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Abstract
Combining axial and rotational flow between two concentric cylinders, Taylor-Couette
Reactors (TCRs) bear huge potential for both mixing and separation of particle laden
flows. In such flows, the particle dynamics are affected by the structure of the flow,
gravitational and centrifugal forces and interaction of particles with the fluid and
themselves. However, these effects are not completely understood on their own such
that their combined effect on the particle dynamics in TCRs is far from being predictable.
Therefore, in the present thesis, the major physical effects relevant in such scenarios are
investigated separately to provide a foundation for future potential applications.

As particle trajectories differ significantly for laminar, bifurcated or turbulent flow,
precise knowledge of the flow stability of the carrier liquid is required to set the process
parameters. Given that, a comparative study of the linear stability behavior of the
laminar flow in a TCR with rotation of the inner cylinder and with rotation of the outer
cylinder is performed by means of swirl and curvature parameter. It is revealed that
the stability behavior for both the rotating inner as well the rotating outer cylinder
case strongly depends on the curvature parameter. While rotation of the inner cylinder
generally has a destabilizing effect, it is revealed that rotation of the outer cylinder can
stabilize but also destabilize the flow depending on swirl and the curvature parameter.

Until now, the direct observation and characterization of suspensions by means of optical
methods bears large potential but is highly challenging especially in small geometries
such as in the gap of a TCR. In the present study, different methods are developed
to apply Astigmatism Particle Tracking Velocimetry (APTV) on suspension flows for
dilute, semi-dilute, mono- and polydisperse suspensions. Using these techniques, the
dynamics of mono- and tridisperse suspensions are investigated in pressure driven square
duct flows at volume fractions up to 9.1%. It is discovered that interaction of small
and large particles can lead to strikingly different concentration patterns in tridisperse
compared to monodisperse suspensions depending on Reynolds number, volume fraction
and channel height.

While particle interaction is usually associated with higher particle volume fractions, it is
known that dilute suspension flows in horizontally aligned rotating cylinders could give
rise to formation of band shaped particle accumulations. In this thesis, it is investigated
how an additional inner cylinder, which is present in a TCR, affects this band formation.
To reduce the complexity, a Taylor Couette flow with solid body rotation without axial
flow is considered. Different particle patterns are discovered including three types of
bands, which are periodic in axial direction, and two types of bands that are periodic in
azimuthal direction. It is shown, that the presence of the inner cylinder can significantly
alter the particle trajectories and stabilize the particle bands.
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Kurzfassung

Taylor-Couette Reaktoren (TCRs) zeichnen sich durch eine Axialströmung mit zusät-
zlicher Drallkomponente zwischen zwei konzentrischen Zylindern aus und bergen großes
Potential für Misch- und Trennprozesse von partikelbeladenen Strömungen. Die Par-
tikeldynamik in solchen Systemen unterliegt dem Einfluss des Strömungszustandes,
Gravitations- und Zentrifugalkräften sowie Wechselwirkungen der Partikel untereinander
und mit dem Fluid. Jedoch sind diese Effekte nicht vollständig verstanden und die Par-
tikeldynamik in TCRs daher kaum zu antizipieren. In der vorliegenden Arbeit werden
die Phänomene daher separat untersucht, um ein Wissensfundament für die gezielte
Entwicklung von TCRs zum Mischen und Trennen von Suspensionen zu schaffen.

Da laminare Strömungen Potential für die Partikelfraktionierung haben, während
turbulente Strömungen ein Mischen von Partikeln fördern, ist Kenntnis des Strö-
mungszustandes in TCRs Vorrausetzung um die Prozessparameter einzustellen. Es wird
daher eine vergleichende Studie des Stabilitätsverhaltens bei rotierendem Außen- und
Innenzylinder in Bezug auf Drall und Krümmungsparameter durchgeführt. Dabei zeigt
sich, dass das Stabilitätsverhalten bei rotierendem Innen- sowie Außenzylinder stark
vom Krümmungsparameter abhängt. Während Rotation des Innenzylinders generell
einen destabilisierenden Effekt hat, zeigt sich, dass sich eine Aussenzylinderrotation mit
steigendem Drall in Abhängigkeit vom Krümmungsparameter sowohl destabilisierend
als auch stabilisierend auf die Strömung auswirken kann.

Die Charakterisierung von Suspensionen mithilfe optischer Messtechniken birgt großes
Potenzial, ist jedoch besonders in kleinen Geometrien wie dem Spalt eines TCRs eine
große Herausforderung. In dieser Arbeit werden verschiedene Methoden entwickelt
um Astigmatismus Particle Tracking Velocimetry (APTV) auf dilute, semi-dilute,
mono- und polydisperse Suspensionen anzuwenden. Mithilfe dieser Methoden, wird die
Dynamik von mono- und tridispersen Suspension in rechteckigen Kanalströmungen bis
zu Volumenfraktionen von 9.1% untersucht. Dabei wird gezeigt, dass die Interaktion von
kleinen und großen Partikeln in Abhängigkeit von Reynoldszahl, Volumenfraktion und
Kanalhöhe, zu signifikant unterschiedlichen Konzentrationsverteilungen in tridispersen
und monodispersen Suspensionen führen kann.

Während Partikelinteraktionen generell bei höheren Volumenfraktionen auftreten, ist
bekannt, dass dilute Suspensionen in rotierenden, horizontal ausgerichteten Zylindern
bandartige Strukturen ausbilden können. In dieser Arbeit, wird untersucht, wie ein
zusätzlicher Innenzylinder, welcher beim TCR vorliegt, diese Strukturbildung beeinflusst.
Zur Vereinfachung wird dazu die Strömung bei Festkörperrotation ohne zusätzliche Ax-
ialströmung untersucht. Es werden verschiedene Partikelstrukturen entdeckt, darunter
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auch Bandstrukturen die periodisch in Axialrichtung aber auch welche die periodisch in
Azimutalrichtung sind. Es wird gezeigt, dass der Innenzylinder die Partikeltrajektorien
beeinflussen und zu einer Stabilisierung der Bandstrukturen beitragen kann.
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1 Introduction

1.1 Background and motivation

Suspension flows of rigid particles are found in various natural flows and technological
applications on the microscale as well as on the macroscale. These are for instance the
flow of blood cells, sediment transport in rivers, mudslides or inkjet printing (Morris
2020). These flows are a fertile ground for a variety of different phenomena such as shear
induced migration, inertial migration, shear thinning and shear thickening (Leighton and
Acrivos 1987, Ho and Leal 1974, Stickel and Powell 2005). It is known that such effects
occur in monodisperse suspensions, which solely contain one particle size. However,
when multiple particle sizes are present in a suspension, viz. a polydisperse suspension,
additional effects can occur within the flow. These are for instance size segregation,
formation of structures and mutual repellence of large and small particles (Lyon and
Leal 1998b; Batchelor and Van Rensburg 1986; Semwogerere and Weeks 2008; Gao
et al. 2019). In fact, the vast majority of suspension flows found in nature and technical
enviroments are polydisperse, while monodisperse suspensions are rather an exception.
In addition, particles usually have a different density than the suspending fluid and are
rarely neutrally buoyant. Furthermore, in industrial applications suspension flows are
often subjected to rotation. Such situations are found for example in slurry pumps, gas
turbines operating with particle laden working fluids or induced fans for cleaning the
ducts in a room (Pan et al. 2001).

One device which explicitly combines an axial through flow with a rotational flow is
the Taylor-Couette Reactor (TCR), which basically consists of two concentric cylinders
of which one or both rotate and an additional pressure driven axial flow (Fig. 1.1).
In the laminar regime, the flow composes of an Annular Poiseuille Flow (APF) and a
Taylor-Couette flow resulting in spiral-shaped streamlines, often referred to as Spiral
Poiseuille Flow (SPF). TCRs are used for rotating filtration applications including
blood filtration and other biological separation processes (Wereley and Lueptow 1999)
or mixing applications (Dusting and Balabani 2009; Nemri et al. 2016). One advantage
of a TCR is that the ratio of axial and rotational flow can be tailored specifically to the
process and hence enhances mixing and dispersion as required (Schrimpf et al. 2021).

In rotating systems, such as a TCR, particle trajectories are affected by coriolis and
centrifugal forces, resulting in complex dynamics and sharp particle concentration
gradients (Pan et al. 2001). Even slow rotation induces centrifugal hydrodynamic
instabilities that initiate the transition in a TCR and give rise to Taylor vortices.
Higher rotation rates can easily lead to turbulence. In such scenarios the particle
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Rotating
inner
cylinder

Taylor vortices

Stationary
Outer
cylinder

Figure 1.1: Principle of Taylor-Couette Reactor for steady processing of fluid (adapted from:
https://www.uni-muenster.de/MEET). Here, rotational flow is induced by rotation of the
inner cylinder. Axial flow is induced by a pressure gradient.

a) b)

3 2 1 2 3

1 2 3

80 µm 140 µm 160 µm + 2 × 160 µm

Figure 1.2: Recently discovered particle sorting phenomena in a polydisperse suspension of
Polystyrene (PS) particles. Particle characteristics of each band are 1: 80 µm PS particles,
2: 140 µm PS particles and 3: 160 µm single and 140 µm doublet PS particles. a) Macro
view of system; b) close up; 1-3 are microscopic images taken in the bands.

dynamics get even more complex (Majji et al. 2018; Fornari et al. 2018). Recently, it
was discovered that in a horizontally oriented TC flow with a gap of 1 mm, the particles
in a monodisperse suspension form a single particle band so that the rest of the system
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1.2 Theory and state of the art

is devoid of particles. An unexpected phenomenon in case of a tridisperse suspension
is the formation of five symmetric and distinct particle bands as depicted in Fig. 1.2.
Each band consists thereby of particles of same size. This observation is an outstanding
example of the complexity of the particle dynamics in TC suspension flows.

Hence, to process mono- and polydisperse suspensions using a TCR more efficiently,
a deeper understanding of all involved physical effects is required. This includes the
hydrodynamic stability behavior of the SPF, the effect of rotation acting on (non-
neutrally buoyant) particles as well as particle migration and segregation mechanisms
that occur in mono- and polydisperse suspensions. In the present thesis, these aspects
are addressed.

1.2 Theory and state of the art

As stated in the previous section, the overall goal of the present thesis is to improve our
understanding of the basic physical effects one encounters in TCRs. In the following
sections, we first perform a literature review of related topics and then build the
foundation of our investigations. In particular, we review the basic principles as well as
the state of the art of linear stability analysis in Spiral Poiseuille Flows (section 1.2.1),
suspension flows of rigid particles (section 1.2.2), particle banding in rotating flows
(section 1.2.3) and measurement techniques in suspension flows (section 1.2.4).

1.2.1 Linear stability analysis in spiral Poiseuille flows

For processing suspensions in TCRs, it is crucial to know the transitional behavior of the
flow, as the particle trajectories differ significantly for laminar, transitional and turbulent
flow regimes. It is important to understand how kinematic boundary conditions (inner
and outer cylinder rotation speed, ratio of azimuthal and axial velocity) and geometrical
boundary conditions (radius ratio) affect the stability of the flow. Indeed the number
of particles in a flow is another parameter, which influences the flow stability. However,
the transitional behavior of the Spiral Poiseuille Flow (SPF) especially with rotating
outer cylinder is far away from being explored even for a pure liquid. Therefore, the
first logical step is to thoroughly explore the stability behavior of the pure liquid case,
before considering the effect of added particles. Hence, in this work we will investigate
the stability of the SPF in the absence of particles with a special focus on the effect
of the outer cylinder rotation. This will be done by means of linear stability analysis,
which will be explained in the following.
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1 Introduction

1.2.1.1 Linear hydrodynamic stability theory

In hydrodynamic stability theory, the flow is considered as system whose reaction
to small disturbances is analyzed. If the system is disturbed and all disturbances
gradually die down, the system is considered as stable. Otherwise, if the disturbances
grow in amplitude and the system progressively departs from the initial state, the
system is considered as unstable. The prime aim of hydrodynamic stability analysis
is to determine the locus in the parameter space which separates the unstable and
the stable states of the system. This defines the curve of marginal stability of the
system (Chandrasekhar 2013). Such a curve, also known as curve of neutral stability,
will be presented later in the text. Two types of instabilities are distinguished based
on the development of the perturbation. A flow is considered absolutely unstable if
the perturbation growths at a fixed point in the flow, while the flow is considered as
convective unstable if the perturbation grows at a moving point within the flow (Drazin
and Reid 2004). Within this work, we solely consider absolute instabilities. From
a mathematical point of view, the equations describing the stationary base flow are
superimposed with disturbances (i.e. velocity disturbances u′

i and pressure disturbances
p′). The linear stability theory assumes that the disturbances are infinitesimal and hence
the nonlinear terms in the governing equations can be neglected. This simplification
results in linearized disturbance equations describing the motion of disturbances in
dependence of the base flow properties (i.e. Reynolds number, streamwise velocity,
spanwise velocity). The disturbances are then substituted by ansatz functions. Thereby,
it is essential to expand the disturbance, viz. the ansatz function, in a suitable set of
normal modes to capture all possible waveforms for the problem, which may require
several spatial wavenumbers (Roy and Govindarajan 2010; Chandrasekhar 2013). The
system is only considered as stable if it is stable against all possible modes. For numerous
flows, such as the plane channel flow, the boundary layer flow over a flat plate or the
Taylor-Couette flow, at least one unstable mode can be found if the Reynolds number
is sufficiently high. However, some flows are stable for all possible modes, even at high
Reynolds numbers. These are for instance the plane Couette flow (parallel plate shear
flow) or the Hagen-Poiseuille flow (pipe flow) (Gallagher 1974; Salwen et al. 1980). Such
flows are termed as linear stable flows.

Within this work, where we restrict ourselves to the flow between two concentric cylinders,
we consider modes which are periodic in azimuthal as well as in axial direction. With
the axial wavenumber λ ∈ R, the azimuthal wavenumber n ∈ Z and the amplitude A

the disturbances are described by the following ansatz function, which is substituted
into the disturbance equations (here exemplary for the radial velocity fluctuation u′

r):

u′
r = Ar(r) ei(λx+nϕ−ωt) (1.1)

A schematic sketch of the disturbance, described by the ansatz function, is given in Fig.
1.3a. Fig. 1.3b exemplary depicts a computed visualization of such a disturbance u′

r.
Here r, x, ϕ are the radial, the axial and the azimuthal coordinate, respectively. t is

8



1.2 Theory and state of the art

a) b)

Figure 1.3: a) Schematic sketch of the infinitesimal disturbances within two concentric
cylinders. Ro = outer cylinder radius, Ri = inner cylinder radius, h = half gap width, n =
azimuthal wavenumber, λ = axial wavenumber. b) Example for a disturbance described by
equation 1.1 (n = 2, λ = 0.86). Depicted over two periods (4π/λ).

a) b)

Figure 1.4: a) Curve of neutral stability. Unstable regions correspond to =(ω) > 0, while
stable regions correspond to =(ω) < 0. b) Finding the disturbance associated with the
lowest Reynolds number. The disturbance with n = 2 and λ = 0.97 is critical here, as
it gets unstable at the lowest Re. Si is the swirl parameter and defined as ratio of inner
cylinder angular velocity and axial reference velocity. The curvature parameter is defined as
ε = εR = (1 − Ri/Ro)/(1 + Ri/Ro).

the time and ω ∈ C denotes the complex frequency. The wave speed is given by the real
part of ω as c = <(ω)/

√
n2 + λ2. The temporal behavior of the disturbance amplitude

depends on the imaginary part of ω. The disturbance grows when =(ω) > 0 and decays
if =(ω) < 0. The system is only considered as stable if it is stable against all possible
combinations of λ and n. In fact, the disturbance equations containing ansatz function
(1.1) pose an eigenvalue problem which yields =(ω) as function of Re, λ and n. Hence,
for a reasonable range of λ, n and Re the value of =(ω) has to be computed as shown
exemplary in Fig. 1.4a for an annular Poiseuille flow. If =(ω) > 0 for any combination
of Re, n and λ the flow is considered unstable as indicated in Fig. 1.4a. The line where
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= (ω(Re, λ, n)) = 0 defines the curve of neutral stability as shown as a white line in Fig.
1.4a. For each n such a curve can be defined. The combination of n and λ which gets
unstable at a lower Reynolds number than all other possible combinations, is the most
“dangerous” for the stability of the flow and is considered as critical mode or critical
disturbance. This is illustrated exemplary in Fig. 1.4b where the disturbance associated
with n = 2, λ = 0.97 gets unstable at a lower Re than any other disturbance. When
n = 0 the disturbance is symmetric in azimuthal direction and consequently denoted as
symmetric disturbance. Analogous disturbances associated with n 6= 0 are referred to
as non-axisymmetric disturbances.

1.2.1.2 Instability mechanisms

Hydrodynamic instabilities can be caused by thermal effects (Rayleigh-Bénard convec-
tion), stratification (Rayleigh-Taylor instability), centrifugal effects (Taylor-, Dean-,
and Görtler instability), surface tension (Rayleigh-Plateau instability), viscous effects
(Tollmien-Schlichting instability) or due to shear layers in the flow profile (Kelvin-
Helmholtz instability) (Drazin and Reid 2004, Roy and Govindarajan 2010). From a
theoretical perspective, flows, which can get unstable when the viscosity is neglected,
are denoted as inviscid unstable. Contrary, flows, which are unstable only when viscosity
is considered, are termed as viscous unstable. An inviscid flow can get unstable if the
velocity profile exhibits an inflection point (Rayleigh’s inflection point criterion) or if
the angular momentum decreases outward in a flow with curved streamlines (Rayleigh’s
criterion). It should be mentioned, that in the case of inviscid stability the viscosity
is only neglected in the stability considerations, but still necessary for generating the
velocity profile. For the Spiral Poiseuille flow (SPF) investigated in this work, the
relevant transition mechanisms are the viscous Tollmien-Schlichting instability and the
inviscid centrifugal Taylor instability. These are briefly discussed hereafter.

Rayleigh criterion and Taylor instability: Flows along curved streamlines or in
a rotating system can exhibit instabilities resulting from adverse angular momentum
gradients (Chandrasekhar 2013). For inviscid flows, Rayleigh’s criterion states that
a stratification of angular momentum is only stable if it increases monotonically out-
ward, such that the radial distribution of angular velocity Ω(r) fulfills the condition
d/dr(r4Ω2) > 0 everywhere. This criterion can be explained by considering the mass
transfer between two neighboring elementary fluid rings at radial positions r = r1
and r = r2 (r > 0). It can be shown that the change in centrifugal potential energy
associated with this mass exchange is proportional to:

∆E ∝
(
r4

2Ω2
2 − r4

1Ω2
1
)( 1

r2
1

− 1
r2

2

)
(1.2)

10



1.2 Theory and state of the art

Hence, if d/dr(r4Ω2) > 0 no interchange of fluid between the rings can occur without a
source of external energy and the flow is stable (Chandrasekhar 2013). Applied to a
flow between two rotating concentric cylinders (TC-flow) as displayed in Fig. 1.5a the
Rayleigh criterion yields the following conditions:

µ = Ωo

Ωi
> η2 = Ri

Ro

2
(stable) and µ = Ωo

Ωi
< η2 = Ri

Ro

2
(unstable) (1.3)

Where Ωi, Ri and Ωo, Ro denote the angular velocity and the radius of the inner and
outer cylinder, respectively. Synge (1938) theoretically investigated the flow between two
concentric cylinders with no axial flow by means of linear stability analysis. He showed
that these conditions (1.3) also apply to the viscous case. It should be mentioned
that for the inviscid case equation (1.3) is valid for arbitrary disturbances (n ∈ Z,
Chandrasekhar 2013), while it is only valid for axisymmetric disturbances (n = 0) in
the viscous case (Synge 1938). However, recently it was shown by Deguchi (2017), that
viscous TC-flow where µ > η2 can get linear unstable at very high Reynolds numbers
(O(105)) due to non-axisymmetric disturbances. Deguchi assumed that a viscous type of
instability is responsible here. For simplicity, in the following we will refer to azimuthal
flow components where µ > η2 or µ < η2 as “Rayleigh stable” or “Rayleigh unstable”,
respectively.

The experimental work of Taylor (1923) revealed that the viscosity has a slight stabilizing
effect on equation (1.3) as can be seen schematically from Fig. 1.5b. Moreover, the
presence of viscosity leads to stable regions in the counter rotating regime (Fig. 1.5b).
The centrifugal instability in the TC flow is associated with standing waves and results

−Ωo +Ωo

Ωi

unstable

viscid
stable

inviscid
stable

Ωi
Ωo

= R2
o

R2
i

𝑥

𝑦

b)a)

Ro

Ri

Ωo

Ωi

Figure 1.5: a) Geometry of Taylor Couette flow. Taylor vortices are visualized based on
disturbance velocities obtained with linear stability computations. b) Stable and unstable
parameter regions Taylor 1923 (schematic results for Ro/Ri ≈ 1.3 and Ro/Ri ≈ 1.1).
Negative values of Ωo denote counter rotation of cylinders, while positive values denote
co-rotation.

in the formation of the well-known stationary Taylor vortices as indicated in Fig. 1.1a.
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It should be mentioned, that both, the inviscid Rayleigh criterion and its viscous
extension by Synge, do not account for axial flow. Nevertheless, it is sometimes inferred
that rotating flows which are stable according to equation (1.3), must be equally stable
or unstable when a (slight) axial flow component is added (Pedley 1968). In fact, the
influence of centrifugal effects on the stability of a spiral flow, which features both axial
and azimuthal components, is far more complicated. Ludwieg (1961) showed that a
slight axial flow can destabilize Rayleigh stable azimuthal flow (Ωo = Ωi). In turn, the
works of Ludwieg (1960); Kiessling (1963) and Mackrodt (1966) revealed that annular
flows can be destabilized when Rayleigh-stable rotational flow is superimposed. In
fact, Hagen-Poiseuille flow - which is linearly stable - can become linear unstable when
superimposed with Rayleigh stable azimuthal flow (Mackrodt 1976). The works of
Cottrel and Pearlstein (2004) as well as Meseguer and Marques (2005) further showed
that also Spiral Poiseuille flow can be destabilized by a Rayleigh stable azimuthal flow
component.

A generalization of Rayleigh’s criterion under consideration of an additional axial
shear flow was given by Howard and Gupta (1962) for the case of axisymmetric
disturbances. According to Howard and Gupta (1962) the spiral flow is stable if the
local Richardson number J = Ψ/V

′2
x fullfills J ≥ 1/4 everywhere. Here Vx is the

axial flow component. With Vϕ being the azimuthal flow component Ψ is defined as
r−3 d

dr (r2Vϕ(r)). Howard and Gupta (1962) were not able to define such a critera for
non-axissymmetric disturbances. This was later achieved by Maslowe (1974). For the
case of the Hagen-Poiseille flow with an imposed solid body rotation (rotating pipe
flow) Maslowe showed that a necessary condition for instability is that the azimuthal
wavenumber n is negative. Therefore, Joseph (1976) assumed that spiral flows whichs
azimuthal flow component is Rayleigh stable (µ > η2) or Rayleigh unstable (µ < η2)
feature negative or positive critical values of n, respectively. However, later works
refuted Joseph’s assumption. Cottrel and Pearlstein (2004) showed for a SPF with a
Rayleigh stable azimuthal flow component (µ > η2) that both negative and positive
values of n lead to an instability at different rotation rates (swirls). In chapter 3 we
will show that a Rayleigh stable azimuthal flow component (µ → ∞) can trigger both
negative as well positive n in the SPF. Also, we show that a Rayleigh unstable azimuthal
flow component can trigger both both negative as well positive n in a SPF.

Overall, the interplay between axial and azimuthal velocity component results in a
complex instability behavior, such that it is not possible to entirely anticipate the
stability of the flow with simple criteria.

The Tollmien-Schlichting instability: As described centrifugal instabilities are
related to flows in rotating systems or curved streamlines. The Tollmien-Schlichting
instability (TSI) instead is primarily found in planar shear flows such as the boundary
layer flow over a flat plate, as well as (axial) flows in annular gaps or plane channels.
Those flows are linearly stable in the inviscid case, as their velocity profile exhibits no
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inflection point, which is a necessary condition for instability according to Rayleigh’s
inviscid inflection point criterion Drazin and Reid 2004; Schmid and Henningson 2000.
Tollmien (1930) showed that the viscosity is essential for the correct treatment of such
flows. In fact, the TSI is based on the effect of viscosity, which induces a phase shift to
the velocity fluctuations, such that their products (the Reynolds stresses) are nonzero
when spatially averaged. This phase shift occurs in the “critical layer”, a thin layer
parallel to the walls. From a mathematical perspective, the critical layer is located
where the pressure eliminated and linearized disturbance equation exhibits a singularity
when Re → ∞ (Tollmien 1930; Schlichting and Kestin 1961; Vasanta Ram 2019). This
equation is well known as Orr-Sommerfeld equation (Schmid and Henningson 2000).
For shear flows the singularity occurs at the location where the base flow velocity equals
the disturbance velocity (U = c) (Maslowe 1986; Schmid and Henningson 2012). The
TSI is associated with travelling waves of spatial or temporal increasing amplitude,
inducing the formation and decay of vortices and finally resulting in a fully turbulent
flow. It should be mentioned that the “classical” Tollmien-Schlichting instability is
associated with a planar flow and features solely a streamwise wavenumber (= axial
wavenumber λ) while the spanwise wavenumber is n = 0. For the Annular Poiseuille
Flow (APF) instead, disturbances which are periodic in axial as well in azimuthal
direction can become critical (Cottrel and Pearlstein 2004; Cottrel et al. 2004; Cotrell
and Pearlstein 2006). In such cases where n 6= 0 the instability is spiral shaped and
is also referred to as “Tollmien-Schlichting-like” instability (Cottrel and Pearlstein
2004). For simplicity, we use the terminology TSI for both axisymmetric as well as
non-axisymmetric disturbances.

1.2.1.3 Works considering linear stability of Spiral Poiseuille Flow (SPF):

The Spiral Poiseuille Flow (SPF) is a combination of the Annular Poiseuille Flow
(APF), driven by an axial pressure gradient and the Taylor-Couette Flow (TCF), driven
by the rotation of the cylinder walls. This type of flow allows to adjust the amount
of axial and rotational velocity present in the flow. Hence, it can smoothly merge a
flow associated with a centrifugal instability (induced by TCF) and a flow associated
with a shear instability (induced by APF). This renders it a unique tool to investigate
instability mechanisms. As shown before, the interplay of axial and azimuthal flow
components results in a complex instability behavior. Thereby, even a Rayleigh stable
azimuthal flow component can induce an instability in a spiral-shaped flow. In the
following, we will review the literature considering the SPF. As will be shown, the
stability behavior of the SPF where the azimuthal flow is Rayleigh unstable has been
subject to numerous studies. This includes the rotation of the inner cylinder (µ = 0),
counter-rotation (µ < 0) and co-rotation where µ < η2 (Takeuchi and Jankowski 1981;
Ng and Turner 1982; Meseguer and Marques 2000; Mesequer and Marques 2002; Cottrel
and Pearlstein 2004; Cottrel et al. 2004; Cotrell and Pearlstein 2006). Several studies
further considered the case of Rayleigh stable co-rotation (Mesequer and Marques 2002;
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Cottrel and Pearlstein 2004; Cottrel et al. 2004; Meseguer and Marques 2005; Cotrell
and Pearlstein 2006). However, to the authors best knowledge, only a single study
considered a SPF where the inner cylinder is at rest (µ → ∞) (Meseguer and Marques
2005). In the following the curvature parameter ε = (1−Ri/Ro)/(1+Ri/Ro) is used for
describing the geometry and all values from literature have been transferred accordingly.
The ratio of azimuthal to axial flow component is hereafter referred to as swirl. Details
about the parametrization, utilized to study the stability of the SPF in chapter 3, are
described in detail in section 2.2.

The seminal work of Taylor (1923), in which he experimentally and theoretically analyzed
the stability of the flow between two concentric cylinders, can be considered as the
beginning of the linear stability analysis of annular gap flows. While Taylor’s work
dealed with the classical TCF, with no axial pressure gradient present, soon after the
more complex SPF was investigated both experimentally (Cornish 1933; Fage 1938)
and theroretically (Goldstein 1937). Subsequently, the SPF became the subject of
further experimental works (Kaye 1958; Donnelly and Fultz 1960; Snyder 1962) as well
as theroretical works (DiPrima 1960; Chandrasekhar 1960a,b; Krueger and Di Prima
1964). Following works started to add complexity to the problem by accounting for
non-axissymmetric disturbances (Chung and Astill 1977) or reconsidering modifications
and approximations of the velocity profile using alternative numerical methods (Hasoon
and Martin 1977).

For an extensive review of the aforementioned works, the reader is referred to DiPrima
and Pridor (1979). DiPrima and Pridor investigated the SPF with µ = 0 for the
small-gap approximation ε → 0 as well as curvature parameters of ε = 0.0256 and
0.0526. While considering merely axisymmetric disturbances, they found that decreasing
swirl has a stabilizing effect on the flow and further discovered the existence of two
minima (two modes) in the neutral stability curve. The existence of this two minima
leads to a jump of the critical wavenumber when the ratio of axial flow and azimuthal
flow exceeds a certain threshold. This wavenumber jump was later associated with a
change in the instability mechanism for axisymmetric (Ng and Turner 1982) and non-
axisymmetric disturbances (Cottrel and Pearlstein 2004). Takeuchi and Jankowski (1981)
presented the first time correct results considering non-axissymmetric disturbances
for a wide gap SPF (ε = 0.333, µ = 0; 0.2; −0.5). Their results showed that non-
axisymmetric disturbances become dominant and the Rayleigh unstable rotational flow
is non-monotonous stabilized as the axial flow velocity increases (or vice versa). The
aforementioned work of Ng and Turner (1982) instead considered both axissymmetric
and non-axisymmetric disturbances for ε = 0.0256; 0.129 and covered significantly higher
values of Re compared to previous works. Ng and Turner confirmed the existence of
the two minima discovered by DiPrima and Pridor (1979) and associated them to a
Tollmien-Schlichting-type instability (TSI) and a “rotational” instability, respectively.
However, they stated the importance of these modes dimishes when non-axisymmetric
modes are considered. Mesequer and Marques (2002) investigated the SPF for the
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co-rotation case for ε = 0.333 and focused on the transition from an axial induced
shear instability to a centrifugal instability. Meseguer & Marques concluded that
solid-body rotation (Rayleigh stable, µ > η2), induces centrifugal instabilities in the
SPF which are associated with positive azimuthal wavenumbers 1 ≤ n ≤ 6. However,
Cottrel and Pearlstein (2004) later noted, that Mesequer and Marques (2002) covered
an unsufficient range of n and showed that for µ = 1 increasing swirl triggers negative
modes (−6 ≤ n ≤ −1). For co-rotating cylinders (µ > 0), Mesequer and Marques (2002)
further concluded that the centrifugal instability is characterized by an increase of the
gradient of the azimuthal disturbance velocity uϕ towards the inner cylinder, while for
the shear instability the disturbance exhibits a spiral pattern which is almost parallel to
the rotation axis. Furthermore, they discovered discontinuities in the critical Reynolds
number, which are related to disconnected closed curves of neutral stability.

Cottrel and Pearlstein (2004) numerically connected the linear stability behavior of
the APF and the TC flow considering ε = 0.333. Besides the case of rotating inner
cylinder (µ < 0), they also investigated co-rotation (µ = 0.2, 0.5, 1) and counter-rotation
(µ = −0.5). The main focus of the investigations was on the transition between the
TSI induced by the pressure gradient and the centrifugal instability induced by the
rotational flow component. They identified this transition at the critical Reynolds
number Re∗, where a discontinuity in the slope of Ta versus Re occurs. Also, they noted
that the disturbance speed undergoes a jump. In fact, they concluded for Rayleigh
unstable (µ = −0.5; 0; 0.2) as well as for Rayleigh stable azimuthal flows (µ = 0.5; 1)
that there is a transition from a TSI to a centrifugal instability. In agreement with the
(extended) Rayleigh criterion, for µ > η2 they where not able to find linear instability
when the axial flow deceeds a certain threshold. Similar results and conclusions were
obtained by Cottrel et al. (2004) for ε = 0.1299 and ε = 0.0256. Meseguer and Marques
(2005) investigated a SPF with ε = 0.333 and focused their analysis on the co-rotation
regime (µ > 0) also capturing Rayleigh stable azimuthal flow components. They also
considered the case where only the outer cylinder is rotating (ORSPF, µ → ∞) and
discovered that an instability associated to the rotating outer cylinder can destabilize
the SPF and supersedes the TSI above a certain swirl threshold. At this point Meseguer
and Marques (2005) denote the instability associated with the outer cylinder rotation as
“outer rotation instability mechanism”. Further, Meseguer and Marques (2005) observed
a slight stabilization associated with the outer cylinder rotation at higher swirl values.
Cotrell and Pearlstein (2006) investigated the linear stability boundaries of the SPF
at several rotation rate ratios µ = −1; −0.5; −0.25; 0; 0.2 and ε = 0.818 and found that
the flow is linearly stable if no rotation is present. In fact, their results show that
the critical Reynolds number blows up for ε →≈ 0.793 in the absence of rotation and
conclude that the flow is linearly stable for larger values of ε. Furthermore, they found
no linear instability for the case of co-rotation µ > η2 (Rayleigh stable) in the absence
of axial flow. However, their results showed that the SPF (µ > η2) was linear unstable
at swirls inbetween those extremes. Increasing swirl both destabilized and stabilized the
flow. Cotrell and Pearlstein (2006) further extensively investigated the phenomenon of
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multi-valued stability boundaries induced by formation of closed (disconnected) stability
curves which occur for µ < η2 as well as for µ > η2. While Cotrell and Pearlstein
(2006) came to the conclusion that SPF is linearly stable for ε →' 0.793 if no rotation
is present, Heaton (2008) showed there exists linear instability for all 0 < ε < 1 if
sufficiently high Reynolds numbers and axissymmetric disturbances are considered.

An important fact considering the stability of the azimuthal flow component was
recently revealed by Deguchi (2017) who performed a comprehensive analysis on the
behavior of Rayleigh stable TCF in absence of axial flow (µ > η2). Deguchi observed
that the flow can get unstable at Re > 2.4 × 104 and discovered a previously unkown
non-axissymmetric “long-wavelength” wavelength mode. He assumes that this long
wavelength mode is not associated with the centrifugal instability explained by Rayleigh
and that the viscosity acts as a destabilizing mechanism analoguous to a TSI.

Recently, Vasanta Ram (2019) reconsidered the transition from a TSI to a centrifugal
instability in the SPF with increasing swirl. To identify a TSI, Vasanta Ram developed
an expression to calculate the position of the critical layer and reformulates the SPF
problem by means of ε and the swirl parameter Si. Deriving a generalized Orr-
Sommerfeld and Squire equation by eliminating the pressure in the Navier-Stokes
equations, he obtains an expression for the location of the critical layer as function of
the critical axial wavenumber (λc), the critical azimuthal wavenumber (nc) and the
critical complex frequency (ωc). In the present thesis, this expression will be employed
to verify the existence of a critical layer in the SPF and calculate its theoretical position.

1.2.1.4 Need for research in linear stability of the Spiral Poiseuille Flow
(SPF)

Overall, the above-mentioned literature shows, that the SPF has been extensively studied
for the Rayleigh unstable azimuthal flow (µ < η2) for fixed curvature parameters of
ε = 0.0256; 0.1299; 0.333; 0.818. However, till date no work considered ε as a quasi-
continuous variable to uncover the linear stability behavior when ε is smoothly varied
within 0 < ε < 1. Such information, depicted as a phase map, would provide a more
complete picture. Phase maps covering the whole range of 0 < ε < 1 are further
interesting for the design of TCRs as here arbritary values of ε can occur. Besides
TCRs, in technical applications often ε is significantly smaller than ε < 0.0256. This
is, for example, the case in sealing gaps of hydraulic turbo machinery. Hence, it is of
particular interest to uncover the linear stability behavior of the SPF (µ < η2) when
ε approaches 0. This should be performed first for the Spiral Poiseuille Flow with
Rotation of the Inner cylinder (IRSPF, µ = 0) as is it is the most simple case but also
the most common case in industrial applications.

Also, the SPF with a Rayleigh stable azimuthal flow (µ > η2) has been investigated for
ε = 0.0256; 0.1299; 0.333; 0.818. However, the case where only the outer cylinder rotates
(µ → ∞) has solely considered by Meseguer and Marques (2005). Thereby Meseguer did
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only consider ε = 0.333 and restricted their computation to low and intermediate swirls.
Hence, the linear stability behavior of the Spiral Poiseuille flow with outer cylinder
rotation (ORSPF) is unexplored with respect to different values of ε and high swirls.
Therefore, it is desirable to have a phase map, which fully covers the linear stability
behavior of the ORSPF by means of ε and swirl.

So far, the transition from a Tollmien-Schlichting instability (TSI) to a centrifugal
instability was identified by aprubt changes in the critical modes (λ, n, c) and an
associated rapid decrease of the critical Reynolds number when the swirl increased.
However, besides this indirect method of identification, to our knowledge, no work so far
provided a quantitative method to determine wether a shear instability or a centrifugal
instability is dominant. Further, while it was assumed that there exists a critical layer
in the SPF in the low swirl limit (Cottrel and Pearlstein 2004) its existence has not
been confirmed yet. While the instabilities in pressure driven flows such as the annular
Poseuille flow (Mott and Joseph 1968b), or flows along curved streamlines (Guaus and
Bottaro 2007) have been discussed based on the distribution of shear stresses or the
budget of the disturbance energy, such a deep discussion has never been made for the
SPF. To the authors best knowledge, no clear quantitative criteria have been formulated
to clearly identify the onset of a centrifugal instability in a SPF. This accounts especially
for the cases with Rayleigh stable azimuthal flow where the centrifugal effect of the
azimuthal flow seems to develope a stabilizing as well as a destabilizing effect depending
on the swirl. From literature it is still unclear how a centrifugal effect induced by the
rotation of the outer cylinder can both destabilize and stabilize the flow. Hence, there
is a need for a methodology to precisely identify and quantify centrifugal as well as
shear instabilities.

1.2.2 Suspension flows of rigid particles - shear flows

As mentioned, it is unclear which mechanism leads to the separation of particles in
the observed phenomena in the small gap TC setup (Fig. 1.2). Therefore, we perform
an extensive study on particle segregation and migration in mono- and polydisperse
suspension shear flows within this study. In this section we discuss the basics as well as
the state of the art of suspension dynamics with a special focus on migration phenomena.

1.2.2.1 Governing equations, dimensionless numbers and effective viscosity

Whereas most theories and experiments have been developed for single particle dynamics,
the majority of industrial processes involves large numbers of particles interacting with
each other and the fluid (Crowe 2005). These interactions define the particle dynamics
and become increasingly pronounced as the particle volume fraction is increased. The
particle volume fraction, also referred to as solid volume fraction, is defined as Φ =
Vs/(Vs+Vf ) where Vs and Vf are the volume of the solid and the fluid phase, respectively
(Stieß 2008, Crowe 2005). In general, flows with solid volume fractions up to Φ =
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0.5% (Mewis and Wagner 2012) or Φ = 5% (Crowe 2005) are referred to as dilute
suspensions. In dilute suspensions particle-particle interactions as well as particle
induced disturbances to the flow field are negligible. In flows with particle volume
fractions up to Φ ≈ 20% (Φ ≈ 15%; Mewis and Wagner 2012), which are known
as intermediate or semi-dilute suspensions, particle-particle interactions become as
important as particle-fluid interactions. Ultimately, at volume fractions beyond Φ ≈ 20%,
the flow is referred to as dense suspension and particle-particle interactions become
dominant while particle-fluid interactions are of lesser importance (Crowe 2005). Due to
the presence of particles and the associated interactions, the viscous dissipation rate in
a suspension is increased compared to a pure liquid. Neglecting hydrodynamic particle-
particle interactions and collisions, Einstein showed theoretically, that the effective bulk
viscosity µeff of a dilute suspension increases linearly as Φ increases (Einstein et al.
1905; Einstein 1911):

µeff = µfluid(1 + 2.5Φ) (1.4)

Due to the simplifications Einsteins equation is only valid for Φ < 0.5% (Mewis and
Wagner 2012). The work of Batchelor and Green (1972) accounted for this limitation
and considered pair-wise particle interactions in suspensions of up to Φ = 20% resulting
in the following quadratic expression:

µeff = µfluid(1 + 2.5Φ + 5.2Φ2) (1.5)

To predict the effective viscosity at even higher volume fractions where complex particle-
particle collisions are hampering the analytical treatment numerous empirical and
semi-empirical models such as the Eilers fit (Ferrini et al. 1979) have been developed
up to date (Zarraga et al. 2000; Stickel and Powell 2005). Furthermore, while the
aforementioned works presuppose Stokes flow regime (Re << 1), recent numerical and
experimental works revealed, that inertial effects can also increase the effective bulk
viscosity (Kulkarni and Morris 2008; Haddadi and Morris 2014; Lashgari et al. 2014;
Picano et al. 2013). For polydisperse suspensions, the effective viscosity is usually lower
compared to monodisperse suspensions. At the same time, the maximum attainable
volume fraction, which is about 64% for monodisperse suspensions (close random packing
limit), is found to be higher in polydisperse suspensions (Shapiro and Probstein 1992;
Chang and Powell 1994; Krishnan and Leighton Jr 1995; Santiso and Müller 2002).

In a suspension flow the ratio of inertial forces and viscous forces, known as the Reynolds
number, can be described on the characteristic length scale of the bulk flow, as well as
on the length scale of the particles. With the bulk velocity Ub, the hydraulic diameter
Dh, the viscosity µfluid and the density ρf of the liquid phase, the bulk Reynolds number
is defined as Reb = ρf UbDh/µfluid. Within this work Ub is defined as the mean velocity,
which is the ratio of volume flow rate and cross-sectional area V̇ /A. When investigating
pressure driven shear flows of neutrally buoyant suspensions, the particle Reynolds
number is usually defined based on the local shear rate γ̇ and the particle diameter dp
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as Rep = ρf γ̇d2
p/µfluid. Rep can be estimated, by using the average shear rate, that

is for instance γ̇ = Ub/Dh for a Poiseuille flow or γ̇ = Uwall/H for a linear shear flow.
For the pressure driven suspension flows investigated within this work, the particle
Reynolds number is hence estimated based on the average shear gradient which can
be written as Rep = Reb(dp/Dh)2 as utilized by Asmolov 1999; Chun and Ladd 2006;
Di Carlo et al. 2007; Miura et al. 2014; Shichi et al. 2017; Pan et al. 2018; Chun et al.
2019; Morris 2020; Chun and Jung 2021. According to Bhagat et al. (2009) inertial
effects emerge at Rep ' 0.1, while Abbas et al. (2014) observed inertial migration for
Rep ≈ O(10−4). Within this work, inertial effects are observed at Rep ≈ 0.05.

The research in describing the dynamics of suspended particles goes back to the works
of Basset (1888), Boussinesq (1903) and Oseen (1927) who investigated the motion of a
settling sphere in quiescent flow at vanishing particle Reynolds numbers. In general the
equation of motion of a spherical particle in a fluid is:

mp
dupi

dt
= mpgi +

∮
s

σijnjdS with σij = pδij + µfluid

(
∂ui

∂xj
+ ∂uj

∂xi

)
(1.6)

Here mp and upi denote the particle mass and velocity, respectively. p and ui are the
pressure and the velocity components of the fluid. The challenging part here is to
evaluate the fluid stress tensor

∮
s

σijnjdS on the right. Tchen (1947) proposed the first
equations for spheres in unsteady and non-uniform flows, that was later corrected by
Corrsin and Lumley (1956) who emphasized the role of the pressure gradient of the
base flow. Using the Faxén correction to account for finite size effects of the particle,
the first correct expansions of the fluid stress tensor in an non-uniform and unsteady
flow where developed independently by Maxey and Riley (1983) and Gatignol et al.
(1983) for the Stokes flow regime:
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Here D/Dt is the derivative following a fluid element, while d
dt is the temporal derivative

following the particle, which are approximately the same for Rep << 1 (Maxey and
Riley 1983). d2

p

24 ∇2~uf represents the Fax’en terms which account for the fluid velocity
disturbance caused by the presence of the particle, where ∇2uf is the curvature of the
flow. mf denotes the mass of the fluid displaced by the particle. In their derivation,
Maxey and Riley (1983) separate the fluid stress tensor in two parts for the undisturbed
fluid velocity and the velocity disturbance. The pressure force ~Fp = mf

D~uf

Dt and
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the Archimedes buoyancy force ~FBuo originate from the fluid stress tensor
∮

s
σijnjdS

associated with the undisturbed fluid velocity. The pressure force in laminar linear
shear flows or Poiseuille flows equals zero as D~uf

Dt = 0 in these cases. Furthermore, for
neutrally buoyant particles the buoyancy force ~FBuo gets canceled out by the gravity
force ~FG acting on the particle. The drag force ~FD, the virtual mass force ~FV M and the
Basset force ~FB emerge from the fluid stress tensor of the disturbed velocity. The drag
force given in equation (1.7) arises from viscous friction and is the corrected Stokes
drag, which is known as the Fax’en law. This expression for ~FD already considers that
a neutrally buoyant particle deviates from the fluid velocity in the order of d2

p

24 ∇2~uf

(Guazzelli and Morris 2011).

The virtual mass force is the inertia force induced by surrounding fluid that is accel-
erated by the moving particle. The Basset or history force accounts for the temporal
developement of the viscous region near the particle.

Due to the Stokes flow approximation equation (1.7) only holds for Rep << 1 where
Rep = ρf |~up−~uf |dp

µfluid
. Equation (1.7) further does not account for lift forces that would

arise from the surface integral in (1.6) for example in the presence of channel walls. To
account for inertial effects and lift forces, the equation has to be extended by empirical
expressions, based on numerical simulations or experiments as discussed for instance in
Zhang et al. (2016).

1.2.2.2 Forces on the particle and inertial migration in shear flows of
suspensions

With increasing particle Reynolds number Rep, a particles movement in a suspension is
increasingly affected by inertial effects, which alters the forces acting on the particle
along both the streamwise direction and the cross-sectional direction. The forces in
cross-sectional direction can be combined to the effective lift force, which depends
on the particles distance to the walls and induces a lateral movement of the particle
(Zhang et al. 2016). At a certain wall distance, the effective lift force reaches zero
and the particle attains its equilibrium position. This phenomena, known as inertial
migration, was first observed by Segre and Silberberg (1961) in a circular pipe and is
till date investigated in numerous flow geometries such as rectangular channels (Hood
et al. 2016), square ducts (Shichi et al. 2017, Kazerooni et al. 2017), laminar as well
as supercritical Taylor-Couette flows (Majji et al. 2018) and recently also in pulsating
channel flows (Vishwanathan and Juarez 2021). In fact, inertial migration also referred
to as inertial focusing is used widely in microfluidic particle separation processes (Zhang
et al. 2016). The effective lift force composes of the shear gradient force, the wall force
as well as Magnus force and the Saffman force.

It is important to understand that a neutrally buoyant particles exhibits a relative
velocity compared to the local fluid velocity. In case of a Poiseuille flow the particle
center lags the flow in the order of approximately (dp/Dh)2 as shown by Brenner (1966)
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for Stokes flow and indicated by the numerical results of Feng et al. (1994) for Rep > 2.5.
A lag velocity in approximately the same order is also indicated by the experimental
results of Pan et al. (2018) who additionally observed that the relative lag velocity
decreases slightly as Rep increases beyond Rep ' 16.8. In contrast, in a plane shear
flow the particle center leads the flow (Feng et al. 1994). This velocity difference is
also known as slip velocity. The combination of slip velocity and velocity profile of the
base flow, leads to different distributions of the relative velocity and hence the pressure
distribution around the particle. If the velocity profile in a (pressure driven) channel
flow would be linear, a lagging of the particle would result in higher relative velocities
on the side that is opposed to the channel wall, as depicted in Fig. 1.6a (Feng et al.
1994). As the pressure would drop accordingly on this side, the resulting force would
push the particle away from the wall. However, in a laminar channel flow the velocity
profile is curved such that the relative velocities are higher on the side thats directed
towards the wall (Feng et al. 1994). Hence, according to the Bernoulli equation, the
pressure is lower on this side and the particle is drawn towards the wall (Fig. 1.6b). The
associated force is referred to as the shear gradient lift force, which approximately scales
as FSG ∼ ρf U2

b d3
p/Dh (Martel and Toner 2014; Zhang et al. 2016). As the particle

approaches the wall, pressure builds up in the constriction between particle and wall,
while the pressure drops at the opposed side of the particle resulting in a repulsive force
that is inversely proportional to the normalized wall distance (Zeng et al. 2009; Martel
and Toner 2014). Fig. 1.6c shows a sketch of these effects close to the wall. This force is
commonly termed as wall (repulsive) force and scales with Fwall ∼ ρf U2

b d6
p/D4

h (Martel
and Toner 2014). It is mainly the balance of shear gradient lift force and wall repulsive
force which are both of inertial origin, that determine the equilibrium position of a
particle. In contrast, the Magnus force originates from a streamline asymmetry and
associated pressure distribution that is caused by rotation of the particle (Rubinow and
Keller 1961). The Saffman force arises from the interaction of the Stokeslet velocity
field and the velocity gradient of the bulk flow, independently of the particle rotation
(Saffman 1965). The direction of both, the Magnus force as well as the Saffman force
depends on the sign of the slip velocity and is directed towards the channel centerline
for a Poiseuille flow. However, both forces are negligible compared to the shear gradient
lift and the wall repulsive force which are considered as the dominant effects for inertial
migration (Amini et al. 2014).

1.2.2.3 Works considering inertial migration in dilute particle laden
square duct flows

The rising interest in using inertial migration for particle separation has lead to numerous
studies among which several have been performed in squared microchannels (Di Carlo
et al. 2009). Since the work of Chun and Ladd (2006) who performed lattice-Boltzmann
simulation at moderate to high Reynolds numbers (Reb = 100...1000, Rep = 1...10)
and Di Carlo et al. (2007) who performed experiments at moderate Reynolds numbers
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Figure 1.6: Schematic of the shear gradient lift force and the wall (repulsive) force adapted
from Feng et al. (1994) and Martel and Toner (2014). Red line=equilibrium position where
wall force and shear gradient lift force are equal. a) In a linear velocity profile a lagging
particle would experience higher relative velocities on the upper side and hence get sucked
away from the wall (p1 < pw). As the particle lags the flow the relative velocity is zero below
the particle’s centerline (indicated with dashed a solid line). b) Shear induced lift force in a
laminar channel flow: The curvature of a parabolic velocity profile leads to higher relative
velocities on the lower side of the (lagging) particle and the particle is sucked in direction
of the wall (p1 > pw). c) Wall repulsive force: Close to the wall the relative velocities are
higher on the upper side of the particle resulting in a force, directed away from the wall
(p1 < pw).

(Reb = 45, Rep = 1.45), it is known that in such geometries neutrally buoyant particles
of dilute suspensions (Φ / 0.5%) migrate across the streamlines to four equilibrium
positions at the center of the channel faces. These four equilibrium positions are also
referred to as Channel Face Equilibrium positions (CFE) (Fig. 1.7b) (Shichi et al.
2017). Choi et al. (2011) performed similar experiments with Reb ranging from 2.35
to 60. While the particles where randomly distributed at low Reb, with increasing
Reb they first migrated laterally forming an Pseudo Segré Silberberg Annulus (PSSA)
(Fig. 1.7a) and subsequently migrate cross-laterally attaining the four equilibrium
positions (CFE) as observed by Di Carlo et al. (2007). They further found the lateral
as well as the cross-lateral focussing to be fully developed when the focussing number
(Fc = 2 · Remax(dp/H)2L/H) attained values of Π/0.02 and Π/0.01, respectively. It
should be mentioned, that the Reynolds numbers are converted here for the sake of
comparison. Using a macroscopic square duct of 6 mm width, Miura et al. (2014)
achieved bulk Reynolds numbers ranging from 100 up to 1200 and particle Reynolds
numbers up to Rep = 14. They observed four additional equilibrium positions in the
duct corners, denoted as channel corner equilibrium positions (CCE), which coexist
with the CFE positions observed by Di Carlo et al. (2009) (Fig. 1.7d). Covering a
range of 1 ≤ Reb ≤ 800 Shichi et al. (2017) observed the existence of Intermediate
Equilibrium Positions (IME) in addition to the Channel Corner Equilibrium positions
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(CCE) and Channel Face Equilibrium positions (CFE) (Fig. 1.7c). Sichi et al. defined
four regimes associated with these position and showed that the range of Reb related to
these regimes strongly depends on dp/H.

Besides these lateral focussing effects, particles where also observed to arrange axially
into particle trains as a result of hydrodynamic particle interaction (Gao et al. 2017;
Humphry et al. 2010). In fact, numerical and experimental studies revealed that even
at very dilute conditions the presence of particles can induce secondary flows and
signifcantly alter the flow profile such that inertial migration can be affected (Humphry
et al. 2010; Kazerooni et al. 2017; Pan et al. 2018; Yuan et al. 2018). Further Nakagawa
et al. (2015) revealed that rotation induced lift forces can play a role in migration
from the point when particles collect at the annulus and shear- and wall-induced forces
are balanced. For more details regarding inertial migration in microfluidic geometries
the interested reader is referred to the comprehensive works of Di Carlo et al. (2009);
Zhou and Papautsky (2013); Martel and Toner (2014); Zhang et al. (2016); Bazaz et al.
(2020).

a) PSSA b) CFE c) IME d) CCE

Figure 1.7: Equilibrium Positions adapted from Shichi et al. (2017) (H/dp = 8). a) Reb = 100,
L/H = 125 b) Reb = 100, L/H = 1500 c) Reb = 280, L/H = 1500 d) Reb = 450,
L/H = 1500

1.2.2.4 Shear induced migration

In contrast to inertial migration, denoting the inertial interaction of individual particles
and ambient fluid at high Reynolds numbers, the term shear induced migration refers
to the irreversible collective particle drift from regions of high to low shear rates at
vanishing particle Reynolds numbers in semi-dilute or dense suspensions. In a Taylor-
Couette device with rotating inner cylinder shear induced migration leads to a particle
depletion close to the inner cylinder (high shear rate) and an accumulation of particles at
the outer cylinder (low shear rate) (Leighton and Acrivos 1987; Abbott et al. 1991). In
pressure driven flows in pipes or rectangular channels, particles migrate to the channel
center while they deplete at the walls, as a consequence of the shear rate distribution
(Leighton and Acrivos 1987; Abbott et al. 1991).
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The underlying mechanism of shear induced migration is irreversible particle interactions
(Leighton and Acrivos 1987; Buyevich 1996). These can be classified into two-body and
three-body particle collisions, whereby in the former case the irreversibility emerges
from surface roughness, while in the latter case irreversibility persist also in the presence
of perfect surfaces (Leighton and Acrivos 1987). However, it was shown in experiments
that in real flows the effect of three-body collisions is approximately three orders lower
compared to two-body collisions and therefore negligible (Leighton and Acrivos 1987;
Phillips et al. 1992). For the onset of shear induced migration in experiments a sufficient
solid volume fraction is required, which is for instance about 5% < Φ < 10% in a
rectangular channel flow (Gao et al. 2009). Hampton et al. (1997) observed the onset
of shear induced migration at Φ ≥ 20% in a circular conduit. Based on the shear-
induced-migration hypothesis developed by Leighton and Acrivos (1987), the minimum
concentration required for shear induced migration to be observable can be estimated
based on the shear Peclet number (Nott and Brady 1994, Dinther et al. 2013):

Pshear =
(

H

dp

)2 1
12DΦ

H

L
(1.8)

Where DΦ = 1
3Φ2(1 + 0.5e8.8Φ) is the non dimensionalized diffusion coefficient, H

is the channel height and L the development length. For Pshear < 1 a stationary
concentration profile should have developed, such that shear-induced migration can be
observed. Interestingly, some studies report shear-induced migration at much lower solid
volume fractions than Φ = 5%. Abbas et al. (2014) seemingly observed shear induced
migration at solid volume fractions of Φ = 0.2% and Φ = 0.8% at L/H ≈ O(103) while
eq. 1.8 yields (L/H > O(105)). Further, Brown et al. (2009) reported the phenomena in
a (brownian) suspension at Φ = 0.5%. In this study we report shear induced migration
at a volume fraction of Φ = 9.1% in a square duct.

The model of Phillips et al. (1992) provides a good overview, which parameters affect
the rate of shear induced migration. Based on the analysis of Leighton and Acrivos
(1987), they developed their well-known “diffusive flux model” which accounts for the
flux induced by spatial gradients of the collision frequency and the flux induced by
spatial gradients of the effective viscosity, which both scale with d2

p:

DΦ
Dt

= d2
pKc∇ · (Φ2∇γ̇ + Φγ̇∇Φ)︸ ︷︷ ︸
interaction frequency effect

+ d2
pKµeff∇ · (γ̇Φ2 1

µeff

∂µeff

∂Φ ∇Φ)︸ ︷︷ ︸
viscosity gradient effect

(1.9)

As can be seen gradients in γ̇, Φ and µeff induce migration. The model further does not
depend on the absolute value of the viscosity. The coefficients Kc and Kµeff are constants
that need to be determined experimentally. The effect of the interaction frequency
is visualized schematically in Fig. 1.8a. When two particles embedded in adjacent
shearing surfaces pass each other, collisions occur which displace the particles with a
magnitude of O(dp). When these collisions are irreversible, the particle is displaced
from its original streamline. Hence, if a particle experiences a higher frequency of
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collisions from one direction, it will travel to the opposite direction (Phillips et al. 1992).
As mentioned, regarding equations (1.4) and (1.5), the presence of particles alters the
effective viscosity. The effect of a gradient in the effective viscosity, induced by gradients
in particle concentration, is visualized in Fig. 1.8b. In case of a gradient in viscosity one
particle experiences a higher resistance to motion. As a result, the center of rotation of
the particle pair is shifted in the direction of higher viscosity. Hence, when the particle
pair rotates during the collision, both spheres are displaced in the direction of lower
viscosity (Phillips et al. 1992). This model is used in chapter 6 to explain particle

a)
µeff constant

b)
µeff increasing

Figure 1.8: Schematic of the effects considered in the “diffusive flux model” (adapted from
Phillips et al. 1992). a) Irreversible two body collision with constant viscosity b) Irreversible
two body collision with viscosity gradient

migration phenomena which we observe in pressure driven suspension flows through
square capillaries. In the following section, we review the literature on shear-induced
migration in mono- and bidisperse suspensions.

1.2.2.5 Works considering shear induced migration of mono- and
bidispersed suspensions

Up to date, it has been shown that monodispersed particles migrate to regions of
minimum shear rate when suspended in non-homogenous shear flows (Leighton and
Acrivos 1987; Hampton et al. 1997). While for monodisperse suspensions it is known
that the particle fluxes scale with d2

p (Phillips et al. 1992), the situation is more complex
in polydisperse suspensions. Even though studies concerning bidisperse suspensions
indicate that large particles migrate faster than smaller particles (Husband et al. 1994;
Lyon and Leal 1998b; Semwogerere and Weeks 2008), the overall migration behavior
is altered by bimodal particle size distribution and several studies indicate that small
particles hinder the migration of large particles (Lyon and Leal 1998b; Gao et al. 2009;
Dinther et al. 2013; Chun et al. 2019). Further, the rate of migration of individual
species not only depends on dp but also on Φ such that smaller particles can migrate
faster if their volume fraction is higher than that of the large species (Semwogerere and
Weeks 2008). In the following, an overview on works concerning mono- and polydisperse
suspension flows associated with shear induced migration in pressure driven flows is
given.
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One of the first works considering pressure driven flows of dense suspensions is the work
of Karnis et al. (1966), who measured velocity profiles in monodisperse suspensions up
to 41% solid volume fraction. While they found no direct evidence for particle migration
towards the channel center, they observed a significant blunting of the velocity profile.
This blunting is a result of high particle concentration in the center, which can lead to
the formation of a plug as for instance shown by Oh et al. (2015).

The first clear experimental proof for shear induced migration in monodisperse pressure
driven suspension flows was presented in the work of Koh et al. (1994), who measured
velocity and concentration profiles in a rectangular channel at volume fractions ranging
from 10% to 30%. Considering different ratios of particle diameter and channel heigth
(H/dp = 9...50), they observed the particles to migrate to the channel center, resulting
in prominent concentration peaks at the channel centerline and concentration minimums
at the walls. Further, they observed a significant blunting of the velocity profile which
became pronounced with increasing Φ and decreasing H/dp. Hampton et al. (1997)
investigated monodispersed suspension flows in a pipe at 10% ≤ Φ ≤ 45%. No shear
induced migration could be observed for Φ = 10%. However, for Φ ≥ 20% a clear
concentration peak, which became less pronounced with increasing Φ, and a blunting of
the velocity profile was observed. Lyon and Leal (1998a) investigated shear induced
migration of monodisperse suspensions up to Φ = 50% in a rectangular channel flow.
They showed that increasing Φ results in an increased concentration of particles in the
channel center, leading to a blunting of the velocity profile. Regarding both velocity and
concentration profiles no dependence on H/dp could be observed. The aforementioned
work of Oh et al. (2015) investigated pressure driven pipe flows at solid volume fractions
up to Φ = 55%. The migration of particles to the centerline resulted in the formation
of a center plug, consisting of jammed particles, leading to blunted velocity profiles.
Within the plug, which radius increased with increasing Φ, the solid volume fraction
reached the random close packing limit of 64%.

As mentioned, while in monodisperse suspensions the vast majority of studies agree that
particles migrate from high to low shear regions with Φ being the dominant parameter,
in polydisperse suspensions the behavior depends also on the volume fraction ratio of
the different species (Φs/ΦL), as well as on the size ratio dp,L/dp,s, where the indices
“L” and “s” denote the larger and smaller species, respectively. Lyon and Leal (1998b)
investigated bidisperse suspensions in a rectangular channel flow for total volume
fractions of 30% and 40% at different volume fraction ratios Φs/ΦL. They observed
that the concentration of large particles always increased towards the channel center
regardless of Φ and amount of small particles. Contrary, the migration of small particles
was found to be dependent on Φs/ΦL as well as the total volume fraction. Further,
they found the rate of migration to be reduced in the bidisperse case compared to the
monodisperse case. This finding was confirmed by Gao et al. (2009) who investigated the
mixing and segregation of settling mono- and bidisperse suspensions in microchannels
at low bulk and particle Reynolds numbers (Reb = O(10−3), Rep = O(10−5)). Their
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results showed that at Φ ≥ 20% polydispersity inhibits shear induced migration in a
straight channel. Dinther et al. (2013), who investigated bidisperse suspension flows
in a rectangular microchannel at various volume fractions (Φ = 9%, 19% and 38%)
of different ratios of Φs/ΦL, came to a similar conclusion. While increasing Φ led to
increased migration, increasing Φs at a fixed total volume fraction (Φ = 38%) hindered
the migration of large particles. Dinther et al. (2013) focused in their work on the
migration induced separation of species (segregation). They concluded that, even
though migration of large particles was found to be pronounced at smaller Φs, the
maximum segregation of both species occurs at high volume fractions (e.g. 38%) with
equal volume fractions of small and large particles (Φs = ΦL). Here small particles were
found to accumulate at the wall while larger particles migrated to the channel center.
When Φs was lower than ΦL (Φs ≈ 0.5ΦL) small particles did not exhibit concentration
peaks on the wall.

The link between segregation and the individual particle size and concentration, was
deduced by Semwogerere and Weeks (2008). They investigated the shear-induced
particle migration of binary suspensions in a rectangular microchannel for different
volume fractions of small and large species up to a total volume fraction of Φ = 35%.
Depending on the individual volume fraction, either the small or the large species
exhibited concentration peaks at the center, leading to the conclusion that the species
with the shorter entrance length (L/H ∼ 1/(12d(Φ))(H/dp)2) (Nott and Brady 1994)
migrates to the center and screens off the other species. The role of the entrance length,
or rather the effects of a not yet fully developed concentration profile, were also topic of
the recent studies of Chun et al. (2019) who numerically investigated the shear induced
segregation of binary suspensions in a plane channel flow. Chun et al. (2019) considered
Φ = 30% as well as various volume fraction ratios (Φs/Φ=0.13-0.67) and particle size
ratios (dp,L/dp,s = 1.4 − 2.4). They observed the accumulation of large particles at the
mid plane region while smaller particles depleted from this region. This observation
was shown to be independent of Φs/Φ or dp,L/dp,s. They further emphasized that
no significant depletion of small particles is observed when the particle concentration
profile is not sufficiently developed. Also, a bidisperse suspension took 5-8 times longer
to develope a steady concentration profile which is in agreement with findings of Lyon
and Leal (1998b); Gao et al. (2009); Dinther et al. (2013).

1.2.2.6 Works considering mixed migration mechanisms in dilute to semi
dilute suspensions

In laminar dilute suspensions flows through rectangular channels (see section 1.2.2.2 to
1.2.2.3), inertial effects lead to the migration of particles across streamlines to different
equilibrium positions given a sufficient channel length and Reynolds number. These
effects result in different particle concentration patterns in the crossectional plane. This
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requires that particle-particle interactions are negligible, which is only the case for
dilute suspensions. With increasing volume fraction the frequency of particle-particle
interactions increases, giving rise to shear induced migration (section 1.2.2.4 to 1.2.2.5).

