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Kurzfassung

Das Aufkommen der Halbleiterindustrie in der zweiten Hélfte des letzten Jahrhunderts erdffnete
tiberraschende neue Perspektiven fiir die Entwicklung dynamisch-mechanischer Systeme.
Sie ermoglichte dank der sich stdndig weiterentwickelnden Mikrofabrikationsmethoden die
Entwicklung von mikroelektromechanischen Systemen (MEMS), gefolgt von ihrem Aquivalent
im Nanometerbereich, den NEMS. Heutzutage machen M/NEMS neben elektrischen, optischen
und telekommunikativen Komponenten einen groRen Teil der Industrie fiir Miniatursensoren
aus. Da diese winzigen dynamischen elektromechanischen Systeme mitunter Kopplungen
zwischen Freiheitsgraden sowie Nichtlinearitdten aufweisen, spielt die Theorie der Stabilitat
dynamischer Systeme eine wichtige Rolle bei ihrem Entwurf und ihrer Umsetzung.

In der Praxis werden Stabilitdatsprobleme oft aus zwei verschiedenen Perspektiven ange-
gangen. Die erste, meist bei linearen Systemen, zielt darauf ab, jegliche Instabilitdten zu
vermeiden, da diese zerstorerische Folgen fiir Komponenten in mechanischen, elektrischen
und elektronischen Systemen haben konnten. Im Gegensatz dazu zielt die zweite Perspektive
bei nichtlinearen Systemen darauf ab, das System in Regionen der Instabilitét fiir die triviale
Losung zu treiben, wihrend nach stabilen stationdren nichttrivialen Losungen der zugrunde
liegenden Differentialgleichungen gesucht wird.

Mit dem Aufkommen von Mikro- und Nanosystemen konnte die zweite Perspektive mehr an
Bedeutung gewinnen. Das liegt daran, dass diese Systeme unter normalen Betriebsbedingungen
ein typisches nichtlineares Verhalten und hohere Amplituden aufweisen konnen als makroska-
lige Systeme. Hohere Amplituden ermoglichen in diesem Sinne eine bessere Verstarkung einer
Eingangsanregung und damit eine hohere Empfindlichkeit von Miniaturmessgeraten. Sind die
Systemparameter zudem zeitperiodisch, konnte sich die triviale Losung bei den so genann-
ten parametrischen Resonanzen als instabil erweisen. Bekannt als parametrisches Pumpen in
Mikro- und Nanosystemen wird die Systemantwort in der Regel bei diesen Resonanzfrequenzen
verstarkt.

Aus diesen Griinden konzentriert sich diese Arbeit hauptsachlich auf parametrisch angeregte
nichtlineare Systeme. Dennoch wird in dieser Arbeit ein systematischer Denkansatz verfolgt, bei
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dem die Urspriinge der Destabilisierung in zeitinvarianten Systemen untersucht werden, bevor
eine theoretische Studie iiber zeitperiodische Systeme im Allgemeinen und zeitperiodische
nichtlineare Systeme im Besonderen durchgefiihrt wird.

In dieser theoretischen Studie wird eine innovative Idee fiir die M/NEMS-Industrie vorgestellt,
ndmlich die breitbandige parametrische Verstarkung durch eine bimodale Anregungsmethode.
Diese Idee wird dann in Mikrosystemen anhand eines speziellen Beispiels, dem Mikrogyroskop,
umgesetzt. Da dieses Geréat im Vergleich zu anderen Tragheitssensoren sehr kostengiinstig ist,
wird es derzeit weiterentwickelt, um eine hohere Empfindlichkeit und Genauigkeit zu erreichen.
Zu diesem Zweck werden die theoretischen Ergebnisse, einschlief3lich der erwahnten Idee, in
diesem Geridt umgesetzt und erweisen sich somit als effektiver Beitrag zu seiner Leistung.

Aufderdem wird eine experimentelle Untersuchung an einem analogen Mikrosystem durch-
gefiihrt. Durch die experimentelle Studie wird ein elektronisches System eingefiihrt, um die
vorgeschlagene bimodale parametrische Anregungsmethode auf das Mikrosystem anzuwenden.
Durch den Vergleich der Stabilitdtskarten in Theorie und Experiment wird das theoretische
Modell validiert.

Abschlief3end wird in dieser Arbeit eine theoretische Studie iiber parametererregte nicht-
lineare Systeme durchgefiihrt, dann auf Mikrogyroskopen implementiert und schliel3lich ex-
perimentell validiert. Dadurch setzt diese Arbeit einen ersten Schritt fiir den Einsatz der
vorgeschlagenen Anregungsmethode in der M/NEMS-Industrie.
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Abstract

The commencement of the semi-conductor industry in the second half of the last century gave
a surprising new outlook for engineered dynamical mechanical systems. It enabled, thanks to
the continuously evolving microfabrication methods, the implementation of Micro Electrome-
chanical systems (MEMS) followed by their nano-counterpart or NEMS. Nowadays M/NEMS
constitute a massive portion of the small-scaled sensors industry, in addition to electrical, optical
and telecommunication components. Since these tiny dynamical electromechanical systems
involve sometimes couplings between degrees of freedom as well as nonlinearities, the theory
of stability in dynamical systems plays a significant role in their design and implementation.

From a practical point of view, the approach to stability problems often takes two different
perspectives. The first one, most commonly in linear systems, aims to avoid any instability
which could cause destructive consequences for mechanical structures or for electrical and
electronic components. On the contrary in nonlinear systems, the second perspective aims to
drive the system into regions of instability for the trivial solution, while searching for stable
nontrivial steady-state solutions of the underlying differential equations.

With the advent of micro and nanosystems, the second perspective could acquire increased
importance. This is attributed to their capability to exhibit typical nonlinear behavior and
higher amplitudes at normal operation conditions, when compared to macroscale systems.
Higher amplitudes, in this sense, allows for a better amplification of an input excitation, and
thereby higher sensitivity for miniature sensors and measurement devices. In addition, if the
system parameters were time-periodic, the trivial solution could turn to be unstable at the so
called parametric resonances. Known as parametric pumping in micro and nanosystems, the
system’s response is usually amplified at these resonance frequencies for higher sensitivity and
accuracy.

For these reasons, this work is mainly focused on parametrically excited nonlinear systems.
Nevertheless, a systematic approach is followed in this thesis, where the origins of destabilization
are surveyed in time-invariant systems before proceeding to carry out a theoretical study on
time-periodic systems in general, and time-periodic nonlinear systems in particular.




Through this theoretical study, a novel idea for the M/NEMS industry is presented, namely
the broadband parametric amplification using a bimodal excitation method. This idea is then
implemented in microsystems, by investigating a particular example, that is the microgyorscope.
Given the low-cost of this device in comparison with other inertial sensors, it is being currently
enhanced to reach a relatively higher sensitivity and accuracy. To this end, the theoretical
findings, including the mentioned idea, are implemented in this device and prove to contribute
effectively to its performance.

Moreover, an experimental investigation is carried out on an analogous microsystem. Through
the experimental study, an electronic system is introduced to apply the proposed bimodal
parametric excitation method on the microsystem. By comparing the stability charts in theory
and experiment, the theoretical model could be validated.

In conclusion, a theoretical study is carried out through this work on parametrically excited
nonlinear systems, then implemented on microgyroscopes, and finally experimentally validated.
Thereby, this work puts a first milestone for the utilization of the proposed excitation method
in the M/NEMS industry.
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1 Introduction

The study of motion extends back in history for about three millennia since the start of
civilization in Egypt, Mesopotamia and China, motivated by the periodicity of celestial bodies
motion, and gravity on earth, among other phenomena. However, the surviving texts in the
context of deducing laws of motion carried the names of Greek philosophers, as Aristotle and
Archimedes, then those of Islamic scholars, as Ibn-Sina (Lat. Avicenna) and Ibn-Bajja (Lat.
Avempace), all through the Renaissance scientists Galileo Galilei and Isaac Newton [1, 2],
when these laws took finally a correct mathematical form.

The study of dynamical systems started to take its formalism from the works of Hamilton,
Lagrange, Jacobi and Poincaré. This study is concerned with any mathematically defined system
with state variables that undergo time evolution after being set initially to some initial conditions,
or subjected to external excitation. The definition itself implies the time differentiation of the
state variables. Time, therefore, provides the basic mathematical structure of a dynamical
system, as being the independent variable. However, if the system parameters happen to be
time-dependent, a totally different system will then be studied, which is called a time-varying
system. A special type is time-periodic systems, where the time-varying system parameter has a
specific periodic time.

Turning from this abstract picture to more physical grounds, we find that the most common
dynamical systems in classical mechanics involve oscillations, as a result of having an inertia and
a restoring force. This essentially means that the mathematical formulation includes second
order derivatives.

The dynamical system in this sense could include linear as well as nonlinear terms. Although
almost all phenomena are nonlinear in nature, the linear approximation was found in most
practical cases to be satisfactory. However, at high amplitudes or special conditions the linearized
models lose ground in favor of nonlinear models.

Besides time-periodicity and nonlinearity, the dimensionality of the system has a significant
influence on its dynamics. Although systems are naturally continuous in classical physics, the
discretization in space was found to be of great importance, reducing a partial differential




equation to a set of n ordinary differential equations, thus defining the system’s dimensions.

By classifying dynamical systems according to the three aforementioned aspects, that is,
time-dependency of system parameters, linearity or nonlinearity, and dimensionality, we find
the class of multi-degree-of-freedom (M-DoF), nonlinear, time-periodic systems of great interest.
The interest in this class of problems arose due to two different reasons. Firstly, although each
of the three aspects of this class was discussed extensively in the literature, but much lesser
focus is given to this class specifically, formed by the combination of them. Secondly, this
class of problems happens to appear naturally in an important and exponentially increasing
branch of applications of dynamical systems, which is micro- and nanosystems [3, 4]. For these
reasons a large interest is grown over time to explore this class of problems more thoroughly
on one side, and on the other side to consider the implementation of this theoretical work
for the development of micro and nanosystems. From a practical point of view, the time-
periodicity of system parameters could be understood as parametric excitation of the system.
Therefore, a compact name for this class of problems is given under the title of parametric
excitation of coupled nonlinear microelectromechanical systems, where coupled hints at the
multi-dimensional systems. Microsystems are specified here, while nanosystems are excluded,
since only microsystems were considered in this work, however, the theoretical results can be
extended to nanosystems as well.

A large portion of micro- or nanoelectromechanical systems (M/NEMS) can be categorized
as sensors and actuators, whose most important key performance indicator is the sensitivity to
measured quantities. Thus, numerous amplification techniques were introduced to improve the
sensitivity of these devices. From this perspective, parametric excitation offers here an important
method of amplification, named parametric amplification, which gained a significant importance
for small-scaled sensors exhibiting oscillatory motion, such as resonators. The connection
between parametric excitation and signal amplification comes through the destabilization effect
of parametric excitation. Therefore, through the analysis of parametrically excited nonlinear
MEMS, special attention will be given to the destabilization of the trivial stationary solution,
and thereby, to the effect of nontrivial steady-state solutions, in promoting the amplification of
the response.

This work, however, will discuss also the destabilization and amplification effects in linear
and time-invariant systems, before going through nonlinear time-periodic ones. This approach
will help to add more explanation and insights into the targeted class of problems.




1.1 Parametric excitation

The term parametric excitation refers to the existence of displacement-dependent or velocity-
dependent or sometimes inertia-dependent terms with time-periodic coefficients in the system’s
differential equations, where the excitation of the system takes place through the system
parameters. The behavior of these systems was known to be first discussed by Faraday through
his experiments on producing wave motion in fluids by vibrating a membrane or a plate in
1831 [5]. Faraday waves, were therefore named after him, and refer to unstable nonlinear
standing waves appearing on liquids enclosed in a vibrating container. He observed that these
waves have one half the excitation frequency, which is the typical signature of the primary
parametric resonance. These were explained afterwards by Lord Rayleigh in 1883 by relating
them to the Mathieu equation [6]. Mathieu studied standing waves in fluids, and was interested
in putting a theory describing the natural modes of lakes with elliptical boundaries. In 1873
through his study, the well-known equation of motion with parametric excitation was deduced
and bore his name, to be the Mathieu equation.

