,	 we	 compare	
idiosyncrasies	of	human	learning	and	ML.	We	then	combine	both	research	streams	to	form	our	
study’s	objective.	

5.2.1 Organizational	Learning	

In	their	seminal	work,	Levitt	and	March	view	organizational	 learning	“as	 learning	by	encoding	
inferences	 from	 history	 into	 routines	 that	 guide	 behavior”	 (Levitt	 &	 March,	 1988,	 p.	 320).	
Individuals	 in	 organizations	 gather	 experiences	 based	 on	 their	 chosen	 actions	 and	 associated	
outcomes.	Based	on	these	experience-outcome	pairs,	they	infer	learnings	(i.e.,	beliefs	about	the	
causal	structure	of	reality)	to	guide	future	actions.	Organizations	store	these	 learnings	in	their	
routines	to	make	use	of	and	further	distribute	the	developed	knowledge	(e.g.,	Argote	&	Miron-
Spektor,	2011).	By	doing	so,	organizations	form	complex	systems	of	interacting	individuals	who	
learn	to	make	sense	of	the	environment	in	which	organizations	act	and	to	which	they	adapt	to	
(Levitt	 &	March,	 1988).	 The	 better	 organizations	 learn	 (i.e.,	 the	 better	 they	 understand	 their	
environment	to	guide	their	actions),	the	better	they	can	act	and	adapt	to	increase	organizational	
performance	(March,	1991).	Organizational	 learning	marks	therefore	an	essential	process	 that	
organizations	need	to	pursue	continually	in	order	to	survive	(e.g.,	Grant,	1996;	March,	1991).		

One	 of	 the	most	 central	 and	 crucial	 concepts	 in	 organizational	 learning	 is	 that	 organizations	
need	 to	 balance	 explorative	 and	 exploitative	 learning	 (e.g.,	 Gupta	 et	 al.,	 2006;	 March,	 1991).	
While	explorative	learning	represents	the	search	for	new	ideas	with	uncertain	outcomes	which	
shift	away	from	an	organization’s	current	knowledge,	exploitative	learning	refers	to	the	use	and	
incremental	 refinement	of	existing	knowledge	 to	obtain	 its	 immediate	benefits	 (March,	1991).	
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Balancing	 both	 types	 of	 learning	 is	 important:	 If	 organizations	 overemphasize	 the	 short-term	
benefits	 they	 can	 gain	 by	 exploiting	 given	 knowledge,	 they	 can	 become	 trapped	 in	 a	 state	 of	
stagnation,	 ignoring	 new	 potentially	 useful	 directions.	 In	 contrast,	 if	 organizations	 neglect	
exploitation	 while	 extensively	 exploring	 new	 ideas,	 they	 will	 not	 survive	 in	 a	 competitive	
environment	as	they	fail	to	refine	and	apply	knowledge	to	develop	specific	competences	(March,	
1991).	 Achieving	 this	 balance	 is,	 however,	 a	 difficult	 endeavor	 that	 has	 yielded	 decades	 of	
research	 studying	 how	 to	 overcome	 the	 various	 flaws	 of	 organizational	 learning	 to	 optimize	
organizational	 performance	 (e.g.,	 Argote	 &	 Miron-Spektor,	 2011;	 Levitt	 &	 March,	 1988).	
Especially	 the	 so-called	 ‘learning	 myopia’,	 which	 is	 the	 tendency	 to	 favor	 exploitation	 over	
exploration,	represents	a	major	and	versatile	issue:	Due	to	their	distant	and	uncertain	benefits,	
learners	 tend	 to	 avoid	 experimenting	 with	 new,	 yet	 unproven	 ideas	 and	 prefer	 to	 rely	 on	
established	 ideas	 that	 proved	 to	 be	 successful	 in	 the	 past	 (e.g.,	 Levinthal	 &	 March,	 1993).	
Research	has	uncovered	numerous	 factors	known	 to	either	mitigate	 (e.g.,	high	 team	diversity;	
March,	1991)	or	 intensify	 (e.g.,	 incentives	 that	 reward	 successes	and	penalize	 failures;	March,	
2010)	 a	 learner’s	 myopia,	 further	 complicating	 the	 crucial	 balance	 of	 explorative	 and	
exploitative	activities	(Levinthal	&	March,	1993).	Despite	decades	of	research	on	organizational	
learning	 (several	 fantastic	 overviews	 exist,	 e.g.,	 Argote	 et	 al.,	 2021;	 Argote	 &	 Miron-Spektor,	
2011;	Huber,	1991),	research	on	the	impact	of	IS	on	organizational	learning	still	remains	in	its	
infancy	(Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011).	

5.2.2 Machine	Learning	

One	of	 the	most	widely	 accepted	 concepts	 of	AI	 is	 the	one	of	 the	 ‘intelligent	 agents’,	which	 is	
“anything	 that	 can	be	 viewed	 as	 perceiving	 its	 environment	 through	 sensors	 and	 acting	upon	
that	 environment”	 (Russell	&	Norvig,	 2021,	 p.	 34).	 Here,	 intelligent	 behavior	 is	 defined	 as	 an	
agent	function	selecting	actions	based	on	context	information.	While	various	approaches	exist	to	
realize	this	function	(e.g.,	human-defined	rules	or	statistics;	Russell	&	Norvig,	2021),	the	one	that	
largely	underlies	modern	AI	is	ML;	that	is,	learning	with	algorithms	from	data-based	experience	
to	infer	models	that	capture	derived	data	patterns.	ML	systems	then	apply	these	models	to	new	
data	 to	 guide	 their	 behavior	 (Jordan	 &	 Mitchell,	 2015;	 Mitchell,	 1997).	 ML	 systems	 are	
developed	 in	 an	 iterative	 process,	 in	 which	 humans	 select	 and	 prepare	 data,	 select	 and	
parametrize	 algorithms,	 and	assess	 implemented	alternatives	 to	 craft	 the	best-performing	ML	
system.	By	doing	so,	humans	define	the	conditions	under	which	the	ML	system	learns	to	develop	
its	 own	understanding	of	 a	problem	solution	 (e.g.,	Amershi	 et	 al.,	 2019;	 Sturm,	Gerlach,	 et	 al.,	
2021).	So	far,	IS	research	on	ML	has	mainly	focused	on	topics	like	adoption	(e.g.,	Pumplun	et	al.,	
2019),	 automation	 of	 (sub-)tasks	 (e.g.,	 Brynjolfsson	 &	 Mitchell,	 2017),	 or	 emerging	 social	
challenges	 like	 ethical	 or	 transparent	 AI	 (e.g.,	 Rhue,	 2019).	 Only	 recently,	 scholars	 began	 to	
stress	the	great	importance	of	the	reciprocal	interplay	between	humans	and	AI	(e.g.,	K.	Leavitt	et	
al.,	2021;	Murray	et	al.,	2021;	Rai	et	al.,	2019;	Schuetz	&	Venkatesh,	2020).	While	a	handful	of	
researchers	have	begun	to	examine	how	humans	affect	AI	and	vice	versa	and	how	organizations	
may	coordinate	this	relationship,	related	research	remains	scarce	and	emphasizes	the	need	for	
further	analyses	(e.g.,	Grønsund	&	Aanestad,	2020;	Kellogg	et	al.,	2020;	Lindebaum	et	al.,	2020;	
Lyytinen	 et	 al.,	 2021;	 Murray	 et	 al.,	 2021;	 Seidel	 et	 al.,	 2019;	 Sturm,	 Gerlach,	 et	 al.,	 2021).	
Especially,	 work	 on	 the	 impact	 of	 ML	 on	 organizational	 learning	 is	 still	 limited	 and	 mainly	
provide	 only	 basic	 insights	 into	 potential	 setups	 and	 hypothetical	 consequences	 (e.g.,	
Ransbotham	 et	 al.	 (2020)	 propose	 possible	 learning	 modes	 with	 varying	 human-machine	
autonomy,	Balasubramanian	et	al.	(2022)	theorize	and	simulate	potential	consequences	of	ML).	
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In	 doing	 so,	 the	 scholars	 primarily	 put	 forth	 one	 foundational,	 ongoing	 discussion:	 does	 ML	
amplify	 (e.g.,	 Balasubramanian	 et	 al.,	 2022)	 or	 alleviate	 (e.g.,	 Sturm,	 Gerlach,	 et	 al.,	 2021)	
learning	myopia,	shifting	organizations	towards	exploitation	or	exploration?	

5.2.3 Strengths	and	Weaknesses	of	Human	and	Machine	Learning	

Organizational	 learning	 is	 generally	 far	 from	 perfect	 (e.g.,	 Argote	 et	 al.,	 2021;	 March,	 2010).	
Reality	 itself	 complicates	 learning	 as	 its	 complexity	 renders	 its	 underlying	 causal	 structure	
difficult	 to	discern:	numerous	variables	 interact	and	can	change	continuously,	 including	actual	
random	 variations	 (March,	 2010).	 In	 an	 ideal	 world,	 a	 learner	 thus	 gathers	 extensive	
experiences	(i.e.,	samples	of	reality)	to	construct	a	complete	picture	of	reality	and	flawlessly	sees	
through	complex	multivariate	relations	while	ignoring	random	noise	to	infer	accurate	learnings	
about	reality	(March,	2010).	To	assume	such	ideal	circumstances	is,	however,	rather	lunatic	than	
appropriate	as	learning	is	constrained	by	humans’	limited	experiences	and	learning	capabilities	
(e.g.,	Levinthal	&	March,	1993;	Simon,	1972).	As	ML	systems	differ	significantly	in	their	way	of	
learning,	 often	 even	 viewed	 as	 a	 panacea	 to	 overcome	 human	 limits	 (e.g.,	 Lindebaum	 et	 al.,	
2020),	we	now	compare	major	idiosyncrasies	of	humans	and	ML	systems.	To	this	end,	we	focus	
the	 comparison	 on	 key	 elements	 of	 learning	 that	 are	 essentially	 shaped	 by	 a	 learner’s	
capabilities	 (e.g.,	 Argote	 et	 al.,	 2021;	 Levinthal	 &	 March,	 1993;	 Levitt	 &	 March,	 1988):	 (1)	
learning	base,	(2)	inference,	and	(3)	learned	model.	

a.	 Learning	 Base	 (Human	 vs.	 Purely	 Data-based	 Experience).	 A	 human	 observes	 reality	
through	her/his	unique	sample	of	experience	(Levitt	&	March,	1988).	This	sample	is	gathered	by	
the	 human	 choosing	 and	 performing	 actions	 from	 among	 action	 alternatives	 (e.g.,	 making	 a	
specific	 decision)	 and	 observing	 associated	 action	 outcomes	 (e.g.,	 the	 perceived	 success	 or	
failure	of	a	performed	decision)	over	the	human’s	lifetime	(Argote	&	Miron-Spektor,	2011).	To	
this	 end,	 human	 experience	 is	 far	 from	 being	 an	 optimal	 base	 for	 learning:	 our	 experiences	
usually	comprise	very	small,	incomplete	samples	of	reality	that	are	often	skewed	and	erroneous	
(March,	2010).	That	is,	because	a	single	one	of	us	cannot	observe	the	overwhelming	breadth	of	
reality	in	its	entirety	but	is	limited	to	her/his	specific	interests,	social	and	organizational	context,	
unique	 sequence	 of	 decisions,	 repeatability	 of	 actions	 and	 contexts,	measurement	 errors	 and	
misinterpretations,	cognitive	memory,	and	attention—just	to	name	a	few	factors	(e.g.,	Argote	et	
al.,	2021;	March,	1991).	A	more	comprehensive	and	correct	picture	of	reality	is	therefore	likely	
spread	across	multiple	humans’	diverse	experiences	(March,	2010).	Humans	 thus	usually	 take	
part	 in	 a	 time-consuming	 social	 learning	 process	 to	 jointly	 share,	 evaluate,	 and	 combine	
individual	 experiences	 to	 some	 extent	 (e.g.,	 March,	 1991).	 Yet,	 not	 everything	 is	 bad	 about	
human	experience	as	a	basis	for	learning.	Human	experience	is	not	limited	to	specific	media	or	
domains	 per	 se.	 Humans	 can	 draw	 upon	 a	 rich	 amount	 of	 diverse	 integrable	 sources	 (e.g.,	
knowledge	repositories	or	human	senses)	to	form	their	experiences	and	can	transfer	learnings	
and	experiences	between	domains	and	contexts	(e.g.,	Argote	et	al.,	2021).	Moreover,	humans	are	
able	 to	 contextualize	 learnings	 and	 craft	 hypothetical	 samples	 (i.e.,	 thinking	 about	 ‘what-if’	
scenarios),	allowing	them	to	enrich	their	small	samples	of	reality	(March	et	al.,	1991).		

