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Zusammenfassung

Die Entfernung eines Nukleons von einem Atomkern ist ein starkes Werkzeug zur Untersuchung der
Einteilchenstruktur. Durch Vermessen des übrigen Kerns kann der Bahndrehimpuls von dem entfern-
ten Nukleon bestimmt werden. In den letzten Jahrzehnten wurde systematische Studien über die
Reduzierung der Einzelteilchenstärke und der parallelen Impulsverteilung des entfernten Nukleons
durchgeführt. Eine asymmetrische Impulsverteilung und Diskrepanzen zwischen den gemessen und
vorhergesagten Wirkungsquerschnitten, im speziellen der stark gebundenen Nukleonen, zeigten,
dass der Reaktionsmechanismus noch weiter verstanden werden muss. Bei theoretischen Studien mit
einem Protontarget bei 100MeV/Nukleon kam heraus, dass die asymmetrische Verteilung von der
Interaktion des übrig gebliebenen Kerns mit den anderen Teilchen, die den Kern verlassen, stammt.
Eine Bestätigung dieser theoretischen Ergebnisse würde die Bedeutung der Endzustandinteraktion
bestätigen. Jedoch wurde ein Großteil der experimentellen Daten mit leichten Ionentargets aufge-
nommen und es gibt keine Daten mit Protonentargets in diesem Energiebereich.
Deswegen wurde die Reaktion bei der ein Nukleon von einem 14O Kern mit einem Wasserstofftar-

get bei 100MeV/Nukleon durchgeführt. Der 14O Kern hat eine große Asymmetrie in der Protonen-
und Neutronen-Separationsenergie von Sn − Sp = 18.55(1)MeV. Der 14O Sekundärstrahl ist auf
ein 2.4mm dickes Target aus festem Wasserstoff aufgetroffen. Die daraus resultierenden Fragmente
wurden mit dem SAMURAI Spektrometer gemessen. Im speziellen waren die Rückstände 13O and
13N von Interesse. Der gemessene inklusive Wirkungsquerschnitt und die parallele Impulsverteilung
(PMD) werden mit theoretischen Berechnungen verglichen. Inelastische Steuung, distorted-wave im-
pule approximation und Quanten-Transfer zum Kontinuum werden für die theoretischen Berechnun-
gen berücksichtigt. Spektroskopische Faktoren vom Schalenmodell werden für den Vergleich mit den
experimentellen Daten verwendet. Eine symmetrische Verteilung wird für die Entfernung eines Pro-
tons beobachtet, für welche der (p,pn) Abschlag und (p,p’) inelastische Kanal zu fast gleichen Teilen
beitragen. Bei der Entfernung eines Neutrons ergibt sich eine stark asymmetrische Verteilung, wel-
che durch die Kombination von den Ergebnisse aus (p,pn) Abschlag und (p,d) Transfer rekonstruiert
werden kann. Die Reduktion der Einzelteilchenstärke wird mit dem Reduktionsfaktor quantifiziert,
welche durch das Verhältnis von experimentellen zu theoretischemWirkungsquerschnitt definiert ist.
Die Reduktionsfaktoren Rs können bestimmt werden und werden mit Ergebnissen aus Schwerionen
Abschlag- und Transferreaktionen verglichen. Die Ergebnisse dieser Arbeit zeigen, dass die Proton in-
duzierte Entfernung eines Nukleons von seltenen Isotopen bei Energien von∼ 100MeV/Nukleon viele
Reaktionsmechanismen auslöst, darunter quasi-freie Streuung, inelastische Streuung und Transfer.
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Abstract

The one-nucleon removal reaction from nuclei is a strong tool to investigate the single-particle struc-
ture. From the measurement of the residual nucleus, the orbital angular momentum of the re-
moved nucleon can be determined. In the last decades, systematic studies on the quenching of
the single-particle strength and the parallel momentum distribution of the removed nucleons have
been performed. Asymmetric momentum distributions and discrepancies between measured cross
sections and predictions, in particular for the deeply-bound nucleons, demonstrated, that the re-
action mechanism needs to be further understood. From theoretical studies with a proton target
at 100MeV/nucleon the asymmetric distribution is attributed to stem from the interaction of the
outgoing particles with the residual core nucleus. A confirmation of these theoretical results would
emphasize the significance of the final state interactions. However, most of the experimental data was
taken with light-ion targets and there is no data with proton targets in this incident-energy region.
This is why the one-nucleon removal reaction from 14O at 94MeV/nucleon from a hydrogen target

was performed. The nucleus 14O has a large asymmetry in proton and neutron separation energies
Sn − Sp = 18.55(1)MeV. The 14O secondary beam was impinged on a 2.4mm thick solid hydrogen
target. The resulting fragments were measured with the SAMURAI spectrometer. In particular, the
one-nucleon removal residues 13O and 13N are of interest. Their measured inclusive cross sections
and parallel momentum distributions (PMDs) are compared to theoretical calculations. Inelastic
scattering, the distorted-wave impulse approximation and quantum transfer to the continuum are
considered for theoretical calculations. Shell-model spectroscopic factors are applied for the compar-
ison with the experimental data. A symmetric shape is observed for the proton removal channel, for
which the (p,2p) knockout and the (p,p’) inelastic channel are found contributing almost equally. The
neutron removal channel exhibits a strongly asymmetric PMD, which is reproduced well by combin-
ing the results from (p,pn) knockout and (p,d) transfer. The quenching of the single-particle strength
is quantified by the reduction factor Rs, which is defined by ratio of the experimental to the theo-
retical cross section. The reduction factors Rs are obtained and are compared to heavy-ion induced
knockout and transfer reaction results. The results of this work show that the proton-induced nu-
cleon removal from rare isotopes at energies of ∼ 100MeV/nucleon originates in several reaction
mechanisms, including quasi-free scattering, inelastic scattering and transfer.
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Introduction

1. Context of this Work

The structure of the nucleus and the interaction of its constituents is an interesting andmanifold topic.
Its exploration started as early as 1911, when Rutherford did one of the most famous nuclear physics
experiments, the scattering of α-particles on a gold foil. Still over 100 years later, the nucleus is not
yet fully understood despite massive scientific efforts and progress in nuclear physics. In the past,
models have been developed to successfully describe stable nuclei. However, these models failed to
describe the properties of unstable nuclei, which again started to question our understanding of the
nucleus. It is a present topic to describe the complexity of the nucleus and the interaction between
nucleons correctly. This work tries to deliver a small but significant contribution in the exploration of
the nucleus with direct reactions. The central topic of this thesis is the one-nucleon removal reaction
from 14O at 94MeV/nucleon with a 2.4-mm thick solid hydrogen target. To put this work into the
context of nuclear physics, a brief introduction on nuclear structure, the exploration and quantification
of properties of a nucleus and nucleons with direct reactions and recent experimental and theoretical
results will be given in the following.

1.1. Structure of Nuclei

In the past, much progress has been made to successfully describe the properties of stable nuclei
with well established models. One of the first models, which has been used to describe the nucleons
inside the nucleus, is the Fermi-Gas model [1]. Here, the neutrons and protons are described as
independent systems. They fill energy levels separately according to the Fermi-Dirac statistics and
restricted by Pauli blocking. Afar from these restrictions, it is assumed, that a nucleon can move
freely inside the volume of the nucleus. This is described as well potential generated by all nucleons.
The model is successful in explaining many basic phenomena, e.g. binding energies, the surplus of
neutrons in heavy nuclei, etc.. However, the Fermi-Gas model is not able to describe the occurrence
of very stable nuclei at certain number of protons and/or neutrons. These special numbers are 2, 8,
20, 28, 50, 82, 126 and referred to as magic numbers. An explanation for those numbers was found
with the suggestion of the shell model[2, 3]. It introduces energy levels as shells, which are occupied
by the nucleons and separated from other shells. The different energy levels originate from the radial
position and the angular orientation of the particles in the nucleus. The first successful potential to
describe the energy levels was the Woods-Saxon potential [4]. Furthermore, the coupling of spin
and orbit is necessary to describe magic numbers from 28 and higher. The shell model describes
nuclei with magic numbers and neighboring nuclei with one nucleon more or less very well. The
maximum occupancy of an energy level is (2j + 1), where j is total angular momentum. In this
simplest version, the shell model with the spin-orbit extension and the mean field approach is often
referred to as independent particle model (IPM). The name stems from the key property, that the
nucleons do not interact with each other, thus there are no correlations among nuclei included in
this model. A level scheme including the spin-orbit coupling and a listing of the magic numbers is
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given in Fig. 1.1. From the figure it becomes obvious, that magic numbers arise at shell closures with
a large energy gap to the next shell. There are extension of this model such as the interacting shell
model (ISM)[5], where the residual interaction between nucleons in the valence space is involved.

Figure 1.1.: Level scheme of the shell model showing the single-particle orbitals. The break of the
degeneracy is due to the spin-orbit coupling. The magic numbers are the result of shell
closures. Figure from Ref. [6].
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Neutrons and protons can only be added up to a certain threshold, which is referred to as dripline.
Nuclei beyond the dripline are unbound and decay via nucleon emission. It was soon found out, that
systems with a large amount of neutrons or protons have a different structure than stable nuclei. This
is clearly observed when magic numbers disappear and new ones arise, such as N = 16 [7]. This
change of nuclear shell structure for exotic nuclei is called shell evolution. Apparently, the models
and calculations, which were successful in the past for stable nuclei, are insufficient to describe
exotic nuclei and thus question the understanding of the nucleus and the interaction between its
constituents.
With the advance of modern nuclear physics facilities the investigation of exotic nuclei, nuclei

with a large excess of either neutrons or protons, in inverse kinematics became possible. The first
observation of a change compared to stable nuclei was found in the inversion of energy levels in the
isotones for N = 7 and N = 9 [8, 9]. For the nuclei 11Be, 12B and 13C it was shown, that the s1/2-
and p1/2-orbitals are inverted and for the nuclei 15C, 16N and 17O the inversion of the s1/2- and d5/2-
orbitals was proven. The change was mainly attributed to the monopole drift, which later has been
confirmed to be one of the driving forces for shell evolution.
The effect of the monopole drift was further studied [10–13]. The shell structure changes through

the monopole interaction, which itself depends on the neutron or proton richness of a nucleus.
Eq. (1.1) is the potential for the monopole interaction. The nominator averages the effect of an
interaction V over all possible orientation normalized by the denominator. Orientation in this con-
text means the various combination of the different magnetic momenta m and m′ from the total
angular momenta j and j′.

V T
j,j′ =

∑︁

j(2J + 1)⟨(jj′)JT |V |(jj′)JT ⟩
∑︁

j(2j + 1)
(1.1)

The shift of the new effective single particle energies (ESPE) can be calculated with Eq. (1.2) using
the determined V T

j,j′ from Eq. (1.1). In Eq. (1.1) nn(j′) is the occupation probability of the neutron
in the j′ orbit.

ϵp(j) =
1

2
(V T=0

j,j′ + V T=1
j,j′ nn(j

′)) (1.2)

Depending on the isospin, the monopole interaction is more or less strong. For an isospin of T =
0 the central force is much stronger than for the isospin T = 1. This means, that the coupling
is much stronger between pn orbitals, than for pp or nn orbitals. The central force acts always
attractive. However, if the total interaction is attractive or repulsive is decided by the tensor force.
The tensor force adds an attractive contribution for the coupling of j>(j′>) and j′<(j<) and a repulsive
contribution for the coupling of j>(j′<) and j′>(j<) orbitals. Here, the index > and < indicates, if
the spin quantum number s of the orbital is +1/2 or −1/2. Thus, for a large occupation number of
the neutron orbit j′>, the proton orbit j< is bound stronger and the j> is bound weaker.

An example for the monopole drift are the nuclei 62Ni and 54Ca. The level schemes of the nuclei
are shown in Fig. 1.2. The levels of 62Ni are consistent with the shell structure for stable nuclei
in Fig. 1.1. Due to the deficiency of protons or a surplus of neutrons in 54Ca a strong attractive
interaction between the 1f7/2 proton and the 1f5/2 neutron orbit arises, because the central and
tensor force contribute additively. The energy levels rearrange, so that new magic numbers arise
such as 32 and 34 in this case.
An other important phenomenon in shell evolution is the importance of three-body forces. As an

example, its significance can be shown in the prediction of the oxygen dripline. For a long period
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Figure 1.4.: Results of the nucleon removal from 12Be at 78MeV/nucleon. From the momentum
distribution the two different states 1/2+ and 1/2− of 11Be can be identified. Figure from
Ref. [23].

regime is clearly below the ideal QFS energy, an exact treatment of the above mentioned FSI becomes
very important.
The minimization of the FSI also suggests the reaction mechanism to be peripheral. If the reaction

would take place close to the core, the FSI naturally would be stronger. On its way out the nucleon
would have more time to interact with the core.

1.3. Study of Stable Nuclei

Starting in the 1960s, (e,e’p) [25] and (p,pN) [26] reactions have been extensively studied as they
are the ideal tool to extract single-particle properties from nuclei under the previous described cir-
cumstances. (e,e’p) reactions excel in smaller distortions on the removed nucleon. Electrons interact
dominantly via the electromagnetic force with the nucleus. However, this means, that the interaction
with the proton, which needs to be removed, is also weak. The removal of the proton has a small
probability and thus high luminosities are necessary for compensation. Therefore, only experiments
with stable targets have been possible so far. For the examination of unstable nuclei a beam of unsta-
ble nuclei has to be matched with an electron beam. There are plans to carry out such experiments
in future campaigns [27]. On the other hand, in (p,pN) reactions the projectile proton interacts also
via the strong interaction with the core and the nucleon to be removed. Thus, the cross section for
the reaction is larger, but the distortion effects are stronger, too. It is possible to carry out reactions
with stable and unstable nuclei. In this section, the focus is first on the results from experiments with
stable targets. The study of unstable nuclei will be discussed in the next section.
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Figure 1.5.: Top: Total binding energies of three successive nuclei and associated one-nucleon ad-
dition and removal energies from the ground state of the initial system. Bottom left:
spectral strength distribution. Bottom right: Single-particle energies from the centroid
of the spectral strength distribution using Eq. (1.3). Figure from Ref. [28].

The main goal of (e,e’p) and (p,pN) is to study the structure of nuclei. Spectroscopy and informa-
tion on the nucleon orbitals involved in the structure of nuclear states are important to understand
the nuclear structure. The so called single particle energies predicted by the IPM can be calculated
with the formula of Baranger [29]:

ep =

∑︁

k S
p+
k (Ek − E0) + S

p−
k (E0 − Ek)

∑︁

k S
p+
k + S

p−
k

. (1.3)

Here, Sp+
k (Sp−

k ) are the spectroscopic factors for the population of a final state k after the anni-
hilation (creation) of a nucleon with the quantum numbers p = nl. To calculate the single-particle
energies ep, the Ek and Sk need to be determined experimentally.
Loosely speaking, the spectroscopic factor describes the probability of populating a certain state.

Its definition for nucleon removal (+) and adding a nucleon (−) is as follows,

S
p+
k = |⟨ΨA

0 |ap|Ψ
A+1
k ⟩|2

S
p−
k = |⟨ΨA

0 |a
†
p|Ψ

A−1
k ⟩|2

(1.4)

with |ΨA±1
k ⟩ being the wave function of the nucleus in state k consisting of A ± 1 nucleons and ap

(a†p) is the operator for the annihilation (creation) of a nucleon. If there would be no correlations
between nucleons, the spectroscopic factor would be either 0 or 1 and the single-particle energies
could be directly extracted from the separation energy of single nucleon excitations. In a real nucleus

7



there are correlations between nucleons, so that a nucleon addition or removal reaction leads to a
population of several states in the residue. This case is illustrated in Fig. 1.5 [28]. Here, the different
separation energies to several states are given. The spectral strength distribution is calculated from
the distribution onto the different states. Effective single-particle energies can then be obtained
from the centroid of the spectral functions using Eq. (1.3). In general, the spectroscopic factors are
extracted from direct reactions, where the cross sections from singular final states are determined.
For the quantification of the population of the single-particle states the reduction factor Rs is used.

It is defined by the experimental σexp and theoretical σth cross section:

Rs =
σexp
σth

. (1.5)

The calculation of the theoretical cross section is done using the following equation:

σth =
A

A− 1
· C2S · σs.p.(θ, E) . (1.6)

Here, A is the atomic mass number, C the Clebsch-Gordan coefficient, S the spectroscopic factor and
σs.p. the single-particle cross section. A/(A − 1) is a center of mass correction factor. The Clebsch-
Gordon coefficients are used to describe the coupling of spin-orbit interaction and the isospin for-
malism of the original and final state. The spectroscopic factor was introduced beforehand and is
usually determined experimentally. The single-particle cross section is calculated from theoretical
models. Some reaction models are introduced in Section 1.4 and the calculation is described within
the section.
By comparing the experimental cross section from (e,e’p) reactions with theoretical results from

the IPM, it was found, that the occupation of the levels is smaller than the predicted (2j + 1). This
reduction is often referred to as ”quenching”. It is shown in Fig. 1.6 [30], that the quenching is about
30% - 40%.

Figure 1.6.: Data of (e,e’p) reactions from stable nuclei [30]. Figure from Ref. [21].
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The IPM is apparently not sufficient to describe the experimental data correctly, since it describes
the average force on one nucleon with a mean field potential. It does not take into consideration,
that there are correlations, which are not described by a mean field. These interactions lead to
correlations between the nucleons, which induces a coupling of single-particle states. This coupling
is the reason for reducing the occupancy of single-particle states below the Fermi energy ϵF . The Fermi
energy is defined by the least bound nucleon in the nucleus. The removed nucleons are transferred to
and occupy energy levels above the Fermi energy [31]. Fig. 1.7 shows the occupation probability and
quasi-hole strength for nuclear matter and 208Pb [32]. The correlated nucleons account for the whole
occupation probability above the Fermi energy ϵF and also contributes partly to the occupation below
the Fermi energy. Therefore, the quasi-hole strength is significantly smaller then the total occupation
probability.
The correlations can be divided into short range correlations (SRC) and long range correlations

(LRC). SRC couple the low energy states with the high energy states and originate from the strong
tensor term and repulsive core of the nucleon-nucleon interaction. They contribute about 15% to
the quenching. LRC are due to the collective motion of the nucleons, which couple a single-particle
motion to the motion of low lying states of the nucleus. They add another 20%, so that the total
quenching is about 35% [21].

Figure 1.7.: Occupation probabilities n(ϵ) and quasi-hole strengthZ(ϵ) for nuclear matter (N.M.) and
208Pb. The blue shaded area is the contribution from the correlated nucleons. The exper-
imental values of 208Pb are shown as squares and the theoretical calculation for 208Pb
as red line. Figure from Ref. [32].

1.4. Study of Exotic Nuclei

In the last decades, nucleon removal experiments with various exotic nuclei at a large range of beam
energies have become possible. A nucleus is called exotic, when it is has a large excess of one nucleon
species, either neutrons or protons. Those nuclei are in general unstable and decay fast via β-decay.
Nucleons of one species can only be added to a nucleus up to a certain threshold before it becomes
unbound. This threshold is referred to as dripline. Adding nucleons beyond the dripline will not form
bound nuclei and the system will decay fast via the strong interaction. One key property of exotic
nuclei is, that the difference of the nucleon separation energies ∆S can be very large. It is defined
as ∆S = Sp − Sn for proton removal and ∆S = Sn − Sp for neutron removal with Sn,p being the
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neutron and proton separation energies. While in neutron-rich nuclei the neutrons are rather loosely-
bound with a separation energy Sn of a few MeV, the separation energy Sp of the proton can be up
to 20MeV. For nuclei with a similar amount of neutron and protons ∆S is close to 0 as for the stable
nuclei. Naturally, for proton-rich nuclei the opposite is the case. These extremes in separation energy
make exotic nuclei an excellent probe to benchmark theoretical calculations, which themselves can
depend on various assumptions and simplifications. It is possible to investigate, on which occasions
assumptions are justified or when they fail to describe properties of nuclei.
The use of exotic nuclei is technically more difficult compared to stable nuclei, since experiments

can only be performed in inverse kinematics due to their short life times. In inverse kinematics the
exotic nuclei are produced in-flight from a stable ion beam by fragmentation. The fragmentation
process allows only exotic beams with a small luminosity. The resulting beam is impinged on a
target, which can be a light-ion target, such as 9Be or 12C, a carbon-hydrogen target or a proton
target.
The two typical direct reaction processes to study exotic nuclei are transfer and knockout reactions,

which have been already successfully applied in the past. The key properties and some recent results
of those two reaction mechanism will be presented.

