
 
Modeling of friction in cold forging considering a wide range of 
tribological conditions 
 
C. Hu1,2, S. Volz1, P. Groche1, P. Moreau3, J. Launhardt1, N. Benabbou3, S. Saito4, H. 
Chen2, K. Kitamura4, L. Dubar3 

 
1Institut for Production Engineering and Forming Machines, Technical University of Darmstadt, 
Darmstadt, Germany 
2Institute of Forming Technology & Equipment, School of Material Science and Engineering, Shanghai 
Jiao Tong University, Shanghai 200030, China 
3University of Valenciennes and Hainaut Cambresis 一 LAMIH UMR CNRS 8201 Carnat Arts Institute. 

France 
4Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Japan 
 

Corresponding author: Peter Groche, peter.groche@ptu.tu-darmstadt.de 
 
The work introduced in this contribution is the result of an international collaborative research initiated by the ICFG 

subgroup “Lubrication”. Four students from different institutes in Europe and Asia contributed to it. The friction 

coefficients in cold forging were determined by four different tribometers. A wide range of tribological conditions was 

recreated. The derived data was used to model friction in cold forging with the aid of mathematical fitting and machine 

learning algorithms. The presentation will reveal the established procedure of collaboration as well as results of 

experiments and mathematical modeling. 
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1. Introduction 

In cold forging processes, the workpiece is deformed under high pressure resulting in material flow at the interface between the 

workpiece and the die, causing large friction forces in opposing direction to the relative movement between the workpiece and the 

die. Friction is a very complex physical phenomenon, which affects the material flow, the forming load, the surface quality of the 

workpiece, and the service life of the dies. A general friction model was furtherly confirmed by experimental and numerical 

investigations into the upsetting of a semi-tapered specimen [1]. The Coulomb friction law and the constant shear friction law were 

compared using a rigid-plastic finite element method, and considerable differences existing in simulation results can be observed 

between the two friction laws [2]. Different friction models generate different friction stress distributions, and it can be found that 

calibration curves of the friction area ratio are more sensitive to friction [3]. Based on compression-twist testing results, a mathematical 

model was established for friction as a function of normal pressure and tool/workpiece interface temperature [4]. Another friction 

model considering the sliding velocity between tools and the workpiece was developed [5]. A critical normal pressure was defined 

between the Coulomb friction law at low normal pressures and the constant friction model at high normal pressures [6], and a new law 

of friction involved with the effect of the ratio of real contact area under oil-lubricated condition was proposed [7]. As reviewed by 

Nielsen and Bay, during the last 80 years, most important contributions on theoretical models of friction in metal forming are based 

on the analysis of the real contact area and different understandings of asperity flattening in tool-workpiece interfaces [8]. 

In tribological systems of metal forming, the tribological loading conditions can mainly be described with four quantitive 

parameters including contact normal stresses, surface expansion ratio, relative sliding velocity between tool and workpiece and initial 

temperature [9]. There are relatively large differences between the empirically determined friction coefficients from different 

tribometers, but it can be well explained when the respective tribological loads are considered [10]. Against this background a friction 

model for metal forming can be created, considering the relationship between tribological loads and friction force. In this work, four 

tribometers were used to measure friction forces for a wide range of tribological conditions, typically occurring in cold forging. The 

collected data is used to create different friction models, using mathematical fitting and machine learning algorithms, to linking the 

tribological loads and the coefficient of friction. 

2. Material flow curves and extrapolation 

All specimens used during tribometer testing were produced by turning using a single batch of cold-rolled 16MnCr5 steel that has 

previously been soft annealed. Flowcurves were determined using compression tests at RT, 100°C, 200°C, 300°C, 400°C with strain 

rates of �̇� = 0.1 and 1. In order to account for high strain, the flowcurves were extrapolated using a combination of voce and swift 

equation with a factor 𝛼 that controls the weight between both parts, as shown in Equation (1). The 𝛼 was defined as 0.3, all other 

parameters in Equation (2) were determined by the method of minimum mean square error using the experimental data. The specific 

values are calculated and recorded in Table 1. 