In	 contrast,	ML	 systems	 purely	 learn	 from	 data	 (e.g.,	 Brynjolfsson	 &	Mitchell,	 2017;	Mitchell,	
1997).	 Indeed,	 organizations’	 data	 is	 also	 often	 skewed,	 erroneous,	 and	 incomplete,	 and	 is	
therefore	 often	 also	 far	 from	 being	 a	 perfect	 learning	 base.	 Yet,	while	 organizations	 can	 only	
partly	 control	 and	 improve	 individuals’	 collected	experiences	used	 for	 learning	 (e.g.,	Argote	&	
Miron-Spektor,	 2011),	 ML	 systems’	 data	 is	 usually	 actively	 assessed,	 enlarged,	 and	 cleansed,	
partly	mitigating	the	issues	related	to	the	less	controllable	human	experiences	(e.g.,	Amershi	et	
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al.,	2019;	Domingos,	2012).	As	an	ML	system	can	store	and	process	large	amounts	of	data,	it	can	
learn	 from	 a	 more	 comprehensive	 and	 diverse	 sample	 of	 reality,	 often	 covering	 multiple	
individuals’	 experiences	 (e.g.,	 Brynjolfsson	 &	 Mitchell,	 2017;	 Jordan	 &	 Mitchell,	 2015).	 ML	
systems	can	therefore	grant	organizations	the	ability	to	craft	and	learn	from	larger	and	actively	
cleaned	samples	of	reality.	Yet,	this	can	only	be	true	for	experiences	described	by	ML	systems’	
narrow	 frame	 (i.e.,	 predefined	 goals	 and	 provided	 data;	 Salovaara	 et	 al.,	 2019).	 While	 ML	
systems’	data-driven	learning	allows	them	to	analyze	larger	samples	of	experiences,	they	are	at	
the	 same	 time	 blinded	 by	 it:	 ML	 systems	 neglect	 any	 information	 outside	 their	 data	 frame,	
potentially	overemphasizing	aspects	 captured	by	data	while	 ignoring	aspects	 that	are	actually	
relevant	 but	 non-capturable	 with	 data—ML	 systems	 are	 unable	 to	 look	 outside	 the	 box	
(Domingos,	2012;	Salovaara	et	al.,	2019).	ML	systems’	learning	can	therefore	even	act	restricting	
as	many	learnings	must	be	contextualized	and	critically	reflected	before	applying	them	naively	
(e.g.,	Raisch	&	Krakowski,	2021).	Moreover,	ML	systems	usually	require	large	amounts	of	data	to	
learn	reliably	(Brynjolfsson	&	Mitchell,	2017;	Salovaara	et	al.,	2019).	If	only	small	data	samples	
are	available,	no	learnings	can	be	derived	or	the	ones	available	may	rather	confuse	than	benefit	
others	who	learn	from	resulting	ML	models	(e.g.,	Balasubramanian	et	al.,	2022).	

b.	Inference	(Bounded	vs.	Formal	Rationality).	In	addition	to	human	experience	being	a	non-
ideal	basis	for	learning,	humans	themselves	are	no	perfect	learners	either	that	always	flawlessly	
derive	the	causal	structure	from	experience	(e.g.,	Levinthal	&	March,	1993;	March,	2010).	That	
is,	 as	 famously	 coined	 by	 Simon,	 because	 humans	 can	 only	 learn	 within	 their	 bounded	
rationality:	 “boundedly	 rational	 agents	 experience	 limits	 in	 formulating	 and	 solving	 complex	
problems	 and	 in	 processing	 (receiving,	 storing,	 retrieving,	 transmitting)	 information”	
(Williamson,	 1981,	 p.	 553,	 quoting	 Simon).	 Humans	 simply	 struggle	 to	 untangle	 the	 complex	
relations	of	reality’s	numerous	variables.	Overwhelmed	by	reality’s	complexity,	humans	thus	fall	
back	 on	 learning	 simplified	 heuristics	 to	 describe	 reality’s	 causal	 structure	 instead	 of	 using	
complete	 optimization	methods	 to	 derive	 an	 optimal	 representation	 of	 reality	 (March,	 2010).	
Humans	are	also	no	rapid	learners.	Humans	are	slow	in	processing	large	amounts	of	information	
and	take	part	in	the	slow	social	learning	process	to	enrich	their	own	learnings	with	the	ones	of	
others	(e.g.,	Levinthal	&	March,	1993;	March,	1981).	Human	knowledge	creation	certainly	takes	
its	time,	which	further	impedes	the	creation	of	sound	learnings	if	time	is	limited	(March,	2010).	
Moreover,	 bounded	 rationality	 creates	 room	 for	 humans’	 irrational	 ‘foolish’	 behavior	 (March,	
2006).	 While	 acting	 foolish	 (i.e.,	 not	 doing	 the	 seemingly	 ‘right’	 things;	 acting	 imprudent	 or	
playful)	is	largely	detrimental	to	organizations	as	it	mostly	yields	costly	failures	(March,	2006),	a	
small	amount	of	 foolishness	can	yet	benefit	organizational	 learning:	Foolishness	acts	as	driver	
for	 (unintended)	 exploration.	 Acting	 foolishly	 implies	 disregarding	 established	 beliefs	 about	
how	things	should	be	done,	which	often	 leads	to	trying	out	new	(sometimes	better)	ways	that	
would	otherwise	be	overlooked,	diversifying	gathered	experiences	(March,	2006,	2010).		

In	contrast,	rationality	 is	 imperative	to	ML	systems:	ML	systems	are	deliberately	 implemented	
as	rational	agents	with	the	explicit	goal	 to	always	act	(and	 learn)	rationally	(Russell	&	Norvig,	
2021).	 Due	 to	 their	 high	 information	 processing	 capabilities	 and	 use	 of	 formal	 learning	
mechanisms,	 today’s	 ML	 systems	 are	 even	 viewed	 as	 “supercarriers	 of	 formal	 rationality”	
(Lindebaum	 et	 al.,	 2020,	 p.	 248),	 yielding	 hopes	 that	 organizations	 have	 finally	 crafted	 the	
perfect	learners	they	have	always	hoped	for	(Lindebaum	et	al.,	2020;	Murray	et	al.,	2021).	As	ML	
systems	also	rely	on	(indeed	more	profound)	heuristics,	they	are,	however,	no	perfect	learners	
either—but	indeed	less	bounded	in	their	rationality:	ML	systems	can	analyze	larger	samples	of	
experience	and	identify	more	complex	relations	between	greater	numbers	of	variables	to	derive	
more	accurate	heuristics	than	humans	(e.g.,	Lindebaum	et	al.,	2020;	Raisch	&	Krakowski,	2021).	



5	Paper	C:	Artificial	Intelligence	and	Group-level	Performance	(Focus:	Organizational	Learning)	 66	

ML	 systems	 are	 also	 very	 efficient	 learners	 as	 they	 can	 process	 large	 amounts	 of	 data	 very	
quickly	 and	 can	 thus	make	 new	knowledge	 rapidly	 available	 as	 soon	 as	 new	data	 exists	 (e.g.,	
Kellogg	et	al.,	2020;	Lindebaum	et	al.,	2020).	Yet,	having	such	increased	rationality,	ML	systems	
may	 also	 alleviate	 foolishness.	While	 this	 can	 be	 beneficial,	 ML	 systems	 also	 risk	 eliminating	
foolishness	as	an	 important	mechanism	to	occasionally	explore	unorthodox	 ideas,	which	drive	
innovation	(e.g.,	Balasubramanian	et	al.,	2022).		

c.	 Learned	 Model	 (Broad	 vs.	 Narrow).	 Humans	 learn	 mental	 models	 of	 reality	 (i.e.,	 an	
individual’s	 understanding	 of	 the	 world;	 Levitt	 &	March,	 1988).	 Such	models	 generally	 cross	
multiple	domains	and	contexts	(e.g.,	Argote	et	al.,	2021).	For	instance,	a	single	human	can	learn	a	
model	on	how	to	play	an	instrument,	speak	a	language,	and	diagnose	diseases.	Humans	can	use	
their	models	to	transfer	learnings	from	one	domain	or	context	to	another,	which	enables	them	to	
assess	whether	existing	learnings	likely	fit	novel	or	changed	contexts	(e.g.,	Raisch	&	Krakowski,	
2021).	 In	 contrast	 to	 artificial	 general	 intelligence	 that	 aims	 to	 resemble	 the	 general	 focus	 of	
human	 intelligence,	 today’s	ML	 systems	 only	 enable	 narrow	 AI	 (e.g.,	 Brynjolfsson	 &	Mitchell,	
2017;	Sturm,	Gerlach,	et	al.,	2021):	ML	models	are	highly	contextual	models	that	purely	focus	on	
a	narrow	aspect	of	reality.	While	ML	systems	can	adapt	autonomously	to	changing	contexts	if	the	
underlying	 concept	 does	 not	 change	 fundamentally,	 disruptive	 context	 changes	 or	 reduced	
information	(e.g.,	 through	concept	drifts,	broken	sensors)	may	confuse	ML,	 leading	to	obsolete	
ML	models	that	must	be	reevaluated	and	retrained	by	human	experts	that	can	look	beyond	its	
narrow	frame	(e.g.,	Lindebaum	et	al.,	2020;	Raisch	&	Krakowski,	2021).	In	other	words,	due	to	
their	high	contextuality,	ML	models	thus	tend	to	be	less	robust	to	contextual	changes	compared	
to	humans’	mental	models.	

5.2.4 The	Need	to	Revisit	Learning	During	the	Rise	of	Machine	Learning	

Organizations	already	use	ML	systems	next	to	their	human	employees	to	autonomously	shape,	
perform,	and	collaborate	in	organizational	routines	(e.g.,	Brynjolfsson	&	Mitchell,	2017).	Yet,	 it	
remains	 unclear	 how	 humans	 and	 ML	 systems	 affect	 each	 other	 and	 how	 they	 should	 be	
coordinated	 as	 a	 whole.	 This	 is	 important:	 if	 done	 wrong,	 organizations	 may	 jeopardize	
organizational	 performance—and	 in	 the	 worst	 case	 their	 long-term	 survival	 if	 ML	 obstructs	
essential	organizational	processes	(e.g.,	Raisch	&	Krakowski,	2021;	Sturm,	Gerlach,	et	al.,	2021)	
by,	e.g.,	exacerbating	learning	myopia	(Balasubramanian	et	al.,	2022)	or	spreading	false	beliefs	
(Sturm,	Gerlach,	et	al.,	2021).	Only	recently,	management	and	IS	scholars	recognized	the	great	
relevance	 of	 managing	 the	 reciprocal	 interplay	 between	 humans	 and	 intelligent	 machines	 in	
organizations	 (e.g.,	 Rai	 et	 al.,	 2019;	 Schuetz	&	 Venkatesh,	 2020).	 However,	 learning,	 although	
being	 a	key	 aspect	 that	blends	human	and	ML	 systems’	behavior,	 remains	widely	overlooked.	
This	 is	 surprising	 as	 focusing	 on	 learning	 allows	 to	 draw	 the	 discussions	 on	 human-machine	
collaboration	back	to	its	central	driver	and	ML	systems’	specificity.	Despite	decades	of	research	
on	organizational	learning	(e.g.,	Argote	et	al.,	2021),	the	literature	can	only	partly	inform	related	
studies	 as	 it	 has	 essentially	 assumed	 the	 learners	 to	be	purely	human.	 Indeed,	 a	 few	 scholars	
already	started	to	study	ML’s	impact	on	organizational	learning,	but	have	still	only	scratched	the	
surface	 and	 call	 for	 further	 research	 (i.e.,	 Afiouni-Monla,	 2019;	 Argote	 et	 al.,	 2021;	
Balasubramanian	et	al.,	2022;	Lyytinen	et	al.,	2021;	Ransbotham	et	al.,	2020;	Seidel	et	al.,	2019;	
Sturm,	Gerlach,	et	al.,	2021).	These	studies	are	mainly	theoretical	work	(exceptions:	Ransbotham	
et	 al.,	 2020;	 Seidel	 et	 al.,	 2019),	missing	 empirical	 insights	 and	 strongly	 suggest	 investigating	
human-machine	learning	empirically	to	enrich	ongoing	discussions.	Although	literature	on	ML	in	
organizational	 learning	 is	 very	 limited,	 students	 of	 this	 topic	 can	 draw	 on	widely	 established	
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computer	science	and	organizational	learning	literature	to	characterize	human	learning	and	ML	
(see	previous	sections).	By	doing	so,	 focusing	on	 learning	allows	us	to	ground	analyses	on	the	
micro	level	(i.e.,	how	human	learning	and	ML	function	and	differ)	to	contribute	novel	theory	on	
the	 macro	 level	 (i.e.,	 theorize	 human-machine	 dynamics).	 To	 this	 end,	 to	 provide	 empirical	
evidence,	 we	 now	 use	 the	 above-discussed	 characteristics	 of	 human	 learning	 and	 ML	 as	 a	
theoretical	 basis	 to	 explore	 ‘macro-level’	 dynamics	 between	 humans	 and	 an	 ML	 system	 by	
studying	a	real-life	case	of	human-machine	trading.	

5.3 Research	Design	

Below,	 we	 first	 introduce	 our	 trading	 case	 as	 a	 suitable	 empirical	 context	 to	 analyze	
organizational	learning.	Then,	we	outline	our	research	approach	and	provide	an	overview	of	the	
collected	data	and	its	analysis.		

5.3.1 Empirical	Context	

In	our	study,	we	examine	the	case	of	human-machine	trading	at	Allianz	Global	Investors	(AllGI),	
a	 global	 asset	management	 firm	with	 over	 500	 billion	 euros	 in	 assets	 under	management	 in	
2021	 and	more	 than	 two	 thousand	 employees	 worldwide.	 AllGI’s	 investment	 routine	 follows	
two	 essential	 steps:	 (1)	 a	 portfolio	 manager	 requests	 an	 order	 (i.e.,	 to	 buy	 a	 set	 of	 specific	
securities),	and	then	(2)	a	trader	executes	this	order	on	a	best-efforts	basis.	Every	month,	AllGI’s	
traders	execute	transactions	worth	billions	of	euros.	In	our	case	study,	we	focus	on	the	second	
part	of	AllGI’s	process;	that	is,	the	actual	execution	of	a	given	order.	More	precisely,	we	focus	on	
the	 trading	 of	 futures	 contracts.7	To	 this	 end,	 effective	 trading	 is	 an	 adaptive	 process	 that	
requires	a	 trader	to	develop	an	understanding	(i.e.,	 learn	a	model)	of	 the	market	environment	
and	associated	trading	strategies	to	react	purposefully.	This	is	challenging	as	trading	takes	place	
in	an	extremely	noisy,	complex,	and	turbulent	world:	Financial	markets	change	continuously	and	
many	 factors	 affect	 the	markets’	 development,	 rendering	market	 comprehension	 and	 strategy	
development	a	very	challenging	endeavor.	To	be	effective,	 today’s	 traders	choose	 from	a	 large	
set	 of	 trading	 algorithms8	that	 reflect	 execution	 sequences	 predefined	 by	 external	 brokers.	
Moreover,	 trading	 takes	 place	 in	 a	world	 that	 allows	 to	 clearly	monitor	 and	 evaluate	 trading	
behavior	with	every	trading	action	and	related	market	state	being	captured	in	data.	Based	on	an	
industry-standard	benchmark,	each	trading	decision	is	evaluated	with	an	associated	(positive	or	
negative)	 trading	 performance.	 The	 case	 of	 AllGI’s	 trading	 therefore	 represents	 a	 well-suited	
context	to	explore	organizational	learning	empirically:	First,	learning	lies	at	the	heart	of	trading	
as	its	success	depends	on	thoughtful	trading	decisions.	Second,	as	the	whole	trading	process	is	
conducted	 digitally,	 drawing	 on	 this	 case	 enables	 us	 to	 observe	 the	 traders’	 experiences	 and	
learned	propensities	over	time	within	naturally	collected	digital	trace	data—no	matter	whether	
the	trader	is	human	or	an	ML	system.	