In the following decade 1880s, two major developments were introduced. Floquet presented
his theory to solve time-periodic differential equations, which can offer a numerical solution.
This solution serves as a reference for verifying approximate analytical solutions. The second
achievement was Hill’s infinite determinants, which were basically intended to solve the three
body problem, known as Hill’s lunar equation [7]. Through his work, the solar perturbations
of the lunar periodic motion lead to differential equations with time-periodic coefficients. Then
through the use of the Fourier series to solve it, he could arrive at Hill’s infinite determinants,
through which the borders of stability could be derived [8]. The well-known stability chart for
the Mathieu equation was presented first by Ince in 1927 and by M.J.O. Strutt in 1928 [9],
the former was out of a mathematical interest while the latter was to describe the electronic
motion in periodic crystal lattices. In this latter research field specifically the prominent Bloch’s
theorem in quantum mechanics was introduced for the same problem, based on the Floquet
theory but expanded in three dimensions [10].

Turning the problem into multi-degree-of-freedom systems, other phenomena can be obser-
ved. An overview of the effects of parametric excitation in multi-degree-of-freedom systems is
given in Mettler [11]. In the few decades afterwards, articles and monographs were published
explaining the instability conditions, and deducing approximate analytical expressions for the
stability borders for primary and secondary combination resonances [8, 12, 13, 14]. Theoretical
investigations were carried out from different perspectives. The first approach, which started
with Mathieu’s work itself, is to explore the stability/instability conditions under parametric




excitation in various system configurations, with linear or nonlinear elements [15, 16, 17, 18].
Moreover, an exact solution for the Mathieu equation was always an endeavor. Different studies
approached this problem series expansion, such as Laurent series [19]. Another approach,
however, is to find stabilizing effects of parametric excitation. This approach stems from the
investigation of A.Tondl [20], and introducing the term anti-resonance in this context [21]. The
formulation of full suppression of self-excited vibrations through parametric excitation was
further studied afterwards [21, 22]. This stabilizing effect was brought further by F.Dohnal by
deriving approximate analytical expressions for stability boundary curves under synchronous
parametric excitation at combination frequencies [23] and extended afterwards by including a
second order approximation using the averaging method [24].

Experimentally investigating parametric resonances, on the other hand, dates back to Fa-
raday’s and Mathieu’s works on standing waves in fluids. In the past decades, several experi-
mental investigations were conducted. Following the previously mentioned classification, one
approach is to offer experimental proof for the stabilizing effect of the parametric excitati-
on [25, 26, 27, 28]. Nevertheless, experiments were also conducted to explore the instability
regions, sometimes named Arnold tongues, in the stability chart. They were conducted in macro
systems [29, 30, 31], or in microsystems [32]. In experimental investigations of parametric
resonances there is a common contrast between macro and microsystems. In the former case,
there exist experimental studies to exhibit parametric resonances for the sake of understanding
the phenomenon, such as in [33], but these resonances are rarely considered beneficial in
macrosystems. At this scale, it is usually referred to resonances as being detrimental to the
structure’s health, since the system’s nonlinearities can not usually offer enough limitation
of amplitudes without causing failure or fatigue, that is why normally a control scheme is
presented in order to control the response amplitude [29]. An exceptional study, however, is
conducted by Rhoads et al where they investigated the possibility of constructing a macro
parametric amplifier in analogy with microsystems [34].

A specific phenomenon receives a special attention in this work, namely, the broadband
destabilization effect. In his investigations about parametric excitation of M-DoF systems,
Cesari [35] in a special case found that instability can be caused at all excitation frequencies,
that is when a phase-shift in the parametric excitation coupling terms was included, this was
called afterwards as the case of total instability. Further contributions to this problem were
given by Schmieg [36], who investigated the problem analytically using slowly varying phase
and amplitude to determine the stability borderlines. Moreover, he could validate his work
experimentally on an analogue electrical circuit. Eicher [18, 12] also considered this case of
excitation with a specific focus on the determination of stability borderlines, and their shifting




in the stability chart as a result of including a phase-shift in the excitation terms. Recently,
Karev et al [37, 38] included the effect of circulatory and gyroscopic effects in the study of
the problem, seeking a better generalization of the problem. A more compact name, namely
asynchronous parametric excitation [39, 38], is given to this case where the coupling terms
in the parametric excitation matrix are phase-shifted. This expression will be used in this
work interchangeably with phase-shifted parametric excitation, more specifically when the
phase-shift is equal to /2.

Investigating this problem in nonlinear systems makes it a more specified problem, since
most of the previously mentioned works were on linear systems with some brief calculations
after adding nonlinear terms [40, 36]. This, however, did not include several possible cases,
such as the inclusion of intrinsic parametric excitation terms or the consideration of nonlinear
damping [36]. In a broader field of research, parametrically excited two-degree-of-freedom
nonlinear systems we discussed before in the literature [41, 42], however, with less attention to
coupling parametric excitation terms (off-diagonal terms in the parametric excitation matrix),
much less including a phase-shift between these terms. According to this reviewed literature, it
could be concluded that the asynchronous parametric amplification of nonlinear systems was
not thoroughly enough discussed in the literature, which makes this point an interesting point
of study in this thesis, especially due to its relevance to micro- and nanosystems, which leads
us to the next section.

1.2 Nonlinear dynamics of M/NEMS

Micro- and nano-electromechanical systems (M/NEMS) represent an increasingly developing
technology that gradually wide-spread to include a wide spectrum of applications, thanks to to
the evolving micro-fabrication techniques. They constitute nowadays important elements in
electrical, electronic, optical and telecommunication systems. Examples include radio-frequency
(RF) components, such as switches and filters, in addition to optical elements, as digital micro-
mirrors devices (DMD) and equalizers, not to mention microwave oscillators and photonic
crystals, to name a few [43]. In the sensors industry, they stand out in comparison with
other technologies in measuring physical or chemical quantities [44]. A great portion of the
commercially available accelerometers, micro-gyroscopes, time-keeping oscillators, mass- and
force-sensors are based on such devices [45]. This extends to include bio-MEMS used in
genomic and protein analysis [46], not to mention imaging technologies, most importantly the
atomic force microscope (AFM) [47]. Furthermore, in fundamental science research extensive
effort is put to understand atomic, molecular and quantum phenomena using NEMS [48].




Moreover, NEMS started to take part in the continuously growing pursuit of developing quantum
technologies since the first signs of quantum-behavior in a nanosystem [49]. Most recently,
nanomechanical resonators could play an important role in the transfer of quantum information
(a qubit) from the microwave regime into the optical one [50].

Due to the significantly high amplitudes and the used material properties, M/NEMS can
exhibit nonlinear phenomena under normal operating conditions. Nonlinear terms in differen-
tial equations of physical systems arise out of different origins, such as geometry, elasticity,
piezoelectricity, and motion constrains among others. However, in M/NEMS the influence of
these forces turns to be of larger significance, in addition to the presence of other forces which
were not commonly considered in macrosystems, such as van der Waals, Casimir, and adhesion
forces. The greater influence of all the mentioned forces is related to the miniature scale of the
system’s characteristic dimensions, which can be better explained by non-dimensionalization of
the mathematical model [4]. This influence can also be attributed to the strong intercoupling
of different forces, since transduction from one type of force field to another does not always
have to be linear. An illustrating example is the bimorph actuators, which transforms electrical
potential to thermal flow and afterwards to elastic deflection at the same spot simultaneous-
ly [51, 52]. In addition, micro and nano devices are sometimes also designed to exhibit a
nonlinear behavior for the sake of amplification and enhancement of sensitivity [53].

In M/NEMS, the search for a resonator design with a higher amplification factor Q is steadily
increasing [54]. To this end, several nonlinear dynamical phenomena, such as nonlinear modal
couplings, internal resonances, sub- and superharmonic resonances are exploited for the sake of
obtaining high oscillation amplitudes [55]. On another hand, at millikelvin temperatures nano-
oscillators could approach the quantum-ground state level, i.e. the quantization of vibrations
states [56]. These efforts lead to the idea of realizing a quantum bit (qubit) based on nano-
mechanical resonators, which could have significant implications in the development of the
widely pursued quantum information systems. This idea relies largely on the anharmonicity of
the oscillator which could be achieved by introducing nonlinearities in the system [57].

For better amplification and higher Q factor, parametric resonances are commonly used as
mechanical amplifiers in N/MEMS [58], and called parametric amplifiers, which refers also to
electronic or optical parametric amplifiers. Mechanical amplification in this sense has other
advantages than just increasing the sensitivity or the gain of the system. An additional benefit is
that they can be superior to electronic counterparts in terms of secondary noise production [59].
Moreover, mechanical parametric amplification provides thermal noise squeezing effect, which
could have significant implications in terms of measurement precision at the nanoscale [60].

Thus, parametric excitation in M/NEMS plays an important role to achieve better sensitivity




as well as precision levels. The investigation of parametric excitations in MEMS was first carried
out in the well known work by Rugar and Griitter[60], in which they report the noise squeezing
effect of parametric resonances. Afterwards, a long list of scientists dedicated extensive research
to the subject. Turner et al [32] reported detecting five parametric resonances in a torsional
MEMS resonator. In the last two decades, the parametric amplification scheme paved its
way into different applications, such as mass-sensing [61], inertial sensing [62, 63, 64, 65],
microscanners [66] and atomic force microscopy [67].

In conclusion, the nonlinear dynamical behavior is more pronounced in micro and nano-
systems than larger scaled systems. In addition, parametric excitation of these systems is a
preferable amplification method for the explained reasons. For these reasons, applying the
theory of parametrically excited nonlinear systems on M/NEMS would be of significant interest.
In this work, the theoretical study is applied on the micro-ring gyroscope. Thus, a review of
the previous research work on these devices is given special attention in the next section.

1.2.1 Micro-gyroscopes

MEM gyroscopes are an example of Coriolis Vibratory Gyroscopes (CVG), also called Vibrating
Structure Gyroscopes (VSG). They are usually based on two degree of freedom models, repre-
senting the drive and sense modes. Different structures were used for these models, which
can be sorted into discrete and continuous systems [68]. An example of the former is the
vibrating comb gyroscope and of the latter is the micro-ring gyroscope. In both cases the
primary/drive mode is actuated by an external force, and coupled to the secondary/sense
mode by the gyroscopic Coriolis forces only under the rotation of the ring reference frame.
The coupling gyroscopic force is linear in the rotation rate, and acts as an excitation for the
secondary/sense mode. The amplitude of the sense mode is then correlated to the rotation
rate, and thus the rotation rate could be measured.

Micro-gyroscopes were developed extensively in the last three decades. However, these
developments fall short of attaining the performance of other conventional gyroscopes [69].
Being lighter, smaller in size and lower in cost MEM gyroscopes can offer great potential for
navigation systems if they acquired the needed performance measures. These measures are
mainly the bias stability, the Angle Random Walk (ARW) and the scale-factor (sensitivity).
These could be greatly enhanced by decreasing noise and increasing sensitivity [70, 71]. Until
recently, researchers sought improvement of MEM gyroscopes to reach the tactical grade (0.1
deg/h Bias Stability) [72, 73]. However, the aim is still to reach the inertial grade (<0.01
deg/h) in MEM gyroscopes [73].




A major problem here is that the Coriolis force F.,, ;.;;s = 2mSi is usually very small, where
m is the vibrating mass, €2 is the reference frame rate of rotation, that is to be measured, and = is
the primary/drive mode displacement. Both the mass m and rotation rate €2 have relatively very
small values. Therefore, in order to attain high scale factor (sensitivity) of the measurement
a significantly high actuation force is to be used. However, this leads to higher noise due to
the electric feedthrough caused by parasitic capacitance [71]. On the other hand, another
major problem is the mismatch between the drive and sense modes. That is because if they
are untuned, the Coriolis gyroscopic term F.,,.;,;is = 2mS)i, resulting from the primary mode
oscillation x, will not be in resonance with the secondary/sense natural frequency. Therefore in
order to increase the system sensitivity and decrease noise, i.e. increase Signal to Noise Ratio
(SNR), several design and control schemes have been introduced in the literature to address
both mentioned problems [64, 74, 63].