1.4.1. Knockout Reactions

The most popular probe for the study of exotic nuclei since the 90s has been knockout reactions. They
are easier to perform, because they are carried out at higher energies than transfer reactions (see
the following section). Due to the higher energies thicker targets can be used, which enhances the
extraction of the cross section. When gamma-spectroscopy is applied, high resolution spectroscopy
can still be performed. Thus, they can be used to study various exotic nuclei systematically.
Similar to the (e,e’p) and (p,2p) reactions with stable nuclei presented in the previous section, a

nucleon is removed from the nucleus of interest A and the residual core A − 1 is measured. The
momentum of the nucleon can be reconstructed under the QFS as explained in Section 1.2. For
knockout reactions, light-ion targets such as 9Be and 12C are used. They are easily to produce and
have a low atomic number Z. The low Z guarantees that the interaction via the Coulomb force is
reduced. In recent and future campaigns [33, 34], pure proton targets are used to reduce possible
structure distortions from the light-ion targets. However, the production of the target is much more
elaborated. The hydrogen needs to be liquified (21.15K) or solified (14.01K) to get a higher density
for obtaining a reasonable cross section.
The reactions are performed at around 100MeV/nucleon and occur on the surface of the nucleus.

Therefore, two approximations are often applied in the theoretical description. The first one is the
sudden approximation. It is assumed, that the reaction takes place in a single step in a very short time.
Only the removed nucleon and the target do interact during the process. The remaining core is only
spectating the reaction and does not change its state or momentum. The second approximation is
the eikonal approximation. Here, the participants of the reactions follow straight lines. Especially the
spectator core does not change its trajectory and leaves the target at forward scattering angles. This
assumption is well justified for high energies and low Z target, because then the Coulomb interaction
does not disturb the trajectory much. In addition, it assumes that there is no strong interaction
between the projectile and the target. This is justified, because strong interaction would lead to
absorption and thus is not measured. The two approximations simplify the theoretical calculation
and are applied in Section 4.1, where a summary of the theoretical frameworks is presented.
The single-particle cross section σs.p. from knockout reactions is calculated with Eq. (1.7). It is the

sum of two components: an inelastic σinels.p. (stripping) and elastic σels.p. (diffraction) component. The
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two components can be calculated using Eq. (1.8) and Eq. (1.9). Here, S = SnSc is the product of
the elastic scattering matrices with Sn being the removed nucleon-target matrix and Sc the residue-
target matrix. The other variables are defined as follows: j is the quantum number of the allowed
angular momentum transfers, b⃗ is the impact parameter, ψjm is the wave function of the removed
nucleon and δm,m′ is the Kronecker delta.

σs.p. = σinels.p. + σels.p. (1.7)

σinels.p. =
1

2j + 1

∫︂

db⃗
∑︂

m

⟨ψjm|(1− |Sn|
2)|Sc|

2|ψjm⟩ (1.8)

σels.p. =
1

2j + 1

∫︂

db⃗
∑︂

m,m′

[︁

⟨ψjm||1− S|2|ψjm⟩δm,m′ − |⟨ψjm′ |(1− S)|ψjm⟩|2
]︁ (1.9)

σinels.p. and σels.p. are the single-particle cross sections of the two independent nucleon-removal pro-
cesses, which can occur and count towards the knockout cross section. The inelastic or stripping
component describes the reaction, when the removed nucleon interacts inelastically with the tar-
get and the target is excited. Eq. (1.8) gives an intuitively interpretation of this process. The term
(1− |Sn|

2) is the probability, that a nucleon is removed, while |Sc|
2 is the probability that the core is

preserved. The elastic or diffractive component describes the process, where the projectile breaks up
into a core and a nucleon from the interaction with the target. The nucleon and the core are elastically
scattered and the target remains in its ground state. There is no intuitive interpretation of Eq. (1.9)
for this process as for the inelastic equation. The calculation of the S matrices is an elaborated pro-
cess, which has to be done consistently, so that the calculated Rs can be compared systematically.
For details on the calculation of the S matrices it is referred to Ref. [35] and references within.
From the calculated single-particle cross sections the theoretical cross section σth is calculated with

Eq. (1.6) and so the reduction factor can be determined. From various experiments in the past it has
been found, that the reduction factors depend strongly on the excess of neutrons and protons in
nuclei. Fig. 1.8 shows experimental results from neutron and proton removal reactions in the last
decades. For comparison, results from (e,e’p) reactions with stable nuclei are also given in the figure.
The x-axis in the plot is the difference∆S between the proton separation energy Sp and the neutron
separation energy Sn. The σexp in the figure is the inclusive cross section to all bound states in the
final nucleus. Therefore, the σth includes the spectroscopic factors C2S to all bound states, which
are obtained from effective shell model calculations.
The figure shows a clear linear anti-correlation between ∆S and Rs. While the removal of very

loosely bound nucleons exhibit a Rs close to 1, the removal of deeply bound nucleons are reduced
to as much as 0.2. The reason for the slope is still under debate [35]. A possible explanation is,
that the deeply bound nucleon is stronger confined to the center of the nucleus, where the nucleon
probability density of the nucleus is higher. The interaction and the correlation with other nucleons
is then stronger. For the loosely bound nucleons it is assumed, that they have higher probabilities to
be on the outside of the nucleus, where the density of nucleons is much smaller. Thus, the interaction
and correlations with other nucleons is smaller. The reduction factor Rs is calculated with the shell
model, which has been adjusted to describe the properties of valence nucleons. This would explain
the values of Rs close to 1 for the removal of loosely-bound nucleons and the large discrepancy with
the removal of deeply-bound nucleons.
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Figure 1.8.: Rs factor as a function of∆S.The black squares are from electron-proton knockout, the
red dots from neutron removal and the blue dots from proton removal. Figure from Ref.
[36].

1.4.2. Transfer Reactions

In a transfer reaction a nucleon is either transferred from a nucleus (stripping) or to a nucleus (pick
up). It has been used in the past to study single-particle states. In addition, two nucleon transfer can
be used to study the two nucleon correlation effects inside a nucleus. The selection of experimental
conditions play a major role in transfer reactions. The incident beam energy, the angles measured
and the choice of nucleon removal or pick up reaction can have a significant role on the extracted
cross sections and the reduction factors. The origin of this sensitivity is that the momentum of the
beam needs to be matched to the momentum of the valence nucleon (removed nucleon) [37]. Ideal
beam energies for transfer reactions are a few MeV/nucleon above the Coulomb barrier [35]. If
the beam energy is below the Coulomb barrier, the cross section drops and becomes insensitive to
the angular momentum l. For much higher beam energies, a poor momentum matching for the
transferred nucleon can hinder the reaction or the process is not a single step anymore, which can
be difficult for theory to describe. The impact of the choice of reaction is illustrated in Fig. 1.9.
Here, the results from the nucleon removal reactions (p,d) and (3He,α) from 76Se are given [38].
The energy was 23MeV/nucleon and 26MeV/nucleon, respectively. The results show, that the (p,d)
reaction prefers the l = 1 transfer, while the (3He,α) reaction prefers the l = 3 and l = 4 transitions.
This example points out the significance of momentum matching on transfer reactions. One has to
carefully choose the reaction depending on the states one wants to populate. For the scattering angle,
the cross section is optimized for forward scattering angles in the center of mass (c.m.) frame [35].
It is experimentally challenging, since the detector systems can struggle with the high luminosities
and become rate limited for small angles. As indicated in the previous section, one key limitation of
transfer reactions is the low incident energy. It allows only the use of thin targets, so that the recoil
charged particles do not suffer too much from energy loss and angular straggling for the missing
mass spectroscopy. Furthermore, to cover the full angular distributions a large statistic is necessary.
For all this, a beam intensity of minimum 104 pps is usually necessary. Thus, transfer reactions can
only access less exotic nuclei in comparison to knockout reactions.
In the past systematic transfer reaction studies have been performed despite the experimental

difficulties. Here, some of the results will be presented and they will be compared with the results
from knockout reactions.
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Figure 1.9.: Energy spectrum of the neutron-removal reactions from 76Se. The numbers above the
peaks indicate the l values of the transitions. The l = 1 transition is strong for the (p,d)
reaction, while the l = 3 and l = 4 transitions are strong for (3He,α). Figure from Ref.
[38].

Fig. 1.10 (a) show the results of the (p,d) transfer reaction at 33MeV/nucleon with the Argon
isotopes 34Ar, 36Ar and 46Ar [39, 40]. The Rs value is calculated for different optical potentials. The
results for the optical potentials show large discrepancies, however they do not show a dependence
on ∆S, despite covering a range of from -10MeV to 15MeV. This stands in contrast to the results
from knockout reactions of argon isotopes [41–43], which are also given in Fig. 1.10 (a). Similar
results can be seen in Fig. 1.10 (b) for the oxygen isotopes 14O, 16O and 18O. The data is from (d,3H)
and (d, 3He) transfer reactions at 18MeV/nucleon. The data is compared to theoretical calculations
based on a Woods-Saxon potential and the shell model (WS + SM) and the self-consistent Green’s
function (SCGF). While both approaches show again differences in the Rs value, there is again no
dependency on ∆S in the range from -20MeV to 20MeV.

The results from transfer reactions show, that the theoretical input for transfer calculation has a
large impact and large uncertainties. Despite the uncertainties there are still systematic differences
compared to knockout reactions. This is why in the next section a third reaction mechanism is
considered for comparison.

1.4.3. QFS Nucleon Removal Reactions

Due to the large difference between the results from knockout from light-ion targets and from transfer
reactions, a series of (p,pn) and (p,2p) experiments have been carried out recently [45–48]. For these
reactions, the nucleon-nucleon interaction is better understood, than for the light-ion targets, which
makes the theoretical calculations more reliable. In addition, the experiments have been performed
at beam energies from 200MeV/nucleon to 450MeV/nucleon. At these energies the QFS condition
is likelier to be fulfilled and the mean free path is larger.
Fig. 1.11 shows the reduction factor results from different oxygen isotopes [48]. The nucleon-

removal reactions from 14,22,24O were performed with a beam energy of 250MeV/nucleon in inverse
kinematics and from 16,18O with a beam energy of 200MeV/nucleon in normal kinematics. A hydro-
gen target out of naphthalene was used for the inverse kinematics reaction. For the calculation of the
single-particle cross section two different optical potentials were used: a potential from phenomeno-
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(a) (b)

Figure 1.10.: (a) Results of (p,d) transfer reactions at 33MeV/nucleon from Argon isotopes [39, 40]
compared to intermediate energy knockout reactions from Argon [41–43]. Figure from
Ref. [35]. (b) Results of (d,3H) and (d, 3He) transfer reactions at 18MeV/nucleon from
oxygen isotopes. The top panel shows the WS + SM approach for the theoretical cal-
culations, while the bottom panel uses the SCGF. Figure from Ref. [44].

logical Dirac parametrization and from the folding of nuclear densities with the Melbourne G-matrix
interaction. Details on the potentials are given in Ref. [48] and references within. The use of both
potentials results in similar reduction factors Rs, which show no dependence on ∆S as found in the
results from transfer reactions. For comparison the Rs from 16O(e,e’p) [49] and natC(14O,13N) [50]
reactions are given in the plot, which confirm the reliability of the presented results.
The different results from the three reaction mechanisms have not been understood yet. It is

assumed, that the reduction of the single-particle occupancies is induced from nucleon-nucleon cor-
relations. The correlations should only depend on the observed nucleus and not on the reaction
mechanism used to examine the nucleus. This indicates that some of the assumptions used in the
theoretical descriptions of the nucleus are not justified. For knockout reactions it can be doubted,
that the sudden and eikonal approximations are valid for the removal of deeply-bound nucleons,
which are very unlikely to be removed without changing the core. Experimental results on the par-
allel momentum distribution, presented in the next section (Section 1.4.4), strengthen these doubts.
For transfer reactions there are large uncertainties on the Rs value from the input of the theoretical
calculations. These uncertainties can be seen in the large variation of Rs depending on the used
potential (see Fig. 1.10). However, in the nuclear physics community it is agreed on that they can
not explain the large systematic differences between transfer and knockout reactions.

1.4.4. Asymmetric Momentum Distribution

As described in Section 1.2 there have been fantastic results from the parallel momentum distribu-
tion from loosely-bound nucleons due to the sensitivity on the angular momentum (see Fig. 1.4).
The theoretical calculations for those results are based on the sudden and eikonal approximation
and predict a symmetric momentum distribution. However, in results from NSCL an asymmetric mo-
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Figure 1.11.: QFS nucleon-removal results for several oxygen isotopes. The red and blue trian-
gles were calculated with different optical potentials. For comparison the data from
16O(e,e’p) [49] and natC(14O,13N) [50] are given. Figure from Ref. [48].

mentum distribution from the removal of deeply-bound nucleons has been found [51]. The nucleon
removal reactions 16C(p,pN) at 75MeV/nucleon and 14O(p,pN) at 53MeV/nucleon with a 9Be tar-
get were performed. The separation energies for 16C are Sn = 4.25MeV and Sp = 22.6MeV and
for 14O they are Sn = 23.2MeV and Sp = 4.63MeV. Both nuclei have a large ∆S of ∼20MeV and
so the removed nucleons are either very loosely-bound or deeply-bound. The resulting momentum
distributions from the reactions are given in Fig. 1.12. Fig. 1.12 (a) and (c) show the loosely-bound
nucleon removal distributions. The proton removal from 14O exhibits a symmetric momentum dis-
tribution, which is described perfectly from theoretical calculations with the SE approximation. For
the removal of the neutron from 16C there is a slight asymmetry on the low momentum side, which
the SE approximation cannot reproduce. The rest of the distribution is symmetric and reproduced
well from the theoretical calculations. Fig. 1.12 (b) and (d) show the momentum distributions of
the deeply-bound nucleon removal reactions. In both cases the distributions are strongly asymmetric
and the SE approximation calculations fail to reproduce the experimental data. Both distributions
show similar properties with the difference, that they are more pronounced in the neutron-removal
from 14O. They have a steep fall off on the high momentum side and a tail on the low momentum
side. Theoretical transfer to the continuum (TC) calculations were applied on the neutron removal
reactions. The calculation was able to predict the high momentum fall off, which has been attributed
to energy conservation. However it was not able to reproduce the low momentum tail correctly.
The results for 14O were measured with a beam energy of 53MeV/nucleon. It is questionable if at

this energy the SE approximation is fulfilled sufficiently. As mentioned above it is believed, that the
ideal energy for the SE approximation is at some hundreds of MeV/nucleon. However, it could be
an explanation for the difference of the reduction factors Rs from transfer and knockout reactions, if
the applied theory for the knockout reactions is not correct. The results question the applicability of
the SE approximation for deeply-bound nucleon removal reactions. In addition, the TC calculations
have not been able to reproduce the low momentum tail, which indicates, that the reaction mecha-
nism is not yet fully understood. Therefore, it is extremely important to understand and be able to
reproduce the asymmetric momentum distribution from deeply-bound nucleon removal reactions. In
2015, there have been theoretical calculations on 14O nucleon-removal reactions at 100MeV/nucleon
and 200MeV/nucleon using the distorted-wave impulse approximation (DWIA) with the eikonal ap-
proximation [52]. Those calculations exhibit an asymmetric momentum distribution, which is shown
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Figure 1.12.: (a) and (b) parallel momentum distribution (PMD) of nucleon removal from 16C at
75MeV/nucleon.(c) and (d) PMD of nucleon removal from 14O at 53MeV/nucleon. Fig-
ure from Ref. [51].

in Fig. 1.13 for 100MeV/nucleon. Both distributions show similar features as the experimental dis-
tributions in Fig. 1.12. There is a low-momentum tail in both cases. However, the asymmetry in the
case of the deeply-bound nucleon removal is far more pronounced. The low momentum tail is at-
tributed to be from the final state interaction (FSI) from the attractive potential between the residue
and the removed potential.

Figure 1.13.: PMD of 13O (solid line) and 13N (dashed line) after removal from 14O at
100MeV/nucleon. Figure from Ref. [52].

Up to now, there is no experimental data for nucleon-removal from 14O at 100MeV/nucleon or
200MeV/nucleon for direct comparison. If it is possible to confirm these theoretical calculations
with experimental data, it would be a significant step towards the understanding of the reaction
mechanism. Despite the direct comparison to the theoretical calculations, there are several other
reasons for the use of 14O. First, 14O is an ideal benchmark nucleus, since many experiments with
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different targets and energies have already been performed. Second, it has a doubly closed shell.
The 1p1/2 shell for the protons and the 1p3/2 for the neutrons are fully occupied. Third, it has a large
∆S, which makes it a great probe to demonstrate the difference between loosely-bound and deeply-
bound nucleon removal. The ∆S for proton removal is 4.63MeV and for neutron removal 23.2MeV.
Finally, 13O and 13N have both no excited states, so that no gamma spectroscopy is necessary.

Therefore, a nucleon-removal experiment from 14O with an incident energy of ∼100MeV/nucleon
with a thin hydrogen target has been performed at RIBF in 2018. In contrast to several previous
experiments, where commonly a 9Be or 12C target was used, a structureless solid hydrogen target
has been used during the experiment. This should have made the removal process cleaner, e.g.
less disturbance from the target on the residue. The analysis of the data and the interpretation
of the results are topic of this PhD thesis. The experimental cross sections and parallel momentum
distributions for neutron and proton removal will be shown and compared to theoretical calculations.
For the comparison inelastic scattering, the DWIA and the quantum transfer to continuum (QTC)
theoretical frameworks are applied. They are briefly introduced in Section 4.1, where their main
features are outlined.
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Experiment

2. Experimental Setup

In this section the experimental setup and data analysis are presented. Since the nucleus 14O is an
unstable nuclei with a half-life of (70.621 ± 0.011) s [53], the experiment was performed in inverse
kinematics at the Radioactive Ion Beam Facility (RIBF) in Japan. A graphical overview of the facility
is shown in Fig. 2.1. The process to produce relativistic ion beams and the measurement of the ion
beam and its reaction residues at the facility is explained. This includes explicitly the production and
acceleration process of the beam at RIBF and the two spectrometers BigRIPS and SAMURAI.

Figure 2.1.: Overview of the RIBF facility. Figure from Ref. [54].

2.1. Production of the 18O Primary Beam

For the production of the ions different electron cyclotron resonance ion sources (ECRIS) are available
at RIBF, which are used depending on the experiment. The primary accelerators for the produced
ions are the two RIKEN ion linear accelerators (RILAC and RILAC2) and the azimuthally varying
field (AVF) ring cyclotron. The secondary acceleration is then done by several cyclotrons: RIKEN
Ring Cyclotron (RRC, K-value: 540MeV), fixed-frequency Ring Cyclotron (fRC, K-value: 570MeV),
intermediate-stage Ring Cyclotron (IRC, K-value: 980MeV), Superconducting Ring Cyclotron (SRC,
K-value: 2600MeV). The K-value of an accelerator characterizes the maximum beam energy of an
accelerator due to its bending power. The definition is in Eq. 2.1, where Ekin is the kinetic energy,
A is the mass number, Z is the atomic number and Bρ is the magnetic rigidity of the accelerated

19



particles. A summary and detailed description of the devices can be found in [54] and references
within.

