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function subject to constraints. Agents’ actions belong to a compact convex Euclidean space
and the agents’ cost functions are coupled. We propose a distributed payoff-based algorithm to
learn Nash equilibria in the game between agents. Each agent uses only information about its
current cost value to compute its next action. We prove convergence of the proposed algorithm
to a Nash equilibrium in the game leveraging established results on stochastic processes. The
performance of the algorithm is analyzed with a numerical case study.
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1. INTRODUCTION

Decision-making in multi-agent systems arises in applica-
tions ranging from electricity market to communication
and transportation networks (Arslan et al., 2007; Saad
et al., 2012; Scutari et al., 2006). Game theory provides a
powerful framework for formulating optimisation problems
corresponding to competing or collaborative multi-agent
systems. The various notions of equilibria in games char-
acterise desirable and stable solutions to multi-agent opti-
misation problems. The focus of our paper is on distributed
computation of Nash equilibria for a class of multi-agent
decision making modeled by non-cooperative games.

There is a large body of work on computation of Nash
equilibria in multi-agent games. The approaches differ by
the particular structure of agents’ cost functions as well as
information available to each agent. In a potential game,
a central optimization problem can be formulated whose
minimizers correspond to Nash equilibria of the game.
One can then use distributed algorithms for computing
the minima of the potential function (Li and Marden,
2013; Salehisadaghiani and Pavel, 2014) to converge to
Nash equilibria. Distributed algorithms are also proposed
for aggregative games (Jensen, 2010; Paccagnan et al.,
2016). In general, for implementation of these distributed
algorithms communication is needed between individual
agents or between each agent and a central coordinator.

Alternative to distributed optimization approaches, learn-
ing approaches to computing Nash equilibria proceed by
sampling agents’ actions from a set of probability distribu-
tions. These probability distributions are updated based
on the information available in the system. Most of the
past work has focused on algorithms that require knowl-
edge of the structure of the cost functions. For example,
(Perkins et al., 2015; Marden et al., 2009; Tatarenko, 2014,
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2016b) have dealt with learning procedures requiring the
so-called oracle information, where each agent can calcu-
late its current cost given any action from its action set.

There are many practical situations in which agents do not
know functional form of the objectives. Rather, each agent
can only observe their obtained payoffs and be aware of
their local actions. In this case, the information structure
is referred to as payoff-based. A payoff-based learning in
potential games is proposed in (Marden and Shamma,
2012) with the guarantee of stochastic stability of potential
function minimizers, which coincide with Nash equilibria
in potential games. However, to implement this payoff-
based algorithm agents need to have some memory. Other
algorithms requiring only payoff-based information and
memory are proposed in (Goto et al., 2012) and (Zhu and
Mart́ınez, 2013). These learning procedures also guarantee
stochastic stability of potential function minimizers. More-
over, by tuning a time-dependent parameter the learn-
ing procedures converge to a distribution over potential
function minimizers in total variation. All aforementioned
payoff-based procedures are applicable to games with finite
action space. This shortcoming motivated our payoff-based
approach to learn local optima continuous action games
without memory (Tatarenko, 2016a). There, we addressed
potential games in which agents’ actions live in R.

Our contributions in this paper are as follows. We develop
a payoff-based approach for computing Nash equilibria in
a general class of games with pseudo-monotone maps. In
contrast to past work, we consider action spaces being
compact subsets of a multidimensional Euclidean space.
Given the constraints on action sets in a non-potential
game setting, the previously proposed learning methods
are no longer applicable. Thus, we develop a sampling
based approach, with an appropriate update of probability
distributions to sample from. We prove that through
appropriate choices of step size, the actions converge in
probability to Nash equilibria.
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This paper is organized as follows. In Section 2 we formu-
late the game under consideration. In Section 3 we present
our payoff-based approach and prove its convergence to a
Nash equilibrium. In Section 4 we present a numerical case
study, motivated by games arising in electricity markets.
In Section 5 we summarize the results.

Notations and basic definitions: The set {1, . . . , N}
is denoted by [N ]. Boldface is used to distinguish between
the vectors in a multi-dimensional space and scalars. Given
N vectors xi ∈ Rd, i ∈ [N ], [x1, . . . ,xN ] := [xi]Ni=1 :=

[x1�, . . . ,xN�
]�; x−i := [x1, . . . ,xi−1,xi+1, . . . ,xN ].

The standard inner product on Rd is denoted by (·, ·):
Rd × Rd → R, with associated norm ‖x‖ :=

√
(x,x). Id

represents the d-dimensional identity matrix and 1N repre-
sents the N -dimensional vector of unit entries. Given some
matrix A ∈ Rd×d, A � (�)0, if and only if x�Ax ≥ (>)0
for all x �= 0. A ⊗ B denotes the Kronecker product.
Given a function g(x,y) : Rd1 × Rd2 → R, we define the
mapping ∇xg(x,y) : Rd1 ×Rd2 → Rd1 component wise as

[∇xg(x,y)]i := ∂g(x,y)
∂xi . We will use the big-O notation.

Namely, the function f(x) : R → R is O(g(x)) as x → a,

f(x) = O(g(x)) as x → a, if limx→a
|f(x)|
|g(x)| ≤ K for some

positive K.

Definition 1. The mappingM : Rd → Rd is called pseudo-
monotone over X ⊆ Rd, if (M(y),x − y) ≥ 0 implies
(M(x),x− y) ≥ 0 for any x,y ∈ X.

2. PROBLEM FORMULATION

We are focused here on a game Γ(N, {Ai}, {Ji}) with N
players, the sets of players’ actions Ai ⊂ Rd, i ∈ [N ], and
the cost functions Ji : A → R, where A = A1 × . . . ×
AN is the set of joint actions 1 . We make the following
assumptions regarding the game Γ.

Assumption 1. The game under consideration is convex.
Namely, for all i ∈ [N ] the set Ai is convex and compact,
the cost function Ji(a

i,a−i) is defined on RNd, continu-
ously differentiable in a and convex in ai for fixed a−i.

