
Data Driven Estimation of
Wall Shear Stress from

Magnetic Resonance Imaging

Vom Fachbereich Mathematik

der Technischen Universität Darmstadt

zur Erlangung des Grades eines

Doktors der Naturwissenschaften

(Dr. rer. nat.)

genehmigte Dissertation

von

Gabriel Teschner, M.Sc.

aus Frankfurt am Main

Referent : Prof. Dr. Herbert Egger

Korreferent : Prof. Dr. Jan-Frederik Pietschmann

Tag der Einreichung: 09.02.2022

Tag der mündlichen Prüfung: 01.04.2022

Darmstadt, 2022
D17



Data Driven Estimation of Wall Shear Stress from Magnetic Resonance Imaging

Accepted doctoral thesis by Gabriel Teschner

Dissertationsort: Darmstadt, Technische Universität Darmstadt
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Abstract

Flows occur in various applications in engineering and medicine. Dynamic quantities, in
particular the forces, that the flowing viscous fluid exerts on the neighbouring material,
are of special interest. Following the widely accepted flow model, these dynamic quantities
are representable by derivatives of the velocity field.
A modification of magnetic resonance imaging is capable to measure besides morpholog-

ical data, also velocity fields in the interior of an object. As a non-invasive method, it is
in particular suited for in vivo investigations of the cardiovascular system.
This thesis deals with the problem of reconstructing the wall shear stress, the distribution

of the shear forces, that the blood flow exerts on the aortic vessel wall. This involves the
reconstruction of both the flow geometry and velocity from magnetic resonance data and
the evaluation of the normal velocity derivative, the shear rate. At first glance, this problem
might seem trivial. However, there are several issues:

� Magnetic resonance imaging acquires local means of the flow velocity with compar-
atively low spatial and temporal resolution. Additionally, the measurements are
contaminated by noise.

� The blood flow exhibits boundary layers, where the flow field dramatically changes
over small distances. This complicates an accurate approximation of the velocity
field in the region near to the boundary.

� The flow geometry and the flow velocity are structurally connected: Just the shear-
rate, that has to be evaluated, exhibits a discontinuity at the boundary.

In the first part of this work we present a framework for the purely data driven wall shear
stress reconstruction. For this purpose, we approximate the flow geometry first, and then
the flow velocity using parametric representations. The reconstruction method allows for
a continuous analysis as regularization procedure for two coupled inverse problems. Since
the corresponding forward operators satisfy a conditional stability estimate, convergence of
the reconstruction method can be established under reasonable smoothness assumptions on
the geometry and the flow velocity. These results widely carry over to the discrete setting,
where we introduce discrete versions of the forward operators to minimize the data error.
In the second part of this work we use methods of data assimilation, to enhance the

purely data driven reconstruction using a fluid dynamical model. In a first study, we
utilize a variational approach for the enhancement of the velocity reconstruction under
known geometry, that minimizes a functional consisting of a data error and a model error
and was formerly developed and analyzed in our research group. The variational approach
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is formally equivalent to an optimal control problem. Secondly, we demonstrate the basic
possibility to enhance the geometry identification based on a fixed fluid dynamical model.
For both methods, we utilize the widely accurate purely data driven reconstructions for
linearization and localization of the applied fluid dynamic model.
For the assessment of the developed methods we have conducted a comprehensive vali-

dation in collaboration with experts of fluid dynamics and radiology from the Institute for
Fluid Mechanics and Aerodynamics, Technical University Darmstadt, and the Department
of Radiology – Medical Physics, University Hospital Freiburg, respectively. A big issue is
the lack of ground truth. The wall shear stress is highly sensitve to perturbations of the
environmental conditions. Hence, the experiments have to be performed with meticulous
diligence, to ensure reproducibility and hence validity of the reference values, that are ob-
tained from high-resolution laser Doppler anemometry or computational fluid dynamics.
Additionally, we have developed highly robust and accurate but to specific flows limited
reconstruction methods, to estimate the wall shear stress directly from the magnetic reso-
nance data. Furthermore we fall back on virtual in silico data in some cases.
Already the purely data driven reconstruction method provides largely convincing re-

sults. However, the reconstruction is highly sensitve to perturbations of the geometry
identification and reveals sometimes systematic errors due to the coarse resolution. Our
analysis identifies the error sources and their contribution to the overall error. This offers
a guideline for a suitable choice of several parameters in the measurement setup. Further-
more, the described shortcomings of the purely data driven reconstruction are essentially
corrected by the provided data assimilation techniques. The specialization to the applica-
tion in the aorta leads to a fully integrated reconstruction method with low computational
effort, typical running times for all provided methods are in the range of several minutes
using common hardware. Therefore, a valid estimation of wall shear stress in the aorta is
feasible, even under the limitations of clinical routine.
This thesis was funded by the DFG via grant EG-331/1-1. The collaboration with the

project partners resulted in the following papers:

� H. Egger and G. Teschner. On the Stable Estimation of Flow Geometry and Wall
Shear Stress from Magnetic Resonance Images. Inverse Problems, 35:095001, 2019.

� A. Bauer, S. Wegt, M. Bopp, S. Jakirlic, C. Tropea, A. J. Krafft, N. Shokina, J.
Hennig, G. Teschner and H. Egger. Comparison of Wall Shear Stress Estimates
Obtained by Laser Doppler Velocimetry, Magnetic Resonance Imaging and Numerical
Simulations. Experiments in Fluids, 60:1–16, 2019.

� N. Shokina, A. Bauer, G. Teschner, W. B. Buchenberg, C. Tropea, H. Egger, J. Hen-
nig and A. J. Krafft. MR-based Wall Shear Stress Measurements in Fully Developed
Turbulent Flow using the Clauser Plot Method. Journal of Magnetic Resonance,
305:16–21, 2019.

� N. Shokina, G. Teschner, A. Bauer, C. Tropea, H. Egger, J. Hennig and A. J. Krafft.
Quantification of Wall Shear Stress in Large Blood Vessels using Magnetic Resonance
Imaging. Computational Technologies, 24:4–27, 2019.
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� N. Shokina, G. Teschner, A. Bauer, C. Tropea, H. Egger, J. Hennig and A. J.
Krafft. Parametric Sequential Method for MRI-based Wall Shear Stress Quantifi-
cation. IEEE Transactions on Medical Imaging, 40:1105–1112, 2020.

In this thesis, we will summarize the findings of the papers mentioned above and appro-
priatly extend them to an entire analysis of the wall shear stress reconstruction.
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Zusammenfassung in Deutscher Sprache

In vielen ingenieurwissenschaftlichen und medizinischen Anwendungen treten Strömungen
auf. Von besonderem Interesse sind dabei dynamische Größen, insbesondere Kräfte, die ein
strömendes viskoses Fluid auf seine Umgebung ausübt. Nach dem allgemein akzeptierten
Strömungsmodell lassen sich diese dynamischen Größen durch Ableitungen des Geschwin-
digkeitsfeldes ausdrücken.
Mit Varianten der Magnetresonanztomographie können sowohl morphologische als auch

Geschwindigkeitsdaten im Inneren eines Körpers erfasst werden. Als nichtinvasive Methode
ist sie besonders für in vivo Untersuchungen des kardiovaskulären Systems geeignet.
In dieser Arbeit beschäftigen wir uns mit der Bestimmung der Wandschubspannung, der

Verteilung der Scherkräfte, die die Blutströmung auf die Aortenwand ausübt. Dazu muss
aus den Magnetresonanzdaten die Strömungsgeometrie sowie das Geschwindigkeitsfeld be-
stimmt und anschließend dessen Normalableitung, die Schergeschwindigkeit, ausgewertet
werden. Auf den ersten Blick mag diese Aufgabe trivial erscheinen, allerdings erschweren
einige Probleme ihre Lösung:

� Die Magnetresonanztomographie misst lokale Mittel der Strömungsgeschwindigkeit
mit vergleichsweise niedriger Auflösung. Zusätzlich sind die Messungen verrauscht.

� Die Blutströmungen bilden Grenzschichten aus, in welchen sich das Strömungsfeld
stark verändert. Dies erschwert die akkurate Approximation des Geschwindigkeits-
feldes gerade im Wandbereich.

� Es besteht eine strukturelle Verbindung zwischen Strömungsgeschwindigkeit und
Strömungsgeometrie: An der Wand besitzt gerade die auszuwertende Schergeschwin-
digkeit eine Unstetigkeit.

Im ersten Teil dieser Arbeit stellen wir ein Framework zur rein datenbasierten Berech-
nung der Wandschubspannung vor. Dabei werden zunächst die Strömungsgeometrie und
anschließend die Strömungsgeschwindigkeit durch Parametrisierungen approximiert. Im
Kontinuierlichen lässt sich die Rekonstruktionsmethode als Regularisierungsverfahren zwei-
er gekoppelter inverser Probleme analysieren. Die zugehörigen Vorwärtsoperatoren erfüllen
eine bedingte Stabilitätsabschätzung, womit die Konvergenz des Rekonstruktionsverfahrens
unter akzeptablen Glattheitsvoraussetzungen an Geometrie und Strömung nachgewiesen
werden kann. Diese Resultate lassen sich weitgehend in den diskreten Fall übertragen,
wobei zur Minimierung des Datenfehlers diskrete Vorwärtsoperatoren eingeführt werden.
Im zweiten Teil der Arbeit nutzen wir Methoden der Datenassimilation, um mithilfe eines

Strömungsmodells die rein datenbasierte Rekonstruktion zu verbessern. Einerseits greifen
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wir dafür auf einen in der Arbeitsgruppe entwickelten Variationszugang zur Geschwindig-
keitsrekonstruktion unter bekannter Geometrie zurück, der ein aus Datenfehler und Mo-
dellfehler bestehendes Zielfunktional minimiert. Formal entspricht dieses Verfahren einem
Optimalsteuerungsproblem. Andererseits demonstrieren wir die prinzipielle Möglichkeit,
die Geometrierekonstruktion mit einem Strömungsmodell zu verbessern. In beiden Fällen
nutzen wir die weitgehend akkuraten datenbasierten Rekonstruktionen zur Linearisierung
und Lokalisierung des eingesetzten Strömungsmodells.
Die theoretischen Aussagen wurden in Kooperation mit Experten vom Fachgebiet für

Strömungslehre und Aerodynamik der Technischen Universität Darmstadt und des Fach-
bereichs Radiologie und Medizinphysik des Universitätsklinikums Freiburg umfangreich
validiert. Eine große Schwierigkeit ist der Mangel an Referenzwerten. Die Wandschubspan-
nung reagiert sehr sensibel auf Störungen der Umgebungsbedingungen. Deshalb mussten
die Experimente mit akribischer Genauigkeit durchgeführt werden, um Reproduzierbarkeit
und damit die Aussagekraft der durch hochauflösende Laser-Doppler-Anemometrie sowie
Computersimulationen erhaltenen Referenzwerte sicherzustellen. Zusätzlich wurden beson-
ders stabile, aber auf bestimmte Strömungen spezialisierte Verfahren entwickelt, um die
Wandschubspannung mit hoher Genauigkeit auch aus den Magnetresonanzdaten zu be-
stimmen. Weiterhin wird in einigen Fällen auf virtuelle in silico Daten zurückgegriffen.
Bereits die rein datenbasierte Methode liefert weitgehend überzeugende Resultate. Aller-

dings ist die Rekonstruktion sehr sensibel bezüglich Fehlern in der Geometrieerkennung und
zeigt in einigen Fällen durch die grobe Auflösung verursachte systematische Störungen. Un-
sere Analyse identifiziert die Fehlerquellen und ihren Beitrag zum Rekonstruktionsfehler.
Dies liefert wichtige Hinweise für eine geeignete Wahl der Messparameter. Weiterhin lassen
sich die beschriebenen Schwachstellen der rein datenbasierten Rekonstruktion durch die
vorgestellten Datenassimilationsmethoden substantiell verbessern. Die Spezialisierung un-
seres Rekonstruktionsframeworks auf die Anwendung in der Aorta führt zu einem niedrigen
Rechenaufwand, typische Rechenzeiten für alle vorgestellten Methoden liegen im Bereich
von wenigen Minuten auf gewöhnlicher Hardware. Damit ist auch unter den Limitierungen
der klinischen Routine eine valide Schätzung der Wandschubspannung möglich.
Diese Arbeit wurde durch das DFG Projekt EG-331/1-1 finanziert. In dessen Rahmen

entstanden in Zusammenarbeit mit den Projektpartnern die folgenden Arbeiten:

� H. Egger and G. Teschner. On the Stable Estimation of Flow Geometry and Wall
Shear Stress from Magnetic Resonance Images. Inverse Problems, 35:095001, 2019.

� A. Bauer, S. Wegt, M. Bopp, S. Jakirlic, C. Tropea, A. J. Krafft, N. Shokina, J.
Hennig, G. Teschner and H. Egger. Comparison of Wall Shear Stress Estimates
Obtained by Laser Doppler Velocimetry, Magnetic Resonance Imaging and Numerical
Simulations. Experiments in Fluids, 60:1–16, 2019.

� N. Shokina, A. Bauer, G. Teschner, W. B. Buchenberg, C. Tropea, H. Egger, J. Hen-
nig and A. J. Krafft. MR-based Wall Shear Stress Measurements in Fully Developed
Turbulent Flow using the Clauser Plot Method. Journal of Magnetic Resonance,
305:16–21, 2019.
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� N. Shokina, G. Teschner, A. Bauer, C. Tropea, H. Egger, J. Hennig and A. J. Krafft.
Quantification of Wall Shear Stress in Large Blood Vessels using Magnetic Resonance
Imaging. Computational Technologies, 24:4–27, 2019.

� N. Shokina, G. Teschner, A. Bauer, C. Tropea, H. Egger, J. Hennig and A. J.
Krafft. Parametric Sequential Method for MRI-based Wall Shear Stress Quantifi-
cation. IEEE Transactions on Medical Imaging, 40:1105–1112, 2020.

Wir fassen die in den obigen Arbeiten gewonnen Resultate in dieser Dissertationsschrift
zusammen und ergänzen sie an geeigneter Stelle zu einer vollständigen Analyse der Rekon-
struktion der Wandschubspannung.
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Chapter 1

Introduction

1.1 Motivation for the Estimation of Wall Shear Stress

Cardiovascular diseases are a leading cause of death [75]. The asymptomatic development
followed by a sudden occurance of life-threatening events that are typical for cardiovascular
diseases, pose a major challenge to modern medicine. Hence, identification of risk factors
and staging of diagnosted cardiovascular diseases that appear stable become important [35].

Phase contrast magnetic resonance imaging offers the unique opportunity for non-invasive
investigation of the cardiovascular system in acceptable measurement times [63]. It is a
multimodal imaging technique, providing both morphological data, containing information
about the tissue, and velocity data in a single measurement. For illustration, in Figures
1.1 and 1.2 we present measurements in a two-dimensional cross section of the ascending
aorta in the phase of peak systole, i.e. maximum volume flow, of the cardiac cycle. Other
imaging techniques provide only one modality, like the morphological data from computed
tomography or the velocity data from transcranial Doppler ultrasound. Additionally, these
methods suffer from drawbacks like considerable radiation exposure or difficult positioning
of the transducer [80], making them inappropriate for regular monitoring of a detected
cardiovascular disease. In the last 40 years, magnetic resonance imaging underwent fur-
ther enhancements: Triggered by an electrocardiogram, cine magnetic resonance imaging
allows for spatiotemporally resolved measurements of the periodic evolution of an object
in a three-dimensional cubic domain [59].

Given the ability of magnetic resonance imaging, one uses different observable quanti-
ties, like vessel diameter, aspect ratios, flow rates or peak flow velocities, for the staging
of cardiovascular diseases. Although this is the current procedure in the medical practice,
different studies revealed a poor correlation between these basic quantities and the risk of
the sudden occurance of severe complications. For example, one observes no significant
differences in the aspect ratios between ruptured and unruptured cerebral aneurysms [83].
Regarding aortic valve stenosis, one finds a considerable number of cases with several in-
dicators for the severeness of the disease in discordance [35]. Consequently, these simple
quantities, that are accessible from the magnetic resonance data with high accuracy and
under negligable computational effort, do not allow for an enhanced staging of cardiovas-
cular diseases.

Following a commonly accepted paradigm [38], the forces, that the blood flow exerts on
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Chapter 1 Introduction

Figure 1.1: Morphological data of the as-
cending human aorta (circle in
the center) at peak systole with
surrounding tissue.

Figure 1.2: Velocity data of the ascending
human aorta at peak systole;
velocity in [m/s].

the vessel wall, play a key role in the development of endothelial cells, i.e. the inner layer
of cells in the vessel wall, and consequently the disease. The forces the blood flow exerts
on the boundary are normal forces, i.e. the static and dynamic pressure, and shear forces
in tangential direction, i.e. the wall shear stress.

Regarding the blood pressure, the most prominent example is the hypertension: long-
term increased blood pressure may trigger several cardiocascular diseases and is, therefore,
treated with medical drugs [87]. In addition, the velocity of the pressure wave through
the cardiovascular system, caused by the heart contraction, is measured as indicator for
arterial stiffness [99].

Various studies have shown that especially the wall shear stress renders a precise indicator
for the severeness of various diseases. Amongst other, we mention the correlation of wall
shear stress with the risk of rapture or dissection of aneurysms [83], the development of
arteriosclerosis [82], arterial stenosis [95] and bicuspid aortic valve, a significant risk factor
for general aortic diseases [4, 5]. The importance of wall shear stress is highlighted as well
in several review articles [50,72,85].

Beside its use in the medical practice, magnetic resonance imaging has gained attraction
in industrial applications, due to its capability of non-invasive volumetric flow measure-
ments within reasonable data acquisition times [16, 34]. In this context, the method is
typically referred to as magnetic resonance velocimetry. Thus, the presented work pro-
vides a specialized framework for the aortic flow regime, it might also be of interest for
industrial applications. In particular we mention the frequently considered phenomenon of
flow separation, that is characterized by a change of sign of the wall shear stress. For this
accurate wall shear stress estimates are required.
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1.2 Definition of Wall Shear Stress

1.2 Definition of Wall Shear Stress

The wall shear stress τ is the surface shear force density, that a viscous fluid applies on
the boundary. Under some reasonable assumptions, the wall shear stress is accessible from
the flow geometry and the flow velocity. We briefly present this representation and the
required conditions, a detailed description can be found in the standard literature [79].
According to Newton’s third law of motion, the force density applied to the boundary

corresponds to the negative internal force density at the boundary transported in normal
direction n. The latter is given by the fluid stress vector σn, where the stress tensor σ
itself consists of two components

σ = f(E) + pI. (1.1)

The second term is the normal stress generated by the pressure p. The first term is the
viscous stress, which is characteristic for viscous fluids and generated by differences of the
velocity field u. The concrete source E for these viscous stresses is the strain rate tensor

E = Eu =
1

2

(
Du+ (Du)T

)
. (1.2)

Now, we make a fundamental assumption on the considered fluid:

Assumption 1.1. Let the flow consist of an incompressible Newtonian fluid, satisfying the
no-slip boundary condition, i.e. the fluid sticks on the wall. Finally, assume the wall to be
smooth and non-moving in time.

Since the fluid is Newtonian, we have f(E) = 2µE, where µ > 0 is the fluid specific
dynamic viscosity. W.l.o.g assume, that the normal direction coincides with the first co-
ordinate. Then we have by the no-slip condition and the smoothness of the boundary for
the tangential velocity derivatives

∂2u = ∂3u = 0.

For an incompressible fluid, we further obtain

∂1u1 = div(u) − ∂2u2 − ∂3u3 = 0.

Thus, the fluid stress vector simplifies to

σn = µ∂nu + µ∇un + pn = µ∂nu + pn.

The wall shear stress is the projection into the tangential space and, since ∂nun = 0, we
have

τ = −µ ∂nu. (1.3)

Given the dynamic viscosity µ, the estimation of wall shear stress from magnetic resonance
imaging reduces to the problem of computing the normal derivative of the velocity field
at the vessel boundary from the morphological data that contains the information about
the geometry, and the velocity data. Although this problem appears very basic, there are
several complicating issues, as we will outline in the following section.

17



Chapter 1 Introduction

1.3 Challenges and Existing Approaches for Wall Shear
Stress Estimation

The most conspicuous issue for computing an accurate wall shear stress estimate is the
complexity of the velocity profile. As depicted in Figure 1.2, the velocity exhibits boundary
layers. Starting from a vanishing velocity at the boundary due to the no-slip condition,
the flow velocity increases to the free-stream velocity at considerably small distances from
the boundary. Outside the boundary layer, the velocity profile is rather constant.

Secondly, the magnetic resonance imaging data are affected by noise. This holds in
particular at the boundary, where partial volume effects occur [3]. The region near to the
vessel wall exhibits low velocities, leading additionally to a reduced signal due to magnetic
saturation [26]. Unfortunately, this leads to the situation, that the region, which is most
important for the wall shear stress estimation, contains highly noisy data.

Another frequently mentioned issue is the low data resolution [69]. This is related to a
more severe problem, that also occurs for higher resolutions: the measurement operator
contains a filtering process and although the velocity data in Figure 1.2 optically appears
complete, these data are just sparse samples of an infinitely dimensional quantity.

In the end, there are some secondary issues affecting the design of wall shear stress
estimators. On the one hand, we have to deal with the lack of ground truth: the complexity
of the physiological blood flow with Reynolds numbers Re ≈ 4000−8000 [8], the individual
geometry, the interaction with the surrounding tissue with even more complex cellular
structure [46] and the blood rheology [47] are beyond the limitations of a direct numerical
simulation or a highly resolved experimental study. Hence, there is no available gold
standard for an overall validation, there can only be limited validation. On the other
hand, the application of the estimator in the medical context poses some limitations on
the data acquisition and the computational effort.

For the existing wall shear stress estimators, we distinguish among three different para-
digms that have their inidividual advantages and drawbacks. Note that a reconstruction of
the flow geometry is relatively easily obtained by standard methods [22] and the estimators
focus on reconstructing the velocity profile. However, one should keep in mind, that only
an approximation of the geometry is accessible.

The data based approach. Data based wall shear stress estimators aim for approximating
the wall shear rate ∂nu directly from the magnetic resonance imaging data. Usually, they
require an a priori given geometry identification. Furthermore, they are substantially af-
fected by the aforementioned issues: since no generally applicable theory about the shape
of the velocity profile in the boundary layer is known, generic approximation schemes are
required. Due to the formation of the boundary layer, high order derivatives of the velocity
profile, such as the curvature, exhibit large values, leading to large discretization errors at
the application of generic approximation schemes [21]. The combination of noisy data with
the reconstruction from sparse measurements leads to an ill-posed problem [28]. Finally,
even in the case of available exact velocity data, the wall shear rate decreases rapidly while
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going to the interior of the flow domain and is constant zero outside the flow domain,
since the flow velocity vanishes there. Hence, only a slight overestimation or a moderate
underestimation of the geometry would lead to a vanishing or nearly vanishing shear rate.
Therefore, a straightforward separate reconstruction of the ingredients, the geometry and
the velocity, leads to a non-robust estimate.
In an extensive study, existing data based wall shear stress estimators were found to

systematically underestimate the wall shear stress, making Petersson et al. [69] conclude
that

“Even in the absence of noise and for relatively simple velocity profiles, all methods
evaluated were found to be impacted by considerable errors depending on parameter

settings such as VENC, velocity resolution, and especially spatial resolution.”

However, the striking advantage of these data driven methods is their computational sim-
plicity. Typical processing times are in the range of several seconds. Despite their in-
accuracy, they are found to be monotonic, i.e. regions of higher wall shear stress were
reproduced. These advantages make them currently a standard procedure in medical prac-
tice [94]. There are several techniques [67, 68, 70, 73, 88], which we will characterize in
Subsection 2.1.2.

The model based approach. On the other hand, model driven approaches use compu-
tational fluid dynamics to calculate the flow velocity and subsequently the wall shear
stress. The methodology is to identify the geometry from the measurement data and to
perform a flow simulation, where a data driven velocity reconstruction is used as boundary
data [2]. The aforementioned issues affect the methods in another way; the complexity
of the flow requires a highly resolved computational mesh for the simulation that tracks
all important features of the flow. Furthermore, there arise difficulties with the model:
usually, blood is modelled as a Newtonian fluid. Although in general blood is a shear
thinning Non-Newtonian fluid [47], there is justification for the Newtonian idealization in
aortic flow regimes [17]. Apart from the blood rheology, an appropriate turbulence model
should be taken into account, since there is some evidence that the blood flow might be
turbulent [89] and as mentioned above, the problem is out of range of a direct numerical
simulation.
Since the available velocity data are filtered and microscales of the flow unresolved, they

are only of limited use for the simulation. However, boundary conditions have to be defined
and, in particular, the inlet conditions are of crucial impact for the result [90]. A remedy
is to simulate in a domain containing a large section upstream the region of interest. For
instance, this might lead up to a electro-mechano-fluidic model of the left ventricle of the
heart and the aorta, a fully integrated simulation of the electrochemical stimulation, the
contraction of the heart muscle and the induced blood flow in the cardiac system [51].
These methods are believed to be accurate and inherit the sensitivity for mismatches of
the geometry from the physical sensitivity for changes of the geometry. On the other hand,
they pose a huge computational effort and make only little use of the acquired velocity
measurements.
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To exploit the acquired measurements in a model based approach, data assimilation
techniques has been applied to the reconstruction of the velocity field [54,58]. These meth-
ods formulate the reconstruction as an optimal boundary control problem governed by a
fluid dynamical model, utilizing the volumetric velocity data to find an enhanced bound-
ary value using a tracking type functional. Although these methods may be applicable
to smaller computational domains, they remain costly, since several solutions of the non-
stationary non-linear state equation are required for the solution of the optimal control
problem. Another data assimilation method uses the given velocity data to linearize the
flow model [24], making it substantially less expensive, but relying on high data accuracy.

Specialized approach. Beside these generic wall shear stress estimators that are in principal
applicable to all flows, there are specialized wall shear stress estimators, whose applicabil-
ity is restricted to particular flow regimes. These estimators have in common that they
use knowledge about the flow regime to reduce the dimensionality of the unknown velocity
profile. Hence, the original problem of recovering a high dimensional state from sparse data
turns into the problem of recovering low dimensional data from high dimensional measure-
ments. Thus, the aforementioned issues are negligable. The most prominent example in
the investigation of blood flow is the method of Womersley [98]. Originally designed for a
straight pipe, it considers a periodic laminar flow in a generalized cylinder Ω = Ω2× (0, 1).
For simple shapes of the cross section Ω2, the flow governing equations exhibit a unique
analytical solution, depending only on the temporal evolution of the volume flow rate.
For more complex geometries, there are fast and accurate numerical methods to compute
the velocity profile from the volume flow rate. A second example for a specialized wall
shear stress estimator is the Clauser method [20]. It is based on the logarithmic law of the
wall [79] - an experimental correlation - that represents the velocity profile in the boundary
layer by only one unknown. Hence, fitting this friction factor velocity to the data unlocks
access to the entire velocity profile in the boundary layer and, thus, the wall shear stress.

1.4 Methodology

Before touching upon the essential concepts, we formulate the main goal of this work.

Problem 1.2. Let the morphological data mδ and the velocity data uε be given from magnetic
resonance imaging. Compute estimates Γδ,ε ⊂ R3 and

τ δ,ε : Γδ,ε → R3

on the boundary of the flow geometry and the wall shear stress, respectively.

For simplification of the study, we make several assumptions. Apart from some rea-
sonable technical assumptions, that will be mentioned in due course, they concern the
following major points.

� Geometry: we consider a nearly circular (2D) or tubular (3D) stationary geometry.
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� Fluid: we consider an incompressible Newtonian fluid flow satisfying the no-slip
condition. In particular, Assumption 1.1 is valid.

� Flow and measurement: we consider measurements of flows that share important
properties like the Reynolds number and the presence of boundary layers with typical
flow regimes present in the human aorta. Important measurement conditions like
resolution and noise level are realistic for in vivo investigations. The data acquisition
times are short compared to changes of the flow, such that we can treat the data as
snapshots of a possibly instationary flow.

Due to their limited applicability and high computational effort, we discard special-
ized and model based approaches and develop a data based estimation framework. How-
ever, specialized wall shear stress estimators play a key role in the validation and some
model based concepts are utilized to enhance the initially purely data driven reconstruc-
tion method. The overall strategy becomes apparent, when we consider the organization
of the work subsequently to this introductory first chapter.
In Chapter 2, we develop a new purely data driven reconstruction method that sequen-

tially computes approximations of the flow geometry, the flow velocity, and finally the wall
shear stress from the magnetic resonance imaging data. To ensure a mathematically sound
design of the method, we analyze it with tools of the investigation of inverse problems,
yielding convergence rates of the reconstruction in terms of the data error. In particular,
the method is robust against small errors of the flow geometry reconstruction. This chapter
is based on our publication [25].
Chapter 3 is dedicated to the validation of the data driven reconstruction method. First,

we present an enhanced model for the discrete measurement data and discuss the dis-
cretization of the method that matches the data model and maintains the advantage of
low computational complexity. For validation, we apply the method to several flows that
share important features, like the Reynolds number and the formation of a boundary layer
with physiological flows in the human aorta and for which highly accurate reference values
for the wall shear stress are accessible. By comparison with the reference data, we detect
the capabilities and issues of the method. The chapter is rounded off with illustrative
applications to more complex simulated and physiological flows. This chapter is based on
our publication [86].
In Chapter 4, we discuss the possibility of resolving some of the detected problems of

the data based reconstruction method by the appropriate incorporation of fluid dynamical
models. From a practical viewpoint, the developed methods differ significantly from the
aforementioned model based wall shear stress estimators: on the one hand, the compu-
tational complexity of the proposed methods remains manageable. On the other hand,
our strategies make a higher use of and put higher trust in the data. This chapter is
partly motivated by preliminary work in our group [24, 81], but important results are so
far unpublished.
Chapter 5 finally refers back to Problem 1.2 and summarizes, how far the proposed

methods resolve it.
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Our reconstruction concept was developed based on several preliminary studies of our
research collaboration with experts in medical imaging and both experimental and numer-
ical fluid dynamics. Carefully conducted experiments revealed the high sensitivity of the
wall shear stress on changes of various external parameters like the temperature distribu-
tion and the high accuracy of the laminar Womersley solution for physiologically pulsating
flows. Furthermore, by making use of the known flow geometry in the experiment and
extensive averaging, we discovered the principal capability of magnetic resonance imaging
to track important flow features [7,8] that motivates the data driven paradigm of this work.
Regarding the validation, we developed a wall shear stress estimator for fully developed
shear flows based on the Clauser method that computes highly accurate reference values
from magnetic resonance data [84,85].
To conclude this introduction, let us emphasize that in particular, the data driven ap-

proach with a mathematically sound reconstruction method as kernel and the extensive
validation, set this work apart from existing investigations on similar subjects. In compar-
ison with our publications [8, 25,84–86], this thesis additionally includes

� the generalization of the conditional stability analysis to regularization with semi-
norms,

� the extension to 3D applications,

� the application of the conditional stability analysis to the discrete numerical solutions,
and

� the development of enhancement strategies using a localized and linearized flow
model.
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Chapter 2

Data Driven Wall Shear Stress
Reconstruction

This chapter is dedicated to the stable estimation of wall shear stress from magnetic res-
onance data. As presented in the introduction, the wall shear stress is defined at the
boundary and represented in terms of the flow geometry and the flow velocity. For its
estimation, we consider the following sequential strategy:

(i) reconstruction of the geometry Ω from magnetic resonance density data,

(ii) approximation of the velocity u from magnetic resonance velocity data,

(iii) estimation of wall shear stress τ : ∂Ω → Rd from the geometry reconstruction and
the velocity approximation using

τ = −µ ∂nu, (2.1)

where µ is the dynamic viscosity and n the outer normal.