Ekin
A

=
(eBρ)2

(γ + 1)mu
·

(︃

A

Z

)︃2

= K ·

(︃

A

Z

)︃2

(2.1)

The presented ion sources and accelerators can be combined in different ways depending on the
task. Fig. 2.2 shows a schematic overview of the different acceleration modes. Currently, there are
three commonly used schemes:

• The Fixed-Energy Mode is used to create beams of 345MeV/nucleon (orange path).
• The Variable Energy Mode is for beams with different energies (yellow path).
• AVF Injection Mode, which is used for polarized deuteron beams at 880MeV and lowmass nuclei

(blue path).

The AVF Injection Mode was used to produce the 18O beam with an energy of 230MeV/nucleon for
this experiment. For the production of the 18O ions, the 18GHz super conducting ECRIS (18GHz SR-
ECRIS) was used. The ions are then accelerated by the AVF injector to an energy of 6MeV/nucleon.
After this first stage, the beam is accelerated by the three cyclotron accelerators RRC, IRC and SRC
[55]. During the acceleration process, the 18O beam passes through two carbon stripping foils (ST1
and ST4) to remove remaining electrons. The first foil is placed after the AVF injector and the second
one after the RRC. The final energy of the beam is 230MeV/nucleon and from the SRC it is guided
to the RIKEN Projectile Fragment Separator (BigRIPS).

Figure 2.2.: Overview of the particle acceleration schemes at the RIBF. Figure from Ref. [54].

2.2. BigRIPS

The primary 18O beam at 230MeV/nucleon was impinged on a 14mm thick beryllium target. The
resulting fragments traversed through the BigRIPS spectrometer, which is designed as a two stage
spectrometer consisting of a separator and an analyzer part. The setup of BigRIPS is shown in Fig. 2.3.
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a new ratio of A2γ−1/Z2γ−2 with γ being a material constant of the wedge. Due to the new ratio,
other particles can be selected with the dipole magnet D2. The focal point F2 is an achromatic focus,
where a second slit is placed for adjustment of the beam.
The second stage of BigRIPS starts at the focal point F3. It uses the Bρ − ∆E−TOF method for

the identification of the ions, where TOF is the time of flight between two plastic scintillators. The
triplet quadrupole magnets STQ7 - STQ14 and dipole magnets D3 - D6 are used at this stage. In our
setup the slits at F5 and F7 had a width of 5 and 7mm, respectively. For the particle identification
of the beam 3mm thick plastic scintillators are used at F3 and F5, which are read out with two
photomultipliers on each side. The working principle of the detectors is described in Section 2.5.1.
The plastic scintillators measure the energy loss ∆E of the particles. The TOF can be calibrated with
the time signal of two plastic scintillators and the Bρ of the beam at D3/D4 or D5/D6. A ∆E− TOF
plot can then be created to identify the particles. A complete overview of BigRIPS setup used during
the experiment is given in Table 2.1.

Table 2.1.: Overview of the BigRIPS configuration during the experiment.

Component
Primary Beam 18O
Intensity [pnA] 400

Production Target 9Be [mm] 14
F1 Aluminium Degrader [mm] 9

D1 [Tm] 3.41
D2 [Tm] 2.8581
D3 [Tm] 2.7332
D4 [Tm] 2.7332
D5 [Tm] 2.5978
D6 [Tm] 2.5978

F1 Slit [mm] 4
F2 Slit [mm] 6
F5 Slit [mm] 10
F7 Slit [mm] 60

F3 Plastic Scintillator [mm] 3
F5 Plastic Scintillator [mm] 3
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Figure 2.5.: Sketch of the SAMURAI experimental area for this experiment. The detector positions
were determined with a photogrammetry measurement and are given in mm.
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2.4. Overview of the Beam Line Materials

An overview of the beam line material is given here. Therefore, two tables are presented. In Table 2.2
and Table 2.3 up- and downstreammaterials are listed, respectively. The water on the target entrance
and exit windows is condensation water, which was observed during the experiment. A picture of
the condensated water was taken during the experiment and can be seen on Fig. 2.6. The value in
the tables for the thickness of the water is an estimation of the average water thickness. However, the
water distribution is in fact non-homogeneous as can be seen on the picture and thus the energy and
momentum loss of the particles is also not homogeneous. This is why the energy loss of the water
needs to be treated explicitly, which will be covered in Section 3.12. The target thickness calculation
is described in Sec. 3.9. The separation of the beam line materials has the practical purpose, that the
energy loss of the beam is usually calculated to mid target and that the energy loss of the reaction
residues start from mid target. The energy loss calculation is relevant in the data calibration and
analysis section. If a component is not mentioned in the table, it was removed from the beam line
(e.g. SBT2) or in vacuum (e.g. the dipole magnet) during the experiment and thus had no impact
on the energy loss.
From the last column of the tables one difficulty for the analysis of this experiment becomes obvi-

ous. If the material budget of the beamline is added up, the overall thickness is in the order of the
target thickness. This means, that a large background can be expected and in fact, has been found
during the analysis process. A proper particle identification was one of the key challenges for the
analysis of this experiment.

Table 2.2.: Material between the dipole magnets D5/D6 and the SHT.

Part Material Thickness [µm] Thickness [atoms/m2]
F13 window Mylar 4 3.85 · 1019

F13 plastic Plastic 200 2 · 1021

F13 window Mylar 4 3.85 · 1019

Gap Air 10 · 103 4.94 · 1019

Foil Aluminium 24 6.63 · 1019

BDC1 window Kapton 75 6.65 · 1020

BDC1 gas H10C4 90 2.22 · 1020

BDC1 electrodes Mylar 72 6.93 · 1020

BDC1 window Kapton 75 6.65 · 1020

BDC2 window Kapton 75 6.65 · 1020

BDC2 gas H10C4 90 2.22 · 1020

BDC2 electrodes Mylar 72 6.93 · 1020

BDC2 window Kapton 75 6.65 · 1020

Exit Kapton 125 1.11 · 1021

Gap Air 108 · 103 5.34 · 1020

Foil Aluminium 24 6.63 · 1019

Gap Air 70 · 103 3.46 · 1020

Target window entrance Water 393 3.94 · 1021

Target window entrance Kapton 75 6.65 · 1020

Target cell Aramid 6 6.45 · 1019

1/2 Target Solid hydrogen 1.2 · 103 6.17 · 1021
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Table 2.3.: Material between the SHT and the SAMURAI dipole magnet.

Part Material Thickness [µm] Thickness [atoms/m2]
1/2 Target Solid hydrogen 1.2 · 103 6.17 · 1021

Target cell Aramid 6 6.45 · 1019

Target chamber exit Kapton 75 6.65 · 1020

Target chamber exit Water 393 3.94 · 1021

Gap Air 130 · 103 6.42 · 1020

Silicon chamber entrance Aluminium 10 6.03 · 1019

Silicon chamber Air 350 · 103 1.72 · 1021

Silicon chamber exit Aluminium 10 6.03 · 1019

Gap Air 50 · 103 2.45 · 1020

Window Kapton 125 1.11 · 1021

FDC0 window Kapton 75 6.65 · 1020

FDC0 gas H10C4 90 2.08 · 1020

FDC0 electrodes Mylar 72 6.93 · 1020

FDC0 window Kapton 75 6.65 · 1020

FDC1 window Kapton 75 6.65 · 1020

FDC1 electrodes Mylar 120 1.16 · 1021

FDC1 window Kapton 75 6.65 · 1020

Figure 2.6.: Condensation water found during the experiment on the target entrance and exit win-
dows. Courtesy Y. Sun.
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2.5. Detector System and Target

In this section, the detectors and the target around the SAMURAI dipole magnet, which were used
during the experiment, are presented. Their working principle and the observable quantities are
discussed in detail.

2.5.1. Start Beam Trigger Plastic Scintillator

The Start Beam Trigger (SBT) plastic scintillator is at the beginning of the SAMURAI experimental
area and measures the arrival time and the energy loss of the beam. It is a scintillation detector,
which consists of two parts: the scintillating material and two photomultiplier tubes (PMT). Usually,
the SBT at SAMURAI consists of two 1mm thick plastic scintillators, SBT1 and SBT2. However,
during this experiment only SBT1 was used to reduce the background. As scintillating material, the
organic plastic BC408 is used with a quadratic shape of 120mm x 120mm. The molecules inside the
plastic are excited, when charged particles pass through the material. They release their energy via
photon emission, which is called fluorescence. The produced photons inside the plastic are collected
by two light guides at the end of the plastic and transmitted to two PMTs. Here, the light signal is
converted into an electrical signal by the photoelectric effect. The produced photoelectrons build up
a current, which is amplified by multiple dynodes. The final current is processed into a signal by
a Charge-to-Digital Converter (QDC). The pulse shape can then be described by a two-component
exponential decay. Those decays are described by the two time constants τs (slow) and τf (fast) and
are material dependent. A typical decay constant is around ∼2ns. Approximately, the fluorescent
light is proportional to the energy loss ∆E of the particle in the scintillator. For an exact treatment
it is a function of the energy and the charge of the incoming particle [60]. The use of scintillating
material in combination with a PMT is widely used technique and described in detail in the literature
[61, 62].

2.5.2. Multi-Wire Drift Chambers

For the measurement of the position and the angles of the beam and residue particles Multi-Wire Drift
Chambers (MWDC) are used. A MWDC consists basically of two components, which are confined in
a closed chamber: a drift gas and a set of potential wires. Incoming radiation particles ionize the
gas inside the chamber. The released electron-ion pairs will start to drift to the anode and cathode
wires. The drift velocity depends on the gas and the potential between the anode and cathode. By
triggering a start signal when the ionizing particle arrives and measuring the time the electrons need
to arrive at the wires, the time of flight of the electrons through the detector can be calculated. The
origin of the ionization can then be reconstructed with the average drift velocity. The typical position
resolution is around 100µm. Since the drift distance is limited by the potential on the wire, one wire
can only cover a limited area of space to detect particle positions. For covering a greater area with a
high precision multiple wires are aligned in equidistant positions. Further details on the MWDC can
be found in Refs. [61, 62] and technical details of the drift chambers used at SAMURAI in Ref. [59].

Beam Drift Chamber (BDC) The two drift chambers BDC1 and BDC2 are placed 1444.33mm in front
of the secondary target. The distance between BDC1 and BDC1 is about ∼1m. Each drift chamber
has a total of eight wire layers. Four are oriented along the x-axis and four along the y-axis. They
cover an active area of 80 × 80mm. With the x- and y-coordinates the position of the beam on target
can be calculated. The drift gas C4H10 at 50 torr is used. The efficiency of the BDC is usually close to
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100%.

Figure 2.7.: Schematic drawing of a BDC. The lengths are given in mm. Figure from Ref. [59].

Foward Drift Chamber 0 (FDC0) The drift chamber FDC0 is placed 837.64mm behind the target and
in front of the SAMURAI dipole magnet. It is constructed and operates as the BDC drift chambers.
The task of FDC0 is to measure the x- and the y-positions of the reaction residues and the unreacted
beam. The trajectories of the particles in the dipole magnet can be reconstructed from the coordi-
nates together with FDC2. The efficiencies for this experiment are calculated in the analysis part and
given in Table 3.4.

Foward Drift Chamber 2 (FDC2) The drift chamber FDC2 is located behind the SAMURAI dipole
magnet and measures the x- and y-positions of the bent unreacted beam and reaction residues. To-
gether with FDC0 the trajectories of the particles can be reconstructed and so their flight length and
magnetic rigidity. The active volume of the FDC2 drift chamber is 2.2 × 0.8 × 0.8m. The drift
chamber needs to be 2.2m wide in x-direction, because the particles are spread by the magnetic
field in the x-direction to distinguish them. The large width makes it impossible to align the wires
along the x-axis, since they would bend strongly and so the y-position cannot be measured directly.
Therefore, for the measurement of the particle position six layer of wires are aligned along the y-axis
to measure the x-position (X-layers), four layer of wires have an angle of 30◦ with respect to the
y-axis (U-layers) and another four layer of wires have an angle of −30◦ with respect to the y-axis
(V-layers) to reconstruct the y-position with the information from the x-position measurement. Two
layers of wires build a group, which are separated from another group by a 100mm gap with shield
wires in between. The arrangement of wire groups follows the pattern XX’-UU’-VV’-XX’-UU’-VV’-XX’.
A schematic view of the setup is shown in Fig. 2.8. The wires are arranged in a hexagonal cell struc-
ture, where one anode wire is surrounded by six cathode wires. In total they add up to 1568 anodes,
4788 field and 328 shield wires. As drift gas He + 50% C2H6 at 1 atm is used. The efficiency is again
given in Table 3.4.
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3. Data Calibration and Analysis

The purpose of the calibration is to convert the measured raw data of an experiment into physical
quantities. The extracted information from the detectors are often given in arbitrary units, which
is with digital electronics always a bin number within the range of the channel considered. The
connection of this channel number to physics quantities is called calibration. Therefore, a conversion
into reasonable units, e.g. MeV, mm, ns, is often the first step when extracting the raw data. This
procedure is accompanied by checking correlations between detectors and if the data is reasonable.
This important first step is described in this chapter. Afterwards, the data can be investigated closer
and the physical interpretation can begin.

3.1. Trigger Selection and Dead Time

Two main trigger systems were used during the data taking of the experiment. First, the 14O beam
trigger, which task it is to count the 14O particles impinging onto the target. It registers an event,
when both F5 and SBT1 receive a signal. To avoid most of unnecessary other particles, two measures
were performed. A veto was implemented for F5 for particles with Z ≤ 7 to exclude low Z particles
from being registered. Most of the other particles with Z > 7 are excluded by the dipole magnets
at BigRIPS, which are configured for 14O at ∼ 100MeV/nucleon. With these most of the registered
events were 14O and the trigger was down scaled by a factor of 100 due to the high intensity of the
beam. The second trigger is the reaction trigger. It has the same condition as the beam trigger plus
that the hodoscope needs to register an event with Z ≤ 8. Thus, the task is to register the successfully
measured reaction residues from the SAMURAI spectrometer, when a beam particle was registered.

Table 3.1.: Summary of the trigger conditions for the two used triggers. The ”x” indicates that the
detector needs to receive a signal, so that the trigger system starts recording an event.
For the plastic scintillator F5 a veto was applied for particles with Z ≤ 7.

F5 SBT1 Hodoscope
Beam trigger x x -

Reaction trigger x x x

In addition, the DAQ lifetime for the beam trigger and reaction trigger needs to be considered for
the calculation of the cross section. The DAQ lifetime is calculated by the number of measured events
to the number of possible cycles. For the beam trigger an average ratio of ∼0.54 and for the reaction
trigger ∼0.69 is extracted, respectively. Thus, the counts of the beam and fragments are corrected
by the DAQ lifetime. A complete table for all runs is given in Appendix A. Here, one can see that the
values change over time. This is because the beam intensity during the experiment was high with
9× 103 particles per second. At higher beam intensities there are more fluctuations in the intensity
and the DAQ is adjusting the lifetime values to this change.
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3.2. Selection and Energy Calibration of 14O at BigRIPS

3.2.1. Selection of 14O

From the described hardware selection in the previous section, the selection of 14O is performed
straightforward by analyzing the energy deposit of F3 and F5. An absolute∆E−Bρ−TOF calibration
was not necessary, since 14O is identified unambiguously. This can be seen on Fig. 3.1, where the
measured charge of F3 and F5 is shown. There is only few background left from other particles. A
software selection is applied (black circle) to remove the remaining background around 14O.
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Figure 3.1.: F5 energy deposit of the beam against F3 energy deposit of the beam for the selection
of 14O. The black circle indicates the selection of 14O.

3.2.2. Energy Calibration of 14O

The two dipole magnets D5 and D6 have a magnetic rigidity of Bρ = 2.5978Tm. From that, the
velocity v and kinetic energy Ekin are calculated. 14O has a kinetic energy of 100.8MeV/nucleon at
D5/D6 (Fig. 3.2 (a)) . With the velocity v at D5/D6 and the flight length of 59.03807m between
F5 and F13, the TOF is calibrated. Finally, the kinetic energy of 14O at mid target is calculated. For
the energy loss calculation the program ATIMA 1.2 LS-theory [63] implemented in LISE++ [64] is
used. The relevant materials for the energy loss from BigRIPS up to the target have been listed in
Table 2.2. The energy loss calculation is separated into three steps. First, the energy loss of the
beam from the dipole magnets D5/D6 to the entrance of the target chamber is calculated. A linear
function is created from the energy loss simulations, which transforms the velocity at D5/D6 to the
velocity at the target chamber entrance. The function for the energy loss up to the target entrance
window can be seen in Fig. 3.2 (c). In the next step, the energy loss due to condensation water on
the target chamber entrance window is calculated. Since, the water distribution is not homogeneous
on the window, the particles experience different energy losses depending on the water thickness.
Therefore, a value for the water thickness is generated for each particle and an energy loss applied
according to the function in Fig. 3.2 (d). For example a particle with a momentum of ∼ 6090MeV/c
will have a momentum of ∼ 6040MeV/c after going through ∼ 400µm water. The generation of the
water thickness for each particle is explained in detail in Section 3.12. The last step is the calculation
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of the energy loss from the target chamber entrance window to the mid of the SHT target. Here, the
same procedure as for the first energy loss is applied. The last function is given in Fig. 3.2 (e). The
final beam energy distribution is shown in Fig. 3.2 (b) with a mean value of ∼94MeV/nucleon. The
slightly asymmetric shape in comparison to the original distribution is due to the non-homogenous
energy loss in the water.
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Figure 3.2.: (a) Energy of the beam at the dipole magnets D5/D6. (b) Energy of the beam at mid
target. The energy of the beam at mid target was calculated in three steps. (c) Energy
loss function from D5/D6 to the entrance window of the target chamber. (d) Energy
loss function through water. (e) Energy loss function from the target chamber window
to mid target.

3.3. Data Analysis of the Drift Chambers

This section is about the data analysis of the drift chambers, where the quality of the data taking and
the efficiency of the drift chambers are checked.

3.3.1. BDC1/2 and FDC0

When a particle passes through a drift chamber, the gas in the chamber is ionized and the electrons
drift towards an anode wire. From the position of the wire and the drift length of the particle, the
incident reaction location is determined. The drift length is calculated from the drift time using a
space-time conversion (STC), which is shown in Fig. 3.3 (b). The STC is obtained by integrating
the drift time spectrum, Fig. 3.3 (a), assuming a uniform drift length distribution. Since the electric
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field is non-uniform towards the wire, it has a sharp peak towards higher channels. Due to symmetry
reasons there are two possible directions from which the particle can drift to a wire. Therefore, one
needs at least three layers of wires behind each other to determine the correct track with a linear fit.
The BDC’s and FDC0 consist of four X and four Y layers to determine the track. With a least square
procedure a linear track is determined considering all eight possible particle positions and their 16
different combinations. The optimum track is a fit through the four true points and the differences of
the track to the four positions is calculated. Those differences are referred to as residuals and they are
used to determine the position resolution of the drift chamber. Therefore, the residuals are plotted
against the drift length, which is shown for the first X layer of BDC1 in Fig. 3.4 (a). The projection
on the residual axis, Fig. 3.4 (b), gives then the resolution of the drift chamber. Since BDC2 and
FDC0 are build the same as BDC1 they are treated likewise. A summary for the position resolutions
is given Tab. 3.2.