 



 
𝑘𝑓 = 𝛼 ∙ 𝑠𝑤𝑖𝑓𝑡 + (1 − 𝛼) ∗ 𝑣𝑜𝑐𝑒     (1) 

𝑘𝑓 = 𝛼 ∙ (𝑠1 ∙ (𝑠2 + 𝜑)𝑠3) + (1 − 𝛼) ∗ (𝑣1 + (𝑣2 − 𝑣1) ∙ 𝑒−𝑣3∗𝜑                                            (2) 

 
Table 1 Material model parameters 

Temperature Strain Rate 
Voce - Parameters Swift - Parameters 𝜶 

𝑣1 𝑣2 𝑣3 𝑠1 𝑠2 𝑠3 0.3 

RT 0.1 757 421 8.416 810 0.000551 0.1167 0.3 

100 °C 0.1 713 427 5.342 739 -0.0042 0.1157 0.3 

200 °C 0.1 665 362 5.813 697 0.000102 0.1325 0.3 

300 °C 0.1 675 382 5.013 701 0.000377 0.1327 0.3 

400 °C 0.1 629 353 8.487 663 0.000238 0.1057 0.3 

RT 1 748 440 10.950 787 -0.0039 0.0848 0.3 

100 °C 1 692 407 8.145 727 0.000236 0.1019 0.3 

200 °C 1 666 367 5.540 697 0.000582 0.1325 0.3 

300 °C 1 671 363 4.930 698 0.000222 0.1425 0.3 

400 °C 1 620 356 8.543 650 0.000386 0.1003 0.3 

 

As shown in Figure 1, the flowcurves were extrapolated to a large strain of 4 according to the combined swift-voce model with 

determined parameters in Table 1.  The flowcurves were used for all finite element models of the tribometer tests.  

 

3. Tribometers and tribological conditions 

In this experimental work, four tribometers were used. The Ring Compression Test with Boss (RCT-B) was developed to 

overcome the disadvantages of the conventional ring compression test. By measuring the dimensional change of the outer diameter 

and the height of the specimen the Coefficient of Friction (COF) can be determined through a comparison with a group of calibration 

curves based on simulation results [11]. In principle, the Contact Normal Pressure (CNP) and Surface Expansion Ratio (SER) can be 

changed by variation of the height reduction, and the Relative Sliding Velocity (RSV) can be adjusted using different forming speeds. 

The Backward Can Extrusion Test (BCET) was developed based on a backward can extrusion operation with a reduction in cross-

sectional area of around 50%. The COF is determined based on the assumption, that the pull-back force is proportional to the COF. 

The COF can therefore be determined by directly measuring the pull-back force of the punch after the backward extrusion [12]. In the 

Upsetting Sliding Test (UST) [13], a convex indenter is upset into the specimen to induce the desired CNP and a partially deformed 

state, before sliding at a defined velocity and distance is carried out. The normal and the tangential forces are measured during the 

sliding process, allowing the calculation of the COF, by e.g. the Amontons-Coulombs friction law. The Sliding Compression Test 

(SCT) devides the deformation (compression) and the sliding process into two sequential steps. In the compression step, the nominal 

compression force can be adjusted to the desired value of CNP and SER. During the sliding step the normal and the tangential forces 

are logged by piezoelectric load cell while the RSV can be adjusted. Based on the measured forces, the COF can be directly calculated 
[14]. The SCT offers a high flexibility and a good control of the tribological loads during testing. Loads can be kept constant over the 

duration of testing allowing the measurement of the friction force at defined, constant tribological loads.  

 

Due to the individual characteristics of the tribometers, each test offers different flexibility and a possible range of tribological 

loads. A single tribometer test often doesn’t allow the measurement of COFs for the entire range of tribological loads typically 
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Figure 1 Extrapolated flowcurves of 16MnCr5 steel 



occurring in cold forging whereas the combination of four different tribometers allows the determination of COFs for a much wider 

range of tribological loads. Based on the typical spectrum of loads occurring in cold forging and the characteristics of the four 

tribometers the testing conditions were defined, according to Table 2. 

Table 2 Defined tribological conditions of different tribometers 

Tribometer RCT-B BCET UST SCT 

Contact Normal Stress, CNS (MPa) 800-1000 1700-2000 1200-1600 1600-2000 

Surface Expansion Ratio, SER 1.0-2.0 9.0-35.0 1.1 3.0-11.0 

Relative Sliding Velocity, RSV (mm/s) 0.3-50.0 40.0-100.0 50.0-100.0 100.0-250.0 

 
Identical lubrication and surface treatment were applied to all specimen by Nihon Parker Ltd., Japan. All surfaces were wetblasted 

prior to the application of the lubricant. The lubricant was applied by 60 s dipping followed by 600 s drying in an oven. The lubricants 

main components are polymer, wax and salt. No conversion layer such as zinc phosphate was used. 

