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Abstract
This work characterizes the half-integer stop band for various beam distributions
in hadron synchrotrons using simulation models with self-consistent space charge
and experimental data. Synchrotrons for hadron beams are an important tool in
fundamental research (particle and nuclear physics) and applied sciences (medical
technology, materials science, industry). However, they are subject to undesir-
able effects, which degrade the quality of the beam. In any hadron synchrotron,
the half-integer resonance is among the strongest effects that limit the maximum
achievable beam intensity. The heavy-ion superconducting synchrotron SIS100,
currently under construction at GSI, together with the already operating SIS18 syn-
chrotron at GSI, should provide intense beams for future FAIR experiments. Using
SIS100 as an example, this work develops a quantitative framework for charac-
terizing the half-integer stop band for realistic, Gaussian-like distributed bunched
beams in simulations. The developed framework is tested in a dedicated experi-
ment in SIS18. In any synchrotron, gradient errors in quadrupole magnets induce
the half-integer resonance. Due to the half-integer resonance, the beam intensity is
limited, which is often referred to as the space-charge limit. To minimize the half-
integer stop band for a bunched beam, and hence increase the maximum achievable
intensity, lattice corrections are applied. Including space charge in the optimization
procedure yields results equivalent to a conventional lattice correction. We validate
in long-term simulations, that conventional correction tools are sufficient for in-
creasing the gradient-error-induced space-charge limit of synchrotrons. This study
identifies the tune areas affected by the half-integer resonance for varying space-
charge strengths. The role of synchrotronmotion in providing continuous emittance
growth across the bunch is investigated. A key insight of this analysis is that, for
bunched beams, a relatively small gradient error can result in a large half-integer
stop-band width. The maximum achievable bunch intensity is thus reduced signif-
icantly. This contrasts with the findings in existing studies in literature based on
more simplified beam distributions, where the space-charge limit does not depend
on the strength of gradient errors. The reason for the discrepancy is identified in the
increasing stop-band width for Gaussian distributions when space charge becomes
stronger, which appears on time scales relevant for synchrotrons.
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Zusammenfassung
In dieser Arbeit wird die transversale quadrupolare Resonanz bei halbzahligen Ar-
beitspunkten für verschiedene Strahlverteilungen in Hadron-Synchrotrons anhand
von Simulationsmodellen mit selbstkonsistenter Raumladung und experimentellen
Daten charakterisiert. Synchrotrone spielen in der Forschung (Teilchenphysik, Kern-
physik) und den Anwendungen (Medizintechnik, Materialwissenschaft, Industrie)
eine wichtige Rolle. Bei ihrem Betrieb treten jedoch unerwünschte Effekte auf, wel-
che die Strahlqualität beeinträchtigen. Die quadrupolare Resonanz gehört zu den
stärksten (kollektiven) Effekten, welche die maximal erreichbare Strahlintensität
in Hadronensynchrotrons begrenzen. Das aus supraleitenden Magneten bestehen-
de Schwerionensynchrotron SIS100, das derzeit an der GSI entsteht, soll zusammen
mit dem bereits an der GSI in Betrieb befindlichen Synchrotron SIS18 intensive Io-
nenstrahlen für zukünftige FAIR Experimente bereitstellen. In dieser Arbeit wird
am Beispiel des SIS100 ein Modell zur quantitativen Charakterisierung des qua-
drupolaren Stoppbandes für realistische Ionenbunche entwickelt. Das entwickelte
Modell wurde in einem dedizierten Experiment im SIS18 getestet. Um das halb-
zahlige Stoppband für einen gebunchten Strahl zu minimieren und somit die maxi-
mal erreichbare Intensität zu erhöhen, werden Korrekturmagnete verwendet. Das
in dieser Arbeit entwickelte Optimierungsverfahren bezieht die Raumladung ein für
die Bestimmung der Stärken der Korrekturmagnete. Die Ergebnisse weichen nicht
wesentlich von denen konventioneller Tools ab. Aus dieser Erkenntnis folgt, dass
konventionelle Korrekturverfahren ausreichen, um die durch Gradientenfehler ver-
ursachte Raumladungsgrenze in Synchrotronen zu erhöhen. In dieser Arbeit werden
Tunebereiche für Raumladungsfelder verschiedener Stärken identifiziert, die von
der durch Gradientenfehler angeregten quadrupolare Resonanz betroffen sind. Die
Rolle der Synchrotronbewegung bei dem beobachteten kontinuierlichen Anstieg der
Emittanz über den Bunch hinweg wird untersucht. Eine wichtige Erkenntnis dieser
Analyse ist, dass ein relativ kleiner Gradientenfehler zu einer großen Breite des qua-
drupolaren Stoppbandes führen kann. Die maximal erreichbare Strahlintensität, oft
als Raumladungsgrenze bezeichnet, wird dadurch erheblich reduziert. Dies steht im
Gegensatz zu den Ergebnissen vorheriger Studien in der Literatur, in denen verein-
fachte Strahlverteilungen verwendet wurden. Als Grund für diese Diskrepanz wurde
die für stärker werdende Raumladung zunehmende Stoppbandbreite identifiziert,
wie sie auf für Synchrotrone relevanten Zeitskalen auftritt.
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1 Introduction
Charged particles guided by electromagnetic fields play a significant role in various
phenomena in nature. In science, charged particles are utilized in many experi-
ments aimed at improving our understanding of the universe. Some experiments
require specific conditions, like the energy or species of charged particles. For exam-
ple, there is a demand for high energies to explore a subatomic structure, since the
resolution increases with the energy. For such applications, a particle accelerator is
a principal option. Particularly, a synchrotron [1–3], which is a type of circular ac-
celerator, serves as a reliable source of charged particles with the desired energy and
the number of particles (intensity). A number discoveries awarded by Nobel Prize,
for example, Refs. [4–8], would not have been possible without synchrotrons. Cur-
rently, the most well-known synchrotron is the Large Hadron Collider (LHC) [9]
at the European Organization for Nuclear Research (CERN) for the discovery of
the Higgs boson [10, 11]. However, synchrotrons are used not only for funda-
mental research, but also in industry applications [12] related to material science,
nuclear medicine, and catalysis. This work elaborates the cases of SIS18 [13, 14]
and SIS100 [15] synchrotrons at FAIR which are intended to investigate various
fundamental and applied research programs, for example, the nature of matter and
antimatter using ion collisions.

1.1 Synchrotrons

As illustrated in Fig. 1.1, a synchrotron consists of several components that serve
specific purposes. First, particles in a synchrotron (accumulated in beams) are
guided by the magnetic field of dipole magnets in a fixed closed-loop path which is
referred to as a closed orbit. The guide field B0 together with the synchrotron radius
R determines the energy of each particle. An example of a pair of dipole magnets is
shown in Fig. 1.2 (red-colored, located in the middle). Next, quadrupole magnets
(yellow magnets on the left and on the right side of the picture) confine particles in
the transverse plane (perpendicular to the direction of motion) due to the so-called
“strong-focusing”.
The concept of strong focusing was patented by Christofilos [17]. Then, it was

analytically described by Blewett [18], and independently by Courant, Livingston,
and Snyder [19]. The first synchrotron with strong focusing, Proton Synchrotron
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dipole
quadrupole
RF cavity

Figure 1.1: A sketch of a synchrotron. Dipole magnets (red) guide particles,
quadrupole magnets (yellow) maintain the transverse focusing, RF cav-
ities (blue) accelerate particles.

Figure 1.2:Magnets of the SIS18 synchrotron, dipole (red color, middle) and
quadrupole (yellow color) magnets. The picture is adapted from [16].
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(PS) [20, 21], was built in 1959 at CERN. A year later, the Alternating Gradient
Synchrotron (AGS) [22] was built and then commissioned at Brookhaven National
Laboratory (BNL).
The main principle of strong focusing resembles a problem in linear optics. The

quadrupole magnets are powered in such a way that each of them acts like either a
focusing (F) or a defocusing (D) lens. Figure 1.3 illustrates this concept on a pair
of quadrupole magnets grouped in a so-called FODO cell or a quadrupole doublet.
First, a diverging beam passes through a focusing magnet (blue color) which per-
forms a kick proportionally to particle offset. Therefore, the trajectories in the beam
converge. Next, a defocusingmagnet (red color) pushes the particles in the opposite
direction. If this cell is repeated, particles oscillate around the equilibrium (x = 0
in this example), and as a result, the beam is confined throughout the passage.
In synchrotrons, the transverse focusing is mainly performed using quadrupole

magnets in different arrangements, for example, doublets or triplets located be-
tween bending dipole magnets. The number of oscillations per one turn is the
betatron tune Q x ,y , horizontal and vertical correspondingly.
Radio Frequency (RF) cavities are used in a synchrotron to accelerate the parti-

cles. Additionally, RF cavities modify the longitudinal beam profile by performing

0.0 0.2 0.4 0.6 0.8 1.0
s [m]

1.5

1.0

0.5

0.0

0.5

1.0

1.5

x 
[m

m
]

F D

Figure 1.3: Passage of particles through a FODO cell, which consists of a focusing
quadrupole (blue, F) and a defocusing quadrupole (red, D).

1.1 Synchrotrons 3



bunching (bunched beams) and cause longitudinal oscillations of particles. Contin-
uous beams (without RF) are referred to as coasting.
Since charged particles travel in a synchrotron by tortuous cyclic trajectories,

they emit radiation. The amount of this radiation rapidly scales with γr , the ratio
of the total particle energy to the rest mass (in electronvolts). Therefore, this ef-
fect is extremely relevant for the design of machines operating with light particles
like electrons but negligible for the majority of hadron machines. As a result, all
synchrotrons are classified as either lepton or hadron machines.
A vital component for experiments is that the required amount of statistical data

(for example, a number of collisions) can be collected during a reasonable time
period. In general, this refers to the requirements for beam intensity and beam
emittances1. Although synchrotrons are reliable machines, there are undesired
effects causing beam quality degradation. Such effects incorporate, for exam-
ple, betatron resonances [23–25] (particles are forbidden to oscillate on certain
frequencies), beam instabilities [26–28] (exponential growth of beam moments),
space charge [29, 30] (particles with the same charge repel), and vacuum deteri-
oration [31] (scattering on the residual gas). As a result, the lifetime of the beam
can rapidly decrease. In order to improve the performance of a synchrotron, the ef-
fects listed above should be studied and avoided. For example, betatron resonances
and space-charge effects are expected to be significant in the SIS100 hadron syn-
chrotron [32] at the Facility for Antiproton and Ion Research (FAIR) [33], which is
currently under construction at the GSI Helmholtz Center for Heavy Ion Research.

1.2 FAIR and GSI

GSI (Darmstadt, Germany) is an accelerator facility for fundamental and applied
research purposes. Fundamental research at GSI includes nuclear and particle
physics, such as the synthesis of new heavy elements of the periodic system and
the elements with extreme numbers of protons and neutrons. Furthermore, nu-
clear research incorporates studies of the so-called quark-gluon plasma. All de-
scribed above help scientists to explore insights on our universe, star explosions,
and the origin of chemical elements in stars. Applied research is represented at
GSI by atomic physics, plasma physics, biophysics, medical science, and materials
research. Such activities include the study of the atomic shell of heavy ions, the cre-
ation of hot and dense plasma, tumor therapy, dosimetry, and irradiation of cells
and materials.
The FAIR complex is designed to investigate the structure of matter and antimat-

ter, as well as the evolution of the universe. The four pillars of the FAIR scientific

1 Emittance is the volume in phase space occupied by a particle beam.
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Figure 1.4: Schematic layout of the existing GSI (blue) and the planned FAIR com-
plex (red) [34].

program are Nuclear Structure Astrophysics and Reactions (NUSTAR) [35], Com-
pressed Baryonic Matter (CBM) [36, 37], Anti-Proton ANnihilation at DArmstadt
(PANDA) [38], and Atomic, Plasma Physics and Application (APPA) [39, 40].

Figure 1.4 shows the design of how the particles are produced, accelerated, and
transported toward the experimental area. First, the UNIversal Linear Accelera-
tor [41, 42] (UNILAC, the leftmost blue straight line) creates an ion beam with the
required charge-to-mass ratio (the ion type spans from protons to uranium). Next,
the beam is transferred to SIS18 [13, 14] (the blue ring on top) where it is accu-
mulated and accelerated. SIS18 is a synchrotron with a circumference of 216.72 m
and the maximum field of dipole magnets 1.8 T. To reach the required energies at
FAIR experiments [43], the ion beam is accelerated further in SIS100 [15] which is
the major booster ring of the FAIR complex with a circumference of 1083.6 m.

1.2 FAIR and GSI 5



1.3 Motivation and goals for this work

As mentioned above, quadrupole magnets cause transverse oscillations of particles.
Imperfections in the magnets of a synchrotron drive betatron resonances. Particle
oscillations at certain resonant frequencies, therefore, have higher amplitudes over
time. The vicinity of resonant frequencies should be identified and avoided during
the operation of a synchrotron because betatron resonances result in beam quality
degradation, such as an emittance growth of a beam and consequent particle losses.
The vicinity of frequencies affected by the resonance is called the stop-band width.
With increasing resonance order, betatron resonances become weaker.

At the intensities required by the FAIR operation, the space-charge force plays a
significant role in beam dynamics in the SIS100 synchrotron [32]. Due to space
charge, particles can cross different resonances and consequently contribute to
emittance growth. However, effects such as space charge which appear from the
beam itself are not the same as external forces, and they should be treated with
a separate terminology to provide accurate predictions. For example, the dipolar
resonance (Q in an integer number n) corresponds to the lowest possible order. If
it appears, the beam offset (the center of charge) becomes unstable. However, the
motion of the center of charge is not affected by direct space charge. The quadrupo-
lar resonance, when 2Q = n (the half-integer resonance), on the contrary, depends
on space charge because internal forces increase with decreasing transverse beam
sizes and vice versa.

The lowest order (hence, the strongest) resonance affected by space charge is the
half-integer (quadrupolar) resonance. Field errors in quadrupole magnets (gradient
errors) are the major source of the half-integer resonance. The first analytical stud-
ies on the half-integer resonancewere carried out by Courant and Snyder [44]. They
performed the treatment based on single particle dynamics in the perturbed lattice
by a gradient error. Though the stop-band width is defined using this approach, it
is done excluding collective effects.

At the early stage of the design of high-intensity synchrotrons, space charge was
realized to be a notable issue, addressing quadrupolar resonances [45]. It was
demonstrated analytically in Refs. [46, 47] that space-charge effects cannot put the
beam onto the integer resonance, whereas the beam width oscillates on a frequency
shifted by space charge. Then, the phenomenon of the space-charge limit due to
the half-integer resonance for round isotropic coasting beams [48] was investigated.
Next, Sacherer [49, 50] derived envelope equations to study the half-integer res-
onance for any particle distribution of a coasting beam with ellipsoidal symmetry.
The analytical works mentioned above are summarized in the overview Ref. [51].