We will see that, especially the first two steps, i.e. the geometry reconstruction and the
velocity approximation, are ill-posed problems. Thus, regularization techniques are re-
quired for their stable solution. Since the topology of the flow domain is already known
and a coarse approximation easily obtainable, we utilize a parametric representation of the
geometry.
A technical difficulty for the analysis of the investigated problems arises from the non-

differentiability of the forward operator that models the measurement process. Hence,
standard results for the analysis of non-linear ill-posed problems are not directly applicable.
Therefore, we utilize conditional stability estimates for the analysis of the regularization
process: An extension of the basic results from Cheng and Yamamoto [19] allows for an
entire analysis of the regularized solutions of the sub-problems, including modelling and
discretization errors.
In Section 2.1, we discuss methods for the geometry reconstruction and the velocity

approximation and motivate our proposed strategy. In Section 2.2, we present abstract
results for the stable solution of ill-posed problems using Tikhonov regularization, in par-
ticular we derive a convergence result under conditional stability estimates. The parametric
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representation of flow domains with a suited topology is presented in Section 2.3; further-
more we provide some important technical results for the subsequent analysis. The main
results of this chapter are presented in Section 2.4: We consider the separate sub-problems
listed above, cast them in the presented framework of ill-posed problems by introducing the
measurement operator and analyze their basic properties. Then, we apply the convergence
analysis of Section 2.2 to prove stability and convergence of solutions obtained by Tikhonov
regularization. Finally, we combine the results to analyze the whole reconstruction process,
yielding quantitative bonds for the error of the estimated wall shear stress in terms of the
measurement errors.
For our theoretical considerations, we pose simplifying assumptions on the measurement

operators. A more detailed measurement model, including some details of practical rele-
vance, is presented alongside the numerical realization in Chapter 3. The analytical results
presented in this chapter are based on our publication [25] and extended here in two di-
rections: On the one hand, the results are extended to 3D, which causes complications
in the parametric representation. Furthermore, we utilize the seminorm for the Tikhonov
regularization.

2.1 Existing Approaches and Mathematical Challenges

In this section, we briefly comment on existing data driven approaches for the estimation
of wall shear stress with respect to its two ingredients, the flow geometry and velocity.
Finally, we sketch our approach.

2.1.1 Geometry Reconstruction

The precise localization of the flow domain Ω is of course an important ingredient for the
wall shear stress estimation. We assume, that magnetic resonance density data are available
on the measurement domain ΩFOV ⊃ Ω, i.e. the field of view, like the data depicted in
Figure 1.1. In this chapter, we assume that these density or magnitude data mδ are

mδ = χΩ + νδ in ΩFOV (2.2)

where νδ : ΩFOV → R denotes some noise. Let us briefly discuss two widely used approaches
for geometry representation and estimation:

� the implicit representation using a level set function and

� the explicit representation using a parameterization.

The more flexible approach is the representation by a scalar level set function ϕ [66] with
the property

ϕ(x)


> 0 for x ∈ Ω,
= 0 for x ∈ ∂Ω,
< 0 for x /∈ Ω.
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A smooth level set function provides access to several associated geometric quantities such
as the boundary, implicitly given by ∂Ω = {x | ϕ(x) = 0}, with the outer normal n =
−∇ϕ/|∇ϕ|. This representation is not restricted to domains Ω of a specific topology,
making the method very flexible.
The automatic computation of a level set function is a standard problem of image pro-

cessing. A prominent example is the method of Mumford and Shah [62]. The geometry
reconstruction leads to the problem [92]

min
ϕ

∥∥ϕ − (2mδ − 1)
∥∥2
L2(ΩFOV)

+ α∥∇ϕ∥L1(ΩFOV). (2.3)

The second term leads to a denoising of the level set function, but allows for steep gradients
at the boundary in contrast to a L2 regularization of the gradient. This gives good results in
practice, but leads to non-linear optimality systems and impedes Hilbert space techniques.
On the other hand, there is a parametric representation, specifying the boundary ∂Ω by

a function Γ : D → Rd given on a parameter domain D ⊂ Rd−1

∂Ω = Γ(D).

By specifying the inner and outer side of ∂Ω, this determines the domain Ω. By differen-
tiation of the parameterization, an explicit representation of the outer normal is obtained
as well. Contrary to the level set method, this parametric description requires Ω to be of a
specific topology. On the other hand, the domain D is of lower dimension than ΩFOV and
usually requires less computional effort.
In the medical practive, the flow geometry Ω is usually parametrized and the parametriza-

tion reconstructed by a manual segmentation [67, 88]. However, an automatic representa-
tion is possible as well. Transferring the technique of Mumford and Shah to the parametric
representation leads to a problem of the type

min
Γ

∥∥m(Γ)−mδ
∥∥2
L2(ΩFOV)

+ α∥∇Γ∥L2(D).

We have to include an appropriate measurement operator m, that generates for given
parameter Γ the corresponding magnitude data. In contrast to (2.3) a Hilbert space for-
mulation is possible, since smoothness of the boundary corresponds to smoothness of the
parametrization.
As aforementioned, the topology of our geometry is known and hence a parametric

approach appears naturally. However, as we will outline in this chapter, the accuracy
of the reconstruction is crucial. Therefore, we follow the last approach, an automatized
reconstruction of a geometry parameter, that takes the details of the data into account.

2.1.2 Velocity Approximation and Wall Shear Stress Estimation

Alongside with the capability of conducting phase contrast magnetic resonance measure-
ments in vivo and the discovery of wall shear stress as an important biomarker in the
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1990s, the development of estimators for the wall shear stress τ = −µ∂nu became the sub-
ject of current research. These estimators aim at approximating ∂nu from approximations
of the geometry, its outer normal and the velocity. The latter is computed from magnetic
resonance velocity data uε and we assume in this chapter

uε = u + νε in ΩFOV (2.4)

where u is the flow velocity inside the flow domain Ω and vanishes outside and νε : ΩFOV →
Rd denotes some noise
Early approaches use a polynomial ansatz to compute a local approximation of the

velocity at the boundary. The estimator proposed in [67], for instance, approximates the
wall shear rate ∂nu by

(∂nu)ε,h(x) =
1

h
uε(x− hn(x)), (2.5)

where the boundary positions x and the outer normal n are given from an a priori specified
(usually by hand) geometry reconstruction and h denotes the data resolution. This method
is based on a linear interpolation of the velocity, where the no-slip condition u = 0 at the
boundary is incorporated. A modification [68] uses a quadratic ansatz to compute a local
approximation of the velocity. Instead of enforcing u = 0 at the boundary, only data
are incorporated for the interpolation and the boundary is repositioned to the next zero
of the approximate velocity profile. The concept of local approximations of the velocity
remains popular, recently developed methods [70,73] approximate the velocity profile on an
inward normal line. They utilize a fixed a priori given geometry reconstruction. To avoid
incorporating data outside the flow domain, the data, that is utilized in the reconstruction
of the velocity profile, lies further in the interior beyond a certain safety region at the wall.
From a mathematical point of view, these methods provide reasonable approximations

of the wall shear rate ∂nu, but rely on sufficiently high data resolution. In particular for
boundary layers, the incorporated interior data has to track the characteristic behaviour
inside the boundary layer. Furthermore, these methods require the user to provide a
priori geometry information and choose various method parameter by hand. Automati-
cally tuning these method parameters seems difficult: For instance the parameters of the
method [73] were tuned to find the best approximation of a quadratic Hagen-Pouseuille
flow. The optimal reconstruction was found utilizing only three widely spaced data points.
Although this produces a very stable estimator of Hagen-Poiseuille flows, it is not possible
to compute reasonable wall shear rate approximations and consequently wall shear stress
for physiological flows with boundary layers.
Data driven wall shear stress estimators underwent a change of paradigm, replacing local

approximations of the velocity, that are controlled by complex parameter setups, with a
user-friendly global approximation of the velocity in the kernel of the wall shear stress
estimator. The prototype of this modern wall shear stress estimators is the method of
Stalder et al. [88]. Here, the velocity is approximated by

uε,h = Ih(u
ε ∗Gγ), (2.6)
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where Gγ is a Gaussian smoothing kernel of bandwidth γ = 1mm, h is the data resolution
and Ih the cubic spline interpolation on a regular grid with spacing h. The wall shear stress
is estimated from the wall shear rate approximation (∂nu)ε,h and the boundary ∂Ω, whose
location has to be specified by the user. Note that the velocity approximation is computed
without knowledge about the flow geometry. Numerous similar methods were developed
and used for various studies, see for instance [53,100].

Although computing a global approximation of the velocity seems straighforward, there
is a major mathematical issue: Outside the flow domain, the velocity is constant zero,
resulting in a kink of the measured velocity field u at the boundary ∂Ω. This amounts
to a discontinuity of the wall shear rate ∂nu for fixed normal direction n. Hence, the
global velocity is non-smooth. This obviously makes estimation of ∂nu difficult. Also
for an applicable exact velocity, the estimate is not stable with respect to errors of the
reconstructed geometry.

2.1.3 Sketch of the Data Driven Reconstruction Method

The proposed reconstruction method consists of three steps, the geometry reconstruction,
the velocity approximation and finally the wall shear stress estimation.

Geometry reconstruction. We use a parametric representation of the geometry Ω = Ω(R)
with R ∈ G, where R is the geometry parameter and G ⊂ Hk(D) the set of admissi-
ble geometries with a simple parameter domain D. The parametrization is introduced in
Section 2.3. Motivated from the measurement model (2.2), we introduce the parameter-
to-measurement operator

F : G → L2(ΩFOV), R 7→ χΩ(R) :=

{
1 in Ω(R),
0 in ΩFOV \ Ω(R),

where χ is the characteristic function. The geometry reconstruction can then be cast as

find R∗ ∈ G with F (R∗) = mδ, (2.7)

which is a non-linear and ill-posed inverse problem. We will show, that this operator is only
Hölder continuous, but not differentiable. As a consequence, standard regularization the-
ory, that is presented in Subsection 2.2.2, is not directly applicable. Hence, an alternative
approach is presented, that will provide stability and error bounds on the reconstructions.

Velocity approximation. After computing an approximation Ω = Ω(R) of the geome-
try, we consider the problem of approximating the flow velocity. To obtain stability with
respect to small geometry errors, we approximate the velocity, mapped to a simple reference
domain Ω̂ ⊂ Rd. For this purpose, we introduce a family of domain transformations, asso-
ciating with any admissible geometry parameter R ∈ G a transformation ΨR : Ω(R) → Ω̂.

Then we introduce a set of admissible velocities on the reference domain U ⊂ Hk(Ω̂) and
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the velocity measurement operator

TR : U ⊂ Hk(Ω̂) → L2(ΩFOV), T v := ER(v ◦ΨR), (2.8)

where E : L2(Ω(R)) → L2(ΩFOV) denotes the extension by zero. Note that the measure-
ment operator depends on the geometry parameter R. With the reconstructed geometry
parameter R∗ ∈ G, the velocity approximation problem reads:

Find v∗ ∈ U with TR∗v∗ = uε. (2.9)

This is a linear ill-posed problem, whose stable solution can in principle be analysed with
standard regularization theory [29]. Note that we have for the range of the operator
R(TR∗) ⊆ L2(Ω(R∗)) and consequently, only data in the interior of the flow domain are
relevant for the velocity approximation. The stability with respect to the geometry param-
eter will be established by explicit estimates on the deviation between the corresponding
operators TR1 − TR2 , that are presented in Subsection 2.4.2.

Wall shear stress estimation. For the wall shear stress estimation, we map the recon-
structed velocity to the physical domain by u∗ = v∗ ◦ ΨR∗ . Then the consistent estimate
reads

τ ∗ = −µ ∂n∗u∗. (2.10)

For the error analysis, we have to transform the wall shear stress to a reference domain
for the boundary, which naturally coincides the parameter domain D. Based on the pre-
viously established error estimates for the constituants, we will arrive at a fully analyzed,
convergent wall shear stress estimate.

Outlook. Before analyzing the sketched reconstruction technique in Section 2.4, we present
a framework for the analysis of the arising ill-posed problems and introduce the parametric
representation of the flow domain.

2.2 Inverse Problems

In this section, we discuss the stable solution of ill-posed non-linear problems in Hilbert
spaces under conditional stability estimates. The results are derived on an abstract level
here and they are later applied to the aforementioned geometry reconstruction and velocity
approximation problems.

2.2.1 Ill-posed Problems

We consider inverse problems in Hilbert spaces of the following type:

Find x ∈ D(F ) with F (x) = yδ. (2.11)
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Here, X and Y are Hilbert spaces for the parameter and the data, respectively. The
measurement acquisition is modelled with a operator F : D(F ) ⊆ X → Y , where D(F )
is closed and convex. The available data yδ ∈ Y is a noisy image of an exact solution
x† ∈ D(F ) and we assume, that an upper bound on the measurement error is available, i.e.

∥F (x†)− yδ∥Y ≤ δ with δ > 0 known. (2.12)

Following Hadamard [42], the operator equation (2.11) is called well-posed at x0 ∈ D(F ),
if there is a neighbourhood B(y0) ⊂ Y around y0 = F (x0) with the properties:

� Existence: For all y ∈ B(y0), there exists a solution x ∈ D(F ) of (2.11).

� Uniqueness: For all y ∈ B(y0), the solution x ∈ D(F ) of (2.11) is unique.

� Stability: The inverse operator F−1 : B(y0) → D(F ) is continuous at y0.

Problems (2.11), that violate at least one of these conditions, are called ill-posed. Ill-
posed problems typically arise from compact forward operators. Unfortunately, both the
geometry reconstruction problem (2.7) and the velocity approximation problem (2.9) vio-
late the stability condition and are therefore ill-posed.
The main challenge for the solution of ill-posed inverse problems (2.11) is to find a stable

approximation of the original parameter x† from the measured data yδ under knowledge of
δ, which can only be accomplised by so-called regularization techniques. One of the most
popular approaches is Tikhonov regularization [97]. Spectral calculus allows for a rather
comprehensive analysis of linear inverse problems using standard regularization techniques
such as Tikhonov regularization or truncated singular value decomposition [28]. Alternative
arguments are required for the analysis of non-linear inverse problems [28, Chapter 10] and
briefly summarized in the following subsection.

2.2.2 Tikhonov Regularization for Non-linear Inverse Problems

For the stable solution of (2.11), we consider Tikhonov regularization

min
x∈D(F )

∥F (x)− yδ∥2Y + α ∥x− x∗∥2X , (2.13)

where α > 0 is a regularization parameter and x∗ ∈ X is an initial guess on the solution.
By xδ

α ∈ D(F ) we denote an arbitrary minimizer of the Tikhonov functional (2.13). Using
elementary arguments, one can prove the existence of Tikhonov minimizers under the
conditions, that

F is continuous and weakly continuous, (2.14)

but uniqueness of Tikhonov minimizers can obviously not be guaranteed in general [9,
Section 3]. To simplify the following discussion, we assume, that F is injective on D(F ).
Then one obtains the following convergence result [28, Theorem 10.3].
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Proposition 2.1. Let x† ∈ D(F ). Let yk → F (x†) in Y with ∥F (x†) − yk∥Y ≤ δk. Set
αk = α(δk) = δk. Then we have for any sequence of associated Tikhonov minimizers xδk

αk

with yδ replaced by yk

lim
k→∞

xδk
αk

= x† in X.

Note that the assertion holds independently of the choice of the possibly not unique
Tikhonov minimizers xδ

α. Under additional conditions, also quantitative convergence rates
can be obtained [28, Theorem 10.4].

Proposition 2.2. Let x† ∈ D(F ). Let yδ ∈ Y with ∥F (x†)− yδ∥Y ≤ δ. Further assume that

(i) F is Frechet differentiable,

(ii) there is L > 0 with ∥F ′(x†)− F ′(x)∥L(X;Y ) ≤ L∥x† − x∥X for all x ∈ D(F ),

(iii) there is w ∈ Y with x∗ − x† = F ′(x†)∗w,

(iv) it holds L∥w∥Y < 1.

Then for α = α(δ) = δ any Tikhonov minimizer xδ
α satisfies

∥F (xδ
α)− y∥Y ≤ Cδ and ∥xδ

α − x†∥X ≤ C
√
δ.

The first and second condition restrict the non-linear behavior of F . The two latter
conditions are typically referred to as source condition and pose an abstract smoothness
condition on the difference between solution and initial guess x† − x∗. There are investi-
gations, that derive convergence rates under weaker smoothness assumptions on x† − x∗

than the previously assumed source condition. However, in this case abstract non-linearity
conditions on the operator F are imposed [78], that are difficult to verify [49]. Due to
the lack of differentiabilty, this standard approach is unfeasible for the investigation of the
geometry reconstruction problem with non-differentiable forward operator.
An elegant alternative approach for the analysis of Tikhonov regularization for non-

linear inverse problems was proposed by Cheng and Yamamoto [19]. Let us briefly discuss
a simplified version of their approach in the current setting. Consider an additional Hilbert
space Z ⊂ X compactly embedded in X and define the forward operator F : D(F ) ⊂ Z →
Y , where

D(F ) = {x ∈ Z | ∥x∥Z ≤ M}. (2.15)

For the solution of F (x) = yδ consider again the Tikhonov regularization

min
x∈D(F )

∥F (x)− yδ∥2Y + α∥x∥2Z . (2.16)

Existence of Tikhonov minimizers again follows from F continuous and weakly continuous.
For the analysis, the authors of [19] require a conditional stability estimate of the form

∥x1 − x2∥X ≤ ω(∥F (x1)− F (x2)∥Y ) ∀x1, x2 ∈ D(F ). (2.17)

30



2.2 Inverse Problems

Hence, we can bound the difference between two regular parameters x1, x2, where regularity
refers to the affiliation to D(F ), in terms of the distance between the associated data. Note
that this condition inherently requires injectivity of F . Under these conditions, they proved
the following result.

Proposition 2.3. Let F with domain like in (2.15) allow for a conditional stability estimate
(2.17). Let x† ∈ D(F ) and yδ ∈ Y with ∥F (x†)− yδ∥Y ≤ δ. Let xδ

α ∈ D(F ) be a minimizer
of the Tikhonov functional (2.16) for α = δ2. Then

∥xδ
α − x†∥X ≤ Cω(δ).

The conditional stability estimate replaces all non-linearity conditions on the operator in
Proposition 2.2, while the source condition transforms to a workable smoothness condition
x† ∈ D(F ). In particular, the approach covers non-differentiable forward operators.
The stability function ω in (2.17) determines the convergence behaviour. Hölder-type

stability ω(s) = Csβ with β ∈ (0, 1] and logarithmic-type stability ω(s) = −C/ log(s) are
distinguished. For the former we obtain the convergence rates δβ, while the logarithmic
stability is the worse stability estimate resulting in a slow convergence. The stability is
essentially affected from the choice of D(F ). However, D(F ) including the upper bound
M > 0 must be known for the reconstruction and the state x† to be reconstructed must
satisfy x† ∈ D(F ) [57].
Note that the additional regularity of the parameters in the conditional stability estimate

is essential: An analogous stability estimate holding independently of the regularity of the
parameters implies uniqueness and stability of the inverse problem and a relaxation to a
minimum norm solution would give a stable reconstruction of x†, making the problem well-
posed. It turns out, that conditional stability estimates are satisfied for various operators,
governing ill-posed inverse problems [19, 23, 57, 93]. Furthermore, the approach enables
analyzing inverse problems with non-differentiable or even discontinuous forward operators,
making it attractive for the non-linear geometry reconstruction problem.
In the following subsection, we provide a modification, where we use Sobolev spaces with

different smoothing index to define X and Z. Furthermore we will restrict us to Hölder-
type stability ω. On the other hand, we will extend the results to regularization with
the seminorm, like it was initially proposed by Tikhonov in his regularization technique
[97]. This reduces the approximation error of the reconstruction technique. Furthermore,
beside the a priori choice α = α(δ), we consider the a posteriori parameter choice by the
discrepancy principle.

2.2.3 Tikhonov Regularization under Conditional Stability Estimates

For our analysis, we consider a particular setting, that fits into the abstract framework
presented in the previous subsection.

Setting: Let Ω ⊂ Rd be some bounded Lipschitz domain. We consider the Hilbert space

31



Chapter 2 Data Driven Wall Shear Stress Reconstruction

X := L2(Ω) as parameter space and a general Hilbert space Y as space for the mea-
surements. Finally, we introduce the measurement operator F : D(F ) ⊂ X → Y with
domain

D(F ) ⊆ Hk(Ω) ⊂ X convex and closed, (2.18)

where k ∈ N is the regularity order. We define ∥x∥0 := ∥x∥L2(Ω) and |x|k := ∥Dkx∥L2(Ω).
It is well known [1, p. 135] that ∥ · ∥Hk(Ω) and ∥ · ∥2k := ∥ · ∥0 + | · |2k are equivalent.

Remark 2.4. The scale of fractional Sobolev spaces Hs(Ω) - after a rescaling of norms -
can be obtained by complex interpolation. Let s ∈ [0, k]. We obtain for x ∈ Hk(Ω)

∥x∥Hs(Ω) ≤ ∥x∥1−s/k
0 ∥x∥s/kk . (2.19)

For the subsequent analysis, we require that the forward operator satisfies a conditional
stability estimate.

Assumption 2.5 (Conditional stability estimate). Let Ccs be a constant, such that

∥x1 − x2∥0 ≤ Ccs ∥F (x1)− F (x2)∥Y ∀x1, x2 ∈ D(F ). (2.20)

We shall see later, that this condition is satisfied by the investigated operators. Note
that we assume a Lipschitz stability function ω(s) = s. Furthermore, we have no bound
on ∥x1∥k and ∥x2∥k.
We consider inverse problems of the following type:

Find x ∈ D(F ) with F (x) = yδ, (2.21)

where the noisy measurement yδ ∈ Y satisfies with the exact parameter x† ∈ D(F )

∥F (x†)− yδ∥Y ≤ δ. (2.22)

We assume, that the upper bound on the data error δ is available. For the stable solution,
we consider generalized minimizers of the Tikhonov functional

T δ
α (x) :=

∥∥F (x)− yδ
∥∥2
Y
+ α |x|2k , (2.23)

where α > 0 is some regularization parameter and the seminorm is utilized for the regu-
larization. We shall see later, that the regularization in the seminorm may substantially
reduce the bias, that is incorporated by the Tikhonov regularization. In this direction, the
proposed technique is an extension of the consisting approach of Cheng and Yamamoto [19].
The set of approximate Tikhonov minimizers (of tolerance δ2) is defined by

Mδ
α :=

{
x ∈ D(F ) | T δ

α (x) ≤ min
y∈D(F )

T δ
α (y) + δ2

}
. (2.24)
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2.2 Inverse Problems

Note that since x† ∈ D(F ) we have D(F ) ̸= ∅ and an approximate Tikhonov minimizer
xδ
α ∈ Mδ

α exists by construction, but is usually not unique. We provide a comprehensive
convergence analysis for approximate Tikhonov minimizers under the conditional stability
assumption.

Auxiliary result: The first term in the Tikhonov functional ensures accordance with the
data and the second term ensures the regularity of the reconstructed state. The regular-
ization parameter α weights between the two terms. A simple computation reveals, that
an upper bound on α controls the approximation error, whereas a lower bound controls
the seminorm of the reconstruction:

Lemma 2.6. Let xδ
α ∈ Mδ

α be an approximate Tikhonov minimizer. Then we have∥∥F (xδ
α

)
− yδ

∥∥2
Y
≤ 2δ2 + α|x†|2k, (2.25)∣∣xδ

α

∣∣2
k
≤ 2

δ2

α
+ |x†|2k. (2.26)

Proof. Inserting the solution x† ∈ D(F ) in the Tikhonov functional yields∥∥F (xδ
α

)
− yδ

∥∥2
Y
+ α

∣∣xδ
α

∣∣2
k
= T δ

α

(
xδ
α

)
≤ T δ

α

(
x†)+ δ2

=
∥∥F (x†)− yδ

∥∥2
Y
+ α

∣∣x†∣∣2
k
+ δ2

= 2δ2 + α|x†|2k.

The first assertion follows by neglecting the regularization term on the left hand side, the
second one by neglecting the data fidelity term and dividing by α.

Main result: To entirely define the reconstruction process, we have to specify the regular-
ization parameter in dependence of the noise level δ (2.22). On the one hand, we consider
the explicit a priori choice α(δ) := δ2/M2, where M ≥ |x†|k is an upper bound on the size
of the solution. As alternative strategy, we consider the discrepancy principle.

Definition 2.7. Let αmax > 0 be an arbitrarily chosen maximum admissible regularization
parameter. Set A := {αmax2

−n | n ∈ N0}. Let xδ
α ∈ Mδ

α be an approximate Tikhonov
minimizer for every α ∈ A. Define

α(δ, yδ) := max
{
α ∈ A |

∥∥F (xδ
α

)
− yδ

∥∥
Y
≤ 2δ

}
. (2.27)

The parameter α(δ, yδ) depends on the concrete choice of the approximate Tikhonov
minimizers xδ

α ∈ Mδ
α. For α ≤ δ2/|x†|2k we have by Lemma 2.6∥∥F (xδ

α

)
− yδ

∥∥
Y
≤
√
2δ2 + α|x†|2k ≤

√
3δ < 2δ.

The set in (2.27) is non-empty, bounded from above and its supremum obviously contained.
Hence, the regularization parameter is with fixed sequence of approximate Tikhonov mini-
mizers xδ

α well-defined. Independently of the concrete choice of this sequence, we obtain for
sufficiently large αmax a suitable reconstruction, as the following convergence result yields.
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

Theorem 2.8. Let Assumption 2.5 hold true, x† ∈ D(F ), yδ ∈ Y and ∥yδ − F (x†)∥Y ≤ δ.
Then we have for the a priori choice α(δ) = δ2/M2, where M ≥ |x†|k, and any approximate
Tikhonov minimizer xδ

α ∈ Mδ
α the estimate∥∥xδ

α − x†∥∥
s
≤ C δ1−s/k (δ +M)s/k , 0 ≤ s ≤ k, (2.28)

with constant C depending only on Ω, k and Ccs. The same result holds with M :=
max{|x†|k, δ/

√
αmax}, if α = α(δ, yδ) is chosen by the discrepancy principle (2.27).

Proof. We consider both parameter choices at the same time and divide the proof into 4
steps.

Step 1: Estimating the data error. For the a priori choice α = δ2/M2, Lemma 2.6 yields

∥∥F (xδ
α

)
− yδ

∥∥
Y
≤
√

2δ2 +
|x†|2k
M2

δ2 ≤
√
3δ.

For α = α(δ, yδ) we obtain from the definition of the discrepancy principle ∥F (xδ
α)−yδ)∥Y ≤

2δ. Therefore, we have in all cases∥∥F (xδ
α

)
− F

(
x†)∥∥

Y
≤
∥∥F (xδ

α

)
− yδ

∥∥
Y
+
∥∥yδ − F

(
x†)∥∥

Y
≤ Cδ.

Step 2: Estimating the reconstruction error in the weak norm. We have xδ
α, x

† ∈ D(F ).
The conditional stability estimate (2.20) and the data error estimate (2.22) yield∥∥xδ

α − x†∥∥
0
≤ Ccs

∥∥F (xδ
α

)
− F

(
x†)∥∥

Y
≤ CcsC δ.

Step 3: Estimating the reconstruction error. For the a priori choice α = δ2/M2 we have
by the second estimate of Lemma 2.6∣∣xδ

α

∣∣
k
≤
√

2M2 + |x†|2k ≤
√
3M.

Now consider the choice α = α(δ, yδ), for which we distinguish two cases: In the exceptional
case, the maximum regularization parameter is chosen with α = αmax ≥ δ2/M2. In the
usual case, the discrepancy criterion is violated for the doubled parameter 2α and we obtain
for the corresponding specific approximate Tikhonov minimizer xδ

2α ∈ Mδ
2α from the data

error estimate of Lemma 2.6

(2δ)2 <
∥∥F (xδ

2α

)
− yδ

∥∥2
Y
≤ 2δ2 + 2α|x†|2k.

Thus α > δ2/|x†|2k > δ2/M2. In both cases the stability estimate of Lemma 2.6 yields

∣∣xδ
α

∣∣
k
≤
√
2
δ2

α
+ |x†|2k ≤

√
3M.
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2.2 Inverse Problems

Summarizing, the strong seminorm of the error is bounded by∣∣xδ
α − x†∣∣

k
≤
∣∣xδ

α

∣∣
k
+
∣∣x†∣∣

k
≤ (

√
3 + 1)M.

In combination with the error estimate from Step 2, we obtain∥∥xδ
α − x†∥∥

k
=

√
∥xδ

α − x†∥20 + |xδ
α − x†|2k ≤ C (δ +M) .

Step 4: Interpolating the reconstruction error. By interpolation we have∥∥xδ
α − x†∥∥

s
=
∥∥xδ

α − x†∥∥1−s/k

0

∥∥xδ
α − x†∥∥s/k

k
≤ C δ1−s/k (δ +M)s/k .

Thus, we have established convergence of the approximate Tikhonov minimizers.

Remark 2.9. Assume, that δ < |x†|k. Then the error estimate simplifies to∥∥xδ
α − x†∥∥

s
≤ C δ1−s/k |x†|s/kk

for an appropriatly chosen α. In a fixed space Hs(Ω), we can achieve convergence with
arbitrary rate γ < 1 by regularization in the seminorm | · |k with k = s/(1 − γ) under
the only condition, that the solution x† is sufficiently smooth. The conditional stability
estimate remains valid for stronger regularization.

2.2.4 Discussion

At the end of this section, we emphasize some points of the proposed framework.

Choice of the regularization parameter: We have considered an a priori parameter
α(δ) = δ2/M2 and α(δ, yδ) by the discrepancy principle. Both require knowledge of δ,
which is essential for convergent parameter choices [28, Thm. 3.3, p. 52]. The a priori
choice demands knowledge about the size of |x†|k. The discrepancy principle is an a poste-
riori parameter choice, since it requires knowledge of the approximate Tikhonov minimizer
xδ
α, potentially leading to several, at most log(δ) many solves with different parameters,

when a high-regularized Tikhonov minimizer produced by an initially chosen large regular-
ization parameter is discarded. However, from a practical viewpoint, it provides a better
balance between approximation error and noise amplification. Furthermore, the large reg-
ularization parameter simplifies the numerical solution and xδ

2α is a good initial value for
the computation of xδ

α.