 
 
7	Futures	are	financial	derivatives	for	a	transaction	of	an	asset	at	a	predetermined	price	and	date.		
8	Not	 to	 be	 confused	 with	 ML	 algorithms,	 trading	 algorithms	 are	 manually	 programmed	 buying/selling	 rules	 used	 to	

automatically	manage	the	price,	size,	and	timing	of	trades,	thus	executing	a	predefined	trading	strategy	chosen	by	a	trader	
(Kissel,	2013).	
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5.3.2 Research	Approach	and	Collected	Data	

Methodology.	We	conducted	a	descriptive	case	study	(Yin,	2011)	based	on	big	data	analyses	of	
digital	trace	data.	Digital	trace	data	captures	individuals’	actions	within	organizational	routines,	
thus	allowing	to	explore	actual	individual	behavior	within	specific	empirical	contexts	over	time	
(e.g.,	Lindberg,	2020;	Pentland	et	al.,	2020).	We	followed	Lindberg’s	(2020)	pragmatist	approach	
for	 analyzing	 digital	 traces	 to	 demonstrate	 how	 patterns	 emerge	 from	 the	 idiosyncrasies	 of	
agents’	actions	in	a	particular	empirical	context	(e.g.,	Lindberg,	2020;	Venturini	&	Latour,	2009).	
The	pragmatist	approach	emphasizes	that	actions	can	only	be	understood	with	regard	to	their	
specific	 context	 and	associated	meanings	behind	 the	different	 actions	 (Burks,	1946;	Lindberg,	
2020).	Although	pragmatists	stress	the	 importance	of	causation,	pragmatism	is	 less	concerned	
with	 deriving	 universal	 patterns,	 but	 focuses	 on	 portraying	 contextually	 efficacious	 practices	
(Farjoun	et	al.,	2015;	Lindberg,	2020).	 In	 its	essence,	pragmatism	aims	 to	evaluate	an	action’s	
meaning	 in	 terms	 of	 its	 consequences,	 as	 Lindberg	 (2020,	 p.	 93)	 puts	 it	 nicely:	 “It	 is	 hard	 to	
observe	 internal	emotional	or	cognitive	states,	but	 it	 is	possible	to	clearly	observe	actions	and	
the	consequences	that	such	actions	engender.	Thus,	when	trying	to	understand	how	actors	think	
about	 and	 interpret	 their	 worlds,	 it	 is	 necessary	 to	 also	 look	 at	 their	 actions	 and	 the	
consequences	 of	 those	 actions.	 [...]	 [T]he	 pragmatist	 approach	 posits	 that	 understanding	
causality	is	central	to	understanding	meaning,	since	the	meaning	of	an	action	(or	utterance,	i.e.,	a	
speech	act)	 largely	resides	in	its	consequences”.	Considering	this	perspective,	Lindberg	(2020)	
proposed	 a	 method	 grounded	 in	 human-machine	 pattern	 recognition.	 Using	 abduction,	 the	
method	 does	 not	 start	with	 the	 a	 priori	 formulation	 of	 hypotheses,	 but	with	 the	 discovery	 of	
patterns	from	digital	trace	data:	First,	based	on	human	or	machine	pattern	recognition,	inductive	
generalizations	are	derived	from	data.	In	our	case,	we	rely	on	machine	pattern	recognition	(i.e.,	
computationally	 derived	 patterns,	 e.g.,	 descriptive	 statistics	 and	 correlations,	 or	 other	
regularities,	e.g.,	action	categorizations;	Lindberg,	2020).	The	inductive	generalizations	function	
as	 ‘working	hypotheses’	that	are	then	justified	using	human	or	machine	pattern	recognition	to	
explain	 inductive	 observations.	 In	 our	 case,	we	 rely	 on	 human	 pattern	 recognition	 to	 explain	
identified	 patterns	 and	 reflect	 on	 our	 findings	 using	 extant	 literature	 and	qualitative	 insights.	
Resulting	inferences	are	“viewed	as	‘reasonable	inferences’	tempered	by	theoretical	experience	
and	 intimacy	with	 the	 data	 under	 scrutiny”	 (Lindberg,	 2020,	 p.	 94)	which	 do	 not	 have	 to	 be	
inductively	or	deductively	true	but	presumptively	follow	from	the	analysis.	By	doing	so,	related	
studies	 embody	 the	 capacity	 of	 science	 to	 make	 new	 discoveries	 by	 contributing	 fruitful	
evidence	and	innovative	ideas	to	inspire	and	create	momentum	for	further	research	endeavors	
and	discussions	(Dougherty,	2016;	Lindberg,	2020).	

Data.	 We	 accompanied	 AllGI’s	 journey	 towards	 its	 adoption	 of	 a	 productive,	 autonomously	
trading	ML	system	since	the	initial	idea	in	January	2019.	From	its	first	rollout	in	mid-2020	until	
the	end	of	November	2020,	the	ML	system’s	initial	knowledge	base	was	formed	and	tested.	We	
then	 collected	 data	 on	 its	 official	 productive	 use	 from	December	 01,	 2020,	 to	 April	 16,	 2021.	
During	 this	 period,	 AllGI	 enabled	 bilateral	 human-machine	 learning	 beginning	 February	 19,	
2021.	As	one	of	the	authors	was	employed	as	a	trader	for	the	whole	duration	by	AllGI	and	was	
actively	involved	in	the	ML	system’s	implementation,	we	were	able	to	continuously	gather	first-
hand	 insights	 into	 the	adoption	process,	 talk	directly	 to	 the	 traders,	 receive	access	 to	 internal	
documents,	and	attend	internal	meetings.	We	had	full	access	to	over	50,000	logged	order	events	
(i.e.,	data	points	capturing	assignments,	order	routing,	executions)	with	over	200	data	fields	per	
log	 entry.	 These	 logs	 enabled	 us	 to	 detailly	 review	 each	 step	 for	 every	 order	 from	 the	 initial	
request	until	completion	for	both	the	human	traders	and	ML	system.	To	study	the	digital	traces,	
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we	 focused	 our	 analyses	 especially	 on	 the	 execution	 price,	 benchmark	 price,	 chosen	 trading	
algorithms,	and	information	about	the	given	market	state	per	trade.	As	can	be	seen	in	Figure	5,	
the	captured	traces	include	several	orders	(N)	traded	by	either	human	traders	(D0,	D1)	or	the	ML	
system	 (D2,	D3)	 before	 (D0,	D3)	 or	 after	 (D1,	D2)	 the	 enabled	ML	 system’s	 advice.	Moreover,	 to	
better	 understand	 the	 portfolio	 of	 over	 190	 trading	 algorithms,	we	 had	 the	 chance	 to	 review	
algorithm	 manuals	 and	 talk	 to	 algorithm	 providers	 personally.	 We	 further	 had	 access	 to	 52	
meeting	notes	from	AllGI’s	weekly	team	meetings	and	45	meeting	notes	from	AllGI’s	algorithmic	
trading	 reviews	 with	 the	 providers.	 We	 also	 received	 live	 demonstrations	 of	 the	 trading	
workflow,	 software,	 and	 ML	 system,	 and	 were	 able	 to	 talk	 to	 the	 traders	 directly	 about	
abnormalities	 that	 we	 identified	 in	 the	 data	 to	 gather	 further	 context	 information.	 After	 the	
observation	 period,	 we	 provided	 an	 anonymous	 online	 survey	with	 open-ended	 questions	 in	
which	the	traders	further	reflected	on	their	work	with	the	ML	system.		

	
Figure	5:	Collected	Digital	Trace	Data	

Analysis.	We	ensured	research	rigor	by	strictly	following	Lindberg’s	(2020)	seven	guidelines	for	
crafting	 mutable	 digital	 traces	 and	 conducting	 abductive	 analysis;	 that	 is,	 we	 enriched	 our	
continuously	 sampled	 quantitative	 digital	 trace	 data	 captured	 by	 the	 trading	 system	 with	
additionally	gathered	qualitative	data,	iteratively	solved	puzzles	that	emerged	from	derived	data	
patterns,	 searched	 for	 explanations	 for	 surprises,	 and	 investigated	 identified	 patterns’	
correlation	 and	 causation.	 Moreover,	 we	 ensured	 to	 satisfy	 Lindberg’s	 (2020)	 principles	 for	
evaluating	 the	 process	 (i.e.,	 developing	 theory)	 and	 product	 (i.e.,	 the	 developed	 theory)	 of	
abductive	inquiry	to	assure	our	findings’	quality:	First,	to	ensure	a	high-quality	research	process,	
the	 research	problem,	 data,	 and	 analytical	 techniques	must	 be	well	 integrated.	As	 highlighted	
before,	we	 identified	 the	 trading	context	as	a	suitable	context	 for	analyzing	 the	conundrum	of	
(coupled)	human	learning	and	ML	as	learning	lies	at	the	heart	of	trading.	Trading’s	digital	nature	
allows	 us	 to	 track	 each	 actor’s	 decisions,	 enabling	 us	 to	 collect	 quantitative	 data	 capturing	
individual	 trading	 decisions	 and	 context	 information	 that	 we	 further	 contextualized	 with	
qualitative	data	(e.g.,	from	attending	meetings	and	interviewing	traders)	to	enable	a	somewhat	
360-degree	 view	on	AllGI’s	 trading	 process.	We	 further	 ensured	 that	 the	 data	 pertains	 to	 the	
same	individuals	performing	the	same	activities	within	the	same	organizational	structures	over	
time.	 Lastly,	 we	 also	 ensured	 the	 rigor	 of	 our	 analyses	 by	 enabling	 iterative	 cross-validation	
through	 continually	 exploring,	 confirming,	 and	 explaining	 patterns	 derived	 from	 quantitative	
data	using	machine	pattern	recognition	in	view	of	qualitative	patterns	deduced	through	human	
pattern	 recognition	 and	 vice	 versa.	 Second,	 to	 craft	 a	 high-quality	 research	 product	 with	 this	
method	means	to	show	“a	process	(consequences)	that	interacts	with	its	environment	(context),	
while	 at	 the	 same	 time	 also	 exhibiting	 the	 iterative	 dynamic	 between	 structure	 and	 agency	
(constitution)”	(Lindberg,	2020,	p.	103).	We	ensured	this	integration	by	analyzing	the	evolving	
(interrelated)	dynamics	of	human	traders	and	a	trading	ML	system	(i.e.,	constitution)	in	relation	
to	 varying	market	 states	 (i.e.,	 context)	 in	 terms	of	 in-	 or	decreasing	 trading	performance	 (i.e.,	
consequences)	 at	 all	 times.	 This	 allows	 us	 to	 assure	 that	 we	 situate	 identified	 practices	 and	
causal	 mechanisms	 within	 particular	 contexts	 to	 enable	 the	 identification	 of	 causal	
consequences	 of	 social	 structures.	 To	 further	 evaluate	 our	 results,	 we	 also	 judged	 derived	
findings	against	existent	theory.	

2021-04-16

D0: non-assisted humans (N=988) D1: ML-assisted humans (N=785)
2020-12-01

D2: autonomous ML system (N=1086)D3: autonomous ML system (N=1957)

56 business days

Before the ML system's advice During enabled ML system’s advice

40 business days2021-02-19
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5.4 The	Case	of	Human	&	Machine	Trading	as	Organizational	Learning	

We	 first	 show	how	human-machine	 trading	 translates	 to	 organizational	 learning.	 Drawing	 on	
these	 insights,	 we	 then	 analyze	 how	 human,	 machine,	 and	 human-machine	 learning	 affects	
AllGI’s	trading	performance.	

5.4.1 Human	Trading,	ML-based	Trading,	and	Bilateral	Human-Machine	Trading	

Throughout	 the	 course	 of	 our	 study,	 AllGI	 traversed	 three	 different	 phases	 with	 each	 phase	
representing	 a	 unique	 learning	 scenario:	 (a)	 purely	human	trading,	 (b)	 autonomous	ML-based	
trading,	and	(c)	bilateral	human-machine	trading.	Figure	6	illustrates	a	conceptualization	of	the	
human	learning,	ML,	and	their	interconnections	that	can	be	observed	in	the	three	trading	modes	
as	discussed	below.	

