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Abstract: Separably developed functionality as well as increasing situation complexity poses
problems for building, testing, and validating future Advanced Driving Assistance Systems
(ADAS). These will have to deal with situations in which several current ADAS domains
interplay. We argue that a generalized estimation of the future ADAS functions’ benefit is
required for efficient testing and evaluations, and propose a quantification based on an estimation
of the predicted risk. The approach can be applied to several different types of risks and to such
diverse scenarios as longitudinal driving, intersection crossing and lane changes with several
traffic participants. Resulting trajectories exhibit a proactive, ”foresighted” driver behavior
which smoothly avoids potential future risks.

1. INTRODUCTION

We are currently seeing a phase of increased Advanced
Driving Assistance Systems (ADAS) functionality for
driver support, comprising forward collision warning
(FCW), autonomous emergency braking (AEB), traffic
jam assist (TJA), cross traffic assist (CTA) and several
more. Common to all these is that they have been devel-
oped and validated for a specific narrow working domain in
terms of context evaluation, operation range and even in-
terfaces and interaction concepts. Future Adaptive Driver
Assistance Systems applicable to more complex situations,
say, a mixed longitudinal/lateral behavior situation while
overtaking on the highway in the presence of multiple other
traffic participants, or a multilane crossing with combined
frontal and lateral urban traffic, will require (i) a gener-
alization resp. seamless interplay of the concepts used for
the existing, specialized ADAS functions, (ii) an extended
analysis of the drivers context in terms of larger numbers
of interacting traffic participants and road structure infor-
mation, (iii) a larger prediction horizon for the dynamics of
the ego-vehicle and the other traffic participants and (iv)
a quantification and validation of the operating system.

On one side, an extended analysis of the drivers context
implies capabilities for the automatic interpretation of the
current driving situation, as well as the estimation of the
consequences a situation interpretation has on the ego-
vehicle’s behavior options. On the other side, a validation
of the future ADAS functions requires new approaches to
deal with the combinatorial variety of parameter settings.
The rising situation complexity, together with the sparsity
of events (e.g. one fatal accident per 127 million driven
km, Shladover (2009)) that can be used for a statistical

validation of a system in real world operation, leads to
prohibitively high testing costs. Common to the extended
context analysis and the system validation is that both
need a quantification in terms of usefulness for the drivers
purpose.

In this work we propose to model the usefulness as a combi-
nation between risk and utility. Utility can be measured in
a straightforward way as e.g. the time and money required
to travel from A to B. On the other hand, general risk
is considered as the probability of something happening
multiplied by the resulting cost if it does. Since standard
risk indicators like Time-to-Contact (TTC) are not suffi-
cient for dealing arbitrary situations, we take an approach
for the quantification of general driving risks according to
Eggert (2014) and show how it can be used to implement a
risk and utility based behavior planning or driver behavior
support, for situations of incremental complexity.

The approach comprises the following steps:

• A classification of the current scenario into situa-
tion hypotheses as perceived from the ego-vehicle
perspective, based on context information and the
spatiotemporal pattern of interactions between traffic
participants.

• A selection step based on the situation hypotheses
and their estimated associated empirical risks. The
result is a subset of situation hypotheses considered
relevant for the ego-car behavior that apply to the
current scenario.

• A prediction step during which we extrapolate the
future development of each of the selected situation
hypotheses resp. the states of the traffic participants.
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• For each situation hypothesis and for a variety of
own intended trajectories, an estimation of the future
predicted risk and utility. For each situation we then
get a risk landscape (risk map) which we can use for
detecting the future points of high criticality.
• The planning of appropriate ego-car behavior options

which cover the space of possible behaviors avoiding
points of maximal risk in the risk landscape.
• The evaluation (for ADAS support and warning func-

tions) or selection (for autonomous driving functions)
of the most appropriate ego-car behavior according to
their overall expected risk and utility.

From a systems perspective, it has been postulated that
most ADAS functions rely on the 4 steps of object assess-
ment, situation assessment, risk assessment and decision
making, Hall and Llinas (1997). These steps are sufficiently
general to be matched to a large variety of systems in-
cluding the one presented in this paper. However, several
components of these 4 steps, as it is the case for appropri-
ate risk metrics and situation prediction technologies, are
subject of current research.