The competition of these effects was investigated by Han et al. (1999) in a tube flow
of a suspension of neutrally buoyant particles at volume fractions ranging from 6% to
40%. For Φ ≤ 10% they observed that particles accumulate at 0.5-0.6 times the tube
radius attaining a parabolic velocity profile, while at Φ = 40% the particles migrated
to the centerline and a blunted velocity profile was observed. For 10% < Φ < 40%
the competition of shear induced migration and inertial migration resulted in two
distinct concentration peaks whose prominence is dependend on Rep and Φ. While
the work of Han et al. (1999) was restricted to Reb < 3.14, Kazerooni et al. (2017)
considered Reb up to 550. Using Direct Numerical Simulations (DNS) they investigated
the effect of Reb, Rep and particle size ratio H/dp in a laminar monodisperse suspension
flow through a square duct for 0.4% ≤ Φ ≤ 20%. For Φ ≤ 5% and Reb = 550, they
showed that Reb is the key parameter in defining particle migration, while Rep has
just a slight influence. Further, for Reb = 550 they find particle distributions to
be similar for volume fractions between 5% < Φ ≤ 20% and conclude that inertial
forces dominate over particle interaction effects. However, at Reb = 144 the particle
distribution was found to strongly depend on Φ which lead to the conclusion that
particle interaction play a significant role at lower Reb. While in the aforementioned
works significant particle-particle interactions where observed for Φ > 5%, the study of
Abbas et al. (2014) indicates that shear induced migration and inertial migration can
coexist even at Φ = 0.2%. For a monodisperse suspension flow in a square duct they
observed inertial migration towards the walls at Reb ≥ 10, while at Reb < 1 particles
migrated to the channel center which was related to shear-induced migration. Both
mechanisms were found to coexist in the range of 1 < Reb < 10 resulting in multiple
peaks in the concentration distribution. An explanation why they were able to observe
shear induced migration at this low values of Φ may be the fact that Abbas et al.
(2014) realized relative channel lengths of L/H up to 7215. However, according to the
equation of Nott and Brady (1994) L/H should be in the order of O(105) for fully
developed shear induced migration in their case. Tatsumi et al. (2019) investigated
the concentration distribution of rigidized red blood cells (RBCs) and monodispersed
particles in a rectangular channel at volume fractions of Φ = 9% to Φ16.6%. With
Rep ≈ 0.02 they observed concentration peaks close to the channel center and at the
walls, which were found to primarily result from interparticle collisions. Incorporating
the effect of collisions and inertia on the diffusive flux in their model they were able
to obtain a qualitative agreement between experimental and numerical results up to
Φ = 16.6%.

Up to date studies, on suspension flows at higher volume fractions (Φ ≥ 10%) and
significant particle Reynolds numbers were mostly exclusively restricted to monodisperse
cases. Recently, Chun and Jung (2021) observed that inertial effects as well as shear
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induced effects lead to particle segregation in bidisperse flows. Chun and Jung (2021)
numerically investigated the particle distribution of mono- and bidisperse suspensions
resulting from the interplay of shear induced and inertial migration for 0.003 ≤ Rep ≤
0.94 at Φ = 20% in linear shear flow. At Rep ≥ 0.078 smaller particles enriched in the
mid plane in agreement with findings from Ho and Leal (1974) while larger particles
maintained a uniform distribution which the authors related to their larger self diffusivity
(D ∼ d2

pΦγ̇). While the distribution of small particles was found to be unchanged in
bidisperse suspensions, their presence lead to a strikingly different distribution of large
particles compared to the monodisperse case that became pronounced with increasing
Rep.

1.2.2.7 Need for research in shear flows of suspensions

The particle separation phenomena depicted in Fig. 1.2, occurred at operations points
where the shear particle Reynolds number was estimated as Rep ≈ 0.16...0.9. Further,
preliminary/similar experiments strongly indicate that local particle concentrations
are beyond the dilute regime within the particle bands (Schröer et al. 2017). Hence,
according to estimated particle Reynolds number and solid volume fraction, it is likely
that both inertia as well as shear induced migration play a role in separating the species.
Up to now there is no understanding how these mechanisms interact and lead to a size
separation.

As clear from the previously mentioned literature, extensive research has been performed
on inertial migration in dilute monodisperse suspensions ranging from low to high
Reynolds numbers. Thereby, it was revealed that the particle size as well as the
Reynolds number are key parameters which determine the rate of migration. On
the other hand, shear induced migration has been investigated at vanishing Reynolds
numbers for both mono- and bidisperse suspensions. It was revealed that shear-induced
migration could lead to a size segregation of particles. However, the behavior of
semi-dilute or dense suspensions at higher Reynolds numbers, where both migration
mechanisms are relevant, has scarcely been investigated both for mono- and bidisperse
suspensions. To our knowledge, the numerical study of Chun and Jung (2021) is the only
work considering bidisperse suspensions at finite Reynolds numbers beyond the dilute
regime. Also, no experimental work has been performed in shear flows at finite Reynolds
numbers comparable to direct numerical simulations as performed by Kazerooni et al.
(2017). In fact, no experimental work so far considered bi- or even tridisperse suspensions
at higher Reynolds numbers and suspensions beyond the dilute regime. The lack of
such experimental works may be related to the opaque nature of suspension flows at
higher volume fractions, so that usually sophisticated measurement techniques such
as Magnetic Resonance Imaging are employed, which makes the experiments costly
and time consuming. Further, as will be discussed in section 1.2.4 most measurement
techniques are not suitable for polydisperse suspensions. Moreover, for shear-induced
as well as for inertial migration long developement lengths (L/H) are required which
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leads to large setups when performed on the macroscale. This may be another factor
which hinders experimental works. Therefore, it is easier to perform the experiments in
the microscale.

Hence, a measurement technique is required, which is easy-to-implement, inexpensive
and can be applied to polydisperse suspensions on the microscale. Most significantly, the
measurement technique has to be realiable at solid volume fractions beyond the dilute
regime. In this thesis, we conclude that Astigmatism Particle Tracking Velocimetry
(APTV) together which a refractive index matching (RIM) technique is a promising
method for such a purpose. Therefore, a discussion on the application of different
non-intrusive measurement techniques is given in section 1.2.4. Hence, different aspects
on the application of APTV on suspension flows will be investigated in chapter 4 to
chapter 6. Also, in chapter 6 we will successful apply APTV to polydisperse suspensions
at 9.1% volume fraction.

1.2.3 Supsension flows of rigid particles - rotating flows

In the previous sections, the properties of suspensions and the phenomena of particle
migration in shear flows are discussed, considering only neutrally buoyant particles. In
this section the dynamics of isolated settling particles in a rotating fluid are reviewed
briefly. Subject to Coriolis, centrifugal and gravitational forces, these types of particles
are undergoing motion relative to the fluid, even when the fluid is quiescent. Thus,
using the difference between the particle velocity (~up) and the fluid velocity (~uf ) to
define the particle Reynolds number Rep = dp(|~up − ~uf |)ρf /µfluid is a frequently chosen
option. As in macroscopic experiments the local slip velocity usually is unkown, the
Reynolds number can be approximated based on the estimated settling velocity of a
particle in a quiescent flow.

1.2.3.1 Single Particle dynamics in rotating flows - Governing equation

In this section, a simplified equation of motion for particles suspended in a horizontally
aligned Taylor-Couette flow will be presented. For this, equation (1.7) is extended by
empircal expressions to account for the drag force ( ~FD) at higher values of Rep and
the Saffman force ( ~FSaff). Further, due to the rotation the pressure field is changed
by centrifugal effects (Roberts et al. 1991), which is not considered in equation (1.7)
explicitely. Hence, we reevaluate the integral of the pressure over the particle surface
and derive an expression for ~FP that accounts for the centrifugal pressure. Further,
we assume stationary flow (d~uf /dt = 0) and we neglect the Basset force such that the
equation attains the following form:

mp
d~up

dt︸ ︷︷ ︸
~FI

= − ~FD −
∮

S

pdS︸ ︷︷ ︸
~FP

− 0.5mf
d

dt
~up︸ ︷︷ ︸

~FV M

+ mp~g︸︷︷︸
~FG

+ ~FSaff
(1.10)
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Because equation (1.10) is formulated in Cartesian coordinates, it does not contain a
special term for the centrifugal force acting on the particle. Instead, the centrifugal
force arise from ~FI when the particle moves along a curved streamline or the cylinder
walls. In the following we present approximations for ~FD, ~FSaff as well an analytical
solution for ~FP . All forces are assumed to be independent of each other.

For the Stokes regime (0 < Rep < 0.2) the Faxén law is employed for FD as given in
(1.7).

~FD = 18µfluid

ρpd2
p

mp(~up − ~uf −
d2

p

24∇2~uf ) (1.11)

For higher values of Rep several correlations can be found in literature for determination
of FD based on empirical drag coefficients. For Rep > 0.2 we employ an empirical
expression developed by Khan and Richardson which applies for 0 < Rep < 105

(Richardson et al. 2002) and yields ~FD in the following form:

~FD = (1.84Re−0.31
p + 0.293Re0.06

p )3.45ρf πd2
p

1
4 |~up − ~uf |(~up − ~uf ) (1.12)

Equation (1.12) assumes the sphere moving through theoretically infinite, unbounded
fluid, which deviates from a rotating flow in TC system (Khan and Richardson 1987).
However, as will be shown later, equation (1.12) is sufficient for the considered scenario.
The Saffman force is a lift force, which results from the interaction of the Stokeslet
velocity field of the particle and the velocity gradient of the bulk flow. It is independent
of the particle rotation and is also referred to as a shear slip force (Zhang et al. 2016).
The Saffman force is considered using the empirical expression of Mei (1992) which is
valid for Rep ≤ 100:

~FSaff = ρf

2
π

4 d2
pCLSdp ((~uf − ~up) × ~ωf ) (1.13)

Thereby the lift coefficient CLS is calculated as follows:

CLS = 4.1126
Re0.5

s

f(Rep, ReS)

The factor f(Rep, Res) is defined for two regions of Rep:

f(Rep, Res) =(1 − 0.3314β1/2)exp
(

−Rep

10

)
+ 0.3314β1/2 for Rep ≤ 40

f(Rep, Res) =0.0524(βRep)1/2 for 40 < Rep ≤ 100

with β = 0.5 · Res/Rep and the Reynolds number based on the vorticity of the flow Res

defined as:

Res =
ρf d2

p| ~ωf |
µfluid

with ~ωf = rot( ~uf ) = ∇ × ~uf (1.14)
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The Saffman force deviates from zero only if the particle velocity differs from the local
fluid velocity such that ~uf − ~up 6= 0. Furthermore, the direction of the Saffman force
depends on the sign of the expression ~uf − ~up, which is also referred to as slip velocity.
When a particle lags the fluid in a simple shear flow, the Saffman force is perpendicular
to the slip velocity and directed towards the moving wall. Contrary, when the particle
leads the flow the Saffman force is directed towards the stationary wall.

As mentioned for equation (1.7) the pressure force ~FP arises from the pressure dis-
tribution around the particle. In linear shear flows or Poiseuille flows ~FP consists
solely of the buoyancy term Vpρf~g as D~uf /Dt is zero. However, in rotating flows ~FP is
also affected by the centrifugal pressure (Roberts et al. 1991). Hereafter, we derive an
expression for the pressure force in a generalized Taylor-Couette flow with independently
rotating cylinders. For this, the azimuthal velocity profile W (r) for a general Taylor
Couette device is required, as given for instance by Takeuchi and Jankowski (1981) for
Ri < r < Ro:

W (r) = Ar + B/r with A = ΩoR2
o − ΩiR

2
i

R2
o − R2

i

B = R2
i R2

o(Ωi − Ωo)
R2

o − R2
i

(1.15)

With equation (1.15) the pressure change in radial direction due to the centrifugal
acceleration is:

∂p

∂r
= W (r)2

r
ρf = (Ar + B/r)2

r
ρf (1.16)

By integrating for r, we obtain the following pressure field p(x, y) where r2 = x2 + y2:

p(x, y) = p0 + ρf

2

(
4ABln(r) + A2r2 − B2

r2

)
− ρf gy with r2 = x2 + y2 (1.17)

Hence, the Gauss theorem is used for integrating the surface integral and the pressure
force attains the following form:

~Fp = −
∫

V

∇pdV = ρf Vp

 −

(
4ABx
x2+y2 + 2B2x

(x2+y2)2 + 2A2x
)

2

−

(
4ABy
y2+x2 + 2B2y

(y2+x2)2 + 2A2y
)

2 + g

 (1.18)

Equation (1.18) is valid for a general Taylor-Couette flow where both cylinders have a
rotary degree of freedom with individual frequencies (Ωo 6= Ωi). However, in chapter
7 we solely consider rotating flows at solid body rotation (Ωo = Ωi = Ω). For such
a scenario (1.18) reduces to (1.19) which is identical with the expression obtained by
Roberts et al. (1991) for a drum flow with no inner cylinder:

~Fp = −
∫

V

∇pdV = ρf Vp

(
−Ω2x

−Ω2y + g

)
(1.19)
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For this case Roberts et al. (1991) derived an analytical expression for the trajectory
(x(t), y(t)) of a settling particle:

x(t) = x0 + αedtcos(Ωt + Θ) and y(t) = αedtsin(Ωt + Θ) (1.20)

This expression describes a spiral whose radius increases with the growth rate d. The
coefficients c, d as well as the spiral center x0 + iy0 are obtained as follows:

c = 18µfluid

ρp(dp)2 d = (ρp − ρf )Ω2

ρpc
x0 + iy0 =

gd2
p(ρp − ρf )
18µfluidΩ (1.21)

The spiral radius α and the phase shift Θ can be determined by the initial displacement
of a particle with respect to the spiral center (Roberts et al. 1991). Hereafter, equation
(1.10) is utilized for analyzing the dynamics of particles in drum flow as well as
co-rotating TC flow at solid body rotation. For this, equation (1.10) is integrated
numerically using Matlab (ode15s). Interaction with the inner and outer cylinder walls
is realized by introducing a perfectly elastic spring force with a spring constant of
cSpr = 10g(meff /mbes)(1/0.125dp).

1.2.3.2 Single Particle dynamics in rotating flows - Validation and
parametric study

In this section equation (1.10) and the numerical implementation is validated by
comparing obtained results to the analytical solution of Roberts et al. (1991) (equation
1.20) for Stokes conditions. Additionally, numerical results of Seiden et al. (2007) are
considered, who developed an approximation for trajectories of particles in drum flow
(no inner cylinder) at finite Reynolds numbers. Furthermore, the numerical obtained
trajectories are compared to experimental results obtained in the present work. Hence,
we utilize the code to perform an analysis of the particle trajectories at finite Reynolds
numbers and work out the basic differences between double cylinder system (co-rotating
TC flow) and single cylinder system (drum flow). These simulations provide the base
for understanding the particle dynamics in the conducted experiments presented in
chapter 7.

An initial test considers the case given in Seiden et al. (2007) with dp = 50 µm,
Ro = 50 mm, n = 3.82 min−1 (Ω = 0.4 rad s−1) and ρp = 1.5 g cm−3. As can be
seen from Fig. 1.9a for the given parameters the numerical solution is in excellent
agreement with the analytical solution (1.20). For validating the code at higher Rep,
the second test case given in Seiden et al. (2007) is considered. They compared their
simulations to an experiment with dp = 1.59 mm, Ro = 55.8 mm, n = 46.8 min−1

(Ω = 4.9 rad s−1). The particle material was Nylon. As no value for the density could
be found in their work, the density of Nylon balls reported in Seiden et al. (2005) is
employed (ρp = 1.11 g cm−3). Figure 1.9b shows the obtained numerical results of the
present work (blue line) in comparison to the numerical (black line) and experimental
results of Seiden et al. (2007) (circles). As can be seen in Fig. 1.9b, besides a small
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offset in the upper portion of the trajectory, the numerical results are in good agreement.
It is assumed that this slight offset is because Seiden et al. (2007) employed a slightly
different expression for the drag force. For further validation, numerical simulations
are compared to experiments performed in Setup 6 (see section 2.1.4). For this, a
single fluorescent particle (dp ≈ 450 µm, ρp ≈ 2.5 g cm−3) was injected into single
cylinder systems of Ro = 16 mm, Ro = 23 mm, filled with destilled water. Hence, high
speed image recordings were performed as described in section 2.1.4 and the particle
trajectory was extracted with a binarization procedure. The measured and the computed
trajectories are displayed in Fig. 1.9c,d for different values of n. The numerical results
are in good agreement with the experimental data for all values of n. Solely, for n1 a
slight offset becomes evident, while the diameter of the trajectory matches with the
experimental results. We assume that the underlying reason for this deviation is a error
in determining the cylinder wall, which was determined based on the averaged image.
As only single particles were illuminated the contrast of the cylinder walls is low, which
hamperes the cylinder wall detection in this case. Furthermore the single particle in this
case was located in a cylinder section which was opposed to the camera, such that slight
perspective errors occured. Overall, it is assumed that the numerical implementation
of equation (1.10) sufficiently captures the basic particle dynamics within the system.
Further, from the numerical results it is also possible to estimate the particle forces in
equation (1.10). The dominant forces are drag force, gravitation and the pressure force,
while the effect of Saffman force on the particle trajectory is negligible. The maximum
particle Reynolds number achieved in the simulations is Rep ≈ 40...60 such that the
approximations used in equation (1.10) are valid.

The validated code is then used to investigate the difference in steady state particle
trajectories between a single cylinder system (drum flow) and double cylinder system
(TC flow) at solid body rotation (Ωi = Ωo = 2πn/60). For this, in Fig. 1.10a we
show the computed single particle trajectories in a rotating drum flow for n ranging
from 10 min−1 to 140 min−1. For n ≤ 30 min−1 the drag force does not overcome the
gravity and the particle attains a static position on the cylinder wall. For n ≥ 35 min−1

the particle rises up the left cylinder wall, detaches at point A and travels along a
circular orbit, until it hits the opposed cylinder wall at point D (exemplary shown for
120 min−1). The radius of the orbit increases as n increases and the point D is shifted
towards the right cylinder wall.

As can be seen from Fig. 1.10b the trajectories in a double cylinder system are identical to
the single cylinder system for n ≤ 30 min−1 and n ≥ 80 min−1. These rotation rates are
termed as “region R0” and indicated with the black line in Fig. 1.10a,b. For intermediate
rotation rates the particle hits the inner cylinder wall which leads to three types of
strikingly different particle orbits. These rotation rates are denoted as regions R1, R2
and R3 and indicated with purple, cyan and magenta bars in Fig. 1.10b, respectively.
In region R1, which occurs for (45 min−1 ≤ n ≤ 47.5 min−1) , the particle oscillates
between the outer cylinder (point A) and the inner cylinder (point B) in the left half
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Figure 1.9: Validation of numerical obtained particle trajectories. a) dp = 50 µm, Ro =
50 mm, n = 3.82 min−1, ρp = 1.5 g cm−3, red line = theoretical solution (1.20), red cross
= spiral center, blue dots = trajectory obtained by numerical integration of (1.10). b)
dp = 1.59 mm, Ro = 55.8 mm, n = 46.80 min−1 and ρp ≈ 1.1 g cm−3, blue line = trajectory
obtained by numerical integration of (1.10), black line = numerical results of Seiden et al.
2007, circles = experimental results of Seiden et al. 2007 c) dp = 450 µm, Ro = 16 mm, ρp ≈
2.5 g cm−3, n1 = 46 min−1, n2 = 82 min−1, n3 = 99 min−1 d) dp = 450 µm, Ro = 23 mm,
ρp ≈ 2.5 g cm−3, n1 = 47 min−1, n2 = 112 min−1, n3 = 143 min−1

of the system (Fig. 1.10b). If n is slightly increased (50.0 min−1 ≤ n ≤ 55 min−1) the
particle performs a circular movement in the left side of the system thereby periodically
hitting the inner cylinder at point B but not the outer cylinder wall (region R2). If n is
further increased to 57.5 min−1 ≤ n ≤ 70 min−1, the third scenario occurs (R3) where
the particle hits the outer cylinder wall at point E, then travels to point A where it
detaches from the outer cylinder followed by a fall, until hitting the inner cylinder at
point C. Hence, the particle travels along around the inner cylinder, until it detaches at
point F and falls back to the outer cylinder (point E).

As can be seen in Fig. 1.10, the single particle trajectories in a double cylinder system
differ significantly from the single cylinder case for rotation rate ranges associated with
R1, R2 and R3 (45 min−1 ≤ n ≤ 70 min−1). In particular in scenario R3, the particle
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system at solid body rotation (dp = 500 µm, ρ = 2.5 g cm−3). a) Single cylinder system,
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spends significantly more time in contact with the cylinder walls compared to a single
cylinder setup. As is shown in chapter 7, the inner cylinder also affects the particle
trajectories in suspensions and leads to a stabilization of particle band structures within
a double cylinder system compared to a single cylinder system.

1.2.3.3 Literature on Banding and structure formation of rotating
suspension flows

In the previous section (1.2.3.2) it was shown that the governing equation for an isolated
(non-neutrally buyoant) particle in a rotating flow features additional terms compared
to a shear flow. The associated forces lead to a circular motion of the particle in a
rotating drum flow where the particle undergoes a periodic movement along the wall and
across the cylinder. Through numerical simulations it was further demonstrated that an
additional cylinder in the rotating system leads to different particle orbits as function of
the rotation rate of the system. This observation gives rise to the question: How does the
additional inner cylinder affect the dynamics of a suspension in a TCR? This question
is addressed with the conducted experimental study in chapter 7 where the structure
formation in drum flows and TC flows at solid body rotation is investigated. In this
section, we will review the current state of research dealing with rotating suspensions
of rigid particles in cylindrical systems to build the foundation for our experimental
work. In the review, we will focus on non-neutrally buoyant particles and exclusively
consider horizontally aligned systems.

In general, rotating systems are a fertile ground for the formation of structures and
patterns. This applies for pure granular flows as well as for flows of pure liquids. Famous
examples include the size segregation in granular drum flows or fingering wave patterns
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in partially filled liquid drum flows (Williams 1976; Thoroddsen and Mahadevan 1997).
Hence, it is not surprising that a combination of solid particles and liquid gives rise to
various unique structures when subjected to rotation and gravity (Seiden and Thomas
2011). Probably the most striking phenomena is the so-called banding, where initially
homogenously suspended particles arrange into periodic, axially well separated bands.
The first observation of band formation was performed by Tirumkudulu et al. (1999)
in a neutrally buoyant suspension within a partially filled horizontal Taylor-Couette
(TC) flow. With the outer cylinder fixed and the inner cylinder rotating, the free
surface developed a wavy pattern and a segregation of particles in areas of high and
low concentration was observed underneath the crest and troughs. Tirumkudulu et al.
did not observe particle segregation for the case of a fully filled cylinder. Almost at the
same time Boote and Thomas (1999) who investigated the effect of settling particles on
the behavior of rimming flows in partially filled drums, observed the formation of bands
above a certain particle concentration threshold. While they found the band wavelength
to be independent of the solid volume fraction, they observed an increase in wavelength
with increasing cylinder rotation rate. Subsequently, in analogy to their initial work,
Tirumkudulu et al. (2000) investigated the band formation of a neutrally buoyant
suspension in a partially filled horizontal rotating drum. Similar to their previous
work they observed the formation of a wavy front along the free surface associated
with the band formation. Like Tirumkudulu et al. (1999) and Boote and Thomas
(1999) Tirumkudulu et al. (2000) suspected the banding to be caused by shear induced
migration (Leighton and Acrivos 1987).

Initially assuming that banding is exclusively associated with partially filled systems
(as observed by Tirumkudulu et al. 2000), Lipson (2001) and Lipson and Seiden (2002)
observed the formation of bands with a wavelength of λ∗/Ro ≈ 3.5...3.9 during the
crystallization process of a horizontally rotating NH4Cl solution and in an aqueous
suspension with settling spherical particles, respectively. Breu et al. (2003), who focused
on the transition from granular bed to banding in a low viscosity suspension drum
flow, observed a hysteretic transition behavior during the band formation. The bands
attained wavelengths of λ∗/Ro ≈ 3.5 and λ∗/Ro ≈ 1.66 for an increasing or decreasing
rotation rate, respectively. They concluded that the transitions can be considered as
subcritical bifurcations. The saw tooth like dependence of the tube length and the wave
length, which was discovered later by Seiden et al. (2004), led to the conclusion that
inertial waves are the driving mechanism of band formation in the low viscosity case.
These waves are internal waves, which occur in a rotating incompressible fluids due to
Coriolis forces (Landau and Lifshitz 1987). This was later supported by a comparison
of experimentally and theoretically determined velocity fields (Seiden et al. 2004, 2005,
2007).

While the experiments of Seiden et al. focused on axial banding in low viscosity
suspensions, Matson et al. (2003, 2005, 2006) performed an extensive phase mapping of
a high viscosity suspension considering a wide range of viscosity and rotation rate at
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a volume fraction of Φ = 2.3%. Besides an axial band pattern with λ∗/Ro ≈ 2.6 they
observed a total number of ten distinct particle patterns (viz ten different phases) and
divided the phase diagram of a suspension into the high-, the low- and the intermediate
rotation rate regime. This distinction is based on different ratios of the forces acting
on the particles. In a subsequent work Matson et al. (2008) performed an extensive
study on the effect of particle size and cylinder radius on resulting pattern formation
with different volume fractions ranging from Φ = 1% to Φ = 3%. This led to scaling
laws for the high viscosity case. They further observed that the particle concentration
affects the phase transition boundaries but does not alter the character and the number
of the phases. According to their conclusions this is rather an effect of increased
gravitational forces, as the particle mass increases with increasing volume fraction, than
an increase in effective viscosity. In analogy to Matson et al. (2003, 2006, 2008) et
al. Kalyankar et al. (2008) performed a phase mapping for high viscosity liquid and
settling (negatively buoyant) as well as floating (buoyant) particles. Their experiments
show, that in gravitationally dominated flows the buoyant and the settling particles
suspension behave similar, while they behave different in centrifugally dominated flows.
The axial patterns observed in their experiments contradict the differential centrifuging
explanation of Lee and Ladd (2002) that axial patterns are an exclusive feature of
settling particles as they attract each other while positively buoyant particles repel
themselves.

Nasaba and Singh (2020) investigated the radial patterns and the velocity field of
monodisperse suspensions containing floating particles of spherical shape or settling
particles of spherical or cylindrical shape. Similar to the works of Konidena et al. (2018)
they found a resemblance of the buoyant and the settling suspensions particle pattern
phases at low rotation rates. They concluded that the fluid behavior is guided by the
suspension particle behavior, which indicates that fluid-particle interaction is the key
to pattern formation (Nasaba and Singh 2020).

Apart from monodisperse systems also bidisperse or bidensity suspension drum flows
became subject to investigation. Kumar and Singh (2010) investigated the segregation
of a bidisperse suspension of a low viscosity liquid for various filling fractions and
angular speeds at a total volume fraction of 8.08%. They observed the particle specimen
to segregate into alternating bands with the band width increasing while the number of
bands decreases with increasing rotation rate. Nasaba and Singh (2018) experimentally
investigated the pattern formation in a suspension composed of spherical floating
particles together with spherical or cylindrical settling particles. They observed the
phase transitions to occur at lower speeds compared to a pure settling suspension. They
concluded that the presence of floating particles locally enhances the concentration of
settling particles. This in turn alters the sedimentation behavior of the settling particles,
and hence affect the phase boundaries.

38



1.2 Theory and state of the art

Besides the summarized experimental studies, several numerical studies have been
performed to improve understanding of the band inducing mechanisms in monodisperse
and bidisperse systems. Assuming that banding is caused by attractive hydrodynamic
forces between particles Lee and Ladd (2002, 2005, 2007) performed Stokesian dynamics
simulations on the low Reynolds number regime (Rep = O(0.01)) in analogy to the
experiments of Matson et al. (2003). Lee and Ladd obtained banding patterns with
a wavelength approximately equal to the tube diameter, which is in agreement with
the results of Matson et al. who observed a band spacing of 1.2 times the tube
diameter. From their results they concluded that the cylinder walls screen off the
hydrodynamic particle interactions (see Brenner 1999) and hence restrict the growth of
density perturbations (particle bands) to wavelengths less than 2Ro. Besides having a
distinct Ekman number, the numerical simulations by Hou et al. (2014) intended to
mimic the experiments of Lipson and Seiden (2002); Seiden et al. (2004, 2005). Varying
rotation rate, number of particles and the aspect ratio of the rotating pipe Hou et al.
obtained wavenumbers of λ∗/Ro ≈ 2.7 − 3.5 while finding no evidence for the presence
of inertial waves in their fluid velocity fields. They concluded that the band formation
is mainly caused by the hydrodynamic interaction of the particles themselves. Using a
similar simulation approach as Lee and Ladd (2007), Konidena et al. (2018) performed
a Stokesian dynamics simulation of monodisperse positive buoyant particles. They
successfully reproduced the axial and radial patterns observed in the experimental work
of Kalyankar et al. (2008) except for the discontinuous banding phase. In agreement
with Kalyankar et al. (2008) their simulations revealed that axial patterns also occur
for buoyant suspensions, which contradicts the differential centrifuging theory of Lee
and Ladd (2002). Konidena et al. (2019) who extended the simulations of Konidena
et al. (2018) to a bidensity system of floating and settling particles at different particle
density ratios, observed that both phases behave identical at low but behave contrasting
at high rotation rates. By nondimensionalization of the settling velocity Us with the
circumferential velocity ΩR they were able to unify the transition boundaries of different
density ratios for settling and floating particles within the low rotation rate regime.

1.2.3.4 Need for research in banding and structure formation of rotating
suspension flows

Despite the thorough research performed on the band formation in rotating drums,
the underlying mechanism is not yet completely understood. Furthermore, thorough
phase mapping was solely performed for the high viscosity regime and for small cylinder
diameters (Matson et al. 2005, 2006; Kalyankar et al. 2008). Moreover, despite its
technical relevance, just a few studies investigated completely filled suspension TC flows.
In fact, most works focus on the particle dynamics in the presence of spiral, wavy and
steady Taylor vortices (Ashwin and King 1997; Rudman 1998; Wereley and Lueptow
1999; Henderson et al. 2007; Majji and Morris 2018) or on the effect of the particles
on the transition behavior of the flow (Majji et al. 2018; Ramesh et al. 2019) while
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only a few works investigate the behavior of neutrally buoyant particles in laminar TC
flows (Majji and Morris 2018; Kang and Mirbod 2020). However, to the authors best
knowledge, no works investigated the behavior of suspensions with settling particles in
completely filled horizontally aligned TC devices to date.

Therefore, in chapter 7 we present a thorough phase mapping for a low viscosity drum
flow as well as for a low viscosity TC flow. In order to work out how the additional
inner cylinder of the TC flow affects the particle dynamics in contrast to a drum flow,
we investigate the case where both cylinders rotate with the same frequency (corotating
TC flow). In this manner, the velocity profile of drum flow and TC flow attain solid
body rotation which enables us to perform a direct comparison.

1.2.4 Measurement techniques for mono- and polydisperse
suspension flows 1

As discussed in section 1.2.2, migration phenomena in suspension flows usually become
pronounced with increasing solid volume fraction or increasing flow velocity. Hence,
in order to investigate those phenomena, it is desirable to keep those parameters as
high as possible. However, besides practical problems such as jamming of particles
at higher volume fractions, it is a challenging task to measure suspension properties
such as velocity and concentration distribution especially in polydisperse suspensions.
In the following, different non-intrusive measurement techniques are briefly reviewed,
which are potentially suitable for investigating particle migration in suspension flows.
It is elaborated whether different particle sizes can be distinguished with the individual
techniques. It is also investigated whether the techniques can be applied to small
geometries such as microchannels. As will be shown, this is not possible for some
methods. Subsequently, the basics of astigmatism particle tracking velocimetry (APTV)
will be discussed, which is considered as the most suitable technique for the present
study.

In general, measurement techniques for suspension flows can be divided into non-
optical and optical techniques. While non-optical techniques can be applied to opaque
suspensions, for the application of optical methods the suspension has to be rendered
transparent by refractive index matching (RIM) such that the latter methods are usually
restricted to model suspensions (Van Dinther et al. 2012).

1.2.4.1 Non-optical techniques

Nuclear Magnetic Resonance (NMR) or Magnetic Resonance Imaging (MRI) is consid-
ered as one of the most promising and versatile measurement technique for suspension
flows (Powell 2008; Van Dinther et al. 2012). In NMR an external magnetic field is

1Parts of this section are adopted from Brockmann et al. (2020) and Brockmann and Hussong (2021)
published under https://creativecommons.org/licenses/by/4.0/
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applied, and the resonance frequency of protons and relaxation time of the signal is
measured. The amplitude can then be related to the proton density and hence a certain
component (Windt 2007). Till date NMR has been employed in numerous studies
to measure both velocity and particle concentration in monodisperse suspensions of
up to Φ = 55% (Abbott et al. 1991; Sinton and Chow 1991; Hampton et al. 1997;
Han et al. 1999; Brown et al. 2009; Oh et al. 2015). Furthermore, the distribution
of different particle sizes present in polydisperse flows could be determined by using
different particle materials (Van Dinther et al. 2012). However, different particle mate-
rials usually are associated with different densities, such that achiving a polydisperse
neutrally buoyant suspension is difficult. Further, drawbacks of MRI are the enormous
costs of the associated equipment, complex postprocessing and the requirement for
highly specialized staff. Further, the experimental body must be void of ferromagnetic
materials (Poelma 2017).

Based on ultrasonic principles Ultrasonic Pulsed Doppler Velocimetry (UPDV) (Jensen
et al. 2016) and Ultrasound Imaging Velocimetry (UIV) (Poelma 2017) both methods
are capable to provide velocity information in suspension flows beyond the dilute regime
in opaque systems. Examples include blood flow in rats or in hearts of humans (Qian
et al. 2010; Hong et al. 2008). While UPDV utilizes the Doppler effect for velocity
information, in UIV the velocity information is generated based on the correlation of
subsequent ultrasound images. Due to multiple scattering and low spatial resolution
determining concentration profiles with UPDV is difficult. Further, simultaneously
determining the spatial position of large and small particles exceeds the capabilities
of UPDV (Van Dinther et al. 2012). While UIV typically solely provides velocity
information, Gurung and Poelma (2016) showed that the relative particle distribution
can be indirectly measured by the signal intensity. However, distinguishing between
different particle sizes of the same material appears to be not possible using UIV.

Electrical impedance tomography (EIT) is based on measuring differences in electrical
conductivity to determine the distribution of dispersed and continuous phase (Cheney
et al. 1999). Electrodes, which are distributed along the walls, detect changes in the
electrical signal when particles are passing by that have different dielectric properties
than the fluid. Butler and Bonnecaze (1999) applied it successfully to investigate shear
induced migration of dp ≈ 150 µm particles in a flow through a pipe of 2 cm diameter.
While the required hardware is relatively cheap, a major drawback is that no velocity
information can be obtained and the technique has a relatively low resolution such
that individual particles or bubbles cannot be resolved (Poelma 2020). Further, for
the differentiation of particle sizes, particles of different electrical conductivities are
required, which complicates composing a neutrally buoyant suspension.

In X-ray imaging X-rays of a source radiate through a sample and are detected on
the other side. The signal at the detector depends on the density of the matter that
is penetrated by the rays. As a shadowgraphy technique, the 3D flow information
is collapsed onto a single 2D plane. 3D information can be received by tomographic
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reconstruction (CT), which in turn requires more sophisticated hardware and usually
yields only a poor temporal resolution (Heindel 2011). To overcome this issue, fast X-ray
CT systems have been developed, which require even more sophisticated hardware.
Furthermore, realizing neutrally buoyant suspensions is problematic as the method is
primarily based on density differences. For creating neutrally buoyant particles different
materials have to be combined; for example lead shots and polyurethane foam (Drake
et al. 2011).

Positron emission particle tracking (PEPT) is a method, where single radioactively
labelled tracer particles are tracked with a positron camera. Till date, the method
has been applied to numerous industrial and scientific problems (Parker et al. 1993,
1997). A shortcoming of the technique is that solely up to three particles can be tracked
simulatenously (Parker and Fan 2008) such that only sparse velocity information is
provided (Poelma 2020). Further, a minimum particle size of approximately 60 µm
is required to provide a sufficient radioactive load (Fan et al. 2006) which limits the
particle sizes investigated in polydisperse suspensions.

Overall, while all presented techniques have the advantage of being compatible with
opaque flow devices as well as relatively dense suspensions, they all provide either
low temporal or spatial resolutions. Further, different sized particles in polydisperse
suspensions need to be made of different materials to be distinguished for most of
the methods. This makes it difficult to realize neutrally buoyant suspensions. More
importantly, they require expensive hardware, safety equipment and highly specialized
operators which is hardly affordable for most fluid mechanic laboratories.

1.2.4.2 Optical techniques

In comparison, optical methods facilitate high temporal and spatial resolution at relative
low cost and are available in virtually all laboratories (Poelma 2020; Tropea et al. 2007).
However regarding suspensions, the problem with optical measurement techniques is
that the turbidity of the flow renders them useless for volume fractions beyond around
Φ = 0.5% up to Φ = 4%, depending on the flow geometry and particle size (Deen et al.
2002; Poelma et al. 2006). Furthermore, the flow geometry needs to be transparent and
should not exhibit curvature to avoid distortions, which is usually referred to as “optical
access” (Poelma 2020). A solution for this issue is refractive index matching (RIM),
where the refractive index of solid and liquid phase is adjusted to the same value, such
that the resulting suspension becomes transparent. RIM can also be applied to the
exterior of the geometry, to eliminate the distortions induced by the geometry surface,
allowing optical access even to very complex geometries (Song et al. 2015). Extensive
reviews of the RIM technique, with an overview of numerous solid-liquid combinations
is provided by Budwig (1994); Wiederseiner et al. (2011); Wright et al. (2017).
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Laser Doppler Velocimetry (LDV) or Laser Doppler Anemometry (LDA) is a point-wise
measurement technique based on the Doppler effect of a particle passing two crossed
laser beams. It provides directional sensitivity, high spatial and temporal resolution
as well as high accuracy. It also allows to determine particle concentration profiles,
by measuring the time between two particles entering the probe volume (Tropea et al.
2007; Lyon and Leal 1998b). LDA measurements were performed in dense suspension
flows of up to 50% solid volume fraction (Koh et al. 1994; Lyon and Leal 1998b; Shapley
et al. 2002, 2004). Phase Doppler Anemometry (PDA) is an extension of LDA where
additionally the phase shift, induced by the particle, is measured. This allows to
simultaneously measure particle size and velocity (Brenn et al. 1998). Furthermore,
Ferrand et al. (2001) presented a technique where PDA is combined with Laser induced
Fluorescence (LIF) to improve the reliability of measuring particle concentrations
in dense two phase flows. This renders it an interesting technique for polydisperse
suspension flows of spherical particles. While LDA provides high spatial accuracies,
as a point wise technique, measuring the whole flow field is a time consuming process,
which makes it less attractive for extensive parameter studies. In contrast, Particle
image velocimetry (PIV) which will be explained hereafter, allows to measure entire
velocity fields.

Over the past four decades, Particle image velocimetry (PIV) became a powerful tool
and certainly the most popular measurement technique in the field of fluid dynamics
(Adrian and Westerweel 2011; Raffel et al. 2018; Scharnowski and Kähler 2020). In PIV,
the velocity field in a plane, or volume, is measured based on the displacement ∆x of
particle (groups) in a time interval ∆t, such that the velocity can be estimated as ∆x/∆t.
For this, two images at t and t+∆t are recorded with a digital camera. For illumination
usually a light sheet, generated by a pulsed laser, is employed which facilitates short
time intervals and high intensities. In the post-processing the image pair is divided
into interrogation windows which are correlated with the other image. The particle
displacement ∆x is then given by the position of the correlation maximum. PIV is
usually applied on small tracers to measure the motion of the carrier liquid in suspension
flows. For instance, recently Medhi et al. (2019) applied PIV on small tracer particles
to investigate the fluid velocity during shear induced migration of larger unlabeled
suspension particles in bifurcating channels and found a good agreement to numerical
simulations. Also recently, PIV was successfully applied to measure the fluid motion on
refractive index matched suspensions of up to 20% solid fraction composed of water
and hydrogel particles (Zade et al. 2018, 2019; Zhang and Rival 2018). Nevertheless,
PIV has also been applied directly on the suspension particles such as in the work of
Fock and Rasmuson (2008), who investigated pulp suspension flow up to 2.7% (mass
fraction) in a square channel flow (40×40 mm2) and used the fibers as tracers.

While classical PIV (planar PIV), with a single camera and a light sheet, yields 2D2C
(two-dimensional, two-components) velocity fields, different volumetric variants of PIV
have been developed. In Scanning PIV the laser sheet is rapidly translated through
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the flow domain with double frame images recorded at different positions (Brücker
1995). While this method is restricted to stationary or relatively slow instationary
flows, it is able to provide 3D2C velocity information (Schröder and Willert 2008; Raffel
et al. 2018). In Stereo PIV and Tomographic PIV, discussed in more detail below,
threedimensional velocity information is reconstructed from recordings simultaneously
obtained at different viewing angles.

As we are preliminary interested in small geometries in the millimeter and submillimeter
range, we restrict our further review on such geometries. In such environments the PIV
is referred to as µPIV which was introduced by Santiago et al. (1998) and is considered
as a separate technique due to its different mechanical and optical constraints (Wereley
and Meinhart 2010). While in planar PIV the measurement plane is commonly defined
by a thin light sheet (Adrian 1991), in µPIV, due to the resctricted optical access and
small dimensions, usually a volume illumination is employed (Meinhart et al. 2000)
such that the measurement plane is defined by the depth of focus (Olsen and Adrian
2000). In the following we will discuss the basic principles of µPIV before we review its
application on suspension flows. For further information on µPIV the reader is referred
to the reviews of Lindken et al. (2009) and Wereley and Meinhart (2010). In µPIV
problems arise from the fact, that defocused particles contribute to the cross correlation
and hence can bias the results, especially in case of strong velocity gradients in depth
direction. The out-of-plane range along which defocused particles contribute to the
correlation is known as depth of correlation (DOC), which should be as low as possible
to reduce bias of the cross correlation. The DOC strongly depends on dp as well as the
numerical aperture NA as can be seen from the model of Olsen and Adrian (2000) as
rewritten by Rossi et al. (2012):
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Here nw, n0, denote the refractive index of liquid and air while λL is the wavelength of
the light emitted by particles with a gaussian light intensity distribution. The parameter
ε is a threshold value, above which a particle contributes to the cross correlation and
usually set to 0.01 (Olsen and Adrian 2000). To decrease the DOC usually microscope
objectives with large values of NA are employed. Further, the use of small tracers
can decrease the DOC at the cost of reducing the signal to noise ratio (Cierpka and
Kähler 2012). Thereby, tracers should be bigger than ≈ 500 nm to avoid Brownian
motion (Santiago et al. 1998; Nguyen et al. 2019). However, especially close to the wall,
the effect of DOC leads to bias even when small tracer particles are used (dp ≤ 2 µm)
(Kähler et al. 2012b). Hence, significant errors are to be expected for large suspension
particles (dp ≥ 10 µm). Consequently, when dealing with suspension flows µPIV is
usually applied on small tracer particles to measure the motion of the fluid.
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For instance, Ali et al. (2016) performed 2D µPIV measurements at different planes to
capture the 3D2C flow induced by rotating particles of 4 µm and 8 µm using 200 nm
tracers. Also, Pan et al. (2018) successfully measured the secondary flow induced
by single particles and particle trains in microscopic channel flows of 152 µm×275 µm
cross-section using 1 µm tracers. They achieved good agreement with numerical results.
Nevertheless, µPIV has also applied for measuring the dynamics of larger suspension
particles. Bitsch et al. (2005) investigated suspension flows of spherical 1.02 µm particles
of up to 3% volume fraction as well as of red blood cells (RBC) at hematocrit (Hct) of
about 60%. Besides achieving plausible velocity profiles, in both cases significant out of
focus effects (due to the DOC) were observed. Hood et al. (2016) utilized a hybridized
µPIV/µPTV (Micro Particle Tracking velocimetry) procedure to determine the lateral
migration velocities of particles ranging from 2.4 µm to 9.5 µm in a square channel
with a cross-sectional area of 45 µm×90 µm. While they determined the single particle
displacement with sub-pixel accuracy by a correlation method, they reconstructed
the 3D position of particles indirectly by their streamwise velocity. Very recently,
Blahout et al. (2021) simultaneously applied µPIV on large “surface labeled” fluorescent
particles (60 µm) as well as on small fluorescent tracers (1.19 µm). As a result of the
surface labeling the images of the large particles where ring-shaped which was found to
improve the accuracy and reliability of cross-correlations. Their technique is a promising
approach, to deal with larger particles, which potentially could decrease the effect of
DOC.

Besides using conventional microscopes for image acquisition, Confocal Laser Scanning
Microscopy (CLSM) can be employed for imaging which can significantly reduce the
DOC. In CLSM the field of view is illuminated successively point by point such that
a single image is composed of several scanning points across the sample. By this
out-of-focus signals are eliminated, resulting in optical slices of 1 µm to 2 µm and
enhancing the contrast as well as the resolution in the confocal image (Cierpka and
Kähler 2012; Bayguinov et al. 2018). For maximizing the scanning speed, the laser
light is directed through patterns of micro lenses and apertures on a spinning disk
(“Nipkow-disk”), allowing to record full-field images at frame rates up to the kilohertz
range (Tanaami et al. 2002; Kinoshita et al. 2007). Compared to conventional epi-
fluorescent microscopy, CLSM greatly reduces the background noise and can therefore
handle larger solid volume fractions. Therefore, CLSM µPIV has been successfully
applied to investigate the dynamics of microscopic in-vitro blood flows with red blood
cells (RBC) at Hematocrits of up to 20% (Lima et al. 2006, 2007, 2008). Besides its
significant advantages, the downsides of CLSM are the expensive lab equipment and
the relatively low temporal resolution which depends on the time required for a full
field scan (Cierpka and Kähler 2012).
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Mutliple camera approches: Stereoscopic and tomographic µPIV/µPIV
While for many flow problems two-dimensional velocity information is sufficient, nu-
merous flow scenarios require full three-dimensional information of all three velocity
components (3D3C). This accounts also for suspension flows, where knowledge of the
three-dimensional particle velocities with respect to the carrier liquid is important
for the physical interpretation. Also, the 3D distribution of particles is an important
information in the context of investigating particle migration. For measuring 3D3C
velocity fields, different particle-based imaging methods have been developed which
will be presented in the following. Thereby, the particle velocity can be determined
either by correlation (PIV) or by tracking of individual particles, termed as Particle
Tracking Velocimety (PTV). Besides providing the volumetric velocity field data, these
imaging methods also can reduce the problem of DOC (Raffel et al. 2018) and can be
used to obtain information about the particle distribution. In stereoscopic imaging
the out-of-plane movement of particles is reconstructed by simultaneous observation
from two different perspectives under an angle such that 2D3C information is obtained
(Lee and Kim 2009). This is commonly realized by two cameras sharing a common
microscope objective (CMO design) (Lee and Kim 2009; Cierpka and Kähler 2012). In
general, in typical stereoscopic setups (CMO) only small viewing angles can be realized
which introduce errors in the out-of-plane velocity. At the same time the DOC is large
due to the use of CMO lenses, biasing the measured out-of-plane gradients. Further,
the focal planes of both cameras mismatch due to aberrations and imperfections of the
microscope, which leads to systematic errors (Cierpka et al. 2012). While in stereoscopic
imaging the third component is reconstructed from the in-plane velocities, Tomographic
imaging (tomo µPIV) is a fully volumetric method (3D3C) where the volume distribu-
tion of particles is reconstructed from at least four different perspectives (Elsinga et al.
2006). A major problem of tomographic imaging is the appearance of so-called ghost
particles arising during the iterative particle position reconstruction procedure (Elsinga
et al. 2011). Therefore, the particle concentration should be one order lower than in
planar µPIV such that particle tracking velocimetry (PTV) is often better suited for the
data analysis compared to correlation based methods (Cierpka et al. 2013). However,
Kim et al. (2012) performed a comparison of 3D µPTV and Tomographic µPIV on
identical images, found that Tomographic µPIV yields more accurate data over a larger
measurement depth. Tomographic imaging has been successfully applied to different
microfluidic flow problems such as drop impact on liquid films (Steinmann et al. 2019),
internal flows in droplets and drop coalescence (Ortiz-Dueñas et al. 2010; Kim et al.
2011), or to resolve small scale structures in turbulent flows (Fiscaletti et al. 2014).
Drawbacks are the complexity of the setup (implementation of four cameras in the
optical path) and the required complex calibration procedure within the common field of
view (Cierpka and Kähler 2012). Furthermore, the computational cost of Tomographic
PIV are four to five orders of magnitude higher than in planar PIV (Scarano 2012).
Single camera techniques instead allow three dimensional tracking of particles with
a single camera, which eases the calibration and reduces the costs, especially when
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high-speed cameras are employed. This applies especially for Astigmatism Particle
Tracking Velocimetry (APTV) which is utilized within this thesis and is thoroughly
reviewed at the end of this section. It should be mentioned, that in the following,
techniques where two cameras share the same perspective (e.g. multi-plane imaging),
are also classified as single camera techniques.

Single camera approaches make use of the relation between the particle image and the
particle’s out-of-plane position to reconstruct the three-dimensional particle position.
In general, in a stigmatic microscopic optical system the particle image diameter ast
increases with the particles distance to the focal plane. This can be described with
the following equation under the assumption of a particle with Gaussian intensity
distribution (Olsen and Adrian 2000; Rossi et al. 2012):
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Here, dp, λL, n0, M and NA denote the particle diameter, the wavelength of the emitted
light, the index of refraction of the immersion medium of the lens, the magnification and
the numerical aperture of the microscope objective, respectively. For large magnifications
and numerical apertures, it is reported that equation (1.23) significantly overestimates
the increase in diameter (Kloosterman et al. 2011; Rossi et al. 2012) while for small
magnification and long working distances a significant underestimation is observed
(Kähler et al. 2012a). However, with an appropriate calibration the particle image
diameter can be used to determine the particle’s out of plane position (Cierpka and
Kähler 2012). A critical point is here that a(z) increases symmetrically to the focal plane
in a stigmatic system as can also be seen from equation (1.23). The defocusing term
contains z2. Hence, only the absolute distance to the focal plane can be reconstructed
by a particle image, but not if the particle is located in front or behind the focal plane
as schematically depicted in Fig. 1.11. This problem of ambiguity is a challenge for
single camera techniques. A straightforward approach is here to arrange the system
components in such a way that particles are only visible on one side of the focal plane.
Stolz and Köhler (1994) for instance used a thick light sheet which solely illuminated
particles on one side of the focal plane. Leister et al. (2021) instead positioned their
entire geometry on one side of the focal plane. Besides their simplicity, these methods
do only use half the range over which a particle is detectable. Furthermore, the latter
method is restricted to small geometries as no scanning is possible. To overcome
the problem of ambiguity different methods have been established. One way is using
stigmatic optics with several staggered focal planes (Towers et al. 2006; Toprak et al.
2007; Ram et al. 2009; Dalgarno et al. 2010). Using this technique, multiple images
are generated for each particle and compared to determine the sign of the particles
out-of-plane position. Another positive effect is that the measurement volume depth
can be increased. Murata and Kawamura (1999) were among the first applying the
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Figure 1.11: Principle sketch of the problem of ambiguity when reconstructing the out-of-
plane positions of particles in stigmatic optical systems. a) Optical system. c) Resulting
image. As can be seen, the particle image diameter of both the red particle (in front of the
focal plane) and blue particle (behind the focal plane) are identical.

multiplane technique for measuring the 3D position of small particles. They realized
multiple focus planes by using a color-camera and a color filter system. Recently, Zhou
et al. (2020a) modified the method for measuring the size and position of droplets
in a spray using two staggered cameras resulting in two distinct focal planes. More
recently, Zhou et al. (2021) further showed that the method can potentially be applied
to measure size and 3D position of non-spherical particles. This renders the technique a
promising tool for the investigation of polydisperse suspensions of particles of arbitrary
shape.

Digital holography microscopy (DHM) is based on the interference pattern (Fresnel
diffraction pattern) which results from the interaction of a coherent reference beam and
the object. While conventional microscopy only yields 2D focused images, in a single
DHM recording the object can be refocused in the postprocessing and a hologram can
be obtained which contains all the object’s 3D structures and its position (Yu et al.
2014). Thereby, the problem of ambiguity is solved by the reconstruction procedure
applied to the diffraction pattern. In general, DHM shows a great potential and has
been successfully applied to various microscopic flows like microchannels (Coëtmellec
et al. 2001) and backward-facing steps (Yang and Chuang 2005). Kühn et al. (2008)
demonstrated that the technique can provide sub nanometer accuracies. A great
advantage of DHM is that it can be applied to objects of arbitrary shape such as
living cancer cells (Kemper et al. 2006; Langehanenberg et al. 2009) and animal sperm
(Di Caprio et al. 2010). This makes it a promising technique for investigating polydisperse
suspension flows with non-uniform shaped particles. DHM is also compelling because
of its compact and relatively low-cost design, which consists of a laser, collimating
optics, and only one camera (Discetti and Coletti 2018). Unfortunately, the technique
is limited to very low seeding densities to avoid excessive overlapping of interference
patterns (Hinsch 2002). Another problem is that, due to the limited resolution of
the digital recording array, particles appear elongated in the depth direction which
reduces the depth resolution. For overcoming this problem DHM has been combined
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with tomographic imaging (Soria and Atkinson 2008; Buchmann et al. 2012), which
in turn greatly increases the complexity of the method. DHM is also sensitive to
noise and limited to low seeding densities (Cierpka and Kähler 2012). Moreover, the
reconstruction procedure is computationally expensive and often relies on user defined
thresholds (Toloui and Hong 2015).

Another technique to achieve unambiguous depth coding in a single camera system is
to mount a three-pinhole aperture into the optical path as first proposed by Willert
and Gharib (1992). By this, every particle image appears as an image triplet, whose
orientation depends on whether the particle is located before or behind the focal plane.
The particles distance to the focal plane can be reconstructed by the diameter of the
triplet (Willert and Gharib 1992; Pereira et al. 2000). A great advantage of the technique
is that it is easy to implement and no additional optical elements such as lenses or
diffraction gratings are introduced which would induce optical aberrations (Cierpka and
Kähler 2012). Furthermore, the technique can be easily applied to highly non-spherical
particles as recently demonstrated by Troutman and Dabiri (2018). As the method
yields two separate information, the image of the particle and the diameter of the
triplet, it could potentially be applied for measuring the out of plane position and size of
particles at the same time. This makes it potentially suitable for measuring polydisperse
suspensions. However, the mask blocks most of the laser light, such that usually a
background illumination must be employed. In fact, the presence of the pinhole-mask
decreases the signal-to-noise ratio about a factor of 20 compared to standard stigmatic
imaging (Cierpka and Kähler 2012). The light intensity can be increased by employing
a three-camera arrangement, which also increases the accuracy but in turn increases the
complexity and costs of the setup (Chamorro et al. 2013). Furthermore, the technique
is restricted to low seeding rates and identifying the images corresponding to individual
triplets is often difficult (Cierpka and Kähler 2012).

By far the most common method for obtaining a unambigous depth-coding is the use of
an astigmatic imaging system where the associated measurement technique is known as
Astigmatism Particle Tracking Velocimetry (APTV) (Zhou et al. 2019). Sometimes it is
also referred to as “wavefront sensing” (Angarita-Jaimes et al. 2006; Towers et al. 2006).
A standard microscope may easily be converted into an APTV setup by introducing a
cylindrical lens in front of the camera sensor. In contrast to the 3-pinhole method, no
mask is used such that no background illumination is required. As no mask blocks the
aperture, APTV provides significantly higher SNRs than the 3-pinhole method (Cierpka
and Kähler 2012). Moreover, in APTV the problem of identifying triplets is removed.
Furthermore, compared to stereoscopic µPIV APTV yields two times lower uncertainties
in determining the out-of-plane velocity and avoids the problems of aligning two focal
planes (Cierpka et al. 2012). Due to these advantages, we utilize APTV in this thesis to
measure the motion of particles in dilute as well as semi-dilute suspensions up to 20%
solid volume fraction. The APTV method employed within this work will be based on
calibration functions, where the particle image information is reduced to few parameters,
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viz the particle image width (ax) and height (ay), as function of the depth position. This
is a well-established and probably the most common approach. Besides this calibration
function-based approach, recently the method of General Defocusing Particle Tracking
(GDPT) was independently developed by Barnkob et al. (2015) and Taute et al. (2015).
The technique generalizes the aforementioned single camera approaches which rely on
deformation of the particle image due to diffraction, pinhole-mask or astigmatism. In
fact, the technique can be applied to any optics or image type and basically compares
detected particle images to reference particle images stored in lookup tables. The image
comparison can be achieved for instance by cross-correlation or use of neural networks
(Barnkob et al. 2021). A great advantage of GDPT is, that it can be applied also to
non-spherical objects such as bacteria (Taute et al. 2015). For further information on
this technique the reader is referred to the detailed work of Barnkob and Rossi (2020).

1.2.4.3 Astimatism particle tracking velocitmetry (APTV):

The principle of APTV is based on a cylindrical lens which is placed in the optical path
of a microscope and generates two spatially separated focal planes Fxz and Fyz. The
images of particles which are located at a depth position midway between these planes
appear circular and transform to a horizontally or vertically aligned ellipse when the
particles are located closer to Fyz or Fxz, respectively (see Fig. 1.12 and Fig. 1.13).
Hence, the horizontal axis length ax and the vertical axis length ay of the particle image
are a function of the particle’s depth position, which will be hereafter also referred to
as z position or out-of-plane position. The evolution of ax and ay can be described by
equation (1.24) as given by Cierpka et al. (2010a) and based on the model of Olsen and
Adrian (2000):
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with zi = z − Fiz being the distance between particle and respective focal plane. In
fact, equation (1.24) is identical to equation (1.23), but accounts for the staggered focal
planes in an astigmatic system.

Since its first application to a fluid mechanics problem by Kao and Verkman (1994),
APTV has been applied and developed further by various authors (Angarita-Jaimes
et al. 2006, Chen et al. 2009, Cierpka et al. 2010b,a, Rossi and Kähler 2014). For
a detailed report of the history of APTV and its different fields of application, the
reader is referred to Cierpka and Kähler (2012). Till date, APTV has been succesfully
applied to geometries at various length scales to investigate a wide spectrum of physical
phenomena while exhibiting a remarkable accuracy in reconstructing the depth position
of (tracer) particles. A short overview of different applications and aspects of APTV is
given hereafter. An overview of the reconstruction accuracies and measurement volume
depths achieved in different publications is given in the appendix (see Table A.9).
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Figure 1.12: Principle sketch of APTV. a) Optical system in x-z plane b) Optical system in
y-z plane c) Resulting image

-600 µm -500 µm -400 µm -300 µm -200 µm
z ≈ Fyz

-100 µm 0 µm
z ≈ Fxz

+100 µm +200 µm +300 µm +400 µm

Figure 1.13: Images of labeled particles for different depth positions z (dp=60 µm, PMMA,
z corrected for refractive index of RIM-liquid (nRIM = 1.488)). The particle is located close
to Fyz at z ≈ −200 µm and located in Fxz at z = 0 µm.

Ragan et al. (2006) applied APTV to measure the motion of living kidney cells with a
measurement volume depth of ∆z=2.5 µm. Huang et al. (2008) applied the technique
in a nanoscale environment. Using stochastic optical reconstruction microscopy, they
reconstructed the position of 200 nm beads labeled with photo-switchable molecules with
a resolution of 60 nm in the depth direction within a measurement volume of 600 nm
depth. Huang et al. (2016) could resolve the protein structures in a 9 µm spermatocyte
with a depth resolution of 10-20 nm and a measurement volume depth of 1200 nm, by
using a dual objective 4Pi-microscope system with deformable mirrors to compensate
for aberrations as well as an improved scanning technique. Another example of the
application of APTV is the work of Müller et al. (2013). Investigating the ultrasound-
induced acoustophoretic motion of microparticles, they utilized APTV in a channel with
a rectangular cross section of 377×157 µm2 and captured the trajectories of 0.5 µm and
5 µm particles to validate their analytical results. Apart from microfluidic applications,
increasing efforts are undertaken to apply APTV to larger flow domains. Fuchs et al.
(2014b,a) showed that APTV is suitable for measuring volumetric velocity fields in
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macroscopic domains of up to 40 mm measurement volume depth. Likewise, Buchmann
et al. (2014) measured the motion of 110 µm particles in a supersonic, impinging jet
flow, over a measurement volume depth of 5100 µm.

Apart from utilizing APTV in combination with small tracer particles to measure the
motion of liquids or resolve microscopic structures, in recent years the technique is more
and more applied to measure the dynamics of the particles themselves in situations
where particles undergo their own dynamics and do not follow the flow streamlines.
Rossi et al. (2019) used APTV to measure particle velocity and concentration of an
electrokinetically induced particle pattern in a suspension with a solid volume fraction
of Φ = 0.05% inside a channel of 350×30 µm2 cross section. They used a mixture of
labeled particles with different dyes (dp = 0.245 µm) with the majority of them being
invisible during the APTV measurement to allow for higher solid volume fractions. They
concluded that APTV is capable of measuring the concentration profile with a better
resolution compared to classical segmentation approaches. Using APTV Blahout et al.
(2020) investigated the fractionation of dp = 3.55 µm and dp = 9.87 µm particles in a
serpentine channel with a crossection of 200×50 µm2. They observed that a transition of
particles from four to two equilibrium trajectories takes place at particle size dependent
bulk Reynolds numbers. Distinguishing large and small particles by their individual
astigmatism characteristics, they were able to simultaneously measure the motion of
both particle species.

Recently, APTV is also combined with special particles to measure properties other
than velocity. Segura et al. (2015) utilized non-encapsulated thermochromic liquid
crystals (TLC) particles, to measure the volumetric 3D velocity- and temperature field
in an evaporating droplet with a measurement volume depth of 20 µm. Also, Massing
et al. (2016, 2018) used luminescent polymer particles to measure the three-dimensional
temperature and velocity field of a heated flow in a channel with a cross-section of
2×2 mm2. More recent works increasingly focus on using machine learning tools such as
deep neural networks to further increase the degree of automatization of APTV (Rossi
and Barnkob 2019) or to apply it on scenarios with low signal-to-noise ratios (Franchini
et al. 2019). König et al. (2020) compared the performance of conventional and neural
network supported APTV utilizing a bidisperse suspension in a laminar channel flow.
While they achieved good results with both methods for the bidisperse suspension, they
concluded that the neural network supported APTV is more robust against optical
abberrations and can be of great use for investigating suspensions with different particles
sizes, shapes and even with particle clusters. Furthermore, with conventional APTV
they observed the calibration curve for both particle species to overlap close to the
focal planes causing ambiguities and limiting the range of depth reconstruction. Efforts
are also undertaken to further adapt and extend the classical APTV technique. For
instance, Zhou et al. (2020b) introduced a modification utilizing Holographic imaging
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principles to establish Holographic Astigmatic Particle Tracking Velocimetry (HAPTV).
Using a nozzle flow as a test case, they could successfully validate their measurement
technique.

As the performance of APTV strongly depends on the quality of defocused particle
images, a central aspect is the correct selection of the imaging system and the tracer
particles. Therefore, usually high-quality fluorescent particles are used, as they provide
high-quality particle images, with acceptable signal to noise ratio (SNR) (Cierpka et al.
2010a). However, commercially available fluorescent particles are expensive and not
all sizes or materials are available. Manually coated particles may be an alternative,
nonetheless it is a challenge to ensure a sufficient, uniform and repeatable coating quality
and to avoid bleaching. Furthermore, powerful monochromatic light sources such as
lasers are required to excite fluorescent particles, which are an additional cost factor.
Despite these challenges only very few studies report on the use of non-fluorescent
particles for APTV. One is the aforementioned work of Buchmann et al. (2014), who
used a pulsed high power LED for backlight-illumination to capture the 3D motion of
110 µm opaque polyamide particles. Their error in reconstructing the particle position
was about σz=140 µm which was 2.74% of the measurement volume depth. However,
compared to the particle diameter, the error was relatively large (σz/dp=127%). The
aformentioned authors Segura et al. (2015) used a white light source with a circular
polarization filter to excite their TLC particles and reported a relative high uncertainty
of σz/∆z=8.5% in reconstructing the z-position compared to laser based APTV. They
concluded it was due to the less bright particle images obtained with a white light source.
Using a backlight illumination, Franchini et al. (2019) performed APTV measurements
with a calibration based on fitting a 2D, generalized Gaussian distribution to each
particle image. They were able to resolve the velocity profile of a laminar flow in a
2x1.2x3 mm3 channel covering a measurement volume depth of 240 µm. Due to a low
SNR, an extensive calibration procedure, including measuring the background intensity
of the channel in each measurement plane and sophisticated neural network algorithms
were required in their study for a reliable reconstruction of the particles out-of-plane
position.

1.2.4.4 Need for research in Astigmatism Particle Tracking Velocimetry
(APTV)

As mentioned, in APTV high quality particle images are required and usually commer-
cially produced small, fluorescent particles are utilized. However, these are expensive
and not all sizes and materials are variable. Transparent particles in turn are inexpensive
and available in various sizes as well as different materials. Some transparent materials
such as acrylic can be labeled manually (Blahout et al. 2021), however still it is a
challenge to achieve homogenous quality of the coating. Other particle materials such
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as polystyrene, as utilized in the experiment displayed in Fig. 1.2, can hardly be dyed.
Therefore, we will develop a method to apply microscopic APTV on large transparent
particles in chapter 4.

Further, till date no work applied APTV to investigate the dynamics of suspensions
beyond the dilute regime. In general, in most studies APTV was applied to very dilute
suspensions (Φ << 1%). To our knowledge the highest volume fractions (Φ = 0.05%)
were considered by the aforementioned work of Rossi et al. (2019). A reason is likely that
APTV requires high quality images, which cannot be achieved at higher volume fractions
when the flow becomes increasingly turbid. As previously explained, a solution for
this issue is refractive index matching (RIM) which results in a transparent suspension.
Then, a few particles can be labeled to make them visible for the camera. However in
reality it is impossible to achieve a perfect index match such that slight mismatches
remain at the particle-liquid interfaces which induce optical aberrations (Lyon and Leal
1998a,b). The effects of these aberrations on APTV are unclear. Hence, in this thesis
we will investigate the application of APTV on fluorescent particles in refractive index
matched suspensions at different solid volume fractions.