On the other hand, in designing high Q devices, for attaining high sensitivity, signals would
be impaired by mechanical and electronic noises, a main source of which is the electronic
amplification of the small value Coriolis force [75]. A mechanical-based amplification can
then offer a better solution with respect to noise reduction before the electronic readout
interface [74]. In that sense, parametric resonances proved to be significantly advantageous,
since they are not damping-dependent and cause noise squeezing [60, 76], which can enhance
both ARW and bias stability. Moreover, parametric amplification can spare the need for higher
amplitude of forcing elements, this leads to lower electrical feedthrough due to parasitic
capacitances [71]. In this way, it is possible to increase the device’s sensitivity without impairing
the SNR.

In MEM gyroscopes parametric excitations were first considered by Oropeza-Ramos et al [62]
for the conventional comb-gyroscopes and by Gallacher et al [64] for micro-ring gyroscopes.
To the best of the authors’ knowledge, in most of the investigated cases in the literature only
one degree of freedom was parametrically excited except for few studies, like the one by the
Gallacher team [71] and in the recent one by Zhou et al [77]. However, both contributions did
not investigate the coupling between the two parametric excitations. Parametric resonances
were investigated as well in gyroscopes that exhibit nonlinear effects, either for the sake of
optimizing the parametric amplification [74], or to investigate the possibility of having self-
induced parametric amplification [78, 76] or for increasing the bandwidth of amplification [63].

In all the given cases, the parametric amplification is sought in general at the parametric
resonance frequencies, and mainly at the primary resonance frequency, which is double the
natural frequency. Authors normally differentiate between a parametric resonance and a
parametric amplification [67]. While the former describes having an unstable trivial solution,




the latter suggests exciting the system just below instability, both excitation schemes are
applied at the parametric resonance frequency. However, in the first case the amplitude is
only limited through the nonlinear response, i.e. by having a nontrivial stable solution. For
the case of parametric amplification, an important common remark in the literature is that
the amplification gain is highly sensitive to the phase shift between the parametric excitation
and the drive forcing excitation. Using this observation, either the amplification gain or the
suppression of the quadrature errors could be optimized [74, 76].

However, tuning the parametric excitation frequency at the system’s resonant frequencies
can be also challenging, and the loss of the quality factor, i.e. the sensitivity, can follow a slight
mistuning. For this sake, the broadband destabilization effect described before could be of major
significance. This effect occurs through an asynchronous coupling parametric excitation, which
was neither investigated before for nonlinear systems in enough detail as explained, nor was it
exploited for microsystems, neither theoretically nor experimentally. Thus, a specific interest
arises in this case to investigate this effect in microsystems due to its uniqueness in the theory
of parametric excitation, taking the micro-ring gyroscope as a suitable example.

1.3 Problem statement and research objectives

According to the previous review of literature, several research questions could be found, which
were either not investigated in enough detail or were not discussed at all.

Firstly, although the theory of parametric excitation or the theory of differential equations with
time-periodic coefficients were investigated for about one and half centuries, a lesser effort was
given to specific cases for M-DoF systems. More precisely, the broadband destabilization effect
appearing through asynchronous coupling parametric excitation, in other words parametric
excitation with phase-shifted off-diagonal terms, in two-degree-of-freedom systems were only
discussed in a few number of contributions. This indicates that this case is still not adequately
covered. This was found to be correct, especially when a nonlinear system is addressed.
Moreover, the analytical description of parametric amplification below the onset of instability,
named non-resonant parametric amplification in this work, was not elaborated before in the
literature despite the importance of this effect in parametric amplifiers.

Secondly, micro and nanosystems exhibit a nonlinear behavior more significantly than macro-
systems as explained. For these systems, a nonlinear modeling should be highly recommended
for a precise description of the system dynamics. Moreover, the implementation of parametric
excitation in these systems proved through the past three decades to be of significant value.
Therefore, the exploitation of the theory of parametric excitation in nonlinearly modeled micro




and nanosystems should be considered necessary. However, the discussion in the literature on
the nonlinear analysis of these systems is far from being comprehensive . On the other hand,
the broadband destabilization effect happens to be of major importance in terms of increasing
systems’ sensitivity and adding flexibility to the tuning of the excitation frequency. Both of
these benefits are considered important performance indicators in the sensors industry.

Thirdly, the experimental validation of the aforementioned asynchronous parametric excitati-
on was not implemented before in mechanical systems. In addition, the behavior of the system
at the difference combination frequency had never been experimented in any type of systems.
Moreover, since this excitation scheme offers instability at non-resonant frequencies, thus, the
instability conditions at these frequencies should be also explored.

These unaddressed questions leaves the opportunity to be covered through this work. There-
fore, the main research objectives of this work will be:

* Introducing a more detailed investigation of parametrically excited nonlinear systems,
while studying the role of asynchronous excitation.

* Presenting an analytical explanation for the parametric amplification in the vicinity of
the instability threshold.

* Implementing the discussed theory of parametric excitation in micro-ring gyroscopes
using linear and nonlinear modeling.

e Carrying out an experimental investigation to explore the instability conditions of a
two-degree-of-freedom microsystem using the discussed theory for the sake of validation.

1.4 Outline

This work can be divided into three major domains of contribution. First, a development
in the theory of time-periodic multi-degree-of-freedom systems is introduced and especially
when nonlinearities are involved. Secondly, an implementation in a MEMS, namely, micro-
ring gyroscope, is provided, again through linear and nonlinear modeling. And finally, an
experimental validation of the mostly used mathematical model in this work is presented.
The first domain is presented in chapter 3. However, a preparatory discussion about sources
of destabilization in time-invariant systems is presented first in chapter 2, with some newly
analyzed problems. A part of section 2.3, was published in an original research paper [79],
where a simple circulatory nonlinear system was analyzed explaining how an autonomous

nonlinear system could exhibit instability through follower forces.

Through the discussion, a bottom-up approach is followed. This means that the discussion
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starts with the simplest form of the equation of motion, explaining the possible sources of
instability or destabilization, that is in linear time-invariant single-degree-of-freedom (S-DoF)
systems. Then we turn to M-DoF systems and observe the added sources of destabilization by
increasing the dimensionality. The discussion proceeds to include nonlinear systems looking as
well for the added sources of instability. This approach is then extended as well to time-periodic
systems in chapter 3. Using this approach, a break-down of the sources of destabilization could
be introduced giving a deeper insight into different phenomena.

In chapter 3, the discussion starts with results from previous works about Mathieu equation
and proceeds again to M-DoF time-periodic systems giving some more insights into them by
applying a numerical analysis using the Floquet theory and an analytical one using the method
of normal forms. Section 3.1 was published as a part of an original paper [80]. At the end of this
section an analytical study is presented in order to explain the parametric amplification which
occurs near the border of instability. Afterwards, the discussion follows towards parametrically
excited nonlinear M-DoF systems, where the multiple scales method is used to carry out a
bifurcation analysis around the resonant frequencies. Through the analysis, some interesting
results are presented, giving some understanding of this class of systems before implementing
the theory in microsystems. Section 3.2 constitutes most of the original work [81] submitted

and being reviewed.

The second domain of this work is concerned with the implementation of the discussed
theory in micro-ring gyroscopes. We start our discussion with linear modeling of the micro
gyroscope in chapter 4 using Hamilton’s principle, then the origin of the intrinsic parametric
excitation is calculated. Afterwards, the asynchronous parametric excitation is introduced to the
micro gyroscope through a suggested electronic circuit, and the amplification of the system’s
response was obtained. Most of this chapter is a part of a published original paper [80], with
some results published in [82]. The discussion then continues to the case of the nonlinearly
modeled micro-ring gyroscope in chapter 5 In this case the autonomous system is first analyzed,
i.e. without parametric excitation, and the fixed points were identified. Afterwards a simplified
excited model is investigated to obtain some first understanding of the system, since the
system’s equations are shown to be of high complexity. Afterwards, the system is analyzed
again using the method of normal forms in full detail and the resonance curves and limit cycles
were obtained. A part of this chapter is published in the original article [83].

Finally, this work is concluded by validating the linear time-periodic system with asynchronous
parametric excitation experimentally in chapter 6. This is carried out on a system of two
coupled micro-cantilevers. We first introduce the test-rig and the system of measurement, the
preliminary experiments were discussed, and the application of the bimodal asynchronous
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parametric excitation is explained. The results were discussed afterwards and compared to the
mathematical model.

The experimental work was carried out in collaboration with the research team of Prof.
Thomas Sattel at the mechatronics department of the Technical University of Ilmenau. The
electronic circuit was partly implemented by Hans-Georg Pietscher for the pre-amplification of
the micro-cantilevers, in addition he contributed to bring up the setup of the software platform
used for measurement and excitation. Moreover, the technical advice of Robert Reichert was also
considerably valuable in the phase of electronic circuit implementation. However, the design
and implementation of the electronic circuit board used for the parametric excitation, which is
the contribution of this work, is accomplished by the author, in addition to the measurement
scripts and the carrying out of the experiments.

12



2 Time-invariant systems

In this chapter, the stability of time-invariant systems will be briefly discussed. Since this
work is mainly concerned with parametrically excited nonlinear systems, the understanding
of the stability problem in time-invariant systems will serve as a suitable introduction. In
this introduction, however, two nonlinear systems will be newly discussed. One is concerned
with the coupling between two Duffing oscillators, and the other focuses on the effect of
circulatory forces. The latter example can also serve to understand the role of the asymmetry
of the stiffness matrix, in a wide sense, in destabilizing the system. The chapter will begin by
discussing time-invariant linear systems and proceed with nonlinear systems.

2.1 Time-invariant linear systems

Consider a generic oscillatory system of the form

Mg(t) + (D +G)q(t) + (K + N)q(t) = f(1), (2.1)

where q(t), f(t) are a time-dependent vectors, () = d/dt,

M=M" D=D" K=K,

G=-G", N=-NT,

and M, D, K are the mass, damping and stiffness positive-definite symmetric matrices respec-

tively, while G, N are the gyroscopic and circulatory skew-symmetric matrices respectively.
These definitions will be maintained throughout the thesis unless otherwise stated.

To discuss the stability of this system’s solutions, we define the stability of a solution in the

sense of Lyapunov stability. For an autonomous linear or nonlinear system, where f(t) = 0, we
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rewrite the system in first order to be
2(t) = f(=), (2.2)

where f(z) is the system’s vector field, then the Lyapunov stability means [84]:

For a fixed point z*, where f(z*) = 0, z*is said to be Lyapunov stable if, given € > 0, there
exists a 0 = &(e) > 0 such that, for any other solution, y(t) of (2.2), satisfying |z*(to) —y(to)| < 6,
then |z*(t) — y(t)| < e fort > to, ty € R.

While z*is said to be asymptotically stable if it is Lyapunov stable and there exists a 6 > 0 such
that, for any other solution, y(t) of (2.2), if |z*(ty) — y(to)| < 9, then tliglo |z*(t) —y(t)| = 0.

In linear systems, as in the case here, this stability definition reduces to the examination of
the real parts of the system’s eigenvalues. The system is then called Lyapunov stable, if and only
if all real parts of the eigenvalues are not positive, and the algebraic and geometric multiplicities
of the eigenvalues with vanishing real parts coincide. While the system is asymptotically stable
if the real parts of all eigenvalues are strictly negative [85]. However to determine the stability
of a fixed point z* in a nonlinear system, some information could be deduced by linearization.
The same stability criterion then applies by linearization of the nonlinear system but only if
the fixed point is hyperbolic according to the Hartman-Grobman theorem, that is when no
real part of any eigenvalue of the linearized system vanishes. However, if the fixed point is
non-hyperbolic, the stability of the solution in the linearized system can not be extended to the
corresponding stability in the nonlinear system [86], and a nonlinear stability analysis will
then be required.

