
Modular Collaborative Program Analysis

vom Fachbereich Informatik
der Technischen Universität Darmstadt

genehmigte

Dissertation

zur Erlangung des akademischen Grades eines

Doktor-Ingenieurs (Dr .-Ing .)

vorgelegt von

Dominik Helm

geboren in Aschaffenburg

Gutachter

Prof. Dr.-Ing. Mira Mezini
Technische Universität Darmstadt

Prof. Dr. Karim Ali
University of Alberta

Darmstadt 2023

Dominik Helm: Modular Collaborative Program Analysis
Darmstadt, Technische Universität Darmstadt
Tag der mündlichen Prüfung: 09.02.2023

Jahr der Veröffentlichung der Dissertation auf TUprints: 2023

URN: urn:nbn:de:tuda-tuprints-232206

Veröffentlicht unter CC BY-SA 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/

A B S T R A C T

With our world increasingly relying on computers, it is important
to ensure the quality, correctness, security, and performance of soft-
ware systems. Static analysis that computes properties of computer
programs without executing them has been an important method to
achieve this for decades. However, static analysis faces major chal-
lenges in increasingly complex programming languages and software
systems and increasing and sometimes conflicting demands for sound-
ness, precision, and scalability. In order to cope with these challenges,
it is necessary to build static analyses for complex problems from
small, independent, yet collaborating modules that can be developed
in isolation and combined in a plug-and-play manner.

So far, no generic architecture to implement and combine a broad
range of dissimilar static analyses exists. The goal of this thesis is
thus to design such an architecture and implement it as a generic
framework for developing modular, collaborative static analyses. We
use several, diverse case-study analyses from which we systematically
derive requirements to guide the design of the framework. Based on
this, we propose the use of a blackboard-architecture style collabo-
ration of analyses that we implement in the OPAL framework. We
also develop a formal model of our architecture’s core concepts and
show how it enables freely composing analyses while retaining their
soundness guarantees.

We showcase and evaluate our architecture using the case-study
analyses, each of which shows how important and complex problems
of static analysis can be addressed using a modular, collaborative im-
plementation style. In particular, we show how a modular architecture
for the construction of call graphs ensures consistent soundness of
different algorithms. We show how modular analyses for different
aspects of immutability mutually benefit each other. Finally, we show
how the analysis of method purity can benefit from the use of other
complex analyses in a collaborative manner and from exchanging dif-
ferent analysis implementations that exhibit different characteristics.
Each of these case studies improves over the respective state of the art
in terms of soundness, precision, and/or scalability and shows how
our architecture enables experimenting with and fine-tuning trade-offs
between these qualities.

iii

Z U S A M M E N FA S S U N G

Unsere Welt hängt zunehmend von Computern ab. Daher ist es wich-
tig, die Qualität, Korrektheit, Sicherheit und Leistung von Software-
systemen sicherzustellen. Statische Analyse, die Eigenschaften von
Computerprogrammen berechnet, ohne sie auszuführen, ist seit Jahr-
zehnten eine wichtige Methode, um dies zu erreichen. Jedoch steht
statische Analyse vor großen Herausforderungen aufgrund zuneh-
mend komplexer Programmiersprachen und Softwaresysteme und
zunehmenden und teils einander widersprechender Anforderungen an
Vollständigkeit, Präzision und Skalierbarkeit. Um mit diesen Heraus-
forderungen umzugehen, ist es nötig, statische Analysen für komplexe
Probleme aus kleinen, unabhängigen, aber miteinander kollaborieren-
den Modulen aufzubauen, die getrennt voneinander entwickelt und
anschließend flexibel kombiniert werden können.

Bisher existiert keine generische Architektur, um ein breites Spek-
trum an unterschiedlichen statischen Analysen zu entwickeln und zu
kombinieren. Das Ziel dieser Arbeit ist daher, eine solche Architektur
zu entwerfen und als ein generisches Framework für die Entwick-
lung modularer, kollaborativer statischer Analysen zu implementieren.
Wir nutzen mehrere verschiedenartige Fallstudienanalysen von de-
nen ausgehend wir systematisch Anforderungen ableiten, um die
Gestaltung des Frameworks zu leiten. Basierend darauf schlagen wir
vor, Analysen ähnlich einer Blackboard-Architektur kollaborieren zu
lassen. Diesen Ansatz verwirklichen wir im OPAL Framework. Wir
entwickeln außerdem ein formales Modell der Kernkonzepte unserer
Architektur und zeigen damit, wie Analysen frei miteinander kombi-
niert und dabei ihre Korrektheitsgarantien erhalten werden können.

Wir präsentieren und evaluieren unsere Architektur anhand der
Fallstudienanalysen, von denen jede zeigt, wie wichtige und komple-
xe statische Analysen modulare und kollaborative umgesetzt werden
können. Konkret zeigen wir, wie eine modulare Architektur für die
Berechnung von Methodenaufrufgraphen eine konsistente Vollständig-
keit verschiedener Algorithmen sicherstellt. Wir zeigen, wie modulare
Analysen für verschiedene Ausprägungen von Unveränderbarkeit
gegenseitig voneinander profitieren. Schließlich zeigen wir, wie die
Analyse von Seiteneffektfreiheit von Methoden davon profitieren kann,
Ergebnisse anderer komplexer Analysen kollaborativ zu nutzen, so-
wie davon, verschiedene Varianten der Analyse, die unterschiedliche
Charakteristiken aufweisen, gegeneinander austauschen zu können.
Jede der Fallstudien stellt eine Verbesserung gegenüber dem Stand der
Technik in Bezug auf Vollständigkeit, Präzision und/oder Skalierbar-
keit dar und zeigt, wie unsere Architektur es ermöglicht, Zielkonflikte
zwischen diesen Eigenschaften zu studieren und feinabzustimmen.

iv

A C K N O W L E D G M E N T S

Submitting a dissertation marks the end of a journey. As with all
journeys, it is not so much the destination that matters or even the
route you took, but the people that went the way with you. With this,
I want to thank them, because I would not be here today without each
one of them.

First of all, I want to thank my advisor Mira Mezini. Mira, it was an
honor and a pleasure to work with you. You always gave me the room
to pursue my research interests and your feedback and contributions
to my publications were invaluable. Now I am one of your long list of
graduates, and I can only hope to be as successful as many of them.

I also want to thank my second examiner Karim Ali. Karim, you
were very supportive of my work, putting my mind at ease for the
defense. I hope you enjoyed reading this thesis. Thanks also to Reiner
Hähnle, Kristian Kersting, and Christian Reuter for serving on my
committee.

Thanks to Gudrun Harris, who was tough on the outside, for making
everything possible in administration, but always had a warm heart
for all of us, and to Claudia Roßmann who too always has our backs.

Thanks to Michael Eichberg whose supervision of my master’s
thesis and continued support made me realize that I want to pursue
a PhD and Ben Hermann, who first got me into static analysis when
supervising my bachelor’s thesis. Special thanks to Martin Kühnert,
the high school teacher who played a key role in my decision to study
computer science. Martin, you passed away way too early, but you
will always be remembered.

Thanks, of course, to my other co-authors, Philipp Haller, Sven
Keidel, Jan Thomas Kölzer, Florian Kübler, Michael Reif, Tobias Roth,
and Guido Salvaneschi. Without you, this thesis would never have
been written. Thanks to the rest of our language security group, Lars
Baumgärtner, Leonid Glanz, Patrick Müller, Krishna Narasimhan, and
Anna-Katharina Wickert. You have become not just colleagues, but
friends. Thanks also to everyone else who helped proofreading this
thesis: my colleagues Matthias Eichholz, Ragnar Mogk, and Daniel
Sokolowski, and my friends Lilith Babilon, Frederik Fleißner, David
Reis, and Lukas Sommer. I am grateful for your help and for all of the
discussions and the feedback you gave me during these years. I cannot
list everyone else I met over these years at the Software Technology
Group, but to all of my present and former colleagues and to the
students I had the pleasure to supervise: I am glad to have met you
and to have worked with you.

v

Thanks to the Studienstiftung des deutschen Volkes. I am thankful
for the financial support, but what mattered much more were the
numerous summer schools, workshops, and other activities: the things
I learned there and the wonderful people I met.

Thanks to the people of the DPSG Stockstadt Stamm Mauritius, you
were home to me for more than two decades, and scouting was my
counterbalance to academia. I have learned so much more from and
with you than universities could teach and more than I could ever
give back.

Last but not least, I want to thank my family. My grandparents
Heinz, Helga, Maria, and Stani, who sparked my interests and always
supported me in everything I did. In particular, I got into programming
with the books and Commodore 64 of my grandfather. My final thanks
belong to my parents: my father Stefan, who always got my back, and
my mother Christine, probably the only person to have read every
single word of this thesis. I am grateful for your support and for every
minute with you.

Submitting a dissertation marks the end of a journey, but it also
marks the beginning of a new one. I know I will meet more wonderful
people, but I also know I can count on your continued support what-
ever I do. Thank you all for this, it was your journey just as well as
mine, and it would not have been successful without you.

vi

C O N T E N T S

1 Introduction 1

1.1 Challenges for Static Analyses 2

1.2 Need for Modular, Collaborative Static Analyses 7

1.3 Problem Statement 9

1.4 Contributions of this Thesis 10

1.5 Structure of this Thesis 12

1.6 Publications 13

1.7 My Contributions 17

I Approach
2 Terminology and Requirements 23

2.1 Terminology 23

2.2 Requirements 24

3 Architecture 31

3.1 Overview 31

3.2 Representing Properties 31

3.3 Analysis Structure 32

3.4 Declarative Specifications 34

3.5 Reporting Results 36

3.6 Execution Constraints 36

3.7 Fixed-Point Computation 37

3.8 Scheduling and Parallelization 38

3.9 Summary 39

4 Alternative Implementation in Reactive Async 41

4.1 Programming Model Basics 41

4.2 Advanced Constructs for Correctness 43

4.3 Handler Pool 45

4.4 Scheduling 46

4.5 RA2 at Work 49

4.6 Summary 52

5 Formalization 53

5.1 Formal Definition 55

5.2 Compositional Soundness Proofs 58

5.3 Reusable Soundness Proofs 61

5.4 Applicability of the Theory 65

5.5 Summary 75

6 Related Work 77

6.1 Blackboard Systems 77

6.2 General Purpose Analysis Frameworks 78

6.3 Declarative Analyses Using Datalog 79

6.4 Attribute Grammars 80

6.5 Abstract Interpretation 81

vii

contents viii

6.6 Imperative Approaches 83

6.7 Reactive Frameworks for Static Analyses 85

6.8 Parallel Static Analyses 86

6.9 Summary 87

II Case Studies
7 Intermediate Representation Based on Abstract Interpretation 95

7.1 State of the Art 95

7.2 Approach 96

7.3 Summary 100

8 Collaborative Call-Graph Construction 101

8.1 Problem Statement 104

8.2 State of the Art 106

8.3 Unimocg Modular Architecture 109

8.4 Summary 116

9 Modular Immutability Analyses 117

9.1 State Of The Art 119

9.2 Model 123

9.3 CiFi: Analysis Implementation 128

9.4 CiFi-Bench 132

9.5 Validation 133

9.6 Summary 138

10 Modular Purity Analysis 139

10.1 State of the Art 140

10.2 Model 144

10.3 Purity Analysis 151

10.4 Validation 157

10.5 Summary 159

III Evaluation
11 Applicability and Modularity 165

11.1 Support for Various Analyses 165

11.2 Support for Modular Call Graphs 166

11.3 Effects of The Exchangeability of Analyses 167

11.4 Implementation Based on Reactive Async 169

11.5 Summary 170

12 Precision and Soundness 171

12.1 TACAI 171

12.2 Unimocg 174

12.3 CiFi 179

12.4 OPIUM 182

12.5 Summary 184

13 Scalability, Parallelization and Scheduling 187

13.1 Parallelization 187

13.2 Benefits of Specialized Data Structures 188

13.3 Scheduling Strategies 189

contents ix

13.4 Scalability of the Case-Study Analyses 193

13.5 Summary 200

IV Conclusion
14 Summary of Results 205

15 Future Work 209

15.1 Expanding Framework Scope and Applicability 209

15.2 Further Scalability Improvements 211

16 Closing Discussion 215

V Appendix

Bibliography 229

1
I N T R O D U C T I O N

The world around us is driven by software: the most critical infrastruc-
tures that we rely on, including law enforcement, financial systems,
and public and personal health, all depend on the correct operation of
complex software systems. From data centers to the supercomputers
in our pockets that smartphones are to household appliances and
implanted devices, software has become ubiquitous in our lives. This
makes our societies vulnerable both to the ever-growing threat of mal-
ware crafted to intentionally harm us and to malfunctions of benign
software.

Static analysis is an important method that allows us to find and
prevent errors in software, mitigating the risks of malware and mal-
functions alike [10]: it automatically computes properties of software
without executing it. As such, it is used for a wide range of applica-
tions: In integrated development environments (IDEs), static analyses
provide information to developers to understand their programs and
mitigate problems early during software development [70]. Such in-
formation may include, e.g., the callers or callees of methods [83] or
potential bug,s such as unclosed resources or uninitialized values [19].
In program verification, static analysis extracts the information nec-
essary to prove a program’s adherence to a given specification [143,
235]. It also plays a major role in dissecting software to find security
risks, e.g., by identifying data that can be controlled by an attacker in
such a way as to exploit vulnerabilities [39, 55], or privacy concerns,
e.g., by tracking whether private data can be sent via network connec-
tions [147]. Static analysis can identify malware [177], in particular, if
malicious application behavior is obfuscated and thus hidden [205].
Finally, static analysis can help to improve software performance: in
optimizing compilers, it discovers potential for optimizations, such
as dead code that can be removed [63], expressions that can be sim-
plified [3, 11], or virtual method calls that can be replaced with static
ones [113].

Modern static analyses face many challenges that can be addressed
by a modular, collaborative approach where decouple sub-analyses
interact to solve complex problems. The goal of this thesis is to develop
a framework for modular, collaborative static analyses in order to aid
their soundness, precision, and scalability and foster fine-tuning the
trade-offs between these qualities.

1

1.1 challenges for static analyses 2

1.1 challenges for static analyses

Three sources of complexity particularly impact static analyses: com-
plex programming language features, complex analysis problems, and
complex trade-offs.

As a running example to illustrate all of them, consider the most
recent example of the global extent of the threats posed by complex
software systems, the log4shell vulnerability [220]. In 2021, it was esti-
mated to have affected hundreds of millions of devices [211] including
93% of cloud environments [152] using the popular log4j logging li-
brary. Importantly, the issue was not intentional malevolence. Instead,
it was the result of a complex interaction of subsystems that all indi-
vidually worked as designed: Vulnerable versions of log4j allowed for
log message strings to contain placeholders that could be dynamically
substituted. One supported method of substitution was the use of the
Java Naming and Directory Interface (JNDI) that in turn allowed the use
of the Lightweight Directory Access Protocol (LDAP), which could then
be used to load arbitrary code from remote sources and subsequently
execute it in the context of the original process [80].

complex programming language features Modern pro-
gramming languages include a multitude of features that extend
beyond the language’s core semantics. These additional features add
complexity that is often difficult to analyze for static analyses [236].
Also, language features are not set in stone but evolve with time.
This requires static analyses to be kept up to date continuously with
programming language evolution.

Programming language features that impact static analyses include,
among others, reflection [27, 136], (de-)serialization [203], concur-
rency [191], and implicit control flow [16]. Obfuscation, a multitude of
techniques explicitly designed to complicate manual and automated
static analysis [184, 212], is also often used [71, 241]. These difficulties
posed by these features are exacerbated by the fact that they interact
with each other. This forces static analysis developers to not only
deal with each feature individually but to consider their possible in-
teractions. As an example, deserializing program state can lead to
dynamically loading classes on which then code is executed reflec-
tively which has to be taken into account when statically analyzing
what code is executed.

Consider reflection as an example of a programming language fea-
ture that is particularly problematic for static analyses [136]: reflection
allows programs to introspect and change their own state and behavior.
This is usually done using strings to access programming language
constructs such as classes, methods, or fields. As these strings can
come from arbitrary sources and can be created at runtime, it is dif-
ficult for static analyses to determine which constructs are accessed.

1.1 challenges for static analyses 3

Reflection can also dynamically load and execute additional code
unknown to static analyses. This leaves static analysis developers with
only few choices that each have severe drawbacks: They can ignore
the effects of reflection, leaving their analyses unsound, i.e., unable
to reason about all possible executions of the program, and thus
incapable of providing trustworthy information about the program.
Alternatively, they can over-approximate reflective code, rendering
the analysis imprecise, i.e., taking into account many program execu-
tions that are not actually possible. Imprecise analyses generate false
positive results that not only are not helpful to the analysis’ user but
can actually be detrimental as they divert attention away from actual
issues. Finally, analysis developers can try to identify the reflective
constructs as precisely as possible, but this is a complex endeavor
and, in the case of strings that are fully created at runtime, not always
possible. To make matters worse, reflection often allows circumventing
programming language mechanisms that restrict access to particu-
lar constructs, such as visibility (e.g., private) or immutability (e.g.,
final) modifiers. This additionally complicates static analyses as they
cannot trust these modifiers at all if they can be circumvented by code
that could be anywhere in a program. That is, the mere presence of
reflection anywhere in the program can invalidate assumptions in
other, unrelated parts of the program.

The log4shell example above shows how these complexities affect
static analyses: The messages logged by log4j are strings created at
runtime that can potentially be controlled by an attacker. Their content
is then used to alter the program’s behavior, loading code through a
network connection. Finally, this code, which is not available to static
analysis, is executed reflectively in the original process. Thus, finding
this vulnerability using static analysis is hard, as assumptions about
the potential content of strings at runtime have to be made as well as
assumptions about the code loaded from the network and executed
reflectively.

To further highlight how much complex language features affect
static analyses, consider Table 1.1 (taken from Chapter 8). It shows the
results of a benchmark test suite that assesses whether call-graph algo-
rithms (i.e., static analyses that compute method-calling relationships)
such as Class-Hierarchy Analysis (CHA) or Rapid Type Analysis (RTA)
in the state-of-the-art Java static analysis frameworks WALA [111] and
Soot [238] are sound in handling different language features. The ta-
ble gives the number of test cases passed for each feature by each
algorithm, showing sound handling of a particular use of a language
feature. While some language features like standard virtual calls are
handled soundly in all frameworks, more complex features like reflec-
tion show large differences between analyses and other features like
dynamic class loading are not handled soundly at all. Features recently
introduced into the Java Virtual Machine (JVM) such as method han-

1.1 challenges for static analyses 4

Table 1.1: Soundness of Call Graphs for Different Java Features

WALA Soot

Feature CHA RTA 0-CFA CHA RTA SPARK

Non-virtual Calls 6/6 6/6 6/6 G# 5/6 G# 5/6 G# 5/6

Virtual Calls 4/4 4/4 4/4 4/4 4/4 4/4

Types 6/6 6/6 6/6 6/6 6/6 6/6

Static Initializer G# 4/8 G# 7/8 G# 6/8 8/8 8/8 8/8

Java 8 Interfaces 7/7 7/7 7/7 G# 3/7 G# 3/7 G# 3/7

Unsafe 7/7 7/7 # 0/7 7/7 7/7 # 0/7

Invokedynamic # 0/16 G# 10/16 G# 10/16 G# 10/16 G# 10/16 G# 10/16

Class.forName G# 2/4 4/4 4/4 4/4 4/4 4/4

Reflection G# 2/16 G# 3/16 G# 6/16 G# 12/16 G# 11/16 G# 10/16

MethodHandle G# 2/9 G# 2/9 # 0/9 G# 3/9 G# 3/9 G# 1/9

Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4 # 0/4

DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

JVM Calls G# 2/5 G# 3/5 G# 3/5 G# 4/5 G# 4/5 G# 3/5

Serialization G# 3/14 G# 1/14 G# 1/14 G# 5/14 G# 5/14 G# 1/14

Library Analysis G# 2/5 G# 2/5 G# 1/5 G# 2/5 G# 2/5 G# 2/5

Sign. Polymorph. # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7

Java 9+ 2/2 G# 1/2 G# 1/2 G# 1/2 G# 1/2 G# 1/2

Non-Java 2/2 2/2 2/2 2/2 # 0/2 # 0/2

Sum (out of 123) 51 (41%) 65 (53%) 57 (46%) 76 (62%) 75 (61%) 60 (49%)

Soundness: all , some G#, or no # test cases passed soundly

dles and signature polymorphic methods are also barely supported
even though they are posed to replace tradition reflection [42], high-
lighting the need for continuous evolution of static analyses. Thus,
results from these analyses are of unknown trustworthiness for pro-
grams using reflection and cannot generally be trusted at all for pro-
grams using class loading. This is concerning given the large number
of programs that make use of reflection: Landman et al. [136] found
that 96% of the Java projects they studied made some use of it and
78% made use of parts of the Java reflection API that are particularly
hard to analyze, and Dong et al. [71] found reflection in about half of
the studied Android applications.

complex analysis problems Not only the programs that are
analyzed are complex, but the problems to be solved and questions to
be answered by static analyses today are complex themselves. They
often require solving a multitude of different sub-problems that all
have to be reasoned about by the static analysis (e.g., [33]), increasing
its complexity. Dependencies between sub-problems can be complex as
well; in particular, they must be solved simultaneously if they cyclically

1.1 challenges for static analyses 5

Purity

ClassImmutability

FieldImmutability
TypeImmutability

FieldAssignability

IREscape FieldLocality

ReturnValueFreshness

CallGraph

Points-To

InstantiatedTypes

Reflection

Threads

Serialization

Finalizer

Figure 1.1: Dependencies Between Sub-problems for a Purity Analysis

depend on each other. This requires different parts of the static analysis
dealing with different sub-problems to exchange intermediate results
and to improve upon these until a final solution is found. Analysis
developers have to keep these interactions in mind at all times.

For example, many of today’s static analysis problems are interpro-
cedural, i.e., they require not only local information from one method
but to consider multiple methods and the call relationships between
them. Thus, to solve the actual problem, these static analyses first need
to construct a call graph that captures these method-call relationships.
However, constructing call graphs faces different sub-problems in
itself due to complex language features depending cyclically on each
other, as described above.

As an illustration of a complex analysis problem, consider once
again the running example of log4shell. Identifying the vulnerability
might have to include solving multiple distinct analysis problems: con-
structing a call graph is needed to discover the connections between
the different methods from the logging method to the substitution pro-
cess to the protocol handlers. A dataflow analysis is necessary to find
that data in the log message can influence the executed protocol han-
dlers and that code loaded from the network might be used reflectively.
Analysis of reflective code might be required to see that the untrusted
code can actually be executed. These analysis problems are all differ-
ent from each other and may require different approaches to solve
them, yet an analysis to identify the vulnerability needs to incorporate
them all at the same time and also consider their interactions.

Figure 1.1 shows another example of interdependent sub-problems
of an analysis: for the seemingly simple task of a purity analysis,
i.e., an analysis that checks whether methods have side effects and
behave deterministically, several sub-problems arise. We built such
a purity analysis as a case study in Chapter 10. As for all interpro-
cedural analyses, a call graph is required. Thus, the sub-problems
mentioned above for call-graph construction must also be solved. In

1.1 challenges for static analyses 6

addition to that, the purity analysis relies on information from several
immutability [180] and escape [40] analyses with complex, sometimes
cyclic, interdependencies. These in turn use the results of a points-to
analysis [78] that has a mutual dependency with the call graph.

complex trade-offs Finally, static analysis developers face the
problem of balancing between a static analysis’ three most important
qualities—soundness, precision, and scalability [114]:

• Soundness means that the analysis reasons about all potential
dynamic program executions. This is important for analysis
results to be dependable, which is necessary, e.g., for compiler
optimizations that must not alter the behavior of the program,
but also for the analysis of software to be used in critical systems.
An analysis is said to be more (empirically [214]) sound if it
reasons about more potential dynamic executions.

• Precision means that the analysis reasons only about program
executions that can actually occur dynamically. This is important
for analysis results to be useful in directing attention to actual
issues. Programmers have been found to not engage with static
analyses if they produce too many false alarms [19, 198].

• Scalability, lastly, is about the practicability of using static analy-
ses at a large scale. Considering that, e.g., the Google Play Store
as the main source for software on Android devices has around
2.7 million apps available [7] and the Maven Central repository
has almost 30 million software artifacts [158], even small im-
provements in analysis scalability can incur large savings in the
time, cost, and resources required to conduct comprehensive
analyses.

Often, these qualities are in conflict with each other, resulting in
complex trade-offs, e.g., an analysis can be made more sound by
over-approximating more coarsely, but that can reduce precision by
considering more program states that cannot be reached in actual
program execution. Improved soundness can also hamper scalability
if additional program states have to be reasoned about [214, 236]. Full
soundness is often hard to achieve, at least while maintaining reason-
able levels of precision and scalability. Thus, analysis developers may
have to make choices to unsoundly handle programming language
features like reflection that pose a challenge for static analysis. Analy-
ses that are unsound deliberately and in a well-documented way are
called soundy [149]. Similar arguments can be made about precision
that can hurt soundness through under-approximation as well as scal-
ability through more complex analyses but can also benefit scalability
if it leads to fewer states to be analyzed [26]. These trade-offs get more
important yet even more complex if analyses themselves get more

1.2 need for modular , collaborative static analyses 7

complex as, e.g., changing the precision with which one sub-task is
handled can affect the soundness, precision, or scalability of other
sub-tasks in unexpected ways.

Considering our running example of log4shell, these trade-offs be-
come apparent: Given the impact of the vulnerability, it is important
to quickly find affected software among the millions of libraries and
applications that could potentially use log4j, demanding high scala-
bility of any analysis. On the other hand, with the widespread use of
log4j, it is also important to identify vulnerable software as precisely as
possible to make sure efforts are spent where they are needed, not on
software that is not actually vulnerable. Yet, this should not compro-
mise soundness, as any software erroneously deemed not vulnerable
would remain a significant security risk.

1.2 need for modular , collaborative static analyses

The complexities discussed above affect all static analysis implemen-
tations. However, how difficult dealing with these complexities is
depends on the style in which the static analyses are implemented.
We contrast monolithic implementations with modular architectures
to show how they can cope with the complexity differently.

monolithic implementations Traditionally, static analyses
have been developed individually in a monolithic fashion, with a
single analysis or a small number of tightly coupled analyses to
handle the full extent of what is to be analyzed (e.g., [228]). This
model of implementation can not scale to the complex challenges that
modern static analyses face: all complexities described above and their
interactions always have to be kept in mind and reasoned about as
a whole. Thus, development of such analyses requires experts that
deeply understand both all aspects of the problem and of the design of
static analyses. Even for such experts, developing monolithic analyses
is a difficult feat in light of the complexities mentioned above:

A monolithic static analysis for a modern programming language
has to handle all complex language features at the same time. This re-
quires the analysis developer to have expertise in every single of these
programming language features. All possible interactions between
the language features also have to be considered in the design of a
monolithic static analysis, further complicating implementation and
maintenance of the analysis. This is particularly problematic in the
face of new and changed features as programming languages evolve.

Complex analysis problems are hard to handle monolithically as
well: the sub-problems all have to be addressed at the same time using
the same implementation. As they require different algorithms and
data structures to be solved efficiently, this complicates the analysis’
implementation.

1.2 need for modular , collaborative static analyses 8

Finally, monolithic analysis implementations make balancing com-
plex trade-offs hard. The implementations solving the different sub-
problems are coupled tightly. Thus, it is not possible to experiment
with different implementations to explore and balance the respective
trade-offs.

modular architectures Different from monolithic analyses,
modular architectures for static analysis implementation compose
complex analyses from multiple interacting sub-analyses. Each sub-
analysis can then focus on a limited problem and contribute to a com-
plex overall analysis by communicating with other sub-analyses [208].
This allows sub-analyses to be developed and reasoned about in iso-
lation by developers that are knowledgeable only of the respective
sub-problem.

A modular architecture allows static analyses to handle each com-
plex programming language feature in isolation. Modules handling
each feature can be implemented by respective experts. Later, these
modules can be composed with other modules that handle the actual
analysis problem. As programming languages evolve, only the affected
modules need to be kept up to date and new language features can be
supported by adding additional modules.

The individual sub-problems of a complex analysis problem can
also be mapped to individual modules. This allows them to be tailored
to the respective sub-problem, using the most natural and efficient
algorithms and data structures. The modules can be implemented by
experts in the respective kinds of static analyses and then combined
to solve the larger overall problem.

Exploring and fine-tuning the trade-offs between soundness, preci-
sion, and scalability is enabled by modularization: individual modules
can be combined and exchanged in a plug-and-play manner in order
to reach different points in the design space for the solution to the
overall analysis problem.

challenges for modular static analysis architectures

Modular static analyses have the potential to alleviate monolithic anal-
yses’ problem of having to reason about the full extent of the problem
and analysis all at once. However, implementing them can still be chal-
lenging. The need for communication between different modules often
imposes significant restrictions on how analyses can exchange results
and how they can be implemented, limiting the possible interactions
as well as the kinds of analyses that can collaborate.

We say that a static analysis implementation is modular if a complex
analysis can be composed from individual sub-analyses (modules)
that use each other’s results. However, modularity alone does not
imply the way the sub-analyses interact with each other. In particular,
it is necessary to compute the fixed point of different sub-analyses

1.3 problem statement 9

simultaneously: Consider, for example, an analysis that propagates the
values of constant variables and an analysis that identifies expressions
that can be evaluated at compile time as they use only constants.
Executing the constant propagation first means that the results of
constant expressions cannot be propagated as they have not yet been
identified. Instead identifying constant expressions first, on the other
hand, will miss expressions that use constant variables instead of
constant literal values as the constant variable values have not yet
been propagated. This can be solved by re-executing analyses several
times, but re-analysis comes at the price of scalability and the question
of which analyses to execute in which order and how often is complex
and may be dependent on the individual programs analyzed. Entire
books revolve around recommendations for execution orders of static
analyses in optimizing compilers [165].

We thus define collaborative static analyses as analyses where sub-
modules can interact in an interleaved way, benefiting from each other
during a single, combined execution. Such collaboration poses new
questions on the interaction of sub-analyses. They could be restricted
to using specific data representations that are shared between all
sub-analyses, but this makes it difficult to naturally express analyses
in terms of the data they actually work upon. It is also a threat to
analysis scalability as it precludes the use of data structures optimized
specifically for particular analyses. In order to ensure termination, it
may also be necessary to restrict the queries that sub-analyses can pose
to each other to be strictly reducing in size or complexity according
to a suitable metric [116]. However, this means that cyclic interdepen-
dencies cannot be resolved. Finally, it may be necessary to define an
explicit super-analysis for each required composition of sub-analyses
(e.g., [21]). This then limits experimentation with different composi-
tions to explore different trade-offs between soundness, precision, and
scalability.

1.3 problem statement

Software has become ubiquitous and so have the needs to ensure its
correctness and security. Static analyses can be used for this purpose,
but the complexity of modern programming languages, software sys-
tems and the problems to be solved by static analyses increase the
burden of developing them. Traditional monolithic analyses cannot
scale to cope with these complexities. This is even more true when con-
sidering the demands to trade-offs between the soundness, precision,
and scalability of static analyses.

Modular, collaborative static analyses are thus needed where sub-
analyses for isolated sub-problems, implemented by domain experts,
can be composed in a plug-and-play manner to solve complex analysis
problems. Defining a generic architecture for such modular, collabo-

1.4 contributions of this thesis 10

rative analysis, however, is challenging in itself. Restrictions on the
interaction between sub-analyses can limit the applicability and use-
fulness of the analyses. We thus conclude as this thesis’ main goal
that:

A general framework for modular, collaborative program anal-
ysis should allow for complex systems of analyses that offer
good soundness, precision, and scalability, including exploring
the trade-offs between these qualities.

1.4 contributions of this thesis

In order to achieve this goal, this thesis makes the following contribu-
tions:

a framework for modular collaborative analyses Our
main contribution is the development of a novel, flexible framework
for modular, collaborative program analysis, the core component of
the OPAL static analysis framework1. This framework is reminiscent of
a blackboard architecture [170] and aims to deal with the complexities
discussed above. In our framework, sub-analyses can be implemented
and reasoned about in isolation and then composed into complex sys-
tems of analyses to analyze complex software properties. Because they
are ignorant of each other, sub-analyses can also be added, removed
and exchanged easily in a plug-and-play manner to explore different
trade-offs. As the blackboard architecture makes no restrictions on the
data representation, sub-analyses can be implemented in a way that
most naturally and efficiently solves the respective problem, ensuring
applicability of the framework for a wide range of diverse analyses.
The execution order of sub-analyses is also not fixed, allowing for
arbitrary interactions and chances for improving scalability through
parallelization and intelligent scheduling.

The development of this framework includes multiple individual
contributions:

• We systematically derive the requirements for a modular, collab-
orative static analysis framework from a diverse range of case
studies, each of which is a complex analysis (Chapter 2).

• We then use these requirements to develop a static analysis
framework based on the blackboard architecture (Chapter 3).

• We provide RA22, an alternative implementation of our approach
that uses a reactive-programming system as its basis (Chapter 4).

1 Available at https://www.opal-project.de; BSD 2-clause open source license
2 Available at https://github.com/phaller/reactive-async; BSD 2-clause license

https://www.opal-project.de
https://github.com/phaller/reactive-async

1.4 contributions of this thesis 11

• We also develop a formal model of the core of our blackboard
analysis architecture and show its usefulness in making modular,
reusable proofs of analyses’ soundness possible (Chapter 5).

• We perform a thorough survey of the related work (Chapter 6).

• We show that the framework can be used to implement the
diverse case-study analyses, meeting all the requirements laid
out before (Chapter 11).

• We evaluate how our case-study analyses improve over respec-
tive state-of-the-art analyses in terms of soundness and precision,
and we show how the flexible composition of sub-analyses can
be used to explore trade-offs between these properties (Chap-
ter 12).

• We consider how our framework aids the scalability of the anal-
yses, in particular because it is directly amenable to automatic
parallelization to harness the resources of multicore processors
and can use different strategies for scheduling individual analy-
sis tasks to further improve scalability (Chapter 13).

Additionally, several of our case studies are individual contributions
that each improve over the respective state of the art3:

a collaborative call-graph construction framework

Unimocg is a framework for composing call-graph construction algo-
rithms from collaborating modules (Chapter 8). Unimocg makes it
easy to support different call-graph algorithms and complex language
features by encapsulating them in decoupled modules. This allows
Unimocg to achieve consistently cover more languages features soundly
across a wide range of call-graph algorithms than other state-of-the-art
call-graph construction frameworks. At the same time, Unimocg does
not sacrifice precision or scalability, being on par with or superior to
the state of the art.

modular immutability analyses We developed CiFi, a sys-
tem of modular, collaborating analyses for field-, class-, and type
immutability as another case study (Chapter 9). It uses our modular
approach to provide precise, modular definitions of field assignabil-
ity and field-, class-, and type immutability which did not have such
proper definitions before. We implemented CiFi’s sub-analyses directly
following this modular definition and composed them into a system
of immutability analyses. This allows for simpler analyses that are
more sound and often more precise than the state of the art. We use
CiFi to explore the prevalence of immutability in real-world software
libraries and evaluate the impact of applying a closed- or open-world

3 The analyses are all available as part of OPAL

1.5 structure of this thesis 12

assumption, i.e., considering the analyzed code to be either completely
available or extendable by yet unknown code, on both the precision
and scalability of the analysis. Additionally, we provide CiFi-Bench, a
manually annotated benchmark to test the soundness and precision of
immutability analyses.

modular purity analyses Our final case study is OPIUM, a
model and framework for modular analysis of method purity, i.e.,
deterministic behavior and absence of side effects in methods (Chap-
ter 10). OPIUM defines a fine-grained model of purity that extends
the state-of-the-art and unifies terminology that has been used incon-
sistently. OPIUM provides purity analyses with different trade-offs
between precision and scalability. The analyses make use of and col-
laborate with immutability analyses such as CiFi as well as escape
analyses to provide more precise and more fine-grained results than
the state of the art. It outperforms the state of the art with regard
to execution time as well, benefiting from automatic parallelization
enabled by our blackboard analysis architecture.

1.5 structure of this thesis

The remainder of this thesis is structured in four parts:
Part I start by introducing the necessary background and termi-

nology and by deriving requirements posed to a modular, collab-
orative static analysis framework (Chapter 2). It then describes in
detail our approach and its implementation in the OPAL static analysis
framework (Chapter 3). In addition, we introduce RA2, an alternative
implementation of our approach using a reactive-programming sys-
tem (Chapter 4). We then give a formalization of the core concepts
of our approach and show that our approach allows for modular,
reusable soundness proof (Chapter 5). Finally, we survey work re-
lated to blackboard architectures and different approaches to modular,
collaborative, or parallelized static analyses (Chapter 6).

Part II is dedicated to the individual case studies. We first describe
TACAI, an intermediate representation based on abstract interpretation
that forms the basis for the other case-study analyses (Chapter 7). Next,
we introduce Unimocg, our modular call-graph architecture that decou-
ples the computation of type information from the resolution of calls to
achieve consistently sound handling of language features (Chapter 8).
We then discuss CiFi, our system of analyses for field-, class-, and type
immutability (Chapter 9). As our final case study, we detail OPIUM,
our unified model and implementation for the analysis of method
purity (Chapter 10). The case-study chapters include a validation of
the proposed models where applicable.

Part III evaluates our approach, discussing three main research ques-
tions. First, we consider the applicability of our approach to a variety

1.6 publications 13

of dissimilar analyses, also discussing the effect of our approaches
plug-and-play-like exchangeability of analyses (Chapter 11). Second,
we compare the soundness and precision of our case-study analyses
to the respective state of the art, demonstrating how they outperform
it in both regards (Chapter 12). Third, we evaluate the scalability of
our implementation, discussing different aspects of performance opti-
mizations and showing that our case-study analyses are on par with
or outperform the respective state of the art (Chapter 13).

Part IV concludes this thesis. We start with a summary of the thesis’
results (Chapter 14). We then present ideas and directions for future
research to expand the applicability of modular, collaborative static
analysis and to further improve its scalability (Chapter 15). Finally, we
give a closing discussion on the challenges and possible solutions for
static analyses going forward (Chapter 16).

1.6 publications

Many contributions of this thesis have been published before at soft-
ware engineering venues, others are yet under review. Here, we give an
overview of these publications and how they have been incorporated
into this thesis.

modular collaborative program analysis in opal [103]
This paper describes our approach of a modular, collaborative static-
analysis framework based on the ideas of the blackboard architecture.
It includes the definition of our requirements, a short overview of
our case studies and presents the approach and its implementation
in OPAL. In particular, it explains how our approach combines imper-
ative and declarative aspects to achieve exchangeability of analyses
and pluggable analysis extensions for improving soundness, precision
and, scalability and their trade-offs. It highlights the applicability of
the approach and evaluates the effects of exchangeability and the use
of data structures that have been optimized for specific analyses. It
analyzes the scalability of our proof-of-concept parallelization and
shows that our approach outperforms the Doop framework [34] in
an analysis that Doop is highly specialized for. The contents of this
paper form the basis of Chapter 2 and Chapter 3. The paper’s related
work section has been merged into Chapter 6, its evaluation has been
integrated into Chapter 11 and Chapter 13.

Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg, and
Mira Mezini. “Modular Collaborative Program Analysis in OPAL.” In:
Proceedings of the 28th ACM Joint Meeting on European Software Engineer-
ing Conference and Symposium on the Foundations of Software Engineering.
ESEC/FSE’20. Virtual Event, USA: ACM, 2020, pp. 184–196

1.6 publications 14

a programming model for semi-implicit parallelization

of static analyses [102] In this paper, we present RA2, an
approach for the semi-implicit parallelization of static analysis that
builds on the ideas of the blackboard architecture but uses the Reactive
Async library. Thus, RA2 is an alternative implementation of our ap-
proach besides the implementation in OPAL. In particular, the paper
discusses the importance of supporting stateful computations and how
semi-implicit parallelization relieves developers from thinking about
concurrency issues. The paper’s contents are presented in Chapter 4,
its related work was integrated into Chapter 6, and its evaluation
forms part of Chapter 11 and Chapter 13.

Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp Haller,
Michael Eichberg, Guido Salvaneschi, and Mira Mezini. “A Program-
ming Model for Semi-implicit Parallelization of Static Analyses.” In:
Proceedings of the 29th ACM SIGSOFT International Symposium on Soft-
ware Testing and Analysis. ISSTA’20. Virtual Event, USA: ACM, 2020,
pp. 428–439

a modular soundness theory for the blackboard analy-
sis architecture This paper, which is currently under review,
develops a formal model of the core of our blackboard analysis archi-
tecture. It then uses this formal model to show that soundness proofs
of analyses in the blackboard analysis architecture are modular and
soundness of an analysis composed from multiple sub-analyses fol-
lows directly from the soundness of the individual sub-analyses. This
significantly eases the effort to prove the soundness of complex analy-
ses, as they can be composed freely from any modules already proven
sound. We evaluate the applicability on four case-study analyses that
are inspired by the case studies also presented in this thesis. Chapter 5

gives the paper’s contents, its related work is part of Chapter 6.

Sven Keidel, Dominik Helm, Tobias Roth, and Mira Mezini. “A Mod-
ular Soundness Theory for the Blackboard Analysis Architecture.”
Currently under review

tacai : an intermediate representation based on abstract

interpretation [188] In this paper, we introduce TACAI, the im-
mediate representation used by all of our case-study analyses. TACAI
itself is a case study of this thesis as it uses the blackboard architecture
to be extensible by modules that improve the precision of type informa-
tion. We evaluate the effect of exchanging the abstract interpretation
domain and find that compared to the Soot framework’s [238] Shim-
ple intermediate representation, TACAI is more efficient to compute
and provides slightly more precise type information. This is presented
in Chapter 7, while the evaluation is part of Chapter 12 and Chapter 13.

1.6 publications 15

Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann, Michael
Eichberg, and Mira Mezini. “TACAI: An Intermediate Representation
Based on Abstract Interpretation.” In: Proceedings of the 9th ACM
SIGPLAN International Workshop on the State Of the Art in Program
Analysis. SOAP’20. London, UK: ACM, 2020, pp. 2–7

unimocg : modular call-graph algorithms for consis-
tent handling of language features This paper, which is
currently under review, presents Unimocg, our modular architecture
for call-graph construction. The architecture decouples the computa-
tion of type information from the resolution of individual call edges in
order to make the modules reusable across all call-graph algorithms.
This allows consistently sound handling of language features and also
allows modules to all operate on the same, user-chosen, precision of
type information instead of relying on ad-hoc solutions. The papers
shows that this indeed leads to more consistently sound handling of
language features compared to the state of the art without sacrificing
precision or scalability, and we also show how further analyses can
benefit from the computed type information at the example of an
immutability analysis. We discuss Unimocg in Chapter 8 and evaluate
it in Chapter 11, Chapter 12, and Chapter 13.

Dominik Helm, Tobias Roth, Sven Keidel, Michael Reif, and Mira
Mezini. “Unimocg: Modular Call-Graph Algorithms for Consistent
Handling of Language Features.” Currently under review

cifi : versatile analysis of class and field immutabil-
ity [195] In this paper, we present CiFi, our model and implemen-
tation of analyses for the immutability of fields, classes, and types. The
model unifies inconsistently used concepts and terminology found
in the literature. The implementation consists of four analyses for
field assignability and for field-, class-, and type immutability that
are combined in a modular way and are supported by other analyses
such as TACAI and Unimocg to achieve better soundness and precision
than the state of the art in immutability inference and enforcement. To
show the latter, we also propose CiFi-Bench, a benchmark of manually
annotated tests for immutability analyses that allows their comparison
for soundness and precision. The contents of the paper are given in
Chapter 9, the evaluation forms part of Chapter 12.

Tobias Roth, Dominik Helm, Michael Reif, and Mira Mezini. “CiFi:
Versatile Analysis of Class and Field Immutability.” In: 2021 36th
IEEE/ACM International Conference on Automated Software Engineering.
ASE’21. Virtual Event, Australia: IEEE, 2021, pp. 979–990

1.6 publications 16

a unified lattice model and framework for purity anal-
yses [101] This paper introduces OPIUM, our final case study. It
unifies inconsistently used terminology found in the literature into a
lattice-based model of method purity—lack of side effects and deter-
ministic behavior— and introduces novel levels of purity to uncover
more restricted side effects than previously possible. The paper dis-
cusses our most precise purity analysis while in this thesis, we also
refer to two further implementations that are less precise but more
scalable. The analysis described is more precise and more scalable
than the previous state of the art and it is also more fine-grained,
computing several distinct levels of purity instead of only a single one
tailored to a specific purpose. The paper’s contents are presented in
Chapter 10, its evaluation in Chapter 12 and Chapter 13.

Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif, and
Mira Mezini. “A Unified Lattice Model and Framework for Purity
Analyses.” In: Proceedings of the 33rd ACM/IEEE International Conference
on Automated Software Engineering. ASE’18. Montpellier, France: ACM,
2018, pp. 340–350

1.6.1 Further Publications

In addition to the publications above, I co-authored further papers
that were not directly included in this dissertation. These papers are:

lattice based modularization of static analyses [74]
This paper presented early ideas on a modular architecture for static
analysis frameworks. In particular, we discussed the importance of
using reified lattices as the sole means of communication between
analyses to enable their flexible composition. These ideas were later
extended into the blackboard analysis architecture described in [103].

Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif, Guido
Salvaneschi, and Mira Mezini. “Lattice Based Modularization of Static
Analyses.” In: Companion Proceedings for the ISSTA/ECOOP 2018 Work-
shops. SOAP’18. Amsterdam, The Netherlands: ACM, 2018, pp. 113–118

judge : identifying , understanding , and evaluating

sources of unsoundness in call graphs [186] In this pa-
per, we identified why call graphs are often unsound, in particular,
which language features are the reason for perceived unsoundness in
call graphs. We showed that language features that impact call-graph
soundness are frequently used across different analyzed corpora. We
studied the soundness profiles of different call-graph algorithms across
popular static analysis frameworks and showed that they differ signifi-
cantly and unexpectedly even across algorithms in a single framework,

1.7 my contributions 17

rendering the comparison of different resulting call graphs bogus. Fi-
nally, we proposed to use limited manual effort guided by automated
analysis to improve call-graph soundness to a reasonable level. The
results of this paper prompted us to develop a modular call-graph
architecture where programming language features are handled con-
sistently sound across dissimilar call-graph algorithms. We present
this architecture, Unimocg, in Chapter 8.

Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm, and
Mira Mezini. “Judge: Identifying, Understanding, and Evaluating
Sources of Unsoundness in Call Graphs.” In: Proceedings of the 28th
ACM SIGSOFT International Symposium on Software Testing and Analysis.
ISSTA’19. Beijing, China: ACM, 2019, pp. 251–261

1.7 my contributions

Much like the static analyses discussed in this thesis, research is a
collaborative effort. All of the publications that have been incorpo-
rated into this thesis are the work of myself and several co-authors,
and I am grateful for their contributions to my research. Pointing out
individual contributions is not easy, as we worked closely as a team,
discussing ideas together, collaboratively working on building and
extending the OPAL framework, implementing the case-study analy-
ses, performing evaluations, and writing the publications. Work was
often driven by shared, overlapping research interests, where a single
analysis and publication furthered the research of several contributors
in different ways, mutually benefiting each other. Content from these
joint publications has been incorporated into this thesis verbatim, and
it is often not possible to distinguish the individual author as the
texts have been refined by each of us several times over. In general,
for all of the mentioned publications, I was heavily involved in both
developing the initial ideas and concepts, and I spent significant work
on drafting, revising, and polishing the publications’ writing, often
contributing significant parts of the final texts. The same is to be said
for my advisor Mira Mezini. In the following, I try to point out my
own specific contributions as much as possible.

Chapter 1 has been written solely by myself explicitly for this thesis.
Chapter 2 and Chapter 3 are based on [103]. The concepts of OPAL’s

collaborative approach are the result of intense discussions between
Michael Eichberg, Florian Kübler, and myself. I contributed to signifi-
cant parts of the implementation. In particular, I created the current
implementation of the parallel blackboard solver. The evaluation that
is part of Chapter 11 and Chapter 13 was jointly performed by Michael
Reif, Florian Kübler, and me.

Chapter 4 builds on [102]. I contributed the code for the IFDS
solver and analysis and helped to integrate it into the RA2 framework.

1.7 my contributions 18

I also aided Jan Thomas Kölzer in debugging and improving the
implementation of RA2. The evaluation as it is included in Chapter 11

and Chapter 13 was performed by Florian Kübler and me in a joint
effort, building on initial work by Jan Thomas Kölzer.

Chapter 5 is taken from a yet unpublished paper that is currently
under review as stated above. The concepts have been developed from
intense discussions between Sven Keidel and me. I ensured that the
model matches the core ideas of our blackboard analysis architecture
as closely as possible and helped in designing the case studies to be
similar to the ones presented in Part II. I particularly contributed to
the design of the main definitions and to the idea of using interfaces
to abstract over different kinds of values for improved extensibility.

Chapter 6 merges parts of [103], [102], and the yet unpublished
paper that Chapter 5 builds upon. I extended further upon these parts,
adding additional related work for the purpose of this thesis.

Chapter 7 is based on [188]. My main contribution is the idea of
supporting pessimistic analyses dual to the optimistic analyses we
were exclusively developing at the time. I also contributed to the
evaluation that is part of Chapter 12 and Chapter 13.

Chapter 8 is from a yet unpublished paper currently under review.
The initial idea was sparked from our previous research in [186] and
developed in discussion between Michael Reif, Florian Kübler, and me.
The actual design and implementation is my own work, parts of the
implementation of some modules were contributed by Florian Kübler,
Michael Reif, and Andreas Bauer. The evaluation performed by Tobias
Roth and me is part of Chapter 11, Chapter 12, and Chapter 13.

Chapter 9 builds on [195]. Ideas and concepts were developed
between Tobias Roth, Michael Reif, and me. I contributed to the imple-
mentation and debugging of the analyses and parts of the implementa-
tion build on immutability analyses that I developed or extended from
previous work to support my analyses for OPIUM. The evaluation
that is part of Chapter 13 was performed by Tobias Roth and me.

Chapter 10 is based on [101]. All of the publication is my original
work, Florian Kübler contributed the escape analyses used. I also per-
formed the evaluation incorporated into Chapter 12 and Chapter 13.

Chapter 11, Chapter 12, and Chapter 13 have been drawn from the
individual publications as mentioned above.

Chapter 14, Chapter 15, and Chapter 16 finally have again been writ-
ten solely by myself, using excerpts from the individual publications.

As for the publications not part of this thesis, I contributed sig-
nificantly to the ideas and text of [74] and provided OPIUM for the
evaluation. For [186], I revised, streamlined, and extended the bench-
mark from [187] and contributed to the paper’s text, evaluation, and
presentation of results.

Part I

A P P R O A C H

approach 21

The first part of this thesis presents OPAL, our main contribution.
OPAL is a general framework for modular, collaborative program
analysis, the need for which we motivated in Chapter 1. OPAL is based
on the blackboard architecture [170], a software architecture that allows
decoupled modules to interact and communicate via a central data
storage called the blackboard. We first analyze the requirements that
have driven the design of OPAL. Then we present the details of OPAL’s
architecture and implementation. We formalize the core concepts of
our approach to allow proving the soundness of analyses implemented
in OPAL. Finally, we discuss research related to our approach.

The chapters of this part are as follows:

background and requirements In Chapter 2, we introduce
the necessary background and terminology. We then present a series
of case studies from which we derive the requirements that a static
analysis framework has to fulfill to support modular, collaborative
analyses. We will discuss these case studies in more depth in Part II
as they are contributions of their own.

architecture We present our architecture and its implementa-
tion in OPAL in Chapter 3. We show how it is reminiscent of the
blackboard architecture and explain in detail how the individual re-
quirements from Chapter 2 are supported by it. This includes how
program properties are represented, how analyses are structured and
declared, and how results are expressed. We explain constraints on
analyses and the fixed-point computation and how the computation
can benefit from scheduling and parallelization.

alternative implementation in reactive async We dis-
cuss RA2, a second implementation of our approach, in Chapter 4. It
is based on the Reactive Async library [97] for lattice-based reactive
computation. It shows how the blackboard analysis architecture can
be implemented using a generic library for asynchronous computation
and shows semi-implicit parallelization as well as different scheduling
strategies.

formalization In Chapter 5, we present a formal model for the
core concepts of our approach. We show how this formal model can
be used to prove the soundness of analyses implemented in the black-
board analysis architecture. These soundness proofs are compositional,
i.e., the soundness of a complex analysis follows directly from the
individual soundness proofs of the sub-analyses. We showcase these
proofs based on simple analyses inspired by our case studies from
Chapter 2.

approach 22

related work In Chapter 6, we give an overview of the history
of research on blackboard systems, the architecture paradigm that
is the basis of OPAL. We then survey different approaches for static
program analysis, in particular for achieving modularity, collaboration,
and parallelization of analyses. In addition, we discuss other general
frameworks for static analysis.

2
T E R M I N O L O G Y A N D R E Q U I R E M E N T S

In this chapter, we first introduce blackboard systems and present
further terminology used throughout this thesis. We then present three
case studies, each a complex system of multiple analyses. From these
case studies, we derive requirements that a general framework for
modular, collaborative program analysis should fulfill.

2.1 terminology

The Blackboard Architecture [48] is a software architecture to solve prob-
lems using independent modules. The blackboard metaphor describes
problem-solving systems as a set of independent experts that commu-
nicate via a central data storage, the blackboard. Experts find data on
the blackboard that helps them make progress toward an overall goal,
adding their respective results back to the blackboard for other experts
to pick up. The blackboard allows coordinating the collaborative work
of otherwise decoupled expert modules, known as knowledge sources.
The latter contribute information to the blackboard toward collab-
oratively reaching an overall goal. This information may be partial
and can be improved and extended later on. The blackboard notifies
knowledge sources about when new information they might require
is available. This happens through a control mechanism that decides
which knowledge sources should be executed in what order. Informa-
tion in the blackboard can then be queried by the knowledge sources,
which produce further information. Each execution of a knowledge
source is called an activation.

Entity: The term is used to characterize anything one can compute
some information for. Entities can be concrete code elements, e.g.,
classes, methods, or allocation sites, or abstract concepts such as all
subtypes of a class. The set of entities is not necessarily defined a
priori and can be created on-the-fly while analyses execute.
Property Kind: The term characterizes a specific kind of information
that can be computed for an entity, e.g., the mutability of classes, the
purity of methods, or the callees of a specific method. Each property
kind represents one lattice of possible values.
Property: The term characterizes a specific value in the lattice of some
property kind that is attached to some entity, e.g., a class can be muta-
ble or immutable, a method can be pure or impure, and a particular
method may invoke a specific set of methods. Per entity, at most one
property of a specific kind can be computed.

23

2.2 requirements 24

Analysis: The term characterizes an algorithm that, given an entity,
computes a certain kind of property for that entity. Analyses are knowl-
edge sources in the sense of the blackboard architecture; the properties
they compute constitute the information that they contribute to and/or
query from the blackboard. We say that an analysis computes a property
kind as shorthand for "an analysis computes properties of that property
kind for a given kind of entity".

2.2 requirements

In Chapter 1, we motivated the need for a general framework for
modular, collaborative static analyses. However, it is not clear what is
required from such a framework in order to support a broad range of
analyses. It is imperative to first systematically gather a requirements
profile before designing any such framework.

In this section, we thus discuss three case studies of different analy-
ses composed of interrelated sub-analyses in order to distill a list of
requirements. An overview of these requirements will be given at the
end of this section in Table 2.1.

During the discussion, we emphasize concepts whenever they occur.
The case studies represent very dissimilar kinds of analyses. In particu-
lar, they require different kinds of lattices, including set-based lattices
(e.g., in 2.2.2) and singleton-value lattices (e.g., in 2.2.3). This motivates
the first requirement: Static analysis frameworks must support varied
domain lattices (R1).

2.2.1 Three-Address Code

The first case study is an analysis to produce a three-address code
representation1 (TAC) of Java Virtual Machine bytecode, presented in
more detail in Chapter 7. In its basic version, TAC uses def/use, type,
and value information (including constant propagation) provided by
an abstract-interpretation-based analysis (AI). To increase precision,
AI may be enhanced with analyses that refine type and the value infor-
mation for method return values and fields. However, such additional
analyses may negatively affect the runtime. Hence, systematic inves-
tigation of the trade-off between precision and scalability is needed
to decide whether to use such additional analyses on a case-by-case
basis. To this end, a separation into sub-analyses that are pluggable,
i.e., that can be enabled or disabled easily by the end user, is beneficial.
In general, we derive the following requirements regarding support
for modular pluggable analyses.

For systematically studying precision/soundness/scalability trade-
offs, static analysis frameworks should support enabling and disabling

1 A three-address code is an intermediate representation where, except for method
calls, operations have at most two source operands and one target.

2.2 requirements 25

interdependent analyses (R2). To maximize pluggability, analyses
should be defined in decoupled sub-analyses, and yet be able to col-
laboratively compute properties (collaborative analyses). As individual
analyses can be disabled, it should be possible to specify soundly
over-approximated fallback values2 for the properties they compute,
to be used by dependent analyses in lack of actual results (R3). For
example, if not executing an analysis to refine the type information for
fields, the fields’ static types should be used by AI without AI having
to know that the refinement analysis was not executed.

Moreover, an approach for modular collaborative analyses should
support their interleaved execution without them knowing about each
other’s existence (R4). Two analyses are executed interleaved if they
can interchange intermediate results. This is important for optimal
precision [52]: knowledge gained during the execution of analysis A1

may be used by the execution of another analysis A2 on-the-fly to
refine its result and, in turn, this may enable further refinement for A1.
The precision of field- and return-value refinement analyses profits
from interleaved executions, as they depend on each other cyclically.
If a method m returns the value of a field f, then m’s return value
depends on f’s value. If the value returned by m is written into f, then
f’s value also depends on m’s return value.

However, interleaved execution must in specific cases be suppressed
to ensure correctness. This is the case for the composition of pessimistic
and optimistic analyses. Pessimistic analyses start with a sound but
potentially imprecise assumption and eventually refine it. Optimistic
analyses start with an unsound but (over)precise assumption and
progress by reducing (over)precision toward a sound result. Field-
and return-value refinement analyses are pessimistic—the declared
return type of method m, say List, is a sound but eventually impre-
cise initial value for the return-value analysis; during the execution,
the analysis may find out that m actually returns the more precise
result, say ArrayList. AI is an optimistic analysis—it starts with the
unsound assumption that all code is dead and refines it by adding
statements found to be alive towards a sound but potentially less
precise result. Optimistic and pessimistic analyses are incompatible
for interleaved execution because they refine the respective lattices
in opposite directions. As a result, exchanging intermediate results
may cause inconsistencies, thereby violating monotonicity. Thus, the
analysis framework must enforce that only final results of pessimistic
analyses are passed to dependent optimistic analyses (and vice-versa),
avoiding interleaving and suppressing non-final updates (R5).

For illustration, consider the example of some piece of code c, that
contains a call to a method m1, which is mutually recursive with a

2 To minimize the effect of fallback values on precision, it makes sense to compute the
fallback by using locally available information, e.g., using declared type information,
instead of always returning the same over-approximated value.

2.2 requirements 26

method m2, conditioned on a field f being an instance of LinkedList.
To analyze c, we combine a field-value analysis FA, an AI analysis, and
a call-graph-construction algorithm CG. Assume that FA, a pessimistic
analysis, initially reports the type of the field f to be List. Given this
information, AI would optimistically consider c to be live and CG,
hence, will consider both m1 and m2 to be reachable. Because of the
mutual recursion (and also because of the monotonicity requirement),
this result cannot be changed later if FA finds out that f can only
contain ArrayLists. If, however, the latter information was present
when AI analyzed the code, c would have been marked as dead
because it is conditioned on requiring a LinkedList instead. As a
result, CG would have marked m1 and m2 as unreachable. Thus, the
result of this combination of analyses is non-deterministic and possibly
incorrect (imprecise, if m1 and m2 are falsely reported to be reachable).

2.2.2 Modular Call Graph Construction

Interprocedural analyses presume a call graph: Given method m, a call
graph provides information about (a) methods that may be invoked at
a call site in m (callees) and (b) call sites from which m may be invoked
(callers). We use call-graph analyses, further detailed in Chapter 8, to
motivate the need for supporting further kinds of execution interleav-
ing (beyond R4) as well as further requirements. The previous case
study illustrated the need for interleaved execution of interdependent
analyses that calculate different properties and operate on different
entities (composition of analyses for refining field and return values
with TAC). The call-graph use case illustrates two further kinds of
interleaved execution.

First, we need interleaved execution of multiple instances of the
same analysis operating on different code entities to collaboratively
compute a single property, whereby each instance contributes partial
results (R6). For example, different executions of a call-graph analysis
for different callers of a method m need to contribute their partial
results to collaboratively derive all of m’s callers (computing callers of
a method is inherently non-local).

Second, we also need to support interleaving of independent anal-
yses that collaboratively compute a single property (R7). Consider,
e.g., the computation of the callees of m. A call-graph analysis can in
principle consider m in isolation. A monolithic analysis for callees is
nonetheless not suitable. It makes sense to distinguish between one
sub-analysis that handles standard invocation instructions (e.g., Class-
Hierarchy Analysis (CHA) [62], Rapid Type Analysis (RTA) [12], or
points-to-based [34] call-graph analysis) and sub-analyses dedicated
to non-standard ways of method invocation through specific language
features, e.g., reflection, native methods, or functionality related to
threads, serialization, etc. Non-standard invocation requires specific

2.2 requirements 27

handling (e.g., one may deliberately not want to perform reflection
resolution, or perform it based on dynamic execution traces). By of-
fering such specialized analyses as decoupled modules, they become
highly reusable and can be combined with different call-graph anal-
yses for standard invocation instructions. This makes the call-graph
construction highly configurable for fine-tuning its scalability and
sound(i)ness. Hence, not only a method’s callers but also its callees
need to be computed collaboratively. Here, different sub-analyses tar-
geting different language features, rather than different executions of
the same call-graph sub-analysis, contribute to the same property.

Handling special language features may even rely on integrating
results of external tools or precomputed values (R8). For instance, one
may choose to use the results of the dynamic TamiFlex [27] analysis
for reflective calls, or the results of external tools for analyzing native
methods.

The call-graph case study also motivates support for specifying pre-
cise default values (R9) (in addition to sound fallback values). Consider
the case of an unreachable method m. The call-graph analysis will
never compute callees or caller information for m. However, this lack
of results is an inherent property of the entity and not the result of
a missing or disabled analysis. A sound fallback value for m to com-
pensate for the deactivation of the call-graph sub-analysis may have
to include all methods and hence be too imprecise. Instead, analyses
depending on the call graph should get the information that m is
unreachable—the precise default value. The analysis developer knows
such information and should be enabled to tell the framework.

Finally, consider that call-graph construction unfolds along the tran-
sitive closure of methods reachable from some entry points. Hence,
it does not make sense to execute the decoupled sub-analyses col-
laboratively constructing the call graph—each handling a particular
language feature—globally on all methods of a program. Instead, they
should be triggered only when the overall analysis progress discovers
a newly reachable method. Hence, the framework must support trig-
gering analyses once the first (intermediate) result for a property is
recorded (R10).

Our previous work [186] provides empirical evidence that encod-
ing an RTA sub-analysis and sub-analyses for language-specific fea-
tures as collaborative, interleaved modules results in more sound call
graphs and better performance compared to call graph analyses of the
Soot [238], WALA [111], and Doop [34] frameworks.

2.2.3 Immutability, Purity, and Escape Analysis

Our final case study involves analyses for class and field immutability
(cf. Chapter 9), method purity (cf. Chapter 10), and escape informa-
tion [40, 131]. The latter includes aggregated information on field

2.2 requirements 28

locality and return-value freshness (cf. Section 10.3.4). The analyses
interact tightly and compute properties that may be relevant for both
end users (e.g., method purity) and further analyses (e.g., escape infor-
mation). Complex dependencies exist between all these analyses. To
fine-tune the precision/scalability trade-off, several analyses for these
property kinds with different precision can be exchanged as needed;
all are optimistic and use TAC and/or the CG information.