6 1 Introduction



Also, space-charge effects and their influence on betatron resonances were studied
in experiments [52–56].
More recent works like Ref. [57–60] use computer simulations together with an-

alytical models. For example, the latter one uses the transverse Gaussian electric
field of a coasting beam for stop-band computations of the octupolar resonance.
Also, several systematic investigations like Refs. [61, 62] of a beam core model
have been undertaken. The latter one has specifically targeted the exact lattice
structure and the effects caused by the energy spread of particles in a beam. The
findings of Ref. [63] have confirmed in 2D particle-in-cell (PIC) simulations that the
half-integer resonance occurs on the coherently shifted tune, and Ref. [64] elabo-
rates on the envelope dynamics under space charge conditions and the stop-band
correction.
A large and growing body of literature has investigated the case of space charge in

3D distributions since all synchrotrons operate with bunched beams. For example,
bunched beams have been used [60] in simulations with the frozen space-charge
model (particles interact only with the average electric field of a beam, not be-
tween each other), and also in 3D PIC tracking with slow synchrotron motion [63]
but only for structure resonances (no gradient error included). Recently, it has
been shown [65] how to numerically compute stop bands of the envelope insta-
bilities for bunched beams. The interplay between the incoherent and coherent
effects in bunched beams has been described [66] albeit with a focus on structure
resonances (no gradient error included). We shall indicate here that a comprehen-
sive study of the quadrupole resonance with nonlinear space charge for realistic,
i.e. 3D Gaussian-like distributed bunched beams, is lacking. The general case is
challenging to tackle with analytical models, and this work addresses this subject
in self-consistent macro particle tracking simulations.
This study builds on SIS18 and SIS100 synchrotrons as relevant example cases

of machines with gradient errors and γr ≳ 1 where space charge plays a significant
role. Moreover, SIS100 features a gradient error by its design. The half-integer
resonance is among the most important factors determining machine settings for
high-intensity operation.

1.4 Overview of the dissertation

This dissertation is organized as follows. Chapter 2 introduces basic concepts of
beam dynamics with a focus on the half-integer resonance at zero intensity. In
Chapter 3, the most relevant analytical expressions for the quadrupolar resonance
in combination with space charge are reviewed. The approach of the half-integer
stop-band characterization in particle tracking simulations is shown in Chapter 4.

1.4 Overview of the dissertation 7



The main focus of the study is on simulations for bunched beams for varying space
charge and gradient-error strength. Coasting beam simulations are used to relate
to previous results in the literature. Next, Sec. 4.5 confirms that the findings of
Sec. 4.4 hold for time scales as relevant for the synchrotron operation. Addition-
ally, the influence of synchrotron tune on the total emittance growth inside the
stop band is discussed. Then, Sec. 4.6 extrapolates the previous findings to predict
the space-charge limit in presence of gradient errors. Next, Chapter. 5 introduces
the lattice correction to minimize the stop-band width without space charge and
proceeds to validate with 3D PIC space-charge simulations that the correction also
applies to bunched beams with space charge over long time scales. Finally, Chap-
ter 6 demonstrates the experimental results obtained in SIS18. The last chapter
summarizes the major findings of this thesis.

8 1 Introduction



2 Single-particle dynamics in a
synchrotron with gradient errors

This chapter describes the basic concepts and terminology of beam dynamics which
apply to a synchrotron operating at energy E with corresponding relativistic factors
βr and γr as a prerequisite for the following chapters. A detailed discussion of
particle dynamics in accelerators can be found in textbooks like Refs. [25, 67–70].
In general, the motion of a particle with the charge q = Z e and the velocity v⃗ is

governed by the Lorentz force

F⃗ =
dp⃗
dt
= q
�
E⃗ + v⃗ × B⃗
�

, (2.1)

where e is the elementary charge. Then, in the constant magnetic field B0, charged
particles with the momentum p rotate with the radius R

Z e B0 R= p (2.2)

where p⃗ ⊥ B⃗0. Therefore the momentum, or likewise the energy, per charge is
equivalent to the magnetic rigidity B0 R.

2.1 Transverse motion

This section describes the transverse trajectories of particles in a synchrotron under
the influence of electromagnetic fields.

2.1.1 Equations of motion

Let us consider that the reference (design) orbit corresponding to the ideal particle
trajectory in a synchrotron is a closed planar curve. A simplified example case of
a circular reference orbit is shown in Fig. 2.1, whereas in the real machine it is
made up of arcs and straight sections. Dipole sector magnets (placed in arcs) create
a guide magnetic field B0 which causes the bending of particle trajectories. The
coordinate system (x , y, z) follows the reference particle, where y and z are parallel

9



to the direction of the guide field and the direction of travel respectively. Therefore,
the guide field is (Bx , By , Bz) = (0, B0, 0), and the spatial position of a test particle
is represented by (x , y, z) horizontal, vertical, and longitudinal displacements in
this coordinate system. The right side of the relativistic equation of motion in the
horizontal plane,

γr m
d2 x
dt2

= γr m
v 2

z

R+ x
− Z e By vz , (2.3)

corresponds to the centrifugal and Lorentz forces. It is convenient to use equations
of trajectories instead of equations of motion. The path s along the reference or-
bit thus replaces the independent variable time t with the dependence s = βr c t,
where βr is a ratio of the particle velocity to the speed of light c. As a result, the
vector (dx/ds, dy/ds, ∆p/p) is used instead of the corresponding velocity vector
d
dt (x , y, z) to define the “mechanical state” of the system. Also, throughout the
whole work the notations x ′ = dx/ds and y ′ = dy/ds are used, ∆p/p corresponds
to the deviation of momentum. The transverse phase space is (x , x ′, y, y ′), the lon-
gitudinal phase space is (z, ∆p/p). Taking x/R� 1 into account we can develop
Eq. (2.3),

x ′′ = 1
R
− x

R2
− Z e

p
(By +

∂ By

∂ x
x) , (2.4)

to the first order. The last term arises due to the gradient of the magnetic field
which can be introduced by quadrupole magnets. In synchrotrons, quadrupoles
are located and powered in a specific way to perform so-called “strong focusing”
or “alternating-gradient” [19]. As a result, the magnetic focusing forces confine
the particles to the vicinity of their reference orbit which becomes the equilibrium
orbit. Using the conditions ∇× B⃗ = 0 (for quadrupole magnets) and Eq. (2.2), the
equations of trajectories become¨

x ′′ + kx(s) x = 0

y ′′ + ky(s) y = 0 ,
(2.5)

corresponding to Hill’s equations [44] in both horizontal and vertical planes, where
the focusing functions are ¨

kx(s) =
1

R2 +
Z e
p
∂ By
∂ x

ky(s) = − Z e
p
∂ By
∂ x .

(2.6)
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Figure 2.1: Coordinate system (x , y, z) for the horizontal, vertical, and longitudi-
nal planes, respectively. The trajectory of a test particle (red) oscillates
around the equilibrium orbit (black circle).

Note, that both focusing functions satisfy the condition kx , y(s) = kx , y(s + C),
namely, they are periodic over the circumference C . Equation (2.5) results in
pseudo-harmonic oscillations,¨

x(s) =
p

2 Jx βx(s) cos(2πµx(s) +ϕx ,0)
y(s) =
Æ

2 Jy βy(s) cos(2πµy(s) +ϕy,0) ,
(2.7)

known as betatron motion, where βx ,y(s) is the beta-function, µx ,y(s) is the beta-
tron phase advance. Arbitrary constants Jx ,y and ϕ0 can be defined by the initial
coordinates of a particle in the horizontal and vertical phase planes. In general,
beta-functions and phase advances are different in horizontal and vertical planes.
The red solid line in Fig. 2.1 represents a trajectory corresponding to the betatron

oscillations around the equilibrium orbit. The number of such oscillations per one
turn is the betatron bare tune Q. This value together with the beta-function and the
phase advance defines the design optics of a synchrotron. The pair of values (Q x ,
Q y) is also referred to as the working point of a synchrotron.

2.1 Transverse motion 11
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offset trajectory
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R

Figure 2.2: Equilibrium (blue) and offset (red) particle trajectories.

2.1.2 Off-momentum particles and dispersion

Let us consider an off-momentum particle with ∆p/p.
As shown in Fig. 2.2, the trajectory of this particle deviates from the equilibrium

one by the value xp = D(s) ∆p
p , where D(s) is the dispersion function which satisfies

the condition
d2D(s)

ds2
+ kx(s)D(s) =

1
R

. (2.8)

In the majority of synchrotrons, the guide field B0 is strictly vertical, the equilibrium
orbit stays constant in the (y, s) plane. As a result, the dispersion can deviate from
zero only inside bending magnets in the horizontal plane. The total path length of
the off-momentum particle

∆C
C
=
∆p/p

C

∮
D(s)

R
ds = αc∆p/p (2.9)

differs from the circumference C of the equilibrium trajectory, where αc is called
the momentum compaction factor. Next, the slippage factor η

∆ω

ω
= −
�
αc − 1

γ2
r

�
∆p/p = −η∆p/p (2.10)
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determines the shift of an angular revolution frequency ω. Additionally to the dis-
persion, the off-momentum particle has the deviation of bare tunes,

∆Q
Q
= ξ∆p/p , (2.11)

where ξ is the normalized chromaticity (see e.g. Ref. [67]) defined by

ξ=
1

4πQ

∮
β(s) k(s) ds , (2.12)

it is different in horizontal and vertical planes.

2.1.3 One-turn matrix and stability

Let us consider only the vertical plane here for simplicity. The functions α(s), β(s),
γ(s) are the Twiss parameters defines as

α= − 1
2

dβ
ds

β = w2

γ= 1+α2

β .

(2.13)

Using the normal solution of Eq. (2.5), f (s) = w(s) ei 2πµ(s), we can obtain the non-
linear equation,

w(s)′′ + k(s)w(s)− 1
w(s)3

= 0 , (2.14)

known as the envelope equation for a single particle.
The meaning of the Twiss parameters can be explained using the phase space of

the betatron oscillation in Fig. 2.3.
The particle trajectory in vertical phase space at an arbitrary location in the syn-

chrotron corresponds to the ellipse (shown in black) with area π2 J

γ y2 + 2α y y ′ + β y ′2 = 2 J , (2.15)

which is defined by the Courant-Snyder quadratic form. For a single particle, the
quantity J is a canonical coordinate “action” which is at the same time the Courant-
Snyder invariant. In the case of a beam distribution, the RMS value of 2 J over the
distribution corresponds to the RMS emittance ε. This quantity corresponds to the
area in the phase space occupied by the beam.

2.1 Transverse motion 13
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Figure 2.3: Phase-space trajectory of the betatron oscillation.

The coordinates of a particle in the vertical phase space after one turn can be
obtained using �

y
y ′
�
= M ·
�

y
y ′
�

0
, (2.16)

where M is the one-turn matrix. It is parameterized via Twiss functions as

M = I cos 2πµ+ S sin2πµ , (2.17)

where I is the identity matrix, and the zero-trace matrix S is defined by

S =
�
α β
−γ −α
�

. (2.18)

Therefore, the one-turn matrix is parameterized as

M =
�

cos2πµ+α sin2πµ β sin2πµ
−γ sin2πµ cos2πµ−α sin2πµ

�
. (2.19)

The characteristic equation

det (M −λ I) = 0 (2.20)
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serves to find the eigenvalues λ,

λ1,2 =
1
2

Tr [M]± i

√√√
1−
�

1
2

Tr [M]
�2

, (2.21)

where i is the imaginary unit, Tr [M] is the trace of the matrix M . Consequently,

λ1,2 = cos2πµ± i sin2πµ (2.22)

sets the stability condition |λ|= 1 on elements of the matrix M , namely,

− 2≤ Tr [M]≤ 2 . (2.23)

If λ > 1, the system becomes unstable. To compute lattice functions and param-
eters numerically, the one-turn matrix can be obtained via

M = T (s0|s1) · T (s1|s2) · ... · T (sN |s0) (2.24)

multiplication of transport matrices of each of N elements in the lattice. For exam-
ple, a simple drift from s0 to s1 is

T (s0|s1) =
�

1 s1 − s0
0 1

�
, (2.25)

whereas a quadrupole corresponds to

T (s1|s2) =
�

1 (s2 − s1)/2
0 1

�
·
�

1 0
k (s2 − s1) 1

�
·
�

1 (s2 − s1)/2
0 1

�
, (2.26)

where k is the gradient of the magnetic field in the quadrupole magnet.

2.2 Longitudinal motion

So far this work has focused on the dynamics in the transverse plane. The following
section discusses the longitudinal motion.
A single radiofrequency (RF) cavity creates the electric voltage

VRF(t) = V sin(ϕ +ϕs) (2.27)

2.2 Longitudinal motion 15
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Figure 2.4: RF voltage applied on particles for negative (left) and positive (right)
values of the slip factor. The blue dot is the synchronous particle,
whereas red squares and orange triangles correspond to particles which
are ahead or lagging behind the synchronous one.

for a particle at a phase ϕ where V is the amplitude of the RF voltage, and ϕs is
a phase factor. Therefore, a synchronous particle (ϕ = ϕs) gains

1 or loses energy
q V sin(ϕs). Additionally, RF cavities provide focusing in the longitudinal plane
which is shown in Fig. 2.4.

The basic idea of the longitudinal focusing is that the particles, which are ahead
of the synchronous one (red squares), gain less energy each turn, whereas the par-
ticles, which are lagging behind (orange triangles), increase their energy faster. If
η < 0 (on the left), red squares arrive to the RF cavity earlier each turn, thus, they
receive less RF voltage. At the same point, orange triangles arrive later and gain
more energy consequently. On the other hand, if η > 0 (on the right), particles with
higher velocities arrive to the RF cavity later each turn, when retarded particles can
overtake the synchronous one.

1 Ramping (energy boost) is performed synchronously with the increase of the guide field B0.
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The RF frequency ωRF is equal to the revolution frequency ω0 =
βr c
2πR times the

(integer) harmonic number h. The longitudinal offset z (introduced in Fig. 2.1)
relates to the RF phase ϕ, z = −Rϕ/h. With the external electric potential from
the RF, the equations of motion (see e.g. Ref. [67]) are¨ dϕ

dt = hω0η
∆p
p

d(∆p/p)
dt = 1

2π
ω0 q V
β2

r E
(sinϕ − sinϕs)

(2.28)

where q = Z e is the ion charge, E is the beam energy. Longitudinal motion is
connected with transverse via the slip factor η. Particles with a relatively small z or
energy offset then have oscillatory trajectories,

z(t) = z0 cos(ω0 Qs t +ϕ0) (2.29)

where z0 and ϕ0 are the initial conditions. The synchrotron tune Qs,

Qs =

√√√−ηh Z e V cosϕs

2πβ2
r E

(2.30)

is usually much smaller than the betatron tune Qs � Q. A single particle in a syn-
chrotron oscillates in both transverse and longitudinal planes, however longitudinal
synchrotron oscillations are slower than transverse betatron oscillations.
Equations (2.28) correspond to a Hamiltonian [67],

H =
1
2

hηω0

�
∆p
p

�2
+
ω0 q V
2πβ2

r E
[cosϕ − cosϕs + (ϕ −ϕs) sinϕs] . (2.31)

The nonlinear landscape of H on longitudinal phase space is used to separate closed
trajectories from unbound ones. As an example, Fig. 2.5 depicts particles (blue dots)
in longitudinal phase space of SIS100.
Colors correspond to the levels of Hamiltonian, the black closed curve represents

the separatrix (H = 0). The area inside this closed curve is the RF bucket. If
particles leave the RF bucket, they eventually drift towards the vacuum chamber. As
a result, the RF creates the structure with varying charge density along z of beams
in synchrotrons. Such beams are known as bunched beams. The number of RF
buckets h (the RF harmonic number) determines the maximum number of bunches
in the beam. For some applications, synchrotrons operate without RF. In this case,
the charge density is uniform along the longitudinal offset for −C/2 ≤ z ≤ C/2.
Beams distributed longitudinally in this way are often referred to as “coasting” or
“continuous” beams.
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Figure 2.5: The longitudinal phase space of SIS100: levels of the Hamiltonian
(color), separatrix (solid black line), and particles in the bunched beam
(blue dots).