Assumption 2. The mapping M : RNd → RNd, referred
to as the game mapping, defined by

M(a) = [∇aiJi(a
i,a−i)]Ni=1

= [M1,1, . . . ,M1,d, . . . ,MN,1, . . . ,MN,d]
�,

Mi,k(a) =
∂Ji(a)

∂aik
a ∈ A, i ∈ [N ], k ∈ [d] (1)

is Lipschitz on RNd with a Lipschitz constant L and
pseudo-monotone on A (see Definition 1).

Assumption 3. The cost functions Ji(a), i ∈ [N ], grow not
faster than a polynomial function as ‖a‖ → ∞.

A Nash equilibrium in a game Γ(N, {Ai}, {Ji}) represents
a joint action from which no player has any incentive to
unilaterally deviate.

Definition 2. A point a∗ ∈ A is called a Nash equilibrium
if for any i ∈ [N ] and ai ∈ Ai

Ji(a
i∗,a−i∗) ≤ Ji(a

i,a−i∗).

1 All results below are applicable for games with different dimensions
{di} of the action sets {Ai}.

In this paper, we focus on learning such a stable state in
a game through designing a payoff-based algorithm.

In this subsection, we prove existence of Nash equilibria
for Γ(N, {Ai}, {Ji}), through connecting Nash equilibria
and solutions of Variational Inequalities.

Definition 3. Consider a mapping T (·): Rd → Rd and a
set Y ⊆ Rd. A solution SOL(Y,T ) to the variational
inequality problem V I(Y,T ) is a set of vectors y∗ ∈ Y
such that (T (y∗),y − y∗) ≥ 0, for any y ∈ Y .

The following theorem is the well-known result on the
existence of SOL(Y,T ), see Corollary 2.2.5 in (Pang and
Facchinei, 2003).

Theorem 1. Given V I(Y,T ), suppose that the set Y is
compact, convex and that the mapping T is continuous.
Then, SOL(Y,T ) is nonempty and compact.

Next, we formulate the result that establishes the connec-
tion between Nash equilibria in a game and solution vec-
tors of a certain Variational Inequality, Proposition 1.4.2
in (Pang and Facchinei, 2003).

Theorem 2. Given a game Γ(N, {Ai}, {Ji}), suppose that
the action sets {Ai} are closed and convex, the cost
functions {Ji} are continuously differentiable in a and
convex in ai for every fixed a−i on the interior of A. Then,
some vector a∗ ∈ A is a Nash equilibrium in Γ, if and only
if a∗ ∈ SOL(A,M), whereM is the game mapping in (1).

Note that games for which Assumptions 1 and 2 hold,
satisfy all conditions in Theorem 2. Thus, any solution of
V I(A,M) is also a Nash equilibrium in such games and
vice versa. Moreover, according to Theorem 1, Assump-
tion 1 guarantees non-emptiness of SOL(A,M). Formally,
we get the following result.

Corollary 3. Let Γ(N, {Ai}, {Ji}) be a game for which
Assumptions 1 and 2 hold. Then, there exists at least one
Nash equilibrium in Γ. Moreover, any Nash equilibrium in
Γ belongs to the set SOL(A,M), where M is the game
mapping (see (1)).

Note that Assumptions 1 and 2 do not imply uniqueness
of the Nash equilibrium in Γ(N, {Ai}, {Ji}). To guarantee
uniqueness, one needs to consider a more restrictive as-
sumption, for example, strong monotonicity of the game
mapping (Pang and Facchinei, 2003). In our paper we do
not restrict our attention to such case, but deal with a
broader class of games admitting multiple Nash equilibria.

3. SOLUTION APPROACH

3.1 Payoff-Based Algorithm

In this subsection we formulate the payoff-based approach
for the distributed learning of a Nash equilibrium a∗ in a
game Γ(N, {Ai}, {Ji}) satisfying Assumptions 1-3.

Having access to information about the current state
xi(t) = [xi

1, . . . , x
i
d]

� ∈ Rd at iteration t and the cur-

rent cost value Ĵi(t) at the joint state x(t), Ĵi(t) =
Ji(x

1(t), . . . ,xN (t)), each agent “mixes” its next state
xi(t+1), namely it chooses its next state xi(t+1) randomly
according to the multidimensional normal distribution
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faster than a polynomial function as ‖a‖ → ∞.

A Nash equilibrium in a game Γ(N, {Ai}, {Ji}) represents
a joint action from which no player has any incentive to
unilaterally deviate.

Definition 2. A point a∗ ∈ A is called a Nash equilibrium
if for any i ∈ [N ] and ai ∈ Ai

Ji(a
i∗,a−i∗) ≤ Ji(a

i,a−i∗).

1 All results below are applicable for games with different dimensions
{di} of the action sets {Ai}.

In this paper, we focus on learning such a stable state in
a game through designing a payoff-based algorithm.

In this subsection, we prove existence of Nash equilibria
for Γ(N, {Ai}, {Ji}), through connecting Nash equilibria
and solutions of Variational Inequalities.

Definition 3. Consider a mapping T (·): Rd → Rd and a
set Y ⊆ Rd. A solution SOL(Y,T ) to the variational
inequality problem V I(Y,T ) is a set of vectors y∗ ∈ Y
such that (T (y∗),y − y∗) ≥ 0, for any y ∈ Y .

The following theorem is the well-known result on the
existence of SOL(Y,T ), see Corollary 2.2.5 in (Pang and
Facchinei, 2003).

Theorem 1. Given V I(Y,T ), suppose that the set Y is
compact, convex and that the mapping T is continuous.
Then, SOL(Y,T ) is nonempty and compact.

Next, we formulate the result that establishes the connec-
tion between Nash equilibria in a game and solution vec-
tors of a certain Variational Inequality, Proposition 1.4.2
in (Pang and Facchinei, 2003).

Theorem 2. Given a game Γ(N, {Ai}, {Ji}), suppose that
the action sets {Ai} are closed and convex, the cost
functions {Ji} are continuously differentiable in a and
convex in ai for every fixed a−i on the interior of A. Then,
some vector a∗ ∈ A is a Nash equilibrium in Γ, if and only
if a∗ ∈ SOL(A,M), whereM is the game mapping in (1).