Approximate Tikhonov minimizers: The relaxation from exact to approximate Tikhonov
minimizers has several advantages. The existence is guaranteed by x† ∈ D(F ). The
computation of approximate Tikhonov minimizers remains difficult, since optimization al-
gorithms compute only local minimizer. However, the theory covers also approximations of
minimizers resulting from non-exact iterative optimization algorithms and even the use of
appropriate (smooth) approximations F̃ of the possibly non-differentiable forward operator
F , which is important for the justification of numerical approximations.
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

Proposition 2.10. Let F̃ : D(F ) → Y with ∥F̃ (x) − F (x)∥Y ≤ C0δ for all x ∈ D(F ) with
∥x∥k ≤ C for sufficiently large C. Let x1, x2 ∈ D(F ) be approximate Tikhonov minimizers

for T̃ δ
α respective T δ

α with tolerance C2
1δ

2, where T̃ is defined in (2.23) with F replaced by F̃ .

Let ∥F̃ (x1)− yδ∥Y ≤ C2δ and ∥F (x2)− yδ∥Y ≤ C2δ. Then x1 is an approximate Tikhonov
minimizer of T δ

α with tolerance cδ2, where c = 2C2
0 + 4C0C2 + 2C2

1 .

Proof. By the triangle inequality and the estimate on the approximation error we have

T δ
α (x1) =

∥∥F (x1)− yδ
∥∥2
Y
+ α |x1|2k

≤
(∥∥∥F (x1)− F̃ (x1)

∥∥∥
Y
+
∥∥∥F̃ (x1)− yδ

∥∥∥
Y

)2
+ α |x1|2k

= T̃ δ
α(x1) +

∥∥∥F̃ (x1)− F (x1)
∥∥∥2
Y
+ 2

∥∥∥F̃ (x1)− F (x1)
∥∥∥
Y

∥∥∥F̃ (x1)− yδ
∥∥∥
Y

≤ T̃ δ
α(x1) + C2

0δ
2 + 2C0C2δ

2.

A similar estimate reveals, that

T̃ δ
α(x2) ≤ T δ

α (x2) + C2
0δ

2 + 2C0C2δ
2.

Since x1 and x2 are approximate Tikhonov minimizers of T̃ δ
α respective T δ

α , we can show
the assertion

T δ
α (x1) ≤ T̃ δ

α(x1) +
(
C2

0 + 2C0C2

)
δ2

≤ T̃ δ
α(x2) +

(
C2

0 + 2C0C2 + C2
1

)
δ2

≤T δ
α (x2) +

(
2C2

0 + 4C0C2 + C2
1

)
δ2

≤ inf
x∈D(F )

T δ
α (x) +

(
2C2

0 + 4C0C2 + 2C2
1

)
δ2.

Since approximate Tikhonov minimizers are bounded, the results holds, if ∥F̃ (x)−F (x)∥Y ≤
C0δ only for x ∈ D(F ) with ∥x†∥k ≤ C.

Consequently, we may replace the measurement operator F by a numerical approxima-
tion F̃ . If the approximation is of order δ, the convergence behaviour of the associated
reconstructions is preserved.

2.3 Parametrization

The mathematical formulation of the geometry reconstruction problem and the analysis of
the subsequent velocity approximation and wall shear stress computation uses a parametric
representation of the geometry. Motivated by the typical geometries of vessels and their
cross-sections, we utilize parametrizations of a perturbed circular (2D) respectively tubular
(3D) domain.
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2.3 Parametrization

For the analysis of the geometry reconstruction problem, some results regarding the
connection between the parametrization and the associated domain are necessary, which
will be derived in Subsection 2.3.3.
In the subsequent velocity approximation problem, we have to deal with inexact approx-

imations of the geometry. To allow for comparing velocities on different domains, that is
necessary for the analysis of the velocity approximation, we have to represent functions on
a uniform reference domain. This requires the extension of the parametrization to a do-
main transformation, that is sufficiently smooth with respect to both, the spatial variable
and the geometry parameter, which is carried out in Subsection 2.3.4.
Finally, the estimation of wall shear stress requires access to the normal direction of the

flow geometry. Like for the domain transformation, we establish smoothness of the outer
normal direction with respect to the geometry parameter in Subsection 2.3.5.

2.3.1 Parametrization in 2D

When considering cross-sections of blood vessels, we may assume Ω to be a deformed circle
with smooth boundary. By shifting the origin to some central point, we assume, that Ω
is star-shaped with respect to the origin. We introduce the 1-torus as parameter domain
D := S1 ≃ (−π, π] and the polar basis

er(φ) :=

(
cos(φ)
sin(φ)

)
, eφ(φ) :=

(
− sin(φ)
cos(φ)

)
, φ ∈ D.

We parametrize Ω by a radius function, defining the distance between the origin and the
boundary in direction er(φ) by a function of the polar variable φ.

Definition 2.11. Let Rmin ≤ Rmax ∈ C(S1) with Rmin ≥ C > 0. The set of admissible
parametrizations is given by

G := { R ∈ C1(S1) | Rmax ≥ R ≥ Rmin } . (2.29)

Let R ∈ G. Then R is associated with the domain

Ω = Ω(R) = {rer(φ, s) | 0 ≤ r < R(φ), −π < φ ≤ π} . (2.30)

The parametrization is depicted in Figure 2.1. The lower bound Rmin is required for
some inverse inequalities. The upper bound Rmax is chosen to ensure Ω(R) ⊆ ΩFOV, i.e.
the domain is contained in the field of view. Note that definition (2.29) implicitly contains
corresponding boundary conditions, reflecting the periodicity of D = S1.

2.3.2 Parametrization in 3D

We consider subsets Ω of a blood vessel that look like a deformed pipe with smooth bound-
ary. Since the pipe may be curved, as it is the case in the aortic arch, the parametrization
is based on a centerline γ ∈ C3([0, 1];R3). We define the parameter domain D := S1×(0, 1).
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ϕ

R

�

0

Rmin

Rmax

ΩFOV

Ω = Ω(R)

Figure 2.1: Parametrization of the domain Ω ⊂ ΩFOV by the radius function R.

Analogously to the two-dimensional case, we parametrize Ω by a radius function, defin-
ing the distance between the centerline and the boundary at the axial position s in the
direction defined by φ. Before we define the parametrization, there are two difficulties to
overcome:

� We have to define an appropriate axially aligned coordinate system.

� We have to ensure, that the assignment of an axial position to a physical point is
unique.

Let L be the length of the centerline. We assume, that the speed L(s) := ∥∂sγ(s)∥ is nearly
constant, i.e. there is c ≪ 1 with

(1− c)L ≤ L(s) ≤ (1 + c)L ∀s ∈ [0, 1].

With this condition, the current axial direction is accessible in a stable manner by normal-
izing the tangential

t ∈ Ck([0, 1];R3), t(s) :=
∂sγ(s)

L(s)
.

A standard choice for the extension to an axially aligned coordinate system is given by the
Frenet-Serret formulas [55], yielding the TNB (tangential, normal, binormal) frame:

tFS(s) :=
∂sγ(s)

L(s)
, nFS(s) :=

∂st(s)

∥∂st(s)∥
, bFS(s) := tFS(s)× nFS(s).

For a centerline with constant speed, the axial direction tFS and the main normal nFS

are perpendicular. The TNB frame is defined by local quantities only. However, it is not
appropriate for our purposes, since the main normal becomes unstable or even discontinuous
in the axial position s at sections with low curvature as depicted in Figure 2.2.
Therefore, we introduce a stabilized frame, which is based on an approximate main nor-

mal, that is updated, when the tangential direction has changed significantly.
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2.3 Parametrization

Step 1: Partition. Set s0 = 0 and for sm−1 ≤ 1 set

sm := min ({s ∈ (sm−1, 1) | ∥t(sm−1)× t(s)∥ ≥ 1/10} ∪ {1}) .

The iteration terminates at iteration m = N with sN = 1 by compactness.

Step 2: Discrete main normal. Starting with some arbitrary n0 perpendicular to t(0),
we subsequentially define the normal vectors

nm := [t(sm)× nm−1] × t(sm) for m = 1, ..., N.

Step 3: Approximate main normal. Let (ϕm)m ⊂ C3([0, 1]) be a partition of unity with
local support, i.e. supp(ϕm) ⊆ [sm−1, sm+1], and ϕm(sj) = δmj. Set

ñ(s) :=
N∑

m=0

nm ϕm(s).

The stabilized frame is then defined by

t(s) :=
∂sγ(s)

L(s)
, b(s) :=

t(s)× ñ(s)

∥t(s)× ñ(s)∥
, n(s) := b(s)× t(s). (2.31)

By construction, t(s), n(s), b(s) is a locally defined right-handed coordinate system, which
is C3-regular in s, as it is illustrated in Figure 2.3. We extend t(s) to a cylindrical basis by
introducing

er(φ, s) := cos(φ)n(s) + sin(φ)b(s),
eφ(φ, s) := − sin(φ)n(s) + cos(φ)b(s).

(2.32)

Now we consider the transformation

F : R+ × (−π, π]× [0, 1] → R3, F (r, φ, s) = γ(s) + rer(φ, s). (2.33)

In general, the transformation F is not invertible, since a point may be in the cross
section for several axial positions s. Let x0 = F (r0, φ0, s0), then the axial position s = s0
is characterized by the orthogonality relation

f(s) := ⟨x0 − γ(s), t(s)⟩ = 0.

The problem is locally well-posed, if ∂sf(s0) ̸= 0. We compute

∂sf(s0) = ⟨r0er(φ0, s0), ∂st(s0)⟩ − ⟨∂sγ(s0), t(s0)⟩
= −r0⟨∂ser(φ0, s0), t(s0)⟩ − L(s),

where we used ⟨er(φ, s), t(s)⟩ = 0 and hence

∂s⟨er(φ, s), t(s)⟩ = ⟨∂ser(φ, s), t(s)⟩+ ⟨er(φ, s), ∂st(s)⟩ = 0.
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Figure 2.2: TNB frame by Frenet Serret
formulas with nFS (red) and
bFS (blue).

Figure 2.3: Stabilized frame given by
(2.31) with n (red) and b
(blue).

Therefore, we introduce an upper bound Rmax ∈ C(D) for the radius with

L+Rmax⟨∂ser, t⟩ ≥ C > 0. (2.34)

Since this guarantees only local well-posedness for r ≤ Rmax, we define the cross sectional
domains

Q(s) = {γ(s) + rer(φ, s) | 0 ≤ r ≤ Rmax(φ, s),−π < φ ≤ π}

and postulate

Q(s1) ∩Q(s2) = ∅ ∀s1 ̸= s2 ∈ [0, 1]. (2.35)

In practice, the axial position is computed by a Newton method from the orthogonality
relation, were the initial guess is determined by sampling. Finally, we define the set of
admissible parametrizations and the geometry representation.

Definition 2.12. Let Rmin ≤ Rmax ∈ C(D) with Rmin ≥ C > 0 and Rmax fulfil (2.34) and
(2.35). The set of admissible parametrizations is given by

G := { R ∈ C(D) | Rmax ≥ R ≥ Rmin } (2.36)

Let R ∈ G. Then R is associated with the domain

Ω = Ω(R) = {γ(s) + rer(φ, s) | 0 ≤ r < R(φ, s), −π < φ ≤ π, 0 < s < 1} . (2.37)

Again, the periodicity of the parametric domain D = S1 × (0, 1) implies corresponding
boundary conditions in the polar variable. For ease of presentation, we will skip the
dependence on the parametrization of associated objects in the following, for example
Ω = Ω(R), Ω1 = Ω(R1).
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Remark 2.13. It is possible, to extend a 2D geometry to a 3D geometry by introducing
an artificial axial direction. In this case, the centerline is γ(s) = (0, 0, s)T with frame
(t, n, b) = (ez, ex, ey) and all quantities except of γ are independent of the axial position s.
Due to ∂ser = 0, conditions (2.34) and (2.35) are satisfied for arbitrary Rmax.

2.3.3 Correlation between Domains and their Parametrization

In the following analysis, we will restrict ourselves to the 3D case, since the 2D case can
be cast in the 3D framework.

Lemma 2.14. Let R1, R2 ∈ G, with G given by (2.36). Then

|Ω1 \ Ω2| ≤ ∥χ1 − χ2∥L1(ΩFOV) ≤ C ∥R1 −R2∥L1(D) .

Proof. The first inequality is obviously satisfied. We estimate

∥χ1 − χ2∥L1(ΩFOV) =

∫
D

 max{R1,R2}∫
min{R1,R2}

r (L+ r⟨∂ser, t⟩) dr

 d(φ, s)

≤ C(γ)

∫
D

 max{R1,R2}∫
min{R1,R2}

r dr

 d(φ, s)

= C(γ)

∫
D

|R1 −R2| |R1 +R2| d(φ, s)

≤ 2C(γ) ∥Rmax∥L∞(D) ∥R1 −R2∥L1(D) ,

which proves the second inequality.

Lemma 2.15. Let R1, R2 ∈ G, with G given by (2.36). Then

∥χ1 − χ2∥L1(ΩFOV) ≥ C ∥R1 −R2∥2L2(D) ,

where C ≥ C(γ) > 0 and C → ∞ for ∥Rmax/Rmin∥L∞(D) → 1.

Proof. Similarly to the previous lemma, we have

∥χ1 − χ2∥L1(ΩFOV) =

∫
D

max{R1,R2}∫
min{R1,R2}

r (L+ r⟨∂ser, t⟩) dr d(φ, s)

≥ C(γ)

∫
D

max{R1,R2}∫
min{R1,R2}

r dr d(φ, s)

= C(γ)

∫
D

|R1 −R2| |R1 +R2| d(φ, s).
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

The assertion follows from monotonicity of f(x) = x−1
x+1

with x = max{R1,R2}
min{R1,R2} by

∥R1 −R2∥2L2(D) =

∫
D

|R1 −R2| |R1 +R2|
∣∣∣∣R1 −R2

R1 +R2

∣∣∣∣ d(φ, s)
≤
(
1− 2

1 + ∥Rmax/Rmin∥L∞(D)

) ∫
D

|R1 −R2| |R1 +R2| d(φ, s).

These results imply a generalized continuity between parametrization R and domain Ω
and vice versa. They are essential for the conditional stability estimate of the geometry
reconstruction problem.

2.3.4 Transformation from Reference Domain to Flow Domain

The geometry parameter R defines only a parametrization for the wall part Γ(R) ⊂ ∂Ω(R),
i.e. the surface of the cylinder without the upper and lower cross section. We now define
two possible extensions to domain transformations, mapping a certain reference domain Ω̂
to the physical flow domain Ω respective a part of it.

Definition 2.16 (Local Version). Let R0 ∈ C3(D) with 0 < R0 < Rmin. Define the reference

domain Ω̂ := (0, 1) × S1 × (0, 1) with reference wall Γ̂W := {1} × S1 × (0, 1) ∼ D. For
R ∈ G we define the local domain transformation

ΦR(r, φ, s) := γ(s) + [R0(φ, s) + r (R(φ, s)−R0(φ, s))] er(φ, s).

If we consider several domain transformations from different parametrizations Ri, the
transformation parameters φ0, φ1, s0, s1, R0 are equal. In the following, we will usually skip
these details. Naturally, we have ΦR(Ω̂) ⊊ Ω, but in some cases we will mean Ω := ΦR(Ω̂)
for ease of presentation, since we simultaneously consider.

Definition 2.17 (Global Version). Define the reference domain as unit cylinder Ω̂ := B2 ×
(0, 1), where B2 denotes the unit disk. The associated reference wall is Γ̂W := {1} ×
S1 × (0, 1) ∼ D. For R ∈ G we set R0 := min

(φ,s)∈D
R(φ, s) and define the global domain

transformation

ΦR(r, φ, s) := γ(s) +
[
rR0 + r4 (R(φ, s)−R0)

]
er(φ, s).

In the following, we establish auxiliary results, regarding smoothness and stability of
the forward transformation, invertibility and finally smoothness and stability of the inverse
transformation. For both versions, we have the following stability result.
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Lemma 2.18. Let R,R1, R2 ∈ G. Let ΦR,Φ1,Φ2 be either the local or the global associated
domain transformations. Then we have ΦR ∈ C1(Ω̂) with the stability estimate

∥ΦR∥Wm,∞(Ω̂) ≤ C (γ)
(
1 + ∥R∥Wm,∞(D)

)
for m = 0, 1.

The differences satisfy the estimate

∥Φ1 − Φ2∥Wm,∞(Ω̂) ≤ C(γ) ∥R1 −R2∥Wm,∞(D) for m = 0, 1.

For R,R1, R2 ∈ G ∩ C3(D) we have ΦR ∈ C3(Ω̂) and analogous estimates for m = 2, 3.

Proof. We distinguish between the local and the global version.
Local version. For R ∈ Ck(D) with k ≤ 3 we have with the C3-regularity of the centerline

γ, the frame t, n, b and R0

∣∣DkΦR

∣∣ ≤
∣∣Dkγ

∣∣ + k∑
m=0

C(m) |Dm [R0 + r (R−R0)]|
∣∣Dk−mer

∣∣
≤ C(γ)

(
1 + ∥R0∥Wk,∞(D) + ∥R∥Wk,∞(D)

)
.

The estimate for the difference follows directly from the stability estimate, since ΦR is
affine linear with respect to R.
Global case. The polar coordinates (φ, r) are non-smooth with a singularity at r = 0.

Hence, we have to study smoothness in particular at r = 0. We split

ΦR(r, φ, s) = γ(s) + r R0 er(φ, s)︸ ︷︷ ︸
F1(r,φ,s)

+ r4 (R(φ, s)−R0) er(φ, s)︸ ︷︷ ︸
F2(r,φ,s)

.

Switching to Cartesian coordinates, we have

F1(x̂, ŷ, ẑ) = γ(ẑ) +R0 x̂ n(ẑ) +R0 ŷ b(ẑ).

From the C3-regularity of the centerline γ and the frame t, n, b we obtain F1 ∈ C3(Ω̂) and
∥F1∥W 3,∞(Ω̂) ≤ C(γ)(1 +R0).
Regarding the smoothness of F2, we first observe from elementary calculations, that for

a composition h = f ◦ g of smooth functions f, g it holds

Dkh =
∑

β∈Nk
0 ,
∑k

j=1 jβj=k

C(β)
((
D|β|f

)
◦ g
) k∏

j=1

(
Djg

)βj . (2.38)

We define f(φ, s) := (R(φ, s)−R0)er(φ, s). For R ∈ G, we find f ∈ C1(D), periodic in the
first argument and ∥f∥W 1,∞(D) ≤ C(γ)∥R∥W 1,∞(D). For R ∈ G∩C3(D), we have f ∈ C3(D),
periodic in the first argument and ∥f∥W 3,∞(D) ≤ C(γ)∥R∥W 3,∞(D).
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

Furthermore we define g(x̂, ŷ, ẑ) := (φ, s) from the usual polar transformation. Switching
to polar coordinates, g is indefinitely often differentiable at r > 0 and by elementary
calculations we obtain ∣∣(Dkg

)
(r, φ, s)

∣∣ ≤ C r−k.

Consequently, we obtain for h = f ◦ g at r > 0 with R ∈ G ∩ C3(D)

|Dh(r, φ, s)| ≤ C(γ) ∥R∥W 1,∞(D) r
−1

and with R ∈ C3(D) using the advanced chain rule (2.38) for k ≤ 3

∣∣Dkh(r, φ, s)
∣∣ ≤ C(γ) ∥R∥W 3,∞(D)

∑
β∈Nk

0 ,
∑k

j=1 jβj=k

k∏
j=1

∣∣Djg(r, φ, s)
∣∣βj

≤ C(γ) ∥R∥W 3,∞(D)

∑
β∈Nk

0 ,
∑k

j=1 jβj=k

k∏
j=1

∣∣r−j
∣∣βj

≤ C(γ) ∥R∥W 3,∞(D) r
−k.

Finally, we obtain by the product rule for R ∈ G

|DF2(r, φ, s)| ≤ r4 |Dh(r, φ, s)|+
∣∣D(r4)

∣∣ |h(r, φ, s)|
≤ C(γ) ∥R∥W 1,∞(D) r

3

and for R ∈ G ∩ C3(D) with k ≤ 3

∣∣DkF2(r, φ, s)
∣∣ ≤

k∑
m=0

C(m)
∣∣Dk−m(r4)

∣∣ |Dmh(r, φ, s)|

≤ C(γ)
k∑

m=0

r4−k+m ∥R∥W 3,∞(D) r
−m

≤ C(γ) ∥R∥W 3,∞(D) r
4−k.

Hence, the considered derivatives can be continuously extended by DkF2(0, φ, s) = 0 to
r = 0 with the desired estimates. The estimate for Φ1 − Φ2 follows analogously from the
linearity of ΦR with respect to R and R0 considering, that for R1, R2 ∈ G it holds

|R0,1 −R0,2| =
∣∣∣∣ min
(φ,s)∈D

R1(φ, s)− min
(φ,s)∈D

R2(φ, s)

∣∣∣∣ ≤ ∥R1 −R2∥L∞(D) .

Lemma 2.19. Let R ∈ G as defined in (2.36). Then ΦR is injective.
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2.3 Parametrization

Proof. In both cases, the local and global version, we can write

ΦR(r, φ, s) = γ(s) + f(r;R,R0, φ, s)er(φ, s),

where 0 ≤ f( · ;R,R0, φ, s) ≤ R(φ, s) is strictly monotonic with respect to r.

Let (r1, φ1, s1), (r2, φ2, s2) ∈ Ω̂ with ΦR(r1, φ1, s1) = ΦR(r2, φ2, s2). Then the represen-
tation implies ΦR(ri, φi, si) ∈ Q(si) for i = 1, 2 and we have s1 = s2 =: s. Thus,

0 = f(r1;R,R0, φ1, s)er(φ1, s)− f(r2;R,R0, φ2, s)er(φ2, s)

Since f ≥ 0 we have φ1 = φ2 =: φ and consequently

f(r1;R,R0, φ, s)− f(r2;R,R0, φ, s) = 0.

Since f is strictly monotonic in r, we finally have r1 = r2 = r.

Let ΨR = (ΦR)
−1 be the inverse transformation. We have the following stability result.

Lemma 2.20. Let R,R1, R2 ∈ G. Then ΨR = (ΦR)
−1 ∈ C1(Ω) with the stability estimate

∥ΨR∥W 1,∞(Ω) ≤ C
(
1 + ∥R∥2W 1,∞(D)

)
.

Furthermore, we have for the differences

∥Ψ1 −Ψ2∥L∞(Ω1∩Ω2)
≤ C

(
1 + ∥R1∥2W 1,∞(D)

)
∥R1 −R2∥L∞(D) .

If additionally R1 ∈ C3(D), then

∥Ψ1 −Ψ2∥W 1,∞(Ω1∩Ω2)
≤ C

(
∥R1∥W 3,∞(D) , ∥R2∥W 1,∞(D)

)
∥R1 −R2∥W 1,∞(D) .

Proof. We split the proof in 3 steps.

Step 1: Stability estimate for derivatives. Again, we consider the representation

ΦR(r, φ, s) = γ(s) + f(r;R,R0, φ, s)er(φ, s).

For the local version, we have for the Jacobian

DΦR = (er | eφ | t)

 ∂rf ∂φf ∂sf
0 f f ⟨∂ser, eφ⟩
0 0 L + f ⟨∂ser, t⟩

 .

We estimate the determinant

detDΦR = (R−R0) f (L+ f⟨∂ser, t⟩)
≥ min

(φ,s)∈D
(Rmin(φ, s)−R0(φ, s)) min

(φ,s)∈D
(R0(φ, s)) C(γ).

45



Chapter 2 Data Driven Wall Shear Stress Reconstruction

For the global version, we have for the Jacobian in polar coordinates

DΦR =

 ∂rf
1
r
dφf dsf

0 1
r
f f ⟨∂ser, eφ⟩

0 0 L + f ⟨∂ser, t⟩

 .

Again, we estimate the determinant using R ≥ R0 > 0

detDΦR = ∂rf
1

r
f (L + f ⟨∂ser, t⟩)

=
(
R0 + 4r3 (R−R0)

) (
R0 + r3 (R−R0)

)
(L + f ⟨∂ser, t⟩)

≥ R2
0 C(γ)

≥ min
(φ,s)∈D

(Rmin(φ, s))
2 C(γ).

Hence, we have established uniform lower bounds for the determinant. In particular, the
Jacobian DΦR is invertible and the implicit function theorem yields

DΨR =
(
DΦ−1

R

)
◦ΨR =

(
1

detDΦR

D̃ΦR

)
◦ΨR,

where D̃ΦR is the adjugate matrix of DΦR consisting of determinants of sub-matrices of
DΦR. Hence, we obtain using the uniform lower bound C0 on the determinant, the estimate
detA ≤ C|A|2 for A ∈ R2,2 and the stability estimate for the forward transformation of
Lemma 2.18

∥DΨR∥L∞(Ω) ≤ C−1
0

∥∥∥D̃ΦR

∥∥∥
L∞(Ω)

≤ C C−1
0 ∥ΦR∥2W 1,∞(Ω̂) ≤ C C−1

0

(
1 + ∥R∥2W 1,∞(D)

)
.

The estimate ∥ΨR∥L∞(Ω) ≤ C is trivial.

Step 2: Bound on the difference. Let x ∈ Ω1 ∩ Ω2. Set x̂i = Ψi(x) for i = 1, 2, where Ψi is
the inverse transformation associated with Ri. The transformation conserves angular and
axial positions independently of R. Thus, Φ1(x̂1) and Φ1(x̂2) have the same angular and
axial position and consequently, the direction connection is contained in Ω1. Using the
mean value theorem, we obtain

|x̂1 − x̂2| = |Ψ1(Φ1(x̂1))−Ψ1(Φ1(x̂2))|
≤ ∥Ψ1∥W 1,∞(Ω1)

|Φ1(x̂1)− Φ1(x̂2)|
= ∥Ψ1∥W 1,∞(Ω1)

|Φ2(x̂2)− Φ1(x̂2)|
≤ ∥Ψ1∥W 1,∞(Ω1)

∥Φ1 − Φ2∥L∞(Ω̂) .

Hence we have with the stability estimate of Lemma 2.18

∥Ψ1 −Ψ2∥L∞(Ω1∩Ω2)
≤ C

(
1 + ∥R1∥2W 1,∞(D)

)
∥R1 −R2∥L∞(D) .
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Step 3: Bound on the derivative of the difference. Since the determinant is polynomial in
the matrix entries, we obtain

∥detDΦ1 − detDΦ2∥L∞(Ω̂) +
∥∥∥D̃Φ1 − D̃Φ2

∥∥∥
L∞(Ω̂)

≤ C ∥Φ1 − Φ2∥W 1,∞(Ω̂)

with constant C depending on ∥Φ1∥W 1,∞(Ω̂) and ∥Φ2∥W 1,∞(Ω̂). The representation of the
inverse using adjugate matrices, the lower bound on the determinant and the estimates of
Lemma 2.18 imply∥∥DΦ−1

1 −DΦ−1
2

∥∥
L∞(Ω̂)

≤ C
(
∥R1∥W 1,∞(D), ∥R2∥W 1,∞(D)

)
∥R1 −R2∥W 1,∞(D) .

Similar arguments for R1 ∈ C3(D) imply∥∥DΦ−1
1

∥∥
W 2,∞(Ω̂)

≤ C
(
∥R1∥W 3,∞(Ω̂)

)
.

The assertion follows by

∥DΨ1 −DΨ2∥L∞(Ω1∩Ω2)

=
∥∥DΦ−1

1 ◦Ψ1 −DΦ−1
2 ◦Ψ2

∥∥
L∞(Ω1∩Ω2)

≤
∥∥DΦ−1

1 ◦Ψ1 −DΦ−1
1 ◦Ψ2

∥∥
L∞(Ω1∩Ω2)

+
∥∥DΦ−1

1 ◦Ψ2 −DΦ−1
2 ◦Ψ2

∥∥
L∞(Ω1∩Ω2)

≤
∥∥DΦ−1

1

∥∥
W 1,∞(Ω̂)

∥Ψ1 −Ψ2∥L∞(Ω1∩Ω2)
+
∥∥DΦ−1

1 −DΦ−1
2

∥∥
L∞(Ω̂)

≤ C
(
∥R1∥W 3,∞(D) , ∥R2∥W 1,∞(D)

)
∥R1 −R2∥W 1,∞(D) .

2.3.5 Outer Normal

The outer normal direction is analytically accessible from the parametrization. Let R ∈ G
be an admissible radius function. We can map the reference surface D = S1 × (0, 1) to the
wall part ΓW = ΦR({1}×D) of the boundary of the physical domain Ω. At the surface, we
obtain the tangential plane by differentiation and can establish the outer normal direction
by the cross product of the tangential directions and normalization.
The surface mapping is given by restricting the domain transformation ϕ(R) to r = 1

Γ : D → ∂Ω, Γ(φ, s) = Φ(1, φ, s) = γ(s) +R(φ, s)er(φ, s),

where the local directions er, eφ are defined in (2.32). Differentiation with respect to φ
and s yields the circumferential and axial tangential direction. For ease of presentation we
omit the dependence on φ and s and obtain pointwise

τφ = ∂φΓ = ∂φRer + Reφ,

τs = ∂sΓ = ∂sRer + R⟨∂ser, eφ⟩ eφ + (L+R⟨∂ser, t⟩) t.
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The normal direction is defined by the cross-product

τφ × τs = R (L+R⟨∂ser, t⟩) er − ∂φR (L+R⟨∂ser, t⟩) eφ +R (∂φR⟨∂ser, eφ⟩ − ∂sR) t.

Note that the direction is well defined, since

|τφ × τs| ≥ ⟨τφ × τs, er⟩ = R (L+R⟨∂ser, t⟩) ≥ min
φ,s

(Rmin) C(γ) > 0. (2.39)

By normalization and the simplification for the two-dimensional case using the extension
argument, we obtain the following proposition.

Proposition 2.21. Let R ∈ G. Then the outer normal to the wall part ΓW of the boundary,
given as a function on the reference domain D, is in the two-dimensional case

n2D =
Rer − ∂φReφ√
R2 + (∂φR)2

and in the three-dimensional case

n3D =
R (L+R⟨∂ser, t⟩) er − ∂φR (L+R⟨∂ser, t⟩) eφ +R (∂φR⟨∂ser, eφ⟩ − ∂sR) t√
[R (L+R⟨∂ser, t⟩)]2 + [∂φR (L+R⟨∂ser, t⟩)]2 + [R (∂φR⟨∂ser, eφ⟩ − ∂sR)]2

.

We conclude the preliminaries on the parametrization with the following stability result.