In Lefèvre et al. (2013), a difference is made between
intentions and expectations of the driver, and risk is
assessed by detecting conflicts between the two. It is
argued that such an approach is supported by the fact that
a large number of accidents is caused by driver errors, see
e.g. TRACE project (2008). However, such a model does
provide rather a kind of alertness level for an observing
driver than a quantifiable risk measure for the ego-vehicle.

In general, risk estimation approaches can be divided into
2 major groups. On one side, holistic systems incorporate
context information to directly identify the criticality of a
traffic situation, extrapolating from previously recorded
data or using criticality rules and indicators. Learning
systems, knowledge-based systems and systems that rely
on risk indicators like TTC (see e.g. van der Horst (1991);
Hillenbrand et al. (2006)) fall into this group. Systems
that learn from empirical data have been successfully
trained to identify potentially dangerous situations based
on databases with accident recordings, see Chinea and
Parent (2007); Salim et al. (2007). One issue here is that
representative data is not available to a sufficient extent,
neither from real recordings nor from simulations; another
drawback is that scalability from simple to more complex
situation patterns is difficult.

This first group of approaches involves a strong predictive
component, since risk always means hypothetical future
risk. In the learning approaches, the prediction is implicit,
and comes from the mapping between the vehicle states to
an accident event or criticality measure some time after.
Similary, knowledge and indicator-based systems detect
criticality based on sets of heuristics, where a prediction
is implicitly comprised in the designed rules and risk
indicators, so that e.g. a too high speed before the crossing
may imply a risk when the car reaches the intersection.

In the second group, risk estimation approaches are based
on internal simulations for predicting the future time
course of the entities in the environment. The risk is then
calculated as a function of the future states, see e.g. Al-
thoff et al. (2009); Käfer et al. (2010); Rodemerk et al.
(2012). Popular are trajectory estimation methods, which

use different motion models to predict the possible future
states and then check trajectories for mutual collisions.
The degree of model complexity of the prediction models
varies, ranging from motion models without constraints
up to models which incorporate different driving maneu-
vers and the current road layout, see e.g. Lefèvre et al.
(2014) for a review. To consider the uncertainty spread of
possible future trajectories, sampling-based methods are
frequently used. Popular behavior planning based on grid
and potential-field-based context representations also fall
into this group.

In this paper, the contribution to active safety systems
concentrates on a system with the steps of understanding
the current driving situation, efficiently predicting the be-
havior of the relevant entities in the environment, estimat-
ing the level of expected future danger that the situation
poses, and planning the most appropriate driving behavior
which should be taken in order to lower the danger. Our
approach is based on a rigorous foundation of probabilistic
risk for traffic scenarios and provides a formal justification
why both approaches - holistic risk estimation on one
side and detailed state prediction with risk evaluation as
function of predicted states on the other side - are needed
for an efficient, general-purpose risk estimation.

2. SITUATION-BASED RISK EVALUATION AND
BEHAVIOR PLANNING

Figure 1 shows a rough overview of the different com-
ponents of the general approach for behavior generation,
based on risk considerations. Starting from the left-hand
side, knowledge xt about the scene at time t is acquired
using sensor measurements. Since the scene may be com-
posed of several entities (e.g. different traffic participants,
infrastructure elements, etc.) with state vectors xi

t (ego car
state x0

t ), we write xt := {x0
t ,x

1
t , ...,x

n
t }. Using discrete

time step indices t, t + 1, ..., t + s (time step size ∆t), we
additionally introduce state vector sequences

xt:t+s := {xt, ...,xt+s} (1)

which describe e.g. the states of the scene from t (now)
until a time t+ s (s into the future).

The overall target of the system is to compute a behavior
in form of a trajectory over the ego-car states x0

t:t+s
which minimize an expected/predicted risk. Since risk is
the probability that a disruptive event (e.g., an accident)
happens, multiplied by the cost resp. the damage if it does,
we define future risk 1 at t+s as the cost expectation value

r(t+ s,xt) =

∫
ct+s P (ct+s|xt) dct+s (2)

where P (ct+s|xt) is the probability of a damage ct+s which
happens at t + s, if we know the states xt of the current
scene.

An all-situation risk prediction is computationally infeasi-
ble, therefore we partition the prediction space into differ-
ent prototypical situation classes. A situation combines a
small subset of interacting entities (usually car-car or car-
infrastructure pairs) with a prototypical spatiotemporal
behavior pattern x̂t+1:t+s (with x̂t = xt), like the ego-car
braking to give another car right-of-way at an intersection.