Note that games for which Assumptions 1 and 2 hold,
satisfy all conditions in Theorem 2. Thus, any solution of
V I(A,M) is also a Nash equilibrium in such games and
vice versa. Moreover, according to Theorem 1, Assump-
tion 1 guarantees non-emptiness of SOL(A,M). Formally,
we get the following result.

Corollary 3. Let Γ(N, {Ai}, {Ji}) be a game for which
Assumptions 1 and 2 hold. Then, there exists at least one
Nash equilibrium in Γ. Moreover, any Nash equilibrium in
Γ belongs to the set SOL(A,M), where M is the game
mapping (see (1)).

Note that Assumptions 1 and 2 do not imply uniqueness
of the Nash equilibrium in Γ(N, {Ai}, {Ji}). To guarantee
uniqueness, one needs to consider a more restrictive as-
sumption, for example, strong monotonicity of the game
mapping (Pang and Facchinei, 2003). In our paper we do
not restrict our attention to such case, but deal with a
broader class of games admitting multiple Nash equilibria.

3. SOLUTION APPROACH

3.1 Payoff-Based Algorithm

In this subsection we formulate the payoff-based approach
for the distributed learning of a Nash equilibrium a∗ in a
game Γ(N, {Ai}, {Ji}) satisfying Assumptions 1-3.

Having access to information about the current state
xi(t) = [xi

1, . . . , x
i
d]

� ∈ Rd at iteration t and the cur-

rent cost value Ĵi(t) at the joint state x(t), Ĵi(t) =
Ji(x

1(t), . . . ,xN (t)), each agent “mixes” its next state
xi(t+1), namely it chooses its next state xi(t+1) randomly
according to the multidimensional normal distribution
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N(µi(t) = [µi
1(t + 1), . . . , µi

d(t + 1)]�, σ(t + 1)) with the
density:

pi(x
i
1, . . . , x

i
d;µ

i(t+ 1), σ(t+ 1))

=
1

(
√
2πσ(t+ 1))d

exp

{
−

d∑
k=1

(xi
k − µi

k(t+ 1))2

2σ2(t+ 1)

}
.

Our choice of Gaussian distribution is based on the idea
of CALA (continuous action-set learning automaton), pre-
sented in the literature on learning automata (Thathachar
and Sastry, 2003). The mean parameter µi(t) for the
state’s distribution is updated as follows:

µi(t+ 1) =

ProjAi

[
µi(t)− γ(t+ 1)σ2(t+ 1)Ĵi(t)

xi(t)− µi(t)

σ2(t)

]
.

In the above, ProjC [·] denotes the projection operator
on set C. The initial finite value of µ(0) can be defined
arbitrarily. We emphasize the difference between states
and actions. In particular, states are intermediary values
x(t) = [x1(t), . . . ,xN (t)] updated during the payoff-based
algorithm under consideration. They need not belong
to the set of joint actions A. We will show that upon
convergence of the algorithm, the states will also belong
to the joint action set.

To analyze convergence of the proposed algorithm, first,
we show that this algorithm is analogous to the Robbins-
Monro stochastic approximation procedure (Bharath and
Borkar, 1999). Next, we prove convergence of the random
vector µ(t) = [µ1(t), . . . ,µN (t)] by properly choosing
{σ(t), γ(t)}∞t=0.

It is straightforward to show that under Assumption 1

Ex(t){Ĵi(t)
xi
k(t)− µi

k(t)

σ2(t)
}

=E{Ĵi(t)
xi
k(t)− µi

k(t)

σ2(t)
|xi

k(t) ∼ N(µi
k(t), σ(t))}

=
∂J̃i(µ

1(t), . . . ,µN (t), σ(t))

∂µi
k

(2)

for any i ∈ [N ], k ∈ [d], where

J̃i(µ
1, . . . ,µN , σ) =

∫

RNd

Ji(x)p(µ,x)dx,

p(µ,x) =
N∏
j=1

pj(x
j
1, . . . , x

j
d;µ

j , σ).

Note that J̃i can be interpreted as the ith player’s cost
function in mixed strategies, given that the mixed strate-
gies are multivariate normal distributions {N(µi, σ)}i.
We can rewrite the algorithm in the following vector form:

µ(t+ 1) = ProjA[µ(t)− γ(t+ 1)σ2(t+ 1)

× (M(µ(t)) +Q(µ(t), σ(t)) +R(µ(t),x(t), σ(t)))],(3)

where

Q(µ(t), σ(t)) = M̃(µ(t))−M(µ(t)),

R(x(t),µ(t), σ(t)) = F (x(t),µ(t), σ(t))− M̃(µ(t)),

F (x(t),µ(t), σ(t))

= [Ĵ1(t)
x1(t)− µ1(t)

σ2(t)
, . . . , ĴN (t)

xN (t)− µN (t)

σ2(t)
],

and

M̃(·) = [M̃1,1(·), . . . , M̃1,d(·), . . . , M̃N,1(·), . . . , M̃N,d(·)]�

is the Nd-dimensional vector, where i ∈ [N ], k ∈ [d], and

M̃i,k(µ(t)) =
∂J̃i(µ

1(t), . . . ,µN (t), σ(t))

∂µi
k

.

The algorithm above in in the framework of Robbins-
Monro stochastic approximations procedures (Bharath
and Borkar, 1999). In particular, the vector M(µ(t)) cor-
responds to the gradient term in stochastic approximations
procedures, Q(µ(t), σ(t)) is a disturbance of the gradient
term, whereas {R(x(t),µ(t), σ(t))}t, according to (2), is
a martingale difference. In our analysis, we will use the
following well-known result of Robbins and Siegmund on
non-negative random variables, see, for example, Lemma
10 in (Poljak, 1987).

Theorem 4. Let (Ω, F, P ) be a probability space and F1 ⊂
F2 ⊂ . . . a sequence of sub-σ-algebras of F . Let zt, βt, ξt,
and ζt be non-negative Ft-measurable random variables
such that E(zt+1|Ft) ≤ zt(1 + βt) + ξt − ζt. Then almost
surely limt→∞ zt exists and is finite. Moreover,

∑∞
t=1 ζt <

∞ almost surely on {
∑∞

t=1 βt < ∞,
∑∞

t=1 ξt < ∞}.

Now, we are ready to state our main result.