Lemma 2.22. Let R1, R2 ∈ G and let n1, n2 denote the outer normal vectors associated with
the domains Ω(R1) and Ω(R2), parametrized over the reference domain D. Then

∥n1 − n2∥L∞(D) ≤ C ∥R1 −R2∥W 1,∞(D) ,

where C = C(γ)
(
1 + ∥R1∥W 1,∞(D) + ∥R2∥W 1,∞(D)

)
.

Proof. For the non normalized tangential directions we obtain pointwise for i = 1, 2∣∣τ (i)φ

∣∣2 = |Ri|2 + |∂φRi|2 ≤ ∥Ri∥2W 1,∞(D)

and for the axial tangential∣∣τ (i)s

∣∣2 = |∂sRi|2 +R2
i |∂ser|

2 + L2 + 2LRi⟨∂ser, t⟩

≤ C(γ)
(
∥Ri∥2W 1,∞(D) + 1

)
.

Due to the affinity of the tangential directions with respect to R, the estimate transfers to
the differences ∣∣τ (1)φ − τ (1)φ

∣∣2 + ∣∣τ (1)s − τ (2)s

∣∣2 ≤ C(γ) ∥R1 −R2∥2W 1,∞(D) .
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Therefore, we obtain for the differences of the non normalized outer directions

|ñ1 − ñ2| ≤
∣∣τ (1)φ ×

(
τ (1)s − τ (2)s

)∣∣+ ∣∣(τ (1)φ − τ (2)φ

)
× τ (2)s

∣∣
≤ C(γ)

(
1 + ∥R1∥W 1,∞(D) + ∥R2∥W 1,∞(D)

)
∥R1 −R2∥W 1,∞(D) .

Finally, we obtain with the reverse triangle inequality and the estimate (2.39)

|n1 − n2| =
∣∣∣∣ ñ1

|ñ1|
− ñ2

|ñ2|

∣∣∣∣ ≤ |ñ1 − ñ2|
|ñ1|

+ |ñ2|
∣∣∣∣ 1

|ñ1|
− 1

|ñ2|

∣∣∣∣
=

1

|ñ1|
(|ñ1 − ñ2|+ | |ñ2| − |ñ1| |) ≤ 2

|ñ1|
|ñ1 − ñ2|

≤ C(γ)
(
1 + ∥R1∥W 1,∞(D) + ∥R2∥W 1,∞(D)

)
∥R1 −R2∥W 1,∞(D) .

This estimate is required for bounding the wall shear stress estimation error.

2.4 Continuous Analysis

In the final section of this chapter, we formally introduce and analyze the wall shear stress
reconstruction strategy consisting of the three sub-problems:

(i) geometry reconstruction,

(ii) velocity approximation and

(iii) wall shear stress estimation.

For the stable solution of (i) and (ii) we utilize Tikhonov regularization. With some aux-
iliary results regarding the parametrization from Section 2.3 we formulate the problems
in the framework of Section 2.2 and verify the conditional stability estimate. Finally, we
combine the results to prove convergence rates of the wall shear stress estimate (iii) with
respect to the data errors.

2.4.1 Geometry Reconstruction

We investigate the problem of reconstructing an approximation of the exact parametriza-
tion R† with associated exact flow geometry Ω†. For this purpose we utilize data mδ ∈
L2(ΩFOV) from magnetic resonance imaging. With χ denoting the characterstic function,
the data are interpreted as

mδ ≈ m := χΩ† =

{
1 in Ω†,
0 in ΩFOV \ Ω†.

(2.40)
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The corresponding geometry forward operator is

F : D(F ) ⊂ L2(D) → L2(ΩFOV), F (R) 7→ χΩ(R), (2.41)

where Ω(R) is the flow domain associated with geometry parameter R. To cast the problem
in the framework of Subsection 2.2.3, we observe that X = L2(D), Y = L2(ΩFOV). For the
domain D(F ), we recall the parameter domain D = S1 (2D) respective D = S1×(0, 1) (3D)
and the set of adimissible parameters G ⊂ C1(D) in (2.29) respective (2.36). We observe
that H3(D) ↪→ C1(D). With the bounds 0 < Rmin ≤ Rmax ∈ C(D) and some arbitrary
constant C > 0 we introduce the domain

D(F ) :=
{
R ∈ H3(D) | Rmax ≥ R ≥ Rmin

}
. (2.42)

We summarize some important properties of F in the following lemma.

Lemma 2.23. The operator F , defined in (2.41) and (2.42), is Hölder continuous with
α = 1/2, non-differentiable and satisfies the conditional stability estimate

∥R1 −R2∥L2(D) ≤ C ∥F (R1)− F (R2)∥L2(ΩFOV) ∀R1, R2 ∈ D(F ). (2.43)

Proof. Hölder continuity follows directly from Lemma 2.14 by

∥F (R1)− F (R2)∥L2(ΩFOV) = ∥χ1 − χ2∥1/2L1(ΩFOV) ≤ C∥R1 −R2∥1/2L1(D) ≤ C∥R1 −R2∥1/2L2(D).

This estimate is optimal, in the sense that for R ∈ G and t > 0

∥F (R + t)− F (R)∥L2(ΩFOV) = ∥χΩ(R+t) − χΩ(R)∥1/2L1(ΩFOV) ≥ C t1/2.

This reveals, that F is nowhere differentiable. However, we have by Lemma 2.15 for
arbitrary R1, R2 ∈ D(F )

∥F (R1)− F (R2)∥L2(ΩFOV) = ∥χ1 − χ2∥1/2L1(ΩFOV) ≥ C∥R1 −R2∥L2(D).

Hence, F satisfies the announced conditional stability estimate.

Lemma 2.23 establishes Assumption 2.5, which was the crucial ingredient for our analsys
of Tikhonov regularization in Subsection 2.2.3. For the solution of the inverse problem

Find R ∈ D(F ) with F (R) = mδ (2.44)

we utilize Tikhonov regularization with the functional

T δ
α (R) :=

∥∥F (R)−mδ
∥∥2
L2(ΩFOV)

+ α |R|2H3(D)

and consider Rδ
α ∈ Mδ

α := {R ∈ D(F ) | T δ
α (R) ≤ infR̃∈D(F ) T δ

α (R̃)}. By application of
Theorem 2.8 we immediately obtain the following result.
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2.4 Continuous Analysis

Theorem 2.24. Let R† ∈ D(F ), mδ ∈ Y with ∥mδ − F (R†)∥Y ≤ δ. Let Rδ
α ∈ Mδ

α be an
approximate Tikhonov minimizer for α(δ) = δ2/M2 with some M ≥ |R†|H3(D). Then∥∥Rδ

α −R†∥∥
Hs(D)

≤ C δ1−s/3 (δ +M)s/3 ∀ 0 ≤ s ≤ 3.

The same estimate with M := max{|R†|H3(D), δ/
√
αmax} holds for the a posteriori choice

α = α(δ,mδ) given by the discrepancy principle (2.27).

Remark 2.25. Since F is not differentiable, the standard result about convergence rates for
Tikhonov regularization, given in Proposition 2.2, is not applicable. However, the condi-
tional stability approach by Cheng and Yamamoto yields convergence of the reconstruction
with a certain rate with respect to the data error. The conditional stability estimate is
valid and R† ∈ D(F ) is reasonable, since it poses only mild assumptions on the exact geom-
etry. Additional source conditions ore non-linearity conditions are not required. Compared
to regularization in the full norm ∥ · ∥H3(D), the regularization in the seminorm pays off
for nearly circular (2D) and cylindrical (3D) geometries with roughly constant geometry
parameter R†: For |R†|H3(D) ≤ δ we obtain ∥Rδ

α −R†∥H3(D) ≤ Cδ without additional bias.

2.4.2 Velocity Approximation

Now we turn to sub-problem (ii), the approximation of the flow velocity. Magnetic reso-
nance velocimetry provides spatially resolved measurements uε of the exact flow velocity
u†. However, the estimation of wall shear stress requires approximations of the velocity
derivatives at the boundary of the flow domain. While this amounts to a standard ill-posed
problem [29], there is an additional difficulty: The velocity outside the flow domain is zero,
resulting in a discontinuous derivative. Hence, we have to introduce a novel framework for
the approximation of the flow velocity, taking into account, that only approximations Rδ

on the flow geometry with geometry parameter R† are available. The framework is based
on the extension of the parametrization R of the boundary to domain transformations
ΦR, mapping a reference flow domain Ω̂ to the flow domain ΩR, that were introduced in
Subsection 2.3.4.
We cast the velocity approximation problem in the setting of Subsection 2.2.3: The

available velocity data uε ∈ L2(ΩFOV) are interpreted as

uε ≈
{

u† in Ω†,
0 in ΩFOV \ Ω†,

(2.45)

where u† is the velocity in the physical flow domain. We can associate a function u : Ω → Rd

on the physical domain, parametrized by R ∈ G as defined in (2.29) respective (2.36), with

a function v : Ω̂ → Rd on the reference domain by composition with the corresponding
domain transformation ΦR : Ω̂ → Ω. We aim for an approximation of the mapped exact
flow velocity

v† := u† ◦ Φ†.
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

With the approximate geometry parameter R we introduce the velocity measurement op-
erator

T : D(T ) ⊂ L2(Ω̂) → L2(ΩFOV), T v := ER(v ◦ΨR),

where ER : L2(ΩR) → L2(ΩFOV) is the extension by zero and ΨR : ΩR → Ω̂ the inverse
transformation associated with R. Note that T = TR depends on the geometry parameter,
where we use the notation TR only, when it matters. We require stable evaluation of the
normal derivative, therefore we introduce

D(T ) :=
{
v ∈ H2(Ω̂) | v = 0 on Γ̂W = {1} × S1 × (0, 1)

}
. (2.46)

This corresponds to the setting of Subsection 2.2.3 with X = L2(Ω̂), D(T ) ⊆ H2(Ω̂) and
Y = L2(ΩFOV). Concerning the dependence on the geometry parametrization, we have the
following stability result.

Lemma 2.26. Let v ∈ D(F ) ∩ C1(Ω̂) and let R1, R2 ∈ G. Let T1, T2 denote the velocity
measurement operators associated with R1, R2. Then

∥T1(v)− T2(v)∥L2(ΩFOV) ≤ C ∥v∥W 1,∞(Ω̂) ∥R1 −R2∥L∞(D)

with constant C depending only on ∥R1∥W 1,∞(D) and ∥R2∥W 1,∞(D).

Proof. We divide the error e := T1(v)− T2(v) into the contributions

∥e∥Y ≤ ∥e∥L2(Ω1∩Ω2)
+ ∥e∥L2(Ω1\Ω2)

+ ∥e∥L2(Ω2\Ω1)
+ ∥e∥L2(ΩFOV\(Ω1∪Ω2))

.

With the associated inverse transformations Ψ1 and Ψ2, the first contribution on the shared
domain is estimated using Lemma 2.20

∥T1(v)− T2(v)∥L2(Ω1∩Ω2) = ∥v ◦Ψ1 − v ◦Ψ2∥L2(Ω1∩Ω2)

≤ ∥v∥W 1,∞(Ω̂) ∥Ψ1 −Ψ2∥L∞(Ω1∩Ω2) |Ω1 ∩ Ω2|1/2

≤ C ∥v∥W 1,∞(Ω̂) ∥R1 −R2∥L∞(D).

For the second part let x ∈ Ω1 \ Ω2. Switching to the parametric representation we have
x = γ(s) + rer(φ, s) with R2(φ, s) ≤ r < R1(φ, s). Set xb = γ(s) + R1(φ, s)er(φ, s). Then

Ψ1(xb) ∈ Γ̂W and since v ∈ D(F ) ∩ C1(Ω̂)

|(v ◦Ψ1)(x)| = |(v ◦Ψ1)(x)− (v ◦Ψ1)(xb)|

=

∣∣∣∣∣∣
1∫

0

∂r(v ◦Ψ1)(xb + ξ(x− xb)) (R(φ, s)− r) dξ

∣∣∣∣∣∣
≤ ∥v∥W 1,∞(Ω̂) ∥Ψ1∥W 1,∞(Ω1) |R1(φ, s)−R2(φ, s)|.
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2.4 Continuous Analysis

Finally, we estimate the second part by Lemma 2.14 and Lemma 2.20

∥T1(v)− T2(v)∥L2(Ω1\Ω2)
= ∥v ◦Ψ1∥L2(Ω1\Ω2)

≤ CR∥v∥W 1,∞(Ω̂) ∥R1 −R2∥L∞(D) |Ω1 \ Ω2|1/2

≤ CR∥v∥W 1,∞(Ω̂) ∥R1 −R2∥3/2L∞(D).

The estimation of the third part follows analogously by swapping the roles of R1 and R2.
The assertion follows, since both images are zero on the last part.

Let R ∈ G, where G is given by (2.29) respective (2.36), be an approximation of the
exact geometry parameter R† ∈ G. For the solution of the inverse problem

Find v ∈ D(T ) with Tv = uε (2.47)

we utilize Tikhonov regularization with the functional

T ε
β (v) := ∥Tv − uε∥2L2(ΩFOV) + β |v|2H2(Ω̂)

and consider vεβ ∈ Mε
β = {v ∈ D(F ) | T ε

β (v) ≤ inf ṽ∈D(F ) T ε
β (ṽ)}. Applying auxiliary results

about the parameterization with the stability result of Lemma 2.26, we obtain a bound on
the data error with perturbed forward operator. The combination with the theory about
Tikhonov regularization finally leads to a convergent velocity approximation.

Proposition 2.27. Let R ∈ G and R† ∈ G ∩ C3(D) with δR := ∥R† − R∗∥L∞(D). Let

u† ∈ H3(Ω†) with u† = 0 on Γ†
W . Let uε ∈ L2(ΩFOV) with ∥E†u† − uε∥L2(ΩFOV) ≤ ε. Then

v† := u† ◦ Φ† ∈ D(F ) ∩ C1(Ω̂) and∥∥Tv† − uε
∥∥
L2(ΩFOV)

≤ C δR ∥v†∥W 1,∞(Ω̂) + ε =: εU

with constant C depending only on ∥R∥W 1,∞(D) and ∥R†∥W 1,∞(D).
Further, let vεβ ∈ Mε

β be an approximate Tikhonov minimizer for β(εU) = ε2U/M
2 with

some M ≥ |v†|H2(Ω̂). Then∥∥vεβ − v†
∥∥
Hs(D)

≤ C ε
1−s/2
U (εU +M)s/2 ∀ 0 ≤ s ≤ 2.

The same estimate with M := max{|v†|H2(Ω̂), εU/
√
βmax} holds for the a posteriori choice

β = β(εU , u
ε) given by the discrepancy principle (2.27).

Proof. We split the proof in 3 steps.

Step 1: Admissibility and regularity of v†. For any composition h = f ◦ g of smooth
functions f and g, we have Dh = (Df ◦ g)Dg. By elementary calculus using the chain and
product rule, we estimate pointwise

∥∥Dkh
∥∥ (x) ≤ C

(
∥g∥Wk,∞ + ∥g∥kWk,∞

) k∑
l=1

∥∥Dlf ◦ g
∥∥ (x).
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Chapter 2 Data Driven Wall Shear Stress Reconstruction

Applying v† = u† ◦ Φ† with Φ† ∈ W 3,∞(Ω̂) according to Lemma 2.18 yields for k ≤ 3 with
some constant C depending on ∥Φ†∥W 3,∞(Ω̂) that∫

Ω̂

∥Dkv†∥2 dx̂ ≤ C

∫
Ω̂

k∑
l=1

∥∥Dlu† ◦ Φ†∥∥2 dx̂

= C

∫
Ω†

det(DΨ†)
k∑

l=1

∥∥Dlu†∥∥2 dx

≤ C
∥∥u†∥∥2

H3(Ω†)
.

Since Φ†(Γ̂W ) = Γ†
W , we have v† = 0 on Γ̂W and therefore v† ∈ D(T ) for sufficiently large

upper bound.

Step 2: Estimating the data error. We verify using Lemma 2.26∥∥Tv† − uε
∥∥
Y
≤
∥∥TRv

† − T †v†
∥∥
Y
+
∥∥T †v† − uε

∥∥
Y

≤ C
∥∥v†∥∥

W 1,∞(Ω̂)
∥R−R†∥L∞(D) +

∥∥E†u† − uε
∥∥
Y

= C
∥∥v†∥∥

W 1,∞(Ω̂)
δR + ε

= εU .

Step 3: Conditional stability estimate. T fulfills a conditional stability estimate, since with
v1, v2 ∈ D(T ) we have

∥Tv1 − Fv2∥2Y =

∫
Ω∗

|v1 ◦Ψ∗ − v2 ◦Ψ∗|2 dx

=

∫
Ω̂

|det(DΦ∗)| |v1 − v2|2 dx̂

≥ C ∥v1 − v2∥L2(Ω̂) .

Thus, the assertions follow by applying Theorem 2.8.

Combining these results with the geometry reconstruction from the previous section, we
arrive at the following conclusions.

Theorem 2.28. Let vδ,εα,β ∈ D(F) be the velocity approximation according to Proposition

2.27 based on the geometry reconstruction R∗ = Rδ
α ∈ G according to Remark 2.25. Then

we have ∥∥∥vδ,εα,β − v†
∥∥∥
Hs(Ω̂)

≤ CU

[
C
∥∥u†∥∥

W 1,∞(Ω†)
δ + ε

]1−s/2

∀0 ≤ s ≤ 2,

with constant C depending only on ∥R†∥W 3,∞(D) and constant CU depending on ∥u†∥H3(Ω†).
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2.4 Continuous Analysis

Before we close this subsection about the velocity approximation, let us briefly make
some comments on the main results of our analysis so far.

Remark 2.29. As for the geometry reconstruction, we have derived convergence with a cer-
tain rate under the reasonable assumption, that the velocity u† is smooth and satisfies the
no-slip condition. The computation of the error εU , that is needed for the reconstruction,
requires knowledge of the size ∥v†∥W 1,∞(Ω̂) of the true velocity field, the velocity data error
and the geometry reconstruction error. Since the forward operator is linear with respect
to the velocity variable, similar results are obtainable from the standard theory [29].
Let us note that the derived convergence rate is not optimal. An enhanced result can
be derived in the linear theory [29] or alternatively in the conditional stability analysis in
Hilbert scales [23]. However, the enhancement is based on additional source conditions,
i.e. artificial boundary conditions on v†, that are only satisfied in a limited degree [25,64].
In contrast to the radius function R†, the velocity field u† and consequently v† exhibits high
derivatives due to the presence of boundary layers. Therefore, we mark the dependence on
∥u†∥Hm(Ω†). The mismatch in the geometry δR highly affects the data error εU , since the

mismatch is amplified with
∥∥v†∥∥

W 1,∞(Ω̂)
.

2.4.3 Wall Shear Stress Estimation

As a final step of our reconstruction process, we now present the estimation of wall shear
stress from the geometry reconstruction and the velocity approximation. Finally, we prove
the stability of the estimate with respect to the previously considered reconstruction norms.
The true wall shear stress τ † : Γ† → Rd is defined on the boundary Γ† of the exact physical

domain, which is parametrized by R†. The straightforward reconstruction τ : Γ → Rd is
defined on the boundary of the reconstructed domain, which is parametzied by R. To
allow for a comparison of both estimates, we map the wall shear stress on the wall part
Γ̂W of the surface of the reference domain. Like it was already used for the outer normal in
Subsection 2.3.5, we may identify Γ̂W with D = S1 × (0, 1). Hence, we obtain the mapped
exact wall shear stress

τ̂ † : D → Rd, τ̂ † = τ † ◦ Φ† = −µDv† (DΦ†)−1 n†. (2.48)

The mapped estimated wall shear stress, that is obtained from geometry parameter R and
approximate velocity v, is given by

τ̂ : D → Rd, τ̂ = τ ◦ Φ = −µDv (DΦ)−1 n, (2.49)

where Φ and n are the geometry transformation respective outer normal corresponding to
R. Regarding the difference, we obtain the following stability result.

Proposition 2.30. Let R†, R ∈ G with ∥R† − R∥W 1,∞(D) ≤ δ. Let v†, v ∈ Hs(Ω̂) with
∥v† − v∥Hs(Ω̂) ≤ ε and u† = v† ◦ Ψ† ∈ Hs(Ω†) for some s > 3/2. Then the corresponding

mapped wall shear stress estimates given by (2.48) and (2.49) satisfy∥∥τ̂ † − τ̂
∥∥
L2(D)

≤ C
(∥∥u†∥∥

Hs(Ω†)
δ + ε

)
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with constant C depending only on µ and the norms of R∗ and R†.

Proof. We split∥∥τ̂ − τ̂ †
∥∥
L2(D)

= µ
∥∥∥Dv (DΦ)−1 n − Dv†

(
DΦ†)−1

n†
∥∥∥
L2(D)

= µ
∥∥∥Dv (DΦ)−1 n − Dv†

(
DΦ†)−1

n†
∥∥∥
L2(D)

≤ µ
∥∥∥Dv†

(
DΦ†)−1 [

n− n†]∥∥∥
L2(D)

+µ
∥∥∥Dv†

[
(DΦ)−1 −

(
DΦ†)−1

]
n
∥∥∥
L2(D)

+µ
∥∥[Dv −Dv†

]
(DΦ)−1 n

∥∥
L2(D)

= (i) + (ii) + (iii).

For the first term, we obtain using the regularity of v†, Lemma 2.20 and the error estimate
for the normal direction of Lemma 2.22

(i) ≤ µ
∥∥Dv†

∥∥
L2(D)

∥∥ (DΦ†)−1 ∥∥
L∞(D)

∥∥n− n†∥∥
L∞(D)

≤ C
∥∥v†∥∥

Hs(Ω̂)

∥∥R†∥∥
W 1,∞(D)

∥∥R−R†∥∥
W 1,∞(D)

≤ C
∥∥u†∥∥

Hs(Ω†)
δ.

Using the error estimate for the inverse Jacobians of Lemma 2.20, we obtain

(ii) ≤ µ
∥∥Dv†

∥∥
L2(D)

∥∥ (DΦ)−1 −
(
DΦ†)−1 ∥∥

L∞(D)
∥n∥L∞(D)

≤ C
∥∥v†∥∥

Hs(Ω̂)

∥∥R−R†∥∥
W 1,∞(D)

≤ C
∥∥u†∥∥

Hs(Ω†)
δ.

Finally we estimate the velocity mismatch term

(iv) ≤ µ
∥∥Dv −Dv†

∥∥
L2(D)

∥∥(DΦ)−1
∥∥
L∞(D)

∥n∥L∞(D)

≤ C
∥∥v − v†

∥∥
Hs(Ω̂)

∥R∥W 1,∞(D)

≤ C ε.

If the wall shear stress is reconstructed sequentially using the previously introduced
geometry reconstruction and velocity approximation, we can combine the estimates of the
reconstruction errors and obtain the following main result.

Theorem 2.31. Let vδ,εα,β ∈ H2(Ω̂) be the velocity approximation according to Theorem 2.28,

based on the geometry reconstruction Rδ
α ∈ G according to Remark 2.25, computed from

56



2.4 Continuous Analysis

geometry and velocity measurements with errors δ and ε, respectively. Let τ δ,εα,β be the
associated wall shear stress estimator. Then we have∥∥τ̂ δ,εα,β − τ̂ †

∥∥
L2(D)

≤ C
∥∥u†∥∥

H2(Ω†)
δ + CU

[∥∥u†∥∥
W 1,∞(Ω†)

δ + ε
]s

for every s < 1/4 with constant C depending only on ∥R†∥W 3,∞(D) and the viscosity µ and
constant CU additionally depending on ∥u†∥H3(Ω†).

Summary: We have derived a purely data driven wall shear stress estimator, that is
applicable to various flows satisfying some basic fluid dynamical properties. We take ad-
vantage of the a priori knowledge about the topology of the flow domain, to introduce
a parametric representation of the geometry. This enables to formulate the reconstruc-
tion of the necessary ingredients, the flow geometry from the magnitude data and the
flow velocity from the velocity data, as inverse problems posed in a Hilbert space set-
ting. Unfortunately, the forward operator of the geometry reconstruction problem renders
non-differentiable, preventing an analysis of the inverse problem by standard techniques.
However, a modification of an alternative approach using a conditional stability estimate
proved to be applicable and allows for a convergence analysis of the reconstruction purely
on reasonable smoothness assumptions. Combining these results allows for quantifying the
wall shear stress estimation error in terms of the measurement errors, setting this method
apart from the other data driven wall shear stress estimators.
Although the concrete convergence rate may be of minor importance, since the mea-

surement errors cannot be arbitrarily reduced, it guarantees robustness of the estimators.
Furthermore, the analysis reveals, that errors of the geometry registration are amplified
with norms of derivatives of the velocity field, that are considerably large due to the pres-
ence of boundary layers in the investigated flow regimes. Consequently, the data driven
wall shear stress estimation relys on a highly accurate geometry reconstruction.
In the following chapter, we consider a more detailed model of the discrete measurement

operator, to reduce the data error and consequently reconstruction errors, and apply the
method to several relevant flow regimes.

57





Chapter 3

Numerical Realization and Validation

In the previous chapter, we have developed a purely data based technique to estimate the
wall shear stress. The method sequentially solves the sub-problems:

(i) reconstruction of the flow geometry Ω†,

(ii) approximation of the flow velocity u† and

(iii) calculation of the wall shear stress τ †.

A parametric representation was used in all steps and for the stable solution of (i) and
(ii) we utilized Tikhonov regularization. Based on a conditional stability estimate, that
could be verified for the forward operators of (i) and (ii), we proved error estimates for the
reconstruction in terms of the data errors. For the theoretical analysis of this approach,
we investigated an idealized measurement operator with infinite data resolution. However,
for the clinical application with only limited data resolution, the data acquisition process
becomes more complicated. Therefore, in Section 3.1 we present a more detailed modelling
of the data and derive corresponding bounds on the data error in terms of accessible
quantities.

Subsequently, we present the numerical realization of the method. The straightfor-
ward discretization of the geometry and velocity measurement operators would lead to
forward operators that are inconsistent with the previously derived data model and even
non-differentiable in case of the geometry measurement, preventing an efficient numerical
solution of the associated Tikhonov minimization problem. Hence, we introduce suitable
modifications of the forward operators in Section 3.2. With these modifications we arrive
at a fully discrete method and expect to obtain

� stable reconstructions with the approximation errors bounded in terms of the data
error, since in view of Proposition 2.10 the computed solutions are approximate
Tikhonov minimizers of the idealized measurement operator, provided the modifica-
tion is sufficiently small, and

� reasonable reconstructions for the practically feasible, but considerably low data res-
olution, since the modified forward operators are conforming with the data model.
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For the verification of these expectations, in Section 3.3 we perform a comprehensive vali-
dation by applying the method to several measurements in silico with simulated data and
measurements in vitro with physical data, acquired from a highly controlled experimental
flow. Since for these measurements ground truth, i.e. exact data Ω†, u† and τ †, is available,
we can compute the reconstruction errors, allowing for assessing the performance of our
method. We conclude the chapter with illustrative applications to more complex problems,
where we only check plausibility in lack of accurate reference values.
This chapter is based on our collaborative work with the project partners, in particular

with the Department of Radiology in Freiburg, and major results are published in [86].

3.1 The Discrete Measurement

Although the interpretation of the data used in the previous chapter represents the limit of
infinite data resolution, in the discrete case we should use an adapted data model. In the
following subsection, we postulate the model and corresponding error bounds. A detailed
derivation including the necessary pre-processing techniques is presented subsequently.

3.1.1 Modelling of the Discrete Measurements

Phase contrast magnetic resonance imaging allows to obtain spatially and possibly tem-
porally resolved measurements of flow geometries and velocities. The data provided by
magnetic resonance imaging or velocimetry are given on a regular grid (Vi)i=1,...,NV

of the
field of view ΩFOV. The NV voxels Vi are assumed to be squares (2D) or cubes (3D) of
the same length h > 0. The MR measurements of magnitudes mδ and velocities uε can be
interpreted as piecewise constant functions in L2(ΩFOV), defined by

mδ =

NV∑
i=1

mδ
i χVi

(x), uε =

NV∑
i=1

uε
iχVi

(x).

Let us now comment in a bit more detail on the actual information content of the data.
We postulate that the magnitude data are the fraction of the voxel occupied by the flow
domain Ω† ⊂ ΩFOV

mδ
i =

∣∣Ω† ∩ Vi

∣∣
|Vi|

+ νδ
i (3.1)

with data error νδ =
∑

i ν
δ
i χVi

. In a similar manner, we assume that the exact velocity
field u† ∈ W 1,∞(ΩFOV) leads to measurments

uε
i =

1

|Vi|

∫
Vi∩Ω†

u†(x) dx+ νε
i (3.2)
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with data error νε =
∑

i ν
ε
i χVi

. Assume that the measurement process is fast in comparison
to changes in the physical fields and hence the data can be understood as snapshots of the
physical fields on a uniform grid in time.
To quantify the data errors, we introduce some quantities: Let SNR and CNR denote

the signal-to-noise ratio and contrast-to-noise ratio, respectively, that are approximately
accessible from the data [60]. Let venc denote the velocity encoding - a controllable param-
eter of the data acquisition process. Then for sufficiently high data resolution h we have
the estimate

∥νδ∥L2(ΩFOV) ≤ C

√
h

CNR

(
1 +

|u†|2
W 1,∞(Ω†)

v2enc
h SNR

)
. (3.3)

For the velocity data it holds

∥νε∥L2(ΩFOV) ≤ C venc

(
1

SNR
+

|u†|W 1,∞(Ω†)

venc
h3/2

)
. (3.4)

Note that the geometry error vanishes for increasingly high data resolution, while the
velocity error saturates at venc/SNR.
In the following subsection, we give an overview of the physical principles underlying

the measurement technique and derive a mathematical model for the raw data. The data
mδ and uε are normalized data that are obtained after a pre-processing from the raw data.
The pre-processing is outlined in Subsection 3.1.3, finally justifying the proposed estimates
(3.3) and (3.4) of the data errors.

3.1.2 A Model for the Raw Data of Phase Contrast Magnetic
Resonance Imaging

Here, we present a brief overview of the physics of phase contrast magnetic resonance
imaging, for details we refer to [15]. Magnetic resonance imaging is based on the follow-
ing principle: using a homogeneous static magnetic field and varying secondary magnetic
fields, one generates Larmor precession of the magnetic spins associated with hydrogen
atoms, i.e. protons. Special velocity encoding gradients are applied to obtain a phase shift
of the moving spins which is proportional to the local flow velocity. The velocity encoding
parameter venc controls this proportionality and its values for every direction are manu-
ally chosen before the measurement. The precessing magnetization becomes observable
by inducing an alternating electric field in a receiver coil with the characteristic Larmor
frequency. In fact, the measured data are the first modes of the spatial Fourier transfor-
mation in a cross-section (k-space), which are conducted sequentially line by line, one line
at every pulse sequence repetition.
One can conduct measurements of one, two or all three velocity components, of only

a single 2D rectangle or a 3D cuboid, and of a stationary or a non-stationary regime.
Feasibile times for acquiring a single line in the k-space, the so called repetition time, are
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about 10 − 50ms [8]. Note that for temporally resolved measurements, the flow regime is
assumed to be periodic and the scanner requires a trigger signal at the start of each period.
Let u† denote a velocity component that we want to measure. Recapitulating the physical

principles, we have the following imagination of the magnetic signal in the field of view:

c : ΩFOV → C, c(x) = ρ(x) eiπu
†(x)/venc .

