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Abstract: This work provides methodological approaches
to solve convex optimization problems arising in multi-
agent systems which can be reformulated in terms of a
so called N-cluster game. We consider different settings of
information available to each agent in the system. First,
we present a centralized algorithm, which requires a cen-
tral coordinator having full access to information about
agents’ actions and gradients of their cost functions, to
demonstrate how the standard gradient descent method
can be applied to achieve an optimal output in N-cluster
games. After that we relax the full information setting and
assume that only partial information is available to each
agent. Focus lies on the following two cases. In the first
case, the agents have access to their gradient functions
and are allowed to exchange information with their local
neighbors over a communication graph that connects the
whole system. In the second case, the agents do not know
the functional form of their objectives/gradients and can
only access the current values of their objective functions
at some query point. Moreover, the agents are allowed to
communicate only with their local neighbors within the
cluster to which they belong. For both settings we present
the convergent optimization procedures and analyse their
efficiency in simulations.

Keywords: multi-agent systems, distributed optimization,
game theory, discrete-time methods

Zusammenfassung: Diese Arbeit stellt methodische Her-
angehensweisen zur Lésung von konvexen Optimierungs-
problemen in Multi-Agenten-Systemen, formuliert als so-
genannte Multi-Cluster Spiele, vor. In diesem Zusammen-
hang beschiftigen wir uns mit unterschiedlichen Auftei-
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lungen von Informationen auf die Agenten. Zunéchst stel-
len wir einen zentralen Algorithmus vor, der einen zen-
tralen Koordinator mit uneingeschrianktem Zugang zu den
Aktionen der Agenten und den Gradienten ihrer Kosten-
funktionen benoétigt. Mit diesem Algorithmus soll demons-
triert werden, wie die bekannte Methode des Gradien-
tenabstiegs angewendet werden kann, um ein optima-
les Ergebnis beziiglich des N-Cluster Spiels zu erzeugen.
Anschlieflend relaxieren wir die Annahme von uneinge-
schrankter Information und nehmen an, dass jedem Agen-
ten nur ein Teil der Gesamtinformationen zur Verfiigung
steht. Hierbei liegt der Fokus auf den folgenden zwei Fal-
len. Im ersten Fall haben die Agenten Zugang zu den Gra-
dienten ihrer eigenen Funktionen und Informationen kén-
nen iiber einen das gesamte System vernetzenden Kom-
munikationsgraphen mit den direkten Nachbarn ausge-
tauscht werden. Im zweiten Fall kennen die Agenten die
funktionale Form ihrer eigenen Zielfunktionen/Gradien-
ten nicht und konnen den aktuellen Wert ihrer Zielfunk-
tion nur an bestimmten Punkten abfragen. Zusétzlich ist
es den Agenten nur erlaubt, Informationen mit den Agen-
ten des eigenen Clusters auszutauschen. Fiir beide Fille
stellen wir konvergierende Optimierungsprozesse vor und
analysieren deren Effizienz in Simulationen.

Schlagwdrter: Multi-Agenten-Systeme, verteilte Optimie-
rung, Spieltheorie, zeitdiskrete Methoden

Dedicated to the 60th birthday of Prof. Dr.-Ing. Jirgen Adamy.

1 Introduction

In our technical world with its increasing complexity there
are numerous systems consisting of many individuals,
which can be considered as independently operating sub-
systems. Such so called multi-agent systems are, for ex-
ample, robot teams or swarms, communication/computa-
tion facilities in wireless networks, or energy sources and
energy consumers in energy networks, such as electrical
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or gas networks. Formally, any multi-agent system con-
sists of several agents with definite objectives that are to
be reached by appropriately chosen local actions/control
laws of agents. These objectives can be expressed either by
a common goal to be achieved by the system or by individ-
ual profit maximization. Methods from optimization theory
need to be applied in the former case of the so called coop-
erative tasks, whereas selfish and competitive behaviour
of agents in the latter case is to be analyzed by means of
non-cooperative game theory.

However, cooperative and competitive tasks coexist in
many practical situations, such as cloud computing, hier-
archical optimization in Smart Grid, and adversarial net-
works [7, 9, 12]. To deal with such a combination in terms
of a single model, so called N-cluster games have recently
been considered in the literature [11, 8, 16, 21, 22, 23, 25,
26]. In such N-cluster games, each cluster corresponds
to a player with the goal to minimize its own cost func-
tion. However, each cluster in the N-cluster game is repre-
sented not by an actual decision-maker but by a group of
agents belonging to this cluster. Each of these agents has
its own local cost function, which depends on the actions
of agents in the whole system, i. e., of all clusters. The clus-
ter’s objective, in turn, is the sum of the local cost func-
tions of the agents within the cluster. Therefore, in such
models, each agent intends to find a strategy to solve the
resulting N-cluster game, i. e., the competitive tasks, and,
thus, to minimize the cooperative cluster’s cost function
equal to the sum of the individual ones, i. e., the coopera-
tive task.