The bottom-up approach explained in the introduction to study the potential sources of
system’s destabilization in these systems is to be followed here by discussing first a single-
degree-of-freedom (S-DoF) system. In this case only mass, damping and stiffness terms will
be included, since gyroscopic and circulatory forces can only exist in multi-degree-of-freedom
(M-DoF) systems. In a S-DoF system instability is caused by either negative damping or stiffness
terms, or by the appearance of secular terms in the trivial solution due to resonance at zero
damping.

By adding degrees of freedom to the S-DoF system, the trivial solution could be then
destabilized due to the appearance of skew-symmetric couplings existing in G, N matrices.
Firstly, the circulatory non-conservative forces can destabilize the solution of an undamped
system if they were large enough. Briefly, if we consider D = 0,G = 0, f(¢) = 0 in (2.1), giving
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an M K N system, in which

2 _
M- |V ko Y NV P (2.3)
0 1 0 w? p 0

the characteristic equation becomes

2 2
- 1
M= —(wl; ) 4 5\/ (w} — wd)? — 4p? (2.4)

and the instability condition reads
4p* > (w? — wi)?, (2.5)

which means that large non-conservative circulatory forces can cause flutter instability [87].

Another destabilization effect occurs by adding positive damping to the this same M KN
system. Although damping, in general, is thought of as a stabilizing mechanism, but in this case
it destabilizes the system’s trivial solution, this phenomenon is called Ziegler destabilization
paradox [85, 88]. The destabilization paradox occurs as well for a M DGK in the case of
having a negative stiffness element in the K matrix and a stabilizing gyroscopic matrix. That
means, in the undamped version M GK system, the system’s trivial solution is stabilized by
the gyroscopic forces, since the negative stiffness terms alone drive the solution into instability.
However, if pervasive damping is added to this stabilized solution, it looses its stability again [87],
yielding another form of the destabilization paradox.

2.2 Time-invariant nonlinear systems

We turn now to discuss the effect of adding nonlinear terms to the system. This changes the
system (2.1) into

Mg(t) + (D +G)q(t) + (K + N)q(t) + fu(g, 4, t) = f(t), (2.6)

where the vector f,, represents the added nonlinear terms. We will follow the discussed
perspective in highlighting the sources of destabilization by building up the complexity of the
system step by step and discovering these sources in each step. In the current case an example
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will be discussed for elaboration. Consider the two-degree-of-freedom system

Uy + wflh + pug + /ﬁu? + 711'6:{) — aqup = 0, (2.7)
iy + wiug + Hotty + koul + Yoty — anuy = F cos(yt), (2.8)
where w?, o; and p; represent the stiffness and damping matrix elements respectively, k;,;
represent the nonlinear terms, and F, () the forced excitation amplitude and frequency. This

system represents two Duffing oscillators with a single linear stiffness coupling element «;.
Without this coupling the system will lose the effect of dimensionality on its behavior.

2.2.1 The multiple scales method

In order to analyze the system’s behavior and the stability of its solutions, the multiple scales
method is used [41, 89]. A first step is to examine the effect of perturbing the corresponding
linear system by adding the small parameter e, that is

ill + w%ul + € (,ull'tl + /ﬁui’ + ”)/111? — a1u2) = O, (29)
iy + Wity + € (muQ + kol + yptid — agul) = eF cos(§25t), (2.10)

then we seek a solution in an expanded form

ul(t, 6) = UIO(T()yTl) + EUH(T(),Tl) + ceey (2113.)
Ug(t, 6) = UQQ(To,Tl) + EUQl(T()?Tl) + ceey (leb)

where T; = ¢'t, D; = 0/0T; and

0

5 = DO —|— EDl —|— ceey
82

55 = D3 +2e¢DyD; + ...

(2.12)

Inserting (2.11) and (2.12) in (2.9) and separating according to the order of ¢ gives: for €°,
Dy + wiugg = 0, (2.13a)

Diusgg + witigg = 0, (2.13b)
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while for €,
DSUH + wfun = —/,LlD()UlO — k‘luifo — ’YlDoui{)O + a1 U9 + 2D0D1U107 (2143.)

Dg’dgl -+ wgum = _IU/QDOUQO — kgugo — ’72D0U§0 + QU + 2DOD1U20 + F COS(QfTo). (214b)

Solving (2.13) gives as usual
uio(To, Ty) = Ai(Th)e™ ™ + Ay (Ty)e ™7, (2.15a)

UQ[)(T07 Tl) = A2 (Tl)eiWTO —|— AQ(T1>6_iw2TO, (215b)
by inserting this solution in (2.14) we get

Diuyy + wiugy = — i 0y Ay — @170k Ay + e 1 oy 3 A3 4 ™2 o A,

(2.16a)
= 3 0k AT AL — 3ie™ T Wi ATAL — 26" 0w DAy + OC,

zwz 0

2 2 3 Tt - 3iwo T 3 T
Dyuay + wyug = fhowo Ay — €72 0ky Ay + 172 0y wQA + e1Ton, Ay

, _ , 1
36ZW2T0]€2A§A2 — 3Z'€ZW2TO’72(,U2A2A2 Zw2TOLU2D1A2 —|— QGZQITOF —f- OC
(2.16b)

where C'C' corresponds to the complex conjugates of the right hand side terms.

In view of (2.11), the solution of (2.16) represents the perturbation of the basic harmonic
solution (2.15), which therefore includes all the interesting dynamics of the system. Since
the main assumption here is that the expansion in (2.11) is converging to an unattainable
exact solution, then the terms wu;, us; should not be unbounded. This means, all sources of
resonances, named secular terms, in (2.16) should be eliminated. This procedure puts a limiting
condition on the amplitudes of first order correction terms w1, us; in order to adhere to the
asymptotic convergence of the solution. This is based on the fact that the nonlinear terms, in
addition to the forcing term here, act only as a perturbation of a corresponding linear system.

In order to eliminate the secular terms a distinction should be made between different
resonance cases in the system, since for each case different terms appear to be resonant. In the
general non-resonant case, that is when (2, not near any of the system resonance frequencies,
eliminating the secular terms gives differential equations for the amplitudes A;, A,, which are

ZioulDlAl + Z‘[LlwlAl + 3]{?114%141 + 3@’71&)%%1%/11 = O, (217&)
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2iw2D1A2 + i/LQWQAQ + 3k2A§Ag + 3@")/2(,0314%14_2 =0. (217b)

It should be noted here, that the forced excitation is considered to be a weak one, as a result
we notice no effect in the amplitudes equations at non-resonant frequencies. However, if a hard
excitation is considered, that is not multiplied by the small parameter ¢, this means rewriting
(2.13) and (2.14) to be

Diuyg + wiugg = 0, (2.18a)

Diugg + wiusy = F cos(Ty), (2.18b)

Dguyy + wiuyy = —py Dourg — kyuiy — 1 Dowsy + aqugg + 2Dg Dy, (2.19a)
Diugy + witiyy = — 12 Dotiag — katisy — Y2 Doty + aptigg + 2D Dyusp, (2.19b)

then the solution of the zero-order equation will be
uro(To, Ty) = Ay(Ty)e™ ™ + Ay (Ty)e ™™, (2.20a)

g0 (To, Ty) = Aa(T7)e™? ™ + Ay(Ty)e ™10 4T cos(QTh), (2.20b)

where I' = F//(w3 — Q7). Then substituting this solution again into (2.19) and eliminating the
secular terms yields

2iw; D1 Ay + ipwi Ay + 3k A2AL + 3imwiAA; =0, (2.21a)

- ~ 317
2iw2D1A2 + iMQCUQAQ + 3/{Z2A§A2 + 3272&)3143142 + TAQ(]{ZQ + Z"YgQ?cCL)Q) = O, (221]3)
which encompasses an additional term when compared to (2.17) corresponding to the effect of
the external excitation. This case, however, becomes interesting only for observing the forced
excitation effect in the non-resonant case, or in the case of studying sub- and superharmonic
resonances.

As a first attempt, we study the case of the unforced Duffing oscillator, i.e. I' = 0, by
investigating three parameters which are affecting the system dynamics, the linear and nonlinear
damping coefficients ;, v; and the nonlinear stiffness coefficient k;, especially when they change
their sign. However, w; is always positive since we assume all the systems studied here to be
oscillatory. Another remark about (2.17) and (2.21) is that they do not include any trace of «,
this means that the coupling between both degrees of freedom does not affect the non-resonant
condition. This means as well that studying any of both degrees of freedom is fairly equivalent
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and can be done individually. Thus, in speaking about the autonomous non-resonant case the
system reduces to a S-DoF system. This matches with our bottom-up study program here,
through which the causes of instability are studied by adding building blocks to the system in
the sense of mathematical terms.

The autonomous Duffing equation is studied extensively through the literature, see for
instance [41, 90]. But for the sake of this work we will only be interested in the case when the
nonlinearity brings an additional source of instability. First, we solve (2.21a) by writing the
amplitude A in a polar form

A(Ty) = ay(Ty)e" ), (2.22)

where a and ¢ are real functions of 7.
Substituting (2.22) in (2.21a) and separating real and imaginary parts gives

—2uwiad; =0, 2wia) 4 pwiay + 3ywiad =0, (2.23)

where the prime dictates a time-differentiation where there is only one time scale in this
equation. Here we find clearly that we have nontrivial steady state amplitudes a;, namely, by
setting a} = 0 we get

piwiay + S’yw:fai’ =0, (2.24)

which means that the possible steady state values of a, are

* * —H1
=0 = 2.25
G0 ai- [ (2.25)

where the second value exists only if ;1 and 7, have opposite signs. To examine the stability of

these solutions, we plug them in the differential equation (2.23), linearize around the fixed
point and calculate the eigenvalues. For any fixed point from (2.25), let a; = a} + da,, after
linearization this gives

5a) + (1 + Iwiai*)da; = 0. (2.26)

If the nontrivial value of af in (2.25) is inserted, this gives a negative damping with the
eigenvalue A = 2u;. This means, if the system has a positive linear damping p; > 0 but a
negative nonlinear damping ~;, an unstable limit cycle is obtained due to a subcritical Hopf
bifurcation. Thus, if a perturbation is initiated outside the limit cycle, the perturbed amplitude
da; and thus the perturbed solution u; = a; cos(wit + ¢1) will grow forever, even if the system
has a positive linear damping x; > 0. This instability is of pure nonlinear origin, and could not
be deduced by linear analysis [90].
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Although we started our analysis with a non-autonomous system, we could see that assuming
a weak force reduced the system into an autonomous one at non-resonant frequencies. However,
a different result is obtained for the same assumption but while detuning the excitation frequency
around the natural frequency of the second degree of freedom, that is

Qf = wy + €0, (2.27)
where o is the detuning parameter. By plugging (2.27) in (2.16), this yields
2iW1D1A1 + i/Llu)lAl + 3]6114%141 + 32’71&)?14?/11 = 0, (2283)

_ -1
QiWQDlAQ + i[LQCdQAQ + 3k’2A3A2 + 32’)/2(4}314%142 — §F620T1 =0. (228]3)
Again the amplitudes will be written in polar form
Al(Tl) = a1 (T1)€i¢l(T1), (2293.)

Ay(Ty) = ay(Ty)e 21, (2.29b)

then by substituting in (2.28) and separating real and imaginary parts give

1 3
wial + §u1w1a1 + g’ylw?a‘z’ =0 (2.30a)
/ 3 3
wlalgbl - gklal =0 (230]3)
/ 1 § 3.3 1 : _ _

Woly + 5 Hawaz + g 120202 2FSIH(O'T1 ¢9) =0, (2.30¢)

B |
W2a2¢2 — §k2a2 + §F COS(O'T1 - ¢2) =0 (230d)

Since the arguments of the trigonometric functions are composed of two terms which are
functions of the independent variable 77, a change of coordinates would be necessary in order
to find the stationary solutions of this system. By letting ¢; = o717 — 0, and ¢y = 017 — 0 we
find

1 3
wiay + §u1w1a1 + gylwi’ai’ =0 (2.31a)
/ 3 3
wlal(a - 91) — gklal =0 (231]:))
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Figure 2.1: Resonance curve of Duffing oscillator according to (2.32), where w, = /3, ji5 =
0.2,ko =5,F =1and~, =0.