Here, ρ is the possibly discontinuous signal density that depends, amongst others, on
the proton density, the relaxation time and the niveau of magnetic saturation. After
transformation to the physical space, this amounts to a convolution of the signal with a
smoothing sinc-kernel. We make the commonly used assumption [3] that the data are
obtained with a rectangular kernel, hence

ci =
1

|Vi|

∫
Vi

c(x) dx+ νc
i , i = 1, ..., NV , (3.5)

where Vi are the individual voxels and νc ∈ L2(ΩFOV; C) is the measurement noise. The
magnetic resonance raw data, consisting of the raw magnitude mδ

i and the raw velocity uε
i ,

are obtained by computing the polar representation of the complex data ci:

mδ
i := |ci| , uε

i :=
venc
π

arg(ci), i = 1, ..., NV .

Note that here and in the following, we associate a vector fi with a piecewise constant
function f =

∑
i fiχVi

∈ L2(ΩFOV). To simplify the model of the measurement process,
we introduce the following idealizations m and u for the magnitude and velocity data,
respectively:

mi :=
1

|Vi|

∫
Vi

ρ(x) dx and ui :=
1∫

Vi

ρ(x) dx

∫
Vi

ρ(x)u†(x) dx. (3.6)

Since u† ∈ W 1,∞(ΩFOV) and obviously minx∈Vi
u†(x) ≤ ui ≤ maxx∈Vi

u†(x), there is ξi ∈ Vi

with u†(ξi) = ui by the intermediate value theorem. For voxel size h, we thus obtain∥∥u† − ui

∥∥
L∞(Vi)

≤ C
∣∣u†∣∣

W 1,∞(ΩFOV)
h. (3.7)

For the following computations we assume that the voxel size is sufficiently small. Before
we quantify the errors for the raw data model, we recall the signal-to-noise ratio (SNR),
that plays an important role in the estimation of data accuracy. We define

SNRi := mi/|νc
i |.

In the following analysis we will assume sufficiently large SNR, i.e. sufficiently small noise.
For the error of the raw magnitude, we have the following estimate.
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Lemma 3.1. Let νδ
i = mi −mδ

i be the error of the raw magnitude. Then

∣∣νδ
i

∣∣ ≤ C mi

(∣∣u†
∣∣
W 1,∞(ΩFOV)

h

venc
+

1

SNRi

)
.

Proof. Using the inverse triangle inequality and the estimate (3.7) for the velocity deviation
from the weighted mean, we obtain∣∣mδ

i −mi

∣∣ = ∣∣∣∣mδ
i

∣∣− ∣∣eiπui/vencmi

∣∣∣∣
≤ 1

|Vi|

∫
Vi

ρ(x)
∣∣∣eiπu†(x)/venc − eiπui/venc

∣∣∣ dx+ |νc
i |

≤ 1

|Vi|

∫
Vi

ρ(x)
π

venc

∣∣u†(x)− ui

∣∣ dx+ |νc
i |

≤ π

venc

∥∥u† − ui

∥∥
L∞(Vi)

mi + |νc
i |

≤ C mi

(∣∣u†
∣∣
W 1,∞(ΩFOV)

h

venc
+

1

SNRi

)
.

In a similar manner, we can estimate the deviation of the raw velocity uε
i from the

modelled velocity ui by the following estimate.

Lemma 3.2. Let νu,i = ui−uε
i be the error of the raw velocity data. Let SNRi be sufficiently

large and the data resolution h be sufficiently high. Then the velocity error satisfies

|νε
i | ≤ C

∣∣u†
∣∣3
W 1,∞(ΩFOV)

h3

v2enc
+

∣∣u†
∣∣2
W 1,∞(ΩFOV)

h2

venc

1

SNRi

+
venc
SNRi

 .

Proof. Elementary calculations lead to

|νε
i | = venc

π

∣∣arg(ci)− arg
(
eiπui/venc

)∣∣ = venc
π

∣∣arg (ci e−iπui/venc
)∣∣

= venc
π

∣∣∣∣arctan( Im(ci e−iπui/venc)
Re(ci e−iπui/venc)

)∣∣∣∣ ≤ venc
π

∣∣∣∣ Im(ci e−iπui/venc)
Re(ci e−iπui/venc)

∣∣∣∣ .
Let us consider the numerator. Using a Taylor explansion for the sinus, estimate (3.7) and
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the definition of ui, we estimate

∣∣Im (ci e−iπui/venc
)∣∣ =

∣∣∣∣∣∣ 1

|Vi|

∫
Vi

ρ(x) sin

(
π
u†(x)− ui

venc

)
dx+ Im

(
νc
i e

−iπui/venc
)∣∣∣∣∣∣

≤

∣∣∣∣∣∣ 1

|Vi|

∫
Vi

ρ(x)

(
π
u†(x)− ui

venc
+O

((
π
u†(x)− ui

venc

)3
))

dx

∣∣∣∣∣∣+ |νc
i |

=

∣∣∣∣∣∣ 1

|Vi|

∫
Vi

ρ(x)O

((
π
u†(x)− ui

venc

)3
)

dx

∣∣∣∣∣∣+ |νc
i |

≤C mi

∣∣u†
∣∣3
W 1,∞(ΩFOV)

h3

v3enc
+

1

SNRi

 .

For the denominator, we compute with similar arguments

∣∣Re (ci e−iπui/venc
)∣∣ =

∣∣∣∣∣∣ 1

|Vi|

∫
Vi

ρ(x) cos

(
π
u†(x)− ui

venc

)
dx+Re

(
νc
i e

−iπui/venc
)∣∣∣∣∣∣

≥

∣∣∣∣∣∣ 1

|Vi|

∫
Vi

ρ(x)

(
1 +O

((
π
u†(x)− ui

venc

)2
))

dx

∣∣∣∣∣∣− |νc
i |

≥mi

1 − C

∣∣u†
∣∣2
W 1,∞(ΩFOV)

h2

v2enc
− 1

SNRi

 .

Since we assumed sufficiently high resolution and large SNR, the term mi dominates the
denominator. Elementary computations reveal that

|νu,i| ≤
venc
π

∣∣∣∣∣Im
(
ci e

−iπui/venc
)

Re (ci e−iπui/venc)

∣∣∣∣∣
≤ venc

π

C mi

(∣∣u†
∣∣3
W 1,∞(ΩFOV)

h3 v−3
enc + SNR−1

i

)
mi

(
1 − C |u†|2W 1,∞(ΩFOV) h

2 v−2
enc − SNR−1

i

)
≤C

∣∣u†
∣∣3
W 1,∞(ΩFOV)

h3

v2enc
+

∣∣u†
∣∣2
W 1,∞(ΩFOV)

h2

venc

1

SNRi

+
venc
SNRi

 .

We summarize our observation from the derived estimates in the following remark.

64



3.1 The Discrete Measurement

Remark 3.3. The noise for the raw magnitudes remains controlled by the signal-to-noise
ratio. For the raw velocities, the noise amplification is controlled by the velocity encoding
venc as it is reported in the literature [34]. Based on our assumption on the physical data
acquisition, we introduced an additional model error. Due to the second order approxi-
mation, it usually has only minor impact on the raw velocity error, in contrast to a nodal
interpretation of the measurement errors that is widely used [53, 88, 100]. However, the
corruption of the raw magnitudes is of first order and may become substantial, as it is
the case for signal loss in turbulent flow regimes that are characterized by large velocity
gradients.

3.1.3 Pre-Processing of the Raw Data

From a magnetic resonance measurement, we obtain the raw data mδ and uε. Although
the raw data are appropriatly modelled, their direct use has a serious drawback: instead
of explicit information about the flow domain Ω†, the models for the raw magnitude mδ

and raw velocity uε, contain the signal density ρ according to (3.6). Since we do not want
to approximate the signal density, we have to transform the information about the signal
density to information about the flow domain and eliminate ρ from the models.

Data model. The model for magnitude and velocity, given by (3.1) and (3.2), is

mi :=

∣∣Ω† ∩ Vi

∣∣
|Vi|

and ui :=
1

|Vi|

∫
Vi

u†(x) dx.

Assumption on the signal density. The elimination of the signal density ρ is based on the
assumption that the signal density ρ is at least locally almost constant in every material:
Let ωi denote the (2n + 1)d-patch centered around the voxel Vi. Then for every voxel
Vi we have characteristic signal densities ρf,i and ρe,i for the flow and exterior domain,
respectively, such that

νρ,i,n := ∥ρ− (ρf,iχΩ† + ρe,i (1− χΩ†))∥L∞(ω(i)) ≤ C |νc
i | . (3.8)

Hence, the perturbations from the ideal material-wise constant signal density are negliga-
bly small compared to the measurement noise or occur on a substantially larger geometric
scale compared to the voxel size. Based on a pre-segmentation, we can approximate the
characteristic signal densities.

Pre-segmentation. By standard methods, one can perform a rough pre-segmentation of the
flow domain Ω† and characterize voxels as interior, boundary or exterior voxels. The seg-
mentation must guarantee that interior voxels lie fully in the flow domain Ω† and exterior
voxels lie fully outside. The remaining voxels are labelled as boundary voxels and a certain
patch around them contains both, interior and exterior voxels. A good pre-segmentation
labels only few voxels as boundary voxels, resulting in rather small patches.
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Figure 3.1: Magnitude raw data mδ
i with

resolution h = 1mm and homo-
geneous pre-segmentation with
interior-boundary interface
(blue) and boundary-exterior
interface (red).

Figure 3.2: Histogram of magnitude raw
datamδ

i from the measurement
depicted left. The peaks at 22
and 509 define the characteris-
tic signal densities ρδe,i and ρδf,i.

Pre-segmentation algorithm, homogeneous case. For homogeneous exterior material and
signal reception, the characteristic signal densities are globally constant. This applies to 2D
measurements of flow phantoms, as it is illustrated in Figure 3.1. In this case, we consider
the histogram of the raw magnitude values mδ

i . The histogram exhibits a typical structure
consisting of two peaks, a larger peak at a lower number and a smaller peak at a higher
number, see Figure 3.2. Typically, the exterior domain in the field of view is larger than the
flow domain and the fluid produces a higher signal than the exterior material due to the
high proton density. Due to their small portion on the field of view and the high magnitude
variance the voxels in the boundary region are negligible in the histogram. Hence, we define
globally constant approximations ρδf,i and ρδe,i of the characteristic densities ρf,i and ρe,i as
positions of the peaks associated with the fluid and exterior material, respectively. We de-
fine a cutoff raw magnitude as average of the two peaks. If all raw magnitudes in a 3d-patch
centered around a certain voxel are below or above the cutoff level, than the correspond-
ing voxel is labelled exterior respective interior. The remaining voxels are boundary voxels.

Pre-segmentation algorithm, inhomogeneous case. Due to the positioning of the receiver
coils, 3D measurements reveal a substantial loss in the signal reception towards the bound-
ary of the field of view ΩFOV. In vivo measurements of the aorta show different types of
neighboured tissue, producing a varying signal density. In these inhomogeneous cases, we
cannot find constant characteristic signal densities. Instead, we have to define character-
istic signal densities locally: in a first step, we perform the pre-segmentation. Since the
exterior domain may be complex and consist of several different tissues, we segment the
flow domain only, select a safety-region as boundary region and label the remaining voxels

66



3.1 The Discrete Measurement

as exterior. In practice, we used a region growing segmentation algorithm [71]. Seeded with
the voxels with maximal raw magnitude, the set of interior voxels is iteratively enlarged by
checking the neighboured voxels of the previously selected voxels for satisfying a selection
criterion until the iteration stagnates. As selection function we use a manually weighted
difference of the raw magnitude and the absolute value of a Laplacian edge detector. Vox-
els are accepted, if the selection function is larger than a manually chosen cutoff value.
Other voxels, that are contained in a manually defined patch around some interior voxel,
are labelled as boundary voxels. The remaining voxels are labelled as exterior voxels. For
a boundary voxel we sequentially enlarge a patch around this voxel, until it contains an
interior voxel. The mean of the raw magnitude values mδ

j of the interior voxels Vj con-
tained in the patch is used as ρδf,i and ρδe,i is defined analogously. We may assume that the
approximations satisfy ∣∣ρf,i − ρδf,i

∣∣ + ∣∣ρe,i − ρδe,i
∣∣ ≤ C

∣∣νδ
i

∣∣ ,
since the definition of the local characteristic density levels is based on the available raw
magnitude.

Normalization of the raw data. Given the raw magnitude data mδ
i and the approximate

characteristic signal densities ρδf,i and ρδe,i for the boundary voxels, we define the following

approximation mδ
i of the normalized magnitude mi:

mδ
i :=


1 for interior voxel Vi,(

mδ
i − ρδe,i

)
/
(
ρδf,i − ρδe,i

)
for boundary voxel Vi,

0 for exterior voxel Vi.
(3.9)

Given the raw velocity data uε
i , we define the approximation uε

i of the velocity ui by

uε
i :=


uε
i for interior voxel Vi,(

mδ
i/ρ

δ
f,i

)
uε
i for boundary voxel Vi,
0 for exterior voxel Vi.

(3.10)

Now, we can investigate the overall errors of the pre-processed data.

Estimating the errors. To assess the approximation accuracy of the magnitude, for bound-
ary voxels Vi we introduce the contrast-to-noise ratio

CNRi :=
|ρf,i − ρe,i|

|νc
i |

. (3.11)

For the following considerations, we assume sufficiently large CNR.

Proposition 3.4. Let νδ
i = mi−mδ

i be the measurement error of the pre-processed magnitude
data. For interior or exterior voxel Vi, we have νδ

i = 0. For any boundary voxel Vi

|νδ
i | ≤ C

(
1

CNRi

+
SNRi

CNRi

∣∣u†
∣∣
W 1,∞(Vi)

h

venc

)
.
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Proof. For interior or exterior voxels, the assertion follows by the assumption on the pre-
segmentation. We consider a boundary voxel Vi and split the error in a model error and
an error amplification

∣∣νδ
i

∣∣ ≤ ∣∣∣∣mi −
mi − ρe,i
ρf,i − ρe,i

∣∣∣∣+
∣∣∣∣∣mi − ρe,i
ρf,i − ρe,i

−
mδ

i − ρδe,i
ρδf,i − ρδe,i

∣∣∣∣∣ = (i) + (ii).

We observe, using the assumption (3.8), that

|mi − (ρf,i mi + ρe,i(1−mi))| =
1

|Vi|

∫
Vi

|ρ(x)− (ρf,iχΩ†(x) + ρe,i (1− χΩ†(x)))| dx

≤ 1

|Vi|

∫
Vi

νρ,i,n dx ≤ C |νc
i | .

Then for the model error we obtain

(i) ≤
∣∣∣∣mi −

ρf,imi + ρe,i(1−mi)− ρe,i
ρf,i − ρe,i

∣∣∣∣+ ∣∣∣∣ Cνc
i

ρf,i − ρe,i

∣∣∣∣
=C

|νc
i |

|ρf,i − ρe,i|
≤ C

1

CNRi

.

Using Lemma 3.1, for the amplification of the raw magnitude errors and the characteristic
density errors we obtain

(ii) ≤

∣∣∣∣∣
(
mi −mδ

i

)
−
(
ρe,i − ρδe,i

)
ρf,i − ρe,i

∣∣∣∣∣+ C

∣∣∣∣∣mδ
i − ρδe,i

ρf,i − ρe,i

∣∣∣∣∣
∣∣∣∣∣
(
ρf,i − ρδf,i

)
−
(
ρe,i − ρδe,i

)
ρf,i − ρe,i

∣∣∣∣∣
≤C

∣∣∣∣ νδ
i

ρf,i − ρe,i

∣∣∣∣ ≤ C

(∣∣∣∣ νc
i

ρf,i − ρe,i

∣∣∣∣+
∣∣∣∣∣ mi

ρf,i − ρe,i

∣∣u†
∣∣
W 1,∞(Vi)

h

venc

∣∣∣∣∣
)

=C

(
1

CNRi

+
SNRi

CNRi

∣∣u†
∣∣
W 1,∞(Vi)

h

venc

)
.

Combining the estimates for (i) and (ii) yields the assertion.

For the velocity data we obtain also errors inside the domain.

Proposition 3.5. Let νε
i = ui − uε

i be the error of the pre-processed velocity data and let the
previously made assumptions hold. For an exterior voxel Vi, we then have νε

i = 0. For an
interior voxel Vi, on the other hand, there holds

|νε
i | ≤C

∣∣u†
∣∣3
W 1,∞(Vi)

h3

v2enc
+

∣∣u†
∣∣2
W 1,∞(Vi)

h2

venc

1

SNRi

+
venc
SNRi

 .
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Finally, for any boundary voxel Vi, we have

|νε
i | ≤C

∣∣u†
∣∣3
W 1,∞(Vi)

h3

v2enc
+

∣∣u†
∣∣
W 1,∞(Vi)

h

venc

∥∥u†∥∥
L∞(Vi)

+

∣∣u†
∣∣2
W 1,∞(Vi)

h2

venc

1

SNRi

+
venc
SNRi

 .

Proof. For an exterior voxel, the assertion follows by the assumption on the pre-segmentation.
For an interior voxel, we split the error in a modelling error and the raw data error

|νε
i | ≤ |ui − ui|+ |ui − uε

i | = |ui − ui|+ |νε
i | .

Note that ui is the averaged velocity and ui is the averaged velocity with the density ρ
serving as weighting function. Using the estimate (3.8) and the estimation of the velocity
by the velocity encoding, for the modelling error ui − ui, we compute

|ui − ui| =
1

|Vi| mi

∣∣∣∣∣∣
∫
Vi

u†(x) (mi − ρ(x)) dx

∣∣∣∣∣∣ ≤ ∥∥u†∥∥
L∞(Vi)

∥mi − ρ∥L∞(Vi)

mi

≤C,
∥∥u†∥∥

L∞(Vi)

|νc
i |

mi

≤ C venc
1

SNRi

.

Absorbing this estimate in the estimate for |νε
i | yields the assertion.

Let us finally turn to the boundary voxel. Again, we split the error into a modelling error
and amplifications of raw data errors by

|νε
i | ≤

∣∣∣∣ui −
mi

ρf,i
ui

∣∣∣∣ +
∣∣∣∣∣
(

mi

ρf,i
− mδ

i

ρδf,i

)
ui

∣∣∣∣∣ +
∣∣∣∣∣mδ

i

ρδf,i
(ui − uε

i )

∣∣∣∣∣ = (i) + (ii) + (iii).

For the modelling error we similarly obtain

(i) =

∣∣∣∣ui −
mi

ρf,i
ui

∣∣∣∣ =
∣∣∣∣∣∣ 1

|Vi|

∫
Vi

u†(x)

(
1− ρ(x)

ρf,i

)
dx

∣∣∣∣∣∣
=

mi

ρf,i

∣∣∣∣∣∣∣
1

|Vi|

∫
Ω†∩Vi

u†(x)
ρf,i − ρ(x)

mi

dx

∣∣∣∣∣∣∣
≤ mi

ρf,i

∥∥u†∥∥
L∞(Vi)

∥ρf,i − ρ∥L∞(Vi∩Ω†)

mi

≤ C venc
1

SNRi

.

The propagation of the error in the raw magnitude and the characteristic signal densities
amounts to

(ii) =

∣∣∣∣∣
(

mi

ρf,i
− mδ

i

ρδf,i

)
ui

∣∣∣∣∣ ≤
(

mi

ρf,i

∣∣νδ
i

∣∣
mi

+ C
mi m

δ
i

ρ2f,i

∣∣ρf,i − ρδf,i
∣∣

mi

)
|ui|

≤C

∣∣νδ
i

∣∣
mi

∥∥u†∥∥
L∞(Vi)

≤ C

(
venc
SNRi

+

∣∣u†
∣∣
W 1,∞(Vi)

h

venc

∥∥u†∥∥
L∞(Vi)

)
.
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The assertion follows by estimating the propagated raw velocity error

(iii) =
mδ

i

ρδf,i
|νε

i | ≤ C

∣∣u†
∣∣3
W 1,∞(Vi)

h3

v2enc
+

∣∣u†
∣∣2
W 1,∞(Vi)

h2

venc

1

SNRi

+
venc
SNRi

 .

Absorbing some terms using
∥∥u†
∥∥
L∞(Vi)

≤ Cvenc yields the assertion.

Before we proceed, let us briefly summarize our observations.

Remark 3.6. Provided, that the pre-segmentation detects the boundary with accuracy h,
we may assume that the domain Ωb, obtained by the union of all boundary voxels, has
volume h. Therefore, from Proposition 3.4 we obtain the results already stated in (3.3)

∥νδ∥L2(ΩFOV) = ∥νδ∥L2(Ωb) ≤ C

√
h

CNR

(
1 +

|u†|2
W 1,∞(Ω†)

v2enc
h SNR

)
.

Furthermore, we assume, that the boundary layer is resolved, containing the highest deriva-
tives, and hence

∥u†∥W 1,∞(Ω†) h ≤ ∥u∥L∞(Ω†) ≤ venc.

Therefore the contribution of all interior voxel, spanning Ωi, to the velocity error is

∥νε∥L2(Ωi) ≤ C
venc
SNR

,

while the contribution of all boundary voxel amounts to

∥νε∥L2(Ωb) ≤ C
√
h venc

(∥u†∥W 1,∞(Ω†)

venc
h+

1

SNR

)
.

Summarizing the contributions, we obtain the proposed estimate (3.4).

Finally, let us comment on a detail regarding our previous works.

Remark 3.7. In previous works [25,86], we used the velocity model

ũi =
1

|Ω† ∩ Vi|

∫
Ω†∩Vi

u†(x) dx

instead of (3.2). This leads to an approximation by

ũε
i =

mδ
i

ρδf,i m
δ
i

uε
i .

This is not a stable approximation, since 1/mδ
i is not bounded and might amplify errors.

The subsequent algorithm incorporated an integration over the flow domain, formally elim-
inating the factor 1/mδ

i . However, for the integration another approximation of mi was
used, causing instabilities. Here, we incorporate an integration over the full field of view,
leading to the model (3.2) and preventing these instabilities.
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3.2 Numerical Realization

For limited data resolution the derived voxelized data model (3.1) and (3.2) considerably
deviates from the idealized data model (2.40) and (2.45). To obtain an accurate reconstruc-
tion, we introduce modified forward operators for the geometry and velocity measurement
that are conforming with the voxelized data model. By using an appropriate discretization
of the underlying spaces for the geometry parameter and the velocity, the Tikhonov mini-
mization problems are cast in finite-dimensional optimization problems that are solved by
standard methods. In the case of the geometry reconstruction, a differentiable modifica-
tion of the non-differentiable forward is introduced for the purpose of applying gradient
methods for the minimization. Finally, we show that the theory of the previous chapter
translates to the fully discrete problems.
Note that the wall shear stress estimate is analytically obtained from the reconstructed

geometry parameter and velocity. Hence, with given reconstructed geometry parameter
and velocity the numerical realization is straightforward.

3.2.1 Discrete Geometry Reconstruction

Let us recall that we parametrize the flow domain around some central point (2D) or
around a centerline (3D), respectively. These anchor points are easily obtained by stan-
dard methods from the pre-processed and pre-segmented magnitude data mδ ∈ L2(ΩFOV).
In the two-dimensional case, the origin is shifted to this central point.

Modification of the forward operator. Let us recall that for the parameter domain D = S1

(2D) or D = S1 × (0, 1) (3D) the domain of the geometry forward operator is given by

D(F ) =
{
R ∈ H3(D) | Rmax ≥ R ≥ Rmin

}
for some upper and lower bounds Rmax, Rmin ∈ C(D). Using the generalized cylindrical
coordinates and the transformation (2.33), we have the forward operator

F : D(F ) ⊂ L2(D) → L2(ΩFOV), F (R) = χΩ(R) = H((R(φ(x), s(x))− r(x)),

where H = χ(0,∞) denotes the Heaviside function. The voxelized modification conforming
with the discrete data model (2.2) reads

Fh : D(F ) ⊂ L2(D) → L2(ΩFOV), Fh(R) :=

NV∑
i=1

χVi

1

|Vi|

∫
Vi

H(R(φ(x), s(x))− r(x)) dx.

However, this operator is not differentiable due to non-smoothnes of the Heaviside function.
Therefore, we introduce

Fh,γ : D(F ) ⊂ L2(D) → L2(ΩFOV), Fh,γ(R) :=

NV∑
i=1

χVi

1

|Vi|

∫
Vi

Hγ(R(φ(x), s(x))− r(x)) dx,
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where Hγ(x) = arctan(x/γ)/π + 1/2 is a smooth approximation of H with approximation
error controlled by γ > 0. Analytical differentiation in direction R̃ ∈ H3(D) yields

DFh,γ(R)R̃ =

NV∑
i=1

χVi

1

|Vi|

∫
Vi

H ′
γ(R(φ(x), s(x))− r(x))R̃(φ(x), s(x)) dx, (3.12)

i.e. Fh,γ is indeed differentiable. We even have Lipschitz continuity of the derivative. We
finally introduce the associated Tikhonov functional

T δ
α,h : D(F ) → R, T δ

α,h(R) :=
∥∥Fh,γ(R)−mδ

∥∥2
L2(ΩFOV)

+ α |R|2H3(D) . (3.13)

We use γ = h/10 and observe that this leads to a suitable approximation.

Remark 3.8. Approximate Tikhonov minimizers of T δ
α,h may be treated as approximate

Tikhonov minimizers of T δ
α . Let R ∈ D(F ) with ∥R∥H3(Ω) ≤ C: Since ∥∇R∥L∞(D) < C,

one can show that ∂Ω(R) intersects with at most C/h (2D) or C/h2 (3D) voxel. We
conclude that

∥Fh(R)− F (R)∥L2(ΩFOV) ≤ C h1/2.

Furthermore, elementary calculations with γ = h/10 reveal that

∥Fh(R)− Fh,γ(R)∥L2(ΩFOV) ≤ C γ1/2 ≤ C h1/2.

In view of Proposition 2.10 and the expectation δ ≈ Ch1/2 on the data error from (3.3),
we can replace the idealized operator with the differentiable voxelized version.

Discretization. In the two-dimensional case, we utilize a spectral discretization

XN :=

{
a0 +

N∑
n=1

an cos(n ·) + bn sin(n ·) | a0, . . . , aN , b1, . . . , bN ∈ R

}
⊂ H3(D).

In the three-dimensional case, we have D = S1 × (0, 1) and utilize a spline discretization

XN := Q3(DN) ⊂ H3(D),

where Q3(DN) denotes the H
3-conforming bi-cubic splines on an N ×N regular grid of D.

Note that this choice includes periodic boundary conditions in the polar direction, while
no boundary conditions in the axial direction are imposed. In practice, we use N = 20.
The constraints Rmin ≤ R ≤ Rmax for R ∈ D(F ) would lead to a variational inequality.

These are technical constraints that are necessary for the analysis, but no limitation for
reasonable approximations of the geometry. Hence, we neglect the constraints for the
optimization and consider the discrete minimization problem

min
RN∈XN

1

|ΩFOV|
∥Fh,γ(RN)−mδ∥2L2(ΩFOV) + α

1

R
2 |RN |2H3(D). (3.14)
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For standardization of the regularization parameter α, we normalized the data error and
the regularization term with the volume of the field of view and an approximation R > 0 of
the mean of the geometry parameter. This only amounts to a rescaling of the regularization
parameter. For sufficiently large N , i.e. for high discretization, the theory from Section
2.4 transfers to the fully discrete scheme.

Remark 3.9. Using the continuity of Fh,γ and basic results on interpolation errors, one
can show, cf. the proof of Proposition 2.10, that approximate Tikhonov minimizers of
the discrete Tikhonov functional are approximate Tikhonov minimizers of the originate
functional.

Minimization of the discrete Tikhonov functional. The solution of (3.14) requires the
definition of an initial value and subsequently a non-linear iteration.

Step 1: Definition of the initial reconstruction R0. We interprete the magnitude data
mδ as perturbed level set function for the flow domain, where the boundary is defined
implicitly as preimage of mδ = 1/2. To get samples for boundary points, we smooth the
magnitude data mδ to allow for stable nodal evaluation. This is efficiently done by an FFT.
Afterwards, we consider all edges on the regular grid with nodal values below 1/2 on one
node and above 1/2 on the other, and use the position of the linear interpolation taking
1/2 as sample point of the boundary. R0 ∈ XN is obtained by fitting a parametrization to
the samples.

Step 2: Non-linear iteration. We utilize the iteratively regularized Gauss-Newton method
that is a standard technique for problems with Lipschitz continuous derivative [11]. Let
Rk ∈ XN be the previous iterate. With regularization parameter αk and using the repre-
sentation (3.12) of DFh,γ, we solve the quadratic minimization problem

min
Rk+1∈XN

1

|ΩFOV|
∥∥Fh,γ(R

k) +DFh,γ(R
k)(Rk+1 −Rk)−mδ

∥∥2
L2(ΩFOV)

+ αk
1

R0
2

∣∣Rk+1
∣∣2
H3(D)

.

The resulting optimality condition is a linear system and solved with a direct solver due
to its low dimensionality. Finally, we have to define αk and the stopping criterion at
k = K. For the discrepancy principle, we use αk = αmax/2

k−1 and stop the iteration
if ∥Fh,γ(R

K) − mδ∥L2(ΩFOV) < 2δ. If α = α(δ) is chosen a priori, then we use αk =
max{α, αmax/2

k−1} and stop the iteration if αK = α and ∥∇T δ
α,h(R

K)∥Q ≤ tol, where the
Tikhonov gradient is measured in

S1QS2 :=
1

|ΩFOV|
(DFγ,h(R

K)S1, DFγ,h(R
K)S2)L2(ΩFOV) +

α

R
2 (D

3S1, D
3S2)L2(D).

Here, all derivatives are discrete derivatives with respect to R ∈ XN . The previous remarks
and the construction of RK reveals the following result.

Proposition 3.10. For sufficiently high data resolution, discretization N and small toler-
ance, the final iterate RK ∈ XN is an approximate Tikhonov minimizer of T δ

α . Hence, the
derived error bounds in Subsection 2.4.1 transfer to the discrete solution.
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3.2.2 Discrete Velocity Approximation

Again, we provide a discrete velocity approximation algorithm that conforms with the vox-
elized velocity data model and computes approximate Tikhonov minimizers of the velocity
approximation Tikhonov functional. However, the linearity of the forward simplifies the
considerations. For simplicity, we consider the 3D case and just comment on the 2D case
where it matters.