The analyses in this subsection illustrate the need for further kinds
of activation modes in addition to triggered analyses, illustrated in
the previous subsection: (a) eager analyses, which refers to computing
an analysis for all entities in the analyzed program, and (b) lazy
analyses, i.e., executing an analysis A1 only for the entities for which
the property that A1 computes is queried by some (potentially the
same) analysis A2. A further requirement shown by analyses in this
subsection is that the framework should allow analyses to enforce an
execution order that overrides the one determined by the solver.

Since the results of analyses in this case study may be of interest
to the end user, it is useful to compute them for all possible entities
eagerly (R11), i.e., computing the immutability of all fields in the pro-
gram. However, when the field immutability is only used to support,
e.g., the purity analysis, it may be beneficial for scalability to compute
it lazily (R12), i.e., only for the fields for which immutability is queried
by the purity analysis. This illustrates that we need both eager and
lazy execution modes. Eager and lazy versions of one analysis can
typically share the code and only be registered with the framework
differently. The class immutability analysis also illustrates the need
to configure the framework with analysis-specific execution orders
(R13): For performance reasons, it makes sense to analyze classes in a
top-down order starting with parent classes before their children.

Our evaluation in Part III provides empirical evidence for the re-
quirements stated in this section. Implementations of the immutability
and purity sub-analyses of this case study (and transitively the escape
sub-analyses) as collaborative analyses with interleaved execution
showed higher precision, more fine-granular results, and similar per-
formance characteristics compared to respective state-of-the-art tools.

2.2.4 Summary

Table 2.1 summarizes the requirements along the case studies moti-
vating them, grouping them by whether they relate to representing
analysis results using lattices and values, to the composition of analy-
ses, or to how computations are initiated. Existing frameworks do not
satisfy all of these requirements. Imperative frameworks lack support
for modularity, especially R5, R6, and R7. Declarative approaches, e.g.,
Doop [34], have other limitations: Being bound to relations for mod-
eling properties, they cannot express the range of different analyses

2.2 requirements 29

represented by our case studies (R1). They also fail to support sound
interactions between incompatible analyses (R5). By giving the solver
full control, they do not support different analysis-specific activation
modes (R10-R13).

Table 2.1: Summary of Requirements

Lattices and values

R1 Support for different kinds of lattices (2.2.1, 2.2.2, 2.2.3)

R3 Fallbacks of properties when no analysis is scheduled (2.2.1, 2.2.3)

R9 Default values for entities not reached by an analysis (2.2.2)

Composability

R2 Support for enabling/disabling individual analyses (2.2.1, 2.2.2, 2.2.3)

R4 Interleaved execution with circular dependencies (2.2.1, 2.2.2, 2.2.3)

R5 Combination of optimistic and pessimistic analyses (2.2.1)

R6 Different activations contributing to a single property (2.2.2)

R7 Independent analyses contributing to a single property (2.2.2)

Initiation of property computations

R8 Precomputed property values (2.2.2, 2.2.3)

R10 Start computation once an analysis reaches an entity (2.2.2)

R11 Start computation eagerly for a predefined set of entities (2.2.3)

R12 Start computation lazily for entities requested (2.2.1, 2.2.3)

R13 Start computation as guided by an analysis (2.2.3)

3
A R C H I T E C T U R E

OPAL is the first static analysis framework to build upon the concept
of blackboard systems (cf. Chapter 2): Static analysis modules corre-
spond to knowledge sources; the store that manages the computed
properties corresponds to the blackboard. OPAL combines imperative
and declarative programming styles for analyses. Whereas declarative
approaches facilitate modularity and automated, analysis-independent
optimizations, imperative approaches foster manual, analysis-specific
optimizations.

In this chapter, we first describe the approach taken by OPAL. We
explain in detail what an analysis developer has to do in order to
implement modular, collaborative analyses in OPAL. Additionally,
we describe the design space of analyses in OPAL and how OPAL
automatically coordinates the execution of analyses.

3.1 overview

In OPAL, the developer of an analysis A: (a) implements the lattice rep-
resentation of the property values computed by A (3.2), (b) implements
two imperative functions the so-called initial analysis function (IAF) and
continuation function (CF) (3.3), (c) declares the property kinds com-
puted by A and properties A depends on (3.4), and (d) defines how A’s
results are reported to the blackboard (3.5). Guided by the declared
dependencies, the blackboard and its fixed-point solver coordinate the
execution of the analyses, thereby (e) ensuring all execution constraints
(3.6), (f) performing fixed-point computations, whenever circular de-
pendencies are involved (3.7), and (g) automatically scheduling and
parallelizing the execution of analyses (3.8).

3.2 representing properties

Values of a property kind constitute a lattice structure. OPAL supports
singleton value-based, interval, or set-based lattices (R1). A lattice’s
bottom value models the best possible value (e.g., pure for method
purity); its top value the sound over-approximation (e.g., impure).
Lattices must satisfy the ascending (descending) chain condition to en-
sure termination of optimistic (pessimistic) analyses. When defining a
property kind, developers can choose the most suitable data structures
for efficiency.

Developers can also specify fallback and default values. The black-
board will return the fallback value for some requested property, p of

31

3.3 analysis structure 32

kind k, if no analysis is available for k (R3). As it is a sound over-
approximation, the lattice’s top value is a good choice—however, the
fallback value can also be provided by a "proxy" analysis function
that does not query the blackboard, avoiding cyclic dependencies. The
blackboard will return a default value for p, if an analysis is available
but did not produce any result for some entity (R9). For instance, call
graph analyses only examine methods reachable from entry points -
for any non-reachable method, m, a default value can be used to state
that m is dead and has no (relevant) callees. A sound fallback value
would include all possible methods as callees of m; thus, in this case,
the default value provides more information than a fallback value. If
no default value is declared, the fallback value is returned.

1 sealed trait ClassImmutability extends PropertyKind {
2 def fallback(Type theClass) = MutableClass
3 }
4 case object ImmutableClass extends ClassImmutability
5 case object MutableClass extends ClassImmutability

Listing 3.1: Class Immutability Lattice

Developers implement property kinds by specifying an interface,
which can be used to access and manipulate the property values.
When the PropertyKind trait is extended, the framework assigns an
identifier that analyses use to query the blackboard for properties of
that kind. Listing 3.1 shows exemplary Scala code of a simple class
immutability property kind. Lines 1 to 3 define the base trait for the
property kind and give a sound fallback value in Line 2. The two
possible property values are defined in Lines 4 and 5.

3.3 analysis structure

An overview of OPAL’s analysis structure is shown in Figure 3.1. As
mentioned in Section 3.1, the analyses are structured in two parts: An
initial analysis function (IAF) and one or more continuation functions
(CFs). These functions can be implemented in any way, as long as they
provide their results as defined by the property kind.

For each entity e to be analyzed by A, A’s IAF is executed. The IAF
collects information directly from e’s bytecode in order to compute
its result. If it needs additional information pertaining to some other
entity e2 or from another analysis that computes a property kind
k, the IAF queries the blackboard for these dependencies, using the
identifiers of e2 and k to find the relevant information (arrow 1. in
Figure 3.1). The blackboard will return the currently available value
(2.). This value may, however, not be available, or not be final, either
because the respective analysis was not yet executed or because it has
dependencies that yet need to be satisfied. Once the IAF completes

3.3 analysis structure 33

IAFs
Blackboard

fixed-point
solver

1. query dependent properties

2. current status
3. initial results + dependencies

CFs
4. repeated invocation on updates

5. updated results + dependencies

Figure 3.1: Overview

analyzing the entity, it returns to the blackboard (a) a result computed
based on the currently available information and (b) any remaining
dependencies, along with a continuation function (CF) (3.). Similar to
the solver of declarative frameworks, the blackboard resolves depen-
dencies and automatically invokes the CFs whenever updates to these
dependencies become available (4.). On completion, CFs also return
their updated results to the blackboard (5.), potentially triggering the
execution of other CFs. While the IAF is written imperatively (dotted
queries in Figure 3.1), the subsequent execution is performed similarly
to declarative frameworks (straight lines): results declare their depen-
dencies and the solver is responsible for satisfying them. Executions of
the IAFs and CFs are called analysis activations. To ensure determinism,
OPAL executes the activations for a single property sequentially, while
IAFs and CFs for other properties can execute concurrently.

As analyses get notified about dependency updates through the
invocation of the CF, it is not necessary that dependencies are com-
puted before or when they are queried. Instead, they can be computed
asynchronously and lazily, i.e., on-demand (R12). This also allows
OPAL to handle cyclic dependencies (R4).

Apart from adhering to this basic structure, developers may use
any suitable strategy to implement an analysis A. Analysis A may, e.g.,
focus on specific statements instead of traversing the entire code of
a method (OPAL provides pre-analyses to query specific parts of the
code, e.g., all statements that access a specific field). Also, analyses can
internally use any data structure suitable to achieve good scalability.
For illustration, Listing 3.2 shows an excerpt from a simple class
immutability analysis’ initial analysis function. The IAF is given the
entity to analyze (Line 1). Lines 3 to 7 show how to retrieve and handle
properties required to compute the IAF’s result: The required property
(the mutability of an instance field of the analyzed class) is queried
from the blackboard (Line 3) and based on the returned value, the IAF
may compute its result (as in Line 4) or keep the dependency in a list
of dependees (Line 6) to return it alongside an intermediate result later
(Line 9). Line 9 also specifies the continuation function to be invoked
when any of the properties in dependees is updated. We do not show
the code for that CF here, as its implementation is very similar to

3.4 declarative specifications 34

1 def analyze(theClass: Type) = {
2 [...]
3 Blackboard.get(field, FieldImmutability) match {
4 case _: MutableField => return Result(theClass, MutableClass)
5 case dependee: ImmutableField =>
6 if (!dependee.isFinal) dependees += (field −> dependee)
7 }
8 [...]
9 Result(theClass, ImmutableClass, dependees, continuation)
10 }

Listing 3.2: Class Immutability Analysis

Lines 4 to 9, i.e., based on the updated value, the (intermediate) result
of the CF is determined.

The implementations of the analyses must satisfy two constraints:
First, they must ensure monotonicity of result updates according to

the used lattice. Analyses that optimistically start at a lattice’s bottom
value may only refine approximations upwards; pessimistic analyses
only downwards. OPAL can automatically check the monotonicity of
updates. Monotonicity allows analyses to know which refinements of
intermediate results are still possible.

Second, analyses must be scheduling independent: Whenever they
receive the value of some other property they depend on, they must
use the information provided by that value to compute the result of
the current activation, i.e., they may not defer the incorporation of the
newly gained information to a later activation of a continuation func-
tion. Immediately using the provided value ensures that all available
information is used regardless of whether the continuation is later
scheduled for execution. This is important, because no further activa-
tion may ever occur in case there are cyclic dependencies. For example,
once the immutability analysis of a class C knows that C’s instance
field f is mutable, it may no longer report that C could be immutable.
The developer of an analysis A is responsible for ensuring that A is
scheduling independent. However, scheduling independence can usu-
ally be achieved easily by following a simple pattern to immediately
evaluate the effect of updated dependencies.

3.4 declarative specifications

On top of the IAF and CF, the developer of an analysis A specifies (a)
the property kinds computed by A, (b) its dependencies, (c) on which
entities A will be executed and (d) when the blackboard should start
A’s execution. These specifications are evaluated when the analysis is
registered with the blackboard, before the latter takes over control of

3.4 declarative specifications 35

1 override def derivesLazily = Optimistic(ClassImmutability)
2 override def uses = Set(Optimistic(FieldImmutability))
3 override def register() = {
4 Blackboard.set(Type.Object, ImmutableClass)
5 val analysis = new ClassMutabilityAnalysis
6 Blackboard.registerLazyAnalysis(this, analysis.analyze)
7 }

Listing 3.3: Registration of Class Immutability Analysis

analysis activation. When registering analyses, developers may also
report precomputed values to the blackboard (R8).

The specification of the computed property kinds also states whether
intermediate results are optimistic or pessimistic and whether the anal-
ysis contributes to a collaborative computation or intends to be the
only analysis computing the specified property kinds. Dependency
specifications state other property kinds on which A depends (which A

queries) and whether A can process optimistic/pessimistic intermedi-
ate values or final values only.

Analyses can eagerly select a set of entities (e.g., all methods of the
analyzed program) if it is likely necessary to perform the analysis for
all of these entities (R11). This is, e.g., useful for analyses that are of
interest to the end user, e.g., if the user is interested in the purity of
all methods. Alternatively, analyses can be registered to be invoked
lazily [26, 115]. Lazy analyses only compute a property if that property
is queried (R12) by another analysis or by the end user. Finally, an
analysis can specify a property kind k such that it is started for every
entity for which k has been computed (R10).

Some analyses benefit from enforcing a specific order for computing
the properties for different entities (R13). For instance, the class muta-
bility analysis benefits from traversing the class hierarchy downwards,
such that results for a parent class are available before any subclass
is analyzed. In OPAL, this is supported by enabling the developer of
an analysis A to declare a number of computations to be scheduled
whenever A returns a result to the blackboard.

For illustration, Listing 3.3 shows the registration code for a class
immutability analysis. Line 1 declares that the analysis optimistically
and lazily derives class mutability. Line 2 declares that in perform-
ing its computation, it may require field mutability and that it can
handle intermediate results for this property if they were computed
optimistically. This declaration is complete: No property kinds other
than field mutability (and class mutability) may be queried by this
analysis. Line 4 registers a predefined value (R8) stating that the base
class Object is immutable. The IAF analyze is registered as a lazy
analysis in Line 6, i.e., the mutability of a certain class will only be
computed on demand, e.g., when a purity analysis queries it.

3.5 reporting results 36

3.5 reporting results

As already mentioned, analyses write intermediate and final results
to the blackboard. They can report results for each single entity indi-
vidually or for multiple entities at the same time. A result consists of
a single lattice value representing the new value for the property or
of an update function for updating the property’s current value (as
recorded in the blackboard) to incorporate the new result.

An update function is used for properties whose computation is not
localized to a specific part of the program, e.g., the callers of a method.
For such properties, constraint-based analyses [4, 169] have been used
in the past; declarative analyses also provide such updates, called
deltas, that only specify the change to the property value instead of
the full new property value. The update function merges the results
of one activation with the current state of the property (e.g., adding a
new caller to an existing set of callers). This way, activations of one or
of different analyses can collaboratively contribute to a property (R6,
R7).

3.6 execution constraints

Once the end user chooses a set of analyses to be executed (R2),
OPAL uses the declarative specifications (Section 3.4) to check and
automatically enforce restrictions on analyses that can be executed
together. First, it ensures that any property kind is computed either by
at most one analysis or collaboratively by multiple analyses; this is to
avoid that conflicting results are reported to the blackboard. Second, if
several analyses derive a property kind collaboratively, OPAL ensures
that they are all either optimistic or pessimistic. Finally, OPAL ensures
that all property kinds required by any analysis are derived by another
analysis or there is a fallback value provided; this is to ensure that
dependencies can be satisfied.

OPAL’s blackboard may run optimistic and pessimistic analyses
simultaneously. But, when doing so, it ensures that no intermediate
results are propagated between them (R5). Given property kind p that
is computed optimistically and pessimistic analysis A depending on
p, OPAL does not forward any intermediate values of p to A’s CF.
The latter is triggered only when a value of p is submitted as a final
result. We say that the dependency of A on p is suppressed. There are
subtle interactions between dependency suppression and cyclic and
collaborative computations, which we explain next.

First, there can be no cyclic dependencies between pessimistic and
optimistic analyses. The correctness of cyclic dependency resolution
relies on the assumption that all intermediate approximations have
been processed and no further updates to any property involved in

3.7 fixed-point computation 37

the cycle may happen (cf. Section 3.7). This obviously is not the case
when updates are suppressed.

The interaction between dependency suppression and collabora-
tively computed properties is more involved. Assume a collaboratively
computed property p1 that (transitively) depends on another collab-
oratively computed property p2 and consider the case when one or
more of the transitive dependencies between them is suppressed1. In
this case, OPAL must ensure that p2’s values are committed as final
before p1’s values can be committed as final, too. This ensures that
final values have been propagated along the suppressed dependencies.
To this end, OPAL derives a commit order when checking the execution
constraints before executing analyses. The commit order is a partial
order between collaboratively computed property kinds: p1 must be
finalized later than any other collaboratively computed property kind
p2 on which p1 depends when there is suppression between them. This
commit order is computed when checking the execution constraints
before executing analyses.

Suppression of intermediate updates can also be used to improve
scalability: Consider the relation between TAC and AI (cf. Section 2.2.1).
Both are optimistic and TAC could use intermediate AI results. But
these results are typically not useful. Hence, it can be beneficial to use
suppression to avoid costly computation of these intermediate results
and instead compute the TAC only once on the final AI result.

3.7 fixed-point computation

Computation is started for the entities selected by eager analyses (R11)
(cf. Section 3.4). Whenever intermediate values for properties are sub-
mitted, the blackboard schedules activations of continuation functions,
distributing updated results to analyses that depend on them. Ad-
ditionally, the blackboard starts new computations by invoking the
initial analysis function for properties that are requested lazily (R12),
are triggered by some analyses reaching a certain entity (R10), or
whenever it is guided to do so by running analyses (R13). This process
of scheduling IAF and CF activations is performed until no further
updates are generated—the blackboard has reached a quiescent state.
At this point, however, the properties’ values may not necessarily be
final, as there still may be unresolved dependencies. There are three
cases to be considered.

First, an analysis was scheduled for some property kind p, but it
did not analyze some entity e, for which p was requested, e.g., because
e was not reachable in the call graph. In this case, the default value (R9)

1 On a chain of dependencies, more than one may be suppressed. Also, if p1 depends
on p3 and p4 and each of those depends on p2, there is more than one path between
p1 and p2, on which dependencies may get suppressed.

3.8 scheduling and parallelization 38

is inserted, which may trigger further computations, until quiescence
is reached again.

Second, properties that cyclically depend on each other are not
finalized yet. If such properties form a closed strongly connected com-
ponent, i.e., they do not have any dependees outside of the cycle (but
other properties may still depend on them), they are now finalized to
their current value. By requiring analyses to report their results in a
monotonous and scheduling-independent way (cf. Section 3.3), OPAL
guarantees that the cycle resolution is deterministic and sound. Again,
further computations may arise from resolving cyclic dependencies
(including supplying more default values and resolving further cycles)
until quiescence is reached again.

Finally, the blackboard finalizes values for collaboratively computed
properties. It respects the commit order computed previously (cf. Sec-
tion 3.6): After finalizing a set of collaboratively computed properties,
computation is resumed again. Only once quiescence is reached again,
the next property kinds, as given by the commit order, are finalized.
This is repeated until all collaboratively computed properties have
been finalized.

3.8 scheduling and parallelization

Blackboard systems require a control component that, upon updates
of the blackboard, decides which knowledge sources to activate next.
In our case, this control component determines the order in which acti-
vations of dependent analyses are executed and is called scheduler. The
order in which dependent analyses are activated can have significant
effects on scalability [192].

OPAL allows for the scheduler to be easily exchanged in order to
select the best-performing one for any chosen set of analyses. Apart
from general strategies such as first-in-first-out, more specific algo-
rithms may use the dependency structure or the values of intermediate
approximations to decide the scheduling order. This is similar to the
control component of blackboard systems asking knowledge sources
for an estimated information gain (cf. [48]).

Blackboard systems lend themselves well to parallelization. The
individual knowledge sources, i.e., analyses in our case, are decoupled
and their activations (both the initial analysis and the continuations)
can be executed in parallel on multiple threads. Updates to the black-
board, on the other hand, can be synchronized on a special thread
or, if that becomes a bottleneck, distributed to several threads based
on the property kind and/or entity. A simple implementation may
consist of several threads that use a shared data structure holding
the property data and use locks or other mechanisms to synchronize
accesses to this shared storage.

3.9 summary 39

3.9 summary

Our approach fosters strong decoupling of reified lattices (choice
of data structures), analyses (choice of algorithm), and the solver
infrastructure (the concrete fixed-point solving implementation). This
enables exchanging and optimizing these parts independently. As
reified lattices are the basis for all communication between analyses,
different versions of analyses can be implemented at different trade-
offs. The fixed-point solver manages the execution of analyses, tracks
dependencies and propagates updates, performs monotonicity checks,
and computes the fixed-point solution.

4
A LT E R N AT I V E I M P L E M E N TAT I O N I N R E A C T I V E
A S Y N C

The approach presented in this thesis is general and not tied to OPAL
alone. As we show in this chapter, implementations in other frame-
works that allow for decoupled computation are possible: We present
RA2, an alternative implementation of our approach built using the
Reactive Async library for asynchronous computations [97]. This im-
plementation allows for analysis-independent and semi-implicit paral-
lelization of static analyses and for the use of scheduling strategies.

In particular, to support static analyses, we extended Reactive Async
to allow stateful computations. We also added support for exchange-
able strategies for task scheduling, which is important for scalability.

We start with a high-level overview of the programming model that
the approach imposes (Section 4.1) followed by advanced concepts to
ensure correctness in the presence of concurrent updates and shared
mutable state (Section 4.2). Next, we introduce RA2’s solver, which
performs the parallelization and resolves (cyclic) dependencies (Sec-
tion 4.3). We present pluggable scheduling strategies, which enable
analysis-specific tuning and aggregation of updates with the goal
to improve on scalability (Section 4.4) and finally give an in-depth
example of a simple purity analysis implemented in RA2 (Section 4.5).

4.1 programming model basics

To illustrate how analyses are implemented in RA2, assume we want
to develop an analysis for determining whether methods are deter-
ministic and free of side effects (pure) or not (impure).

The goal of any static analysis is to compute a specific property
for a given entity. In the example of the purity analysis, methods are
the entities and the property is the purity, which can have one of two
values: pure or impure. In RA2, each property must form a lattice
(or at least a partial order with a bottom element), a common data
structure for properties calculated by static analyses. The property
of an entity may depend on some other properties of related entities.
In a purity analysis, if foo calls bar, the computation of foo’s purity
requires the purity of bar. We say foo depends on/is a depender of bar,
or bar is a dependee of foo.

Analysis results and dependencies are maintained in cells. When
implementing a static analysis, we create one cell per pair of analyzed
entity and property. Cells are shared by the different concurrent tasks.
Every cell is explicitly associated with the lattice of the property values

41

4.1 programming model basics 42

that are managed by the cell: a cell that was created to store purity
information thus cannot be used—at some later point in time—to store
data-flow information.

As described in Section 3.3, analyses in RA2 are implemented as
two functions—an initial analysis function to analyze the code and a
continuation function to process updates of dependees’ properties. Both
functions are invoked by the reactive framework underlying RA2.

Given an entity, the initial analysis function computes the initial
property of that entity based on the information already available, i.e.,
local information, such as the source code, and the current property
values of dependees. The initial analysis function also queries and
collects the dependencies of an entity. The dependencies may have a
non-final property value (or none at all) at the time the initial function
is executed. The list of dependencies is used to get notified of potential
future changes of their property values. These changes may in turn
lead to updates of the entity’s property value. The initial analysis
function returns the initial property and registers the dependencies
along with a continuation function.

A continuation function of an entity e is invoked by RA2 whenever
dependencies of e (e.g., the purity information for a called method)
change. Its result defines how the property value of e is to be updated,
whereby the updated value must be a monotonic refinement according
to the property’s lattice. Unless the continuation function declares
its result as final, it will be invoked again for further updates of
dependees. Both the initial analysis and invocations of the continuation
functions are tasks that RA2 executes concurrently.

Dependencies are created by connecting two cells using the continu-
ation function—to respond to updated cells, continuation functions
are used as callbacks. To ensure that a cell is notified about the update
of its dependees, its dependencies are explicitly declared and regis-
tered using the when method. For instance, cell2.when(cell1)(cont)
registers cell1 as a dependee of cell2: the function cont is called
when the value of cell1 changes.

The continuation function processes the changed dependee’s (cell1
in our case) new value and returns an Outcome object, which decides
whether and how the dependent cell (cell2 in our case) should be up-
dated. RA2 provides three types of Outcome objects: A NextOutcome(v)

result means that the dependent cell should be updated with value v

according to the specified updater (cf. Section 4.2). FinalOutcome(v)
states that, additionally, this update is final. If NoOutcome is returned,
the value of cell2 is not changed at all.

To illustrate the use of cells and continuations, consider Figure 4.1
which graphically depicts the cells and dependency from Listing 4.1
and the propagation of an update for this dependency. Assume that
the two cells, cell1 and cell2, have been initialized with Pure (A)
through the use of NextOutcome, i.e., their values can still change. In

4.2 advanced constructs for correctness 43

1 val cell1: Cell[Purity] = ...
2 val cell2: Cell[Purity] = ...
3

4 cell2.when(cell1) { update =>
5 if (update.head.get.value == Impure) FinalOutcome(Impure)
6 else NoOutcome
7 }

Listing 4.1: Example of Dependencies and Continuations

A

cell1
Pure

cell2
Pure

After executing Lines 1

and 2, two cells have
been created.

B

cell1
Pure

cell2
Pure

Lines 4 to 7 introduce a
(directed) dependency
between the cells.

C

cell1
Imp.

cell2
Pure

cell1 is completed with
the value Impure.

D

cell1
Imp.

cell2
Pure

The continuation is
triggered to inform
cell2 about the update
of cell1.

E

cell1
Imp.

cell2
Imp.

The continuation com-
putes an outcome of
impure; cell2 is up-
dated accordingly.

F

cell1
Imp.

cell2
Imp.

Both cells have a final
value.

Figure 4.1: Execution of Listing 4.1

Lines 4 to 7, a dependency (straight arrow) between cell1 and cell2 is
introduced (B). Recall that for a purity analysis, this is necessary if the
method represented by cell2 invokes the one represented by cell1.
Whenever cell1 is updated (using FinalOutcome or NextOutcome),
the continuation is executed and the returned Outcome is used to
update cell2. Consider the case when a final update for cell1—with
the value Impure—occurs (C). This will cause the continuation to be
invoked (dotted arrow) with Impure as an argument (the new value
of cell1) (D). Since a method that calls an impure method is also
impure, the continuation returns a FinalOutcome with value Impure.
Thus, cell2 is completed with value Impure (E), and the dependency
is removed (F). If the continuation returned a NextOutcome, the update
of cell2 would be an intermediate one.

4.2 advanced constructs for correctness

To ensure correctness and termination, cell updates must have a well-
defined semantics. RA2 executes updates concurrently, and thus with-
out a guaranteed order. Yet, monotonic updates ensure determinism
regardless of the order. Mutable state shared between the continu-
ations of a cell could otherwise lead to non-determinism when the
updates are executed concurrently due to data races.

4.2 advanced constructs for correctness 44

monotonic updates To guarantee determinism of cell updates,
they must be monotonically ordered according to the underlying
lattice. RA2, therefore, encapsulates cell updates in so-called updater
objects that determine how updates for the cell are processed.

Monotonicity can be automatically guaranteed by using the join
operator (i.e., the least upper bound of a set of lattice values) of
a cell’s lattice to aggregate new values with the previous value of
the cell. The outcome returned by each continuation is joined with
the cell’s previous value to compute the least upper bound, which
then becomes the cell’s new value. RA2 provides the updater type
AggregationUpdater that offers this semantics. However, there are sev-
eral good reasons for supporting other updater semantics. In general,
performing joins can be expensive when dealing with lattices that
are not based on singleton values, e.g., sets. Complex analyses may
already have to perform the join explicitly as part of the continuation
function, thereby guaranteeing the monotonicity by design and mak-
ing another implicit join during the cell update obsolete. To cover such
needs, RA2 provides the MonotonicUpdater as a drop-in replacement
for the AggregrationUpdater.

The MonotonicUpdater does not perform a join operation but only
checks whether the given update fulfills monotonicity. This check is
defined by the lattice. For expensive checks, it can be used only during
development and simplified or disabled in production when the anal-
ysis is known to guarantee monotonicity. The MonotonicUpdater also
allows for using partial orders instead of lattices. The partial orders,
however, still require a bottom element and must fulfill the ascending
chain condition, i.e., monotonically increasing operations must con-
verge eventually—we use this kind of updater, e.g., for our IFDS solver
(see Section 11.1). As the IFDS solver’s computations are required to
be performed sequentially and only introduce additional flow edges,
updates are guaranteed to be monotonic and no other (potentially
expensive) join operation is required.

Which updater should be used for a specific cell can be defined
when creating the cell by the HandlerPool—the interface of the analy-
sis implementations to the underlying reactive system of RA2, which
is presented in Section 4.3.

sequential updates Advanced analyses require maintaining
mutable state between cell updates. For example, an IFDS analysis
keeps track of already computed path edges in order to extend them
once updates on the analyzed method’s callees become available. Mu-
table state can also be used to keep track of the set of dependencies
explicitly. Shared mutable state affected by updates needs to be thread-
safe; thus, updates that affect mutable state need to be sequential.
Otherwise, continuations for several incoming updates could be ex-

4.3 handler pool 45

1 val seqCell1 = pool.mkSequentialCell(...)
2 val seqCell2 = pool.mkSequentialCell(...)
3

4 seqCell1.when(dependee1)(continuation1)
5 seqCell1.when(dependee2)(continuation2)
6 seqCell2.when(dependee1)(continuation3)

Listing 4.2: Example of Sequential Updates

ecuted concurrently, leading to non-determinism in the presence of
mutable state due to race conditions.

To enable the thread-safe use of mutable state, RA2 provides cells
with sequential updates, whose continuations are ensured to run sequen-
tially. Cells with sequential updates free developers from the need to
use locks or other concurrency mechanisms to protect shared muta-
ble state. The example in Listing 4.2 illustrates cells with sequential
updates. Those cells are created using the mkSequentialCell method
of the HandlerPool (cf. Section 4.3). While dependee1 and dependee2

may be updated concurrently, RA2 ensures that all callbacks targeting
seqCell1—continuation1 and continuation2—are invoked sequen-
tially (though with no guarantee on the relative order). Hence, both
callbacks may safely access shared state—as long as that state is only
shared among callbacks targeting seqCell1. To still exploit the bene-
fits of parallel computations, continuation3 is run concurrently, even
with continuation1 being triggered by the same dependee, dependee1.
Hence, continuation1 and continuation2 must not share state with
continuation3, as the latter targets a different cell.

4.3 handler pool

A central unit of RA2 is the HandlerPool. It creates cells and manages
the execution of initial functions and the propagation of updates
along cell dependency chains by executing respective continuations. It
implements the parallelization which analyses can use out-of-the-box
and do not need to implement on their own. For each initial analysis
function and each triggered continuation, the runtime system creates
a task that is eventually executed by an idle thread. The HandlerPool

keeps track of all active threads and all tasks being registered for
execution and schedules their execution.

The HandlerPool is RA2’s fixed-point solver; as such, it also resolves
situations where the execution gets stuck: As it keeps track of running
and pending tasks, the pool is able to detect quiescence. The system
is quiescent when there are no unfinished submitted tasks currently
queued or running. However, even when quiescence is reached, not
all cells are guaranteed to contain final results. This is true in the
following cases:

4.4 scheduling 46

1. A chain of dependencies such that each cell’s result depends on
another cell’s result where these dependencies form a cycle is
called cyclic dependency. A simple example are two cells A and
B, where A depends on B and B depends on A. Such a cyclic
dependency where each cell in the cycle solely depends on cells
of that cycle is called a closed strongly connected component
(cSCC).

2. Cells that do not depend on any other cells are called independent.
Independent cells that have not been completed are referred to
as independent unresolvable cells (IUC). An IUC arises when all
dependees of a cell have been completed (and the corresponding
dependencies have therefore been dropped), but the cell itself
was not completed yet. This happens if on the last invocation
of the continuation, that continuation—without tracking depen-
dencies explicitly—cannot recognize that there will not be any
future invocations. In the example of Figure 4.1, cell2 becomes
independent after the final update of cell1 as the dependency
between cell2 and cell1 is removed by the system (F). In that
case, cell2 was completed. If, however, cell1 had instead been
completed with a result property value pure, the continuation
would have returned NoOutcome and, therefore, cell2 would not
be completed. As the dependency would still be removed, cell2
would become an IUC.

Once cycles and independent cells are detected, two methods, that
are implemented by the analysis designer when specifying the lattice,
are used to resolve them: resolve and fallback. The resolve method
takes a list of all cells in one cSCC and returns for each cell the final
value it should be resolved to. Resolving one cSCC does not trigger
callbacks of cells in that cSCC but does so for their dependers outside
of it. The fallback method works similarly but is given a list of
IUCs. Different from the cells of a cSCC, the IUCs must be resolved
independently of each other. Each cell is then completed with the
returned associated value, which is typically the cell’s current value.

4.4 scheduling

As outlined in Chapter 1, scalability of static analyses is necessary to
deal with the ever-growing amount of software. The order in which
individual tasks are scheduled is one particularly important factor for
runtime performance and in order to provide effective parallelization
for a specific (analysis) domain. For example, scheduling strategies
that prioritize values that might have a bigger impact were found
to be beneficial in the IFDS-A framework [192]. To support different
analysis domains, different scheduling strategies might be needed.

4.4 scheduling 47

A

target source

B

target source

C

target source

D

target source

Figure 4.2: Scheduling Strategies

The HandlerPool is parametric in the scheduling strategy to enable
an analysis designer to plug in a scheduling strategy to influence the
order in which tasks ready for execution are picked up. Whenever a
task is submitted to the pool for execution, the scheduling strategy is
invoked to calculate a priority for the dependency in question. This
priority is used in a priority queue that tracks all tasks that may be
executed concurrently.

Dependency continuations that target sequential cells must not run
concurrently. To ensure this, each sequential cell keeps track of all
tasks updating it. Again, this is done via a priority queue that uses
the developer-supplied scheduling strategy. Tasks can be dequeued
from this queue in the order of respective priority, hence respecting
the scheduling strategy.

RA2 provides a default last-in-first-out scheduling strategy. This
includes first-in-first-out work stealing, i.e., threads with an empty
working queue can execute tasks from other threads’ queues in order
to improve processor utilization. Additionally, RA2 includes several
other general-purpose scheduling strategies out of the box. These are
applicable to any kind of analysis as they only take into account how
many dependees a cell has and how many cells (directly) depend on
the value that is being updated via the continuation. These strategies
are illustrated in Figure 4.2 (A–D). As in Figure 4.1, straight arrows
represent dependencies, while discontinuous arrows represent po-
tential update messages. The strategies determine the priority of the
message from source to target (dotted red message in Figure 4.2).

(A) TargetsWithManySourcesFirst/Last. The higher the number of
cells (in addition to source) that target depends on, the high-
er/lower the priority.

(B) SourcesWithManyTargetsFirst/Last. The higher the number of
cells depending on source (in addition to target), the high-
er/lower the priority.

(C) TargetsWithManyTargetsFirst/Last. The higher the number of
cells depending on target, the higher/lower the priority.

(D) SourcesWithManySourcesFirst/Last. The higher the number of
cells that source depends on, the higher/lower the priority.

4.4 scheduling 48

1 case class LatticeValueStrategy[V](prioritizedValue: V)
2 extends SchedulingStrategy[V] {
3 override def calcPriority(
4 tgt: Cell[V], src: Cell[V], v: Outcome[V]
5): Int = calcPriority(tgt, v)
6

7 override def calcPriority(
8 tgt: Cell[V], v: Outcome[V]
9): Int = v match {

10 case FinalOutcome(prioritizedValue) => −1

11 case _ => 1

12 }
13 }

Listing 4.3: Scheduling Strategy for Lattice Values

The generic-purpose strategies are simple and only take the (local)
shape of the dependency graph into account. Nonetheless, they can in-
fluence the analysis’ behavior significantly. Some strategies (the xFirst

ones) try to prioritize updates that may have a greater impact on the
result by influencing many cells. This may lead to faster stabilization
of the result. Other strategies (the xLast ones) delay such influential
updates, providing more opportunities to aggregate them (cf. below),
potentially reducing the overall number of updates required. Our
evaluation (cf. Section 13.3) shows that this has a significant impact
on scalability and performance.

Scheduling strategies also allow encoding and taking into consid-
eration domain-specific knowledge about the relevance of different
property values. For our purity analysis, propagating Impure may be
more relevant to target cells than propagating Pure. This is because a
call to an impure method is impure, thus a single impure dependee
will result in the cell being completed. In contrast, a call to a pure
method does not change the outcome as long as there are other depen-
dees that might be impure. To accelerate the propagation of specific
lattice values, we can use a strategy that returns a higher priority for
the respective continuations.

The implementation of such a strategy prioritizing a given lattice
element is shown in Listing 4.3. RA2 provides two functions to calcu-
late the priority for scheduling: the first one (Lines 3 to 5) is used in
scheduling continuations, while the second one (Lines 7 to 12) is used
for resolving cycles and IUCs where no source cell exists. Note that,
based on Java’s priority queues, a low value will prioritize the task to
be scheduled early.

As the invocation of continuations may be delayed according to
prioritization, the cell that triggered a continuation may be updated
again before the continuation is actually invoked. This enables an
important optimization: instead of invoking the continuation with

4.5 ra2 at work 49

the first updated value and later invoking the continuation again, the
continuation will be invoked only once using the most recent value.

RA2 can also aggregate updates from multiple sources that are
passed to the continuation as a list of updates. Both kinds of aggre-
gations can reduce the overhead of continuation invocations. This
also has a transitive effect: fewer invocations of continuations produce
fewer intermediate results that in turn trigger fewer continuations.

4.5 ra2 at work

In the following, we demonstrate how to apply our programming
model to implement a very simple purity analysis.

We show the complete analysis, including the lattice definition, the
initial analysis function, its continuation, and how to bootstrap the
analysis, leaving out just minor details, e.g., error handling.

1 sealed trait Purity
2 case object Pure extends Purity
3 case object Impure extends Purity
4

5 object Purity {
6 implicit object PurityLattice extends Lattice[Purity] {
7 override def join(v1: Purity, v2: Purity): Purity = {
8 if (v1 == Impure) Impure else v2

9 }
10

11 override val bottom: Purity = Pure
12 }
13 }

Listing 4.4: Simple Lattice for Purity Information

Listing 4.4 shows the specification of the lattice, including the bottom
element and the join function. The lattice has two elements, namely
Pure (its bottom element) and Impure.

1 object PurityKey extends Key[Purity] {
2 def resolve(cs: Iterable[Cell[Purity]]): Iterable[(Cell[Purity], Purity)] =
3 cs.map(cell => (cell, Pure))
4

5 def fallback(cs: Iterable[Cell[Purity]]): Iterable[(Cell[Purity], Purity)] =
6 cs.map(cell => (cell, Pure))
7 }

Listing 4.5: Resolving Cycles and IUCs

Listing 4.5 shows the fallback and cycle-resolution strategies as
explained in Section 4.4. For the purity analysis, all impure values will

4.5 ra2 at work 50

be marked as final immediately. Therefore, unresolved cells must be
Pure for both, cycles and IUCs.

1 def analyze(method: Method): Outcome[Purity] = {
2 val cell = methodToCell(method)
3

4 if (method.isNative || method.hasReferenceTypeParameter())
5 return FinalOutcome(Impure)
6

7 val dependencies = mutable.Set.empty[Cell[Purity]]
8 for (instruction <− method.instructions) {
9 instruction match {

10 case gs: GETSTATIC =>
11 resolveFieldReference(gs) match {
12 case Some(field) if field.isFinal => // Constant
13 case _ => return FinalOutcome(Impure)
14 }
15 case INVOKESPECIAL | INVOKESTATIC => // Monomorphic
16 resolveNonVirtualCall(instruction) match {
17 case Some(callee) =>
18 if (callee != method) // Not self−recursive
19 dependencies.add(methodToCell(callee))
20 case _ => return FinalOutcome(Impure) // Unknown callee
21 }
22 case PUTSTATIC | ... => return FinalOutcome(Impure)
23 case _ => // All other instructions are pure
24 }
25 }
26

27 if (dependencies.isEmpty) return FinalOutcome(Pure)
28

29 cell.when(dependencies)(continuation)
30 NextOutcome(Pure)
31 }

Listing 4.6: Determining the Purity of a Method

The analysis function shown in Listing 4.6 computes the purity of
a given method by checking its instructions. If there is an instruction
affecting the purity, e.g., a static field write, the method is immedi-
ately considered impure (Line 22). For simplicity, we also consider
native methods, methods with reference type parameters, or non-
monomorphic (i.e., virtual and interface) method calls as impure. For
method calls that are not self-recursive, the callee’s cell is added as
a dependency (Line 19). If such a callee was impure, the analyzed
method itself would be impure. With a call graph available, polymor-
phic calls could simply be handled by adding a dependency for each
possible callee. If no impure instruction was found after checking
all instructions, the method is initially found to be pure (Line 30). It
can then only be refined to impure by an update of a dependency

4.5 ra2 at work 51

(cf. Line 27). To cover the latter case, we use when to register the
continuation function to react upon updates for these dependencies
(Line 29).

1 def continuation(
2 v: Iterable[(Cell[Purity], Outcome[Purity])]
3): Outcome[Purity] = {
4 if (v.exists(_._2 == FinalOutcome(Impure))) FinalOutcome(Impure)
5 else NoOutcome
6 }

Listing 4.7: Continue with Updates for Callees

The continuation function that handles updates of dependencies
is shown in Listing 4.7. As stated above, impure callees lead to an
impure method. We take advantage of RA2’s aggregation of updates:
The continuation function may receive updates for multiple dependees
at once, and if a single one is impure, the cell is completed.

1 def main(project: Project): Unit = {
2 // 1. Initialize HandlerPool and Cells
3 val pool: HandlerPool[Purity] = new HandlerPool(
4 key = PurityKey,
5 parallelism = 10,
6 schedulingStrategy = LatticeValueStrategy(Impure)
7)
8 var methodToCell = Map.empty[Method, Cell[Purity]]
9 for (method <− project.allMethods) {

10 val cellCreator = pool.mkCell(_ => analyze(method))
11 val cell = cellCreator(AggregationUpdater)
12 methodToCell += method −> cell
13 }
14

15 // 2. Start analyses
16 for (method <− project.allMethods) methodToCell(method).trigger()
17

18 // 3. Wait for completion
19 val future = pool.quiescentResolveCell()
20 Await.ready(future, 30.minutes)
21 pool.shutdown()
22

23 // 4. Retrieve results
24 val pureMethods = methodToCell.filter(_._2.getResult() == Pure).keys
25 }

Listing 4.8: Setting Up and Starting the Analysis

Listing 4.8 shows how to (1) initialize (Lines 3 to 13) the analysis and
(2) start it (Line 16). The code then (3) awaits the analysis’ completion
(Lines 19 to 21) and (4) retrieves the results (Line 24). Parallelization

4.6 summary 52

is done by the HandlerPool—the number of threads is set explicitly
in this example (Line 5). We also specify the scheduling strategy here,
using the lattice-based strategy from Listing 4.3 to prioritize updates of
impure methods (Line 6). Cells are created through the HandlerPool

(Line 10) and their initial analysis is then triggered (Line 16). In
particular, note how we specify the AggregationUpdater for each
cell (Line 11). This explicit specification is for demonstration only,
as aggregating updates is the default in RA2. Triggering the cells
starts the concurrent computation of the initial analysis functions.
The HandlerPool provides a future to await quiescence (Line 19).
After quiescence has been reached, the cells contain the final results
(Line 24).

4.6 summary

In this chapter, we presented RA2, an alternative implementation of
our approach to modular, collaborative analysis. RA2 builds on the
Reactive Async library to provide semi-implicit parallelism for analyses
without developers having to worry about concurrency issues. In order
to create RA2, we extended Reactive Async with support for stateful
computations that are key for static analyses. Furthermore, we used
RA2 to discuss and present exchangeable scheduling strategies that
can further enhance analysis scalability by reducing the overhead in
processing property updates. RA2 shows that our approach is not
limited to OPAL but can be adapted to any framework that allows
for tasks to be scheduled independently while tracking dependencies
between these tasks.

5
F O R M A L I Z AT I O N

A significant part of the complexity of developing static analyses
pertains to ensuring that they are sound, i.e., over-approximate the
runtime behavior of analyzed programs. Unfortunately, even well-
established static analyses are shown to be unsound, e.g., since 2010,
more than 80 soundness bugs have been found in different analyses
used in the LLVM compiler [232]. Testing helps to find soundness
bugs but cannot prove their absence, thus leaving the trustworthiness
of these analyses in question.

Mathematical soundness proofs, which ensure the absence of sound-
ness bugs, are difficult for two reasons. First, such proofs relate two
program semantics, the static semantics describing an analysis that
should cover all possible program executions and the dynamic seman-
tics describing each particular actual program execution [52]. Each of
these semantics is complex on its own. Especially modern program-
ming language features such as reflection [136], concurrency [127], or
native code [1] are notoriously difficult to analyze and hard to reason
about in soundness proofs. Second, the style of static and dynamic
semantics can differ significantly, e.g., the static semantics of Doop [34],
which is described in Datalog, is different from dynamic semantics typ-
ically described with small-step rules [29]. This impedance mismatch
makes it difficult to determine which parts of the static semantics
relate to which parts of the dynamic semantics, requiring soundness
proofs to reason about both semantics as a whole. These problems
make soundness proofs intricate, such that only leading experts with
multiple years of experience can conduct them [53, 120].

Modularization has been used before to manage different aspects of
the complexity of soundness proofs. One line of work has used mod-
ularization to manage the complexity of dynamic and static seman-
tics [34, 116, 148, 164, 194], without, however, providing a theory for
modular and compositional soundness proofs. Another line of work
proposes soundness theories [28, 125] that address the impedance
mismatch between dynamic and static semantics by deriving both of
them from the same artifact, often called generic interpreter. The latter
describes the operational semantics of a language, without referring
to details of dynamic or static semantics, and provides a common
structure between dynamic and static semantics along which a sound-
ness proof can be composed. Soundness proof composition alleviates
the need to reason about the generic interpreter, which reduces proof
complexity and effort. However, existing soundness theories are lim-
ited by generic interpreters restricting what type of analyses can be

53

formalization 54

derived. In particular, generic interpreters are suitable for deriving
analyses that follow the program execution order, specifically, forward
whole-program abstract interpreters. But it is unclear how analyses
can be derived that do not follow the program execution order, such
as backward, demand-driven/lazy, or summary-based analyses.

In this chapter, we lift this restriction by developing a soundness
theory based on OPAL’s blackboard architecture. As explained in
Chapter 3, complex analyses are modularly composed from smaller,
simpler analysis modules that handle individual language features, e.g.,
reflection, or program properties, e.g., immutability. These modules
are decoupled and are not allowed to call each other directly. Instead,
they communicate with each other by exchanging information via
a central data store called blackboard, orchestrated by a fixed-point
solver.

The theory introduced in this chapter uses the blackboard architec-
ture to describe both the static and dynamic semantics in a modular
way, thus addressing the impedance mismatch problem, and comes
with a proof that soundness of complex analyses can be composed
from independent soundness proofs of their modules. As a result,
there is no need to reason about a complex analysis as a whole, which
reduces the complexity of soundness proofs. We also extend the theory
to make soundness proofs of existing analysis modules reusable across
different analyses. In particular, we prove that the soundness proof of
an analysis module remains valid, even if (a) the compound analysis
processes source code elements that are unknown to the module and
(b) the store contains types of analysis information that are unknown
to the module. Furthermore, proofs are polymorphic in the lattices on
which analysis modules operate, i.e., lattices can be changed without
affecting soundness. For instance, we can reuse a pointer-analysis
module, which typically depends on an allocation-site lattice, in a
reflection analysis to propagate string information by extending this
lattice without invalidating the pointer-analysis modules’ soundness
proof.

We demonstrate the applicability of our theory by implementing
four different analyses and their dynamic semantics in the blackboard
analysis architecture: (1) a pointer and call-graph analysis, (2) an
analysis for reflection, (3) an immutability analysis, and (4) a demand-
driven reaching-definitions analysis. These analyses are inspired by the
case-study analyses outlined in Chapter 2. We use our theory to prove
each analysis sound, where each analysis exercises a different aspect of
our theory: (1) analysis modules can be proven sound independently
despite mutually depending on each other, (2) soundness of modules
remains valid even though the lattice changes, (3) soundness of a
module remains valid even though different source code elements are
analyzed, and (4) our theory applies to analyses that do not follow the
program execution order.

5.1 formal definition 55

5.1 formal definition

In this section, we define OPAL’s blackboard analysis architecture
formally.

5.1.1 Static Semantics

Analyses in the blackboard architecture consist of multiple analysis
modules communicating by information exchange via a blackboard [170],
i.e., a central data store. That approach avoids coupling between
modules as they are not allowed to call each other directly. This
allows to replace analysis modules with more precise or more scalable
versions without changing other modules.

Definition 5.1 (Blackboard Analysis Architecture). We define basic
notions and data types of the blackboard analysis architecture:

1. Entities (ê ∈ Êntity)1 are parts of programs an analysis can compute
information for. For example, entities could be classes, methods, state-
ments, fields, variables, or allocation sites of objects. Entities are ordered
discretely: ê1 ⊑ ê2 iff ê1 = ê2.

2. Kinds (κ ∈ Kind) identify analysis information that can be computed
for an entity. For example, a class entity could have kinds for its
immutability or thread safety, whereas a variable entity could have
kinds for its definition site or approximations of its value. Kinds are
also ordered discretely.

3. Properties (p̂ ∈ ̂Property[κ] where ̂Property : Kind → Lattice) denote
analysis information which is identified by a kind κ. For instance, a
class entity could have an immutability property “mutable” or “im-
mutable”. Properties of a kind are partially ordered and form a lattice.

4. A central store (σ̂ ∈ Ŝtore ⊆ Êntity× (κ : Kind) ⇀ ̂Property[κ])2
contains all properties for each entity and kind. We use the notation
σ̂(ê, κ) for a store lookup of an entity ê and kind κ, which results in
the bottom element ⊥ in case the property is not present. Furthermore,
we use the notation σ̂ ⊔ [ê, κ 7→ p̂] for writing a new property p̂ to
the store. If a property for the entity ê and kind κ already exists in the
store, then the old property is joined with the new property. Stores are
ordered point-wise:

σ̂1 ⊑ σ̂2 iff dom(σ̂1) ⊆ dom(σ̂2)∧
∀ê, κ ∈ dom(σ̂1), σ̂1(ê, κ) ⊑ σ̂2(ê, κ).

1 We use a hat symbol ̂ to disambiguate abstract definitions from concrete definitions
with the same name but without hat.

2 The syntax A ⇀ B denotes a partial function from A to B. Furthermore, dom(f) is
the set of all inputs for which a partial function f is defined.

5.1 formal definition 56

5. Analysis modules (f̂ ∈ M̂odule = Êntity× Ŝtore → Ŝtore) are mono-
tone functions that compute properties of a given entity. The store
allows multiple analysis modules to communicate and exchange in-
formation without having to call each other directly. Each analysis
module has access to the entire store and can contribute to one or more
properties.

6. The fixed-point algorithm (fix : P(M̂odule)× Ŝtore → Ŝtore) com-
putes a fixed point of a compound analysis F̂ ∈ P(M̂odule) for an
initial store σ̂1.

The types Êntity, Kind, and ̂Property are defined by analysis developers,
whereas the other types and functions are fixed by this definition.

1 Êntity = Stmt
2

̂Property[κControlFlowPred] = P(Stmt)
3

̂Property[κReachingDefs] = Var ⇀ P(Assign)
4 Ŝtore = [Stmt× κControlFlowPred ⇀ P(Stmt)]
5 ∪ [Stmt× κReachingDefs ⇀ (Var ⇀ P(Assign))]
6

7
̂reachingDefs(stmt: Êntity, σ̂: Ŝtore): Ŝtore =

8 predecessors = σ̂(stmt, κControlFlowPred)
9 în =

⊔
p∈predecessors σ̂(p, κReachingDefs)

10 ôut = stmt match
11 case Assign(x,_,_) => în[x 7→ {stmt}]
12 case _ => în
13 σ̂ ⊔ [stmt, κReachingDefs 7→ ôut]

Figure 5.1: Analysis Module of a Reaching-Definitions Analysis

Figure 5.1 and Figure 5.2 show the analysis and the dynamic mod-
ule of the reaching-definitions analysis. While both modules use the
same Kind, i.e., Kind = κReachingDefs | κControlFlowPred, Figure 5.1 shows
the type of entities, properties, and code of the analysis module. The
reaching-definitions analysis computes for every statement of the pro-
gram which variable definitions may reach it. Therefore, the entities
of the analysis are statements and its property is a mapping from vari-
ables to assignments that may have defined the variable. The analysis
depends on information about potential control-flow predecessors of
a statement. Both properties can be accessed via the kinds κReachingDefs
and κControlFlowPred respectively.

We illustrate Definition 5.1 by the example of a text-book reaching-
definitions analysis [169] for an imperative language with labeled
assignments and expressions:

Stmt ::= Assign(Var,Expr, Label) | . . .

The code of the analysis module is described with Scala-like pseudo
code. Module ̂reachingDefs joins the reaching definitions of all control-
flow predecessors and then updates them on variable assignments.

5.1 formal definition 57

1 Entity = Stmt
2 Property[κControlFlowPred] = Stmt
3 Property[κReachingDefs] = Var ⇀ Assign
4 Store = [Stmt× κControlFlowPred ⇀ Stmt]
5 ∪ [Stmt× κReachingDefs ⇀ (Var ⇀ Assign)]
6

7 reachingDefs(stmt: Entity, σ: Store): Store =
8 predecessor = σ(stmt, κControlFlowPred)
9 in = σ(predecessor, κReachingDefs)

10 out = stmt match
11 case Assign(x,_,_) => in[x 7→ stmt]
12 case _ => in

13 σ[stmt, κReachingDefs 7→ out]

Figure 5.2: Dynamic Module of a Reaching-Definitions Analysis

Note that module ̂reachingDefs neither computes the control-flow pre-
decessors directly nor does it call another module that computes this
information. Instead, it retrieves this information from the store σ̂.
This decoupling avoids dependencies between analysis modules and
enables compositional soundness proofs.

5.1.2 Dynamic Semantics

Analyses in the blackboard analysis architecture are proven sound
with respect to a dynamic semantics in the same style, which we define
formally in this subsection:

Definition 5.2. We define the dynamic semantics used to prove soundness
of analyses in the blackboard analysis architecture:

1. The dynamic semantics depends on concrete versions of entities (e ∈
Entity), properties (p ∈ Property[κ] where Property : Kind → Set)
and stores (σ ∈ Store ⊆ Entity× (κ : Kind) → Property[κ]). The
kinds are the same as for static modules.

2. Dynamic modules (f ∈ Module = Entity×Store ⇀ Store) are partial
functions that may only be defined for a subset of entities. Furthermore,
the partial function is undefined in case it tries to look up an element
from the store which is not present.

3. Static analyses are proven sound with respect to a dynamic reachabil-
ity semantics. The reachability semantics (reachable : P(Module)×
Store → P(Store)) returns the set of all reachable stores by itera-
tively applying a set of dynamic modules. More specifically, the set
reachable(F, σ1) contains store σ1 and for all f ∈ F, reachable stores
σ, and for entities e ∈ dom(σ), the set contains f (e, σ), if it is de-
fined.

5.2 compositional soundness proofs 58

We illustrate these definitions again at the example of the reaching-
definitions analysis which we introduced in the previous subsection.
Figure 5.2 shows the dynamic semantics of the analysis. The dynamic
module reachingDefs is analogous to its static counterpart ̂reachingDefs

but computes the most recent definition of a variable instead of all
possible definitions. The dynamic module depends on the control-flow
predecessor, which is the most recently executed statement. While
in this example, the analysis module and corresponding dynamic
module are very similar, they do not necessarily have to be (e.g.,
module m̂ethod in Section 5.4.1.1). However, the less similar they
are, the more work is needed in a soundness proof to bridge the
differences.

Similar to the static semantics, the blackboard analysis architecture
also modularizes the dynamic semantics, which is crucial for enabling
compositional and reusable soundness proofs. In particular, each anal-
ysis module is proven sound with respect to exactly one dynamic
module, which limits the proof scope and guarantees proof inde-
pendence. Furthermore, for analyses that approximate non-standard
dynamic semantics, the standard dynamic semantics can be extended
in a modular way with additional modules (e.g., Section 5.4.1.3).

To summarize, in this section we formally defined the blackboard
analysis architecture, which allows implementing static analyses in
a modular way. In addition, we defined a dynamic semantics in the
same style against which analyses modules are proven sound.

5.2 compositional soundness proofs

Next, we develop a theory of compositional soundness proofs for
analyses in the blackboard style. In particular, soundness of a com-
pound analysis follows directly from soundness of the individual
analysis modules. We start the section by defining soundness of analy-
sis modules and then work up to soundness of whole analyses. The
definitions of soundness are standard and build upon the theory of
abstract interpretation [52]:

Definition 5.3 (Soundness of Analysis Modules). An analysis module
f̂ ∈ M̂odule is sound if it over-approximates its dynamic counterpart f ∈
Module:

sound(f , f̂) iff ∀ê ∈ Êntity, σ̂ ∈ Ŝtore, e ∈ γEntity(ê), σ ∈ γStore(σ̂).

f (e, σ) ∈ γStore(f̂ (ê, σ̂))

The expression x ∈ γ(ŷ) reads as “element ŷ soundly over-approxi-
mates the concrete element x.” Function γ : L̂ → P(L) is a monotone
function from an abstract domain L̂ to a powerset of a concrete do-
main L and is called concretization function. We do not require that an
abstraction function α : P(L) → L̂ in the opposite direction exists nor

5.2 compositional soundness proofs 59

that γ and α form a Galois connection, both of which are not necessary
for soundness proofs. We illustrate this soundness definition later with
Lemma 5.7.

The soundness definition above requires that analysis developers
define concretizations for entities (γEntity : Êntity → P(Entity)) and
properties (γProperty : ̂Property[κ] → P(Property[κ])). Often the abstract
and concrete entities are of the same type (Êntity = Entity). In this case,
the concretization functions map to singleton sets (γEntity(e) = {e}).

Based on concretization functions for entities, kinds, and properties,
we define a point-wise concretization for stores:

Definition 5.4 (Concretization for Stores).

γStore : Ŝtore → P(Store)

γStore(σ̂) = {σ | dom(σ) = γEntity×Kind(dom(σ̂)) ∧
∀(ê, κ) ∈ dom(σ̂), e ∈ γEntity(ê).

σ(ê, κ) ∈ γProperty(σ̂(ê, κ))}

We illustrate this concretization function at the example of a store
that contains control-flow information for statements s1, s2, and s3:

γStore([s1, κControlFlowPred 7→ {s2, s3}]) =
{[s1, κControlFlowPred 7→ s2], [s1, κControlFlowPred 7→ s3]}

The concretization function returns a set of concrete stores, where each
mapping e, κ 7→ p in a concrete store is a concretization of a mapping
ê, κ 7→ p̂ in the abstract store, i.e., e ∈ γEntity(ê) and p ∈ γProperty(p̂).

In the remainder of this section, we define soundness of compound
analyses. Afterward, we prove that soundness of a compound analysis
follows from soundness of each module.

Definition 5.5 (Soundness of a Compound Analysis). Let Φ ⊆ Module×
M̂odule be a set of analysis modules paired with corresponding dynamic mod-
ules. A compound analysis is sound if the fixed point of all of its analysis
modules over-approximates the reachability semantics of the corresponding
dynamic modules:

sound(Φ) iff ∀σ̂ ∈ Ŝtore. reachable(F, γStore(σ̂)) ⊆ γStore(fix(F̂, σ̂))

where F = { f | (f , _) ∈ Φ} and F̂ = { f̂ | (_, f̂) ∈ Φ}.

The reachability semantics reachable(F, S) is defined inductively as
the set of initial stores S and the set of stores f (e, σ) for all f ∈ F, σ ∈
reachable(F, S), and (e, _) ∈ dom(σ).

Theorem 5.6 (Soundness Composition). Let Φ ⊆ Module × M̂odule

be a set of analysis modules paired with corresponding dynamic modules.
Soundness of a compound analysis follows from soundness of all of its analysis
modules:

If sound(f , f̂) for all (f , f̂) ∈ Φ then sound(Φ).

5.2 compositional soundness proofs 60

Proof. By fixed-point induction on the set of reachable stores, we show
that reachable(F, γStore(σ̂1)) ⊆ γStore(fix(F̂, σ̂1)). Let σ̂n = fix(F̂, σ̂1)

and σ ∈ γStore(σ̂n). By the assumption σ ∈ γStore(σ̂n), we get dom(σ) =

γEntity×Kind(dom(σ̂n)) and σ(e, σ) ∈ γProperty(σ̂n(ê, κ)) for all ∀(ê, κ) ∈
dom(σ̂n) and e ∈ γEntity(ê). Furthermore, since σ̂n is a fixed point, we
get f̂ (ê, σ̂n) ⊑ σ̂n for all f̂ ∈ F̂ and ê ∈ dom(σ̂n). From sound(f , f̂)
we conclude f (e, σ) ∈ γStore(f̂ (ê, σ̂n)) = γStore(σ̂n) = γStore(fix(F̂, σ̂1))

for all (f , f̂) ∈ Φ, (e, _) ∈ dom(σ), and (ê, _) ∈ dom(σ̂n) with e ∈
γEntity(ê).

We illustrate this soundness-composition theorem at the example of
the reaching-definitions analysis from Section 5.1.1. More specifically,
the analysis consists of modules ̂reachingDefs (defined in Figure 5.1)
and ̂controlFlowPred, the latter of which computes control-flow prede-
cessors (not shown). Theorem 5.6 guarantees that

sound({(reachingDefs, ̂reachingDefs),

(controlFlowPred, ̂controlFlowPred)})
follows from

sound(reachingDefs, ̂reachingDefs)

and

sound(controlFlowPred, ̂controlFlowPred).

Next, we prove module ̂reachingDefs sound to demonstrate that its
proof is independent of module ̂controlFlowPred. The independence of
soundness proofs of analysis modules is important because it allows
us to compose them into a soundness proof for the whole analysis.

Lemma 5.7. Module ̂reachingDe f s is sound with respect to its dynamic
counterpart reachingDe f s.

Proof. To show: ∀σ̂ ∈ Ŝtore, ê ∈ Êntity, e ∈ γEntity(ê), σ ∈ γStore(σ̂),
reachingDe f s(e, σ) ∈ γStore(̂reachingDe f s(ê, σ̂)). Given an abstract en-
titity ê, abstract store σ̂, and a concretization σ ∈ γStore(σ̂), it follows
that the set of control-flow predecessors is sound σ(ê, κControlFlowPred) ∈
γProperty(σ̂(ê, κControlFlowPred)) by definition of γStore and γEntity(ê) =

{e}.
Next, we prove that the set of reachable definitions of all predeces-

sors în is sound:

in = σ(σ(ê, κControlFlowPred), κReachingDefs) (by definition)

∈ γProperty(
⊔

p∈σ̂(̂̂e,κControlFlowPred)

σ̂(p, κReachingDefs))
(by soundness
of cflow. pred.
and def. of γStore)

= γProperty(în) (by definition)

We now prove that the set of reachable definitions for the current
statement ôut is sound by case distinction on ê:

5.3 reusable soundness proofs 61

• If ê = Assign(x, _, l) then
out = in[x 7→ l] ∈ γProperty(în[x 7→ {l}]) = γProperty(ôut),

• Otherwise out = in ∈ γProperty(în) = γProperty(ôut).

Finally, we conclude

reachingDefs(ê, σ) = σ[ê, κReachingDefs 7→ out]

∈ γProperty(σ̂ ⊔ [ê, κReachingDefs 7→ ôut])

= γProperty(̂reachingDefs(ê, σ̂)).