Theorem 5. Let players in a game Γ(N, {Ai}, {Ji}) update
their states {xi(t)} at time t according to the normal dis-
tribution {N(µi(t), σ(t))}, where the mean parameters are
updated as in (3). Let Assumptions 1-3 hold and the vari-
ance parameter σ(t) and the step-size parameter γ(t) be
chosen such that

∑∞
t=0 γ(t)σ

2(t) = ∞,
∑∞

t=0 γ(t)σ
3(t) <

∞, and
∑∞

t=0 γ
2(t) < ∞. Then, as t → ∞, the mean vector

µ(t) converges almost surely to a Nash equilibrium µ∗ ∈ A
of the game Γ, given any initial mean vector µ(0), and the
joint state x(t) converges in probability to a∗ = µ∗.

The theorem above claims almost sure convergence of the
sequence of the mean vectors {µ(t)} and weak convergence
of the sequence of the agents’ states {x(t)} to a Nash
equilibrium in the game under consideration.

Remark 6. Recall that we distinguish between the states
{xi}i∈[N ] and actions {ai}i∈[N ] of players in games.
During the run of the algorithm, players choose their
states {xi}i∈[N ] according to the normal distributions

{N(µi, σ)}i∈[N ] and have access to the current value

{Ĵi(t)}i∈[N ] of their cost functions, given the actual joint

state: Ĵi(t) = Ji(x
1(t), . . . ,xN (t)). However, feasibility

of the mean vectors {µi(t)}i∈[N ] in the proposed proce-

dure justifies the following choice for the actions: ai(t) =
µi(t) for all i ∈ [N ]. Thus, under such setting and ac-
cording to Theorem 5, the players’ joint action a(t) =
[a1(t), . . . ,aN (t)] in long run of the payoff-based algorithm
converges to a Nash equilibrium almost surely.

These convergences take place under an appropriate choice
of the parameters γ(t) and σ(t). Note that, analogously
to optimization methods based on the gradient descent
iterations, the condition

∑∞
t=0 γ(t)σ

2(t) = ∞ guarantees
sufficient energy for the time-step parameter γ(t)σ2(t) to
let the algorithm (3) get to a neighborhood of a desired
stationary point, whereas the condition

∑∞
t=0 γ

2(t) < ∞
does not allow the iteration under the projection operator
to be unbounded as time goes to infinity.
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3.2 Proof of Main Result (Theorem 5)

Our approach is as follows. Firstly, we estimate the dis-
tance between the mean vector µ(t+ 1) in the run of the
algorithm and some other µ ∈ A by this distance on the
previous step, namely by ‖µ(t)−µ‖. After that, we analyse
each term in this estimation to demonstrate applicability
of Theorem 4 to the sequence {µ(t)}t. Finally, we use the
properties of Nash equilibria in games satisfying Assump-
tions 1-3 (see Corollary 3) to demonstrate that the almost
sure limit of the sequence {µ(t)}t is a Nash equilibrium.

Let β(t) = γ(t)σ2(t). Then 2

µ(t+ 1) = ProjA[µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))]. (4)

Let µ ∈ A be any point from the joint action set of the
game Γ. Then, taking into account the iterative procedure
for the update of µ(t) above and the non-expansion
property of the projection operator, we get

‖µ(t+ 1)− µ‖2

= ‖ProjA[µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))]− µ‖2

≤ ‖µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))− µ‖2

= ‖µ(t)− µ‖2 − 2β(t+ 1)(M(µ(t)),µ(t)− µ)

− 2β(t+ 1)(Q(µ(t)) +R(µ(t)),µ(t)− µ)

+ β2(t+ 1)‖g(µ(t))‖2, (5)

where g(µ(t)) = M(µ(t)) +Q(µ(t)) +R(µ(t)).

Let FT be the σ-algebra generated by the random variables
{µ(k), k ≤ T}. By taking the conditional expectation with
respect to FT of the both sides in the inequality above, we
obtain that for any T > 0, almost surely

2

T∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ)

≤‖µ(0)− µ‖2 − E{‖µ(T + 1)− µ‖2|FT }

+2
T∑

t=0

β(t+ 1)‖Q(µ(t))‖‖µ(t)− µ‖

+
T∑

t=0

β2(t+ 1)Ex(t)‖g(µ(t))‖2. (6)

In inequality (6) we used the property of the conditional
expectation, namely E{µ(t1)|Ft2} = µ(t1) almost surely
for any t1 ≤ t2, as well as the fact that E{R(µ(t))|FT } = 0
for all t ≤ T , which is implied by (2).

According to Assumption 3, we can show that

M̃i,k(µ) =
1

σ2

∫

RNd

Ji(x)(x
i
k − µi

k)p(µ,x)dx

=

∫

RNd

∂Ji(x)

∂xi
k

p(µ,x)dx. (7)

Thus,

M̃(µ(t)) =

∫

RNd

M(x)p(µ(t),x)dx. (8)

2 We omit further the argument σ(t) in terms Q and R for the sake
of notation simplicity.

Since Q(µ(t)) = M̃(µ(t))−M(µ(t)) and due to Assump-
tion 2 and equation (8), we can write the following:

‖Q(µ(t))‖ ≤
∫

RNd

‖M(µ(t))−M(x)‖p(µ(t),x)dx

≤
∫

RNd

L‖µ(t)− x‖p(µ(t),x)dx

≤
∫

RNd

L

(
N∑
i=1

d∑
k=1

|µi
k(t)− xi

k|

)
p(µ(t),x)dx

= O(σ(t)), (9)

where L is the Lipschitz constant defined in Assumption 2.
The last equality in (9) is due to the fact that the first
central absolute moment of a random variable with a
normal distribution N(µ, σ) is O(σ).

Obviously, ‖µ(t)−µ‖ is bounded for any t, since µ(t) ∈ A
for any t and µ ∈ A. Now we proceed with estimating the
terms Ex(t)‖g(µ(t))‖2 in (6):

Ex(t)‖g(µ(t))‖2 ≤ ‖M(µ(t))‖2 + ‖Q(µ(t))‖2

+2‖M(µ(t))‖‖Q(µ(t))‖+ Ex(t)‖R(µ(t))‖2. (10)

Note that

Ex(t)‖R(µ(t))‖2

≤
N∑
i=1

d∑
k=1

∫

RNd

J2
i (x)

(xi
k − µi

k(t))
2

σ4(t)
p(µ(t),x)dx.