Table 3.2.: Position resolution (1σ) of the drift chambers

Drift Chamber Position Resolution [µm] (axis)
BDC1 73 (x) 74 (y)
BDC2 74 (x) 73 (y)
FDC0 82 (x) 82 (y)
FDC2 258 (x) 364(v)

TDC [Channel]
1700 1750 1800 1850 1900

C
o
u
n
ts

0

20

40

60

80

100

3
10×

(a)

TDC [Channel]
1750 1800 1850 1900

D
ri

ft
 L

en
g
th

 [
m

m
]

0

0.5

1

1.5

2

2.5

3

(b)

Figure 3.3.: (a) Drift timedistribution for all BDC1wires. (b) Space time conversion (STC) function for
BDC1. The drift time distribution and STC function for BDC2 and FDC0 are quantitatively
the same and not shown here.
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Figure 3.4.: (a) Residual with respect to the track against the drift length divided by the cell size (2.5
mm) for the first X layer of BDC1. (b) Projection on the residual axis to estimate the
position resolution with a gaussian fit.
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3.3.2. FDC2

Similar to the BDC, the functionality of the FDC2 is validated by studying the time-to-digital con-
version distribution and space time conversion functions and the residuals of the calculated tracks.
However, due to the different structure of FDC2, it is analyzed differently. The FDC2 layer scheme is
XX’-UU’-VV’-XX’-UU’-VV’-XX’. The time-to-digital conversion distribution and space time conversion
function are given in Fig. 3.5 (a) and (b). They are similar to the ones before, however more elon-
gated due to the larger drift distance of 10mm. Fig. 3.5 (c) shows in addition a correlation between
the first XX’ layer pair. The shape is unique due to a shift of the wire position between the two layers.
It originates from the particles passing the wires with different angles and distances. This is a good
check that FDC2 is working properly. Similar patterns appear for all other layer pairs of FDC2.
During the experiment the last UU’ layers of FDC2 were not supplied with high voltage because

they were sparking. Since the standard algorithm is calculating first the 1D track of the X, U and V
layers separately, the two functioning U layers were not used, because a least square optimization
is not possible with only two layers. Therefore, the track was only reconstructed using the X and V
layers. The procedure is basically the same as for the BDC and FDC0 drift chambers, however the
calculation is more elaborated due to the angle of the V planes. The final track is again compared with
each points from the different layers and the residual is calculated. Fig. 3.6 (a) and (b) shows the
residual against drift length plot for the first two X layers. In contrast to the BDC/FDC0 distributions
one can see an offset shift and a worse resolution. These problems have been found systematically for
all FDC2 layer pairs. In a discussion it was pointed out that the problems might arise from problems
with the space time conversion function [65]. However, since the extracted values from FDC2 have
been reasonable as can be seen in later sections, the problem was not pursued to a solution due to
time constraints. It is expected, that fixing the issue could slightly enhance the resolution of the final
results. The projected resolution plots are shown in Fig. 3.6 (c) and (d). The resolutions are also
given in Table 3.2.
Note, that it would of course be possible to find out the correct positions for the functioning U planes

using the track estimated from the X and V planes. However, the improvement of the resolution for
the x-coordinate would be limited and so they were not calculated.
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Figure 3.5.: (a) Drift time distribution for FDC2. (b) Space time conversion function for FDC2. (c)
Correlation of the time-to-digital conversion distributions of the first XX’ layer pair.
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Figure 3.6.: Residual with respect to the track against the drift length divided by the cell size (10mm)
for the first X (a) and X’ (b) layer. Projection on the residual axis to estimate the position
resolution with a gaussian fit for layer X (c) and layer X’ (d).
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3.3.3. Alignment of FDC0

The exact relative position of FDC0 with respect to the BDC’s was measured with limited precision.
Therefore, the tracking of BDC1 and BDC2 is used to adjust relative alignment with the beam data.
For the alignment, the xBDC1,BDC2 and yBDC1,BDC2 position coordinates of BDC1 and BDC2 are used
to calculate the track of the particles. With the resulting tracks from the BDC’s the position coordi-
nates of the particles at FDC0 are determined. The calculated coordinates are then compared to the
measured values xFDC0 and yFDC0 from FDC0 to specify the offset of FDC0. The offsets ∆xFDC0 and
∆yFDC0 with respect to the beamline are calculated using Eq. (3.1) and Eq. (3.2). Here, dBDC1FDC0 is
the distance between BDC1 and FDC0 and dBDC1BDC2 is the distance between BDC1 and BDC2. The
corrections for FDC0 are xFDC0 = 0.17mm and ∆yFDC0 = 0.5mm. The calculated values are used
later for the reconstruction of magnetic rigidity Bρ and flight length L of the particles.

∆xFDC0 = xFDC0exp − [xBDC1 +
dBDC1FDC0
dBDC1BDC2

· (xBDC1 − xBDC2)] (3.1)

∆yFDC0 = yFDC0exp − [yBDC1 +
dBDC1FDC0
dBDC1BDC2

· (yBDC1 − yBDC2)] (3.2)

3.3.4. Beam Position on the Target

The beam position on mid target is calculated from the position coordinates of BDC1 and BDC2,
see Fig. 3.7 (a) for target runs and (b) for empty target runs. The target has a diameter of 30mm.
Therefore, only events within a diameter of 30mm are considered for further analysis.
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Figure 3.7.: Beam position on mid target for (a) target runs and (b) empty target runs. The black
circle indicates the diameter of the target.
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3.4. Reconstruction of Bρ and the Flight Length L

For the calculation of the cross sections and the parallel momentum distribution (PMD) it is neces-
sary to know the magnetic rigidity Bρ and the flight length L of the particles. Those two quantities
were not directly measured during the experiment. They also cannot be calculated straightforward
with the Lorentz force, because the magnetic field of the large SAMURAI dipole magnet is not ho-
mogeneous. Therefore, simulations of the trajectories are done using an accurate magnet field map
provided by RIBF. With the obtained simulated trajectories a multidimensional fit is done using the
position coordinates of FDC0(x,θx,y,θy) and FDC2(x,θx). The fit functions are then used to recon-
struct Bρ and L with the experimentally measured position coordinates of FDC0 and FDC2.
For the simulation the software smsimulator3.5 provided by our collaborators from TiTech [66] is

used, which is based on Geant4 [67]. The input parameters for the generated events are given in
Table 3.3. The expected Bρ mean value for 14O is Bρ(14O) = 2.44Tm , for 13O and 13N they are
Bρ(13O) = 2.2Tm and Bρ(13N) = 2.6Tm. Thus the input Bρ is covering the experimental range.
The position and angle coordinates have their origin at the target position. The coordinates are
chosen to that they cover the target dimensions. Note, that the choice of angle coordinates from
-20mrad to 20mrad covers the impact range of the beam on target. However, due to the reaction
the angle distribution widens. The resolution of the PID was found to be much better for the range
from -20mrad to 20mrad than for higher ranges. The issues with higher angles could be attributed
to the flight lengths function. Simulations for theBρ function from -60mrad to 60mrad resulted in a
similar momentum distribution as for the one from -20mrad to 20mrad. However, there was an offset
in the momentum distribution. The offset gave rise to a deviation from the theoretical calculations,
while the shape was again nicely reproduced (see Section 4.4). Therefore, the calculation with the
range from -20mrad to 20mrad are applied for our momentum distribution. Of course, there will
be final checks in the near future to confirm these results. In addition, several checks were already
done, where the events smaller then -20mrad and larger then 20mrad were always consistent with
the other data in the A/Q plots and the momentum distributions in the later sections.

500.000 14O particles are generated uniformly within the chosen limits. The magnetic field map
for 1.5 T provided by RIBF is used for the simulation. The magnetic field is scaled with a factor of
0.99503 with SHT and 1.0068 without SHT to match the experimental magnetic field of 1.4858T
and 1.5102T. An example for the resulting trajectories for 14O, 13O and 13N is shown in Fig. 3.8.
From the simulation the FDC0 and FDC2 position and angle, Bρ and L of the particles are saved and
then used for the multidimensional fit.

Table 3.3.: Simulation input parameters. The range of the position coordinates is chosen, so that
they cover the range of target used in the experiment. TheBρ is chosen so that it covers
the range of momentum distribution of 14O, 13O and 13N.

Minimum value Maximum value
Target x position [mm] -15 15
Target θx angle [mrad] -20 20
Target y position [mm] -15 15
Target θy angle [mrad] -20 20

Bρ [Tm] 2.0 2.8

The experimental Bρ and L are obtained with a least square fitting multidimensional fit from the
trajectories [68]. The method is included in the smsimulator3.5 software.
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Figure 3.8.: Simulation of the trajectories 14O (red), 13O (green) and 13N (blue) at the SAMURAI spec-
trometer.

The goal is to reconstruct not measurable quantities with a function, which depends on experimen-
tal measurable quantities. For our experiment, we want to know Bρ and L of the particles, which
were not measured experimentally and are our unknown quantities. To reconstruct them we mea-
sured the angle and position of the particle at FDC0 and FDC2, which are our measurable quantities.
The position and angle of FDC0 and FDC2 depend on Bρ and L and vice versa. The functions for
Bρ and L are obtained with a least square fitting procedure, which needs a large amount of sample
data. We generated the sample data in the previous described simulation. A general idea of the
fitting procedure is given in the following, which follows the description in Ref. [69].
Let D be the quantity of interest, which depends on the variables x1, ..., xN and has the the square

errorE. From simulation a sample (xf ,Df ,Ef ) is generated. The multidimensional fit will determine
the parameters cl of the following equation

Dp(x) =
L
∑︂

l=1

cl

N
∏︂

i=1

pli(x) =

L
∑︂

l=1

clFl(x) , (3.3)

so that
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S =
M
∑︂

j=1

(Dj −Dp(xj))2 (3.4)

becomes minimal. pli(xl) can be monomials, Chebyshev or Legendre polynomials.
The quality of the fit is tested by inserting the simulated values into the Bρ and L function and

compare it to the corresponding value from the simulation. The result of this comparison is shown
in Fig. 3.9. The figures show that the fit functions reproduce Bρ and L with very small deviations
from the simulated value in the region of interest. The fit converges for monomials with a maximum
order of 4. For higher orders there was no improvement of quality. The minimum relative error is
set to 0.01. A minimum needs to be given, because it is highly unlikely that the error becomes zero
and thus the fit would not converge. The maximum number of monomial terms is set to 1000.
For the particle identification, the previous described simulation using 14O particles is used. The

precision of the functions is sufficient for the particle selection. For an exact determination of the
parallel momentum of the residues, 13O and 13N are used as the input of the simulation. The other
simulation and fit input parameters stayed the same. The results of the quality control plots are
similar to the ones from 14O and the output momenta changed slightly.
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Figure 3.9.: Quality test for the Bρ and Fl functions with SHT. A second simulation was performed,
since the magnetic field was different for the runs with and without SHT. The results
without SHT are similar to the ones shown here.
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3.5. Calibration of the Hodoscope

The calibration of the hodoscope is done in two steps. First the relative calibration to align the time
and charge offset of the different hodoscope bars. Secondly, the absolute calibration to get the correct
Z and A/Q for the particle identification.

3.5.1. Relative Calibration

For the relative calibration the assumption is made, that events, which hit two neighboring hodoscope
bars, have the same energy deposit and TOF. This is obviously only the case at the transition from one
bar to another bar (see Fig. 3.10). Therefore, the position of the particles at hodoscope is calculated
with the FDC2 coordinates and then only events in a range of ±5mm at the transition between two
bars are selected. The charge and the time is then compared for those events, from which then an
alignment factor is calculated for the charge and an offset constant for the time. The procedure is
done repetitively until every bar is relatively aligned to bar 9 of the hodoscope, which is the bar with
the most events during the experiment. A quality check of this procedure is done by looking at the
charge and the TOF against the FDC2 X position (see Fig. 3.11). If the constants for the alignment
are correct, the structures in the plots should be continuous. If there are ”jumps” it means, that
there is a transition from one bar to an other and that those two bars are not correctly aligned. This
misalignment can happen, when there were only few measured events between two bars. It can then
be corrected by adjusting the relative alignment manually.

Figure 3.10.: Principle of the relative calibration of the hodoscope.
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Figure 3.11.: (a) Charge and (b) TOF against the hodoscope x position of the particles as a quality
check for the relative calibration.
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3.5.2. Absolute Calibration

The absolute calibration of the hodoscope is done with ∆E − Bρ−TOF method using the following
equations:

A

Q
=

Bρc

βγmu
(3.5)

TOF =
L

βc
(3.6)

−
dE
dx = 2πNar2emec2ρ

Z

A

z2

β2

[︃

ln2mev2

I
− ln(1− β2)− β2

]︃

(3.7)

In Eq. (3.5) A is the atomic mass number and Q is the charge of the incoming particle, Bρ is the
magnetic rigidity of the particle, c is the velocity of light, β = v/c, where v is the velocity of the
particle, γ is the Lorentz-factor and mu is the atomic mass. With an A/Q of 1.75 for 14O and the
calculated Bρ, the velocity v of the particles is determined. v is then used with the calculated L to
determine the TOF offset constant with Eq. (3.6). Note that additional slight corrections had to be
applied for the TOF, so that the nuclei 13O and 13N are at their correct position. This was due to the
slew correction, which was applied only on one hodoscope plastic scintillator. The slew correction is
discussed later in Section 3.8.2.
In a second step, the measured charge of the hodoscope is calibrated to the atomic number of

the measured nuclei. The charge z of the incident particle is calculated by using the Bethe-Bloch
formula Eq. (3.7). Here, Na is the Avogadro constant, r2e is the classical electron radius, me is the
electron mass, ρ is the density of the scintillator material, z is the charge of the incident particle in
units of elementary charge e, I is the mean excitation potential, Z is the atomic number and A is the
atomic weight of the absorbing material. For composite materials the effective values for A and Z
are calculated by the sum over the single components:

Zeff =
∑︂

aiZi (3.8)
Aeff =

∑︂

aiAi (3.9)

The material of the plastic scintillator is BC408. It has a density of ρ = 1.03289 g/cm3, a mean
excitation potential of I = 64.7 eV [70]. Furthermore, note that Eq. 3.7 is only valid for M >> me

due to various approximations. Here,M is the mass of the incident particle. Also corrections like the
density effect and shell correction are not considered, because they are not relevant in the energy
range of the experiment.
The values one calculates for z from the Bethe-Bloch formula are arbitrary and have to be assigned

to the proper atomic number Z. Therefore, a first z versus A/Q figure is created. A projection on
the z-axis of this plot is done. From this plot the corresponding values for each Z can be identified.
The values for z are the mean values from a gaussian fit to each peak. With z and Z a quadratic
translation function is created

Z = az2 + bz + c (3.10)

and a, b, c are constants to be determined. Note, that the amount of intensity of fluorescent light is
only in first approximation proportional to the energy deposit. It usually depends on the energy and
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type of the incoming particle [71]. Thus, one should use as much nuclei with different Z as one can
identify and a quadratic function instead of a linear fit. The procedure is repeated for every hodoscope
plastic scintillator individually. However, for all plastic scintillators above ID 13 the constants a, b, c
from ID 13 are used. The reason for this is, that most of the particles striking ID 14 and higher are
stopped in the hodoscope and thus the calibration fails. This problem will be discussed further in
Section 3.8, where a first particle identification plot is created based on the calibration in this section.

3.6. Plastic Scintillator Selection

For reducing the background of the experiment the plastic scintillators are used [72]. The selection is
donewith the hodoscope plastic scintillators and is described in the following. Each plastic scintillator
is read out at the top and bottom side with a PMT. The light arriving at a PMT depends on the energy
deposit and the position where a particle strikes the plastic scintillator bar. The amount of light
arriving at the top and bottom side may be calculated by the following equation:

qt = q0 exp(−
L+ x

λ
) (3.11)

qb = q0 exp(−
L− x

λ
) . (3.12)

Here, qt and qt are the measured amounts of light at the top and bottom plastic scintillator, re-
spectively, q0 is the initial amount of light, λ is the attenuation length, L the length of the plastic
scintillator and x the position of the particle on the scintillator. Solving Eq. (3.11) and Eq. (3.12) for
x leads to the expression

x = −λ ln( qt
qb
) . (3.13)

In addition, the timings tt and tb of the charge signals in both scintillators are measured and can
be used to deduce x with the effective light propagation velocity in the scintillator v

x = −
v

2
(tt − tb) . (3.14)

By equating Eq. (3.13) and Eq. (3.14) and simplifying the result one gets the following equation

v(tt − tb) = λ ln( qt
qb
) . (3.15)

Thus, there is a linear relationship between the two measurable quantities tt− tb and ln(qt/qb) and
events from physical particles fulfill Eq. (3.15). This linear relationship is used for the background
removal, when plotting those two quantities in Fig. 3.12. The removed particles by this selection
amount to 0.6(1)% and will be considered for the cross section correction.
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Figure 3.12.: Noise removal using the plastic scintillator with the ID8 of the hodoscope. (a) All reg-
istered events, (b) Registered events without the noise. The same selection method
was applied on all plastic bars of the hodoscope.

3.7. Efficiency of the Detectors

The efficiencies of the drift chambers and the hodoscope plastic scintillator during the experiment
are estimated. They were estimated by comparing registered events in neighboring detectors:

E2 =
N1 ∩N2

N1

Here, E2 is the efficiency of detector 2 and N1 and N2 the number of events registered at detector
1 and 2, respectively. FDC0 to BDC2,FDC2 to the hodoscope and the hodoscope to FDC2 were com-
pared like this. All detectors have at least an average efficiency of 98.4% or higher. The efficiencies
are given in Table 3.4. They did operate well during the whole experiment. The efficiency of the
detectors has to be considered for the cross section, because of the loss of 13O and 13N. However, a
direct consideration is difficult, because particles can also be lost in between the detectors due to
reactions with beam line material. It is then not know, if the the particle was not measured, be-
cause it was lost in the beamline or due to a detector not measuring it. This is especially the case
for the detector FDC0, where no other detector is really close and much material is between FDC0
and BDC2. Therefore, the estimation will be indirectly in Section 3.10.2, where the beam loss due
to beam line materials is described. Note that BDC1 and BDC2 were used to calculate the beam
position on the target. All events which are not detected by them are removed from the selection on
the target diameter. Thus, their efficiency is not relevant for the further analysis.

Table 3.4.: Average detection efficiency for 14O of the used detectors in the SAMURAI experimental
area: FDC0, FDC2 and the hodoscope.

FDC0 FDC2 Hodoscope
Efficiency [%] 98.97 99.29 98.41
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3.8. Particle Identification

3.8.1. Standard Particle Identification

In a first attempt for the particle selection a PID is created with the standard approach by calculating
A/Q from the equality of the Lorentzian and centrifugal force and Z via the Bethe-Bloch-formula.
The result is shown in Fig. 3.13. The residues can be clearly identified. However, there are some
difficulties for a straightforward residue selection. The additional treatment for the shown PID and
the final procedure for the selection of 13O and 13N are explained in the following sections.
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Figure 3.13.: PID with the standard ∆E −Bρ− TOF approach.
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3.8.2. Slew Correction

Due to the use of a leading edge discriminator the TOF depends on the deposited energy of the
particles. Therefore, the so called slew correction is applied by analyzing the particles, which hit
two adjacent bars. Naturally, the signals of both bars have a different amplitude, but the same
TOF. Unfortunately, only the central plastic scintillator with ID9 had enough events shared with
a neighboring plastic scintillator ID8 for enough statistics for a good enough fit. Therefore, the
same slew correction is applied for all hodoscope plastic scintillator. If enough statistics is there,
one should usually apply the calibration for each plastic scintillator individually, because it changes.
However, it is a good enough approximation to improve the quality of the PID and simplify the residue
selection. It has no effect on the quality of the results, since the momentum distribution is calculated
independently of this correction. The time of flight correction ∆TOFsc is determined by fitting the
following function to the selected events. It depends on the energy loss in the hodoscope ∆E with
the parameters a, b and c:

∆TOFsc = a+ b ·∆Ec . (3.16)

The constants are determined to be a = 70.5075, b = 15.0648 and c = −0.432171. The ∆TOFsc is
subtracted from the calibration TOF and the A/Q is recalculated. The new PID is given in 3.14.
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Figure 3.14.: PID with the standard ∆E −Bρ− TOF approach and applied slew correction.
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3.8.3. Uncorrelated FDC Events

In the PID there are elliptical background contaminations. They appear for A/Q from 1.7 to 1.79
at ”Z”= 3,4,5 and 6. They can be seen in Fig. 3.15 (a) for the target PID and in (b) for the empty
target PID of plastic scintillator ID11. This background contamination can slightly overlap with the
residue 13N, which is shown in detail later. The origin of the background could not be found during
the analysis. However, it is shown in the following, that the background does not originate from
reactions upstream of the SAMURAI dipole magnet.
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Figure 3.15.: PID’s for hodoscope bar 11 without using the selection from Section 3.8.3 for runs with
SHT (a) and without SHT (b). Elliptical contaminations can be seen forA/Q from 1.7 to
1.79 at ”Z”= 3,4,5 and 6. PID’s with the selection from Section 3.8.3 for runs with SHT
(c) and without SHT (d).