Lastly, the work of König et al. (2020) showed that calibration curves of different
sized particles overlap close to the focal planes, leading to ambiguities. This is an
issue when simultaneously tracking different particle species in polydisperse suspension
flows. Furthermore, the particles investigated by König et al. (2020) were rather small
(dp = 2.5 µm; 5 µm) and its unknown how the calibration curves of significantly larger
particles (dp ≥ 30 µm) behave. Therefore, we will perform an extensive study on the
effect of the particle size on the calibration curves.

1.3 Objectives and outline of the thesis

Understanding the particle dynamics in flows through Taylor-Couette reactors (TCRs) is
a challenge from a fluid-dynamic perspective as well from a perspective of experimental
techniques. The particle dynamics in dilute suspensions are determined by fluid forces
such that the flow state (laminar or turbulent) must be known a priori. While it is
known that the Spiral Poiseuille Flow in a TCR is destabilized by rotation of the inner
cylinder, the effect of rotating outer cylinder was hardly studied. Moreover, the linear
stability behavior was solely investigated for few fixed values of the curvature parameter,
such that the effect of the curvature parameter on the flow stability is almost unexplored
up to date. Particle migration due to inertial and particle interaction effects may lead to
various particle distributions patterns and also induce particle separation in polydisperse
suspensions. However to the authors best knowledge, experimental studies considering
the simultaneous occurrence of both migration phenomena in the inertial regime are still
rare and have not been reported for polydisperse suspensions. The underlying reason is
certainly that measuring the three-dimensional particle dynamics in suspensions is a
challenging task and often requires sophisticated equipment. Microscopic Astigmatism
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Particle Tracking Velocimetry (APTV), which a low cost, simple-to-implement single
camera measurement technique is a promising option. However, this technique is usually
applied to small commercially coated fluorescent particles and it is unknown how the
technique performs at larger transparent or manually coated particles in dilute or semi
dilute suspensions. Besides the aforementioned migration phenomena it is known that
settling suspensions in a horizontally aligned rotating cylinder can give rise to the
formation of axially periodic band shaped particle accumulations. While this so-called
banding phenomena has been subject to numerous studies in rotating cylinders, till date
it is unknown how an additional inner cylinder, which is present in a TCR, affects the
formation of such bands. These questions will be addressed within the present thesis in
order to extend the basis for understanding the physical effects in particle laden flows
in TCRs and building the foundation for more efficient processing in such reactors. For
achieving this goal, the major effects, which are the hydrodynamic stability of the flow,
the particle band formation in rotating flows and the particle migration in mono- and
polydisperse suspensions, will be investigated separately.

In chapter 2 different setups are introduced to investigate the application of APTV on
suspension flows, particle migration phenomena in suspensions and the particle band
formation in rotating drums flows and TC flows at solid body rotation. In chapter 2
also the parametrization, governing equations and the numerical computation scheme
are described, which are employed in the linear stability analysis.

Chapter 3 adresses the hydrodynamic stability of Spiral Poiseuille Flow (SPF) of a
pure liquid with rotating inner (µ = 0) or rotating outer cylinder (µ = ∞), by means
of linear stability analysis. These two cases allow to investigate the effect of radial
increasing or decreasing momentum on the stability of the flow. First a thorough
mapping of the linear stability behavior of the SPF is performed, covering a wide
range of curvature parameters and swirl parameters of both the rotating inner and the
rotating outer cylinder case. Hence, two approaches are developed to characterize of
the instability mechanisms encountered in SPFs. One approach uses the concept of
the critical layer for the identification of a Tollmien-Schlichting instability. The second
approach is to analyze the production terms of the Reynolds Shear Stress Transport
Equations (RSSTE) as well as the budget of the kinetic disturbance energy, which
enables distinguishing between shear instabilities and centrifugal instabilities. Hence,
utilizing these approaches, we perform a profound characterization of the instability
mechanisms encountered in the investigated parameter range.

To date, it is not clear which mechanism leads to the separation of species in the
observed phenomena in the small gap TC setup (Fig. 1.2). Hence, in chapter 4 to
chapter 6 migration phenomena in shear flows of mono- and polydisperse suspensions
are investigated experimentally. For this, we develope measurement techniques for large
suspension particles based on Astigmatism Particle Tracking Velocimetry (APTV).
First an APTV technique is developed which utilizes the ball lens effect and can be
applied to large transparent suspension particles (chapter 4). Subsequently, an APTV
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technique is developed that uses fluorescence labeled tracer particles in combination
which a Refractive Index Matching (RIM) technique and can be applied to suspensions
of up to 20% volume fraction (chapter 5). This technique is then further developed to
be applied on polydisperse suspensions beyond the dilute regime (chapter 6). Finally
using the fluorescence APTV technique the particle migration in bi- and tridisperse
suspensions is investigated for both low and high Reynolds numbers at different volume
fractions (0.08% and 9.1%) in a square duct. In contrast to chapter 7, here neutrally
buoyant particles are used to exclude sedimentation effects and isolate the migration
effects. A laminar square duct flow is chosen as flow geometry because it facilitates a
comparison to numerous works found in the literature (Abbas et al. 2014; Kazerooni
et al. 2017; Shichi et al. 2017).

In chapter 7 the particle band and particle structure formation in rotating suspensions
is investigated, to generate a basic understanding of the particle dynamics in TC flows.
At first an extensive phase mapping is performed for a low viscosity drum flow as
well as for a low viscosity TC flow with settling particles. In order to work out how
the additional inner cylinder of the TC flow affects the particle dynamics in contrast
to a drum flow, we investigate the case where both cylinders rotate with the same
frequency (µ = 1, corotating TC flow). In this manner, the velocity profile of drum
flow and TC flow attain solid body rotation, which enables a direct comparison. As
solid body rotation is expected to be centrifugally stable in absence of axial flow, no
Taylor vortices and hence no secondary flows are expected to occur in the base flow
(Esser and Grossmann 1996). This configuration allows for an isolated investigation of
the additional cylinders influence and presents the simplest case of a TC flow such that
its investigation is the logical first step in untangling the dynamics of such systems.
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In this chapter, the experimental test stands, measurement systems, the calibration
procedures and post-processing strategies are presented which where employed within
the experimental investigations conducted at the Ruhr University Bochum (RUB) and
TU Darmstadt (TUD). Furthermore, the govering equations, the discretization, the
minimization algorithm and the strategies for identifying the instability mechanisms
utilized in our linear stability investigations will be introduced. The microscopic
setup utilized for investigating the ball lens effect of large transparent particles in
astigmatic optics located at the RUB is described in section 2.1.1. For investigating
the optical behavior of large fluorescent particles in suspensions of volume fractions
up to Φ = 20% this microscopic setup was modified which is described in section
2.1.2. Investigations of the optical behavior of large fluorescent particles of different
size and migration phenomena in polydisperse suspensions were investigated in two
different custom built microscopic setups at the TUD which are described in section
2.1.3. The experimental setups for the investigations of the pattern formation in rotating
suspensions of settling particles conducted at the TUD are described in section 2.1.4.
In section 2.2.1 to section 2.2.4 we describe the geometry, the governing equations,
the numerical implementation and the minimization algorithm used for performing
the linear stability analysis. Strategies for identifying the instability mechanisms are
presented in section 2.2.5. Parts of this chapter were published in Brockmann et al.
2020 and Brockmann and Hussong 2021.

2.1 Experimental setups 1

In the following a total number of six different experimental setups is presented of which
the first four where utilized to investigate and apply APTV on suspension flows while
the latter two where utilized to perform investigation on rotating suspension flows.

2.1.1 Setup 1 - investigation of the application of APTV to
large, transparent particles in dilute suspensions

The setup for investigating the application of APTV to large transparent particles,
utilizes a backlight illumination. By this particles act as ball lenses and yield a bright
signal for the tracking procedure as described later in section 4.

1Parts of this section are adopted from Brockmann et al. (2020) and Brockmann and Hussong (2021)
published under https://creativecommons.org/licenses/by/4.0/.
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2 Experimental and numerical Setups

The measurement system consists of a microscope (Nikon Eclipse LV100) with a
continuous backlight illumination. For image-recording, two cameras are used for a
comparative study. These are a 12-bit, 1280×800 pixel CMOS high-speed camera
(Phantom Miro Lab 110, Vision Research) with 20 µm pixel size, as well as a 12-bit,
dual frame, CCD camera (Imager ProSX 5M, LaVision GmbH) with 2456×2058 pixel
and a pixel size of 3.45 µm. A shematic drawing of the full experimental setup is shown
in Fig. 2.1. Measurements are performed with two Nikon Cfi60 objective lenses of M =
20× and M = 10× magnification. To introduce astigmatism, a cylindrical lens with a
focal length of fcyl = 200 mm is placed in front of the camera sensor. To investigate
the influence of the magnification, the light intensity, the processing parameters and
the properties of particles and liquid on the calibration curves, we build a test-chamber
which allows us to easily change particles or liquid. To validate the accuracy of BLAPTV
for macroscopic flow applications, a plane channel flow is realized with a rectangular
cross sectional area of h×w = 2.305×30 mm2 and a length of 150 mm.
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Figure 2.1: Sketch of Setup 1: a) Sketch. b) Photograph. 1) Camera, 2) Cylindrical lens and
field lens, 3) Microscope objective, 4) Transparent Channel, 5) x,y,z-Traverse, 6) Mercury
lamp, 7) Pump, 8) Tank, 9) Cooling Unit.

2.1.2 Setup 2 - investigation of the application of APTV to
fluorescent particles in semi-dilute and dense suspensions

For investigating the applicability of APTV to large fluorescent particles in dense
suspensions up to Φ = 20% the microscopic setup described in 2.1.1 was modified and
equipped with a with a 15 W continuous green laser of 532 nm wavelength. The laser is
operated at 1.5 W. For image-recording a 12-bit, 1280×800 pixel CMOS high-speed
camera (Phantom Miro Lab 110, Vision Research) with 20 × 20 µm2 pixel size is used.
A shematic drawing of the experimental setup is shown in Fig. 2.2a. Measurements are
performed with a Nikon Cfi60 objective lens of M = 10× magnification. To introduce
astigmatism, a cylindrical lens with a focal length of fcyl = 200 mm is placed in front
of the camera sensor, generating two spatially separated focal planes with a measured
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distance of approximately 192 µm. For the present experiments a plane channel with
a cross sectional area of h×w = 2.55×30 mm2 and a length of 300 mm was realized.
Velocity profiles were measured 150 mm downstream of the channel entrance. The flow
is generated with a high pressure syringe pump (LA-800, Landgraf HLL GmbH) and a
100 mL syringe (Braun GmbH). For obtaining a density and refractive index matched
suspension with dp = 60 µm PMMA particles we have used the receipe proposed by
Bailey and Yoda 2003 with a ternary mixture of 24.85wt% water, 36.03wt% glycerin
and 39.12 wt% ammonium thiocyanate that has a refractive index of nRIM = 1.4867, a
density of ρRIM = 1.19 g m−3 and a dynamic viscosity of ηRIM = 4.99 cP.
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Figure 2.2: Sketch of Setup 2: 1) Camera, 2) Cylindrical lens and field lens, 3) Dichroic
mirror, 4) Microscope objective, 5) Transparent Channel, 6) x,y,z-Traverse, 7) Laser, 8)
Syringe Pump, 9) Bottle.

2.1.3 APTV setups utilized for investigating migration
phenomena in suspension flows (setup 3 and 4)

We employ two experimental configurations for investigating particle migration in
mono- and polydisperse suspensions by means of APTV. In setup 3 the optical path
is perpendicular to the main flow direction (see Fig. 2.3), while in setup 4 the optical
path is parallel to the main flow direction as shown in Fig. 2.4. Setup 3 and setup
4 will be hereafter referred to as Lateral View Setup (LVS) and Front View Setup
(FVS), respectively. As in APTV the largest position reconstruction error occurs in the
out-of-plane direction, the LVS allows to perform the experiments with a high accuracy
in the velocity profile reconstruction. In contrast, the FVS faciliates a high accuracy in
determining the cross sectional particle distribution. Additionally, to the astigmatic
measurements we perform stigmatic measurements without a cylindrical lens in the
FVS for validation of particle distributions reconstructed over the cross-sectional area
by means of APTV.
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2.1.3.1 Setup 3: Lateral View APTV Setup (LVS)

Setup 3 consists of a custom built microscope based on a tube (Infinity Photo Optical
InfiniTube Special) illuminated with a 2.4 W High Power LED (Thorlabs SOLIS-525C)
featuring a peak wavelength of λ = 525 nm. For directing the light through the objective
and filtering the fluorescence signal, a filtercube (Thorlabs DFM1/M) with a dichroic
mirror and two band-pass filters is installed in the optical path. For image-recording
a 12-bit, 1280×800 pixel CMOS high-speed camera (Phantom Miro Lab 110, Vision
Research) with 20 × 20 µm2 pixel size is used. A schematic drawing of the experimental
setup is shown in Fig. 2.3. Measurements are performed with a Nikon Cfi60 objective
lens of M = 10× magnification. Using a resolution of 512×384 pixels the field of view
spans 992×744 µm2. To introduce astigmatism, a cylindrical lens with a focal length of
fcyl = 150 mm is placed in front of the camera sensor, generating two spatially separated
focal planes with a measured distance of approximately 110 µm for a refractive index of
air (no = 1). This configuration is similar to the microscopic setup described in section
2.1.1 and section 2.1.2. For the suspension flow experiments square duct capillaries
(VitroCom) with a cross sectional area of H×W = 400×400 µm2 and 600×600 µm2 and
a length of L = 500 mm, 600 mm, respectively were utilized. Velocity profiles were
measured 450 mm downstream of the channel entrance such that a minimum ratio of
x/L ≈ 750 was ensured. The flow is generated with a high pressure syringe pump
(LA-800, Landgraf HLL GmbH) and a 10 mL syringe (Braun GmbH). For reducing the
reflections by the curved channel corners of the capillary, the capillary is submerged
into glycerol. For obtaining a density and refractive index matched suspension with
PMMA particles of 30 µm, 40 µm and 60 µm diameter (Microbeads), the composition of
the RIM liquid was slightly adjusted to 26.46wt% water, 32.30wt% glycerin and 41.24
wt% ammonium thiocyanate to obtain a slightly better optical quality compared to the
liquid utilized in section 2.1.2. This mixture has a refractive index of nRIM = 1.4882, a
density of ρRIM = 1.19 g m−3 and a dynamic viscosity of ηRIM = 4.99 cP. The refractive
index was checked with a digital refractometer (DR301-95 KRUESS Optronic GmbH).
The tracer particles are labeled with Rhodamine B (Carl Roth).

2.1.3.2 Setup 4: Front View APTV Setup (FVS)

APTV Setup 4 is schematically depicted in Fig. 2.4. It incorporates the identical camera,
tubus, filter cube, objectiv and syringe pump as in setup 3 but the measurement section
is illuminated with a 7 W high power LED (7) (ILA iLA.LPS v3) equipped with a
green LED chip (λ ≈ 532 nm). The measurements are performed with M = 10× at a
resolution of 512×512 pixel resulting in a field of view of 992×992 µm2 such that the
whole cross-sectional area of the capillary is captured. Measurements are performed
with and without a cylindrical lens of fcyl = 150 mm placed in front of the camera
sensor. The camera and corrsponding optics are aligned on the capillary centerline axis.
Images are taken through a bososilicate glass coverslip (Marienfeld) with a thickness
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Figure 2.3: Sketch of setup 1 (LVS): 1) Camera, 2) Cylindrical lens and field lens, 3) Dichroic
mirror with band-pass filters, 4) Microscope objective, 5) Square capillary submerged in
glycerol, 6) x,y,z-Traverse, 7) High power LED, 8) Syringe Pump, 9) Bottle.
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Figure 2.4: Sketch of Setup 4 (FVS): 1) Camera, 2) Cylindrical lens and field lens, 3) Dichroic
mirror with band-pass filters, 4) Microscope objective, 5) Square capillary, 6) z-Traverse,
7) High power LED, 8) Syringe Pump, 9) Bottle 10) x,y,z-Traverse 11) Coverslide 12) Tub
with drainage.

of approximately 0.13 mm and a diameter of 30 mm as depicted in Fig. 2.4. The
camera together with LED and optical components can be precisely traversed in x,y,z
direction in steps of 1.25 µm. The capillary is mounted on a traverse and can be
positioned in steps of 2.5 µm in z-direction such that the distance with respect to the
glass coverslip can be adjusted. The fluid driven through the capillary is collected in a
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tub and drains into a container. In setup 4 experiments are performed within a square
capillary of 600×600 µm2 and a length of L = 600 mm. Velocity profiles were measured
approximately 250 µm to 500 µm upstream of the capillary outlet such that a ratio of
flow length to duct height of L/H ≈ 750 was obtained. The RIM liquid and particles
used in setup 3 and 4 are identical.

2.1.4 Setups for investigating pattern formation in rotating
suspensions

Two different setups have been established for recording the particle patterns in rotating
suspensions from the front or side view as discussed later in chapter 7. The front view
experiment (setup 5) is depicted in Fig. 2.5, while the side view experiment (setup
6) is depicted in Fig. 2.6. The main body of the experiments consists of a horizontal
rotating device equippable with acrylic single cylinders or cylinder pairs of different
diameters and a length of L = 480 mm (see Fig. 2.5 and Fig. 2.6). With a tail-stock
spindle (front view experiment) or threaded rods (side view experiment) the cylinders
are pressed into the grooves of endcaps and are axially sealed with flat silicone rings.
For the side view experiments a transparent endcap is employed (Fig. 2.6). The system
is filled through four radial holes drilled in each cylinder.
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Figure 2.5: Setup 5: Exemplary configuration of the Experimental setup for the observation
of the axial particle distribution - “front view experiment” (cylinder pair mounted): a)
Sketch b) Foto. 1,2) High Power LED, 3) 24V DC motor, 4) Pivotable frame with inclination
system 5) Cylinder system, 6) Spindle stock, 7) Camera
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Figure 2.6: Setup 6: Exemplary configuration of the Experimental setup for the observation
of the radial particle distribution - “side view experiment” (single cylinder mounted): a)
Sketch b) Foto. 1) 24V DC motor, 2) Pivotable frame with inclination system, 3) Cylinder
system, 4) Light sheet optics, 6) 5 Continuous wave laser, 6) Camera 7) Transparent endcap

In the TC system the inner radius of the outer cylinder and the outer radius of the
inner cylinder are referred to as Ro and Ri as illustrated in Fig. 2.7a. The resulting
gap height is denoted as H = 2h = Ro-Ri (see Fig. 2.7a). Both cylinders rotate with
the same rotation rate such that the angular frequency of the inner cylinder (Ωi) equals
that of the outer (Ωo). As both cylinders are fixed in the endcaps this is achieved by
simply rotating the endcaps at the desired rotation rate. The geometry of the TC flow
will be hereafter described in a nondimensionalized form by the ratio H/Ro. In the
case of the drum the geometry is defined by the inner radius of the cylinder, which
rotates with Ωo (Fig. 2.7b). By definition, for the drum flow the gap height is H = Ro,
such that H/Ro is equal to one.

A 300 W 24 V DC Motor (Motor Co. Ltd, MY1016), connected to a laboratory power
supply, is used to rotate the system. The rotation rate (0-540 rpm) is controlled by
adjusting the voltage of the power supply and measured by an optical rotation rate
sensor (TESTO 470) with an uncertainty of 0.02%. The suspension for the experiments
is composed of distilled water with a dynamic viscosity of 1 cP and 500 µm glass beads
(CarlRoth, density 2.5 g/cm3) at a volume fraction of 0.11%. A small amount of sodium
dodecyl sulfate (CarlRoth) is added to avoid clustering of particles. The particles are
coated with Rhodamine B (CarlRoth). In the front view experiments two LEDs with a
wavelength of 532 nm are used to excite the particles by means of a volume illumination
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Figure 2.7: a) Geometry of the corotating Taylor-Couette flow (TCF) b) Geometry of the
drum flow (DF). Both flow types exhibit a solid body rotation.

(Fig. 2.5). In contrast, for the side view experiments a 200 mW continuous wave laser
(CNI Optoelectronics Tech. Co.) with a wavelength of 532 nm is utilized to generate a
light sheet in the radial plane of the cylinder(s) (Fig. 2.6).

To enhance the image contrast, the inner cylinder is blackened for the TC flow con-
figuration. Recordings are performed with a high-speed camera (Phantom MiroLAB
110) at a resolution of 1280×800px at different frame rates (60fps, 250fps, 500fps). By
mounting a red longpass filter in front of the objective, only the excited particles are
visible to the camera.

2.1.5 Experimental procedure

For phase mapping, the rotation rate of the cylinder is increased successively in small
steps, rarely more than 2 to 5 rpm. Between each increment the system is given time
to stabilize (ranging from about 3 min up to 90 min) and reach a steady state. Once
a phase transition is observed at a given rotation rate, it is tested bidirectionally to
ensure that no hysteresis affects the phase boundaries. To extract the axial wavelengths
of particle bands the grayscale intensity of the images is summed up along the cylinder
centerline and the distance of the peaks is computed. For estimating the azimuthal
wavelength the space-time diagrams are extracted across two staggered horizontal lines
close to the cylinder center. A cross-correlation of the space-time diagrams is performed
to determine the band speed and hence to estimate the distance between individual
azimuthal particle bands.
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2.2 Governing equations and numerical setup for
linear stability analysis 2

Section 2.2.1 to section 2.2.4 considers the geometry and the governing equations as
well as the computation strategy used in the linear stability investigations in chapter 3.
Furthermore, the strategies for identifying the character of instabilities as also utilized
in chapter 3, will be presented (section 2.2.5).

2.2.1 Governing equations and basic flow profile

In our linear stability analysis the flow of an incompressible fluid with the kinematic
viscosity ν and the density ρ in the annular gap of two concentric cylinders is considered.
The flow is assumed to be laminar and fully developed. The inner and outer cylinder
radii are denoted as Ri and Ro, while the gap height is defined as H = 2h = Ro − Ri

(see Fig. 2.8a and Fig. 2.8b). Here h denotes the half gap height. The inner and outer
cylinder rotate with the angular velocities Ωi and Ωo, respectively. Also an axial pressure
gradient dp/dx is present, which induces a flow in axial direction. The radius ratio of
the cylinders equals η = Ri/Ro, which can be translated into the curvature parameter
ε = 1−η

1+η (Vasanta Ram 2019). The curvature parameter describes the curvature of
the gap in azimuthal direction, which can also be expressed as the ratio of the gap
height to the mean diameter (ε = 2h/(Ro + Ri)). In the following, we consider the case
where either the inner or the outer cylinder of the system is rotating. The first case will
be referred hereafter to as Spiral Poiseuille Flow with Rotation of the Inner cylinder
(IRSPF) (Fig. 2.8a), whereas the second case will be referred to as Spiral Poiseuille
Flow with Rotation of the Outer cylinder (ORSPF) (Fig. 2.8b).

For the IRSPF and the ORSPF, we define the corresponding rotational reference
velocities as Uϕ = RiΩi and Uϕ = RoΩo, respectively. The axial reference velocity is
defined as Ux = h2

2µfluid

dp
dx . In the following, the ratio of axial and azimuthal reference

velocities will be described by the swirl parameters Si = Uϕ

Ux
(IRSPF) and So = Uϕ

Ux

(ORSPF), respectively (Vasanta Ram 2019). With these parameters we define the
reference velocity as Uref =

√
U2

x + U2
ϕ = Ux

√
1 + S2

i or Uref = Ux

√
1 + S2

o and the
Reynolds number as Re = Uref h/ν. Utilizing the swirl parameter together with this
definition of Re enables us to operate our computations at defined ratios of the azimuthal
and axial velocity and then determine Rec. Hence, we are enabled to determine Rec

at defined ratios of the azimuthal and axial velocity, such that the parameter space is
captured uniformly for all ε. This parametrization poses the base for the generation of
the phase maps in chapter 3. The Navier-Stokes equations are non-dimensionalized

2Parts of this section are adopted from "Comparison of the instability mechanisms of inner and outer
rotating spiral Poiseuille flow." written by Philipp Brockmann, V.I. Vasanta Ram, Suad Jakirlić and
Jeanette Hussong, to be submitted. Parts of it are also adopted from "Stability characteristics of the
spiral Poiseuille flow induced by inner or outer wall rotation” written by Philipp Brockmann, V.I.
Vasanta Ram, Suad Jakirlić and Jeanette Hussong to be submitted.
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Figure 2.8: Illustration of the two flow cases considered within this study. a) Spiral Poiseuille
Flow with Rotation of the Inner Cylinder (IRSPF) b) Spiral Poiseuille Flow with Rotation
of the Outer Cylinder (ORSPF)

using h, Uref , ρU2
ref and h/Uref for space, velocity, pressure and time, respectively.

In the following, vx, vϕ, vr denote the non-dimensionalized velocity components in
cylindrical coordinates. Here x, ϕ and r are the axial, the azimuthal and the radial
coordinate, respectively. The radial coordinate r (Ri < r < Ro) is translated into the
gap coordinate y (−1 < y < 1).

r = Ro + Ri

2 + Ro − Ri

2 y with − 1 ≤ y ≤ 1 (2.1)

The analytical solution for the normalized axial flow profile can be expressed as:

V ∗
x

Uref
= Vx = 1√

1 + Si2
A ln(1 − ε) + B ln(1 + ε) + 4 ln(1 + εy)

2ε(ln(1 − ε) − ln(1 + ε)) , (2.2)

with A = −2(1 − y) + (−1 + y2)ε and B = −2(1 + y) + (1 − y2). Whereas the analytical
solution for the normalized azimuthal flow profile of IRSPF and ORSPF can be expressed
as:

V ∗
ϕ

Uref
= Vϕ = Si√

1 + S2
i

(ε − 1)
4

2 + ε(1 + y)
1 + εy

(1 − y) (2.3)

V ∗
ϕ

Uref
= Vϕ = So√

1 + S2
o

(
(ε y+1)

ε − (ε−1)2

ε (ε y+1)

)
(ε + 1)

4 (2.4)

Here V ∗
x , V ∗

ϕ and Vx, Vϕ refer to the dimensionalized and non-dimensionalized velocity
components of the base flow, respectively. The velocity profiles as function of ε are
given in the appendix A.1.4.

2.2.2 Disturbance equations

The laminar base flow is perturbed by a small disturbance:

ux=Vx(y)+u′
x; ur=0+u′

r; uϕ=Vϕ(y)+u′
ϕ; p=P (x, y) + p′ (2.5)
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2.2 Governing equations and numerical setup for linear stability analysis

By substituting equations (2.5) into the Navier-Stokes equations (see section A.1.1
in the appendix) nonlinear equations are obtained which describe the motion of the
disturbances (A.6 to A.9). By neglecting nonlinear terms a linearized set of equations
for describing the movement of the disturbance is obtained (cylindrical coordinates)
(Gonzales 2013):

• x-momentum of the disturbance
∂u′

x

∂t
+ Vx

∂u′
x

∂x
+ u′

r

dVx

dr
+ Vϕ

r

∂u′
x

∂ϕ
+ ∂p′

∂x

− 1
Re

(
∂2u′

x

∂x2 + 1
r

∂u′
x

∂y
+ ∂2u′

x

∂y2 + 1
r2

∂2u′
x

∂ϕ2

)
= 0

(2.6)

• r-momentum of the disturbance

∂u′
r

∂t
+ Vx

∂u′
r

∂x
+ Vϕ

r

∂u′
r

∂ϕ
−

2Vϕu′
ϕ

r
+ ∂p′

∂y

− 1
Re

(
∂2u′

r

∂x2 + 1
r

∂u′
r

∂y
+ ∂2u′

r

∂y2 + 1
r2

∂2u′
r

∂ϕ2 − u′
r

r2 − 2
r2

∂u′
ϕ

∂ϕ

)
= 0

(2.7)

• ϕ-momentum of the disturbance

∂u′
ϕ

∂t
+ Vx

∂u′
ϕ

∂x
+ u′

r

dVϕ

dy
+ Vϕ

r

∂u′
ϕ

∂ϕ
+ Vϕ u′

r

r
+ 1

r

∂p′

∂ϕ

− 1
Re

(
∂2u′

ϕ

∂x2 + 1
r

∂u′
ϕ

∂y
+

∂2u′
ϕ

∂y2 + 1
r2

∂2u′
ϕ

∂ϕ2 −
u′

ϕ

r2 + 2
r2

∂u′
r

∂ϕ

)
= 0

(2.8)

• Continuity equation for the disturbance

∂u′
x

∂x
+ u′

r

r
+ ∂u′

r

∂y
+ 1

r

∂u′
ϕ

∂ϕ
= 0 (2.9)

Where 1
r can be expressed as function of y and ε as 1

r = ε
1+ε·y . The disturbance is

assumed to be periodic in the azimuthal and axial coordinates and is described with
the following ansatz functions:

u′
j = Aj(y) eiΘ + Ãj(y) e−iΘ (2.10)

p′ = Ap(y) eiΘ + Ãp(y) e−iΘ (2.11)

with Θ = (λx + nϕ − ωt), j = x, ϕ, r and the azimuthal wavenumber n ∈ Z, the axial
wavenumber λ ∈ R and the temporal complex wavenumber ω ∈ C. Aj and Ãj denote
the complex and the complex conjugated amplitude of the velocity disturbance, which
holds analogous for Ap and Ãp.

By substituting u′
x, u′

r and u′
ϕ with the ansatz functions (2.10)-(2.11) the following

eigenvalue problem is obtained:
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• x-momentum:

VxAx i λx + Vϕ

r
Ax i nϕ − 1

Re

(
Ax (+i)2 λ2

x + 1
r

dAx

dy
+ d2Ax

dy2 + 1
r2 Ax (+i)2 n2

ϕ

)
︸ ︷︷ ︸

M1x

+

+ Ar
dVx

dy︸ ︷︷ ︸
M1r

+ 0︸︷︷︸
M1ϕ

+ Ap i λx︸ ︷︷ ︸
M1p

= 0︸︷︷︸
L1r

+ 0︸︷︷︸
L1ϕ

+ Ax i ω︸ ︷︷ ︸
L1x

+ 0︸︷︷︸
L1p

(2.12)

• ϕ-momentum:

Ar
dVϕ

dy
+ Vϕ

r
Ar − 1

Re

(
+ 2

r2 Ar i nϕ

)
︸ ︷︷ ︸

M2r

+ VxAϕ i λx + Vϕ

r
Aϕ i nϕ︸ ︷︷ ︸

M2ϕ

− 1
Re

(
Aϕ (+i)2 λ2

x + 1
r

dAϕ

dy
+ d2Aϕ

dy2︸ ︷︷ ︸
M2ϕ

+ 1
r2 Aϕ (+i)2 n2

ϕ − Aϕ

r2

)
︸ ︷︷ ︸

M2ϕ

+ 0︸︷︷︸
M2x

+ 1
r

Ap i nϕ︸ ︷︷ ︸
M2p

= + 0︸︷︷︸
L2r

+ Aϕ i ω︸ ︷︷ ︸
L2ϕ

+ 0︸︷︷︸
L2x

+ 0︸︷︷︸
L2p

(2.13)

• r-momentum:

VxAr i λx + Vϕ

r
Ar i nϕ︸ ︷︷ ︸

M3r

− 1
Re

(
Ar (+i)2 λ2

x + 1
r

dAr

dy
+ d2Ar

dy2 + 1
r2 Ar (+i)2 n2

ϕ − Ar

r2

)
︸ ︷︷ ︸

M3r

+ −2Vϕ

r
Aϕ − 1

Re

(
− 2

r2 Aϕ i nϕ

)
︸ ︷︷ ︸

M3ϕ

+ 0︸︷︷︸
M3x

+ dAp

dy︸︷︷︸
M3p

= + Ar i ω︸ ︷︷ ︸
L3r

+ 0︸︷︷︸
L3ϕ

+ 0︸︷︷︸
L3x

+ 0︸︷︷︸
L3p

(2.14)

• continuity:

Ar

r
+ dAr

dy︸ ︷︷ ︸
M4r

+ 1
r

Aϕ i nϕ︸ ︷︷ ︸
M4ϕ

+ Ax i λx︸ ︷︷ ︸
M4x

+ 0︸︷︷︸
M4p

= 0︸︷︷︸
L4r

+ 0︸︷︷︸
L4ϕ

+ 0︸︷︷︸
L4x

+ 0︸︷︷︸
L4p

(2.15)
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This can be composed into the following system of equations:
M1r M1ϕ M1x M1p

M2r M2ϕ M2x M2p

M3r M3ϕ M3x M3p

M4r M4ϕ M4x M4p


︸ ︷︷ ︸

M


Ar

Aϕ

Ax

Ap


︸ ︷︷ ︸

A

= ω


L1r L1ϕ L1x L1p

L2r L2ϕ L2x L2p

L3r L3ϕ L3x L3p

L4r L4ϕ L4x L4p


︸ ︷︷ ︸

L


Ar

Aϕ

Ax

Ap


︸ ︷︷ ︸

A

(2.16)

The boundary conditions for Ax, Aϕ, Ar, that need to be satisfied are:

Ar(y=±1)=0 d

dy
Ar(y=±1)=0 Ax(y=±1)=0 Aϕ(y=±1)=0 (2.17)

whereas for Ap(y=±1) no boundary condition is needed. The boundary conditions also
apply for the complex conjugated amplitudes.

2.2.3 Discretization

To obtain a discretized eigenvalue problem in the following form:

MA = ωLA with A=[Ar; Aϕ; Ax; Ap] (2.18)

we use a Chebyshev collocation method to discretize the coordinate y on N+1 Gauss
Lobatto Points (Trefethen 2000). The continuous derivations of A are discretized using
the Chebyshev Differentiation Matrix with dimension (N+1)×(N+1), such that M and
L consist of four submatrices and have the dimension (N+4)×(N+4). The boundary
conditions (2.17) are implemented by replacing the respective rows of the submatrices.
To ensure a sufficient number of collocation points we performed a convergence study
on N . All results presented within this work are obtained with N = 100.

2.2.4 Computation of critical Reynolds- and wavenumbers

The temporal eigenvalues ω = ωi + ωr (ωi = =(ω), ωr = <(ω)) of (2.18) are computed
using Matlab (eig(a, b)). As briefly explained in section 1.2.1.1, we seek the combination
of λ and n for a given pair of ε, λ which provide the point on the neutral stable surface
ωi(λ, Re) = 0 associated with the smallest Re. The corresponding Re is hereafter
referred to as the critical Reynolds number Rec. The corresponding values of the axial
and azimuthal wavenumber are referred to as critical wavenumbers λc, nc, respectively.
A simple, straight forward approach to solve this multi dimensional minimization
problem is to compute all ωi on a fine grid in the Re-λ space to derive the neutral stable
curve along which ωi = 0. However, as all eigenvalues need to be computed for each
grid point, this strategy is not practicable, expecially when a high number of collocation
points is used, which is required for high Re. For high Re the terms associated with
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1
Re become small and a high resolution is required to solve the eigenvalue problem
correctly. This was observed in preliminary computations and also reported for the
APF by Heaton (2008).
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Figure 2.9: Comparison of numerically obtained values for Rec, λc, nc to reference data.
Black dots refer to data of the current authors, circles refer to reference data. a) Rec over ε,
blue circles: Cotrell and Pearlstein (2006) b) λc over ε, blue circles: Cotrell and Pearlstein
(2006) c) nc over ε, blue circles: Cotrell and Pearlstein (2006) d) Rec over So, blue circles:
Meseguer and Marques (2005) e) λc over So, blue circles: Meseguer and Marques (2005)
f) nc over So, blue circles: Meseguer and Marques (2005) g) Rec over Si, blue circles: Ng
and Turner (1982) (ε = 0.0256), green circles: Ng and Turner (1982) (ε = 0.1299), red
circles: Takeuchi and Jankowski (1981) h) λc over Si, blue circles: Ng and Turner (1982)
(ε = 0.0256), green circles: Ng and Turner (1982) (ε = 0.1299), red circles: Takeuchi and
Jankowski (1981) i) nc over Si, blue circles: Ng and Turner (1982) (ε = 0.0256), green
circles: Ng and Turner (1982) (ε = 0.1299), red circles: Takeuchi and Jankowski (1981)

To perform an extensive parametric study, we developed a procedure which computes
Rec, λc, nc at a very low computational effort, such that the computations can easily be
performed on a desktop workstation. The basic features of the procedure are as follows.
First, ωi(λ, Re) is computed on a non-equidistant coarse grid in the Re × λ space. If a
change of sign of ωi is detected, a zero search is initiated at λ=const., providing the
first point on the neutral stability curve. Hence, the algorithm increases or decreases λ
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by ∆λ and repeats the zero search till three points that bracket the minimum of the
stability curve are captured. Subsequently, a minimizing algorithm based on bisection
and parabola fit is used to determine the minimum point and hence the Rec of the
stability curve. After the minimum has been determined a vertical scan at constant
Re = Rec − 0.1 is performed in the range of 0.01 < λ < 14, with λ beeing step-wise
increased by ∆λ. This is necessary to ensure, that the global minima is detected, as the
stability curve for a given n may exhibit several local minima. If a change of sign of ωi is
detected in this vertical scan, there exists a second branch and the computed Rec is only
a local minimum. The aforementioned zero search and minimization procedure is then
repeated, which provides the global minimum and hence the global Rec. This procedure
is performed for all n considered, resulting in a global Rec for every n. Finally, the
Rec of all n is compared to find the lowest Rec and the associated nc, λc. Within our
calculation we restrict the axial wavelength to λ > 0 while nc is allowed to assume both
positive and negative values, which provides a sufficent range as discussed by Takeuchi
and Jankowski (1981).

In order to validate the code for the IRSPF, the ORSPF, as well as for Annular Poiseuille
Flow (APF) we compared the results to those available in literature. In Fig. 2.9a-c
we present the computed values of Rec, λc and nc as function of ε in comparison to
the results obtained by Cotrell and Pearlstein (2006) for the APF. In Fig. 2.9d-f we
compare our results for the ORSPF with ε = 0.333 as provided by the work of Meseguer
and Marques (2005). As can be seen, all computed values of Rec, λc and nc are in
excellent agreement for both the APF and the ORSPF. Finally, for the validation of
the IRSPF we compare our results with those obtained by Ng and Turner (1982) for
ε = 0.1299 and ε = 0.0256 and those obtained by Takeuchi and Jankowski (1981) for
ε = 0.333 as depicted in Fig. 2.9g-i. As clearly can be seen from the plots our results
coincide well with reference data.

2.2.5 Identification of instability mechanisms

In this section we develope approaches to identify and characterize centrifugal and
shear instability mechanisms. For, this we formulate the transport equation of the
kinetic disturbance energy for the SPF. The amplification of the disturbance motion
is related to an increase in disturbance energy which is transmitted from the base
flow to the disturbance mostly by shear. As the shear distribution and hence the
energy transfer along the gap changes when the velocity profile is changed, we expect
significant differences between the ORSPF and the IRSPF with increasing ε and swirl.
The analysis of those processes gives a more differentiated picture of the instability
mechanisms than that obtained by soley dicussing the critical values of Rec, λc, nc

and ωc. The transport equation is obtained by scalar multiplication of the (nonlinear)
momentum equation of the disturbance (see section A.1.2 in the appendix) and the
disturbance velocity vector ~u′ = (u′

x u′
r u′

ϕ)T (Schmid and Henningson 2012). With
the kinetic disturbance energy defined as K = 1

2 u
′2
r + 1

2 u
′2
ϕ + 1

2 u
′2
x = 1

2 q the transport
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equation is obtained as (Gonzales 2013):

∂K

∂t︸︷︷︸
rate of change

+ Vx
∂K

∂x
+ Vϕ

r

∂K

∂ϕ︸ ︷︷ ︸
convection

−
Vϕu′

ru′
ϕ

r︸ ︷︷ ︸
ZK (Vϕ)=centr. production

+u′
ϕ u′

r

dVϕ

dr
+ u′

x u′
r

dVx

dr︸ ︷︷ ︸
PK (Vϕ)+PK(Vx)=shear production

= −
(

∂u′
x p′

∂x
+ 1

r

∂ru′
r p′

∂r
+ 1

r

∂u′
ϕp′

∂ϕ

)
︸ ︷︷ ︸

velocity pressure gradient

+ p′
(

∂u′
r

∂r
+ 1

r

∂u′
ϕ

∂ϕ
+ ∂u′

x

∂x

)
︸ ︷︷ ︸

velocity pressure gradient

−1
2

[
∂u′

xq

∂x
+ 1

r

∂ru′
rq

∂r
+ 1

r

∂u′
ϕq

∂ϕ

]
︸ ︷︷ ︸

triple terms

+ 1
Re

[
u′

r

∂2u′
r

∂x2 + u′
ϕ

∂2u′
ϕ

∂x2 + u′
x

∂2u′
x

∂x2 + u′
r

1
r

∂

∂r

(
r

∂u′
r

∂r

)
+ u′

ϕ

1
r

∂

∂r

(
r

∂u′
ϕ

∂r

)
︸ ︷︷ ︸

viscous terms

+ u′
x

1
r

∂

∂r

(
r

∂u′
x

∂r

)
+
(

u′
r

r2
∂2u′

r

∂ϕ2

)
+

u′
ϕ

r2
∂2u′

ϕ

∂ϕ2 + u′
x

r2
∂2u′

x

∂ϕ2︸ ︷︷ ︸
viscous terms

−2u′
r

r2
∂u′

ϕ

∂ϕ
+ u′

ϕ

2
r2

∂u′
r

∂ϕ
− u′

r u′
r

r2 −
u′

ϕ u′
ϕ

r2︸ ︷︷ ︸
viscous terms

]

(2.19)

Where 1
r can be expressed as 1

r = ε
1+ε·y . Equation (2.19) will be later referred to as

kinetic energy transport equation (KTE). This equation is also known as the Reynolds-
Orr energy equation (Drazin and Reid 2004; Schmid and Henningson 2012). The first
term is the temporal change of K. In the neutral stable scenario, the disturbance
does neither grow nor decay such that ∂K/∂t must be zero when averaged over the
wavelengths. The convection term describes the convection of kinetic energy by the base
flow. This term is zero when averaged over the disturbance wavelengths and hence is not
relevant for the present considerations. The velocity pressure gradient term describes
the rate of work done by the pressure disturbance on the velocity disturbance (Drazin
and Reid 2004). The triple terms account for the convection of kinetic disturbance
energy by the disturbance velocities. They are zero when averaged over the wavelengths.
The viscous terms account for the viscous dissipation of kinetic disturbance energy and
the transport of kinetic energy due to viscous effects (Rotta 1951; Drazin and Reid
2004; Moser 1984). Apart from the aforementioned terms different types of production
terms can be identified in equation (2.19). The total shear production consists of the
production due to azimuthal shear (2.20) of the base flow:

PK(Vϕ) = u′
ϕ u′

r

dVϕ

dy
(2.20)
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and the production due to axial shear (2.21) of the base flow:

PK(Vx) = u′
x u′

r

dVx

dy
(2.21)

These terms represent the energy that is transferred from the base flow to the velocity
pertubations (Rotta 1951; Drazin and Reid 2004). We further identify a curvature
related production term in analogy to the work of Guaus and Bottaro (2007):

ZK(Vx) = −
Vϕu′

ru′
ϕ

r
(2.22)

Guaus and Bottaro (2007) investigated the instabilities in curved channel flows and
termed this term as centrifugal production term. Terms of such a structure arise from
the tranformation to cylindrical coordinates and are also referred to as “extra terms”
(Bradshaw 1973; Moser 1984; Moser and Moin 1987). For the sake of simplicity the
term in equation 2.22 is referred to as centrifugal production term within this work. To
analyze and identify the onset and the characteristics of different instability mechanisms
we evaluate the averaged values of equations (2.20)-(2.22). The averaged distribution
of the production terms as function of y is obtained by spatial averaging over the
wavelengths λ and n (2.23-2.25):

PK(Vx) = λ

2π

n

2π

∫ 2π
λ

0

∫ 2π
n

0
u′

x u′
r

dV x

dy
dxdϕ (2.23)

PK(Vϕ) = λ

2π

n

2π

∫ 2π
λ

0

∫ 2π
n

0
u′

ϕ u′
r

dV ϕ

dy
dxdϕ (2.24)

ZK(y) = λ

2π

n

2π

∫ 2π
λ

0

∫ 2π
n

0
−

Vϕ u′
r u′

ϕ

r
dx dϕ (2.25)

As can be seen from equations (2.23)-(2.25), the production terms contain the products
of u′

ru′
ϕ and u′

ru′
x . They are, when averaged over the wavelengths, the Reynolds shear

stresses τrx and τrϕ:

τij = u′
iu

′
j = λ

2π

n

2π

∫ 2π
λ

0

∫ 2π
n

0
u′

iu
′
j dxdϕ =

(
Ãj Ai + Ãi Aj

)
j, i = x, r, ϕ (2.26)

In order to gain a deeper insight, we also analyse the production terms of the Reynolds
Shear Stress Transport Equations (RSSTE) (see Appendix A.1.3). For the sake of
concision, we soley consider the transport equations for uϕur and urux as they contribute
to equations (2.23-2.25). The azimuthal shear production (2.28) and the centrifugal
production (2.27) of u′

ru′
ϕ are defined as:

Pϕr(Vϕ) = u′
r u′

r

dVϕ

dy
(2.27)

Zϕr,1 = − u′
ϕ

2Vϕu′
ϕ

r
(2.28)
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2 Experimental and numerical Setups

In the u′
ru′

ϕ transport equation also a convection term arises, which has a similar
structure as equation (2.28):

Zϕr,2 = +u′
r

Vϕ u′
r

r
(2.29)

However, the contribution of this term is negligible as will be shown in section 3.2. The
centrifugal production (2.30) and the axial shear production of u′

ru′
x (2.31) are defined

as:

Zxr = −u′
xu′

ϕ

2Vϕ

r
(2.30)

Pxr(Vx) = u′
ru′

r

dVx

dy
(2.31)

As in equation (2.19), these terms, arise from the transformation from Cartesian to
cylindrical coordinates. They are also referred to as “extra production terms”. For
simplicity, we denote them as centrifugal terms in analogy to equation 2.19. Equations
(2.27)-(2.31) are evaluated analogous to equations (2.20)-(2.22) and averaged over the
wavelengths.

Besides utilizing the distributions of K, the distribution of the shear stresses and the
distribution of the associated production terms, we further employ the concept of the
critical layer for the identification of instability mechanisms. The existence of a critical
layer is associated with a TSI and known as the location where the coefficient of the
second derivative in the non-viscous Orr-Sommerfeld equation exhibits a singularity
when Re → ∞. For plane shear flows this is the location where the disturbance velocity
equals the base flow velocity (Vx = cx). To our knowledge, investigations of the location
of the critical layer have not been performed yet for the SPF. So far, investigations of
the critical layer in the flow between concentric cylinders were restricted to the case
where no rotation is present and only axisymmetric disturbances were considered (n = 0)
(Sadeghi and Higgins 1991a; Mott and Joseph 1968a). In these works the location of the
critical layer was determined as the location where the disturbance velocity equals the
base flow velocity (Vx = cx). Recently, Vasanta Ram (2019) derived a generalized Orr-
Sommerfeld equation for the SPF as function of ε and the swirl parameter. For ε → 0
this generalized equation merges into the classical Orr-Sommerfeld equation associated
with straight and parallel streamlines. In analogy to the classical Orr-Sommerfeld
equation, the coefficients of the second derivative of the Amplitude of u′

r exhibit a
singularity when Re → ∞. Based on these coefficients an expression of the critical layer
is obtained as function of Si, λc, nc and ε (Vasanta Ram 2019):

1 − λ

ω

1 − y2
c√

1 + S2
− ε

(
λ

ω

1√
1 + S2

yc(1 − y2
c )

3 + n

ω

S√
1 + S2

(1 − yc)
2

)
= 0 (2.32)

Here yc terms the position of the critical layer. This equation hold only for small
values of ε, because Vasanta Ram (2019) neglected terms of the order O(ε2). In the
present study also large values of ε are considered for which equation (2.32) is not valid.
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2.2 Governing equations and numerical setup for linear stability analysis

Hence, the steps described by Vasanta Ram (2019) were performed in order to derive
an equation where higher order terms of ε are included. The resulting equation takes
the following form:

−Vx(yc)λ − Vϕ(yc)n ε

1 + ε · yc
+ ω = 0 (2.33)

It should be mentioned, that the equation is evaluated for the critical values λc, nc,
Rec and ωc such that ωi = 0 and equation (2.33) can be expressed as follows.

−Vx(yc)λc − Vϕ(yc)nc
ε

1 + ε · yc
+ ωr = 0 (2.34)

Equations (2.33) and (2.34) hold for the ORSPF and the IRSPF case as well. As
can be seen when ε → 0, Vϕ = 0 or nϕ = 0 equation (2.34) yields Vx(yc) = ωr

λ = cx

which coincides with the classical case with straight parallel streamlines. Here, the
disturbance velocity equals the base flow velocity at the critical layer. However, when
nϕ 6= 0, Vϕ 6= 0 and ε > 0 this relation does not hold anymore. Further, if Vx → 0 and
Vϕ > 0, n has to be nonzero and positive to yield a location of the critical layer.
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3 Comparison of the instability mechanisms
of inner and outer rotating spiral
Poiseuille flow 1

Here, it is revealed, that the stability behavior of the Spiral Poiseuille Flow with
Rotating Inner cylinder (IRSPF) and the Spiral Poiseuille Flow with Rotating Outer
cylinder (ORSPF) exhibit a striking similarity at low and intermediate swirls, while
both cases differ significantly at higher swirls. Details on the parametrization can be
found in section 2.2. In the present chapter an extensive parameter study is performed
to unravel the interplay between curvature parameter, swirl parameter, the critical
Reynolds number and the change in the critical wavenumbers. Results will be presented
in detailed phase maps for both the IRSPF and the ORSPF.

In section 3.1 the phase maps are presented and discussed which display the critical
Reynolds number and the critical wavenumbers as function of ε and swirl parameter
for the IRSPF (section 3.1.1) and for the ORSPF (section 3.1.2). Subsequently, in
section 3.2 different instability mechanisms are identified which occur in the IRSPF
and the ORSPF by analyzing the distribution of shear stresses and kinetic disturbance
energy as well as associated production terms based on the equations presented in
section 2.2.5. To benchmark the method, the Annular Poiseuille Flow (APF) and the
Taylor-Couette Flow (TCF) are analyzed to show that the method is suitable for the
identification of shear instabilities as well as centrifugal instabilities (section 3.2.1).
Hence, in section 3.2.2 to section 3.2.5 the distributions of shear stresses and kinetic
disturbance energy found in the different regions are analyzed to work out differences
regarding the instability mechanisms found in the IRSPF and the ORSPF. Next, in
section 3.2.6, it is analyzed how the integrated production terms of K change for
different regions as function of the swirl in the IRSPF and the ORSPF. Finally, in
section 3.3 the results and conclusions are summarized. The theoretical background and
state of the art relevant for this chapter can be found in section 1.2.1 (fundamentals
of linear stability analysis). The parametrization, the governing equations and the
numerical implementation are given in section 2.2. The description of the methods for
characterization of instability mechanisms are given in section 2.2.5.

1This chapter is adopted from "Comparison of the instability mechanisms of inner and outer rotating
spiral Poiseuille flow." written by Philipp Brockmann, V.I. Vasanta Ram and Jeanette Hussong, to
be submitted.
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

3.1 Discussion of phase maps

3.1.1 Rec, λc, nc on ε for the Inner Rotation Spiral Poiseuille
Flow (IRSPF)

The problem is formulated by means of the curvature parameter ε = (1 − Ri

Ro
)/(1 + Ri

Ro
),

where Ri and Ro are the inner and outer cylinder radii and the swirl parameters Si and
So defined as the ratios of the corresponding rotational and axial reference velocities.
The rotational reference velocities are Uϕ = RiΩi and Uϕ = RoΩo while the axial
reference velocity is Ux = h2

2µfluid

dp
dx as illustrated in Fig. 3.1. The reference velocities are

combined to a resulting reference velocity Uref = (U2
x + U2

ϕ)1/2 such that the Reynolds
number is given as Re = Uref h/ν. In this section we discuss the evolution of the critical
Reynolds number (Rec), the critical axial wavenumber (λc), the critical frequency (ωc)
and the critical azimuthal wavenumber (nc) with increasing swirl parameter Si and
varying curvature parameter ε for the IRSPF.

First, the general behavior of Rec will be discussed. For this, we present Rec as a
function of Si for ε ranging from 0.0025 to 0.785 in Fig. 3.2a. To reduce the computation
time, we restricted our computations to Re < 1.5 ·105. Figure 3.2b represents a close-up
showing Rec in the range of 0.0025 ≤ ε ≤ 0.1. As can be seen from Fig. 3.2a the
phase map covers a range of 10−5 ≤ Si ≤ 105 and thus connects the Annular Poiseuille
Flow (APF) where azimuthal flow is negligible (Si = 10−5) and the Taylor-Couette
flow (µ = 0) where axial flow is negligible (Si = 105). For every ε Rec shows a similar
behavior as function of Si. For low values of the swirl parameter (10−5 ≤ Si ≤ O(10−2))
Rec is approximately constant for fixed values of ε and remains at O(104)...O(105).
Hence, at intermediate values of Si (O(10−2 ≤ Si ≤ O(101)) Rec dreceases down to
Rec ≈ O(102). Finally, at high swirls (Si > O(101)) Rec remains almost constant at
Rec ≈ O(102). Therefore, in the following, we divide the Si space into three regions,
indicated with red and magenta lines. These are denoted as Tollmien-Schlichting
instability region (I), region II and region III. Henceon, a phase transition from region I
to II is denoted as first transition and a transition from region II to III will be referred
to as second transition. Thus, in the context of this chapter transition refers to a change

Ri

Ro

2h

dp
dx

Ωi

x

r
ϕ Ri

Ro

2h

dp
dx

Ωo
a) b)

Figure 3.1: Sketches of the flow configurations. a) Spiral Poiseuille Flow with Rotating Inner
cylinder (IRSPF) b) Spiral Poiseuille Flow with Rotating Outer cylinder (ORSPF)

78



3.1 Discussion of phase maps

of the region when Si is varied and should not be confused with the flow transiting
from laminar to turbulent. The corresponding Si values are referred to as Si,T 1 and
Si,T 2, respectively. Furthermore, the superscripts “-” and “+” refer to a state just
before and just behind the transition, respectively. As will be shown later in section
3.2, the first and second transition lead to changes of the radial distribution of the
Reynolds shear stresses, the kinetic disturbance energy and the associated production
terms and are related to the onset of different instability mechanisms. We recall here,
that all presented values of Rec are associated with the neutral stable state of the flow.
This means the flow is laminar but neutrally stable due to the “most unstable mode”.
In region I the most unstable mode refers to Tollmien-Schlichting instabilities which
render the flow neutrally stable. Instead, in region II and III centrifugal instabilities
are the most unstable modes (which will be explained in detail in section 3.2) and
therefore render the flow neutrally stable. Transition from I to II means that the swirl
is increased such that the flow situation is now located in region II and the SPF would
become unstable due to centrifugal instabilities. In section 3.2 we show, why we classify
the instabilities as centrifugal or Tollmien-Schlichting instabilities within the different
regions.

Before discussing the evolution of Rec as function of ε and Si in detail, the behavior of
the region boundaries with respect to ε is briefly discussed. As can be seen from the
red line in Fig. 3.2a Si,T 1 decreases with increasing ε and assumes values inbetween
1.89 · 10−4 ≤ Si ≤ 0.95 for the ε considered within this work. Thereby, the change
of Si,T 1 is most pronounced at low and high values of ε. Obviously, Si,T 1 increases
sharply for ε → 0 and decreases sharply as ε approaches to 0.785. This reveals that ε

is a key parameter which strongly affects the swirl parameter at which the transition
from a Tollmien-Schlichting to a centrifugal instability occurs. The underlying reason
is that a increase in ε leads to an increase of centrifugal effects in the flow (∼ ε) and
vice versa. The second phase transition (II to III) occurs at Si values of Si,T 2 ≈ 2.27
for 0.356 ≤ ε ≤ 0.6 up to Si,T 2 = 156.27 for ε = 0.0025 (see magenta line in Fig. 3.2a).
In general, Si,T 2 increases sharply for ε → 0, but changes only little for larger epsilon.

3.1.1.1 Evolution of Rec

Rec in region I (10−5 ≤ Si ≤ S−
i,T 1): In general, within region I there is just a slight

variation of Rec for all ε considered which can hardly be seen from Fig. 3.2a. This also
applies to Fig. 3.2c-l where Rec is presented as function of Si for selected values of ε.
Therefore, in Fig. 3.2m we show the relative change within region I. The relative change
is defined as (Rec(S−

i,T 1) − Rec(Si = 10−5))/Rec(Si = 10−5) × 100. In Fig. 3.2m it can
be seen that Rec is decreased by about -10% at ε ≈ 0.6. For ε ≤ 0.0256 however, an
increase of Rec becomes evident that increases with decreasing ε and is about +31.5%
for ε = 0.0025. In Fig. 3.3a we show a close up of Rec over Si for ε = 0.0025, where
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow
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Figure 3.2: Rec as function of ε and Si for the IRSPF. Red line: Transition from I to II where
Si = Si,T 1, magenta line: transition from II to III where Si = SiT 2. a) Rec as function
of ε and Si for 0.005 ≤ ε ≤ 0.78. b) Rec as function of ε and Si for 0.005 ≤ ε < 0.1. c-l)
Rec as function of Si for selected values of ε. m) Percentage change of Rec in region I. n)
Percentage change of Rec in region II. o) Percentage change of Rec in region III.

this stabilization becomes evident. As can be seen Rec increases monotously as Si

approaches S−
i,T 1. Hence, in region I increasing swirl is destabilizing for larger ε, while

it is stabilizing for smaller ε.
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Figure 3.3: Close up showing details in Rec over Si for different ε and Si. Changes in nc are
highlighted as red dots and labeled with the associated wavenumber (integers). a) Rec over
Si for ε = 0.0025 in the range of 10−2 ≤ Si ≤ 101. b) Rec over Si for ε = 0.333 in the range
of 0.75 ≤ Si ≤ 2. c) Rec over Si for ε = 0.78 in the range of 0.1 ≤ Si ≤ 10.

Rec in region II (S+
i,T 1 ≤ Si ≤ S−

i,T 2): In region II Rec collapses sharply with
increasing Si, which is clearly evident from Fig. 3.2c-l. Rec remains continuous during
the transition from I to II. Within region II Rec decreases monotously for ε < 0.6.
Thereby, towards the end of region II the slope increases, resulting in a slight bump
which is pronounced in Fig. 3.2e-k. Around this bumb slight kinks become visible
in Rec which are related to changes in nc as can be seen in Fig. 3.3b, where we
exemplarily show Rec for 0.75 ≤ Si ≤ 2 and ε = 0.333. These kinks have been described
firstly by Takeuchi and Jankowski (1981) in Fig. 1 of their work. It may be noted
here that Takeuchi and Jankowski (1981), Mesequer and Marques (2002) and Cottrel
and Pearlstein (2004) observed a non-monotonous decreases for the critical Taylor
number with increasing Re for ε = 0.333 (η = 0.5) at the same point. In our case Rec

decreases monotonously for ε = 0.333 because we employ a definition of the Reynolds
number which contains both axial and azimuthal flow components as described in
section 2.2.1. Nevertheless, the numerical results obtained with our method are in
excellent agreement with those of Takeuchi and Jankowski (1981) as shown in section
2.2.4. For ε > 0.6 first decreases monotously in region II but then a stabilization
becomes evident in the region where the kinks occur as can be seen from Fig. 3.3c for
ε = 0.785. Here it can be seen clearly, that Rec increases first around Si ≈ 100 and then
again when Si approaches S−

i,T 2. Overall, the change of Rec within region II, defined
as (Rec(S−

i,T 2) − Rec(S+
i,T 1))/Rec(S+

i,T 1) × 100 is well over 90% for all ε considered (see
Fig. 3.2n).

Rec in region III (Si ≥ S+
i,T 2): When the flow transits from region II to region

III there is no significant change in the behavior of Rec for ε < 0.6. For ε ≥ 0.6
however a kink in Rec over Si occurs which can be clearly seen in Fig. 3.2l and
Fig. 3.3c for ε = 0.785. This kink becomes increasingly severe, when ε increases
from 0.6 to 0.785. As will be shown later in section 3.2.4 this kink is associated with
a (slight) change of the production terms in the transport equation of the kinetic
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

energy. Afterwards, througout region III Rec decreases as Si increases. In Fig. 3.2o,
we show the relative change of Rec in region III from S+

i,T 2 to Si = 105 defined as
(Rec(Si = 105) − Rec(S+

i,T 2))/Rec(S+
i,T 2) × 100. The change of Rec within region III

is 0% for ε = 0.0025 but increases as ε increases, up to 32.7% for ε = 0.78 here (Fig.
3.2o).

3.1.1.2 Evolution of λc

λc in region I (10−5 ≤ So ≤ S−
o,T 1): In Fig. 3.4a we present λc as a function of

Si for 0.0025 ≤ ε ≤ 0.78. Fig. 3.4b represents a close-up showing λc in the range
of 0.0025 < ε < 0.1. Overall, within region I the axial wavenumber λc remains
approximately constant for fixed values of ε and undergoes no significant changes as
Si increases, as can be seen from Fig. 3.4a. However, with variation of ε λc changes
significantly and assumes values between 1.02 for ε = 0.0025 and 0.1 for ε = 0.78.

λc in region II (S+
i,T 1 ≤ Si ≤ S−

i,T 2): When the flow transits from I to II λc undergoes
a jump at S+

i,T 1 which can be seen from Fig. 3.4a and Fig. 3.4c-l. The behavior of λc at
this wavenumber jump is summarized in Fig. 3.4n, where we present λc over ε for S−

i,T 1
and S+

i,T 1. As can be seen λc(S+
i,T 1) assumes values close to zero for 0.25 ≤ ε ≤ 0.78

but increases significantly for ε → 0. In fact, for ε = 0.005 λc(S−
i,T 1) = 1.021 is

approximately equal to λc(S+
i,T 1) = 0.988. For ε < 0.005 λc(S+

i,T 1) is even significantly
higher than λc(S−

i,T 1). This behavior of λc is caused by a different type of curves of
neutral stability which become critical at S+

i,T 1. For a visualization of this process, Fig.
3.5a shows the critical neutral stability curves for S−

i,T 1 and S+
i,T 1 for selected values of

ε ≥ 0.0526. As can be seen for S−
i,T 1 wide curves, associated with large values of λ are

critical. Instead for S+
i,T 1 narrow curves associated with small values of λ are critical

(indicated with S−
i,T 1 and S+

i,T 1 in Fig. 3.5a). However, as ε decreases, the shape and
position of the neutral stability curves at S+

i,T 1 significantly changes which is shown
in Fig. 3.5b. For ε = 0.010 the curve at S+

i,T 1 (thin red line) is significantly closer to
the curve at S−

i,T 1 (thick red line) compared to the curves in Fig. 3.5a. For ε = 0.005
the curve at S+

i,T 1 (thin orange line) attains almost the same shape and position as the
curve at S−

i,T 1 (thick orange line). For ε = 0.0025 the curve at S+
i,T 1 is even located at

significantly higher values of λc compared to that of S−
i,T 1.

As Si increases further within region II λc increases up to a global maximum and
then decreases again, as can be seen in Fig. 3.4c-l. Thereby λc shows a non-continous
behavior exhibiting several jumps which result in a fan shaped pattern, that becomes
more pronounced for larger values of ε (Fig. 3.4i-l) and is associated with jumps in nc.
This fan-shaped pattern, can be seen more clear in Fig. 3.4m, where we show a close up
of λc over Si for ε = 0.333. These fan-shaped pattern and jumps become also visible for
ωc as will be discussed later in the text. This behavior of λc, related to jumps in nc, has
been reported by Cottrel and Pearlstein (2004) (for ε = 0.33), Cottrel et al. (2004) (for
ε =0.129). As concluded by Cottrel and Pearlstein (2004) this behavior becomes less
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Figure 3.4: λc as function of ε and Si for the IRSPF. Red line: Transition from I to II where
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Figure 3.5: Shapes of the critical curves of neutral stability at the first wavenumber jump
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indicate neutral stability curves at S+

i,T 1. Associated values of nc are indicated with the
integer numbers. a) Neutral stability curves for ε ≥ 0.0526 b) Neutral stability curves for
ε < 0.0526

apparent for smaller ε as here nc assumes higher values and thus the relative changes
(∼ nc+1

nc
) of the nc dependent terms in the disturbance equations are less pronounced

when nc decreases by 1.

λc in region III (Si ≥ S+
i,T 2): At the transition from II to III λc undergoes a jump to

lower values which can be seen clearly from Fig. 3.4o where λc(S−
i,T 2) and λc(S+

i,T 2) are
presented as function of ε. The amplitude of the wavenumber jump thereby decreases
with decreasing ε. In fact, for ε < 0.07 λc remains approximately constant during
the region transition at Si,T 2. It is noteworthy that for all ε considered λc(S+

i,T 2)
assumes values of 1.56 < λc < 1.62 in III. Subsequently, througout region III λc remains
approximately constant for increasing values of Si.

3.1.1.3 Evolution of ωc

ωc in region I (10−5 ≤ Si ≤ S−
i,T 1): Fig. 3.6a and Fig. 3.6b show ωc over Si

for 0.0025 ≤ ε ≤ 0.78 and 0.005 < ε < 0.1, respectively. Similar to λc, ωc remains
approximately constant within region I (Fig. 3.6a) for fixed values of ε, thereby assuming
values inbetween ωc ≈ 0.269 for ε = 0.0025 and ωc ≈ 0.020 for ε = 0.78.
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ωc in region II (S+
i,T 1 ≤ So ≤ S−

i,T 2): As can be seen from Fig. 3.6a and Fig. 3.6b
during the transition to II ωc undergoes a jump as well. Fig. 3.6m, displays ωc(S−

i,T 1)
vs ωc(S+

i,T 1) as function of ε. Here ωc drops to lower values at S+
i,T 1 for ε > 0.0323 and

remains approximately constant for ε = 0.0323. For ε < 0.0323 instead ωc jumps to
higher values (Fig. 3.6m). Fig. 3.6m further reveals that ωc(S+

i,T 1) increases sharply as
ε decreases. With Si further increasing in region II ωc increases up to a global maximum
and then decreases again (Fig. 3.6c-l). During the decrease ωc jumps several times as
Si increases, resulting in a fan shaped pattern as described for λc. These jumps are
associated with jumps in nc and are more pronounced for larger values of ε (see Fig.
3.6j,k,l).