Thus, we can use Assumption 3 to conclude that

Ex(t)‖R(µ(t))‖2 ≤ 1

σ4(t)
f(µ(t), σ(t)),

where f(µ(t), σ(t)) is a polynomial of µ(t) and σ(t). Hence,
taking into account boundedness of µ(t) for all t, we
conclude that

β2(t+ 1)Ex(t)‖R(µ(t))‖2 ≤ k1γ
2(t), (11)

for some constant k1. Moreover, according to boundedness
of µ(t) for all t, we can conclude that the first term on the
right hand side of (10) is bounded.

Bringing (9) - (11) together and taking into account
conditions on the parameters γ(t), σ(t), we conclude that
the right hand side of inequality (6) stays finite almost
surely, if T → ∞ and, thus, almost surely

∞∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ) < ∞. (12)

Next, we demonstrate that almost surely

lim
t→∞

(M(µ(t)),µ(t)− µ) ≤ 0. (13)

Indeed, let us assume that, on the contrary, there exists
such ε > 0 and t0 > 0 that almost surely

(M(µ(t)),µ(t)− µ) ≥
for any t ≥ t0. In this case, taking into account that∑∞

t=0 β(t+ 1) = ∞, we obtain
∞∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ)

≥
t0∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ) +

∞∑
t=t0

β(t+ 1) = ∞
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3.2 Proof of Main Result (Theorem 5)

Our approach is as follows. Firstly, we estimate the dis-
tance between the mean vector µ(t+ 1) in the run of the
algorithm and some other µ ∈ A by this distance on the
previous step, namely by ‖µ(t)−µ‖. After that, we analyse
each term in this estimation to demonstrate applicability
of Theorem 4 to the sequence {µ(t)}t. Finally, we use the
properties of Nash equilibria in games satisfying Assump-
tions 1-3 (see Corollary 3) to demonstrate that the almost
sure limit of the sequence {µ(t)}t is a Nash equilibrium.

Let β(t) = γ(t)σ2(t). Then 2

µ(t+ 1) = ProjA[µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))]. (4)

Let µ ∈ A be any point from the joint action set of the
game Γ. Then, taking into account the iterative procedure
for the update of µ(t) above and the non-expansion
property of the projection operator, we get

‖µ(t+ 1)− µ‖2

= ‖ProjA[µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))]− µ‖2

≤ ‖µ(t)− β(t+ 1)

× (M(µ(t)) +Q(µ(t)) +R(µ(t)))− µ‖2

= ‖µ(t)− µ‖2 − 2β(t+ 1)(M(µ(t)),µ(t)− µ)

− 2β(t+ 1)(Q(µ(t)) +R(µ(t)),µ(t)− µ)

+ β2(t+ 1)‖g(µ(t))‖2, (5)

where g(µ(t)) = M(µ(t)) +Q(µ(t)) +R(µ(t)).

Let FT be the σ-algebra generated by the random variables
{µ(k), k ≤ T}. By taking the conditional expectation with
respect to FT of the both sides in the inequality above, we
obtain that for any T > 0, almost surely

2

T∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ)

≤‖µ(0)− µ‖2 − E{‖µ(T + 1)− µ‖2|FT }

+2
T∑

t=0

β(t+ 1)‖Q(µ(t))‖‖µ(t)− µ‖

+
T∑

t=0

β2(t+ 1)Ex(t)‖g(µ(t))‖2. (6)

In inequality (6) we used the property of the conditional
expectation, namely E{µ(t1)|Ft2} = µ(t1) almost surely
for any t1 ≤ t2, as well as the fact that E{R(µ(t))|FT } = 0
for all t ≤ T , which is implied by (2).

According to Assumption 3, we can show that

M̃i,k(µ) =
1

σ2

∫

RNd

Ji(x)(x
i
k − µi

k)p(µ,x)dx

=

∫

RNd

∂Ji(x)

∂xi
k

p(µ,x)dx. (7)

Thus,

M̃(µ(t)) =

∫

RNd

M(x)p(µ(t),x)dx. (8)

2 We omit further the argument σ(t) in terms Q and R for the sake
of notation simplicity.

Since Q(µ(t)) = M̃(µ(t))−M(µ(t)) and due to Assump-
tion 2 and equation (8), we can write the following:

‖Q(µ(t))‖ ≤
∫

RNd

‖M(µ(t))−M(x)‖p(µ(t),x)dx

≤
∫

RNd

L‖µ(t)− x‖p(µ(t),x)dx

≤
∫

RNd

L

(
N∑
i=1

d∑
k=1

|µi
k(t)− xi

k|

)
p(µ(t),x)dx

= O(σ(t)), (9)

where L is the Lipschitz constant defined in Assumption 2.
The last equality in (9) is due to the fact that the first
central absolute moment of a random variable with a
normal distribution N(µ, σ) is O(σ).

Obviously, ‖µ(t)−µ‖ is bounded for any t, since µ(t) ∈ A
for any t and µ ∈ A. Now we proceed with estimating the
terms Ex(t)‖g(µ(t))‖2 in (6):

Ex(t)‖g(µ(t))‖2 ≤ ‖M(µ(t))‖2 + ‖Q(µ(t))‖2

+2‖M(µ(t))‖‖Q(µ(t))‖+ Ex(t)‖R(µ(t))‖2. (10)

Note that

Ex(t)‖R(µ(t))‖2

≤
N∑
i=1

d∑
k=1

∫

RNd

J2
i (x)

(xi
k − µi

k(t))
2

σ4(t)
p(µ(t),x)dx.

Thus, we can use Assumption 3 to conclude that

Ex(t)‖R(µ(t))‖2 ≤ 1

σ4(t)
f(µ(t), σ(t)),

where f(µ(t), σ(t)) is a polynomial of µ(t) and σ(t). Hence,
taking into account boundedness of µ(t) for all t, we
conclude that

β2(t+ 1)Ex(t)‖R(µ(t))‖2 ≤ k1γ
2(t), (11)

for some constant k1. Moreover, according to boundedness
of µ(t) for all t, we can conclude that the first term on the
right hand side of (10) is bounded.