1 3 1
woah + o Hat2a2 + §72w§a§ - §F sin(fy) = 0, (2.310)
3,1
LUQCLQ(O' — 92) — gk'QO,Q + §F 008(92) =0 (231d)

then by setting o, = 0 and 6, = 0 we get the steady-state solutions. The equations show how
the two degrees of freedom are uncoupled, which means that the coupling stiffness terms have
no effect. Finally, the two last equations are solved for a, to give the resonance equation

(48 F%ky + 1280 (113 + 40%)wi) a3 — 48(ky(ua + 120%)ws — 4yapeows)as

(2.32)
+ T2(3k30wy — kyYapiows + Yaows)a§ — 2Tky (k3 + y2wS)as — 128 F20w, = 0.

By plotting the resonance equation in Fig. 2.1, it shows the typical Duffing resonance curve
for a S-DoF system. The first degree of freedom, however, behaves as an unforced Duffing
oscillator as discussed before. This means that no coupling exists between both degrees of
freedoms and thus no energy transfer.

2.2.2 1:1 Internal resonance

Another nonlinear phenomenon that could cause response amplification or destabilization of
solutions is the internal resonance. To illustrate this phenomenon it will be assumed that the
natural frequencies of the system are nearly equal, i.e. w; ~ ws. This case has a particular
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importance in some microsystems. A typical example would be the micro-ring gyroscope,
which due to its axis-symmetry exhibits a degenerate first natural frequency, thus having two
eigenfunctions or modes for the same frequency. In practice this degeneracy is broken due to
fabrication limitations, but both natural frequencies remain similar. This particular example
will be discussed in chapters 4 and 5.

To analyze this case, we return again to (2.16) but with a new resonance condition. We will
assume having the second DoF tuned at resonance, that is

Qf = wq + €07, (233)
while the first DoF has a similar natural frequency as discussed before, this means
W1 = Wy + €03. (234)

By plugging these resonance conditions into (2.16), and in order to eliminate the secular
terms, we get the following solvability conditions

2’iwl€i02T1(U1Al1 + ’iulwlemlelAl + 3€i02T1k1A%141 + 3?:6102T1’}/1W?A%A1 — OélAQ = O, (2353)

_ _ 1 . .
ingAIQ -+ iugngQ -+ 31{72143142 -+ 32’72(.0:23143142 — §F€mTl — ()626202T1A1 =0. (235]3)

Here we can see the appearance of the coupling terms «; Ay, ap Ay for the first time through
our analysis. As before, we put the amplitudes in polar form

1

Al = §a1€i¢1, (2363)
L
AQ = 5&26 2, (236]3)

then inserting them into the solvability conditions and separating real and imaginary parts

gives
3 1
wlalqb'l — é]ﬁa? + 5(11&2 COS(O’QTl + ¢1 — ¢2) =0 (2378.)
;1 3 55 1 .
wiay + FHwa + g Wi + 50z sin(ooT1 4+ ¢1 — ¢2) =0 (2.37b)
, 3, 5 1 1
Walo Py — gkzaz + 5042611 COS(02T1 + ¢1 — ¢2) + §F COS(01T1 — ¢2) =0 (2.370)

1 3 1 . 1_ .
woah + §u2w2a2 + gvgwgag — 5&2&1 sin(oo11 + ¢1 — ¢a) — EF sin(o177 — ¢2) =0 (2.37d)

22



i 1.5
0.6 i
ool 1.0}
g 04t g i
0.2 ’ 0.5]
0.0L: i ‘ ! oo . ]
_2 _1 0 1 2 _2 -1 0 1 2
01 01
(@) a1 (b) az

Figure 2.2: Resonance curves of a; and a, under 1:1 internal resonance according to (2.38),
where wp = 097, Wy = 095,]{?1 = 03, ]{32 = 0.6,0./1 = 0.2,&2 = 0.4,,&1 = 0.2,,&2 =
0.3, F = 0.5,7 = 7 = 0 and o5 = 0.02.

Following the same procedure as before, we define d; = 03T + ¢ — ¢ and 6; = o1t — ¢s.
For the sake of stationary solutions we set then a} = 0,a, = 0, while ¢| = 0y — 09, ¢, = 04
which lead to 0] = §; = 0. Solving the four algebraic equations yields two coupled resonance
equations

af (64(p7 + 4(01 — 02)%) (01 — 02)w} + 24k1aia3) + 64ai(os — o1)wias
+ (=24k1 (17 + 12(01 — 02)*)wi + 9671111 (01 — 02)w?) af (2.382)

27
+ 36 (Sk’f(al — 09)w1 — kiyipw] + Yo — ag)wI) a$ — ?kl(k‘f +7iwd)ad =0,

— 256 F2a2al 4 25602 (p2 + 402 wiay + 3840wy (—2koo1 + Yopiows)aS 4+ 1440 (k2 + 72wS)ad
+ CL% (5120&10&2(/,61/,62 =+ 40’1 (0'2 — 0'1))(,01&}2@% =+ 384@1062&11 (2k2(01 — 0'2) + ’ygulwg)ag)
+ a411 (2560[%(#% + 4(0'1 — 0'2)2)(,0% + 384@10[2(2/{710'1 + ’Ylﬂg(ﬂ?)u&ag + 2880&10&2(’7172&)%&)3 — kle)ag)
+ 3845w (2k1 (09 — 01) + yipw?)as + 14403 (ki + viwd)al = 0.
(2.38b)

Through Fig. 2.2 a typical resonance curve for internal resonances is depicted. The spacing
between the two peaks in each figure relies on the detuning parameter o,. By increasing o, one
of the peaks keeps increasing and the other decreases until the first one disappears at a large
detuning between the two frequencies. Moreover, at some value of o, a bifurcation occurs and
an isolated branch (isola) in each of the resonance frequency curves appears, which is shown
in Fig. 2.3. Through these figures multiple solutions appear at some excitation frequencies,
some of them are isolated from other solutions which causes a sudden jump in amplitude by
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varying the excitation frequency. Both multi-stability and jumps could be beneficial as well as
detrimental with respect to different applications.

0.7
0.6/
0.5/
0.4
0.3t
0.2}
0.1}

0.0k I | ‘ 5
-2 -1 0 1 2

ai
as

o1 01
(a) a1 (b) az
Figure 2.3: Resonance curves and isolas of a; and a, under 1:1 internal resonance according

to (238), where w1 = 097, Wy = 095,]€1 = 03, ko = 0.6,061 = 0.2,0&2 = 04, M1 =
0.2,[12 =0.3, F = 0.5,’)/1 =Yy = 0 and oy = 0.3.

2.3 Circulatory forces: an example

Another source of instability is discussed in this section, where circulatory forces are considered
again but in a more elaborate nonlinear case. Circulatory forces (also named follower or
non-conservative positional forces) grasped the attention of the academic community since
the famous work of Ziegler [91]. These non-potential positional forces were found to cause
instability of the trivial solution in the system under certain conditions [92, 93]. In addition,
they were found to have a practical significance in several applications extending from the
phenomenon of intense angular self-oscillations of a carriage wheel to the squealing brakes
and the self-excited vibrations in paper calenders [85].

Since most mechanical systems can be reduced to lumped-parameter systems, a basic under-
standing of the phenomenon can be attained from the simplest possible mechanical system, i.e.
two degree-of-freedom (2-DoF) mass-spring system. In an attempt to investigate the effect of
circulatory forces in its simplest case, in [87] a 2-DoF system was presented, which will be
further analyzed in this section.

Fig.2.4 shows a 2-DoF system composed of a point mass supported by two orthogonal springs
and pressed against a rotating disc underneath, which causes a frictional force acting on the
point mass in the direction of relative velocity. The contact between the point mass and the
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Figure 2.4: Point mass on a rotating disc (left), free-body diagram (right), courtesy of P. Hage-
dorn [87]

disc is assumed to be always slipping, without any sticking.

The equations of motion will be derived according to the free-body diagram shown in
Fig. 2.4 [87]. The disturbing force here is the frictional force R applied on the point mass due
to its slip-friction with the rotating disc, which is calculated in vector form to be

R=—puN—reL (2.39)

where v, is the velocity of the point mass P with respect to the rotating disc. We define P* to
be the point on the rotating disc in contact with P. Thus, to calculate %,; as follows

e = [q171 + @o1ia] — [—(q20 + q2)Q2 11 + (quo + g2)€2 7]
= (41 + (q2o + q2)Q?) 701 + (G2 — (qr0 + q1)2) 7>

17rel = 17|P -

(2.40)

Applying Newton’s second law on the point mass, and separating into the two orthogonal

directions gives

(g1 + (q20 + 42)82)
V(G + (g0 + )02 + (G2 — (qu0 + ¢1)Q)?

(go — (qi0 + ¢1)?)
V(G + (g0 + 12)0)2 + (G2 — (qu0 + ¢1))?

where the spring forces at the stationary point ¢; = ¢19, g2 = ¢20 can be calculated to be

, (2.41a)

mgy + (Fio + k1q1) = —uN

, (2.41b)

maa + (Fao + kage) = —puN

q20§? q10§?

202 L .2 02 Foo = pN 202 1L .2 02
V43080 + qipf2 V @580 + qip2

Fio = —pN
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2.3.1 Nonlinear analysis

We start with non-dimensionalization of the system to reduce the system to its simplest form
and identify the influencing parameters. We introduce the non-dimensional time 7 and the
normalized displacement u; to be

T=0t Ui:@> 1=1,2 (2.42)
a

then the differentiation with respect to time gives

y_du _dudt 1.
YSar T atdr - a0t
g du dudt 1

YT T A e T a2t

(2.43)

For simplicity we will set our coordinates so that ¢;o = ¢29 = a, in this case the equations of
motion become

aQuy + (a + aug)Q

V(@ + (a + aug))? + (g — (aQuly — (a + aup)Q)?’
(2.44a)

maQ*uy + (Fio + kiauy) = —puN

aQuly, — (a + auy)$2

maS¥usy + (Fa + kaaug) = —uN 7
2 he) V(@S0 + (a + auz) Q)% + (g — (aQus — (a+ aw)Q2)?

(2.44b)
where N
Fig=—Fy = _% (24%)
Dividing by maQ? leads to
) D+ (1 +ug)
., naE _ _\/5 Uy s 2.46a
uy + (=1 + k) ﬁ\/(u,1+(1+u2))2+(u,2 — (14 w))? ( )
- uh — (1 +uq)
&t (0t Fow) = 3 2 : (2.46b)
2+ (1 + kaus) n\/(u’1+(1+uz))2+(ul2_ (1 +w))?
where k N
: ; It (2.47)

w2 T a2
In order to determine the solutions of the system and their stability, (2.46) is then rewritten
in four dimensional first-order system

v] — vy = 0, (2.48a)
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Figure 2.5: The trivial and nontrivial fixed points in the parameter space v, — 7., see (2.50)

- (%) + (1 + Ug)
v+ kjvg + V2 —n =0, (2.48b)
2 et ()Pt (- (Ot o)
vy — vy =0, (2.48¢)
) (1
V) + Favs + V20 vi—(I+u) L =0, (2.48d)

V(e + (1 +03))2+ (vg — (14 v1))?

then by setting v} = v}, = v} = v} = 0 to find the stationary points we get

7. I+ U3st

ki1 + V21 —n=0, (2.49a)
s VO F 030)% + (1 + v11)?

B 1+ vy,

Tyt — V21 Vst +=0. (2.49b)

V(L +035)2 + (1 + v15)?

and vy, = v4y = 0, where the index st means stationary.

The equations (2.49) allow another simplification by dividing by 7 to give

1 s
o1 + V2 + Vat —1=0, (2.50a)

V(L +v35)2 + (1 + v15)?

1 s
VoUser — V2 Vst +1=0, (2.50b)
V(14 v36)% + (1 + v14t)2

with only two parameters 71, 7».