2.3 Gradient errors and the half-integer resonance

If the betatron (bare) tune Q is an integer number n divided by two, the phase
advance per one turn 2πµ corresponds to πn. Thus, a single particle reaches the
same point in phase space after one revolution (if n is even) or two turns (if n is
odd) in an ideal machine. Figure 2.6 illustrates the trajectory of such a particle in
the vertical phase space at s = 0 location in the synchrotron for n = 1 example. A
single additional quadrupole magnet (also placed at s = 0) acts as an imperfection.
The initial coordinates (y0, y ′0) of the particle are represented by the black dot.

The particle then rotates clockwise, the trajectory is represented by black solid and
dashed lines for odd and even revolutions respectively. The displacement y changes
sign in after each turn because 2πµ = π. Therefore, the error kick by the additional
quadrupole (which is proportional to the displacement y , shown with red arrows),
accumulates in time. Eventually, the increasing amplitude of betatron oscillations
exceeds the aperture of the vacuum chamber. After that, the particle is considered
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Figure 2.6: Particle trajectory resulting from an additional quadrupole kick ∆y ′ =
−y/ f on the half-integer resonance, f is the focal length of the addi-
tional (error) quadrupole (red arrows).

“lost”. In the case of n = 2, the situation is similar. The only difference is that the
particle receives the same kick each turn. As a result, for any integer number n, the
distribution of particles cannot be conserved in the synchrotron if Q = n/2.

Let us now consider the case of multitudinous error kicks distributed in the ma-
chine. The function∆k(s) describes a deviation from the betatron focusing. Though
this deviation can be caused by the incorrect values of the integral focusing strength
in quadrupoles (gradient errors) and by the displacement of sextupoles, octupoles,
etc (feed-down effect), this work considers only the impact of gradient errors. In
this case, the single-particle equation,

w′′(s) + k(s)w− 1
w(s)3

= −∆k(s)w . (2.32)

We consider here small-amplitude deviation of the function w, namely, w = w0 +
∆w, where w0 satisfies Eq. (2.14). The perturbation function ∆k(s)w is periodic
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of the path length s and can be expanded in a Fourier series. Using the normalized
coordinate ϕ =

∫
ds

Qβ , this equation becomes

d2(∆w/w)
dϕ2

+ 4Q2 (∆w/w) = 2Q
∞∑
p=0

Fp exp (i pϕ) , (2.33)

where

Fn =
1

2π

∮
β(s)∆k(s) exp
�
−i n

2πµ(s)
Q

�
ds , (2.34)

The solution becomes

∆w/w= −Q
2

p=∞∑
p=0

Fp cos (pϕ)

Q2 − (p/2)2 (2.35)

The harmonic p = n has the strongest contribution, when Q ' n/2. Since
|∆w/w|max ' 1 at Q ' n/2 + Fn/2, the absolute value of the integral Fn is the
stop-band width at zero intensity for the half-integer Q ' n/2 resonance. As a
result, the strength of ∆k(s) can be quantified using stop-band integrals, as first
introduced by Courant and Snyder [44]. Another consequence of gradient errors in
a synchrotron is reflected in the shift of bare tunes∆Q = − 1

2 F0 (see e.g. Ref. [25]).
In this work, we use the SIS100 lattice as an example of a synchrotron featuring a
gradient error.
A survey of the quadrupole magnets in the SIS100 lattice is shown in Fig. 2.7.

In our study case, the initial gradient error is given by a doublet of radiation-hard
normal-conducting quadrupole magnets (red squares). These “warm” quadrupoles
replace two superconducting “cold” magnets (blue circles) and thus supply weaker
focusing strength. While the integral focusing strength is restored by an increased
length of the warmmagnets, this setup by design breaks the symmetry of the lattice.
The detailed lattice model is described in Ref. [32]. We control the gradient error
using two quadrupole corrector magnets (orange triangles) located close to the
warm quadrupole doublet.
Three basic scenarios of gradient-error strength are considered in our study: (1.)

weak gradient error with correctors powered near their optimal values (the opti-
mization is discussed in a greater detail in Sec. 5), (2.) intermediate gradient error
due to corrector current reduced to 75%, and (3) strong gradient error with cor-
rector current at 50%. Corresponding values of F37 (n = 37), the gradient-error
strength, are listed in Table 2.1. Details on how these values are obtained are given
in Sec. 4.2.
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Figure 2.7: Survey of SIS100 gradient-error setup.

Gradient errors modify the transverse dynamics of the beam. A useful ob-
servable are the RMS beam envelopes, defined as the statistical beam moments
σx =
p〈x2〉 − 〈x〉2 and σy =

p〈y2〉 − 〈y〉2 where the averaging 〈·〉 is performed
over a beam distribution. In the case of absent gradient errors and space charge,
they have their design values expressed as¨

σx(s) =
Ç
εxβx(s) + D(s)2σ2

(∆p/p)

σy(s) =
Æ
εyβy(s)

(2.36)

with the horizontal dispersion function D(s), where σ(∆p/p) is the RMS momentum
spread. Usually, the vertical dispersion in synchrotrons like SIS100 is negligible.
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Table 2.1: Reference values of F37 for three gradient-error scenarios

weak intermediate strong

F37 0.6 · 10−3 2.6 · 10−3 4.3 · 10−3

18.42 18.44 18.46 18.48 18.50 18.52 18.54 18.56 18.58
Qy (Qx = 18.75)

1.02

1.04

1.06

1.08

1.10

Y m
ax

Qy = 37
2

weak F37
intermediate F37
strong F37

Figure 2.8: Response of vertical envelopes to the bare vertical tune for different
gradient-error examples which are used in the work. Weak, intermedi-
ate, and strong gradient-error scenarios (see text for details) are shown
in black, red, and blue.

Therefore, we exclude it from our study. SIS100 is planned to operate above Q y =
18.5, hence, n = 37 in our case for the vertical half-integer resonance. Also, we
choose the vertical plane for probing the 37

2 half-integer resonance at Q x = 18.75
to isolate the gradient-error resonance from other influences, for example, possible
dispersion-related effects [71].
Figure 2.8 illustrates the impact of these three gradient-error scenarios with plots

of the response curves Ymax = Max[σy/
Æ
εyβy] in terms of matched envelopes vs

the vertical bare tune Q y . Max[·] indicates the maximum along the path length s.
The horizontal bare tune remains fixed at Q x = 18.75.
The orange dashed line shows the location of the half-integer bare tune. Lines

with black, red, and blue colors depict different response curves corresponding to
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the increasing value of the gradient-error strength. The vertical RMS envelope in-
creases around the resonance condition at the bare tune of Q y = 18.5, and the stop
band becomes wider for stronger gradient errors. This is the usual behavior which
is observed close to the quadrupolar resonance at negligible intensities.
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3 Space charge and envelope
dynamics

This chapter describes how the half-integer resonance (introduced above as a single-
particle effect) modifies when particles start interacting with each other with the
main focus on space charge. A detailed discussion on space-charge dynamics in
accelerators can be found in Refs. [30, 49]. The analytical concepts described below
apply to coasting beams and are used here to quantify space charge strength.

3.1 Why space charge is important

Let us consider a simplified case of a uniformly charged coasting beam with a cir-
cular cross-section shown in Fig. 3.1. The line charge density is λ, the radius is
r0.
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m
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Figure 3.1: Uniformly charged round beam.
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The electric potential of such a beam acts on a test (charged) particle like the
electric potential of a charged cylinder. Using Gauss law, the electric field Ẽ(r)
results in (

Ẽ(r) = λ
2ε0

r, r ≤ r0

Ẽ(r) = λ
2ε0

r2
0
r , r ≥ r0 .

(3.1)

The vacuum permittivity is indicated as ε0. The electric field is linear with respect
to an arbitrary offset r inside the cylinder, then it drops as∝ 1/r for any r > r0.
The blue line in Fig. 3.2 shows the projection of the electric field along the y-axis.
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Figure 3.2: Electric field of a uniformly charged round beam.

Any particle inside the beam (r ≤ r0) receives a kick proportional to its offset.
This kick pushes the particle away from the equilibrium orbit. As a result, it ef-
fectively acts like a defocusing force known as a direct space charge. This chapter
later demonstrates how space charge scales down with increasing γr . Therefore,
this effect is of relevance for hadron synchrotrons with relatively low energy.

3.2 RMS envelope equations

Let us consider a distribution of particles,

f = f (x , x ′, y, y ′) , (3.2)
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in a coasting beam with the negligible momentum spread. Particles obey the single-
particle equations ¨

u′ = pu/p
(pu/p)′ = F(x , s) ,

(3.3)

where u is either x or y , and F(x , s) includes both the external force and the self-
force (space charge in our case), namely, F = Fext + Fself. Averaging equations over
the distribution f (x , x ′, y, y ′) results in¨〈u〉′ = 〈pu/p〉

〈pu/p〉′ = 〈Fext〉 , (3.4)

using the function of the transverse focusing by quadrupole magnets k(s) from
Eq. (2.5) we obtain

〈u〉′′ + k(s) 〈u〉= 0 . (3.5)

Therefore, the center of charge depends only on the linear external force Fext =
k(s)u. Next, let us turn to the second moments of the distribution f (x , x ′, y, y ′),

〈u2〉′ = 2 〈uu′〉= 2 〈u pu
p 〉

〈u pu
p 〉′ = 〈u′ pu

p 〉+ 〈u
�

pu
p

�′〉= 〈� pu
p

�2〉 − k(s) 〈u2〉+ 〈u Fself〉
〈� pu

p

�2〉′ = 2 〈 pu
p

�
pu
p

�′〉= −2 k(s) 〈u pu
p 〉+ 2 〈 pu

p Fself〉 ,
(3.6)

where 〈 pu
p Fself〉 and 〈u Fself〉 depend only on the second moments if linear self-forces

are considered. Since the area in the phase space (u, u′),q
〈u2〉〈(u′)2〉 − 〈uu′〉2 = εu , (3.7)

is the RMS emittance which is constant. In the case of uniformly charged coasting
beams (known as Kapchinsky-Vladimirsky KV [45]) with the elliptical cross-section,
the uniform charge density is defined by λ = q N/(πσxσy), where the ellipse is:

x2

σ2
x

+
y2

σ2
y

= 1 . (3.8)

Then, the electric field in the laboratory frame inside the beam is [72]:

Ẽx =
λ

πε0

x
σx (σx +σy)

, Ẽy =
λ

πε0

y
σy (σx +σy)

, (3.9)
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and the magnetic field is:

Bx = −βr

c
Ey , Bx =

βr

c
Ex , (3.10)

where σu =
p〈u2〉 is the RMS beam size (assuming here 〈u〉= 0 and 〈u′〉= 0). Us-

ing the Lorentz force Eq. (2.1), the resulting Fself inside the beam in both horizontal
and vertical planes is: (

Fx =
qλ

πε0 β
2
r γ

2
r p

x
σx (σx +σy )

Fy =
qλ

πε0 β
2
r γ

2
r p

y
σy (σx +σy )

.
(3.11)

Finally, we can combine the second beam moments from Eq. (3.6) in the pair of
envelope equations,(

σ′′x + k̃x(s)σx − ε2
x/σ

3
x − Ksc

2 (σx+σy )
= 0

σ′′y + k̃y(s)σy − ε2
y/σ

3
y − Ksc

2 (σx+σy )
= 0

(3.12)

on σx and σy , σ
′′
u = d2σu/ds2 (both horizontal and vertical), where the external

focusing k̃(s) = k(s)+∆k(s) includes the term∆k(s) which is a gradient error. The
space-charge perveance defined as

Ksc =
Z e I

2πε0 m0 (γr βr c)3
(3.13)

appears in both equations in the last term which corresponds to space charge con-
tribution. The beam peak current is I = λβr c, q = Z e is the ion charge, and m0
is the rest mass of the ions. This pair of equations (originally derived for KV distri-
butions) describes the behavior of RMS transverse beam sizes for the wide range of
transverse distributions with ellipsoidal symmetry [49].

3.2.1 Analytical approach

In this work, while studying the case of SIS100, the horizontal bare tune remains
fixed at Q x = 18.75. The quadrupolar stop band at lower Q y < Q x = 18.75 bare
tunes is defined by the equation on the vertical envelope σy because the motion is
only loosely coupled between vertical and horizontal planes. Therefore, the system
can be reduced to one equation. To further simplify the system, we use the smooth
focusing approximation via constant k(s) and β(s) with the independent variable
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ϕ = 2πµ(s)/Q. Then, the gradient error is represented by 2Q
∑

Fp cos (pϕ). The
first term is:

d2σy

ds2
=

1
R2

d2σy

dϕ2
(3.14)

where R is the effective ring radius. Next, the space-charge term

Ksc

2 (σx +σy)
' Ksc

2 (〈σx〉+ 〈σy〉)
σy

〈σy〉
2Q y

2Q y
= 2Q y∆Q y

KVσy (3.15)

with averaging 〈·〉 over the path s, where the space-charge perveance is combined
in the KV tune shift ∆QKV,

∆Q y
KV = − Ksc R2

4 〈σy〉 (〈σx〉+ 〈σy〉)Q y
, (3.16)

originally derived in Ref. [45]. The KV tune shift grows linearly with increasing
peak current and vanishes at high energies because of relativistic Lorenz factors βr
and γr in the denominator of the space-charge perveance.
The equation on the vertical beam size is combined as:

σ′′y + (Q2
y − 2Q y∆Q y

KV)σy −
R2 ε2

y

σ3
y

= 2Q y

∑
p

Fp cos (pϕ) σy , (3.17)

where σ′′y = d2σy/dϕ
2. Within a tune distance of ' 1

4∆Q y
KV to Q y = Q x =

18.75 [51], the 1D approximation of envelope equations breaks. This is suffi-
ciently far away from the half-integer resonance, and we can neglect this effect
in our study. Equation (3.17) (while substituting σy = w

p
ε) at zero space charge

and the gradient-error strength (∆Q y
KV = 0 and Fp = 0) recovers Eq. (2.14).

Let us examine small-amplitude solutions of Eq. (3.17)
σyp
εβ
= 1+δ, where
p
εβ

correspond to the vertical beam size without space charge and gradient errors. For
δ� 1 and ∆Q y

KV/Q� 1, the equation becomes

δ′′ + 4 (Q2
y − C Q y∆Q y

KV)δ = 2Q y

∑
p

Fp cos (pϕ) , (3.18)

where transverse beam geometry determines the constant C [51]. In the SIS100
example the beam has 2b = a, hence C = 2/3. The resulting equation corresponds
to driven undamped oscillations,

δ(ϕ) =
Q y

2
·∑

p

Fp cos (pϕ)

Q2
y −Q y C∆QKV − ( p

2 )2
. (3.19)
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Table 3.1: Reference parameters of the nominal uranium bunch distribution for
SIS100 used in simulations

Parameter Value

Particle 238U28+

Ring circumference 1083.6 m

2D transverse distribution Gaussian (3.5σ truncated)

Peak current 1.45 A

Energy 200 MeV/u

∆Q y
KV 0.15

This work elaborates on the half-integer resonance. As shown above, Q ' n/2.
Therefore, the term where p = n has the strongest contribution. However, the
linear resonance condition is shifted from the exact half-integer value by space
charge [49]. Now, the envelope mode is in resonance at

2Q−∆Qenv = n , (3.20)

where the envelope tune shift amounts to

∆Qenv = 2 C ·∆QKV . (3.21)

For example, the resonance condition is met at Q y = 18.5 at zero intensity, whereas
for nominal parameters, the space charge shifted condition is met at a bare tune
of Q y = 18.6. Nominal parameters for SIS100 238U28+ heavy-ion beam at injection
energy are listed in Table 3.11. Often the maximum tune shift due to space charge
in a Gaussian distribution, ∆QGauss, is indicated as space charge strength: for fixed
RMS emittances, it amounts to twice the KV tune shift, ∆QGauss = 2 ·∆QKV.
Throughout this work, to study the trends at varying space charge strength, the

beam intensity is varied between zero and the nominal value corresponding to the
envelope tune shift between 0 ≤ ∆Qenv ≤ 0.2. To maintain the same space charge
strength for both coasting and bunched beams, the line charge density is scaled to
obtain the same peak current.