Bringing (9) - (11) together and taking into account
conditions on the parameters γ(t), σ(t), we conclude that
the right hand side of inequality (6) stays finite almost
surely, if T → ∞ and, thus, almost surely

∞∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ) < ∞. (12)

Next, we demonstrate that almost surely

lim
t→∞

(M(µ(t)),µ(t)− µ) ≤ 0. (13)

Indeed, let us assume that, on the contrary, there exists
such ε > 0 and t0 > 0 that almost surely

(M(µ(t)),µ(t)− µ) ≥ ε

for any t ≥ t0. In this case, taking into account that∑∞
t=0 β(t+ 1) = ∞, we obtain

∞∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ)

≥
t0∑
t=0

β(t+ 1)(M(µ(t)),µ(t)− µ) + ε

∞∑
t=t0

β(t+ 1) = ∞
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almost surely, which contradicts (12). Thus, (13) holds.
Since µ(t) is bounded for any t, there exists such a limit
point µ∗ ∈ A that limt→∞ µ(t) = µ∗ and, according to
(13),

(M(µ∗),µ− µ∗) ≥ 0. (14)

Since we did not specify the choice of µ ∈ A, the inequality
above holds for any µ ∈ A. Thus, according to Corollary 3,
µ∗ is a Nash equilibrium in the game Γ.

Next, we notice that, if µ = µ∗ in (5), this inequality (5)
together with (9) - (11) imply that

E{‖µ(t+ 1)− µ∗‖2|Ft} ≤ ‖µ(t)− µ∗‖2

− 2β(t+ 1)(M(µ(t)),µ(t)− µ∗)

+ h(t), (15)

where h(t) = k2β(t+1)σ(t)+k3β
2(t+1)+k4β

2(t+1)σ(t)+
(β(t + 1)σ(t))2 + k1γ

2(t). According to the properties of
σ(t) and γ(t),

∞∑
t=0

h(t) < ∞.

Moreover, since M is pseudo-monotone, (14) implies
(M(µ(t)),µ(t) − µ∗) ≥ 0 for any t. Thus, we can apply
Theorem 4 to conclude that

‖µ(t)− µ∗‖ converges almost surely as t → ∞.

Since limt→∞ µ(t) = µ∗ almost surely,

lim
t→∞

µ(t) = µ∗ almost surely.

Since
∑∞

t=0 γ(t)σ
2(t) = ∞ and

∑∞
t=0 γ(t)σ

3(t) < ∞,
limt→∞ σ(t) = 0. Taking into account that x(t) ∼
N(µ(t), σ(t)), we conclude that x(t) converges weakly to
a Nash equilibrium a∗ = µ∗ ∈ A as time runs. Moreover,
according to Portmanteau Lemma (Klenke, 2008), this
convergence is also in probability.

4. NUMERICAL CASE STUDY

We illustrate the proposed approach of payoff-based learn-
ing to a game arising from electricity market. The problem
setup is motivated by the game theoretic formulation of
plug-in-electric vehicle (PEV) charging considered in sev-
eral previous work including (Ma et al., 2010; Grammatico
et al., 2016; Couillet et al., 2012; Gan et al., 2013). The
agents optimize their power consumption in response to a
price signal. In contrast to most past work, we consider the
case in which the form of the price function is unknown
to agents and the agents do not communicate with each
other. They can only observe their cost function for every
strategy they play.

There are N market participants, also referred to as
players or agents. Let ai = [ai1, . . . , a

i
d]

� ∈ Rd denote the
decision variable of the player i, i ∈ [N ], that is the vector
corresponding to its consumption profile over d periods.
The constraints for each player i are

0 ≤aik ≤ ā for k = 1, . . . , d,
d∑

k=1

aik = āi. (16)

These constraints indicate that for each player the electric-
ity consumption at each time instance is limited and the
total electricity consumption over the considered period

of time needs to match a desired amount. The convex and
compact set defined by the constraints in (16) is considered
the action set Ai for the corresponding player i.

The cost function is the price paid for electricity consump-
tion by each agent (Paccagnan et al., 2016)

Ji(a
i,a−i) = ai�Qiai + 2


Ci 1

N

N∑
j=1

aj + ci




�

ai (17)

with Qi, Ci ∈ Rd×d, ci ∈ Rd for all i ∈ [N ]. In the above,
the first term presents each agent’s private value, while
the second term corresponds to price of electricity and its
functional form may not be known to the agents.

Consider the following setup. At iteration t, each player
submits its proposed consumption profile over time hori-
zon of d units, xi(t) = [xi

1(t), . . . , x
i
d(t)]

�. How should
players update their profiles, using only values of the
function Ji(x), in order to make the sequence of the joint
profiles convergent to a Nash equilibrium? Note that Qi

can in general be known by individual agents, while the
second term (17) is assumed unknown. Furthermore, Qi

can also equal zero.

We assume the matrices Qi and Ci to be such that Qi +
Ci

N � 0 on RNd and M̂ � 0 on A. It can readily be verified

that the resulting game mapping M̂a + m (see (1)) is
affine on RNd and, hence, Lipschitz on RNd. Moreover,
the positive semidefinite matrix M̂ on A implies that
M̂a+m is pseudo-monotone on RNd (Gowda, 1990). Thus,
under such setting for the matrices Qi and Ci, i ∈ [N ],
Assumptions 1-3 hold in the game under consideration.

We consider strategies are the consumption profiles of
the agents for d = 4 periods, the matrices Qi and Ci,
i ∈ [N ], in their cost functions (17) are the identity
matrices of the size 4 × 4, and the vector ci, i ∈ [N ], is a
4-dimensional vector, whose coordinates are some random
variables taking values in the interval (0, 5). We assume
that the action set Ai for each user i ∈ [N ] is defined
by (16), where ā = 6 and āi is a random variable taking
values in the interval (0.5, 10). The initial mean vector
µ(0) is a random vector with the uniform distribution on
A = A1× . . .×AN . Let the agents follow the payoff-based
algorithm described by (3).