ωc in region III (Si ≥ S+
i,T 2): During the transition from II to III ωc drops to lower

values with the magnitude of the jump increasing with increasing ε as shown in Fig.
3.6n. Hence, with increasing Si, ωc approaches 0 within region III for all ε considered
(Fig. 3.6a). This means the critical disturbance becomes steady within region III for all
ε, which is consistent with the well kown time independent Taylor Couette instability
as also concluded from Cottrel and Pearlstein (2004) for ε = 0.333. As will be shown in
the next section the disturbance also becomes axissymmetric here as nc = 0, such that
the disturbance motion attains the shape of the well known torodial Taylor-Couette
vortices.

3.1.1.4 Evolution of nc

nc in region I (10−5 ≤ Si ≤ S−
i,T 1): Fig. 3.7a and Fig. 3.7b show nc over Si for

0.0025 ≤ ε ≤ 0.78 and 0.0025 < ε < 0.1, respectively. Fig. 3.7c-q show nc as function of
Si for selected values of ε, with Fig. 3.7h-l being a close up of Fig. 3.7c-g. For ε ≥ 0.1429
the azimuthal wavenumber nc remains constant for fixed values of ε within region I for
Si < S−

i,T 1. Thereby ωc assumes values in the range of −2 < nc < 3 for different ε (Fig.
3.7a). It is remarkable that nc = −1 for 0.762 ≤ ε ≤ 0.785 and nc = −2 for ε = 0.403
while nc is positive for all other ε. To our knowledge, it was never reported before that
negative azimuthal wavenumbers become critical for SPF with µ = 0 (Rayleigh unstable
azimuthal component). Instead, negative wavenumbers have solely been reported for
SPF with µ > η2 (Rayleigh stable azimuthal component) (Cottrel and Pearlstein 2004;
Cottrel et al. 2004; Meseguer and Marques 2005). For smaller values of ε (ε < 0.1429),
nc exhibit jumps as Si increases thereby exhibiting a stair step behavior (Fig. 3.7a,b).
For 0.0230 ≤ ε ≤ 0.0526 nc jumps in a pattern of nc = 0, 1, 2 for increasing Si (Fig.
3.7d,e,i,j). This has been reported by Cottrel et al. (2004) for ε = 0.0256. However
for 0.0075 ≤ ε ≤ 0.0230 nc jumps in a pattern of nc = 0, 1, 2, 1 and for ε ≤ 0.005 nc

even exhibits a pattern of nc = 0, 1, 2, 1, 0 (Fig. 3.7b and Fig. 3.7c,h). The fact that nc

drops back to 0 is a remarkable observation. Hence, obviously for ε ≤ 0.005 increasing
swirl first triggers non-axissymmetric disturbances (nc ≤ 2) but then damps those
non-axissymmetric disturbances such that axissymmetric disturbances become critical
again as Si increases further within region I.
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nc in region II (S+
i,T 1 ≤ So ≤ S−

i,T 2:) During the transition from I to II nc jumps to
higher positive values. Here the wavenumber behind the jump increases sharply with
decreasing ε as can be seen from (Fig. 3.7r), where we show nc(S−

i,T 1) and nc(S+
i,T 1) as

function of ε. In particular nc jumps from 0 to 2838 for ε = 0.0025 while it jumps from
−1 to 2 for ε = 0.78 at S+

i,T 1 (Fig. 3.7r,q). Previous works reported maximum nc values
of 7, 21 and 149 for ε = 0.0256, 0.129 and 0.333, respectively (Cottrel and Pearlstein
2004; Cottrel et al. 2004). The results in Fig. 3.7r reveal there is a clear trend when
ε → 0. An explanation for this behavior is, that the narrower the gap, the more spiral
shaped disturbances (with an aspect ratio of O(1)) can arrange in azimuthal direction.
As discussed before λc and ωc also increase sharply as ε → 0. In fact, at S+

iT 1 λc, ωc

and nc increase in the same manner when ε → 0 such that the speed of the disturbance
wavefront cs = |ωc/

√
n2

c + λ2
c | is in the order of O(10−3) for all ε considered. At the

same time the axial wavespeed (cx = ωc/nc) increases monotonously and then decreases
again as ε → 0 (see Fig. A.5) in the appendix. For all ε nc assumes a global maximum
at S+

i,T 1. As Si increases further within II nc drops in steps of 1 till nc reaches 1 at the
end of region II. This step-wise decrease can be seen clearly in Fig. 3.7m-q. These jumps
of nc are associated with a fan-shaped pattern of λc and ωc as mentioned previously.

nc in region III (Si ≥ S+
i,T 2): For all ε considered nc jumps from nc = 1 to

nc = 0 at S+
o,T 2 during the region transition from II to III (Fig. 3.7s) and remains

constant afterwards in region III (Fig. 3.7a). As will be shown in section 3.21, this is
associated with toriodial disturbances, that move with an axial speed which decreases
to approximately 0 as Si increases to 105. This coincides with the finding of Cottrel
and Pearlstein (2004); Cottrel et al. (2004) for ε = 0.0256, 0.1299 and 0.333.

3.1.1.5 Intermediate conclusions for phase maps of the IRSPF

Using the swirl parameter Si and a Reynolds number based on the resulting velocity,
2D phase maps of the stability behavior of the IRSPF were generated in a swirl range of
10−5 ≤ Si ≤ 105. While till date only point-wise information at fixed values of ε (0.0256,
0.1299 and 0.333, Cottrel and Pearlstein 2004; Cottrel et al. 2004) over the full swirl
range was available, the present results show the influence of ε as a quasi continuous
variable. Three regions (I, II, III) were identified for all values of ε, associated with
a TSI (I) and centrifugal instabilities (II, III) in agreement with previous works for
individual values of ε. It was revealed, that the boundaries change up to four orders of
magnitude (in Si) depending on ε as centrifugal effects are pronounced with increasing
curvature. Previously unknown details were uncovered in regions I and II. It was shown
that negative azimuthal wavenumbers can be triggered in the first region for ε = 0.403
and for ε ≥ 0.762. Further, while it was known before that nc jumps from 0 to 1 to
2 for ε = 0.0256 in region I (Cottrel et al. 2004), the present results revealed that
nc jumps from 0 to 1 to 2 and then back to 1 and finally to 0 for ε ≤ 0.005 as Si

increases. This shows, that increasing swirl triggers non-axisymmetric modes and then
damps non-axisymmetric modes compared to axisymmetric modes within region I. It
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was discovered, that at the transition to II nc increases sharply for decreasing values
of ε. This is consistent with the appearance of an increasing number of spiral shaped
disturbances (which similar aspect ratio) within the gap in azimuthal direction. It was
shown that for ε < 0.005 λc jumps to significant higher values behind the transition
and increases sharply as ε → 0. A similar behavior was also discovered for ωc. In fact,
the ratio of ωc, λc and nc directly behind the first transition is such that the resulting
speed of the disturbance wavefront cs = ωc/

√
n2

c + λ2
c) is in the order of ≈ O(10−3) for

all ε considered. Thereby, the axial wavespeed cx = ωc/λc increases monotously and
then decreases for ε → 0 behind the first transition.

3.1.2 Rec, λc, nc on ε for the Outer Rotation Spiral Poiseuille
Flow (ORSPF)

In this section we consider the evolution of Rec, λc, ωc and nc as function of ε and So

for the ORSPF analogous to the IRSPF in section 3.1. First, the general behavior of
Rec will be shown. For this, Fig. 3.8a shows the evolution of Rec as a function of So

and ε in the range of 0.005 < ε < 0.78. Fig. 3.8b complementary shows a close-up for ε

ranging from 0.005 to 0.1 and So ranging from 10−1 to 101. In contrast to the IRSPF
case, we did not consider ε < 0.005 here, because for such low values of ε Rec increases
sharply beyond values of Rec > 1.5 · 105 with increasing So. As mentioned in section
3.1.1, in order to reduce the computational effort we restricted our computations to
Rec < 1.5 · 105.

From Fig. 3.8a it becomes evident, that at low values of So (O(10−5) ≤ So ≤ O(10−2))
the behavior of Rec is approximately similar for all ε considered and Rec remains constant
at values of O(104)...O(105). However, at intermediate swirls (O(10−2) ≤ So ≤ O(100))
for ε ' 0.07 Rec drops sharply as So increases and then increases again as So increases
further. For ε < 0.07 Rec increases monotonously at intermediate swirls with increasing
So. At larger swirls (So ' O(101)) Rec increases strongly for all ε considered. This
increase is pronounced for ε < 0.55 such that no data is presented here at larger So as
Rec exceeds the values considered in the computations.

Similar to the IRSPF, the evolution of Rec, λc, ωc and nc for the ORSPF can be divided
into three regions, which are indicated by the red and the magenta lines in Fig. 3.8a,b
and denoted as IO, IIO and IIIO. Thereby, the red line indicates the So value where
the phase transition from IO to IIO occurs. The corresponding So value, where the
transition occurs, will be hereafter referred to as So,T 1. Analogous, the magenta line
indicates the transition from IIO to IIIO and the corresponding So value is hereafter
referred to as So,T 2. In the following, the superscripts “-” and “+” refer to a state just
before and just behind the transition, respectively.

In section 3.2 it will be shown, that in I, IO a Tollmien-Schlichting instability (TSI) is
present while in II, III and IIO centrifugal instabilities are present. In IIIO the instability
features different characteristics compared to all other regions. Before discussing details
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on the evolution of Rec as function of So, here the dependence of So,T 1 and So,T 2 on ε

will briefly be discussed. The red line in Fig. 3.8a shows that So,T 1 behaves similar
to Si,T 1 as discussed for the IRSPF in Sect. 3.1. Like Si,T 1, So,T 1 decreases with
increasing ε, thereby assuming a similar “S”-shape, but generally attains higher values
than Si,T 1, ranging from So,T 1 = 0.000284 for ε = 0.785 to So,T 1 = 0.889 for ε = 0.0513.
Thereby, for ε ≤ 0.4 the difference between Si,T 1 (IRSPF) and So,T 1 (ORSPF) is up
to one order of magnitude. This reveals, for the first time, that the transition from a
TSI to a centrifugal instability occurs at much higher swirl parameters in the ORSPF
for ε ' 0.4. For ε > 0.4 Si,T 1 and So,T 1 exhibit a significant similarity, which can be
seen from Fig. 3.9a where a direct comparison of Si,T 1 and So,T 1 is performed. For
smaller ε, the ORSPF features a striking difference compared to the IRSPF. Namely, the
transition from IO to IIO solely occurs for ε ≥ 0.0513 for the ORSPF. For ε < 0.0513 a
direct transition from IO to IIIO is observed for the ORSPF, which also can be seen
clearly in Fig. 3.8b.

The swirl parameter at the second transition (IIO to IIIO, magenta line in Fig. 3.8a)
assumes a minimum of So,T 2 = 1.26 at ε = 0.0615 and increases for both decreasing or
increasing values of ε. The maximum value of So,T 2 = 37.605 is attained at ε = 0.785
for the ε considered in this work. Fig. 3.8a reveals that the So range associated with
IIO increases monotously with increasing ε thereby covering four orders of magnitude.
Hence, the swirl range over which a centrifugal instability is dominant depends strongly
on ε. In Fig. 3.9b a comparison of Si,T 2 (red dots) and So,T 2 (blue dots) is performed.
It shows that for ε < 0.23 So,T 2 is smaller than Si,T 2 while ε > 0.23 So,T 2 is larger than
Si,T 2.

3.1.2.1 Evolution of Rec

Rec in region IO (10−5 ≤ So ≤ S−
o,T 1): In general, for most values of ε (0.088 ≤ ε ≤

0.66) there is just a slight variation of Rec in region IO as can be seen from Fig. 3.8a,b.
For each ε in the range of 0.035 < ε ≤ 0.0704 the flow assumes a global minimum in
region IO around 10−2 < So < 10−1 (see black dots in Fig. 3.8a) and is stabilized as
So increases further. However, the aforementioned minima are not prominent, and not
visible for instance in Fig. 3.8e. For 0.005 ≤ ε ≤ 0.035, the outer rotation has a purely
stabilizing effect. This can be seen clearly by position of the minimum value of Rec

(black dots) in Fig. 3.8a which is at the lowest computed So value (So = 10−5). This
means with increasing swirl the flow is stabilized in region IO for 0.005 ≤ ε ≤ 0.035. This
stabilization is signficant and clearly visible at the end of region IO in Fig. 3.8c,d. To the
authors best knowledge this is the first time such a stabilizing effect was revealed for the
ORSPF. Figure 3.8m, shows the relative change of Rec. The relative change is defined
analogous as for the IRSPF as (Rec(S−

o,T 1) − Rec(So = 10−5))/Rec(So = 10−5) × 100 .
Here, it can be clearly seen that the change of Rec remains below 5% for 0.088 ≤ ε ≤ 0.66
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at the end of region IO. In contrast, for smaller or larger values of ε we observe a
significant stabilization or destabilization, respectively. As can be seen Rec increases by
about 92% within IO for ε = 0.005 and is decreased by about 22.23 % for ε = 0.785.

Rec in region IIO (S+
o,T 1 ≤ So ≤ S−

o,T 2): At So,T 1 the flow transits from IO to IIO
and Rec collapses for ε ≥ 0.0739 as So increases further (see red lines in Fig. 3.8a,b). The
collapse is also clearly visible from Fig. 3.8g-l. For ε ≥ 0.0739 Rec decreases in region
IIO until reaching its minimum value as can be seen from the black dots in Fig. 3.8a,b.
Thereby, the minimum value of Rec decreases with increasing ε, which can be seen clearly
by comparing Fig. 3.8g-l. The destabilization that occurs in region IIO is visualized in
Fig. 3.8n where we show the minimum Rec achieved within 10−5 ≤ So ≤ 105 (red line)
vs. the critical Reynolds number at So = 10−5 (blue line) as a function of ε. Here it

92



3.1 Discussion of phase maps

can be seen, that for ε ≥ 0.0739 min(Rec) (red line) attains significantly lower values
compared to Rec at So = 10−5 (blue line). Further it is revealed that the minimum
Rec decreases monotonously with increasing ε. In fact, the decrease of the Reynolds
number within region IIO, defined as (min(Rec) − Rec(S+

oT 1))/Rec(S+
oT 1) × 100 is well

over 90% for ε > 0.2 (see Fig. A.4 in the appendix). This reveals two interesting
details about the outer rotation within region IIO. First, outer rotation is capable of
tremendously destabilizing the flow. Second, ε is the key parameter which determines
the minimum critical Reynolds number that can be achieved. For all ε ≥ 0.0739
Rec assumes its minimum value at swirl parameters inbetween 0.58 < So < 0.83 (see
black dots in Fig. 3.8a). This reveals that for ε ≥ 0.0739 the minimum Rec occurs
at similar values of So, where the axial and the azimuthal velocity component are at
comparable magnitudes. As So increases further within IIO Rec starts to increase again
for ε ≥ 0.0739 as can be seen from Fig. 3.8f-l. As will be shown in section 3.2.3.3 this
increase is related to an increased retransfer of kinetic disturbance energy to the base
flow. For 0.0632 ≥ ε ≥ 0.0704 Rec first decreases slightly in region IIO, however Rec

does not drop below Rec(So = 10−5) which can be seen exemplary for ε = 0.0704 in Fig.
3.8f. After assuming a local minimum Rec increases sharply for 0.0632 ≥ ε ≥ 0.0704 as
So increases further.

For 0.0513 ≤ ε ≤ 0.0632, there is no drop in Rec within region IIO such that Rec

increases monotonously here (see ε = 0.0526 in Fig. 3.8e). For 0.0513 ≤ ε ≤ 0.059,
there is a transition to IIO but then the flow switches back to IO. This transition back
to IO is indicated with the white line in Fig. 3.8a,b. For 0.0513 ≤ ε ≤ 0.0526 the flow
even switches several times between IO and IIO before falling back to IO. However,
the behavior of Rec is not affected significantly by these multiple region transitions,
except for exhibiting slight kinks, which are associated with jumps in nc. This multiple
switching behavior that can be solely observed for 0.0513 ≤ ε ≤ 0.0526 will be discussed
later in detail for λc, ωc and nc. For ε < 0.0513 there is no transition to region IIO (see
Fig. 3.8b).

Rec in region IIIO (So ≥ S+
o,T 2): With So increasing further the ORSPF transits

from IIO to region IIIO. As there is no region IIO for ε < 0.0513 the ORSPF directly
transits from IO to region IIIO.

In region IIIO for ε ≥ 0.569 Rec increases up to Rec = O(105) and assumes a plateau
around So = O(103) as shown exemplary for ε = 0.785 in Fig. 3.8l. This is in agreement
with the work of Deguchi (2017) who found there exists a linear stability for Rayleigh
stable Taylor Couette flow (So → ∞, µ → ∞). As described in section 1.2.1.1 the
extended Rayleigh criterion (Synge 1938) states that viscous TC flow is stable for
µ > η2 such that there would exist no finite Rec (Rec → ∞). However, this criterion
only accounts for axissymmetric disturbances (nc = 0). Later it will be shown that
nc = 1 for ε ≥ 0.569 in region IIIO such that the criterion of Synge, which only holds
for nc = 0, does not apply. For smaller curvature parameters (ε < 0.569), Rec quickly
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

grows to values beyond Rec = 1.5 · 105 in region IIIO (see Fig. 3.8a). Thereby, with
decreasing ε Rec blows up at much lower values of So, which becomes evident from
comparing Fig. 3.8h-k. This can be also seen clearly in Fig. 3.8a, by looking at the
right side of the magenta line in the range of 0.059 ≤ ε < 0.569. As ε decreases, the
area where no data is available (Rec > 1.5 · 105) is shifted to the left (Fig. 3.8a).
For 0.08859 ≤ ε ≤ 0.41 Rec undergoes a discontinuity during the transition from IIO
to IIIO and jumps to significantly higher values at S+

o,T 2 which can be seen from Fig.
3.8g-j. These jumps are caused by the formation and the decay of islands of instability,
which are illustrated in Fig. 3.10. As can be seen in Fig. 3.10 the closed bottom
neutral stability curve (nc = −1) associated with a lower Re shrinks as So increases and
ultimatively disappears for So values greater than 4.103. Hence, the top curve (nc = 1),
which is associated with a much higher Re, becomes critical. This process induces jumps
in Rec. These islands have been described also as disconnected branches by Mesequer
and Marques (2002); Meseguer and Marques (2005) and Cottrel and Pearlstein (2004)
for the co-rotation case (ε = 0.333, µ > η2). Our results reveal that these phenomena
can also appear if only the outer cylinder rotates. Hence, the disconnected branches
appear to be associated with the outer cylinder rotation. Please note that these islands
of instability are associated with multiple-valued stability boundaries such that for the
case depicted in Fig. 3.10 three values for Rec can be found as described by Mesequer
and Marques (2002) and Cotrell and Pearlstein (2006). However, automatized tracking
of multiple valued stability boundaries greatly increases the complexity of the computer
code and increases the computational effort. In order to uncover a wide parameter
range, we neglect those hidden branches which simplifies the computation procedure and
soley consider the lowest Rec associated with those “islands of instability’. Nevertheless
with the present results the parameter space where those phenomena occur is precisley
known, such that follow up works can properly track those hidden branches. From tests
performed for selected ε we conclude that complete tracking would yield triple-valued
Rec here.

In Fig. 3.8o we show Rec(S−
o,T 2) and Rec(S+

o,T 2) as well as the percentage difference as
function of ε. This plot reveals, that the difference between Rec(S−

o,T 2) and Rec(S+
o,T 2)

increases systematically with increasing ε, till reaching a maximum of 150% at ε = 0.185
and then decreases again with ε increasing further. We recall here that the numerical
computations are restricted to Rec < 1.5 · 105 within the present work such that no
data is obtained for the So-ε combinations in the lower right corner of Fig. 3.8a,b.

3.1.2.2 Evolution of λc

λc in region IO (10−5 ≤ So ≤ S−
o,T 1): Fig. 3.11a and Fig. 3.11b depict λc over

So for 0.005 ≤ ε ≤ 0.78 and 0.005 ≤ ε ≤ 0.1, respectively. For fixed values of ε λc

just varies slightly within region IO (Fig. 3.11c). In particular, for smaller values of
ε (ε < 0.212) an increase in So leads to slight jumps in λc that can be seen from Fig.
3.11f-h. These jumps are associated with small jumps of nc within region IO as will
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Figure 3.11: λc as function of ε and So for the ORSPF. Red line: Transition IO to IIO where
So = So,T 1, magenta line: transition IIO to IIIO where So = So,T 2. a) λc as function of ε
and So for 0.005 ≤ ε ≤ 0.78 b) λc as function of ε and So for 0.005 ≤ ε ≤ 0.1 c-l) λc over So

for selected values of ε. m) λc over So for ε = 0.0526 n) λc(So,T 1)− vs λc(So,T 1)+, solid line:
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Figure 3.12: Shapes of the critical curves of neutral stability at the first wavenumber jump
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o,T 1. Thick lines indicate neutral stability curves at S−

o,T 1, while thin lines
indicate neutral stability curves at S+

o,T 1. Associated values of nc are indicated with the
integer numbers.

be discussed later on. Furthermore, for small values of ε a slight decrease of λc at the
end of IO becomes evident. This effect becomes more significant as ε decreases and is
visible in Fig. 3.11c,d.

λc in region IIO (S+
o,T 1 ≤ So ≤ S−

o,T 2): The transition from IO to IIO is accompanied
with λc dropping to significantly lower values (see Fig. 3.11a,b). In Fig. 3.11n, where we
show λc(S−

,T 1) and λc(S+
,T 1) as function of ε it can be seen that λc increases sharply for

decreasing values of ε behind the jump (λc(S+
,T 1)). However in contrast to the IRSPF,

λc(S+
,T 1) is always less than λc(S−

,T 1). Similar to the IRSPF these jumps in λc are
associated with different curves of neutral stability becoming critical at S+

o,T 1, which is
illustrated in Fig. 3.12. As can be seen at S+

o,T 1 narrow stability curves, associated with
lower values of nc become critical. Thereby the curves become wider as ε increases. As
So increases in region IIO, λc increases up to a local maximum with the corresponding
So value matching approximately with that of the minimum Rec (see Fig. 3.11a). With
So increasing further λc decreases again. Thereby λc exhibits a piecewise continuous
behavior and jumps several times as So increases. This behavior results in a fan shaped
λc curve which can be clearly seen in Fig. 3.11g-l and has been discussed for the IRSPF
in Sect. 3.1. Also here, these jumps are associated with jumps of nc.
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As mentioned before for 0.0513 ≤ ε ≤ 0.059 the flow transits back to IO as So increases
further and λc jumps accordingly as can be seen from the white line in Fig. 3.11a,b.
For 0.0513 ≤ ε ≤ 0.0526, the flow even switches several times between IO to IIO before
falling back to IO. These switches are associated with a finger like pattern in λc as
function of So and ε which becomes visible only with a further close up than given in
Fig. 3.11b. Such a close up will be given later for nc. In Fig. 3.11m we show a detailed
plot of λc for ε = 0.0522 in the range of 0.4 < So < 1.8 to visualize this behavior. As
can be seen with increasing So λc jumps multiple times between values associated with
IO and IIO. These jumps are associated with radical changes of the budgets of K and
the shear stresses which is related to changes of the instability mechanism and hence
allows for a clear assigment to region IO and IIO. Typical distributions found in IO
and IIO are discussed in section 3.2.3. The changes in the production terms are later
visualized as function of So in section 3.2.6. The transition from IIO to IO means
that increasing swirl damps centrifugal instabilities such that TSI instabilities become
critical again. Finally for ε < 0.0513, no transition from IO to IIO and hence no jump
in λc occurs. Instead the flow directly transits from IO to IIIO (see Fig. 3.11b).

λc in region IIIO (So ≥ S+
o,T 2): While the flow transits to IIIO λc jumps again as

can be seen from Fig. 3.11a,b. In Fig. 3.11o we show λc before (λc(S−
o,T 2)) and behind

the jump (λc(S+
o,T 2). The plot reveals that, λc undergoes a positive jump for ε > 0.088.

Thereby λc(So,T 2)+ attains a maximum of 0.418 at ε = 0.428. For 0.059 < ε ≤ 0.088
λc also undergoes a jump with λc(S−

o,T 2) and λc(S+
o,T 2) being significantly higher than

for ε > 0.088. For 0.005 < ε ≤ 0.059 there is direct a transition from IO to IIIO (Fig.
3.11b) and λc drops from λc ≈ 0.95 to 0.489 < λc < 0.613 as can be seen from Fig.
3.11o.

For ε ≥ 0.569 λc quickly assumes values around 0.36 < λ < 0.47 as So reaches O(103) in
region IIIO (Fig. 3.11l). For 0.0811 < ε < 0.569 with increasing So λc increases slightly
within the range that is captured by our computations, as can be seen for ε ≥ 0.11 in
Fig. 3.11g-k. For 0.0513 < ε ≤ 0.0811 λc jumps several times assuming values inbetween
0.3 ≤ λc ≤ 0.7 resulting in a piece wise continuous pattern (Fig. 3.11b). These jumps
are associated with jumps of nc that occur in IIIO as will be discussed hereafter. For
ε < 0.0513 the flow directly transits from IO to IIIO, hence λc drops from λc ≈ 0.95
to λc ≈ 0.50 (see Fig. 3.11b,c,d). With So further increasing within region IIIO λc

undergoes jumps between values of 0.3 ≤ λc ≤ 0.7 that are associated with jumps in nc

(see Fig. 3.11b).

3.1.2.3 Evolution of ωc

ωc in region IO (10−5 ≤ So ≤ S−
o,T 1): In Fig. 3.13a and Fig. 3.13b we present

λc over So for 0.005 ≤ ε ≤ 0.78 and 0.005 ≤ ε < 0.1, respectively. For for ε ≥ 0.11,
ωc just shows slight variations at fixed values of ε in region IO. Thereby, ωc assumes
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

values between 0.0208 ≥ ωc ≥ 0.269 with a maximum decrease of 7% in this region.
For ε < 0.11 a significant decrease becomes evident at the end of IO which becomes
increasingly severe as ε decreases and can be clearly seen from Fig. 3.13c,d.
ωc in region IIO (S+

o,T 1 ≤ So ≤ S−
o,T 2): During the transition from IO to IIO,

there is a jump in ωc (see Fig. 3.13a,b). Our results show here that for ε ≥ 0.739
ωc jumps to positive values, while for ε ≤ 0.724 assumes negative values behind the
jump. In Fig. 3.13n we show ωc before (ωc(So,T 1−)) and behind the transition from I
to II (ωc(So,T 1+)). As can be seen the discrepancy between ωc(So,T 1−) and ωc(So,T 1+)
increases as ε decreases. Further, as ε increases the magnitude of ωc(So,T 1+) grows,
thereby exhibiting a similar behavior as λc(So,T 1+) except for attaining negative values
(see Fig. 3.13n, Fig. 3.11n). Within region IIO for large values of ε, ωc first remains
almost constant and then drops sharply as So increases (see Fig. 3.13l). Hence, ωc

decreases further with increasing So and assumes a global minimum for each ε within
region IIO (see black dots in Fig. 3.13a). This behavior is more pronounced for larger
values of ε and the value attained at the minimum decreases with increasing ε (see Fig.
3.13h-l).

As mentioned above for 0.0513 ≤ ε ≤ 0.059 with So increasing the flow transits
to region IIO and falls back to region IO before it finally reaches region IIIO. For
0.0513 ≤ ε ≤ 0.0526 there are even multiple region transitions and the flow switches
several times between IO and IIO before falling back to IO and finally switching to
IIIO. Thereby ωc jumps accordingly as can be seen clearly in Fig. 3.13m where we
show ωc for ε = 0.0522 in the range of 0.4 ≥ So ≥ 1.8. For ε < 0.0513 there is a direct
transition from IO to IIIO and hence no jump in ωc occurs which can be associated
with a transition to IIO (see Fig. 3.13b).
ωc in region IIIO (So ≤ S+

o,T 2): While the ORSPF transits from IIO to IIIO for
ε > 0.059, ωc jumps from negative values to positive values (see Fig. 3.13a,b). Fig.
3.13o compares ωc before (ωc(S−

o,T 2)) and behind the second transition (ωc(S+
o,T 2)) as

function of ε. The plot reveals that ωc(S−
o,T 2) decreases while ωc(S+

o,T 2) increases with
ε increasing. In sum, the discrepancy between ωc(S−

o,T 2) and ωc(S+
o,T 2) increases with

increasing ε. For ε ≤ 0.059 flow transits from region IO to IIIO and ωc remains positive
while exhibiting a slight jump, as can be seen from Fig. 3.13o.

As the swirl parameter reaches So = O(102) ωc assumes a plateau within IIIO for
ε ≥ 0.569 (see Fig. 3.13a). Thereby ωc attains values ranging from ωc = 0.062
(ε = 0.569) to ωc = 0.2043 (ε = 0.785).
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3.1.2.4 Evolution of nc

nc in region IO (10−5 ≤ So ≤ S−
o,T 1): Fig. 3.14a and Fig. 3.14b depict nc over So

for 0.005 ≤ ε ≤ 0.78 and 0.005 ≤ ε ≤ 0.1, respectively.

For ε ≥ 0.212 nc does not change as So increases within IO and assumes values of
nc = {−2, −1, 1} (see Fig. 3.14a). It is remarkable that for 0.481 ≤ ε ≤ 0.553
nc = 1 while nc attains negative values for all other ε (or zero for few small ε) within
region IO. Similary, as mentioned before, for the IRSPF we found that nc = −1 for
0.762 ≤ ε ≤ 0.785 and nc = −2 for ε = 0.403 while nc is positive for all other ε. For
ε < 0.212, nc jumps between different values of nc −3 ≤ nc ≤ 0 as So increases in
IO (see Fig. 3.14a,b). Analogous to the IRSPF the number of jumps increases with
ε decreasing: In particular, for ε = 0.2032 nc assumes nc = −3, −2, for ε = 0.1299 nc

assumes nc = −1, −2, for ε = 0.1203 nc assumes nc = 0, −1, −2, −1, and for ε ≤ 0.07041
nc even assumes nc = 0, −1, −2, −1, 0 (see Fig. 3.14c-f). Obviously, similar to the
IRSPF different azimuthal modes are triggered within region IO for small ε. Negative
and positive modes are associated with spirals which are inclined in the same and
opposite direction as the streamlines of the base flow, respectively (Ng and Turner 1982).
In general, the IRSPF triggers positive nc for most values of ε, while the ORSPF triggers
negative nc for most values of ε. However, the present results show, that both negative
and positive nc occur for both the IRSPF and ORSPF such that no generalization can
be made.

nc in region IIO (S+
o,T 1 ≤ So ≤ S−

o,T 2): When the flow transits to IIO nc jumps to
lower negative values (see Fig. 3.14a,b). A more detailed picture of the wavenumber
jump is given in Fig. 3.14n where we present nc(S−

o,T 1) and nc(S+
o,T 1) as function

of ε. As can be seen nc(S+
o,T 1) decreases with decreasing ε, reaching a minimum of

nc = −7 at 0.0553 ≤ ε ≤ 0.096 and then again increases up to nc = −5 for ε = 0.0513
(indicated with the black vertical bar in Fig. 3.14n). As So increases within region IIO
for ε > 0.059 nc increases in steps by +1 till nc reaches -2 (0.059 < ε < 0.088) or -1
(ε ≥ 0.088) (Fig. 3.14b).

For 0.053 < ε < 0.059 throughout region region IIO nc increases step wise to nc = −3
or nc = −2 but then jumps back to nc = 0 associated with a transition to region IO as
indicated with the white line in Fig. 3.14b. For 0.0513 ≤ ε ≤ 0.0526 the behavior is even
more complex and there are multiple switches between IO and IIO with nc jumping
between -6, -5, -4 and 0 and finally jumping back to IO (nc = 0) as So increases. This is
shown exemplary for ε = 0.0522 in Fig. 3.14m. As can be seen, after the first transition
where nc = −6, nc jumps back to zero and then to -5 and so on. In fact, nc forms a
finger-like pattern for 0.0513 ≤ ε ≤ 0.0526 as can be seen in Fig. 3.15a where we present
a further close up of Fig. 3.14b showing nc for 0.3 ≤ So ≤ 1.8 and 0.048 < ε < 0.065.
In the area associated with the finger-like pattern, different neutral stability curves
compete which is depicted for ε = 0.0522 and So = {0.71; 0.779; 0.8264; 0.9158} in Fig.
3.15b-e. As highlighted by the black dot, the neutral stability curves for nc = -6, 0 and
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-5 sequentially become critical as So increases (Fig. 3.15b-d). As we will show later,
this means increasing swirl in the ORSPF can damp a centrifugal instability and force
the flow back into a TSI instability.
nc in region IIIO (So ≥ S+

o,T 2): As the flow transits to IIIO nc jumps to a higher
positive value for all ε considered as can be seen from Fig. 3.14a,b. Detailed information
about nc before and behind the jump is given in Fig. 3.14o where we plot nc(S−

o,T 2) and
nc(S+

o,T 2) as function of ε. Here it can be seen, that for ε ≥ 0.088 nc(S−
o,T 2) assumes

negative values, while nc(S+
o,T 2) is constant at 1. For 0.059 < ε < 0.088 instead nc jumps

from nc = −2 before the jump to nc = 2 behind the jump. For ε < 0.059 where there is
a transition from IO to IIIO nc jumps from nc(S−

o,T 2) = 0, 1 to nc(S+
o,T 2) = {3, ..., 9}

with nc(S+
o,T 2) increasing as ε decreases (Fig. 3.14o).

As So increases further within IIIO different behavior can be observed depending on ε.
Within IIIO, nc remains constant at 1 for ε ≥ 0.0885. For 0.056 < ε ≤ 0.088 nc drops
from nc = 2 to nc = 1 as So increases within IIIO. For ε < 0.056 our results show that
nc decreases in steps of 1 througout region IIIO (see Fig. 3.14b), however as we restrict
our computations to Rec < 1.5 · 105 we do not cover sufficiently high So values to see if
nc drops back to nc = 1 for So further increasing in IIIO.

3.1.2.5 Intermediate conclusions for phase maps of the ORSPF

Previously, to the authors best knowledge, the ORSPF (µ → ∞) has solely been
investigated for ε = 0.333 for low and intermediate swirls (Meseguer and Marques
2005). Here, results for the ORSPF are presented for 107 values in the range of
0.005 ≤ ε ≤ 0.785 extending the available data more than hundredfold. Thereby, for all
ε for the first time higher swirls were investigated. The presented phase maps revealed
that three regions (IO, IIO, IIIO) associated with different instability mechanisms exist
for the ORSPF. The So value associated with these regions changes up to four orders of
magnitude depending on ε. In region IO Rec does not change significantly for ε > 0.0704.
Instead, in region IIO drops sharply with increasing swirl and attains a minimum value,
which decreases monotonously with increasing ε. It was revealed, that in contrast to
the IRSPF, the ORSPF gets stabilized sharply towards the end of region IIO, as the
swirl increases further. Discontinuities in Rec were discovered for 0.00885 < ε < 0.41 at
the transition from IIO to IIIO, associated with a formation and decay of islands of
instability. At the end of region IIIO, we find that a finite critical Reynolds number
exists for large swirls (So = 105, ε ≥ 0.569), which coincides with the findings of Deguchi
(2017) for So → ∞. Curvature parameters of ε < 0.0513 are a special case and region
IIO does not exist such that increasing swirl is strongly stabilizing. To the authors best
knowledge, such a monotonous stabilization with increasing swirl has not been reported
for any configuration of the SPF before. For ε < 0.0513 region IO, associated with a
TSI, persists up to significantly larger swirl parameters compared to the IRSPF (up
to one order of magnitude). Further, it was discovered for 0.0513 ≤ ε ≤ 0.0526, that
the flow switches several times between IO and IIO as the swirl increases. Hence, for
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

certain ε increasing swirl inhibits centrifugal instabilities and can force the flow back to
a TSI. Interesting details were discovered for λc, ωc and nc. Similar to the IRSPF the
amplitude nc jumps to higher absolut values at the transition to IIO, with the amplitude
increasing as ε decreases. However, the amplitude remains smaller than in the IRSPF
(i.e. for ε = 0.074, nc = −7 for ORSPF, nc = 43 for IRSPF). Similar to the IRSPF, at
S+

i,T 1, ωc, λc and nc are in balance such that for all ε the wave front attains a speed
(cs = ωc/

√
λ2

c + n2
c) in the order of O(10−3). Similar to the first transition, at the

transition to IIIO nc increases monotonously with decreasing ε and attains maximum
values of nc = 9 for ε = 0.005. In region IIIO nc is constant at 1 for all ε ≥ 0.569 up to
So = 105.
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3.2 Identification of the involved instability mechanisms in the different regions

3.2 Identification of the involved instability
mechanisms in the different regions

In this section we use the production terms of the Reynolds Shear Stress Transport
Equations (RSSTE, see section A.1.3) for the identification and characterization of
the instability mechanisms involved in the Spiral Poiseuille Flow with Rotating Inner
cylinder (IRSPF) as well as the Spiral Poiseuille Flow with Rotating Outer cylinder
(ORSPF).

3.2.1 Analysis of the benchmark flows

Before investigating and identifying the different instability mechanisms of the IRSPF
and the ORSPF, we apply our identification strategy on the two benchmark cases, viz
the Annular Poiseuille flow (APF) and the Taylor-Couette flow (TCF). While the former
flow is associated with a Tollmien-Schlichting type shear instability (TSI) the latter is
associated with a centrifugal instability (CI). For these two cases, we determined Rec,
λc, ωc and nc for Si = 10−5 (APF) and Si = 105 (TCF) and computed the distribution
of K, the shear stresses and associated production terms as presented in Sect. 2.2.5.
In Fig. 3.16a we show the distribution of K (normalized) as a function of the annular
gap height y for Si = 10−5 and ε = 0.005. The coordinate y = −1 represents the
inner cylinder wall while y = 1 represents the outer cylinder wall. The theoretical
position of the critical layer, whose concept was described in section 2.2.5 and 1.2.1.2,
is determined by equation (2.33) and indicated by the dash dot vertical lines. As can
be seen, K assumes peak values close to the critical layer, while for the major part
of the channel significantly lower values of K become evident (see Fig. 3.16a). The
reason for this distribution is revealed in Fig. 3.16b, which shows the distribution of the
production terms PK(Vϕ) = τrϕdVϕ/dy, PK(Vx) = τrxdVx/dy and ZK = −Vϕτrϕ(1/r)
as a function of the gap height. These are normalized by the maximum of the production
term that has the highest amplitude. In Fig. 3.16b it can be seen, the production of K

due to PK(Vx) is restricted to a region close to the theoretical position of the critical
layer. This is in agreement with the concept of the critical layer as the location where
the most energy is transferred between disturbance and base flow (Maslowe 1986) and
explains while the highest values of K are found at the critical layer. As K contains
the squared disturbance velocities it is always positive. A negative sign of PK(Vx) is
associated with a production (gain) of kinetic disturbance energy. A positive sign of
PK(Vx) means that energy is transferred back to the base flow (loss), such that the
base flow is stabilized (Mott and Joseph 1968a; Sadeghi and Higgins 1991a; Nouar and
Frigaard 2009). As already explained in Sect. 2.2.5, PK(Vx) depends on the distribution
of τxr. Consequently, the distribution of PK(Vx) is similar to the distribution of τxr,
which is depicted in Fig. 3.16c. A peak of production terms close to the maximum
of shear stresses has also been described by Mott and Joseph (1968a); Sadeghi and
Higgins (1991a) for APF and by Nouar and Frigaard (2009) for Couette Poiseuille flow.
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Figure 3.16: Normalized radial distributions of kinetic energy, production terms and shear
stresses for ε = 0.005 in the Annular Poiseuille flow (a-e, APF, Si = 10−5, Rec = 5773.45,
λ = 1.0205, nc = 0, ωc = 0) and the Taylor Couette Flow (f-j, TCF, Si = 105, Rec = 206.02,
λ = 1.563, nc = 0, ωc = 1.21 · 10−5).) Dash dot lines = critical layer. a, f) K as function of
y. b, g) K production terms as function of y. c, h) τrx and τrϕ as function of y. d, i) τrx

production terms as function of y. e, j) τrϕ production terms as function of y.

As can be seen, τxr is zero except close to the locations of the critical layer and attains
opposite signs at both sides of the channel. It should be noted, that even though τrx

assumes both positive and negative values, PK(Vx) = τrxdVx/dy is always negative for
this flow configuration as dVx/dy switches its sign in the channel center.

Figure 3.16d shows the distribution of the production of τrx. The graph reveals that, the
production of τrx is solely due to the axial shear production Prx(Vx), which spans over
the whole gap and undergoes a sign change close to the middle of the gap. Unlike the
shear stresses, the amplitude of Prx(Vx) assumes large values distant from the critical
layer and assumes a maximum and a minimum in the left and right half of the channel,
respectively. Hence, there is a significant discrepancy between the distribution of τrx

and Prx(Vx). The shape of τrx can be explained by the velocity pressure gradient PDrx

(see appendix A.1.3), which is almost reversed to Prx(Vx), but not excatly identical.
Therefore, τrx is cancelled for the most part of the gap, except close to the critical layer
which results in the distribution of τrx as depicted in Fig. 3.16c. We computed the
sum of Prx(Vx) and PDrx for the APF for different values of ε (see appendix A.1.7),
which in fact revealed peaks close to the critical layer. Distant from the critical layer
slight deviations, were observed for smaller ε which are related to numerical errors in
approximating the derivatives (see appendix A.1.7). The viscous terms of the budget of
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τrx (not shown here) are very small here compared to Prx(Vx) and PDrx. The centrifugal
production Zrx(Vϕ) is zero over the whole gap. Finally, Fig. 3.16e shows the production
of τrϕ. As can be seen Prϕ(Vϕ) spreads over the whole gap and assumes a minimum at
the channel center. As before, PD is approximately reversed to Prϕ(Vϕ). Zrϕ,1(Vϕ) and
Zrϕ,1(Vϕ) are zero. The dissipation and viscous dissipation of τrϕ also exhibit a small
amplitude here (not shown). It should be noted, that the overall production of τrϕ here
arises from the small amount of rotation 10−5 and is negligible. It is solely visible from
Fig. 3.16 due to normalization to one. The presented distributions clearly identify the
instability of the APF as a shear instability as the production of the Reynolds stress τrx,
as well as the production of K is due to shear production terms. Furthermore equation
(2.33) yields a location of the critical layer, which matches with the maxima of K and the
maxima of τrx. Hence, we consider the instability present here, as a Tollmien-Schlichting
type shear instability (TSI). Hereafter, the term Tollmien-Schlichting type instability
and shear instability will be used synonymously.

Now we analogously characterize the centrifugal instability of the TCF (µ = 0, Si → ∞).
For this, the second row of Fig. 3.16f-j displays the distribution of K, the production of
K, the Reynolds stresses τrx, τrϕ and the associated production terms for Si = 105. For
Si = 105 the Reynolds number is Rec = 206 while for Si = 10−5 Rec = 5773.45. Hence,
the assumption of large values of Rec, on which the equation (2.33) is based, is not valid.
Therefore, the concept of the critical layer, and equation (2.33) will not be applied here.
As can be seen from Fig. 3.16f in contrast to the APF the distribution of K is not
restricted to a critical layer and spreads over the whole gap width assuming a maximum
close to the channel center. The distribution of PK(Vx), PK(Vϕ) and ZK is displayed
in Fig. 3.16g. As can be seen, solely PK(Vϕ) contributes to the production of K, while
the centrifugal production of K is zero (ZK). Hence, while the instability present in
a Taylor-Couette flow for µ = 0 < η2 is a centrifugal instability, all the production of
K stems from azimuthal shear. In fact, for increasing values of ε ZK increases, but
remains always smaller than PK(Vϕ) (not shown here). This finding is comparable to
that of Moser and Moin (1987) who investitgated curved turbulent channel flow by
means of DNS. They concluced that the transport equation for the (turbulent) kinetic
energy is insensitive to curvature effects. Similarily, Guaus and Bottaro (2007), who
performed a linear stability analysis on curved channel flow noted that the magnitude
of the centrifugal K production term is small. Because for Si = 105 the axial velocity
profile Vx is approximately zero also PK(Vx) is approximately zero. As discussed in
Sect. 2.2.5 PK(Vϕ) is proportional to the distribution of τrϕ as can be seen from Fig.
3.16h. Fig. 3.16j, in which we present the production of τrϕ as function of y, reveals
that the production of τrϕ is mostly due to the centrifugal term Zrϕ,1 which spans over
the whole channel and assumes a minimum close to the channel center. Prϕ(Vϕ) attains
a similar shape but exhibits a significantly smaller amplitude. It should be mentioned
that negative shear stress production terms result in positive shear stresses and vice
versa as can be seen from the RSSTE in section A.1.3.
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The velocity pressure gradient is reversed to Zrϕ,1 and Prϕ(Vϕ). The viscous terms (not
shown) attain a similar shape as PD such that the sum of PD and viscous terms is equal
to the sum of Zrϕ,1 and Prϕ(Vϕ) (see Fig. in A.14 in the appendix). By comparing Fig.
3.16h and j it can be seen, that the distribution of τrϕ is similar to the magnitude of
the production terms Zrϕ,1 and Prϕ(Vϕ).

Overall, the distributions presented in Fig. 3.16g show that in the case of the TCF the
production of K is mostly due to azimuthal shear (PK(Vϕ)). Hence, from the budget
of K it is not possible to identify the instability present in the TCF as a centrifugal
instability. For identification of the instability a closer look on the budget of τrϕ which
contributes to PK(Vϕ) = τrϕdV ϕ/dy is required. As mentioned τrϕ stems from the
centrifugal production term Zrϕ1 in the TCF. Only a neglibigle amount arises from
azimuthal shear Prϕ. Hence, the production of K indirectly depends on Zrϕ1. We
conclude, that a centrifugal instability cannot be identified by the production terms of
the KTE (equations 2.20-2.22) but by the centrifugal production terms of the RSSTE
(equations 2.27-2.31). This finding can be put in analogy to the aforementioned work of
Moser and Moin (1987). They stated that curvature dependent terms have little effect
in the budget of turbulent kinetic energy but are important and not negligible in the
shear stress transport equations in the context of turbulence modelling.

In the following, a TSI will be identified based on the following criteria. First, the
shear stresses must reveal the position of a critical layer in accordance with equation
(2.33). Second, the production of the shear stress, which contributes to the dominant
K production term, stems from shear production. A centrifugal instability will be
identified based on the shear stress, which contributes to the dominant production
term stemming from centrifugal production. While the K production terms seem to
be not suitable for identifying instabilities, it will be shown that they show striking
similarities at the first transition but also differences at higher swirls for the IRSPF
and the ORSPF.

3.2.2 Analysis of the first transition for the IRSPF

Here, we characterize the instability as the flow transits from I to II for the IRSPF
analogous to Sect. 3.2.1. The situation before and behind the transition is referred to
as S−

i,T 1 and S+
i,T 1, respectively, as described in section 3.1.1 and indicated in Fig. 3.2.

The associated critical values of Rec, λc, nc and ωc can be found in the appendix A.1.8.
As Rec attains values of O(103)...O(103) before and directly behind the transition the
condition for equation (2.33) is assumed to be valid. As will be shown, before the
transition a Tollmien-Schlichting instability is dominant while behind the transition a
centrifugal instability is dominant.
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3.2 Identification of the involved instability mechanisms in the different regions

3.2.2.1 Region I: Distributions at S−
i,T 1

From Fig. 3.17a-d which shows the distribution of K before the transition from I to II
(S−

i,T 1) it can be seen that K attains sharp peaks at the position of the critical layer
(dash dots lines). In fact, for S−

i,T 1 the distribution of K for ε = 0.005 is essentially
identical with that of the APF presented in Fig. 3.16a. For increasing ε it can be
seen that the peak close to the outer cylinder shrinks and the area where K is nonzero
reduces. This is associated to the skewing of the axial velocity profile, that comes
apparent at larger values of ε (see Fig. A.1 in section A.1.4).
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For ε = 0.005 the distribution of PK(Vx) for S−
i,T 1 (blue line in Fig. 3.17e) is essentially

identical with that of the APF flow (Fig. 3.16b). For increasing values of ε, as the
velocity profile gets increasingly skewed, the right peak of PK(Vx) shrinks, similar to
the distribution of K (Fig. 3.17f-h). An asymmetric distribution of production terms
for skewed velocity profiles was also reported by Mott and Joseph (1968a) for the
APF. For ε = 0.005 PK(Vϕ) is nonzero and attains a similar distribution as PK(Vx)
with a smaller amplitude (Fig. 3.17e). For ε smaller than ε = 0.005 the magnitude
of PK(Vϕ) becomes even larger than that of PK(Vx) (see Fig. A.6 in the appendix).
The underlying reason is that Si,T 1 increases sharply as ε decreases as shown in section
3.1.1. For ε ≥ 0.0526 Si,T 1 is less than 0.037 while for ε = 0.005 Si,T 1 is 0.439 and for
ε = 0.0025 Si,T 1 is 0.99 so that Vϕ is about the same value as Vx. Hence at S−

i,T 1 the
azimuthal velocity component is significantly larger for small ε, which consequently
affects the azimuthal shear production PK(Vϕ). This is a remarkable difference to the
classical Tollmien-Schlichting instability in a flow with parallel streamlines where the
production of PK can only emerge from PK(Vx). For larger values of ε instead, Si,T 1
is small and PK(Vϕ) remains zero (Fig. 3.17f-h). From comparing Fig. 3.17i and Fig.
3.16c, it can be seen that for ε = 0.005 the shear stress τrx for S−

i,T 1 (blue line) exhibits
a similar shape as for the APF. However, while τrϕ is zero for the APF (Fig. 3.16c)
its amplitude is even larger than that of τrx for the IRSPF with ε = 0.005 at S−

i,T 1
(Fig. 3.17i). This is induced by the significant amount of rotation that is present for
ε = 0.005 at S−

i,T 1 = 0.439. As can be seen from Fig. 3.17j-l τrϕ is nonzero as well for
ε =0.0526, 0.25, 0.78 at S−

i,T 1. However, for these values of ε this is related to azimuthal
wavenumbers of nc 6= 0 being dominant, while for ε = 0.005 nc = 0 (see table A.1). As
further can be seen, as ε increases the right peak of τrx and τrϕ decrease, as already
stated for K.

For all considered ε the distribution of Prx(Vx) exhibits the same characteristics as
the APF (Fig. 3.16d) but gets skewed towards the inner cylinder as ε increases (Fig.
3.17m-p). The contribution of Zrx(Vϕ) is negligible for all considered ε (see Fig. 3.17o,p).

Fig. 3.17q-t reveals that the budget of τrϕ strongly depends on ε. For small ε Prϕ(Vϕ)
is dominant and spreads over the whole gap with a peak close to the channel center (Fig.
3.17q,r). As ε increases, its magnitude decreases significantly (Fig. 3.17s,t). Contrary,
with increasing ε the magnitude of Zrϕ,1(Vϕ) increases and a sharp peak developes close
to the inner cylinder (Fig. 3.17q-t). The contribution of Zrϕ,2(Vϕ) is insignificant.

Overall, the distributions presented in Fig. 3.17 for Si < S−
i,T 1 feature similar char-

acteristics as those presented in Fig. 3.16a-e. The production of the Reynolds stress
(τrx) which is contained in the dominant K production term (PK(Vx)) is due to the
shear production term Prx(Vx). For ε = 0.0025 the dominant K production term is
PK(Vϕ) and the associated Reynolds stress τrϕ stems from azimuthal shear production
Prϕ(Vϕ) (see Fig. A.6 in the appendix). Furthermore, a critical layer becomes evident
from both the distribution of the shear stresses as well as equation (2.33) as predicted
by Cottrel and Pearlstein (2004). Hence, based on the criterias defined in section 3.2.1,
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it is concluded that in region I (Si < S−
i,T 1) a TSI is dominant in the IRSPF. This

is in agreement with the presumption of Cottrel and Pearlstein (2004). Furthermore,
for all ε ≥ 0.0526 in Fig. 3.17 nc 6= 0 (see table A.1). To the authors best knowledge,
the existence of a critical layer for non-axisymmetric disturbances in accordance with
equation (2.33) was proven for the first time for a SPF. Moreover, it was revealed that a
TSI can exist in scenarios where axial and azimuthal flow component attain comparable
magnitudes, such that K production stems also from azimuthal shear production.

3.2.2.2 Region II: Distributions at S+
i,T 1

In fact, equation (2.33) yields two roots for each ε at S+
i,T 1 and even three for ε > 0.735.

However, as will be shown with Fig. 3.18 here, the shear stresses and the production
terms, drastically get redistributed behind the wave number jump during the transition
I to II. Hence, no TSI is present here, and we consider the roots of equation (2.33) as
meaningless in this context.

As obvious from Fig. 3.18a-d, for S+
i,T 1, K spreads widely over the inner half of the

channel, rather than being restricted to a critical layer. This distribution of K results
from the altered distribution of PK(Vx), which now spreads over the inner gap half as
well (see Fig. 3.18e-h). As can be seen for S+

i,T 1 the production of K is exclusively due
to axial shear (PK(Vx)) whereas ZK is approximately zero. By comparing the blue
lines in Fig. 3.18e-h and the blue lines in Fig. 3.18i-l it can be seen, that for S+

i,T 1 the
distribution of the dominant K production term PK(Vx) is almost directly proportional
to the distribution of τrx.

The distributions of Zrx and Prx(VX), as depicted in Fig. 3.18m-p reveal, that for
S+

i,T 1 a centrifugal instability is dominant in the IRSPF. As can be seen clearly from
Fig. 3.18m-p the production of τrx is mostly due to the centrifugal production Zrx and
spreads over the inner half of the gap, thereby assuming a similar shape as τrx and
PK(Vx) (but with a positive sign) for all ε considered.

Figure 3.18q-t shows that Prϕ(Vϕ), Zrϕ,2(Vϕ) as well as Zrϕ,1(Vϕ) spread over the left
side of the channel and form a peak close to the inner cylinder. Thereby the magnitude
Zrϕ,1(Vϕ) is significantly larger than that of the other components, which also shows
that τrϕ emerges from centrifugal production.

Overall, because the shear stress τrx which contributes to the dominant K production
term (PK(Vx)) emerges from centrifugal production Zrx(Vϕ), we conclude that a
centrifugal instability is present at S+

i,T 1. This is in agreement with the findings of
Cottrel and Pearlstein (2004) and Cottrel et al. (2004) for ε = 0.0265; 0.1299 and 0.3333,
who concluded there is a onset of a centrifugal instability at S+

i,T 1. The fact that the K

production stems from axial shear production (PK(Vx)) is a remarkable difference to
the centrifugal instability of the TC flow where the production of K emerges from the
azimuthal shear (PK(Vϕ)). This reveals an interesting feature about the interplay of
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Figure 3.18: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the IRPSF behind the first transition (beginning of II) at S+

i,T 1 for
ε = {0.005; 0.0526; 0.25; 0.78}. Dash dot line = position of critical layer according to
equation (2.33) at S+

i,T 1. a-d) K over y. e-h) Production of K over y. i-l) τrx, τrϕ over y.
m-p) Production of τrx over y. q-t) Production of τrϕ over y.

axial and azimuthal flow at low swirls. While the azimuthal flow plays a dominant role
in the budget of the shear stresses, the axial flow plays a dominant role here in the K

budget. As will be shown in section 3.2.3.3 as the swirl increases within region II, the
azimuthal production of K increases as well and finally becomes dominant at higher
swirls.
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3.2.3 Analysis of the first transition for the ORSPF

Analogous to the IRSPF, it will be shown here that before the transition from IO to IIO
a Tollmien-Schlichting instability is dominant while behind the transition a centrifugal
instability is dominant. By this, the authors best knowledge, for the first time a direct
connection between the effect of rotating inner and rotating outer cylinder is revealed.
The situation before and behind the transition is referred to as S−

o,T 1 and S+
o,T 1, as

described in section 3.1.2 and indicated in Fig. 3.8. The associated critical values of
Rec, λc, nc and ωc can be found in the appendix A.1.8.

3.2.3.1 Region IO: Distributions at S−
o,T 1

Analogous to Fig. 3.17, in Fig. 3.19 we show the distributions of K and the production
of K, the distribution of τrx as well as the production of τrx before the transition from
IO to IIO for the ORSPF. We point out here, as thoroughly discussed in Sect. 3.1.2,
that for the ORSPF no transition to IIO takes place for ε < 0.0513.

From Fig. 3.19a-c, where we show K as function of y, it can be seen that at S−
o,T 1

the distribution of K is almost identical with that of the IRSPF in Fig. 3.17a-d.
This applies also for the production terms PK(Vx), PK(Vϕ) = τrϕdVϕ/dy and ZK(Vϕ)
which are shown in Fig. 3.19d-f. However, the magnitude of PK(Vϕ) for ε = 0.0526 is
signifcantly higher for the ORSPF compared to the IRPSF (compare Fig. 3.17f and
Fig. 3.19d). This is because the transition for ε = 0.0526 in the ORSPF takes place
at S−

o,T 1 = 0.7349 while it takes place at S−
i,T 1 = 0.0419 for the IRSPF. Hence, for

the ORSPF the azimuthal velocity component is significantly larger at the transition
than that for the IRSPF. The distributions of τrx and τrϕ, depicted in Fig. 3.19g-i,
are essentially identical with that of the IRSPF (Fig. 3.17i-l) except for τrϕ being
vertically flipped for the ORSPF. This is a result of the negative wavenumbers which
are dominant for the ORSPF. For ε = 0.785 negative modes are dominant for both the
ORSPF and the IRPSF, resulting in the same sign for τrϕ.

Next, also the distribution of Prx(Vx) as well as the distribution Zrx(Vϕ) is similar to
the IRSPF as can be seen from Fig. 3.19j-l. For smaller values of ε however Zrx(Vϕ) is
nonzero here and exhibits a peak close to the outer cylinder, as can be seen exemplary
for ε = 0.0526. This is induced by the large amount of rotation which is present at
So,T 1 for smaller ε. As mentioned before for ε = 0.0526 the transition takes place at
S−

o,T 1 = 0.7349.

Finally, looking at Fig. 3.19m-o differences can be identified for Zrϕ,1(Vϕ) in the ORSPF
compared to the IRSPF. For ε = 0.0526 Zrϕ,1(Vϕ) is nonzero and exhibits a sharp
peak close to the outer cylinder, which is related to the high amount of rotation at
S−

o,T 1 = 0.7349. For intermediate values of ε two peaks become evident for Zrϕ,1(Vϕ),
while for the IRSPF there was only one. For ε = 0.785 instead Zrϕ,1(Vϕ) feature a
remarkable similarity to the IRSPF except for being horizontally flipped (Fig. 3.19o
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Figure 3.19: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the ORPSF before the first transition (end of IO) at S−

o,T 1 for ε =
{0.0526; 0.25; 0.78}. Dash dot line=position of critical layer according to equation (2.33).
a-c) K over y. d-f) Production of K over y. g-i) τrx, τrϕ over y. j-l) Production of τrx over
y. m-o) Production of τrϕ over y.

and Fig. 3.17t). Prϕ(Vϕ) shows essentially the same distribution except for having a
positive sign while it is negative in the IRSPF (Fig. 3.19o). Zrϕ,2(Vϕ) is approximately
zero for all ε. For all ε Zrϕ,1(Vϕ) counteracts Prϕ(Vϕ).

Overall, the distributions of the shear stresses and the budgets associated with S−
o,T 1 in

Fig. 3.19 (ORSPF) are almost identical with those of Fig. 3.17 at S−
i,T 1 (IRSPF) and

the same conclusions apply here. As a critical layer becomes evident and the shear stress
in the dominant K production terms emerges from shear production, it is concluded
that analogous to the IRSPF a TSI is dominant for the ORSPF at S−

o,T 1. This is in
agreement with Meseguer and Marques (2005) who concluded for ε = 0.333, based on
nc and the behavior of Rec, that here a TSI dominant. In addition, our results provide
a detailed insight in the production of kinetic disturbance energy, the production of
shear stresses and confirm the existence of a critical layer for the first time for both
axisymmetric and non-axisymmetric disturbances. The main difference compared to
the IRSPF is that negative azimuthal modes are triggered for the ORSPF and the
transition takes place at significantly higher swirl parameters (for ε = 0.0526 factor 14)
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Figure 3.20: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the ORPSF behind the first transition (beginning of IIO) at S+

o,T 1 for
ε = {0.0526; 0.25; 0.78}. Dash dot line = position of critical layer according to equation
(2.33). a-c) K over y. d-f) Production of K over y. g-i) τrx, τrϕ over y. j-l) Production of
τrx over y. m-o) Production of τrϕ over y.

which significantly affects PK(Vϕ) and Zrx(Vϕ) for smaller ε. This shows that in the
ORSPF the TSI persists at significantly larger swirls where axial and azimuthal velocity
profile attain similar magnitudes. As will be shown in section 3.2.5 for ε < 0.0513 the
TSI persists even at swirls of So = 4.67 for the ORSPF in region IO.

3.2.3.2 Region IIO: Distributions at S+
o,T 1

Analogous to Fig. 3.18, Fig. 3.20 depicts the distributions of the production terms and
the shear stresses for S+

o,T 1 behind the transition IO to IIO. Similar to the IRSPF case,
equation (2.33) yields one root for 0.0513 ≥ ε < 0.73 and two roots for 0.73 ≥ ε < 0.785,
which are indicated with the dash dot lines here. However, as will be shown in the
following the instability shows evidences of a centrifugal instability and hence we
consider the results of equation (2.33) not as relevant here.
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Obviously, for the ORSPF the distribution of K at S+
o,T 1 is similar to that of the IRSPF

at S+
i,T 1 except for having its peak in the outer gap half (see Fig. 3.18a-d, Fig. 3.20a-c).

Furthermore, for larger values of ε a second small peak becomes evident in the left half
of the gap (Fig. 3.20c). The distribution of PK(Vx) attains a similar shape as for the
IRSPF except for being horizontally flipped (Fig. 3.20d-f).

Also the distribution of τrx assumes a similar shape with the peak being at the outer
gap half. The only remarkable difference to the IRSPF is, that τrx exhibits a small
second negative peak whose amplitude increases with increasing ε (Fig. 3.20g-i). The
distribution of τrϕ is similar to the IRSPF. τrϕ is almost zero for most ε but increases with
decreasing ε as can be seen for ε = 0.0526 where the magnitude of τrϕ is approximately
equal to that of τrx.

From Fig. 3.20j-l it can be seen that Zrx(Vϕ) is dominant in the budget of τrx and
features a strong similarity to the IRSPF case besides being at the outer gap half rather
than at the inner gap half. Further, the sign is opposed to that of the IRSPF. This
shows an analogy to direct numerical simulations of turbulent flows in curved channels
where curvature dependent terms in the RSSTE attain opposed signs at concave and
convex walls, which are here the outer and inner cylinder wall, respectively (Moser and
Moin 1987). The distribution of Prx(Vx) is slightly different for the ORSPF. Instead of
being zero in one side of the gap Prx(Vx) features a small minimum and maximum in
the left and the right side of the channel, respectively (Fig. 3.20j-l). As can be seen
from Fig. 3.20m-o for the ORSPF at S+

o,T 1 the production terms of τrϕ also exhibits a
remarkable similarity to the IRPSF. For larger values of ε Zrϕ,1(Vϕ) occupies a wide
area and exhibits a peak on the right side of the gap (Fig. 3.20n,o) while it is restricted
to a sharp peak for smaller ε (Fig. 3.20m). Like in the IRSPF case Zrϕ,2(Vϕ) and
Prϕ(Vϕ) are negligible at S+

o,T 1.

Overall, Figs. 3.20d-f and Figs. 3.20j-l reveal, that in the ORSPF for S+
o,T 1 the dominant

K production term is PK(Vx), while the production of the associated shear stress τrx is
due to the centrifugal production term (Zrx(Vϕ)). The latter identifies the instability
as centrifugal instability according to our criteria defined in section 3.2.1. Hence, the
same centrifugal instability mechanism is present at S+

i,T 1 and S+
o,T 1 for the IRSPF and

the ORSPF, respectively. To our knowledge, this is the first time a direct connection
between the centrifugal effect of rotating inner and outer cylinder has been made. The
destabilizing effect of the outer cylinder, observed by Meseguer and Marques (2005) for
ε = 0.333 could be clearly identified as centrifugal instability mechanism.

The similarity of the instabilities present in the IRSPF and the ORSPF becomes also
evident from the instantaneous shapes of the disturbances before and behind the first
transition, which are presented in Fig. 3.21 for ε = 0.25. In Fig. 3.21a,b we show the
disturbance spirals for the IRSPF at S−

i,T 1 and S+
i,T 1, visualized by isosurfaces of u′

r.
From comparing Fig. 3.21a and Fig. 3.21b it can be seen that the number of spirals
increases and the inclination is significantly reduced across the first transition. From
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Figure 3.21: Visualization of critical disturbances for the IRSPF and the ORSPF before
and behind the first transition at Si,T 1 and So,T 1. a, b, e, f) Isosurfaces indicate 10% of
the maximum value of u′

r (depicted over two periods) c, d, g, h) Distribution of kinetic
disturbance energy K, normalized by its maximum value.