N-cluster games arising in multi-agent systems can
be solved centrally. However, for a centralized solution,
a central controller or central computing unit is required
to collect the whole information about the system in or-
der to solve the optimization problem under considera-
tion. This approach has limitations. Firstly, systems with
such settings are sensitive to the failure of the central
unit. Secondly, the information exchange is costly, since
agents need to transmit their local information to the cen-
tral unit and to receive the instructions from it. More-
over, due to a large system’s dimension, the optimiza-
tion problem can become computationally intractable for
the central controller. Finally, there may be no excess re-
sources to incorporate a central computing unit into the
system. Thus, optimization methods, in which agents can
only use their locally available information about problem
formulation as well as system’s states, need to be deve-
loped and applied to N-cluster games. We further refer to
such methods as distributed optimization methods. Con-
tinuous time distributed optimization algorithms to find
a Nash equilibrium in multi-cluster games were proposed
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in [16, 21, 22, 23]. The paper [21] solves an unconstrained
multi-cluster game by using gradient-based algorithms,
the recent paper [16] deals with communication-based
approach to games in which players have coupled con-
straints, whereas the works [22] and [23] propose gradient-
free algorithms, based on zero-order information, for com-
puting Nash and generalized Nash equilibria respectively.
Since one faces the problem of discretization for practi-
cal implementation of the methods formulated in contin-
uous time, especially in the case when communication
takes place, in this work, we focus on discrete time algo-
rithms, where each optimization variable is updated ac-
cording to an iterative procedure.! In this domain, the work
[11] presents a leader-follower communication-based algo-
rithm, which can solve unconstrained multi-cluster games
in linear time. The paper [25] augments this setting by in-
troducing a special constraint type to the problem. The au-
thors in [26] extend these results to the case of leaderless
communication architecture. All papers [11, 25, 26] prove
linear convergence in games with strongly monotone map-
pings and first-order information, meaning that agents can
calculate gradients of their cost functions and use this in-
formation to update their states. The main idea in those
works is the combination of a consensus dynamic, which
is possible to set up due to existing communication, with a
gradient-tracking technique, enabling a constant step size
for the corresponding optimization procedure [15]. How-
ever, in several applications, each player might not know
the functional form of its objective. For example, travel
times of edges in a traffic network, market outcomes in an
auction, or energy tariff functions (see [20]) are unknown a
priori and depend in non-trivial ways on actions and objec-
tives of other players. In game-theoretic problems, a player
can have access to the so-called payoff information which
does not contain reliable gradient values. That is why, in
order to be able to make a gradient step, players need to
estimate their gradients based on experienced values of
their local cost functions. To do so, they can use exist-
ing techniques for smooth approximation of the gradient
functions [3]. These techniques have been used in online
and distributed optimization [1, 6, 17] as well as in game-
theoretic problems [4, 10, 18] with merely payoff informa-
tion in systems. In the context of N-cluster games, the work
[8] deals with a gradient-free approach and, thus, uses
payoff information to set up the corresponding optimiza-
tion procedure. The gradient estimations are constructed
based on two points: the currently played action and its

1 Aniterative procedure describes a rule to obtain x;.,; from x;, at each
iteration (time step) k.
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shifted counterpart. Thus, such estimations require addi-
tional coordination between the agents, which is the first
shortcoming of the proposed approach. Moreover, the au-
thors in [8] use a constant step size in the optimization iter-
ations to accelerate convergence of the proposed method.
However, under this choice, convergence can only be guar-
anteed to a neighborhood of the equilibrium, as any con-
stant step size implies a non-diminishing disturbance in
the procedure, caused by inaccuracy of the gradient esti-
mations. In this work, we overcome these limitations of the
paper [8] and present a payoff-based algorithm which uses
only actual values of cost functions to estimate local gra-
dients and is provably convergent to a Nash equilibrium in
the game under consideration.

Moreover, this work aims to provide methodological
approaches to solve optimization problems in N-cluster
games by taking into account information available in the
system. Focus lies on convex optimization and discrete
time algorithms. We start with a centralized algorithm to
demonstrate how the standard gradient descent can be ap-
plied to achieve an optimal output in N-cluster games. Af-
ter that, we consider the following two information set-
tings: communication- and payoff-based information. In
the former case, the agents have access to their gradient
functions (so called first-order oracle) and are allowed to
exchange information with their local neighbors over a
given communication graph in the whole system. As it
has been mentioned above, in many practical situations
the agents do not know the functional form of their ob-
jectives/gradients and can only access the current values
of their objective functions at some query point. In such
cases, the information structure is referred to as zero-order
oracle. Thus, the payoff information setting assumes the
agents to be able to only observe the values of their lo-
cal costs at a query point and communicate with their di-
rect neighbors within the corresponding cluster to which
they belong. Under some technical assumptions for both
information settings, we present an adapted version of
the centralized gradient-based procedure which is guar-
anteed to converge to a stable solution (Nash equilibrium)
in the N-cluster game under consideration. We comment
on the procedures’ rates and provide a numerical exam-
ple to emphasize influence of the information settings on
efficiency (convergence speeds) of the optimization algo-
rithms.