Figures 1 presents the relative error ‖µ(t)−a∗‖
‖a∗‖ during the

algorithm’s run for γ(t) = 1
t0.51 , σ(t) = 0.1

t0.2 , N = 10
and N = 100 respectively, where a∗ is the unique Nash
equilibrium of the corresponding game. The uniqueness
follows from the fact that the game mapping is strongly
monotone in this example (Pang and Facchinei, 2003). We
can see that after the first iteration the algorithm gives an
approximation for the Nash equilibrium in the game, irre-
spectively to the initial vector µ(0). However, convergence
of the error to zero is slow. The slow decrease of the relative
error after the first iteration can be explained by the choice
of the rapidly decreasing parameter σ(t) and γ(t) as well as
by the projection step. These factor prevent a significant
change of the projected mean vectors and of the states’
values chosen according to the normal distribution with
the variance σ(t).
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5. CONCLUSION

This paper presented a new payoff-based algorithm for
learning Nash equilibria in games with pseudo-monotone
maps. To investigate the convergence properties of the
proposed procedure we used the theory of discrete-time
stochastic processes. We proved that in the run of the
algorithm the joint actions in the game under considera-
tion converge weakly and in probability to a Nash equilib-
rium. This payoff-based approach is demonstrated to be
applicable to games between users at electrical markets,
where the functional form of the electricity price may be
unknown to users. Our current and future work focuses
on estimation of convergence rate of the algorithm and
improvement of convergence rate by adjustment of the
algorithm’s parameters.
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Fig. 1. Relative error ‖µ(t)−a∗‖
‖a∗‖ during the payoff-based

algorithm, N = 10 (blue line), N = 100 (red line),
γ(t) = 1

t0.51 , σ(t) =
0.1
t0.2 .

REFERENCES

Arslan, G., Marden, J.R., and Shamma, J.S. (2007). Au-
tonomous vehicle-target assignment: a game theoretical
formulation. ASME Journal of Dynamic Systems, Mea-
surement and Control, 129, 584–596.

Bharath, B. and Borkar, V.S. (1999). Stochastic approx-
imation algorithms: Overview and recent trends. Sad-
hana, 24(4), 425–452.

Couillet, R., Perlaza, S.M., Tembine, H., and Debbah, M.
(2012). A mean field game analysis of electric vehicles
in the smart grid. In Computer Communications Work-
shops (INFOCOM WKSHPS), 79–84. IEEE.

Gan, L., Topcu, U., and Low, S.H. (2013). Optimal de-
centralized protocol for electric vehicle charging. IEEE
Transactions on Power Systems, 28(2), 940–951.

Goto, T., Hatanaka, T., and Fujita, M. (2012). Payoff-
based inhomogeneous partially irrational play for po-
tential game theoretic cooperative control: Convergence
analysis. In American Control Conference (ACC), 2012,
2380–2387.

Gowda, M.S. (1990). Affine pseudomonotone mappings
and the linear complementarity problem. SIAM Journal
on Matrix Analysis and Applications, 11(3), 373–380.

Grammatico, S., Parise, F., Colombino, M., and Lygeros,
J. (2016). Decentralized convergence to nash equilibria
in constrained deterministic mean field control. IEEE
Transactions on Automatic Control, 61(11), 3315–3329.
doi:10.1109/TAC.2015.2513368.

Jensen, M.K. (2010). Aggregative games and best-reply
potentials. Economic Theory, 43(1), 45–66.

Klenke, A. (2008). Probability theory: a comprehensive
course. Springer, London.

Li, N. and Marden, J.R. (2013). Designing games for
distributed optimization. IEEE Journal of Selected
Topics in Signal Processing, 7(2), 230–242. Special issue
on adaptation and learning over complex networks.

Ma, Z., Callaway, D., and Hiskens, I. (2010). Decentralized
charging control for large populations of plug-in electric
vehicles. In 49th IEEE conference on decision and
control (CDC), 206–212. IEEE.

Marden, J.R., Arslan, G., and Shamma, J.S. (2009). Co-
operative control and potential games. Trans. Sys. Man
Cyber. Part B, 39(6), 1393–1407.

Marden, J.R. and Shamma, J.S. (2012). Revisiting log-
linear learning: Asynchrony, completeness and payoff-
based implementation. Games and Economic Behavior,
75(2), 788 – 808.

Paccagnan, D., Kamgarpour, M., and Lygeros, J. (2016).
On Aggregative and Mean Field Games with Appli-
cations to Electricity Markets. In European Control
Conference.

Pang, J.S. and Facchinei, F. (2003). Finite-dimensional
variational inequalities and complementarity problems :
vol. 2. Springer series in operations research. Springer,
New York, Berlin, Heidelberg.

Perkins, S., Mertikopoulos, P., and Leslie, D.S. (2015).
Mixed-strategy learning with continuous action sets.
IEEE Transactions on Automatic Control, (open ac-
cess).

Poljak, B.T. (1987). Introduction to optimization. Opti-
mization Software.

Saad, W., Zhu, H., Poor, H.V., and Basar, T. (2012).
Game-theoretic methods for the smart grid: An overview
of microgrid systems, demand-side management, and
smart grid communications. IEEE Signal Processing
Magazine, 29(5), 86–105.

Salehisadaghiani, F. and Pavel, L. (2014). Nash equilib-
rium seeking by a gossip-based algorithm. In 53rd IEEE
Conference on Decision and Control, 1155–1160.

Scutari, G., Barbarossa, S., and Palomar, D.P. (2006).
Potential games: A framework for vector power control
problems with coupled constraints. In 2006 IEEE In-
ternational Conference on Acoustics Speech and Signal
Processing Proceedings, volume 4, 241–244.

Tatarenko, T. (2014). Proving convergence of log-linear
learning in potential games. In American Control
Conference (ACC), 2014, 972–977.

Tatarenko, T. (2016a). Stochastic payoff-based learning
in multi-agent systems modeled by means of potential
games. In 55th IEEE Conference on Decision and
Control. accepted.

Tatarenko, T. (2016b). Stochastic stability of potential
function maximizers in continuous version of indepen-
dent log-linear learning. In European Control Confer-
ence (ECC), 2016.