Modification of the forward operator. Let us recall that the velocity reference domain
is Ω̂ = (0, 1)×S1 × (0, 1) for the local and Ω̂ = B2 × (0, 1) for the global velocity approxi-
mation. Then we investigate the space

D(T ) = {v ∈ H2(Ω̂) | v = 0 on {1} ×D}.

Let R be the approximate geometry parameter, defining the flow geometry Ω = Ω(R).

With the inverse transformation ΨR := Ω → Ω̂, the velocity forward operator is given by

T : D(T ) → L2(ΩFOV), T v = TRv = ER(v ◦ΨR),

where ER denotes the extension by zero. The voxelized modification is defined as

Th : D(T ) → L2(ΩFOV), Thv :=

NV∑
i=1

χVi

1

|Vi|

∫
Vi∩Ω(R)

v(ΨR(x)) dx.

This leads to the corresponding Tikhonov functional

T ε
β,h : D(T ) → R, T δ

β,h := ∥Thv − uε∥2L2(ΩFOV) + β |v|2
H2(Ω̂)

.

For ∥v∥H2(Ω̂) ≤ C, one can show that ∥Tv − Thv∥L2(ΩFOV) ≤ Ch1/2. Since we expect from

(3.4) that ε ≈ Cvenc/SNR, we observe the following from Proposition 2.10.

Remark 3.11. For sufficiently high data resolution, approximate Tikhonov minimizers of
T ε
β,h are approximate Tikhonov minimizers of the idealized functional T ε

β .

Discretization. The choice of the velocity discretization is of high importance in practice,
since the computation of the velocity is the computational limiter of the technique. A
low dimensional discretization that allows for a good reconstruction of the velocity, is
favorable. Furthermore, local support and smoothness of the basis functions allows for
fast assembling of the integral terms by high order quadrature rules. We utilize a tensor
product discretization based on the coordinate splitting (r, φ, s), where radial and polar
coordinate are connected due to smoothness issues at r = 0.
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3.2 Numerical Realization

In the radial and angular coordinate, we introduce the space Xr
N = Q3(IN) ⊂ H3(0, 1),

containing cubic splines on a grid IN of (0, 1), and define

Xr,φ
N := span { ℜ(einφ) vR(r) |n ∈ {0, 1, . . . , N}, vR ∈ Xr

N , vR(1) = 0,

for n = 0 : v′R(0) = 0,

for n = 1 : vR(0) = v′′R(0) = 0,

for n = 2 : vR(0) = v′R(0) = 0,

for n > 2 : vR(0) = v′R(0) = v′′R(0) = 0 } .

Note that the boundary conditions ensure smoothness and conformity with D(T ). We
aim for approximating functions with large radial derivatives at the boundary. Therefore,
we utilize an anisotropic spacing for IN that is inspired by the localized estimate on the
H2-error of a cubic spline interpolation [21]:

ERR(r) = h(r)4D4(r)
2 r, r ∈ (0, 1).

We use D4 = 1 for r < 0.8, D4 = 20 for r > 0.9 and in between the linear interpolation
and choose implicitly a grid, such that with the corresponding spacing h the error function
ERR becomes constant. In the axial coordinate, we utilize Xs

N = Q3(IN) ⊂ H3(0, 1) on a
regular N -grid IN of (0, 1) without any boundary conditions and set

XN := Xr,φ
N ×Xs

N ⊂ D(T ) ∩H2(Ω̂).

For our computations, we use N = 10. The discrete velocity approximation problem reads

min
vN∈XN

1

|ΩFOV|
∥ThvN − uε∥2L2(ΩFOV) + β |vN |2H2(Ω̂)

. (3.15)

Again, the data term is normalized to standardize the regularization parameter. Using the
continuity of Th, basic results on interpolation errors and similar arguments to the proof
of Proposition 2.10 we make the following observation.

Proposition 3.12. For sufficiently high discretization and data resolution, the minimizer of
(3.15) is an approximate minimizer of the original Tikhonov functional. Hence, the derived
error bounds in Subsection 2.4.2 transfer to the discrete solution.

The optimality condition of the minimization problem (3.15) yields a linear equation
that is solved by a direct solver due to its moderate dimensionality.

Summary: The proposed numerical realization yields a fully discrete reconstruction tech-
nique for the flow geometry and velocity. The technique is computationally cheap - the
limitting factor is usually the assembling of the velocity forward operator Th, which takes
times of up to a minute. On the other hand, for sufficiently high data resolution and dis-
cretization we may expect that the theory of Section 2.4 transfers to the discrete approx-
imations. Furthermore, we can expect accurate reconstructions for low data resolutions,
since the voxelized model of Section 3.1 is included into the reconstruction process.
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3.3 Validation

Now we consider the application of the method to measurements. The overall goal is to
validate our expectations.

� The technique provides reasonable wall shear stress estimates for considerably low
data resolutions that are feasible in the medical practice.

� The computed reconstructions of the geometry parameter and the flow velocity are for
sufficiently high data resolution Tikhonov minimizers of the corresponding idealized
reconstruction problems that were introduced in Section 2.4. Hence, the reconstruc-
tion errors satisfy the announced bounds in terms of the data error.

For this purpose, we consider several measurements, where ground truth, i.e. highly reliable
reference values for the flow geometry, velocity and the wall shear stress are accessible.
The investigated measurements share major flow features, in particular the formation of
boundary layers and the Reynolds number Re, with typical flow regimes in the human
aorta. Furthermore, the measurement conditions and parameters, in particular, the data
resolution, are feasible for in vivo investigations as well.
The three investigated validating measurement series focus on different aspects of the

reconstruction and are of increasing difficulty.

(I) In the first example, we consider in vitro measurements of a simple stationary flow
in a simple geometry. The goal is to confirm the applicability of the technique to real
magnetic resonance data.

(II) In the second example, we consider in vitro measurements of a more realistic flow in
a simple geometry. The focus lies in the investigation, to what extent our method
can deal with these complex flow conditions.

(III) The last example are in silico measurements of a stationary flow in a moderately
deformed geometry in order to determine the stability of the reconstruction method
against errors in the geometry reconstruction.

This allows for a comprehensive performance check of the proposed data driven method
in regard to its capability to provide accurate wall shear stress estimates under in vivo
conditions.
Finally we present illustrative applications to a 3D in silico measurement and an in vivo

measurement of the ascending human aorta, where no ground truth is available.

3.3.1 Validation I: Stationary Flow in a Circular Geometry

In our first study, we investigate in vitro measurements of a flow with temporally constant
volume flow rate V̇ in a rigid pipe. In a cross-section of the pipe, we acquired data with
four different resolutions between h = 1.5mm and h = 0.3mm, resembling the spectrum of
feasible resolutions for in vivo applications.
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The measurements were carried out in collaboration with our project partners on a
whole-body 3T magnetic resonance imaging scanner (Prisma, Siemens Healthcare, Erlan-
gen) at the University Medical Center Freiburg. An accurately controlled flow supply unit
generated the water flow in the phantom, a glass pipe of sufficient length to allow the flow
to become fully developed. For details about the experimental setup, we refer the reader
to our more experiment-oriented publication [8].

Reference values. For pipe flows the Reynolds number is usually defined as

Re :=
v L

ν
,

where ν = µ/ρ is the kinematic viscosity with density ρ and the dynamic µ viscosity,
L = 2R† is the pipe diameter and v = 4V̇ /(πd2) is the bulk velocity. It is known, that for
Re < 2300 we have a Hagen Poiseuille flow with analytically known velocity profile [79].
We consider the case Re = 5300, that is beyond the critical Reynolds number Re = 2300,
leading to a turbulent pipe flow with no analytically known velocity profile. In fact, the
flow is only statistically steady with varying time-dependent fluctuations. Hence, at a
fixed time the flow is unique and not reproducable. However, magnetic resonance imaging
incorporates some filtering and our major concern is to estimate the mean wall shear stress.
For the validation we fall back on a direct numerical simulation [52]. Thereby, a time

dependent flow was simulated with constant volume flow rate. At the inflow, an obstacle
created a perturbation and generated the turbulence. Behind this obstacle there was a
sufficiently long inflow section to allow the flow to becomes fully developed. Downstream
of this section, the flow was averaged in time and space to obtain the mean velocity pro-
file. In fluid mechanics, an available direct numerical simulation is the gold standard and,
hence, it serves as reference for our investigations.

Geometry registration. For all considered measurements, we reconstruct the geometry
with 5 different a priori choices of the regularization parameter α = 1 · 10−3 − 8 · 10−3 and
α = 103. We will comment on the parameter choice by the discrepancy principle later on.
First, we apply the pre-processing according to (3.9), where we use the homogeneous pre-
segmentation algorithm. The iteratively regularized Gauss-Newton method, minimizing
the Tikhonov functional, converges in few (< 5) iterations, where the previously computed
stronger regularized reconstruction serves as initial value. To quantify the performance, we
compute the L∞(D) and W 1,∞(D) norms of the reconstruction errors Rδ

α −R†, where the
reference pipe diameter is R† = 12.94mm. Note that according to the proposed analysis
in Theorems 2.28 and 2.31 the former, amplified with the velocity derivative, contributes
to the velocity error, while the W 1,∞(D) error contributes directly to the wall shear stress
error.
The results are given in Table 3.1. In all cases, the reconstruction error is far below the

resolution and hence, sub-voxel resolution is achieved. Regarding the data resolution, from
the data error estimate δ ≈ Ch1/2 according to (3.3) and the error estimate in Remark
2.25 we expect a convergence rate h1/2. Indeed, the observed convergence with increasing

77



Chapter 3 Numerical Realization and Validation

α = 1 · 103 α = 8 · 10−3 α = 4 · 10−3 α = 2 · 10−3 α = 1 · 10−3

h = 1.50mm
0.0380 0.0644 0.0989 0.1320 0.1606
0.0380 0.1213 0.2661 0.4274 0.5918

h = 1.00mm
0.0138 0.0371 0.0420 0.0469 0.0542
0.0138 0.0850 0.1408 0.2003 0.2697

h = 0.50mm
0.0088 0.0387 0.0408 0.0412 0.0427
0.0088 0.0967 0.1280 0.1562 0.1875

h = 0.30mm
0.0018 0.0154 0.0185 0.0215 0.0243
0.0018 0.0464 0.0774 0.1109 0.1506

Table 3.1: Norms ∥Rδ
α−R†∥L∞(D) (above) and ∥Rδ

α−R†∥W 1,∞(D) (below) of the geometry reconstruction
error in [mm].

data resolution is roughly linear.

Remark 3.13. For an explanation, note that the h1/2 factor in the data error was generated
by the L2(ΩFOV) norm. If we consider the L1(ΩFOV) norm, than we would obtain δ ≈ Ch for
the noise level. Since, the approach of Cheng and Yamamoto [19] includes Banach spaces
such as L1(ΩFOV), one can expect reconstruction errors in the size of Ch by replacing the
data space Y = L2(ΩFOV) with Y = L1(ΩFOV). Apparently, in practice we obtain similar
results by treating the data in Y = L2(ΩFOV).

Since the geometry is a circle, the radius function is constant and we are in the case
|R†|k = 0. Since we regularize with the seminorm, there is no bias due to over-smoothing
for large regularization parameter α. According to Theorem 2.24, high regularization pa-
rameters are favored. This is confirmed from the numerical results. While the a priori
choice α = 103 amounts to a priori imposing the geometry to be circular with a constant
parametrization R, the discrepancy principle choses a large regularization parameter with-
out this knowledge, as can be observed from the low L∞(D) reconstruction errors and the
continuity of the forward operator.

Velocity approximation. For all considered measurements, we approximate the veloc-
ity with four different regularization parameters β = 1 · 10−8 − 6.4 · 10−7. Thereby, we
utilize the best geometry reconstruction Rδ

α with regularization parameter α = 103. The
velocity raw data are pre-processed according to (3.10), where we use the enhanced esti-
mate mδ

i = ρδf,im
δ
i + ρδe,i(1 −mδ

i ) for the raw magnitude with the fraction mδ
i of the voxel

contained in the reconstructed geometry.
The pre-processed velocity data for the measurement with the rather coarse resolution

h = 1mm is depicted in Figure 3.3. The underlying velocity profile exhibits a boundary
layer as illustrated in Figure 3.5. In Figures 3.4 and 3.6 we present velocity approximations,
obtained with different regularization parameters. At first glance, the reconstruction with
the higher regularization parameter is a good approximation in the flow domain, whereas
the regularization with the lower regularization parameter seems to fit the data noise in
the center. However, considering the distance between the isolines, the lower regularized
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Figure 3.3: Pre-processed velocity data uε in the
field of view ΩFOV.

Figure 3.4: Velocity approximation uδ,ε
α,β for β =

4 · 10−8 in ΩFOV with isolines.

Figure 3.5: Reference velocity u† from DNS in
ΩFOV with isolines.

Figure 3.6: Velocity approximation uδ,ε
α,β for β =

1 · 10−5 in ΩFOV with isolines.
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β = 6.4 · 10−7 β = 1.6 · 10−7 β = 4 · 10−8 β = 1 · 10−8

h = 1.5mm
0.0480 0.0412 0.0424 0.0479
0.4898 0.2893 0.3773 0.8448

h = 1.0mm
0.0524 0.0458 0.0448 0.0464
0.4792 0.2845 0.2786 0.7265

h = 0.5mm
0.0461 0.0417 0.0415 0.0421
0.4239 0.2375 0.2336 0.5222

h = 0.3mm
0.0453 0.0408 0.0408 0.0413
0.3996 0.1973 0.1559 0.3062

Table 3.2: Relative errors EL2(vδ,εα,β) (above) and EH2(vδ,εα,β) (below) of the velocity approximation.

h = 1.5mm h = 1.0mm h = 0.5mm h = 0.3mm

0.0930 0.0009 0.0079 0.0108
0.1141 0.0365 0.0449 0.0290

Table 3.3: Relative errors Emean(τ̂
δ,ε
α,β) (above) and EL2(τ̂ δ,εα,β) (below) of wall shear stress estimates.

approximation seems to be a far better approximation at the boundary. In fact, the
depicted approximation with β = 4 · 10−8 is the best approximation obtainable.

To quantify the accuracy of a velocity approximation v, we introduce the relative errors

EL2(v) :=
∥∥v† − v

∥∥
L2(Ω̂)

/
∥∥v†∥∥

L2(Ω̂)
,

EH2(v) :=
∥∥v† − v

∥∥
H2(Ω̂)

/
∥∥v†∥∥

H2(Ω̂)
,

(3.16)

where the reference velocity v† is given by the direct numerical simulation [52]. The result-
ing approximation errors are listed in Table 3.2. The best approximation errors decrease
only slightly with increasing data resolution h, while the optimal regularization parameter
β ≈ 4 · 10−8 is nearly independent of h. Note that the velocity noise level ε, estimated in
(3.4), does not vanish for infinite data resolution. Beside the physical measurement error,
there might be fluctuative deviations from the mean flow v† that do not vanish in average
over the relatively short data acquisition times.

Although the approximation errors are quite large, we can hope for good approxima-
tions of the wall shear stress, since a major contribution to the velocity error originates
from interior fluctuations, while the approximation in the boundary layer seems accurate
in Figure 3.4.

Wall shear stress estimation. The wall shear stress estimate τ is computed from the
best geometry reconstruction R and the best velocity approximation v. For the quantifi-
cation of errors, we consider the mapped estimated wall shear stress τ̂ according to (2.49),
the mapped reference wall shear stress τ̂ † according to (2.48), and introduce the relative
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errors
Emean(τ̂) :=

∣∣∫
D
τ̂ † − τ̂ d(φ, s)

∣∣ ∣∣∫
D
τ̂ † d(φ, s)

∣∣−1
,

EL2(τ̂) := ∥τ̂ † − τ̂∥L2(D) / ∥τ̂ †∥L2(D).
(3.17)

The results are listed in Table 3.3. As the nearly vanishing mean error for h = 1mm re-
veals, there is no structural under- or overestimation, respectively. The method produces
reliable estimates with relative deviations below 10% for feasible data resolutions.

Comparison with a specialized wall shear stress estimator. Beside the direct numeri-
cal simulation, there are experimental laws for estimating the wall shear stress. The most
famous is the friction factor formula of Moody [61]

τ =
1

8
λ ρ v2,

where the Darcy friction factor λ depends on the roughness of the wall and slightly on the
Reynolds number [79].
A second example of experimental laws for wall shear stress estimation in fully developed

turbulent shear flows is the Clauser method [20]. We introduce the friction velocity uτ =√
τ/ρ, where τ is the wall shear stress and ρ the mass density. With the distance to the

wall y we define the logarithmic part of the boundary layer

30
ν

uτ

≤ y ≤ 100
ν

uτ

.

Inside the logarithmic part of the boundary layer the velocity satisfies the logarithmic law
of the wall [79]

u(y) =
1

κ
log
(uτ

ν
y
)
uτ + B uτ ,

where κ and B are some constants. We have developed a generic non-linear regression
method based on this principle that obtains a stable and accurate wall shear stress estima-
tion from fitting the friction velocity to the magnetic resonance data [85]. By incorporating
only data from a sector of the flow domain, this method is capable of producing localized
estimates.
In Figure 3.7 we again present the pre-processed velocity data for the measurement

with resolution h = 1mm. Alongside the wall shear stress estimate τ̂ δ,εα,β we display the
distribution of the estimate τ̂C based on the Clauser method in Figure 3.8. Note that the
Clauser method is based on the values of the logarithmic boundary layer, which is - for
our investigation - roughly between 2− 5mm away from the boundary, while our estimate
is based on the behaviour at the boundary. In this view, the velocity data reflect the
distributions of the estimates. At this point, we emphasize that the estimated mean wall
shear stress is in good accordance with the reference τ̂ † = 0.1853Pa and both estimates
reveal a comparable variation: the proposed method is in no way inferior to a highly
accurate specialized wall shear stress estimator.
Let us summarize our observation from this test in the following remark.
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Figure 3.7: Pre-processed velocity [m/s],
stationary flow, in vitro, reso-
lution h = 1mm.

Figure 3.8: Wall shear stress in D: reference τ̂ † (red),
Clauser estimate τ̂C (black, dotted) and

our estimate τ̂ δ,εα,β (blue, dashed).

Remark 3.14. The proposed data driven reconstruction method is able to identify a simple
flow geometry with highest accuracy from magnetic resonance imaging data with feasible
resolution. For simple velocity profiles, the proposed velocity approximation method is
able to provide approximations of high accuracy in particular at the boundary, leading to
nearly optimal wall shear stress estimates. Although the method benefits from high data
resolution, it provides reliable wall shear stress estimators even for considerably low data
resolution.

3.3.2 Validation II: Pulsating Flow in a Circular Geometry

Like in the previous example, we consider in vitro measurements of a flow in a rigid
pipe. For a more application-oriented case, we consider an instationary periodic pipe flow,
imitating the flow rate in the human aorta during the cardiac cycle with periode T . The
temporal evoluation of the flow rate, which is adapted from [77], is depicted in Figure 3.9.
We consider two sub-cases:

� Remax ≈ 4000, representing resting conditions, and

� Remax ≈ 8000, representing exercising conditions.

Additionally to the Reynolds number, instationary pulsating flows are characterized by the
Womersley number that is usually defined by

Wo := L

√
2π

T ν

with kinematic viscosity ν and pipe diameter L. We use Wo ≈ 20, leading - apart from
the flow geometry - to dynamic similarity with the aorta. Again, we consider four different
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Figure 3.9: Normalized flow rate (red)
and resulting wall shear stress
(blue, dashed) over the cycle.

Figure 3.10: Normalized axial velocity
u(·, t0) at time t0 = 0.27T
over the normalized diameter.

data resolutions. For details about the experimental setup, we refer the reader to our more
experiment-oriented publication [8].

Reference values. For the computation of reference values, we will utilize an anayti-
cal solution. Let us briefly present the solution, which was proposed by Womersley [98],
and comment on its applicability.
The basic assumption is a laminar flow with vanishing fluctuations. From the symmetry

assumption, the non-axial components of the velocity vanish and we have the following
temporal Fourier series for the axial velocity u and the pressure p

u(x, y, z, t) =
∑
k∈Z

e2πkt/T i uk(x, y),

p(x, y, z, t) =
∑
k∈Z

e2πkt/T i Pk z.

With kinematic viscosity ν the flow governing Navier-Stokes equations (see Section 4.1)
substantially simplify: the system becomes linear, allowing for separation of the temporal
modes. Under normalization of the pressure gradient, the equation for mode k ∈ Z reads{

ikUk − ν∆Uk = −1 in Ω2,
Uk = 0 on ∂Ω2,

where Ω2 is the cross-sectional circle. This linear Schrödinger equation has a unique ana-
lytical solution Uk [98] and we have the representation

u(x, y, z, t) =
∑
k∈Z

ekti Pk Uk(x, y),

with Pk ∈ Z the only unknown. Integration over the cross-section yields the volume flow
rate V̇ (t). Hence, the coefficients Pk can be obtained from a Fourier transformation of the
volume flow rate.
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β = 1.6 · 10−8 β = 4 · 10−9 β = 1 · 10−9 β = 5 · 10−10

h = 1.6mm 0.0316 0.0352 0.0474 0.0672
resting 0.7202 0.6733 0.7449 1.0551
h = 0.8mm 0.0247 0.0237 0.0260 0.0311
resting 0.6561 0.6038 0.5842 1.0146
h = 0.5mm 0.0243 0.0233 0.0236 0.0254
resting 0.6190 0.5641 0.5323 0.4982
h = 0.3mm 0.0252 0.0246 0.0254 0.0844
resting 0.5974 0.5243 0.5132 0.6845

h = 1.6mm 0.0409 0.0412 0.0507 0.0708
exercising 0.7377 0.6896 0.7605 1.1027
h = 0.8mm 0.0313 0.0305 0.0311 0.0350
exercising 0.6658 0.5727 0.5699 0.9777
h = 0.5mm 0.0299 0.0297 0.0303 0.0310
exercising 0.6230 0.5570 0.5245 0.8277
h = 0.3mm 0.0305 0.0298 0.0299 0.0306
exercising 0.5866 0.5104 0.4744 0.5964

Table 3.4: Relative errors EL2(vδ,εα,β) (above) and EH2(vδ,εα,β) (below) of the velocity approximation for
physiologically pulsating flow.

Due to perturbations in the flow supply system, the real flow rates in the experiment
differ. Hence, we utilize the integration of the data uε to obtain stable reconstructions
of the flow rate. Using the Womersley solution, this unlocks access to the whole velocity
profile and consequently the wall shear stress.

Let us finally remark on the accuracy of the reference value: although the peak Reynolds
numbers would amount to a turbulent flow under steady conditions, the acceleration of
the fluid leads to a laminarization. Using highly resolved laser Doppler velocimetry our
project partners observed that the analytical solution is in good accordance with the phys-
ical flow [8] and can be treated as ground truth.

Geometry reconstruction. Regarding the geometry reconstruction, we refer to the pre-
vious subsection, since the geometry and the measurement technique remain the same,
leading to similar results.

Velocity approximation. The velocity approximation was carried out as described in the
previous subsection, however with four different regularization parameters β = 5 · 10−10 −
1.6 · 10−8. Since the flow is instationary, the measurement is temporally resolved and the
data is taken as snapshots of the velocity at phases ti = i · ∆t with T/∆t ≈ 40 under
resting conditions and T/∆t ≈ 80 under exercising conditions.

To quantify the accuracy of a velocity reconstruction, in this subsection we modify the
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introduced relative errors

EL2(v) := max
ti

∥∥v†(ti)− v
(
ti)∥L2(Ω̂) / (max

ti

∥∥v†(ti)∥∥L2(Ω̂)
),

EH2(v) := max
ti

∥∥v†(ti)− v
(
ti)∥H2(Ω̂) / (max

ti

∥∥v†(ti)∥∥H2(Ω̂)
).

The results are listed in Table 3.4. Unsurprisingly, we observe similar results for resting
and the rescaled exercising conditions, since the analytical solution and the numerical
approximation are linear.
Regarding the regularization parameter, we obtain optimality for β ≈ 10−9, which is

below the optimal regularization parameter in the previous subsection. As we can observe
from the estimate in Proposition 2.27 under negligable error of the geometry reconstruction,
this indicates a higherH2 norm of the solution, i.e. the velocity profile exhibits considerably
steeper boundary layers.
Considering the different resolutions, we obtain - apart from the coarsest resolution -

similar results. While the L2 errors are nearly optimal, the H2 errors reveal large devia-
tions. This indicates that the velocity profile is reasonably approximated in the interior of
the flow domain, but the approximations exhibit large deviations at the boundary, which
we should observe in the investigation of the wall shear stress.

Wall shear stress estimation. Again, we compute the wall shear stress estimate τ by the
representation (2.49) using the best geometry reconstruction and velocity approximation.
Since the wall shear stress is time-dependent, we modify

Emean(τ̂) := max
ti

∣∣∫
D
τ̂ †(ti)− τ̂(ti) d(φ, s)

∣∣ (max
ti

∣∣∫
D
τ̂ †(ti) d(φ, s)

∣∣)−1

,

EL2(τ̂) := max
ti

∥τ̂ †(ti)− τ̂(ti)∥L2(D) / max
ti

∥τ̂ †(ti)∥L2(D).

h = 1.5mm h = 1.0mm h = 0.5mm h = 0.3mm

resting conditions
0.3164 0.2416 0.2049 0.1955
0.3258 0.2483 0.2138 0.1986

exercising conditions
0.3218 0.2222 0.2102 0.1980
0.3328 0.2321 0.2182 0.2046

Table 3.5: Relative errors Emean(τ̂
δ,ε
α,β) (above) and EL2(τ̂ δ,εα,β) (below) of the wall shear stress estimate for

physilogically pulsating flow.

The wall shear stress estimates, listed in Table 3.5, reveal a serious deviation from the
reference. Note that the mean values reveal a high error Emean as well, which is different to
the results of the previous section: we are faced with a systematic estimation error. The
data resolution is - except from the lowest resolution - only of minor importance.
For an explanation of this deviation, we consider the temporal evoluation of the spatially

averaged wall shear stress in Figure 3.11. Apparently, there is a phase difference between
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Figure 3.11: Temporal evolution of spatially averaged wall shear stress for physiologically pulsat-
ing flow: reference τ † (red), LDA measurement τLDA (black, dotted) and estimate

τ δ,εα,β (blue, dashed).

the analytical value τ † (red) that is in high accordance with the highly resolved laser
Doppler anemometry estimate τLDA (black, dotted), and the spatially averaged wall shear
stress estimate τ δ,εα,β.
For an explanation of this effect, consider the temporal evoluation of the volume flow rate

and wall shear stress as illustrated in Figure 3.9. There is a phase difference between the
wall shear stress and the trailing bulk velocity that can be physically explained with inertia
effects [8]. As illustrated in Figure 3.10, the wall shear stress can already be negative, while
the bulk velocity is clearly positive, leading to sharp boundary layers. Regarding the phase
difference of the data driven estimate, we conclude that the spatial resolution of the data
is too low: the voxelwise averaging incorporates too much interior data, causing the phase
difference of the estimate.
In many practical applications, the phase difference is of minor importance and the wall

shear stress estimates are much more reliable than the proposed error estimates imply.
Concluding, we draw the following summarizing remark.

Remark 3.15. In a flow regime, that is dynamic similar to the flow in the human aorta, the
proposed data based technique provides reasonable wall shear stress estimates, in particular
for resolutions h ≤ 1mm. However, the considerably low data resolution causes a phase
inaccuracy that remains present in the case of the highest possible data resolution.

3.3.3 Validation III: Stationary Flow in a Deformed Circle

As a last validating example, we consider a deformed geometry. For this purpose we fall
back to in silico data, i.e. virtually generated data. Inspired from a reconstruction of a
real human aorta, we define the exact geometry parameter

R†(φ) := R
†
, (1 − 0.038 cos(2φ) − 0.061 sin(2φ) + 0.038 cos(3φ) + 0.023 sin(3φ)) ,
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where the mean is given from our standard pipe radius R
†
= 12.94mm. Note that by

appropriate choice of the central point, the first mode of the perturbation vanishes. For
the mapped velocity in the reference domain v†, we use the DNS velocity profile [52] that
served already as reference in Subsection 3.3.1. The virtual data were acquired according
to our model (3.5).

Figure 3.12: Magnitude raw data mδ
i with re-

constructed flow geometry Ω(Rδ
α)

for the setup in silico aorta and res-
olution h = 1mm.

Figure 3.13: Exact parametrization R† (red)
and best reconsturction Rδ

α (blue,
dashed) in D, horizontal lines cor-
respond to h = 1mm.

Regarding the signal densities we consider two different setups, based on our experience
about characteristic values of the magnitude data for real measurements in vitro and in
vivo. The setup in silico phantom orients itself on measurements in flow phantoms that
were considered in the previous subsections, the setup in silico aorta on measurements in
the human aorta. The values are presented in Table 3.6. For both setups, we perform
measurements with the same four different resolutions like in Subsection 3.3.1.

setup ρf ρe noise level SNR CNR

in silico phantom 500 1 20 25 25
in silico aorta 300 150 40 7.5 3.75

Table 3.6: Parameter setups for the in silico measurements.

Geometry reconstruction. For all considered measurements, we reconstruct the flow ge-
ometry as outlined in Subsection 3.3.1. Since the geometry is not circular, we consider only
four regularization parameters α = 1 · 10−3 − 8 · 10−3. The magnitude raw data of the in
silico aorta measurement with resolution h = 1mm together with the reconstructed flow
domain Ω(Rδ

α), computed with optimal regularization parameter α = 4 ·10−3, is illustrated
in Figure 3.12. Optically, the boundary of the domain is well defined. A comparison be-
tween exact and reconstructed parametrization is displayed in Figure 3.13. The maximum
error taken at φ ≈ 1 is clearly below the voxel size and the mean registration error is far
lower.
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α = 8 · 10−3 α = 4 · 10−3 α = 2 · 10−3 α = 1 · 10−3

h = 1.5mm 0.4340 0.2228 0.1734 0.1889
in silico phantom 0.9661 0.3120 0.3023 0.4581
h = 1.0mm 0.3373 0.1339 0.1201 0.1314
in silico phantom 0.7946 0.2315 0.2020 0.2666
h = 0.5mm 0.1022 0.0332 0.0414 0.0424
in silico phantom 0.2963 0.0919 0.1423 0.1602
h = 0.3mm 0.0486 0.0163 0.0165 0.0171
in silico phantom 0.1697 0.0735 0.0745 0.0799

h = 1.5mm 1.1218 0.9234 0.8837 0.9140
in silico aorta 1.6296 1.1529 1.2941 1.6644
h = 1.0mm 0.3299 0.3576 0.3984 0.4569
in silico aorta 1.0807 1.2772 1.5383 1.8986
h = 0.5mm 0.1808 0.1061 0.1347 0.1417
in silico aorta 0.5582 0.3481 0.4771 0.7057
h = 0.3mm 0.1064 0.0499 0.0443 0.0484
in silico aorta 0.4185 0.2685 0.2197 0.2946

Table 3.7: Norms ∥Rδ
α − R†∥L∞(D) (above) and ∥Rδ

α − R†∥W 1,∞(D) (below) in [mm] of the geometry re-
construction error for the deformed circle.