	
Figure	6:	Conceptualized	Bilateral	Human-Machine	Learning	(in	the	Trading	Case)	

Illustrated	 in	Figure	6a	and	Figure	6b	 respectively,	both	 the	human	and	ML	system’s	 learning	
cycle	 at	AllGI	 follows	 the	 same	 essential	 logic:	 A	 learner’s	action	 involves	 comprehending	 the	
current	 market	 state	 to	 choose	 the	 seemingly	 best	 fitting	 trading	 algorithm	 from	 a	 set	 of	
executable	 algorithms.	 Each	 trading	 algorithm	 is	 externally	 defined	 and	 provided	 by	 external	
brokers.	The	learner	then	indicates	her/his/its	choice	in	AllGI’s	execution	management	system	
that	 applies	 the	 selected	 algorithm	 as	 a	 trading	 strategy	 to	 trade	 the	 given	 order.	 Hence,	 the	
action	that	is	performed	by	a	learner	is	the	decision	about	a	trading	algorithm	to	fit	the	current	
market	situation.	Each	trade	yields	some	trading	performance	as	an	action	outcome,	defined	as	
the	margin	between	the	trade’s	execution	price	and	AllGI’s	performance	benchmark.9	The	higher	
a	 trade’s	 performance,	 the	 more	 successful	 a	 trade	 is	 regarded.	 Through	 executing	 trades,	 a	
learner	samples	action-outcome	pairs	and	contextualizes	these	with	gathered	information	about	
the	faced	market	states.	This	sample	represents	a	learner’s	experience.	The	learner	then	tries	to	
derive	generalizable	patterns	from	this	experience	by	inferring	heuristics	about	the	success	and	
failure	 of	 each	 trading	 algorithm	within	 specific	market	 states.	 Based	 on	 these	 heuristics,	 the	
learner	 adapts	 her/his/its	model	 that	 the	 learner	 uses	 to	 guide	 future	 trading	 actions	 in	 the	
quest	 to	 optimize	 trading	 performance.	 Building	 on	 this	 first-order	 individual	 learning	 cycle,	

 
 
9	The	benchmark	(‘arrival	price’)	is	the	market	price	at	the	time	that	the	order	starts	working	(i.e.,	arrives	at	the	market).	The	

benchmark	gets	adjusted	if	the	order	has	a	high	impact	on	the	market	or	the	market	moves	shortly	after	the	order	started	
working.	In	those	cases,	the	benchmark	price	is	an	average	price	over	a	time	period	instead	of	a	single	point	in	time.	The	
benchmark	is	normalized	by	the	value	of	the	smallest	price	increment	in	EUR	to	reflect	the	trading	standard	unit	 ‘value	
per	traded	lot’.	
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humans	and	the	ML	system	can	form	a	second-order	mutual	learning	cycle:	Human	traders	use	
their	 experiences	 and	 models	 to	 frame	 the	 ML	 environment	 by	 defining	 actions,	 context	
variables,	and	objectives	 that	 they	consider	relevant	 for	 trading.	The	ML	system	then	acts	and	
learns	within	 this	 framed	environment	and	 informs	 traders	about	 its	experiences	and	 inferred	
model.	If	done	right,	this	can	turn	into	a	virtuous	cycle:	The	better	humans	understand	trading,	
the	better	they	can	frame	the	ML	environment	to	 improve	its	 learnings.	 In	turn,	the	better	the	
ML	becomes,	the	better	the	system	can	inform	human	traders	to	improve	their	understanding	of	
trading.	If	done	wrong,	however,	this	may	also	turn	into	a	vicious	cycle,	inhibiting	individual	and	
mutual	 organizational	 learning	 processes.	While	 the	 humans	 and	 the	ML	 system	 follow	 these	
learning	cycles,	we	can	observe	the	following	differences	in	their	(mutual)	learning	behavior.	

(1.)	Human	Trading.	For	decades,	AllGI	 relied	purely	on	human	 learning	 to	 guide	 its	 trading	
endeavors.	 Each	 of	 AllGI’s	 human	 traders	 develops	 her/his	 own	 unique	 propensities	 to	 act	
following	 the	 explained	 learning	 cycle	 (Figure	 6a).	 Due	 to	 the	 discussed	 limits	 of	 human	
learning,	 human	 trading	 is	 far	 from	 being	 perfect:	 A	 trader’s	 experience	 is	 limited	 to	 her/his	
unique	 course	 of	 trading;	 that	 is,	 no	 one	 trader	 can	 sample	 all	 trading	 algorithms	 across	 all	
imaginable	market	 states	but	 can	only	draw	 from	her/his	past	 trading	 choices,	working	 time,	
and	market	developments	during	her/his	career.	Moreover,	the	traders	can	only	perceive	these	
experiences	bounded	by	 the	 context	 information	 they	 can	gather.	To	 comprehend	 the	 current	
market	state,	AllGI’s	traders	primarily	rely	on	up-to-date	data	from	financial	data	providers	(e.g.,	
Bloomberg)	 and	 market	 commentary	 and	 reports	 from	 Brokers	 that	 they	 mainly	 consume	
through	 visual	 analysis	 (e.g.,	 charts	 showing	 insights	 about	market	 developments).	 To	 enrich	
these	insights,	the	traders	also	use	information	from	various	available	media	(e.g.,	financial	news	
portals,	Twitter)	 to	 set	 the	observed	 trends	 into	a	broader	 context	of	potential	 impact	 factors	
(e.g.,	tweets	with	political	relevance).	Yet,	they	can	only	inform	themselves	within	a	limited	time	
span	as	they	must	rapidly	react	to	the	ever-changing	market	to	not	miss	any	opportunities.	To	
this	 end,	 a	 single	 trader’s	 experience	 is	 far	 from	 sketching	 the	 full	 picture	 of	 current	market	
states.	 Even	 though	 traders	 can	 view	 their	 historic	 performance	 in	 reports,	 the	 hundreds	 of	
executions	performed	every	day	paired	with	 the	extensive	number	of	 factors	affecting	market	
developments	 complicate	 human	 traders	 to	 generalize	 accurate	 heuristics	 to	 form	 reliable	
trading	strategies.	

(2.)	Autonomous	ML-based	Trading.	In	addition	to	its	human	trading,	AllGI	built	an	ML	system	
for	its	trading	executions.	The	ML	system	is	implemented	as	a	reinforcement	learning	agent	that	
learns	and	trades	autonomously	without	any	active	human	involvement,	mimicking	the	human	
trading	 process.	 Following	 reinforcement	 learning	modalities,	 the	ML	 system	 collects	 its	 own	
purely	data-based	trading	experience	by	interacting	with	its	environment	(i.e.,	choosing	trading	
algorithms	within	current	market	states).	The	ML	system	then	uses	the	data-based	experiences	
to	 infer	 heuristics	 about	 trading	 algorithms’	 success	 per	market	 state	 which	 it	 uses	 to	 guide	
future	 actions	 (see	 also	 Figure	 6b).	 Thereby,	we	 refer	 to	 the	 sample	density	as	 the	 number	 of	
samples	used	by	the	ML	system	to	learn	about	a	specific	state-action	pair.	In	particular,	AllGI’s	
learning	 agent	 is	 implemented	 as	 a	 Q-learner	 that	 continually	 learns	 a	 Q-table	 to	 compute	
heuristics	about	pairs	of	trading	algorithms	and	market	states	(Watkins	&	Dayan,	1992).	Using	
Q-learning,	 trading	 is	 framed	 as	 a	 multiarmed	 bandit	 learning	 problem	 (Auer	 et	 al.,	 2002).	
Although	the	ML	system	acts	and	learns	autonomously,	its	learning	depends	on	human	learning:	
To	 enlarge	 its	 own	 gathered	 experience,	 the	ML	 system	 includes	 data	 of	 the	 humans’	 trades.	
AllGI	further	relies	on	its	human	traders’	expertise	to	frame	the	ML	environment,	including	the	
executable	 actions,	 reward	 function,	 and	 representation	 of	 market	 states.	 The	 traders	
preselected	22	trading	algorithms	as	the	ML	system’s	executable	actions	based	on	an	analysis	of	
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algorithm	 providers’	 reliability,	 historical	 execution	 performance,	 completion	 mechanics,	
personal	 preferences,	 and	 experiences.	 By	 doing	 so,	 the	 traders	 aim	 to	 exclude	 trading	
algorithms	that	appear	generally	unlikely	to	be	successful	and	also	disable	an	algorithm’s	use	for	
specific	market	states	when	they	agree	on	an	algorithm	being	unlikely	successful	in	these.	With	
this	 framing	 of	 actions,	 the	 traders	 aim	 to	 reduce	 the	 necessity	 for	 the	ML	 system	 to	 explore	
algorithm-state	pairs	that	are	very	likely	to	produce	low	trading	performance.	The	traders	also	
defined	the	above-explained	trading	performance	as	the	ML	system’s	reward	function	to	align	its	
optimization	 objective	 with	 their	 own.	 Lastly,	 the	 traders	 also	 frame	 how	 the	 ML	 system	
perceives	the	current	market	state.	In	its	current	version,	the	traders	framed	market	states	along	
four	continuous	variables	which	describe	the	market	state	during	a	short	time	period	before	an	
order	 arrives	 at	 the	 trading	 desk:	 impact_measure,	 mean_spread,	 std_deviation,	 and	
trade_frequency.	 The	 impact_measure	indicates	 the	 impact	 of	 the	 order	 relative	 to	 the	market	
liquidity.	 The	 higher	 its	 value,	 the	 stronger	 a	 trade	 generally	 impacts	 market	 development.	
Mean_spread	 is	 the	average	distance	between	 the	bid	and	offer	price.	The	higher	 the	distance,	
the	higher	the	leeway	for	trading	becomes	since	each	level	between	bid	and	offer	can	be	used	for	
trading	and	quoting.	The	std_deviation	is	the	standard	deviation	of	bid	and	offer	prices,	where	a	
higher	 deviation	 indicates	 greater	 volatility	 in	 quoted	 prices.	 Trade_frequency	 is	 the	 average	
number	of	trades	per	minute	in	the	market,	reflecting	how	frequently	other	market	participants	
trade.	 As	 the	 impact	 of	 others’	 trades	 can	 be	 observed,	 a	 higher	 trade_frequency	 facilitates	 to	
comprehend	 and	 hide	 the	 potential	 impact	 of	 own	 trades.	 As	 perceived	 by	 human	 traders,	 a	
security	is	more	difficult	to	trade	with	increasing	value	of	the	variables	(for	trade_frequency,	the	
opposite	applies).	Besides	these	variables,	the	ML	system	cannot	perceive	any	other	information	
about	the	market	and	therefore	only	focuses	on	these	market	characteristics,	disregarding	any	
other	 insights.	At	the	time	of	our	study,	 the	ML	system	learned	from	5493	self-executed	and	a	
thousand	human	trades.	AllGI	uses	the	ML	system	productively	to	trade	an	average	amount	of	
10.2	billion	EUR	in	notional	per	month.	

(3.)	 Bilateral	Human-Machine	Trading.	 In	 the	 initial	ML-based	 trading	 setup	 (as	 described	
above),	the	human	trader’s	learning	outcomes	already	affect	the	ML	system	as	human	expertise	
is	used	to	frame	the	ML.	To	allow	human	traders	to	also	learn	from	the	ML	system	and	thus	to	
enable	 bilateral	 learning,	 AllGI	 enabled	 its	ML	 system	 to	 advise	 human	 traders:	 as	 soon	 as	 a	
human	 trader	 assigns	 a	 new	 order,	 the	 ML	 system	 applies	 its	 model	 to	 the	 human’s	 order	
without	 executing	 the	 order.	 The	 results	 of	 the	 applied	ML	model	 are	 then	 visualized	 for	 the	
human	 trader	 in	 a	 pop-up	 window.	 Figure	 7a	 shows	 an	 exemplary	 visualization	 of	 the	 ML	
system’s	 advice.	 Executable	 trading	 algorithms	 (anonymized	 as	 ‘trade_algo_x’	 for	 this	
publication)	 are	 ordered	 along	 the	 X-axis	 based	 on	 their	 performance	 and	 a	 bubble’s	 size	
represents	 the	 respective	 sample	 density.	 The	 Y-axis	 represents	 the	 algorithms’	 average	
expected	performance	with	regards	 to	 the	current	market	state.	Next	 to	 the	chart,	 the	market	
state	 is	 described	 in	 a	 simplified	 form10	to	 share	 the	 ML	 system’s	 perception	 of	 the	 current	
market	state.	Human	traders	can	also	reopen	all	past	advice	from	a	centralized	intranet	website	
to	revisit	the	ML	system’s	advice	without	having	to	face	a	currently	assigned	order.	To	balance	
the	 trading	 allocation	 between	 the	 human	 and	 ML	 system,	 AllGI	 now	 lets	 the	 ML	 system	
randomly	 skip	 one-third	 of	 the	 trades	 that	 it	 would	 have	 usually	 traded.	 This	 allows	 us	 to	
investigate	bilateral	learning	between	machine	and	human	on	comparable	datasets.	

 
 
10	The	ML	system’s	 four	 continuous	market	variables	are	 converted	 to	 simplified	nominal	values	 (i.e.,	 low,	 low-med,	med-

high,	high).	
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Figure	7:	(a)	Exemplary	Trading	Advice	of	the	ML	System	and	

(b)	Daily	Follow-Rate	Before	and	After	Enabled	ML	System’s	Advice	

5.4.2 The	Impact	of	Human	and	Machine	Learning	on	Trading	Performance	

To	 understand	 how	 bilateral	 learning	 between	 AllGI’s	 human	 traders	 and	 ML	 system	 affects	
trading	 performance,	 we	 now	 explore	 the	 behavior	 of	 AllGI’s	 human	 traders	 when	 receiving	
trading	advice	from	the	ML	system	as	additional	guidance	for	each	trade	they	execute.		