Note that Lemma 5.7 does not depend on the soundness proof of
̂controlFlowPred. This is possible because neither module ̂reachingDefs

nor reachingDefs call the control-flow modules directly. Instead, both
the static and dynamic module read the control-flow information
from the store, which is guaranteed to be a sound over-approximation
initially (assumption σ ∈ γStore(σ̂)). Furthermore, only properties that
the reaching-definitions modules themselves wrote to the store need
to be sound over-approximations. Properties that other modules wrote
to the store are not subject of the soundness proof of the reaching-
definitions modules.

To summarize, in this section we developed a theory of compo-
sitional soundness proofs for analyses described in the blackboard
architectural style. Each analysis module can be proven sound in-
dependently of other modules. Furthermore, soundness of a whole
analysis follows directly from soundness of each module. In particular,
no reasoning about the analysis as a whole is required.

5.3 reusable soundness proofs

As of now, analysis modules refer to a specific type of entities, kinds,
properties, and stores. However, adding new modules to an analysis
may require extending these types. This invalidates the soundness
proofs of existing modules and they need to be re-established. In this
section, we extend our theory to make analysis modules and their
soundness proofs reusable.

5.3.1 Extending the Types of Entities and Kinds

We start by explaining how entities and kinds can be extended without
invalidating existing soundness proofs.

For example, if we were to add a taint-analysis module to an existing
analysis over types Êntity, Kind, and Ŝtore, we needed to extend these
types to hold the new analysis information:

Êntity′ = Êntity | Var
Kind′ = Kind | κTaint

Ŝtore′ = Ŝtore∪ [Var× κTaint ⇀ T̂aint]

5.3 reusable soundness proofs 62

However, this invalidates the proofs of existing modules that depend
on the subsets Êntity and Kind. To solve this problem, we first parame-
terize the type of modules to make explicit what types of entities and
kinds they depend on:

Definition 5.8 (Parameterized Modules (Preliminary)). We define a type
of module parameterized by the types of entities E, kinds K, and store S:

f ∈ Module[E, K] = ∀S : Store[E, K]. E × S → S

Interface Store[E, K] defines read and write operations for an abstract
store type S, that restricts access to entities of type E and kinds of type
K. The store interface allows us to call parameterized modules with
stores containing supersets of the type of entities and kinds.

For these parameterized modules, we define a sound lifting to su-
persets of entities and kinds:

1 lift : ∀E′, K′, E ⊆ E′, K ⊆ K′,Module[E, K] → Module[E′, K′]
2 lift(f)(e′, σ) = e′ match
3 case e : E => f (e, σ)
4 case _ => σ

The lifting calls module f on all entities of type E on which f is
defined and simply ignores all other entities, returning the store un-
changed. For example, the lifted reaching-definitions module lift[Stmt |
Var, κReachingDefs | κControlFlowPred | κTaint](̂reachingDefs) operates on
entities Stmt and kinds κReachingDefs | κControlFlowPred but ignores enti-
ties Var and kinds κTaint.

The lifting preserves soundness of the lifted modules for disjoint
extensions of entities:

Definition 5.9 (Disjoint Extension). Entities Ê′ ⊇ Ê and E′ ⊇ E are a
disjoint extension iff γEntity(Ê) ⊆ E and γEntity(Ê′ \ Ê) ⊆ E′ \ E.

In other words, the concretization function γEntity does not mix up
entities in Ê and Ê′ \ Ê.

Lemma 5.10 (Lifting preserves Soundness). Let f̂ ∈ Module[Ê, K] and
f ∈ Module[E, K] be a parameterized analysis module and dynamic module,
Ê′ ⊇ Ê and E′ ⊇ E be a disjoint extension of entities, and K′ ⊇ K a superset
of kinds.

If sound(f , f̂) then sound(lift[E′, K′](f), lift[Ê′, K′](f̂)).

Proof. Let f̂ : Module[Ê, K] and f : Module[E, K] be an analysis and
dynamic module. Let ê : Ê′ and e ∈ γEntity(ê) be an entity and σ̂ :
Store[Ê′, K′] and σ ∈ γStore(σ̂) be an abstract and concrete store.

• In case ê ∈ Ê, then also e ∈ E. Hence, lift(f̂)(ê, σ̂) = f̂ (ê, σ̂) and
lift(f)(e, σ) = f (ê, σ̂). Soundness follows by sound(f , f̂).

• In case ê ∈ Ê′ \ Ê, then also e ∈ E′ \ E for all e ∈ γEntity(ê). Hence
lift(f̂)(ê, σ̂) = f̂ (ê, σ̂) and lift(f)(e, σ) = f (ê, σ̂).

5.3 reusable soundness proofs 63

As a result of this lemma, we can prove the soundness of analysis
modules once for specific types of entities and kinds. Later, we can
reuse the modules in a compound analysis with extended entities and
kinds without having to prove soundness again.

5.3.2 Changing the Type of Properties

Next, we extend our theory to allow changing the type of properties
without invalidating the soundness proofs of existing modules that
use them.

For example, consider a pointer-analysis module that propagates
object allocation information ̂Property[κVal] = Ôbj. If we were to add
a string-analysis module to the analysis, we could reuse the same
pointer-analysis module to propagate string information Ŝtr by chang-
ing its lattice to ̂Property′[κVal] = Ôbj× Ŝtr. However, this invalidates
the soundness proof of the pointer-analysis module as it depends on
type ̂Property[κVal].

To solve this problem, we generalize the type of analysis modules
again to be polymorphic over the type ̂Property:

Definition 5.11 (Parameterized Modules (Final)). We define a type of
module that is parameterized by the type of entities E, kinds K, properties P,
and stores S:

f ∈ Module[E, K, I] = ∀P : I, S : Store[E, K, P], E × S → S

Interface Store[E, K, P] restricts access to entities of type E and type
K and contains properties of type P, while interface I defines opera-
tions on properties P. For example, a pointer-analysis module may
depend on the Scala-like interface Objects in Listing 5.1. Interface
Objects depends on a type variable Value, which refers to possible
values of variables. Function newObj creates a new object of a certain
class and context. Function forObj iterates over all such objects apply-
ing continuation f. Continuation f takes a class name, context, and
store and returns a modified store. Interface Objects can be instanti-
ated to support different value abstractions. For example, instance

̂AllocationSite implements the interface with an allocation-site abstrac-
tion Ôbj = Ôbj(P(Class× Context)) which abstracts object allocations
by their class names and a call string to their allocation site. Instance

̂AllocationSiteAndStrings implements a reduced product [49] of objects
Ôbj and strings Ŝtr = Constant[String], which abstracts the value
of strings with a constant abstraction. This allows us to reuse the
same pointer-analysis module to propagate string information. Finally,
dynamic modules require a concrete instance of the same interface
Objects. For example, instance ConcreteValues implements the interface
with all concrete value types. The concrete value types are singleton
versions of their static counterparts.

5.3 reusable soundness proofs 64

1 trait Objects[Value]:
2 newObj(class: Class, ctx: Context): Value
3 forObj[S](Value, S)(f: (class: Class, ctx: Context, σ: S) => S): S
4

5 object ̂AllocationSite extends Objects[Ôbj]:
6 newObj(class, ctx) = {(class, ctx)}
7 forObj[S](Ôbj(objs), σ̂)(f) =

⊔
(class,ctx)∈objs f(class, ctx, σ̂)

8

9 object ̂AllocationSiteAndStrings extends Objects[Ôbj× Ŝtr]:
10 newObj(class, ctx) = ({(class, ctx)}, ⊥)
11 forObj[S](value, σ̂)(f) = value match
12 case (objs,_) =>

⊔
(class,ctx)∈objs f(class, ctx, σ̂)

13

14 object ConcreteValues extends Objects[Obj | Str | ...]:
15 newObj(class, ctx) = Obj(class, ctx)
16 forObj[S](value, σ)(f) = value match
17 case Obj(class,ctx) => f(class, ctx, σ)
18 case Str(_, obj) => forObj(obj, σ̂)(f)
19 ...

Listing 5.1: Interface and Instances for Different Object Abstractions

5.3.3 Soundness of Parameterized Analysis Modules

In this subsection, we define soundness of parameterized analysis
modules and prove a generalized soundness-composition theorem.

Definition 5.12 (Soundness of Parameterized Analysis Modules). A
parameterized analysis module f̂ : M̂odule[Ê, K, I] is sound w.r.t. a parame-
terized dynamic module f : Module[E, K, I] iff all their instances are sound:

sound(f , f̂) iff ∀P : I, P̂ : I, S : Store[E, K, P], Ŝ : Store[Ê, K, P̂].

sound(P, P̂) =⇒ sound(f [P, S], f̂ [P̂, Ŝ]).

Parameterized analysis modules are proven sound for all sound
instances of property interface I. A static instance P̂ : I is sound
w.r.t. to a dynamic instance P : I, if all of its operations are sound.
Soundness for dynamic and static instances of interface Objects in
Listing 5.1 is defined as follows:

sound(newObj, n̂ewObj) iff

∀c, ĥ, h ∈ γ(ĥ), newObj(c, h) ∈ γObj(n̂ewObj(c, ĥ))

sound(forObj, f̂orObj) iff

∀ f , f̂ , sound(f , f̂) =⇒ sound(forObj(f), f̂orObj(f̂))

Soundness of first-order operations like n̂ewObj is similar to that of
analysis modules (Definition 5.3). Soundness of higher-order opera-
tions like f̂orObj is proven with respect to all sound functions f̂ .

5.4 applicability of the theory 65

Finally, we generalize the soundness-composition Theorem 5.6 to
parameterized analysis modules. In particular, an analysis composed
of parameterized analysis modules is sound if all of its modules are
sound and the instance of its property interface is sound.

Theorem 5.13 (Soundness Composition for Parameterized Analysis
Modules). Let Φ be parameterized analysis modules paired with correspond-
ing dynamic modules over families of entities Ê′ =

⋃
i Êi, E′ =

⋃
i Ei, kinds

K′ =
⋃

i Ki, properties P̂, P.

If sound(f , f̂) for all (f , f̂) ∈ Φ and sound(P, P̂) then sound(Φ′),

where Φ′ = {(lift[E′, K′](f)[P, S], lift[Ê′, K′](f̂)[P̂, Ŝ])

| (f , f̂) ∈ Φ}.

Proof. We instantiate the polymorphic modules f , f̂ with the com-
pound types to obtain sound[E′, K′](lift(f), lift[E′, K′](f̂)). Then the
soundness-composition Theorem 5.6 for monomorphic modules ap-
plies.

To summarize, in this section we explained how the type of enti-
ties, kinds, and properties can be changed without invalidating the
soundness proofs of existing modules. To this end, we generalized
the type of modules to be parametric over the type of entities, kinds,
and properties. The parameterized modules access properties via an
interface. The instances of this interface are specific to certain types of
properties and require a soundness proof.

5.4 applicability of the theory

In this section, we demonstrate the applicability of our theory by
first developing four analyses in the blackboard architecture and then
proving them sound compositionally.

5.4.1 Case Studies

We developed four different analyses in the blackboard architecture
(Section 5.1) together with their dynamic semantics (Section 5.1.2). We
proved each analysis sound (Part V) and a discussion of those proofs
is presented later in Section 5.4.2. Each analysis exercises a specific
part of our soundness theory:

• A pointer analysis, which mutually depends on a call-graph anal-
ysis (exercises the part of our theory presented in Section 5.2).

• A reflection analysis, which reuses the pointer analysis to prop-
agate string information (exercises the part of our theory pre-
sented in Section 5.3.2).

5.4 applicability of the theory 66

• A field and object immutability analysis, which depends on all
of the analyses above (exercises the part of our theory presented
in Section 5.3.1).

• A demand-driven reaching-definitions analysis, which demon-
strates that our theory applies to this type of analyses.

Our choice of analyses is inspired by the case studies outlined in
Chapter 2 and detailed in Part II but simplified to focus on the core
aspects of the proofs. The analyses operate on a simpler object-oriented
language with the following abstract syntax:

Class = Class(ClassName,ClassName,Field∗,Method∗)

Method = SourceMethod(MethodName,Var∗,Stmt∗)

| NativeMethod(MethodName)

Stmt = Assign(Ref,Expr) | Return(Method,Expr) | If(Expr,Stmt∗,Stmt∗)

| While(Expr,Stmt∗)

Expr = Ref | New(ClassName, (Field× Expr)∗)

| Call(Expr,MethodName,Expr∗) | StringLit(String)
| Concat(Expr,Expr) | BoolLit(Bool) | Equals(Expr,Expr)

Ref = VarRef(Var) | FieldRef(Ref,Field)

The language features inheritance, mutable memory, class fields, vir-
tual method calls, and Java-like reflection [150]. Reflection is modeled
as virtual calls to native methods. Furthermore, we deliberately added
language features such as control-flow constructs and boolean opera-
tions. While these features are ignored by the analyses, they do need to
be modeled by dynamic semantics which complicates the soundness
proof of the analyses.

We implemented and tested each analysis in Scala to ensure they
are executable. Furthermore, we implemented and tested the corre-
sponding dynamic semantics to ensure they are sensible3.

In the following, we discuss the implementation of each analysis in
more detail.

5.4.1.1 Pointer and Call-Graph Analysis

A pointer analysis for an object-oriented language computes which
objects a variable or field may point to. A call-graph analysis deter-
mines which methods may be called at specific call sites. Pointer and
call-graph analyses are the foundation which many other analyses
build upon. Our analyses are k-call-site sensitive, l-heap sensitive, and
flow-insensitive [94].

The analyses are composed from four analysis modules, whose
dependencies are shown in Figure 5.3. An arrow from a store entry to
a module represents a read, an arrow in the other direction represents
a write. Even though all modules implicitly depend on each other,

3 Implementation and tests available at https://doi.org/10.5281/zenodo.7311078

https://doi.org/10.5281/zenodo.7311078

5.4 applicability of the theory 67

(Field× ̂HeapCtx)× κVal

(Stmt× ĈallCtx)× κVal

(Method× ĈallCtx)× κVal

(Expr× ĈallCtx)× κVal

(Call× ĈallCtx)× κCallTarget

Arrows represent reads
and writes of store entries

̂pointsTo

̂virtualCall

m̂ethod

̂invokeReturn

Êntity = (Field× ̂HeapCtx)
| (Stmt× ĈallCtx)

| (Expr× ĈallCtx)

| (Method× ĈallCtx)

| (Call× ĈallCtx)

̂Property[κVal] = ⊥ | Ôbj

̂Property[κCallTarget] = ̂CallTarget

Ôbj = Ôbj(P(Class× ̂HeapCtx))
̂CallTarget = ̂CallTarget(P(Class× ̂HeapCtx×Method× Expr∗))

Figure 5.3: Points-To and Call-Graph Analysis

they can be proven sound independently of each other (Section 5.2).
This is possible because none of these modules call other modules
directly; instead, all communication takes place via the store.

Module m̂ethod registers each statement of a method in the store
to trigger other analysis modules. The module disregards the control
flow because the analysis is flow-insensitive and hence also registers
statements that can never be executed. Such a flow-insensitive analysis
can be more performant than a flow-sensitive one, but traditional
approaches that use generic abstract interpreters do not allow for
flow-insentitive analyses. Module ̂pointsTo analyzes New expressions
and assignments of variable and field references. Module ̂virtualCall

resolves the target method of virtual method calls based on the re-
ceiver object. Once a call is resolved, module ̂invokeReturn extends
the call context and assigns the method parameters and return value.
Furthermore, module ̂invokeReturn registers the called method as an
entity in the store, which in turn triggers module m̂ethod.

The entities of the analyses are fields, statements, expressions, meth-
ods, and calls (Figure 5.3). Each entity is paired with a call context
or heap context, which allows tuning the precision of the analysis.
The analysis modules communicate via two kinds: Kind κVal refers
to possible values of expressions and fields and the return value of
methods. Values are abstract objects containing information about
where objects were allocated. Kind κCallTarget refers to possible targets
of method calls. Call targets are sets of receiver objects paired with
the target method and their arguments.

To illustrate the analysis, Listing 5.2 shows the code of modules
̂virtualCall and ̂invokeReturn. Both modules implicitly communicate

with each other via the store but do not call each other directly. Module
̂virtualCall resolves virtual method calls by first fetching the points-to

set of the receiver reference from the store. Afterward, it iterates over
all possible receivers and fetches possible target methods from the
class table. Finally, it writes the new call target to the store. Storing
the receiver object and argument expressions as part of the call target
allows reusing module ̂invokeReturn for different types of calls. If the

5.4 applicability of the theory 68

1
̂virtualCall(e, σ̂) = e match

2 case (call@Call(receiver, methodName, args), callCtx) =>
3 receiverVal = σ̂((receiver, callCtx), κVal)
4 f̂orObj(receiverVal, σ̂) { (class, heapCtx, σ̂′) =>
5 method = classTable(class, methodName)
6 σ̂′ ⊔ [(call, callCtx),

κCallTarget 7→ ̂newCallTarget(class, heapCtx, method, args)]
7 }
8 case _ => σ̂
9

10
̂invokeReturn(e, σ̂) = e match

11 case (call@Call(_,_,_), callCtx) =>
12 targets = σ̂((call, callCtx), κCallTarget)
13

̂forCallTarget(targets, σ̂) { (class, heapCtx, method, args, σ̂′) =>
14 method match
15 case SourceMethod(_,params,_) =>
16 newCallCtx = ̂extendContext(call.label, heapCtx, callCtx)
17 σ̂′ ⊔ [(call, callCtx), κVal 7→ σ̂′((method, newCallCtx), κVal)]
18 ⊔ [(p, newCallCtx),

κVal 7→ σ̂′((a, callCtx), κVal) | (p, a) ∈ zip(params, args)]
19 ⊔ [(VarRef(”this”), newCallCtx),

κVal 7→ n̂ewObj(class, heapCtx)]
20 ⊔ [(method, callCtx), κVal 7→ ̂nullPointer()]
21 ⊔ [(call, callCtx), κVal 7→ σ̂((method, newCallCtx), κVal)]
22 case NativeMethod(_,_,_) => σ̂′

23 }
24 case Return(method,expr) =>

σ̂ ⊔ [(method, callCtx), κVal 7→ σ̂(expr, callCtx, κVal)]
25 case _ => σ̂

Listing 5.2: Analysis modules for Invoking Calls and Resolving the Receiver
of Virtual Calls

entity is a Call expression, module ̂invokeReturn first fetches the targets
of the call from the store. Afterward, it iterates over all targets, extends
the call context with function ̂extendContext, binds the parameters to
the values of the arguments and variable this to the receiver object.
Furthermore, it registers the called method as an entity in the store,
triggering module m̂ethod to process the statements of the called
method. Finally, module ̂invokeReturn writes the return value of a
method to the method entity in the store and copies it to call entities
of this method.

The modules depend on interface Objects shown in Listing 5.1
and an analogous interface for call targets. Operations n̂ewObj and

̂newCallTarget create new abstract objects and call targets. Operations
f̂orObj and ̂forCallTarget iterate over all objects and call targets. Addi-
tionally, interface Objects includes an operation ̂nullPointer not shown
in the listing, which returns an empty set of object allocation-sites

5.4 applicability of the theory 69

(Ôbj(∅)). The dynamic instances are analogous except that they oper-
ate on singleton types.

The dynamic modules compute the heap of a program and de-
scribe how it changes during the execution. The dynamic modules are
analogous to their static counterparts except that they operate on sin-
gleton types Obj(Class× HeapCtx) and CallTarget(Class× HeapCtx×
Method× Expr∗).

All dynamic modules combined do not cover the entire language.
In particular, there are no dynamic modules that cover reflective
calls. This means, as of now, the dynamic semantics of reflection is
undefined, and the soundness proof only covers programs without
reflective calls. We address this point with the following case study.

5.4.1.2 Reflection Analysis

Reflection is a language feature that allows querying information about
classes and methods at runtime [150]. Our language supports three
reflective methods: Methods Class.forName and Class.getMethod retrieve
classes and methods by a string, respectively. Method Method.invoke
invokes a method, where the target method is determined at runtime.
Reflection is notoriously difficult to be statically analyzed in a sound
and precise way [136]. In particular, analyses need to approximate the
content of the string passed into a reflective call. If the analysis cannot
determine the string content precisely, it needs to over-approximate or
risk unsoundness. In this case study, we choose the former to be able
to prove the analysis sound.

This case study demonstrates two important features of our formal-
ization: First, the reflection analysis reuses all modules of the pointer
and call-graph analysis of the previous section (̂pointsTo, m̂ethod,

̂virtualCall, and ̂invokeReturn). It extends the value lattice to propa-
gate new types of analysis information about strings. However, even
though the pointer analysis propagates new information, its mod-
ules do not require any changes and their soundness proof remains
valid (Section 5.3.2). Second, the reflection analysis cooperates with
the call-graph analysis module ̂virtualCall. In particular, reflective
calls are regular virtual calls. For example, a call m.invoke(...) where
variable m is of type Method is first resolved by virtual call resolution
and its target Method.invoke is then resolved by reflective call resolu-
tion. This means both analyses add elements to the same set of call
targets, yet, the analyses can be proven sound independently of each
other (Section 5.2).

The reflection analysis extends the Ôbj values of the pointer anal-
ysis with three new types of values—Ŝtr, Ĉlass, and M̂ethod—as a
reduced product [49]. String values are approximated with a constant
lattice. Class and method values are approximated with a finite set
of classes or methods or ⊤. We reuse the modules of this pointer
and call-graph analysis by implementing a new instance of interface

5.4 applicability of the theory 70

(Expr× ĈallCtx)× κVal

(Call× ĈallCtx)× κCallTarget

ŝtring

̂reflection
Arrows represent reads

and writes of store entries

̂Property[κVal] = ⊥ | (Ôbj× Ŝtr× Ĉlass× M̂ethod)

Ŝtr = ⊥ | String | ⊤
Ĉlass = P(Class) | ⊤
M̂ethod = P(Method) | ⊤

Figure 5.4: Reflection Analysis

Objects in Listing 5.1 for the new values. The new instance is similar
to ̂AllocationSiteAndStrings and iterates over all allocation-site informa-
tion in strings, class and method values, as well as other objects.

The reflection analysis adds two new modules to the existing anal-
ysis in Figure 5.3. The new modules and their dependencies are vi-
sualized in Figure 5.4. Module ̂reflection analyzes reflective calls to
Class.forName, Class.getMethod, and Method.invoke. Module ŝtring ana-
lyzes string literals and concatenation. Listing 5.3 shows an excerpt of
module ̂reflection for Method.invoke. Module ̂reflection first fetches the
targets of a call resolved by module ̂virtualCall. If the call target is the
native method invoke, module ̂reflection matches on the arguments of
the virtual call to extract the receiver and arguments of the reflective
call target. Finally, it calls operation ̂methodInvoke which returns the
set of call targets.

Operation ̂methodInvoke is part of an interface for reflective calls.
The interface contains two other operations for retrieving class names
and methods. Operation ̂methodInvoke matches on the call receiver
and the method value. If the method value contains a finite set of
methods, the operation checks if the receiver class has these methods
and adds them as call targets. If the method value contains ⊤, the
operation adds all methods of the receiver class to the set of call targets.
This over-approximates the dynamic module reflection where only one
method is added as a call target.

The dynamic reflection modules are analogous except that different
types of values are alternatives. In contrast to Section 5.4.1.1, the
dynamic pointer and call-graph modules combined with the reflection
and string modules now cover the entire language. This means the
analysis is sound for all programs, even those with reflective calls.

5.4.1.3 Field and Object Immutability Analysis

The analysis presented in this case study computes the immutability
of objects and their fields inspired by a class and field immutability
analysis detailed in Chapter 9. This information is useful for assessing
the thread safety of programs, where multiple threads have access to
the same objects.

This case study highlights two important features of our formal-
ization. First, the core dynamic semantics of our language does not

5.4 applicability of the theory 71

1
̂reflection(e, σ̂) = e match

2 case (call@Call(receiver, method, args), callCtx) =>
3 target = σ̂((call, callContext), κCallTarget)
4

̂forCallTarget(target, σ̂) { (_, heapCtx, method, arguments, σ̂′) =>
method match

5 case NativeMethod("invoke") =>
6 arguments match
7 case (invokeReceiver :: invokeArgs) =>
8 invokeRecVal = σ̂′((invokeReceiver, heapCtx), κVal)
9 methodVal = σ̂′((receiver, callContext), κVal)

10 reflectiveTarget = ̂methodInvoke(invokeRecVal, methodVal,
invokeArgs)

11 σ̂′ ⊔ [(call, callCtx), κCallTarget 7→ reflectiveTarget]
12 ...
13 }
14 case _ => σ̂
15

16
̂methodInvoke(receiver: V̂alue, methodVal: V̂alue, invokeArgs: Expr∗) =
methodVal match

17 case (_,_,_,methods) =>
18

̂CallTarget({ (class, heapCtx, method, invokeArgs) |
19 (class,heapCtx) ∈ receiver, method ∈ methods, method ∈

classTable(class) })
20 case (_,_,_,⊤) =>
21

̂CallTarget({ (class, heapCtx, method, invokeArgs) |
22 (class,heapCtx) ∈ receiver, method ∈ classTable(class) })
23 case ⊥ => ⊥

Listing 5.3: Analysis Modules and Operations for Reflective Calls

describe the immutability property. Therefore, we need to prove the
static immutability analysis sound with respect to a dynamic im-
mutability analysis. The case study demonstrates that the immutabil-
ity concern can be encapsulated with analysis and dynamic modules,
added modularly to the existing analysis and dynamic semantics, and
reasoned about independently (Section 5.2). It is unclear how this can
be achieved with a non-modular, monolithic analysis implementation.
Second, the immutability analysis adds new types of entities and
kinds to the store and reuses all modules of the pointer, call-graph,
and reflection analysis. Even though the reused modules can be called
with the new entities and have access to new kinds in the store, their
soundness proofs remain valid (Section 5.3.1).

The immutability analysis adds objects (Class×HeapCtx) to the exist-
ing types of entities and adds two new kinds κMut and κAssign for their
immutability and the assignability of their fields. κMut uses a lattice
with three elements shown in Figure 5.5. The greatest element M̂utable

describes objects the fields of which have been reassigned. The middle
element ̂NonTransitivelyImmutable describes objects the fields of which

5.4 applicability of the theory 72

(Expr× ĈallCtx)× κVal

(Field× ̂HeapCtx)× κAssign

(Field× ̂HeapCtx)× κMut

(Class× ̂HeapCtx)× κMut

(Field× ̂HeapCtx)× κVal

Arrows represent reads
and writes of store entries

̂fieldAssign

̂fieldMutability
̂objectMutability

Êntity′ = Êntity | (Class×HeapCtx)

̂Property[κMut] = ̂TransitivelyImmutable

| ̂NonTransitivelyImmutable

| M̂utable

̂Property[κAssign] = ̂Assignable

| ̂NonAssignable

Figure 5.5: Immutability Analysis

have not been reassigned, but some objects transitively reachable via
fields have been mutated. The least element ̂TransitivelyImmutable de-
scribes objects the fields of which have not been reassigned and no
transitively reachable objects have been mutated. κAssign uses only two
elements for fields reassigned and fields that are not reassigned.

The immutability analysis is implemented with three modules
as shown in Figure 5.5. Module ̂fieldAssign sets fields f of objects
o to ̂Assignable for every assignment of the form x.f = e, where
x may point to o. Module ̂fieldMutability sets a field to M̂utable if
the field is assignable, to ̂NonTransitivelyImmutable if the field is non-
assignable but one of the objects the field points to is mutable, and
to ̂TransitivelyImmutable otherwise. Lastly, module ̂objectMutability sets
the immutability of an object to the least upper bound of the im-
mutability of all of its fields.

The dynamic modules are analogous except that they operate on
concrete objects instead of abstract objects.

5.4.1.4 Demand-Driven Reaching-Definitions Analysis

As a final case study, we developed a demand-driven intraprocedural
reaching-definitions analysis for our object-oriented language. This
case study demonstrates that our theory lifts a restriction of existing
soundness theories for generic interpreters. In particular, our theory
applies to analyses, which do not follow the program execution order.

The analysis computes which definitions of variables and fields
reach a statement without being overwritten. The analysis is demand-
driven, as it performs only the minimum amount of work to compute
the reaching definitions of a query statement. More specifically, the
analysis only computes the reaching definitions of the query statement
and all of its predecessors. Additionally, the analysis does not compute
the entire control-flow graph but only the predecessors of the query
statement.

5.4 applicability of the theory 73

The reaching-definitions analysis consists of two modules, namely
̂reachingDefs and ̂controlFlowPred, that are analogous to the modules in

Figure 5.1 and Figure 5.2. We already discussed module ̂reachingDefs

and its dynamic counterpart in depth in Section 5.1. ̂controlFlowPred

calculates the set of control-flow predecessors of a given statement
by computing the set of control-flow exits of the preceding statement
within the abstract syntax tree. For example, the control-flow exits of
an if statement are the exits of the last statements of both branches.
The dynamic module controlFlowPred computes the predecessor imme-
diately executed before the given statement. To this end, the module
remembers the most recently executed statement in a mutable variable
and only updates it if the given statement is the control-flow successor.

5.4.2 Soundness Proofs of the Case Studies

We apply our theory to compositionally prove the analyses from the
previous section sound. The proofs can be found in Part V. They are
pen-and-paper proofs and do not make use of mechanization—but
due to modularization, they are short and easy to verify.

Proving each analysis sound includes (a) proving each of its modules
sound (Definition 5.12), (b) proving the instances of the property
interface sound, and (c) verifying that Theorem 5.13 applies. To ensure
the latter, we checked that there are no dependencies between modules
and that all communication between them happens via the store
(Definition 5.1). This can be easily checked by inspecting the code
of the modules. Furthermore, we verified that modules do not make
any assumption about abstract domains and are polymorphic in the
store (Definition 5.11), which can be done by simply inspecting the
polymorphic type of the modules.

To prove the individual modules of an analysis sound, step (a)
in the overall soundness proof, we use two proof techniques. The
first technique uses the observation that analysis modules and their
corresponding dynamic modules are often very similar, except for
differences in the type of entities and properties. We can abstract over
these differences with a generic module, from which we derive both a
dynamic and an analysis module. In this case, soundness follows im-
mediately as a free theorem from parametricity [125]. In cases where
abstracting with a generic module is not possible or desirable, we
resort to a manual proof. We were able to use the first proof tech-
nique for all analysis modules, except for m̂ethod, ̂reachingDefs, and

̂controlFlowPred. For illustrating cases where we need manual proofs,
consider the flow-insensitive analysis module m̂ethod of the pointer
analysis and its corresponding dynamic module method. While we
could potentially derive them from the same generic module, the
derived analysis module would be less performant. This is because
it would trigger the analysis of parts of the code, e.g., if conditions,

5.4 applicability of the theory 74

which our current flow-insensitive module does not. This is an exam-
ple where our approach leads to more freedom in the design of static
analyses than the existing approach based on a generic interpreter
(Section 6.5).

The soundness proofs of the analysis modules are reusable across
different analyses because the modules can be soundly lifted to super-
sets of entities and kinds (Lemma 5.10). For example, the immutability
analysis adds class entities, requiring to lift the modules of the pointer
and reflection analysis. Furthermore, the soundness proofs of analysis
modules can be reused because the proofs are independent of the
lattices used (Definition 5.12). For example, the reflection analysis
reuses all modules of the pointer analysis, extending the value lattice
with string, class, and method information. The soundness proofs of
the pointer analysis modules remain valid because they do not depend
on a specific value lattice. Instead, the proofs of the pointer modules
depend on soundness lemmas of the newObj and forObj operations of
Objects interface.

Finally, we consider step (b) in the overall process of proving an
analysis sound—the soundness proof of the instances of the property
interface. These instances still need to be proven sound manually,
because the proof cannot be decomposed any further. To prove the
instances of the property interface sound, we proved each of the inter-
face’s operations sound. More specifically, for the pointer analysis we
had to prove 7 operations sound, for the reflection analysis 6 opera-
tions, for the immutability analysis 6 operations, and for the reaching-
definitions analysis 0 operations. Of these 19 operations, 13 operations
could be proven sound trivially, requiring only a single proof step
after unfolding the definitions. The remaining 6 operations required
more elaborate proofs with multiple steps and case distinctions. These
include f̂orObj used in the pointer analysis, ̂classForName, ̂getMethod,
and ̂methodInvoke used in the reflection analysis, and ̂getFieldMutability

and ̂joinMutability used in the immutability analysis.

5.4.3 Case-Study Summary

To showcase the applicability of our theory, we developed four case-
study analyses and their dynamic semantics in the blackboard analysis
architecture. Each case study was chosen to exercise a different aspect
of our soundness theory: The pointer analysis demonstrates proof
independence despite mutual dependencies between analysis modules.
The reflection analysis demonstrates proof reuse despite changes to
the value lattice. The immutability analysis demonstrates proof reuse
despite an extended entity type. Lastly, the demand-driven reaching-
definitions analysis demonstrates that our theory applies to a wider
range of analyses than existing soundness theories.

5.5 summary 75

We implemented and tested the analyses and their dynamic seman-
tics in Scala to show they are executable. Language features such as
reflection and properties such as immutability can be encapsulated
with modules and added to existing analyses in a modular way. Fur-
thermore, analysis modules are loosely coupled by communicating
via the store, even though they implicitly depend on each other and
collaborate with each other. We proved each analysis of our case stud-
ies sound. The proofs can be found in Part V. The soundness of each
analysis follows directly from independent soundness proofs of each
module. This means that no reasoning about analyses as a whole is
necessary.

5.5 summary

In this chapter, we developed a theory for compositional and reusable
soundness proofs for static analyses in our blackboard analysis ar-
chitecture. We proved that soundness of an analysis follows directly
from independent soundness proofs of each module. Furthermore,
we extended our theory to enable the reuse of soundness proofs of
existing modules across different analyses. We evaluated our approach
by implementing four analyses and proving them sound: A pointer, a
call-graph, a reflection, an immutability analysis, and a demand-driven
reaching definitions analysis.

This showcases how analyses in our blackboard analysis architecture
can be proven sound. Work remains to be done to prove full analyses
sound that use all features of OPAL instead of just the core concepts
formalized here, but these extensions are rather straightforward and
would only hamper comprehensibility of the proofs and not add
deeper insights into the approach.

This is an effort to narrow the gap between impractical academic
analyses that can be proven sound and useful applied analyses that
are too complex to be proven sound. We believe that some complex-
ity of applied analyses is incidental and can be better managed by
modularizing their implementation, which makes a compositional
soundness proof more feasible.

6
R E L AT E D W O R K

This chapter presents work related to our approach. We start by giving
an overview of the history of blackboard systems, then discuss in
detail different approaches to implement static analyses. In particular,
we survey abstract interpretation, declarative approaches, attribute
grammars, and imperative approaches.

6.1 blackboard systems

The blackboard metaphor described in Chapter 2 was introduced by
Newell [168]. Blackboard systems were, e.g., used for speech- [79]
and image recognition [146], vessel identification [171], and industrial
process control [68]. For these domains, no efficient, deterministic algo-
rithm is known, leading to several problems mentioned by Buschmann
et al. [37]: nondeterminism making testing difficult, no guarantee for
good solutions, scalability suffering from wrong hypotheses, and high
development effort due to ill-defined domains.

As static analyses have a well-defined domain and deterministic
algorithms, these do not apply to our approach. Using a blackboard
architecture allows OPAL’s analyses to be modularized strictly inde-
pendent of each other, communicating solely via the blackboard. The
blackboard architecture inherently allows for easy parallelization due
to the independence of individual analyses, alleviating the need for
analysis-specific parallelization schemes.

The structure of blackboard systems is described, e.g., by Nii [170],
Craig [56], and Corkill [48]. Corkill also discusses concurrent execution
of knowledge sources and the control component [47], similar to
OPAL. OPAL resembles a more modern interpretation of blackboard
systems [57]: its blackboard is not hierarchical and analyses may keep
state between activations. Information is, however, never erased, and
all communication is done via the blackboard.

Brogi and Ciancarini used the blackboard approach to provide con-
currency for their Shared Prolog language [35]. Like static analyses, this
domain is well-defined. Their knowledge sources are restricted to be
Prolog logical programs, while OPAL’s analyses can be implemented
in a way best suited to the analysis needs.

Decker et al. [64] discuss the importance of heuristics for scheduling
concurrent knowledge source activations. Focusing on static analyses
and well-defined dependency relations, OPAL’s scheduling strategies
provide good general heuristics, agnostic to individual analyses, and
we evaluate an analysis-specific scheduling strategy in Section 13.3.

77

6.2 general purpose analysis frameworks 78

6.2 general purpose analysis frameworks

OPAL is a general-purpose framework for static analysis. As such, it
is similar to some state-of-the-art frameworks that we discuss in this
section. In particular, the WALA and Soot frameworks have similar
goals and target audiences.

wala The T.J. Watson Libraries for Analysis (WALA) [111] are a
static analysis framework for Java Bytecode similar to OPAL. Initiated
by IBM, WALA is open source like OPAL and comes with many similar
components and analyses. These include an intermediate representa-
tion for easing the implementation of static analyses, points-to and
call-graph analyses, and dataflow analyses. We particularly compared
our modular architecture for call-graph construction, Unimocg (cf.
Chapter 8) to state-of-the-art call-graph implementations from WALA.
We showed that Unimocg is on par with them with respect to precision
and scalability while providing a more consistently high support for
language features that impact call-graph construction. An overview of
WALA’s call-graph architecture will be given in Section 8.2. Other than
OPAL, WALA also has some support for static analysis of JavaScript.
However, with the modular, collaborative architecture of OPAL’s anal-
yses, we plan to support not only analyses for languages that are not
based on Java Bytecode but also cross-language analyses targeting
hybrid applications in the near future (cf. Chapter 15).

soot The Soot framework [176] originally started out as a frame-
work for optimizing Java Bytecode [238]. Today, it is a general-purpose
static analysis framework that can handle Java Bytecode as well as
Android Bytecode. Like WALA and OPAL, Soot provides intermedi-
ate representations (Jimple [239] and Shimple in particular), points-to
and call-graph analyses as well as dataflow analyses. Interprocedural
dataflow analysis using the IFDS [190] and IDE [199] algorithms is
supported via the Heros tool [25]. Taint analysis is available using
the FlowDroid [8] or IDEaL [218] tools. Boomerang [219] is a points-to
and alias analysis based on Soot. We discuss the Jimple and Shimple
intermediate representations in Chapter 7 and compare TACAI, our
intermediate representation based on abstract interpretation, against
Shimple in Section 12.1. In Section 8.2, we give an overview of Soot’s
call-graph architecture, which we compare our Unimocg architecture
(cf. Chapter 8) against.

phasar The PhASAR framework [206] provides tools for interpro-
cedural static dataflow analysis of C and C++ [207]. It enables analysis
developers to specify IFDS and IDE analyses as well as analyses in the
monotone dataflow analysis framework. PhASAR provides supporting
analyses including call graphs and points-to analyses ready to use

6.3 declarative analyses using datalog 79

for analysis developers. Analyses in PhASAR are modular, allowing
analysis developers to use only those components that they require.
Building on experiences with Soot, PhASAR makes analysis results
available to other analyses using a mediator pattern, which is similar
to our blackboard architecture style [208]. However, while supporting
analyses can execute in an interleaved manner, dataflow analyses are
executed sequentially after the supporting analyses and cannot be
interleaved to allow them to collaboratively compute properties or
depend on each other cyclically. Also, PhASAR is not built to support
analyses other than dataflow analyses and a small set of supporting
analyses.

6.3 declarative analyses using datalog

Datalog is often used to implement static analyses in a strictly declara-
tive fashion [73, 96, 135, 189, 242–244]. Properties are represented as
relations and analyses given in terms of Datalog rules specify how
to compute them. This enables modularization, as rules can be easily
exchanged and/or added (e.g. for new language features).

The Doop framework [34] by Bravenboer and Smaragdakis, has
shown that the rule-based approach enables precise and scalable
points-to analyses. For this reason, Doop became the state of the art
for such analyses [121, 214, 216, 230, 231]. Taint analysis is possible
with Doop using Grech and Smaragdakis’ P/Taint analysis [93]. Doop
describes analyses with relations in Datalog. Each relation is defined
as a set of rules. These rules can be modularly added or replaced,
without requiring changes to other rules. Input facts, i.e., information
extracted from the program to be analyzed, are generated using Soot
to bootstrap the Datalog computation. The latter is performed using
Jordan et al.’s highly optimized Datalog solver Soufflé [118].

Soufflé is a parallel Datalog solver specifically developed for static
analyses [204]. It takes the analysis specification as an input and
compiles it into a C++ program. Soufflé makes use of OpenMP, e.g.,
to parallelize nested join loops. Using 4 cores, a speed-up of 2.1x
compared to the sequential version was achieved. Similar speed-ups
of over 2x have been reported for Doop when using Soufflé as its
underlying solver but using 4 to 8 threads on 24 cores [6].

Datalog-based frameworks, however, are limited in their expres-
siveness by using relations, i.e., set-based abstractions, to represent
all analysis results. OPAL’s approach that combines imperative and
declarative features provides similar benefits as Datalog-based ap-
proaches while allowing for more expressive ways to represent data
and to implement analyses. We compare the scalability of our points-
to-based call-graph algorithms against Doop’s in Chapter 13, showing
that OPAL outperforms Doop even though it is more general and less
optimized for points-to analyses than Doop.

6.4 attribute grammars 80

Individual analyses in Doop have been proven sound before [217],
but the proofs are not compositional or reusable. In particular, if one
rule changes, the proof becomes invalid and needs to be re-established.
This is because the proof reasons about the soundness of all rules
at once instead of individual rules or relations. As we showed in
Chapter 5, this is not the case with OPAL.

Datalog’s limitation to relations has also been pointed out by Mad-
sen et al. [154]. They propose Flix to overcome this shortcoming using
a language inspired by Datalog and Scala to specify declarative plug-
gable analyses using arbitrary lattices as in OPAL as well as functions.
Flix proves individual functions sound with an automated theorem
prover [153]. While an automated theorem prover reduces the proof
effort and increases proof trustworthiness, there is no guarantee that
the automated theorem prover is able to conduct a proof. Furthermore,
the automated theorem prover does not establish a soundness proof of
Datalog relations. However, Flix focuses on verifying soundness and
safety properties of static analyses and not on scalability. For instance,
Flix does not allow optimized data structures or scheduling strategies.
We wanted to compare our approach against Flix and contacted the
authors, but they answered that their IFDS implementation is dysfunc-
tional now and suggested comparing against Doop with the Soufflé
engine, which we do in Section 13.4.2.1.

Szabó et al. [229] also extend Datalog to allow relations over arbi-
trary lattices for static analysis. Their solver IncA focuses on incremen-
talization. OPAL allows optimizations, e.g., of the data structures or
scheduling strategies used. Furthermore, the coarser granularity of
OPAL’s analyses compared to individual rules reduces overhead in
parallelization. Also, no soundness theory exists for IncA’s analyses.

6.4 attribute grammars

Attribute grammars [130] used in compilers such as JastAdd [76] enable
modular inference of program properties by adding computation rules
to the nodes of a program’s abstract syntax tree (AST). In traditional
attribute grammars, attributes may only depend on parent, sibling, and
child nodes. Circular reference attribute grammars [82, 99, 117, 155]
enable attributes to depend on arbitrary AST nodes and allow circular
dependencies. Still, analyses are tightly bound to the AST, impeding
natural expression of analyses based on different structures, such as a
control-flow graph. Similar to OPAL, JastAdd enables pluggability for
new language features. However, JastAdd requires at least one attribute
in a cyclic dependency to be marked explicitly, while OPAL handles
this transparently.

Öqvist and Hedin [172] proposed concurrent evaluation of low
complexity attributes in circular reference attribute grammars. OPAL,
on the other hand, supports arbitrary granularity of concurrent com-

6.5 abstract interpretation 81

putation. OPAL’s explicit dependency management enables analyses
to drop dependencies and commit final results early for improved
scalability. Finally, as memorization of properties is done in OPAL’s
blackboard, temporary values are garbage collected automatically,
whereas JastAdd requires explicit removal.

6.5 abstract interpretation

Modular static analysis has been an important target for abstract inter-
pretation. Abstract interpretation is a theory for proving soundness
of static analyses, first conceived by Cousot and Cousot [52] but since
then has found widespread adoption in academia and industry [53,
89, 107, 119, 142, 221].

Previous research has proven that multiple (possibly computation-
ally inexpensive) abstract domains (i.e., analyses) can be combined
using the reduced product to increase overall precision [52]. Exam-
ples of combined domains include different orthogonal domains for
the same value, such as signs and parity [52] domains, and combi-
nation of value information and relations, e.g., intervals and linear
equations [81]. In implementations such as Astrée [54] or Clousot [81],
communication between domains is performed using a hierarchy of
domains: Each domain has access to preconditions for the current
statement from all domains but only to postconditions from previ-
ously computed domains. This is either realized via an IO channel [54]
or via pushing and pulling the results from/to other domains [81].
Thus, the same program statement must be analyzed multiple times.
OPAL, by contrast, makes dependency handling explicit, reducing
the communication overhead. Typical analyses in OPAL only need to
analyze each statement once, keeping only the state required to handle
updates of dependencies later.

Abstract interpretation typically aims to compute abstract approxima-
tions [51] of concrete values, such as an integer variable’s value, while
it is not clear how to deal with interactions of analyses of different
entities on different levels of granularity. OPAL further allows natural
expression of analyses on all granularity levels.

Jourdan et al.’s Verasco [120] is a modular analysis for C#minor [141],
an intermediate language used by the CompCert C compiler [142]. Ve-
rasco is proven sound with the Coq proof assistant [18]. The soundness
proof of the abstract C#minor semantics is independent of the abstract
domain, which makes the proof reusable for other abstract domains.
However, the abstract semantics is proven sound with respect to the
standard concrete semantics. This means the proof cannot be reused for
abstract semantics which approximate non-standard concrete semantics,
such as information flow analyses [9] or liveness analyses [50].

6.5 abstract interpretation 82

6.5.1 Generic Abstract Interpreters

Keidel et al. [125] developed a theory for modular big-step abstract inter-
preters, deriving both the static and dynamic semantics from a generic
big-step interpreter. This simplifies soundness proofs, as the shared
generic interpreter is sound by definition and only the differences in
instantiating it for the static and dynamic semantics need to be proven
sound w.r.t. each other. The generic interpreter is composed from
primitive operations that are proven sound independently, similar to
different domain component traits in the abstract interpreter for our
TACAI intermediate representation. The theory enables soundness
composition [125, Theorem 4 and 5] under the assumption that the
generic big-step interpreter is implemented with arrows [110] or in a
meta-language that enjoys parametricity. However, there is no theory
on how parts of soundness proofs can be reused between different
analyses. They implement their theory in Sturdy [122], a Haskell li-
brary for implementing sound static analyses, such as type checkers,
bug finders, taint analyses, and analyses for compiler optimizations in
a modular fashion. Keidel and Erdweg [123] later refined the theory by
introducing reusable analysis components that capture different aspects
of the language, such as values, mutable state, or exceptions, and are
described with arrow transformers [110]. These analysis components can
then be combined to model different semantics. They also used Sturdy
to implement sound abstract interpreters for the Stratego program
transformation language [124].

While components can be proven sound independently of each
other, their composition requires glue code, which needs to be proven
sound. Furthermore, the composition creates large arrow transformer
stacks—unless optimized away by the compiler, this may lead to inef-
ficient analysis code. For example, a taint analysis for WebAssembly
developed by using the approach depends on a stack of 18 arrow
transformers.1 Eliminating the overhead of an arrow transformer stack
of this size requires aggressive inlining and optimizations causing
binary bloat and excessive compile times.

Analyses in OPAL are not required to be implemented in a par-
ticular style and need no specialized glue code. Finally, Keidel also
modularizes fixed-point algorithms as reusable fixpoint combinators
in Sturdy, enabling their composition and exchangeability. OPAL’s
fixed-point solver is also decoupled from individual analyses and
can thus be exchanged. While OPAL currently features only two such
solvers, a sequential and a parallel one, we described exchangeable
scheduling strategies in Chapter 4 to control the order in which tasks
are processed.

1 https://gitlab.rlp.net/plmz/sturdy/-/blob/wasm/wasm/src/TaintAnalysis.

hs#L96-113

https://gitlab.rlp.net/plmz/sturdy/-/blob/wasm/wasm/src/TaintAnalysis.hs#L96-113
https://gitlab.rlp.net/plmz/sturdy/-/blob/wasm/wasm/src/TaintAnalysis.hs#L96-113

6.6 imperative approaches 83

Bodin et al. [28] developed a theory of compositional soundness
proofs for a style of semantics called skeletal semantics, which consists of
hooks (recursive calls to the interpreter), filters (tests if variables satisfy
a condition), and branches. Both the dynamic and static semantics
are derived from the same skeleton. Furthermore, soundness of the
instantiated skeleton follows from soundness of the dynamic and
static instance [28, Lemma 3.4 and 3.5]. However, their work does
not describe how soundness proofs can be reused across different
analyses.

To recap, in all theories above both the static and dynamic seman-
tics must be derived from the same generic interpreter. This restricts
what types of analyses can be derived. In particular, the static analy-
sis is forced to closely follow the program execution order dictated
by the generic interpreter, and it is unclear how static analyses can
be derived that do not closely follow the program execution order.
For example, backward analyses process programs in reverse order,
flow-insensitive analyses may process statements in any order, and
summary-based analyses construct summaries in bottom-up order.
Our work lifts the restriction that both static and dynamic seman-
tics must be derived from the same artifact. In particular, analyses
must follow the blackboard architecture style, but no further restric-
tions apply to their implementation. This gives greater freedom as
to which types of analyses can be implemented. For example, our
blackboard analysis architecture has been used to develop backward
analyses [91], on-demand/lazy analyses (cf. Chapter 9 and Chapter 10),
and summary-based analyses like IFDS (cf. Chapter 11). Furthermore,
we have demonstrated in Section 5.4.1.4 that our theory applies to a
demand-driven reaching definitions analysis. It is unclear how such
an analysis can be derived from a generic interpreter.

6.6 imperative approaches

Beyer et al. introduced Configurable Program Analysis (CPA) [20], a
modular analysis architecture that describes analyses with transfer
relations between control-flow nodes. Multiple CPAs can be systemati-
cally composed with reduced products. Furthermore, soundness of a
component-wise transfer relation follows immediately from soundness
of its constituents. However, it is unclear how soundness proofs of
primitive CPAs can be composed or how proof parts can be reused
across analyses. CPA analyses must specify several functions, includ-
ing a transfer relation, merge operation, and termination check func-
tion, conforming to the requirements of CPA. CPAchecker [20] uses CPA
for configurable software verification and analysis. For any combina-
tion of analyses, CPAchecker requires defining a compound analysis to
integrate results of individual analyses and manage their interaction.
For CPA+ [21], combined analyses must work with the same domain

6.6 imperative approaches 84

and provide an explicit measure of result precision and a precision
adjustment function. In turn, the precision of analyses can be adjusted
and analyses enabled and disabled to fine-tune the trade-off between
precision and scalability. By contrast, OPAL allows more freedom in
the design of analyses, posing minimal restrictions for the initial anal-
ysis and continuation functions. In particular, analyses in OPAL are
not required to work with control-flow automata as CPA analyses are,
allowing them to easily analyze properties that are not coupled to the
control flow of the analyzed program. OPAL enables tight interaction
and interleaved execution of independently-developed analyses with-
out requiring a compound analysis or explicit measure of precision.
Fine-tuning trade-offs regarding soundness is also possible in OPAL.

Lerner et al. [140] proposed modularly composed dataflow analyses
that communicate implicitly through optimizations of the analyzed
code or explicitly through snooping. A fixed-point algorithm repeat-
edly reanalyzes the code, while OPAL’s explicit dependencies avoid
reanalysis. The system only supports dataflow analyses, while OPAL
enables a wide range of analyses including but not limited to dataflow
analyses.

Johnson et al. [116] present a framework for collaborative alias
analysis. Clients ask queries that are processed by a sequence of
analyses. Each analysis can either answer the query or forward it to the
next one. Analyses can also generate additional (premise) queries. [116,
140, 208] To ensure termination, a complexity metric must be defined
and premises must be simpler than the queries they originate from.
Therefore, cyclic dependencies, required for optimal precision, and
results combined from different analyses are not supported.

In a similar approach, Christakis et al. [41] make assumptions of
static checkers explicit. These assumptions are then verified by further
checkers or—if no checker can prove or disprove them—used for
automated test generation. Their approach is restricted to verification
and, again, cyclic dependencies are not supported.

Early ideas that were later incorporated into OPAL’s blackboard
architecture were developed by Eichberg et al. for Magellan [75]. Like
OPAL, Magellan supports combining dissimilar analyses to solve an
overall goal with analysis results communicated via a central store,
the whole-program database. In Magellan, analyses are accompanied by a
declarative specification of their dependencies. A constraint solver is
then used to compute a schedule that allows analyses to be executed
such that results from analyses are computed before they are required
by other analyses while at the same time allowing analyses to be exe-
cuted in parallel whenever possible. In contrast to Magellan, analyses
in the blackboard architecture can also communicate intermediate
results, allowing them to cyclically depend on each other to improve
their respective precision and/or soundness. No constraint solver is
required as analyses can be scheduled with minimal constraints.

6.7 reactive frameworks for static analyses 85

None of these analysis architectures have formal theories for sound-
ness. In contrast, we present a formalization that captures the core
of our blackboard analysis architecture as implemented in the OPAL
framework, while deliberately ignoring implementation details. For
example, our formalization does not describe the fixed-point algorithm
and the order in which it executes analysis modules to resolve their
dependencies. Proving the fixed-point algorithm correct is a separate
concern compared to proving analyses sound, which is the focus of
our formalization. That said, our formalization covers a variety of
OPAL’s features described in Chapter 3. For example, OPAL supports
default and fallback properties for missing properties in the blackboard.
Fallback properties can be described by our formalization by adding
them to the initial store passed to the fixed-point algorithm. We delib-
erately leave out default properties, which are an edge case in OPAL to
mark properties not computed, e.g., because of dead code. They could
be added to our formalization by extending analyses with a second
set of analysis modules to be executed after the fixed point is reached.
Furthermore, OPAL supports optimistic analyses which ascend the
lattice and pessimistic analyses which descend the lattice during fixed-
point iteration. Both of these are covered by our formalization, which
describes analyses as monotone functions that ascend or descend the
lattice. However, we deliberately do not cover OPAL’s mechanisms
for allowing interaction between optimistic and pessimistic analyses,
another edge case.

6.7 reactive frameworks for static analyses

Reactive programming provides abstractions for event streams and
time-changing values (signals) [77, 156, 159, 162, 200, 201], which are
well-suited for smart dependency management for static analyses.
However, general-purpose reactive programming approaches cited
above organize computations in an acyclic graph—by being general
purpose, they have no means to resolve cycles out of the box and
hence the requirement that the graph is acyclic. However, cyclic data
dependencies are essential for the target domain of static analysis. To
address this need, the reactive programming framework underlying
RA2, our implementation presented in Chapter 4, is more specialized.
It is a reactive framework for time-efficient, concurrent, fixed-point
computation on lattices Using lattices, RA2 can resolve cycles in a
generic way. RA2 builds on Haller et al.’s Reactive Async [97]. Reactive
Async is a programming system for deterministic concurrency in Scala
that extends lattice-based shared variables, LVars [134], with cyclic data
dependencies, which are resolved after the computation has reached a
quiescent state and shared variables are no longer updated. The system
concurrently executes tasks based on lattices and the authors apply
this to static analysis. RA2 significantly extends upon Reactive Async.

6.8 parallel static analyses 86

First, RA2 allows shared variables (cells) to use a sequential update
strategy, enabling continuations to safely access shared mutable state
by executing them sequentially. Supporting shared mutable state is
essential for implementing a state-of-the-art IFDS solver, which is the
basis for our experimental evaluation (see Section 11.4). Second, RA2
allows custom cell updaters such that monotonicity violations are
detected dynamically, while expensive additional joins can be omitted.
Third, RA2 supports pluggable scheduling strategies which, as we
show in Section 13.3, have a significant impact on scalability and allow
analysis-specific tuning of the parallelization. Finally, aggregation of
updates, both for a single dependee and across multiple dependees,
reduces the number of continuation invocations for further scalability
improvements. Both Reactive Async and RA2 require dependencies to
be managed by the client, while our OPAL implementation manages
them automatically based on declarative specifications.

6.8 parallel static analyses

There exist several previous efforts to parallelize the solution of static
analysis problems.

Heros [25, 104] is a parallel, state-of-the-art IFDS solver [190]; it is one
of the benchmark implementations in our experimental evaluation (cf.
Section 13.4.4). Later approaches, e.g., Boomerang [219] that built upon
Heros, were not parallelized at all, however.

Méndez-Lojo et al. [161] parallelized a points-to-analysis algorithm
using the Galois system [132, 133]—a programming system for thread-
safe parallel iteration over unordered sets. Like RA2, their approach
relies on an underlying programming framework to provide thread
safety out of the box to the analyses. However, unlike RA2’s, Galois
is, a generic framework not specifically tailored to static analysis.
For example, it does not provide support to automatically find fixed
points. As a result, the approach by Méndez-Lojo et al. is not directly
applicable to the parallel execution of static analyses like RA2.

Rodriguez and Lhotak present IFDS-A [192], an algorithm for solv-
ing IFDS dataflow analysis problems using the actor model [2, 105] of
concurrency. In order to apply IFDS-specific scheduling strategies, the
authors were required to completely exchange the Scala Actors sched-
uler [98] with their own implementation. Combined with their custom
strategy, this was necessary for significant scalability improvements.
In contrast to IFDS-A, our approach is not limited to parallelizing
IFDS; in fact, all of our case-study analyses from Part II can be exe-
cuted concurrently automatically without explicitly being designed
for that. While being more general and using a scheduling strategy
not specific to IFDS, our approach achieves similar speed-ups. Finally,
our pluggable scheduling strategies also enable significant scalability
improvements (cf. Section 13.3).

6.9 summary 87

6.9 summary

In this chapter, we saw that there is a multitude of approaches for the
modularization and parallelization of static analyses. However, none
of these approaches fulfill all of the requirements that we identified
for a generic framework for modular, collaborative static analysis
(Chapter 2). Most approaches were developed with a particular kind of
static analyses in mind, e.g., dataflow analyses or call graphs based on
points-to analysis. They also often enforce a particular implementation
style, such as a generic abstract interpreter or the use of Datalog rules.
Collaboration between sub-analyses is usually not supported as well,
i.e., analyses can not share intermediate results in a way that allows
them to solve problems with cyclical dependencies in a sound and
precise manner.

This is in contrast to OPAL, which was developed based on these
requirements and thus supports a broad range of dissimilar static
analyses in a modular, collaborative way. OPAL is built to enable
fine-tuning and experimenting with trade-offs between soundness,
precision, and scalability, regardless of a particular kind or implemen-
tation style of static analyses. Chapter 5 also provides a formalization
and shows the compositionality of soundness proofs for the core
concepts of our approach.

Part II

C A S E S T U D I E S

case studies 91

In this part, we discuss four families of analyses that we built using
OPAL: a three-address-code intermediate representation, call-graph
construction, immutability analyses, and purity analysis.

These case studies fulfill three purposes: First, they showcase how to
use OPAL and the concepts we developed in Chapter 3 to implement
complex, modular analyses. This includes relating the analyses to
the requirements from Chapter 2 that we list again for reference in
Table II-1. Second, as each case study depends upon all of the case-
study analyses described before it, they show how complex systems
of analyses are combined from individual, isolated building blocks
in a modular way. This happens in a plug-and-play manner, enabling
to study and fine-tune trade-offs between soundness, precision, and
scalability. Finally, each case study is a contribution of its own, advanc-
ing the state of the art in the respective sub-field of research in static
analysis.

The chapters of this part each discuss one individual case study.
They motivate the presented work both from the perspective of show-
casing the features of OPAL and from the perspective of advancing the
specific research area. In Part III, we will use the case studies to evalu-
ate our approach. In particular, we use them to show OPAL’s broad
applicability, the case studies’ modularity, precision, and soundness
as well as their scalability.

We start with a short overview of each of the case studies, the
requirements they particularly exercise, and their relations to each
other.

Table II-1: Summary of Requirements

Lattices and values

R1 Support for different kinds of lattices (7, 8, 9, 10)

R3 Fallbacks of properties when no analysis is scheduled (7, 9, 10)

R9 Default values for entities not reached by an analysis (8)

Composability

R2 Support for enabling/disabling individual analyses (7, 8, 9, 10)

R4 Interleaved execution with circular dependencies (7, 8, 9)

R5 Combination of optimistic and pessimistic analyses (7)

R6 Different activations contributing to a single property (8)

R7 Independent analyses contributing to a single property (8)

Initiation of property computations

R8 Precomputed property values (8, 10)

R10 Start computation once an analysis reaches an entity (8)

R11 Start computation eagerly for a predefined set of entities (9, 10)

R12 Start computation lazily for entities requested (7, 9, 10)

R13 Start computation as guided by an analysis (9)

case studies 92

intermediate representation based on abstract inter-
pretation Chapter 7 presents TACAI, an analysis for constructing
a three-address-code intermediate representation (IR) based on ab-
stract interpretation. TACAI uses abstract interpretation, a major static
analysis technique of its own, implemented as a modular analysis in
our framework, to compute an intermediate representation. This IR
provides additional information that is not directly present in Java
Virtual Machine bytecode. This includes information on the definitions
and uses of local variables or whether values can never be null. This
is beneficial for all subsequent analyses, in particular the call-graph
analyses of Chapter 8. TACAI also provides more precise type infor-
mation than the static types declared for fields and method return
values.

For this purpose, we supplement TACAI’s main analysis with two
optional sub-analyses, exercising our support for combinations of
optimistic and pessimistic analyses (R5). These analyses refine the
declared types of method return values and fields, respectively. While
the main analysis is optimistic (e.g., it considers code dead until it is
proven to be reachable), these optional analyses are pessimistic (they
refine sound, imprecise declared types to more precise types). If these
sub-analyses are not executed (R2), the declared types are used as
fallback values (R3). As the two additional sub-analyses cyclically de-
pend on each other, requirement R4 is also exercised. This is depicted
in Figure II-1 with pessimistic analyses in italics (optimistic analyses
are in straight font):

IR

ReturnTypes FieldTypes

Figure II-1: Sub-analyses of the TACAI Intermediate Representation

modular architecture for call-graph construction In
Chapter 8, we present Unimocg, a modular architecture for call-graph
construction. As call graphs provide information on which methods
call each other, they are the foundation for all interprocedural analyses,
such as the ones presented in Chapter 9 and Chapter 10. Unimocg
provides different call-graph algorithms that can be used interchange-
ably and thus allows fine-tuning trade-offs between precision and
scalability. Moreover, support for different programming language
features is achieved by individual sub-analyses. Adding, removing,
or exchanging these sub-analyses further allows making fine-tuned
trade-offs between soundness and scalability.

Figure II-2 shows the modules contributing to call-graph construc-
tion, including their dependency on the intermediate representation
of the previous case study (IR): Type producers are modules that com-

case studies 93

pute information about the possible runtime types of local variables.
This is used by type iterators to provide type information to further
modules in ways that correspond to traditional call-graph algorithms
such as Class-Hierarchy Analysis (CHA), Rapid Type Analysis (RTA), or
others. Call resolvers then construct the actual call graph by resolving
individual calls. Further analyses, such as the immutability analyses of
Chapter 9, can also benefit from type information and are thus called
type consumers.

Type Producer
Instantiated-Types Analysis Points-To Analysis . . .

Type Iterator

CHA RTA XTA MTA FTA CTA CFA . . .

Call Resolver
Virtual Calls Reflection

Serialization Threads . . .

Type Consumer

Immutability Analysis

. . .