In the next section we provide a formal definition
of the N-cluster game and formulate the problem which
the agents intend to solve in this game. Section 3 deals
with the classical gradient-based optimization procedure
which can be used to solve the N-cluster games in the
case of the full information setting. Section 4 relaxes the
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full information setting and presents methods applicable
to the case of the partial information exchanged between
the agents by means of communication. Section 5 consid-
ers even more general information set up, in which agents
have no knowledge about the closed form of their costs and
corresponding gradients and just observe the payoffs given
the current joint action. In Section 6, we provide some nu-
merical experiments for the presented optimization meth-
ods. Section 7 concludes the paper.

Notations. The set {1,...,n} is denoted by [n]. For any
functionf : K - R, K ¢ R", Vif(x) = % is the par-
tial derivative taken in respect to the i-th coordinate of the
vector variable x € R". We consider a real normed space
E, which is the space of real vectors, i. e., E = R". We use
(u,v) to denote the inner product in E and | - || to denote
the Euclidean norm induced by this inner product. We use
B,(p) to denote a ball with radius r > 0 and centerp € E
and S to denote the unit sphere with its center in 0 € E.
We use Projg[v] to denote the projection of v € E to a set
Q ¢ E. The mathematical expectation of a random value &
is denoted by E{¢}.

2 Nash equilibrium in N-cluster
games

We consider a non-cooperative game between N clusters.
Each cluster i € [N] itself consists of n; agents. Let ]{ and
(2’1: ¢ R denote? respectively cost function and feasible ac-
tion set of agent j in cluster i. We denote the joint action
set of agents in cluster i by Q; = Q] x ... x Q. Each func-
tion ]{(xi,x_i), i € [N], depends on x; = (x,....x") € Q,
which represents the joint action of agents within cluster
i,and x_; € Q_; = Q x...x Qi1 x Q;,; x Qy, denoting the
joint action of agents from all clusters except cluster i. The
cooperative cost function in clusteri € [N] is, thus,

ER TN
Jipx-) = — ¥ Ji06Xy). ©)

1j=1
We denote the joint action set of all agents in the game by
Q=0;x...xQy.

Let us denote the game between the clusters intro-

duced above by I'(N, {J;}, {Q;}). We make the following as-
sumptions regarding the game I';

2 All results below are applicable for games with different dimen-
sions {dé} of the action sets {Q’i}. The one-dimensional case is con-
sidered for the sake of notation simplicity.
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Assumption 1. The N-cluster game under consideration is
strongly convex. Namely, for alli € [n], the set Q; is convex,
the cost function J;(x;,x_;) is continuously differentiable in
x; for each fixed x_;. Moreover, the game mapping, which is
defined as

F(0) 2 [ViJ; 000X 1)s - Ty G X )1 T )

is strongly monotone on Q, namely:

(F(x) - F(y), x - y) = plx -yl €))

forsome y > 0 and any x,y € Q.

Remark 1. Note that strong monotonicity of the game map-
ping F(x) implies strong convexity of cluster i’s cost function
Ji(x;,x_;) in x; for fixed x_; for all i € [N]. Indeed, let us con-
sider two points x = (x;,x_;) € Qandy = (y;,x_;) € Q.
Then (3) implies

(Vili (6 X3) = Vi X)X = v) = pllx; = vl

Assumption 2. The mapping F is Lipschitz continuous on
Q, namely:

IFC) - F(y)ll < Liix - yll (4)

forsome L > 0 and any x,y € Q.

Let us notice that, given Assumptions 1 and 2, ’I‘ <1
Note also that the assumptions above are standard in the
literature on both game-theoretic and zero-order optimiza-
tion [4].

Example of an N-cluster game. As an example of an
N-cluster game, consider a Smart Grid consisting of N mi-
crogrids that are connected to a main grid. Each microgrid
i € [N] contains ng; dispatchable, decentralized power
generation units and n.; consumers, where the latter have
a certain demand for energy. Thus, [n;] = [ng;] U [ng;].
The goal of each microgrid is to satisfy the demand of its
consumers and minimize the cost of doing so. To reach
that goal, given the total demand d; = Z;lf{ df of the con-
sumers j € [ng;] of the microgrid i, this microgrid can
buy power of the amount p; = Z?:Cii p’l from the main grid
or produce power with its local power generation units.
Here, each pi is the amount of energy assigned to the user
j € [n.;]. We assume that microgrids are operated by differ-
ent companies, which are in competition with each other.
Furthermore, the price each microgrid has to pay for a unit
of power from the main grid depends on the demand of the
whole system. In this example, we define the cost function
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for buying power from the main grid for each consumer
J € [n.;] as follows:

. N .
Jlwip) =4 <Zpi)l?§> )
i1

where g is some positive factor set by the main grid oper-
ator. Note that these cost functions are coupled, as the ac-
tions of other microgrids have an influence on the price of
the main grid. Next to the main grid costs, each microgrid
has an expense for operating the decentralized generation
units, which are dependent on the amount of power g{ pro-
duced by each j € [ng;]. Summation over all local genera-
torsleads to g; = Z]'.Tj’l" gf: . We formalize this cost as the fol-
lowing quadratic equation for each generator j € [ng;]:

Ti(8]) = ai(g))’ + Vg + ] O]

with some constant, positive cost coefficients a’l:, bi and c{
Note that the quadratic approximation of fuel-based power
plants operation costs is common for economic dispatch
or power management problems, see, for example, [2, 24].
Of course, each generator is subiect‘ to lqwer and upper
bounds on its production, i.e., g} < gl<g.