Advice	Consideration.	To	understand	whether	AllGI’s	human	 traders	actually	 considered	 the	
ML	system’s	trading	advice,	we	compare	the	human	trading	decisions	before	and	after	enabled	
advice.	We	examine	the	follow-rate	(i.e.,	percentage	of	trades	where	human	decisions	equal	ML	
system’s	advice)	to	analyze	whether	the	humans’	and	ML	system’s	behavior	became	more	alike	
after	 enabling	 the	 advice	 (we	 let	 the	ML	 system	give	us	 post-hoc	 advice	 for	 all	 human	 trades	
prior	to	its	enablement).	We	can	cluster	the	data	on	the	follow-rate	into	two	categories:	trading	
days	prior	to	(56	days)	and	after	(40	days)	the	enabled	ML	system’s	advice.	Figure	7b	shows	the	
daily	human	 follow-rate	 and	a	10-business	day	moving	average	of	 the	follow-rate	 to	highlight	
the	 observable	 trend.	 The	 higher	 the	 follow-rate,	 the	 more	 the	 human	 traders	 took	 the	 ML	
system’s	advice	on	a	given	day.	As	implied	by	the	point	cloud	in	the	upper	right,	human	trading	
behavior	 tends	 to	 stronger	 align	with	 the	ML	 system’s	 behavior	 after	 enabling	 its	 advice.	 On	
average,	human	trading	equaled	the	ML	system’s	advice	in	5.3%	of	trades	prior	to	and	in	34.0%	
after	the	enabled	advice.11	

Performance	Impact.	To	understand	whether	 the	ML	advice	helps	AllGIs’	human	 traders,	we	
now	nuance	our	analyses	of	 the	human	 follow	rate.	We	calculated	 the	advice	distance	for	each	
advice,	which	reflects	a	normed	performance	difference	between	a	taken	decision	and	received	
advice	in	relation	to	the	best	and	worst	decision.12	We	use	the	advice	distance	as	an	independent	
input	 variable,	 which	 we	 compare	 against	 trading	 performance.	 A	 human	 trader	 may	 hold	
broader	 knowledge	 or	 intuition	 about	 market	 developments	 which	 the	 ML	 system	 cannot	
quantify	with	 its	narrow	market	view.	If	a	human	trader	believes	another	trading	choice	to	be	
more	 favorable,	 the	 trader	will	 likely	 neglect	 the	ML	 system’s	 advice.	 If	 traders	 do	 this	 well,	
human	 trading	 decisions	 should	 not	 positively	 correlate	 with	 the	 advice	 distance.	 Figure	 8a	

 
 
11	We	also	computed	Kendall’s	tau-b	correlation	coefficient	(Daniel,	1990;	Kendall,	1945)	between	the	provision	of	ML	advice	

and	the	daily	average	percentage	of	humans	following	the	ML	advice	for	96	days.	We	found	a	strong,	positive	association	
between	providing	ML	advice	to	the	humans	and	the	humans	following	the	advice,	which	is	statistically	significant	with	τb	
=	.653	and	p	=	.0005.		

12	We	defined	the	advice	distance	as	dAdvice	=	1	-	(scoreBestDecision	− scoreMadeDecision)/(scoreBestDecision − scoreWorstDecision).	Orders	for	
which	the	selected	algorithm	was	beyond	the	ML	system’s	set	of	algorithms	were	not	considered	for	this	analysis.	
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illustrates	performance	and	related	advice	distances	of	the	human	trades.	To	highlight	contained	
trends,	we	clustered	the	trades	into	five	groups	along	the	advice	distance:	in	addition	to	trades	
with	followed	advice	(i.e.,	advice	distance	=	0),	we	split	the	no-follows	(i.e.,	advice	distance	>	0)	
into	quantiles	along	the	advice	distance.	Figure	8b	shows	that,	with	increasing	advice	distance,	
the	boxplots	of	each	group	shift	downward	toward	lower	performance,	as	do	their	medians	(i.e.,	
5.3,	 2.4,	 .01,	 .0,	 .0).13	While	 the	 effect	 appears	 small,	 it	 should	 not	 be	 neglected	 as	 such	 small	
improvements	in	trading	already	create	large	profit	gains.	In	sum,	the	more	the	human	traders	
follow	the	ML	system’s	advice,	the	more	effective	their	trading	appears	to	become.	

	
Figure	8:	(a)	Human	Trades	(N	=	561)	Plotted	Along	Performance	and	Advice	Distance	

(b)	Boxplots	of	Human	Trades	Clustered	into	Followed	and	No-Follow	Quantiles	

Yet,	 although	 following	 the	ML	system’s	advice	 tends	 to	 improve	human	performance,	 the	ML	
system	does	not	outperform	the	human	traders;	that	is,	on	average,	human	traders	and	the	ML	
system	 perform	 equally	 well	 after	 all.14	However,	 if	 we	 regard	 the	 joint	 performance	 of	 the	
humans	 and	 ML	 system	 before	 (during	 the	 first	 56	 business	 days)	 and	 after	 (during	 the	
subsequent	 40	 business	 days)	 the	 enabled	 advice,	we	 can	 observe	 that	AllGI’s	 overall	 trading	
performance	increased	significantly.15	The	enabled	bilateral	human-machine	learning	appears	to	
have	improved	AllGI’s	trading	performance.	

5.4.3 Unveiling	the	Mutual	Dynamics	within	Bilateral	Human-Machine	Learning	

At	 first	 glance,	 our	 observations	 appear	 rather	 paradoxical:	 AllGI’s	 ML	 system	 does	 not	
outperform	the	human	traders	but	the	human	traders	improve	their	performance	if	they	follow	
the	ML	system’s	advice	more	closely.	To	better	understand	the	human-machine	dynamics	that	
underlie	 this	 conundrum,	we	now	take	a	closer	 look	 into	both	actors’	 trading	behaviors	along	
different	market	scenarios.	

 
 
13	We	 also	 computed	 a	 Spearman's	 rank-order	 correlation	 (Daniel,	 1990;	 Spearman,	 1987)	 between	 advice	 distance	 and	

performance	 of	 an	 order.	 We	 found	 a	 weak	 negative	 correlation	 between	 advice	 distance	 and	 performance	 (i.e.,	
performance	decreases	as	advice	distance	increases),	with	rs(559)	=	-.176	and	p	=	.0005.		

14	We	 ran	 a	 Mann-Whitney	 U	 test	 (Daniel,	 1990;	 Mann	 &	 Whitney,	 1947)	 to	 assess	 differences	 in	 trading	 performance	
between	 ML-assisted	 humans	 and	 the	 ML	 system	 while	 the	 ML	 system’s	 advice	 was	 enabled	 (N	 =	 1871	 trades).	
Distributions	 of	 the	 performance	 for	ML-assisted	 humans	 and	 the	ML	 system	were	 not	 similar,	 as	 assessed	 by	 visual	
inspection.	The	performance	for	the	ML-assisted	humans	(mean	rank	=	920.42)	and	the	ML	system	(mean	rank	=	944.70)	
were	not	statistically	significantly	different,	with	U	=	414028.5,	z	=	-.962,	and	p	=	.336.	

15	We	ran	a	Mann-Whitney	U	test	(Daniel,	1990;	Mann	&	Whitney,	1947)	to	assess	differences	in	trading	performance	before	
and	 during	 enabled	 ML	 system’s	 advice	 is	 statistically	 significant	 (N	 =	 3797	 trades).	 We	 found	 that	 performance	
distributions	 before	 and	 during	 enabled	 ML	 system’s	 advice	 were	 not	 similar.	 The	 performance	 during	 enabled	 ML	
system’s	advice	(mean	rank	=	1947.94)	was	statistically	significantly	higher	than	before	(mean	rank	=	1851.61),	with	U	=	
1893097,	z	=	2.714,	and	p	=	.007.	
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The	violin	plots	in	Figure	9	show	how	human	performance	is	distributed	along	four	key	market	
dimensions	 (i.e.,	 the	 variables	 also	 used	 by	 the	 ML	 system),	 each	 with	 four	 different	 levels	
ranging	 from	 low	 to	 high.	 Each	 ‘violin’	 is	 split	 into	 two	 colors:	 The	 orange	 area	 shows	 the	
performance	distribution	along	the	Y-axis	of	the	humans	when	following	and	the	blue	area	when	
not	 following	 the	 ML	 system’s	 advice.	 At	 the	 same	 time,	 the	 bulge	 size	 of	 the	 colored	 areas	
indicates	the	underlying	amount	of	data.	When	comparing	the	violins	within	each	dimension,	we	
can	observe	two	tendencies:	First,	as	the	level	increases	from	low	to	high,	the	amount	of	follows	
relative	 to	 no-follows	 decreases	 (exception:	 for	 trade_frequency,	 we	 can	 observe	 the	 opposite	
trend).	Remember	that	with	increasing	levels	of	the	variables,	trading	becomes	more	difficult	for	
the	traders	(for	trade_frequency	the	opposite	applies).	Thus,	the	more	difficult	trading	becomes,	
the	 less	 the	human	traders	appear	 to	 follow	the	ML	system’s	advice.	Second,	 for	all	 levels,	 the	
orange	distributions’	peaks	are	skewed	stronger	towards	the	top	than	the	blue	ones,	indicating	a	
better	overall	performance	when	humans	follow	the	advice.	This	observation	is	consistent	with	
our	 analysis	 in	 the	 previous	 section:	 when	 following	 the	 ML	 system’s	 advice,	 AllGI’s	 human	
traders	tend	to	improve	their	performance.	

	
Figure	9:	Performance	Distributions	Along	Different	Market	Scenarios	

To	 better	 understand	why	 the	 human	 traders	 do	 or	 do	 not	 follow	 the	ML	 system’s	 advice	 in	
certain	scenarios,	we	talked	to	the	human	traders	on	how	they	utilize	the	ML	system’s	advice.	
The	traders	agreed	that,	when	receiving	such	advice,	they	essentially	try	to	reflect	on	their	own	
and	the	ML	system’s	gathered	amount	of	experience	with	 the	 faced	scenario.	Note	 that	simple	
scenarios	also	reflect	scenarios	that	are	traded	very	frequently	at	AllGI.	Both	the	human	traders	
and	the	ML	system	have	therefore	already	gathered	related	experiences	extensively,	and,	due	to	
the	great	sample	combined	with	the	relatively	limitedly	faced	difficulty,	already	developed	their	
own	 strong	 beliefs	 about	 how	 to	 trade	 such	 scenarios.	 While	 they	 mostly	 favor	 their	 own	
developed	trading	strategies	that	appear	most	reliable	in	the	face	of	their	past	experiences,	AllGI	
incentivizes	 its	 human	 traders	 to	 keep	 improving	 their	 trading	 through	 exploration	 of	 new	
trading	 strategies,	 as	 their	 bonus	 is	 coupled	 with	 increased	 trading	 performance.	 As	 the	 ML	
system’s	advice	represents	approaches	 that	were	successful	 in	 the	past	and	condenses	 its	and	
multiple	 traders’	 experiences,	 it	 grants	 human	 traders	 the	 possibility	 to	 occasionally	 explore	
different	but	equally	reliable	alternatives,	reducing	the	risk	of	costly	failures	that	exploration	of	
new	approaches	usually	comes	with.	By	doing	so,	the	ML	system	helps	to	break	open	solidified	
(potentially	 suboptimal)	 propensities,	 helping	 humans	 to	 reevaluate	 and	 nuance	 their	 own	
developed	 strategies.	 This	 is	 in	 contrast	 to	 more	 difficult,	 rarer	 scenarios,	 where	 the	 human	
traders	and	the	ML	system	have	so	far	only	gained	limited	experience	to	develop	robust	trading	
strategies.	 In	 such	 scenarios,	 the	 human	 traders	 still	 explore	 extensively	 to	 uncover	 more	
reliable	strategies.	Here,	deliberately	reflecting	on	experiences	is	especially	relevant	to	not	only	
identify	 promising	 opportunities	 but	 to	 also	 bypass	 ominous	 actions	 as	 flawed	 or	 needlessly	
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repeated	 explorations	 can	 accumulate	 several	 million	 euros	 in	 trading	 costs.	 Thus,	 to	 better	
guide	their	exploration,	human	traders	utilize	the	ML	system’s	advice	to	not	simply	 follow	the	
so-far	most	promising	approach	but	primarily	to	reflect	on	organization-wide	experiences.	This	
allows	 them	 to	either	 further	explore	 seemingly	promising	approaches	or	 identify	unexplored	
‘blind	spots’	that	might	yield	further	beneficial	directions.	Consequently,	the	human	traders	tend	
to	follow	the	ML	system’s	advice	less	frequently	in	more	difficult	trading	scenarios.16	

While	this	shows	how	ML	affects	human	trading	behavior,	we	now	explore	how	human	trading	
affects	the	ML	system’s	learning	over	time	(remember:	the	ML	system	also	learns	from	human	
trades).	 The	 sankey	 diagrams	 in	 Figure	 10	 outline	 the	 ML	 system’s	 behavioral	 changes	 in	
relation	to	the	humans’	trading	behavior:	Both	diagrams	consist	of	three	segments,	respectively	
showing	the	aggregated	decisions	regarding	individual	trading	algorithms	by	the	human	traders	
(left),	the	accordingly	received	ML	system’s	advice	(middle),	and	the	changed	advice	that	the	ML	
system	provides	for	these	human	trades	at	the	end	of	the	observation	period	when	this	human	
data	is	used	for	retraining	the	ML	system	(right).	Each	node	(represented	by	a	letter	and	a	color	
box)	groups	trades	where	a	specific	trading	algorithm	(e.g.,	 ‘D’)	was	used	or	advised.	The	links	
between	the	nodes	connect	single	trades	across	all	three	segments.	The	larger	a	node,	the	more	
frequently	 the	 respective	 trading	algorithm	was	used	or	 advised.	The	 thicker	a	 link,	 the	more	
frequently	 respective	 connections	 appeared.	Consequently,	 paths	between	 the	 left	 and	middle	
segment	represent	whether	a	human	followed	an	advice	or	not,	while	paths	between	the	middle	
and	right	segment	represent	changes	 in	 the	ML	system’s	advice	when	being	retrained	with	all	
human	 trading	 choices.	 While	 the	 left	 diagram	 (a)	 bases	 on	 all	 observed	 trades,	 the	 right	
diagram	(b)	shows	an	excerpt	covering	only	trades	in	simple	scenarios	(i.e.,	frequent	trades	for	
which	the	ML	system	learned	from	a	high	sample	density).		