Fig. 3.21c it becomes evident, that the kinetic disturbance energy is restricted to the
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critical layer close to the inner cylinder and outer cylinder at S−
i,T 1. Thereby, the peaks

at the outer cylinder are almost not visible from Fig. 3.21c. For S+
i,T 1 instead, the

kinetic energy spreads over a significantly wider area close to the inner cylinder (Fig.
3.21d). It should be mentioned, that the number of peaks Fig. 3.21c,d is twice the
number of spirals in Fig. 3.21a,b as the kinetic energy contains the squares of the
disturbance velocity components. Similar to the IRSPF the spirals get more inclined
for the ORSPF at S+

o,T 1 compared to S−
o,T 1 (Fig. 3.21e,f). However, for the ORSPF

negative modes are triggered (nc(S−
o,T 1) = −2, nc(S+

o,T 1) = −4) and the inclination of
the spirals is opposed to that of the IRSPF. At S−

o,T 1 the distribution of kinetic energy
is around the critical layers and almost identical to the IRSPF (Fig. 3.21g). At S+

o,T 1
similar to the IRSPF the kinetic energy distributes over a wide area, but close to the
outer cylinder (Fig. 3.21h and Fig. 3.21d).

3.2.3.3 Effect on increasing swirl in region II and IIO

In section 3.1.1 and section 3.1.2 it was shown, that both the IRSPF and the ORSPF
get destabilized with increasing swirl in the second region (II and IIO). This changes
towards the end of the second region where the ORSPF is sharply stabilized with
increasing swirl, while the IRSPF is destabilized further as the swirl increases. The
underlying reason is, that the production of K develops striking differences for IRSPF
and ORSPF as the swirl increases within region II and IIO. For illustration of this
differences Fig. 3.22a-c shows the distribution of the K production terms for the IRSPF
with ε = 0.25 for different values of Si within region II. As can be seen the magnitude of
PK(Vϕ) increases with increasing swirl, while that of PK(Vx) decreases (Fig. 3.22a-c).
In between, for Si = 1, PK(Vx) and PK(Vϕ) are approximately equal as both flow
components have a similar amplitude. For the IRSPF, all production terms destabilize
the flow in region II, as they attain negative signs (Fig. 3.22a-c). In contrast, in the
ORSPF PK(Vϕ) attains a positive amplitude (stabilizing) which increases compared to
PK(Vx) as the swirl increases towards the end of IIO (Fig. 3.22d-f). In the ORSPF, due
to PK(Vϕ) energy is transferred back to the base flow which results in a stabilization of
the base flow as shown similarly for APF by Mott and Joseph (1968b) and Sadeghi and
Higgins (1991b). Hence, the azimuthal shear production has a stabilizing effect in the
ORSPF in region IIO. This is the underlying reason why the critical Reynolds number
of the ORSPF increases as the swirl increases towards the end of region IIO. For both
the IRSPF and the ORSPF the production of the shear stresses, which contribute to
the dominant K production terms, is due to the centrifugal production terms, such that
a centrifugal instability is dominant throughout region II and IIO. For the interested
reader the distribution of K and the shear stresses with associated production terms
corresponding to Fig. 3.22 is given in the appendix in Fig. A.7.
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3.2.4 Analysis of the second transition for the IRSPF

As shown in section 3.2.2, the transition from I to II results in a drastical redistribution
of K, the shear stresses and the production terms. Instead, the transition from II to III
is less sharp for the IRSPF. From Fig. 3.23a,b,c,d it can be seen, that the distribution of
the production terms remains almost unchanged across the second transition for small
and intermediate ε (0.005 and 0.25). However, as ε increases, the change across the
transition becomes more pronounced, which can be seen exemplary for ε = 0.785 in Fig.
3.23f,e. As can be seen, at S−

i,T 2 all production terms (PK(Vϕ), ZK(Vϕ) and PK(Vx))
attain a similar amplitude and shape for ε = 0.785. At S+

i,T 2 PK(Vx) drops to zero,
while PK(Vϕ) and ZK(Vϕ) spread over a significantly wider area. In fact, PK(Vx) is
always approximately zero for all ε considered in region III. This is the most significant
feature of region III. For smaller ε PK(Vx) = τrxdVx/dy is (close to) zero because the
transition takes places at higher swirl parameters, such that Vx is negligible compared
to Vϕ. For larger values of ε instead the distribution of τrx changes at S+

i,T 2 as nc drops
to zero. This results in PK(Vx) dropping to zero. The production of shear stresses
before and behind the jump is due to centrifugal terms, such that the instability at S−

i,T 2
and S+

i,T 2 is a centrifugal instability. Detailed plots of K, shear stresses and production
terms are provided in the appendix (Fig. A.8 and Fig. A.9)
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3.2.5 Analysis of the second transition for the ORSPF

Here, the distribution of shear stresses, K and associated production terms before
and behind the transition from IIO to IIIO is discussed for the ORSPF. The situation
before and behind the second transition is referred to as S−

o,T 2 and S+
o,T 2, as described

in section 3.1.2 and indicated in Fig. 3.8. The associated critical values of Rec, λc, nc

and ωc can be found in the appendix A.1.8.

3.2.5.1 Region IIO: Distributions at S−
o,T 2

The distribution of shear stresses, K and associated production terms at S−
o,T 2 are

depicted in Fig. 3.24. As analyzed in section 3.2.3 there is a TSI dominant in IO,
which will be confirmed here for ε = 0.005 and ε = 0.0526. The roots of equation (2.33)
are indicated with the dash dot vertical lines in Fig. 3.24. As Rec attains values of
Rec ≈ 104 here (see appendix, table A.7) the condition for equation (2.33) is assumed
to be valid.

Figures 3.24a-e show the distribution of K for selected values of ε. As can be seen
from Fig. 3.24a,b at S−

o,T 2 for ε < 0.059 the distribution of K is similar to the APF
and features sharp peaks at the critical layers which indicates a Tollmien-Schlichting
instability. As previously mentioned for ε < 0.059 there is a direct transition from
IO to IIIO such that the distributions at S−

o,T 2 differ significantly for ε < 0.059 and
ε ≥ 0.059. For ε > 0.059 the peaks of K are similar to those at S+

o,T 1 but less wide (see
Fig. 3.24c-e).
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k-o) τrx, τrϕ over y. p-t) Production of τrx over y. u-y) Production of τrϕ over y.
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

As can be seen the production terms of the K budget, exhibit sharp peaks close at
the theoretical position of the critical layer, which indicates a TSI ε < 0.059 (Fig.
3.24f,g). A remarkable feature is, that the major part of K production stems from
azimuthal shear PK(Vϕ). As described before, a significant magnitude of PK(Vϕ) is
also observed for the ORSPF (ε = 0.0526) at S−

o,T 1 and the IRSPF at S−
i,T 1 (ε = 0.0025,

0.005). However, here for ε = 0.005 PK(Vϕ) provides approximately 100% of the kinetic
disturbance energy. This is a sharp contrast to the “classical” TS instability in a flow
with straight streamlines where the production of K is solely due to axial shear PK(Vx).
This is because, here Vx is much smaller compared to Vϕ as S−

o,T 2 = 4.67 for ε = 0.005
(see table A.7 and Fig. A.3). This reveals that in a ORSPF a TSI can even persists at
relatively large swirls where the azimuthal component is significantly larger than the
axial flow component. As the TSI in a SPF is usually associated with the axial flow,
this is counter-intuitive. The existence of a TSI will by confirmed by the shear stresses
and production terms in the following.

For ε > 0.059 PK(Vϕ), ZK(Vϕ) and PK(Vx) are nonzero only close to the outer cylinder
where they exhibit a symmetric peak (Fig. 3.24h-j). Thereby, PK(Vϕ) stabilizes the
flow, as it attains a positive sign, while ZK(Vϕ) and PK(Vx) attain negative signs
as explained in Sect. 3.2.3.3. With increasing ε the magnitude of ZK(Vϕ) increases
while PK(Vx) decreases, such that for ε = 0.785 ZK(Vϕ) is the dominant destabilizing
production term (Fig. 3.24h-j). As both ZK(Vϕ) and PK(Vϕ) depend on Vϕ this shows,
that the effect of the azimuthal velocity is ambivalent in the ORSPF and has both
destabilizing and stabilizing effects.

The shape of the K production terms is determined by the distribution of τrx and
τrϕ which are different for ε ≤ 0.059 and ε > 0.059 as can be seen in Fig. 3.24k-o.
For ε ≤ 0.059 τrx and τrϕ exhibit peaks close to both critical layers with τrx having a
negiglibe amplitude compared to τrϕ (Fig. 3.24k-l). For ε > 0.059 instead τrx and τrϕ

both assume a peak at the outer gap width, whereby the magnitude of τrϕ decreases
with increasing ε (solid lines, Fig. 3.24m-o). In contrast to ε ≤ 0.059 for ε > 0.059 τrϕ

attains positive values. When compared to the shear stress distributions at S+
o,T 1 (Fig.

3.20g-i) it can be seen that at S−
o,T 2 the shear stresses are restricted to a significantly

narrower area. This also illustrates an ambivalent effect of outer rotation. While at
S+

oT 1 the interaction of axial flow and azimuthal shear lead to a wide distribution of
shear stresses. At larger swirls the outer rotation seems to supress shear stresses over
a large area of the gap. This can be seen clearly from comparing Fig. 3.20i and Fig.
3.24o.

For ε < 0.059 Prx(Vx) exhibits a similar distribution as for the APF (Fig. 3.24p-q and
Fig. 3.16d). In contrast to the APF Zrx(Vϕ) is nonzero, increases from left to right
and exhibits a significant positive peak close to the outer cylinder. As clear from Fig.
3.24p-q Zrx(Vϕ) attains a positive sign and counteracts Prx(Vx) in the right channel
half. However, this centrifugal term does not significantly affect the overall production
of τrx and gets cancelled by the velocity pressure gradient (not shown). For ε > 0.059
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3.2 Identification of the involved instability mechanisms in the different regions

Prx(Vx) is approximately zero, while Zrx(Vϕ) assumes a peak in the right gap half
(Fig. 3.24r-t). For ε > 0.059 100% of the τrx production is due to the centrifual term
Zrx(Vϕ). It should be mentioned that at the end of region IIO for 0.0509 ≤ ε ≤ 0.111
a slightly different distribution of Zrx(Vϕ) was observed. This can be exemplary seen
for ε = 0.111 in Fig. 3.24r. As can be seen here Zrx(Vϕ) acts as a sink for τrx. The
source here is the velocity pressure gradient (not depicted) which balances Zrx(Vϕ) and
has essentially the same shape. However, this distribution is observed only very close
to the end of region IIO. For instance, for ε = 0.111 a distribution as depicted in Fig.
3.24r can be observed in the range of 1.55 ≤ So ≤ 1.58 = S−

o,T 2, while for So < 1.55 the
distribution is similar to those in Fig. 3.24s,t. These cases represent an exception in
IIO, which does not fall into the criteria defined in section 3.2.1. Hence, they cannot be
identified. This indicates that the velocity pressure gradient should be also considered
for identification in some cases.

For ε < 0.059 the major part of τrϕ emerges from Pr,ϕ(Vϕ) which spreads symmetrically
across the gap and assumes positive values (Fig. 3.24u,v). Similar to Zrx(Vϕ), Zrϕ,1(Vϕ)
exhibits a sharp negative peak for ε < 0.059 at S−

o,T 2 (Fig. 3.24p,q,u,v) and counteracts
Prϕ(Vϕ). For ε > 0.059 instead Prϕ(Vϕ) is approximately zero and τrϕ emerges from
Zrϕ1(Vϕ) which assumes a peak at the right channel half (Fig. 3.24w-y). Obviously at
S−

o,T 2 τrϕ is mostly produced by azimuthal shear for ε < 0.059 while it is produced by
centrifugal effects for ε > 0.059.

Overall, the results show that for ε < 0.059 up to S−
o,T 2 a TSI is present. This

becomes evident from the fact that the shear stress that contributes to the K dominant
production term emerges from shear production and a critical layer exists. However,
as the azimuthal flow component is significantly larger than the axial flow component
at S−

o,T 2, striking differences to the “classical” TS instability associated with an axial
flow occur. In contrast to the “classical” TS instability associated with an axial flow,
here the production of K and the shear stress τrϕ emerges mostly from the azimuthal
flow component. As described in section 3.2.2.1 for the IRSPF similar observation were
made for ε < 0.005 at S−

i,T 1 where most of the K production emerges from azimuthal
shear. This shows, for the first time that in a SPF a Tollmien Schlichting instability
can persist when the azimuthal flow component is significantly larger than the axial
flow component given a sufficiently small ε. In the ORSPF the first region (associated
with a TSI) persists up to significantly larger swirls for small ε (no transition to IIO).
Hence, the TSI can be observed at much higher swirls, compared to the IRSPF.

For ε > 0.059 at S−
o,T 2 the production of shear stresses which contribute to the dominant

destabilizing K production terms emerges exclusively from centrifugal terms which indi-
cates that a centrifugal instability is present. Here ZK(Vϕ) and PK(Vx) are destabilizing
the flow while PK(Vϕ) is stabilizing the flow. This is a major difference to the IRSPF
here, where PK(Vϕ) is destabilizing at S−

i,T 2 and throughout region II as illustrated
in section 3.2.3.3. Remarkably, the roots of equation (2.33) approximately coincide
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

with the peaks of the shear stresses and associated production terms for ε > 0.059.
However, as shear stresses clearly emerge from centrifugal production terms here, they
are assumed to be meaningless.

3.2.5.2 Region IIIO: Distributions at S+
o,T 2

Here it will be shown that behind the transition to IIIO at S+
o,T 2, K, the shear stresses

and the associated production terms assume a strikingly different distribution compared
to S−

o,T 2 and show a similar distribution for all ε. As shown here, a critical layer becomes
evident and the shear stresses, which contribute to the dominant K terms arise from
shear production terms which act as a source. Instead centrifugal terms act as sink
here. Thus, the instability present in region IIIO at S+

o,T 2 is considered as a TSI. In
contrast to a TSI which is present at low swirls, here only one layer exists close to
the inner cylinder. The distributions of K, shear stresses and associated production
terms are depicted in Fig. 3.25 for selected ε at S+

o,T 2 at the beginning of IIIO. As the
Reynolds number is in the order of O(104) the underlying assumption of equation (2.33)
is justified. One root for each ε is found and indicated with the dash dot lines in Fig.
3.25.

Figure 3.25a-e reveals that for S+
o,T 2 the peak of K is located near the inner cylinder

wall and exhibits a peak close to the theoretical position of the critical layer obtained by
equation (2.33) for all ε considered. The distribution of K results from the distribution
of PK(Vϕ), ZK(Vϕ), PK(Vx), which also attain a sharp peak at the theoretical position
of the critical layer (Fig. 3.25f-j). This indicates the existence of a critical layer.
Depending on ε either PK(Vϕ) or PK(Vx) is the dominant destabilizing term (Fig.
3.25f-j). The shear stresses concentrate on a small area close to the theoretical position
of the critical layer and assume peaks with different signs depending on ε (Fig. 3.25k-o).
Compared to the shear stresses before the transition, the peaks are narrower here for
ε = 0.111, 0.25 and 0.785 (Fig. 3.25k-o and Fig. 3.24k-o).

By comparing the signs of the shear stresses with those of the production terms of the
RSSTE in Fig. 3.25p-y, it can be seen that for the shear stresses, that contribute to the
dominant K production term, the shear production terms act as a source. For ε = 0.005,
0.25 and 0.785 this is τrϕ (negative) stemming from (positive) shear production Prϕ(Vϕ)
(Fig. 3.25k,n,o and Fig. 3.25p,s,t). For ε = 0.111 this is τrx (negative) stemming from
(positive) shear production Prx(Vx) (Fig. 3.25m,r). For ε = 0.0526, where both PK(Vx)
and PK(Vϕ) are about the same order, both shear stresses τrx and τrϕ (negative) arise
from shear production terms (Prϕ(Vϕ), Prx(Vx), both positive close to critical layer) as
a source (Fig. 3.25l,q,v). Instead for all ε, the centrifugal production terms Zrϕ,1(Vϕ)
and Zrx(Vϕ) act as a sink for these shear stresses as they attain the same sign as τrϕ

and τrx. Thereby, the magnitude of these centrifugal production terms exceeds that of
the shear production terms locally, but get balanced by the velocity pressure gradient,
which also acts as a source (brown lines in Fig. 3.25p-t and Fig. 3.25u-y). In fact,
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Figure 3.25: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the ORPSF behind the second transition at S+

o,T 2 (IO to IIIO for ε < 0.059,
IIO to IIIO for ε > 0.059) for ε = {0.005; 0.0526; 0.11; 0.25; 0.78}. Dash dot line = position
of critical layer according to equation (2.33). a-e) K over y. f-j) Production of K over y.
k-o) τrx, τrϕ over y. p-t) Production of τrx over y. u-y) Production of τrϕ over y.
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

distant from the critical layer the velocity pressure gradient balances both shear and
centrifugal terms, such that effective shear stress production is limited to the critical
layer, resulting in the shape of the shear stresses as can be seen from Fig. 3.25k-o. The
viscous effects are very small here and not depicted.

As defined in section 3.2.1, within this thesis a TSI is identified by the shear stress,
which contributes to the dominant K production term, stemming from shear production.
Furthermore a critical layer must become evident. A centrifugal instability instead,
is characterized by the shear stress in the dominant K production term stemming
from centrifugal production. Hence, the instability present in region IIIO at S+

o,T 2 is
considered as a TSI here. In contrast to a TSI which is present at low swirls, here only
one layer exists close to the inner cylinder. The presence of one critical layer is typical
for boundary layer flows with monotonically increasing velocity profiles (Craik 1988).
Also for the ORSPF the velocity profile is monotonically increasing at higher swirls
as depicted exemplary in Fig. A.2 in the appendix. These evidences and conclusions
are in agreement with Deguchi (2017) who investigated Rayleigh-stable Taylor Couette
flow (µ → ∞ and So → ∞) and assumed that a instability similar to a TSI drives
the flow instability. Deguchi observed the magnitude of the disturbance velocity to be
approximately zero over the most part of the gap except for a small area close to the
wall of the inner cylinder. This is similar with our finding, that there is just one critical
layer close to the inner cylinder wall. Nevertheless, the velocity-pressure gradient act
as a source here as well and attains large magnitudes. The criteria defined in section
3.2.1 does not consider the velocity pressure gradient. However, it would be interesting
to reveal, the underlying effects that affect the pressure gradient. For instance, from
turbulent flows in curved channels it is known, that the curvature can affect the velocity
pressure gradient (Moser and Moin 1987). However, this is beyond the scope of the
present thesis.

In the next section, 3.2.5.3, it will be shown that the characteristics of the instability
unify for all ε considered such that PK(Vϕ) becomes the dominant production term.

Next, briefly the instantaneous structures of the critical disturbances across the second
transition are discussed, which display features of the instability present in IIIO. Figure
3.26 therefore presents the instantaneous disturbance structure of both the IRSPF
and the ORSPF for ε = 0.25 analogous to Fig. 3.21. As can be seen from Fig.
3.26a,b before the jump at S−

i,T 2 spirals exist, while at S+
i,T 2 the disturbance attains an

axisymmetric vortical shape as nc = 0. At S+
i,T 2 these vortical structures travel in axial

direction with the speed c = ωr/λ. When Si → ∞ ω → 0 such that the disturbances
become stationary and turn into the well known axisymmetric Taylor instability as
also concluded by Cottrel and Pearlstein (2004). From comparing Fig. 3.26c and Fig.
3.21c it becomes evident, that the kinetic energy spreads over a significantly wider area
at S−

i,T 2 compared to the beginning of region II at S+
i,T 1. At S+

i,T 2 the kinetic energy
distributes asymmetrically over the gap Fig. 3.26d. For the ORSPF it can be seen
that the spirals change their orientation as nc jumps from -1 to 1 across the second
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Figure 3.26: Visualization of critical disturbances for the IRSPF and the ORSPF before
and behind the first transition at Si,T 2 and So,T 2. a,b,e,f) Isosurfaces where the radial
disturbance velocity (u′

r) attains 10% of their maximum value (depicted over two periods).
c,d,g,h) Distribution of kinetic disturbance energy K, normalized by its maximum value.
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

wavenumber jump (Fig. 3.26e,f). From Fig. 3.26g it can be seen that the kinetic energy
is restricted to significantly narrower region at S−

o,T 2 at the outer cylinder compared
to S+

o,T 1 in Fig. 3.21h and especially to the IRSPF at S−
i,T 2 (Fig. 3.26c). At S+

o,T 2 the
kinetic energy exhibits sharp peaks close to the inner cylinder, but also exhibits a slight
plateau across the gap (Fig. 3.26h). In fact, the distribution of K found in region IIIO
Fig. 3.26h resembles that of Fig. 3.21c,g associated with a TSI. The major difference
compared to the distribution of K in Fig. 3.21c,g is that there are no peaks close to
the outer cylinder, as there is only one critical layer.

3.2.5.3 Region IIO: Distributions for So > S+
o,T 2

As discussed previously for 0.088 ≤ ε ≤ 0.111 for S+
o,T 2 the production of K is mostly

due to axial shear PK(Vx) while for ε ≤ 0.059 and ε > 0.111 the production of K is
mostly due to azimuthal shear PK(Vϕ). Moreover, τrϕ and τrx exhibit different signs
for different ε. However, with increasing So in region IIIO, all the distributions unify
as demonstrated exemplarily for ε = 0.0526 and ε = 0.111 in Fig. 3.27. As can be
seen K, the K production terms and the shear stresses concentrate on the critical
layer and are zero across the rest of the gap when the swirl increases from S+

o,T 2 to
3.37 (Fig. 3.27a-l). Thereby, PK(Vϕ) becomes the dominant K production term which
destabilizes the flow (Fig. 3.27e-h). Also the shear stress τrϕ attains a negative sign
when So increases to 3.37 (Fig. 3.27i-l). It should be mentioned, that for these values
of ε So higher than 3.37 have not been computed since Rec strongly increases with
increasing So. In general, as So increases, for all ε the magnitude of Zrϕ,1(Vϕ) increases,
while the amplitude of Prϕ(Vϕ) decreases. Thereby, Zrϕ,1(Vϕ) attains the same sign
as τrϕ such that it acts as a sink. Hence, the source terms for τrϕ are Prϕ(Vϕ) and
PDrϕ. This shows, that the production of τrϕ is increasingly hindered by the centrifugal
production term Zrϕ,1(Vϕ) at higher swirls. This observation, that centrifugal effects
increasingly hinder the production of shear stresses in region IIIO could explain the
stabilizing effect that is observed for increasing swirl. This can be illustrated in analogy
to the Rayleigh criterion. According to this criterion, an increase of radial momentum
hinders transfer of mass across the streamlines and hence the generation of velocity
fluctuations resulting in shear stresses (see section 1.2.1.1). This hindering effect is
represented here by the centrifugal production Zrϕ,1(Vϕ). Overall, Fig. 3.27 shows
exemplary that the distributions for all ε attain a similar distribution at higher values
of So. These results show that, in the budget of τrϕ the centrifugal production term
acts as a sink, while the azimuthal shear production acts as source. At the same time
the shear stresses and budgets confirm a critical layer in region IIIO associated with a
TSI. Hence, to the criteria defined in section 3.2.1 the instability observed in region
IIIO is considered as a TSI as concluded in the previous section. As mentioned before
in section 3.2.5.2, the velocity-pressure gradient acts as a source here as well. In fact,
the magnitude of Prϕ(Vϕ) is small here, compared to that of Zrϕ,1(Vϕ) and that of the
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velocity pressure gradient. As mentioned, it would be interesting to investigate the
underlying effects leading to the distribution of the velocity pressure gradient, but this
is beyond the scope of this thesis.
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Figure 3.27: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the ORPSF in region IIIO for ε = 0.0526 and ε = 0.111 for So = S+

o,T 2 and
So = 3.237 (S+

o,T 2 < 3.237). First two rows: ε = 0.0526. Last two rows: ε = 0.111. a-d) K
over y. e-h) Production of K over y. i-l) τrx, τrϕ over y. m-p) Production of τrx over y.
q-t) Production of τrϕ over y.

3.2.5.4 Intermediate conclusions identification of instability mechanisms

In the previous sections, the instability mechanisms associated with the different regions
were analyzed and identified for the IRSPF and the ORSPF. For this, the budget of
the kinetic disturbance energy (K) and the shear stresses as well as the concept of the
critical layer for a generalized SPF as proposed by Vasanta Ram (2019) were employed.
From two benchmark cases (TC-flow and plane Poiseuille flow), it was concluded that
a centrifugal instability can be identified by a centrifugal production of the shear
stress which contribute to the dominant K production term. A Tollmien-Schlichting
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

instability instead can be identified by the existence of a critical layer and the shear
stress, which contributes to the dominant K production term, stemming from shear
production. Using this approach it was shown that within the first region a TSI is
present for the IRSPF and ORSPF. The results clearly confirmed the existence of
a critical layer as assumed by Cottrel and Pearlstein (2004) for the IRSPF. To the
authors best knowledge, for the first time the existence of a critical layer is shown for
non-axisymmetric disturbances. Further, it was revealed that for both the IRSPF and
the ORSPF at small ε a TSI can persist at large values of swirl (O(1)) where the axial
and azimuthal velocity component are about the same value. For the ORSPF the TSI
can persist even at swirls where the azimuthal component is significantly larger than
the axial component (about factor four) if ε is sufficiently small. At such high swirls
the major part of the K production stems from azimuthal shear.

In the second region, the production terms are drastically redistributed and spread in
the left and right half of the gap for the ORSPF and the IRSPF, respectively. At the
beginning of this region, for all ε the production of K stems from axial shear PK(Vx)
and the corresponding shear stress emerges from centrifugal production. Hence, the
associated instability is identified as a centrifugal instability for both the IRSPF and
the ORSPF. By this, to the best authors knowledge, for the first time a link between
the instability induced by a Rayleigh unstable (IRSPF) and a Rayleigh stable azimuthal
flow component (ORSPF) was created. Moreover, it was shown that in the second
region the IRSPF gets monotonously destabilized with increasing swirl for all considered
ε. Instead, the ORSPF is first destabilized in the beginning of the second region but
then stabilized as the swirl increases further. This is related to the azimuthal production
of K, which continuously increases in the second region and stabilizes the ORSPF while
it destabilizes the IRSPF. By this a striking difference between the IRSPF and the
ORSPF was revealed for the first time.

It was shown for the IRSPF that in the third region the distribution of the K budgets
and shear stress budgets are similar to the second region. The most prominent feature
of the third region is that the production of K is solely due to azimuthal shear and
clearly a centrifugal instability is present for the IRSPF as expected and also concluded
for individual values of ε by Cottrel and Pearlstein (2004), Cottrel et al. (2004) and
Mesequer and Marques (2002). In the ORSPF within the third region, K, the shear
stresses and the associated production terms attain a shape which is strikingly different
compared to the second region. Here, the shear stresses and production terms locate
on a region close to the inner cylinder, which indicates the existence of a critical layer.
Furthermore, the shear stresses which contribute to the dominant production terms are
generated by shear production. The centrifugal terms act as sink here and inhibit the
production of the shear stresses which contribute to the dominant K production term.
These terms get balanced by the velocity pressure gradient. It is concluded that a TSI
instability is present in region IIIO, which coincides with the conclusions of Deguchi
(2017) for Rayleigh stable Taylor Couette flow (So → ∞).

130



3.2 Identification of the involved instability mechanisms in the different regions

3.2.6 Integral production terms as function of Si and So

In the previous sections the distributions of kinetic disturbance energy, shear stresses
and associated budgets were analyzed as function of the gap height. It was revealed
that the distributions in region I and IO concentrate on the proximity of a critical layer
while they spread across the inner and outer gap half in region II and IIO, respectively.
Investigating the production terms of the shear stresses, the former regions could be
associated with a Tollmien-Schlichting instability while the latter ones were associated
with a centrifugal instability. Based on the shear stress production terms, region III
could be associated with a centrifugal instability. In region IIIO the distributions of
the budgets focused on a small area on the inner cylinder and indicated a critical layer
here. By analyzing the budgets of shear stresses and kinetic energy is was concluded a
TSI is present in region IIIO.

While the presentation along the gap height provides a detailed picture for individual
values of the swirl parameter, it does not provide a picture how the production terms
change when the swirl parameter is varied continuously. This can be achieved by
considering the integral values of PK(Vx), PK(Vϕ), ZK(Vϕ) as function of the swirl
parameter. For this, equations (2.23)-(2.25) are integrated over −1 ≤ y ≤ 1 for each Si

and So.

In Fig. 3.28 we show Rec and nc (Fig. 3.28a,c,e) as well as
∫

PK(Vx),
∫

PK(Vϕ),∫
ZK(Vϕ) (Fig. 3.28b,d,f) as function of Si for the IRSPF. For comparability we plot∫
PK(Vx) (blue dots),

∫
PK(Vϕ) (red dots),

∫
ZK(Vϕ) (green dots) normalized with the

absolute value of their sum (Psum = |
∫

PK(Vx) +
∫

PK(Vϕ) +
∫

ZK(Vϕ)|). Negative
values of

∫
PK(Vx),

∫
PK(Vϕ) and

∫
ZK(Vϕ) indicate destabilization, while positive

values stabilize the flow.

In general, for intermediate and larger values of ε
∫

PK(Vϕ),
∫

ZK(Vϕ) remain constant
at zero, while

∫
PK(Vx) remains at approximately -1 throughout region I for the IRSPF

(see Figs. 3.28d,f). However, for smaller ε towards the end of I the amplitude of∫
PK(Vϕ) increases while that of

∫
PK(Vx) decreases (see Figs. 3.28b). This is because

for smaller ε the transition to II occurs at relatively high values of Si associated with
a relativley high magnitude of the azimuthal velocity profile, as already explained in
connection with Fig. 3.17e.

With the transition to II
∫

PK(Vx) jumps back to -1 while
∫

PK(Vϕ),
∫

ZK(Vϕ) drop
to zero, which is pronounced for ε = 0.005 (Fig. 3.28b,d,f). This is remarkable and
shows that the distribution of τrx together with the axial shear provides approximately
100% of the production of K at S+

i,T 1. Subsequently as So increases further within II
the magnitude of

∫
PK(Vx) decreases, while that of

∫
PK(Vϕ),

∫
ZK(Vϕ) increase at

the same time (Fig. 3.28b,d,f). Thereby, the magnitude of
∫

PK(Vϕ) is always larger
than that of

∫
ZK(Vϕ). As worked out in section 3.2.3.3, it is characteristic for the
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IRSPF, that all production terms within region II are destabilizing the flow as they
attain negative signs (Fig. 3.28b,d,f). Therefore, the flow is destabilized with increasing
swirl and Rec drops continuously throughout region II.

It can further be seen that the increase of
∫

PK(Vx) and the decrease of
∫

PK(Vϕ)
and

∫
ZK(Vϕ) are both synchronous with the decay of nc for ε = 0.005 and ε = 0.111

(see Figs. 3.28a,b,c,d). This is less clear for ε = 0.785 where nc undergoes a lower
number of jumps (see Figs. 3.28e,f). Fig. 3.28e,f further reveal a strong dependency
of
∫

PK(Vx),
∫

PK(Vϕ) and
∫

ZK(Vϕ) on nc. As clear from the graph the jumps in nc

are accompanied by jumps of
∫

PK(Vx),
∫

PK(Vϕ) and
∫

ZK(Vϕ). For ε = 0.005 and
ε = 0.111 the change of

∫
PK(Vϕ),

∫
ZK(Vϕ) stops at higher Si values and reaches a

plateau within region II (see Figs. 3.28b,d). In contrast, for ε = 0.785 the production
terms change till the end of region II and undergo a significant jump as the flow transits
from II to III (see Figs. 3.28e,f). In fact, for ε = 0.78 the axial shear production∫

PK(Vx) abruptly drops to approximately zero at the transition from II to III. In
fact,

∫
PK(Vx) dropping to zero is the most prominent characteristic of region III and

could be observed for all considered ε. We observe at this stage, that the change of the
production terms associated with the transition from II to III is smoothly for smaller
values of ε, while it is aprubt for larger values of ε.

In region III
∫

PK(Vx),
∫

PK(Vϕ),
∫

ZK(Vϕ) remain essentially constant for all ε

considered (see Figs. 3.28b,d,f). The major production of K in this region is from
azimuthal shear (

∫
PK(Vϕ)). However the contribution of

∫
ZK(Vϕ) increases with

increasing ε as can be seen from comparing Figs. 3.28b,d,f.

In Fig. 3.28g,i,k we show Rec and nc as function of So for the ORSPF. In Fig. 3.28h,j,l
we show corresponding

∫
PK(Vx),

∫
PK(Vϕ) and

∫
ZK(Vϕ) as function of So. As can

be seen from Fig. 3.28h,j for ε = 0.0526 and ε = 0.111 the magnitude of
∫

PK(Vx)
decreases at the end of IO while that of

∫
PK(Vϕ) increases. This behavior is more

pronounced for ε = 0.0526 than for ε = 0.111 and in general more pronounced for
smaller values of ε. This increase of

∫
PK(Vϕ) occurs simultaneously to the increase

of Rec, which can be seen clearly for ε = 0.0526 (see Fig. 3.28g,h). As revealed in
section 3.2.3 and 3.2.5 in region IO, a TSI associated with a critical layer is dominant
for the ORSPF. The increase in Rec that comes visible in Fig. 3.28g is accompanied
with the critical layer moving closer to the wall with increasing So. This effect becomes
pronounced with decreasing ε. This is shown exemplarily in Fig. 3.29 for ε = 0.005,
where this effect is most prominent. As can be seen the increase in Rec (Fig. 3.29b) is
synchronous to the critical layer moving closer to the inner and outer cylinder wall (Fig.
3.29a). Closer to the wall the viscous dissipation of K increases which could explain
the stabilization. Sadeghi and Higgins (1991b) also observed, for axisymmetric modes,
that a stabilization of the flow goes along with the critical layer moving closer to the
wall (see Fig. 5 and Fig. 14 in their work). They considered an APF with the inner
cylinder sliding in axial direction in addition to the pressure gradient. Fig. 3.29 reveals
that the rotation of the outer cylinder has a similar effect on the flow (in region IO).
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

For ε = 0.785 throughout region IO the integral terms
∫

PK(Vϕ) and
∫

PK(Vx) remain
constantly at 0 and -1, respectively (see Fig. 3.28l). When the flow transits from IO
to IIO the behavior of the terms drastically changes. As can be seen from Fig. 3.28h
and Fig. 3.28j for ε = 0.0526 and ε = 0.111

∫
PK(Vϕ) and

∫
PK(Vx) undergo a jump at

S+
o,1, which is more pronounced for ε = 0.0526.

For ε = 0.0526
∫

PK(Vx) drops from -0.5 to approximately −1.2.
∫

PK(Vϕ) instead
jumps from a negative (-0.5) to a positive value (0.25) and hence stabilizes the flow at
S+

o,T 2 (Fig. 3.28h). As discussed in Sect. 3.1.2 the flow switches several times between
IO and IIO after the first transition to IO. This behavior is clearly visible from the
production terms here for ε = 0.0526. By comparing nc in Fig. 3.28g and

∫
PK(Vϕ)

and
∫

PK(Vx) in Fig. 3.28h it can be seen that jumps of nc are coupled with the
jumps of the production terms. Thereby,

∫
PK(Vϕ) switches between negative and

positive values and hence a stabilizing and a destabilizing effect, while the magnitude
of
∫

PK(Vx) switches between approximately -0.5 and -1.0. This switching behavior
illustrates that during the TSI in IO the azimuthal shear production is destabilizing
while it is stabilizing in region IIO where a centrifugal instability is present.

For ε = 0.111
∫

PK(Vx) jumps from -0.95 back to approximately -1.00 while
∫

PK(Vϕ)
jumps from -0.05 back to zero during the transition to IIO at S+

o,T 1 (Fig. 3.28j). As So

increases further within region IIO for ε = 0.111
∫

PK(Vϕ) assumes positive values and
increases continously with increasing So, simultanously

∫
PK(Vx) decreases to negative

values below -1. Compared to
∫

PK(Vx) and
∫

PK(Vϕ)
∫

ZK(Vϕ) is insignificant for
ε = 0.111.

For ε = 0.785 a different behavior becomes apparent. During the transition from IO to
IIO

∫
PK(Vϕ) and

∫
PK(Vx) remain constantly at 0 and -1, respectively Fig. 3.28l. At

higher values of So

∫
PK(Vϕ) starts to increase sharply while simultaneously

∫
PK(Vϕ)

decreases with approximately the same slope. Thereby the magnitude exceeds 5 for
both terms at higher values of So (Fig. 3.28l). At the same time

∫
PK(Vx) decreases

slightly. It is remarkable, that for ε = 0.785
∫

ZK(Vϕ) reaches a significantly higher
magnitude as

∫
PK(Vx). However as

∫
PK(Vϕ) is counterbalanced by

∫
ZK(Vϕ) the

effective destabilization still results from the axial flow profile (
∫

PK(Vx)).

As mentioned, in region IIO the flow is destabilized by
∫

PK(Vx) and
∫

ZK(Vϕ) where
the latter only plays a role at higher values of So. The azimuthal shear production term∫

PK(Vϕ) instead stabilizes the flow throughout IIO. As the flow transits to IIIO, this
relation is reversed and henceon

∫
PK(Vx) and

∫
ZK(Vϕ) assume positive values and

stabilize the flow, while
∫

PK(Vϕ) drops to negative values and destabilizes the flow
(Fig. 3.28h,j,l). For ε = 0.0526 and ε = 0.111 it can be seen that within region IIIO
the magnitude of

∫
PK(Vx) as well as

∫
PK(Vϕ) increases and then decreases again as

So increases (Fig. 3.28h,j). Thereby for ε = 0.0526 both terms exhibit kinks that are
associated with jumps in nc as So increases (Fig. 3.28g,h). For ε = 0.785

∫
PK(Vϕ),∫

ZK(Vϕ)
∫

PK(Vx) first decreases at the beginning of IIIO and then remain constant
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3.2 Identification of the involved instability mechanisms in the different regions

afterwards (Fig. 3.28l). In region IIIO a remarkable feature is observed. As discussed
in section 3.25 the results indicate the existence of a critical layer in accordance with
equation (2.33) within region IIIO and it was concluded that a TSI is present here.
When the position of the critical layer is plotted against So, it can be seen that the
increase of Rec at the beginning of IIIO is accompanied with the critical layer moving
towards the inner cylinder wall. This is depicted exemplary for ε = 0.55 in Fig. 3.29c,d.
This is similar to the behavior of Rec and yc observed at the end of region IO for small
ε and is considered as a further evidence, that here a TSI is dominant.

Overall, the integral presentation provided a complete picture of the production terms
as function of the swirl parameter. For both the IRSPF and the ORSPF it was shown,
that the azimuthal shear production of K increases smoothly towards the end of the first
region for smaller ε. For the IRSPF it was revealed that within section II the decrease of
nc goes along with a increase of

∫
PK(Vϕ) and a decrease of

∫
PK(Vx). For the ORSPF

it was revealed, that within region IIO the increase of the stabilizing effect
∫

PK(Vϕ)
goes along with an increase of Rec. Throughout region III for the IRSPF there is no
change in the production terms and the ratio of the production terms remains constant.
In III the production of K is solely due to the azimuthal flow (

∫
PK(Vϕ),

∫
ZK(Vϕ)).

Instead, for the ORSPF the ratio of the production terms changes within region IIIO
for smaller ε.
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Figure 3.29: Location of critical layers and Rec in region IO and IIIO. a) Critical layers y+
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3.3 Discussion and Conclusion

We present a thorough comparison of the linear stability behavior the Spiral Poiseuille
Flow with Rotation of the Inner cylinder (IRSPF) which features Rayleigh unstable
azimuthal flow and the Spiral Poiseuille Flow with Rotation of the Outer cylinder
(ORSPF) which features a Rayleigh stable azimuthal flow. The problem is formulated
by means of the curvature parameter ε = (1 − Ri

Ro
)/(1 + Ri

Ro
), where Ri and Ro are the

inner and outer cylinder radii, as well by means of the swirl parameters (Si, So), defined
as the ratio of rotational (Uϕ) and axial reference velocity (Ux). The Reynolds number
is defined with the resulting velocity Uref = (U2

ϕ + U2
x)1/2 and the half gap width. We

performed a complete phase mapping of the critical Reynolds number Rec space, the
critical wavenumber space (λc, nc) and the critical frequency space (ωc) for a huge
range of swirl and curvature parameters. For the IRSPF 77 different values of ε ranging
from 0.0025 to 0.785 have been explored, capturing a swirl range of 10−5 < Si < 105.
For the ORSPF we provide numerical results for 108 different values of ε in the range
of 0.005 to 0.785 and the swirl parameter in a range of up to 10−5 < So < 105. We
significantly extend the data range for the IRSPF for which only results for ε = 0.0256,
0.1299 and 0.333 were available up to date in the literature. More significantly, we
extend the data range for the ORSPF more than hundredfold, which was before solely
investigated for low and intermediate swirls for ε = 0.333 by Meseguer and Marques
(2005). With the data we generate phase maps of Rec, λc, nc and ωc in the ε-Si and
ε-So space. For the IRSPF, we identify three regions denoted as I, II and III and
associated with low, intermediate and large swirls, respectively. We discover that the
phase maps significantly depend on ε and reveal that for ε ≥ 0.0513 for the ORSPF,
also three regions can be identified (IO, IIO and IIIO) which are associated with low,
intermediate and large swirls, respectively. To identify and analyze the instabilities in
the different regions (I; II; III and IO; IIO; IIIO), we evaluate the budget of the kinetic
disturbance energy K, the Reynolds shear stresses as well as the production terms of
the Reynolds Shear Stress Transport Equations (RSSTE). To the authors knowledge,
this is the first time the RSSTEs were utilized for the interpretation of linear stability
analysis results.

In region I and IO the critical Reynolds number does only change slightly for both
the IRSPF and the ORSPF. We show, that here the production of K as well as the
production of the shear stress τrx is mostly due to axial shear and there exists a critical
layer according to the definition of Vasanta Ram (2019). Hence, a shear instability
associated with a critical layer is dominant as already assumed by Cottrel and Pearlstein
(2004) and Cottrel et al. (2004) for ε = 0.0256, 0.1299 and 0.333. We further show, that
in the second region (II, IIO) the same centrifugal instability mechanism is present for
both the IRSPF and the ORSPF. The onset of this centrifugal mechanism is associated
with a jump of the critical wavenumbers and leads to a sharp collapse in the critical
Reynoldsnumber (Rec) with increasing swirl within the second region. This centrifugal
instability mechanism is characterized by a radical redistribution of kinetic disturbance
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energy and a centrifugal production of the shear stress τrx. A characteristic feature
within the beginning of the second region is that the shear stresses, K and the associated
production terms assume a striking similarity for both the IRSPF and ORSPF. Further,
at the beginning of the second region, the production of the kinetic disturbance energy K

mostly emerges from axial shear PK(Vx) of the base flow. By revealing this similarities,
to the authors best knowledge, here for the first time a direct connection between the
instability mechanism found in the IRSPF and the ORSPF is made. However, when
the swirl increases in the second region, the azimuthal shear production of K (PK(Vϕ))
increases which leads to a further destabilization of the IRSPF. Contrary, PK(Vϕ)
attains a different sign in the ORSPF which leads to a strong stabilization associated
with a sharp increase of Rec. This reveals striking differences between the IRSPF and
ORSPF and uncovers an ambivalent effect of outer cylinder rotation on the stability of
the flow.

For the IRSPF in the third region (III), the shear stresses, K and the associated
production terms attain a similar distribution as in II and still a centrifugal instability is
present which further leads to a destabilization with increasing swirl. The onset of III is
associated with the axial shear production of K (PK(Vx)) dropping to zero. In contrast,
for the ORSPF in the third region (IIIO) the distributions of shear stresses, K and
associated production terms change strikingly. The position of their maxima switches
from close to the outer cylinder to close to the inner cylinder, where a critical layer
becomes evident. While the shear production acts as a source here for the shear stresses,
the centrifugal production acts as a sink and hinders production of shear stresses. It is
concluded that a Tollmien-Schlichting instability is dominant which coincides with the
assumptions of Deguchi (2017).

Besides the aforementioned observations for the IRSPF and the ORSPF, significant
differences are found for the ORSPF for smaller curvature parameters of ε ≤ 0.0513.
For ε ≤ 0.0509 there is no transition from region IO to region IIO and the flow transits
directly from region IO to region IIIO as So increases. For ε ≤ 0.0509 it is discovered,
that region I associated with a TSI persists up to swirl parameters where the azimuthal
flow component is significantly larger than the axial flow component. To the authors
knowledge, this has never been observed before for any configuration of the SPF.
Moreover, for ε ≤ 0.0509 outer rotation stabilizes the flow monotonously in region I and
III and the critical Reynolds number quickly increases monotously up to values beyond
Rec > 1.5 · 105 as So increases. Thereby, in region IO the stabilization is associated
with the critical layer moving closer to the wall. Furthermore, we discover that for
0.0513 < ε ≤ 0.059 the flow transits to IIO and then falls back to IO before finally
transiting to IIIO as the swirl increases. For 0.0513 ≤ ε ≤ 0.0526 the flow even switches
multiple times between IO and IIO before falling back to IO and ultimately transiting to
IIIO as the swirl increases. These switches are associated with radical redistributions of
the shear stresses which clearly confirm the competition of two instability mechanisms
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3 Comparison of the instability mechanisms of inner and outer rotating spiral Poiseuille flow

here. This drastically shows the ambivalent effect of outer cylinder rotation, which can
both trigger and damp centrifugal instabilities depending on curvature parameter and
swirl.
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4 Applying APTV to suspension flows with
transparent particles 1

In this chapter a method is developed to apply Astigmatism Particle Tracking Velocime-
try (APTV) to transparent particles utilizing backlight illumination. Here, a particle
acts as ball lens and bundles the light to a focal point, which is used to determine
the particle’s out-of-plane position. Compared to conventional APTV additional fea-
tures have to be considered in Ball Lens Astigmatism Particle Tracking Velocimetry
(BLAPTV) due to the distance between the focal point and the particle. All required
calibration steps are described and it is analyzed how the autorrelation coefficient and
the light intensity affect the accuracy of the method. We further extend the Euclidean
calibration approach (Cierpka et al., Meas Sci Technol 21 (045401): 13, 2010a) by addi-
tional considering the particle’s light intensity, which is found to increase the accuracy
and robustness of the depth reconstruction. In addition, we study the influence of the
particle diameter and the refractive index jump between liquid and particles on the
calibration curves and the accuracy. In this way, particles of the same size, but different
material, can be distinguished by their calibration curve. Furthermore, an approach is
presented to account for shape changes of the calibration curve along the depth of the
measurement volume.

The chapter is structured as follows: In section 4.1 the measurement principle is
elaborated and the special features of BLAPTV are discussed. Section 4.2 adresses
the procedure of calibration measurements. It is explained which properties of the
particle and its focal point are extracted during the calibration procedure. Based on
these calibration measurements 2D and 3D Euclidean calibration curves are generated,
which is explained in section 4.3. Subsequently, in section 4.4 and section 4.5 it is
discussed how image processing parameters and the intensity of the light source affect
the accuracy of the depth position reconstruction procedure, respectively. In section
4.6, it is shown how particle size, refractive index of material and liquid as well as the
magnification affect the shape of the calibration curves and the reconstruction accuracy.
In section 4.7 BLAPTV is validated by measuring a laminar rectangular channel flow.
A summary and conclusion is given in section 4.8. The theory and state of the art
relevant for this chapter are given in section 1.2.2 (fundamentals of suspension flows)
and section 1.2.4.3 (theory and state of the art of APTV). The setup utilized to obtain
the results presented in the present chapter is described in section 2.1.1.

1This chapter is adopted from "Utilizing the ball lens effect for astigmatism particle tracking ve-
locimetry." Experiments in Fluids 61.2 (2020): 1-19, written by Philipp Brockmann, Hamid Tabaei
Kazerooni, Luca Brandt and Jeanette Hussong. Published under https://creativecommons.org/
licenses/by/4.0/.
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4 Applying APTV to suspension flows with transparent particles

4.1 Measurement principle

In BLAPTV transparent particles are illuminated in bright-field mode as illustrated in
Fig. 4.1. As the particle’s refractive index differs from the surrounding liquid they act
as ball lenses and focus the light, forming a focal point at some distance between particle
and objective. A cylindrical lens, placed in front of the camera sensor, alters the lightUtilizing the Ball Lens Effect for Astigmatism Particle Tracking Velocimetry 5
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Fig. 2: Illustration of the measurement principle (fp=focal length of particle) a) View in z,x-plane. b) View in
z,y-plane. c,d) Determining ∆Fxz and ∆Fyz. c) The particle itself is focused in Fyz. d) The particle itself is focused
in Fxz. e) The focal point is located inbetween Fyz and Fxz and the focal image appears circular.
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Fig. 3: a) Particle images for different z (dp=60 µm,
PMMA). b,c) ROI for focus measures fxz, fyz. b) Par-
ticle is focused in Fyz. c) Particle is focused in Fxz.
d) Raw particle image. e) Cropped particle image. f)
Autocorrelation map of Fig. 3e. g) Autocorrelation iso-
contours ( ca=0.7, ca=0.4, ca=0.155).

For a PMMA particle with dp=60 µm (np=1.49) in wa-
ter (nL=1.333) the lensemaker’s equation (1) results
in fp=138µm. This approximates the measured values
quite well. As mentioned before, if astigmatism is in-
volved two focal planes coexist (Fxz 6= Fyz). In this case
Fyz is shifted closer towards the camera (see Fig. 2).
Thus, fyz assumes it’s peak value at a lower z-z0 com-
pared to fxz (see Fig. 4b,d) and the aspect ratio a(z-z0)
shows its characteristic M -shape (see black curves in
Fig. 4b,d). As mentioned before, the focal image ap-
pears circular in the image plane only when the focal
point in the object plane is located inbetween the fo-

cal planes Fyx and Fzx, that is when ax=ay for z-z0=0
(see Fig. 4b,d). The distance between both focal planes
can be determined from Fig. 4b,d. It is equal to the dis-
tance Fxz-Fyz which equals F ∗

xz-F ∗
yz (see Fig. 4b,d). For

M=10× (Fig. 4d) this distance is significantly larger
than for M=20× (Fig. 4b). For an overview on the ef-
fect of magnification, the properties of the cylindrical
lens, the distance of the focal planes on the measure-
ment range in the context of conventional APTV, the
reader is referred to Chen et al. ?, Cierpka et al. ? and
Rossi and Kähler ?. Figs. 5a and b display the evolution
of the light intensity of the focal image for a dp=60 µm
PMMA particle in water for M=20× and M=10×, with
and without cylindrical lens. For M=20× the evolu-
tion of the light intensity with and without cylindrical
lens remains similar (Fig. 5a). In contrast, for M=10×
the light intensity exhibits two peaks close to F ∗

yz and
F ∗
xz when a cylindrical lens is mounted in the system

(Fig. 5b). This is because the distance between the fo-
cal planes Fyz-Fxz is significantly larger for M=10×
than for M=20× (see Fig. 5a,b). Please note that the
effective magnification is higher in the stigmatic case,
as the distance between field lens and camera sensor is
altered (Mstig/Mastig≈ 125%). This is why for M=20×
the maximum light intensity is higher in the astigmatic
case (see Fig. 5a). Figures 6a-d show ax as function of
ay of a dp=60 µm PMMA particle in water for M=20×
and M=10×, each with and without cylindrical lens.
As can be seen, ax is directly proportional to ay in the
stigmatic case (Fig. 6a,b). When astigmatism is intro-
duced, ax plotted over ay shows a characteristic curled
curve (Fig. 6b,d). Thus, every ay, ax pair is associated
with just one z-z0 value (Fig. 6b,d). This form of repre-

Figure 4.1: Illustration of the measurement principle: The particle’s focal point (red dots)
deforms in the image plane to a vertically or horizontally deformed ellipsoid depending on
the particle’s out-of-plane position (fp=focal length of particle).

path resulting in two different focal planes for rays travelling in the xz and the yz plane.
This induces astigmatism to the image of the particle’s focal point (highlighted as red
dots in Fig. 4.1), henceforth called "focal image". The shape of the focal image changes
based on the z-location of the focal point with respect to the focal planes, denoted as
Fxz and Fyz in the object plane (see Fig. 4.1). The shape of the focal image is circular
when the particle’s focal point is located approximately in the middle between both
focal planes (see label “2” in Fig. 4.1) and it deforms to a vertically or horizontally
stretched ellipsoid when the focal point is located closer to Fxz or Fyz, respectively (see
label “1” and “3” in Fig. 4.1). In comparison to the focal image, the shape change
of the particle image is not significant. In fact, the particle silhouette remains almost
circular as it can be seen in Fig. 4.2a. Hence, it is the deformation of the focal image
that will be used to determine the out-of-plane position of the particles. This shape
change can be quantified by extracting the information of the length of the horizontal
ax(z) and the vertical axis ay(z) of the ellipsoid (see Fig. 4.1). Hereafter, the ratio of
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4.2 Calibration measurement procedure

the major axis max[ax, ay] and minor axis min[ax, ay] of the focal image, is referred to
as aspect ratio a(z)= max[ax, ay ]

min[ax, ay ] . Due to this definition the aspect ratio is always greater
than one.

As mentioned before, there is a distance between a particle and its focal point, viz. the
particle’s focal length, which has to be considered for reconstructing the out-of-plane
position of a particle. Measuring this distance is not a difficult task in a non-astigmatic
(stigmatic) imaging system, as the system has only one focal plane. This can be done
by scanning a stationary particle in z-direction to determine the scanning position at
which the particle and its focal point are in focus. As there is no shape change of the
focal image in the stigmatic case, the focal point is located in the focal plane when the
focal image diameter is minimum. Note that the focal image always appears as a round
bright spot in a stigmatic imaging system. For both stigmatic and astigmatic systems,
the particle position along the scanning path can be found where the particle center
plane is located in the focal plane (Fxz=Fyz). Hence the focal length can be calculated
as the difference between the particle and its focal point position, hereafter referred to
as ∆Fyz=∆Fxz.

However, in the presence of a cylindrical lens, the imaging system features two focal
planes and hence the particle’s “focal length” can be determined with respect to both
focal planes (Fxz and Fyz). To determine the out-of-plane position of a particle with
respect to its focal point, one can choose either ∆Fxz or ∆Fyz as a reference length.
Preferably, the reference length should be considered which can be determined more
accurately. Theoretically ∆Fyz and ∆Fxz should be identical. Nonetheless, because
different methods are used to determine the particle’s position and its focal points
position, measured values of ∆Fyz and ∆Fxz may slightly differ, depending on the
refractive index of liquid and particles or the magnification. Hereinafter, the particle’s
focal length measured in an astigmatic system is referred to as ∆Fyz≈∆Fxz. Similar
to the stigmatic optical system ∆Fxz and ∆Fyz can be deducted from a scanning
procedure. Here, the focal point is located in Fxz or Fyz when the axis length ax or ay

is minimum, respectively. The particle itself is in focus when either Fxz or Fyz pass
the particle’s center plane during the scanning procedure. Knowing these positions
in the depth direction, the focal length of a particle (∆Fxz≈∆Fyz) can be defined
in an astigmatic optical system. The particle’s focal length is approximately linearly
proportional to the particle diameter and can be estimated by the lensemaker’s equation
(see section 4.6).

4.2 Calibration measurement procedure

To determine the particle’s focal length ∆Fxz≈∆Fyz as well as the change of the aspect
ratio a(z) of the focal image, wall-attached particles are scanned in 1 µm steps typically
over a range of 500 µm such that the shape change of the focal image and the focusing
and defocusing of the particle itself is fully captured, as shown in Fig. 4.2 for a 60 µm
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Figure 4.2: a) Particle images for different depth positions z (dp=60 µm, PMMA, z corrected
for 25wt% glycerol-water solution). b,c) ROI for focus measures fxz, fyz. b) Particle is
focused in Fyz. c) Particle is focused in Fxz. d) Raw particle image. e) Cropped particle
image. f) Autocorrelation map of Fig. 4.2e. g) Autocorrelation iso-contours (red line ca=0.7,
green line ca=0.4, blue line ca=0.155).

PMMA particle with M=20× magnification in a 25wt% glycerol-water solution. Figures
4.2b and 4.2c show the particle located in the focal planes Fyz and Fxz, respectively.
To determine ∆Fxz and ∆Fyz a focus detection algorithm based on the Tenengrad
variance is applied in four regions of interest (ROI) at the edge of the particle image and
delimited by the green and blue squares in Fig. 4.2b,c according to Pertuz et al. (2013).
The computed values of the Tenengrad variance are a measure for the sharpness of an
object image, henceon referred to as fxz and fyz. The maximum values of fxz (blue ROI)
and fyz (green ROI) show that the focal planes Fxz and Fyz are located at the center
plane of the particles, respectively. Please note that the maxima of fxz and fyz can be
used to detect the particle center during a scanning procedure to define the absolute
coordinate system with respect to the channel wall as will be described in section 4.7. If
the scanning procedure is continued, the particle image defocusses and the focal image
is characterized by varying axis lengths ax and ay (Fig. 4.2a,−75 µm<z<75 µm). It
can be seen that the shape change of the focal image is much more pronounced than
the shape change of the particle itself, which almost remains circular. ax(z) and ay(z)
and their ratio a(z) are determined with an autocorrelation method as indicated in
Figs. 4.2d-g. First, the image of the detected particle (Fig. 4.2d) is cropped out by
the particle radius (see Fig. 4.2e). Hence, an autocorrelation is applied to the image
section and the aspect ratio of the auto-correlation peak is determined by extracting
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4.2 Calibration measurement procedure

isocontours at a fixed threshold (see Fig. 4.2f,g). This procedure was found to be
insensitive to light intensity fluctuations (Cierpka et al. 2010a). The threshold at which
the aspect ratio is determined will hereafter be referred to as autocorrelation threshold
ca.

To illustrate the influence of the particle image size and induced astigmatism on the
calibration procedure, a 60 µm PMMA particle is dispersed in water and the same
scanning procedure is repeated four times at M=20× and M=10× with (astigmatic
case) and without cylindrical lens (stigmatic case) (see Fig. 4.3). The z-position where
ax(z) assumes its minimum value, is chosen as the reference position, referred to as z0
such that ax(z=z0) assumes a minimum. As expected and shown in Fig. 4.3a and c,
without cylindrical lens, the focal planes Fxz and Fyz collapse onto each other. This
is why the evolution of the particle image sharpness measures fxz and fyz is identical
for both magnifications (see Fig. 4.3a,c). fxz and fyz attain their maximum where
the focal plane reaches the center of the particle (highlighted with Fxz=Fyz), hence
the particle itself is focused (see Fig. 4.3a,c). As the scanning procedure is continued
further, the focal plane (Fxz=Fyz) passes the particle and consequently fxz and fyz

decrease again, as the particle itself gets defocused. As z-z0 increases more, the focal
planes now get closer to the focal point of the particle. This is illustrated in the insets
I1-I3 of Figs. 4.3a,c with the respective z-z0 positions highlighted by the crosses in the
plots. As the focal plane moves towards the particle’s focal point, the axis lengths of
the focal image ay(z-z0), ax(z-z0) shown in Fig. 4.3a,c, decrease till the focal point is
located at F ∗

xz=F ∗
yz (z-z0=0). As no astigmatism is involved in the results presented

in Fig. 4.3a,c, the aspect ratio a(z-z0) is constantly one. The distance between the
particle and its focal point is given by ∆Fxz=∆Fyz (see Fig. 4.3a,c), which is 130 µm
and 119 µm for the particle in Fig. 4.3a and Fig. 4.3c. The distance between a particle
and its focal point can be estimated by the lensemaker’s equation for thick lenses. With
the refractive index of the liquid nL and of the particle np the focal length fp of a ball
lens, that is the particle in the present case, can be expressed as (4.1):

1
fp

= 4 (np − nL)
nL

(
np − np−nL

nL

)
np dp

(4.1)

For a PMMA particle with dp=60 µm (np=1.49) in water (nL=1.333) the lensemaker’s
equation (4.1) results in fp=138 µm. This approximates the measured values quite well.

As mentioned before, if astigmatism is involved two focal planes coexist (Fxz 6=Fyz). In
this case Fyz is shifted closer towards the camera (see Fig. 4.1). Thus, fyz assumes its
peak value at a lower z-z0 compared to fxz (see Fig. 4.3b,d) and the aspect ratio a(z-z0)
shows its characteristic M -shape (see black curves in Fig. 4.3b,d). As mentioned before,
the focal image appears circular in the image plane only when the focal point in the
object plane is located inbetween the focal planes Fyx and Fzx, that is when ax=ay

(see Fig. 4.3b,d). The distance between both focal planes can be determined from Fig.
4.3b,d. This is equal to the distance Fxz-Fyz which equals F ∗

xz-F ∗
yz (see Fig. 4.3b,d).
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Figure 4.3: Calibration measurements in water with PMMA particles of dp=60 µm
(ca=0.4095). The z-position where ax is minimum (F ∗

xz) is taken as reference position
z0. a) Without cylindrical lens for M=20×. b) With cylindrical lens for M=20×. c)
Without cylindrical lens for M=10×. d) With cylindrical lens for M=10×. Symbols: black
dots=a, blue dots=fxz, green dots=fyz (see Fig. 4.2b,c), red dots=ay and orange dots=ax.

For M=10× (Fig. 4.3d) this distance is significantly larger than for M=20× (Fig. 4.3b).
The distance between the particle and its focal point is given by ∆Fxz≈∆Fyz that is
∆Fxz=136 µm≈∆Fyz=135.6 µm for M=20× and ∆Fxz=107.33 µm≈∆Fyz=94 µm for
M=10× as depicted in Fig. 4.3b and d, respectively. Thus, there is a good agreement
with equation (4.1) for M=20×. However, the discrepancy observed for M=10× requires
further investigations to be explained in future.

For an overview on the effect of magnification, the properties of the cylindrical lens, the
distance of the focal planes on the measurement range in the context of conventional
APTV, the reader is referred to Chen et al. (2009), Cierpka et al. (2010a) and Rossi
and Kähler (2014). Figs. 4.4a and b display the evolution of the light intensity of the
focal image for a dp=60 µm PMMA particle in water for M=20× and M=10×, with
and without cylindrical lens. For M=20× the evolution of the light intensity with and
without cylindrical lens remains similar (Fig. 4.4a). In contrast, for M=10× the light
intensity exhibits two peaks close to F ∗

yz and F ∗
xz when a cylindrical lens is mounted in

the system (Fig. 4.4b). This is because the distance between the focal planes Fyz-Fxz

is significantly larger for M=10× than for M=20× (see Fig. 4.4a,b). Please note that
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4.2 Calibration measurement procedure

the effective magnification is higher in the stigmatic case, as the distance between field
lens and camera sensor is altered (Mstig/Mastig≈ 125%). This is why for M=20× the
maximum light intensity is higher in the astigmatic case (see Fig. 4.4a). Figures
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Figure 4.4: Maximum light intensity of the focal image for a dp=60 µm PMMA particle in
water. Pink dots=without cylindrical lens, light blue dots=with cylindrical lens a) M=20×.
b) M=10×. The focal planes are highlighted by the dashed lines.
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Figure 4.5: ax as function of ay for a dp=60 µm PMMA particle in water (corresponding to
Fig. 4.3) (ca=0.4095). The color map indicates the out-of-plane position z-z0. a) M=20×,
without cylindrical lens. b) M=20×, with cylindrical lens. c) M=10×, without cylindrical
lens. d) M=10×, with cylindrical lens.

4.5a-d show ax as function of ay for a dp=60 µm PMMA particle in water with M=20×
and M=10×, each with and without cylindrical lens. As can be seen, ax is directly
proportional to ay in the stigmatic case (Fig. 4.5a,c). When astigmatism is introduced,
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4 Applying APTV to suspension flows with transparent particles

ax plotted over ay shows a characteristic curled curve (Fig. 4.5b,d). Thus, every ay, ax

pair is associated with just one z-z0 value (Fig. 4.5b,d). This form of representation is
the base for the out-of-plane reconstruction based on the Euclidean calibration approach
which will be discussed and utilized in the next section.

4.3 Reconstruction of the out-of-plane particle
position and outlayer detection

The calibration procedure described in section 4.2 is repeated for several particles
randomly distributed over the field of view. The major steps to generate a calibration
function from which the out-of-plane particle positions can be determined are illustrated
in Fig. 4.6 for a total number of 36 calibration particles. In fact, for all results presented
later in this work at least ten calibration particles have been used. In the first step,
ax(z-z0), ay(z-z0) and the maximum intensity I(z-z0) of all focal images that are taken
at different out-of-plane positions (z-z0) are superimposed. Hence, the median curve of
I is generated, denoted as I (see Fig. 4.6a). From the median intensity curve I the
maximum value Imax is determined (see Fig. 4.6a). The out-of-plane measurement
volume depth ∆z is determined by only considering data that fullfills the following
criterion: I≥Imax·cI (see vertical dashed lines in Fig. 4.6a). cI is herafter referred to as
the intensity coefficent and its influence on the relative measurement accuracy will be
discussed in section 4.4. In the next step a polynominal of 14th order is fitted to the ax

and ay scatter data. The resulting fitting curves ax(z-z0) and ay(z-z0) are shown in Fig.
4.6b. The actual calibration function now consists of three data sets, ax, ay and z-z0
which can be represented as one calibration curve with ax plotted as function of ay, see
Fig. 4.6c. This is known as the 2D calibration curve in APTV. For the sake of clarity,
we divide the calibration curve into three equal sections A, B and C with respect to the
depth position z-z0. The section borders are indicated with white dots in Fig. 4.6b-f.