IR

Figure II-2: Sub-analyses of the Unimocg Call-Graph Architecture

Unimocg demonstrates many requirements of our framework: it uses
set-based lattices to represent sets of types, points-to sets, and sets of
callers and callees (R1) and default values for unreachable, i.e., dead,
methods (R9). Dependencies between modules that compute types
(type producers) and modules that resolve calls (call resolvers) are
cyclic (R4). Constructing call graphs requires different activations of
the same (R6) as well as different (R7) analyses to contribute to the
same properties such as the callers and callees of a method. Finally,
Unimocg also schedules the analysis of methods once they are found
reachable (R10).

modular immutability analyses Chapter 9 presents CiFi, a
system of immutability analyses. It consists of four interdependent
analyses for field assignability and field-, class-, and type immutabil-
ity. These analyses determine whether fields can be reassigned and
whether the values stored in fields and classes can be mutated after
their creation. This information is important for reasoning about the
correctness and security of programs and is also useful for further
analyses such as the purity analysis of Chapter 10.

Compared to the call-graph architecture, results are represented
in singleton lattices (R1). Dependencies between the analyses are
inherently cyclic (R4). The analyses can be executed eagerly for all
fields, classes, or types (R11) as well as lazily only for those required
(R12) or guided by the class hierarchy (R13).

case studies 94

The sub-analyses of CiFi depend on the intermediate representation
from TACAI and the call graphs from the previous case studies. They
also depend on an escape analysis. The escape analysis is not detailed
here as it is not a contribution of this dissertation. Figure II-3 shows
the dependencies, with the new analyses of this case study depicted
in bold font:

ClassImmutability

FieldImmutability

TypeImmutability

FieldAssignability

IREscape CallGraph

Figure II-3: Dependencies between CiFi Sub-analyses

modular purity analysis As our final case study, Chapter 10

presents OPIUM, a family of three analyses for method purity with
different precision/scalability trade-offs. The purity property tells
whether methods have side effects or behave non-deterministically.
This is useful for optimizing code, verifying code correctness in partic-
ular in case of concurrency, and for finding bugs and code smells.

As shown in Figure II-4, the analyses of OPIUM depend on analyses
from all of the previous case studies and two further modules related
to escape analysis. Each of OPIUM’s analyses has different dependen-
cies. Thus, when selecting a different analysis from OPIUM, we want
to be able to easily enable, disable, and exchange other analyses as
well in a plug-and-play fashion (R2). OPIUM also makes use of fall-
back values when some analyses that it depends on are not executed
(R3) and makes heavy use of precomputed values for native and other
methods that are hard to analyze (R8).

Purity0

Purity1

Purity2 ClassImmutability

TypeImmutability

FieldAssignability

IR

FieldLocalityReturnValueFreshness

CallGraph

Figure II-4: Dependencies of the OPIUM Purity Analyses

7
I N T E R M E D I AT E R E P R E S E N TAT I O N B A S E D O N
A B S T R A C T I N T E R P R E TAT I O N

To ease the implementation of static analyses, common static analysis
frameworks for Java Bytecode like WALA [111] or Soot [238] transform
the stack-based bytecode into a three-address-code (TAC) interme-
diate representation (IR). TAC representations have a much smaller
instruction set than the original bytecode and are designed to be more
amenable to static analysis. Transforming Java Bytecode into a TAC
representation does not only remove the bytecode’s operand stack—
which complicates static analysis—but also enables the immediate
application of optimizations [65, 239], e.g., constant propagation or
dead path removal. As Bodden [26] observed, efficient static analy-
ses with higher precision also yield better scalability in subsequent
analyses. This emphasizes the importance of improved precision of
precursory analyses. However, the effect that different precision opti-
mizations have on subsequent analyses is still not well understood; in
particular for optimizations concerning the IR on which subsequent
analyses are built.

In this chapter, we describe TACAI, an analysis that uses abstract
interpretation to construct a TAC IR that provides additional infor-
mation, e.g., more precise type information than is available in the
Java Bytecode. The precision of this IR can be further increased by
employing additional sub-analyses (cf. R2). This enables rapid experi-
mentation with different trade-offs between the scalability of the IR
generation, the IR’s precision, and the impact of this precision on sub-
sequent analyses. In particular, we implemented two sub-analyses that
can provide more precise type information for method return values
and fields, respectively. These sub-analyses are pessimistic, starting at
the sound but possibly imprecise statically declared types and refining
them to be more precise (cf. R5). Methods can return values loaded
from fields, and fields can store values returned from methods. Thus,
the additional sub-analyses cyclically depend on each other (R4); de-
clared types are used as fallback values (R3) if the sub-analyses are
not executed.

7.1 state of the art

Static analysis tools often work on an intermediate representation of
bytecode. For instance, Soot [238] provides several IRs to operate on:
Baf, Jimple, Grimple, and Shimple. However, Jimple and Shimple are the
only TAC-based representations.

95

7.2 approach 96

Jimple is generated in 5 steps [239]. At first, a naïve, verbose, and
typeless TAC is generated. Step 2 takes the generated TAC and ap-
plies several code optimizations, such as constant propagation and
dead code elimination. Step 3 splits, step 4 types, and step 5 packs
local variables so that they are reused as often as possible. Shimple is
produced by converting Jimple into SSA form.

In contrast to Jimple and Shimple, TACAI performs all optimizations
in one step. This simplifies the process and improves scalability as
we show in Section 13.4.1. Also, while Jimple and Shimple always
provide a single type bound, TACAI can derive more precise union
and intersection types and provides information on whether a specific
type is an upper type bound or a concrete type.

TACAI’s domains for abstract interpretation are configurable. With
the most basic domain TACAIL0, we get an IR with precision com-
parable to Shimple, but which can be computed faster. Using more
advanced domains results in a more precise IR that contains additional
information, such as def-use information, or a variable’s nullness. In
particular, our modular design allows adding more sub-analyses to
further improve precision, such as for the types of method return
values or fields.

We observe that Jimple, the WALA framework’s IR, and the TACAI
IR differ w.r.t. the precision of the available type information. We
use Listing 7.1 to explain the differences between Jimple, WALA IR,
and TACAI. For the method call at Line 3, the three IRs provide
type information with different precision: Whereas WALA IR only
provides c’s declared type Collection, Jimple encodes the upper-type
bound List, i.e., the common supertype of ArrayList and Vector.
TACAI provides a union type of ArrayList and Vector—the most
precise type information if cond is unknown. This has repercussions
on the analyses using the different IRs. For example, the different type
information in Listing 7.1 will lead to different precision call graphs
constructed with the simple class hierarchy analysis algorithm [62].

1 Collection c;
2 if(cond){ c = new ArrayList(); } else { c = new Vector(); }
3 c.add(null); // Call site

Listing 7.1: Precision Example

7.2 approach

For TACAI, we employ an abstract interpreter as an analysis in OPAL.
This analysis computes the IR from each method’s bytecode and can
use further information from the blackboard. This approach has three
main properties: first, it enables the derivation of an IR at different
precision levels by exchanging the domains underlying the abstract
interpretation. Second, all information is computed at the same time

7.2 approach 97

in one step. This improves scalability compared to classical compiler
frameworks which compute comparable information in a step-wise
manner [165]. While performing the abstract interpretation, OPAL
always computes the method’s control-flow graph (CFG) and def-
use/use-def information on the fly. Therefore, the CFG and def-use
information immediately benefit from better domains. The CFG and
def-use information are also accessible through the TACAI IR for
subsequent analyses to use. Finally, additional sub-analyses can be
employed in a plug-and-play manner to improve the precision of the
resulting IR.

The abstract interpretation domains used by TACAI are defined in
OPAL. The most basic domains OPAL offers are those which operate at
the type level and which will lead to an IR that has roughly the same
precision as offered by Soot’s Shimple representation. However, OPAL
also provides domains that enable constant propagation and constant
folding for primitive types. For reference values, domains are available
which, for instance, precisely track the nullness, provide must-alias
information, compute intersection and union types, or can resolve
local Class.forName calls. Using more advanced domains enables the
computation of an IR that is more precise when compared to typical
IRs offered by the other frameworks. Furthermore, it is possible to
tailor the precision at a very fine-grained level to a client’s needs.

To configure the abstract interpretation, OPAL relies on Scala’s
mixin-composition mechanism. For example, the default configuration
that performs all operations at the level of static types is shown in
Listing 7.2.

1 trait TypeLevelDomain extends Domain
2 with DefaultReferenceValuesBinding
3 with DefaultTypeLevelIntegerValues
4 with DefaultTypeLevelLongValues
5 with TypeLevelLongValuesShiftOperators
6 with TypeLevelPrimitiveValuesConversions
7 with DefaultTypeLevelFloatValues
8 with DefaultTypeLevelDoubleValues
9 with TypeLevelFieldAccessInstructions

10 with TypeLevelInvokeInstructions

Listing 7.2: Example TypeLevelDomain Configuration

The semantics for each set of closely related instructions is imple-
mented by one specialized trait. OPAL provides traits for different
primitive values, method invocations, field accesses, and reference-
value-based operations. The latter trait handles, e.g., instanceof

checks, casts, and tests against null.
The hierarchy of traits defines query methods that can be used

by other traits. For example, every implementation that handles ref-

7.2 approach 98

erence values has to implement a method to test if a value is null,
where the result is either Yes, No, or Unknown. The nullness informa-
tion is used by the domain that handles method calls. That domain
checks for each method invocation if the method’s receiver object
is null. If the receiver is known to be null, the target method is
not invoked, but a NullPointerException will be thrown instead. If
the receiver cannot be null, only the invocation is necessary and no
NullPointerException can be raised. Finally, if the answer is Unknown,
different domains either include both the invocation and the possible
exception or ignore the exception.

Besides the default configuration (referred to as TACAIL0 in the
following), two further configurations for a more precise TAC are
preconfigured, TACAIL1 and TACAIL2:

In TACAIL1, the DefaultReferenceValuesBinding (Line 2) is ex-
changed for an implementation that computes intersection and union
types as well as must-alias information for reference values. Further-
more, special support for calls of the native method System.arraycopy

is provided which checks for the non-nullness of the arrays and also
validates the range that is to be copied. If the validation fails, appro-
priate exceptions are thrown.1 The DefaultTypeLevelIntegerValues

(Line 3) domain is exchanged to perform constant folding and propa-
gation for integer values. The latter is in particular required to identify
if statements where the conditions evaluate to constant values and
are therefore useless.

TACAIL2 is the most precise configuration. It builds on top of
TACAIL1 and additionally performs method inlining for monomor-
phic calls. This is, e.g., useful for builders (e.g. StringBuilder/String-
Buffer) which provide a fluent interface to enable the chaining of
calls by always returning the current instance (return this;). In such
cases, it is then possible to determine that all calls actually happen on
the same instance. For that, Scala’s stackable trait pattern is used to
adapt the handling of method invocations, i.e., an additional trait is
configured.

Table 7.1 shows the respective TAC for method m (cf. Listing 7.3)
for all three levels. TACAIL0 basically reflects the source code: The
type of the variable p1 (Line 2) is considered to be Cloneable after
the cast operation. The code also contains the (useless) reference
comparison (Line 7), which compares the reference of the newly
created StringBuffer (Line 4) with the reference returned by the
append call (Line 6).

TACAIL1 correctly identifies that p1’s type is Serializable with

Cloneable. This intersection type significantly restricts the set of sub-
types when compared to the previous version. Additionally, both p1

and lv4 are found not to be null: p1 because of the explicit nullness

1 Special handling is provided for System.arraycopy because it is by far the most widely
used native method in the JDK.

7.2 approach 99

Table 7.1: TACAI Representation of Listing 7.3 using Different Domains

TACAIL0 TACAIL1 TACAIL2

void m(Serializable) { void m(Serializable) { void m(Serializable) {

0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2 0: if(p1 ! = null) goto 2

1: return 1: return 1: return

2: (Cloneable) p1 2: (Cloneable) p1 2: (Cloneable) p1

p1 <: Cloneable p1 <: Serializable p1 <: Serializable

& Cloneable & Cloneable

p1 not null p1 not null

3: lv3 = p1.toString() 3: lv3 = p1.toString() 3: lv3 = p1.toString()

4: lv4 = new StringBuffer 4: lv4 = new StringBuffer 4: lv4 = new StringBuffer

lv4 not null lv4 not null

5: lv4.<init>() 5: lv4.<init>() 5: lv4.<init>()

6: lv6 = lv4.append(lv3) 6: lv6 = lv4.append(lv3) 6: lv4.append(lv3)

/* value ignored */

7: if(lv4==lv6) goto 10 7: if(lv4==lv6) goto 10 7: ; /* NOP */

8: lv8 = p0.e() 8: lv8 = p0.e() —

9: throw lv8 9: throw lv8 —

10: lva = lv4.toString() 10: lva = lv4.toString() 8: lv8 = lv4.toString()

11: p0.p(lva) 11: p0.p(lva) 9: p0.p(lv8)

12: return 12: return 10: return

} } }

check (Line 0), lv4 because it is freshly allocated (Line 4). That the
variables cannot be null guarantees that the invocations on p1 (Line 3)
and lv4 (Lines 6 and 10) will not cause NullPointerExceptions.

TACAIL1 computes must-alias information, i.e., which local vari-
ables must point to the same object, intraprocedurally. This is not
enough to remove the useless reference comparison in Line 7. To iden-
tify that lv4 and lv6 must point to the same object requires knowing
that the value returned by append is the self-reference this. By per-
forming inlining in TACAIL2, this information becomes available and,
therefore, the useless comparison can be removed and subsequently,
the if statement is removed as well as the throw statement. A NOP

statement (TACAIL2 Line 7) is added because the CFG is not rewrit-
ten during the initial transformation, which requires that every basic
block contains at least one instruction. It would be straightforward to
remove NOPs and update the CFG in a second step if required.

TACAI can be extended in a modular way by adding further analysis
modules. We developed two such modular sub-analyses to improve
the precision of type information for method return values and for
fields, respectively. These analyses identify the values that are returned
from methods or stored in fields. Consider a method that, according to
its signature, has return type List, but only ever returns LinkedLists.

7.3 summary 100

1 RuntimeException e() { return new RuntimeException(); }
2 void p(String s) { System.out.println(s); }
3

4 void m(Serializable serializable) {
5 if(serializable == null) return ;
6 Object o = (Cloneable) serializable;
7 String s = o.toString();
8 StringBuffer sb0 = new StringBuffer();
9 StringBuffer sb1 = sb0.append(s);

10 if(sb0 != sb1)
11 throw e();
12 p(sb0.toString());
13 }

Listing 7.3: Java Code Used to Generate TACAI IR for Table 7.1

The return type analysis recognizes this and provides the more precise
type LinkedList.

The two sub-analyses circularly depend on each other (cf. R4) as
values loaded from a field can be returned from a method, and values
returned from a method can be stored in a field. The sub-analyses
provide additional information for the main IR generation analysis
as shown in Figure 7.1. We show them in italics to indicate they are
pessimistic analyses, starting at the sound but possibly imprecise
statically declared types and refining them to be more precise (cf. R5),
while the main IR generation analysis is optimistic. If these analyses
are not executed, the declared types are used as fallback values (R3).

IR

ReturnTypes FieldTypes

Figure 7.1: Dependencies Between Sub-modules of TACAI IR Generation

7.3 summary

In this chapter, we presented TACAI, an analysis for constructing a
three-address code intermediate representation. TACAI is based on
abstract interpretation with configurable abstract domains. It comes
with three preconfigured abstract domains which—when used—result
in three-address codes with different levels of precision regarding
nullness or available type information.

TACAI uses OPAL’s support for combining optimistic and pes-
simistic analyses (R5) that can be used in a plug-and-play manner
(R2). Sub-analyses have cyclic dependencies (R4). If the sub-analyses
are not executed, fallback values can be used (R3).

8
C O L L A B O R AT I V E C A L L - G R A P H C O N S T R U C T I O N

Our second case study is concerned with defining an architecture
in which individual modules collaborate to compute call graphs. In
particular, it uses OPAL’s blackboard architecture in order to decouple
modules computing type information about local variables from mod-
ules that compute the actual call graph edges. The blackboard serves
as an intermediary between them.

Sound and precise call graphs are a prerequisite for interprocedural
static analysis. Over the past decades, dozens of call-graph algorithms
for object-oriented programming languages have been proposed [12,
62, 94, 210, 234]. However, their implementations have inconsistent
support for crucial language features, e.g., reflection, serialization,
or threads—they often support these features unsoundly, or not at
all [186, 187, 225].

Table 8.1 shows the state of affairs for the WALA [111] and Soot [238]
analysis frameworks. We generated the table by reproducing the study
of the soundness1 of call-graph algorithms for JVM-based languages
from our previous work [186]. We used the current version of the
benchmark2—a suite of manually annotated tests—and current ver-
sions of WALA (1.5.7) and Soot (4.3.0) for the algorithms Class-Hierarchy
Analysis (CHA) [62], Rapid Type Analysis (RTA) [12], Control-Flow Anal-
ysis (CFA) [210], and Soot’s default configuration of SPARK [144].

While the exact numbers have changed, the overall picture stays the
same as reported previously [186]: Language feature support varies
significantly not only across frameworks but even across algorithms
within the same framework. In general, more precise call-graph al-
gorithms become less sound. The most precise call-graph algorithms
(WALA’s 0-CFA and Soot’s SPARK) fail to soundly analyze about half
of the test cases. For some features, call-graph algorithms even fail
all test cases, an indication that they may not support the feature
explicitly. In some cases, less precise call-graph algorithms like CHA
and RTA pass tests but do so due to excessive imprecision rather
than to actual feature support. Surprisingly, WALA’s CHA is not only
less precise but apparently also less sound than WALA’s RTA. The
inconsistent support of language features makes it difficult for users
to systematically choose an appropriate call-graph algorithm. One has
to know in detail which language features each algorithm supports
soundly.

1 None of these call-graph algorithms are sound in the mathematical sense. In this
paper, we refer to the term soundness as a lower number of missing edges in call
graphs. This is in line with related work [186, 225].

2 https://github.com/opalj/JCG

101

https://github.com/opalj/JCG

collaborative call-graph construction 102

Table 8.1: Soundness of Call Graphs for Different JVM Features

WALA Soot

Feature CHA RTA 0-CFA CHA RTA SPARK

Non-virtual Calls 6/6 6/6 6/6 6/6 6/6 6/6

Virtual Calls 4/4 4/4 4/4 4/4 4/4 4/4

Types 6/6 6/6 6/6 6/6 6/6 6/6

Static Initializer G# 4/8 G# 7/8 G# 6/8 8/8 8/8 8/8

Java 8 Interfaces 7/7 7/7 7/7 7/7 G# 6/7 7/7

Unsafe 7/7 7/7 # 0/7 7/7 7/7 # 0/7

Invokedynamic # 0/16 G# 10/16 G# 10/16 G# 11/16 G# 11/16 G# 11/16

Class.forName G# 2/4 4/4 4/4 4/4 4/4 4/4

Reflection G# 2/16 G# 3/16 G# 6/16 G# 12/16 G# 12/16 G# 10/16

MethodHandle G# 2/9 G# 2/9 # 0/9 G# 3/9 G# 3/9 G# 1/9

Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4 # 0/4

DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

JVM Calls G# 2/5 G# 3/5 G# 3/5 G# 4/5 G# 4/5 G# 3/5

Serialization G# 3/14 G# 1/14 G# 1/14 G# 5/14 G# 1/14 G# 1/14

Library Analysis G# 2/5 G# 2/5 G# 1/5 G# 2/5 G# 2/5 G# 2/5

Sign. Polymorph. # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7

Java 9+ 2/2 G# 1/2 G# 1/2 2/2 2/2 2/2

Non-Java 2/2 2/2 2/2 # 0/2 # 0/2 # 0/2

Sum (out of 123) 51 (41%) 65 (53%) 57 (46%) 81 (66%) 76 (62%) 65 (53%)
Algorithms within each framework are ordered by increasing precision

Soundness: all , some G#, or no # test cases passed soundly

In this chapter, we analyze reasons for this observed inconsistency
and propose a solution to the problem. In short, the problem is that
different call-graph algorithms handle language features in specific
ways by making specific use of different kinds of information they
have access to. For example, a CFA algorithm can soundly handle
more reflection calls because it has access to pointer information. CHA
and RTA handle reflection differently because they do not have access
to pointer information. As a result, code that handles call resolution
for individual language features is coupled to specific call-graph
algorithms, which makes it difficult to reuse that code across different
call-graph algorithms. Thus, the available resources and priorities
of developers of a certain framework determine which features are
supported by which algorithm; maintenance is also complicated as
features evolve.

We demonstrate that it is possible to implement a variety of call-
graph algorithms with consistent handling of language features. Specif-
ically, we introduce Unimocg (UNIfied MOdular Call Graphs), a novel
architecture for modular implementation of call-graph algorithms that
decouples the implementation of the following concerns: (1) compu-

collaborative call-graph construction 103

Type Producer
Instantiated-Types Analysis Points-To Analysis . . .

Type Iterator

CHA RTA XTA MTA FTA CTA CFA . . .

Call Resolver
Virtual Calls Reflection

Serialization Threads . . .

Type Consumer

Immutability Analysis

. . .

IR

Figure 8.1: Unimocg’s Modular Call-Graph Architecture

tation of type information, (2) interpretation of type information, (3)
resolution of calls, and (4) analyses that depend on type information.
Figure 8.1 overviews the components that handle these concerns in
Unimocg and their relations.

Type producers compute information about the runtime types of
variables and fields. Type iterators interpret this type information and
make it available to call resolvers and type consumers—keeping them
decoupled from type producers. Call resolvers resolve method calls or
calls of language features, such as reflection, serialization, or threads.
They query a type iterator for type information about call receivers
or arguments of reflective calls; in turn, the information about re-
solved method calls is used by type producers. Type consumers are
static analyses that depend on type information but do not contribute
to call-graph construction. Without type iterators, type consumers
would have to rely on imprecise type information, e.g., provided by
static types, to avoid dependence on a specific call-graph algorithm.
For instance, our immutability analysis in Chapter 9 originally used
imprecise type information from static types and the class hierarchy.

The modular architecture of Unimocg enables deriving call graphs
with consistent coverage of language features and hence soundness by
reusing and combining type producers, type iterator, and call resolvers
in a plug-and-play manner. We show that Unimocg enables a wide
range of call-graph algorithms to share the same support for language
features, such as reflection and serialization, thus ensuring consistent
soundness, by implementing ten algorithms from different families:
CHA [62], RTA [12], the XTA family with MTA, FTA, and CTA [234],
as well as k-l-CFA-based algorithms 0-CFA, 0-1-CFA, 1-0-CFA, and
1-1-CFA [94].

Type consumers also benefit from the modular architecture by
reusing precise type information computed for call-graph construc-
tion. To showcase this, we implemented an alternative version of the
immutability analysis from Chapter 9 as a type consumer in Unimocg.

8.1 problem statement 104

Unimocg’s separation of call-graph construction from the computation
of type information helps to ensure consistent and improved precision
of the immutability analysis when used with more precise call graphs.

Unimocg benefits both users and developers of static analyses (call-
graph and other analyses). Users can rely on consistent soundness and
can systematically choose appropriate algorithms for their respective
applications considering only their intuition about the relative preci-
sion and scalability of different algorithms. Analysis developers, on
the other hand, can easily extend Unimocg to support new language
features across all available algorithms or add new call-graph and/or
other analysis algorithms while retaining all available feature support.

8.1 problem statement

We analyze two problems with existing call-graph algorithms respon-
sible for the observed soundness inconsistency (Table 8.1).

problem 1 : coupling of call resolution of language fea-
tures to base call-graph algorithms Modern program-
ming languages have many features, which are difficult to analyze.
Three such Java features are reflection, (de)serialization, and threads.
Reflection [136] dynamically instantiates classes and calls methods
based on runtime strings and types. To resolve reflective calls, a call-
graph analysis needs to statically determine strings for the class and
method names. It also has to determine receiver and class objects as
well as argument types. (De)serialization [203] writes or reads Java
objects from a stream of bytes, e.g., a file. For (de)serialization, the
JVM invokes special methods, e.g., readResolve, that must be handled
by the call-graph analysis. To resolve a call on a deserialized object, a
call-graph analysis also needs to determine the types of objects in the
byte stream. Threads are started by calling the built-in Thread.start

method, which leads to the JVM invoking Thread.run; hence, it re-
quires specific handling by call-graph algorithms. What complicates
the problem further is that these features can be used in combination,
e.g., threads may start Runnable objects loaded via reflection.

Advanced features induce unique challenges for different call-graph
algorithms—hence, each call-graph analysis typically treats them
specifically. For example, reflection is easier to handle by call-graph al-
gorithms that have allocation information and deserialization is easier
for imprecise algorithms that over-approximate the possible classes
deserialized.

Handling language features differently creates coupling between call
resolution of language features and the base call-graph algorithms and
violates separation of concerns. For example, WALA’s RTA algorithm
handles static initializers differently from WALA’s CHA—with RTA,
they should be deemed reachable only for classes actually instantiated.

8.1 problem statement 105

problem 2 : different type information Different call-graph
algorithms require different type information to resolve virtual calls.
For example, CHA requires only the declared types, RTA additionally
requires information about the classes that are instantiated anywhere
in the program, and CFA requires the precise information produced
by a pointer analysis.

These different representations typically require calls to be resolved
specifically for each call-graph algorithm. An implementation for call
resolution for CHA is not compatible with RTA and vice-versa because
the code to retrieve subtypes from the class hierarchy is different from
code to retrieve suitable types from a global type set. This is especially
true if the global type set for RTA is constructed on the fly during call-
graph construction, i.e., it constantly changes, while type-hierarchy
information is constant. The same problem holds for CHA and CFA
or RTA and CFA—in fact, for any two call-graph algorithms.

A potential solution is to adopt a single representation for type
information for all base algorithms—typically, a points-to represen-
tation. For instance, Soot and WALA do not directly implement RTA,
but emulate it by means of a points-to analysis. This strategy is, how-
ever, inefficient for algorithms that do not require such an intricate
representation. Our evaluation (Section 13.4.2) of RTA in both Soot
and WALA confirms this.

summary of problems Together, the outlined problems make
it difficult to support language features across multiple call-graph
algorithms, thus complicating call-graph implementation. Complex
code for resolving language features needs to be re-implemented over
and over for different base algorithms, and different kinds of type
information need to be handled in implementing resolution code.
Ultimately, this leads to soundness inconsistencies (Table 8.1). For
instance, soundness with regard to static initializers differs between
WALA’s CHA and RTA in an unexpected way. WALA’s RTA algorithm
is in many cases more sound than WALA’s CHA. This is surprising
because the less precise CHA should theoretically be more sound.

our solution in a nutshell To address the problems, we de-
couple the call resolution of special language features from the base
call-graph algorithm and capture them in independent call-resolver
modules. To enable this decoupling, we introduce the type iterator,
an abstraction layer that retrieves and interprets the different type
representations produced by different base algorithms (type producers).
This way, call resolvers for individual language features can be imple-
mented once by using the type iterator as a unified interface to access
type information. As a result, individual call resolvers, are decoupled
from each other and agnostic of the base call-graph algorithm.

8.2 state of the art 106

Our approach addresses problem 1 by having the decoupled call
resolvers collaborate to resolve calls for different language features. It
addresses problem 2 by having type information be kept in the most
efficient representation for each individual base algorithm. We show
that this approach leads to more consistent soundness. Furthermore,
it improves the maintainability of call-graph algorithms, as one can
easily add, reuse, or exchange call resolvers to tune precision and
performance.

8.2 state of the art

In this section, we discuss the state of the art regarding call-graph
construction. We discuss general-purpose analysis frameworks, like
Soot or WALA, and families of call-graph algorithms, such as XTA and
k-l-CFA. Finally, we discuss the state of the art on supporting complex
language features in call-graph algorithms and measuring soundness
w.r.t. such features.

8.2.1 Analysis Frameworks

Soot [238] supports different call-graph algorithms, including CHA,
RTA, and VTA (Variable Type Analysis [227]). While CHA is imple-
mented directly, other call-graph algorithms like RTA and VTA are
emulated in the points-to framework SPARK [144]. This allows them
to reuse call-resolution code across different algorithms. However, the
emulation of less precise algorithms such as RTA comes at the cost of
scalability, as we will show in our evaluation (Section 13.4.2).

The Watson Libraries for Analysis (WALA) [111] also support different
call-graph algorithms like CHA, RTA, and CFA. WALA decouples the
creation of call graphs from the call resolution for language features
with the Java interfaces called call-graph builder and context interpreter.
In particular, a call-graph builder computes a call graph with RTA or
CFA precision, whereas a context interpreter resolves calls of built-in
language features such as reflection. Crucially, unlike Unimocg, WALA
does not decouple the analysis of type information. For example, the
RTA call-graph builder is closely coupled to a points-to analysis to
determine the instantiated classes. Also, the RTA call-graph builder
implements special handling of the clone method and, in doing so,
is strongly coupled to an interpreter for that feature. As context inter-
preters are only invoked on explicit call instructions, features such as
static initialization that happen regardless of explicit calls cannot be
handled. WALA’s CHA implementation does not use the call-graph-
builder facilities and has its own redundant implementation of some
features such as the invocation of static class initializers. WALA’s
architecture for call-graph construction is not extensively documented
and has not been discussed in a scientific publication so far.

8.2 state of the art 107

OPAL previously supported RTA with a high level of soundness [186].
While language features were supported by individual modules, they
were not built to interpret different kinds of type information. Thus,
they had a fixed level of precision and could not be reused for consis-
tent soundness with other call-graph algorithms, such as CFA. They
also used ad-hoc methods of computing local allocation information
to improve soundness and precision. A first implementation of our im-
mutability analysis (cf. Chapter 9) also relied on such ad-hoc methods
that are not needed with Unimocg.

The Doop framework [34] similarly supports a family of points-to
based call-graph algorithms. Based on Datalog, it includes rule sets
for additional language features like reflection. These rule sets are
modularly shared between call graphs of different context sensitivity.
However, it is unclear whether popular algorithms such as CHA and
RTA would be feasible with Doop: they would have to be emulated
by a points-to analysis, which, as evidenced by Soot and WALA, is
inefficient.

8.2.2 Families of Call-Graph Algorithms

Class-Hierarchy Analysis [62] (CHA) is the simplest type-based call-
graph algorithm, as its call resolution depends solely on the statically
declared type of the call’s receiver. Bacon and Sweeney’s Rapid Type
Analysis [12] (RTA) improves over CHA by only considering sub-
types that are instantiated by the analyzed program. However, these
algorithms solely describe the resolution of standard virtual calls, ne-
glecting other aspects, such as language features like reflection, which
additionally affect call-graph construction.

Tip and Palsberg [234] propose a propagation-based call-graph
framework, introducing four call-graph algorithms: CTA, FTA, MTA,
and XTA. In general, they attribute a call graph’s precision to the
number of sets used to approximate run-time values of expressions.
CTA uses distinct sets for classes, MTA uses distinct sets for classes
and fields, FTA uses distinct sets for classes and methods, and XTA
uses distinct sets for fields and methods. Therefore, the framework
allows instantiating various context-insensitive call-graph algorithms.
However, the authors only discuss and evaluate standard virtual-call
resolution. It remains unclear whether sharing additional modules to
support other language features is generically possible.

Grove and Chambers [94] give a visualization of the relative pre-
cision and computation cost of the previously discussed and further
call-graph algorithms. Moreover, they present a framework for call-
graph algorithms that is parametric in the choice of context sensitivity.
They distinguish three contour selection functions to allow varying levels
of context sensitivity. Here, a contour denotes each context-sensitive
version of a procedure. These functions enabled them to extend Shivers’

8.2 state of the art 108

k-CFA [209] to the more precise k-l-CFA algorithm. Thus, the frame-
work allows for a single implementation for a range of points-to-based
call-graph algorithms. However, their framework is not applicable to
commonly used highly scalable algorithms such as CHA and RTA.
Furthermore, forms of context sensitivity are restricted by the signa-
tures of the four contour key selection functions for procedures, instance
variables, classes, and the environment (the latter of which is only
necessary for nested closures). Finally, their framework again only
considers standard virtual-call resolution but not how to combine this
with additional modules that can support various language features
and are necessary for sound call graphs.

8.2.3 Feature Support And Soundness

In addition to the resolution of virtual method calls, a call graph highly
depends on how other aspects, like language features or APIs, are
taken into account during call-graph construction. In recent years, re-
searchers have proposed approaches to specifically support language
features and APIs such as reflection [150], dynamic proxies [86], seri-
alization [202], or new language instructions. For example, Fourtounis
et al. [86] discussed how to add support for a new Java Bytecode
instruction which provides a new call instruction with user-defined se-
mantics [193].3 Unfortunately, all of them are presented and evaluated
in the context of specific call-graph algorithms, lacking comprehen-
sive discussion on how to generalize the concepts to other call-graph
algorithms.

While researching these individual concepts is crucial to obtain
sound and precise call graphs, it does not imply that they are im-
plemented in most commonly used call-graph frameworks. Sui et
al. [225] compared call graphs generated by Soot, WALA, and Doop
and measured their differences in soundness. Finding unsoundness,
they investigated its root causes in follow-up work [226]. Compar-
ing the differences between the statically generated call graphs and
dynamically recorded context call trees, they find that advanced lan-
guage features, such as reflection, serialization, or native methods, are
significant reasons for unsoundness.

Reif et al. [186, 187] investigated the feature support of various call-
graph algorithms from the Soot, WALA, Doop, and OPAL frameworks
using a hand-crafted test suite. Their test suite consists of handcrafted
test cases, each testing whether a particular call-graph algorithm
supports a specific Java language feature or API. As a result, they
found that even call graphs from the same framework support different
feature sets.

3 The invokedynamic bytecode instruction introduced in Java 7 is highly-relevant to
call-graph construction.

8.3 unimocg modular architecture 109

These studies show the need for modular call-graph construction
that supports not only implementing call-graph analyses with different
precision and scalability trade-offs but also to implement generic
feature support among different families of call-graph algorithms as
we do with Unimocg.

8.3 unimocg modular architecture

We start with an overview of Unimocg’s components. We then describe
individual components in detail and discuss how they collaborate
despite being decoupled.

8.3.1 Architectural Overview

Unimocg consists of four types of components (Figure 8.1): Type pro-
ducers analyze the code to compute the possible runtime types of local
variables and fields. A type iterator provides a unified view on this
information for other components to use. Call resolvers use type infor-
mation through the type iterator to resolve method calls that result
from different language features. Finally, type consumers are further
analyses that use type information but do not resolve calls.

Components are decoupled from each other using interfaces and
communicate indirectly via the blackboard; the fixed-point solver
integrated therein serves as an intermediary. To bootstrap the process,
the blackboard is initialized with a set of entry-point contexts4, e.g.,
the analyzed program’s main method(s).

Blackboard Type Producers

Type Iterator Call Resolvers

Type Consumer

b: Type Information

c: Request

d:
R

eq
ue

st e:Type
Inform

ation

f: Type Information

g: Call graph

a: Reachable contexts

a: Reachable contexts

Figure 8.2: Interaction of Components

Figure 8.2 depicts how components interact: Whenever a new reach-
able context is discovered, the fixed-point solver triggers type produc-
ers and call resolvers (a) (cf. R10). Type producers process the new
reachable context and return new type information to the blackboard
(b). Call resolvers analyze the new reachable context and request data

4 A context is the (context-sensitive) abstraction of a method invocation (cf. [145])

8.3 unimocg modular architecture 110

1 interface CallGraphAnalysisModule:
2 blackboard: Blackboard := [...]
3 typeIterator: TypeIterator := [...]
4 fun analyze(ctx: Context)

Listing 8.1: Interface for Type Producers & Call Resolvers

from the type iterator (c); the latter forwards the request to the black-
board (d), which returns to the type iterator whatever type information
is currently available (e). The type iterator interprets the information
and forwards the result to call resolvers (f). Also, if step (b) found
additional information, the blackboard notifies the type iterator to
forward this information to call resolvers and type consumers that
requested it earlier (e & f). Finally, call resolvers add new edges to the
call graph (g), which may reveal more reachable contexts and the cycle
repeats. When no new edges or type information are found anymore,
the analysis reached a fixed point and terminates. Note that edges are
never changed or removed from the blackboard, thus termination is
guaranteed. Methods not found to be reachable get assigned a default
value that signifies their unreachability (cf. R9).

8.3.2 Type Producers

Type producers compute type information that is required by other
components. For instance, a type producer for an RTA call graph cal-
culates which classes the program instantiates, while a type producer
for a CFA call graph computes points-to information of local variables.

A call graph may use multiple type producers. For example, we may
split the points-to type producer for CFA into multiple modules that
handle different language features, e.g., java.lang.System.arraycopy.
On the other hand, a call graph may also get along without any
type producer: for instance, a CHA algorithm can compute type
information directly from the class hierarchy without a dedicated type
producer.

Type producers represent type information in an algorithm-specific
way. For example, an RTA type producer represents its type infor-
mation as a global type set, while different CFA type producers for
different language features represent their information as points-to
sets and set union is used to combine their results (cf. R1, R6). Some
algorithms like k-l-CFA with l ≥ 1 additionally provide allocation
data, while other type producers cannot provide such information.
Allocation data may be needed by specific call resolvers and type
consumers, e.g., resolving a reflective call of Method.invoke requires
knowledge about the particular Method object involved.

8.3 unimocg modular architecture 111

1 fun analyze(ctx: Context):
2 for statement in method.statements:
3 if statement is Assigment(local, call: Call):
4 callTargets := blackboard.get((ctx, call), CallTargets)
5 for target in callTargets:
6 if target is constructor:
7 newObject := PointsTo(ctx, call.programCounter, target.class)
8 blackboard.add((ctx, local), PointsTo, newObject)
9 [...]

Listing 8.2: Points-To Type Producer (Excerpt Showing Points-To Data
Creation on Constructor Invocations)

Despite employing algorithm-specific representations, type produc-
ers implement a common interface (which they also share with call
resolvers). Listing 8.1 shows pseudocode for this interface. Global sin-
gletons are used to retrieve blackboard and typeIterator, the actual
analysis is defined in method analyze. Different type producers imple-
ment analyze in specific ways. It is executed once for each context ctx
that is found reachable and computes the respective type information.

Type producers are agnostic of how calls are resolved. They are trig-
gered by the blackboard for all reachable contexts, regardless of how
the latter are computed. We illustrate this in Listing 8.2: It shows an
excerpt of the points-to type producer’s analyze method where points-
to objects are created whenever the analysis of the current context
method finds a call whose target is a constructor. The type producer
uses only the information in the callTargets that are retrieved from
the blackboard; the implementation is agnostic of the call resolver that
found the target. In particular, the constructor invocation could be
the result of reflection (e.g., Class.newInstance) or of deserialization
instead of a direct call.

8.3.3 Type Iterator

Type iterators implement the iterator pattern [87] to allow retrieving
and iterating over information on the possible runtime types of a local
variable or a field from the blackboard in a uniform way. Type iterators
and type producers go hand in hand: for example, the RTA type
iterator requires an RTA instantiated-types analysis to be executed).
For CHA, however, no type producer is needed and type iteration
happens on the fly.

Despite their close relation, we separate type producers from type
iterators for two reasons: First, one can have different type iterators
provide different views on the type information of a single producer.
For example, we can have different iterators for a single points-to type
producer, each for a different context sensitivity. Second, a single type

8.3 unimocg modular architecture 112

1 interface TypeIterator[Context]:
2 fun foreachType(var: Local, ctx: Context, handleType: Type −> ())
3 fun foreachAlloc(var: Local, ctx: Context,

handleAlloc: (Type, Context, ProgramCounter) −> ())
4

5 fun newContext(method): Context
6 fun expandContext(old: Context, callee: Method): Context
7 [...]

Listing 8.3: Type Iterator Interface

iterator can provide an aggregated view on the information produced
by multiple type producers. For example, a single type iterator for
some given context sensitivity can aggregate the information of sev-
eral points-to type producers—a basic one for local variables, fields,
etc. and additional ones for advanced language features, e.g., native
methods.

We abstract over specific type iterators with a unified interface
TypeIterator. Listing 8.3 shows the methods that operate on local
variables; analogous methods that operate on fields are omitted for
brevity. The generic type Context specifies the type of context used,
e.g., call strings. Methods foreachType and foreachAlloc iterate over
types and allocations for a local variable var in a certain context ctx.
The interface also defines two methods for iterating on incremental
updates of the type data, which we omit for brevity. newContext

returns a new context based on a method and expandContext extends
an existing context old as necessary for context-sensitive analyses like
k-l-CFA. This enables type producers to support different types of
context. Call resolvers, on the other hand, are oblivious to the type of
context and may only treat it as a method.

Unimocg includes type iterators for CHA, RTA, XTA, MTA, FTA,
CTA, 0-CFA, 1-0-CFA, 0-1-CFA, and 1-1-CFA. In the following, we dis-
cuss three exemplary iterator instances, shown in Listing 8.4, namely
for CHA, RTA, and CFA, to show how they retrieve type information
from the blackboard and how they make it available to call resolvers
and type consumers. We do not discuss the remaining iterators, but
Unimocg is available under an open-source BSD 2-clause license as
part of OPAL.

The CHA type iterator does not need data from the blackboard
since the class hierarchy is computed a priori. Hence, we see that
method foreachType simply iterates over all subtypes of the variable’s
declared type. The RTA iterator resolves the variable’s potential types
based on which types may be instantiated. It retrieves the global set
of instantiated types from the blackboard, then filters this set to only
the subtypes of the variable’s declared type; finally, it iterates over
these types. For the k-CFA type iterator, we see that it resolves the

8.3 unimocg modular architecture 113

1 class CHATypeIterator extends TypeIterator[MethodContext]:
2 fun foreachType(local, context, handleType):
3 for t in var.declaredType.subtypes:
4 handleType(t)
5 [...]
6

7 class RTATypeIterator extends TypeIterator[MethodContext]:
8 fun foreachType(local, context, handleType):
9 for t in blackboard.get(InstantiatedTypes):

10 if t is subtype of local.declaredType:
11 handleType(t)
12 [...]
13

14 class CFATypeIterator(k: Int) extends TypeIterator[Callstring]:
15 fun foreachType(local, context, handleType):
16 allocations := blackboard.get((ctx, local), PointsTo)
17 for a in allocations:
18 handleType(a.type)
19

20 fun foreachAlloc(local, context, handleAlloc):
21 allocations := blackboard.get((ctx, local), PointsTo)
22 for a in allocations:
23 handleAlloc(a.type, a.context, a.programCounter)
24

25 fun newContext(method):
26 List(method)
27

28 fun expandContext(old, callee):
29 old.take(k).prepend(callee)
30 [...]

Listing 8.4: Type Iterators

variable’s types based on contextual points-to information using the
k-truncated call context [209] (Line 29). Given such a call context, the
methods foreachType and foreachAlloc retrieve the set of allocation
sites from a context-sensitive points-to analysis from the blackboard
and iterate over only the respective types, respectively all allocation
sites.

8.3.4 Call Resolvers

Call resolvers use information obtained from type iterators to resolve
call sites to possible target contexts. Like type producers, they imple-
ment the interface in Listing 8.1. For illustration, we discuss two call
resolvers of different complexity.

Listing 8.5 shows how the call resolver for regular calls uses the type
iterator to resolve virtual method calls: After the analyze method finds

8.3 unimocg modular architecture 114

1 fun analyze(ctx: Context):
2 [...]
3 if instruction is virtual call with receiver variable r:
4 typeIterator.foreachType(r, ctx, receiverType −> {
5 callee := resolveCall(call, receiverType)
6 target := typeIterator.expandContext(ctx, callee)
7 callEdge := CallEdge(ctx, call.programCounter, target)
8 dataStore.add((ctx, call), CallTargets, callEdge)
9 })

10 [...]

Listing 8.5: Basic Call Resolver (Excerpt Showing Resolution of Virtual Calls)

1 fun analyze(ctx: Context):
2 [...]
3 targets := dataStore.get((ctx, call), CallTargets)
4 if ∃∃∃t ∈∈∈ targets : t.class=Method ∧∧∧ t.name="invoke":
5 receivers := getObjects(t.params.first)
6 params := t.params.tail.map(getObjects)
7 method := t.receiver
8 typeIterator.foreachAlloc(method, context, alloc −> {
9 newTargets := findTargets(alloc, receivers, params)

10 for target in newTargets:
11 callEdge := CallEdge(ctx, call.programCounter, target,

receivers, params)
12 dataStore.add((ctx, call), CallTargets, callEdge)
13 })
14 [...]

Listing 8.6: Reflection Call Resolver (Excerpt showing resolution of
Method.invoke)

a virtual method call call, it iterates over all possible runtime types
of the receiver object (Line 4). Once the types are known, resolving
the call to a callee method (Line 5), creating a target context for the
resolved callee (Line 6) and the call edge (Line 7), and adding it to the
call graph (Line 8) are standard steps in all call-resolution code.

In Listing 8.6, we show an excerpt of the reflection call resolver’s
analyze method. It is more complex but also directly uses the type
iterator: When the reflection resolver finds a call, it checks whether this
is a Method.invoke call (Lines 3-4). The reflection resolver takes this
information from the blackboard, no matter which call resolver found
that call edge. For calls to Method.invoke, the resolver gathers infor-
mation about the receiver and parameters of the reflectively invoked
method (Lines 5-6); this step (method getObjects, which is not shown
here) uses the type iterator’s foreachAlloc. The reflection resolver
then iterates over the possible Method objects, as they encode which
method can be invoked (Line 8). As in regular virtual-call resolution,

8.3 unimocg modular architecture 115

the final steps are finding the possible target methods (Line 9) and
adding a corresponding call edge to the blackboard (Line 12).5 As
Line 8 shows, allocation data is used for resolving reflection. Where
type producers do not provide such data, like for CHA or RTA, the
type iterator instead iterates over intraprocedural allocation sites from
def-use information and signifies if this is incomplete.

Call resolvers are decoupled from each other (and from type pro-
ducers) via the blackboard. Yet, they collaboratively compute the call
graph. The information contained in the call edge in Line 11 on the
receiver and the parameters is made available to other call resolvers
and type producers through the blackboard. E.g., in Lines 5-7, we get
this data from the individual target call edge, not from the call in the
analyzed code. This is important to allow for the resolution of chained
indirect invocations. For instance, if the Method object represented
Method.invoke and receivers contained further Method objects, this
chained invocation still can be resolved by the code in Listing 8.6.

Multiple call resolvers that cover different language features, e.g.,
virtual calls, reflection, threads, or serialization, collaboratively con-
struct the call graph (cf. R7). By combining a set of call resolvers, one
can configure the soundness of a call-graph algorithm. Individual
resolvers are reusable across different algorithms because they only
depend on the common interface of type iterators. As a result, it is
easy to ensure consistent feature handling across different algorithms.

While we only showed adding call edges in the forward direction
here (i.e., from the caller to the callee), our implementation also adds
the reverse edges (from the callee to the caller) to support interpro-
cedural backwards analyses. This requires different executions of a
call resolver to collaboratively contribute to the set of callers for each
method (R6).

8.3.5 Type Consumers

Type information is useful for a range of analyses beyond those con-
cerned with call-graph construction. For instance, to determine the
immutability of some field f, an immutability analysis may use the
types of objects that f potentially refers to (cf. Chapter 9). We model
such analyses as so-called type consumers. They access type informa-
tion through the type-iterator interface, which decouples them from
the call-graph algorithm that produces this information. This allows
easily changing the call-graph algorithm without modifying the type-
consumer analyses; by doing so, we can fine-tune the precision and
scalability of type consumers. As such, they are conceptually the same

5 Finding target methods uses a simple analysis of constant strings aided by Unimocg
providing access to allocation sites. A more sophisticated string analysis can be
implemented as a type consumer and used instead for improved soundness and
precision.

8.4 summary 116

as call resolvers, but they do not (directly) participate in call-graph
construction, so we discuss them separately. As type consumers de-
pend on the single type iterator, they consider type information with
exactly the precision of the chosen iterator. This ensures that all type
consumers operate on a consistent level of soundness, precision, and
scalability. In contrast, different parts of a monolithic analysis may use
varying levels of hard-coded precision, which hinders systematically
exploring precision, soundness, and scalability trade-offs.

8.4 summary

We have shown that modular call-graph construction that decouples
the computation of types of local variables from the resolution of call
targets is sorely needed. This decoupling enables modular composition
of different analyses that contribute to both type computation and call
resolution, making it possible to model different language features
and APIs in individual modules. With individual modules, feature
support can be implemented and reasoned about in isolation. This is
necessary to facilitate support for a multitude of such features that are
relevant to call-graph construction. As a result, users of call graphs
can rely on consistent feature support and analysis developers can
easily add new algorithms or language features while reusing existing
components.

In this chapter, we presented our modular architecture, Unimocg,
that achieves this decoupling through a unified interface, the type
iterator, that can be queried by call-resolver modules to get type in-
formation from type-producer modules. This allows all call resolvers
to collaborate despite being fully independent of each other. Further
analyses that need type information, such as immutability analyses,
can benefit from this unified interface as well. With its modular archi-
tecture, Unimocg already supports ten different call-graph algorithms
from vastly different families of algorithms: CHA, RTA, the XTA fam-
ily including MTA, FTA, and CTA as well as several k-l-CFA-based
algorithms.

While we discussed call-graph construction for JVM-based lan-
guages here, similar issues apply to other programming languages as
well and Unimocg’s architecture is not specific to the JVM but can be
used for call graphs in any language.

Unimocg’s modular architecture is enabled by OPAL’s blackboard
architecture, allowing the modules to collaboratively compute the call
graph. In particular, Unimocg uses OPAL’s support for collaboratively
adding partial results to individual properties, both from the same
(6) and different (7) modules. The modules are triggered for every
reachable method (R10) and OPAL allows using default values for
unreachable methods (R9).

9
M O D U L A R I M M U TA B I L I T Y A N A LY S E S

Our next case study defines a modular model and static analysis
for immutability properties. Immutability is the property of a pro-
gram element stating that it is unchangeable or not changed after its
creation [180]. Whether program elements are immutable is impor-
tant for program correctness and security. For example, immutable
data structures are not prone to race conditions in multi-threaded
applications [92, 95, 100]. Immutable values are less prone to security
issues, hence recommended by the Secure Coding Guidelines for Java
SE [174]. Some APIs, like Java’s Map interface, assume objects, used
as keys, are not mutated1 [173]. Finally, immutability is also a pre-
requisite for precisely deriving other properties, e.g., method purity
(cf. Chapter 10, [109]).

In this chapter, we focus on the immutability of classes and fields.
Previous research on immutability has often focused on individual
objects and references [31, 109, 183, 237, 247]. However, it has been
argued [44, 45] that focusing on classes and fields simplifies the imple-
mentation of systems that enforce immutability restrictions2 and their
usage by developers.

We address the following limitations of the state of the art in check-
ing and enforcing class and field immutability.

First, existing approaches address only individual, specific levels
of immutability. For instance, with their final, resp. val annotations,
the Java and Scala programming languages support a weak level of
immutability called non-assignability [109, 180]. Coblenz et al. [44] and
Porat et al. [179] deal only with transitive immutability, where every
value referred to directly or transitively by a transitively immutable
class or field is immutable. Nelson et al. [167], on the other hand,
deal with non-transitive immutability of fields, where non-transitive
immutability only guarantees that the respective field is non-assignable.
However, none of the approaches handles both transitive and non-
transitive immutability.

Second, existing approaches do not properly cover common pro-
gramming patterns, as we elaborate in Section 9.1. Examples of pro-
gramming patterns that are not properly handled are lazy initial-
ization and generic type parameters often found in collections and
collection-like classes (e.g., java.util.Optional). With lazy initializa-
tion (cf. Listing 9.1), a field is assigned only when it is accessed for
the first time. Here, the field cannot just be restricted to assignments

1 Mutations that do not affect equals() comparisons are allowed.
2 Immutability restrictions can be, e.g., in the form of annotations.

117

modular immutability analyses 118

in the class’ constructor. In turn, care has to be taken to ensure that
really only a single initialization can be performed. Also, it has to be
ensured that the field cannot be observed before its initialization, as
observing different values before and after initialization contradicts
the guarantees that immutability aims to provide.

Third, generic classes require special treatment, too, as their im-
mutability can depend on the immutability of their type parameters.
In Listing 9.2, the immutability of class Generic depends on the type
parameter T used for the final field t.

1 class C {
2 private Object object;
3 public synchronized Object getObject() {
4 if (object==null)
5 object = new Object();
6 return object;
7 } }

Listing 9.1: Thread-safe Lazy Initialization Example

1 class Generic<T> {
2 private final T t;
3 public Gen(T t){ this.t = t; }
4 }

Listing 9.2: Dependently Immutable Class Example

Fourth and finally, there is a lack of a common model that provides
unified terminology for different levels of class and field immutability.
For instance, deep respectively shallow immutability are used [180], or
just immutability [128] to refer to the same concepts as (non)-transitive
immutability. Hence, we need a unified model that not only considers
trivial cases, like final fields with immutable types but also common
programming patterns such as lazy initialization and generic classes.

Our model and analyses address the above limitations. First, we
define a model for class and field immutability that incorporates all
relevant levels of immutability and precisely defines their meaning and
relations, thus establishing a consistent terminology. Second, based on
the model, we define CiFi, a set of modular, independent, collaborating
static analyses to infer the different levels of immutability for classes
and fields, including entire class hierarchies. Developers can directly
use CiFi to reason about the immutability guarantees of their code or
employ further analyses that make use of CiFi’s results, such as the
purity analyses in Chapter 10.

Additionally, we create CiFi-Bench, a set of handcrafted test cases
annotated with immutability properties. To the best of our knowledge,
such a benchmark did not exist yet—CiFi-Bench can be used to guide
and test other analyses of class and field immutability.

9.1 state of the art 119

9.1 state of the art

We survey prior work on different levels of immutability. In lack of
an existing consistent terminology, we use the original names for
the considered levels. We start with a discussion of class and field
immutability, the focus of this chapter, and then give an overview of
other kinds of immutability, such as object and reference immutability.

9.1.1 Class and Field Immutability

Weak levels of immutability enforcement have been part of program-
ming language design for decades [45]. In Scala, fields can be declared
with the keyword val which corresponds to Java’s final modifier.
These constructs prevent the field from being reassigned but give no
guarantee that the object referenced by the field is immutable. With
case classes in Scala and Records [22] introduced in Java 16, these lan-
guages also offer classes that store data in fields that, implicitly, cannot
be reassigned. However, mutable objects can be assigned to them. To
sum up, while the above language features underline the importance
of immutability, they enforce only weak guarantees that other authors
call non-assignability [109, 180].

Potanin et al. [180] introduce the terms shallow and deep immutability
to distinguish between non-assignable fields referring to mutable ob-
jects or arrays (shallow) and non-assignable fields transitively referring
to objects or arrays that cannot be mutated either (deep). Listing 9.3
illustrates both cases. The final and thus non-assignable field s refers
to a java.util.String (known to be deeply immutable); thus, s is
deeply immutable. In contrast, the field iArr refers to a mutable array
that can be mutated outside the class; thus, iArr is shallowly immutable.

1 public final String s = "string"; // deeply immutable
2 public final int[] iArr = {42}; // shallowly immutable

Listing 9.3: Deep/Shallow Immutability Example

Coblenz et al. [45] use different terms for the same immutability con-
cepts, namely non-transitive for shallow and transitive for deep. Their
Glacier [44] system uses annotations for Java classes and fields, with
@Immutable enforcing transitive immutability and @MaybeMutable stat-
ing that a field or class is not guaranteed to be transitively immutable.
Gordon et al. [92] call transitively immutable fields just immutable,
whereas Nelson et al. [167] use the term immutable for final fields,
i.e., fields only guaranteed to be non-transitively immutable.

Glacier has no direct support for non-assignability or non-transitive
immutability, arguing that non-transitive immutability provides only
weak guarantees [45]. In order for a class C to be @Immutable in Glacier,
(a) all fields of C must be transitively immutable and may only be as-
signed in the class’ constructors, and (b) C must have only @Immutable

9.1 state of the art 120

subclasses. Because of (a), Glacier cannot handle cases where fields are
assigned outside a constructor, e.g., in lazy initialization. For generic
classes annotated as @Immutable, Glacier enforces that type parameters
are instantiated with @Immutable types. This is overly conservative,
as type parameters do not necessarily influence a class’ immutability.
Also, it prevents generic immutable classes, such as immutable col-
lections, from being annotated @Immutable if they are used to store
mutable or non-transitively immutable data.

Porat et al. [179] propose an interprocedural data-flow analysis to
detect transitively immutable classes and fields in Java. According
to their definition, a field is immutable if its value or referee is not
mutated after being assigned in the static initializer or constructor.
Like Glacier, this restrictive immutability definition cannot handle lazy
initialization. A class is said to be immutable, if all of its non-static
fields are immutable. The approach was implemented and evaluated
on the Java Development Kit (JDK) 1.2 (released in 1998); thus, it lacks
support for newer features of Java, e.g., generics.

Kjolstad et al. [128] use the term immutable for classes that have
only transitively immutable instance fields. Their refactoring tool Im-
mutator transforms mutable classes into immutable ones in order to
benefit from the guarantees provided by transitive immutability. To
ensure that all fields are initialized in the constructor, Immutator adds
two new constructors: A public one without parameters initializes
all fields with a default value and a private one taking an initializa-
tion parameter for each field. Immutator then rewrites all methods
mutating the transitive state into factory methods. Finally, all client
methods are transformed such that they use the factory methods and
the newly created immutable objects returned by them. Immutator
makes transformed classes final to prohibit mutable subclasses. Thus,
the refactoring is limited to classes without subclasses. With fields
made final, lazy initialization is not possible. Also, Immutator does
not handle generic classes.

Observation 9.1

The survey of the state of the art in analyzing class and field
immutability reveals that we lack a consistent terminology for
class and field immutability. While some authors use deep and
shallow immutability, others use transitive and non-transitive
immutability. Still others use immutable with different meanings.

Observation 9.2

None of the existing approaches can simultaneously handle
both non-transitive and transitive immutability. Also, none of
the presented approaches can recognize lazy initialization and
properly handle immutability of generic classes.

9.1 state of the art 121

Observation 9.3

Each approach focuses on a fixed composition of immutability
flavors, e.g., class and field immutability, and a single level—
most often transitive immutability—and it is not possible for
client analyses to get information for other immutability flavors
or levels.

9.1.2 Object and Reference Immutability

Haack et al. [95] distinguish observational and state-based immutabil-
ity. Observational immutability describes that an observer is not able
to see any difference in an object at any two points in time after
its initialization. State-based immutability describes that the internal
state of an object does not change at all. Like in our model, for state-
based immutability, the distinction is made between transitive and
non-transitive immutability. Haack et al. express their belief that obser-
vational immutability is more intuitive, while state-based immutability
is better-suited for static analysis. This is in line with our approach,
which also considers state-based immutability.

Potanin et al. [180] distinguish between abstractly immutable objects
that may change their internal representation while preserving their
semantics as visible to their clients and representationally immutable ob-
jects that never change their internal representation. This corresponds
to observational and state-based immutability as used by Haack et al.

Zibin et al. [247] enforce transitive immutability of fields that belong
to an object’s abstract state with their language extension Immutability
Generic Java (IGJ) that uses Java generics to describe the immutability
of a class through an additional type parameter (Mutable, Immutable,
or ReadOnly).

Ownership Immutability Generic Java (OIGJ) [248] by Zibin et al. uses
ownership to enforce object immutability. As only an object’s owner
can mutate it, it is easy to check for mutations if the owner is known.
Leino et al. [138] also use ownership to freeze any object at any time
during program execution. When an object is frozen, its owner is
changed to be the freezer object. As that object is not exposed to the
rest of the program, and as changing fields requires ownership, the
frozen object becomes immutable and cannot be unfrozen again. This
applies to objects owned transitively by the frozen object as well.

For references, the readonly property has been studied extensively [23,
31, 66, 109, 129, 183, 237, 247]. Tschantz and Ernst use it in the Javari
type system [237]. Through a readonly reference, the referenced object
and all transitively referenced objects belonging to the abstract state
of the referenced object cannot be mutated, while they may still be
mutated through other references. Thus, readonly is different from
the transitive immutability property—the latter requires the referenced

9.1 state of the art 122

object, including all transitively referenced objects, to be immutable
through any reference. Additionally, a romaybe modifier expresses
polymorphic immutability of references, i.e., whether the reference
returned by a method is mutable or not depends on the context in
which the method is called and whether the object referred to by this
reference, also transitively, is mutated or not. That is, a method may
return a potentially mutable but not yet escaped (i.e., not yet accessible
by other code than the method itself) object as romaybe, allowing the
caller to treat it as immutable or mutate it. To support lazy initializa-
tion, it is possible to manually exclude lazy-initialized fields from the
abstract state in Javari (cf. [109]). Gordon et al. [92] describe a similar
concept to readonly but use the term readable instead.

Huang et al. use Javari as a basis for their type system ReIm and
their immutability and purity analysis ReImInfer [109]. However, they
use polyread instead of romaybe. Additionally, while Javari’s readonly

modifier refers to the abstract state, here readonly applies to the
concrete state of the referenced object, i.e., it includes all fields and
referenced objects.

Milanova and Dong [163] build upon ReIm to infer and check object
immutability by combining a reference immutability analysis with
escape analysis. They consider transitive immutability, enforcing that
no transitively referenced values, objects, or arrays of an immutable

object are mutated. They also address delayed object initialization
with their endorse modifier for statements. This results in the analysis
ignoring the statement’s effects on immutability, which is, e.g., neces-
sary to support circular initialization. With the unstrict block, Gordon
et al. [92] present a similar approach.

Quinonez et al. [183] find it “tedious and error-prone” to manually
add modifiers like readonly to existing code bases. They propose to
infer them automatically with Javarifier, which can also infer Javari’s
modifiers for arrays and their values as well as for the type parameters
of generic classes.

Boyland [32] cautioned against adding readonly to the Java language
because its transitive rule would be too restrictive, while it cannot pre-
vent harmful observational exposure, i.e., the state of a mutable field
can be seen via a readonly reference while it can be modified through
another reference. This leads to problems, e.g., in multithreading con-
texts or when a client expects a non-mutable object. Our proposed
model is in line with Boyland and considers the immutability of an
entire class rather than the immutability through a given reference.
This avoids harmful observational exposure because a transitively
immutable class has only transitively immutable instances.

9.2 model 123

9.2 model

We present our unified model of immutability properties for fields,
classes, and types along with their order and relations structured in
lattices as required by our framework (cf. Chapter 3). The properties
depend on each other in a modular way, i.e., the definition of one
property uses the definition of other properties, but it is not necessary
to know the actual analysis implementations that compute the used
properties. We exemplify the properties with Java code snippets, but
the model can be used for any object-oriented language.

9.2.1 Field Assignability

Potanin et al. [180] define assignability to indicate whether a static or
instance field is or can be reassigned after it is initialized. We extend
on that, defining several levels of assignability which we elaborate on
below. Their order is illustrated in the singleton lattice in Figure 9.1
(cf. R1, support for different types of lattices).

assignable

unsafely lazily initialized

lazily initialized

effectively non-assignable

non-assignable

Figure 9.1: Field-Assignability Lattice

9.2.1.1 (Effectively) Non-Assignable Fields

Fields can explicitly be enforced to be non-assignable, e.g., using Java’s
final keyword, or can be effectively non-assignable because there is no
reassignment present and none can be added through other code that
is not analyzed.

Definition 9.1. A field is non-assignable if it is only assigned once and
cannot be reassigned.

Definition 9.2. A field is effectively non-assignable if it cannot be observed
with different values.

This distinction allows finding fields that are not yet enforced to
be non-assignable but could be made so. Examples for both cases are
given in Listing 9.4. The field imm (Line 2) is final and, thus, it is only
assigned once (during the execution of the implicit constructor). As

9.2 model 124

a result, it cannot be reassigned. Similarly, the field effImm (Line 3)
is initialized only once and is never reassigned again. As effImm is
declared private, no code outside of class C can assign to it3, thus
rendering it effectively non-assignable.

1 class C {
2 private final int imm = 42;
3 private int effImm = 42;
4 }

Listing 9.4: (Effectively) Non-Assignable Fields

9.2.1.2 Lazily Initialized Fields

Lazy initialization is a common pattern used to avoid the cost of
computing or storing a value if it is never accessed while performing
the computation only once if it is accessed repeatedly. It is often
implemented by a field accessible only through a single method that
only computes and stores the value if the field still has its default
value.