	
Figure	10:	(a)	All	Human	Trades	(Left)	Linked	to	Given	(Middle)	and	Eventually	Changed		

(Right)	ML	System’s	Advice;	(b)	Excerpt	of	Trades	in	Simple	Scenarios	

In	Figure	10,	the	higher	number	of	nodes	in	the	human	segments	demonstrates	that	the	humans	
used	 a	 larger	 variation	 of	 trading	 algorithms.	 When	 focusing	 on	 trades	 of	 simple	 scenarios	
(Figure	 10b),	 we	 can	 clearly	 observe	 that	 human	 trading	 affected	 the	 ML	 system’s	 trading	
behavior	 in	 several	 ways:	 The	 ML	 system	 revised	 its	 strongest	 strategy	 from	 using	 trading	
algorithm	B	 to	 J	 and	diversified	 it	with	 the	use	of	 the	additional	algorithms	Y	 and	C	 in	certain	
scenarios.	Although	in	65%	of	trades	the	human	traders	used	a	variety	of	other	algorithms	(blue	

 
 
16	We	also	computed	Kendall’s	tau-b	correlation	coefficient	(Daniel,	1990;	Kendall,	1945)	between	following	the	ML	system’s	

advice	(Yes	=	1/No	=	0)	and	the	sample	density	of	the	advice	(N	=	766).	We	found	a	positive	association	between	humans	
following	 the	 ML	 system’s	 advice	 and	 a	 higher	 sample	 density,	 which	 is	 statistically	 significant	 with	 τb	 =	 .170	 and		
p	=	.0005.	

Human decision + Given ML advice à Changed ML advice

(b) Excerpt: Human trades and related ML advice in simple scenarios(a) All human trades and related ML advice
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links)	 instead	of	 following	 the	advice	D,	 the	ML	system	reinforced	and	extended	 its	use	of	 the	
superior	 algorithm	D.	 While	 the	 human	 traders	 increasingly	 explored	 algorithms	 A	 and	 C	 in	
various	scenarios,	the	ML	system	figured	to	keep	both	in	most	cases.	In	complex	scenarios	(the	
nodes	with	grey	connections	in	Figure	10a),	comparable	patterns	can	be	observed	that,	due	to	
an	even	greater	diversity	in	human	trading	and	less	experience	of	the	ML	system,	yielded	more	
changes	in	the	ML	system’s	advice.	To	this	end,	the	vibrant	human	trading	helps	the	ML	system	
to	enrich	its	experiences	which	stimulates	a	broader	assessment,	revision,	and	extension	of	 its	
inferred	trading	strategies.	

5.5 Discussion	

With	the	increasing	use	of	ML	systems	in	organizational	routines	alongside	human	counterparts,	
enabling	effective	human-machine	 collaboration	becomes	ever	more	 important.	Only	 recently,	
scholars	started	to	stress	the	great	 importance	of	managing	the	bilateral	relationship	between	
humans	 and	ML	 systems	 (e.g.,	 Rai	 et	 al.,	 2019;	 Schuetz	 &	 Venkatesh,	 2020)	 and	 increasingly	
acknowledge	the	great	potential	of	organizational	learning	research	to	analyze	this	relationship	
(e.g.,	Lyytinen	et	al.,	2021;	Ransbotham	et	al.,	2020;	Seidel	et	al.,	2019).	Yet,	despite	decades	of	
research	 on	 organizational	 learning,	 scholars	 have	 largely	 assumed	 the	 learners	 to	 be	 purely	
human	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-Spektor,	2011).	So	far,	only	a	handful	of	scholars	
have	 studied	 potential	 impacts	 of	 ML	 on	 organizational	 learning	 but	 mainly	 remained	 on	 a	
theoretical	level	and	call	for	further	research	(i.e.,	Afiouni-Monla,	2019;	Balasubramanian	et	al.,	
2022;	Lyytinen	et	al.,	2021;	Ransbotham	et	al.,	2020;	Seidel	et	al.,	2019;	Sturm,	Gerlach,	et	al.,	
2021).	With	our	study,	we	aim	to	help	answer	these	calls	by	drawing	on	a	case	in	a	real-world	
organizational	context.	We	provide	empirical	 insights	 to	enrich	ongoing	discussions,	hoping	to	
inspire	 further	 research	 endeavors	 and	 help	 organizations	 design	 effective	 human-AI	
collaborations.	

Our	 study	 contributes	 to	 theory	 in	 multiple	 ways.	 First,	 given	 its	 impact	 on	 organizational	
performance,	 our	 study	emphasizes	 that	 an	organizational	 learning	perspective	 should	not	be	
neglected	 when	 managing	 the	 emerging	 bilateral	 human-AI	 dynamics.	 With	 our	 case,	 we	
demonstrate	how	scholars	and	organizations	can	adopt	this	perspective	to	empirically	identify	
and	 explain	 actual	 (interrelated)	 behaviors	 of	 humans	 and	ML	 systems	within	 organizational	
contexts.	 Second,	 hoping	 to	 inform	 such	 studies,	 we	 condensed	 key	 idiosyncrasies	 of	 human	
learning	and	ML	 from	existent	 literature	 to	help	 recognize	potentials	 for	 change	when	human	
learning	 is	 being	 replaced	 or	 augmented	 with	 ML.	 Moreover,	 drawing	 on	 these	 theoretical	
idiosyncrasies	and	insights	from	our	case,	we	proposed	a	conceptualization	of	the	fundamental	
learning	processes	and	linkage	between	humans	and	ML	systems.	As	shown	in	our	case	study,	
both	can	be	used	to	theoretically	ground	agents’	characteristics	and	relations	to	guide	empirical	
analyses	of	reciprocal	human-AI	dynamics	and	explain	their	(unintended)	consequences.	Third,	
as	we	based	our	analyses	on	a	novel	method	of	human-machine	pattern	recognition	ourselves,	
our	 study	 demonstrates	 how	 human-AI	 collaboration	 can	 also	 benefit	 research	 endeavors.	
Scholars	 interested	 in	 leveraging	 this	potential	 can	rely	on	our	 study	 to	 stimulate	comparable	
research	 designs.	 Our	 study	 further	 illustrates	 how	 especially	 digital	 trace	 data	 analyses	 can	
thereby	act	as	a	powerful	and	context-rich	 tool	 to	help	unravel	 complex	behavioral	dynamics,	
allowing	 to	 (1)	 leverage	 machines’	 high	 information	 processing	 capabilities	 for	 recognizing	
fruitful	 patterns	 in	 extensively	 tracked	 activities	 and	 (2)	 humans’	 broader	 contextualization	
capabilities	 for	 finding	 explanatory	 patterns	 through	 inquiries	 with	 involved	 actors	 and	
contexts.	Our	case	exemplifies	that	one	must	be	careful	with	 isolated	analyses	when	aiming	to	
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unravel	ML’s	complex	consequences,	urging	scholars	to	consider	varying	temporal	or	spatial	foci	
when	studying	human-AI	relationships.	

Fourth,	our	 study	adds	empirical	 insights	 to	 the	ongoing	automation-augmentation	discussion	
on	whether	humans	should	be	taken	‘out	of	the	loop’	as	soon	as	ML	systems	can	reliably	replace	
them	in	their	routines	(e.g.,	Brynjolfsson	&	Mitchell,	2017;	Raisch	&	Krakowski,	2021).	Although	
AllGI’s	ML	system	enables	successful	autonomous	learning,	our	observations	suggest	that	AllGI	
can	benefit	from	keeping	its	human	traders	‘in	the	loop’	as	their	broader	contextualization	adds	
value	 to	 the	 whole	 learning	 system.	 Due	 to	 its	 reliance	 on	 a	 preselected	 subset	 of	 trading	
algorithms	and	market	 variables,	 the	ML	 system	can	explore	 and	 infer	 trading	 strategies	only	
within	its	narrow	frame.	Despite	its	less	bounded	information	processing,	an	increased	reliance	
on	 the	ML	 system’s	 trading	would	 therefore	 come	with	 the	 risk	 of	 restricting	 AllGI’s	 trading	
strategy	 innovations	 to	 the	 limits	 of	 the	ML	 system’s	 framed	 view.	With	 their	 holistic	market	
view	and	less	rational	behavior,	the	inclusion	of	humans	helps	AllGI	to	actively	counteract	this	
risk	as	they	help	to	look	‘outside	the	box’;	that	is,	while	the	ML	system	grants	AllGI	the	ability	to	
learn	reliable	strategies	within	 its	boundaries,	AllGI	requires	 its	human	traders	 to	 learn	about	
promising	algorithms	and	pivotal	market	conditions	beyond	the	system’s	frame.	Only	 if	AllGI’s	
human	traders	keep	actively	learning	through	their	own	trading	experiences,	they	can	translate	
the	complex,	ever-changing	trading	environment	to	a	substantiated,	fruitful	frame	in	which	the	
ML	system	can	unfold	its	preeminent	learning	capabilities.		

Lastly,	our	study	further	contributes	to	the	emergent	discussion	on	whether	ML	amplifies	(e.g.,	
Balasubramanian	 et	 al.,	 2022)	 or	 alleviates	 (e.g.,	 Sturm,	 Gerlach,	 et	 al.,	 2021)	 organizations’	
learning	myopia	 (i.e.,	 the	 tendency	 to	 favor	 exploitation	 over	 exploration;	 Levinthal	&	March,	
1993).	In	the	case	of	AllGI,	we	can	observe	that	the	human	traders	take	a	more	explorative	role	
while	the	ML	system	tends	to	act	rather	exploitatively.	For	AllGI,	increasingly	shifting	trades	to	
the	ML	system	thus	appears	 to	come	with	an	 increased	risk	of	 stagnation	when	ML	outcomes	
remain	 isolated.	 However,	 when	 enabling	 humans	 to	 also	 learn	 from	 the	 ML	 system	 (i.e.,	
enabling	 bilateral	 learning),	 we	 can	 observe	 an	 opposite	 effect;	 that	 is,	 human	 exploration	
benefits	 from	 the	 ML	 system’s	 increased	 exploitative	 behavior	 as	 its	 shared	 learnings	 allow	
humans	to	better	reflect	on	past	organization-wide	experiences	and	help	to	rationally	uncover	
blind	 spots	 and	promising	 strategies.	Depending	on	 the	maturity	of	 the	developed	beliefs,	ML	
thereby	either	helps	the	humans	to	break	open	solidified	propensities	or	better	guide	ongoing	
explorations	 of	 so-far	 uncharted	 areas.	 In	 contrast,	 the	 human	 traders’	 boundedly	 rational	
trading	behavior	adds	larger	variations	to	the	ML	system’s	experience	which	would	have	been	
neglected	 within	 its	 narrowly	 focused	 formal	 exploration,	 helping	 to	 overcome	 potential	
convergence	 towards	 suboptimal	 strategies.	 To	 this	 end,	 our	 findings	 point	 to	 a	 potential	
virtuous	 cycle	 between	 human	 learning	 and	 ML,	 in	 which	 humans	 improve	 ML	 through	
diversifying	 experiences	 for	 the	 ML	 system’s	 exploitation	 and	 ML	 benefits	 human	 learning	
through	 informing	 human	 exploration.	 These	 insights	 demonstrate	 that	 well-coordinated	
bilateral	 human-machine	 learning	 can	 act	 as	 an	 effective	 mechanism	 for	 organizations	 to	
counteract	myopia.	To	make	use	of	this	potential,	 future	research	could	explore	organizational	
designs	 on	 how	 to	 unite	 both	 learners’	 idiosyncrasies	 to	 mutually	 enhance	 and	 effectively	
balance	 explorative	 and	 exploitative	 behavior	 and	 focus	 on	 more	 detailed	 analyses	 of	 how	
different	 contexts	 (e.g.,	 varying	 amount	 of	 experience	 or	 faced	 complexity)	 affect	 learning	
myopia	in	human-machine	collaborations.	Especially	with	myopia’s	broad	context	dependency,	
future	research	can	help	uncover	the	extent	to	which	observed	effects	are	unique	to	the	trading	
context’s	 specific	 decisions,	 objectives,	 and	 incentives,	 and	 how	 they	 can	 be	 translated	 to	
divergent	contexts,	such	as	more	subjective,	more	ambiguous,	or	less	competitive	domains	(e.g.,	
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the	 health	 care	 or	 public	 sector).	 We	 also	 encourage	 scholars	 to	 explore	 conditions	 and	
mechanisms	that	sustain	the	identified	dynamics	in	the	long	term	or	impede	them,	in	the	worst	
case	even	turning	bilateral	learning	into	a	vicious	cycle.		

Our	insights	are	equally	relevant	for	practitioners.	Organizations	can	use	our	results	to	inspire	
and	design	future	AI	initiatives	beyond	ML-based	automation	of	routines.	To	leverage	ML’s	full	
potential,	 our	 study	 demonstrates	 that	 practitioners	 are	 well-advised	 to	 consider	 potential	
human-AI	 collaboration	 designs	 already	 at	 an	 early	 stage	 of	 their	 ML	 development.	 Our	
observations	 should	 encourage	 organizations	 to	 rethink	 whether	 integrating	ML	within	 their	
routines	 gave	 birth	 to	 new	 knowledge	 silos,	 how	 they	 can	 make	 this	 ML-based	 expertise	
available	 to	human	experts,	and	how	they	can	maintain	human-AI	knowledge	 transfer	 in	both	
directions	 to	 enable	 synergy	 effects.	 In	 its	 essence,	 this	 is	 not	 only	 a	matter	 of	 organizational	
design,	but	reflects	a	new	managerial	issue	that	requires	organizations	to	deliberately	reflect	on	
both	actors’	idiosyncrasies	to	effectively	coordinate	their	emerging	dynamics.	