1 The values of ∆Q y
KV and ∆Qenv correspond to transverse geometric RMS emittances εx =

8.75 mm mrad, εy = 3.75 mmmrad, and an RMS momentum spread σ(∆p/p) = 0.45 · 10−3 with
an RMS bunch length of σz = 13.2m.
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Figure 3.3: Numerical computations of RMS envelope equations for the nominal
beam parameters of SIS100. Levels of the transverse beam size (nor-
malized by the unperturbed one) are indicated by different colors.

3.2.2 Numerical solution of 2D RMS envelope equations

Let us now turn to a numerical example of a quadrupolar stop band with space
charge. RMS envelope equations [49] determine the location of the quadrupolar
resonance depending on space charge for coasting beams distributed with trans-
verse ellipsoidal symmetry.
In the work, the matched solutions and envelope modes are numerically com-

puted via a envelope solver code, implemented by Prof. Dr. Oliver Boine-
Frankenheim in Python [73] and used in several peer-reviewed publications like
Refs. [74–76]. This code uses the matrix approach described in Eq. (2.24), where
transport matrices are computed via MAD-X. Then, space-charge nodes are inserted
after each element as

M = T (s0|s1) · Tsc(1) · T (s2|s1) · ... · T (sN |s0) · Tsc(N) , (3.22)
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Figure 3.4: Solution of RMS envelope equations for the strong gradient-error sce-
nario, the normalized vertical envelope is shown with color levels, the
dashed orange line represents the linear resonance condition (see text
for details).

with

Tsc(k) =
�

1 0
1/ fsc(k) 1

�
, (3.23)

where

1/ fsc(k) = − Ksc C

2σx ,y

�
σx +σy

� (sk − sk−1) (3.24)

Ksc is the space-charge perveance defined in Eq. (3.13). Therefore, this implemen-
tation accounts lattice imperfections in magnets (provided via MAD-X), and cor-
responding linear space-charge force. In the numerical computation, the iterative
scheme and the shooting method are employed to find the matched solution.
As mentioned above (see Sec. 2.3), SIS100 features a gradient error. Figure 3.3

shows the change of the normalized transverse beam size Max
�
σx+σy
σx ,0+σy,0

�
with

respect to the bare tunes of the machine, where σx ,0 =
Ç
εx βx + D2σ2

∆p/p and

σy,0 =
Æ
εy βy respectively, and Max[·] is taken over the path s. Thick yellow lines
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indicate the locations of the half-integer stop bands (horizontal and vertical). In-
side the vertical stop band the change of colors below Q y = 18.6 is associated with
nonlinearities of the envelope equations.
Next. Fig. 3.4 illustrates the numerical solution of these equations for KV beams

in terms of matched envelopes Ymax = Max[σy/
Æ
εyβy], Max[·] is taken over the

path s.
The dark blue area depicts the resonance-free areas, whereas the area with the

strong deviation of the vertical envelope is shown with yellow. Note that the blue
response curve in Fig. 2.8 is the projection of the color plot in Fig. 3.4 at zero space
charge. The lines of the same color above and below the linear resonance condition
(orange dashed line) are parallel. This indicates that the stop-band width of the
half-integer resonance for KV coasting beams is independent of space charge.
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4 Stop band characterization by
tracking

The following chapter describes in detail how the width of the half-integer reso-
nance changes with varying space charge and a gradient error. The core results of
the chapter are published in Ref. [77] by the author.
There is a particular interest regarding the extension of the resonance from the

linear resonance condition toward the stop-band edges for realistic Gaussian-like
distributed bunched beams. As shown in Sec. 3.2, the linear resonance condition in
Eq. (3.20) is valid for coasting KV beams. It is generalized in Ref. [49] for a wide
range of transverse beam distributions of coasting beams. The RMS 3D envelope
equations derived in Ref. [50] can be applied to the case of bunched beams. In this
work, the case of bunched beams is addressed using macro-particle simulations.
Similar simulations are utilized to study the half-integer stop band for KV beams in
Ref. [62] and waterbag beams in Ref. [30] for coasting beam conditions. Through-
out this work, while comparing coating and bunched beams we employ equal peak
current conditions to obtain the same maximum strength of space charge in both
cases.

4.1 Simulation model

A single-particle trajectory can be found by solving the Lorentz force equation with
any degree of accuracy. However, in the case of an intense bunch of particles in-
teracting with each other, finding exact solutions to the equations of motion is not
practical. Indeed, the number of particles in a beam is typically ≥ 1010. Moreover,
in the presence of space charge, the mathematical analysis becomes considerably
more complex. Consequently, tracking codes are crucial for studying beam dy-
namics and designing synchrotrons with collective effects. In this work, the GSI
computer cluster Virgo [78] is used to perform extensive simulations.

4.1.1 Particle tracking

The numerical simulation setup consists of macro-particle tracking through the ac-
celerator lattice. The beam is represented by macro particles. Each macro particle
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carries the charge of a set of particles. A set of macro particles is generated by sam-
pling a bivariate Gaussian distribution for the phase space of each transverse plane,
matched to linear optics. This means, that transverse beam sizes of the distribu-
tion correspond to σx =

Ç
εx βx + D2σ2

∆p/p and σy =
Æ
εy βy defined in Sec. 2.1.

The bunched beam is generated with a longitudinal bivariate Gaussian distribution,
whereas the coasting beam is initialized with zero momentum spread.

The library SixTrackLib [79] is utilized for symplectic single-particle tracking
through the lattice with gradient errors. Alternatively, this part of simulations
can be done, for example, in MAD-X [80], ELEGANT [81], and SAD [82]. Single-
particle tracking is implemented as follows. As discussed above, the coordinates of
a particle are represented by a 6D vector which is modified by a lattice element via


x
x ′
y
y ′
z

∆p/p


2

= T (s1|s2) ·


x
x ′
y
y ′
z

∆p/p


1

, (4.1)

where T (s1|s2) is a 6× 6 matrix.

Next, the direct space-charge interaction is modeled by lumped kicks which are
applied in short steps along the lattice as additional elements (space-charge nodes).
In a real machine, space-charge forces follow the beam throughout the passage.
Therefore, the number of space-charge nodes should be comparable to the num-
ber of elements in the lattice to mimic the actual smoothly-distributed force. Space
charge is computed using the slice-by-slice or 2.5D particle-in-cell (PIC) solver with
PyHEADTAIL tracking code [83]. In general, PIC algorithms resolve space charge
self-consistently [84], namely, the space-charge potential depends on the actual
distribution of particles (and the change of this distribution) throughout the simu-
lation. Thus, PIC codes are suitable for modeling the coherent motion of a beam
(dynamics of transverse beam sizes in particular). As an alternative to PyHEADTAIL,
such codes as PyORBIT [85] and TraceWin [86] can be used for PIC simulations in
synchrotrons. Since PIC solvers in PyHEADTAIL can work on GPU, and the combina-
tion of SixTrackLib with PyHEADTAIL tracking is implemented on Virgo to provide
the results for SIS100 beam loss studies [32], these codes are used throughout the
work.
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Figure 4.1: 2.5D PIC space-charge principle: Longitudinal slicing of the beam (white
dashed vertical lines on the left). For each longitudinal slice, the trans-
verse charge density is interpolated on the grid (black solid lines on the
right).

Statistical beam moments (see e.g. Ref. [67]) are used to analyze the results of
particle tracking, 

σ2
y = 〈y2〉 − 〈y〉2
σ2

y′ = 〈y ′2〉 − 〈y ′〉2
σy y ′ = 〈(y − 〈y〉) (y ′ − 〈y ′〉)〉
ε=
Ç
σ2

yσ
2
y′ −σ2

y y′

(4.2)

where 〈·〉 is the averaging over a distribution, the displacement y and the angle
y ′ = dy/ds are the coordinates of particles in the vertical phase space. The same
procedure in the horizontal plane can be done while replacing y with x .

4.1.2 Particle-in-Cell model

The following part of the chapter describes how the numerical implementation of
PIC codes is used to compute space-charge forces.
First, the Lorentz boost is done from the laboratory frame to the rest frame via

(x , y, z)rest = (x , y, γr z)lab . (4.3)

The momentum spread in synchrotrons is small, σ∆p/p � 1. Therefore, the rel-
ative particle motion is negligible during the integration step, and the problem is
electrostatic. Figure 4.1 demonstrates how macro particles are located in cells for
numerical integration. First, the beam is split into longitudinal regions (slices),
shown with dashed white lines on the left panel. Next, for each slice, a grid in the
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transverse plane is initialized (black lines on the right) assuming that the charge
density is constant along ∆z of a slice. It is important that slices and the grid cover
all macro particles in longitudinal and transverse planes respectively. With the re-
sulting mesh charge density ρ, the 2D Poisson equation on the electric potential
ϕ,

∇2ϕ = − ρ
ε0

, (4.4)

is solved for each slice separately, where ∇ is the nabla operator. The solution of
the 2D Poisson equation can be written as

ϕ(x , y) =
1

4πε0

∫
G(x − x1, y − y1)ρ(x , y) d x1 d y1 , (4.5)

where the Green’s function G is defined

G(x − x1, y − y1) = −1
2

ln
�
(x − x1)

2 + (y − y1)
2
�

(4.6)

for the case of transverse open boundary conditions [87]. To speed up the numer-
ical computations of the electric potential the Fourier transform is used. Using the
convolution theorem,

F [ϕ] =F [G] · F [ρ] , (4.7)

the electric potential is simply ϕ = F−1 [F [G] · F [ρ]], where F is implemented
using the Fastest Fourier Transform in the West (FFTW) software library. Next, the
electric field in the laboratory frame corresponds to�

Ẽx
Ẽy

�
= −γr

� ∂ ϕ
∂ x
∂ ϕ
∂ y

�
(4.8)

Taking into account the magnetic field arising after the Lorentz boost, the resulting
Lorentz force acts on particles via�

∆x ′
∆y ′
�
=

1
p

�
∆px
∆py

�
=

q∆s
γr βr c p

�
Ẽx
Ẽy

�
, (4.9)

where ∆s is the integration step. To study incoherent dynamics of single particles
from the beam halo crossing the beam core, simplified models (so-called frozen
space charge) can be used. These models integrate the Poisson equation only once
at the beginning of the simulation (or use the analytical approximation [88]), and
particles receive the same space-charge kicks each turn. In this work, it is crucial
to take into account the coherent motion of particles [51] to characterize the half-
integer stop band accurately. Therefore, we use a self-consistent 2.5D PIC model.
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4.1.3 Model limitations and convergence studies

Although PIC is known to provide accurate computations of space charge, this model
should be set in a proper way to account for its limitations. First, the grid size in
horizontal and vertical directions should be initialized regarding the ratio of trans-
verse beam sizes to keep the same resolution. In the case of SIS100, a square grid
can be used because σx/σy ' 1.5. Next, the amount of macro particles should be
sufficient enough to have ≳ 1 particles on average per cell. It is also important to
keep the number of space-charge nodes large, so a particle receives enough space-
charge kicks per one betatron oscillation. The Poisson solver described above has
open boundary conditions. In synchrotrons, the grounded vacuum chamber de-
termines physical boundaries. Though in the case of SIS100 ay/σy ' 7.5, where
ay is the vertical aperture, the distortion of the electric potential due to the walls
might affect only halo particles. In this work, we focus on the coherent motion of
beam-core particles. Therefore, this effect can be neglected.
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Figure 4.2: The change of the vertical emittance over 200 turns for a bunched beam
as a function of the number of macro particles (left, blue curve). Red
and black curves (right) are examples of vertical emittance growth for
1 · 105 and 1 · 106 macro particles respectively.
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Figure 4.3: Spread of tunes of individual particles in SIS100 at nominal beam pa-
rameters for a Gaussian-like distributed bunched beam (see text for de-
tails).

In this work, each PIC space-charge node solves the transverse Poisson equation
for 64 longitudinal slices along the bunch with 128×128 grid. We use 2 ·106 macro
particles with 103 space-charge nodes located in the SIS100 lattice. All numerical
settings in the simulation model are validated with convergence studies. For exam-
ple, Fig. 4.2 demonstrates the results of the convergence studies for the number of
macro particles for a bunched beam.
With the increasing number of macro particles, the uncertainty of simulation re-

sults decreases, and results converge to the same value of transverse emittance
growth. Red and black curves (on the right) show the change of the horizontal
emittance for 200 turns for two values of the number of macro particles, namely
N = 1 · 105 and N = 1 · 106. Though both curves have similar behavior, the signal-
to-noise ratio for the latter one (black) is smaller.
To verify the simulation model, we compare the results of particle tracking with

analytical models. For example, Fig. 4.3 shows the spread of particle tunes (also re-
ferred to as the tune spread) in a bunched beam with a Gaussian distribution as one
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of the consequences of space charge for the case of nominal beam parameters (see
Table 3.1). The blue dot is the working point, which corresponds to the location of
Q x andQ y without space charge. The frequencies of particle oscillations (color) are
computed using the Numerical Analysis of Fundamental Frequencies (NAFF) [89].
As mentioned in Sec. 3.2, the maximum tune shift in a Gaussian-like distributed
beam ∆QGauss is twice the KV tune shift for RMS emittances, ∆QGauss = 0.3 (nom-
inal beam). In simulation results, we can measure the distance between the blue
dot and the red triangle, the minimum of particle frequencies Min[Qpart

y ], where [·]
is taken over distribution. Results in Fig. 4.3, Q y −Min[Qpart

y ] ' 0.3 confirm that
the simulation model is accurate.

4.1.4 Computer experiment setup for simulations without chromatic
detuning

As described in Sec. 2.1, the momentum spread of a beam results in the chromatic
tune spread,

∆Q(ξ)'Qξσ∆p/p , (4.10)

which contributes to the total tune spread of the beam. To separate the contri-
butions by space charge and chromatic detuning the latter can be removed in a
computer experiment. To do so, the longitudinal emittance is reduced by a factor
of aεz

= 10−2. Alternatively, ξx = ξy = 0 can be achieved by a chromaticity cor-
rection via sextupole magnets. However, this approach introduces additional non-
linear fields that excite betatron resonances. Therefore, to accurately characterize
the half-integer resonance, the first scheme is used in the computer experiment.
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Figure 4.4: Example of a computer experiment setup for chromatic-detuning sup-
pression. Factors aεz

= 0.2 and aεx y
= 0.02 are applied to demonstrate

the principle.
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Another consequence of the reduction of εz is that transverse and longitudinal
sizes turn to be of the same order. Therefore, both transverse emittances are de-
creased by a factor aεx y

= 10−3 to avoid this and the bunch lengthening due to
slippage effects and subsequent longitudinal drifting.
Finally, the ratio I/

p
εx εy is maintained via multiplying the peak current by

aεz
aεx y

for the space-charge tune shift to remain constant. In this work, several
simulations feature the computer-experiment setup described above to suppress the
influence of chromatic effects on beam dynamics. We specify in the text when this
setup is used, otherwise, simulations are performed at nominal beam parameters.