Thathachar, A.L. and Sastry, P.S. (2003). Networks of
Learning Automata: Techniques for Online Stochastic
Optimization. Springer US.

Zhu, M. and Mart́ınez, S. (2013). Distributed coverage
games for energy-aware mobile sensor networks. SIAM
J. Control and Optimization, 51(1), 1–27.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

1549



 T. Tatarenko  et al. / IFAC PapersOnLine 50-1 (2017) 1508–1513 1513

5. CONCLUSION

This paper presented a new payoff-based algorithm for
learning Nash equilibria in games with pseudo-monotone
maps. To investigate the convergence properties of the
proposed procedure we used the theory of discrete-time
stochastic processes. We proved that in the run of the
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tion converge weakly and in probability to a Nash equilib-
rium. This payoff-based approach is demonstrated to be
applicable to games between users at electrical markets,
where the functional form of the electricity price may be
unknown to users. Our current and future work focuses
on estimation of convergence rate of the algorithm and
improvement of convergence rate by adjustment of the
algorithm’s parameters.

0 20 40 60 80 100
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 1. Relative error ‖µ(t)−a∗‖
‖a∗‖ during the payoff-based

algorithm, N = 10 (blue line), N = 100 (red line),
γ(t) = 1

t0.51 , σ(t) =
0.1
t0.2 .

REFERENCES

Arslan, G., Marden, J.R., and Shamma, J.S. (2007). Au-
tonomous vehicle-target assignment: a game theoretical
formulation. ASME Journal of Dynamic Systems, Mea-
surement and Control, 129, 584–596.

Bharath, B. and Borkar, V.S. (1999). Stochastic approx-
imation algorithms: Overview and recent trends. Sad-
hana, 24(4), 425–452.

Couillet, R., Perlaza, S.M., Tembine, H., and Debbah, M.
(2012). A mean field game analysis of electric vehicles
in the smart grid. In Computer Communications Work-
shops (INFOCOM WKSHPS), 79–84. IEEE.

Gan, L., Topcu, U., and Low, S.H. (2013). Optimal de-
centralized protocol for electric vehicle charging. IEEE
Transactions on Power Systems, 28(2), 940–951.

Goto, T., Hatanaka, T., and Fujita, M. (2012). Payoff-
based inhomogeneous partially irrational play for po-
tential game theoretic cooperative control: Convergence
analysis. In American Control Conference (ACC), 2012,
2380–2387.

Gowda, M.S. (1990). Affine pseudomonotone mappings
and the linear complementarity problem. SIAM Journal
on Matrix Analysis and Applications, 11(3), 373–380.

Grammatico, S., Parise, F., Colombino, M., and Lygeros,
J. (2016). Decentralized convergence to nash equilibria
in constrained deterministic mean field control. IEEE
Transactions on Automatic Control, 61(11), 3315–3329.
doi:10.1109/TAC.2015.2513368.

Jensen, M.K. (2010). Aggregative games and best-reply
potentials. Economic Theory, 43(1), 45–66.

Klenke, A. (2008). Probability theory: a comprehensive
course. Springer, London.

Li, N. and Marden, J.R. (2013). Designing games for
distributed optimization. IEEE Journal of Selected
Topics in Signal Processing, 7(2), 230–242. Special issue
on adaptation and learning over complex networks.

Ma, Z., Callaway, D., and Hiskens, I. (2010). Decentralized
charging control for large populations of plug-in electric
vehicles. In 49th IEEE conference on decision and
control (CDC), 206–212. IEEE.

Marden, J.R., Arslan, G., and Shamma, J.S. (2009). Co-
operative control and potential games. Trans. Sys. Man
Cyber. Part B, 39(6), 1393–1407.

Marden, J.R. and Shamma, J.S. (2012). Revisiting log-
linear learning: Asynchrony, completeness and payoff-
based implementation. Games and Economic Behavior,
75(2), 788 – 808.

Paccagnan, D., Kamgarpour, M., and Lygeros, J. (2016).
On Aggregative and Mean Field Games with Appli-
cations to Electricity Markets. In European Control
Conference.

Pang, J.S. and Facchinei, F. (2003). Finite-dimensional
variational inequalities and complementarity problems :
vol. 2. Springer series in operations research. Springer,
New York, Berlin, Heidelberg.

Perkins, S., Mertikopoulos, P., and Leslie, D.S. (2015).
Mixed-strategy learning with continuous action sets.
IEEE Transactions on Automatic Control, (open ac-
cess).

Poljak, B.T. (1987). Introduction to optimization. Opti-
mization Software.

Saad, W., Zhu, H., Poor, H.V., and Basar, T. (2012).
Game-theoretic methods for the smart grid: An overview
of microgrid systems, demand-side management, and
smart grid communications. IEEE Signal Processing
Magazine, 29(5), 86–105.

Salehisadaghiani, F. and Pavel, L. (2014). Nash equilib-
rium seeking by a gossip-based algorithm. In 53rd IEEE
Conference on Decision and Control, 1155–1160.

Scutari, G., Barbarossa, S., and Palomar, D.P. (2006).
Potential games: A framework for vector power control
problems with coupled constraints. In 2006 IEEE In-
ternational Conference on Acoustics Speech and Signal
Processing Proceedings, volume 4, 241–244.

Tatarenko, T. (2014). Proving convergence of log-linear
learning in potential games. In American Control
Conference (ACC), 2014, 972–977.

Tatarenko, T. (2016a). Stochastic payoff-based learning
in multi-agent systems modeled by means of potential
games. In 55th IEEE Conference on Decision and
Control. accepted.

Tatarenko, T. (2016b). Stochastic stability of potential
function maximizers in continuous version of indepen-
dent log-linear learning. In European Control Confer-
ence (ECC), 2016.

Thathachar, A.L. and Sastry, P.S. (2003). Networks of
Learning Automata: Techniques for Online Stochastic
Optimization. Springer US.

Zhu, M. and Mart́ınez, S. (2013). Distributed coverage
games for energy-aware mobile sensor networks. SIAM
J. Control and Optimization, 51(1), 1–27.

Proceedings of the 20th IFAC World Congress
Toulouse, France, July 9-14, 2017

1549