To prove that the elliptical background is not relevant for the analysis FDC0 θx and FDC2 θx are
used. Fig. 3.16 shows the angle θx of FDC0 against the angle θx of FDC2 for ID11 of the plastic
scintillator from the hodoscope. Usually, those two quantities are correlated, which is also true for
most of the events in this experiment. The correlation of those two quantities is shown with Geant4
simulations in Fig. 3.17. In the figure, the correlation of the nuclei 14O with the magnetic field
strength of the target runs is given. The results for other isotopes such as 13O and 13N and the empty
target run magnet field are similar, with only slight differences in the slope of the correlation and the
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offset of the angle FDC2 θx.
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Figure 3.16.: Selection of the events using FDC0 θx and FDC2 θx for hodoscope ID 11. (a) All events
are displayed for ID 11. A linear function is drawn through the correlated events. (b) The
projection of the events on the linear function and a gaussian fit on the resulting spec-
trum. (c) The remaining events after rejecting all events outside of the 3σ environment
of the gaussian projection fit.

However, in the experimental data there are many uncorrelated events. The horizontal uncorre-
lated events have a significant impact on the 13N selection in the particle identification. The selection
by plotting FDC0 θx against FDC2 θx is the best way, to show that those events are not relevant for
the analysis. For the selection a linear function is plotted along the correlated events Fig. 3.16 (a).
All events are then projected onto this line and a gaussian fit is applied. All correlated events with
a 3σ environment are selected and most of the uncorrelated events will get rejected. The remaining
events are show in Fig. 3.16 (c).

Compared to Fig. 3.15 (a) and (b) most of the background contamination is gone in Fig. 3.15 (c)
and (d). The rest of the background is due to the continuation of the uncorrelated events in Fig. 3.16
behind the correlated events, which cannot be removed like this.
Note, that the selection process described in this section is performed to display the nature of these

events further. It is not used for the selection 13O and 13N. The reason, why it is not used, is, that
there are too many uncertainties in the selection and the overlap is strong. Some bars have a large
overlap of 14O, 13O and 13N, which are slightly shifted against each other and so it is difficult to
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Figure 3.17.: Correlation between FDC0 θx and FDC2 θx from Geant4 simulations.

disentangle them. It leads sometimes to situations, that a 5σ selection must be applied for certain
plastic scintillators to collect all correlated events instead of 3σ as in the example. However, an
identification without the selection is possible since most of the background is subtracting for target
and empty target runs. This is proven in Fig. 3.18. Here, FDC0 θx and FDC2 θx are displayed for
all hodoscope plastic for runs with SHT (a) and without SHT (b). The horizontal background shows
a repetitive pattern. This pattern can be reproduced by projecting both plots on the FDC2 θx axis
in Fig. 3.18 (c). One can see nicely, that the repetitive pattern of runs with SHT (blue) and without
SHT (green) is equivalent. The difference of the peak in the middle is due to events reacting at the
target.
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Figure 3.18.: FDC0 θx and FDC2 θx correlation for (a) runs with SHT and (b) runs without SHT. (c)
Projection of the plots (a) and (b) on the horizontal FDC2 θx axis. The distribution in
blue and green are for with SHT and without SHT, respectively.
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3.8.4. Particles Stopping in the Hodoscope

The main issue for a particle identification is visible on the full PID in Fig. 3.19. 14O and 13O show
both large tails and 13N also a minor one. The tails stem from nuclei, which interact strongly or even
stop in the hodoscope. Fig. 3.20 (a) and (b) shows the momentum against the hodoscope ID for
13O and 13N. The black line indicates the momentum threshold 5090MeV/c and 4707.8MeV/c for
13O and 13N respectively, when the residues stop in the plastic. The threshold was calculated using
LISE++. For 13N only a small part of the residues stop completely in the hodoscope, while most
of the 13O particles stop in the hodoscope. The difference is due to the different atomic number Z,
which significantly impacts the energy loss. Note, that the black line only gives the threshold for
the particle to stop completely in the hodoscope. The stopping power is higher for low momentum
particles. When a particle passes through the plastic scintillator slowly, the interaction with the
material becomes more likely and the particle looses more energy. The assumption of constant v in
the usual Bethe-Bloch formula is not valid anymore and one would have to integrate over the energy.
Therefore, the Z calibration is ”smeared”. The smearing is from the hodoscope ID’s 14 and higher,
which use the calibration constants of ID 13 and where the calibration process from the previous
section fails. Due to this smearing 13O events overlap with other isotopes and make a selection with
this PID difficult.
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Figure 3.19.: ”Z” versusA/Q plot for target (a) and empty target (b) runs. Usually, this plot is used for
the PID. However, due to the energy loss of the particles in the hodoscope the different
nuclei have significant tails, which overlap with other nuclei. Thus, a ”clean” separation
is not possible like this.
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Figure 3.20.: Momentum against the hodoscope bar ID for (a) 13O and (b) 13N. The black line indi-
cates the threshold at which momentum a particle would completely stop in the ho-
doscope.
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3.8.5. Selection of 13O and 13N

Therefore, the PID is done by plotting the energy loss in the hodoscope against the velocity of the
particles in Fig. 3.21 for (a) 13O and (b) 13N. In the plots, theA/Q is limited to 1.59 <A/Q< 1.66 for
13O (A/Q = 1.625) and 1.79 < A/Q < 1.93 for 13O (A/Q = 1.867) to simplify the selection of the
residues. A/Q is calculated with the Bρ−TOF method. In both plots the 13O and 13N events consist
of two parts. In the first part the events are correlated. This is when the residues are stopped in the
hodoscope and the Bethe-Bloch formula for a constant v is not applicable anymore. The energy loss
is proportional to the kinetic energy. The second part are the anti-correlated events. In this case, the
events pass through the plastic and the energy loss can be calculated with the Bethe-Bloch formula.
For the selection of the residues, the following procedure is applied. Two linear functions are drawn
through the residue events. The first one is drawn through the correlated events, the second one
through the anti-correlated events. The parameters are summarized in Table 3.5. All events are
projected onto these two lines. An exception is made for the 13N correlated events. Here, a selection
is done on the lower part of the events, because otherwise the overlap with anti-correlated is too
strong and a fit not possible. The resulting projection SHT spectra are shown exemplary in Fig. 3.22
(a) and (b) for 13O and Fig. 3.22 (c) and (d) for 13N. A gaussian fit is applied on each of the projections.
The residue events are then selected in a 3σ environment of those fits. The events selected by this
procedure are within the black lines shown in Fig. 3.21 (a) and (b). For the selection error estimation
the σ from the fit is changed within the fit error limits. This results in deviations in the selection of
0.02% to 0.29%. From applying the 3σ environment selection 0.3% are usually excluded. However,
this applies only for a perfect gaussian distribution. Since the distributions are not ideal a maximum
error of 0.3% is assumed for the selection, which is larger than the deviation from the σ fitting error.

Table 3.5.: Linear function parameters for the projection.

Residue Target Events Slope [1/(mm/ns)] Offset [arb. unit]
13O Yes Correlated 0.996336 -85.9048
13O Yes Anti-correlated -1.73623 249.961
13O No Correlated 0.98318 -85.7325
13O No Anti-correlated -1.17274 179.144
13N Yes Correlated 1.14385 -98.3814
13N Yes Anti-correlated -0.703738 112.491
13N No Correlated 0.971551 -80.2785
13N No Anti-correlated -0.580983 97.6513
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Figure 3.21.: Charge against the velocity for the identification of (a) 13O and (b) 13N with SHT. (c)
and (d) are the corresponding selection without SHT .Figure (a) and (c) are limited by
CUT1 and figure (b) and (d) are limited by CUT2 from Fig. 3.19.
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Figure 3.22.: Projection of the events in Fig. 3.21 (a) and (b) on the respective linear functions
given in Table 3.5.(a) and (b) show the projection on 13O correlated and anti-correlated
events. (c) and (d) are the corresponding pots for 13O. Note, for the projection on (d)
a preselection of the correlated was done, because otherwise the anti-correlated part
would have overlapped too strong.
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3.8.6. Validation of the Residue Selection

Here, the previous applied selection are verified by comparing the A/Q distributions for runs with
SHT and without SHT. The comparison is given in Fig. 3.23. The presented figures prove that selec-
tion is good and the distribution subtract nicely. However, there are still some contaminations left.
They will be treated in the next section.
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Figure 3.23.: (a) and (b) show the A/Q distributions with SHT (blue) and without SHT (green) for
13O and 13N, respectively. (c) and (d) are the respective subtracted spectra.
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3.8.7. Additional Selection Corrections

Additional selection for 13N

As mentioned in Section 3.8.3 the uncorrelated events in the FDC0 θ against FDC2 θ plot were
not excluded due to uncertainties. However, part of those events overlap with the residue 13N in the
particle identification plots. In Fig. 3.24 (a) the effect of those events become visible, where a small
peak is visible in the range of 5100MeV/c - 5400MeV/c.
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Figure 3.24.: PMD of 13N after the PID for (a) runs with SHT and (b) runs without SHT.

Those events can be removed by an additional selection. Therefore,∆E againstA/Q for hodoscope
(a) ID 8 and (b) ID 9 is plotted in Fig. 3.25. Here, only events with a momentum below 5400MeV/c
are considered. The black lines indicates the new selection. All events below the black lines are
rejected, because they are not 13N. Note, those events were not rejected in the previous selection,
because other hodoscope ID’s have a similar energy loss and overlap with this contamination. The
removal is also applied for ID 10 and 11, but the contamination there is much less. With the presented
selection, the small bumps around 5400MeV/nucleon disappear and the tails are now continuous.
The results are presented in 3.26.
The figures in Fig. 3.25 are taken from the runs with SHT. The same selection with a slightly

different line is applied and a momentum below 5450MeV/c for the runs without SHT.
However, this selection is not necessarily mandatory for the calculation of the cross section and a

correct momentum distribution. When the A/Q selection limit of the PID preselection is changed
from 1.79 to 1.81 and only the energy loss in the hodoscope against the velocity selection is applied,
the difference in the cross section is only 0.04mb. This is consistent with Fig. 3.18, where the
background of runs with and without SHT is similar.
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Figure 3.25.: ∆E against A/Q for hodoscope (a) ID8 and (b) ID9. Only events with a momentum
below 5300MeV/c are shown. Events below the black line are rejected, because they
are not 13N.
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Figure 3.26.: PMD of 13N with the additional selection for (a) runs with SHT and (b) runs without
SHT. Note, the two distributions have not been normalized yet and represent different
total run times.
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Additional selection for 13O

For 13O a similar selection must be applied, because there is some 11C left. It is removed again with
a ∆E against A/Q plot. An example is given for the plastic scintillator with the ID 15 in Fig. 3.27.
The 11C is straightforward removed within the black lines. For the other plastic scintillators with the
ID’s 14,16,17 and 18 the 11C is also removed like this. The background effect on 13O in not as strong
as the one for 13N described in the previously. Therefore, there is no large impact on the momentum
distribution visible and thus no such plots are given here. Note, that in fact this selection would not
even be mandatory, because 11C is canceling for the distribution with and without SHT.

1

10

210

Q/A
1.55 1.6 1.65 1.7

 [
ar

b
. 

u
n

it
]

E∆

0

10

20

30

40

50

ID 15

Figure 3.27.: ∆E againstA/Q for the removal of 11C. The events within the black lines are removed.

3.9. Target Density and Thickness

The density of the target was determined by constantly monitoring the temperature of the target cell
during the experiment. A constant density is important, since the calculated cross section depends
on it. Fig. 3.28 (a) shows the temperature profile during the experiment. The target cell temperature
was constantly on 9K. One steep fall of is in the graph, but it is probably due to a network error. The
temperature of 9 K can then be translated to a density with Fig. 3.28 (b). Since the thermometer
was only near the target cell and not at the target cell, it is expected that the target was below 9K.
The density curve is nearly constant below 9K and so the density is constant during the experiment
with a value of 0.86 g/cm3 for para-hydrogen.
The target thickness and its respective error is important to calculate the cross section and the

associated uncertainties. The thickness is calculated by comparing the 14O beammomentum position
for the target runs with the empty target runs. The material budget after the target is for both the
same and listed in Table 2.3. For the energy loss calculation in the SHT the program LISE++ is used.
An energy loss function is created, which is shown in Fig. 3.29. The function returns the momentum
of a particle which hits the target with an momentum of 6050MeV/c and passes through a certain
distance.
The maximum of the momentum distribution of are determined by fitting a gaussian to the peak

for the runs with target and without target. Fig. 3.30 shows the momentum distributions for each run
of the experiment. Here, run 527 - 551 are the target runs and 561 - 564 and 567 - 574 the empty
target runs. An overview of each peak position and the time for each run is given in Appendix B. In
the figures, one clearly sees that the momentum and width of the distribution is changing during the
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(a) (b)

Figure 3.28.: (a) Temperature of the target cell during the experiment.(b) Density dependence of
para-hydrogen on the the temperature. Courtesy Y. Matsuda.

run. This is probably due the change of the thickness of the condensation water found on the target
entrance and exit window. The treatment of the water will be elaborated further in Section 3.12. For
now it is only important, that the fluctuations have a large impact on the error of the target thickness.
Note, one can see that the mean position of the runs 564,567 - 574 is shifting compared to run 561
- 563. It is assumed, that the target chamber is heating up after emptying and so the water starts to
evaporate.
Table 3.6 gives an overview of the important parameters for the target thickness calculation. The

average momentum peak position and the respective errors are calculated for target and empty tar-
get setup with all runs. The target thickness is then determined by using the energy loss function
(Fig. 3.29) to be 2.4mm ± 0.33mm. The error is ∼14%, which will be the largest uncertainty for
the cross section.
In addition, an error from the scaling of the magnetic field is calculated. For the simulation in

Section 3.4 the original field map has 1.5 Tm and is scaled by a factor to the experimental values.
However, it is not necessarily that this scaling is linear. Therefore, the simulations are performed again
using a 1% stronger and a 1% weaker magnetic field. The results for this simulation are also given in
Table 3.6. The difference of the target thickness to the original experimental field is 0.05mm for 1%
and 0.07mm for -1%. Thus, the error is significantly smaller than the 14% uncertainty determined
by the momentum change of the beam with and without the SHT target.
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Figure 3.29.: Energy loss of 14O, when passing through the SHT.

Table 3.6.: Average momentum peak position of the experimental data for the experimental mag-
netic fieldBexp and for amagnetic field increased and decreased by 1%. The target thick-
ness is calculated from themomentum difference of the target and background run with
the function in Fig. 3.29.

Bexp B(+1%) B(-1%)
P with SHT [MeV/c] 6009.24 6062.24 5956.52
∆P with SHT [MeV/c] 2.79 2.78 2.5
P without SHT [MeV/c] 6059.25 6112.58 6005.92
∆P without SHT [MeV/c] 6.27 6.46 6.21
Target thickness [mm] 2.4 2.45 2.33
Error target thickness [mm] 0.33 0.34 0.31

62



 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 527

Runnumber 528

Runnumber 529

Runnumber 530

Runnumber 531

(a)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 532

Runnumber 533

Runnumber 534

Runnumber 535

Runnumber 536

(b)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 537

Runnumber 538

Runnumber 539

Runnumber 540

Runnumber 541

(c)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 542

Runnumber 543

Runnumber 544

Runnumber 545

Runnumber 546

(d)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 547

Runnumber 548

Runnumber 549

Runnumber 550

Runnumber 551

(e)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 561

Runnumber 562

Runnumber 563

Runnumber 564

(f)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 567

Runnumber 568

Runnumber 569

Runnumber 570

(g)

 [MeV/c]P

5850 5900 5950 6000 6050 6100 6150

C
o
u
n
ts

0

500

1000

1500
Runnumber 571

Runnumber 572

Runnumber 573

Runnumber 574

(h)

Figure 3.30.: 14Obeammomentumdistributions calculated from themeasurementswith the SAMU-
RAI spectrometer. The runs 527 - 551 were with SHT and the runs 561 - 564 and 567
- 574 without. An overview of the estimated peak position and the time of the runs is
given in Appendix B Tables B.1 and B.2.
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3.10. Acceptance and Reaction Loss Correction

3.10.1. Residue Acceptance

In Fig. 3.32 the experimental Px and Py distributions for the unreacted 14O beam and the residues
13O and 13N are shown. The red lines in the figure indicate the acceptance threshold in y-direction.
One can clearly see, that the distributions of 13O and 13N are cut, while 14O is only lost slightly. The
momentum Py is limited due to the SAMURAI dipole magnet exit window. It has a height of 800mm
in y-direction and a width of 2800mm in x-direction. All events outside this window collide with
the magnet frame and get stopped. This means, that some of the 13O and 13N events are lost due to
this acceptance limitations.
This loss of events needs to be considered in the calculation of the cross sections. Therefore, in

this section simulations are performed to estimate the loss of events through the acceptance. Both
Px and Py acceptance were estimated by simulations.
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Figure 3.31.: Experimental Px and Py distributions for (a) 14O, (b) 13O and (c) 13N. The red lines are
there to guide the eyes to indicate the acceptance threshold.

For the simulation the smsimulator3.5 [66] is used. First, an amount of particles is generated. The
trajectories of the particles through the SAMURAI spectrometer are simulated and it is checked, if
the particles path through the following components: FDC0, SAMURAI dipole magnet exit window,
FDC2 and hodoscope. If a particle does not path through all of them, it is rejected. At the end,
the generated events are compared to the accepted ones to estimate the amount of lost events. The
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generation of the particles and the evaluation of the simulation is different for the Px-acceptance and
Py-acceptance and will be described separately in the following.

Py-acceptance

First, the experimental transversal momentum distribution for 13O and 13N are compared in Fig. 3.32.
For both nuclei the Px distribution is wider than the Py distribution, which is cut at lower absolute
momentum values. The origin of the difference is due to acceptance of the experimental setup as
discussed before. Furthermore, the Px distribution has a small offset of ∼ -15MeV/c coming from
the angular distribution of the 14O beam. It will be considered in the simulation. In addition, the
experimental distribution of 13O and 13N have a different shape, which is also predicted by theory
[73]. This leads to a small difference in acceptance for both particles. The transversal momentum
shape is an independent topic and is left for future investigation. The focus of this work is on the
parallel momentum distribution.
In the ideal case both distributions Px and Py should be the same, because there is no preferred

direction, so that it is symmetric relative to the azimuthal angle. This assumption will be used in the
following to do the simulation.
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Figure 3.32.: Experimental transversal momentum distributions for 13O of (a) Px and (b) Py and for
13N of (a) Px and (b) Py.