1 To be precise, this is the risk density over time.
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Fig. 1. General approach for situation based risk evaluation and behavior planning.

This results in situation-specific state vector sequences
which depend on the situation hypotheses ht, so that we
get

P (ct+s|xt) =
∑

ht

P (ct+s|xt, ht)P (ht|xt) . (3)

The situation hypotheses probabilities P (ht|xt) are cal-
culated at t from the evidence xt and are valid during
the prediction interval [t, t + s], until their calculation is
renewed. In Fig. 1, second box from left, the situation
classification component is shown.

The situation-dependent damage probability from (3) can
be expanded to

P (ct+s|xt, ht) :=

∫
dxt+s ...

∫
dxt+1 (4)

∑

et+s

P (ct+s|et+s,xt+s)P (et+s|xt:t+s)P (xt+1:t+s|xt, ht)

i.e., a combination of (i) a damage probability P (ct+s|...)
given that an event et+s happens at t+s and the states at
the event time are known, (ii) a future event triggering
probability P (et+s|...) which depends on the predicted
state sequence xt:t+s, and (iii) a prediction probability
P (xt+1:t+s|...) of the state vector sequences xt+1:t+s for
each situation hypothesis ht, if we start with states xt.

The discrete variable et+s describes the event class such as
e.g. car-to-car, car-to-pedestrian or car-to-infrastructure
collisions or control loss at drivability limits. For each of
them, a specific damage probability P (ct+s|et+s,xt+s) is
used, e.g. car-to-car accidents are modeled using a partially
inelastic collision approach. In addition, et+s = 0 indicates
no event, in this case the costs are given by efficiency,
utility and comfort considerations.

The event triggering probability P (et+s|xt:t+s) can be
calculated using a so-called survival function as used in
this paper (see Eggert (2014)), or by checking physical
collision by coincident spatial occupancy (Schreier et al.
(2014)). What remains to be calculated is the situation-
dependent state prediction P (xt+1:t+s|xt, ht). A standard
way is to use (expensive) stochastic sampling methods
in combination with appropriate propagation probabilities
P (xt′+1|xt′ , ht) from one timestep to the next. However,
to reduce the complexity of the integrals in (4) yet ap-
propriately capture the growing prediction uncertainty
over time, we approximate the probabistic state vector

sequence by its situation-specific prototypical state vector
sequence x̂t+1:t+s,

P (xt+1:t+s|xt, ht) ∼ δ(xt+1:t+s − x̂t+1:t+s(xt, ht)) (5)

and model the growing uncertainty in the event triggering
probability by incorporating explicitly the prediction time
s to get P (et+s|xt:t+s, s). As a second approximation,
for simplification 2 we introduce a deterministic damage
calculation for fixed known states xt+s,

P (ct+s|et+s,,xt+s) ∼ δ(ct+s − ĉt+s(et+s,xt+s)) (6)

Taking eqs. (2), (3) and (4) and inserting eqs. (5) and (6),
results in the final risk estimation formula

r(t+ s,xt) =
∑

ht

r(t+ s,xt, ht)P (ht|xt) (7)

with the situation-dependent risk

r(t+ s,xt, ht) ∼
∑

et+s

ĉt+s(et+s, x̂t+s(xt, ht))

P (et+s|x̂t+1:t+s(xt, ht), s) . (8)

The risk calculation therefore contains a damage cost
calculation according to ĉt+s for critical events, a future
event triggering probability P (et+s|...) which depends on
the predicted prototypical state sequence x̂t:t+s(xt, ht),
and a situation hypothesis probability P (ht|xt).

The prediction of future states x̂t:t+s(xt, ht) is achieved
by a deterministic interactive agent model according to
Eggert et al. (2015), however, arbitrary other models with
a sufficient behavior complexity can be used here. In
Fig. 1, third box, predicted trajectory pairs are shown for
2 different situation hypotheses. In the 4th box, the risk is
calculated according to (7) for different ego-car behavior
options, yielding so-called risk maps. In the 5th box,
behaviors are planned by searching for the best trajectories
in terms of overall cost. Finally, the 6th box shows the
selected behavior execution.

The situation classification and its benefits are explained
in section 3. The detailed risk evaluation, behavior plan-
ning and execution are extended in section 4. The result is
a behavior estimation based on generalized predictive risk
estimation.