Combining the two functions, the cost of each micro-
grid i, i. e., the cluster in the game, has to pay for satisfying
the demand takes the form

]i(Xi’X—i)z

1 j i (o)
—— | Y Jwerd+ Y JE)| O
Nej+ Ngji jelng,] jelng]

with x; = [p;, ;] and x_; = [p_;, 8_;]. Therefore, each micro-
grid i € [N] aims to solve the optimization problem

min J;(x;, x_;) (8a)
st.p;+g =d; (8b)
g <g <8V (8¢)

Here, the equality constraint in (8b) enforces the balance
between bought/produced power and the demand of the
consumers inside the microgrid, where the latter is as-
sumed to be fixed. As p; and g; describe the sum of the lo-
cal strategies regarding buying power from the main grid
and power production in the generators, constraint (8b)
represents a coupling point of the cluster i’s decision vari-
ables. The first sum in the cost function (7) can be regarded
as the coupling element of the microgrids as this term is
influenced by actions of other microgrids, creating a non-
cooperative game situation, in which the microgrids act as
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players. The generators can be regarded as agents that be-
long to the microgrid i, each possessing its own local cost
function. As all microgrids aim to minimize the sum of the
costs of all generators in the respective microgrid, a coop-
erative optimization problem arises within each microgrid.

One of the stable solutions in any game I' corresponds
to a Nash equilibrium defined below.

Definition 1. A vector x* = [x],x;,---,xy]" € Qis called a
Nash equilibrium if for any i € [N] and x; € Q;

JiOx(x%) < Ji(xi, x5)).

Note that Assumption 1 guarantees equivalence be-
tween the set of Nash equilibria of I and the solution set
of the following variational inequality [13]:

Find x*: (F(x*),x —x") = O for all x € Q. )

Moreover, based on this equivalence it can be demon-
strated that strong monotonicity of F in Assumption 1im-
plies existence and uniqueness of a Nash equilibrium in
the game I [14].

In this work, we are interested in computing a Nash
equilibrium in any N-cluster game I'(N, {J;}, {Q;}), for which
Assumptions 1-2 hold, by taking into account available in-
formation for each agentj € [n;] from the clusteri € [N].

3 Centralized approach

We start with the full information setting to provide some
intuition on how the standard gradient descent can solve
N-cluster games under consideration. In the subsequent
sections this procedure will be adapted to some more re-
strictive information settings (see Section 4 and 5).

Let us assume there is a central unit who has access
to the full information in the system, namely to the ac-
tion sets, the cost functions and their gradients. Equiva-
lently, we can assume that in this case each agent knows
the partial derivatives of the users’ costs within the cluster
as well as the joint action of all users in the system. Thus, at
each moment in time t the following iterations can be ap-
plied for computing a Nash equilibrium in I'(N, {J;}, {Q;}).
Let x(0) € Q be an arbitrary initial joint action. Given x(t)
obtained at time t, the central unit runs the following up-
dates for each i € [N] at time ¢ + 1:

x;(t +1) = Projq, [x;(t) — yViJ;(x(0))], (10)

where y > 0 is a step size parameter. Note that the pro-
cedure (10) is represented by a standard gradient descent
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step for each cluster i with respect to its local cost J;. If we
assume full information, as described above, is available
for each agent in the system, then the updates of local ac-
tion x{: are as follows:

X)(t + 1) = Projy X)(6) - yV, Ji(x(e)], (11)

where V; J;(x(t)) = % is the jth coordinate of the vector

ViJ;(x(t)). The followiné theorem provides sufficient condi-
tions for the procedure (10) to converge to the solution of
the game.

Theorem 1. Let Assumptions 1 and 2 hold in the game
T(N, {J;},{Q;}). Let the step size y in the algorithm (10) be
chosenasy = f—z Then the algorithm (10) converges geo-
metrically fast to the unique Nash equilibrium in T with the
following rate:

(O - x"I” < exp {-—— | (0) - x"IP.

e
L2/
Proof. By summarizing the update rules of the algorithm,
we conclude that the joint action x(t) evolves as follows:

x(t + 1) = Projq [x(t) — yF(x(¢))].

Therefore, as x* solves the variational inequality (9), the
following well-established result, see, for example, [13],
can be applied:

x* = Projg[x" - yF(x™)].

Thus, we can use the non-expansiveness of the projection
operator to obtain

Ix(t +1) - x* I < () - y(F(x(0) - F(x*)) - x* |
= Ix(6) = x*I* = 2y(F(x(£)) - F(x*),x(t) - x*)

+ Y IF(x(6)) - Fx)I?
< (- 2y +Y’LA)Ix(0) - x* I,

where in the last inequality we used (3) and (4). By choos-
ingy = £ we conclude that

2 t
X(t+1) X" < (1 , ’L‘—2> x(0) - X" IP.