First, we study the existence of nontrivial stationary solutions by varying the parameters
71,72 This could be depicted in the parameter space 7; — . in Fig. 2.5 . In this figure we can

27



identify at each pair of parameters whether we have only the trivial stationary solution, shown
in blue, or if at least a nontrivial stationary solution exists which is shown in white.

An example of the nontrivial stationary points is shown in Fig. 2.6, where v, of the fixed
points is depicted with respect to ~;. This serves as vertical cross sections in Fig. 2.5 at two
different ~, values. By calculating the eigenvalues for all nontrivial solutions, it was found that
at least one stable fixed point is present.

In order to verify the stability of the nontrivial solution, direct numerical integration is
applied on the original system of differential equations (2.48) and a projection of the phase
space in the v; — v3 plane is plotted in Fig. 2.7. It can be shown that the positive and negative
values of the nontrivial fixed points v, are stable. Moreover, a stable limit cycle could also
be found, which relates to flutter instability discussed before in section 2.1. We proceed by
studying the stability of the trivial solution. To this end we calculate the Jacobian matrix of the
system (2.48), that is

0 1 0 0
s V2011 V23 V23 —V2mb1aby
—K1 + —_ _—— “ - =
J = v v v v (2.51)
0 0 0 1
V2t _ V21 G V2111 _ V27
L 7 W 2 7 v

where
V= (1/1% +¢§)3/2, Yr=(1+va+uv3), o= (1+v—w)

At the fixed point v,; = 0 we have

U =2%2 =1, ohy=1, (2.52)

which lets the evaluation of the Jacobian to be

0 1 0 0
J AT T (2.53)
o0 = 0 0 0 1 '
no o-m - 0
) 5 o5 T3l

The Jacobian matrix here contains three system parameters ki, k; and 7. By setting n = 1
and varying the other two parameters, this gives us an indication about trivial solution stability
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Figure 2.6: The stationary solutions of v; with respect to ~, at two different +, values.
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Figure 2.7: Time trajectories of the system variables near the trivial solution in the projection
v;-v3 Of the phase space.
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for the ratio between excitation and system stiffness, which is corresponding to ~; in (2.50) .
The same approach will be used analytically in the next subsection.

Using this approach the eigenvalues of the Jacobian could then be calculated at each evaluated
pair of (ky, k»), which gives the required information on the trivial solution stability at each
point of the parameter space (k;-ks).

The real parts of the eigenvalues are calculated, and the maximum real part is checked
whether it is positive, thus indicating instability according to the definition of stability discussed
in section 2.1. In Fig. 2.8 the maximum real part of the eigenvalues at each point of the parameter
space is shown in terms of a color spectrum appearing in the legend on the top of the figure. The
true blue color represents a stable solution, whereas all other colors represent the instability of
the trivial solution at different levels.

Some observations could be made from this figure. First, although the slip-only friction
is normally attributed to damping the system, we find here a totally different picture. The
frictional force does contribute to the damping mechanism but it induces circulatory forces as
well. This could be noticed from the Jacobian matrix (2.53) by observing the two elements

Ofs  0fs n Ofs  Ofs 1
Jyy=7"—="=—=, Jy=—-"—=—-"—=_, 2.54
2 8113 QQQ 2 H 8?)1 8ql 2 ( )
where f; is the vector field for the degree of freedom . These two elements represent the system’s
circulatory forces by definition. Since in our case the damping coefficients and stiffnesses are
positive, therefore, there is no reason for instability in our case except for the existence of the

circulatory forces.

Secondly, we observe that as long as k; ~ k, the trivial solution is stable, and for regions of
significantly dissimilar stiffnesses the trivial solution is greatly destabilized.

And thirdly, by comparing Fig. 2.8 with Fig. 2.5 we find that the trivial solution is destabilized
in some parts, for instance where k, < 0.5, where no nontrivial solution exists. That means at
these parts the system has no stable solution.

In conclusion, the system shows its propensity to instability even though the mechanical
system from the first sight seems to have no peculiarities to exhibit instability. Thereby, this
system could illustrate the influence of circulatory forces remarkably in such a simple mechanical
system.

In addition, this gives some insight about the effect of losing the symmetry of the stiffness
matrix. Since any asymmetric real matrix can be decomposed to the sum of symmetric and
skew-symmetric matrices, circulatory forces then hint at losing (breaking) the symmetry of the

stiffness matrix in a wide sense, i.e. displacement-proportional matrix. A detailed explanation
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Figure 2.8: Maximum real part of the eigenvalues for the trivial fixed point in the parameter
space k;-k,, see (2.53).

of the conditions of instability in these systems can be found in [94]. This occurs as well when
the stiffness matrix becomes time-dependent as a parametric excitation, as will be explained in
chapter 3. In this case, if the symmetry of the parametric excitation matrix is lost by adding
a phase-shift in its off-diagonal terms, we observe a significantly special case, that is the
asynchronous parametric excitation, which will be given special attention in the next chapters.

2.3.2 Linearized system

Up to this point the stability of different system solutions was studied numerically. An analytical
approach will then be conducted to understand the stability of system’s trivial solution. In
order to do that, we linearize the system around the trivial solution to be

uf + kyuy + g[u’l +uy + (ug — ug)] =0,
(2.55)

uly + kouy + g[u'l + uy + (uy — uyp)] = 0.
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It can be represented in matrix form as

Mu" +Du +(K+ N)u=0 (2.56)
where -
1 11
m=|"" p=1|" 1
01 211
_ _ (2.57)
K- ki—32 . 0 N — 0 3
0  he+2|’ —2 0
For the ansatz
uy (t) = Ure™, (2.58a)
u(t) = Upe™, (2.58b)
we find the characteristic equation to be

Due to the relative complexity of the characteristic equation, we study as a first attempt the
special case of k; = k,. In this case the characteristic equation becomes

AL AP+ 2kA% + kA + K = 0. (2.60)

with the roots .
Mo =glnd =4k A= +ivE. (2.61)

The first two eigenvalues show an upper limit of zero for the real part, when k << 7, while
the last two eigenvalues have no real parts. This means, that if the system stiffnesses are exactly
equal, the trivial solution proves to be stable or marginally stable for any given frictional force
n. This complies very well with the previous numerical study conducted. In Fig. 2.8 all the real
parts of the system’s eigenvalues are either negative or zero when k; = k,

In the general case, however, we use the Routh-Hurwitz criterion to obtain the stability of
the trivial solution. The criterion states that for the characteristic equation

aoM + a3+ a)? +as) +a, =0 (2.62)
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the condition for all roots to have negative real parts, thereby asymptotic stability, is that all
the inequalities [95, 96]

Ci:Ar=a1 >0, Cy:Ay=ajas—agaz >0

(2.63)
ngAgzagAz—a§a4>0, C4ZA4:CL4A3>O
The criterion in our case states that if the inequalities
Cy:n>0, (2.64a)
OQ : g(]%l + E’z) > 0, (264]3)
U A N
03 : Z(k’l — k’g) [(k‘l — ]{32) — 2’/7} > 0, (264C)
Cy : g[%l — Feo] + krka > 0 (2.64d)

are satisfied, this would be a sufficient and necessary condition that each eigenvalue has a
negative real part.

In our mechanical system, k; , and 7 are always positive, which means that the first two
inequalities are always satisfied. However, for the last two inequalities we differentiate between
two cases, ki > ky or ky > ky. For k; > ks the last inequality is always satisfied, however the

1—k2)

third one will not if > U“T

In the other case, ky > k;, we rewrite the third inequality in the form

which is obviously satisfied. To study the last inequality in this case, we divide it with &, k,
yielding
| < 1. (2.66)

1 1. = .. : . .
But because — — — in the case k, > k; is always positive, this means that the inequality

will not be satisﬁled if . . )
_——_—— > -, (2.67)
k1 ko n

In summary, the trivial solution does not include negative real parts in two different cases,
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that is _ _
ki —k _ _
%7 ki > ks
o (2.68)
B I
]_€2 . 1517 1 29

which means, that satisfying the inequalities (2.68) either leads to the instability of the trivial

solution according to the linear analysis, or to a zero real part.

By close observation of the instability conditions for the trivial solution in (2.68) we can
see that instability can not occur for exactly equal stiffnesses, which was proved before in
the special case k; = k,, and supported by the previous numerical calculation of the system’s
exponents. And secondly, if the frictional force could exceed the difference between both
stiffness values, the trivial solution turns to be unstable. This case could only happen if the
stiffnesses are away from equality and when their values are quite small. This same observation
could be made again from Fig. 2.8 and its succeeding discussion.

2.4 Conclusion

In summary, several observations could be obtained by analysing time-invariant systems. In the
system of coupled two Duffing oscillators, although the system is relatively simple, the one-to-
one internal resonance could initiate strange behaviors, such as an isola. This case specifically
is important for the next chapters, since this type of internal resonance appear in systems
with degenerate natural frequencies, which is the case for the axis-symmetric micro-gyroscope.
In the other example, circulatory forces were found to influence the dynamics of the system,
either linear or nonlinear if they were large enough with respect to system stiffness coefficients.
Moreover, in the nonlinear system they were found to cause a destabilization of the trivial
solution even when no nontrivial solution exists, which is a divergence case. For some values of
system parameters, they could even initiate a limit cycle in the absence of external excitation
or negative damping. Moreover, circulatory forces corresponds to having a skew-symmetric
displacement-proportional matrix, in other words, it corresponds to introducing an asymmetry
in the stiffness matrix. For time-periodic stiffness matrices, discussed in the next chapters,
their symmetry could be lost by adding a phase-shift to the off-diagonal terms leading to other
destabilization phenomena. These aspects and sources of instability should be noted through
our bottom-up approach to help in understanding more complex systems.
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3 Time-periodic systems

In this chapter, the analysis of dynamical systems proceeds towards time-periodic systems,
where the sources of destabilization of solutions and the amplification of the system’s response
are discussed. Time-periodic systems are a specific type of time-varying systems of differential
equations, where their coefficients are time-periodic. This time-periodicity allows for using the
well-known Floquet theory to analyze the stability of these systems’ solutions. The difference
between these systems and their corresponding ones with constant coefficients requires a
different measure of stability. Stability can no longer be determined by the real parts of the
system’s eigenvalues. However, in the Floquet formulation of the problem we arrive at a quite
similar stability condition using the system’s characteristic exponents due to Lyapunov [97].

The motivation for studying these systems dates back to the nineteenth century in the
works of Faraday, Lord Rayleigh and Mathieu in explaining natural phenomena [5]. However,
nowadays many practical applications make use of parametric excitation in obtaining better
performance. This proves to be of significant importance in microsystems [58], which constitute
the main application discussed in this thesis.

Using the same approach as the previous chapter, we start by discussing linear time-periodic
systems, in general, and the asynchronous parametric excitation in particular using the method
of normal forms. The discussion extends to the case of forced parametrically excited systems,
where both forced and parametric excitations exist. This type of systems was discussed in the
literature for decades [8], however, not for the asynchronous excitation case. Moreover, the
correspondence between the destabilization of the trivial fixed point and the amplification of
the response is discussed.

Finally, we arrive at time-periodic nonlinear systems, where the multiple scales method is
used to analyze the possible nontrivial solutions and the corresponding bifurcations at resonant
frequencies. In this way, this chapter gives an overall picture on the dynamics of M-DoF time-
periodic linear and nonlinear systems under asynchronous excitation, which also serves as a
theoretical background for the following chapters.
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3.1 Linear time-periodic systems

Here we confine ourselves to the linear M-DoF system
Mg+ (D+G)g+ (K+C(t)qg= f(t). (3.1)

where

o 10 - 511 512 o 0 1 - fl(t)
S T B e ] T A

K w? 0 | Cl) = &1 cos(pt + Cr1) 12 cos(pt + Cia)
0 w; a1 co8(Qpt + Co1) o2 cos(pt + Co2)

Y

This linear equation considers a certain type of systems with periodically time-varying
coefficients known as parametrically excited systems, where C(t) is the parametric excitation
matrix, with amplitudes ¢,;, frequency (2, and phases (;;. Here the time-periodicity appears
only in displacement proportional terms, or in the stiffness matrix in a wide sense. Time-
periodic inertia or time-periodic velocity proportional coefficients are not included, and constant
circulatory forces are not considered.