4.2 Computations of the stop-band width at negligible intensities

The following briefly describes the approach how the half-integer stop-band widths
from Table 2.1 are numerically computed.
In the vicinity of the half-integer (inside the stop band), the system becomes un-

stable. As a result, particle trajectories exponentially diverge in time, and the Twiss
parameters become complex. To demonstrate this, we use Methodical Accelerator
Design (MAD-X) code [80]. First, the upper and lower edges of the half-integer stop
band at negligible intensities are determined by the bare tunes where the numer-
ical computation of beta-functions in MAD-X ceases to converge. Second, MAD-X
provides particle tracking for any configuration of the lattice, hence it is possible to
observe the unstable motion of particles.
Figure 4.5 depicts the results of particle tracking simulations in MAD-X for the

conditions close to the half-integer resonance.

Table 4.1: Quadrupole corrector setup
parameter corr. #1 corr. #2

beta-function βy(s) [m] 17.8 5.8

phase advance µy(s) [2π] 12.44 13.41

weak K1 · L [1/m] -0.004 0.004

intermediate K1 · L [1/m] -0.003 0.003

strong K1 · L [1/m] -0.002 0.002

The left panel illustrates the beam size growth over time for two values of Q y ,
the red curve corresponds to the bare tune inside the stop band (resulting ∆σ/σ
is exponential), and the black one is outside. For all working points inside the
obtained stop bands, trajectories of single particles are found to be unstable which
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Figure 4.5: The example of how to get the half-integer stop-band width at zero in-
tensity. Unstable (red) vs stable (black) conditions shown on the left,
resulting vertical beam size growth ∆σy/σy agains the bare vertical
tune (right), the half-integer bare tune Q y = 37/2 is indicated via the
orange dashed line.

causes the exponential growth of the vertical beam size in time. On the right, blue
squares correspond to the values of the vertical beam size growth after 200 turns,
the orange dashed line (like in 2.8) shows the location of the half-integer bare tune.
The lower and upper stop-band edges obtained in MAD-X are represented by blue
dotted lines.
Based on the gradient-error-free SIS100 lattice, Table 4.1 lists the correspond-

ing beta-functions, phase advances, and integral focusing strengths of the two
quadrupole correctors adjacent to the warm quadrupoles for the weak, interme-
diate, and strong gradient-error scenario, respectively.

4.3 How to determine the stop-band width with space charge

First, we demonstrate how the resonant behavior can be observed in terms of the
emittance growth. For illustrative purposes we use the case of the strong gradient
error and space charge at nominal SIS100 beam parameters, i.e. the resonance con-
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Figure 4.6: The comparison of a coasting beam with a bunched beam in terms of the
vertical emittance growth for the strong gradient-error scenario. The
working point is located slightly above the linear resonance condition.

dition is met at Q y = 18.6. The bare tunes are set to Q x = 18.75 and Q y = 18.62,
slightly above the vertical quadrupolar linear resonance condition. Figure 4.6 dis-
plays typical responses to the half-integer resonance. The black curve is identical
in both panels and indicates the vertical emittance growth for coasting beam con-
ditions.

The emittance fluctuates over the first n ' 5 turns before it proceeds to steadily
increase linearly until n ' 50 turns. After that, the emittance reaches a saturation
level. The red line on the left side of Fig. 4.6 representing bunched beams shows
us exactly the same behavior during the first n' 5 turns. Afterward, the emittance
increases at a lower rate than for the coasting beam. The red line on the right
panel represents the central region of the bunched beam |z| � σz . Now the slope
of the emittance growth 1

ε
dε
dn is the same as for the coasting beam in ' 30 turns.

We shall indicate here that the horizontal emittance under the same conditions
stays practically constant (gaining less than 0.1% in 2000 turns). This confirms the
horizontal and vertical planes are loosely coupled due to space charge.

The dynamics during the first five turns can be explained by the following. The
initial transverse distribution is linearly matched to the local optics functions. The
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Figure 4.7: Example for the strong gradient-error scenario how to get the stop-band
width using the threshold level (lime solid line) from the vertical emit-
tance growth rate for coasting (black dots) and bunched (red triangles)
beams.

space-charge potential distorts the phase space and this leads to the mismatch of
the generated distribution, which turns to a rapidly decaying initial fluctuation in
emittances. Next, the effect of emittance growth saturation appears in the case
of coasting beams because of the decreasing space-charge force as the beam size
increases. This phenomenon has first been observed by Sacherer in Ref. [49] and
is described in greater detail in Ref. [63].
Let us closely inspect in Fig. 4.7 the linear emittance growth regime between the

initial mismatch and emittance saturation depending on the bare tune.
With the black dots, we represent the response curve for the coasting beam,

whereas the red triangles show the corresponding curve for bunched beams. Both
curves sharply rise and have their peaks between 18.47<Q y < 18.7. Outside of this
region, the slope of emittance growth remains around a zero level marked by a solid
lime green line. Although below the linear resonance condition Q y < 18.6 depicted
by the orange dashed line bunched beams have a wider range of tunes affected
by the half-integer resonance compared to the coasting beams, above the orange
dashed line coasting beams react to the same gradient error in a stronger way.
This difference is caused by varying longitudinal charge density in bunched beams.

4.3 How to determine the stop-band width with space charge 45



Let us consider the bare tunes above the orange dashed line. In the case of coast-
ing beams, all longitudinal regions equally interact with the resonance, whereas in
bunched beams only a fraction of particles (located in the bunch center) is involved
in the emittance growth. That is why the shape of response curves significantly
depends on the longitudinal beam distribution.
The height of the solid lime green line determines the lower and upper edges of

the stop band. Any working point with emittance growth above this threshold is
considered as affected by the resonance. Here and throughout this work we use
a threshold level of 1

ε
dε
dn = 5 · 10−6. This amounts to an overall emittance growth

of 0.5% during 103 turns. For comparison, the injection plateau of SIS100 lasts
around one second (or 1.6 · 105 turns), during which the beam emittance would
grow by 80% according to this threshold. This may result in non-acceptable particle
losses for typical apertures in synchrotrons1. Hence, it is important first to identify
the location and the width of the stop band, and then to compensate it. Another
beneficial aspect of the developed technique of stop-band characterization is that it
excludes the effect of the initial distribution mismatch. Though the mismatch can
increase with space charge, it does not have any resonant nature. This means that
any other technique which compares only final emittances has a systematic error
in its design and always provides exaggerated results. Furthermore, the saturation
effects are excluded when using the slope of the linear emittance growth. Hence,
it is possible to adequately compare the simulation results of bunched and coasting
beams.

4.4 Results of short-term simulations

As shown in Chapter 3, the RMS envelope equations determine the quadrupolar res-
onance condition. This work investigates the extension of the resonance towards
the stop-band edges. It is known (for example in Ref. [49] and [47], and demon-
strated above in Sec. 3.2) that the stop-band edges shift with space charge in parallel
to the linear resonance condition in the case of coasting KV beams. The key results of
this section show how, for a transversely Gaussian distributed coasting or bunched
beam, the dependence of the stop-band width on space charge significantly dif-
fers from the KV case. Figure 4.8 displays the simulation results for 200 turns with
Gaussian-like transversely distributed coasting beams, based on the strong gradient-
error scenario.
The yellow color represents the area with rapid emittance growth, whereas negli-

gible emittance growth areas are shown in dark blue. Though the peak follows the
linear resonance condition, the areas with the same emittance growth above and

1 The elliptical vacuum chamber of SIS100 has 60 mm × 34 mm dimensions.
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Figure 4.8: Vertical emittance growth rate (color) vs. space charge and the vertical
bare tune for coasting beams, the strong gradient-error scenario is used
(see text for details).

below the linear resonance condition are not parallel and become wider. In order to
investigate how the stop-band width changes with the gradient-error strength and
space charge, we use the technique of stop-band width characterization described
above.
Figure 4.9 presents the coasting beams results. This plot shows the range of bare

tunes affected by the resonance between lower and upper edges. As indicated by
the blue squares, the strong gradient error leads to larger stop-band values. Note,
that both blue squares on the very right are the lower and upper edges in Fig. 4.7
for the coasting beam example. The area between the red triangles (corresponding
to the intermediate gradient-error case) is smaller than for the strong gradient-
error case. The smallest stop-band width corresponds to the weak gradient-error
example depicted with the black dots. Figure 4.7 quantitatively indicates how the
half-integer resonance modifies with space charge. The edges of the stop band
widen up with increasing space charge and are not parallel to the linear resonance
condition for the whole range of intensities. This is observed for all probed gradient-
error strengths. The half-integer stop-band width characterization technique fails
when there is no space charge. The system becomes isolated, therefore transverse
emittances are conserved. When determining the quadrupolar stop band for zero
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Figure 4.9: Stop-band width for a coasting beam with varying gradient error and
space charge. The upper and lower edges of the stop band are indicated
by black dots, red triangles, and blue squares for weak, intermediate,
and strong greadient-error strengths (see text for details).

intensity, a single-particle approach can be used. In this scenario, the betatron mo-
tion of individual particles becomes unstable inside the stop band (demonstrated in
Sec. 4.2).
Of more relevance for applications to synchrotrons is the situation for bunched

beams. Employing the same stop-band characterization approach, Fig. 4.10 depicts
the simulation results. Again, like for coasting beams in Fig. 4.9, the bunched beam
stop bands (and the upper edge in particular) widen with increasing space charge
for all three gradient-error scenarios. Black dots which are the weak gradient-error
example constrain the smallest area. Red triangles and blue squares represent the
intermediate and strong gradient-error cases, respectively. In comparison with
coasting beams, the lower edge remains the almost same with increasing space
charge. Any deviation in the lower edge is negligible compared with the upper
edge change. Additionally, there is no significant correlation between the lower
edge and the gradient-error strength. Finally, the area occupied by the half-integer
resonance expands due to the linear increase of the upper edge. The resonance-free
area for coasting beams between 18.5 and the lower edge vanishes for bunched
beams. This entails that, in the case of bunched beams, the stop-band width can be
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Figure 4.10: Stop-band width for a bunched beam with varying gradient error and
space charge. The edges of the stop band are indicated by black dots,
red triangles, and blue squares for increasing greadient-error strength
(see text for details).

reduced only by moving the upper edge down. In the weak space-charge area where
∆Qenv < 0.03, the detuning from natural chromaticity (ξx = ξy = −1.2) plays a
significant role. As a consequence, the stop-band width at zero space charge is in-
creased compared to values in Table 2.1. Space charge dominates in the area with
∆Qenv > 0.03, and the effect of the chromatic detuning becomes negligible.
Figure 4.11 demonstrates how the width of the half-integer resonance shrinks in

the region of ∆Qenv < 0.03 after chromatic detuning is suppressed (on the left)
using the computer-experiment setup described in 4.1. The right panel demon-
strates the same stop-band edges as in Fig. 4.10 for comparison. Practically, in the
case of negligible space charge and absent chromatic detuning, the scheme of the
half-integer resonance breaks (as in the case of coasting beams in Fig. 4.9) because
transverse emittances are conserved in this case. Therefore, to accurately study the
impact of chromaticity on the stop-band width a single-particle approach should be
used.
Overall, this section has described the methods used in the characterization of the

half-integer resonance. The setup of simulations and the stop-band width charac-
terization technique have been described. The technique is designed to adequately
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Figure 4.11: Stop-band edges for a bunched beam for increasing space charge (in
terms of the envelope tune shift ∆Qenv) with varying gradient error
(black dots, red triangles, and blue squares — weak, intermediate,
and strong respectively). Chromatic detuning of particles ∆Q(ξ) is
suppressed (on the left, see text for details) vs. nominal beam param-
eters (on the right).

compare simulation results of coasting and bunched beams. Eventually, this tech-
nique has been applied to SIS100 yielding ranges of bare tunes affected by the
half-integer resonance for various strengths of space charge and gradient error. We
have presented how the stop band expands with increasing gradient error and space
charge. And together these results provide important insights for such challenges
as a space-charge limit in a synchrotron and the lattice optimization which follow
in Sec. 4.6 and in Chapter 5 respectively.

4.5 Long-term simulations

The aim of this section is to demonstrate how the synchrotron motion (described in
Sec. 2.2) affects the response to the half-integer resonance. Since for the majority
of synchrotrons, Qs lies between 0.01 and 0.001, and Qs/Q� 1, we consider up to
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2000 turns in this analysis. This corresponds to ' 10 synchrotron periods for the
nominal SIS100 parameters compared to ' one synchrotron period in the short-
term simulations above.
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Figure 4.12: Incoherent spread of tunes due to space charge of a Gaussian-like dis-
tributed bunched beam before (left) and after (right) the change of the
synchrotron tune Qs (see text for details).

A convenient way to change the synchrotron tune is to vary the RF voltage V (see
Eq. (2.30)). In order to keep the space-charge conditions constant while varying the
RF voltage V in our computer experiment, bunch length and peak current are fixed.
To match the varying RF bucket height, the longitudinal phase space distribution
thus varies in RMS momentum spread as

σ∆p/p =

√√ V
V0
·σ(∆p/p),0 . (4.11)

To remove the effect of chromatic detuning in our computer experiment, the
beams are initialized with reduced transverse and longitudinal emittances. To avoid
bunch lengthening due to slippage effects and subsequent longitudinal drifting, the
transverse emittances are scaled-down along with the longitudinal emittance while
maintaining the ratio I/(εx ·εy) for the space-charge tune shift to remain constant.
As a result, the space-charge tune shift remains constant for varying Qs values. For
details, see Sec. 4.1.
Figure 4.12 demonstrates that after we decrease the RF voltage to reduce the

synchrotron tune Qs, the total tune-spread of particles remains constant due to the
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computer-experiment setup (with the suppression of chromatic detuning). There-
fore, when different values of Qs are probed, space-charge conditions are equiva-
lent.

4.5.1 Long-term dynamics above the resonance
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Figure 4.13: Vertical emittance growth of a Gaussian-like distributed bunched beam
for various values of Qs corresponding to the strong gradient-error sce-
nario. The working point Q y = 18.62 is set above the linear resonance
condition.

The example working point Q y = 18.62 (same as in Fig. 4.6) serves to investi-
gate the impact of Qs. Given the strong gradient-error scenario, there is significant
emittance growth at this bare tune slightly above the linear resonance condition.
Figure 4.13 illustrates the simulation results for various Qs values.
The black line corresponds to relatively slow longitudinal motion with negligible

Qs. During the first 50 turns, the emittance increases linearly. After this, the speed
of the linear growth significantly decreases. The red, blue, and orange lines corre-
spond to increasing values of Qs. Though the initial linear growth is the same for all
of them, the total emittance growth for a given turn at later times, for instance, 103,
increases with increasing synchrotron tune Qs. It is interesting to note that, when
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Figure 4.14: Vertical emittance growth of a bunched beam after a few synchrotron
periods. The strong gradient error is used, Q y = 18.62.

relating to a given time in terms of synchrotron periods, the emittance growth per
synchrotron period decreases with increasing Qs.
Fig. 4.14 demonstrates the results for the different numbers of synchrotron peri-

ods with different colors. All curves decrease with the increasing synchrotron tune.
This can be easily explained, that for the smaller Qs the period lasts longer. There-
fore, the beam accumulates more of emittance growth. The key message is that the
total emittance growth per a synchrotron period is not the same for different values
of Qs.
Another observation from Fig. 4.13 indicates that the fastest growth rate corre-

sponds to the initial short-term regime. After this, the trend is always slower than
linear. The total emittance increase (via the quadrupolar resonance mechanism)
during the injection plateau at the stop-band edges is, therefore, less than the lin-
early extrapolated 80% (quoted in Sec. 4.3). Taken together, these results suggest
that the developed scheme of the half-integer stop-band characterization in Sec. 4.3
is valid also on long-term time scales: The tunes which are classified as resonance-
affected remain inside the stop band, and the total resonantly gained emittance
growth is always limited by the threshold.
As indicated previously, in Fig. 4.6 in Sec. 4.3, the emittance growth in bunched

beams continues to increase while coasting beams saturate. Figure 4.15 displays
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how saturation is lost in bunched beams. In simulation model (see Sec. 4.1 for
details), a beam is split on longitudinal slices to provide accurate computations of
space charge using PIC.
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Figure 4.15: Vertical emittance growth corresponding to separate longitudinal slices
(color) in a bunched beam. The working point is Q y = 18.62 with the
strong gradient-error scenario.