PN
Finally, noticing that (1 - ‘L‘—z) ~ exp {—LZ#} for large t,
we conclude the proof. O

As it has been mentioned above, the full information
setting in the system is a decisively restrictive assumption.
That is why, in the following sections, we relax it by assum-
ing that just partial information is available for each agent
in the system.
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4 Communication-based
distributed algorithm

In contrast to the full information setting of the previous
section, we now assume that the information describing
the optimization problem is distributed among the agents
in the network and that there exists no agent or central
unit that has access to all information of the problem. This
means in particular that the structure of the cost function
]{ of agent j in cluster i is only known by this agent and
not by any other agent in the network. Furthermore, we as-
sume that each cluster’s constraint set Q; is known by ev-
ery agent j in cluster i but not by any other agent that is not
part of this cluster. In such a setup, the clusters represent
only virtual players, which means that the clusters only de-
fine the group affiliation of the agents but do not perform
any actions themselves. However, the agents inside a spe-
cific cluster aim to minimize the cooperative cost function
defined in (1), i. e., aim to achieve the social welfare opti-
mum inside the clusters, while reacting to the actions of
agents from other clusters. Therefore, each agent needs an
update direction of its action in order to achieve the social
welfare optimum of the group. In contrast to the approach
in the preceding section, we present in this section an ap-
proach from [26] that is based on the direct calculation of
local gradients. Furthermore, we intuitively extend the re-
sults of [26], which are limited to unconstrained N-cluster
games, to the constrained case. Note that we do not pro-
vide an explicit convergence proof for the constrained case
in this paper but rather argument with the simulation re-
sults.

The approach of [26] is based on a gradient-tracking
technique. The main ideais to “mimic” the centralized gra-
dient descent step in (10) by constructing the estimation of
the sum of the local cost functions’ gradients within each
cluster as this information is not available under the cur-
rent setting. This sum is equal to Z;l:"l \ ]{ (x;,x_;) and corre-
sponds to the gradient of the cluster cost function J;(x;, x_;).
In order to perform such an estimation, the agents need
to be able to exchange information with each other over a
specific communication architecture. This communication
architecture is represented by a communication graph, in
which the agents correspond to the nodes of the graph
while the communication channels between the agents are
the edges. The gradient-tracking approach of [26] assumes
two kinds of directed communication graphs: Firstly, a
global graph G([N],.A), which contains all agents as nodes
and connects these agents through the arcs from the set A
regardless of their cluster membership. And secondly, N
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local graphs 9;([n;], A;), one for each cluster i, which con-
tain the agents of the respective cluster i as nodes and con-
nect only these agents through the arcs from the set A;,
such that no inter-cluster communication takes place. In
accordance with [26], we make the following assumptions
regarding these graphs:

Assumption 3. The underlying directed communication
graph S([N],.A) is strongly connected. The associated non-
negative mixing matrix R = [r;;] € R™" defines the weights
for the directed arcs and is row-stochastic, such that rg >0
ifand only if (k.j) € Aand Y ry; = 1,Vj € [n].

The underlying directed communication graphs
Gi([n;], A;) are strongly connected for alli = 1,..,N. The
associated non-negative mixing matrices C; = [c;'q-] e R
define the weights of the directed arcs and are column-
stochastic, such that c;{j > 0 if and only if (k,j) € A; and
Z;':"l c}'q. =1,Vk € [n;], Vi.

Note that the mixing matrix is a weighted adjacency
matrix according to the definition in above assumption.
By x¥ = (xl.(j),x(_jl? ), we describe the estimation made by
agent j in cluster i of the global decision vector x = (x;, x_;).
These estimations are necessary in order to evaluate the
local gradients. Furthermore, we introduce the so called
gradient-tracking estimation variable yl.(i ), which contains
an estimation of the gradient Y., Vill(x,x_) in cluster i
made by agent j. With these definitions, we are able to for-
malize a communication- and gradient-based solution al-
gorithm as follows:

N
90 = Y ), (12a)
k=1
xP(t +1) = Projg, [£(6) - ay? (0)], (12b)
Xt +1) =290, (12)
vt +1) = Z R
k=1
+ Vi]{ (xi(j)(t + 1),x(f?(t + 1))
-Vl (xP 0,30 ), (12d)

where a > 0 is a constant step size. Equation (12a) de-
scribes the communication step over the row-stochastic
matrix R. The resulting vector XU)(t) is the weighted sum
of the estimations of agent j’s neighbors and its own es-
timation. This vector is then split into the components
)‘(i(i) and )2(_]3, which respectively describe the estimations
regarding j’s own cluster i and the estimation regarding
other cluster variables. These values are then differently
processed to achieve new estimations: )‘c(fl) is directly taken
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as the new estimation value, i. e., x(_jl?(t + 1). For the clus-
ter action estimations, first a step with size a is performed
in the direction of the current gradient estimation yi(j)(t)
and then the result is projected onto constraint set Q; of
cluster i. In the last step of the algorithm, namely Equa-
tion (12d), the agents exchange information about their
gradient estimations with their neighbors and calculate
again a weighted sum of the provided estimations. Then,
each agent j calculates the gradient of their local cost func-
tions, using the estimation of time ¢+1 and ¢. The difference
between these gradients is then added to the weighted
sum and, thus, the gradient-tracking variable is updated.
If the gradient-tracking variable is initialized such that
yl.(j)(O) = Vi]{ (x"(0)), it can be shown that

v =397 (P ).x9t)). vi.