Previous collaborative, global tribometer tests within the ICFG subgroup lubrication showed that single layer lubrication systems, 

such as the one used within this test are sensitive to packaging, shipping and storage conditions. When specimens are sent between 

Europe, Japan and China multiple times for production, lubrication and testing, long custom handling and shipping times as well as 

rough transportation conditions can occur. In order to decrease the impact of these factors all specimens where individually, tightly 

packed and exclusively sent via airmail. This ensures short transportation times and prevents the lubrication from damaging during 

travel. Furthermore, the different tribometer tests in China, Japan, France and Germany where all carried out at a similar time after 

lubricant application in Japan in order to prevent possible aging effect, caused by long storage and handling times.  

4. Results, modelling and discussion 

4.1 Results 

In Figure 2(a) the tribological loads of the different tests are plotted. Multiple loads change simultaneously between the tests while 

the parameter of surface expansion ratio is relatively less involved than the other two parameters. Correspondingly, the determined 

average value of COF in each test is plotted on Figure 2(b). It can be seen, that the COF depends on the tribological loads. Furtherly, 

a simplified analysis about the influence of single tribological loads can be carried out with Figure 2(c) and Figure 2(d). In general, 

the COF decreases with an increasing RSV. At small values of RSV, close to static friction, the COF increases to values up to 0.09. 

This trend is in accordance with multiple past investigations [15,16]. An increase in CNP often leads to a decrease in COF [17,18], which 

can be confirmed within this study, where lower CNP for RCTB lead to relatively large COFs. At the range of 1200 MPa to 1600 

c) d)

a) b)

Figure 2 tribological loads and experimental results 



MPa where COFs where measured by UST, the COFs are relatively smaller. This can likely be explained by two contributing factors, 

where very low SER values occur during UST, putting little strain on the lubrication system and large differences in the interface 

temperature due to different deformation degrees of the tribometer tests.  

 

4.2 Modelling 

Friction modelling plays a significant role in the accuracy of FEM simulation of metal forming processes. While it is often 

industrial practice to assume a constant COF, various past investigations measuring COFs at different tribological loads have 

repeatedly shown that the COF is strongly dependent on the tribological loads acting in the contact zone. Depending on the forming 

process a significant improvement of the accuracy of FEM simulation can be achieved through implementation of advanced friction 

models paying respect to the various influencing factors. As shown in Fig. 2, the COF of the used lubricant is strongly dependent on 

the tribological loads. In the following chapter, different analytical models and machine learning approaches are applied to the 

experimental data. 

The experimental data is divided into training data and test data. The training data consists of 80% of the data and is used to derive 

the model parameters. The test data consisting of 20% of the data is used to evaluate the quality of the derived model. During testing, 

the model is used to predict the COF of the test data which is then compared to the true values of the test data. The typical logarithmic 

regression, and more advanced machine learning approaches such as a support vector regression or artificial neural network (ANN) 

are adopted. The error between the modelling prediction and the experimental data gives information on the quality of the model. 

Assuming a logarithmic link between the tribological loads and the COF, the following analytical Equation (3) can be created by 

the logarithmic regression. 

𝜇 = 𝑐1 + 𝑐2 ∙ ln(𝜎𝑛) + 𝑐3 ∙ ln(𝑣𝑟𝑒𝑙) + 𝑐4 ∙ ln (𝜓)                                                                   (3) 

The derived constant parameters are: 𝑐1 = 0.113, 𝑐2 = −0.01027, 𝑐3 = −0.0004813, 𝑐4 = 0.007618.  The constant parameters 

c2 and c3 are negative, and these show the inverse proportional relationship between the CNP, RSV and the COF. The logarithmic 

regression model can well reflect the influence of tribological loads on the COF. 

The residual plot of the logarithmic regression showing the measured COF (true values) and the difference between the predicted 

value and the true value (residue) for both, the training and the testing data (see Figure 3). The root square mean error (RSME) during 

testing is 0.008417, the mean absolute error (MAE) = 0.006656 and 𝑅2 = 0.5472. A residue of 0 corresponds with a perfect prediction 

of the analytic model, where the true value and the predicted value are identical. The overall quality of the prediction of the logarithmic 

model is good with a low MAE of 0.006656. The residual plot reveals a weak prediction bias where the residue corresponds with the 

true value meaning that for low true values the predicted COF is too high and for high COFs the predicted COF is too low.  

 
Figure 3  Residue plot of logarithmic regression 

 
The support vector regression algorithm has the characteristics of simple structure and high classification accuracy. Even in the 

case of a small sample size, it can obtain better statistical results. As present in Figure 4, the support vector regression shows similar 

prediction quality as the logarithmic regression. The coefficient of determination R2 value is higher than that of logarithmic value 

with a more pronounced prediction bias towards higher true COFs. 