An example of a lazily initialized field was given in Listing 9.1. As
the field object is private, no other code can access the field except
through the method getObject. This method will initialize the field
object only if its value is still null. As the method is synchronized, it
is guaranteed that the field is only initialized once, even in the presence
of multi-threaded execution. Without the synchronized annotation,
the field object could be assigned to more than once. This happens
if concurrent threads each see object at its default state (null) in
Line 4 before any of them performs the assignment in Line 5. In this
case, each thread may assign a different instance to object, with only
the last assignment being persistent. Yet, for programs known to be
single-threaded, one can still provide a valuable guarantee. For this
reason, we define two properties related to lazy initialization: lazily
initialized (Definition 9.3) and unsafely lazily initialized (Definition 9.4):

Definition 9.3. A field is lazily initialized if its lifetime can be divided
into two distinct phases: During the first phase, no accesses to the referenced
value are made except to check whether the field must be transferred to the
second phase. During the second phase, the field is effectively non-assignable.

Definition 9.4. A field is unsafely lazily initialized if, as long as only one
thread accesses it, its lifetime can be divided into two distinct phases: During
the first phase, no accesses to the referenced value are made except to check
whether the field must be transferred to the second phase. During the second
phase, the field is effectively non-assignable.

3 Except when using reflection, which also applies to final fields and is typically
ignored in static immutability analysis, see, e.g., [179]

9.2 model 125

9.2.1.3 Assignable Fields

Assignable is the top (least precise) value of the field-assignability
lattice:

Definition 9.5. A field is assignable if none of the previous definitions
apply.

Figure 9.1 gives the lattice order of the previously defined levels of
assignability based on the provided guarantees: while non-assignable
fields cannot be assigned outside the constructor, effectively non-
assignable fields could be reassigned but provably are not. In turn,
(unsafely) lazily initialized fields are reassigned once. However, they
can be observed before they are initialized only by the check for the
default value.

9.2.2 Field Immutability

Field immutability combines the assignability of a given static or instance
field f with the immutability of f’s value. Our lattice for field im-
mutability is shown in Figure 9.2. The top (least precise) value of the
field-immutability lattice is mutable:

mutable

non-transitively immutable

dependently immutable

transitively immutable

Figure 9.2: Immutability Lattice

Definition 9.6. A field is mutable if and only if it is assignable.

For the purpose of this definition, we treat an unsafely lazily initialized
field as assignable if it is unknown whether multiple threads might
access the field. Fields that are lazily initialized in a thread-safe manner
are treated as non-assignable.

If a field f is not assignable, its immutability depends on the im-
mutability of the values f can potentially refer to. Primitive values
are always immutable. Array values are mutable (Java has no concept
of immutable arrays); hence, the immutability of a field f that refers
to an array arr depends on whether arr or any of its elements is
actually mutated or could be mutated by unknown code. The same
applies to object values, too. However, unlike arrays, for some objects
it is possible to infer whether such mutation is actually possible ei-
ther by inspecting the static type of f or by analyzing the potential
runtime types of objects that f may refer to. Line 2 in Listing 9.5

9.2 model 126

illustrates a non-assignable field that refers to an array that is not and
cannot be mutated. Line 3 illustrates a non-assignable field of type
java.lang.String—known to be immutable.

1 class C {
2 private final int[] iArr = new int[]{ 1, 2, 3, 4 };
3 private final String finalString = "final string";
4 }

Listing 9.5: Field Immutability Example

Our immutability lattice distinguishes between transitively immutable
and non-transitively immutable fields:

Definition 9.7. A field is transitively immutable if it is not assignable,
and no object (or array) that can transitively be reached through the field can
ever be mutated.

Definition 9.8. A field is non-transitively immutable if it is not assignable,
but objects (or arrays) transitively reachable through the field might be
mutated.

Finally, we define the level dependently immutable, which models the
effect of generic types on immutability. A field with a generic type
T (i.e., private final T t;) that is not assignable (including unsafely
lazily initialized only if it is known that only one thread accesses the
field) can either be transitively or non-transitively immutable depending
on the concrete runtime type of T. Thus, we say that such a field
is dependently immutable. The property dependently immutable is—as
generic types are—parameterized over all types that influence the
reference’s immutability, e.g., above generically typed field t is said to
be dependently immutable for T.

Definition 9.9. A field is dependently immutable if it is not assignable,
and the (transitive) immutability of the referenced object depends on at least
one generic type parameter.

9.2.3 Class and Type Immutability

To determine whether a field is transitively immutable or not, we need
information about class and type immutability. Class immutability
takes the same values as field immutability, i.e., the ones given in
Figure 9.2 and is defined through field immutability as follows:

Definition 9.10. The immutability of a class is the least upper bound (join)
of the immutability of all of its instance fields, respecting specialization of
generic types for dependently immutable fields.

9.2 model 127

As a corollary, class immutability is the least upper bound (join) of
the immutability of all possible instances of that class (because the
instance fields’ immutability is determined by the immutability of the
fields’ values, which make up the state of the class’ instances). Not all
instances of a class necessarily have the same immutability property.
The following factors can lead to a more precise immutability of a
particular instance in comparison to the immutability of its class:

First, while some instance field f of a class C may, in general, not
be effectively non-assignable, it may provably not be assigned to for a
particular instance o. This is, e.g., the case, if no method that assigns
to f ever gets invoked on o. Second, during the creation of a particular
instance o of a generic class, type parameters can be substituted
by concrete types. This determines whether dependently immutable
fields of o are actually transitively or non-transitively immutable.
Finally, while the declared type of a field f might not be transitively
immutable, the concrete object assigned to f can be, in which case f

becomes transitively immutable after assignment. Thus, an instance
of a class with fields that are not transitively immutable can still be
transitively immutable depending on how the instance is created. This
is illustrated in Listing 9.6. Depending on the constructor used, the
field nonTransitive in Line 2 can be assigned either a MutableClass

or an ImmutableClass instance. While an instance of C created with
the first constructor is non-transitively immutable, one created with the
second constructor is transitively immutable.

1 class C {
2 private final Object nonTransitive;
3 public C(MutableClass mc) { nonTransitive = mc; }
4 public C(ImmutableClass ic) { nonTransitive = ic; }
5 }

Listing 9.6: Immutability Dependent on Constructor

It is often useful to determine the immutability at the level of types,
e.g., to quickly determine whether a field of a given static type can be
transitively immutable. In object-oriented languages, a type is either
populated by one class (of the same name as the type) and all of its
(potential) subclasses or by an interface (of the same name as the
type) and all of its implementing classes. Type immutability is defined
through class immutability and also uses the lattice from Figure 9.2.

Definition 9.11. The immutability of a type is the least upper bound of the
immutability of all classes populating that type.

As a corollary, the type of a final class has the same immutability
as the class. Depending on the analysis scenario, the set of potential
subclasses of a non-final class may, on the other hand, not be known
completely, e.g., when analyzing an extensible library; in such an
open-world scenario, the type must conservatively be considered to be
mutable [179, 185].

9.3 cifi : analysis implementation 128

ClassImmutability

FieldImmutability

TypeImmutability

FieldAssignability

IREscape CallGraph

Figure 9.3: Dependencies Between CiFi Sub-analyses

9.3 cifi : analysis implementation

CiFi implements the presented model as a set of collaborating mod-
ular analyses for field assignability and for field-, class-, and type
immutability on top of our modular, collaborative framework from
Part I. The results of CiFi can be used to derive immutability guaran-
tees as introduced in the beginning of this chapter or to reveal their
possible absence.

9.3.1 Overall Architecture of CiFi

Figure 9.3 shows the dependencies between CiFi’s analyses (in bold
font) and other analyses (in normal font). Field immutability depends
on field assignability as well as class and type immutability. The latter
depends on class immutability, which, in turn, depends on field im-
mutability. Both the field assignability and field immutability analyses
depend on the call graph (cf. Chapter 8). The field-assignability anal-
ysis also depends on the intermediate representation (cf. Chapter 7)
and on an escape analysis for determining effective non-assignability
of fields. These additional analyses are also implemented in OPAL and
used modularly by CiFi. Their interdependencies are not shown here
for the sake of simplicity.

As indicated by the red arrows in Figure 9.3, there are circular
dependencies between the analyses. Thanks to our blackboard archi-
tecture and fixed-point solver, analyses, including cyclically dependent
ones, execute in an interleaved way, even if otherwise autonomous
(cf. R4). Thus, despite the cycle, our analyses can profit from the inter-
mediate results of each other. This simplifies the implementation of
CiFi’s analyses and enables to easily exchange their implementation
or add further analyses for trading off precision, soundiness, and
scalability.

9.3.2 Field-Assignability Analysis

The field-assignability analysis is based on the respective lattice (cf. Fig-
ure 9.1) and is a prerequisite for the field-immutability analysis. We
omit a discussion of more trivial aspects and focus on handling assign-

9.3 cifi : analysis implementation 129

ments outside of constructors. Simplified pseudocode for handling
lazy initialization is shown in Listing 9.7. The analysis checks whether
an initialization is only performed after a default-value check (e.g.,
null in case of objects) has succeeded (Line 2). To determine thread
safety, the analysis checks whether the initialization is performed in a
synchronized method or a block synchronized on the object holding
the field (Line 3). Furthermore, the analysis ensures that even if excep-
tions are thrown within the lazy initialization method, either the field
is guaranteed to be written before its value is returned, or its value is
not returned at all (Line 4).

1 fun isFieldLazilyInitialized(field):
2 if(initializationNotWithinDefaultValueCheck(field) ||
3 initializationNotSynchronized(field) ||
4 exceptionsLeakUninitializedField(field)) false
5 else true

Listing 9.7: Lazy Initialization Recognition (Pseudocode)

Additionally, CiFi is able to recognize fields that are assigned only
on freshly created instances before they can be accessed elsewhere.
For this purpose, CiFi checks that the instance does not escape before
it is returned. This pattern, illustrated in Listing 9.8, is often used to
implement the clone method.

1 class C {
2 private int i;
3 public C clone(){
4 C c = new C();
5 c.i = i;
6 return c;
7 }
8 }

Listing 9.8: Clone Pattern

Here, field i is not trivially immutable, as it is assigned in method
clone, i.e., outside a constructor. However, the effect of this assignment
is equivalent to one in a constructor, as no outside code can observe
the value of i before this assignment. This is because the object c was
freshly created and is only made available to other code at the end of
the clone method, after the assignment to i has already occurred.

9.3.3 Field-Immutability Analysis

The field-immutability analysis combines results from analyses for
field assignability and class and type immutability. Its logic is sketched
in Listing 9.9. It always considers assignable fields mutable (Line 2).
For all other fields, it checks whether all objects assigned to the field
can be identified (Line 3). If this is the case, the join of the respective

9.3 cifi : analysis implementation 130

class immutability properties is computed and used (Line 4), otherwise
the immutability of the field’s static type is checked (Line 5).

1 def getFieldImmutability(field):
2 if (isFieldAssignable(field)) Mutable
3 else if (canAllAssignedObjectsBeIdentified(field))
4 join(getAssignedObjects(field).map(_.getClassImmutability))
5 else if (getTypeImmutability(field)==TransitivelyImmutable)
6 TransitivelyImmutable
7 else if (hasGenericType(field)) // Dependent Immutablity
8 if (onlyTransitivelyImmutableTypeParams(field))
9 TransitivelyImmutable

10 else if (hasANotTransitivelyImmutableTypeParam(field))
11 NonTransitivelyImmutable
12 else DependentlyImmutable
13 else NonTransitivelyImmutable

Listing 9.9: Field Immutability Analysis (Pseudocode)

The analysis recognizes dependently immutable fields using infor-
mation from the field’s Signature attribute in the Java Bytecode. If the
Signature attribute contains generic type parameters, the field might
be dependently immutable (Line 7). In this case, it is checked whether all
generic type parameters are instantiated with transitively immutable
types (Line 8); if this is the case, the field is transitively immutable.
It is next checked whether at least one generic type parameter was
instantiated with a type that is non-transitively immutable or mutable
(Line 10). In this case, the field is non-transitively immutable. If neither
case applies, the field is dependently immutable (Line 12).

This handling of fields with generic types is shown in Listing 9.10.
Class GC is dependently immutable for T because of its generically
typed field genericField (Line 2). For field gcTransitive (Line 6), its
generic type parameter is instantiated with the transitively immutable
type java.lang.Integer. Thus, gcTransitive is also transitively im-
mutable. The generic type parameter of field gcMutable (Line 7) is
instantiated with the (presumably mutable) type MutableClass. Thus,
gcMutable is only non-transitively immutable. Finally, field gcGeneric

(Line 8) includes another generic type parameter, T. Thus, gcGeneric
is dependently immutable.

1 final class GC<T> {
2 private final T genericField;
3 public GC(T value){ this.genericField = value; }
4 }
5 class C<T> {
6 private final GC<Integer> gcTransitive;
7 private final GC<MutableClass> gcMutable;
8 private final GC<T> gcGeneric;
9 [...]

10 }

Listing 9.10: Dependent Immutability

9.3 cifi : analysis implementation 131

9.3.4 Class-Immutability Analysis

The class-immutability analysis of a class C joins the immutability of
C’s superclass and the immutability of the instance fields declared in
C (cf. Definition 9.10). Simplified pseudocode of its logic is shown in
Listing 9.11. Note that interfaces implemented by C do not have to
be considered as they cannot contain instance fields. As analyzing
java.lang.String’s immutability is difficult (e.g., two Strings may
share the same underlying char array and lazily-initialized hashCode

field), CiFi is configured to treat it as transitively immutable. This is in
line with other immutability analyses (e.g., [179]) that are configured
similarly. Also, we do not consider specialization of generic type
parameters.

1 fun getClassImmutability(class):
2 classImm = getClassImmutability(getSuperClass(class))
3 for field in class.instanceFields
4 fieldImm = getFieldImmutability(field)
5 if (fieldImm > classImm) classImm = fieldImm
6 classImm

Listing 9.11: Class Immutability Analysis (Pseudocode)

All analyses of CiFi can be executed either eagerly for all fields,
classes, or types (cf. R11), or lazily only for those that are actually
queried (cf. R12). The execution of the eager class immutability analy-
sis can be further optimized to follow the structure of the analyzed
program’s class hierarchy (cf. R13): Computing the immutability for a
class C requires the immutability value of its superclass. Thus, compu-
tation is started at the type hierarchy’s root (i.e., java.lang.Object).
Only once the immutability of a class C has been analyzed, the com-
putations for its direct subclasses are started.

9.3.5 Type-Immutability Analysis

The type-immutability analysis’ logic is sketched in Listing 9.12. It
follows the definition of type immutability in Definition 9.11, joining the
individual classes’ immutability properties while taking into consider-
ation whether the analysis is performed in a closed- or open-world
scenario (Line 2).

1 fun getTypeImmutability(class):
2 if (isExtensible(class)) return Mutable
3 typeImm = getClassImmutability(class)
4 for subclass in class.allSubclasses
5 classImm = getClassImmutability(subclass)
6 if (classImm > typeImm) typeImm = classImm
7 typeImm

Listing 9.12: Type Immutability Analysis (Pseudocode)

9.4 cifi-bench 132

While other tools usually support only one (cf. [45]), CiFi lets users
configure either an open- or closed-world assumption. An open-world
assumption means that the analysis assumes classes can be added to
all packages except for subpackages of the JDK’s java package4 and
that all non-final classes can be extended. This is suitable for analyzing
libraries. Under a closed-world assumption, the analysis assumes that
no classes can be added to existing packages and that existing classes
cannot be extended. However, public fields and methods are assumed
to be accessible. This is a common assumption for applications.

9.3.6 Threats To Soundness

CiFi does not consider any field access by means of reflection, the
sun.misc.Unsafe class, or native methods calls. Such accesses, poten-
tially anywhere in the program, cannot reliably be linked to specific
fields. Consciously omitting such features in order to improve pre-
cision is called soundiness by Livshits et al. [149]. Doing so is in line
with other state-of-the-art static immutability analyses; e.g., Porat et
al. [179] do not consider native code and “dynamic effects resulting
from reflection” in their class- and field-immutability analyses.

9.4 cifi-bench

A ground truth is needed to validate the precision and recall of
CiFi and other analyses w.r.t. our model. To the best of our knowledge,
no benchmark for class and field immutability exists that could be
annotated with our model’s properties. Thus, we created CiFi-Bench, a
set of manually annotated test cases for immutability analyses.

CiFi-Bench5 includes a total of more than 470 test cases for all im-
mutability levels defined in our model, organized into the following
13 categories:
• Assignability: different (effectively) (non-)assignable fields includ-

ing clone pattern (counter)examples.
• General: simple cases, e.g., static fields, interfaces, trivially transi-

tively immutable and mutable classes.
• Known Types

– Single: cases where a single concrete object is assigned to a
field, yielding stronger immutability guarantees than is possi-
ble to infer from the field’s static type.

– Multiple: cases where different objects can be assigned to
a field and stronger immutability guarantees can be inferred
than possible from the field’s static type, including cases where
concrete objects or only their types are known.

4 The classloader usually prohibits adding new classes to these packages.
5 https://github.com/opalj/CiFi-Benchmark

https://github.com/opalj/CiFi-Benchmark

9.5 validation 133

• Generic

– Simple: cases of immutability in combination with generic
types, i.e., dependent immutability.

– Extended: advanced uses of generics, such as multiple nested
generic types and generic types with bounds.

• Arrays

– Non-Transitive: cases with mutable arrays resulting in non-
transitively immutable fields.

– Transitive: cases with arrays that cannot be or are not mutated,
resulting in transitively immutable fields.

• Lazy Initialization

– Arrays: cases of lazy initialization of array-typed fields.

– Objects: cases of thread-safely as well as unsafely lazily initial-
ized fields with object types.

– Primitive Types: lazy initialization without synchronization
which can be thread-safe for primitive types.

– Scala Lazy val: an example modeled after Scala 2.12’s imple-
mentation of lazy val[182].

• String: a class modeled to resemble some complexities of the class
java.lang.String, in particular a shared char array and a shared,
lazily-initialized hashCode field.

We annotated fields, classes, and types with the respective assignability
and immutability properties as expected with an open-world assump-
tion.

9.5 validation

In this section, we validate our model for immutability analyses by
first characterizing its expressiveness and then executing our analyses
on real-world applications to verify that the immutability levels we
defined are actually applicable.

9.5.1 Characterization of the Model

To characterize CiFi, we use the system that Coblenz et al. [45] pro-
posed for classifying mutability restrictions along several dimensions.

type of restriction Our model considers the immutability of
fields, classes, and types, not just read-only restrictions on individual
references. This provides stronger guarantees for developers [45]. We
also consider assignability for fields. We do not consider ownership
of objects, which we discuss in Section 9.1.2 together with read-only
restrictions.

9.5 validation 134

scope Our model focuses on class immutability, which Coblenz et
al. [45] point out to be frequently needed.

transitivity We consider both transitive and non-transitive im-
mutability. This enables a more fine-grained view compared to systems
surveyed by Coblenz et al.

initialization We do not support explicit relaxation of restric-
tions during initialization. However, our definition of lazy initializa-
tion also encompasses delayed initialization, if fields are assigned only
once, also enabling cyclic data structures.

abstract vs . concrete state We consider the set of all instance
fields of an object, i.e., its concrete state. Immutability can also be
defined on abstract state [237, 247]—excluding non-essential state, e.g.,
fields used for caching—specified by annotations. Assuming such
annotations are available, our model can be applied to abstract state,
too.

backward compatibility Our approach performs static analysis
to infer immutability; it does not require developers to use specific
language features or annotations. Thus, it is soundy regardless of
potentially unknown code interfacing with the analyzed software
when used with an open-world assumption. If the analyzed program
cannot be extended, a closed-world assumption can be used to uncover
more immutability.

enforcement We infer immutability instead of enforcing it but
do provide static guarantees on immutability. Static enforcement may
burden developers if they have to annotate all relevant program con-
structs [45]. This concern does not apply to our automated inference.

polymorphism Handling mutable and immutable parameters
of functions is not applicable to our approach that infers actual im-
mutability instead of enforcing restrictions.

Observation 9.4

Our model is more expressive than approaches surveyed by
Coblenz et al. [45] without completely covering the described
design space. To balance expressiveness with usability [44], we
focus on fields, classes, and types, which improves usability [44,
45]. Yet, the model can be easily extended, e.g., with object
or reference immutability. Such extensions are well-supported
by CiFi’s inference approach (no annotations) and its modular
architecture, enabling to plug and play analyses depending on
what results are considered relevant.

9.5 validation 135

9.5.2 Immutability Prevalence

To validate that CiFi applies to real-world software, we analyzed the
following libraries: OpenJDK 1.8.0_292, Google Guava 30.1.1, Eclipse
Collections 10.4, Apache Commons Collections 4.4.4., and Scala 2.12.10.
We performed the evaluation on a server with two AMD(R) EPYC(R)
7542 CPUs (32 cores / 64 threads each) @ 2.90 GHz and 512 GB RAM.
For runtimes, we report the median of 15 executions as runtimes of
OPAL vary significantly. CiFi was run using OpenJDK 1.8.0_292, Scala
2.12.13, and the Scala build tool sbt 1.4.6 with 32 GB of heap memory.
In this experiment, we applied an open-world assumption. To ease
analysis, OPAL replaces invokedynamic bytecode instructions with
synthetic fields and classes that are also included in the result figures.
The number of fields having the respective levels of assignability and
the total number of analyzed fields are shown in Table 9.1. Results for
the field-, class-, and type-immutability analyses are given in Table 9.2,
listing the number of entities with respective levels of immutability,
their total count, and the execution time for all analyses combined.
Total runtime including preparatory steps, e.g., loading the libraries’
files, is given in parentheses. While the numbers for types include
interfaces, those for classes do not (interfaces do not contain potentially
mutable state).

The results provide empirical evidence that most of the immutability
properties defined in Section 9.2 are prevalent in real-world libraries.
Even if absolute numbers for dependent immutability appear to be
low, one has to consider that generic classes are often widely used
collections and thus can have a significant impact. We found several
hundreds of safely and unsafely lazily initialized fields in the JDK
and some in Guava and Apache Commons Collections but none in
Eclipse Collections. We studied the latter library’s source code, and
indeed Eclipse Collections seems not to use any lazy initialization at
all. CiFi does not (yet) handle Scala’s lazy val, but lazy initialization
is a prominent feature of the Scala language, too.

We can also see that all libraries have significant quantities of
(effectively) non-assignable fields; OpenJDK has about 46% of transi-
tively immutable fields, while the other libraries have mostly non-
transitively immutable fields. All libraries also have significant shares
of (non-)transitively and dependently immutable classes, ranging from
43% to 88%.

To recap, the results presented so far signify the relevance of our
immutability model in practice. The properties of the model are all
found in real-world code despite the fact that CiFi over-approximates
the model in some cases and that it was executed with a conservative
open-world assumption.

To investigate the effect of the latter, we re-executed CiFi on the same
libraries with the same setup but with a closed-world assumption.

9.5 validation 136

Table 9.1: Library Results Assignability (Open World)

Library ass. unsafe l. i. l. i. eff. non ass. non ass. ∑

OpenJDK 26 684 351 189 8 615 58 115 93 954

Eclipse 2 380 0 0 30 11 478 13 888

Guava 656 12 0 4 3 215 3 887

Apache 275 18 0 4 652 949

Scala 1 249 0 0 4 5 373 6 626

ass. = assignable, l. i. = lazily initialized, eff. = effectively

Table 9.2: Library Results Immutability (Open World)

Library Analysis mutable non-tra. dep. tra. ∑ time (s)

Field 27 035 23 004 78 43 837 93 954
5.47

OpenJDK Class 12 398 4 259 27 5 393 22 077 (6.17)
Type 20 155 1 475 6 3 203 24 839

Field 2 380 7 620 142 3 746 13 888
1.56

Eclipse Class 883 4 410 61 2 247 7 601 (2.72)
Type 6 186 364 41 1 057 7 648

Field 668 1 995 35 1 189 3 887
1.06

Guava Class 636 785 17 721 2 159 (1.79)
Type 1 697 195 9 391 2 292

Fields 293 360 18 278 949
0.81

Apache Class 262 147 7 69 485 (1.66)
Type 424 49 1 50 524

Field 1 249 3 433 344 1 600 6 626
1.57

Scala Class 490 2 109 74 1 150 3 823 (5.50)
Type 3 331 661 60 430 4 482

dep. = dependently immutable, tra. = transitively immutable

Results for field assignability are given in Table 9.3 and for the other
analyses in Table 9.4. Comparing this to the open-world scenario
(cf. Tables 9.1 and 9.2), we make the following observations.

First, the number of types with stronger immutability guarantees
increases significantly. This is to be expected, as no subclasses can be
added in the closed-world scenario. Second, the impact on the number
of fields and classes found to exhibit different levels of assignabil-
ity and immutability is minimal. Differences are most significant
for OpenJDK, where 14.2% of formerly assignable and 13.7% of for-

9.5 validation 137

Table 9.3: Library Results Assignability (Closed World)

Library ass. unsafe l. i. l. i. eff. non ass. non ass. ∑

OpenJDK 22 885 435 198 12 321 58 115 93 954

Eclipse 2 380 0 0 30 11 478 13 888

Guava 598 30 0 44 3 215 3 887

Apache 269 21 0 7 652 949

Scala 1 249 0 0 4 5 373 6 626

ass. = assignable, l. i. = lazily initialized, eff. = effectively

Table 9.4: Library Results Immutability (Closed World)

Library Analysis mutable non-tra. dep. tra. ∑ time (s)

Field 23 320 24 269 80 46 285 93 954
7.61

OpenJDK Class 11 573 4 741 31 5 732 22 077 (8.58)
Type 13 378 5 225 35 6 201 24 839

Field 2 380 7 595 142 3 771 13 888
1.92

Eclipse Class 883 4 397 61 2 260 7 601 (3.27)
Type 950 4 552 60 2 086 7 648

Field 628 1 931 36 1 292 3 887
1.58

Guava Class 633 773 18 735 2 159 (2.35)
Type 715 848 20 709 2 292

Fields 290 353 18 288 949
1.17

Apache Class 262 142 9 72 485 (1.98)
Type 294 146 9 75 524

Field 1 249 3 314 359 1 704 6 626
2.48

Scala Class 490 2 064 96 1 173 3 823 (6.53)
Type 770 2 196 134 1 382 4 482

dep. = dependently immutable, tra. = transitively immutable

merly mutable fields and 6.7% of formerly mutable classes exhibit
stronger guarantees for assignability or immutability, respectively. The
increased number of types with stronger immutability guarantees
does not proportionally influence field immutability due to the high
percentage of fields with primitive types or type java.lang.String

(e.g, > 50% in OpenJDK). Third, runtime increased between 23% and
58%. This is because in an open-world scenario, we avoid performing
expensive computations, e.g., for extensible types or for protected
non-final fields in extensible classes, which are just mutable.

9.6 summary 138

Observation 9.5

All immutability levels and flavors of our model are prevalent
in real-world libraries. This means that (a) the definitions in
our model reflect immutability in practice and (b) the versatile
inference of CiFi is needed to consider fine-grained levels and
diverse flavors of immutability.

Observation 9.6

Except for type immutability, applying an open-world assump-
tion does not seem to significantly reduce precision while con-
suming significantly less computation time. Thus, it may be
beneficial to use an open-world assumption even if all pro-
gram code is available. CiFi gives users the flexibility to choose
between an open- and a closed-world assumption.

9.6 summary

In this chapter, we proposed a comprehensive, fine-grained lattice
model for field assignability and for field-, class-, and type immutabil-
ity. Based on a literature survey, the model unifies the terminology of
the research area, which has so far been used inconsistently. Unlike
the state of the art, the model distinguishes between these different
flavors of immutability and provides levels of immutability to repre-
sent relevant aspects such as lazily initialized fields and dependent
immutability for generic classes and fields. As we have shown, our
model covers a wider range of immutability than previous models.
Accompanying this model, we provide CiFi-Bench, a handcrafted set of
test cases to serve as a ground truth for class- and field-immutability
analyses. We introduced CiFi, a set of modular analyses for each of the
immutability flavors of our model. We used CiFi-Bench to showcase
CiFi’s precision and recall, then used CiFi to study the prevalence of
immutability in real-world libraries.

CiFi makes use of OPAL’s blackboard architecture by its reliance on
the analyses from the previous case studies. In contrast to these, CiFi
uses singleton-value-based lattices (cf. R1). CiFi has inherent cyclic
dependencies between its analyses (cf. R4) and its analyses can be
executed eagerly (R11), lazily (R12), or guided by the class hierarchy
(R13).

10
M O D U L A R P U R I T Y A N A LY S I S

Our last case study is a family of analyses for identifying methods that
are side-effect free and also deterministic, i.e., pure like mathematical
functions. Such purity analyses for object-oriented programs have been
the target of extensive research [108, 196, 222, 223]. Identifying pure
methods helps to detect concurrency bugs [84] and to find security-
related issues [84, 222]. Formal verification of programs also relies on
pure methods for specifying expected behavior [15, 60, 61]. In that
case, it is necessary to prove a method’s purity to ensure that the
formal specifications are correct. The identification of (mostly) pure
methods further facilitates program comprehension [17, 69], provides
opportunities for code optimizations [43, 137, 246], and supports
automated model checking [235]. Pure methods have also become
more relevant due to recent trends towards a more functional style of
programming, which relies on pure methods [72].

However, no common terminology exists that describes the purity
of methods [180]. Some terms (e.g., pure or side-effect free) are also
used inconsistently. Further, all current approaches only compute
a subset of possible purity levels and are thus each only suitable
for a subset of potential use cases: while use cases like detecting
concurrency bugs require just the absence of side effects, compiler
optimizations and formal verification also need deterministic behavior.
Code comprehension benefits from all levels and also weaker ones.

In this chapter, we present OPIUM, a family of three purity anal-
yses that compute 13 different levels of purity organized in a fine-
grained, unified lattice model. In the model, each lattice element has
a well-defined semantics and is put into relation to the purity levels
found in the literature. The model is extended by the level Contextual
Purity which generalizes the so-called External Purity [17]. Addition-
ally, we generalize the ability to ignore specific operations in specific
contexts [222], e.g., logging in business applications, with the level
Domain-specific Purity. Our model is sufficiently detailed for all identi-
fied use cases. Furthermore, the purity levels External and Contextual
Purity support purity analyses to improve precision by identifying side
effects that are limited. With our lattice model, modular purity analy-
ses can reason about each method in isolation. We present a simple
intraprocedural, bytecode-based purity analysis and two scalable pu-
rity analyses that produce more precise results (> 4%) for real-world
code than the state of the art. The purity analyses rely on information
computed by all analyses discussed in Chapter 7, Chapter 8, and
Chapter 9 and made available via the blackboard.

139

10.1 state of the art 140

10.1 state of the art

Prior research on method purity has introduced inconsistent termi-
nology. In particular, some authors only focus on the absence of side
effects and name this purity, while others employ a definition that
additionally requires deterministic behavior.

We discuss previous research on purity in this section, showing
the inconsistent terminology. We present the purity definitions and
terminology found in the literature alongside the proposed analyses.
We start with approaches that focus on identifying side-effect-free
methods—independent of the question of whether the methods are
also deterministic or not. After that, we discuss approaches that em-
ploy stricter purity definitions.

10.1.1 Side-Effect-Free Methods

One of the most commonly used definitions of method purity is given
by Sălcianu and Rinard [223, 224] who characterize a method as pure
if “it does not mutate any object that exists in the pre-state, i.e., the program
state right before the method invocation". This definition does not capture
deterministic behavior, only the absence of side effects. Their analysis
is combined with a pointer analysis ([106]) and also supports the
identification of individual parameters that are read-only or safe. Read-
only characterizes parameters where the method does not mutate any
object transitively reachable through the parameter. Safe parameters
additionally require that the method does not create new, externally
visible pointers to objects reachable through the parameter. To classify
the parameters, their analysis is able to determine which memory
locations may be modified by a method. The analysis is used in the
Korat [30, 157] tool to check the purity of methods that define the
behavior of data structures.

The same definition of purity is used by Huang et al. [108, 109]. They
propose to extend the Java type system and present a type inference
algorithm to annotate references as read-only. In the type system, pure
methods are those that do not modify global state through static fields
and that do not have any parameters inferred as mutable. The authors
suggest using the approach to find errors or to do optimizations in
concurrent programs.

Pearce [178] uses a similar definition. His JPure system checks that
methods annotated as pure do not modify previously existing program
state. It is also capable of inferring purity annotations for code that is
not annotated.

Genaim and Spoto [90] also refer to a method as pure, if it does
not modify the heap structures reachable from any of its parameters.
Their constancy analysis identifies the parameters which are not used

10.1 state of the art 141

to modify the reachable heap. The analysis uses alias relationships
between the parameters expressed as boolean formulas.

In the approach proposed by Ierusalimschy and Rodriguez [112]
side-effect-free methods are allowed to allocate new objects and return
them as long as the pre-state is not modified. They rely on manual
annotations that mark methods as side-effect free. Their goal is to
extend the type system and to automatically check the respective
methods for conformance at compile-time.

In contrast, a dynamic analysis to find pure methods is described by
Dallmeier [58]. The analysis explicitly deals with multithreading and
especially the fact that constructors, while they may assign to fields
of the currently initialized object, can be pure. His analysis results
are used for ADABU, a tool for mining object behavior that requires
information about side-effect-free methods for classifying methods as
observers and mutators [59].

The definition of side-effect-free methods used by Rountev [196]
is stricter than the previous ones. While it does allow allocation of
new objects, these may not escape to the caller. The proposed model
assumes single-threaded execution as the pre-state of the method
could be modified by concurrently executing methods otherwise. They
describe two analyses based on RTA ([12]) and a points-to analysis to
identify side-effect-free methods in partial programs.

Naumann [166] and Barnett et al. [14, 15] introduce the idea of
observational purity. Such methods are allowed to have side effects
that are not observable by their callers. This definition especially
allows for caching (intermediate) results, as is done in memoization.
It is only valid in languages without unrestricted pointer arithmetic
where noninterference properties can be proven [13]. Methods that are
observationally pure could be used in program specifications written
in, e.g., ESC/Java [85] and JML [36]. Traditionally, these languages
required stronger restrictions (no use of methods in ESC/Java at all
and only provably pure methods in JML). The analysis they propose
to determine observational purity is built upon an information-flow
analysis [197].

ESC/Java2 [46] uses side-effect-free methods for specifications but
relies on programmer-specified annotations to identify them. The
authors also recognize that determinism is required for specifications
but do not provide a way of identifying methods that are deterministic
and side-effect free.

Table 10.1 summarizes the different approaches to detecting side-
effect-free methods and the terminology as it is used by the respective
authors.

10.1 state of the art 142

Table 10.1: Summary of Analyses for Side-Effect-Free Methods

Authors Analysis type Purity levels
(as named by authors)

Sălcianu/
Rinard [223, 224]

pointer analysis pure

Huang et al.
[108, 109]

type system
extension

pure

Pearce [178] annotations pure

Genaim/Spoto [90] parameter mutability pure

Ierusalimschy/
Rodriguez [112]

type system
extension

side-effect free

Dallmeier [58] dynamic purity
analysis

pure

Rountev [196] static purity analysis side-effect free

Barnett et al. [15] information flow
analysis

strongly pure,
observationally pure

Table 10.2: Summary of Analyses for Deterministic Pure Methods

Authors Analysis type Purity levels
(as named by authors)

Finifter et al. [84] type system/
restricted language

side-effect free,
functionally pure

Xu et al. [245] static & dynamic
purity analysis

strong, moderate,
weak, once-impure

Zhao et al. [246] static purity analysis pure

Benton/Fischer [17] type-and-effect
system

pure, read-only,
externally pure,
externally read-only

Stewart et al. [222] type system
extension

strict, strong, weak,
externally pure

10.1.2 Deterministic Purity

Aside from not having side effects, deterministic behavior (i.e., produc-
ing the same outputs whenever invoked with the same parameters) is
a necessary condition for methods to be referentially transparent. This
is required for compiler optimizations as well as formal specifications.

10.1 state of the art 143

The term functionally pure for methods that are deterministic and
side-effect free is introduced by Finifter et al. [84]. They use a subset
of the Java language called Joe-E that restricts some features of Java
that are non-deterministic or cause side effects, including mutable
static state and access to the stack trace of exceptions. Pure methods
are automatically thread-safe, as they can never interfere with other
threads, and no synchronization is required. This allows for verifying
security properties such as the correct behavior of encoding and
decoding methods. They also suggest using side-effect-free methods
for assertions and specifications. Similar to the concept of Huang et
al. [109], methods that only have immutable parameters can never
cause side effects or be non-deterministic, so pure methods can be
easily identified.

In their work on dynamic purity analysis, Xu et al. [245] define
several levels of purity. Strongly pure methods must be side-effect free
and deterministic and are only allowed to have primitive parameters,
thereby excluding reference type parameters completely. They may
also not create any new objects or call impure methods, even if the
effects of both are not visible to the caller. Moderately pure methods are
similar in the constraints on their inputs but may create new objects
as long as they do not escape the method execution context, similar
to the definition of Rountev [196] above. They may also call impure
methods if their effects are not observable by the caller. The restriction
on reference types is partially lifted in weakly pure methods that may
access fields of object type parameters. A rather unique concept is
once-impure purity that allows methods to be impure on their first but
not on subsequent invocations. The authors do not detail the use cases,
but it seems that they want to support lazy initialization patterns.
While their work focuses on dynamic analysis, they also present a
static analysis for strong purity. The analysis divides the bytecode
instructions executed by a method into impure and pure instructions.
For weaker purity levels, some instructions are considered pure only
when they are performed on locally allocated, non-escaping objects.
The analysis results are used to support automated memoization of
method results. This is possible because the results of pure methods
are the same when invoked again with the same parameters.

Zhao et al. [246] explore different approaches to find pure methods:
automated checking of programmer-supplied annotations and two
static analyses based on a method’s bytecode. The purity informa-
tion is then used inside the Jikes VM [5] to support further analyses
and optimizations such as the elision of method calls. Unnecessary
synchronization can be removed as pure methods do not require
synchronization with another thread.

External purity is introduced by Benton and Fischer [17]. Externally
pure methods are allowed to read and modify mutable state but only
on the receiver object of a call. Constructors that leak the reference to

10.2 model 144

currently initialized objects are ignored as the authors consider this to
be rare. The weaker purity level externally read-only allows methods
to modify the state of the receiver object as above and to read any
mutable state. Benton and Fischer show that a large percentage of
methods in object-oriented programs fulfills these conditions using a
type-and-effect system [151].

Stewart et al. [222] extend ReImInfer [108] by combining previous
definitions of purity into five levels of side effects. For two of the
proposed levels, strict purity (no local variable assignments are allowed)
and strong purity (no allocations of objects are allowed), no use cases
were identified and—as the authors admit—both are of no practical
relevance. They also discuss three properties related to Input, Output,
and Determinism but treat them as orthogonal to the purity levels. A
coherent lattice model is not defined.

A summary of approaches identifying deterministic pure methods
and the respective authors’ terminology is given in Table 10.2.

10.2 model

In the following, we present the unified lattice model by defining the
different purity levels and their relations as well as by comparing
them to the levels defined in the literature. The presented model
is generic and can be used for any object-oriented programming
language. Examples in the following sections are in Java.

10.2.1 Purity Levels

We define several levels of purity to allow for a fine-grained repre-
sentation of purity and subsume the purity levels discussed above.
Different analyses may derive only a subset of these, and clients may
process only those purity levels relevant to their use case. We first
introduce the level side-effect free as it builds the foundation for other
levels. We will then proceed to discuss the level pure before we finally
present weaker levels.

10.2.1.1 Side-effect Free Methods

Definition 10.1. A method is side-effect free if all object-graph manipu-
lations performed by the method or its callees are visible only to the method
while it is executed, i.e., all manipulations are invisible to a method’s client.

Here, the object graph is considered to also include the system’s
resources, e.g., the file system, network, etc., and therefore methods
manipulating these resources are not side-effect free.

In contrast to definitions found in prior work, ours is applicable
to multi-threaded execution. Other definitions rely on the pre-state
of a method invocation, or, as Rountev [196], on the object graph

10.2 model 145

before the method invocation. However, with concurrent threads it
is unclear what exactly the (static) pre-state of an invocation is. Also,
even temporary modifications of the program’s state might affect the
execution of concurrent threads, constituting a side effect. Thus, our
definition explicitly refers to the visibility of side effects, i.e., it does
not matter whether the method’s pre-state is modified or not.

Our definition also allows side-effect-free methods to return newly al-
located objects. While this changes the program state by making these
objects accessible, this change only becomes visible to the method’s
immediate caller.

Side-effect-free methods may invoke other methods that are not side-
effect free, if and only if the caused side effects are confined to the
calling method, i.e., the side effect is invisible to callers of the side-
effect-free method. An example is shown in the following Listing 10.1:

1 class CounterValue {
2 public static int counter;
3 private int value;
4 public static CounterValue getCurrentValue(){
5 CounterValue current = new CounterValue();
6 current.setToCounter();
7 return current;
8 }
9 private void setToCounter(){

10 value = counter;
11 }
12 }

Listing 10.1: A Side-Effect-Free Method

As the method setToCounter modifies its receiver object, it has a
side-effect. However, when the method setToCounter is invoked by
getCurrentValue, this side effect is confined to the method’s scope,
i.e., the side-effect occurs on a newly allocated object that is invisible
to other methods than getCurrentValue until it finishes execution.
Thus, getCurrentValue is side-effect free.

Another example of a side-effect-free method, returning but not modi-
fying the program’s state, is java.lang.System.currentTimeMillis().

Further, methods that perform synchronization—except locking of
objects inaccessible by other threads—are not side-effect free as they
change the monitor’s state causing changes to an object’s object graph.
Hence, side-effect-free methods are lock-free and cannot cause dead-
locks, livelocks, or race conditions, since they do not modify any state
that is visible outside their execution scope.

Side-effect freeness is the foundation of further purity definitions,
and many authors refer to side-effect-free methods as pure (e.g., [109,
178, 223]). In order not to confuse side-effect freeness with stricter
purity—that also requires deterministic behavior—, we refer to non-
deterministic methods without side effects as side-effect free as in [112].

10.2 model 146

10.2.1.2 Pure Methods

Definition 10.2. A method is pure if it is side-effect free and additionally
produces a structurally equal, deterministic result each time the method is
invoked with identical parameters during one execution of a program. Two
reference parameters are identical if they reference the same object. The results
are structurally equal if the returned object graphs are isomorphic; ignoring
aliasing relationships. Primitive parameters are identical and structurally
equal if both values are the same.

This definition is similar to that of weak purity as defined in lit-
erature [222, 245] and ensures referential transparency, i.e., one can
replace the method’s invocation with its result. Strong purity, by con-
trast, disallows allocation of new objects.

1 final static double PI = 3.1415;
2 static double getArea(double radius){ return radius*radius*PI; }

Listing 10.2: A Pure Method

The method getArea, shown in Listing 10.2, is pure by our definition.
It deterministically computes the circle’s area with the given radius
and is free from side effects.

Deterministic behavior can be achieved when neither mutable global
state is used nor non-deterministic methods are called. Accessing im-
mutable global state like the mathematical constant PI in Listing 10.2
does not impede determinism.

In multi-threaded programs, fields of reference-type parameters
may change during the execution of the method due to concurrent
threads. We therefore restrict accesses to immutable fields. Others
have opted for more restrictive approaches, e.g., Xu et al. only allow
value-type parameters for their definitions of strongly and moderately
pure methods [245]. Alternatively, only immutable reference-type
parameters can be allowed [84].

Our definition of purity only applies to a single execution of a
program. Using immutable data that can be initialized to different
values in different executions of a program is still considered pure.
This is generally sufficient for the use cases of purity that we identified,
although care has to be taken when used in compiler optimizations: in
this case, the invocation of a pure method that returns global data may
not be replaced with the result of evaluating the method at compile
time (if even possible) but only with an access to the global data.

As variables can be aliases of each other, i.e., they can refer to the
same object, it is necessary to define when parameters of different
invocations are considered equal. We only require two invocations of a
pure method to return the same result when the parameters passed to
the method have the same identity, i.e., refer to the same objects. This
restriction allows us to treat comparisons for reference (in)equality as
deterministic.

10.2 model 147

On the other hand, it is not necessary that fields accessible via a
parameter have the same identity, as pure methods can only access im-
mutable fields and thus changes to mutable fields cannot be observed
by pure methods.

For a method’s result, we require structurally equal object graphs,
i.e., the object graphs must be isomorphic but object identity is not con-
sidered. Therefore, methods are allowed to return a newly allocated
object for every execution. A potentially counterintuitive consequence
is that it is unsound to reuse a pure method’s result instead of reevalu-
ating it when the result may be subject to a reference equality test as
in Listing 10.3:

1 Object a = pureMethod();
2 Object b = pureMethod();
3 if(a == b) [...]

Listing 10.3: A Problematic Reference Equality Check

To decide whether these two invocations can be replaced by either
one object or two distinct objects, further analysis beyond purity
analysis is necessary.

On the other hand, a method may not be pure even if it is guaranteed
to always return the same object. Consider getArray in Listing 10.4:
it always returns the same array, but as the array’s contents can be
changed between invocations of getArray, the resulting object graphs
are not guaranteed to be isomorphic. While it is difficult to prove
structural equality of the object graph in general, many practical cases
can be identified easily. In particular, allocating and deterministically
initializing fresh objects will always result in isomorphic object graphs.

1 final static int[] array = new int[]{ 1 };
2 static int[] getArray(){
3 return array;
4 }

Listing 10.4: A Method that is Not Pure

10.2.1.3 External Purity

Definition 10.3. A method is externally pure (externally side-effect
free) if its invocation may lead to a modification of its receiver but is pure
(side-effect free) otherwise.

Methods that call externally pure methods can be pure or side-effect free
when the receiver object is confined to their context, i.e., the receiver of
the externally pure method does not escape the calling method’s scope.
Furthermore, a client analysis can use this purity level to trivially
identify methods that break abstraction boundaries by, e.g., mutating
global state. As recognized by Benton and Fischer [17], it is beneficial
to identify such methods to improve program comprehension.

10.2 model 148

1 public class A {
2 public int f;
3 public void setField(int value){
4 f = value;
5 }
6 }

Listing 10.5: A Field’s Setter that is Externally Pure

Listing 10.5 gives an example of an externally pure method. It is de-
terministic, and its only side effect is the write to the field f which
belongs to the same receiver object as the method.

Finding methods that are externally pure is essentially a specialized
form of side-effect analysis. It is cheaper than a full side-effect analysis
as it focuses only on the receiver object and does not have to take
aliasing into account. Also, the representation of the results is simpler,
as being externally pure is just a single property of a method.

External purity also applies to methods that use synchronization on
the receiver object. This includes methods that have the synchronized

modifier as well as methods with explicit synchronization on the
receiver object. This follows directly from the above definition, as the
monitor, that is used to perform the synchronization, is modeled as a
property of the object.

In contrast to Benton and Fischer [17], we treat methods reading
the receiver’s mutable state as side-effect free instead of externally pure.
This enables us to classify methods with calls on non-confined receiver
objects as side-effect free rather than impure. The drawback is that a
caller that invokes such methods on a confined receiver object cannot
be pure anymore.

10.2.1.4 Contextually Pure

Definition 10.4. A method is contextually pure (contextually side-effect
free) if its invocation may lead to a modification of at least one of its parame-
ters but is pure (side-effect free) otherwise.

We define contextual purity as an extension of external purity. It
captures methods that potentially modify any of their parameters
instead of only their receiver. While contextually pure methods break
abstraction boundaries, they are still less problematic than methods
with side effects on (static) global state. Also, they allow identifying
more side effects as confined if it is known that none of their actual
parameters are visible outside of their caller.

Consider modifyA in Listing 10.6. Its only side effect is to modify
parameter a’s state deterministically. Thus, it is contextually pure. An
example of a very frequently used contextually pure Java method is
System.arraycopy(). It modifies the given target array and is used in
the implementations of many core data structures.

10.2 model 149

1 public class A {
2 public int f;
3 public static void modifyA(A a, int value){
4 a.f = value;
5 }
6 }

Listing 10.6: A Contextually Pure Field Setter

10.2.1.5 Domain-specific Purity

Definition 10.5. A method is domain-specific pure (domain-specific
side-effect free) if it is pure (side-effect free) when the effects of certain
instructions—belonging to a certain domain—are ignored. Here, two param-
eterized instructions with different parameterizations are considered different
instructions, e.g., two field access instructions on different fields.

Sometimes, there are methods that have side effects, yet we know
that these side effects are harmless for the use case of our analysis. For
instance, a method that writes a log file admittedly causes a side effect.
If we are only interested in direct effects on the execution of other
methods, this kind of side effect can be tolerated. Nevertheless, such
methods cannot be called side-effect free or even pure. Steward et al. [222]
previously identified the benefit of not classifying such methods as
impure. We call them domain-specific pure (or domain-specific side-effect
free if they are non-deterministic) as their classification depends on
the use case of the purity analysis. An analysis used, e.g., for compiler
optimization may consider different methods as domain-specific pure
than one used for code comprehension.

1 static final double PI = 3.1415;
2 static double getArea(double radius){
3 System.out.println("called getArea");
4 return radius*radius*PI;
5 }

Listing 10.7: A Domain-Specific Pure Method Performing Logging

Consider the method getArea in Listing 10.7. Usually, the program’s
execution will not depend on the output from the println statement.
Thus, the method can be considered domain-specific pure. The possibility
of classifying logging as pure is important for the analysis of enterprise
applications that include logging in many methods.

Another example of a side effect that is harmless for many use
cases is raising exceptions. This is not pure, as newly constructed
exceptions contain the current stack trace and that is not deterministic
w.r.t. parameters of the method invocation. For example, two method
invocations with identical parameters may not lead to exceptions
with the same stack trace. However, as the stack trace is usually not

10.2 model 150

inspected by the program, treating it as domain-specific pure allows
classifying further methods as effectively deterministic.

In contrast to previous work (e.g., [245]), which only treats explicit
exceptions and ignores implicit ones (e.g., NullPointerExceptions
raised by the JVM), we consistently treat both implicit and explicit
exceptions.

In this work, we always consider logging and raising exceptions
to be domain-specific pure. However, our analyses allow the user to
configure this based on his use case, following the domain-specific
nature of this property.

10.2.1.6 Orthogonal Purity Properties

The previously defined purity levels capture four different properties:
(1) deterministic and non-deterministic behavior (pure vs. side-effect
free), (2) modification of the receiver object (external purity), (3) modifi-
cation of formal method parameters (contextual purity), and (4) non-
deterministic or impure actions that may be considered pure in some
circumstances (domain-specific purity). These properties are orthogonal
to each other, i.e., every property combination is possible except for
external and contextual purity, as the latter subsumes the first.

We define the combinations of externally pure and contextual pure
with domain-specific pure to apply this concept to methods that modify
their receiver or parameters.

Definition 10.6. A method is domain-specific externally pure (domain-
specific externally side-effect free) if it is externally pure (externally
side-effect free) and ignores the effects of specific instructions.

Definition 10.7. A method is domain-specific contextually pure (domain-
specific contextually side-effect free) if it is contextually pure (contextu-
ally side-effect free) and ignores the effects of specific instructions.

10.2.1.7 Impurity

When a method does not have any of the previously described proper-
ties and, therefore, no previous purity level can be assigned, we refer
to it as Impure.

10.2.2 Purity Lattice

We arrange the purity levels defined above into a single, unified
lattice that captures their relationships. The lattice enables a monotone
framework for increasingly precise purity analyses that are able to
refine previous analyses’ results.

The purity lattice is depicted in Figure 10.1. Its bottom element
is pure, the strictest purity level. Each step up the lattice loosens

10.3 purity analysis 151

exactly one restriction on the method: Side-effect free allows for non-
deterministic behavior, domain-specific allows domain-specific side
effects like logging, and externally allows modifications on the implicit
this parameter. Contextually further loosens restrictions, allowing
modification of all formal method parameters (including this). Impure
is the top value that places no restrictions on the method.

Impure

Domain-specific
contextually side-effect free

Domain-specific
externally side-effect free

Contextually side-effect free
Domain-specific

contextually pure

Domain-specific
side-effect free

Externally
side-effect free

Domain-specific
externally pure

Contextually pure

Side-effect free Domain-specific pure Externally pure

Pure

Figure 10.1: The unified lattice for purity information

10.3 purity analysis

OPIUM consists of three purity analyses with different trade-offs be-
tween precision and scalability. Figure 10.2 provides an overview of
the analyses and their dependencies. Purity0 is a simple, intrapro-
cedural analysis that directly analyses bytecode. It only needs field-
assignability and type-immutability information from CiFi (Chap-
ter 9). OPIUM’s advanced analyses (Purity1 and Purity2) use the three-
address-code intermediate representation from Chapter 7, the call
graphs from Chapter 8, and CiFi’s class-immutability information.
OPIUM’s most precise analysis (Purity2) uses further analyses for the
locality of fields and the freshness of return values. These analyses, in
turn, use escape information for local variables provided by another
analysis.

Purity0

Purity1

Purity2 ClassImmutability

TypeImmutability

FieldAssignability

IR

FieldLocalityReturnValueFreshness

CallGraph

Figure 10.2: Dependencies of the OPIUM Purity Analyses

10.3 purity analysis 152

With OPIUM providing three different purity analyses, users can
choose either of them and also exchange the analyses that OPIUM
depends upon in a plug-and-play fashion. This allows them to achieve
different trade-offs of precision and scalability (cf. R2). If analyses
such as the immutability or escape analyses are not executed, OPIUM
uses sound fallback values instead of their results (cf. R3).

OPIUM cannot analyze native methods for their purity, but we
provide manually determined purity levels for many important native
methods in the Java class library (cf. R8).

In the following, when we talk about the analysis, we are always
referring to the two advanced purity analyses that differ only in how
they handle locality (cf. Section 10.3.4). We do not describe Purity0 in
more detail as it is simplistic and not a contribution of this thesis.

10.3.1 Analysis Workflow

The OPIUM purity analysis determines the purity level (cf. Figure 10.1)
for each non-abstract method. It works as follows: When we start ana-
lyzing a method, we assume that it is pure—the lattice’s bottom value
(i.e., the purity analysis is optimistic). We then check each statement of
the method if it violates the currently assumed purity level and—if
so—reduce the purity level to the next best state. For example, when
the currently assumed level is pure and an exception object is created,
the level is decreased to side-effect free. Statements that access fields or
other methods query the blackboard for respective properties; if neces-
sary, a dependency on these properties is recorded. After analyzing all
statements, the initial result, which consists of the currently assumed
purity level and all dependencies, is passed to the blackboard. The
information about the dependencies is used by the blackboard to call
back the analysis when the required information regarding dependen-
cies is updated. The analysis’ continuation function then updates the
assumed purity level as well as the set of (still) relevant dependencies
and passes both back to the blackboard. The analysis of a method
has finished if there are no more dependencies that may affect the
assumed purity level; the latter is then the final purity level. If a cycle
is found by the blackboard, it is automatically resolved by assuming
the current derived purity level for the methods within the cycle. The
latter is correct, as it is the best solution that takes all dependencies
into account.

Listing 10.8 gives simplified pseudocode for the initial analysis
function, ignoring dependency handling and configurable handling of
domain-specific purity. The symbol ⊔ denotes the join, i.e., the least up-
per bound, of lattice values. The details are explained in the following
sections.

10.3 purity analysis 153

1 result = Pure
2

3 if method is synchronized:
4 result = result ⊔ ExternallyPure
5

6 if method.cfg has abnormal return node:
7 result = result ⊔ DomainSpecificPure
8

9 for inst in method.instructions:
10 if inst is GetStatic of field f or GetField of field o.f or ArrayLoad of

array o:
11 if blackboard.get(f, FieldAssignability)1 > LazilyInitialized ∧

blackboard.get(o, Locality)2 ̸= Local:
12 result = result ⊔ SideEffectFree
13 else if inst is PutStatic:
14 result = Impure
15 else if inst is PutField of field o.f or ArrayStore of array o or

MonitorEnter on object o or MonitorExit on object o:
16 if blackboard.get(o, Locality) ̸= Local:
17 if o is this of method:
18 result = result ⊔ ExternallyPure
19 else if o is i−th parameter of method:
20 result = result ⊔ ContextuallyPure(i)
21 else:
22 result = Impure
23 else if inst is ReturnValue of value o or Throw of exception o:
24 if blackboard.get(o.declaredType, TypeImmutability) >

TransitivelyImmutable ∧ blackboard.get(o, Locality) ̸= Local:
25 result = result ⊔ SideEffectFree
26 else if inst is Call c with receiver object r and parameters ps:
27 for callee in blackboard.get(c, Callees):
28 calleePurity := blackboard.get(callee, Purity)
29 if calleePurity is Impure:
30 result = Impure
31 if calleePurity has modifier SideEffectFree:
32 result = result ⊔ SideEffectFree
33 if calleePurity has modifier Domain Specific:
34 result = result ⊔ DomainSpecificPure
35 if calleePurity has modifier Contextual for indices is or External:
36 for p := ps[i]3 for i in is:
37 if p is this of method:
38 result = result ⊔ ExternallyPure
39 else if p is i−th parameter of method:
40 result = result ⊔ ContextuallyPure(i)
41 else if blackboard.get(r, Locality) ̸= Local:
42 result = result ⊔ SideEffectFree
43 else if inst is CaughtException of implicit exception:
44 result = result ⊔ DomainSpecificPure

Listing 10.8: Core logic of the purity analysis

1 Not for ArrayLoad
2 Not for GetStatic
3 p := r instead for External

10.3 purity analysis 154

10.3.2 Effect of Instructions

In the following, we discuss the instructions that may affect a method’s
purity. Line numbers refer to Listing 10.8. Instructions related to
mathematical operations and constants, type checks and casts, or to
the control flow (e.g., add, if, or goto) never affect a method’s purity
and thus are ignored.

Field Accesses: Field reads (GetField or GetStatic) introduce non-
determinism when the values of the accessed fields may change; i.e.,
when the fields are not (effectively) non-assignable. Therefore, the best
possible purity level will be side-effect free unless the receiver object of
the field access is local to the method (Lines 10 to 12). For example,
accesses to a field of a newly created, non-escaping object are ignored.
A field’s assignability and locality are determined by the respective
analyses and queried from the blackboard.

Note that it is sufficient to require that fields that are accessed are
(effectively) non-assignable; this ensures that the read value is never
changed. While the read value may be a reference to a mutable object
or array, that mutability can only be observed if another field/array
access is performed on the acquired reference.

Writing to static fields (PutStatic) always reduces a method’s purity
to impure (Lines 13 and 14). Instance field writes (PutField) affect the
purity if the written object is not local (Lines 15 to 22, cf. Section 10.3.4).
If the receiver of the field access is the self-reference (this) of the
method, the best purity level will be external purity. If the receiver is a
formal parameter of the method, the method is at most contextually
pure.

Array Accesses: We consider arrays as objects where all fields (array
entries) are assignable. ArrayLoad and ArrayStore instructions are
hence handled equivalently to instance field accesses, but array entries
are always considered assignable (cf. Lines 10 to 12 and 15 to 22).
No effort is taken to identify array entries that are effectively non-
assignable, i.e., always refer to the same value.

Synchronization: We treat explicit acquisitions and releases of
monitors (Monitorenter, Monitorexit) as writes of an (implicit) field
monitor (cf. Lines 15 to 22).

Return from Method: A method that returns a reference (via the
ReturnValue or Throw instructions) is deterministic only if the re-
turned object graph is guaranteed to be structurally equal (cf. Sec-
tion 9.2) across method invocations. Otherwise, the best possible level
is side-effect free (Lines 23 to 25). Structural equality is guaranteed
if the returned reference is fresh and non-escaping, i.e., local, or if
the returned object is immutable. The latter property is derived by
independent class- and type-immutability analyses (cf. Chapter 9) and
once again queried from the blackboard.

10.3 purity analysis 155

Method Calls: Unimocg from Chapter 8 is used to resolve method
calls and call targets are queried from the blackboard (Line 27). The
purity of called methods is acquired from the blackboard independent
of the underlying instruction (e.g., StaticCall, VirtualCall, cf. Line
28). It affects the purity of the caller as follows: If the callee is pure,
side-effect free, domain-specific pure, or impure, the best possible purity
level for the caller will be that of the callee (Lines 29 to 34). For an
externally pure callee, the best possible level for the caller depends on
the receiver object of the call (Lines 35 to 42). The caller can be pure
if the receiver is local and non-escaping. If it is the receiver object of
the caller or one of its formal parameters, the caller’s purity cannot
be better than externally pure or contextually pure, respectively. In all
other cases, the caller must be impure. Contextually pure callees are
handled in the same way, except that all of their parameters, including
their receiver object, must be local and non-escaping. Callees that
have a combined purity level (cf. Section 10.2.1.6) require the caller to
respect all of the combined modifiers individually. For example, the
caller of a method that is domain-specific side-effect free can be at most
domain-specific and side-effect free.

We manually assigned purity levels to some native methods (e.g.,
StrictMath.sqrt, System.arraycopy) to improve the precision of the
analysis. Similar to other purity analyses [109, 224], we also use this
mechanism to specify the following methods as pure: hashCode, equals,
and compareTo. However, unlike others, we do not handle toString in
a special way since assigning correct purity levels for StringBuilder
and StringBuffer’s append and toString methods suffices to cor-
rectly classify most toString methods.

In our default configuration of the analyses, calls that are part of
logging or console output are treated as domain-specific, i.e., domain-
specific pure is used instead of the callee’s actual purity level. This
behavior can be configured by the analysis’ user, e.g., to include other
methods as domain-specific for their individual use case.

Allocation of Objects: Allocations of objects in general do not
influence a method’s purity, besides the effect that invoking their
constructor has as a method call. The constructor of Throwable—the
superclass of all exceptions—is, however, impure by definition because
it invokes fillInStackTrace which might be impurely overridden by
a subclass. This is a problem as exceptions occur frequently and should
not in general result in impurity. We thus treat Throwable’s constructor
as side-effect free4 and individually examine all subclasses of Throwable
that override fillInStackTrace. Unless configured differently by the
analysis user, exception constructors are treated as domain-specific pure.

4 The constructor is not pure as the included stack trace depends on the currently
executed method’s context and not only on its parameters

10.3 purity analysis 156

10.3.3 Special Cases

Besides explicit statements, there are implicit effects on a method’s
purity that are also checked by the analysis.

Synchronized Methods: If a method has the modifier synchronized,
the purity level will be at most externally pure; it is equivalent to writing
an (implicit) field monitor on the method’s receiver object (Lines 3

and 4).
Implicit Exceptions: Exceptions may not only be allocated ex-

plicitly, the JVM also raises exceptions on several occasions, e.g., a
NullPointerException is raised when the receiver of a method call is
null. We recognize these implicit exceptions by examination of the
control-flow graph (for exceptions that terminate the method’s execu-
tion; Lines 6 and 7) as well as CaughtException instructions (Lines 43

and 44). Implicit exceptions are again treated as domain-specific pure
in our default configuration, as we know that the constructors of all
exception types that are potentially created by the JVM do not have
any side effects.

10.3.4 Locality

Modifications of objects that are constrained to the scope of a specific
method m can be ignored when computing the purity of m; in such
cases, the side effect is confined and the method can still be pure.
Such objects are called Local and in order to identify them, we used
an escape analysis. The analysis derives three different escape values,
namely No Escape, Escape Via Return, and Global Escape (cf. [40]). These
values form an escape lattice with the following order: NoEscape <

EscapeViaReturn < GlobalEscape. Objects with a lifetime that is bounded
to the scope of the method that created them have the property No
Escape. If such an object is returned by a method, the escape value is
Escape Via Return. Global Escape is used for all other objects.