=
=

(13)

I
—_
.
I
—_

j

Therefore, if all yl.(j) forj =1,...,n; converge to a consensus,
the consensus variable estimates the sum of the gradients
of the local cost functions, provided that the action esti-
mations converge as well. The initialization of the action
estimations can be random.

As mentioned in the beginning of this section, conver-
gence is not yet proven for a constrained N-cluster game
under Algorithm (12). However, in the simulation section,
we provide simulation results of applying Algorithm (12)
to the constrained microgrid management problem (8).
Nevertheless, for unconstrained multi-cluster games, i. e.,
Q; = R for all i, convergence was rigorously proven in [26].
The following results summarize Theorem 1 of [26].

Theorem 2. LetQ; = R for alli and Assumptions 1, 2, 3 hold.
Then there exists a constant step size « > 0 such that the
estimations of all agents reach a consensus x© and this con-
sensus is a unique Nash equilibrium of the N-cluster game,
i.e.,
lim x9(6) = lim x®(t) = x = x*,vj,k,  (14)
t—o00 t—oo
provided that the estimations are updated according to (12)

and properly initialized. Moreover, the convergence rate is
geometrically fast.

Remark 2. The introduction of the gradient tracking term
yl@(t), which uses the difference between the current gradi-
ent and the one from the previous step (see (12d)) allows for
the choice of a constant step size a > 0, which guarantees
geometrically fast convergence of the algorithm (12). More
details on the idea of using the gradient tracking technique
can be found in [15].
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Remark 3. Note that, analogously, to the centralized
method (10), the convergence rate of the communication-
based algorithm (12) is linear. However, it can be noticed
from Proposition 1 in [26] that the convergence rate of the
latter procedure depends in a sophisticated way on the pa-
rameters u and L of the game mapping as well as on the
singular number o and o¢, of the mixing matrices (see As-
sumption 3). It is naturally to expect that this rate is slower
than one of the centralized algorithm. The simulation results
in Section 6 demonstrate this fact.

5 Payoff-based distributed
algorithm

In this section, we further restrict the assumption on the
information available to the agents in N-cluster games.
Now we deal with systems, where there is no explicit com-
munication between the clusters. However, as before, the
agents within each cluster can interact over an undirected
communication graph 9;([n;], A;), for which the following
assumption holds.

Assumption 4. The underlying undirected communication
graph G;([n;], A;) is connected for alli = 1,...,N. The asso-
ciated non-negative mixing matrix W; = [w}'q-] € R™" de-
fines the weights on the undirected arcs such that w;q- > 0if
and only if (k,j) € A;and ¥, w};j =1, Vk € [n;].

We consider the following zero-order information: No
agent has access to the analytical form of any cost func-
tion, including its own. Each agent can only observe the
value of its local cost function given any joint action of all
agents in the system. Formally, given a joint action x € Q,
each agent j € [n;], i € [N] receives the value ]{ (x) from
a zero-order oracle. The zero-order oracle here is a part of
the environment (information setting) in which the game
is formulated. For example, in energy management appli-
cations, one can consider a central power station, which
sets energy tariffs based on demand (actions of users in
the grid), such a zero-order oracle. The grid’s users do not
know the functional form of these tariffs but obtain their
values at each time slot from the central power station.
Note that the oracle does not intend or is able to coordinate
agents in achieving their goals. General zero-order oracles
are considered in the related works [4, 17, 8]. No agent has
or receives any information about the gradients. That is
why to be able to adapt the gradient-based algorithm to
this setting, each agent needs to estimate the local gradi-
ent by using purely the cost function values (zero-order in-
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formation). To do so each agent j € [n;], i € [N], based on
its local estimation x(’) of the joint action in the cluster i,
constructs a feasible query point xl.' 0 ¢ Q; and sends it to
the oracle. As a reply from the oracle, the agent receives
the value J/(x]”,X',). The vector ¥; here corresponds to
the point obtained by some combination of the query vec-
tors sent by the agents from the other clusters. Formally,

/(]1 XI Ui-1) X’ Gis1) X, (jN))

=4 i1 X oo Xy (15)

where j, denotes some agent from the cluster k € [N], k # i.
Further, each agentj € [n;],1 € [N], uses the received value
]{ (xl.' U),Xli) to obtain the random estimation di of its local
cost’s gradient Vi]{ at the point (xi(j), X_;), where

(11) 5 i)

Gist) ()
=(x XX M)

i+1 >° 7N

(16)

corresponds to the local estimations of other agents (one
for each cluster different from i) based on which query
points are obtained. Thus, d{ d’ (]’ 7, D,%")) € R, As
d{: is an estimation of V,-]{ (xi(i ),)”(_l-), we represent this vector
by the following decomposition:

&=V, %) + e, (17)
where ef is arandom vector reflecting inaccuracy of the ob-
tained estimation, i.e., the estimation error vector. Note
that for the joint query point (x' 0 % X_;) the oracle is free
to choose any combination x’; of the local queries defined
in (15). As one can see, in (17), we use a single point to
estimate each gradient. It differs from the two-point es-
timation technique used in [8], which requires an extra
coordination between the agents. There are two main ap-
proaches to sample the gradients of the functions based on
one-point estimations: a smoothing technique using the
Gaussian distribution and a sampling based on the uni-
form distribution over the unit sphere [3]. To provide an
explicit sampling process, let us focus on the latter option.
The idea is borrowed from the work [4] dealing with ban-
dit learning in games. To guarantee feasibility of the query
point for the gradient sampling, we introduce the follow-
ing assumption:

Assumption 5. The action sets Q’:,j € [n], 1 € [N], are
compact. Moreover, for each cluster i there exists a so called
safety ball B,(p) € Q; withr; > 0 and p; € Q;.

We assume the safety ball parameters r; and p; defined
above are known for each agent from the cluster i. To ob-
tain the estimation d{:(t) based on the current estimation
xl.(j)(t), each agentj € [n;] in the cluster i, i € [N], takes
the following steps at time ¢t. The agent samples the vec-
tor z{:(t) from the uniform distribution on the unit sphere
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S ¢ R™. The query direction is defined by wl.(j)(t) = z{: (t) -
ry 1(xl.(’)(t‘) - py)- Then, the query point at which the oracle
calculates the local cost function value is
) =xVt) + ow? (1)
= 1- oy W) + 0,2 +17'p), (18)

where o, is the query radius chosen such that o,r;! < 1.

Note that, given xi(j)(t) € Q;, the query point )‘(?)(t) above
is feasible, i. e., Xi(i)(t) € Q; (see [4] for more details). The
gradient estimation itself is obtained as follows:

&) = Z—i]}”(ﬁ}”(r»@(t» 2, (19)
where x_;(t) is defined as in (15).

Now we are ready to formulate the distributed op-
timization algorithm for Nash equilibrium computation
given the information setting under consideration. Start-
ing with an arbitrary estimation x(j)(O) € Q;, each agent j
updates the local estimation vectorx ,jelnl,ie[N], as
follows:

XP(t+1) = Projg, {Z wix(t) - a,d (t)]» (20)

=1
where w 1 corresponds to the element of the communica-
tion matrix W; in the cluster i, dé(t) is defined in (19), and
a; > 0 is the step size. Notice that in contrast to the proce-
dures in the previous sections, a time-dependent step size
needs to be introduced here. Moreover, this parameter has
to fulfill the following conditions:

zat:oo, Za?<oo’
t=0 t=0

Y aE{lE[(E)IITF} < oo,
t=0

Y aE{I€)((£)I’1F;} < oo almost surely,
t=0

(1)

where ei (t) corresponds to the current gradient estima-
tion error defined in (17) and 3’} is the o-algebra gener-
ated by the estimations {x (m)} o up to time t,j € [n],
i € [N]. The condition Y ;°;a; = oo guarantees that the
gradient step possesses enough energy to reach the solu-
tion, whereas the condition ¥ a? < oo keeps the “en
ergy” of the procedure bounded, which is required for the
convergence. The last two conditions in (21) allow for a di-
minishing contribution of the error term ef in the gradient
estimation (see (17)).

The statement below provides the main convergence
result regarding the procedure (20) and repeats the results
of [19].
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Theorem 3. Let Assumptions 1, 2, 4, and 5 hold and xl.(j)(t),
j € [n;], i € [n], be updated according to (20), where d{:(t)
is sampled as defined by (19). Moreover, let the step size a;
be chosen to satisfy the following conditions: ;2 &; = oo,

Y20 < 00, Y20 A0y < 00, Y% f;—fi
sampling radius. Then conditions (21) hold and the joint ac-
tion x(t) = (xy(t),...,x,(t)) converges almost surely to the
unique Nash equilibrium x* in the game T'(n, {J;},{Q;}), i. e.,

Prilim;_, Ix(6) - x"[ = 0} = 1.

< oo, where o; is the

Remark 4. Note that the set of the parameters a; and o;
satisfying the condition in the theorem above is non-empty.
Indeed, an example of an appropriate choice is a; = %,
o, = ‘t’—,‘,’with% <a<1,b>0,a+b>12a-2b>13
For such choices of the parameters and given Assumption 1,
one can apply the Chung’s lemma (see [5]) to the inequal-
ity (15) in [19] to conclude that the procedure in (20) pos-
sesses a sublinear convergence rate.* Thus, the optimiza-
tion method for the case of merely payoff information in the
system possesses the slowest convergence speed to the Nash
equilibrium.