Colors in Fig. 4.15 show how different beam slices contribute to total vertical
emittance growth: Shades of red in the beam-center region, blue toward the beam
ends. Note, that the number of macro particles per slice corresponds to the normal
distribution, consequently head and tail slices have fewer amount of particles which
negatively affects the amplitude-ti-noise ratio. First, only red curves show steady
linear growth. Then, their slope decreases, whereas magenta and orange curves
appear.
Next, we demonstrate it on a shorter time scale in Fig. 4.16 and only for slices

grouped in the bunch-center region (left) and the σz region (right). The curves
show the simulated emittance growth at various synchrotron tunes, where the black
color refers to Qs = 4.5× 10−5, red to Qs = 0.7× 10−3 and blue to Qs = 1.1× 10−3.
The left panel corresponds to the bunch center region, whereas the right panel
depicts the region towards the bunch ends, at a longitudinal position of z = σz .
During the first 50 turns, the emittance in theσz region remains relatively constant,
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Figure 4.16: Vertical emittance growth corresponding to separate longitudinal ar-
eas in the bunched beam for varying values of synchrotron tune. The
working point is Q y = 18.62 with the strong gradient-error scenario

whereas the bunch center resonantly reacts to the gradient error. After about 50
turns, a steady linear rise indicates emittance growth in the σz region.
The effect of synchrotronmotion can be explained as follows: While particles with

large amplitudes due to resonance interaction in the bunch center are transported
towards the bunch ends, new particles from the bunch endsmove towards the bunch
center where they continue to interact with the resonance. This overall picture
demonstrates the mechanism of interplay between the bunched beam and the half-
integer resonance.

4.5.2 Long-term dynamics and the upper edge

It is important to investigate what happens with the residual emittance growth at the
upper edge. The computer experiment setup developed above is used. Figure 4.17
shows how the half-integer resonance develops in different longitudinal bunch areas
at the bare tune Q y = 18.7 for the strong gradient-error scenario.
Black curves on both panels represent the case of frozen longitudinal motion

(longitudinal coordinates (z, dE) of all particles of the distribution remain fixed
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Figure 4.17: Vertical emittance growth corresponding to separate longitudinal ar-
eas in the bunched beam for varying values of Qs. The working point
corresponds to the upper edge at Q y = 18.7 for the strong F37.

throughout the simulation), whereas reds curves show the emittance growth in the
bunch center and the σz region for Qs = 0.7 · 10−3. After the initial mismatch,
there is some vertical emittance growth only in the bunch center region on the left.
On contrary, σz apart from the bunch center (on the right), the vertical emittance
remains steady. Though the red curve on the left side almost repeats the black
one, on the right side they are different. In the case of finite longitudinal motion,
the emittance in the σz region fluctuates around its initial value and starts linearly
growing after 100 turns. The bunched beam keeps interacting with the half-integer
resonance for any Qs > 0 even at the negligible resonance driving term around the
upper edge. Particles gain amplitudes in the bunch center and leak towards the
tails. Particles from other bunch areas start crossing the bunch center region where
they can increase their amplitudes.

Section 4.5.1 shows how the emittance growth continues in the long term. The re-
sults are performed on the working point which is close to the linear resonance con-
dition. Figure 4.18 illustrates what happens for different values of the synchrotron
tune at the upper edge. The black line represents the frozen longitudinal motion.
Besides the initial fluctuations and some initial growth, it remains constant. With
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Figure 4.18: Vertical emittance growth from simulations for different values of the
synchrotron tune. The working point on Q y = 18.7 corresponds to the
upper edge, strong gradient-error scenario.

red, blue, and orange colors we show the emittance growth for the increasing value
of Qs. The curves oscillate on the frequency around 2Qs and increase with the
number of turns.

4.6 Space-charge limit

The aim of this section is to identify the space-charge limit, i.e. the maximum toler-
able space-charge tune shift for realistic Gaussian-like distributed bunched beams
where the area of available bare tunes (not affected by the quadrupolar resonance)
reduces to zero. Section 4.4 discusses the influence of space charge and gradient
errors on the available area of bare tunes. These two separate influences are dis-
cussed here as degrees of freedom based on Fig. 4.19, which depicts the bare tune
of the upper edge vs. the strength of space charge.
The classical conceptual discussion of the space-charge limit only relates to the

linear resonance condition, see e.g. Refs. [51, 63]: Given a finite but marginal
gradient error, the space-charge limit is reached when the linear resonance condi-
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Figure 4.19: Space-charge limit. Blue squares, red triangles, and black dots are the
locations of the upper edge corresponding to strong, intermediate, and
weak gradient-error scenarios from simulations

tion (shown in dashed orange) reaches the next half-integer (the horizontal line at
Q y = 19). Thus, the maximum achievable intensity is determined by the inequality

∆Qenv < 1 (4.12)

on the envelope tune shift. Next, the area below the orange dashed line becomes
“forbidden”. Therefore, the linear resonance condition sets the constraint on the
bare tune Q which shall satisfy the inequality

2Q > n+∆Qenv , (4.13)

where n= 37 in the SIS100 case.
The focus of this work is on the extension of the quadrupolar resonance from the

linear resonance condition towards the stop-band edges for time scales relevant to
a synchrotron. As described above, a finite gradient error moves the upper edge
higher, leading to a steeper inclination of the curves in Fig. 4.19 represented by
blue squares (strong gradient-error scenario), red triangles (intermediate gradient
error), and black dots (weak gradient error). Note, that the points at ∆Qenv < 0.2
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correspond to the upper edge curves in Fig. 4.10. In order to compute simulation
results for ∆Qenv > 0.2, the effect of Montague resonance [90] is avoided by mov-
ing to higher horizontal bare tunes. Extrapolation to larger space-charge strengths
shows where the upper edge (colored solid lines) reaches the lower edge of the
next higher n + 1 half-integer stop band, i.e. slightly below the horizontal line at
Q y = 19. This corresponds to the scenario where adjacent quadrupolar stop bands
occupy the entire tune diagram. In our example case, the blue line meets the next
resonance at a lower space charge than the red line due to the stronger gradient
error.
As it is shown above, a residual gradient error is not expected to result in rela-

tively large emittance growth for coasting beams due to the saturation. Therefore,
the space-charge limit is reached at ∆Qenv = 1 (see e.g. Refs. [51, 63]). How-
ever, Sec. 4.5 shows how the finite synchrotron motion always leads to significant
emittance growth in the long term. Hence, the area below the blue (or red, black)
lines in Fig. 4.19 remains “forbidden” in the corresponding case. In other words,
working points inside the stop band are not expected to conserve the emittances of
bunched beams at finite synchrotron motion and a finite gradient error. This means
that accurate estimations of intensity limitations in a synchrotron necessitate sim-
ulations with bunched beams. In application to the SIS100 example, the results
obtained with Fig. 4.19 are the following. According to the analytical expression in
Eq. (4.12), the maximum possible intensity corresponds to ∆Qenv = 1, regardless
of the gradient-error strength. On the other hand, linear extrapolation of the sim-
ulation results including a certain gradient error indicates a maximum achievable
intensity (in terms of∆Qenv). The scenario of strong gradient error results in a limit
of only ∆Qenv ' 0.5, the intermediate gradient error in ∆Qenv ' 0.6, and the weak
gradient error in ∆Qenv ' 0.8.
To conclude, we find that, for realistic Gaussian-distributed bunched beams, a

relatively small stop-band width at zero space charge (' 10−3, see Table 2.1) can
result in a significant reduction of the maximum intensity (here by a factor 2 for
the strong gradient-error scenario). As a consequence, control and compensation
of gradient errors are crucial for a synchrotron to maintain the highest intensities
under strong space-charge conditions.
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5 Half-integer stop-band
minimization

So far, this work has focused on the half-integer stop-band width characterization
on short and long time scales. The width of the half-integer stop band determines
the flexibility of selecting the working point (Q x , Q y) as well as the achievable
maximum peak current (in terms of space-charge tune shift) in a synchrotron. This
chapter discusses how to minimize the stop-band width by correcting the magnet
configuration of a synchrotron (lattice). The applied lattice corrections are vali-
dated in tracking simulations with space charge. The key results of the chapter are
included in Ref. [32] and are published in Ref. [77] by the author.

5.1 Correction schemes

Let us start with the ideal scenario for SIS100 where all quadrupole magnets are
superconducting with the same length. Consequently, the absence of gradient errors
in the lattice yields the absence of the half-integer resonance. Throughout this work,
the corresponding lattice is called the “cold lattice”. While replacing the pair of
superconducting quadrupoles with the warm quadrupoles (as shown in Fig. 2.7)
the lattice of SIS100 features a gradient error. In this case, the lattice is called the
“warm lattice”.

5.1.1 Parameters for optimization

It is possible to minimize the effect of the half-integer resonance by using several
parameters. First, the integral focusing strength of warm quadrupoles can be in-
dependently adjusted. Second, a pair of quadrupole corrector magnets located on
either side of the perturbing warm quadrupoles is used to entirely suppress the
beta-beating outside of the perturbation region [91].
The goal of the optimization is to find the best set of correctors k⃗∗ minimizing the

objective function f (k⃗ = n(θ⃗ )), where vector θ⃗ is dimensionless, and the transfor-
mation k⃗ = n(θ⃗ ),

k⃗ = k⃗0 +

q
Q2

x +Q2
y

R2
· N · θ⃗ , (5.1)
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normalizes θ⃗ . Here k⃗0 corresponds to the initial settings of quadrupoles (design
k(s) for the main families, zero for the corrector magnets), N is a diagonal matrix
N = {..., 1/Nk, ...}, Nk is the number of quadrupoles in the k-th family.

5.1.2 Objective functions

While optimizing a lattice, different objective functions can be used. Convention-
ally, lattice corrections are performed without intensity effects. However, as shown
above, the half-integer stop-band width depends on the strengths of space charge
and gradient errors. Therefore, a lattice correction featuring space charge might
provide superior settings for the machine operating with space charge. In this
work, we consider three different cases for SIS100 at a working point (Q x , Q y).
The first objective function f1 corresponds to the conventional case which is the
beta-beating accumulated along the ring,

f1 =

√√√ 1
C

∮ �
β(s)− β0(s)
β0(s)

�2
ds , (5.2)

where β0(s) is the beta-function of the cold lattice, β(s) is the beta-function of the
warm lattice. The second objective function f2 is the beating of transverse RMS
beam envelopes at non-zero space-charge strength,

f2 =

√√√ 1
C

∮ �
σ(s)−σ0(s)
σ0(s)

�2
ds , (5.3)

whereσ(s) andσ0(s) are the transverse beam sizes (including the horizontal disper-
sion) for warm and cold lattices correspondingly at equal space-charge conditions.
Note, that at zero space-charge conditions, σ =

p
εβ (in the vertical plane), thus

f2 would lead to identical optimal values to a conventional correction f1. The last
probed objective function is the modification of the second one. The SIS100 lattice
consists of six identical sectors (in other words, the superperiodicity S = 6). Any
gradient error breaks this symmetry. Fourier series of the envelope beating results
in

σ(s)−σ0(s)
σ0(s)

=
∑

p

Ap exp
�

i · 2π µ(s)
Q

p
�

, (5.4)

where Ap are the complex amplitudes. The beam size of the cold lattice σ0(s) is
represented by p = 6 j harmonics only, where j is integer. Therefore, to restore the
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superperiodicity of SIS100 the third objective function f3 corresponds to the sum
of “non-structural” harmonics (namely, p 6= 6 j) of the envelope beating,

f3 =

√√√√ 1
C

∮ �∑
p

Ap exp
�

i · 2π µ(s)
Q

p
��2

ds , p 6= 6 j . (5.5)

The gradient error induced by warm quadrupoles leads to both transverse half-
integer stop bands. To include horizontal and vertical degrees of freedom all three
objective functions are modified,

fi =

√√√ f 2
x ,i + f 2

y,i

2
, (5.6)

where i = (1, 2, 3).
In general, there is only one condition in the choice of the objective function.

It shall indicate how the quadrupolar resonance modifies for different settings of
quadrupole magnets and correctors. The objective functions f2 and f3 include trans-
verse RMS beam envelopes. They are numerically computed at nominal SIS100
parameters using full 2D envelope equations [49] with the exact lattice focusing
k(s) which includes all gradient errors and settings of correctors (for details see
Sec. 3.2).

5.1.3 Numerical implementation and different schemes

Another consequence of changing k(s) is the change of bare tunes. The constraint
function g(k⃗) defined as

g(k⃗) =
r
∆Q2

x(k⃗) +∆Q2
y(k⃗) = 0 (5.7)

is included in the optimization to prevent the shift of bare tunes. The process de-
scribed above can be mathematically generalized using the expression

Minimize
�

f (k⃗ = n(θ⃗ )), θ⃗ , constraints= g(k⃗)
�

. (5.8)

The numerical implementation is performed in Python with Constrained Opti-
mization By Linear Approximation (COBYLA) [92] which is suitable for functions
with an unknown gradient. COBYLA uses only inequalities as constraints. There-
fore, a simple numerical trick g(k⃗) ≤ 0 is performed to force COBYLA to keep the
bare tunes constant during the optimization.
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Figure 5.1: Numerical solution of 2D RMS envelope equations at nominal beam pa-
rameters vs. the vertical bare tune after compensating the SIS100 lattice
with space charge. Black dots, red squares, and blue triangles are the
uncompensated scenario, the global correction, and the local correction
respectively (see text for details).

First, the global parameters such as the integral focusing strengths of main
quadrupole families and of perturbing isolated magnets (global correction scheme)
are used as optimization parameters. In this case, the normalization matrix is de-
termined by

Nglobal =

1/84 0 0 0
0 1/84 0 0
0 0 1 0
0 0 0 1

 , (5.9)

because there are 84 focusing and defocusing quadrupoles. Second, the pair of
quadrupole corrector magnets around the isolated perturbation (orange triangles
in Fig. 2.7) is added to the optimization to suppress the gradient error locally (local
correction scheme). Now, the normalization matrix is a 6× 6 matrix with 1/Nk = 1
for both correctors.
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Figure 5.2: Results of numerical optimization for the local correction scheme. Op-
timal values of the first and the second conversion factors are displayed
in black and blue colors (see text for details).