First, the transversal momentum Pt needs to be reconstructed, so that Px and Py can be generated
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independently. The quantities are related by the following equation:

P 2
t = P 2

x + P 2
y (3.17)

Due to the acceptance loss of Py the experimental distribution of Pt is also incomplete. Therefore, it
is necessary to make some assumptions for the reconstruction of Pt. It is assumed that for Py around
0, there is no acceptance loss. To meet this condition only experimental events with Py ≤ 20 are
selected. With this approximation Eq. (3.17) can be simplified to:

Pt = |Px| (3.18)

With Eq. (3.18) it is possible to reconstruct Pt with the experimental distribution of Px, because
we have no acceptance loss of Px. The distributions for the simulation are then generated using Pt
and a uniform distributed azimuthal angle θ with the following equations:

P sim
x = Pt · cos(θ) (3.19)
P sim
y = Pt · sin(θ) + g(µ = 0, σ) (3.20)

Here, g(µ = 0, σ) is a correction gaussian function, which is necessary, because of the angular
distribution of the 14O beam. The distribution for the beam is shown in Fig. 3.33, from which σ

= 27MeV/c is calculated. In addition, due to an offset in the Px distribution, a constant offset of
13.9MeV/c for 13O and 15.4MeV/c for 13N is added to Px to shift it close to 0 for the creation of
the correct Pt distribution. After the generation P sim

x it is shifted by -13.9MeV/c and -15.4MeV/c
to match the experimental Px distribution better. The comparison between the experimental and
simulated Px distributions for 13O and 13N are given in Fig. 3.34. The simulation reproduces the
experimental data very well and will be used as simulation input for Px and Py to estimate the
acceptance.
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Figure 3.33.: Experimental Px and Py distributions of 14O.
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Figure 3.34.: Comparison of the experimental distribution (blue) with the simulated distribution
(green) for (a) 13O and (b) 13N. The simulated distribution is scaled to have the same
area as the experimental distribution. The y-axis is put on log scale, to compare the
tails better.

The simulated results are given in Fig. 3.35. The input distributions have a spherical shape, since
no direction is preferred. The acceptance distributions are cut due to the Py acceptance loss. The
results match the shape of the experimental distribution in Fig. 3.31, which proves the consistency of
the simulation. Therefore, the experimental acceptance loss is extracted by calculating the ratio of
generated and accepted events. The acceptance is 94% for 13O and 96% for 13N. The cross sections
are corrected accordingly.

Table 3.7.: Input for the acceptance simulation.

Py-acceptance Px-acceptance
Events 1,000,000 1,000,000

Px distribution Px experimental Uniform
Py distribution Px experimental Py = 0
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Figure 3.35.: Py againstPx simulation input for (a) 13O and (b) 13N.Py againstPx accepted events for
(c) 13Oand (d) 13N.The red lines are there to guide the eyes and indicate the acceptance
threshold. They are the same as in Fig. 3.31.
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Px-acceptance

For the Px-acceptance the conditions for the generation of events are summarized in Table 3.7, too.
One million events are generated with Px between 500MeV/c and -500MeV/c and Py = 0MeV/c,
so that only the x-acceptance is evaluated and that there is no impact from the Py-acceptance. The
results from the simulation are given in Fig. 3.36. The left figures show the generated and accepted
momentum distributions for 13O and 13N. On the right-hand side the acceptance distributions are
shown. The result of the simulation is, that particles are fully accepted between 400MeV/c and
-400MeV/c. From the comparison with Fig. 3.35 one can conclude, that the x-acceptance is close to
100%. Only a negligible amount of events has a larger absolute momentum beyond 400MeV/c.
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Figure 3.36.: Input Px distribution (blue) and accepted Px distribution (green) for (a) 13O and (c)
13N. Acceptance distribution of Px for (b) 13O and (d) 13N. Between -400MeV/c and
400MeV/c the acceptance is close to 100%.
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3.10.2. Reaction Loss in the Beamline Materials and Hodoscope

The beam and the fragments pass through different materials (see Table 2.3) and the hodoscope after
the reaction with the target. Reactions of the particles with the material can occur, which influences
the extraction of the cross section. First, the reaction loss from the material between the target and
the SAMURAI dipole magnet is evaluated. An estimation of the losses in the hodoscope follow.

Reaction Loss in the Beam-Line Materials

The reaction losses from the downstream SBT1 beam line materials can be estimated by compar-
ing the number of beam events before the target and the number of beam events after the target.
When a particle did react in the beam line material, either it will not be accepted by the SAMURAI
spectrometer and the event is ”lost” or a fragment is produced, which will not appear as 14O on the
PID plot. Fig. 3.37 shows the PID of the 14O beam generated with the beam trigger. 14O is selected
within the black lines. There is the additional possibility that a detector did not measure an event
and the particle does not appear on the PID. Thus, the selection is not fully ”pure”, because it also
contains the detector efficiencies, which were already discussed earlier. It is difficult to disentangle,
which events are lost through the detector efficiency or through a nuclear reaction along the beam-
line material. Furthermore, the losses from the hodoscope charge selection are included here for
convenience. They could be disentangled with 0.6% calculated earlier. The number of events are
listed in 3.8. Thus, the reaction loss of 14O due to beam line materials is ∼6.2(5)% and ∼5.9(5)%
for runs with and without SHT, respectively. With the assumption that the reaction loss is similar, the
same numbers are applied for 13O and 13N.

Table 3.8.: Estimation of losses due to beam line material and detector efficiency.

Events with SHT Events without SHT
Unreacted beam events before the target 4,384,961 1,570,291
Unreacted beam events after the target
with the selection in this section

4,113,959 1,477,186

Reaction, detector efficiency and ho-
doscope charge selection loss [%]

6.2(5) 5.9(5)

Reaction Loss in the Hodoscope

In a second estimation, the reaction losses of the particles in the hodoscope is considered. When
the particles hit the hodoscope it is possible, that a nuclear reactions occurs, which leads to tails in
the energy deposit. For 14O, the number of particles can be straightforward selected with the beam
trigger. This selection is very difficult, because the tails overlap with other isotopes. Therefore, simu-
lations using the INCL cascade model [74] have been performed to estimate the reaction loss of 13O
and 13N in the hodoscope. For benchmarking the simulation, the experimental reaction loss of the
14O beam in the hodoscope is compared to that of the simulation. The experimental reaction loss of
14O in the hodoscope is given in Fig. 3.38. Here, 14O is selected in a 3σ range. The excluded tail cor-
responds to around 7(1)% of the total amount of 14O striking the hodoscope. The simulation result
in 6 - 7% of the particles react in the hodoscope, which confirm our experimental results within the
error bars.
The simulation results for 13O and 13N are given in Fig. 3.39. Here, the energy loss in the hodoscope
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Figure 3.37.: PID with beam trigger selection. The selected part is 14O.

∆E is plotted against the velocity of the particles. The unreacted residues can be clearly identified
in the displayed selection. The reacted events amount to a ratio of 5(1)% and will be considered in
the calculation of the cross sections.
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Figure 3.38.: Experimental PID with beam trigger selection. 14O in a 3σ environment (black lines) to
estimate the tail and thus the amount of particles reacting with hodoscope.
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Figure 3.39.: Simulated energy loss against velocity for (a) 13O and (b) 13N. The events outside the
selections are the ones reacting with the hodoscope. Courtesy Y. Sun.
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3.11. Cross Sections

The cross section is calculated with the selection and the target thickness from the previous chapters.
For this, Eq. (3.21) is used. Here, Ntarget is the number of residues from the target runs, Nempty is the
number of residues from the empty target runs, α is the number of beam events during the target
runs divided by the number of beam events during the empty target runs, Nbeam is the number of
unreacted beam particles and d is the thickness of the target. f1−7 are the different correction factors.
An overview is for the factors is given in Table 3.9. The resulting cross sections with errors are given in
Table 3.10. The experimental cross section will be interpreted and compared to theory in Section 4.4.

σ =
Ntarget(13O/13N) · 1

f5
− α ·Nempty(13O/13N) · 1

f6

Nbeam · d
·
f1

f2
·

1

f3/4
·
1

f7
(3.21)

Table 3.9.: Correction factors for the calculation of the cross sections.

Factor Associated correction Correction value
f1 DAQ lifetime reaction trigger Tables A.1, A.2, A.3
f2 DAQ lifetime beam trigger Tables A.1, A.2, A.3
f3 Acceptance losses 13O 0.94(1)
f4 Acceptance losses 13N 0.96(1)
f5 Reaction losses beamline, detector efficiencies and ho-

doscope charge selection with SHT
0.938(5)

f6 Reaction losses beam line, detector efficiencies and ho-
doscope charge selection without SHT

0.941(5)

f7 Reaction losses hodoscope 0.95(1)

Table 3.10.: Cross sections with respective errors.

13O 13N
Cross section [mb] 16.8(24) 10.7(16)
Statistical error [mb] 0.11 0.14
Selection error [mb] 0.16 0.23
Systematic error [mb] 2.39 1.56
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Target uniformity

The target is not solid at room temperature. It needs to be build by a liquefaction and solidifica-
tion process at 4 K in mylar cell, which is placed in a vacuum chamber. Therefore, it is possible that
the hydrogen is not distributed homogeneously and due to the flexibility of the mylar cell the target
can become non uniform. In fact, it is often the case that the target is swollen in the center and
decreases in thickness to the side.
The target uniformity is checked by limiting the target radius and calculate the cross sections

with the events counted in the limited areas. The radii and the resulting cross sections are listed in
Table 3.11. The calculated cross sections also indicate, that our target was thicker in the middle with
a maximum thickness of approximately 2.76mm and thinner on the outside with a minimal thickness
of 2.01mm. This is in agreement with the expectation. In discussion with the solid hydrogen target
expert it was pointed out, that a target with a thickness of 2mm can have an uncertainty of±0.15mm.
The tendency for the targets is to be larger and swollen. It is usually not thinner [75].

Table 3.11.: Change of the cross section depending on the target radius.

Radius [mm] σExp(13O) [mb] σExp(13N) [mb]
0 - 15 16.8 10.7
0 - 2.5 19.3 12.2
2.5 - 5 17.4 11.3
5 - 7.5 16.9 10.6
7.5 - 10 16.3 10.3
10 - 12.5 15.8 9.8
12.5 - 15 14.0 9.6
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3.12. Thickness Estimation of the Background Water on the Target Windows

In contrast to the BigRIPS 14O momentum distribution the SAMURAI momentum distribution of
14O is asymmetric, which is shown in Fig. 3.40. This should not be the case, since no reaction has
taken place and the material in the beamline is homogeneous. This unusual behaviour needs to be
investigated and resolved, since a goal of the analysis is to extract the momentum distributions of
13N and 13O, which are predicted to be asymmetric by theory. Thus, an asymmetry from beam is not
wanted. However, the effect of this asymmetry is small compared to the final momentum distribution
of 13N and 13O, which can be seen in Fig. 3.43.
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Figure 3.40.: Comparison of BigRIPS and SAMURAI 14O momentum distributions.

The origin of this asymmetric distribution is found to be due to condensation water on the target
chamber entrance and exit. A photograph taken during the experiment was already presented before
in Fig. 2.6. The target was cooled down to 4K during the experiment. That is why it was possible
for the water to condensate on the windows from the surrounding air. To prove that the asymmetric
shape is really due to the water condensation, energy loss simulations have been performed.
For the simulation, the energy loss of the BigRIPS momentum is calculated due to the water and

the materials in the target chamber and then compared with the SAMURAI momentum. For the
water distribution on one window a half gaussian is taken Fig. 3.41. The σ and the µ value for the
water distribution is fluctuating during the experiment and is therefore determined run by run with
a χ2 optimization. For the optimization σ and µ for the water distribution are both varied and then
it is applied on the BigRIPS momentum distribution. The new BigRIPS momentum distribution is
then compared to the SAMURAI distribution until the minimal χ2 is found. In addition, there are
two different approaches to reproduce the water distribution. In the first one, a water thickness is
chosen for the first window and the exact same value is taken for the second window. The change of
the water on both windows is negligible, so the total water distribution is half gaussian again. This is
referred to as ”static” model. In the second approach, for both windows a different value is chosen.
The sum of both distributions is not half gaussian anymore. The interpretation of this model is, that
the water on at least one window was changing during a run. This is referred to as ”dynamic” model.
The full table with all values and which model is used, is given at the end in Appendix C. The result
from the simulation is shown in Fig. 3.42 (a) with a test of quality in (b). The simulation is able to
reproduce the SAMURAI momentum in the range from 5880MeV to 6020MeV with a deviation of
10% or less. For events above or below it becomes difficult to reproduce with a small error, because
the statistics there is very low and already few events difference can give large error.
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After a benchmark of reproducing the experimental beammomentum distribution, the results from
this simulation are later used for the convolution of the theoretical calculations to make a proper
comparison to the experimental data possible. In addition, the results from the simulation can be
used to create a response matrix for a deconvolution of the experimental data.
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Figure 3.41.: Water distribution used in the simulation.
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Figure 3.42.: (a) BigRIPS momentum after the energy loss simulation compared to the SAMURAI
momentum. (b) Test of quality of the simulation by comparing the bin content from
the two distributions in (a) and calculate the relative deviation.
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3.13. Parallel Momentum Distribution

With the particle identification the residue events for 13O and 13N are selected as for the cross sections.
The momentum of the events is then calculated with Eq. (3.22), where Bρ is the magnetic rigidity,
which is calculated from the DC coordinates with the multidimensional fit function, m the mass of
the residue and c0 the velocity of light.

P = Bρ ·m(13O/13N) · c0 (3.22)

The momentum distributions for both residues are calculated. Due to target energy loss, naturally
there is an offset between target and empty distributions. Therefore, the empty target momentum
distribution of 13O is shifted by -50.707MeV/c and 13N is shifted by -44.176MeV/c. The values are
calculated assuming, that the particles move through half the target (1.2mm) as 14O and the other
half as 13O or 13N. For 14O the particles are striking the target with a mean value of 6050MeV/c and
the residues have a mean energy of 5500MeV/c. After the shift the empty target distributions are
directly subtracted from the target distributions. The y-axis of the distribution is then converted to
the unit of a cross section with Eq. 3.21. The final result of the experimental momentum distribution
is shown in Fig. 3.43 for proton removal (left) and neutron removal (right). The squares around the
experimental points are the systematic errors, which are dominated by the target thickness error as
discussed in previous sections. In addition, the unreacted 14O momentum distribution (shifted by
-200MeV/c) is given in the figure for comparison. As one can see, the effect of the experimental
response is small in comparison to the width of the residue momentum distribution and so does not
have a significant impact on the final results.
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Figure 3.43.: PMD’s for one proton (left) and one neutron (right) removal. The rectangles indicate
the systematic error. The blue graph is the unreacted 14O shifted by -200MeV/c to
compare the experimental response.
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Theory

4. Theory for the Interpretation of the Results

The cross sections and parallel momentum distributions are interpreted and compared to theoretical
calculations. Distorted-wave impulse approximation (DWiA) and quantum transfer to the continuum
(QTC) calculations are used to describe the knockout reactions. In addition, transfer 14O(p,d) reac-
tions are considered for the 13O residue with the QTC framework and inelastic excitation of 14O for
the 13N residue with microscopic DWIA calculations. The theoretical concepts are introduced at the
beginning of the section, followed by the presentation of results and the input parameters for this
work. The calculations are then compared to the experimental data and interpreted.

4.1. Theoretical Frameworks

In the following, there will be a general introduction on quantum mechanical scattering in Sec-
tion 4.1.1, which is based on Ref. [6]. The well established approach for the calculation of inelastic
scattering is presented in Section 4.1.2 and oriented on Refs. [6, 76]. The distorted-wave impulse
approximation (DWIA) is presented in Section 4.1.3 with Refs. [32, 52, 77–80]. Finally, the quan-
tum transfer to the continuum (QTC) is introduced in Section 4.1.4 based on Refs. [22, 81–83]. The
major differences of the models will be pointed out. Recent results from DWIA and QTC calculations
and the input parameters for the comparison with the experimental data will be given after this
introduction.

4.1.1. Quantum Mechanical Scattering

Figure 4.1.: Principle of quantum mechanical scattering. An incoming particle is described as a
plane wave and is scattered on a target nucleus. The scattered particle is described by
an outgoing spherical wave and measured by a detector, which covers the solid angle
∆Ω.
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The basic idea for quantum mechanical scattering is shown in Fig. 4.1. The incoming particles are
described with a plane wave and are approaching a target, where they interact in the case of nuclear
interaction with a short-range potential V . The scattered particles leave then as spherical wave. The
scattering process is exemplary described with the elastic scattering equation Eq. (4.1). The first
term is the approaching plane wave and the second term the outgoing spherical wave. Here, A is a
normalization constant, r⃗ are the relative coordinates, k⃗ the relative momenta and f(Ω) = f(θ, φ) is
the scattering amplitude. The scattering amplitude describes the magnitude of the outgoing spherical
wave in dependence of the angles φ and θ.

ψ
k⃗
(r⃗) → A

(︃

eik⃗·r⃗ + f(Ω)
eikr

r

)︃

(4.1)

The quantum mechanical scattering process itself is described by the Schrödinger equation with a
Hamiltonian H = K + V . Here, K is the operator for the kinetic energy of the approaching particle
and V the short-ranged potential, which conveys the interaction between the particle and the target.
The equation for a free particle is then Eq. (4.2) and for a particle interacting with the potential V it
is Eq. (4.3). Here, Ek = h̄2k2/2µ are the energy eigenstates with µ being the reduced mass and φk
the plane wave eigenfunctions of K, which solve the free particle Schrödinger equation.

(Ek −K)|φk⟩ = 0 (4.2)
(Ek −K)|ψk⟩ = V |ψk⟩ (4.3)

From Eq. (4.2) and Eq. (4.3) the Lippman-Schwinger equation Eq. (4.4) can be derived. The solution
of the Lippman-Schwinger equation is possible with the Green’s function G(Ek) in Eq. (4.5). The
addition of iϵ avoids possible singularities and defines where the solution corresponds to outgoing
or incoming waves. Details on the derivation and calculation can be found in various lecture books
such as Ref. [6].

|ψ
k⃗
⟩ = |φ

k⃗
⟩+G(Ek)V |ψ

k⃗
⟩ (4.4)

G(±)(Ek) = lim
ϵ→∞

(︃

1

Ek −H ± iϵ

)︃

. (4.5)

The approach of the Green’s function and its solution generates two wave states ψ(±)

k⃗
:

[︂

ψ
(±)

k⃗
(r⃗)

]︂

|r⃗|→∞
→

1

(2π)3/2

[︃

eik⃗·r⃗ +
e±ikr

r

(︃

−2π2
(︃

2µ

h̄2

)︃

⟨φ±k′ |V |ψ
(±)

k⃗
⟩

)︃]︃

. (4.6)

ψ
(−)

k⃗
describes an incoming spherical wave, which is not a realistic solution for the scattering prob-

lem. ψ(+)

k⃗
behaves asymptotically as an incident plane wave and an outgoing spherical wave. The

comparison with the phenomenological Eq. (4.1) gives A = (2π)−3/2 as normalization constant and
for the scattering amplitude
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f(θ) = −2π2
(︃

2µ

h̄2

)︃

⟨φk′ |V |ψ
(+)
k ⟩ . (4.7)

The previous equation indicates, that all the scattering information is contained in the matrix
elements of the potential. Therefore, it is convenient to define the transition matrix T

k⃗
′

,k⃗
, which is

defined as

T
k⃗
′

,k⃗
= ⟨φ

k⃗
′ |T |φ

k⃗
⟩ = ⟨φ

k⃗
′ |V |ψ

(+)

k⃗
⟩ . (4.8)

Thus, the relation to the scattering amplitude is

f(θ) = −2π2
(︃

2µ

h̄2

)︃

T
k⃗
′

,k⃗
. (4.9)

The T -matrix describes the scattering process and includes all the structure and dynamics infor-
mation. The cross section can then be calculated with the transition amplitude (T -matrix) by the
relation

dσ
dΩ = |f(k⃗, k′⃗ )|2 . (4.10)

For the description of nucleon removal reactions, the scattering matrix (S-matrix) is usually used.
Its definition is given in Eq. (4.11). The square of the absolute value of the S-matrix gives the
probability, that a given initial state reaches a certain final state after the scattering process. Thus,
it relates physical states and the matrix elements are only defined for initial and final states having
the same energy Ei = Ef . The S-matrix is by definition related to the T -matrix with Eq. (4.12).