2 This is however not necessary so that a full probabilistic treatment
of the damage can be easily incorporated back again.
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Fig. 2. Hypotheses generation, starting from a complex traffic scene (a). In (b), the scene is decomposed into interacting entity pairs (green
boxes), containing the ego-vehicle. In (c), possible path combinations are considered. In (d), for each of the affecting vehicle’s potential
dynamic behavior patterns a situation hypothesis is created.

3. SITUATION RECOGNITION & SITUATION
HYPOTHESES SELECTION
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Fig. 3. (a) shows the probability of possible hypotheses
(h1(left; right(free drive)), h2(left; straight(free drive),
h3(left; straight(yield)) dependent on the distance of
the affecting vehicle to the intersection. The vehicle actually
performs a right turn. (b) shows the corresponding longitudinal
velocity profile.

From (8) we see that in order to reliably asses traffic scenes
it is necessary to predict future state vectors x̂t+1:t+s of
traffic participants several seconds into the future. How-
ever, inner-city traffic scenes exhibit a high variability
and complexity, due to the number of possible occurring
scene entities and their interactions, which leads to an
overwhelming number of necessary predictions. Therefore,
we propose to decompose traffic scenes into discrete situ-
ations, as proposed in section 2, with similar occurring
spatiotemporal trajectory patterns of interacting scene
entities forming a discrete prototypical situation. At the
same time, we focus on keeping the number of simul-
taneously considered interacting traffic participants per
situation as low as possible. Situations allow to efficiently
partition complex, unseen traffic scenes into patterns with
limited interactions and predict situation-specific future
state vector sequences x̂t+1:t+s(xt, ht).

3.1 Hypothesis Generation and Validation

Based on the evidence of a traffic scene xt, comprising
infrastructure information, dynamic as well as static scene
entities, usually a large set H of situation hypotheses

ht applies. Each hypothesis consists of one possible path
combination for simultaneously considered scene entities
(non ego-vehicles are referred to as affecting entities)
Additionally, each affecting entity’s path is associated with
a characteristic dynamic behavior pattern (e.g. differing
velocity profiles). Typical patterns comprise e.g. giving
right of way, driving behind a vehicle, stopping at a traffic
light, etc.

The generation process for hypotheses ht is exemplarily
presented focusing on bilateral situations. The hypotheses
generation can be divided into three steps, as illustrated in
Figure 2, comprising entity grouping, path combinations
and dynamic behavior patterns, to arrive at the full set of
situation hypotheses H.

To be able to deal with uncertainties, caused by imperfect
sensor perception, unobservable variables (e. g. driving in-
tention, style, . . . ) and insufficient prediction capabilities,
we propose a probabilistic situation hypotheses validation,
resulting in a belief P (ht|xt) for each situation hypothesis,
as introduced in (3).

For the calculation of the situation hypothesis probability,
we use probabilistic classifier methods like proposed in
Klingelschmitt et al. (2014). These are fed with different
situation indicators based on situation-dependent context
information extracted from xt, which quantify the matches
between the entities states with their expected paths and
spatiotemporal behavior patterns. The result is P (ht|xt),
the probability that a situation ht will apply to the driving
patterns during an upcoming time interval.

Figure 3 shows the result of an exemplary situation hy-
potheses validation performed on a real-world scenario
similar to the one shown in Figure 2 (a), except that the
ego-vehicle is planning to make a left turn. In this case, sit-
uation hypotheses resulting from the pairwise combination
of the ego-vehicle with the orange vehicle are evaluated.

3.2 Hypothesis Selection

Depending on the complexity of the encountered infras-
tructure and present scene entities, the set of instantiated
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Fig. 4. The AUC curves are based on ROC curves created by
adapting the threshold γ for our proposed selection scheme
(9) (blue) and a strictly belief-based hypotheses selection (γ <
P (ht|xt)) (red). The true positive and false positive rates are
based on the number of selected situation hypotheses compared
to the actually encountered relevant situation hypotheses. The
data used for the shown quantitative evaluation is obtained
from a realistic traffic simulator. A detailed real-world example
can be found in Klingelschmitt et al. (2015).