The escape property is computed for each intraprocedural definition
site, i.e., for all formal method parameters, every object and array
allocation site, all calls of methods that return an object, and all field
reads. The def-use information provided by TACAI (cf. Chapter 7) is
used to identify every use site and to propagate the effect of the use
site back to the def site. For example, if the only use site is a return
statement, the escape state of the respective object is Escape Via Return.
The analysis is field-insensitive, i.e., whenever an object is stored in a
field, it assumes a Global Escape.

OPIUM’s most precise analysis uses the results of the escape analysis
to identify local objects by examining all their definition sites. A
reference is considered local if it is: (1) freshly allocated, (2) a fresh
return value [88], or (3) a local field [178]. Whereas the locality for new
allocations is trivially computed, we designed separate analyses—both

10.4 validation 157

depending on the escape analysis’ results—that identify fresh return
values and local fields. A method’s return value is considered fresh if
it is a newly allocated object or the result of a call to a method with a
fresh return value. Furthermore, it must only Escape Via Return. When
retrieving information for a virtual call where the precise type of the
receiver is not known, we aggregate the results for all potential call
targets. A field is considered local [178] when its owning instance
is local, all objects stored in the field are local, and no read value
escapes (No Escape). The latter analysis requires special handling of
java.lang.Object’s clone method, which creates a shallow copy of an
object—including all private fields of the object. Hence, a field might
escape even if no GetField instruction is present. As a mitigation, the
analysis determines whether the object’s class overrides clone and
stores a local object into the field of the new object. For classes that
neither override clone nor implement the Cloneable interface, we
can assume that the field is local if the class is final. In the case of a
non-final class, the field is also considered to be local if the runtime
type is precisely known. Finally, we extended the field and return
value analyses to deal with getter methods.

10.3.5 Threats to Soundness

OPIUM considers unanalyzed methods like native methods as impure
unless explicitly specified differently. Therefore, OPIUM is sound even
in the presence of local use of reflection or sun.misc.Unsafe to invoke
native methods. Non-local effects of such calls as well as reflective
field writes may, however, lead to unsound results.

10.4 validation

In order to validate whether the purity levels of our model are actually
found in real-world applications, we executed our analysis on the
Oracle JDK 8 update 151, Scala 2.12.4, and all applications included
in XCorpus [67]. The latter contains 76 programs: 70 programs from
the Qualitas Corpus [233] and six additional ones that make use of
modern dynamic language features of the JVM. We had to exclude
jasperreports-1.1.0 due to invalid bytecode.

The first column of Table 10.3 shows the different purity levels
grouped by similar expressiveness. The last line lists the remaining
impure methods. Columns two to four show (cf. Table 10.3) the total
number of methods as well as the percentage of methods that were
derived per purity level for XCorpus, JDK, and Scala.

The analysis shows that pure and side-effect-free methods are com-
monplace. In all three cases, ≈ 25% of all methods are in these two
categories. Additionally, up to 12.76% of the methods are domain-
specific pure or side-effect free. The analysis also identifies between 1.49%

10.4 validation 158

Table 10.3: Purity Results on XCorpus, JDK, and Scala

Program XCorpus JDK Scala

Total methods 469 727 253 282 174 881

Pure 73 701(15.69%) 44 378(17.52%) 28 502(16.23%)

Domain-specific pure 9 628 (2.05%) 8 250 (3.26%) 6 625 (3.79%)

Side-effect free (SEF) 45 268 (9.64%) 18 234 (7.20%) 10 793 (6.17%)

Domain-specific side-effect free 22 056 (4.70%) 14 717 (5.81%) 15 690 (8.97%)

Externally pure 19 467 (4.14%) 4 229 (1.67%) 2 519 (1.44%)

Externally side-effect free 2 380 (0.51%) 3 414 (1.35%) 82 (0.05%)

Domain-specific externally pure 639 (0.14%) 354 (0.14%) 11 (0.01%)

Domain-specific externally SEF 2 467 (0.53%) 1 738 (0.69%) 2 339 (1.34%)

Contextually pure 4 (0.00%) 7 (0.00%) 0 (0.00%)

Contextually side-effect free 7 (0.00%) 48 (0.02%) 1 (0.00%)

Domain-specific contextually pure 522 (0.11%) 547 (0.22%) 31 (0.02%)

Domain-specific contextually SEF 1 523 (0.32%) 1 277 (0.50%) 80 (0.05%)

Impure 292 065(62.18%) 156 089(61.63%) 108 208(61.87%)

and 4.65% of all methods as being externally pure/side-effect-free. We only
found 82 externally side-effect-free methods in Scala but a higher number
of domain-specific externally side-effect-free methods when compared
to Java projects. This deviation is at least partly due to the different
treatment of exceptions in these programming languages. In Scala
exceptions never need to be caught, and therefore fewer exceptions
are explicitly caught. Hence, many more instructions may cause an
abnormal return from a method. The same effect, albeit smaller, can
be seen for (domain-specific) side-effect-free methods in Scala.

Furthermore, we found multiple contextually pure/side-effect-free meth-
ods. If we also take the domain-specific levels into account, we found
1879 methods in the JDK with a contextual purity level, which is about
0.74% of all methods. On the other hand, only 0.43% of all methods
in the XCorpus and less than 0.1% in Scala have one of the respective
levels. Thus, we conclude that the prevalence of these purity levels
strongly depends on the analyzed target. In general, the effects of
contextual purity may improve when better contextual information is
provided by supporting analyses.

Observation 10.1

All purity levels defined in our model are actually found in
real-world applications. In particular, this is also true for our
newly defined contextually pure/side-effect free levels.

10.5 summary 159

10.5 summary

In this chapter, we proposed a fine-grained unified lattice model for
purity, covering all use cases from the literature. We also provide
precise definitions for each lattice element to establish a common
terminology. Based on this, we implemented OPIUM, three different
purity analyses, which derive some or all properties of the lattice.

OPIUM heavily depends on the previous case studies and the preci-
sion and scalability of OPIUM can be fine-tuned by choosing either
of its three analyses as well as by enabling, disabling, or exchanging
the analyses it depends on. OPAL’s blackboard architecture supports
this in a plug-and-play manner (cf. R2) to easily explore the different
trade-offs. If analyses that OPIUM depends on are not executed, fall-
back values that replace the missing properties still allow OPIUM to
be executed soundly (R3). Also, OPIUM uses pre-computed values for
native and hard-to-analyze methods to increase its precision (R8).

Part III

E VA L UAT I O N

evaluation 163

In Chapter 1, we defined as the main goal of this thesis that:

A general framework for modular, collaborative program anal-
ysis should allow for complex systems of analyses that offer
good soundness, precision, and scalability, including exploring
the trade-offs between these qualities.

In this part, we will use the case studies discussed in Part II—and
additional minor case studies where appropriate—to evaluate whether
OPAL succeeds in fulfilling our main goal. In particular, we aim to
answer the following three core research questions:

RQ1 Applicability and Modularity: Does OPAL support the modular
implementation of a broad range of static analysis kinds with
varying requirements?

RQ2 Precision and Soundness: Can modular, collaborative analyses
in OPAL improve over the state of the art in terms of precision
and soundness?

RQ3 Scalability, Parallelization, and Scheduling: How does the scal-
ability of modular, collaborative analyses in OPAL compare to
the state of the art and how can automated parallelization and
scheduling impact this?

The individual chapters in this part each focus on answering one of
these core research questions. The chapters are as follows:

applicability and modularity Chapter 11 looks at the appli-
cability of OPAL’s modular design to implement a broad range of static
analyses (RQ1). While some existing frameworks support some forms
of modularity, they are often limited to specific kinds of analyses: the
framework by Johnson et al. [116]), e.g., is built for alias analysis, and
Doop [34] focuses on points-to and call-graph analyses. We also study
whether the modular design enables exploring trade-offs between
soundness, precision, and scalability and assess whether the RA2, our
implementation of OPAL’s modularity based on Reactive Async (cf.
Chapter 4) is also applicable to different analyses.

Finding III.1

We show that OPAL’s design—as well as our alternative im-
plementation RA2—is applicable to a broad range of dis-
similar static analyses built from modularly composed sub-
analyses and that the plug-and-play exchangeability of these
sub-analyses benefits both analysis developers and end users.

evaluation 164

precision and soundness Chapter 12 considers the precision
and soundness of our case studies (RQ2). Improved precision and
soundness over state-of-the-art analyses is part of the main goal of this
thesis. We thus aim to show that the modular design of OPAL does
indeed allow analyses to be more precise and sound than respective
monolithic state-of-the-art analyses.

Finding III.2

We find that each of our case-study analyses improves over
respective state-of-the-art analyses in terms of soundness, pre-
cision, or both. We also show that our analyses do not trade
soundness for precision or vice-versa compared to the state of
the art.

scalability, parallelization, and scheduling Chapter 13

focuses on the runtime performance of our case studies. Decoupled,
modular analyses may impose some communication overhead that
could impede scalability compared to tightly integrated state-of-the-art
analyses. At the same time, improvements in precision and soundness
can often come with an increase in runtime as well. We show that
OPAL’s automated parallelization and support for specialized data
structures as well as task scheduling have a significant impact on the
runtime performance of analyses.

Finding III.3

Overall, we show that our case-study analyses are on par with
or even outperform respective state-of-the-art analyses in terms
of runtime performance.

11
A P P L I C A B I L I T Y A N D M O D U L A R I T Y

In this chapter, we answer RQ1, that is, we evaluate whether OPAL
supports implementing a broad range of different analyses in a modu-
lar, collaborative manner. We first take another look at the different
case studies and how they pose different requirements for OPAL in
order to show how OPAL enables their modular implementation. We
then evaluate how the plug-and-play modularity of OPAL’s analyses
benefits both end users and analysis developers in exploring trade-offs
between soundness, precision, and scalability. Finally, we also consider
the applicability of our alternative implementation based on Reactive
Async (cf. Chapter 4).

11.1 support for various analyses

In Part II, we implemented the case studies from Section 2.2 using
OPAL. We argue that these are representatives of a broad range of
different analysis kinds. The first case study represents pessimistic
analyses in the context of improving the precision of a three-address
code representation (TAC)—it shows how basic analyses can be ex-
tended by analyses that are specialized to increase the precision of
sub-problems’ solutions. The modular call graph of the second case
study involves tightly interacting yet decoupled analyses (e.g., points-
to and call graph) and demonstrates how one can plug in further
modular analyses that handle special cases of Java in order to increase
the call graph’s soundness. The third and fourth case studies intro-
duced several exchangeable analyses for different high-level properties
(immutability, escape information, purity). The individual analyses
are relatively simple and can focus on their respective property but by
using the results of other analyses, they can be more precise than a
corresponding monolithic analysis of medium complexity.

As discussed in Section 2.2, to achieve this modularity, several re-
quirements need to be satisfied (cf. Table 2.1). Chapter 3 explained how
OPAL supports all of them. Meanwhile, as we argue in Section 2.2.4,
no current imperative or declarative framework supports all of these
requirements.

We additionally implemented a solver for interprocedural, finite, dis-
tributive subset problems (IFDS) [190], a well-known general framework
for dataflow problems based on graph reachability. Many implemen-
tations of IFDS exist, e.g., in WALA [111], Heros [25], Flix [154], or
IFDS-A [192]).

165

11.2 support for modular call graphs 166

Similar to other IFDS solvers, e.g., Heros [25], users of our solver
provide a domain for their dataflow facts and four flow functions that
together specify the IFDS problem. The solver starts one computation
per pair of method and entry dataflow fact and these tasks need to
communicate their results. We chose IFDS as it is a general framework
that allows implementing many dataflow analyses and it requires a
dissimilar implementation style compared to our other case-study
analyses. In particular, it shows OPAL’s support for implementing
general solvers as individual analyses.

Observation 11.1

OPAL’s programming model enables the implementation of
dissimilar analyses, fostering their modularization into a set of
comprehensible, maintainable, and pluggable units. OPAL is
the only static analysis framework satisfying all requirements
from Section 2.2.4.

11.2 support for modular call graphs

Besides supporting dissimilar analyses, OPAL should also support
individual analyses that are highly modularized. This enables break-
ing down complex analyses into simple sub-analyses, each of which
is responsible for one clearly defined task, e.g., handling a single
programming language feature.

We validate this using Unimocg, our modular architecture for call
graphs. In Unimocg (cf. Chapter 8), we implemented various type
producers that define a particular call-graph algorithm, type iterators
that make type information accessible, and call resolvers that handle
different language features that affect call graphs. We used these
components to derive ten different call-graph algorithms.

The implemented type producers are: (i) a global instantiated-types
analysis, (ii) a parameterized propagation-based instantiated-types
analysis, (iii) a parameterized points-to analysis augmented by type
producers for Java APIs that require special handling, including, e.g.,
java.lang.System.arraycopy and sun.misc.Unsafe.

The implemented type iterators are: (i) CHA and RTA iterators
from Listing 8.4, (ii) an iterator that is parameterized to support
the propagation-based algorithms XTA, MTA, FTA, and CTA [234],
(iii) traits for different context sensitivities and points-to-set represen-
tations of k-l-CFA call graphs.

The implemented call resolvers are: (i) a virtual and non-virtual call
resolver, (ii) call resolvers for static initializers, reflection, threads,
serialization, finalizers, the doPrivileged API that is provided by the
class java.security.AccessController and allows indirect calls, and
a number of important native methods from the JDK’s class library,

11.3 effects of the exchangeability of analyses 167

(iii) an alternative call-resolver for reflection that uses information
from the dynamic analysis Tamiflex [27].

Combining the type producers, type iterators, and call resolvers
from above, we derived ten different call-graph algorithms: CHA, RTA,
XTA, MTA, FTA, CTA, 0-CFA, 0-1-CFA, 1-0-CFA, and 1-1-CFA. For
CHA, we used the CHA iterator without a type producer, as it solely
depends on the precomputed class-hierarchy type information. To
derive RTA, we combined the RTA iterator with the global instantiated-
types type producer. For XTA, MTA, FTA, and CTA, we combined
the respective iterators with the parameterized propagation-based
instantiated-types type producer. Lastly, to derive 0-CFA, 0-1-CFA, 1-0-
CFA, and 1-1-CFA, we combined the respective CFA type iterator traits
with the points-to type producers. Importantly, we were able to reuse
the same call resolvers across all algorithms although the algorithms
produce different type information and different call resolvers require
different information.

Due to the abstraction introduced by the common type-iterator
interface, we can easily derive a family of call-graph algorithms with
varying levels of precision and scalability. By selecting an appropriate
type iterator and corresponding type producer(s), users select the
precision of type information to be computed, i.e., the precision of
the call graph. The selection of call resolvers for language features is
orthogonal to the selection of type iterators and corresponding type
producers. This makes it easy for analysis developers to add new
algorithms (as a combination of type iterator and type producer) or
call resolvers for new features and reuse all existing components with
them.

Observation 11.2

Unimocg enables deriving families of different call graphs by
composing individual components in a modular way.

Observation 11.3

All call resolvers are reusable across all algorithms.

Observation 11.4

OPAL supports the implementation of highly modularized call
graphs from reusable modules.

11.3 effects of the exchangeability of analyses

Our approach strictly decouples property kinds from analyses com-
puting them. Thus, it can provide different analyses that compute the
same property kind to cover a wide range of precision, sound(i)ness,

11.3 effects of the exchangeability of analyses 168

Table 11.1: Purity Results for Different Configurations (hsqldb)

Configuration #Pure #SEF #Other #Impure / Analysis

PA2/FIA1/E1 417 482 245 2 635 2.42 s

PA2/E1 363 536 245 2 635 2.40 s

PA2/FIA1/E0 417 481 241 2 640 1.93 s

PA2 362 504 225 2 688 0.98 s

PA1/FIA1 415 431 0 2 933 0.93 s

PA0/FIA1 104 0 0 3 675 0.70 s

PA0 100 0 0 3 679 0.13 s

and scalability trade-offs. Using two experiments, we examine how
this exchangeability fosters rapid probing, thus benefiting the analysis’
developer and end user alike: We explore the impact on precision and
scalability in one experiment and that on soundness in the second.
The analyses were executed on the DaCapo benchmark [24]. We only
show one application each here for brevity1.

In our first experiment, we run various configurations of our purity
analyses (PA0, PA1, and PA2; cf. Chapter 10) with or without analy-
ses for field immutability (FIA1, cf. Chapter 9) and/or an intra- or
interprocedural escape analysis (E0 and E1 respectively) to achieve
different precision-scalability trade-offs. No other tool supports simi-
lar exchangeability of collaborative purity, immutability, and escape
analyses.

Table 11.1 shows the results for the hsqldb program. Higher indices
indicate more precise analyses. Comparing the least precise analysis
PA0 with the most precise PA2/FIA1/E1, we observe a reduction in
the number of reported impure methods by ~28% but a runtime
slowdown by 18.6x. Some configurations have a significant impact on
runtime for almost no gain in precision. As an example, compare the
most precise configuration with that where E1 is replaced with the
simpler escape analysis E0.

In the second experiment, we evaluate an RTA call graph (cf. Chap-
ter 8) with different supporting modules for different JVM features.
Results for Xalan are shown in Table 11.2, displaying the modules
configured to be executed, the numbers of reachable methods and
call edges, and the respective analysis time. Compared to the base-
line, RTA with support for preconfigured native methods (RTA_C),
reaches 21 more methods and ~200 more call edges. Reflection sup-
port (RTA_R) brings over 2 000 more RMs and 16 000 call edges; at
the same time, construction time increases by about 15%. Exchanging
the reflection module for the Tamiflex (RTA_X) module increases call
graph size (and soundness) more but introduces further slowdown.
With all modules enabled, we reach 111% more methods and 127%

1 The full results are available at https://doi.org/10.5281/zenodo.3972736

https://doi.org/10.5281/zenodo.3972736

11.4 implementation based on reactive async 169

Table 11.2: Results for Different Call-Graph Modules for Xalan

Configuration #Reachable Methods #Edges / Analysis

RTA_S_T_F_C_X 12 970 106 778 13.35 s

RTA_C_X 12 958 106 743 12.86 s

RTA_X 12 937 106 516 12.99 s

RTA_R 8 404 63 821 10.07 s

RTA_C 6 162 47 154 8.76 s

RTA 6 141 46 946 8.58 s
C=Configured native methods; R=Reflection; X=Tamiflex;

S=Serialization; T=Threads; F=Finalizer;

more call edges, at the cost of a 55% increased runtime. Moreover, the
data from our full analysis suggests that different modules benefit
different projects. Tamiflex impacted Xalan and jython, reflection fop,
and serialization hsqldb. Thus, which modules are more relevant than
others may differ between different programs, and it may be worth
investigating trade-offs even at the level of individual projects. Note
though, that while some configurations discover more methods and
edges than others, they may discover different sets of methods and
edges. A configuration is only guaranteed to be strictly more sound if
it uses a strict superset of modules.

Overall, both experiments confirm that OPAL maintains exchange-
ability benefits from Datalog-based analyses while generalizing these
results to a broader range of lattices.

Observation 11.5

OPAL facilitates systematic investigation of different configu-
rations, supporting users and developers in finding the best
trade-off between precision, sound(i)ness, and scalability.

11.4 implementation based on reactive async

In order to assess the applicability of RA2, our implementation of
OPAL’s core concepts based on the Reactive Async framework (cf.
Chapter 4), we take another look at our simple purity analysis from
Section 4.5. The implementation of this analysis, including the defini-
tion of the lattice and an execution harness, takes just about 80 lines
of code (excluding whitespace and comments). We observe that RA2’s
programming model allows implicit parallelization in this case: No
explicit handling of parallelization, e.g., creation of threads, locks, or
tasks, is required by the actual analysis2. In particular, no rethinking
of the algorithm is required, as it is, e.g., for GPU-based solutions [160,

2 Only within the main function one Future needs to be awaited.

11.5 summary 170

181] to map the execution to the parallel hardware. Extending the
analysis to a more powerful purity analysis would require changes
only to the analysis and continuation functions (and potentially an
extension of the lattice for a finer granularity) and would not introduce
any additional complexity related to parallelization.

In order to showcase a more complex analysis, we adapted the IFDS
solver from Section 11.1 to RA2. This required only minor changes to
support the different dependency handling. IFDS has been parallelized
in the past and we evaluate our scalability against the state-of-the-art
IFDS solver Heros in Section 13.4.4. Our implementation makes use of
MonotonicUpdaters, which reduces the number of large set operations.
It requires sequential updates as it maintains mutable state between
the continuation invocations to keep track of dataflow edges already
known. Thus, the parallelization is semi-implicit in the case of the
IFDS solver.

Using our IFDS solver, we implemented a taint analysis as a client
analysis used in the rest of the evaluation. This analysis is inspired
by FlowTwist [139] and identifies public or protected methods in
the Java Runtime 7 (rt.jar) with return type java.lang.Object or
java.lang.Class that have a string parameter that is later used in
an invocation of java.lang.Class.forName. If such flows are found,
attackers may get the ability to load a class of their choice. The analysis
tracks local variables and is field-sensitive.

Observation 11.6

RA2 is able to provide (semi-)implicit parallelization to the
simple purity analysis as well as the significantly more complex
IFDS solver.

Observation 11.7

Both analyses are very different in their kind and there is no
specialized support for any of them implemented in RA2, indi-
cating that RA2 is applicable to different kinds of static analyses.

11.5 summary

In this chapter, we answered RQ1 by showing that OPAL’s modular
architecture supports the implementation of a broad range of static
analysis kinds as evidenced by our case studies. The modularity of
these analyses benefits both end users and analysis developers by
facilitating experimentation with different trade-offs between preci-
sion, soundness, and scalability. RA2 finally provides (semi-)implicit
parallelization for different kinds of static analysis implemented in
OPAL.

12
P R E C I S I O N A N D S O U N D N E S S

This chapter considers RQ2, that is, we evaluate whether modular
analyses in OPAL can improve over the respective state of the art in
terms of precision and soundness. We do so by comparing the analyses
of each case study from Part II with respective state-of-the-art analyses.
We show that our analyses match and even outperform this state of
the art, confirming that their modular, collaborative design allows for
improved results.

12.1 tacai

We perform two experiments to evaluate TACAI, our analysis for
a three-address-code intermediate representation based on abstract
interpretation (cf. Chapter 7): first we look directly at the type infor-
mation provided by the intermediate representation, then we consider
its impact on the precision of a call graph built upon it.

12.1.1 Precision of Type Information

In order to evaluate the precision of TACAI, we compare the type
information available in the OPAL IR to that available in Shimple1,
an intermediate representation of the Soot static analysis framework.
We chose Shimple because it also is an SSA-based three-address-code
representation and is thus closer to TACAI’s IR than Soot’s other IR,
Jimple. The IR of the WALA framework does not provide any refined
type information over the types available directly in the bytecode.
We compare TACAI’s most basic domain TACAIL0 which only uses
static type information and the most precise domain TACAIL2 which,
among others, performs constant propagation and folding as well as
inlining of monomorphic calls, computes union and intersection types,
and has special support for System.arraycopy.

We analyzed five programs from the XCorpus [67]: jasml, javacc, jext,
proguard, and sablecc. They all have a main method, which is necessary
for the call graphs in the second experiment. To perform the exper-
iment, we compare each representation’s receiver-type information
of all potentially polymorphic method invocations, i.e., virtual and
interface invocations.

The comparison between Soot’s Shimple and OPAL’s TACAI is car-
ried out as follows: First, we generate Shimple for each method within
the target program. Afterward, we traverse each method’s Shimple lin-

1 https://github.com/soot-oss/soot/wiki/A-brief-overview-of-Shimple

171

https://github.com/soot-oss/soot/wiki/A-brief-overview-of-Shimple

12.1 tacai 172

early and memorize for each polymorphic invocation its surrounding
method, the invoked method’s signature, the line number2 it occurred
in, and its receiver type. As we traverse each method linearly, we
can distinguish multiple invocations within the same line. Then, we
run TACAI in its current configuration and match each call site with
those recorded by Soot. Next, the call site’s receiver types are com-
pared to each other to determine if Shimple’s type information is more
precise than ours or vice versa. If both types are equal, we consider
them equally precise if TACAI does not know that its type informa-
tion is precise. In the case of precise type information, TACAI is only
considered more precise when the precise type has subtypes. When
intersection types are inferred, we always consider them to be more
precise. However, when TACAI reports union types, we only consider
them to be more precise if each type contained in the union is more
precise than Shimple’s receiver type. If a call site cannot be matched,
e.g., because it is not present in either representation, we record that
this call site is incomparable.

Table 12.1: Comparison of Receiver Type Information: Shimple vs. TACAI

Program Repr. Call Sites Failed Not Null Precise Equal +Shimple +TACAI

jasml
L0 2 094 37 0 843 2 057 0 0

L2 2 094 37 838 1 028 1 987 0 70

javacc
L0 9 883 0 0 4 709 9 878 0 5

L2 9 722 20 3 551 4 925 9 546 0 164

jext
L0 15 457 2 0 2 803 15 450 0 5

L2 15 455 2 5 709 3 406 14 986 0 467

proguard
L0 9 961 520 0 3 560 9 439 0 2

L2 9 959 520 3 694 4 168 9 083 0 356

sablecc
L0 35 717 0 0 4 542 35 716 0 1

L2 35 715 0 4 143 5 180 35 262 0 453

+Shimple = Shimple more precise, +TACAI = TACAI more precise

The experiment’s results are reported in Table 12.1, which shows
the evaluated program in the first column and the compared represen-
tations in the second column followed by the project’s total number of
call sites3. The column failed gives the number of call sites that could
not be matched between TACAI and Shimple. Column not null gives
the total number of call sites where TACAI finds the receiver to never
be null, whereas column precise gives the number of call sites where
TACAI could compute a single possible runtime type for the receiver.
The last three columns show for how many call sites the receiver-type

2 We were not able to map the call site to its original bytecode program counter,
therefore we chose to use the line number.

3 Differences in the number of call sites are the result of dead code elimination

12.1 tacai 173

information provided by Shimple is equally, more, or less precise when
compared to TACAI.

Table 12.1 shows that we were able to match most call sites across
Shimple and TACAI’s representation. While comparing both interme-
diate representations on proguard, we were not able to match 520

call sites. A closer investigation revealed that Shimple erroneously
assumes that some implicit exception (e.g., DivisionByZeroException
or ArrayIndexOutOfBoundsException) cannot be raised. This leads to
a large number of call sites that cannot be matched in proguard. In
javacc, TACAIL2 inlined some calls, resulting in the respective call
sites being removed and thus not matchable to Shimple.

When we only consider matchable call sites, we observe that the
receiver-type information across Shimple, TACAIL0, and TACAIL2 is
mostly equal. Whereas Shimple never provides more precise type infor-
mation than even TACAIL0, TACAIL2 can maximally improve on jext
where it has more precise information for 467 receivers. However, the
overall number of improvements pertaining to receiver-type informa-
tion is small. When comparing the availability of nullness information,
i.e., the number of cases where we definitively know that a receiver
is non-null and no NullPointerException can be thrown, between
TACAIL0 and TACAIL2, we observe that non-nullness information is
at least available in 11% of all cases in sablecc and up to 40% of all
cases in jasml.

Observation 12.1

Our approach improves little over Shimple w.r.t. receiver-
type information. Beyond receiver-type information, however,
TACAIL1 and TACAIL2 provide additional information useful
for static analysis, e.g., nullness. Such information is not present
in Shimple.

12.1.2 Impact on Call-Graph Precision

As a second experiment, we evaluate how the use of different abstract
domains used to create the IR affects the precision of a call graph
built upon this IR. To measure the effect, we use a class hierarchy
analysis (CHA) to construct the call graph. CHA is solely based on
the declared types and, therefore, is best suited for our experiment.
However, other algorithms such as RTA potentially also benefit from
more precise type information.

In Table 12.2 the columns for Shimple and TACAI give the respective
number of call-graph edges. The final column shows the reduction in
the number of call edges constructed based on TACAIL2 as compared
to Shimple. As the table shows, the reduction in the number of call
edges between TACAIL0 and TACAIL2 is minuscule. Compared to

12.2 unimocg 174

Table 12.2: Number of Call Edges: Shimple vs. TACAI

Program Classes Methods Shimple TACAIL0 TACAIL1 TACAIL2 Reduction

jasml 50 265 181 581 5 195 5 065 5 065 -97%

javacc 154 2 151 218 222 71 515 71 003 70 985 -67%

jext 466 2 799 481 643 17 335 17 297 17 291 -96%

proguard 645 5 237 503 190 46 218 46 096 43 535 -91%

sablecc 286 2 274 230 638 52 076 50 939 50 939 -78%

Soot’s CHA created with Shimple, our TACAI has a significant reduction
in call edges with any of the three domains: between 67% for javacc
and 97% for jasml.

Observation 12.2

TACAI significantly improves the size of a CHA call graph
compared to Soot’s Shimple IR.

12.2 unimocg

Recall that Unimocg’s main goal was to enable consistently high sound-
ness across multiple dissimilar call-graph algorithms (cf. Chapter 8).
In addition to validating that this goal is achieved, we also take a look
at Unimocg’s impact on precision to ensure that high soundness is not
achieved at the cost of compromising precision.

12.2.1 Soundness Consistency

To assess the soundness consistency of Unimocg’s call graphs, we
executed the benchmark of Reif et al. [186] on five of Unimocg’s
algorithms—CHA, RTA, XTA, 0-CFA, 1-1-CFA—which are representa-
tive for the different families of algorithms; other algorithms from the
same families (e.g., MTA instead of XTA) would show similar results.
The benchmark by Reif et al. measures missing edges (false negatives)
caused by insufficient support of individual language features. We
used this benchmark instead of measuring recall on real-world appli-
cations, as there is no suitable ground truth for recall on real-world
applications. Also, this would only provide a global view on false
negatives, i.e., the overall number of missing call-graph edges inde-
pendent of language features; thus, we would not be able to answer
whether Unimocg improves on the consistency of language feature
support.

Table 12.3 shows the results, and we show Table 8.1 here again as Ta-
ble 12.4 for easier comparison. Unimocg’s call-graph algorithms exhibit
high and consistent language feature support. They soundly pass be-

12.2 unimocg 175

Table 12.3: Soundness of Unimocg’s Call-Graph Algorithms

Feature CHA RTA XTA 0-CFA 1-1-CFA

Non-virtual Calls 6/6 6/6 6/6 6/6 6/6

Virtual Calls 4/4 4/4 4/4 4/4 4/4

Types 6/6 6/6 6/6 6/6 6/6

Static Initializer 8/8 8/8 8/8 8/8 8/8

Java 8 Interfaces 7/7 7/7 7/7 7/7 7/7

Unsafe 7/7 7/7 7/7 7/7 7/7

Invokedynamic G# 11/16 G# 11/16 G# 11/16 G# 11/16 G# 11/16

Class.forName 4/4 4/4 4/4 4/4 4/4

Reflection G# 10/16 G# 10/16 G# 10/16 G# 8/16 G# 11/16

MethodHandle 9/9 G# 8/9 G# 7/9 G# 7/9 G# 7/9

Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4

DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

JVM Calls G# 3/5 G# 3/5 G# 3/5 G# 3/5 G# 3/5

Serialization G# 9/14 G# 9/14 G# 9/14 G# 7/14 G# 7/14

Library Analysis G# 2/5 G# 2/5 G# 2/5 G# 2/5 G# 2/5

Sign. Polymorph. 7/7 7/7 7/7 7/7 7/7

Java 9+ 2/2 2/2 2/2 2/2 2/2

Non-Java 2/2 2/2 2/2 2/2 2/2

Sum (out of 123) 97 (79%) 96 (78%) 95 (77%) 91 (74%) 94 (76%)
Algorithms are ordered by increasing precision

Soundness: all , some G#, or no # test cases passed soundly

tween 74% and 79% of all test cases. In contrast, WALA passes between
41% and 53% and Soot between 53% and 66% of test cases. Consistent
feature support in Unimocg is due to its call-graph algorithms sharing
the same call resolvers.

Like Soot and WALA, Unimocg shows some degradation in sound-
ness with increased precision, as, e.g., its 0-CFA algorithm passes
only 74% of test cases compared to 79% for its CHA algorithm. But
there are significant differences: First, the gap between the most and
the least sound algorithms of Unimocg is only 5 percentage points
(pp), as opposed to 11 pp and 13 pp for WALA and Soot, respectively.
Second, and more importantly, unsoundness in Unimocg is either (a)
to be expected for certain algorithms, (b) due to unsoundness of some
type producers, or (c) due to not yet implemented call resolvers. For
instance, it is not surprising that 0-CFA handles reflection less soundly
than less precise algorithms that over-approximate some calls; on the
other hand, 1-1-CFA has access to actual allocation sites, which enables
more sound and precise resolution of reflective calls. Unsoundness
for MethodHandles in XTA and CFA, on the other hand, is due to
their current type producers not modeling field accesses fully soundly.
Currently, we still lack resolvers for class loading and dynamic proxies.

12.2 unimocg 176

Table 12.4: Soundness of Call Graphs for Different JVM Features

WALA Soot

Feature CHA RTA 0-CFA CHA RTA SPARK

Non-virtual Calls 6/6 6/6 6/6 6/6 6/6 6/6

Virtual Calls 4/4 4/4 4/4 4/4 4/4 4/4

Types 6/6 6/6 6/6 6/6 6/6 6/6

Static Initializer G# 4/8 G# 7/8 G# 6/8 8/8 8/8 8/8

Java 8 Interfaces 7/7 7/7 7/7 7/7 G# 6/7 7/7

Unsafe 7/7 7/7 # 0/7 7/7 7/7 # 0/7

Invokedynamic # 0/16 G# 10/16 G# 10/16 G# 11/16 G# 11/16 G# 11/16

Class.forName G# 2/4 4/4 4/4 4/4 4/4 4/4

Reflection G# 2/16 G# 3/16 G# 6/16 G# 12/16 G# 12/16 G# 10/16

MethodHandle G# 2/9 G# 2/9 # 0/9 G# 3/9 G# 3/9 G# 1/9

Class Loading # 0/4 # 0/4 # 0/4 # 0/4 # 0/4 # 0/4

DynamicProxy # 0/1 # 0/1 # 0/1 # 0/1 # 0/1 # 0/1

JVM Calls G# 2/5 G# 3/5 G# 3/5 G# 4/5 G# 4/5 G# 3/5

Serialization G# 3/14 G# 1/14 G# 1/14 G# 5/14 G# 1/14 G# 1/14

Library Analysis G# 2/5 G# 2/5 G# 1/5 G# 2/5 G# 2/5 G# 2/5

Sign. Polymorph. # 0/7 # 0/7 # 0/7 # 0/7 # 0/7 # 0/7

Java 9+ 2/2 G# 1/2 G# 1/2 2/2 2/2 2/2

Non-Java 2/2 2/2 2/2 # 0/2 # 0/2 # 0/2

Sum (out of 123) 51 (41%) 65 (53%) 57 (46%) 81 (66%) 76 (62%) 65 (53%)
Algorithms within each framework are ordered by increasing precision

Soundness: all , some G#, or no # test cases passed soundly

These complex features are not supported by WALA or Soot either.
Once the respective call resolvers are implemented, they can be used
consistently for all algorithms. To sum up, the sources of unsoundness
in Unimocg are explainable and unsoundness due to imprecise type
producers or missing call resolvers mainly requires further engineering
effort—without requiring any changes to existing call resolvers.

Observation 12.3

Unimocg shows consistently high soundness compared to other
frameworks. This is the result of reusing the same call-resolver
modules across all call-graph algorithms.

12.2.2 Impact on Precision

Next, we show that Unimocg’s consistent soundness does not compro-
mise precision.

Following common methodology [216, 234], we measure precision
by counting the number of reachable methods—more precise call

12.2 unimocg 177

Table 12.5: Reachable Methods for Unimocg’s Algorithms

Program CHA RTA XTA 0-CFA

jasml 130 249 10 719 10 086 8 901

javacc 131 079 11 511 10 901 9 693

jext 132 885 23 266 21 215 19 237

proguard 134 895 14 766 14 149 12 773

sablecc 132 120 12 436 11 790 10 512

graphs have fewer reachable methods. We compare the numbers of
reachable methods found by Unimocg’s CHA, RTA, XTA, and 0-CFA
algorithms for five Java applications4 from XCorpus [67].

The number of reachable methods decreases significantly when
we use more precise type producers; e.g., RTA identifies around 90%
fewer reachable methods than CHA. This matches the expectations
of call-graph users and shows that reusing the same call-resolver
modules across call-graph algorithms does not impair their relative
precision. This is explainable: individual call resolvers use the type
information gathered by the chosen type producer and thus work at a
consistent level of precision. This is not possible if the computation of
type information is tightly coupled to the resolution of virtual calls; in
this case, modules for other language features would rely on a fixed,
potentially ad-hoc, method of computing type information.

Observation 12.4

Unimocg’s modular architecture does not compromise on preci-
sion; this is indicated by the consistent relative precision across
different algorithms.

12.2.3 Impact on Type Consumers

Finally, we performed a case study with our field-immutability analy-
sis (cf. Chapter 9). In particular, the analysis depends on whether the
types of objects stored in the field are immutable.

Our original implementation of the immutability analysis relied
on the declared type of a field (i.e., it has CHA precision) plus some
additional ad-hoc precision improvements (we refer to this as ad-hoc
CHA). Subsequently, we implemented a new version of the field-
immutability analysis that uses Unimocg’s type iterator interface. Our
hypothesis is that the field-immutability analysis benefits directly
from using the type iterator in terms of both improved precision and
reduced code size. The precision of the immutability analysis depends
on precise type information, because final fields are either transitively

4 The same applications we used in prior work [186].

12.2 unimocg 178

Table 12.6: Field Immutability Results for OpenJDK

Algorithm mutable ⊒ non-trans. ⊒ depen. ⊒ trans.

Ad-hoc CHA 23 195 24 296 108 46 368

CHA 23 195 25 252 20 45 500

RTA 23 195 7 352 316 63 104

XTA 23 195 2 871 316 67 585

depen. = dependently immutable, trans. = transitively immutable
Higher numbers in columns to the right = more precise

immutable, if they can only refer to objects that are immutable, or
otherwise non-transitively immutable, if that is not the case; dependent
immutability (for fields with generic types) is located between these
two levels. More precise type information thus allows assigning the
more precise value transitively immutable to more fields. The code size
is expected to be reduced because the immutability analysis does not
need to implement (ad-hoc) logic for inferring type information.

We compare the ad-hoc CHA implementation with the Unimocg-
based one using different call-graph algorithms. Previously, such an
exploration of different call-graph algorithms would not have been
possible as the precision was hard-coded into the analysis (ad-hoc
CHA). We analyze the Adoptium OpenJDK 1.8.0_342-b07 here.

Table 12.6 shows the results concerning precision, clearly showing
that using more precise call-graph algorithms (in particular, more
precise type information) significantly improves the precision of the
immutability analysis implemented as a Unimocg type consumer. For
instance, using the RTA type iterator results in 17604 more fields, i.e.,
18.8% of all fields, found to be transitively immutable compared to
CHA. Using XTA further improved the precision, with 4481 more
transitively immutable fields compared to RTA. The CHA type iterator
results in less precision than the baseline, because of the removed
ad-hoc logic of the baseline for improving precision upon CHA. Yet,
(a) the precision reduction is small (0.9% of all fields get a less precise
result), and (b) one could avoid even this small imprecision (at the cost
of some performance) by using Unimocg’s foreachAlloc method instead
without adding complexity to the implementation of the immutability
analysis.

Moreover, by implementing the field immutability analysis as a
Unimocg type consumer, we could replace the baseline’s ad-hoc CHA
logic (95 lines of code, or 20% of the total size of the field immutabil-
ity analysis) by 26 lines of code for using the type iterator while
achieving higher precision and enabling experimentation with differ-
ent call-graph algorithms. The positive effect on code quality is more
pronounced than the mere numbers may suggest: The removed code
was complex and a clear violation of the principle of separation of

12.3 cifi 179

concerns, as it was not concerned with the actual task of analyzing
immutability. Using Unimocg, duplication of functionality is reduced,
and separation of concerns is re-established.

Observation 12.5

The precision of the field-immutability analysis implemented
as a type consumer is always consistent with the employed
call-graph algorithm and directly benefits from more precise
call-graph algorithms.

Observation 12.6

Implementing the field-immutability analysis as a type con-
sumer leads to less complexity and a better separation of con-
cerns compared to an ad-hoc implementation.

12.3 cifi

Next, we evaluate the precision and sound(i)ness of our immutability
analyses CiFi (cf. Chapter 9). To do so, we use our CiFi-Bench from
Section 9.4, a handcrafted benchmark of standard and corner cases for
class and field immutability. We also compare CiFi to the state-of-the-
art immutability-enforcement tool Glacier.

12.3.1 CiFi-Bench Results

We first use CiFi on CiFi-Bench. For each test case tc, CiFi either pro-
duces the precise value annotated in tc (in five categories), or a soundy
over-approximation, i.e., a value further up in the respective lattice (cf.
Section 9.2), which is less precise than possible but can be soundily
used by further analyses/optimizations. CiFi did not produce any
unsoundy results, i.e., values further down in the lattice. In some more
detail, the results are as follows:

• CiFi inferred immutability properties precisely for the categories:
Assignability, General, Known Types, Generic/Simple, Arrays/Non-
Transitive, Lazy Initialization/Arrays, and Lazy Initialization/Objects.

• In category Generic/Extended, CiFi soundily over-approximates
some complex test cases such as doubly nested generic classes
(Gen<Gen<T>>), generic cases with bounds, and more complex
lazy initialization patterns than the one we described in Sec-
tion 9.3.2. For doubly nested generics, the approximation is not
mutable, but non-transitively immutable, retaining some precision.
Generic classes with bounds are soundily over-approximated as
dependently immutable.

12.3 cifi 180

• In Arrays/Transitive, CiFi soundily over-approximates all tests
to non-transitively immutable, and in Lazy Initialization/Primitive
Types to unsafely lazily initialized or assignable. All test cases in
Lazy Initialization/Scala Lazy Val and String are soundily over-
approximated to assignable, except for the field referring to the
final char array in the category String which is soundily over-
approximated to non-transitively immutable.

Observation 12.7

CiFi matches the annotated properties of the benchmark either
precisely or soundily over-approximates them. The observed
over-approximations are due to missing support for the respec-
tive features. Leaving complex features out of scope when the
expected benefit is small is in line with other immutability anal-
yses [179]. Handling these complex features precisely would not
lead to considerably more immutability being recognized, as
they represent rare corner cases. Handling each of these corner
cases would only prevent few over-approximations.

12.3.2 Comparison to Glacier

Next, we run Glacier [44], the state-of-the-art tool for enforcing class
and field immutability on CiFi-Bench. As Glacier only considers transi-
tive immutability, we can only evaluate it w.r.t. this level of immutabil-
ity. Hence, we annotated all classes and fields of CiFi-Bench with
Glacier’s @Immutable annotation. We consider Glacier to pass a test
if either of the following holds: (a) it does not output an error for
transitively immutable fields and classes, (b) it outputs such an error
for fields and classes that are not transitively immutable (since Glacier,
does not handle non-transitive or dependent immutability, respective
fields have to be considered mutable). The results for each category
are as follows:

• For category Known Types/Multiple, Glacier can enforce transitive
immutability.

• For two cases in General resp. Known Types/Single, Glacier pro-
duces unsound results. First, Glacier treats both @Immutable and
@MaybeMutable classes as subtypes of java.lang.Object. Thus,
a mutable object can be assigned to an @Immutable field of type
Object. Second, while Glacier prohibits assignments to fields out-
side of the constructor, it does not check whether a field being
assigned in a constructor belongs to the object being constructed.
Thus, @Immutable fields can be mutated while constructing other
objects. Both cases are shown in Listing 12.1.

12.3 cifi 181

1 @Immutable class C {
2 @Immutable private Object o;
3 public C(C parent, Object o){ parent.o = o; }
4 }

Listing 12.1: Glacier Unsoundness Example

• Glacier was unsound in three Assignability tests. Two are again
due to @MaybeMutable being a subtype of java.lang.Object, but
the third one revealed another issue: Glacier ignores compound-
assignment operators like +=. Thus, fields of primitive types or
type java.lang.String can be mutated outside of constructors.
In CiFi, such accidental omissions are less likely as it analyzes
bytecode. Additionally, Glacier could not handle the clone pattern
cases properly because of assignments outside of constructors.

• Glacier passed all test cases in Generic as it enforces that only
@Immutable types are used for type parameters of @Immutable
classes and only @Immutable classes can extend @Immutable

classes. But this means that Glacier cannot handle dependent im-
mutability, resulting in lost opportunities for being more precise.

• In category Arrays, non-transitively immutable fields are han-
dled correctly. Some transitively immutable fields are also en-
forced correctly but require four annotations: @Immutable int

@Immutable[] arr = new @Immutable int @Immutable[5];

Glacier cannot enforce transitive immutability where array ele-
ments are not mutated, despite not being @Immutable.

• In category Lazy Initialization, Glacier cannot enforce transitive
immutability due to its rule that in @Immutable classes, fields
may only be assigned in constructors.

• In category String, Glacier handles the case concerning the char

array shared between identical strings precisely, but it cannot
enforce immutability for the lazily initialized field caching the
hashCode method’s result.

Observation 12.8

Compared to CiFi’s fine-grained immutability results, Glacier
can only recognize transitive immutability.

Observation 12.9

Glacier shows three cases of unsoundness.

12.4 opium 182

Observation 12.10

While Glacier strictly enforces transitive immutability for gener-
ics, including nested and bounded generic types, it lacks the
flexibility of dependent immutability to allow generic classes
to be treated differently depending on whether they are instan-
tiated with transitively immutable types or not. Additionally,
Glacier does not handle lazy initialization.

To recap, CiFi is more soundy and often more precise than Glacier
without requiring manual effort for annotations. As a result, CiFi can
be applied easily to existing codebases and third-party code, even if
source code is not available.

12.4 opium

To evaluate the purity analyses of OPIUM (cf. Chapter 10), we com-
pared the results of our most precise analysis, Purity2, against JPPA [223,
224], JPure [178], and ReIm [108, 109]. ReIm is the most recent of these
tools, representing the state of the art. All three tools identify side-
effect-free methods and were downloaded from the authors’ websites.

We first use a synthetic benchmark to study the differences be-
tween the four tools, then compare OPIUM against the most precise
competitor, ReIm, on two real-world applications.

12.4.1 Synthetic Benchmark

For a first comparison, we use the JOlden [38] benchmark. It consists
of ten small Java programs from different domains that all tools were
able to analyze with only one exception.

The sets of all methods that are analyzed by the tools have small
differences. JPPA only analyzes methods transitively invoked by the
main method, JPure and ReIm analyze all methods present in the source
code, and our approach analyzes all methods present in the class
files, which in particular includes static initializers and automatically
generated default constructors. Furthermore, the reports of JPure and
ReIm also include aggregated purity results for abstract methods.
Aggregated information is in our case provided by the Virtual Method
Purity analysis, not by the base purity analysis.

The analysis results are shown in Table 12.7. For each of the JOlden
projects, it gives the number of methods that each tool identified as
side-effect free (including pure methods for OPIUM) and the number of
methods that the toll has analyzed. JPure failed to analyze TSP. For
OPIUM, the table additionally gives the number of pure (including
domain-specific pure) methods identified by our analysis and the number

12.4 opium 183

Table 12.7: At Least Side-Effect-Free (SEF) Methods in JOlden

JPPA JPure ReIm OPIUM

Program Σ #SEF Σ #SEF Σ #SEF Σ #SEF #Pure #Cont.

BH 59 24 69 10 69 33 70 33 11 +18

BiSort 13 4 13 3 13 5 15 7 6 +2

Em3d 20 5 19 1 19 8 23 8 5 +3

Health 26 6 26 2 26 11 29 13 9 +4

MST 31 15 33 12 33 16 36 19 8 +6

Perimeter 36 27 42 31 42 38 45 38 21 +1

Power 29 4 29 2 29 10 32 11 7 +13

TreeAdd 5 1 10 1 10 6 12 7 6 +1

TSP 14 4 0 – 14 1 16 4 3 +0

Voronoi 60 40 71 30 71 47 73 49 12 +5

Σ = analyzed methods, #SEF = at least SEF methods, #Pure = pure methods,
#Cont. = additional contextually/externally pure/SEF methods

of methods with additional purity levels (i.e., external and contextual
purity and variants thereof).

For this comparison, we treat pure and side-effect free as well as their
domain-specific variants as side-effect free. Our analysis is competitive
with ReIm and significantly outperforms JPPA and JPure. Hence, our
analysis is competitive with state-of-the-art analyses for side-effect-free
methods. Additionally, our analysis identifies pure methods and a
significant number of externally and contextually pure/side-effect-free
methods, which are not found by the other tools including ReIm.

The differences between JPPA and JPure when compared to ReIm
and our analysis in programs like Power and TreeAdd are due to a
high number of constructors. These are not identified as side-effect free
by JPPA and JPure. For TSP, JPPA classifies several methods using
java.util.Random as side-effect free, even though they are not—Random

modifies global state when an instance is created—while ReIm fails to
identify a pure constructor. We manually verified that all classifications
performed by OPIUM were sound and identified further potential for
improvements where we would be able to identify methods as pure if
the supporting analyses were more precise.

Observation 12.11

OPIUM identifies at least as many side-effect-free methods as
any of the other tools.

Observation 12.12

OPIUM identifies a significant part of these methods as pure,
adding to precision.

12.5 summary 184

Observation 12.13

Additionally, OPIUM identifies several methods with external
or contextual purity levels.

12.4.2 Real-World Applications

To evaluate our analysis on real-world applications, we compared it
with ReIm on Batik and Xalan. Table 12.8 again presents the number of
methods identified as side-effect free (or even pure) by ReIm and our
analysis alongside the number of analyzed methods. The number of
pure methods and the number of additional, externally or contextually
pure/side-effect-free methods is given for OPIUM.

Table 12.8: At Least Side-Effect-Free Methods in Batik/Xalan

Program Batik Xalan

ReIm #Analyzed methods 16 029 10 386

At least Side-Effect-Free Methods 6 072 (37.88%) 3 942 (37.95%)

OPIUM #Analyzed methods 15 911 10 763

At least Side-Effect-Free Methods 6 780 (42.61%) 4 390 (40.79%)

Pure methods 4 009 (25.20%) 2 492 (23.15%)

Ext./Context. Pure/SEF methods +987 (6.20%) +748 (6.95%)

On these applications, our analysis outperforms ReIm: we identify
up to 5% more side-effect-free methods and up to 7% of all methods
as being externally or contextually pure/side-effect-free methods.

Observation 12.14

On two real-world applications, OPIUM outperforms ReIm, the
state of the art, in terms of precision, finding more side-effect-
free methods. It is also more expressive, additionally identifying
both a significant number of pure methods as well as methods
with external or contextual purity levels.

12.5 summary

In this chapter, we answered RQ2 by showing that modular analyses
implemented in OPAL improve upon the respective state of the art in
terms of precision and soundness. We attribute these improvements
to OPAL’s support for modularity, which allows solving complex
analysis problems by combining several simpler modules that each

12.5 summary 185

are concerned with a clearly delineated sub-problem. This fosters
the implementation of modules that improve precision by providing
information that would otherwise have to be over-approximated (e.g.,
escape information for immutability and purity analyses) or improve
soundness by adding support for complex language features (e.g.,
reflective calls for call graph analyses).

13
S C A L A B I L I T Y, PA R A L L E L I Z AT I O N A N D
S C H E D U L I N G

This chapter answers our final research question RQ3, i.e., how paral-
lelization and scheduling affect the scalability of modular analyses in
OPAL and how their runtime performance compares to the respective
state of the art. OPAL’s blackboard architecture allows for automated
parallelization and scheduling that can utilize the hardware resources
of modern multicore processors and reduce runtimes. We first eval-
uate the impact of these specific features such as parallelization, the
possibility of using specialized data structures, and different strategies
for scheduling the execution order of tasks in the blackboard. We then
compare the case-study analyses of Part II as well as the IFDS analysis
from Chapter 11 against respective state-of-the-art tools. In Chapter 12,
we showed that analyses in OPAL outperform their competition w.r.t.
soundness and precision. In this chapter, we show that this does not
come at the cost of inferior scalability. Instead, analyses in OPAL are
on par or even outperform the respective state of the art also in terms
of runtime performance. This is despite OPAL being more general than
individual analyses or specialized frameworks optimized for specific
kinds of analyses.

When reporting runtimes, we present the median value of several
executions as mentioned in the respective experiments. This is because
runtime measurements often had high variance with some outliers
that would distort a mean in an unrepresentative manner.

13.1 parallelization

In order to assess how automated parallelization impacts the runtime
performance of analyses in OPAL, we implemented a proof-of-concept
parallel version of our blackboard. Using this, we measured the ex-
ecution time for the points-to-based call graph (cf. Chapter 8) with
different numbers of threads. All measurements were performed on
a server with two AMD(R) EPYC(R) 7542 @ 2.90 GHz (32 cores / 64

threads each) CPUs and 512 GB RAM. The JVM was given 32 GB of
heap memory. We report only excerpts of the results here.1

Results for five projects from the DaCapo benchmark [24] are shown
in Figure 13.1. The projects were selected to have similar runtimes to
facilitate graph readability; the other projects show similar behavior.
The experiments were run seven times and we report their median
runtime. Benefits of parallelization over one thread appear at two

1 The entire results can be found at https://doi.org/10.5281/zenodo.3972736

187

https://doi.org/10.5281/zenodo.3972736

13.2 benefits of specialized data structures 188

Figure 13.1: Parallel Architecture Scalability

to four threads and we achieve speedups of up to 2x for 16 threads.
Beyond this, further improvement is negligible; instead, it slightly
decreases due to growing communication overhead. These results are
encouraging, given that the parallel version is not at all optimized. An
optimized version of it is expected to scale better. Designing such an
optimized version requires further research to identify the optimal
way to parallelize the computation.

Observation 13.1

OPAL’s computation can be parallelized automatically, improv-
ing scalability.

13.2 benefits of specialized data structures

OPAL allows developers to freely choose appropriate data structures
for each analysis individually. This is in contrast to other frameworks
for modular analyses that enforce the use of particular data structures—
e.g., the choice of Datalog solver fixes the data structures used for
Datalog relations in the Doop framework [34].

In order to evaluate the benefits of using specialized data structures
on scalability, we compare two versions of the same points-to-based
call-graph algorithm (cf. Chapter 8). Both encode points-to, caller, and
callee information as integer values. The first version uses specialized
trie-based data structures, while the second one uses standard Scala
sets. The evaluation setup was the same as in the experiment above.

13.3 scheduling strategies 189

Table 13.1: Runtime of Points-To-Based Call Graphs with Specialized and
Standard Data-Structures

Program #RM / specialized / Scala speedup

antlr 8 653 28.36 s 305.90 s 10.8x

bloat 10 000 34.43 s 266.08 s 7.7x

chart 12 268 40.13 s 516.37 s 12.9x

eclipse 13 429 44.89 s 343.69 s 7.7x

fop 7 509 18.87 s 56.64 s 3.0x

hsqldb 7 455 19.65 s 55.69 s 2.8x

jython 13 161 77.65 s 3 341.62 s 43.0x

luindex 7 972 19.34 s 62.57 s 3.2x

lusearch 8 540 21.03 s 70.55 s 3.3x

pmd 9 028 21.47 s 75.47 s 3.5x

xalan 13 330 35.59 s 246.97 s 6.9x

geometric mean 29.68 s 191.26 s 6.44x
#RM = number of methods found to be reachable

Results are given in Table 13.1. The columns specialized and Scala
give the respective runtimes. Due to its high memory consumption,
we had to run the version using Scala’s data structures with 128 GB of
heap space; analysis of jython even required 256 GB. Using tailored
data structures, OPAL’s runtime was 2.8 up to 43 times faster (i.e.,
reducing the runtime between 65% and 98%) compared to naively
using Scala’s standard sets.

Observation 13.2

Selecting suitable data structures adapted to the specific analy-
sis’ needs is an important factor for analysis scalability. While
the analysis developer can freely select optimized data struc-
tures in OPAL, strictly declarative approaches like Doop do not
support such choices.

13.3 scheduling strategies

RA2, our implementation based on Reactive Async (cf. Chapter 4) al-
lows selecting a scheduling strategy to influence the order in which
analysis tasks in the blackboard are executed. In order to assess the
impact of these scheduling strategies, we evaluated different schedul-
ing strategies for both the IFDS analysis introduced in Chapter 11

and the simple purity analysis from Chapter 4. We used a machine
with an Intel(R) Core(TM) i9-7900X CPU @ 3.30GHz (10 cores / 20

threads) and 128 GB RAM. The JVM was given 16 GB of heap mem-
ory. We analyzed the JRE 1.7.0 update 95 from the publicly available

13.3 scheduling strategies 190

Table 13.2: Runtime of Scheduling Strategies for IFDS

Strategy / [s] Speed-up (a) Speed-up (b)

DefaultScheduling 27.29 0.00% 13.3%

SourcesWithManyTargetsLast 21.00 23.1% 33.3%

TargetsWithManySourcesLast 19.84 27.3% 37.0%

TargetsWithManyTargetsLast 29.31 -7.40% 6.86%

SourcesWithManySourcesLast 21.40 21.6% 32.0%
Speed-up shown compared to (a) default and (b) slowest strategy

Doop benchmarks project [213] to ensure reproducibility. The purity
analysis was executed on the complete JRE, while the IFDS analysis
was executed on the runtime jar only, which it was developed to be
executed on. For each experiment, we report the median runtime of
seven executions.

13.3.1 Scheduling at Fixed Thread Count

We first evaluated different scheduling strategies at a fixed level of
parallelization with ten threads each, corresponding to the number
of physical cores of our system. In Section 13.3.2, we look at the
scalability of the different scheduling strategies at different levels of
parallelization.

ifds analysis We evaluated the performance of the analysis-
independent strategies described in Section 4.4. Table 13.2 shows
the median execution times for each strategy. The percentages show
the speed-up of each strategy compared to (a) the default strategy and
(b) the slowest strategy.

Out of these analysis-independent strategies, we did not further
measure the xFirst strategies, as initial tests showed them to per-
form poorly for IFDS. For example, using the scheduling strategy
TargetsWithManySourcesFirst took more than 900 seconds using one
thread, thereby performing more than 1100% worse than the inverse
TargetsWithManySourcesLast which was the best-performing strat-
egy.

The data shows that using a suitable scheduling strategy can have
a significant impact on execution time. Considering the evaluated
strategies, TargetsWithManySourcesLast is the best strategy for our
IFDS analysis. The difference between the best and worst strategies is
37.0% (excluding the above-mentioned poorly performing strategies).
This shows the importance of choosing an appropriate strategy.

The effect of each strategy is application-dependent and may differ
with the number of cells, the number of dependencies and cycles,

13.3 scheduling strategies 191

Table 13.3: Runtimes and Speed-Ups for the Purity Analysis

Strategy / [s] Speed-up (a) Speed-up (b)

DefaultScheduling 0.42 0.00% 40.8%

SourcesWithManyTargetsFirst 0.70 -66.7% 1.41%

SourcesWithManyTargetsLast 0.70 -66.7% 1.41%

TargetsWithManySourcesFirst 0.71 -69.0% 0.00%

TargetsWithManySourcesLast 0.71 -69.0% 0.00%

TargetsWithManyTargetsFirst 0.69 -64.3% 2.82%

TargetsWithManyTargetsLast 0.68 -61.9% 4.23%

SourcesWithManySourcesFirst 0.68 -61.9% 4.23%

SourcesWithManySourcesLast 0.69 -64.3% 2.82%

LatticeValueStrategy 0.71 -69.0% 0.00%
Speed-up shown compared to (a) default and (b) slowest strategy

and the costs of the used continuation functions. The advantage of
TargetsWithManySourcesLast for the IFDS analysis can be explained
by considering the aggregation of results, i.e., avoiding notifications
of dependers. In the case of cells with many sources, it pays off to
hold back the update as long as possible because this potentially
allows aggregation with updates from other sources. Recall that before
a continuation is actually invoked, the most current value(s) is(are)
queried again and passed to the continuation in an aggregated form.
That way, the target cell can compute its result on a larger batch of
information in one step as opposed to multiple small steps, which
would be needed, if the cell was informed prematurely. This strategy
works well for IFDS, because all propagations need to be handled in
the same way and there are no special values, which would lead to
early finalization of cells and could therefore be advantageous, as in
the case of the purity analysis.

purity analysis In addition to the analysis-independent strate-
gies, we used the LatticeValueStrategy adapted to the purity anal-
ysis that we introduced in Section 4.4. It uses the specific effect an
update of a source cell may have on a target cell: if a dependee is
impure, we can immediately decide on the purity of the depender and
complete it with the value impure. The strategy gives such propaga-
tions a high priority as they lead to final results quicker. In contrast, if
a cell is completed with pure, a target cell can just remove the depen-
dency, because that update will not affect the current cell’s value.

Table 13.3 shows the results for all strategies along with their rela-
tive speed-ups. The DefaultStrategy is significantly faster than the
other strategies for this experiment. The other strategies, including

13.3 scheduling strategies 192

the LatticeValueStrategy that prioritizes impure updates, show no
significant differences in runtime. Relative standard deviations are
between 1.0% and 6.1%. The HandlerPool uses a ThreadPoolExecutor

from the java.util.concurrent package for pluggable scheduling
strategies as this allows the necessary priority queue to be sup-
plied. For DefaultStrategy, a ForkJoinPool from the same package
is used instead, which uses a work-stealing LIFO queuing scheme.
We believe that the DefaultStrategy is faster because the contin-
uation tasks created by the simple purity analysis are tiny. This
gives the default ForkJoinPool an advantage over the more complex
ThreadPoolExecutor used for the other strategies.

Observation 13.3

The best scheduling strategies differ between the purity and
IFDS analyses, emphasizing the need for pluggable, user-
supplied strategies.

Observation 13.4

While the analysis-specific strategy did not benefit the simple
purity analysis, it has been shown in the past [192] that such
strategies can further improve scalability.

13.3.2 Scalability with Thread Count

As a second experiment, we measured the speed-ups that RA2 achieves
for different thread counts compared to the nearly identical solver that
uses OPAL’s single-threaded, but highly optimized blackboard solver.
We used the IFDS analyses introduced in Chapter 11.

Figure 13.2 shows how the performance changes with the number
of threads used for the IFDS analysis. Depending on the scheduling
strategy, the speed-up with two threads compared to one thread is
between 1.6x and 2.0x. Note that better strategies in general show
lower speed-ups. When increasing the number of threads further, the
speed-up increases up to 6.2x for 20 threads. With speed-ups of more
than 4.8x for 10 threads, according to Amdahl’s law, more than 88%
of the execution is parallelized. Relative standard deviations for the
reported measurements are between 1.8% and 13.7%.

The RA2-based implementation of the IFDS analysis is 28% slower
than the sequential implementation in OPAL when a single thread is
used. The latter yielded runtimes of 58.0 seconds, compared to 74.3
seconds for our best strategy. As expected, RA2 is slowed down by
overhead related to enabling concurrency, which in this case is not
needed. However, RA2 clearly outperforms OPAL’s optimized single-
threaded blackboard as soon as multiple threads are used. For the

13.4 scalability of the case-study analyses 193

0

20

40

60

80

100

120

140 DefaultScheduling
SourcesWithManyTargetsLast
TargetsWithManyTargetsLast
TargetsWithManySourcesLast
SourcesWithManySourcesLast
OPAL - Sequential
Heros

R
un

tim
e

(s
)

Threads
1 5 10 15 20

20

25

30

35

Figure 13.2: Scalability with Different Numbers of Threads

best strategy, the speed-up over OPAL ranges between 1.3x with two
threads, 2.9x with 10 threads, and 3.0x with 20 threads.

Observation 13.5

Different scheduling strategies scale similarly with thread count,
outperforming the optimized sequential blackboard at two to
four threads and achieving a speedup of almost 3.0x at 10

threads.

13.4 scalability of the case-study analyses

In this section, we compare the scalability of our case-study analyses
from Part II and the IFDS solver from Chapter 11 to respective state-of-
the-art analyses. As there was no suitable state of the art for field- or
class-immutability inference tools, we did not evaluate CiFi in isolation.
However, our evaluation of OPIUM makes use of CiFi.