In this case, the stability analysis of the trivial fixed point can not be carried out by evaluating
the real parts of the eigenvalues, since the system is non-autonomous. Instead, a solution
can be sought for by linearizing around a periodic solution [98]. Moreover, the fact that the
time-dependent coefficients have a period time 7" simplifies the problem as will be discussed
afterwards.

Studying the stability of a periodic solution can be carried out with the help of the Poincaré
map. This could be visualized by considering the time variable in (3.13) to be an additional
degree of freedom. In this case, a hyperplane could be placed at T-periods along this new
coordinate, and the vector flow could be traced by its intersection with this plane. If the time
coordinate is turned to be polar, such that the angular coordinate will be § = 2xt/T (mod 27),
we have only one hyperplane and vector flow will intersect it at every period 7, this hyperplane
is the Poincaré map. Thus we obtain a discretization for the system, and the stability turns from
being studied around a periodic solution to be studied around a fixed point on the Poincaré
map [99]. This is very similar to the approach of the Floquet theory, where the stability of the
trivial solution is then determined around this fixed point [100].
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3.1.1 Floquet theory

According to the previous discussion, Floquet theory is introduced here to determine the
stability of time-periodic linear systems. First, the M-DoF system (3.1) with f = 0 is converted
into a first order four dimensional system leading to

2= A(t)z. (3.2)

According to Floquet ansatz, the fundamental matrix Z(t) can be written as
Z(t) = P(t)e?, (3.3)

where each of Z, P, B is an n x n matrix, P(t) = P(t+ T), and B is constant. By translating
Z(t) in time with the periodic time 7', (3.3) gives

Z(t+T)=P(t+T)eBHD
= P(t)ePeBT (3.4)
= Z(t)C,

which means that a translation by a time-period is only a linear transformation by the constant
matrix C, called the monodromy matrix. This matrix describes the time evolution of the system
solutions represented by the fundamental matrix Z(¢), and thus carries the information about
the stability of the system’s solutions.

According to Floquet, the stability of the trivial solution can be obtained numerically by
choosing the initial conditions
Z(0) = Iyxq, (3.5)

where 1,4 is the identity matrix of the size four.

The system’s fundamental matrix Z(t) is then calculated, which for the given initial conditions
constitute the monodromy matrix when t =T = é—”, since according to (3.4)
P

C=2(Z), since Z(T)= Z(0)C (3.6)

By evaluating the eigenvalues of this matrix, we obtain the Floquet characteristic multipliers
i, which represent the eigenvalues of the Poincaré map generated by the section orthogonal to

the periodic solution [100]. Then
v = %ln(ui). (3.7)
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are the system’s Floquet characteristic exponents, and their real parts are found to be Lyapunov
characteristic exponents [101].

The same criterion of stability of a fixed point explained in section 2.1 can be extended
here for the periodic solution of a non-autonomous system. If all Lyapunov exponents are
negative, which means that all Floquet multipliers are inside the unit circle of the complex
plane, the solution is said to be asymptotically stable. While if any Lyapunov exponent is positive,
which means that any Floquet multiplier lies outside the unit circle, the system is said to be
unstable. Moreover for nonlinear systems, if none of the Floquet multipliers associated with
a non-hyperbolic solution lies outside the unit circle, in other words if none of the Lyapunov
exponents is positive, then a nonlinear analysis is necessary to determine the stability [99].

The Floquet theorem implies also that (3.2) can be transformed by

z(t) = P(t)y(t) (3.8)
which gives
y=P (AP - P)y, (3.9)
but since
Pt)=Z(t)e B (3.10)
then
P=2Ze B — BZe B
(3.11)
— AP - PB
finally
Yy = By (3.12)

which is a linear system with constant coefficients. From this result we understand that the
transformation by a T-periodic operator in (3.8) changes the problem into a linear system
with constant coefficients in (3.12). This is called Lyapunov reducibility theorem as a result of
Floquet-Lyapunov transformation [14].

3.1.2 Parametrically excited systems

Following the same bottom-up approach as previously discussed, the first insights about
parametrically excited systems could be obtained by reducing this system into a S-DoF one,
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Figure 3.1: Stability chart of Mathieu equation (3.13) for two damping coefficients d = 0,d =
0.01
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which is the Mathieu-Hill equation [8]
mq + dq + (k + &cos(,t))g = 0. (3.13)

Although the equation seems to be simple, an exact closed-form solution could not be
attained [102]. Therefore in order to study the dynamics in this system either approximate
analytical methods are used or a numerical integration is carried out.

In the linear case we are interested in studying the stability of the trivial fixed point for
different system parameters. Here we vary only the parametric excitation parameters: amplitude
¢ and frequency (,,. By examining the stability of the trivial fixed point using Floquet theory as
explained before, we could depict the result at each point in the parameter space €2,-{ which is
known as the stability chart.

In Fig. 3.1 the stability chart of Mathieu equation (3.13) is depicted for two cases, when there
is no damping, i.e. d = 0, and when a small damping d = 0.01 is included. Only the instability
points are shown in the stability diagram, where the red points correspond to the damped
case and the blue ones to the undamped. Few observations could be made. First, we observe
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the destabilization of the trivial fixed point at frequencies Q, = 2w/n, where w = /k/m
and n € N, in separated regions called instability tongues or Arnold’s tongues. This result is
obtained numerically, analytically using Hill’s infinite determinants [8] or using perturbation
and averaging methods [103]. Secondly, the existence of damping causes the instability tongues
to shrink upwards. And finally, the primary resonance region is much larger than the others,
and its corresponding singularity in the solution has the largest influence on the solution.

We conclude that adding a time-periodic term in simple mass-spring-damper system adds
another sort of instability to the system. In accordance with the approach used in this thesis
to address the problem of stability in different systems, we then proceed by adding other
dimensions and finally by adding nonlinearities.

3.1.3 Bimodal parametric excitation

The instability due to parametric resonance is then extended to M-DoF systems. In these
systems, however, this kind of instability not only occurs at 2, = 2w;/n, which are called
here primary parametric resonances, but also at combination or secondary resonances, i.e. at
), = |w;xwj|/n, wherei = 1,2, n € N. Moreover, we discuss also the possibility of destabilizing
the trivial solution at non-resonant frequencies as well. To discuss these phenomena we are
concerned with the two-degree of freedom system

Mg+ (D+G)g+ (K+C(t)q=0, (3.14)

which is the same as (3.1) but without forced excitation, i.e. f = 0.

In order to illustrate the effect of increased dimensionality, as we did in time-invariant
systems, as well as the effect of the coupling terms in C|(¢)

Clt) = &1 cos(Qpt + Cr1) &1z cos(Qpt + (i2) ‘ (3.15)

521 COS(th —+ CQI) 522 COS(th -+ <22)

We consider three types of special cases. In the first case (system I), the off-diagonal terms
are canceled, i.e. &5 = 0,&%; = 0, whilst in system II, the matrix is fully populated but
all terms are in-phase, i.e. {13 # 0,{n # 0,(; = 0, and finally in system III the matrix
is the same as in system II but includes a phase shift between the off-diagonal terms, i.e.
&12 # 0,81 #0,(1 = —7/2,(11 = (12 = (o2 = 0. This last case is called asynchronous parametric
excitation through this work.

According to section 3.1.1, the system’s trivial solution is unstable if at least one Lyapunov
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Figure 3.2: The effect of coupling terms of C(¢). System I: &5 = &1 = 0, system Il: &1 = &5 =
£,C1 = G2 = (o1 = Ca2 = 0,8ystem lll: {12 = &1 = &,Gi1 = G = Ca2 = 0, G2
—m /2. For all systems: {11 = &2 = §,£ = 0.3,7 = 0.1,617 = 0.01, do2 = 0.005, 15 =
621 == 0,&)1 - 1,(,02 = 2.

exponent )\, is positive. Thus, we search for the maximum exponent

1
Amaz = max(? In |u|), (3.16)

where p is the Floquet characteristic multiplier of the monodromy matrix, see (3.7). Then the
maximum Lyapunov exponent is calculated for given system parameters and at each parametric
excitation frequency (2, in a defined interval.

Fig. 3.2 shows how the coupling terms can affect the system’s stability. That is, without
any coupling terms, i.e. for system I, instability occurs mainly at the parametric resonance

.. w; £ w;j
frequencies, i.e. Q, = ——

, n € N. For system II, we obtain a similar behavior but with an
increased tendency of ins?abﬂity at the combination resonance frequencies, i.e. 2, = wy % wo.

However, in system III, the phase shift (,; = —7/2 causes a significantly different behavior.
In this case the system exhibits instability at non-resonant frequencies, which leads to a
broadband destabilizing effect, for instance in the interval [wy — w1, wy + w1]. This follows the
analysis by Karev [37, 38], where the condition for global effects, e.g. the explained broadband
destabilization, was given as (15— (s # mm, m € Z. This is indeed our case, since (15— (o1 = 7/2.

M



In order to elaborate on this idea, Fig. 3.3 shows the instability regions in the parameter
space €2,-. As shown in the figure, the trivial solution in a broad frequency band and when
¢ > 0.27 is unstable due to the proposed parametric excitation method, and specifically due
to the presence of the phase shift between the coupling off-diagonal terms. This differs from
the case of synchronous C(t), i.e. systems I and II, in which we can not achieve broadband
instability at small excitation amplitude &.

The variation in the system’s eigenvalues, and specifically the increase of the maximum
eigenvalue in a broad frequency band could be understood as a negative-damping effect, which
potentially implies an amplification of the system’s forced response under the given parametric
excitation frequency. Hence, we conclude from this section, that through this proposed method
of excitation, a parametric amplification can be acquired not only at resonant frequencies as
reported before in the literature [67], but also at non-resonant frequencies. This will be further
discussed in section 3.1.6.

Having this effect on a broad band of frequencies can be promising in different ways for
the micro sensors technology. Firstly, the tuning of the parametric excitation frequency is less
sensitive. Secondly, this can allow for a potential noise squeezing effect [60] also in the broad
frequency band. Moreover, since the change in the system’s eigenvalues with respect to the
excitation frequency is not abrupt but gradual and continuous, we can think of a frequency
2, tuning of the amplification gain instead of tuning it through the parametric excitation
amplitude ¢;;.

3.1.4 The method of normal forms

In order to discuss the stability of the micro-ring gyroscope, an analytical method, namely
the normal form method, is used. This method is explained in different sources on nonlinear
mechanics, a brief exposition can be found in [104, 84] and a more detailed one can be found
in [105, 106, 107], where the last reference is followed in our calculations.

As in the numerical Floquet calculations we start from the first-order four dimensional
system (3.2). However, since the system is not autonomous, we rewrite the time-periodic
coefficients as additional variables, changing the system from non-autonomous linear system
into an autonomous nonlinear one. In addition, some dummy variables are also introduced for
the sake of having more representative and insightful analytical expressions at the end.

Applying these to (3.14) after excluding the external forcing gives

42



0.5¢
0.4+
0.3+
o,
0.2+
0.1+
0 1 1 1 1L
Wy wy Zwl w1+w2 2w2
QP

Figure 3.3: Stability chart of system (3.14) in the parameter space ,-¢ where &, = &; =
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Figure 3.4: Stability chart of system (3.14) in the parameter space 2,-¢, same parameter values
as Fig. 3.3, except for (,; =0
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21 = 2, (3.17a)

: 1 i — 1 i i

Zy = |—wi — 5511 (125 + € CMZG):| 2 — 5512 (€225 + €72 25) 23 — (01122 + (012 + ) 24) 27,
(3.17b)

Z3 = 24, (3.17¢)

. 1 i —i 1 i —i
24 = —5621 (6 CQIZ5 +e C21226) Z1 — |:CL)% —+ 5522 (6 <22Z5 +e C2226) Z3 — ((521 — ’)/)ZQ —+ 52224) 27,

(3.17d)
25 = iQerg,, (3176)
"26 = —iQpZ6, (317f)
2 =0, (3.17g)
where
n=q. =q, Bm=@ =y, =", z5=—€" zn=1
A linear transformation

r=Rz (3.18)

is applied, such that in the new coordinates the equations are transformed into
&= f(x)= Az + Fs(x) + Fs(x) + ... (3.19)

where A is the Jordan form and F'; are the nonlinear terms of monomials of order 7 in x.