situation hypotheses increases combinatorially. This leads
to two main disadvantages. Firstly, the computational
costs for predicting and evaluating all hypotheses ht ∈ H
several seconds into the future get concomitantly high.
Secondly, subsequent risk assessment techniques and be-
havior planning algorithms also suffer from the amount
of hypotheses taken into account. Therefore, we propose
a beforehand situation hypotheses selection scheme, with
a subsequent concentration on those situations that are
relevant for the ego-car’s behavior.
The selection is based on combining the situation-specific
risk r(t + s,xt, ht) from eq. (8) with the hypothesis be-
lief P (ht|xt) from the validation step in section 3.1 in
order to assess if the particular hypothesis ht needs to
be further investigated by subsequent systems. A situation
hypothesis is selected, and thus added to the set of relevant
situation hypotheses H′, if the joint situation-specific risk
and hypothesis belief exceed a threshold γ

γ < r(t+ s,xt, ht)P (ht|xt). (9)

Since r(t + s,xt, ht) is not yet known at this point and
only calculated afterwards as explained in section 2 for
the selected situation hypotheses, we proposed to learn
situation-specific regression models Mh that estimate ex-
pected situation-specific risks from empirical data, as
introduced in Klingelschmitt et al. (2015). In order to
make conservative and robust estimations, we estimate
the situation-specific risk from (9) by using the maximum
measured situation-specific risk within the considered time
interval t′ ∈ [t, t+s′]. Hence, we train our situation-specific
risk regression models to estimate

Mh(xt) ∼ max
s′

r(t+ s′,xt, ht).

Using this approach, the number of superfluously in-
spected hypotheses can be drastically reduced, as shown
by the AUC (Area Under the Curve) plots in Figure 4.

4. GENERALIZED PREDICTIVE RISK ESTIMATION

4.1 Predictive Risk Maps

Once we have selected a suitable subset of relevant sit-
uation hypotheses which apply to the current ego-car’s

Fig. 5. Predictive Risk Map - Top: evaluation of risk (top right)
based on predicted ego car (green) and other car (red) trajec-
tories (top, left) - Bottom: Generation of predictive risk map
(bottom, right) based on risk evaluation of a variation of ego
car trajectories and other car trajectory (bottom, left).

driving context, the general target of our system is to plan
the ego car’s future behavior (here future velocity profile)
to be safe and of high utility. For this purpose we have
to evaluate possible future behavior alternatives in terms
of risk and utility. In a first step we concentrate on the
behavior evaluation of a single situation. This can be done
by building so called Predictive Risk Maps, introduced by
Damerow and Eggert (2014), which indicate how risky
a certain behavior will be in the future. The trajectory
prediction of one situation provides one predicted proto-
typical trajectory for each involved entity, here x̂0

t:t+s for
the ego and x̂1

t:t+s for another car. We can now evaluate
the risk by comparing the ego car’s and one other car’s
trajectory pairwise at the same moment in predicted time
using the situation dependent risk function (8). For illus-
trative purposes we use the risk over longitudinal distance
d0l instead of future time s, as we can equivalently write
r′(d0l ,xt, ht) = r(t+ s(d0l ),xt, ht).

As a result we gain a measure for future risk, illustrated
in Fig. 5 (top). If we now build a variation of ego car
trajectories x̂0

t:t+s(xt, ht, p) using a variation parameter
p and evaluate the risk for each variation, we gather a
predictive risk map R(t+ s, x̂0

t+s(xt, ht, p),xt, ht), or

R′(d0l , x̂
0
d(xt, ht, p),xt, ht), (10)

as shown in Fig. 5 (bottom).

Here we vary only the ego car longitudinal velocity
v0l (xt, ht, v

0
l,target) using different target velocities v0l,target

and incorporate dynamic constraints in terms of maximal
acceleration/deceleration indicated by the dashed white
trajectories in Fig. 5 bottom right. As a result we arrive
at a predictive risk map in the (d0l , v

0
l )-plane for a fixed

initial state xt and one situation ht, as R′(d0l , v
0
l ) 3 (in

the following we omit constant parameters in case they
are not necessary).

We now search for low-risk paths across the risk map.
These will vary from the predicted trajectories x̂0

d(xt, ht, p)
used for building the risk map (e.g. dashed white lines
in Fig. 5 bottom right), leading to distortions in the risk
map. For small deviations from the original trajectories,

3 Remark however that risk maps which depend on more complex
ego-car behavior parameterization, as e.g. for lateral control, can be
treated similarly.
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Fig. 8. Complex Turning Behavior: other cars as risk sources (1-4),
curve as risk source (5).

however, the risk map topology does not vary substantially
and can be used for planning.