13.4.1 TACAI

Our first experiment assesses the runtime performance of TACAI (cf.
Chapter 7) and evaluates how exchanging the abstract interpretation
domains affects TACAI’s output as well as its transformation perfor-
mance. In order to compare the results, we generate Soot’s Shimple
(cf. Section 7.1 representation as well as our TACAIL0, TACAIL1, and
TACAIL2 (cf. Section 7.2) representations for all methods of our five
evaluation programs from the XCorpus [67]: jasml, javacc, jext, proguard,

13.4 scalability of the case-study analyses 194

sablecc. All measurements were taken on a Mac Pro with a Xeon E5

CPU with 8 cores@3GHz. The JVM was given 24GB of heap space.

Table 13.4: Runtime: Shimple vs. TACAI

Program Classes Methods Representation Instructions Avg. Med. St.dev. /

jasml 50 265

Shimple - - - - 7.6s

TACAIL0
14 164 53.5 12 307.5 3.5s

TACAIL1
14 163 53.5 12 307.5 3.9s

TACAIL2
14 066 53.4 12 307.5 6.9s

javacc 154 2 151

Shimple - - - - 10.9s

TACAIL0
81 917 38.1 11 150.2 4.2s

TACAIL1
81 683 38.0 11 150.2 5.4s

TACAIL2
81 651 38.0 11 150.0 11.5s

jext 466 2 799

Shimple - - - - 19.2s

TACAIL0
73 428 26.2 6 119.8 4.6s

TACAIL1
73 358 26.2 6 119.8 5.0s

TACAIL2
73 334 26.2 6 119.7 6.4s

proguard 645 5 237

Shimple - - - - 26.3s

TACAIL0
70 203 13.4 5 140.4 4.4s

TACAIL1
70 194 13.4 5 140.4 4.7s

TACAIL2
69 859 13.4 5 140.4 5.8s

sablecc 286 2 274

Shimple - - - - 10.3s

TACAIL0
35 717 15.7 5 50.6 4.1s

TACAIL1
35 715 15.7 5 50.6 5.0s

TACAIL2
35 715 15.7 5 50.6 6.3s

Table 13.4 shows the results. The first three columns show the ana-
lyzed project and the number of its classes and methods, respectively.
Column representation shows to which intermediate representation the
values in the remaining columns belong. Those columns present the
total number of instructions, the average instruction count per method,
its median, and its standard deviation. The last column presents the
time it takes to generate the intermediate representation.

Comparing the runtimes reveals that TACAIL0, TACAIL1, and
TACAIL2 are computed significantly faster than Shimple. One excep-
tion is javacc where TACAIL2 took slightly longer to be generated than
Shimple. The best speedup of TACAIL2 compared to Shimple is more
than 4.5x, achieved on proguard.

13.4 scalability of the case-study analyses 195

Table 13.5: Runtime of Different Call-Graph Algorithms

CHA RTA CFA

Project Soot WALA Unimocg Soot WALA Unimocg WALA Unimocg

jasml 21 s 7 s 37 s 110 s 532 s 14 s 15 s 17 s

javacc 24 s 7 s 35 s 121 s 518 s 15 s 16 s 20 s

jext 52 s 7 s 36 s 430 s 513 s 18 s 2 176 s 25 s

proguard 52 s 7 s 37 s 406 s 540 s 15 s 18 s 19 s

sablecc 23 s 7 s 39 s 134 s 509 s 14 s 17 s 19 s

average 34.4 s 7.1 s 36.6 s 240.1 s 522.2 s 15.2 s 448.4 s 19.9 s

Observation 13.6

Transforming bytecode using abstract interpretation in TACAI
is feasible and faster than the generation of Shimple, even when
TACAIL2, our most precise configuration, is used (about half
the mean runtime).

Observation 13.7

The overhead of TACAIL1 compared to TACAIL0 is almost neg-
ligible. Computing the more precise information in TACAIL2

takes 70% more time on average. However, when the extra in-
formation (e.g., nullness) provided by TACAIL1 and TACAIL2

are required by an analysis, this time consumption is justified.

13.4.2 Unimocg

After we have already shown that Unimocg’s consistently high sound-
ness does not come at the expense of imprecision (Section 12.2.2), we
also validate whether it does not come at the price of scalability.

We compare the performance of three call-graph algorithms—CHA,
RTA, and 0-CFA—which are available in Unimocg, Soot, and WALA (0-
CFA only for WALA and Unimocg) by running them on the same five
Java applications used for the evaluation of Unimocg’s precision. We
report analysis runtime in seconds as the median of three executions
on a server with two AMD(R) EPYC(R) 7542 @ 2.90 GHz (32 cores
/ 64 threads each) CPUs and 512 GB RAM. We used the Adoptium
OpenJDK 1.8.0_342-b07 that worked with all frameworks.

Table 13.5 shows the results (Unimocg’s columns are labeled OPAL
for brevity), evidencing that Unimocg’s call-graph algorithms do not
suffer scalability degradations, either. The most notable finding is
the difference in RTA performance. Unimocg’s RTA is on average
18x and 40x faster than the RTA of Soot, respectively WALA. This is

13.4 scalability of the case-study analyses 196

noteworthy because to enable reusing call-graph modules, e.g., for the
one resolving reflection Soot and WALA emulate RTA by a points-to
analysis. Our evaluation indicates that this approach seems to come
at a significant performance cost. Unimocg’s 0-CFA shows similar
performance as WALA’s 0-CFA across applications in the benchmark
except for jext, on which WALA’s 0-CFA took more than 45 minutes.
Unimocg’s CHA is on average comparable to that of Soot’s CHA,
but both are significantly slower than WALA’s CHA. We attribute
this to OPAL’s intermediate representation, which employs abstract
interpretation [188] to provide refined type information but needs
more computation time per reachable method; Soot’s Jimple [239],
while not based on abstract interpretation, offers similar information.

We conclude that Unimocg’s modular architecture does not compro-
mise performance. This is explainable: the main indirection we add to
OPAL is cheap—two method calls on the type-iterator object.

Observation 13.8

Unimocg’s modular architecture does not compromise on per-
formance; this is indicated by the comparison to state-of-the-art
frameworks.

Observation 13.9

Crucially, Unimocg enables reuse of modules across different
algorithms without relying on inefficient emulation; this benefit
is indicated by Unimocg significantly outperforming Soot and
WALA’s RTA implementations, which are emulated by points-to
algorithms.

13.4.2.1 Comparison with Declarative Approaches

Additionally, we compare Unimocg’s scalability to the Doop frame-
work [34]. Doop is a highly optimized state-of-the-art tool for declara-
tive Java points-to and call-graph analyses on top of the Soufflé [118]
Datalog engine. Its declarative approach supports similar modularity
and configurability and good trade-offs between pluggable preci-
sion/recall. Also, Doop’s and Soufflé’s authors repeatedly claimed its
good scalability [33, 34, 118, 215]. Specifically, we compare our 0-CFA
call graph’s runtime from Chapter 8 to Doop’s.

For better comparability, we disabled the reflection support in both
tools, because the respective approaches are different. The applications
were analyzed together with OpenJDK 1.7.0_75 (used for the TamiFlex
data in Doop’s benchmarks). Minor differences (less than 5% difference
in the number of reachable methods, except for eclipse and xalan)
remain, but these are in Doop’s favor since they result in more work

13.4 scalability of the case-study analyses 197

Table 13.6: Runtime and Size of Points-To-Based Call Graphs

OPAL DOOP

Program / #RM Compile Facts Analysis #RM

antlr 28.36 s 8 653 107 s 35 s 41 s 8 402

bloat 34.43 s 10 000 109 s 21 s 33 s 9 644

chart 40.13 s 12 268 109 s 38 s 45 s 12 058

eclipse 44.89 s 13 429 109 s 19 s 17 s 7 163

fop 18.87 s 7 509 110 s 41 s 35 s 7 300

hsqldb 19.65 s 7 455 109 s 38 s 32 s 7 097

jython 77.65 s 13 161 108 s 24 s 90 s 12 901

luindex 19.34 s 7 972 108 s 21 s 19 s 7 608

lusearch 21.03 s 8 540 108 s 21 s 20 s 8 281

pmd 21.47 s 9 028 109 s 39 s 36 s 8 817

xalan 35.59 s 13 330 108 s 37 s 30 s 7 111

geo. ∅ 29.68 s 108.54 s 29.09 s 32.51 s
#RM = number of methods found to be reachable

to be done by OPAL.2 Still, the sixth column of Table 13.6 shows that
our complete analysis, including all preprocessing, is often faster than
Doop’s analysis (9% in the geometric mean). Further, Doop additionally
requires time for rule compilation and fact generation.

We used OPAL’s single-threaded implementation since it seems that
Doop is hardly parallelized (fact generation was done with 128 threads
but did not significantly vary with other values for the fact-gen-cores
parameter; the souffle-jobs parameter did not show any effects at
all). Using a parallel version, OPAL should be able to outperform Doop
even more as shown in Section 13.1.

Observation 13.10

Despite being more general, i.e., not tuned for points-to analyses
but supporting many different kinds of analyses, OPAL clearly
outperforms Doop (half the runtime compared to Doop’s fact
generation and analysis).

13.4.3 OPIUM

To evaluate the scalability of OPIUM (cf. Chapter 10), we report
runtime results for the same two real-world applications as in Sec-
tion 12.4.2—batik and xalan from XCorpus—and compare them to ReIm,
the state-of-the-art tool for purity analysis. The evaluation was per-

2 For instance, OPAL does handle some cases of reflection more soundly even with
reflection handling disabled in order to process the DaCapo benchmark correctly.

13.4 scalability of the case-study analyses 198

formed on a Mac Pro with a Xeon E5 CPU with 8 cores @ 3GHz. The
JVM was given 24 GB of heap space.

Table 13.7: At Least Side-Effect-Free Methods in Batik/Xalan

Program Batik Xalan

ReIm #Analyzed methods 16 029 10 386

At least Side-Effect-Free Methods 6 072 (37.88%) 3 942 (37.95%)

Execution time (seconds) 103 140

OPIUM #Analyzed methods 15 911 10 763

At least Side-Effect-Free Methods 6 780 (42.61%) 4 390 (40.79%)

Pure methods 4 009 (25.20%) 2 492 (23.15%)

Ext./Context. Pure/SEF methods +987 (6.20%) +748 (6.95%)

Execution time (seconds) 103 104

Table 13.7 extends Table 12.8 with the respective execution times.
We executed OPIUM with 8 threads, leading to execution times of
103s for batik (the same time as ReIm) and 104s for xalan (26% less
time than ReIm’s 140s). At the same time, our analysis derives more
fine-grained results and identifies a significantly higher number of
side-effect-free methods than ReIm (cf. Section 12.4.2).

Observation 13.11

OPIUM scales to large projects: the execution time is less than
two minutes for ≈170 000 methods—including the JDK and
library dependencies—and similar or lower than ReIm, the pre-
vious state of the art.

13.4.4 IFDS Solver

Finally, we compare our RA2 IFDS analysis to several other state-of-
the-art systems using the same setup as in Section 13.3.

First, we compare the scalability and speed-ups achieved to the
Heros3 [104] IFDS solver. We used Heros because it is parallelized and
also independent of the static analysis framework. It is very mature,
widely used, and freely available. As we also compared to the IFDS
solver with OPAL’s sequential blackboard implementation and as
our analysis is based on our three address code representation (cf.
Chapter 7), we again used this representation as the basis for our
analysis in Heros. By using the exact same base technology stack for
both analyses, we ensure that we compare the raw performance of

3 Commit id: 46dda652

13.4 scalability of the case-study analyses 199

the solvers and that the results are not skewed by other technical
differences. The IFDS client analysis was adapted to Heros’ interfaces
but performs the same analysis. As shown in Figure 13.2, Heros had
lower speed-ups than our best strategy (which is also the one with
the lowest speed-ups) for all thread counts, with a maximum of 2.36x
at 8 threads. In comparison, our best strategy had a speed-up of
3.53x at 8 threads. Using more than 8 threads, Heros’ performance
decreased significantly, while RA2’s performance increased until 16

threads (with a speed-up of 3.98x for the best strategy) and did not
decrease significantly for 20 threads. Relative standard deviations for
Heros were between 2.1% and 5.7%.

A direct empirical comparison with a parallelized implementation
of IFDS using Actors [192] is unfortunately not possible. The solution
was never publicly available and—according to the authors whom
we contacted—is now practically impossible to get working again
due to dependencies on unavailable and outdated beta versions of
libraries. However, they have also benchmarked their solution against
a sequential implementation and we compare their speed-ups with
our speed-ups against the sequential implementation using OPAL. The
authors of IFDS-A reported a speed-up of 3.35x on 16 threads on eight
cores compared to their own sequential implementation. Our imple-
mentation, on the other hand, using again 16 threads (on 10 cores),
achieves a speed-up of 3.11x over OPAL’s highly optimized sequen-
tial implementation. Therefore, the scalability of our implementation
seems to be comparable to theirs, while our programming model is
analysis-independent and, therefore, not specialized to IFDS. Among
other things, the fact that two different baselines are used makes it
obvious that this comparison must be considered with caution and
only as a workaround because a real comparison is not possible.

Finally, we evaluate against WALA 1.5.2 [111] as it provides an-
other mature single-threaded IFDS implementation. As with Heros, we
adapted the IFDS client analysis, this time with more effort because
WALA’s IFDS solver is not framework-independent. The analysis was,
however, thoroughly checked to be equivalent to the one used with
RA2 and OPAL. To overcome framework differences related to the
underlying call graphs used by the different frameworks [187], we
generated and serialized WALA’s RTA call graph using Judge [186]
and deserialized it with OPAL. This ensures that the analyzed state
space is equal. As WALA timed out after 10 hours when analyzing the
JDK, we performed a comparison with WALA on javacc. For this setup,
WALA took 12.7 seconds, while RA2, using the DefaultScheduling

strategy, took 4.2 seconds on one thread and gave a speed-up of 4.5x
(0.9 seconds) using 16 threads. TargetsWithManySourcesLast, RA2’s
best strategy, took 0.70 seconds on 16 threads.

13.5 summary 200

Observation 13.12

RA2 outperforms state-of-the-art parallel IFDS solvers.

Observation 13.13

Compared to Heros, our implementation is faster on one thread,
achieves higher speed-ups and scales to more threads.

Observation 13.14

It also outperforms WALA’s IFDS solver significantly and seems
to provide at least similar speed-ups as a specialized actor-
based IFDS solver, despite being semi-implicit and analysis-
independent.

13.5 summary

In this chapter, we answered RQ3 by showing how OPAL’s architecture
allows improving the scalability of static analyses implemented in
OPAL. We showed that our case-study analyses are on par with or
outperform respective state-of-the-art analyses, thanks in particular to
parallelization and specialized data structures. Scheduling strategies
also impact the scalability of analyses in OPAL and an appropriate
choice of strategy can make significant differences in execution time.
While a specialized strategy for a simple purity analysis did not offer
benefits over generic strategies, we have shown that such specialized
strategies can be used and show potential for future research.

Part IV

C O N C L U S I O N

conclusion 203

In this final part, we wrap up this thesis with a summary of the re-
sults, ideas for future work, and a conclusion. The individual chapters
of this part are:

summary of results Chapter 14 summarizes the main contribu-
tions and findings of this thesis.

future work In Chapter 15, we present ideas for possible exten-
sion of this work and future research directions. In particular, we dis-
cuss possibilities to further extend the applicability of our blackboard
analysis architecture and possible ways to improve the scalability of
analyses implemented in it.

closing discussion Chapter 16 concludes this thesis with a
closing discussion, putting the thesis into the context of current and
future research.

14
S U M M A RY O F R E S U LT S

In this thesis, we presented a novel approach to enable static analysis
frameworks to cater to modular, collaborative analyses. We built this
approach based on the blackboard architecture that allows fully in-
dependent modules to interact closely in solving a common problem.
We showed the feasibility of this approach using two distinct imple-
mentations. We also implemented several case-study analyses, that in
their own right advance the respective research areas, and evaluated
them against the respective state of the art. They showcased the broad
applicability of our approach and are on par with or outperform the
state of the art in terms of soundness, precision, and scalability. Our
individual contributions are:

blackboard analysis architecture We proposed the black-
board analysis architecture, a novel architecture for static analysis
frameworks. It builds upon the blackboard architecture that was orig-
inally invented for problems of artificial intelligence. Independent
modules communicate intermediate results via a central data storage,
the blackboard, and improve upon other modules’ results until the
overall problem is solved. This allows each module to be implemented
in the optimal way to solve a particular sub-problem and to freely
combine the necessary modules to achieve the overarching goal.

We started out by distilling the requirements to a modular, collabo-
rative static analysis framework from a series of case-study analyses
(Chapter 2). Based on these requirements, we systematically developed
the blackboard architecture and described its implementation in the
OPAL static analysis framework (Chapter 3).

Like with declarative frameworks such as Doop, OPAL’s analyses,
while developed in isolation, can be easily composed into complex
analyses by collaboratively computing results during interleaved ex-
ecutions. Sub-analyses can be reused in various complex analyses
and one can easily exchange sub-analyses of a complex analysis for
fine-tuning precision, sound(i)ness, and scalability.

But, instead of relying on a general-purpose solver, OPAL com-
bines imperative and declarative features to overcome limitations of
fully declarative frameworks. Individual analyses can be implemented
in an imperative style making use of whatever data structures and
implementation strategies are appropriate for their specific needs. In-
terdependencies and other characteristics important for guiding their
interleaved execution are specified declaratively and managed auto-
matically by a custom solver. Due to its approach, OPAL (a) is more

205

summary of results 206

general in terms of the analyses supported—it is in particular the first
framework to explicitly support lazy collaboration of optimistic and
pessimistic analyses—and (b) enables analysis-specific optimizations,
which lead to outperforming state-of-the-art declarative analyses.

OPAL is available under the open-source BSD 2-clause license and
is the basis for our implementations of the case-study analyses and
for our evaluation.

ra2 In addition to the implementation in OPAL, we developed
RA2, an alternative implementation of our approach (Chapter 4). This
showcases that the blackboard analysis architecture can be realized
using different underlying concepts and thus is flexible enough to be
included in frameworks based on different paradigms.

RA2 is a new programming model for parallelizing static analy-
ses based on the ideas and concepts of reactive programming, that
(a) is semi-implicit, requiring only minor adaptions to analyses to
benefit from parallelization, and (b) is analysis-independent, lending
itself very well towards the implementation of a wide range of static
analyses, including purity and data-flow analyses. RA2 also provides
support for using different scheduling strategies.

We used RA2 to evaluate the impact of different scheduling strate-
gies and the scalability of parallel execution of analysis tasks in
the blackboard analysis architecture, showing promising results that
should be expanded upon in future research.

modular soundness proofs We gave a formal definition of the
core concepts of our approach (Chapter 5) and developed a theory
for compositionalsoundness proofs for static analyses implemented in
our blackboard analysis architecture. We proved that soundness of an
analysis follows directly from independent soundness proofs of each
module. Furthermore, we extended our theory to enable the reuse of
soundness proofs of existing modules across different analyses. We
evaluated our approach by implementing four analyses and proving
them sound: A pointer, a call-graph, a reflection, an immutability
analysis, and a demand-driven reaching definitions analysis.

This narrows the gap between impractical academic analyses, which
can be proven sound, and useful applied analyses, which are too
complex to be proven sound. We believe that some complexity of
applied analyses is incidental and can be better managed by modular-
izing their implementation, which makes a compositional soundness
proof more feasible. This is a significant step forward from traditional
techniques for modular soundness proofs that often require analysis
modules to be tied together by additional glue code which must be
reasoned about and from techniques that require modules to follow
a particular structure, such as being derived from a generic abstract
interpreter.

summary of results 207

unimocg Using the flexibility provided by the blackboard analysis
architecture, we developed Unimocg (Chapter 8), a novel architecture
to build call graphs using independent modules for computing type in-
formation and for resolving calls resulting from distinct programming
language features such as reflection or (de)serialization. Traditional
call-graph algorithms suffer from the conflation of these two concerns,
resulting in vastly different soundness with respect to the support of
different language features. Thus, modular call-graph construction
that decouples the computation of types of local variables from the
resolution of call targets is sorely needed.

Unimocg solves this issue by separating the resolution of calls into
individual modules corresponding to individual language features.
This decoupling enables the modular composition of different analyses
that contribute to both type computation and call resolution, making
it possible to model different language features and APIs in individual
modules. These analyses can then be reused fully across a multitude
of different call-graph algorithms. With individual modules, feature
support can be implemented and reasoned about in isolation. This
is necessary to facilitate support for a multitude of such features
that are relevant to call-graph construction. As a result, users of call
graphs can rely on consistent feature support and analysis developers
can easily add new algorithms or language features while reusing
existing components. A common interface, the type iterator provides
the connection between type resolution on the one hand and call
resolution and further analyses dependent on type information (e.g.,
immutability analyses) on the other hand, retrieving and interpreting
type information gathered by the call-graph algorithm and stored in
the blackboard. Within Unimocg, we implemented ten different call-
graph algorithms from vastly different families of algorithms: CHA,
RTA, the XTA family including MTA, FTA, and CTA as well as several
k-l-CFA-based algorithms.

With this architecture, we have shown that it is possible to imple-
ment call-graph algorithms from different families with a shared, con-
sistently sound support for individual language features, improving
significantly over the state of the art. We also found that this consis-
tent soundness does not come at the expense of either precision or
scalability compared to the state of the art in call-graph construction.

cifi Next, we presented CiFi, a holistic and unified model for the
analysis of field-, class-, and type immutability (Chapter 9). Immutabil-
ity analysis can help developers in catching bugs and adhering to
secure coding guidelines, and it can also provide vital information to
other analyses such as purity analyses. In addition to concepts found
in the literature, we also explicitly consider lazy initialization of fields
and immutability that depends on the concretization of generic type
parameters.

summary of results 208

We show that CiFi is more expressive than state-of-the-art ap-
proaches to immutability inference and checking and also introduce
CiFi-Bench, a handcrafted benchmark tailored to test and evaluate
immutability analyses. Using this, we confirm that CiFi is both more
sound and more precise than the state-of-the-art immutability checker
Glacier.

CiFi benefits from OPAL’s blackboard architecture by being sep-
arated into four different modules for field assignability and field-,
class-, and type immutability. This allows exchanging each module
individually to optimize or trade off soundness, precision, and scala-
bility.

opium As our final case-study analysis, we developed OPIUM,
three purity analyses of different precision and scalability characteris-
tics (Chapter 10). OPIUM is built upon a novel, fine-grained, unified
model of purity that simultaneously captures the absence of side ef-
fects as well as deterministic behavior methods for the first time. It
captures all use cases found in the literature and provides precise defi-
nitions of all purity levels. Additionally, we introduced the concepts of
contextual purity—an extension of external property that allows finding
more cases of confined side effects—and domain-specific purity to cap-
ture side effects that are not relevant to the end user’s use case. Using
OPIUM, we find that all of these purity levels occur in real-world
software.

We compared OPIUM to the state of the art in purity inference and
found that OPIUM was significantly more precise than all competi-
tors, identifying more methods without side effects, differentiating
from them methods that also behave deterministically, and also find
additional methods with confined side effects. At the same time, using
OPAL’s parallel fixed-point solver, OPIUM was on par or outperformed
the state-of-the-art purity analysis ReIm on real-world software.

OPAL allows OPIUM’s different analyses to be exchanged in a
plug-and-play manner to explore trade-offs between precision and
scalability and also enables OPIUM to use the information computed
by all of our other case-study analyses as well as additional escape
analyses.

15
F U T U R E W O R K

This thesis has laid out a novel framework architecture for modular,
collaborating static analyses. Still, there are several directions in which
this work can be extended upon, some of which we discuss in this
chapter. In particular, we discuss possible ways to broaden the scope
of analyses and present several interesting ideas on how the scalability
of analyses could be improved significantly.

15.1 expanding framework scope and applicability

We demonstrated that OPAL’s blackboard architecture allows imple-
menting static analyses from dissimilar domains. However, all of
our case-study analyses are still implemented in Scala in a similar,
functional-imperative style, and they all are tailored to analyze pro-
grams compiled to Java Virtual Machine bytecode. We believe that our
blackboard architecture can be the foundation for a much broader set
of analyses and sets of analyses.

multi-paradigm analyses OPAL’s blackboard architecture poses
little requirements to analyses: it must be possible to invoke them for
a single property, and, if they have dependencies, they must be able to
specify them and provide a continuation function to handle updates of
dependencies. As no requirements are posed on the internal structure
of analyses, it is presumably possible to implement analyses using
different paradigms and still have them interact using the blackboard.
Analyses can be agnostic of the way other analyses they depend upon
are implemented. Possible paradigms to implement analyses could
include Datalog-based declarative analyses, analyses based on SMT
solving, or machine-learning-based analyses, significantly broadening
the scope of analyses possible in OPAL. Connecting static to dynamic
analyses would enable further use cases but also poses additional prob-
lems, as dynamic analyses can not simply be suspended and resumed
or directed towards computing specific properties. However, we have
already experimented with using data from a dynamic analysis by
implementing a module for our call-graph construction framework
Unimocg (cf. Chapter 8) that parses data on reflective calls produced
by the Tamiflex ([27]) dynamic analysis. On the other hand, we believe
that it is possible to use OPAL’s static analyses on demand during the
execution of a dynamic analysis. Whether a full connection allowing
cyclical dependencies between static and dynamic analyses is possible
remains to be seen in future research.

209

15.1 expanding framework scope and applicability 210

connecting existing analyses A significant problem in con-
structing complex analyses from smaller building blocks is providing
these building blocks. Implementing sound, precise, and scalable static
analyses is a laborious task, requiring deep knowledge of the ques-
tions to be analyzed. It also involves extensive engineering. While
OPAL’s modular architecture makes implementing complex analyses
easier by enabling them to be encoded in independent modules that
can be implemented by different experts at different times and that
can be improved upon or replaced at any time independent of other
analyses, the individual modules currently have to be implemented
explicitly for OPAL.

With the few requirements posed by the blackboard architecture, we
assume that it is possible to connect existing analyses to OPAL with-
out rewriting them from scratch. Instead, depending on the structure
of the existing analysis, it may be possible to either directly invoke
the analysis with minimal glue code or to modify only the analysis
execution scheme, e.g., a worklist algorithm or fixed-point solver, to
conform to OPAL’s requirements. In either case, the actual analysis
code would not need to be re-implemented, saving developer time
and effort. Pursuing this would be particularly helpful if complete
frameworks could be connected to work in lockstep with OPAL, mak-
ing all existing analyses in these frameworks available to be combined
with OPAL’s analyses.

cross-language analyses Modern software systems often make
use of multiple programming languages for different purposes. They
might use a scripting language like JavaScript for the front end and
a compiled language like Java for the back end, potentially using
native code written in a systems programming language like C or C++
for low-level tasks. Analyzing such hybrid software systems is hard,
because semantics between programming languages differ.

Traditionally, for hybrid software systems only parts of the software
written in a single language are analyzed, treating the effects of other
parts either by ignoring, conservatively over-approximating, or manu-
ally modeling them. It is also possible to execute analyses for different
parts of the software system sequentially, using the output of the
analysis of one part as an input to the analysis of the next part. This
may need to be repeated in order to deal with cyclic dependencies,
e.g., data flows going back and forth between the front and back end.
Another approach is to use an intermediate representation to which all
parts of the software system are transformed. This does work well for
some languages, e.g., languages like Java, Kotlin, or Scala all readily
compile to Java Bytecode and many languages can be compiled to
LLVM Bitcode, but it is difficult to create an intermediate representa-
tion that can both fully represent the semantics of all programming
languages to be analyzed and to still be reasonably easy to analyze.

15.2 further scalability improvements 211

Using OPAL’s blackboard architecture, analyses for different lan-
guages could be executed simultaneously using the language-agnostic
blackboard and fixed-point solver. Analyses communicate solely via
values from explicitly reified lattices, enabling analyses for different
languages to cooperate as long as the chosen lattice does faithfully
represent the respective semantics of all languages in question. De-
signing individual lattices that represent the semantics of different
languages would be easier than a full intermediate representation that
needs to capture all semantics of each language.

In order to analyze hybrid software systems, it is of particular in-
terest to avoid re-implementing analyses that already exist for these
languages (see the paragraph above). Even if existing analyses use
different lattices, small glue analyses can be used to translate infor-
mation from one lattice to the other. This can be used in conjunction
with OPAL’s option to trigger analyses based on the computation of
particular properties (cf. R10) in order for analyses to trigger each
other while being fully unaware of each other. A proof-of-concept
adapter is currently being developed to connect to IFDS analyses in
the WALA framework [111], enabling taint analysis of JavaScript code.
Work is in progress to connect the Sturdy library [122] to OPAL, which
would enable reusing its analyses including analyses for languages
beyond Java Bytecode such as WebAssembly.

15.2 further scalability improvements

While our case-study analyses show on-par or even superior perfor-
mance compared to respective state-of-the-art analyses, we see several
possible ways to improve runtime- as well as memory performance.

improved scheduling We described several generic scheduling
strategies as well as one optimized for a particular analysis in Sec-
tion 4.4 and evaluated them in Section 13.3. While these scheduling
strategies showed promising results in improving scalability, further
research is necessary to find optimal strategies for different analysis
scenarios. Such research should study further scheduling strategies
as well as heuristics for selecting optimal scheduling strategies for
both an individual analysis as well as a set of analyses executed con-
currently. In particular, the selection of a scheduling strategy should
be done automatically by the analysis framework to alleviate the end
user from manually selecting a suitable strategy. Scheduling could
further be improved if several scheduling strategies could be used at
the same time, applied to different analyses executing concurrently.

full laziness OPAL supports analyses that are lazy in the sense
that they are only executed to compute some property if that prop-
erty is actually required either by the end user of the analysis or by

15.2 further scalability improvements 212

another analysis. However, once the computation of a property has
been started, it is never stopped before the maximum fixed point of
all analyses is reached. This is not strictly necessary, especially for
properties required only by another analysis: The requesting analysis
may not be interested in the full result of the property and instead
be able to complete its own computation with only a partial result.
Consider, for example, a purity analysis (cf. Chapter 10) requesting
information on whether a value escapes the analyzed method. There
may be no need for the purity analysis to distinguish whether the
value only escapes to the immediate caller or potentially to any point
in the program, so no further computation is required once the escape
analysis has concluded the former to be possible. In a different sce-
nario, an analysis might only care for a particular property dependent
on the value of some other property. For the example of the purity
analysis, an access to a field might impede purity only if either the
field is mutable or the field’s parent object is not local (i.e., locally
instantiated and non-escaping) to the current method. In this case,
computation of either property is no longer needed once the other
property has already been determined to be true.

Shortcutting computations that are not at all or no longer required
could save significant computation resources if these cases appear
frequently. Thus, we suggest exploring how the blackboard and fixed-
point solver can be extended to track which properties must still be
computed and eschew invoking continuation functions for properties
that need not be computed further. The blackboard and fixed-point
solver already have the necessary information at hand, as analyses
always report the full set of dependencies that are still to be resolved.
Going further, it might also be possible to indicate already in the ini-
tial query to the blackboard whether the computation of the queried
property is only required up to a certain point so that the analysis
responsible for this computation can avoid further computation al-
ready during the initial analysis. Whether the performance overhead
of tracking and checking which dependencies still exist is worth the
possible benefit is an open question for future research.

analysis batching So far, analyses in OPAL are all executed con-
currently. If the end user wishes to execute some set of analyses only
after computing the fixed point of a different set of analyses, they have
to manually execute two batches of analyses sequentially. However,
such batching of analysis execution can be done automatically based
on the analyses’ declared dependencies. This could positively impact
scalability as it avoids repeated invocation of continuation functions
for analyses that depend on other analyses in a non-cyclical manner. It
could also enable the use of different scheduling strategies for differ-
ent analysis batches if automated selection of scheduling strategies is
implemented as described above. On the other hand, small batches of

15.2 further scalability improvements 213

analyses executed could severely limit the number of tasks available
for parallel execution, reducing the performance benefit achievable
from utilizing multicore processors. Also, this conflicts with the idea
proposed in the paragraph above and with lazy computation in gen-
eral, as starting or stopping property computations is not possible if
the requesting analysis is only executed in a later batch. A prelimi-
nary implementation to perform automated analysis batching exists
in OPAL, but further research is necessary to study its benefits and
drawbacks.

store cleanup When executing a set of analyses in OPAL, typi-
cally many of the analyses’ results are not of direct interest to the end
user but computed to support the computation of other properties,
which in turn either have been requested by the end user or contribute
to yet other properties. As an example, consider the purity analysis
from Chapter 10: it depends on a call graph (cf. Chapter 8) but not
necessarily on auxiliary data used in the computation of that call
graph, such as points-to sets. Such supporting properties need not
be kept in the blackboard’s data store until the computations fixed-
point is reached but could be discarded once they can no longer be
of use. With many properties computed only for other analyses, this
could free significant amounts of memory for use by later analyses.
Implementing this would not only require the end user to specify
which analysis results they are actually interested in but also require
batching of analysis (see previous paragraph) as properties can only
be purged from the blackboard once no analysis that might depend
on them can be executed anymore.

improved parallelization Both our implementations of Chap-
ter 3 and Chapter 4 include fixed-point solvers that execute different
analysis functions in parallel. However, both are only proof-of-concept
and not yet highly optimized. In particular, both use simple worklist al-
gorithms, distributing tasks between a set of equal threads. This means
that computations pertaining to a single property can be executed by
different threads at different times. While not necessarily problematic
in systems with uniform memory access times—we believe the effects
of caching to be insignificant due to typical analysis data working sets
easily exceeding cache capacities by orders of magnitude—, this could
create excessive long-latency memory traffic on non-uniform memory
access (NUMA) or distributed systems that might be necessary to scale
beyond double-digit thread counts. As a potential remedy, we suggest
that it might be possible to bind computations for each property to
specific threads, borrowing from the ideas of distributed hashtables.
However, it is necessary to communicate the dependencies between
property computations and the results of dependent computations,
creating additional overhead while the potential for parallel execution

15.2 further scalability improvements 214

is reduced if tasks can not be executed anywhere. Thus, particular
benefits could be achieved if computations for properties with many
interdependencies were kept on the same thread/computation node to
minimize communication overhead. Whether this is achievable should
be answered in future research.

partial analysis and resumption A major problem in scaling
static analyses to large software systems and to the analysis of whole
repositories like Maven Central or the Google Play store is the amount
of code to be analyzed. Most of this code is found in third-party
libraries that applications include directly or transitively (e.g., Wang et
al. [240] and Orikogbo et al. [175] found that Android respectively iOS
apps consisted of about 60% code from libraries and only 40% actual
application code). This opens up the potential to analyze each library
only once, reusing results for the subsequent analysis of multiple
applications that make use of the library. We already demonstrated
that OPAL supports deserializing properties that have been determined
manually or by a previously executed analysis; e.g., OPIUM uses
manual annotations for a number of important native methods from
the Java Development Kit.

However, for many analysis problems, the overall result is more
than just the combination of partial results. Call graphs, for example,
can have cyclic dependencies between library and application code;
thus it is not possible to just provide a call graph for all used libraries
when analyzing an application, but it is necessary to resolve further
calls also inside the library code. We suppose that it is possible to
support such use cases in the blackboard architecture by serializing
not only the final results of a partial (e.g., library) analysis but also
enough of its state to support the analysis’ resumption later on. For a
call-graph analysis, this can mean serializing computed type sets and
the set of potentially polymorphic call sites. Preliminary research into
this direction has already been performed [126].

Even more challenging would be the resumption of analyses to sup-
port incremental computations. In this case, not only new properties
have to be computed, already computed properties can become invalid
as well. A possible way to deal with this could be the addition of a
cleanup phase that purges invalidated properties from the blackboard
before the analysis is resumed. This, however, may require additional
data on the dependencies between properties in order to invalidate all
properties that depended on other invalidated properties as well.

16
C L O S I N G D I S C U S S I O N

The work presented in this thesis is closely related to trends and
challenges in current and future research and software engineering.
Static analyses are an important tool in ensuring software quality and
security, in providing developers and end users with insights into
their applications, and in performing optimizing compilation. With
the growing amount of software being produced and used, and with
software used with growing ubiquity in our everyday lives and in
contexts where software failures or vulnerabilities can threaten entire
economies and the lives of millions of people, static analysis is only
going to be ever more important.

As a result, the challenges for static analyses are increasing: They
must be sound in order not to miss critical vulnerabilities or lead to
incorrect optimizations. They must be precise in order to not over-
whelm developers with false-positive results and to open up as many
opportunities for optimization as possible. And finally, they must be
scalable in order to cope with the ever-increasing amount of software
written, distributed, and used every day.

These three qualities are often in conflict, and thus, trade-offs be-
tween them must be made, fine-tuned to different use cases. Experi-
menting with and fine-tuning such trade-offs is not easily possible with
monolithic analyses that follow a one-size-fits-all approach. Instead,
recent trends show interest in modularized static analyses, where
modules that exhibit different qualities can be added, removed, or
exchanged to adapt the overall analysis to the use case at hand. One ex-
ample for this trend are modularized abstract interpreters that enable
capturing different aspects of the analyzed programming language
in distinct modules. This allows for analyses for different languages
to be combined from the modules applicable, and at the same time,
allows proving the soundness of the overall analysis from simpler
soundness proofs of individual modules. Other works have focused
on modularizing specific types of analyses such as alias analysis.

Declarative static analyses based on Datalog are another recent
development that brings some modularity by design—Datalog rule
sets can be exchanged to fine-tune analyses. However, traditional
Datalog only supports set-based relations, limiting expressivity for
static analyses. Extensions that allow the use of arbitrary lattices
have not yet gained widespread adoption. Despite relying on highly
optimized solvers and manual as well as automated optimization of
rules, Datalog analyses also show inferior scalability compared to
imperative approaches.

215

closing discussion 216

We have introduced OPAL’s blackboard analysis architecture, a
novel, generic approach to modular, collaborative static analyses.
Based on requirements distilled from a series of dissimilar case studies,
we built OPAL to pose few restrictions on analyses and support the
implementation of a broad range of static analyses without focusing
on a particular problem domain. The blackboard architecture enables
dissimilar analyses to collaborate while being ignorant of each other,
which allows composing intricate systems of analyses from a multi-
tude of modules. This enables more complex analyses that achieve
more soundness and/or more precision than respective state-of-the-
art analyses, and it facilitates fine-tuning trade-offs between these
qualities.

In order to achieve scalability on par or superior compared to the
state of the art, the blackboard architecture allows for automatic, semi-
implicit parallelization of analyses to utilize the resources of modern
multicore processors. Support for different strategies for scheduling
the execution order of analysis tasks can improve scalability as our
evaluation has shown, as does the ability to use optimized data struc-
tures.

We presented four case-study analyses to showcase OPAL’s broad
applicability. Each of these analyses in its own right advanced the state
of the art in their respective area of research: TACAI is an intermediate
representation for Java Bytecode that uses abstract interpretation to
provide important information for further analyses in a precise way, in
particular for call-graph analyses. Research into sound call graphs and
language feature support has seen a spike in recent years after decades
of call-graph research mainly focusing on aspects of precision and
scalability in the resolution of regular virtual calls. Unimocg addresses
the issue of inconsistent soundness in the support of language features
between different call-graph algorithms implemented in the same
static analysis framework. Call-graph algorithms are the foundation
of all interprocedural analyses and thus of vital importance for sound,
precise, and scalable analyses that are meant to compute intricate
properties. This applies, e.g., to immutability and purity analyses, both
of which can be important tools to ensure software quality and security
and to enable compiler optimizations. With CiFi and OPIUM, we
provide precise, unified, and fine-grained definitions for immutability
and purity properties, respectively. Both of these research areas had
inconsistently used and vaguely defined terminology before, often
catering to only a specific use case. Our analyses’ flexible, modular
implementation allows fine-tuning trade-offs and achieving superior
soundness, precision, and scalability compared to the respective state
of the art.

All of these case studies tie together and form an intricate system of
analyses, again highlighting OPAL’s applicability to solving complex

closing discussion 217

analysis problems by composing a multitude of distinct, dissimilar
sub-analyses as shown in Figure 16.1:

Purity

ClassImmutability

FieldImmutability
TypeImmutability

FieldAssignability

IREscape FieldLocality

ReturnValueFreshness

CallGraph

Points-To

InstantiatedTypes

Reflection

Threads

Serialization

Finalizer

Figure 16.1: Dependencies Between Sub-problems for a Purity Analysis

Our case studies highlighted how OPAL enables dealing with three
major challenges for static analyses: Complex language features that
impact, e.g., call-graph construction, are handled using individual
modules to capture one feature at a time. Complex analysis problems
are solved by composing intricate systems of analyses from a multitude
of pre-existing, independent sub-analyses. Complex trade-offs between
soundness, precision, and scalability finally are balanced off and fine-
tuned by providing a plug-and-play-like system where individual
sub-analyses can be added, removed, or exchanged with different
implementations with changing as little as a single line of setup code.

While our case-study analyses showed on par or better scalability
than respective state-of-the-art analyses, we believe that it is possible
to further improve the scalability of OPAL. This is imperative to scale
complex analyses to the millions of applications available today, e.g.,
via repositories like Maven Central or app stores like Google Play and
to analyze complex software that can not only consist of hundreds
of thousands of lines of code but often include significant numbers
of direct and indirect dependencies on third-party libraries. Only
recently researchers have started to conduct large-scale analysis of such
software repositories and to create tools to continuously monitor all
changes and additions. Scalable analyses will be a major contributing
factor to allow such projects to provide valuable insight into the vast
amount of software we use and to discover vulnerabilities or malware
in a timely manner.

Expanding the scope and applicability of static analyses is an even
more important but also more challenging task for the future. As mod-
ern software systems consist of multiple distinct components, often
implemented using different programming languages and frameworks,
it will be necessary to develop static analyses that can fully capture
such systems. This includes cross-language analyses that are able to

closing discussion 218

simultaneously analyze connected software components written in
different languages but also cross-paradigm analyses that combine
the power and applicability of different static analysis and general
problem-solving paradigms (e.g., machine learning or SMT solving)
to answer ever more complex questions. It is vital that this does not
require full (re-)implementation of every required sub-analysis but al-
lows integrating existing analyses with each other as much as possible
in order to benefit from decades of previous research and engineering.

Wrapping up, we conclude that OPAL fulfills this thesis’ main goal:

A general framework for modular, collaborative program anal-
ysis should allow for complex systems of analyses that offer
good soundness, precision, and scalability, including exploring
the trade-offs between these qualities.

Also, OPAL’s blackboard architecture helps to address the major
challenges that static analyses will face going forward, from increasing
demands on performance and scalability to the necessities of analyzing
complex software systems.

Part V

A P P E N D I X

appendix 221

soundness proofs of the case studies from Chapter 5

We derive both the analysis modules and dynamic modules from the
same parametric implementation1. The parametric modules can be
found in file GenericModules.scala. Each case study is implemented
in a separate trait containing the interface and the modules. Each
module is parameterized and has a type according to Definition 5.11.
The static and dynamic instances of the interfaces can be found in
AnalysisModules.scala and DynamicModules.scala respectively.

Soundness of the generic modules follows as a free theorem of
parametricity:

Theorem V.1 (Soundness of Extensible Modules by Parametricity). Let
f be a generic module with type

f : ∀E′ ⊇ E, K′ ⊇ K, P : K′ → Set.

F[P[K′]] ⇒ E′ × Store[E′, K′, P] → Store[E′, K′, P].

If f is implemented in a language that enjoys parametricity, then for all
Ê′, E′ ⊇ E, K̂′, K′,⊇ K, P̂ : K̂′ → Lattice, P : K′ → Set, Î ∈ F[P̂[K̂′]],
I ∈ F[P[K′]],

sound(I, Î) =⇒ sound(f [E′, K′, P](I), f [Ê′, K̂′, P̂](Î))

Proof. Follows as a free theorem of parametricity. Module f is para-
metric in the type of entities and kinds because types E′ ⊇ E can
be viewed as a disjoint sum type E + (E′ \ E) which is discretely
ordered.

Hence, it suffices to prove soundness of the static instance Î and
dynamic instance I of the interface. The concrete and abstract domains
and their orderings are defined in the code.

Soundness of Pointer Analysis and Call-Graph Analysis

Definition V.2 (Concretization Functions). We define the concretization
functions on values and call targets:

γ : V̂al → P(Val)

γ(v) = NonAnalyzedValues∪{Obj(o), NullVal | o ∈ O} if v = Ôbj(O)

∅ if v = ⊥
where NonAnalyzedValues =

BoolVal∪ NullVal∪ Val∪ MethodVal∪ ClassVal

1 Implementation and tests available at https://doi.org/10.5281/zenodo.7311078

https://doi.org/10.5281/zenodo.7311078

appendix 222

The analysis does not analyze values such as booleans. To be able to prove
boolean operations sound, the concretization function adds all boolean values
to the set of concrete values.

γ : ̂CallTarget → P(CallTarget)

γ(̂CallTarget(Targets)) = {CallTarget(target) | target ∈ Targets}

Lemma V.3. sound(nullPointer, ̂nullPointer)

Proof. To show: {nullPointer()} ⊆ γ(̂nullPointer())

{nullPointer()} = {NullVal} ⊆ γ(⊥) = γ(̂nullPointer())

Lemma V.4. sound(newObj, n̂ewObj)

Proof. To show: {newObj(class, ctx) | ctx ∈ γ(ĉtx)} ⊆
γ(n̂ewObj(class, ĉtx)) for all class and ĉtx.

{newObj(class, ctx) | ctx ∈ γ(ĉtx)}
= {Obj(class, ctx) | ctx ∈ γ(ĉtx)}
= ⊆ γ(Ôbj({class, ĉtx}))
= γ(n̂ewObj(class, ĉtx)).

Lemma V.5. sound(forObj, f̂ orObj)

Proof. Assume { f (class, ctx) | ctx ∈ γ(ĉtx)} ⊆ γ(f̂ (class, ĉtx)) for all
class and ĉtx. To show: {forObj(val)(f) | val ∈ γ(v̂al)} ⊆
γ(f̂ orObj(v̂al)(f̂)) for all v̂al.
In case v̂al = Ôbj(X):

{forObj(val)(f) | val ∈ γ(v̂al)}
= { f (className, ctx) | (className, ĉtx) ∈ X, ctx ∈ γ(ĉtx)}
⊆

⋃
(className,ĉtx)∈X

γ(f̂ (className, ĉtx)) (by soundness of f̂)

⊆ γ(
⊔

(className,ĉtx)∈X

f̂ (className, ĉtx)) (by monotonicity of γ)

= γ(f̂ orObj(Ôbj(X))(f̂)).

For all other v ∈ γ(v̂al), forObj returns a type error.

Lemma V.6. sound(newCallTarget, ̂newCallTarget)

Proof. To show: {newCallTarget(class, ctx, method) | ctx ∈ γ(ĉtx)} ⊆
γ(̂newCallTarget(class, ĉtx, method)) for all class, ĉtx, and method.
Analogous to Lemma V.4.

appendix 223

Lemma V.7. sound(forCallTarget, ̂f orCallTarget)

Proof. Assume that { f (class, ctx, method) | ctx ∈ γ(ĉtx)} ⊆
γ(f̂ (class, ĉtx, method)) for all class, ĉtx, and method. To show:
{forCallTarget(target)(f) | target ∈ γ(t̂arget)} ⊆
γ(̂f orCallTarget(t̂arget)(f̂)) for all t̂arget.
Analogous to Lemma V.5.

Lemma V.8. sound(method, m̂ethod).

Proof. Module m̂ethod recurses over all statements in a method and
registers them in the store. Module method executes a subset of the
statements in the order of the control flow.

Lemma V.9. sound(boolLit, b̂oolLit) and sound(equals, êquals)

Proof. To show {boolLit(b)} ⊆ γ(b̂oolLit(b)) for all booleans b.

{boolLit(b)} ⊆ γ(⊥) = γ(b̂oolLit(b))

The proof of êquals is analogous.

Soundness Reflection Analysis

The following proofs refer to the allocation information of the objects
String (strAlloc = {(String,∅)}), Class (classAlloc = {(Class,∅)}),
and Method (methodAlloc = {(Class,∅)}).

Definition V.10 (Concretization Functions).

γ : V̂al → P(Val)

γ((ô, ŝ, ĉ, m̂)) := NonAnalyzedValues∪ γ(ô) ∪ γ(ŝ) ∪ γ(ĉ) ∪ γ(m̂)

where NonAnalyzedValues = BoolVal∪ NullVal

Lemma V.11. sound(newObj, n̂ewObj) and sound(forObj, f̂ orObj) for
the extended value types.

Proof. Analogous to Lemma V.4 and Lemma V.5.

Lemma V.12. sound(newString, ̂newString)

Proof. To show: {newString(s)} ⊆ γ(̂newString(s)) for all strings s.
Analogous to Lemma V.4.

Lemma V.13. sound(classForName, ̂classForName)

Proof. To show:
{classForName(val) | val ∈ γ(v̂al)} ⊆ γ(̂classForName(̂s)) for all
values val and class tables table. We continue by case distinction on ŝ
in v̂al = (ô, ŝ, ĉ, m̂).

appendix 224

• In case ŝ = Constant(s) and there is a class c with name s in the
class table, then StrVal(s, o) ∈ γ(v̂al) and

classForName(StrVal(s, o))

= ClassVal(c, classAlloc)

∈ γ((classAlloc,∅, {c},∅))

= γ(̂classForName((ô,Constant(s), ĉ, m̂)))

For all other v ∈ γ(v̂al), classForName returns a type error.

• In case ŝ = ⊤, then

{classForName(val) | val ∈ γ(v̂al)}
= {ClassVal(c, classAlloc) | c ∈ table}
⊆ γ((classAlloc,∅,⊤,∅))

= γ(̂classForName((ô,⊤, ĉ, m̂)))

Lemma V.14. sound(getMethod, ̂getMethod)

Proof. To show:

{getMethod(classVal, methodVal) |
classVal ∈ γ(̂classVal), methodVal ∈ γ(̂methodVal)}

⊆ γ(getMethod(̂classVal, ̂methodVal))

for all values ̂classVal = (_, _, ĉ, _), ̂methodVal = (_, ŝ, _,) and class
tables table. We continue by case distinction on ĉ and ŝ:

• In case ĉ ̸= ⊤ and ŝ = Constant(s), then

{getMethod(ClassVal(c, classAlloc), StrVal(s, strAlloc)) |
c ∈ γ(ĉ)}

= {MethodVal(table(c, s), methodAlloc) | c ∈ ĉ}
= γ((methodAlloc,∅,∅, {table(c, s) | c ∈ ĉ}))
= γ(getMethod(̂classVal, ̂methodVal))

• In case ĉ = ⊤ or ŝ = ⊤, then

{getMethod(classVal, methodVal) |
classVal ∈ γ(̂classVal), methodVal ∈ γ(̂methodVal)}

= {MethodVal(method, methodAlloc) | method ∈ table}
⊆ γ((methodAlloc,∅,∅,⊤))

= γ(getMethod(̂classVal, ̂methodVal))

appendix 225

Lemma V.15. sound(methodInvoke, ̂methodInvoke)

Proof. To show:

{methodInvoke(receiver, methodVal, args) |
receiver ∈ γ(̂receiver), methodVal ∈ γ(̂methodVal)} ⊆

γ(̂methodInvoke(̂receiver, ̂methodVal, args))

for all values ̂receiver = (ô, _, _, _), methodVal = (_, _, _, m̂), class tables
table, and arguments args. We perform a case distinction on m̂.

• In case m̂ ̸= ⊤,

{methodInvoke(receiver, methodVal, args) |
receiver ∈ γ(̂receiver), methodVal ∈ γ(̂methodVal)}

= {CallTarget(c, ctx, method, args) |
(c, ctx) ∈ γ(ô), m ∈ γ(m̂), method = table(c, m)}

⊆ γ(̂CallTarget({(c, ctx, method, args) |
(c, ctx) ∈ ô, m ∈ m̂, method = table(c, m)}))

= γ(̂methodInvoke(̂receiver, ̂methodVal, args))

• In case m̂ = ⊤,

{methodInvoke(receiver, methodVal, args) |
receiver ∈ γ(̂receiver), methodVal ∈ γ(̂methodVal)}

= {CallTarget(c, ctx, method, args) |
(c, ctx) ∈ γ(ô), method ∈ table(c)}

⊆ γ(̂CallTarget({(c, ctx, method, args) |
(c, ctx) ∈ ô, method ∈ table(c)}))

= γ(̂methodInvoke(̂receiver, ̂methodVal, args))

Soundness Immutability Analysis

For better readablilty, we use TI and NTI for TransitivelyImmutable
and NonTransitivelyImmutable respectively.

Definition V.16 (Concretization Function).

γ : ̂Assignability → Assignability

γ(x) =

{Assignable, NonAssignable} if x = ̂Assignable

{NonAssignable} if x = ̂NonAssignable

γ : ̂Mutability → Mutability

γ(x) =

{Mutable, NTI, TI} if x = M̂utable

{NTI, TI} if x = N̂TI

{TI} if x = T̂ I

appendix 226

Lemma V.17. sound(assignable, ̂assignable),
sound(nonAssignable, ̂nonAssignable),
sound(mutable, m̂utable),
sound(immutable, ̂immutable).

Proof.

{assignable} = {Assignable}
⊆ {Assignable, NonAssignable}
= γ(̂Assignable)

= γ(̂assignable)

The soundness proofs of ̂nonAssignable, m̂utable, ̂immutable are anal-
ogous.

Lemma V.18. sound(getFieldMutability, ̂getFieldMutability)

Proof. To show {getFieldMutability(assign, mut) | assign ∈ γ(âssign),
mut ∈ γ(m̂ut)} ⊆ γ(̂getFieldMutability(âssign, m̂ut)) for all âssign
and m̂ut. We continue by case distinction on âssign and m̂ut:

• In case âssign = ̂Assignable, then

{getFieldMutability(assign, mut) |
assign ∈ γ(̂Assignable), mut ∈ γ(m̂ut)}

= {getFieldMutability(Assignable, mut),

getFieldMutability(NonAssignable, mut) |
mut ∈ γ(m̂ut)}

= {Mutable, NTI, TI}
= γ(M̂utable)

= γ(̂getFieldMutability(̂Assignable, m̂ut)))

• In case Âssign = ̂NonAssignable and m̂ut = M̂utable, then

{getFieldMutability(assign, mut) |
assign ∈ γ(̂NonAssignable), mut ∈ γ(M̂utable)}

= {getFieldMutability(NonAssignable, Mutable),

getFieldMutability(NonAssignable, NTI),

getFieldMutability(NonAssignable, TI)}
= {NTI, TI}
= γ(N̂TI)

= γ(̂getFieldMutability(̂NonAssignable, M̂utable))

appendix 227

• In case Âssign = ̂NonAssignable and m̂ut = N̂TI, then

{getFieldMutability(assign, mut) |
assign ∈ γ(̂NonAssignable), mut ∈ γ(N̂TI)}

= {getFieldMutability(NonAssignable, NTI),

getFieldMutability(NonAssignable, TI)}
= {NonTransitivelyImmutable, TI}
= γ(N̂TI)

= γ(̂getFieldMutability(̂NonAssignable, N̂TI))

• In case Âssign = ̂NonAssignable and m̂ut = T̂ I, then

{getFieldMutability(assign, mut) |
assign ∈ γ(̂NonAssignable), mut ∈ γ(T̂ I)}

= {getFieldMutability(NonAssignable, TI)}
= γ(T̂ I)

= γ(̂getFieldMutability(̂NonAssignable, T̂ I))

Lemma V.19. sound(joinMutability, ̂joinMutability)

Proof. To show {joinMutability(Mut) | Mut ∈ γ(M̂ut)} ⊆
γ(̂joinMutability(M̂ut)) for all M̂ut. We continue by case distinction
on M̂ut:

• In case
⊔

M̂ut = M̂utable, then

{joinMutability(Mut) | Mut ∈ γ(M̂ut)}
⊆ γ(M̂utable)

= γ(̂joinMutability(M̂ut))

• In case
⊔

M̂ut = N̂TI, then Mut ∈ γ(M̂ut) contains elements
NTI or TI. Hence

{joinMutability(Mut) | Mut ∈ γ(M̂ut)}
= {NTI, TI}
⊆ γ(N̂TI)

= γ(̂joinMutability(M̂ut))

• In case
⊔

M̂ut = ̂TransitivelyImmutable, then Mut ∈ γ(M̂ut)
contains only elements TI. Hence

{joinMutability(Mut) | Mut ∈ γ(M̂ut)}
= {TI}
⊆ γ(T̂ I)

= γ(̂joinMutability(M̂ut))

appendix 228

Soundness of the Reaching-Definitions Analysis

The analysis consists of two modules ̂reachingDefs and ̂controlFlowPred.
A similar version of module ̂reachingDefs has been proven sound in
Lemma 5.7. It remains to prove the control-flow module sound:

Lemma V.20. sound(controlFlowPred, ̂controlFlowPred).

Proof. The analysis module ̂controlFlowPred computes the set of all im-
mediate control-flow predecessors of a given statement. The dynamic
module controlFlowPred uses a mutable variable pred to remember
the previously executed statement. Only if variable pred is a poten-
tial control-flow predecessor of the given statement stmt, module
controlFlowPred adds it as a control-flow predecessor to the store
(σ[stmt, κcontrolFlowPred 7→ pred]). The analysis module ̂controlFlowPred

over-approximates the dynamic module controlfFlowPred because it
adds all control-flow predecessors to the store, not just one.

B I B L I O G R A P H Y

[1] Vitor Monte Afonso, Paulo L. de Geus, Antonio Bianchi, Yan-
ick Fratantonio, Christopher Kruegel, Giovanni Vigna, Adam
Doupé, and Mario Polino. “Going Native: Using a Large-Scale
Analysis of Android Apps to Create a Practical Native-Code
Sandboxing Policy.” In: 23rd Annual Network and Distributed
System Security Symposium. NDSS’16. San Diego, CA, USA:
Internet Society, 2016.

[2] Gul A. Agha. “ACTORS - A Model of Concurrent Computation
in Distributed Systems.” PhD thesis. University of Michigan,
MI, USA, 1985.

[3] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ull-
man. Compilers: Principles, Techniques, and Tools. 2nd ed. Pearson
Addison-Wesley, 2007.

[4] Alexander Aiken. “Introduction to set constraint-based pro-
gram analysis.” In: Science of Computer Programming 35.2-3
(1999), pp. 79–111.

[5] Bowen Alpern et al. “The Jikes Research Virtual Machine
project: Building an open-source research community.” In: IBM
Systems Journal 44.2 (2005), pp. 399–417.

[6] Tony Antoniadis, Konstantinos Triantafyllou, and Yannis Smar-
agdakis. “Porting Doop to Soufflé: a Tale of Inter-Engine Porta-
bility for Datalog-Based Analyses.” In: Proceedings of the 6th
ACM SIGPLAN International Workshop on State Of the Art in
Program Analysis. SOAP’17. Barcelona, Spain: ACM, 2017, pp.
25–30.

[7] AppBrain. Number of Android applications on the Google Play store.
https://www.appbrain.com/stats/number-of-android-apps.
[Online; accessed 15-September-2022]. 2022.

[8] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bod-
den, Alexandre Bartel, Jacques Klein, Yves Le Traon, Damien
Octeau, and Patrick McDaniel. “FlowDroid: Precise Context,
Flow, Field, Object-Sensitive and Lifecycle-Aware Taint Analy-
sis for Android Apps.” In: Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation.
PLDI’14. Edinburgh, UK: ACM, 2014, pp. 259–269.

[9] Mounir Assaf, David A. Naumann, Julien Signoles, Eric Totel,
and Frédéric Tronel. “Hypercollecting Semantics and Its Appli-
cation to Static Analysis of Information Flow.” In: Proceedings of
the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages. POPL’17. Paris, France: ACM, 2017, pp. 874–887.

229

https://www.appbrain.com/stats/number-of-android-apps

bibliography 230

[10] Nathaniel Ayewah, William Pugh, David Hovemeyer, J. David
Morgenthaler, and John Penix. “Using Static Analysis to Find
Bugs.” In: IEEE software 25.5 (2008), pp. 22–29.

[11] David F. Bacon, Susan L. Graham, and Oliver J. Sharp. “Com-
piler Transformations for High-Performance Computing.” In:
ACM Computing Surveys 26.4 (1994), pp. 345–420.

[12] David F. Bacon and Peter F. Sweeney. “Fast Static Analysis of
C++ Virtual Function Calls.” In: Proceedings of the 11th ACM
SIGPLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications. OOPSLA’96. San Jose, CA, USA:
ACM, 1996, pp. 324–341.

[13] Anindya Banerjee and David A. Naumann. “Secure Informa-
tion Flow and Pointer Confinement in a Java-like Language.”
In: Proceedings 15th IEEE Computer Security Foundations Work-
shop. Vol. 2. CSFW’02. Los Alamitos, CA, USA: IEEE, 2002,
pp. 253:1–253:15.

[14] Mike Barnett, David A. Naumann, Wolfram Schulte, and Qi
Sun. “99.44% pure: Useful Abstractions in Specifications.” In:
Proceedings of the ECOOP Workshop FTfJP 2004, Formal Techniques
for Java-like Programs. FTfJP’04. Oslo, Norway: University of
Nijmegen, 2004.

[15] Mike Barnett, David A. Naumann, Wolfram Schulte, and Qi
Sun. “Allowing State Changes in Specifications.” In: Proceed-
ings of the 2006 International Conference on Emerging Trends in
Information and Communication Security. Vol. 3995. ETRICS’06.
Freiburg, Germany: Springer, 2006, pp. 321–336.

[16] Paulo Barros, René Just, Suzanne Millstein, Paul Vines, Werner
Dietl, Marcelo d’Amorim, and Michael D. Ernst. “Static Anal-
ysis of Implicit Control Flow: Resolving Java Reflection and
Android Intents.” In: 2015 30th IEEE/ACM International Confer-
ence on Automated Software Engineering. ASE’15. Lincoln, NE,
USA: IEEE, 2015, pp. 669–679.

[17] William C. Benton and Charles N. Fischer. “Mostly-Functional
Behavior in Java Programs.” In: International Workshop on Veri-
fication, Model Checking, and Abstract Interpretation. VMCAI’09.
Savannah, GA, USA: Springer, 2009, pp. 29–43.

[18] Yves Bertot and Pierre Castéran. Interactive Theorem Proving
and Program Development - Coq’Art: The Calculus of Inductive
Constructions. Springer, 2004.

[19] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton,
Seth Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak,
and Dawson Engler. “A Few Billion Lines of Code Later: Using
Static Analysis to Find Bugs in the Real World.” In: Communi-
cations of the ACM 53.2 (2010), pp. 66–75.

bibliography 231

[20] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz.
“Configurable Software Verification: Concretizing the Conver-
gence of Model Checking and Program Analysis.” In: Interna-
tional Conference on Computer Aided Verification. CAV’07. Berlin,
Germany: Springer, 2007, pp. 504–518.

[21] Dirk Beyer, Thomas A. Henzinger, and Grégory Théoduloz.
“Program Analysis with Dynamic Precision Adjustment.” In:
2008 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering. ASE’08. L’Aquila, Italy: IEEE, 2008, pp. 29–38.

[22] Gavin Bierman. JEP 395: Records. https://openjdk.java.net/
jeps/395. [Online; accessed 21-November-2022]. 2022.

[23] Adrian Birka and Michael D. Ernst. “A Practical Type System
and Language for Reference Immutability.” In: Proceedings of
the 19th Annual ACM SIGPLAN Conference on Object-Oriented
Programming, Systems, Languages, and Applications. OOPSLA’04.
Vancouver, Canada: ACM, 2004, pp. 35–49.