5.1.4 Optimization results

Having discussed how to construct the optimization with space charge, the follow-
ing presents the results of SIS100 correction schemes.
First, Fig. 5.1 shows the results of the half-integer resonance compensation in

terms of matched beam envelopes, where the optimal parameters are found for
∆Qenv = 0.2 with the third objective function f3. Black dots here indicate the case
of the initial gradient-error scenario; red squares and blue triangles represent the
response curves after the compensation with global and local schemes respectively.
All curves sharply increase around the linear resonance condition atQ y = 18.6, and
the stop-band decreases when more correctors are included in the optimization,
namely, in the case of the local correction scheme.
Next, we proceed with the results of the local correction scheme since it per-

forms the best results. Figure 5.2 and Fig. 5.3 show how the optimal values change
for increasing space charge. Black dots correspond to the conversion factor α1 be-
tween the integral strengths of the first warm quadrupole kw,1 and a cold defocusing
quadrupole, whereas blue triangles represent the conversion factor α2 between
the integral strengths of the second warm quadrupole kw,2 and a cold focusing
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Figure 5.3: Results of numerical optimization for the local correction scheme against
space charge. Optimal values of the integral strength of the first and the
second correctors are displayed in black and blue colors.

quadrupole. Although black dots slightly increase for higher values of the enve-
lope tune shift and blue triangles fluctuate around α2 = 1.032, these deviations of
optimal parameters are negligible (demonstrated below).

Then, in Fig. 5.3 black dots and blue triangles correspond to the obtained values
at both correctors adjusting to the warm-quadrupole perturbation region. In this
case, optimal values are constant with the change of space charge.

Figure 5.4 shows the comparison between optimal values obtained using f2 with
and without space charge for the second adjacent corrector magnet as an example.
Black dots correspond to optimal values obtained at zero space charge (∆Qenv = 0),
whereas the red triangles are achieved at the SIS100 nominal beam parameters
(∆Qenv = 0.2). Besides some small fluctuations, both curves repeat each other. All
magnets used in the optimization show similar behavior. An important observation
is that the optimal lattice configuration obtained without space charge is at the
same time also the optimum configurationwhen including space charge for practical
synchrotron applications.

It is important to emphasize that the optimization results for all three objective
functions converge to the same values (with small fluctuations). The reason for this
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Figure 5.4: The optimal settings of the second corrector magnet, which are obtained
with nominal space charge (red triangles) and without space charge
(black dots) vs. the vertical bare tune.

is as follows. In the smooth focusing approximation, the beating of transverse beam
envelopes is represented by the sum of resonance harmonics (see Eq. (3.19)),

δ(ϕ) =
Q y

2
·∑

p

Fp cos(pϕ)

Q2
y −Q y C∆QKV − ( p

2 )2
, (5.10)

where the strongest contribution of the envelope beating corresponds to the har-
monic p = n' 2Q

δ∝ Fn

|2Q y −∆Qenv − n| (5.11)

regardless of space charge. Therefore, f1 and f2 provide similar results of the op-
timization. Moreover, the minimization of f2 and f3 achieves the same optimum
because COBYLA suppresses only the main harmonic (p = n) since the others are
irrelevant. The fluctuations of obtained results often appear due to the increase of

F0

2Q y −∆Qenv
(5.12)
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Figure 5.5: Beating of the horizontal (red) and vertical (blue) RMS beam envelopes
along the SIS100 lattice with space charge (nominal SIS100 beam) after
the lattice compensation with the local correction scheme.

the zero harmonic p = 0, which might result in significant fluctuations of optimal
values in synchrotrons with relatively small bare tunes. To avoid this, F0 should be
set to zero.

5.1.5 Lattice functions after optimization

It is important to validate that the optimization procedure does not modify lat-
tice functions in an inadequate way. We start with the envelope beating shown in
Fig. 5.5, where settings of the lattice are obtained using the local correction scheme.
Red and blue curves correspond to the horizontal and vertical RMS beam en-

velopes obtained numerically while solving Eq (3.12). Although in the warm-
quadrupole perturbation region the beating of transverse envelopes increases up
to 4%, the total (integrated over the ring) beating is ' 1%. Also, the 6-fold sym-
metry of the SIS100 lattice is not restored.
Next, the dispersion function modifies when the settings of the lattice are varied,

which can be illustrated using Eq. (2.8). Using the solver described in Sec. 3.2, the
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Figure 5.6: Beating of the horizontal dispersion with space charge (nominal SIS100
beam) vs the horizontal bare tune (left) and the vertical bare tune
(right). Red squares and blue triangles correspond to the lattice set-
tings obtained with the global and local correction schemes. Dispersion
is normalized to the horizontal beta-function.

dispersion affected by gradient errors and space charge can be numerically com-
puted. The value

σD =

√√√ 1
C

∮ �
D(s)− D0(s)
βx(s)

�2
ds , (5.13)

is the total dispersion beating, where D(s) is the dispersion function after optimiza-
tion and D0(s) is the dispersion of the cold lattice, both computed with space charge.
Figure 5.6 demonstrates the change of the total dispersion beating against the hor-
izontal and vertical bare tunes.
For both lattice settings, the dispersion beating increases around the linear reso-

nance condition (distinctively on the left, vs the horizontal tune). However, taking
into account that σ∆p/p = 0.45 ·10−3, this effect has a negligible impact on the total
transverse beam sizes (especially outside of the half-integer stop band).
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Figure 5.7: Objective function f3 (color) with respect to the change of conversion
factors α1 and α2 (see text for details). Orange dots show how the op-
timization converges in the local minimum.

5.1.6 Sensitivity and convergence studies

It is now necessary to demonstrate that the numerical implementation of correction
schemes described above converges to a local (global if possible) minimum. Here
we use the example case of the global correction scheme with the objective function
f3 defined in Eq. (5.5). This problem is parameterized in 2D and consequently is
demonstrated in Fig. 5.7.

Colors represent different levels of the objective function, the dark blue area cor-
responds to the local minimum. Starting, for example, at α1 = 1.02 and α2 = 1.036,
the optimization steps of COBYLA converge in the dark blue area. Therefore, the
implementation is valid. Next, Fig. 5.8 shows how the total beta-beating changes if
the lattice settings are varied in the vicinity of their optimal values.

With red dashed and black dotted lines we indicate the location of the optimal
configuration of the cold quadrupole magnets (defocusing and focusing families
respectively). Red dots and black triangles correspond to the change of the total
beta-beating in the synchrotron (also the objective function f1 defined in Eq. (5.2)).
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Figure 5.8: The standard deviation of the beta-beating across the SIS100 lattice for
varying settings of two families of quadrupole magnets, defocusing (red
dots, dashed lines for the optimal value) and focusing (black triangles,
dotted lines for the optimal value).

In both cases, the curvature is pseudo-parabolic with the minimum located around
the optimal values.

5.2 Verification in simulations

The following proceeds to demonstrate that the optimal parameters of the lattice
(obtained above) using 2D RMS envelope equations (equivalent to a coasting KV
beam) provide smaller emittance growth in particle simulations with Gaussian-like
distributed beams.
The objective functions (especially f2 and f3) are valid for KV coasting beams.

It is possible to test in simulations whether this applies to more realistic transverse
beam distributions. Figure 5.9 illustrates the results of particle tracking of a coasting
beam. Different colors indicate the lattice settings used in simulations, namely,
black dots represent the scenario of the uncompensated SIS100 lattice, red squares
and blue triangles correspond to the global and local correction scheme settings. As
discussed above (in Sec. 4.3), due to the saturation of transverse emittance growth,
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Figure 5.9: Vertical emittance growth of a Gaussian-like distributed coasting beam
vs. the vertical bare tune after optimizing the SIS100 lattice (at nominal
parameters). Black dots, red squares, and blue triangles correspond to
SIS100 settings obtained without any compensation, with global, and
local correction schemes

200 turns is enough to characterize the half-integer stop band for coasting beams.
As expected, the local correction scheme provides the settings where transverse
emittance growth is the smallest.
Bunched beams are of relevance for all synchrotrons. Moreover, SIS100 is

planned to operate with bunched beams. Therefore, the simulations with Gaussian-
like distributed bunched beams are scrutinized here. Figure 5.10 illustrates the
transverse emittance growth after 200 turns (in short term).
Similarly to Fig. 5.1 we show with black dots the initial perturbation, red squares

indicate the results of the global correction scheme, and the blue triangles represent
the local correction scheme. The optimization provided for coasting KV beams is also
valid for realistic Gaussian-like distributed bunched beams.
The optimum configuration yields a stop-band minimization in both transverse

planes as demonstrated in Fig. 5.11.
The panels depict simulated emittance growth as a function of both transverse

tunes for nominal bunched beam conditions during one synchrotron period. The
left panel shows the simulation results without compensation and the right panel
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Figure 5.10: Transverse emittance growth of a Gaussian-like distributed bunched
beam vs. the vertical bare tune after optimizing the SIS100 lattice.

with optimal compensation. The color scale ranges from yellow for tunes affected
by the resonance to dark blue for resonance-free tunes. This graph shows that the
applied correction effectively suppresses the effects of the half-integer resonance in
both directions for one synchrotron period. This entails more freedom in choosing
the working point or, alternatively, higher achievable bunch intensity.
As shown in Sec. 4.5 emittance growth can cease only in the case of coasting

beams or at negligible values of the synchrotron tune. Therefore, we perform a
set of simulations at nominal beam parameters for more than 10 synchrotron peri-
ods to test the optimal settings on long-term time scales. Figure 5.12 provides the
summary for these simulations.
Starting with the black dots representing results after four synchrotron periods,

we note that the half-integer resonance is still leading to emittance growth. The red
squares and blue triangles correspond to increasing numbers of turns. All the re-
sponse curves sharply increase below Q y = 18.5, have the peak around Q y = 18.6,
and then drop down. The highest value in the plot corresponds to 10% of emittance
growth after 13 synchrotron periods. This shows again (like in Sec. 4.5), that finite
but small gradient errors with space charge lead to finite emittance growth. De-
spite this, the overall inflicted emittance growth inside the stopband is suppressed
compared to the non-compensated scenario. For example, without the correction,
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Figure 5.11: Verification of the half-integer stop-band minimization in terms of
transverse emittance growth (color) of a bunched beam for nominal
beam parameters, before corrections on the left, after applying the lo-
cal correction scheme on the right (see text for details).
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Figure 5.12: Long-term transverse emittance growth (4, 9, and 13 synchrotron pe-
riods shown as black dots, red squares, and blue triangles) for nominal
SIS100 beam parameters of a bunched beam after applying the local
correction scheme (see text for details).
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more than 10% of emittance growth is gained during one synchrotron period at any
bare tune inside the 18.5 < Q y < 18.6 region, whereas now, after the lattice cor-
rection, the beam has the same amount of the total emittance increase only around
the linear resonance condition after 13 synchrotron periods.
This section has reviewed the three key aspects of stop-band minimization. First,

the parameters for the lattice correction have been shown. Second, we have applied
the optimal values in simulations and presented their performance. Finally, the
validation in long-term simulations has been carried out. Though the half-integer
resonance is not suppressed entirely, the overall emittance growth across the tune
diagram is strongly reduced after the lattice correction.
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6 Measurements: SIS18 studies
Throughout this work, all simulation results correspond to the example case of
SIS100 which is currently under construction. As support for the findings above, the
following chapter describes experimental studies in SIS18 at GSI. Both hadron syn-
chrotrons have a similar design with γr ≳ 1 where space charge plays a significant
role.
Figure 6.1 demonstrates the SIS18 lattice which consists of 12 identical sectors.

Black squares correspond to the dipole (bending) magnets, blue circles represent
focusing and defocusing quadrupole magnets. To compensate the gradient error
accumulated across the ring a pair of quadrupole corrector magnets (red triangles)
can be used. The horizontal bare tune Q x = 4.32, and the vertical bare tune is
placed above Q y = 3.5 to study the 7/2 half-integer resonance.
In general, the strength of two quadrupole corrector magnets can be indepen-

dently adjusted. However, throughout the experiment, both correctors are pow-
ered with the same strength albeit with the opposite sign. Such configuration is a
quadrupole corrector loop. The design beta function is identical in both locations.
Therefore, the bare tunes of SIS18 stay constant for any value of the corrector loop
strength, whereas the stop-band integral at zero intensity (described in Sec. 2) F7
changes. The energy of the 40Ar10+ bunched beam used in the experiment corre-
sponds to 8.6 MeV/u1. In this experiment, chromaticity is set to zero via sextupole
magnets. For details, see Table 6.1 and Refs. [13, 14].

1 Nominal injection energy in SIS18 is 11.4 MeV/u, it was reduced during the experiment via
UNILAC

Table 6.1: Beam and machine parameters during the experiment in SIS18

Parameter Value

Revolution frequency 186.04 kHz

Beam type bunched

Intensity 3 · 109 ≤ N ≤ 1.2 · 1010

Energy (injection) 8.6 MeV/u

RMS emittances (13.5, 6.1) mm mrad
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Figure 6.1: Layout of the SIS18 lattice: bending magnets (black squares),
quadrupoles (blue dots), and quadrupole corrector magnets which are
used in the experiment (red triangles).

6.1 Upper edge from particle losses

The following experimental setup (also referred to as the dynamic tune scan) allows
to determine the upper edge of the half-integer (7/2) resonance in SIS18 for various
intensities and settings of the machine.

While keeping all the parameters of the machine constant, the vertical bare tune
descends toward the half-integer 3.5 during' 0.1 s. The red curve in Fig. 6.2 corre-
sponds to the variation of Q y . Vertical lines (blue dashed, black dotted, and orange
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Figure 6.2: The part of the SIS18 cycle relevant for the experiment (corresponds
to the dynamic tune scan). The red curve and vertical lines show the
change of the vertical bare tune (set value in the machine) and timings
of the SIS18 cycle.

dot-dash) indicate the timings of the SIS18 cycle2: the injection from UNILAC to
SIS18, the start of Q y descent, and the tune return correspondingly. When the ver-
tical bare tune intersects the half-integer stop band, particle losses occur. This effect
can be measured using a Direct-Current Current Transformer (DCCT), for example,
like in Fig. 6.3. First, the number of particles (solid red) reaches the maximum
after the injection (dashed blue). Second, there is some particle loss between the
dashed blue and dotted black lines associated with the injection mismatch and the
bunching. Third, during the tune descent, the red curve declines sharply after the
bare tune reaches the upper edge of the half-integer stop band.
In order to determine the location of the upper edge, the loss rate 1

N
dN
dt can be

used, where the change of the number of particles N is normalized by the maximum
amount of particles (after the injection). Negative loss rates are shown with black
and red curves in Fig. 6.4 for two values of the strength of the corrector loop.
Both curves start above the half-integer stop band (on the right), stay constant un-

til the bare tune reaches the upper edge (dashed vertical lines), and rapidly ascent

2 Cycle of a synchrotron is the set of all beam processes from the injection to the extraction.
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Figure 6.3: Beam intensity as the number of particles (red curve) during the SIS18
cycle, vertical lines determine the locations of beam processes of the
SIS18 cycle.

afterward. The beam experiences significant particle losses inside the stop band.
In the case of the red line, the upper edge is reached earlier. Therefore, this con-
figuration (represented by the red line) corresponds to the scenario with a stronger
gradient error compared to the black curve.
As indicated above, the change of the strength of the corrector loop yields the

variation of the stop band while the bare tunes are constant. The scenario when the
distance between the upper edge and the half-integer is minimal corresponds to the
optimal configuration of the machine. Figure 6.5 summarizes this one-dimensional
challenge. Black dots and red squares represent the location of the upper edge
against the strength of the corrector loop for two probed intensities. Both intensities
correspond to ∆Q y

KV ' 0.01. Here, the error bars indicate only the precision of
the bare tune measurements (discussed in detail in Sec. 6.3), no systematic error
associated with the timings of the SIS18 cycle is included. To find the optimal value
of the strength of the corrector loop the interpolation by the upper branch of the
hyperbola,

fit(c1, c2, κ∗) =
Æ

c1 + c2 · (κ− κ∗)2 , (6.1)
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Figure 6.4: Example of how to get the upper edge from the dynamic tune scan. Black
and red solid lines correspond to the change of the loss-rate function
for two values of the corrector-loop strength. Dashed lines indicate the
locations of the upper edges.

is performed (black and red curves, the very right points are excluded), where c1
and c2 are free parameters, κ is the corrector-loop strength with the optimal value
κ∗. Both curves have similar behavior with the minimum approximately at −0.005
m−1. The upper edge is systematically higher in the case of N = 1.1·1010. Although
the upper edge linearly increases with space charge (as shown in Sec. 4.4), the
situation demonstrated here can also be explained by the following. In this setup,
the intensity is reduced via the change of the chopper3 time window, and the initial
transverse beam sizes are larger in the red case. Any change of the vertical bare
tune toward the half-integer leads to the increase of the vertical beam size (local
beta-function increase discussed in Sec. 2). Therefore, halo particles start leaving
the vacuum chamber at higher tunes.