4.2 Safe Trajectory Planning in Dynamic Environments

With the predictive risk maps R′(d0l , v
0
l ) for a certain

situation we can now plan the best possible future behavior
using e.g. a sampling based trajectory planner such as
RRT*. The RRT* is an extension to the general RRT
(Rapidly exploring Random Tree) enabling the algorithm
to converge to the globally optimal solution minimizing a
given cost function. As presented by Damerow and Eggert
(2015) we use the algorithm to plan the ego car’s future
trajectory minimizing the overall costs as a combination of
risk and utility normalized by the ego car’s driven distance,

Cost(d0l , v
0
l ) =

1

d0l

∫ d0
l

0

[R′(dl, v
0
l ) + TC(dl, v

0
l )]ddl ,(11)

with the utility / travel costs TC. We employ a cost
function which is linearly increasing with the deviation
of the ego car’s velocity v0l from the desired velocity v0l,des.
TC0 and m define the minimal travel costs and slope of
the cost function.

TC(d0l , v
0
l ) = TC0 +m |v0l,des − v0l | . (12)

The simulation results in Figs. 7 and 8 show, that this
approach can be applied to a wide range of different
scenarios, starting from highway scenarios with multiple
traffic participants (e.g. Fig. 7) up to complex inner city
scenarios (e.g. turning left at an unmanaged intersection
with multiple other traffic participants involved (see Fig.
8). The turning scenario illustrates that our approach is
also able to handle multiple types of risk, here additionally
the risk for loosing control in curves due to high lateral
acceleration, besides collision risks caused by several other
dynamic objects.

4.3 Safe Trajectory Planning under Multiple Situations
with Uncertainty

Until now we concentrated on a single, although complex,
situation to plan the future behavior, using only one pre-
dicted spatiotemporal trajectory for each involved traffic
participant. However, the situation classification and se-
lection steps described in section 3.1 are in general not
able to provide the one and only occurring situation, but
a selection of situation hypotheses ht. We additionally ob-
tain the occurrence probability P (ht|xt) for each selected
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(a) (straight;left(yield)) Other
car (purple) stopping to give
way for the ego car (green).

(b) (straight;left(free)) Other
car not stopping due to over-
looking the ego car.
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(c) Driven velocity profiles.
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(d) Situation occurrence proba-
bilities P (ht|xt).
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(e) Combined predictive risk maps timeline t = [0, 2, 4, 6]s includ-
ing planned future trajectory (green) and safe future trajectory
(white).
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(f) Situation-dependent unweighted predictive risk maps and
planned future trajectory including risk threshold violations
(white arrow). ”other stopping” situation (top) and “other not
stopping” situation (bottom).
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(g) Comparison of velocity profiles. Check indicates correct situ-
ation classification, flash indicates wrong situation classification

Fig. 9. T-Intersection with uncertainty if other car is giving way.

situation and, by the following trajectory prediction step of
each situation, one predicted trajectory for each involved
entity. The target is now to find a future behavior which is
of low risk and high utility in all hypothetical situations,
and especially in the situation that will finally occur. The
risk evaluation step generates one predictive risk map per

situation using the situation dependent predicted trajec-
tories x̂t:t+s(xt, ht).

The behavior planning step, consisting of 5 sub-steps, is
shown in detail in Fig. 6. It is based on the concept of
planning the future behavior with high utility for the most
probable situation and additionally keeping an always safe,
but possibly inefficient “plan b” for the other situations.
By following these steps, we obtain a future behavior which
is of high utility for a confident situation classification,
but still safe for the case of an unconfident or even wrong
situation classification. For this purpose, we first join the
predictive risk maps of all possible situation hypotheses in
a combined predictive risk map, according to (7) and (8).

R′(d0l , v
0
l ) =

∑

ht∈H′

R′(v0l , d
0
l , ht)

P (ht|xt)

max
h′
t∈H′

(P (h′t|xt))
. (13)

This has the desired effect that the most likely situation is
fully taken into account for behavior planning, whereas the
other, less likely, situations are still taken into account, but
weighted with P (ht|xt)/maxh′

t
(P (h′t|xt)) ≤ 1. This results

in a future behavior that mostly adapts to the best behav-
ior for the most likely situation, but smoothly incorporates
less likely situations. A confident situation classification
would provide high probability only for one situation and
low probability for the other situations. In this case the
behavior adapts almost only to the best behavior of the
most probable situation. In case of an unconfident situa-
tion classification, there are several situations with similar
probability, and the resulting behavior would take risk of
all those situations similarly into account.