Regarding the quantitative reconstruction errors, the results are given in Table 3.7.
For different regularization parameters α, we observe the typical pattern: over-regularized
solutions with large absolute errors and high deviations in the derivative for large regular-
ization parameters and noisy reconstructions with large errors of the derivative for small
regularization parameters. The optimal parameter is around α = 4 · 10−3 and should be
chosen by the discrepancy principle due to the behavior of the absolute errors and the
continuity of the forward operator. Concerning the resolution, we observe for the setup in
silico phantom roughly linear convergence and achieve considerable sub-voxel resolution,
the maximum absolute errors are about 10% of the voxel size. For the setup in silico
aorta, the reconstruction benefits even more from higher data resolution than under better
measurement condtions.

Velocity approximation. The velocity approximation is carried out like in Subsection 3.3.1,
using the best possible geometry reconstruction and five different regularization parameters
β. For the quantification of approximation errors, we utilize the relative errors EL2 and
EH2 , introduced in (3.16). Although we consider an unphysical flow, the velocity profile
satisfies the no-slip condition, hence v† ∈ D(T ) and we expect the results of Theorem 2.28
to hold.

The reconstruction errors are given in Table 3.8. Again, we observe the typical pattern:
high regularized approximations show large errors due to over-smoothing, observed in the
L2(Ω̂) and the H2(Ω̂) metric, whereas too low regularized noisy solutions suffer from large

88



3.3 Validation

β = · · · 6.4 · 10−7 1.6 · 10−7 4 · 10−8 1 · 10−8 2.5 · 10−9

h = 1.5mm 0.0228 0.0161 0.0191 0.0222 0.0259
in silico phantom 0.4452 0.2768 0.2450 0.3792 0.7564
h = 1.0mm 0.0209 0.0093 0.0092 0.0126 0.0158
in silico phantom 0.4167 0.2164 0.1789 0.4107 0.7386
h = 0.5mm 0.0218 0.0089 0.0042 0.0042 0.0049
in silico phantom 0.4207 0.2392 0.1315 0.1689 0.2898
h = 0.3mm 0.0217 0.0089 0.0034 0.0025 0.0028
in silico phantom 0.4189 0.2406 0.1210 0.1146 0.1849

h = 1.5mm 0.0393 0.0425 0.0504 0.0592 0.0753
in silico aorta 0.5263 0.5336 0.7916 1.3355 2.6977
h = 1.0mm 0.0389 0.0309 0.0307 0.0364 0.0451
in silico aorta 0.5426 0.4587 0.5909 1.1303 2.0262
h = 0.5mm 0.0222 0.0126 0.0125 0.0146 0.0162
in silico aorta 0.4059 0.2398 0.2956 0.5431 0.9399
h = 0.3mm 0.0219 0.0104 0.0078 0.0085 0.0095
in silico aorta 0.4182 0.2485 0.2148 0.3785 0.6708

Table 3.8: Relative errors EL2(vδ,εα,β) (above) and EH2(vδ,εα,β) (below) of the velocity approximation in the
deformed circle.

H2(Ω̂) errors. The L2(Ω̂) errors reveal that the discrepancy principle provides a nearly
optimal parameter choice. At low data resolutions, the approximation benefits from higher
resolution, while for the highest resolutions the gain becomes marginal, as it is expected
from the estimate on the velocity data error (3.4). The reduction of the signal-to-noise
ratio in the setup in silico aorta to roughly 1/4 reflects in an approximately doubled re-
construction error.

Wall shear stress estimation. Again, the wall shear stress estimators are computed from
the best geometry reconstruction and velocity approximation. For both in silico mea-
surements with resolution h = 1mm, the wall shear stress estimates are depicted in the
parameter domain D = (−π, π) in Figure 3.14. In particular, the reconstruction obtained
from the in silico phantom measurement tracks the major features of the wall shear stress
distribution. Note that the estimate for in silico aorta reveal a slight systematic under-
estimation. Presumably, the regularization parameter β of the velocity approximation is
slightly too large, due to denoising of the interior velocity approximation.

For the assessment of the wall shear stress estimators we recall the relative error measures
Emean(τ̂) and EL2(τ̂) that were defined in (3.17). The comparison between the L2(D)
error and the mean error confirm the observation that the wall shear stress is apparently
underestimated. However, for the in silico phantom setup all measurements allowed for a
reasonable wall shear stress quantification. Under difficult measurement conditions, a fine
resolution of about h = 0.5mm is required for reasonable quantification of wall shear stress.
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Figure 3.14: Distributed wall shear stress in parametric domain D: reference τ † (red) and esti-

mates τ δ,εα,β for in silico phantom (blue, dotted) and in silico aorta (black, dashed).

h = 1.5mm h = 1.0mm h = 0.5mm h = 0.3mm

in silico phantom
0.0527 0.0374 0.0240 0.0033
0.0621 0.0375 0.0253 0.0083

in silico aorta
0.1782 0.1853 0.0686 0.0251
0.2019 0.2097 0.0716 0.0331

Table 3.9: Relative errors Emean(τ̂
δ,ε
α,β) (above) and EL2(τ̂ δ,εα,β) (below) of the wall shear stress estimate in

silico.

In particular for the higher resolutions, the errors are substantially smaller than the errors
of the velocity approximation and the estimators benefit in all cases like the geometry
reconstruction from higher data resolution. This indicates a high impact of the geometry
reconstruction on the wall shear stress estimates. Let us summarize our observations in
the following remark.

Remark 3.16. Under laboratory measurement conditions, i.e. the setup in silico phantom,
the proposed technique is able to compute reasonable wall shear stress estimates even in
the case of a non-circular geometry. Under more realistic measurement conditions, the
method relies upon a data resolution of at least h = 0.5mm to compute estimates with
errors below 10%.

Sensitivity to geometry reconstruction. In our in vitro investigations, the underlying
geometry is circular and reconstructed with high accuracy. The following results are incon-
spicuous with respect to geometry errors. The results in silico already indicated the impact
of the geometry reconstruction. To verify the strong dependence of the wall shear stress
estimate on the geometry reconstruction that was predicted from the theory in Theorem
2.31 and indicated from the results in silico, we perform a sensitivity analysis.
We consider the measurement in silico phantom with resolution h = 1mm and introduce
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Figure 3.15: Sensitivity on the geometry: relative errors Emean(τ̂1) (red) and Emean(τ̂2) (blue,
dashed) of estimates based on the perturbed parametrization R1 respective R2.

the perturbed reconstructed parametrizations R1(x) and R2(x) by

R1(x;φ) := Rδ
α(φ) + x, R2(x;φ) := Rδ

α(φ) + x sin(20φ).

We sample x ∈ [−1mm, 1mm] and compute a velocity approximation with β = 4·10−8 based
on the perturbed reconstruction, resulting in a wall shear stress estimate τ1(x) or τ2(x),
respectively. The relative mean errors are depicted in Figure 3.15. While the sensitivity on
the high oscillatory mode is surprisingly small, we confirm the importance of the accurate
reconstruction of the lowest modes of the geometry parameter that was expected from
Theorem 2.31. In this context, the regularization in the seminorm is a crucial ingredient for
the performance of the reconstruction method, since the Tikhonov regularization introduces
no additional bias to the mean value of the geometriy parameter. We record this observation
in the following remark.

Remark 3.17. The wall shear stress estimate is highly sensitive to the geometry reconstruc-
tion and, in particular, to the lower modes of the geometry parameter. For the considered
example a 0.1mm misregistration of the mean value of the geometry parameter causes a
10% error in the wall shear stress.

3.3.4 Illustration I: Aortic Aneurysm Phantom

For a representative 3D example, we apply the method to an in silico measurement of
an aneurysm in the aortic arc. We used the in silico phantom setup with the resolution
h = 1mm for the data acquisition. In Figure 3.16, we present the reconstructed geometry
that is optically hardly distinguishable from the reference geometry. A detailed view on
the reconstruction error R† − Rδ

α in Figure 3.18 confirms the sub-voxel accuracy of the
reconstruction. Note that the noise level is substantially larger than the exterior signal
density. Consequently, the exterior signal density is overestimated, leading to a shrinked
reconstruction, that is recognized on the mainly positive value of the reconstruction error.
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Figure 3.16: Reconstructed geometry with nor-
malized magnitude in central slice.

Figure 3.17: Reference wall shear stress τ † [Pa].

Figure 3.18: Relative geometry reconstruction
error (R† −Rδ

α)/h in D.

Figure 3.19: Wall shear stress estimate τ δ,εα,β [Pa].
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Figure 3.20: In vivo raw magnitude data mδ at
peak systole.

Figure 3.21: Pre-processed in vivo velocity data
uε [m/s] at peak systole.

The underlying flow is derived from a simulation of a pulsatile flow in the whole aortic
arc using the Smagorinsky turbulence model [40]. Note that due to limited resultion
and applicability of the turbulence model, the validity of the simulation is questionable.
Therefore, we utilize the data only for illustrative purposes. For the considered peak systolic
phase, we found a mild separation of the velocity stream from the boundary at both the
aneurysm wall and the inner boundary of the arc, leading to low wall shear stress τ † at these
positions. Downstream to the aortic arc and the aneurysm we observe a reattachment of the
flow, indicated by high wall shear stress τ †. This behaviour is reproduced by the estimate
τ δ,εα,β. However, we observe an over-estimation of the wall shear stress in the reattachment
zones. Note that this region corresponds to high axial values in the parametric domain,
where we in particular observe an underestimation of the geometry, explaining the enlarged
high wall shear stress estimate in this region.

3.3.5 Illustration II: Ascending Human Aorta

Finally, we apply the method to in vivo data, considering a cross-sectional measurement
of the ascending human aorta. The raw magnitude mδ is presented alongside the recon-
structed geometry in Figure 3.20. The reconstruction Rδ

α was assessed as accurate by the
radiologist Dr. Maximilian Russe (Department of Radiology, Medical Center, University of
Freiburg, Germany). The reconstructed velocity in Figure 3.22, obtained with regulariza-
tion parameter β = 10−9, yields a reasonable approximation of the pre-processed velocity
data in Figure 3.21. The wall shear stress with high values at the lower right and low
values at the upper left section is depicted in Figure 3.23. The mean peak systolic wall
shear stress estimate τ ≈ 4.1 Pa fits to the values reported in the literature [77].

Summary: We have provided a numerical realization of the reconstruction technique
introduced in the previous chapter, and the continuous analysis of Section 2.4 transfers to
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Figure 3.22: Reconstructed in vivo velocity uδ,ε
α,β

[m/s] at peak systole.

Figure 3.23: In vivo wall shear stress estimate
τ δ,εα,β (red) and spatial mean (blue,
dashed) at peak systole.

the discrete solutions. Using a voxelized model for the actual magnetic resonance data,
we were able to verify the applicability of the method for problems in the human aorta:
The method provided convincing reconstructions of a simple flow with moderate boundary
layer in a simple geometry from real magnetic resonance data. Under more difficult flow
conditions or in a non-circular geometry, the reconstructions remain satisfactory. Even
under more realistic measurement conditions, including higher noise, we obtained reliable
reconstructions at least for high, but still feasible, data resolutions. The application to
more complicated geometries delivers plausible results.
However, we observed two major issues. Regarding difficult but realistic flow conditions,

the boundary layer was not accurately resolved due to low data resolution. The resulting
wall shear stress estimates remain valuable for the most applications, but reveal a sub-
stantial phase inaccuracy. On the other hand, the method was found to rely on highly
accurate reconstructions of the geometry that are accessible in our considerations due to
high constrast-to-noise ratio under the experimental conditions. In the medical applica-
tion the geometry reconstructions are most probably afflicted with higher inaccuracies. The
subsequent chapter adresses these issues by incorporating a fluid dynamical model into the
reconstruction process, while preserving the overall character of a data driven technique.
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Model Based Enhancement

In the previous chapters, we considered a purely data driven approach for the reconstruction
of the flow geometry, velocity and wall shear stress. Apart from the general applicability of
the presented approach, the examples in Section 3.3 also revealed two major issues arising
in practice:

� the phase inaccuracy problem, indicating that boundary layers are not accurately
resolved due to low data resolution, and

� the high sensitivity with respect to the flow geometry, in particular the lowest Fourier
modes of the geometry parameter.

To avoid these issues, we incorporate additional a priori information about the physical
laws gouverning the fluid motion that were so far neglected. Similar problems arise in the
context of data assimilation, where measurement data are incorporated into a simulation
to enhance the physical model [6]. While this leads to a model based paradigm, we suggest
a more data driven approach. This strategy of enhancing a data based reconstruction by
a suitable model has similarities with physics-informed machine learning [74].
Like in Chapter 2, we consider variational techniques to establish a mathematical formu-

lation of the considered reconstruction problems as minimization problems. Together with
the fluid dynamical model formulated as partial differential equation (PDE), this leads to
PDE-constrained optimization problems, that are widely investigated [44,91] and different
techniques for their solution are available [10,37].
In this chapter we present two specific applications of such physics-informed reconstruc-

tion problems, namely

� the enhancement of an initially given velocity approximation utilizing a fluid dynam-
ical model in an accurately reconstructed flow geometry, representing the setup of
Subsection 3.3.2 and

� the enhancement of the geometry approximation or the reduction of the sensitivity
with respect to the geometry reconstruction utilizing the purely data based velocity
approximation and a velocity approximation obtained from a fluid dynamical model.

In Section 4.1 we give a brief overview over the variational approach in data assimi-
lation and suitable fluid dynamical models. The flow model underlying the subsequent
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investigations is introduced and analyzed in Section 4.2. Afterwards we introduce a data
assimilation technique for the enhancement of the initially given velocity approximation.
In Section 4.3 we establish well-posedness of the technique and prove error bounds for the
enhanced velocity approximation. Afterwards, we apply the proposed technique as well
as some modifications to a basic flow reconstruction problem in Section 4.4. Finally, we
present a model based enhancement strategy for the geometry reconstruction and reveal
its basic applicability in Section 4.5.

4.1 Data Assimilation and Fluid Dynamical Models

Let us begin with a brief presentation of the existing variational approaches for data assim-
ilation and mathematical flow models, that are suitable for the description of flow regimes
arising in the human aorta.

Data Assimilation. For the presentation of the basic ideas, it suffices to consider an ab-
stract flow model given by the operator equation

A(u)u = f.

Here u denotes the flow velocity, f the problem data, and A(u) the mathematical model
for the underlying physics, typically a system of partial differential equations with appro-
priate initial and boundary conditions. The second ingredient for the data assimilation are
measurements, modelled by

y = M(u),

where M is the measurement operator. As for inverse problems, only approximations f ε

and yε of the model and measurement data are available in practice. The variational data
assimilation approach leads to the minimization problem

min
u,f

J(u, f) := min
u,f

∥M(u)− yε∥2 + α ∥f − f ε∥2,
s.t. A(u)u = f.

(4.1)

The first term in (4.1) is the data misfit and ensures accordance to the measured data yε.
The second term in (4.1) penalizes the deviation from the model. The scalar parameter
α > 0 weights between these misfits, for α large we obtain high accordance with the model.
Formally, the Tikhonov regularization for the velocity approximation in Proposition 2.27
fits into this framework with A(u) a smoothing operator and f ε = 0. Indeed, the flow
model typically exhibits smoothing properties and the data assimilation problem (4.1) can
be seen and analyzed as inverse problem. Therefore, α is referred to as regularization
parameter. Let us also remark, that the variational problem (4.1) is equivalent to optimal
control problems. In this interpretation, the flow velocity u is manipulated by a controlled
external force f to satisfy M(u) = yε.
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For instationary models, one distinguishes between 3Dvar and 4Dvar, where in the for-
mer, the problems (4.1) are solved sequentially in time, while 4Dvar solves (4.1) globally
in space and time [36]. Variational data assimilation techniques are widely used in the
context of numerical weather prediction [6]. Beside providing some details on the realiza-
tion, Foures et al. present the capabilities of variational data assimilation in the case of
fairly limited measurement data and model accuracy, using a Reynolds averaged Navier-
Stokes (RANS) model for the flow velocity with unknown Reynolds stresses [33]. Even the
problem of reconstructing blood flow in the aorta is tackled with data assimilation tech-
niques, where only magnetic resonance data in the interior of the aorta and away from the
boundary are incorporated [54]. There are also cardiovascular applications of structurally
equivalent optimal control problems, like the optimal design of a bypass configuration [58].

For the numerical solution there are various solution techniques available, for instance
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [10] or sequential quadratic
programming (SQP) methods [37]. In the aforementioned applications, the physical model
requires high dimensional approximations of u and f , resulting in a high computational
load. On the other hand we already have valuable approximations of the velocity by the
purely data driven reconstruction available. Hence, we aim for incorporating these data
already in the model A(u) to simplify the data assimilation process.

Fluid dynamical models. In our application, we consider flows of an incompressible fluid,
that is assumed to be Newtonian. The natural choice for the physical model A(u) are the
Navier-Stokes equations [32]

∂tu − 2ν div(Eu) + div (u⊗ u) + ∇p = 0, (4.2a)

div(u) = 0. (4.2b)

Here, u is the flow velocity with kinematic viscosity ν and strain rate tensor Eu =
(Du + (Du)T )/2 and p denotes the pressure. The first equation (4.2a) represents the
balance of momentum and the second equation (4.2b) the balance of mass. The model has
to be supplemented by boundary and initial conditions.

The non-linearity of the convection term div(u⊗u) inflicts severe difficulties in the theory
of solutions [31, 45, 56]. A linearization around an approximation w of the flow velocity -
we may think about magnetic resonance data uε - leads to the Oseen problem, that allows
for a comprehensive solution theory as we will see in the subsequent section.

Beside finite volume and finite difference methods, finite element approximations are
suited for the numerical solution of (4.2). Regarding the incompressiblity constraint
div(u) = 0, so-called inf-sup-stable finite elements should be applied [39]. For high ve-
locities, the convection term becomes dominant and suitable stabilization techniques like
SUPG are indicated [14]. A further problem is the complexity of the arising flows, requir-
ing high dimensional discretizations or turbulence models to account for unresolved energy
dissipation [40,76].
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4.2 A Quasistationary Linearized Fluid Dynamical Model

Before we turn to the model informed enhancement problems, we have to introduce an ap-
propriate flow model. We utilize an a priori given velocity approximation for the lineariza-
tion and localization of the Navier-Stokes equations in time, ariving at a stationary Oseen
problem. The model is formulated to compute a velocity update d (and a pressure p) for the
initially given velocity approximation uε, resulting in the solution (u, p) = (uε, 0) + (d, p).
First, we introduce the Oseen problem for the velocity update, derive a weak formulation
and a well-posedness result. Afterwards we define the solution (u, p) and comment on the
connection to the Navier-Stokes equations.

4.2.1 Homogeneous Problem

Let Ω denote the flow domain and let w ∈ L3(Ω) be an initial approximation of the flow
velocity. With kinematic viscosity ν > 0 we consider the system

−ν∆d+ 1
2
(w · ∇)d+ 1

2
div(d⊗ w) +∇p = b in Ω,

div(d) = −g in Ω,
d = 0 on ∂Ω,

(4.3)

and assume the compatibility condition
∫
Ω

g dx = 0.

Weak formulation. For ease of presentation, we state the weak formulation of (4.3) as
operator equation. Let us introduce the diffusion operator K ∈ L(H1

0 (Ω), H
−1(Ω)) by

⟨Kd, v⟩ :=

∫
Ω

ν (Dd,Dv) dx, (4.4)

the convection operator C ∈ L(L3(Ω),L(H1
0 (Ω), H

−1(Ω))) by

⟨C(w)d, v⟩ :=
1

2

∫
Ω

((w · ∇)d, v) − ((w · ∇)v, d) dx (4.5)

and the negative divergence B ∈ L(H1
0 (Ω), L

2
0(Ω)) by Bd := −div(d). Now we can state

the weak formulation of (4.3):

Problem 4.1. Let w ∈ L3(Ω), b ∈ H−1(Ω) and g ∈ L2
0(Ω). Find (d, p) ∈ H1

0 (Ω) × L2
0(Ω)

such that (
K + C(w) B∗

B 0

) (
d
p

)
=

(
b
g

)
in H−1(Ω)× L2

0(Ω).

We verify, that Problem 4.1 is indeed a weak formulation of (4.3).

Lemma 4.2. A strong solution (d, p) ∈ H2(Ω)×H1(Ω)∩L2
0(Ω) of (4.3) solves Problem 4.1.

98
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Proof. Obviously, we have d ∈ H1
0 (Ω), p ∈ L2

0(Ω) and Bp = −div(p) = g ∈ L2
0(Ω), using

the compatibility condition. From integration by parts, we obtain for v ∈ H1
0 (Ω)

⟨Kd+ C(w)d+B∗p, v⟩ =
∫
Ω

ν(Dd,Dv) + 1
2
[((w · ∇)d, v)− ((w · ∇)v, d)]− div(v)p dx

=
∫
Ω

(
−ν∆d+ 1

2
(w · ∇)d+ 1

2
div(d⊗ w) +∇p, v

)
dx = ⟨b, v⟩.

Well-posedness of the weak formulation. Using the theory of Brezzi, we obtain a well-
posedness result.

Proposition 4.3. Problem 4.1 has a unique solution (u, p) ∈ H1(Ω)× L2
0(Ω) with

∥u∥H1(Ω) + ∥p∥L2(Ω) ≤ C (ν + ∥w∥L3(Ω))
(
∥b∥H−1(Ω) + ∥g∥L2

0(Ω)

)
Proof. Problem 4.1 has saddlepoint structure and we apply the theory of Brezzi with the
convection diffusion operator A = K + C(w).
Step 1: Continuity and ellipticity of the velocity operator. A is bounded, since

⟨Ad, v⟩ =
∫
Ω

ν(Dd,Dv) +
1

2
((w · ∇)d, v)− 1

2
((w · ∇)v, d) dx

≤C (ν + ∥w∥L3(Ω)) ∥d∥H1(Ω) ∥v∥H1(Ω).

Furthermore, A is elliptic, since due to the Poincare inequality and the antisymmetry of C

⟨Ad, d⟩ =

∫
Ω

ν(Dd,Dd) dx ≥ C ∥d∥2H1(Ω)

Step 2: Continuity and inf-sup-condition of the operator B. Obviously we have B bounded,
since ∥Bd∥L2(Ω) = ∥div(d)∥L2(Ω) ≤ C∥d∥H1(Ω). Furthermore B satisfies

inf
q ̸=0∈L2

0(Ω)
sup

v ̸=0∈H1
0 (Ω)

(Bv, q)

∥v∥H1(Ω) ∥q∥L2(Ω)

= β > 0, (4.6)

for further details, we refer to the literature [39].
Step 3: Application of Brezzis theorem. Since A is bounded and elliptic and B is bounded
and satisfies the inf-sup-condition (4.6), Brezzis theorem [13] yields the assertion.

4.2.2 Inhomogeneous Problem

For the inhomogeneous problem, we consider initial approximations uε ∈ H1(Ω) and w ∈
L3(Ω) of the flow velocity, where uε defines the boundary data and w the convection.
Addionally, we require model data f ∈ H−1(Ω). Now we define a homogeneous problem
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for the model update d. We introduce the right hand sides b(uε, w, f) ∈ H−1(Ω) and
g(uε) ∈ L2(Ω) by

⟨b(uε, w, f), v⟩ := ⟨f, v⟩ −
∫
Ω

ν(Duε, Dv) + 1
2
[((w · ∇)uε, v)− ((w · ∇)v, uε)] dx,

g(uε) := div(uε).
(4.7)

If uε satisfies the compatibility condition, then g(uε) ∈ L2
0(Ω) and the following flow model

is well-defined.

Definition 4.4. Let uε ∈ H1(Ω), w ∈ L3(Ω) and f ∈ H−1(Ω) with
∫
∂Ω

uε n ds = 0. Let
(d, p) denote the solution of Problem 4.1 with b = b(uε, w, f) and g = g(uε) given by (4.7).
The solution of the quasistationary linearized flow model is defined by

u = u(uε, w, f) := uε + d. (4.8)

We immediately obtain the following stability result.

Lemma 4.5. Let u1, u2 ∈ H1(Ω), w ∈ L3(Ω) and f1, f2 ∈ H−1(Ω) with
∫
∂Ω

u1nds =∫
∂Ω

u2nds = 0. Then the corresponding solutions satisfy

∥u(u1, w, f1)− u(u2, w, f2)∥H1(Ω) ≤ C
(
∥tr∂Ω(u1 − u2)∥H1/2(∂Ω) + ∥f1 − f2∥H−1(Ω)

)
,

where C depends on ∥w∥L3(Ω).

Proof. Let tr∂Ω(u1−u2) = 0. Then du = (u(u1, w, f1)−u(u2, w, f1) ∈ H1
0 (Ω) and inserting

du in the defining equations for the updates d1 and d2 yields ∥∇du∥2 = 0. Hence, du = 0.
We conclude

u(u1, w, f1)− u(u2, w, f2) = u(u1, w, f1)− u(u1 + E0(tr∂Ω(u2 − u1), w, f2),

where E0 is the harmonic extension. Since b and g are linear and bounded with respect
to uε ∈ H1(Ω) and f ∈ H−1(Ω), the assertion follows from the continuity of the harmonic
extension and the well-posedness of the homogeneous Problem 4.1.

For errors of the convective velocity, we obtain the following estimate.

Lemma 4.6. Let uε ∈ H1(Ω) with
∫
∂Ω

uεnds = 0 and f ∈ H−1(Ω). Furthermore let
w1, w2 ∈ L3(Ω). For the associated solutions ui = u(uε, wi, f) it holds

∥u1 − u2∥H1(Ω) ≤ C (∥uε∥H1(Ω) + ∥u2∥H1(Ω)) ∥w1 − w2∥L3(Ω).

Proof. We observe, that u1−u2 = d1−d2. Subtracting the associated equations and using
the fact, that C and b are linear with respect to w yields(

K + C(w1) B∗

B 0

) (
d1 − d2
p1 − p2

)
=

(
(C(w2 − w1)d2 + b(uε, w1 − w2, 0)

0

)
.

Since C and b are bounded with respect to w, we obtain

∥(C(w2 − w1)d2 + b(uε, w1 − w2, 0)∥H−1(Ω) ≤ C ∥w2 − w1∥L3(Ω) (∥d2∥H1(Ω) + ∥uε∥H1(Ω)).

The assertion follows from the estimate of Proposition 4.3.
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4.2 A Quasistationary Linearized Fluid Dynamical Model

4.2.3 Connection with the Navier-Stokes Equations

Let us outline, in what extend solutions of the Navier-Stokes equations (4.2) are solutions
of the quasistationary linearized flow model given by (4.8).

Lemma 4.7. Let T > t > 0 and (U, P ) ∈ C1(0, T ;H2(Ω))× C(0, T ;H1(Ω) ∩ L2
0(Ω)) denote

a strong solution of the Navier-Stokes equations (4.2). Then U(t) is a solution of the
quasistationary linearized flow model with f = −∂tU(t), uε = U(t) and w = U(t).

Proof. Set u = U(t). We compute for u ∈ H2(Ω) with div(u) = 0

2div(Eu) = div(Du) + div((Du)T ) = ∆u + ∇(div(u)) = ∆u

and

div(u⊗ u) = div(u)u + (u · ∇)u = (u · ∇)u.

Also observe that g(u) = div(u) = 0. Furthermore we have

⟨b(u, u, f), v⟩ = −
∫
Ω

(∂tU(t) + ν(Du,Dv) +
1

2
[((u · ∇)u, v)− (u · ∇)v, u)] dx

= −
∫
Ω

(∂tU(t)− ν∆u+
1

2
(u · ∇)u+

1

2
div(u⊗ u), v) dx

= −
∫
Ω

(∂tU(t)− 2ν div(Eu) + div(u⊗ u), v) dx

=

∫
Ω

(∇P (t), v) dx.

Thus U(t) is the solution of the quasistationary linearized flow model with corresponding
pressure P (t) ∈ L2

0(Ω).

Let us summarize the concept of the proposed model.

Remark 4.8. The proposed fluid dynamical model in Definition 4.4 is conforming with the
Navier-Stokes equations. Relying on an approximate velocity uε, defining the boundary
data, a possible different approximation w, defining the convection, and an approximation
of the negative temporal derivative f ε, it makes the problem stationary and linear. Nat-
urally, it allows for a spatial localization by restricting the computational domain. This
leads to a significant simplification of the following reconstruction problems.

We now turn to the model informed enhancement methods.
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4.3 Velocity Enhancement

For the enhancement of the velocity reconstructions uε obtained in Chapters 2 and 3, we
now investigate a variational data assimilation approach based on the linearized quasista-
tionary flow model in Definition 4.4. We establish well-posedness of the approach, derive
error bounds for the reconstruction error and present the corresponding first order op-
timality system and a finite element approximation. Similar results have been obtained
in [24,81].

4.3.1 Reconstruction Method and Well-Posedness

Let Ω denote the flow geometry and uε an initial approximation of the flow velocity. For
the enhancement of the velocity approximation we consider with regularization parameter
α > 0 the following data assimilation problem

min
d∈H1

0 (Ω),f∈L2(Ω)
∥d∥2L2(Ω) + α ∥f − f ε∥2L2(Ω)

s.t.

{
Kd + C(uε)d +BTp = b(uε, uε, f),

Bd = g(uε),

(4.9)

where b and g are given by (4.7). For f ε = −∂tu
ε the arising system is consistent with

the Navier-Stokes equations. We observe, that this problem fits into the aforementioned
framework of data assimilation, leading to a PDE-constrained minimization problem.
First, we observe the well-posedness of the reconstruction method.

Lemma 4.9. Let uε ∈ H1(Ω) with
∫
∂Ω

uεnds = 0 and let f ε ∈ L2(Ω). Then the reconstruc-
tion problem (4.9) has a unique solution dεα ∈ H1

0 (Ω) and f ε
α ∈ L2(Ω).

Proof. We establish well-posedness of the data assimilation problem by a standard ar-
gument [91]. Consider the control-to-state operator d(f) solving Problem 4.1 with b =
b(uε, uε, f) and g = g(uε). The reduced functional is defined by

J : L2(Ω) → R, J(f) = ∥d(f)∥2L2(Ω) + α∥f − f ε∥2L2(Ω).

Obviously, a minimizer of J is a minimizer of (4.9) and vice versa, the control f of a
minimizer of (4.9) is a minimizer of J . Since J is bounded from below by 0, there is
a minimizing sequence (fn). Since J(f) ≥ α∥f − f ε∥2L2(Ω), the sequence is bounded
and a subsequence fm converges weakly to f ε

α. d is affine and bounded. Therefore, J
is continuous, convex and consequently weakly lower semi-continuous. Hence, we have
J(f ε

α) ≤ lim inf J(fm) = inff∈L2(Ω) J(f). Therefore, f ε
α is a minimizer of J and the strict

convexity of J ensures the uniqueness.