S
k⃗
′

,k⃗
= ⟨φ

k⃗
′ |S|φ

k⃗
⟩ (4.11)

S
k⃗
′

,k⃗
= δ(k − k′)− 2πiδ(Ek − Ek′)Tk⃗′,k⃗ (4.12)

4.1.2. Inelastic Scattering

For a weak potential V one can replace ψ(+)
k with the plane wave φk in Eq. (4.7). This approximation

is used for elastic scattering and inelastic scattering and is called the Plane Wave Born Approximation
(PWBA). The substitution leads to the following expression

f(θ) = −2π2
(︃

2µ

h̄2

)︃

⟨φk′ |V |φk⟩ = −
µ

2πh̄2

∫︂

d3re−iq⃗·r⃗V (r) (4.13)

with q⃗ = k′⃗ − k⃗ .

The PWBA is a good approximation for some cases. However, the assumption that the incoming
waves are plane waves is no longer satisfied in the vicinity of the nuclear potential. Therefore, the
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distorted wave Born approximation (DWBA) is applied, which replaces the plane waves with distorted
waves χ

k⃗
.

For the DWBA the potential is split into two components:

V = V0 + U (4.14)

Here, V0 is the potential, which describes the interaction for the elastic scattering, and U describes
the inelastic excitation process. It is assumed that the potential U for the excitation is weak. It is now
possible to apply the same ansatz as in the previous section, where the Hamiltonian has been split
into H = K + V . The previous calculated states |φ

k⃗
⟩ and |ψ

(±)

k⃗
⟩ can be related by the waves |χ(±)

k⃗
⟩,

distorted by the potential V0. The Schrödinger equation is then

(E −H0)|χ
(±)

k⃗
⟩ = 0 with H0 = K + V0 .

Again similar to the previous section, the Lippman-Schwinger equations Eq. (4.15) and Eq. (4.17)
can be derived and solved with the Green’s functions Eq. (4.16) and Eq. (4.18).

|χ
(±)

k⃗
⟩ =

[︂

1 +G(±)(Ek)V0

]︂

|φ
k⃗
⟩ (4.15)

G(±)(E) =
1

E −H0 ± iϵ
(4.16)

|ψ
(±)

k⃗
⟩ =

[︂

1 + G(±)(Ek)U
]︂

|χ
k⃗
⟩ (4.17)

G(±)(E) =
1

E − [K + V0 + U ]± iϵ
(4.18)

From the previous equations the transition matrix for inelastic scattering can be derived as

T
k⃗
′

,k⃗
= ⟨φ

k⃗
′ |V0|χ

(+)

k⃗
⟩+ ⟨χ

(−)

k⃗
′ |U |ψ

(+)

k⃗
⟩ . (4.19)

Because V0 cannot couple elastic to inelastic scattering, the first term becomes 0 and the inelastic
transition matrix can then be written as

TDWBA
k⃗
′

,k⃗,inelastic = ⟨χ
(−)

k⃗
′ |V0|χ

(+)

k⃗
⟩ . (4.20)

The coordinate form of the inelastic part for the reaction A(a,b)B is given as Eq. (4.21). χ
(+)
α

and χ(−)
β are the distorted waves in the initial channel α and final channel β. The matrix element

corresponds to the integral of the potential U over the internal coordinates of the projectile and
target.

f inelDWBA(θ) = −2π

(︃

2µ

h̄2

)︃
∫︂

χ
(−)
β (k⃗β , r⃗β)⟨b, B|U |a,A⟩χ(+)

α (k⃗α, r⃗α)d3rαd3rβ (4.21)

82



4.1.3. Distorted-Wave Impulse Approximation

In the following, the theoretical framework of the distorted-wave impulse approximation (DWIA)
will be briefly outlined. The DWIA will be used later in this thesis for the interpretation of the
experimental data. The first step for the description of nucleon removal reactions is the introduction
of an optical potential. The term optical is related to the diffraction of light, where regular minima
and maxima intensity patterns appear. The potential V = V0 + iW is split into two components, a
real part and an imaginary part. The real part describes the interaction of the scattered nucleons,
while the imaginary part describes the loss due to absorption into other reaction channels. Similar to
the approach for inelastic scattering, a two potential Schrödinger equation needs to be solved. The
T -matrix and S-matrix can then be extracted to calculate the quantities of interest.

The DWIA has been constantly developed during the last decades and is based on some assump-
tions, which are characteristic for the theoretical description of the removal of a nucleon. The first
assumption is the impulse approximation. It is based on the quasi-free scattering picture, where the
nucleon removal process occurs in one step. Only the two interacting nucleons are involved, the
target proton and the projectile nucleus. Under the impulse approximation the transition matrix can
be written as

T(p,pN) =
√︁

S(lj)⟨χ
(−)

k⃗
′

p

χ
(−)

k⃗N
|VpN |χ

(+)

k⃗p
Ψjlm⟩ . (4.22)

Here, χ(−)

k⃗
′

p,N

are the distorted waves of the outgoing projectile and the target nucleon in the potential

field of the residual nucleus A − 1, χ(+)

k⃗p
is the wave of the initial incoming nucleon projectile dis-

torted by the nucleus A and Ψjlm is the bound state wave function of the target nucleon. VpN is the
potential between the two nucleons, and

√︁

S(lj) the spectroscopic amplitude for a bound nucleon
with the quantum numbers (lj). The coordinate form of Eq. (4.22) after simplifying the equation by
calculating some of the integrals is

T(p,pN) =
√︁

S(lj)τ(k⃗
′

pN , k⃗pN ;E)

∫︂

d3r⃗NB × χ
(−)

k⃗
′

p

*(r⃗NB)χ
(−)

k⃗N
*(r⃗NB)χ

(+)

k⃗p
(αr⃗NB)Ψ(r⃗NB) (4.23)

Here, α = (A− 1)/A and τ(k⃗′pN , k⃗pN ;E) is the Fourier transform of the pN T -matrix. A zero-range
approximation for the Vpn interaction has been made for this equation. This T-matrix describes the
DWIA scattering process.
One can simplify Eq. (4.23) to the plane wave version Eq. (4.24). It gives a straightforward physical

interpretation.

T
(PWIA)
(p,pN) =

√︁

S(lj)τ(k⃗
′

pN , k⃗pN ;E)

∫︂

d3r⃗e−iQ⃗·r⃗Ψjlm(r⃗) (4.24)

with Q⃗ = k⃗
′

p + k⃗N − αk⃗p (4.25)
Eq. (4.24) reveals, that the momentum distribution of the nucleon inside the nucleus is approxi-
mately proportional to the cross section. It is a key feature for (p, pn) and (p, 2p) removal reactions.
This analytically confirms the phenomenological presentation and evaluation of direct reactions in
Section 1.2. It can be a good approach for the physical understanding. However, there are devia-
tions from Eq. (4.24) due to absorption and elastic scattering. This effect needs to be considered by
distorted waves.
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4.1.4. Quantum Transfer to the Continuum

Figure 4.2.: The three different Jacobi coordinates for the description of a three-body system. Figure
from Ref. [22].

The description of transfer reactions is usually done as a three-body system with the Jacobi coordi-
nates. This reduces the complexity of the problem much, since otherwise it needs to be treated as a
many-body problem due to the nature of nuclei consisting of many nucleons. The three different sets
of Jacobi coordinates are shown in Fig. 4.2. The first set of Jacobi coordinates describes the initial
state of a nucleon removal reaction. The position vector r⃗ gives the relative coordinates between
the bound nucleon (blue) and the core (green). The relative position of the projectile (red) to the
nucleus is then described by the vector R⃗. The second set of coordinates is also used for transfer to
the continuum calculations. It describes the system after the removal reaction. The removed nucleon
and the projectile form a system, where the relative coordinates are given by the vector r⃗′. Their
position to the core C is then described by the vector R⃗′. The third set of Jacobi coordinates is not
used for the description of reactions.
With the introduction of the Jacobi coordinates, the three-body Schrödinger equation for transfer

reactions can be expressed as

(E− −Kr′ −KR′ − VpN − U
†
pC − U

†
NC)Ψ

3b(−)
f (r′⃗, R′⃗ ) = 0 . (4.26)

E− = E − iϵ with E being the total energy of the system, r⃗, R⃗ are the relative Jacobi coordinates
defined in Fig. 4.2, Kr′,R′ is the kinetic energy of the two center of mass systems defined by r′ and
R′, VpN the nucleon-nucleon interaction and UpC and UNC are effective nucleon-nucleus interactions.
The T -matrix for transfer reactions is then

T 3b
if (α) = ⟨Ψ

3b(−)
f φαC(ξC)|VpN + UpC |φA(ξA)e

iK⃗pAR⃗⟩ . (4.27)

Here, φA(ξA) is the ground state wave function of the nucleus A with ξA being the internal coordi-
nates, eiK⃗pAR⃗ is the plane wave describing the relative motion of the p+A system, VpC is the potential
describing the interaction of the target nucleon with the core,Ψ3b(−)

f is the three-body scattering wave
function in the channel f and φαC(ξC) is the core wave function in the state α. The scattering wave
consists of a plane wave in the channel f describing the relative motion of the outgoing fragments
with the core in state α and incoming spherical waves in all other channels. Eq. (4.27) can be fur-
ther simplified. First, one can calculate part of the integral by assuming that the potential VpN is
independent from the internal coordinates ξA,C . Then one can perform the integral over the internal
coordinates of the core, ξAC , which corresponds to the overlap integral between φA and φC , whose
result is approximated by √︁

Sα,l,j × φαCA(r⃗), which is take to be normalized to 1. Also, a distorted
wave with an optical potential UpA can be used in the initial channel, resulting in the T-matrix
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T 3b
if (α) =

√︁

Sα,l,j⟨Ψ
3b(−)
f |VpN + UpC − UpA|φ

α
CAχ

(+)
pA ⟩ . (4.28)

χ
(+)
pA is the wave function generated from the potential UpA. For UpA usually an optical potential is

chosen, which describes the elastic scattering of the p+A system. The remnant term UpC −UpA will
then contribute not much to the integral. The transfer process is then dominantly described by the
VpN potential. The three-body wave function can be expressed in terms of p+N eigenstates as

Ψ
3b(−)
f (r⃗′, R⃗

′
) =

∑︂

jπ

∫︂

dkφjπ(k, r⃗′)χj,π(K⃗, R⃗
′
) . (4.29)

Here, φjπ(k, r⃗′) are the eigenstates of the p + N Hamiltonian using the potential VpN (r⃗′), k⃗ is the
relative wave number of the p+N pair, K⃗ is the relative wave number between the residual nucleus
C and the p+N pair and χj,π(K⃗, R⃗

′
) describes the relative motion of the p+N system in the final

state k, jπ with respect to the residual nucleus.
χj,π(K⃗, R⃗

′
) cannot be calculated directly, because K is continuous and thus this would give rise

to infinite equations. The general approach to solve this issue is to discretize the states. It is a
well established procedure, which was introduced first in continuum-discretized coupled-channels
(CDCC) calculations. The final p +N states are binned in energy or momentum. Eq. (4.29) is then
written as

Φ
3b(−)
f ≈ ΦCDCC

f =
∑︂

n,j,π

φj,πn (kn, r⃗
′)χn,j,π(K⃗n, R⃗

′
) . (4.30)

kn are average values for the discretized p − N energies and φj,πn (kn, r⃗
′) are the bin wave func-

tions. With the known T -matrix the cross section can then be determined. Note, that the presented
formulas are derived from non-relativistic calculations. Since many reactions take place at several
MeV/nucleon relativistic corrections need to be done. However, since they are not important for the
physical interpretation, the details for relativistic calculations will not be presented. They can be
found in the literature presented at the start of the section.
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are applied for the calculation of the theoretical cross section, depending on how the experimental
data was obtained. For (p,2p) at 451MeV/nucleon [46] the DWIA [77], DWIA and QTC are applied.
The results are Rs ∼ 0.65 for eikonal DWIA and Rs ∼ 0.75 for QTC are very close, while the DWIA
exhibits a significantly larger Rs ∼ 1. The eikonal DWIA results fit well to the results of (e,e’) elastic
scattering [30, 49], while the QTC results are outside the uncertainty band. Both results are larger
than the results from heavy-ion induced knockout and transfer. For details on the calculation on the
data and all calculations it is referred to Ref. [35] and references within. Overall, QTC has a good
agreement in the calculation of the cross section, while DWIA shows deviation which can stem from
a different treatment of relativistic corrections.

Figure 4.4.: Comparison of the reduction factor Rs for one-proton removal from 16O through dif-
ferent reactions: (e,e’) (circles), (p,2p)(diamonds), heavy-ion knockout (triangles) and
(d,3He) transfer (squares). The Rs are given in purple. The color and the shaded bands
indicate the use of the same one-proton overlap. Blue corresponds to overlap with the
rms radius form [49] and red to the rms radius from Hartree-Fock calculation using the
SkX interaction. Details on calculation can be found in [35] and references within. Fig-
ure from Ref. [35].

The trend that the QTC predicts a reduction factor between∼ 0.7−0.8 is also presented in [83]. In
the various data sets of oxygen and nitrogen isotopes from the R3B campaigns [45–47] are analysed
with the QTC framework. The incident energy of the nucleon removal reactions was between 300 and
MeV/nucleon. Furthermore, only a small dependence on the isospin is found. Inmost of the cases, the
data was also analysed with DWIA, which predicted a systematically smaller Rs ∼ 0.6− 0.7. Finally,
the DWIA has been applied on the nucleon removal from different medium mass exotic nuclei with
an incident energy of 200-250MeV/nucleon [84–86]. In each case, the experimental momentum
distribution has been successfully reproduced, which emphasizes the reliability of the model.
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4.3. Theoretical Input Parameters

For the calculation of the theoretical cross section with Eq. (1.6) reaction and structure inputs are
necessary. The spectroscopic factors SFs give the structure information for the removal of a neutron
and a proton from 14O. They were calculated from the shell model in the psd-model using the YSOX
interaction [87] limited to 5 h̄ω using the KSHELL code [88]. The single-particle energy of the π1s1/2
orbit was decreased by 0.375MeV to have a good reproduction of the low-lying energy level structure
of 14O. The spectroscopic factors are 1.6 and 3.4 for 13N and 13O, respectively. In addition, shell model
calculations with the program OXBASH [89] were performed. It uses the WBT and WBP interaction
[90]. The spectroscopic factor results are similar but slightly higher with 1.8 and 3.7.
For the reaction inputs the DWIA and QTC are applied to calculate the single-particle cross sections

and momentum distributions. For the DWIA calculations the folding potential with the Melbourne
G-matrix interaction is used to determine the distorted waves. This potential can be applied in an
energy range from 30MeV to 150MeV. The Franey-Love interaction [91] is used to describe the
nucleon-nucleon cross section for the transition process. For the non-locality of the optical potential
the Perey correction [92] is applied for the bound-state and scattering wave functions. The scattering
energy of the emitted nucleons is used to account for the energy dependence of the optical potentials.
For the QTC calculations, the p+N+13O/13N three-body final state is expressed in a basis of dis-

cretized continuum states of the p+N system. The Reid93 was used to describe the interaction [93].
The incident and outgoing channels are distorted by the microscopic JLM potential, which can be
applied up to 160MeV [94]. The G-matrix folding and JLM potential is applied on the experimental
differential cross section of p+16O elastic scattering at 65MeV [95] as a benchmark. The results are
given in Fig. 4.5, which shows that the potentials reproduce the data well. For DWIA and QTC the
single-particle wave function of the knocked-out nucleon was obtained by solving the Schrödinger
equation using a Woods-Saxon potential with its depth adjusted to give the binding energy of the
knocked-out nucleon. Note that recent ab initio calculations, such as the self-consistent Green’s func-
tion theory or no-core shell model, provide a slightly enhanced inner part in the single-particle wave
function than the Woods-Saxon potential [96, 97].
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Figure 4.5.: Benchmark of the Dirac, JLM and Melbourne G + folding potentials with 16O(p,p) elastic
scattering data. Experimental data from Ref. [95]. Courtesy M. Gomez for the JLM and
Dirac potential and K. Yoshida for the Melbourne G + folding potential calculations.
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The cross section for the inelastic excitation process have been calculated with the microscopic
DWIA reaction model [98]. As structure input the one-body transition (OBTDs) from the above
mentioned shell model calculations is applied. The interaction of the transition is again described by
the Franey-Love nucleon-nucleon effective interaction. The distorted-waves are generated with the
Koning-Delaroche (KD) phenomenological optical potential, which is applicable in an energy region
of 1 keV to 200MeV [99]. The potential have been validated with inelastic scattering of a proton
on a 12C target. As can be seen in Fig. 4.6 (a), the potential reproduces well the differential cross
section of the 2+1 excitation of 12C measured at 120MeV [100]. The total inelastic cross section sums
up to 9(1)mb by considering eight excited states of 14O (0+2 ,0+3 ,2+1 ,2+2 ,0−1 ,1−1 ,2−1 ,3−1 ), which could
decay via one proton emission to 13N [101]. The dominant contributions stem from the 2+1 , 1−1 and
3−1 excitations. The cross section of these three states are given in Fig. 4.6 (b). The uncertainty
is estimated by performing the calculation with the WBP or WBT interaction for the OBTDs and by
using the M3Y nucleon-nucleon interaction, that takes the medium effects into account [102].

(a) (b)

Figure 4.6.: (a) Differential cross section for 12C(p,p’)12C(2+). Results with nucleon-nucleon two
body interaction at 100 and 140MeV/nucleon are compared. (b) The differential cross
section of 14O(p,p’) for the three most dominant states 2+1 , 1−1 and 3−1 . For the calcula-
tion the Franey-Love interaction at 100MeV/nucleon was used. Experimental data from
Ref. [100] and inelastic calculations from Ref. [103].
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4.4. Summary Theoretical Frameworks and Input

Finally, a table is given to summarize the most important differences and the input for the two theo-
retical frameworks:

Table 4.1.: Overview of the differences and the common aspects of DWIA and QTC.

DWIA QTC
Potential Folding potential with Melbourne

G-matrix interaction
JLM optical potential

Interaction Transition process described by
Franey-Love interaction

N + p + 13O/13N three body fi-
nal state expressed in a basis of dis-
cretized continuum states of the p+N

Perey correction Yes No
Energy dependence of
potential

Yes No

Sudden approximation Yes No
Eikonal approximation No No
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Results

5. Results and Interpretation

5.1. Overview of the Results

An overview of the experimental cross section results with the calculated theoretical cross-sections is
given in Table 5.1. The experimental cross section for one-proton and one-neutron removal from 14O
have been determined in the analysis section to be 10.7(16)mb and 16.8(24)mb, and only involve the
orbitals of π0p1/2 and ν0p3/2, respectively, since both 13N (Jπ

g.s. = 3/2−) and 13O (Jπ
g.s. = 1/2−) do not

exhibit bound excited states. The ratio of the measured inclusive cross sections can be qualitatively
understood as consistent with the IPM occupancies: σ(−ν0p3/2)/σ(−π0p1/2) = 1.57 ∼ 4/2 = 2.
The experimental and theoretical momentum distributions are shown in Fig. 5.1. The experimental
distributions have similar features as the momentum distributions obtained from one-nucleon re-
moval from 14O at 53MeV/nucleon with a 9Be given in Fig. 1.12 and the theoretical calculations
from one-nucleon removal at 100MeV/nucleon with a proton target in Fig. 1.13. For the removal of
the deeply-bound neutron a strong asymmetric distribution is observed, where the high-momentum
cut-off stems from energy conservation. The momentum distribution for the loosely-bound proton is
close to symmetric. The comparison to the theoretical distributions will be discussed in the following
beginning with proton removal and followed by the neutron removal reaction.