 
Figure 4 Residue plot of support vector regression 
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ANN are suitable for modelling of complex problems especially when the system interdependencies are nonlinear. A neural 

network is trained to predict the COF based on the tribological loads. The hyperparameters of the neural network, like the structure, 

the initial learning rate, and the activation functions, were determined with a Bayesian optimization. The initial learning rate was set 

to 0.01 which decreases exponentially with an increasing number of training epochs. The input layer consists of three input neurons: 

CNP, RSC and SER. The output layer consists of a single output neuron – the COF. The first hidden layer consists of 100 neurons 

with a tangens hyperbolicus activation function. The second hidden layer consists of 15 neurons using a tangens hyperbolicus 

activation function. The training of the ANN takes 30 epochs and is terminated due to an implemented early-stopping criterion. The 

ANN has an RMSE during testing of 0.008535. The Residue plot of the ANN is similar to the support vector regression with a 

prediction bias for true values > 0.05, as shown in Figure 5(b). 

 

Figure 6 shows the residues of different modelling methods. The distribution of the residue of the logarithmic regression is between 

-0.04~0.04, the range is the smallest. The RMSE of the logarithmic regression is 0.008417, and it is smaller than that of the other 

methods, as recorded in Table 3. However, the MAE and RSQ of the logarithmic regression are relatively larger. In general, the 

prediction accuracy of different models is not very high, but the prediction accuracy of the model created by the logarithmic regression 

is the best. In this modelling process, the relationship between tribological load and friction coefficient can be expressed by the 

logarithmic regression based on mathematical fitting. However, the accuracy is limited on the assuming relationship. The relatively 

poor prediction accuracy of the support vector regression and ANN is probably caused by a too small set of data of current tests. 

 

Table 3 Comparison of model error values 

Model Name RMSE MAE RSQ 

Logarithmic Regression 0.008417 0.006655 0.5472 

Support Vector Regression 0.008541 0.005541 0.5338 

Artificial Neural Network 0.008535 0.006261 0.5345 

5. Summary and Outlook 

Within this work different tribometer tests where used to measure the COF over a wide range of tribological loads. Four 

universities from Japan, France, Germany and China worked together within the framework of the International Cold Forging Group 

(ICFG), subgroup “lubrication” to coordinate the experimental work in a collaborative student work. A single batch of16MnCr5 was 

used for the production of all specimens used within this work. The same set of flowcurves, derived from compression tests, 

extrapolated with a combined Swift-Voce approach, were used for all FE-simulations. Surface treatment and lubrication with a single 

Figure 5 Comparison of residues probability distribution for all models 
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Figure 4 Structure(a) and residue plot(b) of the artificial neural network 



layer lubricant was applied identically for all specimens by Nihon Parkerizing Co. LTD., Japan. Previous testing revealed that single 

layer lubricants are sensitive to rough shipping conditions, long shipping duration and toll handling times. Therefore, all specimens 

were firmly and individually packed, shipped simultaneously using air mail to ensure prompt delivery with low impact on the 

lubrication quality.  

All tribometer results where combined to a single set of data, consisting of 57 data points containing the COF and the corresponding 

tribological loads. The data was used to fit mathematical models and to train different machine learning approaches in an effort to 

evaluate different approaches to model the tribological system. The models used within this work are: logarithmic regression, support 

vector regression and an artificial neural network. The data was split into 80 % training and 20 % testing data. The relatively poor 

performance of the machine learning approaches is likely caused by a too small data base and gaps within the tribological loads that 

were tested. Furthermore, differences in COF for the same tribological loads are observable between different tribometers. This is 

likely due to differences in the contact temperature caused by differences in the deformation degree of the tribometer tests. Tests such 

as the UST have a low deformation degree, generating only little heat in the contact zone, while tests such as the BCET cause large 

temperatures in the contact zone due to larger deformation. 

While within the presented work, the logarithmic regression and the ANN show the best model quality. Machine learning 

algorithms such as ANNs are overall a promising approach to model the complex interdependencies in the tribological system. Future 

investigations will focus on creating a larger data base by using direct tribometer tests such as the SCT. This allows a much larger 

database which will enhance the quality of a ANN. Future investigations will additionally focus on expanding the ANN to more input 

neurons including important factors such as the contact temperature, surface conditions, material, etc. and the integration of the trained 

model into FEM Simulations, determining the COF on nodal levels for each increment according to the tribological loads acting in 

the contact zone.  
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