Still we can not ensure an always safe behavior for the
case that an unlikely situation suddenly kicks-in. Although
the risk of this unlikely situation was partially taken into
account and the resulting behavior averts this situation’s
risk, this might not be sufficient to ensure a safe behavior
for this situation.

Thus in a further step we check the planned future tra-
jectory for a risk threshold violation on each situation’s
risk map. In case of a threshold violation we then apply
an escape trajectory (e.g. emergency braking) as late as
possible, but as early as necessary to safeguard the situa-
tion for the case it actually kicks in. The finally executed
safe trajectory consists of two parts, the trajectory of high
utility planned using the combined risk map, followed by
a possibly necessary escape trajectory. In general / in case
of a confident situation classification, situations with low
probability and high risk drop even further in probability
and are finally discarded by the situation classification step
as explained in section 3.2, or drop in risk, as the entities
act in a risk aversive manner. As we reevaluate and replan
from time to time the escape trajectory will usually never
be executed. Only if a risky situation does not drop in risk
and/or occurrence probability this escape trajectory will
be executed to keep the overall situation safe.

In Fig. 9 we present a scenario, where a car approaches
a T-intersection and plans to turn left onto the ego car’s
way. We analyze how our approach copes with the two
hypothetical alternatives that (a) the other car yields to
the ego car and (b) the other car violates the left-yields-to-
right-rule and drives through. The most common scenario
- the other car yielding way of right - is analyzed in detail

Proceedings of the 3rd International Symposium on Future Active Safety Technology Towards zero traffic accidents, 2015

99



using the generalized predictive risk estimation approach.
In this case, the situation classification (d) results in a
high probability for the correct situation (a) and a low
probability for situation (b). The predictive risk maps in
(f) for the two situations are calculated and combined
(wheighted by their occurrence probabilities) into the over-
all risk map (e), which is then used by the RRT* planner
to calculate the desired future behavior (green line). This
is then checked and safeguarded with possibly necessary
escape trajectories (white line). The resulting ego-velocity
profile (c) for this scenario shows a behavior of low risk
and high utility (not significantly slowing down). In Fig. 9
(g), we compare different alternative cases, where the situ-
ation classification provides a false or correct classification
results for the two situations (that the other car stops or
does not stop). A wrong situation classifications deteri-
orates the resulting trajectories leading to an emergency
braking maneuver, however they still are within the low-
risk bounds of operation.

Confirmed by the simulation results the approach enables
to plan safe and efficient trajectories for the case of a
confident and correct situation classification. With lower
situation classification confidence we get a less efficient,
but still safe future behavior. This holds even for the case
that the situation classification favors the wrong situation.

5. SUMMARY

We proposed a general approach for predictive risk estima-
tion and behavior planning in dynamic environments that
can be applied to several different scenarios comprising a
mixture of risks such as e.g. longitudinal collision risks,
risks of passing nearby without collision, risks at intersec-
tions and highway entrances and risks in curves.

The predictive risk approach allows to incorporate the
inherent uncertainty that is involved when dealing with
long-term trajectory predictions and noisy sensor mea-
surements. Risks that are still further away in the future
appear broader and more delocalized in space and time,
increasing and sharpening as they become more immi-
nent. The results show that different types of risk can
be integrated within a single, generalizing model which
additionally scales with increasing complexity. The same
model results in simulated smooth and low-risk driving
trajectories for such diverse situations as unmanaged inter-
sections, lane entrances and lane changes. In the inspected
situations with a simulated driver, the resulting behavior
mimics that of a ”foresighted” driver who is aware of the
upcoming risks and reacts proactivley to avoid them. For
real-world operation, the approach requires sensor-based
estimations of the other traffic participants positions and
velocities as well as of the road structure, which will be
available in the not-so distant ADAS future.

After the desired types of risks have been selected and
parameterized, we can apply the same type of estimation
as a measurement for the quality of a performed driving
action. E.g., the risk along a driving route can be measured
with and without a certain new ADAS function, allowing
for an efficient continuous quantification and validation of
new ADAS functions by risk in conditions where conven-
tional approaches like TTC are insufficient.
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