4.3.2 Error Bounds for the Reconstruction Error

Let u† ∈ H1(Ω) denote the exact incompressible flow velocity with associated data f † ∈
L2(Ω), i.e. u† = u(u†, u†, f †). Now we establish error bounds on the deviation of the model
based velocity enhancement.
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Proposition 4.10. Let uε ∈ H1(Ω) with
∫
∂Ω

uεnds = 0 and let f ε ∈ L2(Ω). Set uε
α := uε+dεα

with dεα the unique minimizer of the reconstruction problem (4.9). Then

∥uε
α − u†∥H1(Ω) ≤ C

(
∥f † − f ε∥L2(Ω) +

1 +
√
α√

α
ε

)
with ε = ∥uε − u†∥L3(Ω) + ∥uε − u†∥H1/2(∂Ω).

Proof. Let u1 = u(u†, uε, f †) denote the solution of the quasistationary linearized flow
model (4.8) with convection data uε, boundary data u† and model data f †. By Lemma 4.6
we obtain

∥u† − u1∥H1(Ω) ≤ C ∥u†∥H1(Ω) ∥u† − uε∥L3(Ω) ≤ C ε

Let u2 = u(uε, uε, f †) denote the solution with convection data uε, boundary data uε and
model data f †. By Lemma 4.5 we obtain

∥u† − u2∥H1(Ω) ≤ Cε + C∥u† − uε∥H1/2(∂Ω) ≤ Cε.

Let d2 = u2−uε = u(uε, uε, f †)−uε. By the definition of f ε
α as minimizer of J , we observe

α∥f ε
α − f ε∥2L2(Ω) ≤ J(f ε

α) ≤ J(f †) = ∥d2∥2L2(Ω) + α ∥f † − f ε∥2L2(Ω).

Applying the estimate on the state u2 − u† yields

∥d2∥L2(Ω) ≤ ∥u2 − u†∥L2(Ω) + ∥u† − uε∥L2(Ω) ≤ Cε.

Hence, we have

∥f ε
α − f ε∥L2(Ω) ≤ ∥f † − f ε∥L2(Ω) +

1√
α
Cε.

With the stability estimate of Proposition 4.3 we compute

∥dεα − d2∥H1(Ω) ≤ C∥f ε
α − f †∥L2(Ω) ≤ C∥f ε − f †∥L2(Ω) +

1√
α
Cε.

The assertion follows from the previously obtained estimate for u2 − u†.

Let us briefly compare the data assimilation problem (4.9) with the purely data driven
velocity approximation in Theorem 2.28 under the assumption of a perfect geometry re-
construction. Both results provide error bounds for the reconstruction error, measured in
a stronger norm, by the absolute data error, measured in L2 or L3 respectively. In this
regard we may interprete the data assimilation problem as regularizing filter. However,
the data error was amplified with the potentially large factor |u†|H2(Ω) in the data driven
reconstruction, while we expect only moderate amplification for the model informed en-
hancement, given a suitable approximation of f † and only small absolute velocity values
in a region around the boundary.
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Let us finally consider the rates. If we estimate f † = −∂tu
† by a centered difference

quotient with temporal spacing ∆t, we may assume ∥f † − f ε∥L2(Ω) ≤ (∆t)2 + ε/∆t. Fur-
thermore, we may assume by interpolation, that ∥u† − uε∥L3(Ω) ≤ ε3/4. Neglecting the
boundary error, we arrive for α = O(1) at the error estimate

∥uε
α − u†∥H1(Ω) ≤ C

(
(∆t)2 + ε/∆t + ε3/4

)
.

In comparison with the error estimate for the purely data driven velocity reconstruction
∥uε − u†∥H1(Ω) ≤ Cε1/2, we may hope for an enhancement of the reconstruction.

4.3.3 Numerical Realization

For the numerical solution of the linearized data assimilation problem (4.9), we introduce
the Lagrangian function

L(d, p, f ;λ, π) := 1
2
∥d∥2L2(Ω) +

α
2
∥f − f ε∥2L2(Ω)

+⟨A(uε)d+B∗p− b(uε, uε, f), λ⟩+ (Bd− g(uε), π) .
(4.10)

with convection diffusion operator A(uε) = K + C(uε). Forcing the derivatives of L to
vanish yields the Karush-Kuhn-Tucker conditions. Since the constraints are linear, the
function is quadratic and strictly positive. Thus, the first order optimality condition is a
necessary and sufficient condition for a minimizer [91]. The differentiation with respect to
the control f leads to

f = f ε + λ/α.

We eliminate the control f and introduce the operator M ∈ L(H1
0 (Ω), H

−1(Ω)) with
⟨Mu, v⟩ :=

∫
Ω
(u, v)dx. Then the optimality system reads

Md + A(uε)∗λ + B∗π = 0,
Bλ = 0,

A(uε)d + B∗p − 1
α
Mλ = b(uε, uε, f ε),

Bd = g(uε).

(4.11)

Finite element approximation. For the numerical discretization, we utilize the P2 − P1

Taylor-Hood element that is known to be inf-sup stable [96]. The straightforward discretiza-
tion of the KKT-system 4.11 is the optimality system of the associated discrete quadratic
minimization problem, and from its strict convexity well-posedness of the discrete system
follows immediately. Convergence of the discrete minimizers to the minimizer of the con-
tinuous problem (4.9) can be established [44]. Apart from applying direct solvers, the
solution using MINRES is possible. Regarding preconditioners, Zulehner [101] proposed
a block diagonal approximation in the case of low convection uε ≈ 0, where the pressure
Schur complement blocks can be approximated by explicitly computable matrices [27]. Ap-
propriate multigrid approximations lead to an optimal and efficient solver [12]. However,
the convection term brings down efficacy of the preconditioner for high Reynolds numbers.
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4.4 Numerical Illustration of the Velocity Enhancement

In Subsection 3.3.2 we observed that the purely data driven reconstruction exhibits a phase
inaccuracy due to low data resolution. Now, we apply model informed reconstruction
techniques in order to enhance the approximation. Besides the method proposed in the
previous section, we consider two modifications regarding the treatment of the non-linear
convection term. In Subsection 4.4.1, we present the modifications and briefly comment on
the numerical realization. In Subsection 4.4.2 the experimental setup is described, followed
by an illustration of the data assimilation results in Subsection 4.4.3.

4.4.1 Velocity Enhancement Strategies

Let us recall the data assimilatin problem introduced in the previous section: Let Ω be
the fixed computational domain with uε ∈ H1(Ω) and f ε ∈ L2(Ω) initial approximations
of the flow velocity and data. We consider the following strategies.

Linearized Navier-Stokes method. The previously presented enhancement strategy reads

min
d∈H1

0 (Ω),p∈L2
0(Ω),f∈L2(Ω)

∥d∥2L2(Ω) + α∥f − f ε∥2L2(Ω)

s.t.

{
Kd+ C(uε)d+B∗p = b(uε, uε, f),

Bd = g(uε).

(4.12)

Let dεα ∈ H1
0 (Ω) denote the velocity enhancement, given as velocity part of the unique

minimizer of (4.12). The enhanced velocity is defined by uε
α = uε + dεα ∈ H1(Ω) and we

refer to this as linearized Navier-Stokes (LNS) method. In view of Proposition 4.10 we
assume that uε

α is a better approximation than uε. This motivates the following strategy.

Iterated linearized Navier-Stokes. We iteratively utilize the previously computed en-
hanced approximation to linearize the model around the new velocity approximation. This
leads to a sequence of quadratic minimization problems. The iterated linearized Navier-
Stokes (INS) method reads: Set u0 := uε and iterate

� solving the quadratic minimization problem

min
d∈H1

0 (Ω),p∈L2
0(Ω),f∈L2(Ω)

∥d∥2L2(Ω) + α∥f − f ε∥2L2(Ω)

s.t.

{
Kd+ C(uk−1)d+B∗p = b(uε, uk−1, f),

Bd = g(uε),

(4.13)

� setting uk := uk−1 + dε,kα with dε,kα the velocity update given by (4.13) and

� terminating, when ∥dε,kα ∥H1(Ω) < tol.
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The enhanced velocity is uε
α := uk after achieving convergence of the iteration. In a previ-

ous investigation [24,81] the iterated method proved to be superior to the linearized (LNS)
method. The iterates are solutions of linearized flow equations and the method prefers
small regularization parameters α, leading to small updates dε,kα for the convective velocity.
In this view, the method may be seen as a generalized data driven approach.

Non-linear Navier-Stokes method. A third possibility for dealing with the non-linear
convection term is to utilize u = uε + d as convective velocity, leading to the non-linear
Navier-Stokes (NNS) method. For the numerical solution, we utilize a standard approach
and consider the reduced problem

min
f

J(f) := ∥u(f)− uε∥2L2(Ω) + α∥f − f ε∥2L2(Ω), (4.14)

where u(f) = uε + d is the velocity part of the solution of the non-linear stationaray
Navier-Stokes model given by

Kd+ C(uε + d)d+B∗p = b(uε, uε + d, f),
Bd = g(uε).

(4.15)

For the minimization of (4.14) we apply a gradient method. The formal representation
of the gradient requires the computation of the sensitivities ∂u(f)/∂f , which is highly
expensive. Using the implicit function theorem in an adjoint approach [41], the gradient
can be represented by an adjoint λ ∈ H1

0 (Ω), that is defined by the linearized equation{
Kλ + C(uε + d)λ − C̃(uε + d)∗λ + B∗π = d,

Bλ = 0.
(4.16)

with the additional operator arising from differentiating C(uε + d) and defined by

⟨C̃(u)∗λ,w⟩ := 1

2

∫
Ω

((w · ∇)u, λ)− ((w · ∇)λ, u) dx, ∀λ ∈ H1
0 (Ω).

For the minimization we apply the BFGS algorithm that computes an approximation on
the Hessian ∇J , amounting to the iteration

(i) forward solve: given fk, compute u(fk) from (4.15),

(ii) adjoint solve: given u(fk), compute λk from (4.16),

(iii) update: given λk, set ∇J(fk) = α(fk − f ε) + λ and perform the BFGS update to
obtain the new iterate fk.

Similar non-linear methods are widely used for data assimilation purposes [33, 54, 58]. In
our study, these non-linear techniques represent the model based approach for the data
assimilation, since the computation benefits from a large regularization parameter α and
the iterates uk are exact solutions of non-linear flow models.
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4.4 Numerical Illustration of the Velocity Enhancement

Figure 4.1: Longitudinal section (left, red) with flow direction from bottom left to top right, computational
domain Ω (left, blue, dashed), the subdomain Ωeval ⊂ Ω (left, black) for the quantification of
reconstruction errors and the slice Ωill (left, blue thin slice) used for illustrations as well as the
axial component of the velocity u†(t) [m/s] in the slice Ωill (right). Note the anisotropic aspect
ratio. Flow direction from bottom left to top right. Ωill ∩ Ωeval is the black rectangle.

4.4.2 Setup for the Velocity Enhancement

The geometric setup for the following computations is depicted in Figure 4.1. We consider
a flow in a straight ideal pipe. The computational domain Ω for the data assimilation
is a segment of a hollow cylinder. The overall goal is the enhancement of the wall shear
stress estimates. Therefore, we introduce an evaluation domain Ωeval ⊂ Ω representing the
inner boundary layer. To reduce the effect of the perturbed Dirichlet boundary data, the
evaluation domain Ωeval is located away from the artificial boundary of Ω. For illustrations
of the velocity reconstructions, we display the reconstructions in a thin slice Ωill in the
radial-axial plane of thickness 1.5mm and length 80mm.

Regarding the flow, we consider a physiologically pulsating Womersley flow in the pipe.
As outlined in Subsection 3.3.2, the analytical solution u† is computable from the temporal
evolution of the volume flow rate in Figure 3.9 under knowledge of the fluid parameters
(here: blood with dynamic viscosity µ = 0.004 Pa s and density ρ = 1050 kg/m3), the
temporal periode T = 1s, the pipe diameter 2R† = 25.885mm and the peak Reynolds num-
ber. We distinguish between Remax = 1000 and Remax = 4000 with the latter representing
resting conditions of the cardiovascular system. For Remax = 1000 and evaluation phase
t = 0.23T the axial component of the velocity u†(t) in Ωill is depicted in Figure 4.1.

We conduct virtual measurements with data resolution h = 1mm under the setup in
silico phantom (see Table 3.6). We apply the purely data driven technique as outlined
in Section 3.2. The geometry reconstruction yields an approximation of the geometry
parameter determining the flow geometry. From the validation study, we may assume that
a sufficiently accurate flow geometry Ω is available.

The purely data driven velocity approximation provides an approximation uε
i ∈ H1(Ω)

of the flow velocity u†(ti) at temporal snapshots ti = t+ i∆t. With period T = 1s, we used
T/∆t = 40 amounting to a feasible repetition time of ∆t = 25ms [8].
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Chapter 4 Model Based Enhancement

Figure 4.2: Exact axial velocity u†(t) [m/s] in
Ωill.

Figure 4.3: Purely data driven approximation uε
0

[m/s] in Ωill.

The considered phase t = 0.23T is short after the first zero of the wall shear stress, but
before the first zero of the flow rate (see Figure 3.9). The exact axial velocity u†(t) and
the purely data driven approximation uε

0 are depicted in Figures 4.2 and 4.3. As we can
observe from the zero velocity isoline for the exact velocity, there is a small backflow in
the inner boundary layer reflecting the negative wall shear stress, while the bulk flow is
clearly positive. In overall, the corresponding purely data driven velocity approximation
reproduces the velocity profile quite accurate, note in particular the nearly exact position
of the u = 0.02− 0.08m/s isolines and remember the fact, that the radial thickness of the
presented slice is only 1.5 voxel sizes. However, the zero isoline is missing and hence, the
reconstructed wall shear rate positive. This perfectly fits to the observation in Subsection
3.3.2, where the wall shear stress estimate was found to be trailing behind the exact wall
shear stress.

4.4.3 Numerical Results

In order to reconstruct the backflow, we apply the three presented data assimilation tech-
niques. The arising linearized flow models and optimality conditions are discretized using
the P2−P1 Taylor-Hood finite element approximation. The aspect ratio of the geometry Ω
is quite high, leading to a small pressure-velocity inf-sup-constant [65]. Consequently, the
spectral equivalence of the pressure Schur complement and its explicit approximations de-
generates [27], making the preconditioners infeasible. Therefore, the arising linear systems
were solved with a direct solver under a rather coarse resolution. To allow for an adequate
resolution of the high velocity gradients in normal direction, we again utilize an anisotropic
grid spacing in radial direction. To reduce errors resulting from the approximation of the
geometry with rather few elements, we utilize P2 mapping functions to establish curved
elements, a technique that is often referred to as isoparametric finite element method [30].
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4.4 Numerical Illustration of the Velocity Enhancement

Note that the analytical solution is a solution of the Navier-Stokes equations, i.e.

Kd+ C(u†(t))d+B∗p = b(u†(t), u†(t),−∂tu
†(t)),

Bd = g(u†(t))

has the solution d = 0 (and p = p†(t)). Let uε ∈ H1(Ω) denote the purely data driven ve-
locity approximation of u†(t). Naturally, the velocity approximation uε is nearly solenoidal
and with a small modification in the outflow part we ensure

∫
∂Ω

uεnds = 0. Furthermore,
we have velocity approximations uε

−1 and uε
+1 of the axial velocity u†(t−1) and u†(t+1) at

the previous and following temporal snapshots. We define the approximation

f ε :=
uε
−1 − uε

+1

2∆t
(4.17)

of the model data, that may be seen as regularized approximation of the negative temporal
velocity derivative f † = −∂tu

†(t). We use α = 0.001 for the regularization parameter.
Now, the methods are carried out as outlined in Subsection 4.4.1.

Linearized Navier-Stokes method. The enhanced velocities uε
α resulting from the lin-

earized Navier-Stokes method are depicted in Figures 4.4 and 4.6 for the peak Reynolds
numbers Remax = 1000 and Remax = 4000, respectively. Although the input data differ due
to the linear purely data driven velocity approximation only in a parameter, the enhanced
velocities substantially differ due to the convection that is quadratic in the Reynolds num-
ber. Since a linearized convection term is considered, linearization errors lead to clear
perturbations in the case of the higher Reynolds number.
However, the axial perturbations are optically overated due to the anisotropic scaling of

the plots. Additionally and most important, we observe the reconstructed backflow from
the present uε

α = 0 isoline, that was missing for the purely data driven approximation uε.
Hence, the LNS is capable to provide a clear improvement of the velocity in the inner
boundary layer.

Iterated Navier-Stokes method. In Figures 4.5 and 4.7 we present the results of the
data assimilation under the iterated Navier-Stokes method (INS). Again, the backflow in
the most inner boundary layer is identified. Compared with the results of the LNS method,
we observe reduced perturbations, in particular for the case of the higher Reynolds number.
Note that the method at least formally eliminates linearization errors.

Non-linear Navier-Stokes method. The results of the non-linear Navier-Stokes method
(NNS) are optically similar to those of the INS method and, therefore, not presented. The
NNS method is clearly the most expensive of the presented techniques, however, we observe
the pay-off in the reconstruction errors.

Quantification of the reconstruction errors. To quantify the reconstruction errors, we
restrict the velocity errors to the evaluation domain Ωeval. The enhanced approximations
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Figure 4.4: Reconstruction uε
α of the axial velocity

[m/s] with LNS (Remax = 1000) in Ωill.

Figure 4.5: Reconstruction uε
α of the axial velocity

[m/s] with INS (Remax = 1000) in Ωill.

Figure 4.6: Reconstruction uε
α of the axial velocity

[m/s] with LNS (Remax = 4000) in Ωill.

Figure 4.7: Reconstruction uε
α of the axial velocity

[m/s] with INS (Remax = 4000) in Ωill.

uε
α ∈ H1(Ωeval) lead to distributional wall shear stress estimates. We quantify the per-

formance with respect to the wall shear stress estimation therefore by the H1 error in
the thin boundary layer and the deviation in the mean wall shear stress, amounting to a
functional evaluation. Note that the full wall shear stress error in the distributional space
continuously depends on the H1 error. We compute relative errors with respect to the
corresponding purely data driven errors and introduce

EH1(u) :=
∥u− u†∥H1(Ωeval)

∥uε − u†∥H1(Ωeval)

, EWSS(u) :=
|
∫
Γ
τ(u)− τ † ds|

|
∫
Γ
τ ϵ − τ † ds|

.

The results for the mean wall shear stress errors EWSS(u
ε
α) are given in Table 4.1. We

observe an error reduction by more than 85% for all considered data assimilation strate-
gies. Considering the more general H1(Ωeval) errors in Table 4.2, a significant error reduc-
tion compared to the purely data driven approximation is preserved. However, the LNS
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setup LNS INS NNS

Remax = 1000 0.1227 0.1131 0.1206
Remax = 4000 0.1433 0.0972 0.1233

Table 4.1: Relative reduction of the mean wall shear stress error EWSS(u
ε
α) for the different data assimila-

tion methods with respect to the purely data driven reconstruction.

setup LNS INS NNS

Remax = 1000 0.2070 0.1926 0.1929
Remax = 4000 0.4307 0.3081 0.2297

Table 4.2: Relative reduction of the H1(Ωeval) error EH1(uε
α) for the different data assimilation methods

with respect to the purely data driven reconstruction.

method is clearly affected from linerization errors for higher Reynolds numbers, while the
NNS method reveals nearly no dependence on larger convective forces. The INS method
represents a fair trade-off between accuracy of the enhanced velocity approximation and
computational effort. Let us summarize our observations in the following remark.

Remark 4.11. As expected, the incorporation of a data driven localized and linearized
flow model in a data assimilation approach may lead to a substantial improvement of the
purely data driven velocity approximations in the inner boundary layer and consequently
an enhancement of the corresponding wall shear stress estimates. In particular for large
convective forces, additional improvements may be obtained by eliminating the lineariza-
tion error in the convective term, as it is done in the INS and NNS methods.

4.5 Geometry Enhancement

In the numerical validation of the purely data driven technique we observed a high sen-
sitivity of the velocity approximation uε

β with respect to the geometry parameter R, in
particular the lowest Fourier mode of R. This motivates the following enhancement strat-
egy for the geometry parameter R: compare the purely data driven velocity approximation
uε
β(R) with some accessible other velocity approximations with only mild dependence on

the geometry. For this velocity, we have two natural choices - the velocity data uε or a
model based velocity u(R).

Modified geometry forward operator. Let vεβ(R) denote the unique Tikhonov minimizer
of the velocity approximation problem (2.47) with fixed regularization parameter β > 0
and geometry parameter R ∈ G, where the set of admissible geometry parameters G is
given by (2.36). Let uε

β(R) ∈ L2(ΩFOV) denote the corresponding velocity in the physical
domain, extended by zero to the field of view. We introduce the forward operator

F : G ∩H3(D) ⊂ H3(D) → L2(ΩFOV), F (R) := uε
β(R). (4.18)
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Data based geometry enhancement. We compare the reconstructed velocity with the
original velocity data uε ∈ L2(ΩFOV) in the field of view. Hence, we introduce the data
based geometry enhancement functional

Jdata(R) := ∥F (R)− uε∥2L2(ΩFOV). (4.19)

This amounts to the data misfit in the Tikhonov functional of the velocity approximation.

Model based geometry enhancement. Another possibility is to compare the purely data
driven velocity approximation uε

β(R) with a velocity obtained from a flow model. For
R ∈ G define u(R) according to Definition 4.4 as solution of the quasistationary linearized
flow model with convective velocity w = uε

β(R), boundary data uε
β(R) and model data

f = f ε
β(R) on the flow domain Ω(R), where the model data are obtained by (4.17) from

velocity approximations of the adjacent time-steps. Finally, we introduce the model based
geometry enhancement functional

Jmodel(R) := ∥F (R)− u(R)∥2L2(ΩC), (4.20)

where ΩC ⊆ ∩R∈G Ω(R) is a suitable subset of all admissible geometries.

Sensitivity of the velocities on the geometry. Obviously, the original velocity data uε

is independent of the geometry reconstruction. Regarding the dependence of the model
solution u(R) on the geometry parameter, we make the following remark.

Remark 4.12. Model velocities depend smooth on the geometry parameter. We only sketch
a proof, for a rigorous analysis we refer to the literature [43, 48]. Let us map the model
velocity u(R) to the reference domain, yielding v(R) = u(R) ◦ ΦR with ΦR the forward
transformation associated with the geometry parameter R. Skipping the boundary con-
ditions, we can write the governing partial differential equations after mapping to the
reference domain in abstract form as

find (v, q) ∈ H1(Ω̂)× L2
0(Ω̂) with E((v, q), R) = 0 in H−1(Ω̂)× L2

0(Ω̂). (4.21)

With mapped convection ŵR ∈ L3(Ω̂) and model data f̂R ∈ L3(Ω̂) the system E reads

⟨E((v, q);R), (λ, π)⟩ =
∫
Ω̂

ν IR (ARv, ARλ) +
1

2
IR [((ŵR AR ∇)v, λ)− ((ŵR AR ∇)λ, v)]

−IR AR,i∇λi q − IR AR,i∇vi π − IR (f̂R, λ) dx.

The terms IR, AR and AR,i account for the mapping and are smooth functions with respect
to R. By re-mapping to the physical domain, we observe that E(v(R), q(R);R) = 0 for

a suitable q(R) ∈ L2
0(Ω̂) and ∂(v,q)E((v, q);R) is regular for arbitrary R ∈ G. From the

representation of E we observe its smoothness with respect to R. Hence, the implicit
function theorem ensures smoothness of the well-posed mapping R 7→ v(R).
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4.5 Geometry Enhancement

Figure 4.8: Normalized data based geometry enhancement functional Jdata(R) (blue, dashed)
and model based geometry enhancement functional Jdata(R) (black, dotted) along-
side the normalized mean wall shear stress error ERRWSS(R) (red) for different
samples of the geometry parameter R; x-axis are mean values of R in [mm].

The smooth dependence of the model velocity on the geometry is in accordance with the
actual physical dependence of the flow velocity with respect to the geometry.

Numerical experiment. To test the principle capability of the geometry enhancement
functionals Jdata and Jmodel for identifying the geometry, we consider the experimental
setup of 4.4.2 with resting conditions Remax = 4000. We sample the lowest Fourier mode
of the geometry parameter and consider R = Rδ

α + dr with dr ∈ [−1mm, 1mm].
For every sample R ∈ G, we compute the corresponding data driven velocity approxi-

mation F (R) = uε
β(R), the wall shear stress τ εβ(R) and the model velocity u(R). Then we

evaluate the functionals Jdata(R) and Jmodel(R) as well as - using the exact solution - the
squared mean wall shear stress error on the parameter domain D

ERRWSS(R) :=
∣∣∣ ∫
D

τ̂ εβ(R)− τ̂ † d(φ, s)
∣∣∣2.

Note that the geometry enhancement functionals are computable without knowledge of the
exact data R† and u†.
The numerical results are depicted in Figure 4.8. The data based geometry enhancement

functional reveals a plateau, the minimizer is Rdata = 12.1mm, resulting in a high error
of the corresponding wall shear stress estimate. The model based geometry enhancement
functional, on the other hand, exhibits a clear minimum at Rmodel = 12.92mm that is in
good accordance with the exact geometry R† = 12.94mm. As expected, the estimated
wall shear stress clearly depends on the geometry parameter with the best estimation at
R ≈ R†. While the data based geometry enhancement leads to large wall shear stress
estimation errors, in our experimental setup the model based technique is capable to pro-
vide accurate estimates of the wall shear stress without requiring highly accurate geometry
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reconstructions.

Outlook. Inspired from these results, one might think about reconstructing the whole
geometry parameter R using the model based geometry enhancement functional. Similar
problems arise in the context of shape optimization [43] and are typically ill-posed [18].
Hence, we should apply Tikhonov regularization leading to the model informed geometry
identification problem

min
R∈H3(D)∩G

∥F (R)− u(R)∥2L2(ΩC) + α∥R∥2H3(D).

This problems fit into the framework of Tikhonov regularization for non-linear inverse
problems in Hilbert spaces that was presented in Subsection 2.2.2, but is beyond the scope
of this investigation.

Summary. In this chapter, we have presented model based strategies for the enhance-
ment of the purely data driven reconstruction of flow geometry, velocity and wall shear
stress. The underlying fluid dynamical model makes wide use of the available data driven
approximations of the flow velocity, to linearize and temporally localize the Navier-Stokes
equations, leading to a well-posed quasistationary Oseen model that is stable with respect
to perturbations of the convective velocity. In the numerical application, a local restriction
to a thin boundary layer leads to linear problems of moderate dimension that can be solved
with feasible computational effort.
The problem that purely data driven velocity approximations can not sufficiently resolve

the boundary layer for physiologically realistic flows, indicated from the phase inaccuracy,
is tackled with a variational data assimilation approach. Although more expensive recon-
struction strategies eliminating the linearization errors in the flow model lead to better
results, the data assimilation using the quasistationary Oseen model already provides a
significant improvement of the purely data driven velocity approximations.
Finally, we briefly presented an approach for a model based enhancement of the geome-

try reconstruction. The approach is based on the observation that the purely data driven
velocity approximation exhibits a high sensitivity to the geometry, but produces reasonable
approximations of the velocity for sufficiently accurate geometry. The flow model, however,
resembles the moderate sensitivity of the real physical flow on the geometry. Therefore, a
low deviation between the purely data driven and the model based velocity should char-
acterize the actual geometry. A first numerical example confirmed this strategy, rendering
the approach an interesting subject for further research.

114



Chapter 5

Summary

In this thesis, we investigated the problem of reconstructing wall shear stress from magnetic
resonance data for the application in the medical practice. For its solution we proposed a
purely data driven technique that sequentially reconstructs the flow geometry, velocity and,
finally, the wall shear stress. The reconstruction problems for the geometry and velocity are
ill-posed and, therefore, solved utilizing Tikhonov regularization. Based on a conditional
stability estimate, we were able to provide a comprehensive analysis of the wall shear stress
estimation problem, that also covers the numerical realization and establish error bounds
for the resulting estimate in terms of the measurement noise. Our theory expects a high
amplification of geometry reconstruction errors, making the accurate reconstruction of the
flow geometry the crucial ingredient for the wall shear stress estimation.

An extensive validation including the wall shear stress estimation from actual magnetic
resonance measurements of flows that are dynamic similar to the flows in the human aorta
and for which ground truth, i.e. highly accurate reference values, are accessible, proved
the basic applicability of the technique. In particular, this holds for considerably low data
resolution, where the reconstruction benefits from a detailed data acquisition model. On
the other hand, we discovered the limitations of the method, such as unresolved boundary
layers due to the low resolution, and confirmed the critical sensitivity with respect to the
geometry.

As a remedy for these issues, we investigated the suitable incorporation of a basic fluid
dynamical model. The velocity approximations, obtained from the purely data driven
technique, allow for linearizing and localizing the fluid dynamical model in space and time.
Hence, solutions can be computed under feasible computational effort. The numerical
examples revealed the potential of this simplified and data driven model to provide valuable
additional information about the flow, in particular in the inner boundary layer. Regarding
the limitations to resolve the boundary layer, we proposed a variational data assimilation
technique for the enhancement of the purely data driven velocity approximation using the
linearized quasistationary model, leading to a significant reduction of the approximation
error.

In a first numerical experiment, we also observed that model informed techniques offer
the possibility to enhance the geometry reconstruction. The comprehensive analysis in the
context of parameter estimation is an interesting subject for further research. Regarding the
model informed techniques, improvements can also be expected from the incorporation of
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stabilization techniques and better suited flow models, in particular for the blood rheology.
However, the development of appropriate preconditioners for the arising systems, to unlock
high dimensional discretizations, appears difficult: apart from the saddlepoint structure the
presence of convection and the high aspect ratio of the considered geometries are major
obstacles.
From a more practical perspective, reliable fully automatic pre-segmentation techniques

are desired. The in vivo application requires the incorporation of moving geometries into
the framework. In view of the sensitivity to geometry errors, multimodal measurements
should be taken into consideration, where the geometry is identified using, for instance,
computer tomography and only the translation and rotation of the geometry in the mag-
netic resonance field of view is detected from the magnetic resonance data.
In conclusion, referring back to the observation of Petersson et al. [69] that all data driven

methods are impacted by considerable errors, we may reply: the sources of estimation
errors in a data driven reconstruction are widely understood. With treating these problems
appropriately, valuable wall shear stress estimation for physiologically realistic flow regimes
from magnetic resonance imaging data appears possible.
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2008.

[33] D. P. G. Foures, N. Dovetta, D. Sipp, and P. J. Schmid. A Data-Assimilation Method
for Reynolds-Averaged Navier–Stokes-Driven Mean Flow Reconstruction. Journal of
Fluid Mechanics, 759:404–431, 2014.

[34] D. Freudenhammer, E. Baum, B. Peterson, B. Böhm, B. Jung, and S. Grundmann.
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