As mentioned before, z0 is the relative z-position where ax assumes its minimum value.
With this data at hand we can reconstruct the z position of the focal point of a particle
with respect to z0. Fig. 4.6c shows the scatter data of ax plotted as a function of ay

and the calibration curve obtained from ax plotted over ay. To determine the z-z0
position, measured ax, ay values are associated to a point on the calibration curve that
is given by the minimum Euclidean distance (see Fig. 4.6c). Henceon, this method is
referred to as Euclidean method and is described in detail by Cierpka et al. (2010a).
If the Euclidean distance of a pair of ax, ay values exceeds a certain threshold the
measurement data is rejected. This threshold will be henceon referred to as aD and is
defined as the mean Euclidean distance of all ax and ay pairs of all calibration particle
images multiplied by the factor cD (4.2):

aD=cD

N

N∑
i=1

min
√

(ax-ax,i)2+(ay-ay,i)2 (4.2)

146



4.3 Reconstruction of the out-of-plane particle position and outlayer detection

-100 0 100
1000

1500

2000

Imax·cI

3000

Imax

4000

z-z0/µm

I
/c

ou
nt

s

25

30

35

40

45

50

a
y

,a
x

/p
x

-80 -60 -40 -20 0 20 40
25

30

35

40

45

50

ax

ay

A
B C

z-z0/µm

a
x

,a
y

/p
x

30 35 40 45 50

30

35

40

45

50

A
B

C

ay/px

a
x

/p
x

-80 -60 -40 -20 0 20 40
2000
2250
2500
2750
3000
3250
3500
3750
4000

Imax · cI

I

z-z0/µm
I
/c

ou
nt

s

30
35

40
45

5030 35 40 45

12
14
16
18
20

a y
/p

x

ax/px

I
/p

x

-50

-25

0

25

z
-z

0
/µ

m

-60 -40 -20 0 20
-8
-6
-4
-2
0
2
4
6
8

σ∗
z -2D:1.71µm

σ∗
z -3D:1.18µm

z-z0/µm

z
′ -
z
/µ

m

a) b)

c) d)

e) f)

Figure 4.6: Procedure of generating a calibration function. Scale of colormap in Fig. 4.6b-f
is given in 4.6e. z-z0 data is corrected for refractive index of a 25wt% glycerol-water
solution (dp=30 µm, M=20×, ca=0.7, cI=0.7, cD=2). a) Selecting z-z0 range of scattered
data by light intensity I (light dots=ax, dark blue dots=ay, green dots=I, black line=I).
b) Fitting polynomials of degree 14 to ax and ay (black line=polynomials ax, ay). c)
Reconstruction of z-z0 of scattered ax-ay data (colored dots) by Euclidean distance with
the 2D calibration curve (black line=polynomial, red dots=outliers). d) Fitting polynomials
of degree 14 to I (black line=polynominal I). e) Reconstruction of z-z0 of scattered ax-ay-I
data (colored dots) by Euclidean distance with the 3D calibration curve in the ay-ax-I space
(black line=polynomials). f) Position reconstruction error z′-z plotted over z-z0 obtained
with the 3D calibration curve (colored dots) and the 2D calibration curve (black dots).
The uncertainty of the 2D and 3D position reconstruction procedure is σ∗

z =1.71 µm and
σ∗

z =1.18 µm, respectively.

147



4 Applying APTV to suspension flows with transparent particles

with N being the total number of the calibration particle images. For the given case
the factor is set to cD=2 with the detected outliers indicated as red dots in Fig. 4.6c.

Particles may differ in terms of shape, roughness and refractive index such that their
ax, ay, I or z-z0 data deviates from the majority of the particles. Moreover, we noticed
that the change of the particles light intensity can be used as additional information to
encode the particles depth position. It is also observed that the calibration curve may
intersect in the ay, ax space resulting in a large uncertainty in estimating the depth
position of a particle (see section 4.4). To reduce such problems, we use the information
of the particles light intensity as an extra parameter to increase the accuracy and
robustness of the calibration procedure. In fact, using a polynomial fit of 14th degree to
the I scattered data I(z-z0) (see Fig. 4.6d) we extend the 2D (ay-ax) calibration curve
to 3D ay-ax-I space (see Fig. 4.6e). As for the 2D case, the z-z0 position of scattered
data is determined by assigning measured ax-ay-I values to a point on the calibration
curve that is given by the minimum 3D Euclidean distance (see Fig. 4.6e). To facilitate
computation of the 3D Euclidean distance, the light intensity is transformed to the
same order of magnitude as ay and ax by normalization with Imax and multiplication
with the maximum width or height of the 2D calibration curve. Data points which are
too far away from the 3D-calibration curve are rejected as indicated with red dots in
Fig. 4.6e. Similar to the 2D case, the threshold aD for rejecting data is defined as the
mean Euclidean distance of all ax, ay and I pairs of the calibration set multiplied by a
factor cD (4.3):

aD=cD

N
·

N∑
i=1

min
√

(ax-ax,i)2+(ay-ay,i)2+(I-Ii)2 (4.3)

For the given case the factor is set to cD=2.

From Fig. 4.6c a strong increase in the 2D calibration curve curvature becomes evident
in regions A and C, while the curve is almost linear in region B. Furthermore, the
arclength of A is small compared to B and C. These topoligical differences result in
different depth position reconstruction accuracies in A,B,C as depicted with the black
dots in Fig. 4.6f. Here we show the difference of the reconstructed depth position z′-z0
and the true scanning position z-z0 (z′-z) as a function of z-z0 (Fig. 4.6f). As can be
seen the out of plane reconstruction error with the 2D calibration curve sharply increases
in regions A and C where the curvature assumes maximum values. In contrast to this,
the 3D calibration curve enables a more accurate assignment of data and significantly
reduces the error in regions A and C (see colored dots in Fig. 4.6f). This leads to a total
reduction of 30% in the reconstruction uncertainty for the 3D calibration procedure in
comparison to the 2D one (σ∗

z=1.71 µm for 2D vs σ∗
z=1.18 µm for 3D). Furthermore,

the 3D reconstruction procedure increases the number of valid data points which are
Nvalid=1995 and Nvalid=2120 (+6%) for the 2D and the 3D case, respectively.
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4.4 The influence of the autocorrelation threshold ca on the relative out-of-plane
reconstruction accuracy

With the steps mentioned above we reconstruct the out-of-plane position of the particle’s
focal point relative to z0 with σ∗

z being the associated uncertainty. To determine
the absolute uncertainty in reconstructing the particle’s out-of-plane position, the
uncertainty in determining the particle’s focal length ∆Fyz≈∆Fxz has to be considered:
σz=

√
σ∗2

z + σ(∆Fxz)2. Therefore, the overall reconstruction accuracy of the out-of-
plane particle position of a 30 µm PMMA particle in the given example is σz=3.11 µm
and σz=2.85 µm for the 2D and the 3D calibration curve, respectively. A detailed
analysis of the out-of-plane reconstruction accuracy for different particle sizes is given
in section 4.6.

4.4 The influence of the autocorrelation threshold ca
on the relative out-of-plane reconstruction
accuracy

The relative out-of-plane reconstruction uncertainty σ∗
z/∆z depends on the choice of

the threshold values ca and cI . Therefore, an optimization study is performed for both
threshold values cI of the focal image light intensity and ca of the autocorrelation. The
optimization study is done with M=20× and PMMA particles of dp=60 µm diameter in
water. To account for the aberrations of particle images at different in-plane positions,
calibration particles (here 14 particles) are randomly distributed over the whole field
of view. As, the signal strength of the focal image depends on the light sensitivity of
a camera, the same measurements are performed with a light sensitive CCD camera
(LaVision Imager Pro SX) and a CMOS camera (Miro 110 Phantom). To ensure
comparability of both cameras the same group of particles is used for both calibrations.
For both parameter sets, we determine the optimum combination of ca and cI that
leads to a minimum relative out-of-plane reconstruction uncertainty σ∗

z/∆z (0<ca<1
and 0<cI<1). The resulting uncertainties are plotted in Figs. 4.7a and b as function of
ca, for the optimum value of cI for both camera types. As cI only affects ∆z, whereas
ca affects σ∗

z as well, we focus on discussing ca for fixed cI .

Different light intensities are used, given here as ratio of the median image intensity of
the whole image cmed and the maximum camera intensity cmax, which is 8-bit (4096
counts) for both the CCD and the CMOS camera. Tests showed that the median of
the whole image cmed is equal to the median of the background intensity without the
particles. Hence, cmed/cmax describes the normalized background illumination intensity.
As we use backlight-illumination, the background intensity is directly proportional to
the illumination intensity. Hence, the parameter cmed/cmax can be easily adjusted prior
to the measurements by simply increasing the illumination intensity. The influence of
the light intensity will be discussed in section 4.5 in further detail.

Four characteristic regions of ca can be identified in Figs. 4.7a and b denoted as
A-D. Obviously, a range of ca values between 0.40<ca<0.75 (denoted with C) leads to
uncertainties σ∗

z/∆z below 2% for both camera types. The corresponding, optimized
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Figure 4.7: σ∗
z /∆z over ca for different cmed/cmax. All data is presented using optimal cI

(M=20×, dp=60 µm, water, cD=3). a) CCD camera. b) CMOS camera.

cI values are given in the legend. For lower or higher values of ca (regions denoted
with A, B and D in Fig. 4.7) the relative out-of-plane reconstruction uncertainty
sharply increases due to ambiguities in the corresponding calibration curves. This can
be better understood from the calibration curves in the ay-ax-I-space as plotted in
Figs. 4.8a-d. Here, where we report the 3D calibration curves (Figs. 4.8a-d II) and
their projections onto the ay-ax plane (Figs.4.8a-d I). Please note that Figs. 4.8a-d
correspond to regions A-D in Figs. 4.7a and b. While the calibration curves shown in
Figs. 4.8a and c are continuous without intersections, those corresponding to regions
B and D in Figs. 4.7a and b, exhibit a sharp kink (see Fig. 4.8b) or intersect in the
ax-ay-I-space (see Fig. 4.8d). These characteristics lead to local ambiguities during
the Euclidean reconstruction procedure and hence a sharp increase in the relative
out-of-plane reconstruction uncertainty σ∗

z/∆z. It may be noted, that the ax and ay

data are typically used in fluorescence APTV. In the present study, informations on I

are additionally utilized to derive 3D calibration curves for BLAPTV. Fig. 4.8c I and II
reveal that ambiguities in the 2D ax-ay space can be avoided by this extended calibration,
giving rise to an improvement evaluation accuracy with a stable ca range of low relative
out-of-plane reconstruction accuracies σ∗

z/∆z as mentioned earlier (see region C in
Figs. 4.7a,b). Furthermore, preliminary tests (not shown here) indicate, that significant
improvements in the reconstruction accuracy may also be realized for fluorescence
APTV by utilizing calibration curves in ax-ay-I-space. Finally, Figs. 4.7a and b
indicate that lower light intensities corresponding to lower values of cmed/cmax<0.45
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4.4 The influence of the autocorrelation threshold ca on the relative out-of-plane
reconstruction accuracy

lead to a reduction of the relative out-of-plane reconstruction uncertainty σ∗
z/∆z. For
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Figure 4.8: Calibration curves in ax-ay-space (I) and ax-ay-I-space (II) corresponding to
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4 Applying APTV to suspension flows with transparent particles

the cases under investigation, the in-plane position of particles has a negligable effect
on the reconstruction accuracy compared to other parameters such as ca, cI and cD.
As said before, in this study each calibration is performed using particles that are
randomly distributed across the field of view. Hence the resulting calibration curve
can be considered as an averaged calibration curve. For all calibration measurements
the mean value of the depth position reconstruction error for all individual particles
is monitored. Results show a negligible difference in the reconstruction accuracy with
respect to the in-plane particle position and associated aberrations. However, if the 3D
calibration is applied to situations where a strong gradient of I is present across the
image or ax and ay depend on the in-plane particle position, the in-plane position of
particles has to be taken into account aswell in the calibration.

4.5 The effect of the light intensity

Due to the ball-lens effect, the light intensity of the focal image is much higher compared
to the background light intensity. Thus the ratio of focal image and background intensity,
denoted here as signal to noise ratio, varies for different particle materials, magnifications,
particle sizes and liquid-particle combinations. It even varies with the depth position of
a particle (see section 4.7). Thus, in pratice it may not be feasable to adjust the light
intensity for each particle species, especially in a polydisperse suspension.

In the present section we investigate how the relative light intensity, defined here as
the ratio between median image intensity cmed and the grayscale depth (maximum
counts) of the camera cmax, influences the minimum achievable relative out-of-plane
reconstruction uncertainty of a particle σ∗

z/∆z (Fig. 4.9a). Henceon, the signal to
noise ratios SNR, the measurement volume depths ∆z, the number of valid data points
Nvalid and the cI and ca values that result from the optimization study (shown in
Figs. 4.9b-f) are discussed. From Fig. 4.9a it can be seen that σ∗

z/∆z assumes a
minimum around cmed/cmax≈0.1. Please note, that σ∗

z/∆z assumes just slightly larger
values for the CMOS camera in comparison to the CCD camera for cmed/cmax<0.5.
This is remarkable, as the resolution of the CMOS camera is significantly lower than
the resolution of the CCD camera, that is 1.78 µm and 0.29 µm per pixel at M=20×,
respectively. For larger relative intensity values cmed/cmax, the relative uncertainty
σ∗

z/∆z increases.

The increase in σ∗
z/∆z is accompanied with a decrease in the maximum signal to noise

ratio (SNR) as shown in Fig. 4.9b. Here, the SNR is defined as the maximum intensity
of the focal image (Imax) divided by the median of the background light intensity. As
can be seen from Fig. 4.9b the SNR increases with decreasing intensity cmed/cmax. This
trend is counterintuitive and is reversed for very low values of cmed/cmax. As cmed/cmax

drops below cmed/cmax<0.042 for the CCD camera, the SNR decreases again due to
the vanishing image contrast (Fig. 4.9b). On the other hand, it can be understood
easily why the SNR decreases for cmed/cmax>0.2 and cmed/cmax>0.4 for the CCD and
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Figure 4.9: Optimized parameter values associated with minimum σ∗
z /∆z plotted over

cmed/cmax obtained with the 3D (solid lines) and the 2D (dashed lines) calibration procedure
(M=20×, dp=60 µm, water, cD=3). a) Influence of cmed/cmax on σ∗

z /∆z. b) Maximum SNR
as a function of cmed/cmax. c) Influence of cmed/cmax on ∆z. d) Influence of cmed/cmax on
valid particle images Nvalid. e) Influence of cmed/cmax on cI . f) Influence of cmed/cmax on
ca.

the CMOS camera, respectively. This is related to an overexposure of the focal image
as indicated in Fig. 4.10a and b in which we display the evolution of the median light
intensity of the focal image of all 14 particles I(z-z0) for the CCD and CMOS camera.
As the light intensity exceeds cmed/cmax>0.236 for the CCD and cmed/cmax>0.45 for
the CMOS camera, the curve peak transforms into a plateau. Thus, the maximum
exposure of the camera chip is reached. These limits are also indicated in Figs. 4.9a-f
with vertical dashed lines for the CCD (blue) and CMOS (red) camera. Overall, for
cmed/cmax≤0.6 uncertainties σ∗

z/∆z stay below 2%, thus the measurement technique is
also applicable outside the optimal range of illumination, though loosing accuracy.

From Fig.4.9a a strong increase in σ∗
z/∆z also becomes evident for the CCD camera

when cmed/cmax<0.1. This can be better understood from Fig. 4.9c where the effective
measurement volume depth ∆z for BLAPTV is plotted as function of the relative
light intensity. Here, ∆z drops sharply for cmed/cmax<0.042, leading to an increase in
relative uncertainty σ∗

z/∆z. We assume that the decrease of ∆z originates from weaker
signals of focal images with a focal point located behind or in front of the reference plane.
In addition we observed that with decreasing cmed/cmax<0.1 the detection of particle
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Figure 4.10: Median of I (I) over z-z0 for different cmed/cmax. Horizontal lines: cI ·Imax.
M=20×, dp=60 µm, z-z0 corrected for refractive index of water. a) I over z-z0 (CCD). b)
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d) I over z-z0 (CMOS) e) Particle image at cmed/cmax=0.115 (CMOS). f) Particle image at
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centers is increasingly erroneous. This leads to false ax and ay data and hence creates
high uncertainties. The increasing number of misdetections for low values of cmed/cmax

also leads to large standard deviations of the measured particle’s focal length as will be
discussed later in this section. Figs. 4.9a and c display the evolution of the relative
uncertainty and effective measurement volume depth for a 3D calibration procedure
in ax-ay-I space (solid lines) and the 2D calibration in ax-ay space (dashed lines). It
may be noted that the 3D calibration procedure decreases the relative uncertainty
and increases the effective measurement volume depth. Furthermore, utilizing a 3D
calibration procedure increases the number of valid data points Nvalid up to 26% (see
Fig. 4.9d). The minimum relative uncertainty is determined based on an optimization
of the cI and ca combinations for all tested light intensities. These values are plotted in
Figs. 4.9e and f. Overall, the optimal values of cI decrease, hence ∆z increases, if 3D
calibration curves are utilized instead of 2D calibrations in the ax-ay plane. Moreover,
from Fig. 4.9f it can be seen that the optimal values of ca differ for the CCD and CMOS
camera depending on cmed/cmax and they are in the range of 0.38<ca<0.7 (CCD) and
0.6<ca<0.7 (CMOS) for cmed/cmax values below the onset of overexposure.

As discussed above the relative light intensity has a significant influence on the accuracy
of the out-of-plane particle reconstruction. This can be better understood when the
effect of cmed/cmax on the shape of the calibration curves is analyzed. For this, Fig. 4.11
depicts the calibration curves for selected values of ca and ∆z for both the CCD and
the CMOS camera. As can be seen from Fig. 4.11a-d an increase in light intensity leads
to an overall decrease of the calibration curve length. Furthermore, it can be observed
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4.5 The effect of the light intensity

that the significance of this shape change depends on ca. Comparing Fig. 4.11a and
b, a much higher deformation of the calibration curve can be seen for ca=0.118 in
comparison to ca=0.7. Here we conclude, that if the light intensity varies significantly
across the image, the particle in-plane position has to be taken explicitly into account
during the calibration procedure.
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Figure 4.11: Influence of light intensity (cmed/cmax) on the calibration curve shape in the
ax-ay plane for a single particle and fixed ca and ∆z. a) CCD, ca=0.118, ∆z=130 µm b) CCD,
ca=0.7, ∆z=112 µm c) CMOS, ca=0.118, ∆z=217 µm d) CMOS, ca=0.627, ∆z=180 µm

As the light intensity affects the calibration curves, the question arises if it also affects
the measured focal length of the particle, which is considered to be constant in theory.
Fig. 4.12 shows the measured values of ∆Fxz and ∆Fyz plotted versus cmed/cmax

for both the CCD and the CMOS camera. As can be seen for 0.015<cmed/cmax<0.5
the measured values of ∆Fxz and ∆Fyz are in good agreement with the lensemaker’s
equation (black horizontal line). In particular, the values obtained with the CMOS
camera show an excellent agreement.

As already stated before, for cmed/cmax<0.015 the detection of the particle centers
becomes increasingly erroneous, leading to a sharp increase in ∆Fxz accompied by
large standard deviations of ∆Fxz and ∆Fyz (vertical error bars). For cmed/cmax>0.6
(CMOS) measured values for ∆Fxz show signifcant deviations from the lensemaker’s
equation, yet for ∆Fyz there is still a good agreement. Overall, we conclude that
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Figure 4.12: Effect of increasing light intensity cmed/cmax on the measured focal length of
dp=60 µm PMMA particles in water for CCD and CMOS camera (M=20×, ca=0.7 (CCD),
ca=0.6274 (CMOS)). The horizontal black line indicates the focal length calculated by the
lensemaker’s equation (4.1). The vertical blue and red dotted lines highlight the onset of
overexposure for the CCD and the CMOS camera, respectively.

changes in cmed/cmax have a significant effect on the shape of the calibration curves,
whereas the measured focal length of the particle, as a intrinsic feature of the particle
itself, remains approximately constant. We will reconsider this observation in section
4.7.

4.6 Influence of particle size, material, liquid and
magnification on the calibration properties

As BLAPTV is based on light being focused by particles, the optical properties of the
system and the particles have an influence on the measurement technique. In this section
we present a parametric study to understand the influence of the particle diameter
dp, the refractive index jump between particle and surrounding fluid ∆n=np-nL and
the magnification M . From the lensemaker’s equation (4.1) we conclude that the
particle’s focal length and hence ∆Fxz≈∆Fyz will increase linearly with increasing dp

and decreasing refractive index jump between particle and liquid (∆n=np-nL). As
these parameters determine the aperture of the focused light behind a particle, they
are expected to affect Imax, ax, ay and hence the aspect ratio a(z-z0) as a function
of the out-of-plane position z-z0. For the sake of comparison, the threshold for
the autocorrelation and the threshold for the light intensity are kept constant in the
following (ca=0.4095, cI=0.77). These values are found to provide satisfactory accuracy
for the particle sizes and liquids discussed in this section. In Fig. 4.13a-c calibration
measurements for single PMMA particles of dp=30 µm, 60 µm and 124 µm are presented
for a 25wt% glycerol-water solution at a magnification of M=20×. With increasing
dp a wider range of z-z0 is covered by ay(z-z0) and ax(z-z0) (red and orange dots in
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Figure 4.13: The effect of particle size on the axis lengths ay(z-z0), ax(z-z0) and measured
particle focal lengths ∆Fyz, ∆Fxz. z-z0 is corrected for the refractive index of a 25wt%
glycerol-water solution (M=20×, ca=0.4095, cI=0.77, CCD camera). Symbols: red dots=ay,
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Fig. 4.13a-c). This leads to an increase in measurement volume depth ∆z as given in
Fig. 4.14a, which can be understood from Fig. 4.14b. Here, the maximum focal image
intensity is plotted as function of the out-of-plane position z-z0. For increasing particle
sizes a larger ∆z is determined, as a larger particle provides a sufficiently strong focal
image signal over a bigger z-z0 range (indicated by dashed lines). It may be noted that,
for large particles the measurement volume depth ∆z exceeds the distance between the
focal planes by far (Fyx-Fxz=21 µm in Fig. 4.13 and Fig. 4.14). This is a significant
difference to conventional APTV with small particles where it is assumed that the
measurement range is primarily defined by the distance of the focal planes (Cierpka
et al. 2010a).

Figures 4.13a-c indicate a linear increase in the measured particle’s focal length with
increasing dp, as also depicted in Fig.4.14c: ∆Fyz (dashed lines with filled squares)
and ∆Fxz (bold lines with filled circles). This is in agreement with the lensemaker’s
equation (4.1), where the particles focal length increases linearly with dp. However, as
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z .

can be seen from Fig. 4.14c ∆Fyz and ∆Fxz deviate from the particle’s focal length
obtained by the lensemaker’s equation (solid thin lines) as the refractive index of the
liquid increases. While for water the agreement of measured and calculated values is
quite good (red lines), obviously this is not the case when the refractive index difference
between particle and liquid is increased (see Fig. 4.14c). As already stated in section 4.1,
here further investigations are required to understand the reasons for this discrepancy.

In general we observe, that the shape change and hence the change of the aspect ratio as
function of the out-of-plane position is more pronounced with decreasing focal image size.
As the size of the focal image increases with the particle size, it can be understood that
the uncertainty of the out-of-plane particle reconstruction σ∗

z grows with the particle
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size as shown in Fig. 4.14d. Also a decrease in ∆n=np-nL is associated with a decrease
in focal angle of light rays that are bundled by the particle. Hence a decreased focal
image deformation is observed when moving along the out-of-plane direction. Therefore,
σ∗

z grows when ∆n=np-nL decreases, as seen from Fig. 4.14d. A further overview of
measured values of σ∗

z , σz, ∆Fyz and ∆Fxz for different particle sizes and different
ratios of glycerol and water is provided in the Appendix (see Table A.11).

The effect of particle size and refractive index jump on the calibration curves in the ay-ax

plane is illustrated in Figs. 4.15a-f. Overall, an increase in particle size, shown here for
PMMA particles in a 25wt% glycerol-water solution for two magnifications (Figs. 4.15a
and b), leads to an increase in ax and ay. Therefore, calibration curves are strongly
shifted without any overlapping region. Please note, that this characteristics may be
utilized to assign particles to one calibration curve. Thus, it is possible to determine
both the out-of-plane position of the particles and at the same time perform a size
classification, if particles of the same shape and material are used. Figures 4.15c and d
reveal, that a reconstruction of out-of-plane particle positions can be also combined with
a classification of particles according to their refractive index. Here, calibration curves
for PS and PMMA are shown with a refractive index difference of ∆n=np-nL=0.258

150 200
50

100

150

200

250
a)

M=20×

ay/px

a
x

/p
x

30µm
60µm
124µm

50 100 150 200 250
50

100

150

200

250
b)

M=10×

ay/px

a
x

/p
x

60µm
124µm

50 100 150 200 250
50

100

150

200

250
e)

M=20×

ay/px

a
x

/p
x

0%wt
25%wt
50%wt

50 100 150 200 250
50

100

150

200

250
f)

M=10×

ay/px

0%wt
25%wt
50%wt

50 100 150 200 250
50

100

150

200

250
c)

M=20×

ay/px

a
x

/p
x

PS
PMMA

50 100 150 200 250
50

100

150

200

250
d)

M=10×

ay/px

a
x

/p
x

PS
PMMA

Figure 4.15: Effect of dp and refractive index jump on the calibration curves (ca=0.4095,
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and ∆n=np-nL=0.154, respectively. It may be noted that more stringent outlier criteria
are required when calibration curves move closer together as it is the case for Figs.
4.15c and d compared to 4.15a and b. A change in refractive index jump can also occur
when the refractive index of the liquid is varied. Figs. 4.15e and f show how changes of
the refractive index affect the calibration curves. Different refractive indices are realized
by creating different water-glycerine mixtures. When the refractive index jump between
particle and fluid increases with decreasing glycerol fraction, ax and ay decrease. In
the present study refractive index changes of the liquid of ∆n=0.0307 (for 25wt%)
and ∆n=0.064 (for 50wt%) are realized. Overall, it can be seen that the differences
between the individual calibration curves are more pronounced for M=20× compared
to M=10× under the depicted experimental conditions. In the present section only an
excerpt of the whole parameter study is presented. An overview of ∆z, ∆Fxz, ∆Fyz,
σ∗

z , σz for all investigated parameter combinations of dp, M , material of the particles
and wt% of the glycerol-water solution is given in Table A.11 of the Appendix. For
the investigated cases, σz/∆z is around 0.7-5.2% for BLAPTV (except for two cases)
which is comparable to the accuracies obtained by Cierpka et al. (2010b), Buchmann
et al. (2014) and Franchini et al. (2019). In the present study, the uncertainty relative
to the particle diameter is in the range 1.8%≤σz/dp≤16% (except for two cases), see
Table A.11 in the Appendix. This is even below the values reported in earlier studies
which are also given in Table A.10 in the Appendix.

4.7 Validation measurements

To demonstrate the capability of BLAPTV for flow domains with a depth beyond the
submillimiter range, measurements in a plane channel flow with 2305 µm channel height
are performed. For this, a 25wt% glycerol and 75wt% deionized water solution was
seeded with 10−4%wt polystyrene particles of diameter dp=80 µm. The solution is
density matched to the particles at 20 °C. As particles are two orders of magnitude
smaller compared to the channel height, we expect them to behave as neutrally buoyant
fluid tracers (Lindken et al. 2009). Despite the fact that the density of liquid and
particles is matched, few particles float and stick to the top or settle at the bottom
channel walls, due to small variations of the individual particle density as a result of
the manufacturing process. These particles are used to determine the absolute position
of the channel walls prior to the experiments. For this, the whole channel is scanned in
steps of 1 µm, to record particles that are located at the top and the bottom wall within
the field of view, acting as "wall markers". As mentioned in Section 4.2, the evolution of
the Tenengrad sharpness measure (fxz) is used to detect the particle center and hence
the walls of the channel by considering the particle radius. The origin of the scanning
coordinate, is set to zero at the bottom channel wall. Hence, a volume flow rate of
3.75×10−4m3 s−1 is created using a submerged rotary pump (Barwig). The liquid is
continuously recirculated and temperature regulated at 19-20 °C, see Figs. 2.1a and
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b. To measure the flow rate, we repeatedly measured the weight of the liquid pumped
during a defined time interval. Herafter, the massflow rate was calculated based on
the density of the glycerol-water mixture (Cheng 2008). An in situ-total gap height of
H=2305 µm was determined.

Prior to the actual flow measurement calibrations are performend. The resulting
calibration curves and the associated scattered ax, ay and I-values are presented in
Fig. 4.16a. For particles located at the top wall (z=2305 µm), ax, ay, I and hence the
calibration curve differ from those of particles located at the bottom wall (z=0 µm). As
shown in section 4.5, different light intensities result in different calibration curves for
the same particle. Therefore, we assume that the shape difference of the calibration
curves, is a result of a change in the light intensity along the gap height.

Due to the different shape of the calibration curves, the challenge is to find a calibration
function which is valid for particles located at any z-position in between the bottom
and top channel wall. To overcome this difficulty we interpolate the coefficients of
the ax, ay and I polynomials of the calibration curves as a linear function of z. In
this way, intermediate calibration curves are computed, see Fig. 4.16b. In the present
case, the measurement volume depth of the interpolated calibration curves is set to
∆z=173.22 µm. In addition to the calibration curve, the threshold for the Euclidean
distance aD is also interpolated linearly.

Also the measured particle’s focal length ∆Fyz≈∆Fxz differs for particles located at
the top and bottom, see Table A.12 in the Appendix. As discussed in section 4.5
the measured particle’s focal length is almost constant as light intensity is increased.
Therefore, we assume the difference is related to the refractive index jump at the top
channel wall. Hence, the particle’s focal length is assumed to be constant for the major
part of the channel (∆Fxz≈∆Fyz=const.), as the refractive index jump at the top wall
comes only into play for particles closer than ∆Fyz=177.32 µm≈∆Fyz=196.29 µm (see
Table A.12) to the channel walls. The out-of-plane position reconstruction uncertainties
for the top and the bottom calibration curve are given in Table A.12. As can be seen, the
uncertainty of determining the particle’s z-position is decreased by 15% and 10% with
a 3D calibration in comparison to a 2D calibration, while the number of valid particles
is increased by 2.5% and 4.8% for the top and bottom calibration curve, respectively.
It should be mentioned, that a maximum position error of 0.488% of the total channel
height and 14% of dp is achieved for the 3D calibration.

During the actual flow measurements the gap is scanned in steps of 136 micron and at
each measurement plane 5300 images with a resolution of 512×384 pixel, covering a
0.93×0.82 mm2 field of view, are recorded at 1000fps. Hence, the out-of-plane positions
of particles, based on the ay, ax and I data of the flow measurement has to be determined.
For this, each of the 3D calibration curves displayed in Fig. 4.16b, is compared with the
ax, ay and I-values from the corresponding measurement planes. In this way a suitable
calibration curve with associated out-of-plane particle positions along the curve can be
associated to the scatter data of each measurement plane. To find the most suitable
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Figure 4.16: Linear interpolation of calibration curves. Dashed line=0 µm (bottom), solid
line=2305 µm (top), colored dots=valid data, red dots=rejected data. M=20×, dp=80 µm,
cD=2, ca=0.7, cI=0.575, z-z0 corrected for nL of 25wt% glycerol-water solution. a) Scattered
ax-ay-I data and resulting 3D calibration curves. b) Interpolated 3D calibration curves.
c) Best matching interpolated calibration curve for z=971 µm d) zint of best matching
3D calibration curves vs. measurement plane position z (blue dots=interpolated, white
dots=best matching, black dots=shown in Fig. 4.16c).
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calibration curve, it is checked how many pairs of ay, ax and I are valid, i.e. their
minimum Euclidean distance to the calibration curve is smaller than aD, as described in
section 4.3. The curve that yields the largest number of valid particles is considered as
a match and selected for determining the z-z0 of the ay, ax and I pairs in the respective
measurement plane. Figures 4.16c displays the best matching calibration curve (black
solid line) and corresponding scatter data with valid measurement points (colored
markers) and outliers (red markers) for the measurement plane located at z=971 µm.
Note that, the interpolated aD value corresponding to the depicted calibration curve
have been used for outlier detection. Here an interpolation of aD is crucial as the
scattering of ax-ay-I data varies along the gap height (compare the scattering distance
of the top and bottom curve in Fig. 4.16a).

This procedure is applied to the ax, ay and I data of all measurement planes, such that
for each measurement plane the out-of-plane positions of the focal points are computed.
Hence, the absolute particle positions can be computed with respect to the channel
wall by summing up the focal points out-of-plane positions, the particles focal length
(∆Fxz) and the associated measurement plane position. In Fig. 4.16d the interpolated
coordinate zint of the calibration curve is plotted vs. the z where the curve showed
the most valid pairs, hence is considered as a match (white dots). As can be seen z

vs. zint of the matching curves (white dots) approximately shows a linear behavior.
This confirms the previous assumption that the shape of the calibration curves can be
described as a linear function.

Figure 4.17a shows a scatterplot of the position of all valid (green dots) and invalid
(red dots) data in the x-y measurement plane.

As can be seen the accepted data points are well distributed across the image (Fig.
4.17a). This means that any in-plane particle position effect is already included in the
result data, as particles across the whole field of view are accepted. Hence the influence
of the in-plane position on the Euclidean distance to the calibration curve and thus
on the particle’s out-of-plane reconstruction accuracy is not signifcant here. It may
be noted, that data points at the very corners of the images are rejected as particle
images intersect with the image borders and do not provide the complete focal image.
Therefore, particle center points close to the FOV border do not enter the statistics.

Fig. 4.17b shows the measured velocity profile of the plane channel flow that is
obtained with the aforementioned extended calibration procedure. The velocities
are calculated using a simple nearest neighbors algorithm. As is it clear from Fig.
4.17b, the experimentally determined velocity profile matches very well the analytical
solution (red line). It may be noted that particles assume a minimum z-distance of
approximately 200 µm to both top and bottom channel walls which might be due to to
wall-induced lift forces, which push particles away from the walls towards the channel
center. Utilizing a 3D calibration procedure 7996 valid data points are obtained while
in-plane velocities u, v as well as the out-of-plane velocity w could be determined
with standard deviations of σu=0.75%, σv=0.28% and σw=2.29% of the maximum
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Figure 4.17: a) Particle image centroids detected within the field of view during the measure-
ment. Green dots denote valid particle images, red dots denote outliers. b) Experimental
results and analytical solution for laminar channel flow. red line= analytical solution, green
dots (with errorbar)= measurement, black straight line= channel walls, black dashed line=
particle depletion area). The dashed lines indicate the minimum distance particles assume
relative to the walls. The mean value of the streamwise velocity standard deviation along z
is σu=0.75% of Umax (cD=2)

streamwise velocity umax, respectively. The same procedure with a 2D calibration
and reconstruction yields Nvalid(2D)=7267 (-10%) data points and uncertainties of
σu=0.80% (+6.1%), σv=0.27% (-3%) and σw=2.66% (+16%) for u, v and w, respectively.
If cD is reduced to cD=1.75 for the 3D calibration such that the number of valid particles
is approximately equal (Nvalid(2D)=7267≈Nvalid(3D)=7298) uncertainties of σu=0.73%
(-8%), σv=0.25% (-8%) and σw=2.05% (-30%) for u, v and w are achieved. This shows
that the 3D calibration procedure provides a better accuracy and more reliable data in
comparision to the 2D calibration procedure.

Overall the accuracies obtained with the 3D as well as the 2D calibration procedure are
comparable to the uncertainties obtained by Cierpka et al. (2010a), which are σu=0.9%
and σw=3.72% of umax. Thus, BLAPTV shows comparable measurement accuracies
compared to fluorescence based APTV, if a proper calibration procedure as presented
here is utilized.

4.8 Discussion and Conclusion

In this chapter, a method is presented to apply APTV to large transparent particles,
using bright-field illumination. As particles act here as ball lens, we referred to
this method as Ball Lens Astigmatism Particle Tracking Velocimetry (BLAPTV).
Based on a parameter study on the role of the background light intensity, the particle
size and the refractive index jump between particle and fluid, it was shown that
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BLAPTV achieves comparable measurement accuracies as conventional APTV where
fluorescent particles are typically utilized. We showed how the evaluation procedure,
in particular the autocorrelation coefficient ca and the light intensity coefficient cI

affect the accuracy of the method. Furthermore, we showed that BLAPTV may be
utilized to combine measurements of the 3D displacement of particles with a particle
classification by either size or refractive index due to different shapes of the corresponding
calibration curves. Given a proper calibration procedure, BLAPTV can provide high
reconstruction accuracies with respect to the particle diameter even for large particles.
To reduce the particle depth position reconstruction uncertainty, we proposed an
extended calibration procedure in which the focal image intensity is used an additional
parameter to the Euclidean method of Cierpka et al. (2010a) resulting in a 3D calibration
curve. Uncertainties of the out-of-plane particle position reconstruction of σz=2.5 µm for
dp=60 µm (σz/dp=4.16%) with M=20× and σz=2.26 µm for dp=124 µm (σz/dp=1.8%)
and M=20× were reported using the 3D calibration procedure. We observed, that the
measurement depth ∆z depends on the particle diameter and can exceed the distance
of the focal planes significantly (up to 11.1-13.4 times for a 124 µm particle, while it
is typical of the same order of magnitude in conventional APTV with small particles.
We also developed a method to compensate for shape changes of the calibration curve
inside a large measurement volume without the need to place a calibration target inside
the measurement volume. Instead, linearly interpolated calibration curves are assigned
to the measurement data in a best fit procedure to determine the out-of-plane position
of particles.

Finally we validated BLAPTV successfully by measuring a planar Poiseuille flow in a
rectangular channel. Utilizing a 3D calibration procedure we showed that the uncertainty
of the measured streamwise and out-of-plane velocity can be reduced by 6.1% and 16%,
respectively. Overall, the accuracies obtained in the measurement are comparable to
those obtained by Cierpka et al. (2010a) for both the 2D and the 3D calibration.

As BLAPTV is an adapted version of APTV, the same postprocessing code can easily
be applied to both fluorescent and transparent particles. Also measurements can
be performed with the same optical setup if the light source is adapted. This is an
advantage, when measurements should be performed with small fluorescent tracer
particles (dp≤3 µm) combined with larger transparent suspension particles (dp≥30 µm)
with the same magnification. We conclude our observations can be transferred to
conventional, fluorescent APTV, as from some experiments we know, that the choice
of ca affects the reconstruction accuracy σz as well in the case of fluorescent particles.
Furthermore, using a 3D calibration curve has the potential to increase accuracy and
robustness of conventional fluorescent APTV, because here outliers appear due to
deviations in shape or coating and overlapping particles.

The next chapter considers the application of APTV on large fluorescent particles in
suspensions at solid volume fractions up to 20% using a refractive index matching
method. As will be shown, slight refractive index differences between particles and
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liquid lead to shape changes of the calibration curve similar to those described in this
chapter. The interpolation method presented in this chapter is used to compensate
these shape changes.
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5 Applying APTV to suspension flows at
high volume fractions 1

In this chapter it is demonstrated how Astigmatism Particle Tracking Velocimetry
(APTV) can be utilized to measure suspensions dynamics beyond the dilute regime.
Measurements were successfully performed in monodisperse, refractive index matched
suspensions of up to a volume fraction of Φ = 19.9%. For this, a small percentage
(Φ < 0.01%) of the particles is labeled with fluorescent dye acting as tracers for the
particle tracking procedure. Calibration results show, that a slight deviation of the
refractive index of liquid and particles leads to a strong shape change of the calibration
curve with respect to the unladen case. This effect becomes more severe along the
channel height. To compensate the shape change of the calibration curve we adapt the
interpolation method presented in chapter 4. Using this technique, the interpolation
procedure is applied to suspensions with different volume fractions of Φ < 0.01%,
Φ = 4.73%, Φ = 9.04%, Φ = 12.97%, Φ = 16.58% and Φ = 19.9%. To determine the
effect of volume fraction on the perfomance of the method, the depth reconstruction
error σz and the measurement volume depth ∆z, obtained in different calibration
measurements, are estimated. Finally, the measurement technique is validated for a
laminar flow in a straight rectangular channel with a cross-sectional area of 2.55×30 mm2.

This chapter is structured as follows: First in section 5.1 the calibration procedure,
which differs to that described in chapter 4, is explained for large fluorescent particles.
In doing so, the effect of slight abberrations is considered which are induced by refractive
index differences between RIM-liquid and particles. Hence, in section 5.2 a method to
compensate shape changes of the calibration curves, resulting from these aberrations
is developed. Then the technique is validated in a laminar channel flow at different
particle volume fractions up to 20%. Finally, a summary of the observations and results
is given in section 5.3. The theory and state of the art relevant for this chapter are
given in section 1.2.2 (fundamentals of suspension flows) and section 1.2.4.3 (theory
and state of the art of APTV). The setups utilized to obtain the results presented in
the present chapter are given in section 2.1.2.

1This chapter is adopted from "On the calibration of Astigmatism particle tracking velocimetry for
suspensions of different volume fractions." Experiments in Fluids 62.1 (2021): 1-11, written by Philipp
Brockmann and Jeanette Hussong. Published under https://creativecommons.org/licenses/by/
4.0/.
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5 Applying APTV to suspension flows at high volume fractions

5.1 Calibration procedure

Here, a 2D Euclidean calibration procedure is presented similar to that described
in chapter 4. The main difference is that we utilize fluorescent particles for the
investigations in this chapter. Therefore, the aberrated particle image itself is used here
for particle out-of-plane position reconstruction. Furthermore, in contrast to chapter 4
we do not use the 3D Euclidean calibration procedure hereafter, as the distribution of
the light intensity is not sufficiently homogenous to improve the accuracy through a
3D procedure, here. This is because in setup 2 a continuous wave laser was used for
illumination (see Fig. 2.2 in section 2.1.2).

The major steps of the calibration procedure are summarized in the following, where
we also outline the differences in the calibration curves for a labeled particle in a dilute
(Φ < 0.01%) and in a dense refractive index matched suspension (Φ = 19.9%). To
capture the change of ax and ay for different out-of plane positions of particles, labeled
and wall attached particles in a suspension of Φ < 0.01% and Φ = 19.9% are scanned
in steps of 1 µm over a distance of 1000 µm such that the deformation of the particle
image is entirely captured. Fig. 5.1 shows particle images of such a scan of a 60 µm
PMMA particle labeled with Rhodamin B and located at the bottom channel wall. A
magnification of M = 10× for Φ < 0.01% (Fig. 5.1a) and Φ = 19.9% (Fig. 5.1b) is
chosen. The particle shown in Fig. 5.1a is submerged in a dilute suspension where
only labeled tracer particles of dp = 60 µm are present in the RIM-liquid such that
Φ < 0.01%. The change of ax and ay is determined as a function of z − z0. Results
are displayed in Fig. 5.2a (large colored dots). The coefficient ca at which the isolines
of the autocorrelation map are extracted to measure ax and ay will be denoted as
autocorrelation coefficient as introduced and described in chapter 4. The autocorrelation
coefficient is set to ca = 0.5547 for the results presented within this work. In Fig. 5.2b
ay is plotted as a function of ax. This presentation poses the base for the Euclidean
calibration method as developed by Cierpka et al. (2010a) and adapted in chapter 4.
The labeled particle displayed in Fig. 5.1b is submerged in a suspension of RIM-liquid
and additional unlabeled particles such that the total volume fraction is Φ = 19.9%.
In fact, the suspension was at rest for 24 hours, such that the particle shown in Fig.
5.1b is covered with appoximately 11 layers of unlabeled, transparent PMMA particles.
From Fig. 5.1a and b it is obvious that the images of the particle in a suspension of
Φ = 19.9% (Fig. 5.1b) are slightly blurred and also exhibit a speckle pattern for relative
out-of plane positions ranging between 200 µm < z − z0 < 400 µm. The blurriness and
the speckle patterns are a result of slight deviations of the refractive index of individual
transparent particles and the RIM liquid. The refractive index deviation of transparent
particles which are located in the optical path between the labeled calibration particle
and the objective, induces these distortions of the particle image affecting the values
of ax(z − z0) and ay(z − z0). These deviations become evident in Fig. 5.2a (small

168



5.1 Calibration procedure

-600µm -500µm -400µm -300µm -200µm -100µm 0µm +100µm +200µm +300µm +400µm

-600µm -500µm -400µm -300µm -200µm -100µm 0µm +100µm +200µm +300µm +400µm

a)

b)

Figure 5.1: Images of labeled particles for different depth positions z (dp=60 µm, PMMA, z
corrected for refractive index of RIM-liquid (nRIM = 1.488)). The particle is located close
to Fyz at z ≈ −200 µm and located in Fxz at z = 0 µm. a) Labeled particle in a suspension
with Φ = 0.01%. b) Labeled particle in a suspension with Φ = 19.9%.
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Figure 5.2: Calibration data of dp = 60 µm particles in RIM-Liquid for Φ<0.01% (large dots)
and Φ=19.9% (small dots) (M = 10×). The position where ax is minimum (Fxz) is taken
as reference position z0. a) ax and ay as function of z − z0 b) ay as function of ax.

colored dots) and Fig. 5.2b (small colored dots), respectively. Obviously the volume
fraction affects the ax and ay values and particles displayed in Fig. 5.1a and b can not
be treated with the same calibration curve.

To obtain a proper calibration function for both the dilute and the dense suspension the
previously described calibration scans are repeated for several labeled particles randomly
distributed over the field of view. This results in a data set of ax, ay and I as function
of z − z0 for several particles, where I denotes the maximum light intensity within the
particle image. An exemplary set of such scattered ax, ay and I data for dp = 60 µm
particles submerged in a suspension at Φ < 0.01% is given in Fig. 5.3a. In a first step
the median of I as a function of z − z0 is computed, denoted as I. For the following
steps only data points associated with I ≥ cI · Imax are considered, where cI is defined
as the intensity coefficient. The value of cI ·Imax will be hereafter referred to as intensity
threshold Ithr. For further information on cI the interested reader is referred to chapter
4. In the following step, a polynomial of 14th order is fitted to the scattered ax and ay
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Figure 5.3: Procedure of generating a calibration function (ca = 0.5547, cI = 0.5, cD = 2,
M = 10×, dp = 60 µm, Φ < 0.01%). Scale of colormap in b and c is given in c. z − z0
data is corrected for the refractive index of the RIM-liquid (nRIM = 1.488). a) Selecting
z − z0 range of scattered data by light intensity I (light blue dots=ax, dark blue dots=ay,
green dots=I, black dots=I). b) Fitting polynominals of degree 14 to ax and ay (black
line=polynomials ax, ay). c) Reconstruction of z − z0 of scattered ax-ay data (colored dots)
by Euclidean distance (black line=polynomials, red dots=outliers).

data as shown in Fig. 5.3. Preliminary tests on fluorescent particles revealed, that the
ax-ay-calibration curves assume a wide spectrum of different shapes depending on dp,
ca and the optical properties of the setup. In order to provide a general procedure here,
which can adapt to such a wide range of shapes high order polynomials are required.
Polynomials of 14th order are found to be suitable here, as lower order polynomials do
not adapt well to the data, while higher order polynomials do not provide a better fit.
When the polynomial fit of ay (denoted as ay) is plotted as a function of the polynomial
fit of ax (denoted as ax) the 2D calibration curve is obtained. The z-position of a
particle can now be reconstructed by assigning its measured ax, ay values to a point on
the calibration curve that is given by the minimum Euclidean distance and then reading
out the associated z − z0 value. Pairs of ax, ay where the Euclidean distance exceeds
a certain threshold are rejected as an outlier. This threshold is referred to as aD and
defined as the mean Euclidean distance of the ax, ay data of all calibration particles
multiplied by the factor cD as described in chapter 4. For the case depicted in Fig. 5.3
cD is set to a value of cD = 2, resulting in an out-of-plane reconstruction accuracy of
σz = 4.67 µm for dp = 60 µm particles. The measurement volume depth for the given
example equals ∆z = 514.84 µm for cI = 0.5, such that the relative reconstruction
accuracy, hence referred to as relative error, equals σz/∆z = 0.90%. With cI = 0.4
the measurement volume depth is increased to ∆z = 606.28 µm whereas σz increases
slightly to 4.92 µm resulting in a relative error of σz/∆z = 0.80%.
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5.2 Validation measurements

To validate the applicability of APTV to dense suspensions, measurements are carried
out in a plane channel flow with 2550 µm channel height. The suspension is a ternary
liquid mixture proposed by Bailey and Yoda (2003) and PMMA particles of diameter
dp=60 µm (Microbeads). The channel is filled with the RIM-liquid and a small amount
of labeled particles such that Φ < 0.01%. Due to a slight density variation of the
RIM-liquid and the particles, the particles settle to the channel bottom when rested
over night, while a few are stuck to the top channel wall. Settled particles are used to
determine the absolute position of the bottom and the top channel wall prior to the
experiments. For this, the whole channel is scanned in steps of 1 µm, to record particles
that are located at the top and the bottom wall within the field of view. The evolution
of ax is used to detect the particle center and thereby the channel walls by considering
the particle radius. In fact the particle center is focused in Fxz when ax assumes a
minimum. The origin of the scanning coordinate, is set to zero at the channel bottom.
Hence, a constant suspension flow rate of 20 mL min−1 is induced by a high pressure
syringe pumpe (LA-800, Landgraf HLL GmbH). A container is used to collect the liquid
driven from the syringe through the channel.

Before the actual flow measurement is started, calibrations measurements are performed
with particles located at the bottom channel wall to generate calibration curves for
Φ < 0.01% as shown in Fig. 5.4 (solid line). Hence, flow measurements for suspensions
with six different volume fractions ranging from Φ < 0.01% to Φ = 19.9% are performed.
After the final measurements at Φ = 19.9% the setup is rested over night such that
particles settle to the channel bottom. Then, calibration measurements are performed
with settled and labeled particles to generate a calibration curve for Φ = 19.9% as
shown in Fig. 5.4 (dashed line). As already discussed in section 5.1 both curves differ
significantly due to particle image distortions. Test calibrations performed on particles
located at the top and bottom of the channel revealed that this effect does not occur
for a dilute suspension (Φ < 0.01%) in the present case. While for low volume fractions
no effect can be noticed, for volume fractions larger than Φ ≥ 4.73%, we observed that
the calibration curve changes with the z-coordinate and hence is an implicit function of
the channel height. This is because the number of particles that disturb the light path
is higher for labeled particles located closer to the bottom than for labeled particles
located closer to the top of the channel. The challenge is to find a calibration function
which is valid for labeled particles located at any z-position in between the bottom and
top channel wall and for volume fractions in the range from Φ < 0.01% to Φ = 19.9%.
To solve this problem we adapt the interpolation method developed in chapter 4. For
this, we interpolate and extrapolate the polynomial coefficients of ax, ay based on
the calibration curves for Φ < 0.01% and Φ = 19.9%. In this way, we compute 30
intermediate calibration curves. These are presented as colored lines in Fig. 5.4. The
extrapolation allows us to generate calibration curves which are even more skewed
than the calibration curve for Φ = 19.9% (see orange to red lines in Fig. 5.4). As we
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Figure 5.4: Inter- and extrapolated calibration curves as used in section 5.2. The dotted line
equals the calibration curve for Φ=19.9% (curve number 19), the solid line corresponds to
the calibration curve for Φ=0.01% (curve number 5).

will show later these extrapolated curves are required at higher volume fractions. The
z-range of all interpolated calibration curves is set to ∆z=514 µm. In addition to the
calibration curve, which consists of ay as function of ax, the threshold for the maximum
allowed Euclidean distance aD is also interpolated linearly. The out-of-plane position
reconstruction uncertainties of particles of dp=60 µm diameter for Φ < 0.01% and
Φ = 19.9% are σz = 4.67 µm and σz = 15.64 µm, respectively. The channel is scanned
in steps of 223 µm during the flow measurements and at each measurement plane 2500
images with a resolution of 512×384 pixel, covering a 1.89×1.57 mm2 field of view, are
recorded at 100fps. In the post processing the image size is reduced to a region of interest
of 300×300 pixel. By this, marginal areas of insufficient illumination are reduced and
the computation time can be reduced significantly. After data acquisition, the particle
positions and velocities need to be determined. To determine the out-of-plane positions
of particles, based on their ay, ax values, each of the calibration curves displayed in
Fig. 5.4, is compared with the ax, ay scatter data from the corresponding measurement
planes. By this we can select an appropiate calibration curve for each measurement
plane. To find the best fitting calibration curve, the number of valid ay, ax pairs that
fulfill the Euclidean distance criterion is evaluated as described in section 5.1. In fact,
the curve that yields the largest number of valid particles is considered as a match and
selected to determine the z-z0 of the ay, ax pairs in the respective measurement plane.

It should be mentioned that as the deformation of a particle’s image depends on the
layer of suspension on top of it and hence on its z-position, ideally a calibration curve
should be generated individually for each particle based on its individual z-position. As
the particle position is unkown in advance, this would have to be realized in a complex
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5.2 Validation measurements

iterative procedure. However, as we will show later we do not experience any significant
bias by neglecting this effect. Therefore, we take the best fitting calibration curve for
each measurement plane.
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Figure 5.5: Best fitting calibration curve (blue line), valid ax-ay data (green dots) and
rejected ax-ay data (red dots) for different measurement planes (ca = 0.5547, cI = 0.5,
cD = 4). The solid and the dashed line are the calibration curves as presented in Fig. 5.4 for
a static suspension at Φ=0.01% and Φ=19.9%, respectively. a) z = 468.09 µm, Φ = 19.9%,
b) z = 913.89 µm, Φ=19.9%, c) z = 2028.39 µm, Φ=19.9%, d) z = 468.09 µm, Φ = 9.04%, e)
z = 913.89 µm, Φ = 9.04%, f) z = 2028.39 µm, Φ = 9.04%

Figures 5.5a-f display the best matching calibration curve (blue solid line) and corre-
sponding valid data points (green dots) and outliers (red dots) as defined in section
5.1, for measurement planes located at z=468.09 µm, z=913.89 µm and z=2028.39 µm
for Φ = 9.04% and Φ = 19.9% particle volume fraction, respectively. As can be seen
in Fig. 5.5a it turns out for Φ = 19.9% at a measurement position of z = 468.09
an extrapolated calibration curve (blue line) fits best to the measurement data. The
reason for this is, that during the flow measurement the transparent particles are well
distributed along the channel height and not settled to a bottom layer as during the
calibration. We therefore conclude, that the distortion induced by a static bottom layer
of transparent particles on top of a labeled particle is less intense than the distortion
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5 Applying APTV to suspension flows at high volume fractions

created by homogenously distributed transparent particles at the same total volume
fraction. Therefore an extrapolation of the calibration curve as displayed in Fig. 5.4 is
needed to capture the calibration curve deformation during the flow measurement.

An interpolation of the maximum Euclidean distance threshold aD as defined in section
5.1) is crucial as the scattering of ax-ay-I data varies along the gap height within the
experiments as shown in chapter 4. In a suspension flow the scattering increases the
closer labeled particles are located to the channel bottom. This can be seen from
Figures 5.5a-c and d-e where the maximum distance of valid data points (green dots)
with respect to the calibration curve (blue line) decreases when the measurement plane
is shifted towards the channel top (increasing z values). In the present study we use
the maximum light intensity I of the particle images for outlier detection. This is
essential for the algorithm to reliably pick the best matching calibration curve. The
importance of additionaly considering the light intensity as an outlier criterion can
be better understood from Fig. 5.6, where we show the best fitting calibration curve
and a typical distribution of I among the ax and ay scatter data. As can be seen, the
light intensity increases close to the calibration curve. For using the light intensity
as an additional outlier criterion we inter- and extrapolate the value of the intensity
threshold Ithr analogous to aD. Data points with I < Ithr are rejected. The whole
procedure is applied to the ax, ay and I data of all measurement planes, so that for every
measurement plane the out-of-plane positions of the particles are computed. Hence,
the absolute particle positions can be computed with respect to the channel wall by
considering the particle out-of-plane positions and the corresponding measurement plane
position. In Fig. 5.7 we show which interpolated calibration curve (see Fig. 5.4) matches
best with respect to the z position of each measurement plane. As can be seen for the
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Figure 5.6: Typical distribution of scattered ax, ay and I data obtained in one measurement
plane (z = 1136.79 µm) during the flow measurement for Φ=12.97%. All data gathered in
the measurement is displayed. Blue line=best fitting calibration curve.
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Figure 5.7: Number of best matching calibration curve as function of z-coordinate of mea-
surement plane for the flow measurements presented in Fig. 5.8. Solid black line=calibration
curve for (Φ < 0.01%) (curve number 5 in Fig. 5.4), dashed black line=calibration curve for
(Φ = 19.9%) (curve number 19 in Fig. 5.4)

lowest volume fraction (Φ < 0.01%) the algorithm picks calibration curves 5, 6 and 7 for
calculating the out-of-plane positions. For z > 2000 µm and Φ < 0.01% the best fitting
calibration curve matches with the calibration curve for Φ < 0.01% (number 5). For
lower values of z, curves 6 and 7 are selected for Φ < 0.01%. However, the differences
between the best matching calibration curves for Φ < 0.01% are small and it is sufficient
to consider curve number 5 only for the whole measurement. On the contrary, the curve
number changes significantly with increasing z for all flow measurements at higher
particle volume fractions (Φ ≥ 4.71%). This change becomes more pronounced with
increasing volume fraction and appears to be nonlinear as can be clearly seen from
Fig. 5.7. Obviously for Φ ≥ 9.04% extrapolated calibration curves are required, as the
maximum curve number exceeds 19. For Φ = 19.9% there is a plateau for z ≤ 468 µm,
where the curve number is constant. It seems necessary here to extrapolate further to a
higher curve number. However, the distortions of the scatter data for z ≤ 245 µm at
the highest volume fraction of Φ = 19.9% are too strong to capture them by further
extrapolation to higher curve numbers. Hence, for measurement planes z ≤ 245 µm
there is a lack of valid data points and the error of the calculated particle position and
velocity increases sharply, as will be also discussed hereafter.

Fig. 5.8a-f show the measured velocity profile and the associated number of valid
particles of the plane channel flow for six individual volume fractions between Φ ≤ 0.01%
and Φ = 19.9% obtained with the aforementioned procedure. Particle velocities are
calculated using a simple nearest neighbour algorithm.

The scattered data of the particle velocity of each individual measurement plane is color
coded according to the legend in Fig. 5.8.
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5 Applying APTV to suspension flows at high volume fractions

Measurement plane positions:
z = −646.41 µm z = −423.51 µm z = −200.61 µm z = −22.29 µm z = −245.19 µm
z = −468.09 µm z = −690.99 µm z = −913.89 µm z = −1136.80 µm z = −1359.70 µm
z = −1582.61 µm z = −1805.51 µm z = −2028.39 µm z = −2251.32 µm z = −2474.22 µm

a)

b)

c)

d)

e)

f)

Figure 5.8: Measured velocity profile and number of valid particles for different particle
volume fractions. Green bar plot = number of valid particles. Red line = analytical velocity
profile. Colored dots = scatter data of measured velocity of individual measurement planes
as given in the legend. Black line with shaded error marker = averaged velocity with
standard deviation. The dashed vertical lines indicate a distance of 100 µm and 200 µm
with respect to the wall. a) Φ < 0.01%, b) Φ = 4.73%, c) Φ = 9.04%, d) Φ = 12.97%, e)
Φ = 16.58%, f) Φ = 19.9%
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5.2 Validation measurements

For comparison we show the velocity profile for a rectangular channel as given in
Shah et al. (2014) as a red line. The bulk Reynolds number shown in Fig. 5.8a-
f is defined as Re = (UBulkDHρRIM)/νeff with the effective viscosity estimated as
νeff = νRIM(1 + 2.5Φ + 5.2Φ2) according to Batchelor and Green (1972). The particle
Reynolds number is estimated as Rep = Re(dp/D)2, where D denotes the gap height,
as used for example by Shichi et al. (2017). In general, it can be seen that the measured
velocity profile shows a good agreement with the analytical solution for all considered
volume fractions. For higher volume fractions the maximum velocity is slightly lower
than the velocity obtained from the analytical solution. This effect could be a result of
particle-particle interactions. However the effect is small.

By comparing the scattered velocity data gathered in adjacent measurement planes
(colored dots) it can clearly be seen that there is no signifcant mismatch of the data in
the regions where the measurement planes overlap. The velocity data of the individual
measurement planes merges together smoothly. Hence, choosing the best fitting calibra-
tion curve provides a sufficient reconstruction accuracy over the whole measurement
volume depth. However, it should be mentioned that in different experimental setups
the calibration curve may undergo a more pronounced shape change along the channel
height. Hence individual particle images may deviate strongly from the calibration
curves depending on their individual z-position relative to the measurement plane. In
such scenarios it may be required to reduce the measurement volume depth in each
measurement plane and simultaneously increase the number of measurement planes, or
interpolate an individual calibration curve for each particle in an iterative procedure.

The uncertainty of determining the in-plane velocity increases from σu=1.39% to
σu=3.34% with respect to the maximum streamwise velocity as the volume fraction
increases from Φ ≤ 0.01% to Φ = 19.9%. The uncertainty for determining the out-of-
plane velocity increases from σw=9.6% to σw=22.57% at the same time. We assume
that the loss of accuracy with increasing volume fraction is related to two different
effects. Firstly, the accuracy of determining the particles out-of-plane position decreases
with increasing values of Φ as more layers of transparent particles inducing distortions
to the images of the labeled particles. Secondly the accuracy of detecting the in-plane
position of the particles centers decreases with increasing volume fractions due to the
disturbances induced by the transparent particles. This effect becomes visible in the
uncertainty in determining the span-wise velocity component which increases from
σv=0.50% to σv=1.78% as the volume fraction increases from Φ ≤ 0.01% to Φ = 19.9%.

The accuracies obtained within this work are lower than those achieved in APTV with
small particles and dilute suspensions. This accounts especially for the out-of-plane
velocity. For instance Cierpka et al. (2010a) obtained uncertainties of σu=0.9% and
σw=3.72% of umax. We assume that the uncertainty is larger due to slight refractive
index mismatches between the RIM-liquid and the transparent particles.
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5 Applying APTV to suspension flows at high volume fractions

Regarding the number of detected particles it can be seen from Fig. 5.8, that there
is no obvious lack of data visible among all the planes. Hence, we conclude that the
described interpolation procedure is suitable for capturing the shape changes (ax, ay)
and the mean Euclidean scattering distance aD of the calibration curve. In Fig. 5.8c,d,e
a slight decrease in the number of detected particles towards the middle of the channel
becomes evident, which may be related to the measurement procedure and not to a
physical phenomena. In fact, for all flow measurements the estimated particle Reynolds
numbers are small (Rep << 0.1) as can be seen from Fig. 5.8a-f. Baghat et al. (2009)
showed that inertial migration of particles occurs for Rep > 0.1. Hence we conclude
that such effects can be neglected within our experiments.

Precisely measuring the particle concentration along the channel height is of great
importance for the investigation of physical phenomena, however to developing an
APTV based procedure to reliable measure the particle concentration is beyond the
scope of this work.

As the particle Reynolds numbers are small and a good agreement could be observed
between measured and theoretical velocity profile we conclude that the particle dynamics
are negligible here. Thus, particles can approximately be considered as fluidtracers.

5.3 Discussion and Conclusion

In the present study we showed that APTV can be applied to measure the particle
dynamics of suspensions of up to 19.9% volume fraction. Measurements have been
performed at six different volume fractions ranging from Φ ≤ 0.01% to Φ = 19.9%.

To make the suspension optically accessible we use a refractive index matched liquid
(RIM-liquid) and transparent particles of which just a small portion is labeled with
a fluorescent dye. Firstly, we study the effect of remaining image aberrations due to
slight refractive index mismatches. We observe that slight deviations of the refractive
index of individual transparent particles induce optical distortions that result in a
shape change of the calibration curve of a labeled calibration particle. Thus, at high
volume fractions of transparent particles, images of labeled particles get increasingly
distorted the closer they are located to the channel bottom as more transparent particles
disturb the optical path. To overcome this effect we adapt the interpolation method
presented in chapter 4. Inter- and extrapolated calibration curves for labeled particles
are generated from calibration measurements at Φ ≤ 0.01% and Φ = 19.9% and are
related to the measurement data in a best fit procedure. In the present study, we
used the light intensity as a simple outlier criterion. We found this additional outlier
criterion to be crucial for a stable fitting procedure. Depth reconstruction accuracies
of σz/∆z = 0.90% and σz/∆z = 2.53% were achieved for labeled static calibration
particles of dp = 60 µm and a magnification of M = 10× in a suspension of Φ ≤ 0.01%
and Φ = 19.9% volume fraction, respectively. Ultimately, we validated the interpolation
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5.3 Discussion and Conclusion

technique successfully by measuring the laminar velocity profile in a rectangular duct
with a 2.550×30 mm2 cross section for six individual volume fractions ranging from
Φ ≤ 0.01% to Φ = 19.9%. The uncertainty of the measured in-plane velocity was found
to be σu = 1.39% and σu = 3.34% while the uncertainty for the out-of-plane velocity
was σw = 9.06% and σw = 22.57% for Φ ≤ 0.01% and Φ = 19.9%, respectively. These
uncertainties are higher compared to those in APTV with small particles and dilute
suspensions. However, we are convinced that by using a improved illumination technique
and the use of a 3D calibration the uncertainties can be further reduced. Furthermore
we only used two calibration curves generated at Φ ≤ 0.01% and Φ = 19.9% for our
interpolation technique. In future works the method could be improved by considering
a higher number of volume fractions for generating inter- and extrapolated curves. In
fact, preliminary tests (not shown here) indicate that it is benefitial to perform the
calibration at solid volume fractions which are actually higher than those used during
flow measurements. Finally, to date APTV has been scarcely applied to large fluorescent
particles - following studies can help to gain further understanding of how particle size
and properties of the optical system affect the measurement accuracy. In the following
chapter 6 the latter issue will be adressed and the influence of the particle size on
the calibration curves will be investigated extensively. Moreover, the refractive index
matching technique will be utilized to measure the dynamics of mono- and tridisperse
suspensions in square capillaries at volume fractions up to Φ = 9.1%.
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6 Applying APTV to polydisperse
suspensions beyond the dilute regime 1

In this chapter, a method is developed which allows to measure the dynamics of poly-
disperse suspensions flows by means of APTV. Successful measurements are presented
for both mono- and tridisperse suspensions flows in a square duct of up to Φ = 9.1%
particle volume fraction. Like in the previous chapter, few particles (Φ = 0.08%) of
a refractive index matched suspension are labeled with fluorescent dye to make them
visible for the camera. While the previous chapter considered the effect of increasing
Φ on the calibration curves, in this chapter the effect of increasing the particle size
is investigated. Calibration measurements are performed for ten different particles
diameters dp ranging from dp = 15 µm to dp = 260 µm.