Table 5.1.: Experimental and theoretical cross sections of one-nucleon removal from 14O at
94MeV/nucleon. The theoretical cross sections, except the inelastic excitation, include
the center-of-mass correction factor A/A− 1, with A the mass number of the projectile
[104]. The ratio of experimental to theoretical inclusive cross section (Rs) is given.

Residue Jπ σexp [mb] SF Theory σs.p. [mb] σth [mb] Rs
13Ng.s. 1/2− 10.7(16) 1.6 DWIA 5.2 9

Inelastic - 9
Sum 18 0.60(9)
QTC 7.0 12

Inelastic - 9
Sum 21 0.51(8)

13Og.s. 3/2− 16.8(24) 3.4 DWIA 6.3 23
Transfer 3.0 11
Sum 34 0.49(7)
QTC 13.5 50 0.34(5)
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Figure 5.1.: Parallel momentum distributions of 13N (a),(b) and 13O (c),(d), from the one nucleon
removal of 14Oat 94MeV/nucleon. The black filledmarkers show the experimental data,
and the grey empty bin the systematic uncertainties. The data are compared to theDWIA
and QTC reactions model calculations (dotted lines), with additional contributions from
the inelastic excitation for 13N and (p,d) transfer for 13O (dashed lines). The black solid
lines show the total theoretical contributions. The blue solid line shows the PMD of
the unreacted 14O beam (shifted by - 200MeV/c) for demonstration of the experimental
response. All the theoretical calculations have been convoluted with the experimental
PMD response and their integrals have been normalized to the experimental values.
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5.2. Results for Proton Removal

The single-particle cross section σs.p. for 14O(p,2p)13N are 5.2mb and 7.0mb from DWIA and QTC
calculations, respectively. Furthermore, the proton separation energy is only 4.6MeV and therefore,
inelastic excitation of 14O followed by proton decay to the 13N ground state is additionally considered.
The cross-section are summarized in Table 5.1. The theoretical one-proton removal cross section σth
is the sum of the (p,2p) knockout cross section and the inelastic excitation cross section (σinelastic).
The knockout cross section is calculated with Eq. (1.6). A = 14 in this case and for C2S the C is
usually 1, so that S is the spectroscopic factor. Both channels have a similar contribution for the
loosely-bound removal reaction. With the DWIA and QTC the σth of 18mb and 21mb are obtained,
which lead to reduction factors of Rs = 0.60(9) and Rs = 0.51(8).

The theoretical momentum distributions of the DWIA and QTC with the inelastic contribution are
shown in Fig. 5.1, where they are compared to the experimental distribution of 13N. The amplitude
of the theoretical distribution is scaled by the above reduction factors. The PMDs of both the (p,p’)
and (p,2p) reactions are slightly asymmetric with a low momentum tail. The tail for the inelastic
excitation stems mainly from the inelastic scattering of 14O to large angles. The tail for the knockout
reaction is due to the attractive potential of the outgoing protons and 13N [52]. In addition, due
to kinematic restrictions, the (p,p’) PMD peak position is about 50MeV/c lower than the peak of
(p,2p). The final distribution combines the (p,p’) and (p,2p) PMDs and is close to symmetric. The
experimental data is well reproduced, which confirms the strong inelastic contribution to the loosely-
bound proton removal. The small gap around 5200MeV/c is due to the uncertainty of the target
thickness, so that the shift of the empty target distribution has also an uncertainty of∼6MeV/c. This
can lead to a small shift of the bin subtraction, which results in the gap. By not taking the inelastic
component into account, the reduction factor for the loosely-bound proton removal will be around
unity, which coincides with the Rs from eikonal model based analysis [36, 105, 106]. The inelastic
excitations are not explicitly treated in the eikonal model calculations, but are usually assumed in the
absorptive optical potentials. It is valuable to assess the validity of this assumption in the light-ion
induced one-nucleon removal reactions if the removed nucleon is loosely bound. Note, that only a
given number of excited states are used for inelastic scattering. The giant resonance region is not
considered, because no data could be found. There could be a contribution to the inelastic process
from protons being excited into collective states. If it would be possible to calculate this contribution
and add it to the results, the calculated reduction factors would reduce further.

5.3. Results for Neutron Removal

The cross sections for the deeply-bound neutron removal are also summarized in Table 5.1. The
single-particle cross section σs.p. for the reaction 14O(p,pn) are 6.3mb and 13.5mb for DWIA and
QTC, respectively. In the QTC cross section the transfer (p,d) reaction channel is included, which
contributes about 3.3mb. Without it the QTC knockout cross section amounts to 10.2mb, which
is still much larger than the cross section from the DWIA. The difference is attributed to stem from
low-energy neutron core absorption. Note, the DWIA and QTCmodels have a good agreement for the
momentum distributions of (p,pN) reaction at 420MeV/nucleon [80]. For the study of the transfer
channel, the QTC is performed with the outgoing channel coupled only to the deuteron ground
state. This is equivalent to the DWBA, which has been introduced in Section 4.1. The d-13O potential
has been calculated with the Johnson-Soper prescription [107], in which the p-13O and p-13O folding
potential at half of the kinetic energy of the deuteron was adopted. The obtained σs.p. for the transfer
reaction is 3(1)mb, which is translated into 11(3)mb with a SF of 3.4. The uncertainty has been
estimated by using the JLM d-13O potential and varying the interaction used for the deuteron wave
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function. The transfer (p,d) has not been considered for the DWIA channel. This is why the total
cross section for the DWIA has been calculated by adding the single-particle cross section of the
DWIA knockout and the transfer reaction channels with Eq. (1.6). The total cross section for QTC
has been calculated directly from its single-particle cross section. The resulting cross sections are
34mb and 50mb for DWIA and QTC, respectively. This leads to reduction factors of Rs = 0.49(7)
and Rs = 0.34(5).
The theoretical momentum distributions of 13O from the DWIA+DWBA and QTC calculations are

compared to experimental data in Fig. 5.1. The PMD of 13O has a low-momentum tail and a sharp
high-momentum cut off. The data are well reproduced by combining the contributions from the
DWIA for the (p,pn) knockout and channel and the DWBA for the (p,d) transfer channel. The transfer
channel contributes about ∼30% to the neutron removal. As already discussed for theoretical DWIA
calculations [52], the data supports the interpretation that the low-momentum tail originates from
the attractive potential between the outgoing nucleons and 13O. On the high-momentum side the
(p,d) transfer channel creates a sharp edge. It arises from the two-body kinematics of the transfer
reaction and its limit. The edge is in a region, which is kinematically not accessible for the (p,pn)
knockout reaction and thus is a strong proof for a significant transfer contribution. It is also noticeable,
that the high-momentum edge is much sharper than in the DWIA prediction with the phase-volume
effect for the (p,pn) channel [52]. The QTC formalism treats the (p,d) transfer consistently with the
(p,pn) and so it reproduces better the high-momentum side than the DWIA. Without the transfer
channel the QTC high-momentum edge gets closer to the DWIA result as shown in Fig. 5.1 (d).
However, the QTC is not able to reproduce the low-momentum tail as good as the DWIA. The reason
might be the different treatment of the final state interaction in QTC, especially that the nucleon-
residue interaction at low relative energy is not explicitly treated in the QTC formalism.
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5.4. Context to other Nucleon Removal Results

For the first time, the PMD measured at a relatively high energy of ∼100MeV/nucleon shows a
distinctive contribution from the (p,d) transfer reaction. The transfer cross section is usually neglected
at such a beam energy, since the momentum matching condition is not considered to be fulfilled
[35]. The transfer reaction extracted here (∼30%) is comparable to that of the elastic removal
mechanism in loosely-bound proton knockout reaction on a heavy-ion target at ∼100MeV/nucleon
[108, 109]. One-nucleon pickup cross sections have been measured around 60MeV/nucleon with
heavy-ion beams on 12C or 9Be target [110–113]. Here, the extracted one-neutron transfer cross
section is much higher, which might be due to the momentum matching of the well-bound neutron.
Further calculations at 300MeV/nucleon show that the (p,d) transfer decreases to about 0.2mb,
which is negligible comparing to the contribution of the quasi-free (p,pn) knockout process [46, 79].
The (p,d) transfer contribution should thus be assessed for the neutron removal from the neutron-rich
nucleus at intermediate energies, especially at energies below 100MeV/nucleon.
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Figure 5.2.: Reduction factor Rs as a function of the proton-to-neutron separation energy asymme-
try ∆S from the present work compared to trends fitted from light-ion-induced nucleon
removal cross sections analysed under the eikonal approximation [36, 105, 106] (black
two-dash line and grey shaded region), quasi-free (p,pN ) knockout cross sections anal-
ysed with the DWIA [48, 114] (blue short dashed line) or QTC [83] (green dotted and long
dashed lines) frameworks, and one-nucleon transfer cross section from Oxygen iso-
topes analysed within the DWBA framework [44] (purple dashed-dotted line). The blue
dots and black squares show the data from the current work with the statistical and
theoretical uncertainties. The correlated systematic uncertainties, mostly from target
thickness, are given in square brackets. See Table 5.1 for the details. The data points
are shifted by±0.5MeV on the∆S axis to avoid overlap. Note, that the inelastic scatter-
ing calculation did not consider collective states, which might contribute further to the
proton removal cross section. The Rs would then be further reduced. Red solid lines
are shown to guide the eyes.

The comparison from the experimental results with the theoretical calculation is illustrated by the
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reduction factor Rs as a function of the neutron-to-proton ratio in Fig. 5.2. The data from this work
exhibits a slope of -0.0030(5)(5)MeV−1 for DWIA together with inelastic and transfer predictions
and a slope of -0.0046(4)(7)MeV−1 when QTC and inelastic scattering are considered. Both slopes
are slightly negative, however they are not compatible with the slope from light-ion induced nucleon
removal measured at incident energies of∼70MeV/nucleon-100MeV/nucleon and analysed with the
eikonal formalism and shell-model spectroscopic factors [36, 106]. When fitting a line through the
light-ion induced nucleon removal data, one gets a slope of -0.016MeV−1 and allRs lie within a range
of ±0.1 of this slope (grey shaded area). In addition, low-energy one-nucleon transfer data analysed
through the DWBA formalism with Woods-Saxon-based form factors and shell model spectroscopic
factors have a slope of 0.0004(24)(12)MeV−1 [44]. In addition, quasifree-scattering on oxygen and
nitrogen nuclei [46] analysed via the DWIA and QTC formalism is given. The slope from DWIA
calculation is -0.0026(27)MeV−1[48, 114], while the slope from QTC calculations exhibit slopes of
-0.0027(14)MeV−1 and -0.00001(15)MeV−1 using the Dirac and Paris-Hamburg potential, respec-
tively [83]. The slope of the data from this work is compatible to the slope from quasi-free scattering
at higher incident energies. However, the Rs factor obtained in this work is systematically lower by
∼25% compared to quasi-free scattering and analysis.
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Conclusion and Outlook

In this thesis a detailed study of the one-nucleon removal mechanism from the large separation-
energy asymmetric nucleus 14O (∆S = ±18.55(1)MeV) at 94MeV/nucleon using a proton target
was presented. The measurement was performed at the SAMURAI experimental site at Radioactive
Isotope Beam Factory of RIKEN, Japan. The A − 1 residues were measured and identified in the
focal plane of SAMURAI. Their momentum after the target was measured. The cross sections were
determined to be 16.8(24)mb for neutron-removal and 10.7(16)mb for proton-removal. They were
compared to the state-of-art (p,pN) reaction models, which are the distorted wave impulse approxi-
mation (DWIA) and quantum transfer to the continuum (QTC). Furthermore inelastic scattering and
nucleon transfer calculations together with shell model spectroscopic factors are considered. Re-
ductions factors of 0.51(8)-0.60(9) and 0.34(5)-0.49(7) were obtained for the loosely-bound proton
and the deeply-bound neutron removal, respectively. A negative slope, calculated using the reduction
factors with ∆S from the two measured data points, is observed, which is at tension with the one
obtained from the eikonal analysis of light-ion-induced nucleon removal cross sections at incident en-
ergies of ∼ 70− 100MeV/nucleon. The loosely-bound proton removal displays a symmetric parallel
momentum distribution (PMD). The (p,p’) inelastic excitation and the (p,2p) knockout reaction was
found contributing almost equally for the loosely-bound proton removal. The asymmetric PMD for
deeply-bound neutron removal was well reproduced by the DWIA (p,pn) calculation together with
distorted-wave Born approximation (DWBA) (p,d) transfer reaction calculations. We observed a dis-
tinct contribution in the residue PMD from the (p,d) transfer reaction. The (p,d) transfer channel,
that is usually neglected at beam energy around 100MeV/nucleon, was found to contribute 30% of
the cross section.
The present work shows that the proton-induced nucleon removal from rare isotopes at energies

of ∼ 100MeV/nucleon originates from several reaction mechanisms, including quasi-free scattering,
inelastic scattering and transfer with similar contributions. It is expected that these contributions
depend differently on the separation energy of the nucleon to be removed and the incident energy
and should therefore be considered case by case. It would be of interest to investigate, how much
these reaction mechanisms contribute significantly to nucleon removal when light-ion targets such as
9Be and 12C in this incident-energy regime are used. The findings of this work indicate that theRs for
loosely-bound nucleons removal with light-ion targets could be qualitatively explained by inelastic
excitations of the projectile above the nucleon separation energy. These are not explicitly taken into
account in the eikonal formalism of Ref. [36]. Furthermore, differences in the transverse momentum
distributions of 13O and 13N have been shown in the acceptance section. However, due to time
constraints they have no been pursued. It would be the next step to analyze the transversemomentum
from these data. One could even go one step further and propose a full missing mass measurement
to extract the momentum distribution with a higher precision by measuring the outgoing target like
recoils.
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Appendix

A. DAQ Lifetime

Table A.1.: Events of the DAQ lifetime correction for the beam trigger and reaction trigger for the runs 527 - 539 with the solid hydrogen
target. The selected events for the residues 14O, 13O and 13N are scaled by the respective ratio.

Run Ntotal beam trigger Ngated beam trigger Ratio Ntotal reaction trigger Ngated reaction trigger Ratio
527 63689784 34474800 0.54 8904997 6153110 0.69
528 34648141 18689000 0.54 4863869 3370286 0.69
529 34524376 18662600 0.54 4876905 3394831 0.7
530 34733980 18393700 0.53 5153686 3548876 0.69
531 34489846 18345500 0.53 5019647 3469964 0.69
532 35430759 18798100 0.52 5090638 3536886 0.69
533 33930379 17767300 0.52 4988414 3451423 0.69
534 33788463 17651100 0.52 4924841 3416121 0.69
535 34625960 17853500 0.51 5223146 3602164 0.69
536 35984360 18297500 0.51 5640994 3866917 0.69
537 34164870 17311200 0.51 5362593 3657367 0.68
538 28704426 14616300 0.51 4460270 3050034 0.68
539 34211638 17428000 0.51 5241897 3594672 0.69
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Table A.2.: Events of the DAQ lifetime correction for the beam trigger and reaction trigger for the runs 540 - 551 with the solid hydrogen
target. The selected events for the residues 14O, 13O and 13N are scaled by the respective ratio.

Run Ntotal beam trigger Ngated beam trigger Ratio Ntotal reaction trigger Ngated reaction trigger Ratio
540 40461144 20585200 0.51 6281731 4300396 0.68
541 33535008 17185300 0.51 5214693 3583947 0.69
542 40310941 20539000 0.51 6408005 4369654 0.68
543 35020288 17683300 0.5 5647661 3801781 0.67
544 35020288 17632600 0.5 5754695 3821186 0.66
545 35504964 17601900 0.5 5631753 3754136 0.67
546 36966797 18569900 0.5 5977096 3937153 0.66
547 36734394 17978400 0.49 6162427 3994666 0.65
548 36236153 17821100 0.49 6061475 3957940 0.65
549 40140706 19860100 0.49 6669327 4339301 0.65
550 36370666 18112700 0.5 6116837 3972556 0.65
551 33745873 16468100 0.49 5890625 3770482 0.64

Table A.3.: Events of the DAQ lifetime correction for the beam trigger and reaction trigger for the runs without the solid hydrogen target.
The selected events for the residues 14O, 13O and 13N are scaled by the respective ratio.

Run Ntotal beam trigger Ngated beam trigger Ratio Ntotal reaction trigger Ngated reaction trigger Ratio
561 39657112 20011700 0.5 6429307 4269811 0.66
562 38853343 19657700 0.51 6150745 4109007 0.67
563 30263653 15380200 0.51 4743791 3179460 0.67
564 23764642 12106000 0.51 3720126 2495519 0.67
567 24931335 12612800 0.51 4020557 2669512 0.66
568 24017388 12043400 0.5 4005631 2647829 0.66
569 24709644 12413500 0.5 4140380 2738017 0.66
570 27130115 13767300 0.51 4523638 3010049 0.67
571 24494161 12328100 0.5 4099149 2688765 0.66
572 24264822 12212500 0.5 4072920 2674951 0.66
573 25564992 12879500 0.5 4297608 2816771 0.66
574 24504252 12249400 0.5 4085490 2663695 0.65
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B. Target Thickness

Table B.1.: Momentum Peak position of the 14O beam for the runs with solid hydrogen target

Run Run Time [s] Momentum Peak [MeV/c]
527 6452 6011
528 3586 6013
529 3570 6009
530 3619 6008
531 3580 6013
532 3692 6010
533 3587 6009
534 3574 6007
535 3696 6009
536 3908 6007
537 3655 6005
538 3256 6006
539 3670 6008

Run Run Time [s] Momentum Peak [MeV/c]
540 4336 6012
541 3642 6010
542 4361 6012
543 3693 6011
544 3624 6013
545 3614 6008
546 3702 6005
547 3640 6002
548 3617 6010
549 3980 6010
550 3625 6010
551 3326 6013
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Table B.2.: Momentum Peak position of the 14O beam for the runs without solid hydrogen target

Run Run Time [s] Momentum Peak [MeV/c]
561 4053 6052
562 3911 6047
563 3214 6049
564 2430 6063
567 2525 6065
568 2463 6063
569 2558 6062
570 2841 6067
571 2460 6064
572 2462 6062
573 2585 6060
574 2422 6057
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C. Energyloss Water

Table C.1.: Mean value µ and standard deviation σ of the half gaussian water distribution applied for each run. The model indicates the
procedure applied for the random generation of one water thickness value. The runs up to 551 are with the solid hydrogen
target.

Runnumber Model µ [µm] σ [µm]
527 static 265 150
528 static 267 158
529 static 278 152
530 static 275 172
531 static 266 147
532 static 277 153
533 static 275 155
534 static 281 160
535 static 275 167
536 static 271 184
537 static 276 197
538 static 275 191
539 static 282 183

Runnumber Model µ [µm] σ [µm]
540 static 266 152
541 static 274 159
542 static 273 161
543 static 268 151
544 static 265 161
545 static 277 164
546 static 287 174
547 dynamic 225 255
548 static 271 200
549 static 271 170
550 static 281 167
551 static 265 155
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Table C.2.: Mean value µ and standard deviation σ of the half gaussian water distribution applied for each run. The model indicates
the procedure applied for the random generation of one water thickness value. The runs starting from 561 and higher are
without solid hydrogen target.

Runnumber Model µ [µm] σ [µm]
561 dynamic 237 218
562 dynamic 228 258
563 dynamic 223 280
564 static 255 205
567 static 255 154
568 static 270 140
569 static 270 140
570 static 260 122
571 static 265 129
572 static 267 136
573 dynamic 222 197
574 dynamic 216 202
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