6 Simulation results and
discussion

In this section, we present simulation results of the three
solution approaches, i. e., the centralized approach of Sec-
tion 3, communication-based approach of Section 4, and
the payoff-based approach of Section 5. All three algo-
rithms are evaluated on the same problem setup, which
is a version of the N-microgrid problem, described by the
example provided in Section 2. The goal of each microgrid
or cluster is to solve their own optimization problem (8)
by taking into account the actions of other clusters. A sta-
ble solution of the resulting game is the Nash equilibrium
x*, from which no microgrid has a reason to deviate if all
other grids keep their decisions. As a specific setup, we
implement three microgrids. The first microgrid contains
four generators, while each of the other two microgrids
contain three generators. Altogether, there are 10 genera-
tors and therefore 10 agents in the agent system. For ev-
ery generator, a one-dimensional power output needs to
be chosen. Additionally, the power bought from the main
grid needs to be determined by every microgrid. Assuming

3 One possible parameter setisa=1,b = %
4 Here the expected distance to the solution is measured. Namely,
one can demonstrate that E[x(¢t) — x*| = O (%) for some ¢ > 0.

T. Tatarenko and J. Zimmermann, Distributed optimization methods =— 245

a single consumer, the combined strategy vector has a di-
mension of 13. We choose the step sizesy = 0.01, a = 0.025,
a; = 0.04/(t>%*) and query radius 0; = 18/(t°?) for the
respective algorithms. The parameters are tuned by grid
searches to provide optimized performances. For the com-
munication architectures of the global and local graphs of
Algorithm (12), we choose undirected, connected graphs
in order to create comparability to the payoff-based algo-
rithm, which is restricted to undirected communication
links.

In Figure 1, the relative error norms ||x — x*||,/|1x*|l,
between the Nash equilibrium x* and the decisions at
iteration t are plotted over the iterations. It can be ob-
served that the centralized approach converges at the
fastest rate and achieves a relative error of 0.1 already after
t = 35 iterations. The communication-based algorithm ex-
hibits slower convergence, achieving the same error after
t = 1096 iterations. The payoff-based algorithm, however,
shows by far the slowest convergence. Although always
converging on average towards the Nash equilibrium, even
after t = 1-10° iterations the remaining relative error norm
is approximately at 11.5.

This result is in accordance with the information struc-
ture of the different algorithms. The centralized algorithm
of Section 3 assumes that all information about the prob-
lem is gathered at a single, central node, such that the
gradients of the cost functions are available to the opti-
mizing unit and that there is no need to estimate the ac-
tions of other clusters or agents. In the distributed setup
of the communication-based algorithm of Section 4, how-
ever, communication graphs are established between and
inside the clusters such that the estimation of actions is
possible. This additional estimation process, necessary
for achieving consensus among the estimations, together
with the sparsity of information is responsible for slower

e

b 10"
=
s
| 10°
8
——  Centralized
10-1
Comm.-based
—— Payoff-based
T T T T T
10° 10 10? 10° 10* 10°

Iteration ¢t

Figure 1: Evolution of the relative error norms for the three algo-
rithms under consideration.
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convergence. Nevertheless, a constant step size can be em-
ployed to update the actions based on the cluster-gradient
estimation. The payoff-based approach of Section 5 is
based on a similar distributed information setup. In con-
trast to the communication-based approach, no commu-
nication is allowed between the clusters and the consen-
sus dynamic is restricted to inner-cluster states. The up-
dates are performed using an estimated gradient. These
estimations in their turn are obtained based on the cost
functions’ values at specific query points. Thus, less infor-
mation about the direction of the steepest descent is pro-
vided to the agents in comparison to the gradient-tracking
method of the communication-based approach. This, to-
gether with the randomness of the procedure, prolongs
the convergence time. Another disadvantage of this algo-
rithm is the necessity for a declining step size sequence
a; in combination with an additional sequence o; for the
query radius. It is a known fact that optimization meth-
ods, especially of the distributed nature, demonstrate slow
convergence rates when the step size sequences are time-
dependent. Furthermore, finding an optimal parameter-
ization for these sequences is a non-trivial task, as it is
problem-dependent and the optimal choice cannot be en-
sured. However, it should be emphasized that for the
payoff-based method the clusters do not need to reveal
their actions to their competitors, as it is sufficient to sub-
mit a query point to the oracle in order to receive infor-
mation about the update step. In contrast to that, for the
communication-based method, each agent estimates the
actions of all clusters. As a consensus on the estimations
is reached with time, each agent knows the actions of their
competitors. This fact can be regarded as an intrusion in
the privacy of other clusters as only the cost functions and
constraints remain private in this setup.

In summary, the convergence speeds of the proposed
methods reflect the assumed restriction of information in
the system. Whether scarcity of information is preferred
over convergence speed needs to be evaluated for each par-
ticular problem and the corresponding game design.

7 Conclusion

This paper presents optimization methods applicable
to the combination of the competitive and cooperative
tasks arising simultaneously in multi-agent systems. Three
methods for different information settings are provided.
Their efficiencies are formulated by theoretical statements
as well as validated by simulations. In future work, we
will further investigate possible information settings in the
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system as well as consider more realistic assumptions on
the costs (non-strongly monotone game mappings) and
constraints (coupling and time-dependent constraints for
which projection operator is not straightforward to calcu-
late). Moreover, we will aim to estimate lower bounds for
optimization algorithms in games with different informa-
tion structures and present corresponding methods with
optimal rates for a given class of problems.

Funding: This work was funded by the German research
association (Deutsche Forschungsgemeinschaft / DFG) —
priority programme 1984.
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