Of	 course,	 our	 study	 is	 subject	 to	 limitations.	 Due	 to	 our	 study’s	 exploratory	 nature,	 future	
research	 should	 validate	 and	 contextualize	 our	 findings	 under	 different	 boundary	 conditions	
across	 heterogeneous	 contexts	 and	 domains.	 As	 we	 relied	 on	 a	 single	 case,	 our	 observations	
must	 be	 interpreted	within	 the	 limits	 of	 its	 peculiarities.	 It	 is	 not	 clear	 that	 similar	 dynamics	
emerge	in	comparable	routines,	especially	if	other	ML	types,	human-AI	collaboration	setups,	or	
observation	periods	are	used.	Although	we	aimed	to	maximize	the	breadth	of	our	observations	
by	drawing	on	a	rich	and	diverse	set	of	data,	there	are	certainly	many	aspects	that	we	could	not	
observe	 but	 could	 still	 influence	 human-machine	 dynamics	 since	 they	 were	 not	 trackable	 in	
digital	traces	or	not	obvious	to	the	traders.	Here,	we	invite	future	studies	to	help	analyze	further	
aspects,	 such	 as	 motives	 or	 activities,	 that	 remained	 hidden	 to	 us	 by	 relying	 on	 different	
contexts,	methods,	or	foci.	
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6.1 Discussion	

In	organizations	where	ML	is	increasingly	taking	over	task	responsibilities,	coordinating	humans	
and	ML	systems	has	become	a	challenging	management	issue.	Our	research	highlights	that	the	
outcomes	 of	 organizational	 learning	 must	 not	 be	 neglected	 when	 coordinating	 the	 work	 of	
humans	 and	 ML	 systems,	 given	 the	 profound	 consequences	 of	 an	 organization’s	 long-term	
knowledge.	Table	4	summarizes	our	study’s	main	findings	and	propositions	(P1,	P2,	and	P3)	as	
well	as	their	implications.		

Table	4:	Summary	of	Results	Regarding	Organizational	Learning	Effectiveness	

Research Questions Findings and Propositions Implications 

RQ1: The Role of 
Human Exploration in 
the Presence of ML 
Systems 

ML systems with a high initial learning 
capability reduce the need for human 
exploration (see P1). 

• ML systems’ ability to take over 
explorative tasks counters learning 
myopia, allowing humans to learn at 
their preferred pace. 

• Organizations should consider the 
reallocation of R&D resources to the 
initial setup of ML systems. 

RQ2: Reconfiguration 
of ML Systems by 
Humans  

Humans’ learning behavior moderates the 
nonlinear effect of reconfiguration intensity 
on organizational learning effectiveness. For 
ML systems with a 
• low initial learning capability: If humans 

engage in exploitation (exploration), this 
effect is positive and decreases 
(increases) in strength with increasing 
reconfiguration intensity (see P2a). 

• high initial learning capability: If humans 
engage in exploitation, this effect 
decreases in strength with increasing 
reconfiguration intensity. If humans engage 
in exploration, the reconfiguration intensity 
has an inverted U-shaped effect (see P2b). 

• Acquiring high levels of organizational 
knowledge requires at least a 
moderate amount of reconfiguration 
effort.  

• Humans should never be completely 
taken “out of the loop,” even if tasks 
are largely automated. 

• As the deep problem understanding 
of domain experts is required for 
reconfiguration efforts, leaving 
reconfiguration of ML systems to the 
IT department alone is not sufficient. 

RQ3: Coordinating 
Human Learning and 
ML Systems in 
Turbulent 
Environments 

In turbulent environments, effective 
organizational learning with ML systems 
requires human exploration and a rapid 
codification of knowledgeable humans’ 
beliefs. The more turbulent the environment, 
the more beneficial the rapid codification of 
beliefs offered by ML systems with a high 
initial learning capability will be (see P3). 

• Reliance on knowledge created by 
ML systems can be beneficial for 
organizations in turbulent 
environments, reducing the need for 
more radical measures (e.g., forced 
personnel turnovers). 

• Significant investments in the initial 
setup of ML systems and appropriate 
coordination of humans and ML 
systems are required to materialize 
these beneficial effects. 
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7 Contributions	and	Conclusion	

To	 achieve	 great	 performance,	 organizations	 must	 make	 sense	 of	 the	 reality	 that	 surrounds	
them	so	 that	 they	 can	effectively	act	 in	and	adapt	 to	 their	 environment	 (e.g.,	Argote	&	Miron-
Spektor,	 2011;	 March,	 1991,	 2010).	 To	 date,	 organizations	 have	 exclusively	 relied	 on	 their	
human	members	as	the	only	actors	capable	of	learning	(e.g.,	Argote	et	al.,	2021;	Argote	&	Miron-
Spektor,	 2011;	 Levinthal	 &	 Rerup,	 2021),	 and	 the	 limits	 of	 human	 cognition	 have	 thus	
complicated	 organizations’	 learning	 since	 the	 very	 beginning	 (e.g.,	 Levinthal	 &	 March,	 1993;	
March,	 2010;	 Simon,	 1972).	Hoping	 to	 overcome	human	 limitations	 (e.g.,	 in	 their	 attention	 to	
and	 comprehension	 of	 aspects	 of	 reality;	 March,	 2010;	 Simon,	 1972),	 today’s	 organizations	
leverage	ML	systems	as	powerful	new	learners	alongside	humans	(e.g.,	Balasubramanian	et	al.,	
2022;	Berente	et	al.,	2021;	Ransbotham	et	al.,	2020;	Seidel	et	al.,	2019).	However,	ML	systems	do	
not	necessarily	 represent	a	better	but	 rather	a	different	 form	of	 learner	 that	provides	 its	own	
advantageous	and	disadvantageous	idiosyncrasies	(e.g.,	Argote	et	al.,	2021;	Balasubramanian	et	
al.,	 2022;	 Berente	 et	 al.,	 2021;	 Ransbotham	 et	 al.,	 2020;	 Sturm,	 Gerlach,	 et	 al.,	 2021).	 These	
differences	 may	 provide	 room	 for	 synergies	 when	 humans’	 and	 ML	 systems’	 abilities	 are	
combined	 (e.g.,	 Lyytinen	et	 al.,	 2021;	Murray	 et	 al.,	 2021;	Ransbotham	et	 al.,	 2020;	 Schuetz	&	
Venkatesh,	2020;	Tremblay	et	al.,	2021).	However,	research	remains	broadly	silent	on	how	such	
synergies	 can	 be	 enabled	 and	 on	 the	 consequences	 that	may	 arise	 from	 joint	 learning	 efforts	
between	humans	and	ML	systems.		

In	this	dissertation,	I	aim	to	help	advance	our	understanding	of	the	interplay	between	humans	
and	 ML	 systems	 by	 uncovering	 their	 virtuous	 and	 vicious	 learning	 dynamics	 and	 how	
organizations	can	effectively	manage	these	dynamics	to	make	deliberate	use	of	them.	To	do	this,	
I	have	explored	how	emergent	dynamics	and	coordination	designs	affect	performance	on	three	
levels	 of	 analysis,	 namely,	 the	 individual,	 group,	 and	 organization	 levels.	 Based	 on	 the	 four	
included	studies,	I	offer	the	following	contributions	to	research	and	practice.	

7.1 Theoretical	Contributions	

Addressing	current	calls	for	research	on	human–AI	collaboration	(e.g.,	Argote	et	al.,	2021;	Baum	
&	Haveman,	2020;	Benbya	et	al.,	2021;	Berente	et	al.,	2021;	Murray	et	al.,	2021;	Rai	et	al.,	2019;	
Schuetz	&	Venkatesh,	2020),	this	dissertation	provides	several	theoretical	contributions	to	help	
better	 understand	 and	 control	 the	 virtuous	 and	 vicious	 dynamics	 of	 ML	 systems	 in	 their	
interplay	with	humans	in	organizations.		

First,	 the	 four	 studies	 explore	performance	 impacts	on	 the	 three	 levels	of	 individuals,	 groups,	
and	organizations.	Overall,	 the	 studies	demonstrate	 that	positive	performance	 impacts	 can	be	
achieved	on	all	 three	 levels	when	combining	humans	and	ML	systems	 in	organizations.	As	 the	
studies	also	show,	these	positive	findings	require	organizations	to	meet	ML-specific	conditions	
and	to	craft	effective	coordination	designs.	The	studies	further	point	to	the	adverse	effects	of	ML	
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systems	on	 the	overall	performance	of	humans	and	organizations	 that	 can	otherwise	arise.	 In	
what	follows,	these	essential	insights	are	further	nuanced	along	the	three	levels	of	analysis.			

On	 the	 individual	 level,	 research	 has	 already	 acknowledged	 the	 potential	 value	 of	 delegating	
tasks	to	ML	systems	and	of	the	interaction	between	humans	and	ML	systems	(e.g.,	Brynjolfsson	
&	Mitchell,	2017;	Rai	et	al.,	2019;	Raisch	&	Krakowski,	2021;	Schuetz	&	Venkatesh,	2020).	Yet	
current	research	offers	only	 limited	 insights	 into	 the	relevant	 factors	 that	 influence	how	tasks	
should	be	assigned	between	a	human	and/or	an	ML	system	and	should	therefore	be	considered	
by	 organizations	 to	 enable	 effective	 allocation	 and	 linkage	 of	 tasks	 in	 ML	 contexts	 (e.g.,	
Brynjolfsson	&	Mitchell,	2017;	Fügener,	Grahl,	Gupta,	&	Keter,	2021;	Raisch	&	Krakowski,	2021;	
Schuetz	 &	 Venkatesh,	 2020).	 To	 help	 extend	 our	 understanding	 of	 such	 factors,	 the	 studies	
included	in	this	dissertation	offer	further	insights	regarding	how	organizations’	task	allocation	
decisions	between	a	human	and	an	ML	system	can	be	designed	effectively.	Two	of	 the	studies	
contribute	 to	 advancing	 our	 understanding	 of	 the	 conditions	 and	 design	 factors	 for	 (1)	 task	
delegation	(paper	A)	and	(2)	forming	collaborative	links	(paper	B)	between	a	human	and	an	ML	
system.	 Paper	 A	 conceptualizes	 how	 organizations	 can	 uncover	 scenarios	 in	 which	 the	
idiosyncratic	 advantages	 of	 ML	 systems	 can	 unfold.	 The	 study	 identifies	 key	 factors	 and	
procedural	artifacts	that	affect	the	identification	and	formation	of	contexts	in	which	the	use	of	an	
ML	 system	 instead	 of	 a	 human	 can	 benefit	 organizational	 performance.	 To	 build	 potential	
complementarities	 based	 on	 the	 delegated	 tasks,	 paper	 B	 captures	 manageable	 levers	 of	
interaction	 between	 a	 human	 and	 an	ML	 system	 and	 highlights	 conditions	 under	which	 such	
interaction	can	positively	complement	individual	performance.		

Regarding	the	group	level,	research	on	the	impact	of	ML	systems	on	group	performance	remains	
in	 its	 infancy,	 leaving	 it	 largely	 unclear	 how	 groups	 that	 include	 ML	 systems	 should	 be	
coordinated	 and	 what	 consequences	 may	 arise	 from	 different	 coordination	 strategies	 (e.g.,	
Fügener,	 Grahl,	 Gupta,	 &	 Ketter,	 2021;	 Grønsund	 &	 Aanestad,	 2020).	 To	 help	 inform	 the	
formation	 of	 effective	 group	 coordination	 strategies,	 paper	 C	 demonstrates	 how	 virtuous	 and	
vicious	 dynamics	 between	 humans	 and	 an	 ML	 system	 can	 emerge	 and	 impact	 their	 group	
performance.	The	findings	show	that	the	bilateral	interaction	between	multiple	humans	and	an	
ML	 system	 can	 connect	 and	promote	 their	 respective	 idiosyncrasies,	 yielding	 synergetic	 roles	
and	 performance	 impacts	 (e.g.,	 an	 ML	 system	 that	 tends	 to	 exploit	 can	 be	 used	 to	 stimulate	
human	exploration).	The	study	reveals	the	performance	gains	that	can	be	generated	exclusively	
from	the	knowledge	exchange	between	humans	and	an	ML	system.		

On	 the	 organization	level,	 performance	 impacts	 are	 difficult	 to	 observe,	which	 strongly	 limits	
current	 research	 to	pure	 theoretical	analyses	 (one	exception	 is	Balasubramanian	et	al.,	2022),	
rendering	 our	 understanding	 of	 the	 organization-wide	 dynamics	 of	 human–machine	
collaborations	scarce	(e.g.,	Baum	&	Haveman,	2020;	Berente	et	al.,	2021;	K.	Leavitt	et	al.,	2021;	
Lindebaum	 et	 al.,	 2020;	Murray	 et	 al.,	 2021;	 Raisch	 &	 Krakowski,	 2021).	 Paper	 D	 offers	 rare	
observations	of	such	dynamics	and	outlines	ML	systems’	potential	to	disrupt	organization-wide	
routines	 and	 norms	 by	 contributing	 their	 own	 knowledge	 to	 the	 organization’s	 stock	 of	
knowledge.	 The	 study	 shows	 that	 a	wide-ranging	 use	 of	ML	 systems	 can,	 indeed,	 improve	 an	
organization’s	 overall	 performance.	 However,	 this	 requires	 effective	 coordination	 of	 the	
contributions	 of	 all	 humans	 and	ML	 systems	 as	well	 as	 their	 interplay	while	 considering	 the	
environmental	 conditions.	 Otherwise,	 ML	 systems	 can	 harm	 human	 and	 organizational	
knowledge	 creation,	which	 can	 have	wide-ranging	 consequences	 for	 an	 organization’s	 overall	
evolution	and	survival.		
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The	 findings	 of	 the	 four	 studies	 thus	 provide	 ground	 for	 theorizing	 about	 the	 conditions,	
complementarities,	 roles,	 dynamics,	 and	 consequences	 that	 should	 be	 considered	 when	
coordinating	 humans	 and	ML	 systems	 on	 the	 various	 organizational	 levels,	which	 I	 hope	will	
stimulate	further	studies	on	human–machine	collaborations	in	organizations.	