Section 6.1 adresses the effect of particle size on the calibration procedure. Thereby
both theoretical calibration curves as well as measured calibration curves are discussed.
Section 6.2 considers the application of the 3D euclidean calibration procedure on
different particle sizes. In section 6.3 migration phenomena in mono- and tridisperse
suspensions flows are investigated utilizing the 3D calibration procedure. In section 6.4
the results obtained in this chapter are summarized.

The theory and state of the art relevant for this chapter are given in section 1.2.2
(fundamentals of suspension flows) and section 1.2.4.3 (theory and state of the art of
APTV). The setups utilized to obtain the results presented in the present chapter are
given in section 2.1.3.

6.1 Calibration procedure

As described in section 1.2.4, the deformation of the particle image axis lengths (ax

and ay) can be described by the following equation (Cierpka et al. (2010a)):

ai(zi) = M

√
d2

p + 1.49λL
2
(

n2
0

NA2 − 1
)

+ 4(zi)2
(

n2
0

NA2 − 1
)−1

i = x, y (6.1)

1This chapter is adopted from "Utilizing APTV to investigate the dynamics of polydisperse suspension
flows beyond the dilute regime." written by Philipp Brockmann, Christoph Szymanczyk, Hatim
Ennayar and Jeanette Hussong, submitted to “Experiments in Fluids” in November, 19th, 2021
(submission id: EXIF-D-21-00525)
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

Here zi = z − Fiz is the distance between particle and respective focal plane. The
variables dp, λL, n0, M , NA are the particle diameter, the wavelength emitted by the
particle, the refractive index of the liquid, the magnification and the numercial aperture
of the objective, respectively.

In Fig. 6.1a we display ax and ay as function of z − z0 obtained with equation (6.1)
for different values of dp. The reference position z0 here refers to the scanning position
where the particle is focused in Fxz. As can be seen, ax and ay first decrease down
to a minimum and then increase again as z − z0 increases. Thereby, the curves of
ay and ax are staggered and the minimum values occur at Fyz and Fxz, respectively.
With increasing dp the values of ax and ay increase and the curvature close to the
minimum decreases. Further, the total change of ax and ay becomes less pronounced as
dp increases. Hence, in theory, for a given optical setup the resolution for reconstructing
the particle’s depth position decreases with increasing particle diameter dp.
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Figure 6.1: Plots of the axis lengths ax and ay obtained with equation (6.1) for λL = 590 nm,
n0 = 1, M = 10, NA = 0.3 and selected values of dp. White filled dots and squares indicate
the ax, ay values at the focal planes Fyz and Fxz, respectively. Increasing z is associated
with traversing the objective as depicted in Fig. 1.12. a) ax (solid line) and ay (dashed line)
as function of z − z0 b) ay as function of ax

The difference between small and large particles becomes more clear when ay is plotted
over ax as depicted in Fig. 6.1b. This presentation is fundamental for the Euclidean
calibration procedure, which will be described later in the text. As can be seen in
Fig. 6.1b, with increasing dp the curves are shifted towards larger values of ax and
ay while at the same time the maximum change of ax and ay over the same z-range
decreases significantly. Hence, the resolution of z-position reconstruction reduces for
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6.1 Calibration procedure

increasing dp as concluded from Fig. 6.1a. Furthermore, it becomes evident from Fig.
6.1b that, especially for smaller dp, the curves collapse outside the focal planes which
are highlighted as white filled dots and squares in Fig. 6.1b, respectively.

For reconstructing a real particles z position depending on its ax and ay values a
calibration function, generated from recorded images, is needed. For this, we utilize the
3D Euclidean calibration procedure as developed in chapter 4. This calibration method
requires a homogenous light distribution across the image to work properly, which we
ensure by using a high power LED for illumination. In the following, we summarize
the basic steps of the calibration procedure for an exemplary set of fluorescent PMMA
particles of 30 µm and 60 µm.

To obtain the change of ax and ay for different particle depth positions, labeled and wall
attached particles are scanned in steps of 1.25 µm over a distance of 1000 µm. Fig. 6.2
shows the result of such a scan for fluorescent PMMA particles located on a glass plate.
In each recorded frame the individual particle centroids are detected by binarizing the
image and applying the MATLAB function “regionprops”. The threshold for binarizing
the image within this step is defined as the median of the whole image intensity. For
extracting the ax and ay from the individual particle images in the next step, we employ
two different approaches, which will be compared in the following.

a) −100µm −50µm 0µm 50µm 100µm

b) −200µm −100µm 0µm 100µm 200µm

c) −400µm −200µm 0µm 200µm 400µm

Figure 6.2: Particle images for different z − z0 obtained in calibration measurements (n0 = 1,
M = 10×). Particle images are not to scale. Increasing z is associated with traversing the
objective as depicted in Fig. 1.12. a) dp=15 µm b) dp=60 µm c) dp=155 µm.
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

In the binarization approach the particle image is cropped out by a rectangular section
and binarized using MATLAB’s “imbinarize”. The ax and ay values are then extracted
using matlab “regionprops” subfunctions “major axis” and “minor axis”. For the
autocorrelation method the particle image is cropped out by a circular section around
the detected particle centroid at a defined radius of 3.6 · dp/px. Hence, the cropped
particle image is autocorrelated and the isoline where the autocorrelation coefficient is
equal to ca, is extracted. ax and ay are then given as the maximum x and y span of
the isoline. ca is denoted as the autocorrelation coefficient as introduced in chapter 4
and set to ca = 0.5184 within this work.

ax and ay as function of z-z0 obtained with the two aforementioned methods are
displayed in Fig. 6.3a,b together with the theoretical curves calculated with equation
(6.1). By comparing the data for dp =30 µm (small dots) and dp =60 µm (large dots)
it can be seen that the measured ax, ay values increase with increasing particle size
for both the autocorrelation method and the binarization approach. Obviously, the
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Figure 6.3: Axis lengths ax and ay over z − z0 as well as ay over ax for particles of 30 µm
(thin colored line) and 60 µm (bold colored line) for n0 = 1 (air) and M = 10× (Setup 3).
Dotted uni-color line= theoretical curve for ax, solid uni-color line= theoretical curve for
ay, red= 60 µm particles, blue= 30 µm particles. a) ax and ay over z − z0 b) ax and ay over
z − z0 c) ay over ax d) ay over ax
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Figure 6.4: Maximum light intensity I of the particle image over z − z0 for particles of
diameter 30 µm (thin colored line) and 60 µm (thick colored line)

data obtained with the autocorrelation method coincides with equation (6.1) inbetween
the focal planes but deviates significantly from the theroetical curves outside the focal
planes (Fig. 6.3a). In contrast, the ax, ay data obtained with the binarization approach
matches well with the theroretical data (Fig. 6.3b).

In Fig. 6.3c,d we show ay plotted over ax which is required for the Euclidean calibration
(Cierpka et al. 2010a, Brockmann et al. 2020, Brockmann and Hussong 2021). Obviously
here, for both the autocorrelation and the binarization approach, the curves for the
small particles (small dots) and the large particles (large dots) intersect (Fig. 6.3c,d).
Hence, if both curves are considered together they do provide ambiguous data in the ax,
ay space. In contrast, the maximum particle light intensity I(z − z0) differs significantly
for both particle sizes as can be seen in Fig. 6.4. Hence, by combining I(z − z0) and
ax(z−z0), ay(z−z0) an unambiguous dataset is obtained. As we will show in section 6.2
we will use this combination of data to generate unambiguous 3D Euclidean calibration
curves for polydisperse suspensions.

In general, to obtain a calibration curve we perform the procedure developed in chapter
4 and chapter 5. In the following, we present the basic steps of the procedure applied
on our data. To generate a calibration curve to be used in a velocity measurement,
the calibration data of several particles randomly distributed in the field of view is
required. By this individual deviations in particle shape, labeling and minor optical
aberrations are accounted for statistically. In Fig. 6.5a we show a set of scattered
ax, ay and I data obtained from 25 60 µm particles. As first step, we determine the
median of I(z − z0), which is represented by the black line in Fig. 6.5a and referred
to as I. Hereafter only data points associated with I ≥ cI · Imax are evaluated and cI

is referred to as the intensity coefficient. We define further an intensity threshold as
Ithr = cI · Imax. A detailed discussion about the influence of cI is provided in chapter
4. Subsequently, polynomials are fitted to the ax and ay scatter data (Fig. 6.5b). Here
a polynomial degree of 14 has proven to be suitable for different types of particles and
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Figure 6.5: Procedure of generating a calibration function (ca = 0.518, cI = 0.4, cD = 2,
M = 10×, dp = 60 µm). Scale of colormap is given in 6.5c. a) A z−z0 range of scattered data
is selected by light intensity I (light blue dots=ax, dark blue dots=ay, green dots=I, black
dots=I). b) A polynominal is fitted to ax and ay. c) The relative position z −z0 of scattered
ax-ay data (colored dots) is reconstructed by the 2D Euclidean distance method (black
line=polynomials, red dots=outliers). d) A polynomial is fitted to I data. e) Reconstruction
of z − z0 of scattered ax-ay-I data (colored dots) by 3D Euclidean distance method (black
line=polynomials, red dots=outliers).
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optical properties as shown in chapter 5. By plotting the fits of ay (denoted as ay) over
the fit of ax (denoted as ax) the 2D calibration curve is obtained (Fig. 6.5c). Now the
depth position of a particle can be determined by relating its measured ax, ay values to
a point on the calibration curve that is given by the minimum Euclidean distance and
hence reading out the corresponding z −z0 value (Cierpka et al. 2010a). If the Euclidean
distance of a ax, ay pair exceeds the threshold aD, which is defined as the mean distance
of all ax, ay data multiplied by the factor cD, it is rejected as an outlier (see chapter
4). In the results in Fig. 6.5 cD is 2, which provides an overall depth reconstruction
uncertainty of σz,2D = 4.7 µm and N ≈ 6200 valid data points for dp = 60 µm particles
and the 2D reconstruction procedure. With cI = 0.5 the measurement volume depth for
the given example is ∆z = 650 µm such that the ratio σz,2D/∆z is 0.72%. If a polynom
is fitted to the I scatter data as shown in Fig. 6.5d, it can be used to generate a 3D
calibration curve as presented in Fig. 6.5e. ax, ay, I scatter data can now be assigned
to this curve by means of the three-dimensional Euclidean distance. To ensure ax, ay

and I are in the same order, I is normalized by Imax and multiplied by the maximum
axis length as explained in chapter 4. Mathematically this factor, hereafter denoted as
intensity scale factor, can be defined as:

cs = max[(max(ax) − min(ax)); (max(ay) − min(ay))]
Imax

(6.2)

Using the 3D calibration an overall depth reconstruction uncertainty of σz,3D = 3.95 µm
achieved for the given example such that σz/∆z is 0.69%. If the autocorrelation method
is applied the gain in accuracy when using 3D instead of 2D calibration is even more
significant (σz,2D = 8.25 µm and σz,3D = 5.45 µm).

6.2 3D calibration for different particle sizes

As discussed in section 6.1 the 2D calibration curves for particles of different size intersect
outside the focal planes creating ambiguities. Hence, in a polydisperse suspension flow
particles of different size can not be assigned correctly to the calibration curve. To
overcome this problem König et al. (2020) successfully employed a cascaded convolutional
neural network to distiuingish between particles of different size. We use a different
approach here and utilize the 3D calibration to differentiate particle species thereby
exploiting the fact that the particle light intensity increases sharply with increasing
particle size. In Fig. 6.6 we present the 2D and the 3D calibration curves for different
smaller (15 µm < dp < 60 µm, Microbeads) and larger particles (101 µm < dp < 256 µm,
Altuglas). Due to slightly different material properties, the small particles (Microbeads)
provide a higher light intensity in relation to their size than the large particles (Altuglas)
such that we present them separately. Here we only present calibration curves obtained
with the binarization method. Data based on the autocorrelation have shown similar
trends but are not shown here for conciseness of the paper. It can be seen clearly, that
the 2D calibration curves intersect each other outside the focal planes. In contrast, the
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

3D calibration curves are well separated from each other as the light intensity strongly
correlates with dp. Please note that we display the absolute value of I instead of the
normalized I.
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Figure 6.6: 2D and 3D calibration curves for particles of different diameters. a) 2D Calibration
curves for 15 µm < dp < 60 µm. b) 3D Calibration curves for 15 µm < dp < 60 µm. c) 2D
Calibration curves for 101 µm < dp < 256 µm. d) 3D Calibration curves for 101 µm < dp <
256 µm.

In the following, we will demonstrate the application of the 3D reconstruction procedure
on mixed, scattered polydisperse calibration data with cI set to zero. Hence, calibration
data is included regardless of the light intensity over the full scanning range. By this we
generate a test case close to measurement conditions by including a significant amount
of erroneous ax, ay data, as can be seen exemplary for dp=60 µm particles in Fig. 6.5a
outside the dashed vertical bars. However, the calibration curves for the individual
particle sizes are still obtained with cI = 0.4 which corresponds to the calibration curve
as shown in Fig. 6.5. As the calibration data is generated by a scanning procedure on
static particles, the particle size as well as the out-of-plane position of each data point
is known and we can evaluate the uncertainty in determining the particle size as well as
the depth position. In Fig. 6.7a we present the 2D calibration curves for particles of
dp =15, 30, 40, 60 µm as shown in Fig. 6.6 together with the 2D calibration data. For
this example the reconstruction procedure was applied to the curve for 60 µm particles
(black and red line). Data that is assigned correctly to the calibration curve for 60 µm is
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Figure 6.7: Applying the 3D Euclidean Calibration on mixed, scattered polydisperse cal-
ibration data. The reconstruction procedure is performed with the calibration curve for
60 µm particles in a-d (black and red line) and the calibration curve for 193 µm particles in
e-h (black and yellow line). Symbols: Rejected data (gray), correct assigned data (green)
and false assigned data (magenta). ca = 0.51, cI = 0.4, cD = 2, M = 10×. a,c) Calibration
data for 15 µm < dp < 60 µm (a: 2D, c:3D). b,d) Histogram for 15 µm < dp < 60 µm (b: 2D,
d:3D). e,g) Calibration data for 101 µm < dp < 256 µm (e: 2D, g:3D). f,h) Histogram for
101 µm < dp < 256 µm (f: 2D, h:3D).
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

plotted as green dots, while rejected data is grey. Data that is highlighted with magenta
dots originates from dp =15, 30 and 40 µm particles that were erroneously assigned to
the calibration curve of 60 µm particles. From Fig. 6.7a it can be clearly seen, that the
2D calibration procedure yields a significant amount of erroneous detections outside the
focal planes, where the calibration curves overlap. The amount of erroneously assigned
15, 30 and 40 µm particles is illustrated in the histogram in Fig. 6.7b. However, when
the 3D calibration is used for the reconstruction procedure, it can be seen that almost all
the data points are correctly assigned to the corresponding calibration curve (Fig. 6.7c
and Fig. 6.7d). This observation also accounts for the 2D and the 3D reconstruction
procedure applied on the data of larger particles (dp =101, 121, 159, 193, 256 µm) when
utilizing for instance the calibration curve for dp =193 µm (black and yellow line), as can
be seen from Fig. 6.7g and Fig. 6.7h. In fact, the 3D reconstruction procedure allows a
reliable assignment of particle images to the correct calibration curve for all individual
calibration curves depicted in Fig. 6.7a,c,e,g. In table 6.1 we provide an overview of
correct and erroneously assigned particles using the 2D and 3D reconstruction for all
depicted calibration curves, respectively. In table 6.1, erroneous detections are denoted
as Nf,3D and Nf,2D for a 3D and 2D calibration, respectively. We further compare
the efficiency of the 3D- and 2D reconstruction by computing the factor Nc,3D

Nc,2D

σz,2D

σz,3D
.

This factor takes into account the number of correctly assigned particles as well as the
uncertainty in determining the depth position of correctly assigned particles obtained
with the 2D and 3D reconstruction, respectively. As can be seen, the factor assumes
values higher than one for all particle sizes except for 15 µm which means that the 3D
calibration provides more valid particles and/or a lower uncertainty in determining
the z-position of valid particles for almost all cases. For 15 µm particles, the image
quality as well the light intensity is not as homogenous as for larger particles which
significantly affects the accuracy, especially of the 3D reconstruction (σz,2D = 12.19 µm,
σz,3D = 23.43 µm for 15 µm particles). We recall here that a homogeneous light intensity
is paramount for the accuracy of the 3D reconstruction. Even though the accuracy of
the reconstructed depth position is reduced with the 3D reconstruction, no particle
images are assigned incorrectly to the calibration curve of 15 µm particles.

6.3 Comparison of monodisperse and polydisperse
Suspension dynamics

6.3.1 Experimental procedure

To investigate the migration behavior of mono- and tridisperse suspensions, flow mea-
surements are performed in a square duct with 400×400 µm2 and 600×600 µm2 cross
section. The suspensions are composed of RIM-liquid as proposed by Bailey and Yoda
(2003) and PMMA particles (Microbeads) of 30 µm, 40 µm and 60 µm diameter. The
square duct is filled with RIM-liquid and labeled particles such that the particle volume
fraction is Φ = 0.08%. Due to slight density differences between RIM-liquid and
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6.3 Comparison of monodisperse and polydisperse Suspension dynamics

dp
Nc,3D
Nc,2D

σz,2D

σz,3D
Nc,2D Nc,3D Nf,2D Nf,3D

15 0.699 6260 8408 1295 0
30 1.096 2598 2864 1709 0
40 1.210 5144 6203 1657 0
60 1.295 6297 6825 4106 0
101 1.132 743 894 615 1
121 1.424 1306 1645 951 61
159 1.043 2453 2747 1972 63
193 1.052 1440 1644 1297 0
256 1.190 838 944 1578 11

Table 6.1: Comparison of 2D and 3D reconstruction applied on polydipserse calibration data.
Nc,2D and Nc,3D is the number of particles assigned to the correct curve with 2D and 3D
calibration, respectively. Analogous, Nf,2D and Nf,3D are the number of incorrectly assigned
particles.

particles, particles float to the top or settle to the bottom of the channel when the
residence time in the square duct exceeds several minutes. In the absence of flow, these
particles act as wall markers and are used to detect the absolute position of the duct
and serve to set the origin of the z-coordinate as described in chapter 5. Subsequently,
the syringe pump drives a constant suspension flow rate through the square duct into
a container. Prior to the actual flow measurements, calibration measurements (as
described in section 6.1) are performed on the particles at the bottom of the channel
to generate calibration curves for the three particle sizes (30 µm, 40 µm, 60 µm). In
the FVS the calibration was performed on particles located on the glass coverslip, as
illustrated in section 2.1.3.

In chapter 5 it was shown that slight deviations of the refractive index of particles and
RIM-liquid may lead to distortions of the particle images which become severe with in-
creasing channel height. However, the height of the present ducts (H = 400 µm, 600 µm)
is much less than that of the channel (H = 2550 µm) used in chapter 5 such that the
distortions can be neglected here. After calibration measurements are completed, the
actual flow measurements are performed for the monodisperse and the polydisperse
suspension for Φ = 0.08% and Φ = 9.1% for different bulk Reynolds numbers. In the
polydisperse measurements the individual volume fraction of each single species is kept
equal at 1/3 of Φ = 0.08% and Φ = 9.1%.

During the flow measurements in the LVS the duct is scanned in steps of 74 µm or
148 µm and 21500 images with a resolution of 512×384 pixel (Lateral view) at 300 fps
up to 8354 fps are recorded at each measurement plane. By this, depending on the
duct height, data from 6 to 9 individual measurement planes is captured. In the FVS
4×16500 images with a resolution of 512×512 pixel are recorded at a single measurement
plane located 250 µm to 500 µm upstream of the channel exit. To enhance the signal to
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

noise ratio a median filter with a kernel of a 5px×5px and a bandwidth filter filtering
structures of 3 to 70 pixels in diameter is applied (Cierpka et al. 2010b). In the FVS
defocussed particles in the background lead to a significant reduction of the signal
to noise ratio. As the light intensity of 40 µm and 60 µm is significantly higher than
that of the 30 µm particles, the backgroung noise affects the image quality of the latter
ones the most. Therefore, we perform the polydisperse measurements in the FVS
sequentially, with only one particle size labeled at the time. Further, an additional
time series substract median filter is applied to the data recorded in the FVS. After
image post-processing, the particle positions and velocities are reconstructed. Hence,
the ax, ay and I of all detected particles from the different measurement planes is
extracted using the autocorrelation method. While the binarization method provides
ax, ay values close to the theoretical curves and in general yields a higher accuracy
in the calibration measurements, the autocorrelation method is found to be more
robust against fluctuations of the light intensity under measurement conditions as also
concluded by Cierpka et al. (2010a).

Thereby, particle images of all particle sizes are cropped out at a fixed radius of 30 pixel.
By comparing the I scatter data from the measurement with the I calibration curve
we observe that the intensity level of I of the scattered data is slightly increased. The
underlying reason is, that during the flow measurement a larger number of fluorescent
particles is present in the picture. Furthermore, particles are distributed at different z-
positions leading to superimposition of the light intensity. This effect is more pronounced
for smaller particles and can be easily compensated by scaling the data with a constant
factor. As the scattered data of I of the individual species is well separated (as shown
in Fig. 6.9) this is sufficient for a proper differentiation between the species.

Hence the ax, ay, I scatter data of all measurement planes is assigned to the 3D
calibration curves in order to determine the particles out-of-plane positions. In the
polydisperse case, the data is compared to all three calibration curves (for 30 µm,
40 µm and 60 µm). Thereby, the ax, ay, I data is automatically assigned to the correct
calibration curve with the 3D Euclidean reconstruction procedure as described in
section 6.1 and section 6.2. Finally, the absolute particle positions are obtained by
combining the measurement plane position and the particle-out-of-plane positions.
Hence, the absolute particle positions can be computed with respect to the channel wall
by considering the particle out-of-plane positions and the corresponding measurement
plane position. Particle velocities are determined using a simple nearest neighbor
algorithm. Outliers are removed with a median filter with a binning length of 10 µm in
cross-sectional direction. For obtaining averaged velocity profiles the scattered velocity
data is averaged across the horizontal center line with a binning length of 20 µm with
data being considered in a lateral distance of 10 µm away from the centerline. The
data is visualized in 2D histograms, with bins of 10 µm width in x and y direction
and filtered by a Gaussian filter with a filtering length of 5 bins (Lansey 2021). For
validation of the APTV measurements we further visualize the particle distributions
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6.3 Comparison of monodisperse and polydisperse Suspension dynamics

directly by performing stigmatic measurements in the FVS. For this, the cylindrical
lens is removed from the optical path. Hence, 16197 images with a resolution 512×512
pixel at different frame rates up to 6200 fps are recorded. In the post processing, first
the average of all images is computed. Hence the average is substracted from each
individual image to remove the background. Then the contrast of the individual images
is enhanced by Matlab imadjust. All modified individual images are then summed up.
Finally, the contrast of this summarized image is enhanced (Matlab imadjust).

6.3.2 Validation of 3D reconstruction in dilute suspensions

For evaluating if the 3D calibration is suitable for determining the particle distribution
of an individual species in a flowing tridisperse suspension, we performed several test
cases at very dilute conditions. The results of such a test case are shown in Fig. 6.8
where we compare the particle distributions of three monodisperse suspensions and
a tridisperse suspension (dp =30 µm, 40 µm, 60 µm) at Φ = 0.08% and all particles
labeled in each case. For such a low volume fraction we assume that particle interaction
does not play a role here, such that the distribution of each particle group is expected
to be the same, both in the mono- and polydisperse case. In Fig. 6.8 the bulk Reynolds
number is set to Reb ≈ 20 and defined as Reb = ρRIMUbH/µRIM, where Ub denotes
the average streamwise velocity. The distribution of detected particles is displayed in
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Figure 6.8: Distribution of particles in the cross sectional plane for monodisperse and
polydisperse suspension at Φ = 0.08%, Reb = 20 and H = 600 µm (measured in LVS).
N/Nmax = normalized number of detected particles.
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normalized values and N/Nmax denotes the number of particles in a bin normalized
by the maximum number of particles found in all bins. The black lines represent
isocontours of the theoretical velocity profile given in Shah and London (2014).

As can be seen in Fig. 6.8a-f particles collect along a Pseudo Segre Silberberg Annulus
(PSSA) as described by Choi et al. (2011). Evidently, the particle distribution for the
monodisperse cases (Fig. 6.8a,c,e) and tridisperse case (Fig. 6.8b,d,f) are the same.
For all particles sizes, the highest particle concentration is located at the centers of the
channel faces, which corresponds to the Channel Face Equilibrium (CFE) positions as
discovered by Di Carlo et al. (2007). This is a result of cross-lateral migration (Choi
et al. 2011). Thereby, Fig. 6.8a,c,e or Fig. 6.8b,d,f clearly show, that this cross lateral
migration is more pronounced for larger particles as they have a significantly larger
focusing number Fc = 2Reb(dp/H)2L/H which is in accordance with the work of Choi
et al. (2011).

Overall, the particle distributions of Fig. 6.8a,b and Fig. 6.8c,d and Fig. 6.8e,f show
an excellent agreement such that we conclude that the 3D euclidean calibration is
suitable for determining the 3D distribution of particles in polydisperse suspensions.
Furthermore, for ensuring that the species are distinguished properly when being
assigned to a calibration curve we perform an intrinsic check for all our measurements
containing polydisperse tracers. Thereby, we compare the light intensity I of the
individual species as a function of the reconstructed out of plane position z − z0. Such
a plot is exemplary shown in Fig. 6.9. As can be seen the calibration curve and the
scattered data for dp = 40 µm particles are well separated from the scattered data of
dp = 30 µm particles over a distance of ≈ 347 µm which is almost twice the distance
between the focal planes (∆F ≈ 166 µm). The data associated with the dp = 60 µm
particles covers a z-range of ≈ 452 µm and has a much higher light intensity but is not
displayed here for the sake of visualization. Please note that the data shown in Fig. 6.9
is multiplied with the intensity scaling factor cs (6.2) for dp = 40 µm.

Before we discuss the results obtained for suspensions of Φ = 9.1%, we briefly demon-
strate the principal difference in the accuracy of determining the particle distributions
between LVS and FVS. For this in Fig. 6.10 we show the distribution of 30 µm particles
at Reb = 20 and Φ = 0.08% in a monodisperse suspension. Comparing Fig. 6.10 with
Fig. 6.8a reveals that the detected particles scatter less around the lower and upper
portion of the PSSA (labelled with 1 and 2) in the measurements performed in the
FVS. This is because in APTV measurements the in-plane accuracy is higher than the
out-of-plane accuracy (Cierpka et al. 2010a).
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1

2

Figure 6.9: Light intensity as function of reconstructed z − z0 of dp = 30 µm and dp = 40 µm
particles corresponding to Fig. 6.8b,d,f. Symbols: 1=scattered data of dp = 30 µm particles;
2=scattered data of dp = 40 µm particles. Black line=calibration curve for dp = 40 µm.
Green dots=valid data associated with dp = 40 µm particles. Red dots=data that is rejected
from the dp = 40 µm calibration curve.
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Figure 6.10: Particle distribution in a dilute monodisperse suspension obtained with FVS.
dp =30 µm, Φ = 0.08%, Reb = 20, H = 60 µm, L/H ≈ 1000.

6.3.3 APTV measurements in suspensions of 9.1% volume
fraction

Next, we discuss the particle distributions of mono- and tridisperse suspensions at
Φ = 9.1%, determined by means of APTV in both setups. For this, Figs. 6.11a-f
and Figs. 6.11g-l show the particle distributions for the mono- as well as tridisperse
suspension cases for Reb ≈ 20 in a capillary of 600 µm height, obtained in setup 1 and
setup 2.

As can be seen clearly, 30 µm particles are found to collect on a scattered PSSA with
a significant lower concentration in the channel center in the monodisperse case (Fig.
6.11a,g). In the polydisperse case the PSSA gets widened towards the wall (Fig. 6.11b,h).
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Figure 6.11: Comparison of particle distributions in the FVS (a-f) and the LVS (g-l).
Reb ≈ 20, H = 600 µm. The aspect ratio is L/H ≈ 750.

This is more pronounced in the FVS which is likely because in APTV measurements the
in-plane accuracy is higher than the out-of-plane accuracy as discussed in the previous
section. A slight depletion of detected particles in vertical direction becomes evident in
Fig. 6.11h. As the number of particles increases towards the channel bottom we exclude
optical distortions to be the underlying reason, as these would be pronounced closer
to the channel bottom and would lead to a depletion of detected particles here. This
effect was described in chapter 5. Furthermore, as will be shown later on, a depletion of
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6.3 Comparison of monodisperse and polydisperse Suspension dynamics

detected particles towards the upper channel wall is also visible in the 400 µm capillary
where optical distortions are expected to be less. Hence, we assume this depletion
is induced by slight density mismatches leading to a sedimentation of particles. For
40 µm the reconstructed particle distributions (Fig. 6.11c,d,i,j) reveal that the particles
are forced to the wall. As can be seen from Fig. 6.11e,f and Fig. 6.11k,l the particle
distributions for 60 µm clearly show that the largest particles are more focused in the
polydisperse case. This effect is more pronounced in Fig. 6.11l which is measured in the
LVS. The aforementioned observations are confirmed by our visualization experiments
shown in Sect 6.3.5.

Next we investigate the role of the aspect ratio (H/dp) on the particle distribution
by using a capillary with H=400 µm while keeping the particle sizes constant (30 µm,
40 µm, 60 µm). Further Reb is adjusted to Reb ≈ 20 and Reb ≈ 40. As Rep scales with
Reb(dp/H)2, this configuration allows us to achieve an estimated particle Reynolds
number of up to Rep = 0.9. In Fig. 6.12 we show particle distributions for monodisperse
suspensions as well as polydisperse suspensions at Reb ≈ 20 and Reb ≈ 40.

At first, comparing corresponding mono- and polydisperse cases (Figs. 6.12a-f and Figs.
6.12g-l) confirm that smaller particles are closer to the wall in a polydisperse suspension
compared to monodisperse suspensions while larger particles scatter less around the
PSSA, as concluded for Fig. 6.11a,b,g,h and Fig. 6.11e,f,k,l. Comparing Fig. 6.11e,k and
Fig. 6.12c further confirm that if Rep and H/dp are constant (Rep = 0.2, H/dp = 10)
the particle distribution is essentially the same for the monodisperse case. However, as
H/dp is increased from H/dp = 10 to H/dp = 13.33 at constant Rep (Rep = 0.2 ≈ 0.22)
the particles shift closer to the wall and deplete in the center region (Fig. 6.12c,g). This
effect becomes also evident when comparing Fig. 6.12e,i (Rep = 0.4 ≈ 0.45). Both,
for monodisperse and polydisperse suspensions a simultaneous increase in Reb and
Rep results in more pronounced particle focusing at fixed H/dp. A comparison of Fig.
6.12b,d,f and Fig. 6.12h,j,l confirms that an increase in Reb and hence Rep also leads
to a stronger particle focusing of a particle species in a polydisperse suspension.

6.3.4 Velocity profiles

In this section we discuss the velocity profiles measured in the LVS and FVS. In Fig.
6.13a,b and Fig. 6.13c,d we show the averaged velocity profiles for 30 µm and 60 µm
particles measured in the FVS and LVS, respectively. The results reveal that the
averaged velocity for both the monodisperse (blue dots) as well as the polydisperse
suspensions (red dots) show an good agreement with the analytical solution as given
by Shah and London (2014). Merely, the averaged velocity of the 60 µm particles
exhibits slight deviations from the analytical solution closer to the channel center even
though the mean error is low (visualized by the small error bars in Fig. 6.13a,c). The
underlying reason is that there are much less 60 µm tracers than 30 µm tracers in the
flow and furthermore the 60 µm particles deplete significantly in the center region. In
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6 Applying APTV to polydisperse suspensions beyond the dilute regime
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Figure 6.12: Distribution of particles in the cross sectional plane for 400 µm square duct
Reb = 20 and Reb = 40 for monodisperse (Mono) and polydisperse suspensions (Poly) at
9.1% volume fraction. Measured in LVS at L/H ≈ 750.

fact, the averaged data points close to the center result from one or a few 60 µm particles
which were tracked across several frames. Hence, they enter the statistics several times.
Depending on how their ax ay values deviate from the calibration curve they can bias
the average. As can be seen clearly the standard deviation (visualized by the large
error bars) for the FVS method is multiple times higher than for the LVS. This was
expected as the uncertainty in determining the out-of-plane position and hence the
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6.3 Comparison of monodisperse and polydisperse Suspension dynamics

x/µm x/µm

U
/m

/s
U

/m
/s

U
/m

/s
U

/m
/s

F
V

S
LV

S

dp = 60 µm
H = 600 µm

dp = 30 µm
H = 600 µm

a) b)

c) d)

Figure 6.13: Comparison of measured streamwise velocity U for monodisperse (blue) and
polydisperse (red) suspensions obtained in the FVS and LVS at a volume fraction of Φ = 9.1%.
Standard deviation of velocity is indicated with vertical error bars. a) FVS, dp=60 µm, b)
FVS, dp=30 µm, c) LVS, dp=60 µm, d) LVS, dp=30 µm,

out-of-plane velocity is usually one order larger than the in-plane position and velocity
(Cierpka et al. 2010a). Overall, we conclude based on our results that no significant
deformations of the velocity profile are induced within our parameter space for both
mono- and polydisperse suspensions. For Φ = 10% and Reb = 550 Kazerooni et al.
(2017) observed a slight blunting of the velocity profile, however significant deviations
from the pure liquid flow were only observed for Φ = 20%. Our findings also coincide
with the studies of Han et al. (1999) where no significant blunting of the velocity profile
was observed for Φ = 10% at comparable particle Reynolds numbers.

6.3.5 Visualization and physical interpretation

In this section we present results obtained with the visualization technique to validate the
migration effects described before. Furthermore, the visualization technique faciliates
to easily explore a larger range of Reb, which allows us to gain some additional insights.
For the APTV measurements increasing Reb further is not possible with the current
setup, as we need a minimum exposure time of ' 40 µs to ensure a sufficient image
quality for the 30 µm particles. This relative large exposure time leads to motion blur
at larger Reb skewing the ax, ay values and hence leads to bias in the velocity and
the distribution information. It may be noted that the visualization technique needs
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

a) Φ = 0.08% b) Φ = 1% c) Φ = 3% d) Φ = 5% e) Φ = 7% f) Φ = 9.1% g) Φ = 10%

Figure 6.14: Particle distribution in a monodisperse suspension visualized by summarized
image series (Reb ≈ 20, H = 600 µm, L/H ≈ 750, dp = 60 µm). Dark regions indicate
particle positions. a-g) Particle concentration increasing from Φ = 0.08% to Φ = 10%.

optical access from the face side of the geometry. In microfluidic devices, or macroscopic
geometries this is rather an exception and optical access is mostly only available from a
lateral direction.

Before discussing the effect of Reb we briefly discuss the effect of increasing Φ on
the particle distribution. For this, Fig. 6.14 shows the particle distributions in a
monodisperse suspension (dp = 60 µm) at constant Reb for Φ increasing from 0.08% to
10%. As can be seen, in Figs. 6.14a-g, particles scatter increasingly around the PSSA
for increasing Φ.

In Fig. 6.15 we show particle distributions for mono- and polydisperse suspensions
obtained from visualizations for Φ = 9.1% and different Reb ranging from 1 up to
72.86. At low Reynolds numbers (0.99 ≤ Reb ≤ 6.62) 30 µm, 40 µm and 60 µm particles
migrate to the center of the channel which can be attributed to shear induced migration
for the monodispersed suspension. Thereby, the particles exhibit higher concentrations
on the diagonal axis and the channel center. In contrast, in a polydisperse suspension
60 µm particles exihibt a more pronounced migration to the channel center compared
to the corresponding monodisperse case. On the other hand, this effect seems to be
reversed for 40 µm particles where less particles accummulate in the center in the
polydisperse case compared to the monodisperse case. This observation coincides with
the finding of Semwogerere and Weeks (2008) that at equal volume fractions larger
particles migrate faster to regions of low shear and screen off smaller particles due
to their lower developement length. For 30 µm particles, no migration to the center
becomes evident for the polydisperse suspension in Fig. 6.15a.

For Reb ≥ 19.87 the particles distribute on a scattered PSSA in the monodisperse
case which becomes more focussed as Reb increases (Fig. 6.15c-g). This confirms the
observations discussed with regard to Fig. 6.11 and Fig. 6.12. The focussing of the
PSSA with increasing Reb is pronounced for 40 µm where the squared void area around
the channel center increases significantly with Reb. For 30 µm, Fig. 6.15c-g reveal,
that the area around the diagonal axis feature a lower particle concentration than
the face centers resulting in a star shaped particle distribution, which was similarly
observed by Kazerooni et al. (2017) for Reb = 550 and H/dp = 18. However, Kazerooni
et al. found the highest concentration in the duct corners and not at the channel
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Figure 6.15: Particle distributions visualized by summarized image series for mono- and
polydisperse suspensions at Φ = 9.1% and different values ReB for a square duct with
H = 600 µm and L/H ≈ 750.
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

faces, which we relate to the fact, that they simulated a square duct with perfectly
sharp corners whereas the cappilaries used within this work exhibit round corners. The
scattering around the PSSA visible in Fig. 6.14a-g and Fig. 6.15c-g result from a
competition between inertial and shear induced migration forces. On the one hand
inertial effects force particles to the equilibrium positions (EP) resulting in a high local
particle concentration. On the other hand, shear induced migration leads to a migration
away from these positions which can be explained as follows: According to the diffusive
flux model of Phillips et al. (1992) for shear induced migration, particle migrate from
regions of high collision frequency to regions of low collision frequency. The flux related
to the collision frequency (Nc ∼ d2

p(Φ2∇γ̇ + Φγ̇∇Φ)) depends on both Φ and the shear
rate γ̇ and hence attains maximum values at the EP such that particles migrate away
from these regions. As Φ is increased the collision frequency and hence shear induced
migration is enhanced resulting in an increased scattering as can be seen from Fig.
6.14a-g. However, when the Reynolds number increases the inertial forces increase
counteracting the shear induced migration such that the scattering is reduced as clearly
visible for the 40 µm particles in Fig. 6.15c-g.

As observed in the APTV measurements, for all investigated particle sizes, corresponding
particle distributions found for the polydisperse cases are strikingly different compared
to those of the monodisperse cases. For 30 µm and 40 µm particles a significantly
higher concentration close to the channel walls resulting in an outer annulus of high
concentration is observed in the polydisperse case. Furthermore, a slight increase of
concentration seems to exist for some Reb close to the channel center forming an inner
annulus of high concentration (6.15c-g) which was not visible in Fig. 6.11b,h,d,j. Similar
to the APTV measurements, the 60 µm particles the PSSA appears to be more focused
in the polydisperse case compared to the monodisperse case (Fig. 6.15c-g). As Reb

increases the PSSA formed by 60 µm particles breaks up at the corners which is a
indicator for cross-lateral migration forcing the particles to the CFE positions (6.15c-g).
The particle segregation observed in the tridisperse measurements at Φ = 9.1% (Fig.
6.15c-g, Fig. 6.11b,d,f,h,j,l and Fig. 6.12b,d,f,h,j,l) can be explained in analogy to the
work of Semwogerere and Weeks (2008) who found that in a bidisperse suspension the
species that reaches its EP earlier (in their case region of lowest shear) screens of the
other species. In our experiments large particles experience significantly higher inertial
forces such that they attain their position at the PSSA at much lower values of z/H than
the smaller species. We recall here that the focusing number scales with Fc ∼ (dp/H)2.
Hence, larger particles quickly exhibit high concentrations closely around the PSSA. As
a result they are screening off smaller particles.

At the same time, large particles experience smaller displacements in the polydisperse
case compared to the monodisperse case due to collisions as these scale with O(dp).
Looking at the collision flux in the model of Philips et al. (Nc ∼ d2

p(Φ2∇γ̇ + Φγ̇∇Φ)) it
is clear that suspensions of smaller particles exhibit smaller diffusive fluxes compared
to large particles. Hence, using simple arguments, it can be assumed that the diffusive
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6.4 Discussion and Conclusion

fluxes and hence the rate of migration is decreased in a polydisperse suspension which
contains solely 1/3 large particles, compared to a monodisperse suspension of large
particles. Therefore the rate of shear induced migration is lower than in the monodisperse
case, leading to a decreased scattering of large particles around the PSSA.

6.4 Discussion and Conclusion

In this chapter we utilize APTV to measure the particle dynamics in polydisperse
suspensions containing three particles sizes of dp =30 µm, 40 µm and 60 µm at volume
fractions of Φ = 0.08% to Φ = 9.1%. A refractive index matching technique is used to
render the suspension transparent, while just a small portion of the particles is labeled
with fluorescent dye to provide a signal for the tracking procedure.

First, an extensive study on the general effect of the particle size on the calibration
curves is performed where we also compare two approaches for extracting the horizontal
axis lenghts ax and the vertical axis length ay of the particle image. For both methods
we observe the ax, ay values to increase, as the particle size increases as predicted by
the expression derived by Cierpka et al. (2010a). Thereby, the data obtained with the
binarizing approach is in excellent agreement with the theoretical data, while the data
obtained with the autocorrelation deviates significantly from the theoretical curves
beyond the focal planes. In agreement with König et al. (2020) it is observed that the 2D
Euclidean calibration curves for different values of dp intersect beyond the focal planes
leading to ambiguities which lead to large errors when applying APTV to particles of
different size. We overcome these ambiguities by utilizing a 3D calibration procedure,
exploiting the fact that the maximum light intensity of the particles increases sharply
with increasing particle size. Using calibration data of nine different particles sizes
ranging from 15 µm to 256 µm we show that the 3D calibration procedure allows a
reliable differentiation of particles of different sizes.

Ultimately, utilizing the 3D calibration technique, we investigate the particle migration
behavior in mono- and tridisperse suspension flows in square ducts with cross-sectional
areas of 400×400 µm2 and 600×600 µm2 at bulk Reynolds numbers of Reb ≈ 20 and
Reb ≈ 40 and volume fractions of Φ = 0.08% and Φ = 9.1%. At Φ = 0.08% and
Reb = 20 we observe particles to collect onto a Pseudo Segre Silberberg Annulus
(PSSA) with no signifcant differences between mono- and polydisperse suspensions
beeing evident. At Φ = 9.1% Reb = 20 particles in monodisperse suspensions scatter
around an annular shape with the scattering being pronounced as dp decreases. When
Reb is increased to Reb = 40 the scattering decreases for all dp investigated leading to
a square shaped depletion of particles close to the channel center. As H/dp is increased
at constant particle Reynolds number the particle distribution is shifted towards the
channel walls and the depleted area in the channel center increases. For polydisperse
suspensions, strikingly different particle migration behaviors are observed at the same
values of Reb and Φ. Compared to the monodisperse case large particles (60 µm) are
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6 Applying APTV to polydisperse suspensions beyond the dilute regime

significantly more focused. In contrast, small and intermediate particles (30 µm and
40 µm) are repelled by larger particles resulting in a region of high concentration close
to the channel walls. As Reb increases from Reb = 20 to Reb = 40 these effects become
pronounced such that the focusing of large particles (60 µm) is further enhanced while
smaller and intermediate particles become more focused close to the walls. For both the
mono- as well as the polydisperse measurements no significant blunting of the velocity
profile become evident within our experiments which is in agreement for literature
considering monodisperse suspensions.
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7 Pattern formation in particle laden Taylor
Couette flows at solid body rotation1

In this chapter, previously undescribed particle patterns are reported for suspensions
of initially uniform dispersed non-Brownian particles in completely filled drum flows
and in completely filled co-rotating Taylor-Couette (TC) flows under the influence of
gravity at solid-body rotation. Extending previous studies, a thorough phase mapping
is performed for the drum flow with a low viscosity working liquid (1 cP) and 500 µm
glass beads at a solid volume fraction of Φ = 0.11%. Thereby, a wide range of cylinder
radii is covered (Ro = 7 mm to Ro = 145 mm). Moreover, for the first time, a phase
mapping is performed for a co-rotating TC flow at several radius ratios. Overall 55
different geometrical combinations have been considered within the experiments.

The chapter is structured as follows: The different axial particle distributions, viz the
phases, observed in both the drum flow as well as the TC flow are presented in section
7.1. In section 7.2 the radial particle distributions associated with different phases are
described. The spatial and temporal behavior of axial and horizontal particle bands is
discussed in section 7.3 based on space-time diagramms. Section 7.4 considers the effect
of the particle volume fraction on the band formation. In section 7.5 it is adressed how
the wavelength of the bands scales with the radius and the gap height. Finally, the
results and conclusions are summarized in 7.6

The theory and the relevant state of the art for this chapter are given in section 1.2.3
(theory and state of the art of pattern formation in rotating flows). The experimental
setups and the measurement procedure utilized to obtain the results presented in this
chapter are given in section 2.1.4.

7.1 Axial particle distributions and pattern
classification in centrifugally stable rotating
drum and TC flow

In this section, different particle concentration patterns observed in the rotating drum
and co-rotating TC flow are described. For both flows a solid body rotation velocity
profile (Ωi = Ωo) without axial flow is considered (described in section 2.1.4). Hence,
both systems are identical expect for the inner cylinder which is present in the TC

1This chapter is adopted from the manuscript “Pattern formation in particle laden Taylor Couette
flows at solid body rotation” written by Philipp Brockmann, Martin Tvarozek and Jeanette Hussong
to be submitted.
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

flow. This allows to study how the presence of the inner cylinder affects the particle
patterns. As the flow is at solid body rotation, it is assumed to be centrifugally
stable as described in section 1.2.1.2. We observed 10 different phases (GB, FF,
UH, AX1, AZ, AX2, NP1-NP3, AX3, CLL, SQR) within our study in both systems
of which 6 (AZ, AX2, NP1-NP3, AX3, CLL, SQR) are previously unreported to the
best of our knowledge. The abbreviations will be clarified later. Before describing
the different phases, the Reynolds numbers associated with the systems are briefly
introduced. In the drum flow problem, there are two length scales (cylinder radius Ro,
particle diameter dp) and two velocity scales (particle settling velocity up − uf , cylinder
speed Uϕ = RoΩo) involved (Matson et al. 2006, 2008). In the present thesis, the gap
width of the system is considered as a length scale H = Ro − Ri for both the drum
flow and the TC flow. For the drum flow Ri is zero such that H = Ro. With these
length and velocity scales four different Reynolds numbers can be defined in analogy to
(Matson et al. 2006, 2008). The Reynolds number based on the particle settling velocity
defined in section 1.2.3.2 is defined as Re1 = Rep = dp|(up − uf )|ρfluid/µfluid. Based
on the works of Dietrich (1982) and Bush et al. (2003), the particle Reynolds number
based on the settling velocity is estimated to be in the range of Re1 = Rep ≈ 24...35
for the experiments reported here. The Reynolds number based on the gap width
(H = Ro − Ri) and the cylinder speed is defined as Re2 = RoΩo(Ro − Ri)ρfluid/µfluid
and ranges from 560 to 9300 for AX1, from 1100 to 4.7 × 104 for AZ and from 1500 to
9×104 for AX2. The Reynolds number based on the settling velocity and the gap height
Re3 = |(up − uf )|(Ro − Ri)ρfluid/µfluid ranges from 238 to 10150 for the considered
geometrical configurations. Finally, the Reynolds number based on the particle diameter
and the outer wall speed Re4 = dpRoΩoρfluid/µfluid ranges from 37 to 101 for AX1,
from 61 to 163 for AZ and from 57 to 315 for AX2. Within this work, no unifying
scaling was found to describe the phase boundaries of TC and drum flow for different
radii and ratios of H/Ro. Hence all results are presented with their dimensions.

Figure 7.1a,b shows the phases observed in an exemplary drum flow (Ro = 23 mm) and a
co-rotating TC flow (Ro = 23 mm and H/Ro = 0.65) at different rotation rates. For the
sake of clarity, the approximate rotation rate ranges associated with the phases shown
in Fig. 7.1 are provided in Table 7.1. The ratio of centrifugal-, drag- and gravitational
force acting on the particles changes as the rotation rate increases. In analogy to
Matson et al. (2003) the rotation rate is devided into three regimes, labeled as I, II
and III in Fig. 7.1a,b and indicated with the blue, green and red bars, respectively.
While particles remain in a sediment bed within I, they remain dispersed within the
fluid most of the time along their trajectory in regime II. Finally at high rotation rates,
within regime III centrifugal forces become dominant and particles remain close to the
outer wall. Typical particle distribution associated with these phases are shown in Fig.
7.1a for the drum flow and Fig. 7.1b for the TC flow. The images are recorded with
the camera perpendicular to the horizontally aligned rotation axis of the cylinder(s) as
depicted in Fig. 2.5. Bright regions indicate high local particle volume fractions, while
dark regions indicate areas void of particles.
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7.1 Axial particle distributions and pattern classification in centrifugally stable rotating drum
and TC flow

Rotation rate range of phases (rpm)
Case TC Drum
GB 0-28 0-45
FF 28-79 45-94
AX1 79-110 94-105
AZ 110-130 105-130
AX2 130-159 130-175
NP1 159-175 175-180
NP2 175-190 180-185
NP3 190-195 185-200
AX3 195-≈280 200-≈280
CLL ≈350 ≈350

Table 7.1: Rotation rate range of the phases for TC-flow and drum-flow associated with the
configurations depicted in Fig. 7.1a,b (Drum flow: Ro = 23 mm, TC-flow: Ro = 23 mm,
H/Ro = 0.65)

For region I, we observe the granular bed (GB) (up to 25 rpm) and the fingering flow
(FF) (drum: up to 94 rpm, TC: up to 79 rpm), as described by Matson et al. (2003) for
the high viscosity drum flow (GB, FF in Fig. 7.1a). Matson et al. (2008) relate the
fingering flow to a Rayleigh Taylor-like instability that is induced by a relative movement
of individual particles and the granular bed. They further distinguish between two
types of fingering flow, associated with a different size of the fingers and a different
position where the particles detach from the wall. As the focus of the present work
is on the band patterns, such a distinction is not made. Subsequent to the FF the
particles tend to distribute homogeneously along the cylinder. However, this state
rarely remains stable and the homogeneous distribution develops asymmetries ending
up in most of the particles collecting in blobs while a small amount remains uniformly
dispersed. Hence, we refer to this phase as unstable homogeneous phase (UH) (UH in
Fig. 7.1a,b). Matson et al. (2008) termed this region as homogenous region. However,
they also noted that this phase is extremely sensitive to slight misalignments of the
cylinder. As the rotation rate is increased the blobs/fingering structures gradually lose
stability and disperse into the free flow until around 94 rpm (TC: 79 rpm), when axial
bands appear (AX1 in Fig. 7.1a,b). For the drum flow the rotation rate (≈94 rpm) and
the axial wavelength (λ∗/Ro ≈ 4.12) matches the values reported by Lipson and Seiden
(2002) and analyzed by Seiden et al. (2005). We assume it is the same type of banding
here. We call this state axial banding type 1 (AX1).

For the TC-flow it is observed that during AX1 banding the inner cylinder stabilizes
the particle bands, as particles land on its surface on one side of the cylinder and get
transported in azimuthal direction till they detach on the opposite side. This will
be shown hereafter in section 7.2. With a further increase in rotation rate (drum:
105 rpm, TC: 110 rpm), the axial structures reorganize into azimuthal periodic bands
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

travelling in circumferential direction (AZ in Fig. 7.1a,b). This phenomenon is referred
to as azimuthal banding (AZ). Often, depending on the cylinder diameter, AZ is the
most dominant phase of the intermediate regime II, occupying the widest rpm range.
Nevertheless, the system falls back into axial band formation at higher rotation rates
(AX2 in Fig. 7.1a,b). Due to its distinct wavelength and formation characteristics,
we refer to this state as axial banding type 2 (AX2). In fact, AX1 and AX2 banding
can be distuingished based on the rotation rate with respect to AZ banding. While
AX1 banding is associated with rotation rates lower than AZ banding, AX2 occured
always at rotations rates higher than AZ banding. Adjacent to the AX2 phase, the
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Figure 7.1: Steady state phases observed in an exemplary drum flow and an exemplary TC
flow as seen in the front view experiments. Bright areas indicate high concentration of
particles. Abbreviations: granular bed (GB), fingering flow (FF), unstable homogenous
phase (UH), axial banding of type 1 (AX1), azimuthal banding (AZ), axial banding of type 2
(AX2), net pattern type 1, 2, 3 (NP1, NP2, NP3), axial banding of type 3 (AX3), centrifugal
limit line (CL). I.) low rotation rate regime, II.) intermediate rotation rate regime, III.)
high rotation rate regime. a) Drum flow (Ro = 23 mm, H/Ro=1) b) TC flow (Ro = 23 mm,
H/Ro=0.65)
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7.1 Axial particle distributions and pattern classification in centrifugally stable rotating drum
and TC flow

Figure 7.2: Axial banding type 3 (AX3) showing regular wavelength at 154 rpm and H/Ro =
0.52 at Ro = 42 mm. Time required to reach this state was 60 min.

particles are centrifuged closer to the cylinder wall and accumulate into thin crests
surrounded by void areas. The crests appear to be aligned in horizontal direction. Due
to its resemblance to a net, we refer to this phase as net pattern (NP1-NP3). Here three
sub-types of net patterns occur in a three step progression as the rotation rate increases
(NP1-NP3 in Fig. 7.1a,b). First (drum: 175 rpm, TC: 159 rpm) the void areas are small
and particles are distributed almost homogeneously over the cylinder walls (NP1). As
rotation rate is increased the area between the crests expands (Drum: around 180 rpm,
TC: around 175 rpm, NP2). Subsequently, the areas shrink again as the rotation rate
is increased further (drum: around 185 rpm, TC: around 190 rpm, NP3). Sometimes
it was observed that particles distributed inhomogenously around the circumference
during NP1-NP3. A further type of axial banding occurs at rotation rates of about 195
to 200 (AX3 in Fig. 7.1a,b). Due to its distinct wavelength and associated rotation rate
we refer to this state as axial banding type 3 (AX3). AX3 banding exhibits peculiar
dynamics in comparison to AX1 and AX2 banding, often becoming irregular in spacing
in the course of its formation and vice versa. Furthermore, the stabilization period
is substantially longer than that of the other phases (30 min to 90 min). An example
for AX3 banding with a regular spacing is given in Fig. 7.2. The AX3 bands feature
a resemblance to discontinous banding (DB) phase reported by Matson et al. (2008).
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Figure 7.3: Exemplary space-time diagram of square pattern (SQR). Bright areas indicate
high concentration of particles. a) Ro = 112 mm and H/Ro=0.2 at 41 rpm. b) Ro = 84 mm
and H/Ro=0.52 at 62 rpm.
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

However, the bands are much more focused than that reported by Matson et al. (2008).
The last phase, consisting of azimuthal lines, is observed at significantly higher rotation
rates beyond ≈ 350 rpm and referred to as Centrifugal Limit Line (CLL) (CLL in Fig.
7.1a,b). While a single band is observed for the given example, for larger values of
Ro multiple bands randomly distributed along the circumference have been observed.
In addition to these phases, in the TC flow, for some combinations of Ro and Ri the
coexistence of azimuthal and axial bands is observed between AX1 and AZ as depicted
in Fig. 7.3, which is referred to as square pattern (SQR).

Overall, several patterns have been detected with exhibit strikingly different axial
patterns. To better understand their dynamics, it is important to extract their radial
position, which will be performed in the next section.

7.2 Radial particle distributions

This section considers the radial particle distributions associated with the phases
depicted in Fig. 7.1. For this, Fig. 7.4a,b shows the summed up images recorded with
the side view setup for GB, FF, AX1, AZ, AX2, NP1 and AX3 for the drum flow and
the TC flow, respectively.

As can be seen clearly from Fig. 7.4a,b the particles remain close to the wall within GB
and FF. While they are located close to the bottom of the cylinder during GB they seem
to allocate further at the left side of the outer cylinder (green and magenta rectangle
labeled with “0”) during FF. Within these phases, the drag force can not overcome
the gravity which was similarily shown for the numerical single particle trajectories in
section 1.2.3.2.

In section 1.2.3.2 it was further shown that single particle trajectories were altered
by the presence of the inner cylinder in the TC flow in a certain rotation rate range.
A similar behavior is observed here for rotation rates associated with AX1 banding,
where multiple particles are present. Figure 7.4a,b reveals that the particles move on
an ellipsoid shaped trajectory during AX1 banding, and the additional inner cylinder
present in the TC flow affects this trajectory. In fact, the additional inner cylinder
widens the diameter of the particle trajectory compared to the drum flow and the
scattering of the particles is reduced in the TC flow (AX1 in Fig. 7.4a,b). As can be
seen in Fig. 7.4b, within the TC-flow the particles get in contact with the inner cylinder
(magenta rectangle labeled with “1”) which then acts as a conveyor belt transporting
the particles to the opposite side of the cylinder (magenta rectangle labeled with “2”),
similar to the trajectories “R3” reported in section 1.2.3.2. As the particles sediment on
the inner cylinder they get focused such that the particles are focused on the trajectory
when detaching again from the inner cylinder at point 2 (AX1 in Fig. 7.4b). In contrast,
particles follow a widened particle path across the center region inside the drum (green
rectangle labeled with “1”, AX1 in Fig. 7.4a). Hence, particles in a drum flow travel
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Figure 7.4: Side view recordings analogous to the front view recordings presented in Fig. 7.1.
The images presented in a,b are ensemble averages of 1032 recorded frames. Abbreviations
are analogous to Fig. 7.1. The system rotates in clockwise direction. Bright areas indicate
high concentration of particles. The shaded circle present in Fig. 7.4a represents the groove
used to hold the inner cylinder in the TC flow experiments. a) Drum flow (Ro = 23 mm,
H/Ro=1) b) TC flow (Ro = 23 mm, H/Ro=0.65)
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

longer distances without contact to the wall and do not get rearranged at point 1. This
makes them more susceptible to disturbances induced by interaction with each other
and the fluid, which results in an increased scattering compared to the TC flow.

In fact, the effect of the inner cylinder on the particle trajectories during AX1 banding
depends both on the rotation rate and the cylinder radius. For illustration of the effect
of rotation rate, Fig. 7.5 depicts the particle trajectories in a TC flow with Ro = 23 mm
and H/Ro = 0.46 for different rotation rates associated with AX1 banding. As can be
seen at lower rotation rates two trajectories exist (indicated with the blue and green
arrow in Fig. 7.5a,b) which are similar to the theoretical single particle trajectories R1
and R3 as discussed in section 1.2.3.2. These two trajectories can coexist in a suspension
because particles interact with each other such that individual particles are repelled
from one trajectory and fall into the other. When the rotation rate increases these
trajectories merge into one trajectory (green arrow in Fig. 7.5c,d). Furthermore, in Fig.
7.5a,b,c,d it can be seen, that the particles are more focused after being transported by
the inner cylinder.

During AZ banding the centrifugal force is higher compared to phase AX1 and as a
result the trajectory is shifted closer to the right side of the outer cylinder wall (AZ
in Fig. 7.4a,b). Also here, a significant difference between drum flow and TC flow
becomes evident. Particles appear to be more focused in the trajectory in Fig. 7.4b
(AZ) which is an indicator that the inner cylinder leads to a stabilization of the particle
band patterns. However, because the trajectory is closer to the right cylinder wall, the
effect of the inner cylinder is less pronounced for AZ compared to AX1 banding. In
fact, the shape of particle trajectories during AZ banding depends on the rotation rate
as depicted exemplarily for a drum flow in Fig. 7.6. As can be seen, with increasing
rotation rate the trajectory is shifted closer to the right side of the cylinder wall and
gets more focused (Fig. 7.6a-c). At a rotation rate of 125 rpm the trajectory stays out
of the area were the inner cylinder would be (shaded bright circle) (Fig. 7.6a-c). Thus,
the effect of the inner cylinder on the trajectories depends on rotation rate and radius
of the inner cylinder.

During AX2 banding where the rotation rate and hence centrifugal forces are increased
further, the particles get closer to the right outer cylinder wall (AX2 in Fig. 7.4a,b).
As depicted in Fig. 7.4a,b the maximum distance from the wall of AX2 bands is much
less compared to AX1 and AZ bands. Also the trajectories for the TC and the drum
flow are essentially identical for AX2 banding as the particles remain away from the
inner cylinder. This is in agreement with the findings from the computed single particle
trajectories in section 1.2.3.2 where it was shown, that the inner cylinder does not
affect the trajectories above a certain rotation rate. Furthermore, within AX2 banding
particles scatter much less around the trajectory such that it appears sharper in Fig.
7.4a,b compared to AX1 and AZ banding (see AX1, AZ, AX2 in Fig. 7.4a,b). An
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7.2 Radial particle distributions

explanation is that particles move faster during AX2 banding and also spend less time
attached to the cylinder wall, which makes them more robust against disturbances due
to interaction of particles with each other and the fluid.

Regarding the trajectories of AX1, AZ and AX2, an analogy can be drawn to the
sedimentation behavior of groups of densely packed particles released in stagnant water.
For such scenarios it is known, that the particles start settling as a porous clump. If
the interstitial space between particles is small enough water is hindered from flowing
through the clump, which then remains stable (Zhao et al. 2014). This interstitial
spacing increases during the settling procedure due to interactions between particles with
each other and the fluid. When the interstitial space is larger, water easily penetrates
the clumps which are destroyed and the particles break up to a cloud (Zhao et al. 2014).
Here, the bands could be seen in analogy to a clump. When the particles detach from
the wall they have little interstitial space between particles, which then increases when
the particle move through the cylinder (as can be seen for AX1 and AZ in Fig. 7.4a).
As particles get in contact with outer cylinder or the inner cylinder again, the particles
are focused again and the interstitial space is reduced. Hence, the less time particles
spend away from the wall, the less the probability for a widening and breakup of the
particle band. This could explain the stabilizing effect of the inner cylinder.

In phase NP1 the trajectory is similar to AX2 banding with the particles being even
closer to the wall. Similar to AX2 the particles do barely scatter around the trajectory
and the trajectories are essentially identical for drum and TC flow (see NP1 in Fig.
7.4a,b).

Finally, for AX3 banding there is no distance visible between particles and wall (AX3 in
Fig. 7.4a,b). Obviously, the particles are centrifuged to the wall during AX3 banding.
It is concluded, that this is the reason why AX3 banding takes much longer time to
develop than AX1, AZ, AX2 banding and NP1-NP3. Strong interactions between
particles and wall slow down axial particle movement such that more time is required
to form the particle bands.

a) 68 rpm b) 69 rpm c) 78 rpm d) 88 rpm

Figure 7.5: Effect of the rotation rate on the trajectories during AX1 banding in TC flow
(Ro = 23 mm H/Ro = 0.46). The system rotates in clockwise direction.
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

a) 109.5 rpm b) 118 rpm c) 125 rpm

Figure 7.6: Effect of the rotation rate on the trajectories during AZ banding in drum flow
(Ro = 23 mm). The system rotates in clockwise direction. Brighter regions are associated
with higher particle concentration.

7.3 Space time diagrams

7.3.1 Drum flow

The space-time diagrams presented in the following are generated by extracting the
intensity (MATLAB-improfile) across the rotation axis of the cylinder in each time
frame. The space-time diagram is then composed by vertically stacking the individual
intensity profiles in an array and presenting it as an image. All results are reported for
a volume fraction of Φ = 0.11%.

In Fig. 7.7 space-time diagrams are shown for the drum flow for different cylinder radii
and selected rotation rates. Figure 7.7a,b,c show rotation rates associated with AX1,
AZ and AX2 banding, respectively. The cylinder radius increases from the left to the
right. Space-time diagrams are shown beginning from an arbitrary time when the band
was in a stationary state after the rotation rate was increased as explained in section
2.1.5. The drum radii of Ro = 48 mm and Ro = 52 mm are an exception as they were
not stable. In the latter cases, the space-time diagrams start prior to the begin of band
formation.

In Fig. 7.7a, where the space-time diagrams of AX1 banding are shown for the drum
flow, it becomes evident that the wavelength increases as the drum radius is increased.
It is observed that AX1 banding becomes increasingly unstable if the drum radius
increases. No stable bands could be observed for Ro ≥ 26 mm within the radii considered
in our study. For 26 mm ≤ Ro ≤ 32 mm bands formed, started to oscillate but remained
stable for several seconds up to few minutes as can be seen exemplarily for Ro = 32 mm.
For larger drum radii, bands formed and collapsed within a short period of time (about
10 s) as can be seen from Fig. 7.7a for Ro = 48 mm and Ro = 57 mm.

Fig. 7.7b shows space-time diagrams of AZ. The red vertical lines indicate the region
of interest, that was considered for the extraction of the wavelength, which will be
discussed in section 7.5. Contrary to AX1 banding, AZ banding could be observed
for all considered cylinder radii (7 mm ≤ Ro ≤ 145 mm). Similar to AX1 banding,
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Figure 7.7: a) Time space diagrams of axial banding of type 1 (AX1) for selected Ro in
the drum flow. Bands are unstable for Ro = 32 mm, Ro = 48 mm and Ro = 52 mm. b)
Space-time diagrams of azimuthal banding (AZ) for different Ro. Particles are illuminated
asymmetrically such that the bands on the backside are invisible to the camera within a
specific area of the cylinder (red lines). Ro = 7 mm: Single band which is visible to camera
when located at front or back side of the cylinder. c) Time space diagrams of axial bands of
type 2 (AX2) for selected Ro.
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

the experiments show, that the number of bands and the wavelength of AZ banding
depends on the cylinder radius (see Fig. 7.7b). Compared to AX1 banding and AX2,
the AZ banding often attain a wavy shape except for small drum radii as can be seen
exemplary for Ro = 7 mm. In general, it is observed that the rotation rate range at
which AZ banding can be observed increases with increasing Ro (not shown here).