[24] Stephen M. Blackburn et al. “The DaCapo Benchmarks: Java
Benchmarking Development and Analysis.” In: Proceedings of
the 21st Annual ACM SIGPLAN Conference on Object-Oriented
Programming Systems, Languages, and Applications. OOPSLA’06.
Portland, OR, USA: ACM, 2006, pp. 169–190.

[25] Eric Bodden. “Inter-procedural Data-flow Analysis with IFD-
S/IDE and Soot.” In: Proceedings of the ACM SIGPLAN Inter-
national Workshop on State of the Art in Java Program Analysis.
SOAP’12. Beijing, China: ACM, 2012, pp. 3–8.

[26] Eric Bodden. “The Secret Sauce in Efficient and Precise Static
Analysis: The Beauty of Distributive, Summary-Based Static
Analyses (and How to Master Them).” In: Companion Proceed-
ings for the ISSTA/ECOOP 2018 Workshops. SOAP’18. Amster-
dam, The Netherlands: ACM, 2018, pp. 85–93.

[27] Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and
Mira Mezini. “Taming Reflection: Aiding Static Analysis in the
Presence of Reflection and Custom Class Loaders.” In: Proceed-
ings of the 33rd International Conference on Software Engineering.
ICSE’11. Honolulu, HI, USA: IEEE, 2011, pp. 241–250.

[28] Martin Bodin, Philippa Gardner, Thomas P. Jensen, and Alan
Schmitt. “Skeletal Semantics and Their Interpretations.” In:
Proceedings of the ACM on Programming Languages. POPL’19

3.POPL (2019), pp. 44:1–44:31.

[29] Denis Bogdanas and Grigore Roşu. “K-Java: A Complete Se-
mantics of Java.” In: Proceedings of the 42nd Annual ACM SIG-
PLAN-SIGACT Symposium on Principles of Programming Lan-
guages. POPL’15. Mumbai, India: ACM, 2015, pp. 445–456.

https://openjdk.java.net/jeps/395
https://openjdk.java.net/jeps/395

bibliography 232

[30] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Mari-
nov. “Korat: Automated Testing Based on Java Predicates.” In:
Proceedings of the 2002 ACM SIGSOFT International Symposium
on Software Testing and Analysis. ISSTA’02. Roma, Italy: ACM,
2002, pp. 123–133.

[31] John Tang Boyland, James Noble, and William Retert. “Ca-
pabilities for Sharing: A Generalisation of Uniqueness and
Read-Only.” In: ECOOP 2001 — Object-Oriented Programming.
ECOOP’01. Budapest, Hungary: Springer, 2001, pp. 2–27.

[32] John Boyland. “Why we should not add readonly to Java (yet).”
In: Journal of Object Technology 5.5 (2006), pp. 5–29.

[33] Martin Bravenboer and Yannis Smaragdakis. “Exception Anal-
ysis and Points-to Analysis: Better Together.” In: Proceedings of
the Eighteenth International Symposium on Software Testing and
Analysis. ISSTA’09. Chicago, IL, USA: ACM, 2009, pp. 1–12.

[34] Martin Bravenboer and Yannis Smaragdakis. “Strictly Declara-
tive Specification of Sophisticated Points-to Analyses.” In: Pro-
ceedings of the 24th ACM SIGPLAN Conference on Object Oriented
Programming Systems Languages and Applications. OOPSLA’09.
Orlando, FL, USA: ACM, 2009, pp. 243–262.

[35] Antonio Brogi and Paolo Ciancarini. “The Concurrent Lan-
guage, Shared Prolog.” In: ACM Transactions on Programming
Languages and Systems 13.1 (1991), pp. 99–123.

[36] Lilian Burdy, Yoonsik Cheon, David R Cok, Michael D Ernst,
Joseph R Kiniry, Gary T Leavens, K Rustan M Leino, and
Erik Poll. “An overview of JML tools and applications.” In:
International Journal on Software Tools for Technology Transfer 7.3
(2005), pp. 212–232.

[37] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Som-
merlad, and Michael Stal. A System of Patterns. Vol. 1. Pattern-
Oriented Software Architecture. Wiley, 1996.

[38] Brendon Cahoon and Kathryn S. McKinley. “Data Flow Analy-
sis for Software Prefetching Linked Data Structures in Java.” In:
Proceedings 2001 International Conference on Parallel Architectures
and Compilation Techniques. PACT’01. Barcelona, Spain: IEEE,
2001, pp. 280–291.

[39] Kai Cheng, Qiang Li, Lei Wang, Qian Chen, Yaowen Zheng,
Limin Sun, and Zhenkai Liang. “DTaint: Detecting the Taint-
Style Vulnerability in Embedded Device Firmware.” In: 2018
48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks. DSN’18. Luxembourg City, Luxembourg:
IEEE, 2018, pp. 430–441.

bibliography 233

[40] Jong-Deok Choi, Manish Gupta, Mauricio Serrano, Vugranam
C. Sreedhar, and Sam Midkiff. “Escape Analysis for Java.”
In: Proceedings of the 14th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOP-
SLA’99. Denver, CO, USA: ACM, 1999, pp. 1–19.

[41] Maria Christakis, Peter Müller, and Valentin Wüstholz. “Col-
laborative Verification and Testing with Explicit Assumptions.”
In: FM 2012: Formal Methods. FM’12. Paris, France: Springer,
2012, pp. 132–146.

[42] Mandy Chung. JEP 416: Reimplement Core Reflection with Method
Handles. https://openjdk.org/jeps/416. [Online; accessed
06-September-2022]. 2022.

[43] Lars R. Clausen. “A Java bytecode optimizer using side-effect
analysis.” In: Concurrency and Computation: Practice and Experi-
ence 9.11 (1997), pp. 1031–1045.

[44] Michael Coblenz, Whitney Nelson, Jonathan Aldrich, Brad My-
ers, and Joshua Sunshine. “Glacier: Transitive Class Immutabil-
ity for Java.” In: 2017 IEEE/ACM 39th International Conference on
Software Engineering. ICSE’17. Buenos Aires, Argentina: IEEE,
2017, pp. 496–506.

[45] Michael Coblenz, Joshua Sunshine, Jonathan Aldrich, Brad
Myers, Sam Weber, and Forrest Shull. “Exploring Language
Support for Immutability.” In: 2016 IEEE/ACM 38th Interna-
tional Conference on Software Engineering. ICSE’16. Austin, TX,
USA: IEEE, 2016, pp. 736–747.

[46] David R. Cok. “Reasoning with specifications containing meth-
od calls and model fields.” In: Journal of Object Technology 4.8
(2005), pp. 77–103.

[47] Daniel D. Corkill. “Design Alternatives for Parallel and Dis-
tributed Blackboard Systems.” In: Perspectives in Artificial
Intelligence (1989), pp. 99–136.

[48] Daniel D. Corkill. “Blackboard Systems.” In: AI expert 6.9 (1991),
pp. 40–47.

[49] Agostino Cortesi, Giulia Costantini, and Pietro Ferrara. “A
Survey on Product Operators in Abstract Interpretation.” In:
Electronic Proceedings in Theoretical Computer Science 129

(2013), pp. 325–336.

[50] Patrick Cousot. “Syntactic and Semantic Soundness of Struc-
tural Dataflow Analysis.” In: Static Analysis. SAS’19. Porto,
Portugal: Springer, 2019, pp. 96–117.

https://openjdk.org/jeps/416

bibliography 234

[51] Patrick Cousot and Radhia Cousot. “Abstract Interpretation:
A Unified Lattice Model for Static Analysis of Programs by
Construction or Approximation of Fixpoints.” In: Proceedings
of the 4th ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages. POPL’77. Los Angeles, CA, USA: ACM,
1977, pp. 238–252.

[52] Patrick Cousot and Radhia Cousot. “Systematic Design of Pro-
gram Analysis Frameworks.” In: Proceedings of the 6th ACM
SIGACT-SIGPLAN Symposium on Principles of Programming Lan-
guages. POPL’79. San Antonio, TX, USA: ACM, 1979, pp.
269–282.

[53] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mau-
borgne, Antoine Miné, David Monniaux, and Xavier Rival. “The
ASTREÉ Analyzer.” In: Programming Languages and Systems.
ESOP’05. Edinburgh, UK: Springer, 2005, pp. 21–30.

[54] Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mau-
borgne, Antoine Miné, David Monniaux, and Xavier Rival.
“Combination of Abstractions in the ASTRÉE Static Analyzer.”
In: Advances in Computer Science - ASIAN 2006. Secure Software
and Related Issues. ASIAN’06. Tokyo, Japan: Springer, 2006,
pp. 272–300.

[55] Marco Cova, Viktoria Felmetsger, Greg Banks, and Giovanni
Vigna. “Static Detection of Vulnerabilities in x86 Executables.”
In: 2006 22nd Annual Computer Security Applications Conference.
ACSAC’06. Miami Beach, FL, USA: IEEE, 2006, pp. 269–278.

[56] Iain D. Craig. “Blackboard systems.” In: Artificial Intelligence
Review 2.2 (1988), pp. 103–118.

[57] Iain D. Craig. A New Interpretation of The Blackboard Metaphor.
Tech. rep. CS-RR-254. Department of Computer Science Uni-
versity of Warwick, 1993.

[58] Valentin Dallmeier. “Mining and Checking Object Behavior.”
PhD thesis. Saarland University, Germany, 2010.

[59] Valentin Dallmeier, Christian Lindig, Andrzej Wasylkowski,
and Andreas Zeller. “Mining Object Behavior with ADABU.”
In: Proceedings of the 2006 International Workshop on Dynamic
Systems Analysis. WODA’06. Shanghai, China: ACM, 2006,
pp. 17–24.

[60] Ádám Darvas and K. Rustan M. Leino. “Practical Reasoning
About Invocations and Implementations of Pure Methods.” In:
Fundamental Approaches to Software Engineering. FASE’07. Braga,
Portugal: Springer, 2007, pp. 336–351.

bibliography 235

[61] Ádám Darvas and Peter Müller. “Reasoning About Method
Calls in Interface Specifications.” In: Workshop on Formal Tech-
niques for Java-like Programs (FTfJP), ECOOP 2005. FTfJP’05.
Glasgow, UK: ETH Zurich, 2005, pp. 59–85.

[62] Jeffrey Dean, David Grove, and Craig Chambers. “Optimization
of Object-Oriented Programs Using Static Class Hierarchy Anal-
ysis.” In: European Conference on Object-Oriented Programming.
ECOOP’95. Åarhus, Denmark: Springer, 1995, pp. 77–101.

[63] Saumya K. Debray, William Evans, Robert Muth, and Bjorn
De Sutter. “Compiler Techniques for Code Compaction.” In:
ACM Transactions on Programming languages and Systems 22.2
(2000), pp. 378–415.

[64] Keith Decker, Alan Garvey, Marty Humphrey, and Victor R.
Lesser. “Effects of Parallelism on Blackboard System Schedul-
ing.” In: Proceedings of the Twelfth International Joint Conference
on Artificial Intelligence. Vol. 1. IJCAI’91. Sydney, Australia, 1991,
pp. 15–21.

[65] Delphine Demange, Thomas Jensen, and David Pichardie. “A
Provably Correct Stackless Intermediate Representation for
Java Bytecode.” In: Asian Symposium on Programming Languages
and Systems. APLAS’10. Shanghai, China: Springer, 2010, pp.
97–113.

[66] Werner Dietl and Peter Müller. “Universes: Lightweight Own-
ership for JML.” In: Journal of Object Technology 4.8 (2005),
pp. 5–32.

[67] Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. “XCor-
pus–An executable Corpus of Java Programs.” In: Journal of
Object Technology 16.4 (2017), pp. 1:1–1:24.

[68] Roland Dodd, Andrew Chiou, Xinghuo Yu, and Ross Broad-
foot. “Industrial Process Model Integration Using a Blackboard
Model within a Pan Stage Decision Support System.” In: 2009
Third International Conference on Network and System Security.
NSS’09. Gold Coast, Australia: IEEE, 2009, pp. 489–494.

[69] José Javier Dolado, Mark Harman, Mari Carmen Otero, and Lin
Hu. “An Empirical Investigation of the Influence of a Type of
Side Effects on Program Comprehension.” In: IEEE Transactions
on Software Engineering 29.7 (2003), pp. 665–670.

[70] Julian Dolby. “Using Static Analysis For IDE’s for Dynamic Lan-
guages.” In: The Eclipse Languages Symposium. Kanata, Canada:
Eclipse Foundation, 2005.

bibliography 236

[71] Shuaike Dong, Menghao Li, Wenrui Diao, Xiangyu Liu, Jian
Liu, Zhou Li, Fenghao Xu, Kai Chen, Xiaofeng Wang, and Ke-
huan Zhang. “Understanding Android Obfuscation Techniques:
A Large-Scale Investigation in the Wild.” In: Security and Pri-
vacy in Communication Networks. SecureComm’18. Singapore,
Singapore: Springer, 2018, pp. 172–192.

[72] Dotty Documentation Overview – Effect Capabilities. https://
dotty.epfl.ch/docs/reference/index.html. [Online; ac-
cessed 21-April-2018]. 2018.

[73] Michael Eichberg, Sven Kloppenburg, Karl Klose, and Mira
Mezini. “Defining and Continuous Checking of Structural Pro-
gram Dependencies.” In: Proceedings of the 30th International
Conference on Software Engineering. ICSE’08. Leipzig, Germany:
ACM, 2008, pp. 391–400.

[74] Michael Eichberg, Florian Kübler, Dominik Helm, Michael Reif,
Guido Salvaneschi, and Mira Mezini. “Lattice Based Modu-
larization of Static Analyses.” In: Companion Proceedings for
the ISSTA/ECOOP 2018 Workshops. SOAP’18. Amsterdam, The
Netherlands: ACM, 2018, pp. 113–118.

[75] Michael Eichberg, Mira Mezini, Sven Kloppenburg, Klaus Os-
termann, and Benjamin Rank. “Integrating and Scheduling an
Open Set of Static Analyses.” In: 21st IEEE/ACM International
Conference on Automated Software Engineering. ASE’06. Tokyo,
Japan: IEEE, 2006, pp. 113–122.

[76] Torbjörn Ekman and Görel Hedin. “The JastAdd Extensible Java
Compiler.” In: Proceedings of the ACM on Programming Languages.
OOPSLA’07. Montreal, Canada: ACM, 2007, pp. 1–18.

[77] Conal Elliott and Paul Hudak. “Functional Reactive Anima-
tion.” In: Proceedings of the Second ACM SIGPLAN International
Conference on Functional Programming. ICFP’97. Amsterdam, The
Netherlands: ACM, 1997, pp. 263–273.

[78] Maryam Emami, Rakesh Ghiya, and Laurie J. Hendren. “Con-
text-Sensitive Interprocedural Points-to Analysis in the Pres-
ence of Function Pointers.” In: Proceedings of the ACM SIGPLAN
1994 Conference on Programming Language Design and Implemen-
tation. PLDI’94. Orlando, FL, USA: ACM, 1994, pp. 242–256.

[79] Lee D. Erman, Frederick Hayes-Roth, Victor R. Lesser, and
D. Raj Reddy. “The Hearsay-II Speech-Understanding System:
Integrating Knowledge to Resolve Uncertainty.” In: ACM Com-
puting Surveys 12.2 (1980), pp. 213–253.

[80] Douglas Everson, Long Cheng, and Zhenkai Zhang. “Log4shell:
Redefining the Web Attack Surface.” In: Measurements, Attacks,
and Defenses for the Web Workshop 2022. MADWeb’22. San Diego,
CA, USA: Internet Society, 2022.

https://dotty.epfl.ch/docs/reference/index.html
https://dotty.epfl.ch/docs/reference/index.html

bibliography 237

[81] Manuel Fähndrich and Francesco Logozzo. “Static Contract
Checking with Abstract Interpretation.” In: Formal Verification
of Object-oriented Software. FoVeOOS’10. Paris, France: Springer,
2010, pp. 10–30.

[82] Rodney Farrow. “Automatic Generation of Fixed-Point-Finding
Evaluators for Circular, but Well-Defined, Attribute Gram-
mars.” In: Proceedings of the 1986 SIGPLAN Symposium on Com-
piler Construction. SIGPLAN’86. Palo Alto, CA, USA: ACM,
1986, pp. 85–98.

[83] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby,
and Frank Tip. “Efficient Construction of Approximate Call
Graphs for JavaScript IDE Services.” In: 2013 35th International
Conference on Software Engineering. ICSE’13. San Francisco, CA,
USA: IEEE, 2013, pp. 752–761.

[84] Matthew Finifter, Adrian Mettler, Naveen Sastry, and David
Wagner. “Verifiable Functional Purity in Java.” In: Proceedings
of the 15th ACM Conference on Computer and Communications Se-
curity. CCS’08. Alexandria, VA, USA: ACM, 2008, pp. 161–174.

[85] Cormac Flanagan, K. Rustan M. Leino, Mark Lillibridge, Greg
Nelson, James B. Saxe, and Raymie Stata. “Extended Static
Checking for Java.” In: Proceedings of the ACM SIGPLAN 2002
Conference on Programming Language Design and Implementation.
PLDI’02. Berlin, Germany: ACM, 2002, pp. 234–245.

[86] George Fourtounis, George Kastrinis, and Yannis Smaragdakis.
“Static Analysis of Java Dynamic Proxies.” In: Proceedings of the
27th ACM SIGSOFT International Symposium on Software Testing
and Analysis. ISSTA’18. Amsterdam, The Netherlands: ACM,
2018, pp. 209–220.

[87] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlis-
sides. Design Patterns: Elements of Reusable Object-Oriented Soft-
ware. Pearson Addison-Wesley, 1995.

[88] David Gay and Bjarne Steensgaard. “Fast Escape Analysis
and Stack Allocation for Object-Based Programs.” In: Compiler
Construction. CC’00. Berlin, Germany: Springer, 2000, pp. 82–93.

[89] Timon Gehr, Matthew Mirman, Dana Drachsler-Cohen, Petar
Tsankov, Swarat Chaudhuri, and Martin T. Vechev. “AI2: Safety
and Robustness Certification of Neural Networks with Abstract
Interpretation.” In: 2018 IEEE Symposium on Security and Privacy.
SP’18. San Francisco, CA, USA: IEEE, 2018, pp. 3–18.

[90] Samir Genaim and Fausto Spoto. “Constancy analysis.” In: For-
mal Techniques for Java-like Programs. FTfJP’08. Paphos, Cyprus:
Radboud University, 2008, pp. 100–110.

bibliography 238

[91] Leonid Glanz, Patrick Müller, Lars Baumgärtner, Michael Reif,
Sven Amann, Pauline Anthonysamy, and Mira Mezini. “Hid-
den in Plain Sight: Obfuscated Strings Threatening Your Pri-
vacy.” In: Proceedings of the 15th ACM Asia Conference on Com-
puter and Communications Security. ASIA CCS’20. Taipei, Taiwan:
ACM, 2020, pp. 694–707.

[92] Colin S. Gordon, Matthew J. Parkinson, Jared Parsons, Aleks
Bromfield, and Joe Duffy. “Uniqueness and Reference Im-
mutability for Safe Parallelism.” In: Proceedings of the ACM
International Conference on Object Oriented Programming Sys-
tems Languages and Applications. OOPSLA’12. Tucson, AZ, USA:
ACM, 2012, pp. 21–40.

[93] Neville Grech and Yannis Smaragdakis. “P/Taint: Unified
Points-to and Taint Analysis.” In: Proceedings of the ACM on
Programming Languages 1.OOPSLA (2017), pp. 1–28.

[94] David Grove and Craig Chambers. “A Framework for Call
Graph Construction Algorithms.” In: ACM Transactions on Pro-
gramming Languages and Systems 23.6 (2001), pp. 685–746.

[95] Christian Haack, Erik Poll, Jan Schäfer, and Aleksy Schubert.
“Immutable Objects for a Java-Like Language.” In: Programming
Languages and Systems. ESOP’07. Braga, Portugal: Springer,
2007, pp. 347–362.

[96] Elnar Hajiyev, Mathieu Verbaere, and Oege De Moor. “Code-
quest: Scalable Source Code Queries with Datalog.” In: ECOOP
2006 – Object-Oriented Programming. ECOOP’06. Nantes, France:
Springer, 2006, pp. 2–27.

[97] Philipp Haller, Simon Geries, Michael Eichberg, and Guido
Salvaneschi. “Reactive Async: Expressive Deterministic Concur-
rency.” In: Proceedings of the 2016 7th ACM SIGPLAN Symposium
on Scala. SCALA’16. Amsterdam, The Netherlands: ACM, 2016,
pp. 11–20.

[98] Philipp Haller and Martin Odersky. “Scala Actors: Unifying
thread-based and event-based programming.” In: Theoretical
Computer Science 410.2 (2009), pp. 202–220.

[99] Görel Hedin. “Reference Attributed Grammars.” In: Informatica
24.3 (2000), pp. 301–317.

[100] Pat Helland. “Immutability Changes Everything.” In: Commu-
nications of the ACM 59.1 (2015), pp. 64–70.

[101] Dominik Helm, Florian Kübler, Michael Eichberg, Michael Reif,
and Mira Mezini. “A Unified Lattice Model and Framework
for Purity Analyses.” In: Proceedings of the 33rd ACM/IEEE Inter-
national Conference on Automated Software Engineering. ASE’18.
Montpellier, France: ACM, 2018, pp. 340–350.

bibliography 239

[102] Dominik Helm, Florian Kübler, Jan Thomas Kölzer, Philipp
Haller, Michael Eichberg, Guido Salvaneschi, and Mira Mezini.
“A Programming Model for Semi-implicit Parallelization of
Static Analyses.” In: Proceedings of the 29th ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA’20.
Virtual Event, USA: ACM, 2020, pp. 428–439.

[103] Dominik Helm, Florian Kübler, Michael Reif, Michael Eichberg,
and Mira Mezini. “Modular Collaborative Program Analysis
in OPAL.” In: Proceedings of the 28th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. ESEC/FSE’20. Virtual Event,
USA: ACM, 2020, pp. 184–196.

[104] Heros IFDS/IDE Solver. https://github.com/Sable/heros.
[Online; accessed 03-November-2022]. 2022.

[105] Carl Hewitt, Peter Boehler Bishop, and Richard Steiger. “A
Universal Modular ACTOR Formalism for Artificial Intelli-
gence.” In: Proceedings of the Third International Joint Conference
on Artificial Intelligence. IJCAI’73. Stanford, CA, USA: Morgan
Kaufmann, 1973, pp. 235–245.

[106] Michael Hind and Anthony Pioli. “Which Pointer Analysis
Should I Use?” In: Proceedings of the 2000 ACM SIGSOFT Inter-
national Symposium on Software Testing and Analysis. ISSTA’00.
Portland, OR, USA: ACM, 2000, pp. 113–123.

[107] David Van Horn and Matthew Might. “Abstracting Abstract
Machines.” In: Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP’10. Baltimore,
MD, USA: ACM, 2010, pp. 51–62.

[108] Wei Huang and Ana Milanova. “ReImInfer: Method Purity
Inference for Java.” In: Proceedings of the ACM SIGSOFT 20th In-
ternational Symposium on the Foundations of Software Engineering.
FSE’12. Cary, NC, USA: ACM, 2012.

[109] Wei Huang, Ana Milanova, Werner Dietl, and Michael D. Ernst.
“Reim & ReImInfer: Checking and Inference of Reference Im-
mutability and Method Purity.” In: Proceedings of the ACM Inter-
national Conference on Object Oriented Programming Systems Lan-
guages and Applications. OOPSLA’12. Tucson, AZ, USA: ACM,
2012, pp. 879–896.

[110] John Hughes. “Generalising monads to arrows.” In: Science of
Computer Programming 37.1 (2000), pp. 67–111.

[111] IBM. WALA - T. J. Watson Libraries for Analysis. http://wala.
sourceforge.net/. [Online; accessed 12-June-2020]. 2020.

[112] Roberto Ierusalimschy and Noemi Rodriguez. “Side-Effect Free
Functions in Object-Oriented Languages.” In: Computer lan-
guages 21.3 (1995), pp. 129–146.

https://github.com/Sable/heros
http://wala.sourceforge.net/
http://wala.sourceforge.net/

bibliography 240

[113] Kazuaki Ishizaki, Motohiro Kawahito, Toshiaki Yasue, Hideaki
Komatsu, and Toshio Nakatani. “A Study of Devirtualization
Techniques for a Java Just-In-Time Compiler.” In: Proceedings
of the 15th ACM SIGPLAN Conference on Object-Oriented Pro-
gramming, Systems, Languages, and Applications. OOPSLA’00.
Minneapolis, MN, USA: ACM, 2000, pp. 294–310.

[114] Daniel Jackson and Martin Rinard. “Software Analysis: A
Roadmap.” In: Proceedings of the Conference on the Future of
Software Engineering. ICSE’00. Limerick, Ireland: ACM, 2000,
pp. 133–145.

[115] Simon Holm Jensen, Anders Møller, and Peter Thiemann. “In-
terprocedural Analysis with Lazy Propagation.” In: Static Anal-
ysis. SAS’10. Perpignan, France: Springer, 2010, pp. 320–339.

[116] Nick P. Johnson, Jordan Fix, Stephen R. Beard, Taewook Oh,
Thomas B. Jablin, and David I. August. “A Collaborative De-
pendence Analysis Framework.” In: Proceedings of the 2017
International Symposium on Code Generation and Optimization.
CGO’17. Austin, TX, USA: IEEE, 2017, pp. 148–159.

[117] Larry G. Jones. “Efficient Evaluation of Circular Attribute
Grammars.” In: ACM Transactions on Programming Languages
and Systems 12.3 (1990), pp. 429–462.

[118] Herbert Jordan, Bernhard Scholz, and Pavle Subotić. “Soufflé:
On Synthesis of Program Analyzers.” In: Computer Aided Verifi-
cation. CAV’16. Toronto, Canada: Springer, 2016, pp. 422–430.

[119] Jacques-Henri Jourdan. “Verasco: a Formally Verified C Static
Analyzer.” PhD thesis. Universite Paris Diderot-Paris VII,
France, 2016.

[120] Jacques-Henri Jourdan, Vincent Laporte, Sandrine Blazy, Xavier
Leroy, and David Pichardie. “A Formally-Verified C Static
Analyzer.” In: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages.
POPL’15. Mumbai, India: ACM, 2015, pp. 247–259.

[121] George Kastrinis and Yannis Smaragdakis. “Hybrid Context-
Sensitivity for Points-to Analysis.” In: Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI’13. Seattle, WA, USA: ACM, 2013,
pp. 423–434.

[122] Sven Keidel. Sturdy. http://github.com/svenkeidel/sturdy/.
[Online; accessed 06-September-2022]. 2022.

[123] Sven Keidel and Sebastian Erdweg. “Sound and Reusable Com-
ponents for Abstract Interpretation.” In: 3.OOPSLA (2019),
pp. 176:1–176:28.

http://github.com/svenkeidel/sturdy/

bibliography 241

[124] Sven Keidel and Sebastian Erdweg. “A Systematic Approach to
Abstract Interpretation of Program Transformations.” In: Veri-
fication, Model Checking, and Abstract Interpretation. VMCAI’20.
New Orleans, LA, USA: Springer, 2020, pp. 136–157.

[125] Sven Keidel, Casper Bach Poulsen, and Sebastian Erdweg.
“Compositional Soundness Proofs of Abstract Interpreters.” In:
2.ICFP (2018), pp. 72:1–72:26.

[126] Mehdi Keshani. “Scalable Call Graph Constructor for Maven.”
In: 2021 IEEE/ACM 43rd International Conference on Software En-
gineering: Companion Proceedings. ICSE’21. Virtual Event, Spain:
IEEE, 2021, pp. 99–101.

[127] Devin Kester, Martin Mwebesa, and Jeremy S. Bradbury. “How
Good is Static Analysis at Finding Concurrency Bugs?” In:
2010 10th IEEE Working Conference on Source Code Analysis
and Manipulation. SCAM’10. Timişoara, Romania: IEEE, 2010,
pp. 115–124.

[128] Fredrik Berg Kjolstad, Danny Dig, Gabriel Acevedo, and Marc
Snir. “Transformation for Class Immutability.” In: Proceedings of
the 33rd International Conference on Software Engineering. ICSE’11.
Honolulu, HI, USA: ACM, 2011, pp. 61–70.

[129] Günter Kniesel and Dirk Theisen. “JAC—access right based
encapsulation for Java.” In: Software: Practice and Experience 31.6
(2001), pp. 555–576.

[130] Donald E. Knuth. “Semantics of Context-Free Languages.” In:
Mathematical Systems Theory 2.2 (1968), pp. 127–145.

[131] Thomas Kotzmann and Hanspeter Mössenböck. “Escape Anal-
ysis in the Context of Dynamic Compilation and Deoptimiza-
tion.” In: Proceedings of the 1st ACM/USENIX International Con-
ference on Virtual Execution Environments. VEE’05. Chicago, IL,
USA: ACM, 2005, pp. 111–120.

[132] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav
Pingali, and Calin Casçaval. “How Much Parallelism is There
in Irregular Applications?” In: Proceedings of the 14th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming. PPoPP’09. Raleigh, NC, USA: ACM, 2009, pp. 3–14.

[133] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ra-
manarayanan, Kavita Bala, and L. Paul Chew. “Optimistic
Parallelism Requires Abstractions.” In: Proceedings of the 28th
ACM SIGPLAN Conference on Programming Language Design
and Implementation. PLDI’07. San Diego, CA, USA: ACM, 2007,
pp. 211–222.

bibliography 242

[134] Lindsey Kuper, Aaron Turon, Neelakantan R. Krishnaswami,
and Ryan R. Newton. “Freeze After Writing: Quasi-Deter-
ministic Parallel Programming with LVars.” In: Proceedings
of the 41st ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL’14. San Diego, CA, USA: ACM,
2014, pp. 257–270.

[135] Monica S. Lam, John Whaley, V. Benjamin Livshits, Michael C.
Martin, Dzintars Avots, Michael Carbin, and Christopher Unkel.
“Context-Sensitive Program Analysis as Database Queries.”
In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. PODS’05.
Baltimore, MD, USA: ACM, 2005, pp. 1–12.

[136] Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju.
“Challenges for Static Analysis of Java Reflection – Literature
Review and Empirical Study.” In: 2017 IEEE/ACM 39th Interna-
tional Conference on Software Engineering. ICSE’17. Buenos Aires,
Argentina: IEEE, 2017, pp. 507–518.

[137] Anatole Le, Ondřej Lhoták, and Laurie J. Hendren. “Using
Inter-Procedural Side-Effect Information in JIT Optimizations.”
In: Compiler Construction. CC’05. Edinburgh, UK: Springer, 2005,
pp. 287–304.

[138] K. Rustan M. Leino, Peter Müller, and Angela Wallenburg.
“Flexible Immutability with Frozen Objects.” In: Verified Soft-
ware: Theories, Tools, Experiments. VSTTE’08. Toronto, Canada:
Springer, 2008, pp. 192–208.

[139] Johannes Lerch, Ben Hermann, Eric Bodden, and Mira Mezini.
“FlowTwist: Efficient Context-Sensitive Inside-Out Taint Anal-
ysis for Large Codebases.” In: Proceedings of the 22nd ACM
SIGSOFT International Symposium on Foundations of Software En-
gineering. FSE’14. Hong Kong, China: ACM, 2014, pp. 98–108.

[140] Sorin Lerner, David Grove, and Craig Chambers. “Composing
Dataflow Analyses and Transformations.” In: Proceedings of
the 29th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. POPL’02. Portland, OR, USA: ACM,
2002, pp. 270–282.

[141] Xavier Leroy. “A formally verified compiler back-end.” In:
Journal of Automated Reasoning 43.4 (2009), pp. 363–446.

[142] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schom-
mer, Markus Pister, and Christian Ferdinand. “CompCert - A
Formally Verified Optimizing Compiler.” In: Embedded Real
Time Software and Systems, 8th European Congress. ERTS’16. Tou-
louse, France: SEE, 2016.

bibliography 243

[143] Tal Lev-Ami, Thomas Reps, Mooly Sagiv, and Reinhard Wil-
helm. “Putting Static Analysis to Work for Verification: A Case
Study.” In: Proceedings of the 2000 ACM SIGSOFT International
Symposium on Software Testing and Analysis. ISSTA’00. Portland,
OR, USA: ACM, 2000, pp. 26–38.

[144] Ondřej Lhoták and Laurie Hendren. “Scaling Java Points-to
Analysis Using Spark.” In: Compiler Construction. CC’03. War-
saw, Poland: Springer, 2003, pp. 153–169.

[145] Ondřej Lhoták and Laurie Hendren. “Context-Sensitive Points-
to Analysis: Is It Worth It?” In: Compiler Construction. CC’06.
Springer. Vienna, Austria, 2006, pp. 47–64.

[146] Hongyi Li, Rudi Deklerck, Bernard De Cuyper, A. Hermanus,
Edgard Nyssen, and Jan Cornelis. “Object Recognition in Brain
CT-Scans: Knowledge-Based Fusion of Data from Multiple
Feature Extractors.” In: IEEE Transactions on Medical Imaging
14.2 (1995), pp. 212–229.

[147] Li Li, Alexandre Bartel, Tegawendé F. Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bod-
den, Damien Octeau, and Patrick McDaniel. “IccTA: Detecting
Inter-Component Privacy Leaks in Android Apps.” In: 2015
IEEE/ACM 37th IEEE International Conference on Software Engi-
neering. Vol. 1. ICSE’15. Florence, Italy: IEEE, 2015, pp. 280–291.

[148] Sheng Liang, Paul Hudak, and Mark P. Jones. “Monad Trans-
formers and Modular Interpreters.” In: Proceedings of the 22nd
ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL’95. San Francisco, CA, USA: ACM, 1995,
pp. 333–343.

[149] Benjamin Livshits, Manu Sridharan, Yannis Smaragdakis, On-
dřej Lhoták, J. Nelson Amaral, Bor-Yuh Evan Chang, Samuel
Z. Guyer, Uday P. Khedker, Anders Møller, and Dimitrios
Vardoulakis. “In Defense of Soundiness: A Manifesto.” In: Com-
munications of the ACM 58.2 (2015), pp. 44–46.

[150] Benjamin Livshits, John Whaley, and Monica S. Lam. “Reflec-
tion Analysis for Java.” In: Programming Languages and Systems.
APLAS’05. Tsukuba, Japan: Springer, 2005, pp. 139–160.

[151] John M. Lucassen and David K. Gifford. “Polymorphic Effect
Systems.” In: Proceedings of the 15th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. POPL’88.
San Diego, CA, USA: ACM, 1988, pp. 47–57.

[152] Ami Luttwak and Alon Schindel. Log4Shell 10 days later: En-
terprises halfway through patching. https://www.wiz.io/blog/
10-days-later-enterprises-halfway-through-patching-

log4shell. [Online; accessed 06-September-2022].

https://www.wiz.io/blog/10-days-later-enterprises-halfway-through-patching-log4shell
https://www.wiz.io/blog/10-days-later-enterprises-halfway-through-patching-log4shell
https://www.wiz.io/blog/10-days-later-enterprises-halfway-through-patching-log4shell

bibliography 244

[153] Magnus Madsen and Ondřej Lhoták. “Safe and Sound Program
Analysis with Flix.” In: Proceedings of the 27th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis. ISSTA’18.
Amsterdam, The Netherlands: ACM, 2018, pp. 38–48.

[154] Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. “From
Datalog to Flix: A Declarative Language for Fixed Points on
Lattices.” In: Proceedings of the 37th ACM SIGPLAN Conference
on Programming Language Design and Implementation. Vol. 51.
PLDI’16 6. Santa Barbara, CA, USA: ACM, 2016, pp. 194–208.

[155] Eva Magnusson and Görel Hedin. “Circular reference attributed
grammars — their evaluation and applications.” In: Science of
Computer Programming 68.1 (2007), pp. 21–37.

[156] Alessandro Margara and Guido Salvaneschi. “On the Seman-
tics of Distributed Reactive Programming: The Cost of Consis-
tency.” In: IEEE Transactions on Software Engineering 44.7 (2018),
pp. 689–711.

[157] Darko Marinov, Alexandr Andoni, Dumitru Daniliuc, Sarfraz
Khurshid, and Martin Rinard. An evaluation of exhaustive testing
for data structures. Tech. rep. MIT-LCS-TR-921. MIT Computer
Science and Artificial Intelligence Laboratory, 2003.

[158] Maven Repository. https://mvnrepository.com/. [Online; ac-
cessed 23-September-2022]. 2022.

[159] Erik Meijer. “Reactive Extensions (Rx): Curing Your Asyn-
chronous Programming Blues.” In: ACM SIGPLAN Commercial
Users of Functional Programming. CUFP’10. Baltimore, MD, USA:
ACM, 2010, pp. 11:1–11:1.

[160] Mario Méndez-Lojo, Martin Burtscher, and Keshav Pingali.
“A GPU Implementation of Inclusion-based Points-to Analy-
sis.” In: Proceedings of the 17th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming. PPoPP’12. New
Orleans, LA, USA: ACM, 2012, pp. 107–116.

[161] Mario Méndez-Lojo, Augustine Mathew, and Keshav Pingali.
“Parallel Inclusion-based Points-to Analysis.” In: Proceedings of
the ACM International Conference on Object Oriented Programming
Systems Languages and Applications. OOPSLA’10. Reno/Tahoe,
NV, USA: ACM, 2010, pp. 428–443.

[162] Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H.
Cooper, Michael Greenberg, Aleks Bromfield, and Shriram Kr-
ishnamurthi. “Flapjax: A Programming Language for Ajax Ap-
plications.” In: Proceeding of the 24th ACM SIGPLAN Conference
on Object Oriented Programming Systems Languages and Applica-
tions. OOPSLA’09. Orlando, FL, USA: ACM, 2009, pp. 1–20.

https://mvnrepository.com/

bibliography 245

[163] Ana Milanova and Yao Dong. “Inference and Checking of
Object Immutability.” In: Proceedings of the 13th International
Conference on Principles and Practices of Programming on the Java
Platform: Virtual Machines, Languages, and Tools. PPPJ’16. Lugano,
Switzerland: ACM, 2016, pp. 6:1–6:12.

[164] Peter D. Mosses. “Modular structural operational semantics.”
In: The Journal of Logic and Algebraic Programming 60-61 (2004),
pp. 195–228.

[165] Steven Muchnick. Advanced Compiler Design & Implementation.
Morgan Kaufmann, 1997.

[166] David A. Naumann. “Observational Purity and Encapsulation.”
In: Fundamental Approaches to Software Engineering. FASE’05.
Edinburgh, UK: Springer, 2005, pp. 190–204.

[167] Stephen Nelson, David J. Pearce, and James Noble. “Profil-
ing Field Initialisation in Java.” In: Runtime Verification. RV’12.
Istanbul, Turkey: Springer, 2012, pp. 292–307.

[168] Allen Newell. Some problems of basic organization in problem-
solving programs. Tech. rep. RM-3283-PR. RAND Corporation,
1962.

[169] Flemming Nielson, Hanne R. Nielson, and Chris Hankin. Prin-
ciples of Program Analysis. Springer, 1999.

[170] H. Penny Nii. “The Blackboard Model of Problem Solving and
the Evolution of Blackboard Architectures.” In: AI Magazine 7.2
(1986), pp. 38–53.

[171] H. Penny Nii, Edward A. Feigenbaum, and John J. Anton.
“Signal-to-Symbol Transformation: HASP/SIAP Case Study.”
In: AI Magazine 3.2 (1982), pp. 23–35.

[172] Jesper Öqvist and Görel Hedin. “Concurrent Circular Reference
Attribute Grammars.” In: Proceedings of the 10th ACM SIGPLAN
International Conference on Software Language Engineering. SLE’17.
Vancouver, Canada: ACM, 2017, pp. 151–162.

[173] Oracle. Map (Java SE 16 & JDK 16). https://docs.oracle.com/
en/\java/javase/16/docs/api/java.base/java/util/Map.

html. [Online; accessed 21-November-2022]. 2022.

[174] Oracle. Secure Coding Guidelines for Java SE. https : / / www .

oracle.com/java/technologies/javase/seccodeguide.html.
[Online; accessed 21-November-2022]. 2022.

[175] Damilola Orikogbo, Matthias Büchler, and Manuel Egele. “CR-
iOS: Toward Large-Scale iOS Application Analysis.” In: Pro-
ceedings of the 6th Workshop on Security and Privacy in Smart-
phones and Mobile Devices. SPSM’16. Vienna, Austria: ACM,
2016, pp. 33–42.

https://docs.oracle.com/en/\java/javase/16/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/\java/javase/16/docs/api/java.base/java/util/Map.html
https://docs.oracle.com/en/\java/javase/16/docs/api/java.base/java/util/Map.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html
https://www.oracle.com/java/technologies/javase/seccodeguide.html

bibliography 246

[176] Software Engineering Group at Heinz Nixdorf Institute of
Paderborn University. Soot - A framework for analyzing and
transforming Java and Android applications. https://soot-oss.
github.io/soot/. [Online; accessed 06-September-2022].

[177] Ya Pan, Xiuting Ge, Chunrong Fang, and Yong Fan. “A System-
atic Literature Review of Android Malware Detection Using
Static Analysis.” In: IEEE Access 8 (2020), pp. 116363–116379.

[178] David Pearce. “JPure: A Modular Purity System for Java.” In:
Compiler Construction. CC’11. Saarbrücken, Germany: Springer,
2011, pp. 104–123.

[179] Sara Porat, Marina Biberstein, Larry Koved, and Bilha Mendel-
son. “Automatic Detection of Immutable Fields in Java.” In:
Proceedings of the 2000 conference of the Centre for Advanced Stud-
ies on Collaborative research. CASCON’00. Mississauga, Canada:
IBM, 2000, pp. 10:1–10:15.

[180] Alex Potanin, Johan Östlund, Yoav Zibin, and Michael D. Ernst.
“Immutability.” In: Aliasing in Object-Oriented Programming.
Types, Analysis and Verification. Springer, 2013, pp. 233–269.

[181] Tarun Prabhu, Shreyas Ramalingam, Matthew Might, and Mary
Hall. “EigenCFA: Accelerating Flow Analysis with GPUs.” In:
Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages. POPL’11. Austin,
TX, USA: ACM, 2011, pp. 511–522.

[182] Aleksandar Prokopec, Dmitry Petrashko, Miguel Garcia, Jason
Zaugg, Hubert Plociniczak, Viktor Klang, and Martin Odersky.
SIP-20 - Improved Lazy Vals Initialization. https://docs.scala-
lang.org/sips/improved-lazy-val-initialization.html.
[Online; accessed 08-August-2021]. 2021.

[183] Jaime Quinonez, Matthew S. Tschantz, and Michael D. Ernst.
“Inference of Reference Immutability.” In: ECOOP 2008 – Object-
Oriented Programming. ECOOP’08. Paphos, Cyprus: Springer,
2008, pp. 616–641.

[184] Siegfried Rasthofer, Steven Arzt, Marc Miltenberger, and Eric
Bodden. “Harvesting Runtime Values in Android Applications
that Feature Anti-Analysis Techniques.” In: 23rd Annual Net-
work and Distributed System Security Symposium. NDSS’16. San
Diego, CA, USA: Internet Society, 2016.

[185] Michael Reif, Michael Eichberg, Ben Hermann, Johannes Lerch,
and Mira Mezini. “Call Graph Construction for Java Libraries.”
In: Proceedings of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering. FSE’16. Seattle,
WA, USA: ACM, 2016, pp. 474–486.

https://soot-oss.github.io/soot/
https://soot-oss.github.io/soot/
https://docs.scala-lang.org/sips/improved-lazy-val-initialization.html
https://docs.scala-lang.org/sips/improved-lazy-val-initialization.html

bibliography 247

[186] Michael Reif, Florian Kübler, Michael Eichberg, Dominik Helm,
and Mira Mezini. “Judge: Identifying, Understanding, and
Evaluating Sources of Unsoundness in Call Graphs.” In: Pro-
ceedings of the 28th ACM SIGSOFT International Symposium on
Software Testing and Analysis. ISSTA’19. Beijing, China: ACM,
2019, pp. 251–261.

[187] Michael Reif, Florian Kübler, Michael Eichberg, and Mira
Mezini. “Systematic Evaluation of the Unsoundness of Call
Graph Construction Algorithms for Java.” In: Companion Pro-
ceedings for the ISSTA/ECOOP 2018 Workshops. SOAP’18. Ams-
terdam, The Netherlands: ACM, 2018, pp. 107–112.

[188] Michael Reif, Florian Kübler, Dominik Helm, Ben Hermann,
Michael Eichberg, and Mira Mezini. “TACAI: An Intermediate
Representation Based on Abstract Interpretation.” In: Proceed-
ings of the 9th ACM SIGPLAN International Workshop on the State
Of the Art in Program Analysis. SOAP’20. London, UK: ACM,
2020, pp. 2–7.

[189] Thomas W. Reps. “Demand Interprocedural Program Analy-
sis Using Logic Databases.” In: Applications of Logic Databases.
Springer, 1995, pp. 163–196.

[190] Thomas W. Reps, Susan Horwitz, and Mooly Sagiv. “Precise
Interprocedural Dataflow Analysis via Graph Reachability.”
In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. POPL’95. San Francisco,
CA, USA: ACM, 1995, pp. 49–61.

[191] Martin Rinard. “Analysis of Multithreaded Programs.” In:
Static Analysis. SAS’01. Paris, France: Springer, 2001, pp. 1–19.

[192] Jonathan Rodriguez and Ondřej Lhoták. “Actor-Based Paral-
lel Dataflow Analysis.” In: Compiler Construction. CC’11. Saar-
brücken, Germany: Springer, 2011, pp. 179–197.

[193] John R. Rose. “Bytecodes meet Combinators: invokedynamic
on the JVM.” In: Proceedings of the Third Workshop on Virtual
Machines and Intermediate Languages. VMIL’09. Orlando, FL,
USA: ACM, 2009, pp. 2:1–2:11.

[194] Grigore Roşu and Traian Florin Şerbănută. “An overview of the
K semantic framework.” In: The Journal of Logic and Algebraic
Programming 79.6 (2010), pp. 397–434.

[195] Tobias Roth, Dominik Helm, Michael Reif, and Mira Mezini.
“CiFi: Versatile Analysis of Class and Field Immutability.”
In: 2021 36th IEEE/ACM International Conference on Automated
Software Engineering. ASE’21. Virtual Event, Australia: IEEE,
2021, pp. 979–990.

bibliography 248

[196] Atanas Rountev. “Precise Identification of Side-effect-free Meth-
ods in Java.” In: 20th IEEE International Conference on Software
Maintenance, 2004. Proceedings. ICSM’04. Chicago, IL, USA:
IEEE, 2004, pp. 82–91.

[197] Andrei Sabelfeld and Andrew C. Myers. “Language-Based
Information-Flow Security.” In: IEEE Journal on Selected Areas
in Communications 21.1 (2003), pp. 5–19.

[198] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-
Cushon, and Ciera Jaspan. “Lessons from Building Static Anal-
ysis Tools at Google.” In: Communications of the ACM 61.4 (2018),
pp. 58–66.

[199] Mooly Sagiv, Thomas Reps, and Susan Horwitz. “Precise in-
terprocedural dataflow analysis with applications to constant
propagation.” In: Theoretical Computer Science 167.1 (1996),
pp. 131–170.

[200] Guido Salvaneschi, Gerold Hintz, and Mira Mezini. “REScala:
Bridging Between Object-oriented and Functional Style in Re-
active Applications.” In: Proceedings of the 13th International
Conference on Modularity. MODULARITY’14. Lugano, Switzer-
land: ACM, 2014, pp. 25–36.

[201] Guido Salvaneschi and Mira Mezini. “Debugging for Reactive
Programming.” In: Proceedings of the 38th International Conference
on Software Engineering. ICSE’16. Austin, TX, USA: ACM, 2016,
pp. 796–807.

[202] Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and
Mehdi Mirakhorli. “Serialization-Aware Call Graph Construc-
tion.” In: Proceedings of the 10th ACM SIGPLAN International
Workshop on the State Of the Art in Program Analysis. SOAP’21.
Virtual Event, Canada: ACM, 2021, pp. 37–42.

[203] Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli.
“Salsa: Static Analysis of Serialization Features.” In: Proceedings
of the 22nd ACM SIGPLAN International Workshop on Formal
Techniques for Java-Like Programs. FTfJP’20. Virtual Event, USA:
ACM, 2020, pp. 18–25.

[204] Bernhard Scholz, Herbert Jordan, Pavle Subotić, and Till West-
mann. “On Fast Large-Scale Program Analysis in Datalog.”
In: Proceedings of the 25th International Conference on Compiler
Construction. CC’16. Barcelona, Spain: ACM, 2016, pp. 196–206.

[205] Sebastian Schrittwieser, Stefan Katzenbeisser, Johannes Kinder,
Georg Merzdovnik, and Edgar Weippl. “Protecting Software
through Obfuscation: Can It Keep Pace with Progress in Code
Analysis?” In: ACM Computing Surveys 49.1 (2016), pp. 4:1–4:37.

[206] Philipp Dominik Schubert. PhASAR. https://phasar.org.
[Online; accessed 19-September-2022].

https://phasar.org

bibliography 249

[207] Philipp Dominik Schubert, Ben Hermann, and Eric Bodden.
“PhASAR: An Inter-procedural Static Analysis Framework for
C/C++.” In: Tools and Algorithms for the Construction and Analysis
of Systems. TACAS’19. Prague, Czech Republic: Springer, 2019,
pp. 393–410.

[208] Philipp Dominik Schubert, Richard Leer, Ben Hermann, and
Eric Bodden. “Into the Woods: Experiences from Building a
Dataflow Analysis Framework for C/C++.” In: 2021 IEEE 21st
International Working Conference on Source Code Analysis and
Manipulation. SCAM’21. Luxembourg City, Luxembourg: IEEE,
2021, pp. 18–23.

[209] Olin Shivers. “Control Flow Analysis in Scheme.” In: Proceed-
ings of the ACM SIGPLAN 1988 Conference on Programming Lan-
guage Design and Implementation. PLDI’88. Atlanta, GA, USA:
ACM, 1988, pp. 164–174.

[210] Olin Shivers. “Control-Flow Analysis of Higher-Order Lan-
guages or Taming Lambda.” PhD thesis. Carnegie Mellon Uni-
versity, PA, USA, 1991.

[211] Robert Silvers et al. Review of the December 2021 Log4j Event.
Tech. rep. Cyber Safety Review Board, 2022.

[212] Jagsir Singh and Jaswinder Singh. “Challenges of Malware
Analysis: Obfuscation Techniques.” In: International Journal of
Information Security Science 7.3 (2018), pp. 100–110.

[213] Yannis Smaragdakis. Doop Benchmarks. https://bitbucket.
org/yanniss/doop-benchmarks. [Online; accessed 28-October-
2022].

[214] Yannis Smaragdakis, George Balatsouras, George Kastrinis,
and Martin Bravenboer. “More Sound Static Handling of Java
Reflection.” In: Programming Languages and Systems. APLAS’15.
Pohang, South Korea: Springer, 2015, pp. 485–503.

[215] Yannis Smaragdakis and Martin Bravenboer. “Using Datalog
for Fast and Easy Program Analysis.” In: Datalog Reloaded.
Datalog 2.0’10. Oxford, UK: Springer, 2010, pp. 245–251.

[216] Yannis Smaragdakis, Martin Bravenboer, and Ondřej Lhoták.
“Pick Your Contexts Well: Understanding Object-Sensitivity.”
In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL’11. Austin,
TX, USA: ACM, 2011, pp. 17–30.

[217] Yannis Smaragdakis and George Kastrinis. “Defensive Points-
To Analysis: Effective Soundness via Laziness.” In: 32nd Euro-
pean Conference on Object-Oriented Programming. ECOOP’18. Am-
sterdam, The Netherlands: Schloss Dagstuhl – Leibniz-Zentrum
für Informatik, 2018, pp. 23:1–23:28.

https://bitbucket.org/yanniss/doop-benchmarks
https://bitbucket.org/yanniss/doop-benchmarks

bibliography 250

[218] Johannes Späth, Karim Ali, and Eric Bodden. “IDEal: Efficient
and Precise Alias-Aware Dataflow Analysis.” In: Proceedings
of the ACM on Programming Languages. OOPSLA’17 1.OOPSLA
(2017), pp. 99:1–99:27.

[219] Johannes Späth, Lisa Nguyen Quang Do, Karim Ali, and Eric
Bodden. “Boomerang: Demand-Driven Flow- and Context-
Sensitive Pointer Analysis for Java.” In: 30th European Confer-
ence on Object-Oriented Programming. Vol. 56. ECOOP’16. Rome,
Italy: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2016,
pp. 22:1–22:26.

[220] National Institute of Standards and Technology. CVE-2021-
44228. https://nvd.nist.gov/vuln/detail/CVE-2021-44228.
[Online; accessed 06-September-2022]. 2021.

[221] Benno Stein, Bor-Yuh Evan Chang, and Manu Sridharan. “De-
manded Abstract Interpretation.” In: Proceedings of the 42nd
ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation. PLDI’21. Virtual Event, Canada:
ACM, 2021, pp. 282–295.

[222] Arran Stewart, Rachel Cardell-Oliver, and Rowan Davies. “Fine-
grained classification of side-effect free methods in real-world
Java code and applications to software security.” In: Proceed-
ings of the Australasian Computer Science Week Multiconference.
ACSW’16. Canberra, Australia: ACM, 2016, pp. 37:1–37:7.

[223] Alexandru Sălcianu and Martin Rinard. A Combined Pointer
and Purity Analysis for Java Programs. Tech. rep. MIT-CSAIL-
TR-2004-030. MIT Computer Science and Artificial Intelligence
Laboratory, 2004.

[224] Alexandru Sălcianu and Martin Rinard. “Purity and Side Effect
Analysis for Java Programs.” In: Verification, Model Checking, and
Abstract Interpretation. Vol. 5. VMCAI’05. Paris, France: Springer,
2005, pp. 199–215.

[225] Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and
Amjed Tahir. “On the Soundness of Call Graph Construction
in the Presence of Dynamic Language Features - A Bench-
mark and Tool Evaluation.” In: Programming Languages and
Systems. APLAS’18. Wellington, New Zealand: Springer, 2018,
pp. 69–88.

[226] Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. “On
the Recall of Static Call Graph Construction in Practice.” In:
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering. ICSE’20. Seoul, South Korea: ACM, 2020,
pp. 1049–1060.

https://nvd.nist.gov/vuln/detail/CVE-2021-44228

bibliography 251

[227] Vijay Sundaresan, Laurie Hendren, Chrislain Razafimahefa,
Raja Vallée-Rai, Patrick Lam, Etienne Gagnon, and Charles
Godin. “Practical Virtual Method Call Resolution for Java.”
In: Proceedings of the 15th ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOP-
SLA’00. Minneapolis, MN, USA: ACM, 2000, pp. 264–280.

[228] Chungha Sung, Markus Kusano, and Chao Wang. “Modu-
lar Verification of Interrupt-Driven Software.” In: 2017 32nd
IEEE/ACM International Conference on Automated Software En-
gineering. ASE’17. Urbana-Champaign, IL, USA: IEEE, 2017,
pp. 206–216.

[229] Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus
Voelter. “Incrementalizing Lattice-Based Program Analyses in
Datalog.” In: Proceedings of the ACM on Programming Languages
2.OOPSLA (2018), pp. 139:1–139:29.

[230] Tian Tan, Yue Li, and Jingling Xue. “Making k-Object-Sensitive
Pointer Analysis More Precise with Still k-Limiting.” In: Static
Analysis. SAS’16. Edinburgh, UK: Springer, 2016, pp. 489–510.

[231] Tian Tan, Yue Li, and Jingling Xue. “Efficient and Precise Points-
to Analysis: Modeling the Heap by Merging Equivalent Au-
tomata.” In: Proceedings of the 38th ACM SIGPLAN Conference
on Programming Language Design and Implementation. PLDI’17.
Barcelona, Spain: ACM, 2017, pp. 278–291.

[232] Jubi Taneja, Zhengyang Liu, and John Regehr. “Testing Static
Analyses for Precision and Soundness.” In: Proceedings of the
18th ACM/IEEE International Symposium on Code Generation
and Optimization. CGO’20. San Diego, CA, USA: ACM, 2020,
pp. 81–93.

[233] Ewan Tempero, Craig Anslow, Jens Dietrich, Ted Han, Jing Li,
Markus Lumpe, Hayden Melton, and James Noble. “The Qual-
itas Corpus: A Curated Collection of Java Code for Empirical
Studies.” In: 2010 Asia Pacific Software Engineering Conference.
APSEC’10. Sydney, Australia: IEEE, 2010, pp. 336–345.

[234] Frank Tip and Jens Palsberg. “Scalable Propagation-Based Call
Graph Construction Algorithms.” In: Proceedings of the 15th
ACM SIGPLAN Conference on Object-Oriented Programming, Sys-
tems, Languages, and Applications. OOPSLA’00. Minneapolis,
MN, USA: ACM, 2000, pp. 281–293.

[235] Oksana Tkachuk and Matthew B. Dwyer. “Adapting Side Ef-
fects Analysis for Modular Program Model Checking.” In: Pro-
ceedings of the 9th European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International Symposium on Foun-
dations of Software Engineering. ESEC/FSE’03. Helsinki, Finland:
ACM, 2003, pp. 188–197.

bibliography 252

[236] John Toman and Dan Grossman. “Taming the Static Analysis
Beast.” In: 2nd Summit on Advances in Programming Languages.
SNAPL’17. Asilomar, CA, USA: Schloss Dagstuhl – Leibniz-
Zentrum für Informatik, 2017, pp. 18:1–18:14.

[237] Matthew S. Tschantz and Michael D. Ernst. “Javari: Adding
Reference Immutability to Java.” In: Proceedings of the 20th An-
nual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications. OOPSLA’05. San Diego,
CA, USA: ACM, 2005, pp. 211–230.

[238] Raja Vallée-Rai. “Soot: A Java Bytecode Optimization Frame-
work.” PhD thesis. McGill University, Canada, 2000.

[239] Raja Vallée-Rai and Laurie J. Hendren. Jimple: Simplifying Java
Bytecode for Analyses and Transformations. Tech. rep. Sable Re-
search Group. McGill University, 1998.

[240] Haoyu Wang, Yao Guo, Ziang Ma, and Xiangqun Chen. “Wu-
Kong: A Scalable and Accurate Two-Phase Approach to An-
droid App Clone Detection.” In: Proceedings of the 2015 Inter-
national Symposium on Software Testing and Analysis. ISSTA’15.
Baltimore, MD, USA: ACM, 2015, pp. 71–82.

[241] Dominik Wermke, Nicolas Huaman, Yasemin Acar, Bradley
Reaves, Patrick Traynor, and Sascha Fahl. “A Large Scale Inves-
tigation of Obfuscation Use in Google Play.” In: Proceedings of
the 34th Annual Computer Security Applications Conference. AC-
SAC’18. San Juan, PR, USA: ACM, 2018, pp. 222–235.

[242] John Whaley. “Context-sensitive pointer analysis using binary
decision diagrams.” PhD thesis. Stanford University, CA, USA,
2007.

[243] John Whaley, Dzintars Avots, Michael Carbin, and Monica
S. Lam. “Using Datalog with Binary Decision Diagrams for
Program Analysis.” In: Programming Languages and Systems.
APLAS’05. Tsukuba, Japan: Springer, 2005, pp. 97–118.

[244] John Whaley and Monica S. Lam. “Cloning-Based Context-
Sensitive Pointer Alias Analysis Using Binary Decision Dia-
grams.” In: Proceedings of the ACM SIGPLAN 2004 Conference
on Programming Language Design and Implementation. PLDI’04.
Washington DC, USA: ACM, 2004, pp. 131–144.

[245] Haiying Xu, Christopher J. F. Pickett, and Clark Verbrugge.
“Dynamic Purity Analysis for Java Programs.” In: Proceedings of
the 7th ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering. PASTE’07. San Diego, CA,
USA: ACM, 2007, pp. 75–82.

bibliography 253

[246] Jisheng Zhao, Ian Rogers, Chris Kirkham, and Ian Watson.
“Pure Method Analysis Within Jikes RVM.” In: Implementation,
Compilation, Optimization of Object-Oriented Languages, Programs
and Systems. ICOOOLPS’08. Paphos, Cyprus, 2008.

[247] Yoav Zibin, Alex Potanin, Mahmood Ali, Shay Artzi, Adam
Kieżun, and Michael D. Ernst. “Object and Reference Im-
mutability using Java Generics.” In: Proceedings of the the 6th
Joint Meeting of the European Software Engineering Conference and
the ACM SIGSOFT Symposium on The Foundations of Software
Engineering. ESEC/FSE’07. Dubrovnik, Croatia: ACM, 2007,
pp. 75–84.

[248] Yoav Zibin, Alex Potanin, Paley Li, Mahmood Ali, and Michael
D. Ernst. “Ownership and Immutability in Generic Java.” In:
Proceedings of the ACM International Conference on Object Oriented
Programming Systems Languages and Applications. OOPSLA’10.
Reno/Tahoe, NV, USA: ACM, 2010, pp. 598–617.

	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	1 Introduction
	1.1 Challenges for Static Analyses
	1.2 Need for Modular, Collaborative Static Analyses
	1.3 Problem Statement
	1.4 Contributions of this Thesis
	1.5 Structure of this Thesis
	1.6 Publications
	1.7 My Contributions

	 Approach
	2 Terminology and Requirements
	2.1 Terminology
	2.2 Requirements

	3 Architecture
	3.1 Overview
	3.2 Representing Properties
	3.3 Analysis Structure
	3.4 Declarative Specifications
	3.5 Reporting Results
	3.6 Execution Constraints
	3.7 Fixed-Point Computation
	3.8 Scheduling and Parallelization
	3.9 Summary

	4 Alternative Implementation in Reactive Async
	4.1 Programming Model Basics
	4.2 Advanced Constructs for Correctness
	4.3 Handler Pool
	4.4 Scheduling
	4.5 RA2 at Work
	4.6 Summary

	5 Formalization
	5.1 Formal Definition
	5.2 Compositional Soundness Proofs
	5.3 Reusable Soundness Proofs
	5.4 Applicability of the Theory
	5.5 Summary

	6 Related Work
	6.1 Blackboard Systems
	6.2 General Purpose Analysis Frameworks
	6.3 Declarative Analyses Using Datalog
	6.4 Attribute Grammars
	6.5 Abstract Interpretation
	6.6 Imperative Approaches
	6.7 Reactive Frameworks for Static Analyses
	6.8 Parallel Static Analyses
	6.9 Summary

	 Case Studies
	7 Intermediate Representation Based on Abstract Interpretation
	7.1 State of the Art
	7.2 Approach
	7.3 Summary

	8 Collaborative Call-Graph Construction
	8.1 Problem Statement
	8.2 State of the Art
	8.3 Unimocg Modular Architecture
	8.4 Summary

	9 Modular Immutability Analyses
	9.1 State Of The Art
	9.2 Model
	9.3 CiFi: Analysis Implementation
	9.4 CiFi-Bench
	9.5 Validation
	9.6 Summary

	10 Modular Purity Analysis
	10.1 State of the Art
	10.2 Model
	10.3 Purity Analysis
	10.4 Validation
	10.5 Summary

	 Evaluation
	11 Applicability and Modularity
	11.1 Support for Various Analyses
	11.2 Support for Modular Call Graphs
	11.3 Effects of The Exchangeability of Analyses
	11.4 Implementation Based on Reactive Async
	11.5 Summary

	12 Precision and Soundness
	12.1 TACAI
	12.2 Unimocg
	12.3 CiFi
	12.4 OPIUM
	12.5 Summary

	13 Scalability, Parallelization and Scheduling
	13.1 Parallelization
	13.2 Benefits of Specialized Data Structures
	13.3 Scheduling Strategies
	13.4 Scalability of the Case-Study Analyses
	13.5 Summary

	 Conclusion
	14 Summary of Results
	15 Future Work
	15.1 Expanding Framework Scope and Applicability
	15.2 Further Scalability Improvements

	16 Closing Discussion

	 Appendix
	 Bibliography