Second,	to	better	understand	the	complementarities	and	incompatibilities	between	humans	and	
ML	systems,	the	studies	unpack	their	respective	idiosyncrasies.	Conceptualizations	of	problems	
that	 are	 suited	 for	ML	 systems	 (paper	 A),	 conditions	 for	 complementarities	 between	 humans	
and	 ML	 systems	 (paper	 B),	 bilateral	 human–machine	 learning	 cycles	 (paper	 C),	 and	 human	
(re)configuration	 of	 ML	 systems	 (paper	 D)	 are	 proposed	 to	 capture	 such	 idiosyncrasies.	 The	
strengths	and	weaknesses	of	ML	systems	are	 thereby	empirically	confirmed	and	nuanced.	For	
instance,	 the	 studies	 empirically	 demonstrate	 how	ML	 systems’	 less-bounded	 rationality	 and	
what	is	known	as	the	“frame	problem”	can	facilitate	and	limit	the	informativeness	of	the	derived	
learning.	The	studies	also	show,	for	example,	that	the	provision	of	comprehensive	and	accurate	
data	is	one	of	the	greatest	organizational	challenges,	rendering	imperfect	data	the	norm	and	an	
important	 condition	 to	 consider	when	managing	 the	 use	 of	ML	 systems	 and	 their	 interaction	
with	 humans.	 To	 inspire	 future	 research	 endeavors,	 these	 conceptualizations	 can	 be	 used	 to	
focus	studies	on	aspects	that	are	unique	to	ML	systems	relative	to	traditional	(non-ML)	ISs	and	
humans.	 This	 may	 help	 in	 reflecting	 on	 whether	 and	 to	 what	 extent	 ML	 systems	 make	 it	
necessary	to	revise	existing	theories	or	to	theorize	in	new,	unorthodox	ways.	

Third,	although	ML	systems	exhibit	autonomy,	 the	 results	of	 these	studies	 stress	 that	humans	
must	be	 involved	 in	 the	ML	systems’	 learning	 in	 the	 long	 term,	even	 in	 the	presence	of	highly	
effective	 ML	 systems.	 After	 all,	 it	 is	 humans	 who	 identify	 appropriate	 problems,	 select	 and	
prepare	 data	 to	 capture	 the	 problems,	 select	 and	 parametrize	 algorithms,	 and	 evaluate	 the	
created	 ML	 systems.	 To	 effectively	 perform	 these	 activities,	 humans	 require	 knowledge	 that	
enables	 them	 to	 assess	 the	 relevance	 of	 problems,	 describe	 problems	 in	 terms	 of	 relevant	
variables,	 and	 evaluate	 the	quality	 of	 proposed	problem	solutions.	The	 four	 studies	underline	
that,	in	order	to	do	so,	humans	need	to	remain	“in	the	loop”	and	continue	their	learning	in	order	
to	 develop	 an	 up-to-date	 understanding	 of	 how	 to	 identify	 and	 solve	 relevant	 problems.	 The	
better	 humans	 understand	 a	 problem	 domain,	 the	 more	 likely	 they	 will	 be	 able	 to	 identify	
purposeful	problems	for	ML	systems,	describe	their	most	relevant	aspects	along	with	data,	and	
optimize	ML	 systems	 toward	 applicable	 solutions.	 Otherwise,	ML	 systems	may	 stop	 evolving,	
rendering	them	obsolete,	and	increasingly	drift	far	away	from	reality,	which	can	be	detrimental	
to	human	and	organizational	performance	due	 to	 the	potential	 stagnation	 in	 learning	 and	 the	
promotion	of	flawed	beliefs.		

Fourth,	the	studies	also	provide	insights	into	the	potential	role	of	ML	systems	and	the	changing	
role	of	humans	in	organizations.	The	studies	demonstrate	empirically	that	ML	systems	can	add	
value	beyond	pure	automation	if	their	derived	insights	are	shared	with	humans.	Papers	C	and	D	
both	 illustrate	 that	 positive	 synergies	 between	 humans	 and	 ML	 systems	 can	 be	 achieved	 by	
creating	 reinforcing	cycles	of	mutual	 improvement	 through	effective	coordination.	The	papers	
reveal	 two	 worthwhile	 role	 assignments	 within	 these	 cycles:	 Paper	 C	 uncovers	 that,	 if	 ML	
systems	 exploit	 while	 humans	 explore,	 ML	 systems	 can	 help	 humans	 better	 guide	 their	
exploration	 (e.g.,	 through	 highlighting	 blind	 spots	 or	 promising/unpromising	 directions)	 and	
break	apart	solidified	propensities	to	act,	while	the	vibrant	human	learning	can	help	ML	systems	
to	diversify	 their	exploitation.	Paper	D	highlights	 that,	 in	 light	of	humans’	natural	 tendency	 to	
exploit	(i.e.,	their	learning	myopia),	ML	systems	can	also	be	used	to	explore	in	order	to	liberate	
humans	 from	 the	 need	 to	 explore	 without	 sacrificing	 organizational	 performance.	 Both	 role	
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assignments	 require	organizations	 to	view	ML	systems	not	 as	 substitutes	or	dull	 support,	 but	
rather	as	active	 collaborators	with	humans	 to	allow	 for	 joint	knowledge	 creation.	The	 studies	
illustrate	that,	 if	coordinated	effectively,	such	collaboration	can	surpass	the	outcomes	of	either	
purely	 human	 or	 purely	ML	 system	 scenarios	 on	 the	 different	 levels	 of	 analyses.	 Despite	 this	
positive	 observation,	 the	 studies	 also	 foreshadow	 vicious	 cycles	 that	 may	 arise	 from	 flawed	
coordination	 designs	 and	 role	 assignments	 that	 create	 reciprocal	 impediments	 (e.g.,	 if	 ML	
systems	 only	 imitate	 and	 strongly	 reinforce	 historic	 human	 behavior,	 they	 can	 impede	 the	
human	exploration	 that	 is	also	 required	 for	worthwhile	 revisions	of	ML	over	 time,	potentially	
leading	to	a	stagnation	of	the	mutual	learning	cycle;	Sturm,	Koppe,	et	al.,	2021).	

Fifth,	 by	 unpacking	 the	 bilateral	 relationship	 between	 humans	 and	 ML	 systems,	 the	 studies	
further	show	that	the	value	created	through	their	interactions	arises	from	sharing	their	different	
approaches	to	solving	the	same	problem.	For	instance,	in	paper	C,	it	was	precisely	the	bilateral	
sharing	of	different	approaches	when	collaborating	 that	helped	 the	humans	better	guide	 their	
exploration	and	the	ML	system	better	reevaluate	its	exploitation.	Comparable	dependencies	and	
dynamics	also	arose	on	the	organization	level	 in	paper	D.	This	reveals	a	fundamental	dilemma	
that	poses	a	new	managerial	issue:	While	value	is	created	from	the	difference	in	the	insights	that	
are	shared	by	humans	and	ML	systems,	the	sharing	of	insights	may	add	value	in	the	short	term	
but	 jeopardizes	long-term	value	as	humans	and	ML	systems	are	likely	to	become	more	similar	
over	 time	 when	 gradually	 adopting	 each	 other’s	 insights.	 Therefore,	 an	 important	 question	
remains	 for	 future	 research	 regarding	 how	 organizations	 can	 connect	 the	 learning	 of	 their	
humans	and	ML	systems	to	exploit	complementarities	while	preserving	the	uniqueness	of	their	
individual	 approaches.	While	 the	 study	 in	 paper	D	 provides	 initial	 evidence	 and	 coordination	
designs	 to	 address	 this	 issue,	more	 research	 is	 required	 to	 validate,	 extend,	 and	 translate	 the	
findings	to	different	real-world	contexts.	

7.2 Practical	Contributions	

The	four	studies	also	point	to	guiding	principles	that	can	help	practitioners	make	effective	use	of	
ML	 systems.	 First,	 the	 study	 results	 can	 help	 practitioners	 select	 and	 form	 their	 future	 ML	
initiatives.	Practitioners	can	use	the	findings	to	identify	suitable	problems	and	create	conditions	
that	can	enable	and	facilitate	the	use	of	ML	systems	in	a	structured	manner.	While	organizations	
will	 thereby	 be	 enabled	 to	 evaluate	 the	 feasibility	 of	 possible	 ML	 initiatives,	 the	 insights	
provided	by	this	dissertation	can	also	help	protect	them	from	mistakenly	promoting	initiatives	
that	are	ill-suited	for	ML	systems	and	that	may	in	fact	inhibit	otherwise	achievable	performance.		

Second,	promoting	the	perspective	of	organizations	as	complex	systems	of	 interacting	humans	
and	ML	 systems	 can	also	help	practitioners	optimize	 the	 integration	of	ML	 systems	 into	 their	
organizational	 processes.	 Rather	 than	 fully	 investing	 scarce	 resources	 in	 the	 development	 of	
highly	 optimized	 ML	 systems,	 practitioners	 should	 not	 neglect	 the	 design	 of	 bilateral	
relationships	between	humans	and	ML	systems.	Following	Lyles	and	Fiol’s	 (1985)	notion	 that	
“organizational	learning	is	not	simply	the	sum	of	each	member’s	learning”	(p.	804),	the	studies	
demonstrate	that	the	very	interaction	between	humans	and	ML	systems	can	itself	create	value.	
Shifting	 resources	 into	 enabling	 such	 effective	 interactions	 (e.g.,	 by	 enabling	 the	 exchange	 of	
data	and	insights	between	the	two	actors)	may	therefore	benefit	both	humans	and	ML	systems,	
improving	their	overall	collaboration	and	mutual	performance.		

Third,	 the	 value	of	 the	 interaction	between	humans	and	ML	 systems	 shows	 that	practitioners	
should	carefully	consider	whether	it	is	worthwhile	to	replace	human	experts	with	ML	systems.	
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Despite	the	short-term	benefits	of	ML-based	automation	of	human	tasks,	the	studies	included	in	
this	 dissertation	 stress	 that	 human	 expertise	 continues	 to	 play	 an	 important	 role	 in	 the	
effectiveness	of	ML	systems’	 long-term	reconfiguration.	Practitioners	would	 therefore	be	well-
advised	to	allow	some	of	their	human	experts	to	continue	to	work	side	by	side	with	ML	systems,	
even	in	the	presence	of	highly	advanced	ML	systems.	Further	advancement	of	ML	systems	can	
therefore	require	an	organization	to	further	invest	in	its	human	domain	expertise	in	addition	to	
technical	 expertise	 and	 infrastructure.	 For	 instance,	 this	 may	 include	 intensified	 training	 of	
human	 domain	 experts,	 further	 investments	 in	 R&D,	 and	 acquisition	 of	 external	 expertise	
through	personnel	turnovers	within	the	domains	that	are	already	covered	by	ML	systems.	

Fourth,	the	findings	also	stress	that	although	simply	enabling	interactions	between	humans	and	
ML	systems	is	an	important	primary	requirement	for	collaborations,	it	may	not	be	sufficient	for	
exploiting	 their	 full	 potential.	 Such	 collaborations	 add	 value	 through	 the	 learning	 cycles	 that	
emerge	 between	 humans	 and	ML	 systems,	 creating	 dynamics	 that	 generate	 either	 positive	 or	
negative	 reinforcements	within	 organizations.	 In	 the	 best	 case,	 these	 collaborations	 can	 yield	
virtuous	learning	cycles	between	humans	and	ML	systems	that	enable	the	mutual	enhancement	
of	both	actors	(e.g.,	through	the	ML	systems	informing	humans	about	as-yet	overlooked	patterns	
and	the	humans	using	their	improved	knowledge	to	better	reconfigure	the	ML	systems).	In	the	
worst	case,	however,	collaborations	may	also	create	vicious	cycles	 that	harm	the	performance	
and	advancement	of	both	actors	(e.g.,	if	incorrect	beliefs,	such	as	prejudices,	are	promoted	by	ML	
systems	and	are	 then	continuously	 reinforced	 in	 the	ML	systems	by	human	reconfigurations).	
The	 studies	 demonstrate	 that	 control	 of	 such	 dynamics	 is	 not	 only	 a	 technical	 challenge	 but	
primarily	poses	a	managerial	issue:	the	coordination	of	humans,	ML	systems,	and	their	interplay.	
Here,	the	studies	show	that	effective	coordination	involves	placing	humans	and	ML	systems	into	
roles	 that	 can	 promote	 their	 unique	 abilities	 (e.g.,	 human	 imagination	 and	ML	 systems’	 less-
bounded	 rationality)	 to	 enable	 worthwhile	 synergies.	 Moreover,	 coordination	 also	 raises	 the	
challenge	 of	 facilitating	 the	 exchange	 of	 both	 actors’	 contributions	 while	 preserving	 their	
differences	 in	 order	 to	 enable	 synergies	 through	 complementarities.	 To	 achieve	 this,	
practitioners	 should	not	 try	 to	 always	have	 their	ML	 systems	 completely	 imitate	 their	human	
experts	but	should	rather	grant	them	some	degree	of	freedom	to	allow	for	approaches	that	differ	
from	human-made	solutions.	For	instance,	channeling	different	information	to	both	actor	types	
and	 varying	 their	 incentives	 for	 taking	 action	 may	 be	 fruitful	 mechanisms	 to	 enable	 and	
preserve	the	development	of	different	but	potentially	complementary	behaviors.	

7.3 Concluding	Remarks	

ML	systems	are	neither	a	universal	panacea	for	understanding	reality	nor	a	curse	that	threatens	
the	relevance	of	human	cognition.	Humans	and	ML	systems	make	different	kinds	of	intelligence	
available	to	organizations,	with	neither	promising	generally	superior	performance.	It	is	precisely	
the	unique	differences	between	humans	and	ML	systems	that	often	seem	to	make	them	better	
complements	 than	substitutes.	The	secret	 to	unleashing	 the	 true	potential	of	ML	systems	may	
therefore	 lie	 in	 effectively	 coordinating	 the	differences	between	humans	 and	ML	 systems	 and	
their	bilateral	relationship	to	produce	virtuous	cycles	of	mutual	improvement.	This	dissertation	
is	a	 first	 step	 toward	developing	 theory	and	guidance	 for	 such	worthwhile	 collaborations,	but	
more	work	is	needed	to	rethink	collaboration	theory	in	the	era	of	AI.	
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