In Fig. 7.7c space-time diagrams of AX2 banding are depicted. As can be seen, in
contrast to AX1, AX2 forms stationary bands even for Ro up to 120 mm. In fact, AX2
banding was observed to be stable for 13 mm ≤ Ro ≤ 145 mm, while for Ro = 7 mm
no AX2 could be observed. Compared to AZ the bands of AX2 appear to be more
regular and do not attain a wavy shape (Fig. 7.7b, Fig. 7.7c). Analogous to AX1
and AZ banding the wavelength of AX2 banding changes with increasing Ro (Fig.
7.7c). Furthermore, it becomes evident from Fig. 7.7c that the width of the particle
bands increases as the drum radius increases. Overall, the results indicate that AX2
banding is more stable compared to AX1 and AZ banding in the drum flow. As already
explained in section 7.2 the particles scatter much less around the trajectory for AX2
banding than for AX1 and AZ banding. This might be due to the fact that particles
are centrifuged closer to the wall during the AX2 banding phase as discussed in Sect.
7.2, such that particle movement is more restricted. In contrast, during AX1 banding
or AZ banding the particles experience lower centrifugal forces and hence spend less
time on the cylinder walls, which makes them more susceptible to disturbances induced
by interaction of particles with the fluid and each other as explained in section 7.2.

7.3.2 Taylor-Couette flow

In Fig. 7.8 space-time diagrams are shown for the TC flow for two selected outer
cylinder radii and increasing values of H/Ro for selected rotation rates analogous to Fig.
7.7. Figure 7.8a,b,c show rotation rates associated with AX1, AZ and AX2 banding,
respectively. The ratio of gap height and outer cylinder radius H/Ro increases from
left to right. Space-time diagrams are shown beginning from an arbitrary time when
the band was in a stationary state after the rotation rate was increased.

From Fig. 7.8a, where space-time diagrams for AX1 banding in the TC flow are depicted,
it becomes evident that the wavelength changes with increasing H/Ro for fixed Ro.
For Ro = 57 mm it can be also seen, that the bands become wider as H/Ro increases.
Furthermore, Fig. 7.8a, shows that the AX1 bands remain stable for Ro = 57 mm while
they are unstable for Ro ≥ 32 mm in the drum flow case (7.7a). In fact, in the TC
flow stable bands could be observed for outer cylinder radii up to Ro = 112 mm (with
a gap width of 12 mm) and gap widths ranging from H = 5.5 mm (for Ro = 72 mm)
to H = 47 mm (for Ro = 57 mm). It would be interesting to see, if bands become
unstable at larger gap widths, however 47 mm was the maximum gap width considered

216



7.4 Effect of varying particle volume fraction in the gravity dominated and intermediate
regime

in the experiments. It was observed, that the rotation rate range associated with AX1
increased with decreasing gap height. In fact, AX1 banding was the only band pattern
that occured at H = 5.5 mm.

Fig. 7.8b shows the space-time diagrams for AZ banding in the TC flow. For both
depicted values of Ro it can be seen, that the spacing and the width of the bands increases
as H/Ro increases. Furthermore, the inner cylinder seems to have a stabilizing effect
on the AZ bands. These become increasingly wavy as H/Ro increases corresponding
to a decreasing inner cylinder radius here (Fig. 7.8b). This reveals, that the presence
inner cylinder significantly affects AZ banding. In the TC flow, AZ banding was found
to occupy an increasing rotation rate range as the gap height increases. This shows a
similarity to the drum flow, where the rotation rate range associated with AZ banding
increases with increasing drum radius. AZ banding could be observed for outer cylinder
radii up to Ro = 112 mm and gap widths ranging from 10 mm to 47 mm.

In Fig. 7.8c the space-time diagrams for AX2 banding in the TC flow are presented. It
becomes evident, that the wavelength of AX2 banding changes with increasing H/Ro

for fixed Ro (Fig. 7.8c). By comparing the space time diagrams for H/Ro = 0.38 and
H/Ro = 0.29 in Fig. 7.8b and Fig. 7.8c it can be seen, that AX2 banding exhibits
bands which are more regular compared to those of AZ banding. The origin for this is
the same as in the case of a drum flow: During the AX2 banding particles spend more
time close to the wall compared to AZ and hence are less prone to disturbances. Also
for the TC flow it was observed, that particles scatter less around the trajectory during
AX2 banding compared to AZ and AX1 banding as discussed with regard to Fig. 7.4b.
Another detail of AX2 becomes visible for Ro = 112 mm in Fig. 7.8c. As can be seen
for H/Ro = 0.29 the space-time diagram features alternating bands of higher and lower
intensity, related to a higher or lower concentration of particles. Thereby, the bands
remained stationary and no interchange of particles between bands occured. In fact, for
several combinations of H/Ro such alternating bands of high and low concentration
could be observed.

7.4 Effect of varying particle volume fraction in the
gravity dominated and intermediate regime

Konidena et al. (2019) showed within their simulations of bidisperse suspensions, that the
phase boundaries in the gravity dominated regime (comparable to region I here) depend
on the ratio of particle settling velocity and circumferential velocity. Based on the work
of Dietrich (1982) and Bush et al. (2003) we estimate the particle Reynolds number
within our experiments to about Rep = dp|up − uf |ρfluid/µfluid ≈ 24...35 = O(101).
For such values of Rep it is known, that the sedimentation velocity of a particle cloud
can exceed that of a single particle (Slack 1963; Noh and Fernando 1993; Bush et al.
2003). Therefore, we investigated the fundamental effect of the particle volume fraction
in the gravity dominated regime I and the intermediate regime II (GB-AX1, see Fig.
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Figure 7.8: Space-time diagrams of AX1, AZ and AX2 banding for selected Ro and H/Ro

values in the TC flow. Bright areas indicate high concentration of particles. a) Axial
banding of type 1 (AX1) b) Azimuthal banding (AZ) The region of interest for extracting
the azimuthal wavelength is highlighted by red rectangles. c) Axial banding type 2 (AX2)

7.1). For this, several phase mapping experiments were performed at Ro =144 mm and
H/Ro = 0.167 for Φ ranging from 0.07% to 0.5% up to a rotation rate of 60 rpm. As
significant effects occured at 0.5% and no stable bands could be observed at the given
rotation rate, higher volume fractions were not considered. Figure 7.9 depicts exemplary
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Figure 7.9: Effect of varying the particle volume fraction on the pattern formation. Space-
time diagrams at 30 rpm, Ro =144 mm and H/Ro = 0.167 for Φ = 0.7%, 0.11%, 0.14%,
0.18%, 0.30% and 0.5%. Bright areas indicate high concentration of particles.

space-time diagrams for n = 30 rpm as a function of Φ. As can be seen for Φ=0.07%,
0.11% and 0.14% a clear AX1 pattern can be observed. Obviously in this range the
stability and the wavelength of the bands remains almost unaffected of changes in Φ.
However, as Φ is increased further the system begins to fall back to the UH phase (Φ =
0.18%, 0.3% in Fig. 7.9). As described earlier in the context of Fig. 7.1 the UH phase
is associated with a lower rotation rate than AX1 banding. From Fig. 7.9 it can be
seen that for Φ = 0.18% AX1 banding is present in the left side, while the UH phase is
present in the right side of the system. Even though great care was taken for leveling of
the system, this indicates a slight gradient of particle concentration in the system. For
Φ = 0.3% the distribution is approximately homogenous along the cylinder length. This
indicates that for 0.18% ≥ Φ ≥ 0.3% particle interactions lead to an enhanced settling
velocity such a higher rotatio rate is required to keep the particles on their trajectories.
This finding is consistent with the finding of Matson et al. (2008), who concluded that
the rotation rate required for each phase boundary increases with increasing Φ. Matson
et al. (2008) concluded that the underlying effect is not an increase of effective viscosity
but an increase of gravitational driving force due to the increase of particle mass. This
is consistent with the scenarios depicted in Fig. 7.9. According to equation 1.5 the
effective viscosity changes only by factor 1.01 when Φ is increases from 0.07% to 0.5%.
At the same time the overall mass of particles and hence the gravitational force excerted
on the suspension increases by factor 7.14.

As Φ is increased even further to Φ =0.5% the system becomes unstable and particles
collect in randomly located accumulations, visible as bright wavy lines in Fig. 7.9 for
Φ =0.5%. We assume the tendency of UH to form accumulations increases with the
particle volume fraction. Overall, in our experiments we observe that within the low
rotation regime and the intermediate regime, an increase in particle volume fraction
forces the system back to phases which would occur at lower rotation rates. We
conclude that increased particle volume fraction leads to increased average particle
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settling velocity such that the system falls back to from AX1 banding to a phase that
is associated with a lower rotation rate in accordance with the findings of Matson et al.
(2008).

7.5 Scaling of Wavelength

In the following, the wavelengths associated with the band patterns (AX1, AZ, AX2)
observed in the drum flow and TC flow are compared. To visualize how the wavelengths
scale with drum radius as well as with gap height, results are displayed in dimensional
presentation in Fig 7.10a,c,e. However, to unravel the asymptotic behavior when the
inner cylinder radius decreases a non-dimensional representation of λ∗/Ro is shown as
function of the normalized gap width (H/Ro) in Fig. 7.10b,d,f. In Fig. 7.10a the
measured wavelength λ∗ of AX1 is depicted as a function of the gap height H for the
drum (red dots) and the TC-flow (magenta dots). Additionally, linear fit functions are
fitted to the data to indicate the scaling behavior.

From Fig. 7.10a it can be seen that λ∗ of AX1 increases linearly with H for the drum
flow up to a radius of Ro = 32 mm (red dots). For the drum flow the wavelength scales
approximately linear with a slope of λ∗/H = 3.95. The corresponding linear fit is
labeled with ii in Fig. 7.10a. For the TC-flow the trend is less clear. While the majority
of the measured wavelengths (cyan dots) approximately follow linear scaling relations
(λ∗/H = 3.95 labeled with ii, λ∗/H = 2.43 labeled with i), some points are located
inbetween. Obviously, for the TC flow the gap height does not provide an unambiguous
correlation for λ∗ of AX1.

The geometrical dependence of λ∗ of AX1 in the TC flow becomes clear by nondimen-
sionalizing λ∗ and H with Ro as depicted in Fig. 7.10b. Here it can be seen that λ∗/Ro

increases linearly with a slope of λ∗/H = 2.43 (i) for H/Ro < 0.65. For H/Ro > 0.65
the normalized wavelength λ∗/Ro starts to increase sharply as H/Ro increases, till it
approximates the linear fit of λ∗/H = 3.95 (ii) around H/Ro = 0.8. For H/Ro > 0.8
the data indicates that λ∗/Ro of the TC flow merges smoothly into λ∗/Ro of the drum
flow (H/Ro = 1) as H/Ro approximates one. We assume this is correlated to the
stabilizing effect of the inner cylinder as described in Sect. 7.2. This stabilizing effect
faciliates smaller wavelengths (λ∗/H = 2.43, labeled with i). As the inner cylinder
size decreases (H/Ro → 1) its stabilization effect decreases as well. At some point the
inner cylinder is too small compared to the outer cylinder to stabilize certain bands and
smaller wavelengths disappear. Hence, it is concluded that when there is no stabilizing
effect of the inner cylinder, λ∗/Ro is equal for TC and drum flow.

The measured wavelengths of AX2 as a function of H together with linear fit functions
are depicted for the drum flow (blue dots) and the TC-flow (cyan dots) in Fig. 7.10c.
Here, it can be seen that for both TC and drum flow λ∗ of AX2 increases linearly with
H but switches between modes with different slopes of λ∗/H, labeled with i, ii, iii and
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Figure 7.10: Measured wavelengths for AX1, AZ and AX2 banding (Drum flow: H = Ro,
TC flow: H = Ro − Ri). a) λ∗ over H for AX1 (magenta dots = TC flow, red dots = drum
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iv, resulting in a fan shaped pattern. Apparently, λ∗ can assume multiple values for
a given value of H for both the drum as well for the TC flow. In contrast to AX1
banding, no points can be found inbetween those modes for AX2 banding. This fan
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7 Pattern formation in particle laden Taylor-Couette flows at solid body rotation

shaped pattern becomes also evident from the nondimensionalized presentation which is
shown in Fig. 7.10d. The nondimensionalized presentation further reveals how λ∗/Ro

of AX2 of the TC flow merges towards the drum flow case as H/Ro approaches one
(see Fig. 7.10d).

In comparison to AX1 and AX2 the experimental data of λ∗ over H for AZ scatters
significantly (see Fig. 7.10e). This is likely because the wavelength of AZ is measured
indirectly based on the measured frequency and velocity of the bands, rather than
directly as in the case of AX1 and AX2. Nevertheless, our data clearly shows that
λ∗ of AZ increases approximately linear as H increases for both the drum flow (dark
green) and the TC flow (light green). For the drum flow our data indicates a saw
tooth pattern for 55 mm < H < 125 mm, however more data points are required here
for further conclusions. As already observed for AX1 and AX2 it can be seen in the
nondimenzionalized presentation how the data of the TC flow merges to the data of the
drum flow as H/Ro → 1 (see Fig. 7.10f).

Figure 7.10g, provides an overview of all measured values of λ∗/H for AX1, AX2 and
AZ for all considered values of 0 < H/Ro ≤ 1. It can clearly be seen that the same
modes can be triggered in the drum flow (H/Ro<1) and the TC flow (H/Ro=1). The
dashed line in Figure 7.10g is λ∗/Ro reported by Seiden et al. (2005) while the dotted
line represents λ∗/Ro reported by Matson et al. (2003). As can be seen from Figure
7.10g both AX1 and AX2 exhibit λ∗/H values in agreement with the values reported
by Seiden et al. (2005) (dashed line, red ii and blue iv). The wavelength reported by
Matson et al. (2003) instead coincides with AX1 for the TC flow (dotted line, red i).
AX2 and AZ feature also wavelengths which are different from both the results of Seiden
et al. (2005) and Matson et al. (2003).

Overall, the results in Fig. 7.10 reveal significant differences regarding both the
dimensionalized wavelength λ∗ and the normalized wavelength (λ∗/Ro) for AX1, AX2
and AZ. For AX2 the results indicate that the wavelength can only assume certain
values of λ∗/Ro. This suggests that the formation of AX2 is related to a wave motion
of the flow resulting into a secondary flow pattern, which exists in the system and can
only assume specific wavelengths. Seiden et al. (2005, 2007) explained the formation of
particle bands by inertial waves, which are excited by the movement of the particles.
According to Seiden et al., the particles accumulate in alternate nodes of the wave
excitation. As the (normalized) wavelengths (λ∗/H, λ∗/Ro) appear to be identical for
drum and TC flow it is assumed that the same underlying mechanisms are responsible
for AX2 formation in both the drum and the TC flow. However, the normalized
wavelength of AX1 λ∗/Ro attains different values for the TC flow compared to the
drum flow for H/Ro < 0.6. For AX1 banding, when Ri decreases compared to Ro the
normalized wavelength merges smoothly into that of the drum flow (Fig. 7.10b). This
indicates that interactions of particles and inner cylinder play a role in determining the
wavelength of AX1 in the TC flow, which is not the case in AX2. This is in agreement
with Hou et al. (2014), who concluded that particle interactions are a mechanism that
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drives the band formation in drum flows. The fact, that λ∗/Ro apparently can assume
arbritary values between the two fits (i, ii) in Fig. 7.10b depending on H/Ro indicates
a different underlying mechanism for AX1 compared to AX2.

7.6 Discussion and Conclusion

In this chapter, ten particle patterns were reported for a drum flow and a corotating
TC flow with a low viscosity suspension (1 cP) of settling particles. Three types of axial
bands (AX1, AX2, AX3) and two types of azimuthal band patterns (AZ, CLL) were
discovered for both flow types. Furthermore, a coexistence of axial and azimuthal band
structures is revealed for the TC flow, which we denote as square pattern (SQR). Also
net shaped particle patterns were discovered, termed as net pattern (NP1-NP3).

With the complete phase range covered from granular bed (GB) to centrifugal limit
line (CLL), the results indicate, that the band pattern reported and discussed by
Lipson (2001) and Seiden et al. (2005) is axial banding type 1 (AX1). Drum flow
experiments reveal that this type of banding (AX1) becomes unstable above a drum
radius of approximately Ro ≥ 32 mm, which leads to collapsing of bands after formation.
Contrary, for the TC flow the stability of AX1 bands does not depend on the outer
radius. In fact, bands could be observed for a TC flow with radii up to Ro = 112 mm
and gap width up to H = 47 mm. We conclude, the larger the cylinder radius the
longer the particles are suspended within the gap along their trajectories, which make
them more susceptible to disturbances induced by interactions of particles with each
other and the fluid. This results in a self-reinforcing process which ultimately leads to a
collapse of the bands similar to the behavior of particle clouds sedimenting in stagnant
water. The additional inner cylinder present in the TC flow configuration can have a
stabilizing effect on the band patterns. Investigations on the radial particle position
revealed that the inner cylinder strongly alters the particle trajectories of AX1. It is
concluded that this effect leads to a stabilization of AX1 bands in the TC flow and
facilitates stable bands at large values of Ro. Furthermore, the data reveals that the
normalized wavelength λ∗/Ro of AX1 changes smoothly as the geometry changes from
TC flow to drum flow with decreasing inner cylinder size (H/Ro → 1).

Most significantly, an azimuthal band pattern (AZ) was discovered that does not
resemble any band structure previously discovered. This pattern was observed for
gap widths in the range of 7 mm ≤ H ≤ 145 mm. The experiments reveal that the
wavelength λ∗ (and λ∗/Ro) of AZ increases linearly with H (respective H/Ro). In
comparison to AX1 the change in wavelength with the gap width is less pronounced for
AZ. As for AX1 we can show for AZ that the wavelength merges smoothly when the
geometry changes from the TC flow to the drum flow, as H/Ro approaches H/Ro = 1.
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The second type of axial banding (AX2) can be observed for drum radii of up to
Ro ≈ 150 mm and appears to be more stable than AX1 banding. Here, particles spend
more time on the cylinder walls and less time within the gap such that the bands
are more robust against disturbances. It was shown that for both the TC as well
as the drum flow, the wavelength of AX2 as a function of H develops a fan shaped
pattern where multiple wavelengths can coexist for fixed values of H. Furthermore,
the experiments show that the normalized wavelength λ∗/Ro is approximately equal
for both drum and TC flow. Similar to AX1 and AZ it was shown for AX2 that the
normalized wavelength λ∗/Ro as a function of the normalized gap width H/Ro falls on
the same linear fit curves for both drum and TC-flow.

Overall, the present parametric study suggests that the underlying physical mechanism
for AX1 and AX2 are different, which comes especially clear in the normalized pre-
sentation. While the normalized wavelength λ∗/Ro changes smoothly with H/Ro for
AX1, AX2 exhibits an unsteady fan shaped pattern. This indicates that an inertial
wavemotion as concluded by Seiden et al. (2005) could be responsible for the AX2 band
formation. On the other hand, the irregularities of the AZ bands as well as the unstable
behavior of AX1 at higher values of Ro lead us to the conclusion, that here particle
interaction may play the key role. It is further concluded that these particle interactions
are significantly altered by the presence of the inner cylinder, which results in altered
AX1 wavelengths, in the case of the TC flow.
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8 Thesis summary and outlook

In this thesis, major physical phenomena relevant to the dynamics of particle laden flows
in horizontally aligned Taylor Couette Reactors (TCRs) were thoroughly investigated.
These are the stability of the flow, particle migration phenomena as well as the effect of
rotation on settling suspensions. In order to reduce the complexity, these phenomena
were investigated separately. First, the effect of increasing swirl on the stability of
laminar flow in a TCR was studied by means of linear stability analysis. Next, particle
migration was investigated in suspension flow of volume fractions up to Φ = 9.1%
utilizing Astigmatism Particle Tracking Velocimetry (APTV). For this, the application
of APTV on large suspension particles was extensively investigated. For reducing the
complexity and for benchmarking the results with data from literature, a square duct
flow was chosen instead of a TC system, here. Finally, we investigated particle structure
formation in horizontally aligned rotating drum and co-rotating Taylor-Couette flows
and worked out the effect of the inner cylinder. Hereafter, a summary of the topics and
recommendations for future works will be presented.

8.1 Instability mechansims in the Spiral Poiseuille
Flow

The flow in a TCR is composed of azimuthal Taylor-Couette (TC) flow and axial
Annular Poiseuille Flow (APF) such that the resulting flow is commonly known as
Spiral Poiseuille Flow (SPF). In such flows, particle trajectories differ significantly for
laminar, bifurcated or turbulent flow. Hence, understanding the stability behavior of
the SPF is essential for predicting the particle dynamics. Thus, in the present work the
stability of the SPF was analyzed by means of linear stability analyis.

The velocity profile of the SPF is defined by the curvature of the gap ε = (1 − η)/(1 + η)
where η is the radius ratio of the cylinders (Ri/Ro), as well as the “swirl” which is
the ratio of azimuthal and axial flow velocity. According to the Rayleigh criterion
the azimuthal flow component is linearly stable (Rayleigh stable) when the ratio of
the rotation rate (µ = Ωo/Ωi) is greater than η2. Otherwise if µ < η2, the flow is
linear unstable (Rayleigh unstable). For the SPF with Rotating Inner cylinder (IRSPF)
where µ = 0, it is known that increasing swirl leads to a destabilization of the flow,
which has been associated with a transition from a Tollmien-Schlichting to a centrifugal
instability. In contrast, for the Spiral Poiseuille Flow with Rotating Outer cylinder
(ORSPF, µ → ∞), it was observed that increasing swirl first destabilizes the flow but
also slightly stabilizes the flow as the swirl increases further (Meseguer and Marques
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2005). In fact, the underlying mechanisms which lead to a stabilizing or a destabilization
of the SPF for both µ = 0 and µ → ∞ have not been analyzed or quantified in detail
and have therefore been investigated in the present study. Furthermore, only a few
values of ε have been investigated for both IRSPF and ORSPF up to date. Given
that, in the present thesis extensive computations on the linear stability behavior were
performed for the IRSPF as well as for the ORSPF from low to high swirls and over
77 values of the curvature parameter in the range of 0 < ε < 0.78. Moreover, an
approach was developed to discriminate between different instability mechanisms based
on the production terms of the Reynolds Shear Stress Transport Equations (RSSTE)
and the budget of the kinetic disturbance energy (K). Detailed phase maps for both
cases were generated that describe the stability behavior as quasi-continuous function
of ε and swirl. It was revealed, that the behavior of the ORSPF strongly depends
on ε. Three different instability regimes associated with low, intermediate and high
swirls could be identified for the ORSPF for ε > 0.05 and for the IRSPF for all ε

considered. Thereby, the swirl values associated with the phase boundaries were found
to strongly depend on ε for IRSPF as well for ORSPF. In general, it was found that
increasing ε lowers the swirl values associated with the phase boundaries. Using the
approach for identification of instability mechanisms, it was confirmed that in the first
regime, associated with low swirls, a Tollmien-Schlichting shear instability is present
in both the IRPSF and the ORSPF. Here, the production of shear stresses and of
kinetic disturbance energy is due to axial shear. Thereby, based on the distribution
of shear stresses and the expression of Vasanta Ram (2019), it was shown that there
exists a critical layer, as assumed by Cottrel and Pearlstein (2004). To the authors best
knowledge, this is the first time, a critical layer was discussed for non-axissymmetric
disturbances in the SPF. Furthermore, it was shown for the first time, that for the
ORSPF and small values of ε a Tollmien-Schlichting instability can persist even at
swirls where the azimuthal flow component is significantly larger than the axial flow
component. The second regime is associated with intermediate swirls. Here, for both
the IRSPF and the ORSPF the shear stress distributions attain a characteristic shape
and the critical Reynolds number Rec drops sharply with increasing swirl. The decrease
of Rec is well over 90% for all ε considered in IRSPF and for ε ≥ 0.2 in the ORSPF. It
was found, that for both the IRSPF and the ORSPF, this drop in Rec is induced by
the same centrifugal instability mechanism, which is characterized by the centrifugal
production of τrx and an axial shear production of kinetic disturbance energy. Here,
for the first time, differences as well as common features of the instability mechanism
induced by rotation of the outer and the inner cylinder were carefully analyzed. When
the swirl is increased further within the second regime, the azimuthal shear production
increases in both cases. While in the IRSPF the increasing azimuthal shear production
leads to a further destabilization and decrease of Rec, this leads to stabilization of the
ORSPF resulting in a sharp increase of Rec. This revealed that outer rotation has an
ambiguous effect on the stability of the SPF and that there are striking differences
between IRSPF and ORSPF. The third regime is associated with relatively large swirls.
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For the IRSPF at the beginning of the third regime the axial shear production drops to
zero for all ε, but overall the shear stresses only change slightly. Instead, for the ORSPF
the characteristics of shear stresses and production terms change strikingly here and
reveal the existence of a single critical layer close to the inner cylinder. Based on the
production terms of the RSSTE it was concluded, that here a Tollmien-Schlichting
instability is present which agrees which the presumptions of Deguchi (2017). A striking
feature here is, that the centrifugal production terms counteract the shear production
terms and hence inhibit shear stress production. For all ε considered, the ORSPF is
strongly stabilized as the swirl increases within the third regime.

Overall, the results obtained in the present thesis, provide a wide data base which
highlights interesting parameter combinations for follow up numerical simulations
and experimental works. Even though only pure liquids were considered and also
experimental validation is required, some potentially very interesting conclusions can
be drawn regarding processing particle laden flows in TCRs. For instance, when high
Reynolds numbers or high shear rates are required for the process, while a laminar
velocity profile should be maintained, an ORSPF with a low curvature parameter is a
promising option. A laminar velocity profile is potentially interesting for particle sorting
applications. In contrast, with larger curvature parameters and outer cylinder rotation,
instabilities can be induced which potentially leads to transition and turbulence and
therefore enhanced diffusion. At the same time, the outer cylinder rotation could
prevent heavy particles to form a sediment bed at the outer wall, when the system is
horizontally aligned. This could improve the mixing performance in suspensions with
heavy particles.

8.2 ATPV and particle migration in suspension flows

Apart from being affected by the structure of the flow, viz the shape of the streamlines,
the particles in a TCR flow also undergo cross-streamline migration arising from
interaction of particles with each other and the fluid. For instance, in the context of
the present work, it was discovered that particles of a tridisperse suspension flowing in
a horizontally aligned Taylor-Couette flow with rotating inner cylinder segregate into
different particle bands according to their size. As this phenomena cannot be explained
based on current literature, one of the main motivations of this work is to extend the
understanding of particle migration in mono- and polydisperse suspensions. In general,
two mechansims are well known that can cause particle migration in suspension flows and
potentially lead to size segregation: Shear induced migration which results from particle
interactions and inertial migration which results from inertial effects in suspension flows.
In fact, two recent numerical studies revealed, that the interplay of shear induced-
migration and inertial migration may result in complex particle distribution patterns
(Kazerooni et al. 2017) and even lead to particle size segregation (Chun and Jung 2021).
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Therefore, to improve the understanding of separation in TCRs, within this work
particle migration phenomena were experimentally investigated, by means of optical
measurement techniques. To measure the threedimensional particle distributions and
velocities at higher solid volume fractions, a promising, low cost and easy to implement
measurement technique is APTV, which is usually applied to small tracer particles
(< 10 µm) at very dilute conditions. Hence, in the present study, it was thouroughly
investigated how APTV can be applied on large suspension particles (> 10 µm) at dilute
and semi-dilute conditions.

First, an adapted APTV technique was developed which can be applied to large
transparent particles in dilute suspensions. Here, the particles act as ball lenses,
which focus the light that comes from a background illumination. This results in
a bright focal point in front of the particle that is used for the tracking procedure.
The technique is referred to as Ball Lens Astigmatism Particle Tracking Velocimetry
(BLAPTV). Furthermore, a 3D calibration procedure was developed, which uses the
particle image’s shape as well as its light intensity to reconstruct the particles depth
position. BLAPTV was successfully validated by measuring a planar Poiseuille flow in
a rectangular channel. Thereby, it was shown that BLAPTV with large transparent
particles can yield comparable accuracies as conventional APTV with small fluorescent
particles.

Next, the application of APTV on large fluorescent particles was investigated in
monodisperse suspensions of solid volume fractions up to 20 %. Using a refractive
index matching (RIM) technique, the suspension was rendered transparent while a
few particles were labeled to make them visible for the camera. It was discovered
that slight deviations of the refractive index of particles and liquid induce optical
distortions, which lead to deformations of the calibration curve that become severe with
increasing solid volume fraction. These shape changes were compensated utilizing an
interpolation method that was succesfully validated by measuring the laminar velocity
profile in a rectangular duct with a 2.550×30 mm2 cross section for six individual volume
fractions ranging from Φ ≤ 0.01% to Φ = 19.9%. The average standard deviations
for the measured in-plane as well as the out-of-plane velocity were found to increase
as the volume fraction increased from 0.01% to 19.9%. In fact, the local increase in
uncertainty was pronounced for measurement planes closer to the channel bottom as
optical distortions were more significant, there. Nevertheless, the averaged velocity
profile was found to be in good agreement with the theoretical solution, which confirmed
that the proposed interpolation technique is suitable for measuring particle velocities in
suspensions beyond the dilute regime.

Finally, the application of APTV on polydisperse suspensions was investigated. Cal-
ibration measurements performed for different particle sizes ranging from 15 µm to
260 µm revealed that the associated calibration curves overlap outside the focal planes
leading to ambiguities. It was shown, that these ambiguities can be overcome using the
3D calibration procedure, as the light intensity increases with particle size. Utilizing
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the 3D calibration technique, the particle migration in flows of mono- and tridisperse
suspensions was investigated in square capillaries of 400×400 µm2 and 600×600 µm2

cross sectional area. The tridisperse suspension contained particles of 30 µm, 40 µm and
60 µm diameter. At a volume fraction of Φ = 0.08% and a bulk Reynolds number of
Reb = 20 particles were observed to be collected into a Pseudo Segre Silberberg Annulus
(PSSA) with no signifcant differences between mono- and polydisperse suspensions.
At Φ = 9.1% and Reb = 20 particles in monodisperse suspensions scatter around the
PSSA. The scattering becomes more pronounced as dp decreases from 60 µm to 30 µm.
When Reb is increased to Reb = 40 the scattering decreases for all dp investigated. It
was concluded, that inertial migration focusses the particles on the PSSA while shear
induced migration counteracts this focussing and disperses particles towards the channel
center and walls. An increase in dp or Reb enhances inertial migration and hence
decreases the scattering in monodisperse suspensions. For polydisperse suspensions,
different particle distributions were observed for Φ = 9.1% and Reb ≥ 20. Compared to
the monodisperse case large particles (60 µm) are significantly more focused. In contrast,
small and intermediate particles (30 µm and 40 µm) are repulsed by larger particles
leading to regions of high concentration close to the channel walls. This size dependent
segregation becomes pronounced when Reb is further increased. It was concluded that
inertial forces are pronounced for larger particles such that they reach the PSSA first
and screen off smaller particles. At the same time, shear induced migration and hence
scattering is less pronounced for larger particles compared to a monodisperse suspension
due to the presence of smaller particles which lowers the effect of particle interactions
(collisions).

Overall, it was successfully shown that APTV can be applied on large transparent or
fluorescent particles in dilute as well as dense suspensions in milimeter sized as well as in
sub-millimeter sized geometries. Hence, the technique is promising for investigating the
dynamics of mono- and polydisperse suspensions in TCRs with small gap widths and
limited optical access. It was further successfully shown that the interplay of inertial
migration and shear induced migration can lead to a size segregation of particle species
in pressure driven square duct flow. This observation is a further step in untangeling
particle segregation phenomena as they are also observed in Taylor Couette devices.

8.3 Pattern formation in particle laden
Taylor-Couette flows

Besides the structure of the flow and migration phenomena, the dynamics of particles
subjected to the flow in a TCR can also be affected by the interplay of sedimentation and
the rotation of the system. In fact, it is known that flows of dilute settling suspensions
in horizontally aligned rotating cylinders can give rise to formation of band shaped
particle accumulations. This phenomena is also known as particle-banding.
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While extensive research on this phenomena has been performed in drum flows, the
formation of particle bands in fully liquid filled TC flows has been completely unexplored
up to date, such that the effect of an additional inner cylinder is yet unclear. Furthermore,
most experiments focused on higher viscosities or on lower rotation rates such that a
complete phase mapping for the low viscosity limit is still not available. Therefore, in
chapter 7 a comparative study was conducted, considering particle pattern- and band
formation in both rotating drum flows as well as in a co-rotating TC flows at solid body
rotation. For this, extensive phase mapping was performed over a wide rotation rate
range and various cylinder radii as well as radius ratios. Overall, ten different particle
structures were observed of which six were previously unknown. These include two
types of axial periodic bands (AX2, AX3) and two types of horizontally aligned particle
bands (AZ, CLL) which occur in both the drum as well as the TC flow. Furthermore,
net shaped particle structures (NP1-NP3) were discovered as well as a coexistence of
horizontal and vertical band structures, denoted as square pattern (SQR).

The drum-flow experiments revealed that one type of axial banding (AX1) become
temporarily unstable for drum radii above Ro ' 32 mm. Contrary, for the TC-flow the
stability of AX1 bands was found to be independent on the outer cylinder radius. In
fact, AX1 bands could be observed for a TC flow even for outer cylinder radii up to
Ro = 112 mm and gap widths up to H = 46 mm. For the drum flow the wavelength of
AX1 banding was found to be in good agreement with that reported by Seiden et al.
(2005). It was observed that during AX1 banding the presence of an inner cylinder
seems to change the particle trajectories and to stabilize the bands. This allows AX1
bands to be stable even at large values of Ro within a TC flow. Thereby, it was found
that the (normalized) wavelength (λ∗/Ro) of AX1 changes smoothly for decreasing
inner cylinder size. Based on this, it was concluded that interactions between particles
and cylinders play a role in determining the wavelength of AX1 in the flow.

The discovered azimuthal band pattern (AZ) does not resemble any previously discovered
band structure and appears to be a robust phenomena which occurs for a wide range
of radii and gap widths. It was observed, that the wavelength of AZ banding scales
approximately linearly with the drum radius or the gap width, respectively. Also for
AZ banding it was observed, that the presence of an inner cylinder can stabilize the
particle bands, which indicates that particle interactions play a role in AZ banding.
However, the effect is less pronounced compared to AX1 banding as AZ banding is
associated with higher rotation rates such that the trajectory is shifted closer to the
outer cylinder.

The second type of axial banding (AX2) was observed for drum radii of up to Ro ≈
150 mm and appeared to be more stable than AX1 banding. Here, particles spend more
time on the cylinder walls and less time within the gap such that the bands are more
robust against disturbances induced by interactions of particle with each other and the
fluid. In contrast to AX1 banding, the (normalized) wavelength of AX2 banding seems
to be unaltered by the presence of an inner cylinder. Regarding the wavelengths AX2
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exhibits a striking difference to AX1 banding. It was observed that for AX2 multiple
wavelengths could coexist for a given of H/Ro or a given drum radius which is not the
case for AX1 banding. Thus, it was assumed, that the wavelength of AX2 is a result of
a wavemotion which can attain only specific wavelengths in the system, similar to that
discussed by Seiden et al. (2005) for a drum flow. The results indicate that different
underlying mechanisms are dominant for AX1 and AX2.

Regarding real life applications the findings of chapter 7 could be applied for TCRs
which are operated batch-wise. For instance AZ is a very robust phenomena which
could be used to generate a uniform particle distribution in axial direction, prior to the
process.

8.4 Outlook

In recent years, the field of suspensions has rapidly gained attention and various
numerical and experimental studies provided new insights and revealed several interesting
phenomena. Yet, this field of research is far from being completely understood. This
accounts especially for the dynamics of particle-laden flows in Taylor-Couette Reactors
(TCRs). Combining axial and azimuthal flow, they allow to precisely adjust the mixing
conditions and the transport velocity (Schrimpf et al. 2021) and are a promising option
for processing suspensions for separation and mixing applications with chemical inert
or reactive particles. However, the interplay of axial and azimuthal flow leads to
rich dynamics induced by centrifugal effects, gravitational effects and the interactions
of particles with the fluid and themselves. Untangling these dynamics is extremely
challenging with open questions still too be answered. Some of them are adressed in
the following.

By means of linear stability analysis, it was revealed that outer rotation can destabilize
and stabilize the flow at intermediate and large swirls, respectively. However, this
theory only accounts for infinite small disturbances. For transferring this results to real
life applications, it is important to investigate how finite disturbances affect the stability
behavior. Therefore, the stability behavior of the ORSPF should be investigated by
numerical techniques such as Direct Numerical Simulation (DNS) or experimental
techniques, where nonlinear effects are captured. Our phase maps can serve as an
initial solution, such that extensive mapping can be avoided. Also, the cases of co- and
counter-rotation were not considered in the present computations. Exploring the effect
of increasing co- or counter-rotation on the phase maps is surely an interesting task for
follow up works.

The application of APTV on suspensions of large particles in dilute as well as dense
suspensions was thoroughly investigated. Thereby, it was shown that the interplay of
shear-induced and inertial migration lead to segregation of small particles and large
particles in pressure driven laminar square duct flows with a parabolic velocity profile.
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Further, from literature it is known that linear shear flow can lead to a size segregation of
particles in bidisperse suspensions (Chun and Jung 2021). For understanding mixing and
separation processes in TCRs, it is important to investigate, which particle distributions
arise in polydisperse suspensions when an axial pressure driven flow is combined with
an azimuthal shear flow. Hence, future works should investigate particle migration
phenomena in Spiral Poseuille flow. Furthermore, the present measurements only
considered the motion of large suspension particles which undergo their own dynamics
and do not follow the streamlines. Therefore, the present results do not provide fluid
velocity information. However, recent numerical studies revealed that particles can
induce secondary flows in the carrier liquid (Kazerooni et al. 2017). This could also
affect the structure of the flow in TCRs. Hence, future measurements should also utilize
small tracer particles to measure the fluid motion such that secondary flow can be
resolved and a more complete picture of the underlying physics can be generated.

Also, the structure formation in drum and corotating TC flows was investigated. This
allowed to reveal the influence of an additional inner cylinder while maintaining solid
body rotation. At solid body rotation the shear tensor equals zero. However, forces on
the particle and hence inertial and shear induced migration depend on the shear rate in
the flow. Consequently, future works should investigate the effect of increasing relative
motion of the cylinders and hence increasing shear on the particle trajectories and the
band formation.
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A Appendix

A.1 Linear Stability Analysis

A.1.1 Governing equations

The non-dimensionalized set of equations for describing the fluid flow in cylindrical
coordinates takes the following form:

• continuity equation
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• r - momentum
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• ϕ - momentum
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Where 1
r can be expressed as function of y: ε

1+ε·y
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A.1.2 Nonlinear disturbance equations

For obtaining the non-dimensionalized set of equations for describing the motion of the
disturbance velocities the following expressions are substituted into equations (A.1) to
A.4) (Gonzales 2013):
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• Continuity equation (of the disturbance velocities)

∂u′
x

∂x
+ 1

r

∂

∂r
(ru′

r) + 1
r

∂u′
ϕ

∂ϕ
= 0 (A.6)

• x - momentum
∂u′

x

∂t
+ Vx

∂u′
x

∂x
+ u′

r

dVx

dr
+ Vϕ

r

∂u′
x

∂ϕ
+ ∂p′

∂x

− 1
Re

(
∂2u′

x

∂x2 + 1
r

∂

∂r

(
r

∂u′
x

∂r

)
+ 1

r2
∂2u′

x

∂ϕ2

)
=

−
(

u′
x

∂u′
x

∂x
+ u′

r

∂u′
x

∂r
+

u′
ϕ

r

∂u′
x

∂ϕ

) (A.7)
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• ϕ - momentum
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) (A.9)

These are the nonlinear disturbance equations. When the nonlinear terms on the right
hand sides of A.7 to A.9 are neglected the linearized disturbance equations (2.6 to 2.9)
are obtained.
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A.1.3 Reynolds shear stress transport equations

In the following the transport equations for the velocity fluctuation products u′
ϕu′

r and
u′

ru′
x are presented. These fluctuations are the shear stresses τrx and τrϕ when averaged

over the wavelengths as described in section 2.2.5.

The transport equation for u′
ϕu′

r is obtained by the sum of the transport equation of
u′

ϕ (A.9) multiplied with u′
r and the transport equation of u′

r (A.8) multiplied with
u′

ϕ. Within this work the transport equations are spatially averaged over the critical
wavelengths (nc, λc) before they are evaluated.
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(A.10)

The first term is the temporal change of u′
ϕu′

r. In the neutral stable scenario, the
disturbance does neither grow nor decay such that this term must be zero when averaged
over the wavelength. The centrifugal and shear production terms (Zrϕ1, Prϕ(Vϕ)) act
as a source or sink depending on the sign of the shear stress. The convection terms
describes the convection of the shear stress by the base flow. These terms are zero
when averaged over the disturbance wavelengths and hence are not relevant for the
present considerations. This does not account for the convection term Zrϕ2. However
this term is always small and negligible. The velocity pressure gradient term accounts
for interactions of pressure disturbances and velocity disturbances. The viscous terms
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account for the viscous diffusion and dissipation (Rotta 1951; Moser 1984; Moser and
Moin 1987; Hanjalić and Launder 2011). The description of the terms also applies for
the u′

ru′
x transport equation which is described in the following.

The velocity pressure gradient in equation (A.10) averaged over the wavelength takes
the form:
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(A.11)

The transport equation for u′
ru′

x is obtained by the sum of the transport equation of u′
r

(A.8) multiplied with u′
x and the transport equation of u′

x (A.7) multiplied with u′
r.
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The velocity pressure gradient in equation (A.12) averaged over the wavelength takes
the form:
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(A.13)
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A.1.4 Flow velocity profiles for the IRSPF and the ORSPF
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Figure A.1: Normalized velocity profiles for the IRSPF for different ε (Si = 1, Uref =√
U2

x + U2
ϕ). a) Axial velocity profile. b) Azimuthal velocity profile.
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Figure A.2: Normalized velocity profiles for the ORSPF for different ε (So = 1, Uref =√
U2

x + U2
ϕ). a) Axial velocity profile. b) Azimuthal velocity profile.
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a) b)

c)
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Figure A.3: Normalized velocity profiles for the ORSPF for different values of So (ε = 0.005,
Uref =

√
U2

x + U2
ϕ). a) Axial velocity profile, normalized with Uref. b) Azimuthal velocity

profile, normalized with Uref. c) Resulting velocity profile, normalized with Uref.
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A.1.5 Additional plots for the phase maps
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Figure A.4: Change of the critical Reynolds number within region IIO, defined as (min(Rec)−
Rec(S−

o,T 1))/Rec(S−
o,T 1) × 100. For all ε > 0.0704 the minimum critical Reynolds number is

achieved in region IIO.
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A.1.6 Normalized distribution of K, shear stresses and
production terms along the gap height
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Figure A.6: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the IRPSF at the first transition (I to II) for ε = 0.0025. Dash dot line
= critical layer. a,f) K over y. b,g) Production of K over y. c,h) τrx, τrϕ over y. d,i)
Production of τrx over y. e,j) Production of τrϕ over y.
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Figure A.7: Normalized Distributions of K, shear stresses and production terms for the IRSPF
and ORSPF for different Si (Si = {S+

i,T 1; 1.000; S−
i,T 2}) and So (So = {S+

o,T 1; 1.000; S−
o,T 2}).

Curvature parameter is ε = 0.25. a-c, a1-c1) K over y. d-f, d1-f1) K-production terms over
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Figure A.8: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the IRSPF before the second transition (end of II) at S−

i,T 2 for ε =
{0.005; 0.25; 0.78}. Dash dot line = position of critical layer according to equation (2.33).
a-c) K over y. d-f) Production of K over y. g-i) τrx, τrϕ over y. j-l) Production of τrx over
y. m-o) Production of τrϕ over y.
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Figure A.9: Normalized radial distributions of kinetic energy, production terms and shear
stresses found in the IRSPF behind the second transition (beginning of III) at S+

i,T 2 for
ε = {0.005; 0.25; 0.78}. Dash dot line = position of critical layer according to equation (2.33).
a-c) K over y. d-f) Production of K over y. g-i) τrx, τrϕ over y. j-l) Production of τrx over
y. m-o) Production of τrϕ over y.
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A.1.7 Distribution of velocity pressure gradient and production
terms
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Figure A.10: Demonstration how velocity pressure gradient and shear production cancel out
(ε = 0.005, Si = 10−5, N = 500 (number of collocation points) ). Zrx(Vϕ) is approximately
zero (no depicted).
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Figure A.11: Close up of Fig. A.10. Explanation of the distribution of τrx by the sum of
velocity pressure gradient and shear production terms (ε = 0.005, Si = 10−5, N = 500
(number of collocation points). As can be seen while the sum attains peaks close to the
peaks of τrx (and attains and opposed sign which is necessary for production of negative or
positive shear stresses) there is a significant deviation left and right of the channel center.
These deviations are observed for smaller ε and did not occur for larger ε as can be seen
exemplarily in Fig. A.12 and Fig. A.13
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Figure A.12: Demonstration how velocity pressure gradient and shear production cancel out
(ε = 0.333, Si = 10−5, N = 500 (number of collocation points) ).

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

y

viscous terms
PDrx + Prx(Vx) + Zrx(Vϕ)
τrx

Figure A.13: Close up of Fig. A.12. Explanation of the distribution of τrx by the sum of
velocity pressure gradient and shear production terms (ε = 0.333, Si = 10−5, N = 500
(number of collocation points). As can be seen the sum attains peaks close to the peaks of
τrx (and attains and opposed sign which is necessary for production of negative or positive
shear stresses).
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Figure A.14: Complete budget of τrϕ for the TC flow (Si = 105, ε = 0.005). Red line and
magenta line cancel out.
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A.1.8 Tables of critical values

ε S−
i,T 1 Rec λc nc ωc c cx

0.0025 0.98061 7914.93 1.021 0 0.1937 0.1895 0.1895
0.0050 0.43939 6252.34 1.021 0 0.2473 0.2422 0.2422
0.0526 0.03782 5887.61 1.013 2 0.2686 0.1198 0.2650
0.25 0.00714 7357.76 0.862 2 0.2266 0.1040 0.2628
0.785 1.88x10−4 140766.82 0.102 -1 0.0211 0.0210 0.2052

Table A.1: Values of Rec, λc, nc, ωc, c and cx at S−
i,T 1

ε S+
i,T 1 Rec λc nc ωc c cx

0.0025 0.990 7948.72 2.36644 2838 5.09694 0.001795 2.142
0.0050 0.45249 6267.90 0.98885 1191 2.54276 0.002134 2.571
0.0526 0.03838 5850.45 0.07576 61 0.14566 0.002387 1.922
0.25 0.00719 7710.17 0.02257 10 0.03031 0.003031 1.342
0.785 1.88x10−4 131457.91 0.00110 2 0.00121 6x10−4 1.095

Table A.2: Values of Rec, λc, nc, ωc, c and cx at S+
i,T 1

ε S−
i,T 2 Rec λc nc ωc c cx

0.0025 138.94 292.12 1.563 1 0.0100 0.00543 0.00645
0.0050 72.81 207.18 1.564 1 0.0193 0.01044 0.0123
0.0526 7.92 69.73 1.577 1 0.1814 0.09712 0.1149
0.25 2.55 45.14 1.664 1 0.5981 0.30803 0.3593
0.785 2.87 90.80 3.099 1 1.2845 0.39446 0.4144

Table A.3: Values of Rec, λc, nc, ωc, c and cx at S−
i,T 2

ε S+
i,T 2 Rec λc nc ωc c cx

0.0025 156.27 291.93 1.563 0 0.00780 0.00499 0.00499
0.0050 74.98 207.11 1.564 0 0.01626 0.01039 0.01039
0.0526 8.04 69.61 1.571 0 0.15097 0.09609 0.09609
0.25 2.57 45.00 1.595 0 0.45208 0.28338 0.28338
0.785 2.96 91.11 1.626 0 0.46066 0.28328 0.28328

Table A.4: Values of Rec, λc, nc, ωc, c and cx at S+
i,T 2
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ε S−
o,T 1 Rec λc nc ωc c cx

0.0526 0.7319 9381.61 1.004 0 0.1989 0.1981 0.198
0.25 0.0232 7433.83 0.856 -2 0.2172 0.0998 0.253
0.785 0.000284 110936.89 0.119 -1 0.0250 0.0249 0.209

Table A.5: Values of Rec, λc, nc, ωc, c and cx at S−
o,T 1

ε S+
o,T 1 Rec λc nc ωc c cx

0.0526 0.734 9403.81 0.3298 -6 -0.0716 -0.0119 -0.2172
0.25 0.0236 7400.37 0.0139 -4 -0.00763 -0.0019 -0.5478
0.785 3.0x10−4 108214.83 3.9x10−4 -2 2.07x10−5 1.03x10−5 0.0525

Table A.6: Values of Rec, λc, nc, ωc, c and cx at S+
o,T 1

ε S−
o,T 2 Rec λc nc ωc c cx

0.00502 4.673 79057.11 0.950 1 0.0414 0.0300 0.0436
0.0526 1.401 28431.81 0.957 0 0.1104 0.1152 0.1152
0.111 1.588 34701.70 0.133 -1 -0.0526 -0.0522 -0.3960
0.25 2.754 14259.09 0.0909 -1 -0.154 -0.1537 -1.6966
0.785 37.605 10393.12 0.0312 -3 -1.308 -0.4360 -41.8289

Table A.7: Values of Rec, λc, nc, ωc, c and cx at S−
o,T 2

ε S+
o,T 2 Rec λc nc ωc c cx

0.0050 4.742 82938.00 0.517 9 0.0285 0.00316 0.0551
0.0526 1.421 29654.94 0.503 3 0.0793 0.02607 0.1576
0.111 1.593 47026.80 0.211 1 0.0383 0.03748 0.1808
0.25 2.764 34370.81 0.381 1 0.0608 0.05682 0.1593
0.785 38.162 10864.63 0.287 1 0.259 0.24943 0.9029

Table A.8: Values of Rec, λc, nc, ωc, c and cx at S+
o,T 2
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A.2 Applying APTV to suspension flows with
transparent particles

Table A.9: Accuracies achieved in the literature. MT=method (A=APTV-fluorescent,
B=APTV-bright field (non-fluorescent), C=pinhole plate)

Author MT dp σz ∆z σz

∆z
σz

dp

- - µm µm µm % %
Angarita-Jaimes
et al. 2006

A 0.2 0.04 2.5 1.6 20
Buchmann et al. 2014 B 110 140 5100 2.74 -
Chen et al.2009 A 2 2.8 500 0.56 140
Cierpka et al.2010b A 5 5.6 90 6.2 112
Cierpka et al.2010a A 2 0.28 35.1 0.78 14
Fuchs et al. 2014b C 1 133 40000 0.33 13330
Franchini et al. 2019 B 2 7.1* 240 2.95 -
Kao et al. 1994 A 0.093 0.012 120 0.3 12.9
Massing et al. 2018 A - 0.68 120 0.56 -
Ragan et al.2006 A 0.2 0.04 2.5 1.6 20
Rossi et al. 2014 A 2.24 0.75 102 0.74 33
Rossi et al. 2019 A 0.245 0.2 7 2.85 81
Segura et al. 2015 B 13 1.7 20 8.5 13

Table A.10: Accuarcies for optimized values of ca, cI in order to minimize σ∗
z /∆z (dp=60 µm,

M=20×, water, σz=
√

σ∗2
z + min[σ(∆Fxz), σ(∆Fyz)]2) (top two rows=CMOS camera, bot-

tom two rows=CCD camera)

∆z σ∗
z ∆Fxz ∆Fyz σz

σz

dp

σz

∆z ca cI cD Nvalid

µm µm µm µm µm % % - - - -
241 1.97 137.0±7.6 137.9±5.2 5.5 9.2 2.3 0.66 0.37 2 2573
241 2.02 137.0±7.6 137.9±5.2 5.5 9.3 2.3 0.66 0.37 2 2661

162 0.95 134.3±2.3 132.3±2.6 2.5 4.2 1.5 0.44 0.3 3 1683
184 1.09 134.3±2.3 132.3±2.6 2.5 4.3 1.4 0.44 0.26 3 1894
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Table A.11: Measured values of the performed parametric study for optimized val-
ues of ca, cI obtained with 3D calibration procedure (top: PMMA, bottom: PS
σz=

√
σ∗2

z + (min[σ(∆Fxz), σ(∆Fyz)])2), cD=2)

dp M GW ∆z σ∗
z ∆Fxz ∆Fyz

σz

dp

σz

∆z

µm - wt% µm µm µm µm % %
30 20x 0 121.3 4.0 75.4±2.5 60.1±2.6 15.9 3.9
30 20x 25 103.6 1.3 82.4±2.6 65.0±3.0 10.0 2.9
30 20x 50 146.7 5.9 91.4±10.8 78.4 ±2.7 21.7 4.4
60 20x 0 179.9 1.7 136.4±3.3 125.5±2.1 4.5 1.5
60 20x 25 203.2 2.4 148.3±2.3 136.8±1.9 5.2 1.5
60 20x 50 222.2 7.7 159.9±3.1 140.2±2.5 13.6 3.6
60 10x 0 227.9 5.8 111.2±10.4 115.1±5.6 13.5 3.5
60 10x 25 250.9 4.1 126.6±4.8 112.7±15.0 10.6 2.5
60 10x 50 294.9 7.4 183.0±13.4 90.8±15.2 25.6 5.2

124 10x 0 419.8 5.4 226.2±8.1 199.9±8.1 7.9 2.3
124 10x 25 507.4 14.2 252.4±6.0 220.7±6.9 12.4 3.0
124 10x 50 478.1 7.4 259.0±13.3 241.6±11.4 11.0 2.8
124 20x 0 291.9 1.7 236.5±1.8 213.2±1.5 1.8 0.7
124 20x 25 375.1 5.6 273.1±4.8 231.5±3.4 5.2 1.7
124 20x 50 363.4 6.5 323.7±3.4 193.7±1.7 5.5 1.8

80 10x 0 106.6 2.7 114.1±10.3 108.0±8.7 11.5 8.6
80 20x 0 213.2 11.2 135.8±3.8 123.7±3.6 14.7 5.5

124 10x 0 351.9 4.0 186.7±7.6 157.6±7.0 6.5 2.3
124 20x 0 302.5 10.2 185.0±3.6 174.8±2.7 8.5 3.5
140 20x 0 321.2 8.4 211.4±7.1 199.4±4.8 6.9 3.0
140 10x 0 370.5 6.2 209.6±6.1 183.5±6.1 6.2 2.3
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Table A.12: ∆Fxz, ∆Fyz, σ∗
z and σz for particles with dp=80 µm in a 25wt% glycerol-water

solution located at the top z=2305 µm and bottom z=0 µm of the channel (cI=0.575, ca=0.7,
cD=2)

z=2305 µm z=0 µm ∆
∆Fxz 160.43±9 µm 196.29±7.8 µm 35.86 µm
∆Fyz 145.38±9.1 µm 177.32±10.76 µm 31.94 µm
σ∗

z (2D) 5.4 µm 9 µm 3.6 µm
σ∗

z (3D) 4.6 µm (-15%) 8.12 µm (-10%) 3.52 µm
σz(∆Fxz) (3D) 10.14 µm 11.25 µm 1.11 µm
σz(∆Fyz) (3D) 10.23 µm 13.48 µm 3.25 µm
∆z 173.22 µm 201.87 µm 28.65 µm
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Nomenclature

Capital Roman letters

A m2 area
Ap - amplitude of pressure disturbance
Ãp - amplitude of pressure disturbance (conjugated)
Aϕ - amplitude of azimuthal velocity disturbance
Ãϕ - amplitude of azimuthal velocity disturbance (conju-

gated)
Ar - amplitude of radial velocity disturbance
Ãr - amplitude of radial velocity disturbance (conjugated)
Ax - amplitude of axial velocity disturbance
Ãx - amplitude of axial velocity disturbance (conjugated)
CLS - lift coefficient for Saffman force
Dh m hydraulic diameter
DΦ - diffusion coefficient
F m focal plane in stigmatic system (position)
~FBuo kg m s−2 buoyancy force
FC - focusing number
~FD kg m s−2 drag force
~FG kg m s−2 gravitational force
~FI kg m s−2 inertial force
~Fp kg m s−2 pressure force
~FSaff kg m s−2 Saffman force
~FSG kg m s−2 shear gradient force
~FV M kg m s−2 virtual mass force
~Fwall kg m s−2 wall repulsive force
Fxz m focal plane in xz plane (position)
Fyz m focal plane in yz plane (position)
F ∗

xz m z-position where focus point of particle is focused in
Fxz (position)

F ∗
yz m z-position where focus point of particle is focused in

Fyz (position)
H m channel width / gap between concentric cylinders
I counts maximum light intensity of particle image
I px maximum light intensity of particle image (scaled)
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Nomenclature

Imax px maximum of median of light intensity of multiple
calibration particles (scaled)

Ithr counts intensity threshold
Ithr px intensity threshold (scaled)
J - local Richardson number
K - kinetic disturbance energy (non-dimensionalized)
Kc - coefficient for collision frequency effect
Kµeff - coefficient for varying viscosity effect
M - magnification of microscope
Mastig - magnification of astigmatic optical system
Mstig - magnification of stigmatic optical system
N - collocation points for discretization
Nvalid - number of valid detected particles
Nvalid(2D) - number of valid detected particles (utilizing 2D re-

construction)
Nvalid(3D) - number of valid detected particles (utilizing 3D re-

construction)
PDrx - velocity pressure gradient in the transport equation

of the shear stress τrx (non-dimensionalized)
PDrϕ - velocity pressure gradient in the transport equation

of the shear stress τrϕ (non-dimensionalized)
PK(Vϕ) - production of kinetic disturbance energy due to az-

imuthal shear (non-dimensionalized)
PK(Vx) - production of kinetic disturbance energy due to axial

shear (non-dimensionalized)
Prϕ(Vϕ) - production of shear stress τrϕ due to azimuthal shear

(non-dimensionalized)
Prx(Vx) - production of shear stress τrx due to axial shear

(non-dimensionalized)
Pshear - shear Peclet number
Ri m radius of the inner cylinder
Ro m radius of the outer cylinder
Re - Reynolds number
Reb - bulk Reynolds number (ρUbDh/µfluid)
Rec - critical Reynolds number
Remax - Reynolds number based on maximum velocity of bulk

flow (ρUmaxDh/µfluid)
Rep - (shear) particle Reynolds number (ργ̇d2

p/µfluid)
Rep - (slip) particle Reynolds number (ρ|uf − up|dp/µfluid)
Si - swirl parameter (rotating inner cylinder)
Si,T 1 - swirl parameter at transition from region I to II
Si,T 2 - swirl parameter at transition from region II to III
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Nomenclature

So - swirl parameter (rotating outer cylinder)
So,T 1 - swirl parameter at transition from region IO to IIO
So,T 2 - swirl parameter at transition from region IIO to IIIO
Ub m s−1 bulk velocity (volume flow rate over crossectional

area)
Uϕ m s−1 azimuthal reference velocity
Uref m s−1 resulting reference velocity
Uwall m s−1 velocity of the wall (linear shear flow)
Ux m s−1 axial reference velocity
V m3 volume
V̇ m3 s−1 volumetric flow rate
Vf m3 volume of fluid phase
Vϕ - base flow velocity in azimuthal direction (normalized)
V ∗

ϕ m s−1 base flow velocity in azimuthal direction (with di-
mension)

Vp m3 volume occupied by a particle
Vs m3 volume of solid phase
Vx - base flow velocity in axial direction (normalized)
V ∗

x m s−1 base flow velocity in axial direction (with dimension)
W m s−1 azimuthal velocity of Taylor Couette flow with inde-

pendently rotating cylinders
Zrϕ,1 - production of shear stress τrϕ due to curvature (non-

dimensionalized)
Zrϕ,2 - production/convection of shear stress τrϕ due to

curvature (non-dimensionalized)
Zrx - production of shear stress τrx due to curvature (non-

dimensionalized)
ZK - production of kinetic disturbance energy due to cur-

vature (centrifugal effects) (non-dimensionalized)
Lowercase Roman letters

a px diameter of particle image
a - aspect ratio
ac - autocorrelation coefficient
aD px Euclidean distance for outlier detection
ast px particle diameter in a stigmatic system
ax px horizontal axis length of particle image
ax px polynomial fitted to ax data of calibration particles
ay px vertical axis length of particle image
ay px polynomial fitted to ay data of calibration particles
c - wave speed (normalized)
ca - autocorrelation coefficient
cD - Euclidean distance factor
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Nomenclature

cI - intensity coefficient
cmed counts median of light intensity (of the whole image)
cmax counts maximum counts of camera
cSpr kg s−2 spring coefficient
cs px counts−1 intensity scale factor
cs - velocity of the disturbance wave front (normalized)
cx - velocity of the disturbance wave in axial direction

(normalized)
dp m particle diameter
f m focal length of cylindrical lens
fp m focal length of particle (ball lens)
fxz - focus function xz plane (Tenengrad variance)
fyz - focus function yz plane (Tenengrad variance)
g m s−2 gravitational acceleration (standard gravity)
h m half gap height
mf kg mass of fluid displaced by the particle
mp kg particle mass
n - azimuthal wavenumber
n min−1 rotation rate
n0 - refractive index of air
nc - critical azimuthal wavenumber
nj - normal vector
nL - refractive index of liquid
np - refractive index of particle
nRIM - refractive index of RIM liquid
nw - refractive index of water
p kg m−1 s−2 pressure
p′ - pressure disturbance (normalized)
r - coordinate in radial direction (normalized)
r1 - arbritary radial position (normalized)
r2 - arbritary radial position (normalized)
t - temporal coordinate (normalized)
~uf m s−1 (theoretical) fluid velocity at particle centroid
~up m s−1 particle velocity at the centroid
uϕ - velocity in azimuthal direction (normalized)
u′

ϕ - disturbance velocity in azimuthal direction (normal-
ized)

ur - velocity in radial direction (normalized)
u′

r - disturbance velocity in radial direction (normalized)
ux - velocity in axial direction (normalized)
u′

x - disturbance velocity in axial direction (normalized)
x - coordinate in axial direction (normalized)
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Nomenclature

y - coordinate in annular gap (−1 ≤ y ≤ 1)

Capital Greek letters

Γ - ratio of angular speed of outer and inner cylinder
(µ = Ω2/Ω1)

∆Fxz m distance from focal point to center of particle (mea-
sured in xz plane)

∆Fyz m distance from focal point to center of particle (mea-
sured in yz plane)

∆n - refractive index jump between liquid and particle
∆z m measurement volume depth
Φ - particle volume fraction/solid volume fraction
Ω rad s−1 angular velocity
Ωi rad s−1 angular velocity (inner cylinder)
Ωo rad s−1 angular velocity (outer cylinder)

Lowercase Greek letters

γ̇ s−1 shear rate
ε - curvature parameter ((1 − Ri/Ro)/(1 + Ri/Ro))
ε - threshold value
η - ratio of inner cylinder radius and outer cylinder ra-

dius (η = Ri/Ro)
λ - axial wavenumber
λ∗ - wavelength of particle band
λc - critical axial wavenumber
λL m wavelength of emitted light
µ - ratio of angular speed of outer and inner cylinder

(µ = Ω2/Ω1 = Ωo/Ωi)
µeff kg m−1 s−1 effective viscosity of a suspension
µfluid kg m−1 s−1 dynamic viscosity of the carrier liquid
ν m2 s−1 kinematic viscosity
ρ kg m−3 density of liquid
ρf kg m−3 density of liquid
σij kg m−1 s−2 stress tensor
σu m s−1 standard deviation of velocity in x direction (in-plane

direction)
σv m s−1 standard deviation of velocity in y direction (in-plane

direction)
σw m s−1 standard deviation of velocity in z direction (out-of-

plane direction)
σz m standard deviation of reconstructed depth position
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Nomenclature

σ∗
z m standard deviation of reconstructed depth position

of particle focal point
τij - shear stress obtained by spatial averaging over the

disturbance wavelengths (normalized)
ϕ - azimuthal coordinate
ω - complex frequency
ωc - critical complex frequency
ωi - imaginary part of complex frequency
~ωf s−1 vorticity of the flow
ωr - real part of complex frequency

Abbreviations

APF Annular Poiseuille Flow
AX1 Axial Banding type 1
AX2 Axial Banding type 2
AX3 Axial Banding type 3
AZ Azimuthal Banding
CCD Charge-Coupled Device
CLL Centrifugal Limit Line
CMOS Complementary metaloxidesemiconductor
DOC Depth of Correlation
FF Fingering Flow
FVS Front View Setup
GB Granular Bed
GDPT General Defocussing Particle Tracking
IRSPF Spiral Poiseuille Flow with Rotating Inner cylinder
KTE Kinetic energy Transport Equation
LVS Lateral View Setup
NA Numerical Aperture of objective
NP1-NP3 Net Pattern 1-3
ORSPF Spiral Poiseuille Flow with Rotating Outer cylinder
PIV Particle Image Velocimetry
PMMA Poly(methyl methacrylate) “Acrylic”
PS Polystyrene
PTV Particle Tracking Velocimetry
RUB Ruhr Universität Bochum
SNR Signal to Noise Ratio
SPF Spiral Poiseuille Flow
SQR Square Pattern
TC Taylor-Couette
TCR Taylor-Couette Reactor
TUDa Technische Universität Darmstadt
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Nomenclature

TSI Tollmien-Schlichting instability
UH Unstable Homogenous Region
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4.15 Effect of dp and refractive index jump on the calibration curves (ca=0.4095,
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5.3 Procedure of generating a calibration function (ca = 0.5547, cI = 0.5,
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