3 A special device which removes halo particles of the beam
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Figure 6.5: Results of the half-integer stop-band minimization in SIS18. Black dots
and red squares indicate the locations of the upper edge of the 7/2 res-
onance in SIS18 for various values of the corrector-loop strength. Solid
lines correspond to the fit by a hyperbolic function (see text for details).

6.2 Half-integer stop band and beam size measurements

In order to separate the effects leading to the particle losses, the second experimen-
tal setup (a static tune scan) is used. In this setup, the change of Q y (shown in
Fig. 6.6 with the red curve) lasts ' 0.016 s. Next, it stays at a lower point on a
so-called “tune plateau” for ' 0.1 s (here, the probed tune Q y = 3.51). Finally,
Q y returns to the initial location. Unlike in the case of the dynamic tune scan, the
stop-band characterization via beam size measurements requires several SIS18 cy-
cles for probing different values of the vertical bare tune. This is done because the
ion beam has to be substituted by a new one after the tune plateau. Otherwise,
space-charge conditions change for different probed Q y (due to particle losses and
increase in beam sizes).

First, in this setup, the growth of the vertical beam size at a probed Q y is mea-
sured. Second, to characterize the half-integer stop band (similarly to the technique
in Sec. 4.3)∆σ/σ in the vicinity ofQ y = 3.5 are compared. Suchmeasurements are
usually performed in hadronmachines using Ionization ProfileMonitors (IPM) [93].
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This device consists of amicro-channel plate and awire array (64wires in this setup)
behind the plate. When a beam passes through the IPM it ionizes the residual gas
inside the vacuum chamber. Due to a transverse electric field, the ionized gas moves
towards the micro-channel plate. Next, residual gas ions hit the plate which emits
electrons in the direction of the wire array. The accumulated charge on wires cor-
responds to the readout signal.
The example of the beam size measurements during the static tune scan is illus-

trated in Fig. 6.7. Black dots and red squares represent wire signals before and
after the tune plateau correspondingly. Transverse beam profiles are assumed to be
Gaussian-like. Therefore, the vertical beam size can be computed via the fit with
the function,

signal=
A · N
kσ

exp

�
− (k− k0)2

k2
σ

�
+ C , (6.2)

where kσ is the vertical beam width (counted in the number of wires), N is the
number of particles in the ion beam, parameters A, k0, and C are the amplitude,
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Figure 6.7: Vertical beam profiles as wire signals of the IPM (black dots and red
squares) before and after the tune plateau respectively (see text for de-
tails) of the static tune scan. Solid curves show the fit by the normal
distribution function.

the mean value, and the constant shift respectively. The total amplitude of the
signal is proportional to the number of particles in the beam. Such manipulation
allows to take into account the change of the peak current associated with beam
losses. The distance between wires in the array is 2 ·10−3 m. Therefore, the vertical
beam size is simply σy = kσ · 2 · 10−3 m. The sensitivity of the micro-channel plate
behind the central wires (k ' 30) is deficient at relatively small intensities of the ion
beam [94]. As a result, after the losses on the tune plateau, signals on the central
wires (k = 29, 30, 31) are expected to be imprecise (three central red squares).
Consequently, they are excluded from the analysis.
We define vertical beam-size growth as

∆σ/σ = (σ0 −σ1)/σ0 , (6.3)

as the value accumulated during the tune plateau, where σ0 is measured before the
tune descent, and σ1 after the tune ascent. Alternatively, σ0 and σ1 can be mea-
sured at the start and at the end of the tune plateau4. We define beam-size growth

4 The transverse beam profile measurement lasts around 0.01 s.
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Figure 6.8: Results of beam size measurements,∆Q y
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dots show the change of the vertical beam size for three different values
of the corrector-loop strength against the vertical bare tune.

in this way to exclude the influence of lattice functions (local values of the beta-
function, for example) because σ0 and σ1 are measured at the same vertical tune
and lattice functions. Ideally, turn-by-turn IPM measurements throughout the tune
plateau can mimic the emittance-growth technique defined in Sec. 4.3. However,
this setup is not available in SIS18.
First, we demonstrate in Fig. 6.8 that the optimum value of the corrector-loop

strength found in Sec. 6.1 entails a smaller half-integer stop-band width and, con-
sequently, smaller transverse-beam-size growth. For equivalent conditions at injec-
tion (the number of particles and transverse beam sizes yielding ∆Q y

KV = 0.011),
the strength of the corrector loop is changed from zero to negative values. As shown
above, κ∗ ' −0.005, which results here in the reduction of vertical beam size growth
with a factor of two approximately.
Next, Fig. 6.9 demonstrates the response of the vertical beam size growth to the

vertical bare tune Q y for various values of space charge (due to the intensity varia-
tion in UNILAC).
Black dots, red upward triangles, blue squares, and orange downward triangles

correspond to the values of vertical-beam-size growth∆σ/σ obtained with increas-
ing space charge. Similar to the technique described in Sec. 4.3, a threshold deter-
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Figure 6.9: Results of beam size measurements, the strength of the corrector loop is
zero. Black dots, red upward triangles, blue squares, and orange upward
triangles show the change of the vertical beam size for increasing space
charge against the vertical bare tune.

mines the location of the upper edge. However, more data points for different Q y
(for all probed intensities) are required to acquire a desirable resolution.

6.3 Calibration of betatron tunes

Gradient errors randomly distributed across the SIS18 lattice results in a betatron
tune shift (F0, see Sec. 2.3). Therefore, the actual values of the vertical bare tunes
in the machine alter from the values set by the control system (Q x , set, Q y, set). In
order to avoid a systematic error in the stop-band characterization, bare tunes are
calibrated.

6.3.1 Beam Position Monitor

To measure the transverse offset of a beam at the location s0 in a synchrotron, a
Beam Position Monitor (BPM) can be used. This device consists of two pairs of
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Figure 6.10: Schematic example of a Beam Position Monitor. The beamwith a trans-
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parallel plates. When a beam passes through the BPM, image charges are induced
on each plate and consequently integrated as readout signals VL , VR, VU , VD.
Let us consider a beam with a relatively large vertical offset as shown in Fig. 6.10.

Then, VU − VD > 0, and VR ' VL . Thus, the horizontal offset,

〈x〉= Mx
VR − VL

VR + VL
, (6.4)

and the vertical beam offset,

〈y〉= My
VU − VD

VU + VD
, (6.5)

are reconstructed using a linear approximation, where Mx and My are calibration
constants. Here, 〈·〉 is the averaging over a beam distribution, which indicates that
a BPM in this setup records a dipolar signal.
In SIS18, 12 BPMs [95] are used for closed-orbit control and correction. Also,

horizontal and vertical bare tunes Q x and Q y can be measured using BPMs. First,
an external excitation in the vertical plane provides coherent dipolar oscillations
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Figure 6.11: Example of vertical bare tune measurements using a BPM. Vertical lines
indicate the timings of the SIS18 cycle. The yellow color shows the
location of the vertical bare tune in SIS18 throughout the experiment.

of the beam. Then, a BPM records the vertical beam offset each turn which is
approximately

〈y〉(k) = A0 cos(2πQ y k+ϕ0) , (6.6)

where k is the turn index, constants A0, ϕ0 depend on the excitation strength and
the location of the BPM. This approximation is valid when the motion in the trans-
verse plane is decoupled, and the intensity is relatively small to avoid decoherence
effects [96]. Also, A0 should be large enough to increase the signal-to-noise ratio,
albeit it should be relatively small to prevent nonlinearities.
The maximum of Fourier spectrum of such a signal corresponds to the fractional

part of the vertical bare tune. The spectrum can be computed using Fast Fourier
Transform (FFT). The precision of the tune measurements scales with the number
of turns K in the recording as 2/K [97]. As a result, the change of the vertical
bare tune throughout the synchrotron cycle (for example, shown in Fig. 6.6) can be
monitored using BPMs.
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in the machine (see text for details).

6.3.2 Measurements of betatron tunes

Figure 6.11 depicts the change of Q y during the static tune scan for the probed
vertical tune Q y = 3.51. First, the injected beam (at 0.3 s, the blue dashed line) is
coasting. In this regime of turn-by-turn recording, BPMs operate only with bunched
beams. Therefore, the signal appears only after the bunching. Also, as mentioned
above, only the fractional part of the tune can be reconstructed.
Figure 6.12 displays the measurement results for all probed values of Q y . Mea-

sured points are shown with black dots. The linear interpolation (the red solid line)
defines a simple calibration procedure,

Q y =Q y, set + 0.01 , (6.7)

in the SIS18 synchrotron.
Next, it is important to validate that the shift of the horizontal and vertical bare

tunes ∆Q(κ) = − F0
2 does not break the procedure of finding the optimal value of

the corrector-loop strength κ. This tune shift amounts to

∆Q(κ)∝ κ (β(s1) cos(2πµ(s1) · 0)− β(s2) cos(2πµ(s2) · 0)) , (6.8)
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Figure 6.13: Change of horizontal (blue) and vertical (red) bare tunes for three
different strengths of the corrector loop. Solid lines are computed in
MAD-X.

where s1 and s2 are the locations of quadrupole corrector magnets in the SIS18
lattice. In the model, these magnets have equivalent beta-functions, whereas due
to randomly distributed gradient errors in the SIS18, β(s1)' β(s2).

Figure 6.13 demonstrates the change of the bare tunes∆Q x , y(κ)with the change
of the corrector-loop strength. Blue and red points in Fig. 6.13 are measured hori-
zontal and vertical bare tunes in the SIS18 synchrotron when solid lines correspond
to the change of bare tunes in the numerical model.

Applying κ = ±0.01 shifts the vertical bare tune Q y (red dots) downwards on
the level of ≲ 0.01. On contrary, the location of the upper edge moves upwards
at the same and increasing values of |κ| according to Fig. 6.5. The shift of the
upper edge of the vertical stop band amounts to ≳ 0.015, and ∆Q(κ) becomes
relevant at |κ| > 0.011 increasing the error of the fitting by the function expressed
in Eq. (6.1). However, at moderate values of |κ| the fit is acceptable. Therefore,
we recommend to accurately calibrate either the corrector-loop setup (including the
ratio of β(s1)/β(s2)) or the location of the upper edge using the BPMmeasurements.
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6.4 Results of the experiment

In this chapter, we demonstrate how to characterize the half-integer stop band using
experimental data. Two approaches (dynamic and static tune scan) are proposed
and applied. Although the static tune scan allows to accurately characterize the
half-integer stop band, the dynamic one is more suitable for lattice optimization.
First, the dynamic tune scan requires only one cycle, and hence it is more time-
efficient. Second, the optimal settings of a synchrotron insignificantly deviate with
space charge (discussed in detail in Chapter 5). Nevertheless, for the accurate esti-
mation of the space charge limit, only the static tune scan can be used.
The SIS18 lattice is optimized using the corrector loop setup. Although the dis-

tance between the upper edge and the half-integer decreases only on ≤ 0.01 (be-
tween the optimum and zero) at space charge corresponding to ∆Q y

KV ' 0.01, this
correction can play a vital role at the FAIR intensities (discussed in Sec 4.6). There-
fore, a dedicated experiment is required to estimate the space-charge limit in SIS18
using the static tune scan.
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Conclusions and Outlook
This study characterizes the half-integer stop band for coasting and bunched beams
in hadron synchrotrons. The quantitative framework for the characterization is
based on 2D and 3D simulation models with self-consistent space charge and is
tested in a dedicated experiment in SIS18. Throughout this work, heavy-ion syn-
chrotrons SIS18 and SIS100 at GSI and FAIR complexes serve as example cases, but
the findings can be applied to other hadron synchrotrons. In this study, the rele-
vant stop-band widths are compared for varying gradient errors and space-charge
strengths.
As one of the main findings, the stop-band characterization provides insights for

choosingworking points free of half-integer resonance impact. Coasting beam simu-
lations establish the connection to existing analytical studies, for example, Refs. [47,
49]. While the lower and upper edges of the stop band for KV coasting beams
are known to run parallel to the linear resonance condition, the stop-band width
for Gaussian-distributed coasting beams is found to widen with increasing space
charge. In this case, the upper edge of the half-integer stop-band width linearly in-
creases with space charge and gradient errors with a stronger slope than the linear
resonance condition determined in Ref. [49], which depends only on space charge.
For bunched beams, simulations over several synchrotron periods in Sec. 4.5 con-

firm that the stop-band characterization remains valid on longer time scales, rele-
vant for realistic synchrotron operation. Periodic synchrotron motion is shown to
result in continuous emittance growth.
In SIS100, choosing a working point outside the identified stop band ensures that

the bunched beam is subject to an emittance growth below the chosen threshold
during the injection plateau (here 80% over one second). Further, the influence of
the synchrotron tune is investigated, with smaller Qs reducing the total emittance
growth for a given instant of time. As a key application, we determine the intensity
limit given by the half-integer stop band. We show that the correction of the half-
integer resonance increases the intensity limit. The improvement is verified in long-
term simulations. We demonstrate how, using experimental data, the stop-band
characterization can be implemented to optimize the lattice and estimate the space-
charge limit.
The simulation study for Gaussian bunches over long-term time scales (several

synchrotron oscillation periods) resulted in several new insights of practical rel-
evance to existing and future synchrotrons. First, unlike in the case of coasting
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beams, the resonance-free area between the bare half-integer tune and the lower
stop-band edge vanishes. Second, even a relatively small gradient error (resulting
in a zero-space-charge stop-band width of just ' 10−3) can considerably reduce
the maximally achievable bunch intensity (in the SIS100 example by a factor ' 2).
We note that this effect, whilst absent in classical discussions of the space-charge
limit, must be taken into account under realistic synchrotron operation conditions.
Third, the reduction of the half-integer stop band via lattice correction, computed
without space charge, is found to also be optimal under finite space charge con-
ditions. Therefore, conventional lattice correction tools are well suited to increase
the gradient-error-induced space-charge limit of a synchrotron.
Future work can address the following aspects. While for simplified beam distri-

butions, the upper stop-band edge is known to run parallel to the linear resonance
condition for increasing space charge, we found a steeper and more limiting slope
for realistic distributions. The nature of the emittance-growth mechanism at the up-
per edge is, therefore, an intriguing question to be explored further. At this point,
also the impact of chromatic detuning should be scrutinized as a secondary effect
on the extension of the upper stop-band edge. Additionally, a natural progression
of the present study is to accurately determine the space-charge limit in SIS18 due
to the half-integer resonance using experimental data.
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