The essence of the normal form method is to apply a nonlinear transformation resulting in
the minimal amount of nonlinear terms in the transformed system, i.e. the normal form. This is
done through the nonlinear near-identity transformation

x=g(y) =y+ Ga(y) +Gs(y) + ... (3.20)
to obtain the normal form

§ = h(z) = Ay + H,(y) + Hs(y) + ... (3.21)
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then by inserting (3.21) and (3.20) in (3.19) we get the partial differential equation

Y hiy) - Fgly) (322)

Then (3.22) is solved for C:‘Z-, so that we obtain H ; with the minimum possible nonlinear
terms. Next we define each monomial in the form "' y5y5"...y7'". Using (3.22) we find a
condition for each monomial in each differential equation, by which the monomial is transferred
from f(x) to h(y) without being eliminated, otherwise, i.e. if the condition is not met, this
monomial can be eliminated and thereby simplifying the resulting normal form INL(y) This
condition is called a resonance condition which by solving (3.22) reads

7
A=Y mihi, je{l,2,.,7} (3.23)
=1

where j corresponds to the differential equation 2; = f(z) and the sum on the right hand side
is calculated for each monomial in row j of the matrix h . Then for the given case, (3.23) reads

Aj = (ma—ma)wi+(mg—ma)we+(ms—me)<2,, A € {wr, —wri, wa, —wa, Q,, =, 0}. (3.24)

Since the resonance condition depends on system eigenvalues, the transferred monomials
from f to h depend on the resonances taken into consideration. That means, we have always
the choice to consider all excitation frequencies or to exclude some or all resonance frequencies.
However, including all the resonance frequencies leads to higher complexity of the normal form,
and sometimes to the impossibility of transforming the normal form into polar coordinates,
which are normally convenient in the final representation of the system.

After proceeding with the mentioned calculations, the dummy variables are substituted with

their original forms

Ys = eith7 Yo = eiiﬂpta Yyr = 17 (3.25)

then finally we arrive at the normal form (3.21) after excluding the terms higher than the third
order.

Since we expect periodic solutions, a transformation in the polar coordinates should usually
simplify the end expressions and give more insight into the response amplitudes. This is done
through the transformation

1.
Y = §wlez(¢1(t)+%ﬂpt) (), (3.26a)
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1

Yo = §wlefi(¢1(t)+%ﬂpt) (1), (3.26b)
1.

ys = §wgez(¢1(t>+%ﬁpt) ra (), (3.26¢)
1 4

Yy = §w2€ﬂ(¢1(t)+%ﬂpt> ra(1). (3.26d)

In the present case, the normal form method is applied at all given frequencies except for the
combined and difference resonance frequencies (2, = w; & w,, which means that the primary
resonances (), = 2w;, ¢ = 1,2 are included in the analysis. Moreover, it is assumed that the
system does not include coupling damping terms, i.e. do; = d;2 = 0 and that the only non-zero
phase shift in the parametric excitation matrix would be (31, i.e. (11 = (32 = (12 = 0. This leads
to

2161282, sin (o) n §127y cos(2¢1)
(2 — (w1 —w))(B — (w1 +w2)?)  4(wf —w3)

7521(91) - w1) COS(C21 —2¢1)

1
(a1 |: 5 11 + 9

_'_4(,01 (Qp — (w1 — a}2>>(Qp — (wl T w2>> 169pw% 511 ((511<Qp + 20)1) COS(2(]§1) — 4pr1 SIH<2¢1)):| T,
(3.27a)
o — [_15 _ 2181282 sin(Ca1) a1y cos(Ca1 — 2¢2)
2T 27 2(02 — (w1 —we)?) (2 — (Wi +wn)?) A(w? — w2)

+

¥€12(€2p — w2) cos(2¢) 1 )
T (@ — (@ — ) (@) — (wn T ) + 160,02 22 (022(€2p + 2ws) cos(2¢2) — 4€wo Sln(2¢2))] Ta,
(3.27b)

while ¢, = f(¢1), 6, = f(2)-
The last expressions can be simplified to include only the first two terms in each equation of
(3.27) if the primary resonances are not to be included.

In order to verify our results, equations (3.27) will be compared to the numerical results
obtained before by the Floquet method before. The comparison is depicted in Fig. 3.5. Here
we can see a very good agreement between both of them including at the primary resonances
Q, = 2w;, i = 1,2. As expected, the mismatch between both methods appears only at the
combination and difference resonances.
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Figure 3.5: Comparison of the results of the normal form method to the numerical Floquet
method for the values of A, W.rt Q, where {15 = &0 =€, (1 = —7/2,(11 = (o1 =
Go2 = 0,&1 = &2 = &, v = 0.1,611 = 0.01, 692 = 0.005,012 = 921 = 0,w; = 1 and
Wy = 2.

3.1.5 Simplified analytical expression

Given that the normal form shows an appropriate representation of the system dynamics, we
shall use a further simplified version of (3.27) for the sake of better understanding.

First by excluding all resonances from our normal form transformation, and moreover by

assuming that all the parametric excitation terms have the same amplitude, i.e. &1 = &5 =
§o1 = o2 = £, we get

£2Q, sin((an)

.1

ry = [—5511 + 2(02 — (w1 — w2)2)(92 — (wy + w2)2)1 71, (3.28a)
= | €2, sin(Ca1)

B sy e (3.285)

The coefficients of the transformed system variables r; and r; are in our case the determinants
of stability, since they represent the real parts of the eigenvalues of the transformed system,

47



represented by

] €20, sin(Co1) ]

" 2511 ' _2 [Q}% — (w1 — W2)2} [Qz% — (w1 + w2)2} | ’ (3.292)
| €20, sin(Co1) ]

e 2522 2 [sza — (w1 — w2)?] [Qz% — (w1 + w2)?] | (3.29b)

A major goal in this discussion is to determine the effect of the parametric excitation pa-
rameters (£, (2,) on system stability. By investigating the dependency of the maximum real
eigenvalue \,,,. = maz(A;, \2) on the parametric excitation frequency, as shown in Fig. 3.5,
we find that there is a region of frequencies between Aw = w,; — w; and Yw = wy + w; where
the value of the maximum eigenvalue can be controlled for stabilization or destabilization, and
becomes remarkable when the natural frequencies are large and their difference is small. In
this region the value of maximum eigenvalue reaches a local maximum or a local minimum
according to the value of ¢ as can be seen in Fig. 3.6. This band of frequencies is of special
importance to the case of microsystems, since in this case the sum of eigenfrequencies Yw is
relatively large (in the order of (O(10°)Hz)) and the difference between them Aw is relatively
small (O(10%)H z). Therefore in order to find the local maximum/minimum, \ is differentiated
with respect to 2, and the expression is equated to zero. A more special case occurs in micro
gyroscopes, where the ring is usually designed to be symmetric, while the asymmetry appears
due to limited fabrication precision. However even if the undamped natural frequencies are
dissimilar, as seen in Fig. 3.6, we have Aw << Yw by at least one order of magnitude. This
assumption leads to a simplification for the value of the local minimum/maximum of \,,,., this

value we shall notate as \*.

Starting with the differentiation of A with respect to €2, and equating to zero, we find

0 _ Aw? + Sw?

1
; c + 6\/(AWZ + Yw?)2 + 12Aw2 Vw2, (3.30)

where Aw = wy —w; and Yw = wy 4w, as explained previously. Then following the assumption
Aw << Yw, we get

1
O~ —Yw, (3.31)
V3

where (2* represents the parametric excitation frequency at the local minimum of the maximum
eigenvalue . Applying this result to (3.29), we find the local extremum of ), to be

_ _ 2 &
011 o, 022 16, SN — 3V3¢ Sln(@l)'

2 2 4 w3

(3.32)

A~ maz(
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Figure 3.6: Maximum Lyapunov exponent \,,,,, against parametric excitation frequency Q,, for
a system with large and similar natural frequencies w; = 27 x 100krad/sec,wy; =
27 x 120krad/sec, displaying the local minimum at A* and Q*.

This approximation can give us a better insight into how the system is near to instability
given the system parameters. This was found to be sufficiently accurate, under the assumption
Aw << Xw.

ljrom (3.32) we can infer that the destabilization of the system is highly affected by the ratio

S This means that in order to attain a destabilization effect at non-resonant frequencies of
such a system with high eigenfrequencies, we need comparably a high excitation amplitude.
Then the fraction of 6\ can be designed in the damping order of magnitude O(¢;;) for the
sake of having a better tuning for the excitation amplitude with respect to the corresponding
device’s response.

In conclusion, by investigating the system (3.14) for stability, different conditions were found
to cause destabilization of the trivial solution. The nontrivial solutions do not exist in this
case due to the assumed linearity. Other aspects of this investigation are considered in [38].
However, a specific case was focused on, namely, when the coupling parametric excitation terms
were phase-shifted with 7 /2, where a broadband destabilization was elaborated, especially for
micro- and nanosystems with axis-symmetric geometry.

In terms of microsystems, as explained before, the key indicator to be discussed here is

sensitivity, whose enhancement in our excitation method occurs due to parametric amplification.
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Up to this point, we could prove how the trivial solution could be destabilized, but to translate
this into amplification, the addition of a forced excitation is then necessary.

3.1.6 Parametric amplification

As previously explained in the introduction, we seek to increase the system’s response amplitude
through parametric excitation, this is one of the main goals of this thesis. This leads directly
to an enhancement of the sensitivity of micro or nano-sensor systems. Two main types of
enhancement are targeted, one is through non-resonant parametric amplification which is
amplifying the forced response of the system in a pramateric non-resonant case while assuming
system’s linearity. Thus, the amplification occurs outside the instability regions of the stability
chart (see Figs.3.3, 3.4), i.e. without parametric resonance, since driving a linear system into
instability of its trivial solution means an unbounded response. The second method is through
parametric resonance allowing for resonant parametric amplification, through which we look for
a nontrivial solution with a higher amplitude, and thereby an amplified response [67].

So far we are interested in a linearly modeled system. The response of nonlinear systems
will discussed in the next section.

Therefore, in order to investigate the non-resonant parametric amplification case, the system
should have two types of excitation, that is, the forced excitation which gives the drive of the
system, and the parametric excitation which destabilizes the system for the sake of amplification.
This means we are willing to explain the connection between destabilization of the trivial
solution of the autonomous system and the amplification of the system response after the
addition of the external forced excitation.

To this end, we put the system (3.1) in a perturbed form, that is

uf + wiug + el + muuy cos(Qpt) + niaug cos(Qt)] = eFy sin(Qyt) (3.33)
Uy + Wit + €[paty + 11wy cos(Qpt + ) + naaug cos(Qpt)] = 0, |
where only the first degree of freedom is forced excited with Fjsin({2t) and the parametric

excitation matrix is fully populated with a phase-shift at one of its off-diagonal terms, that is

oy = | Mreost) - macos((h)
121 cos(Qpt + €)7oz cos(Qyt)
The multiple scales method is then used to analyze the system response under weak excitation

up to the second order. The solution will be then perturbed according to
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ul(t7 E) = Ulo(T(), Tl, Tg) + EUH(T(), Tl, T2) + €2U12(T0, Tl, Tg) + cees (334&)
us(t; €) = ugo(To, Th, Tz) + €uar (To, Ty, To) + uge(Ty, Ty, To) + .., (3.34b)

where 7T, = €'t and

% = Do+ €Dy +€2D,...,
P (3.35)
—— = D3 +2eDyD; + €*(D3 + DyDy),

o
where D' = 0" /0"T;.

Inserting (3.34) and (3.35) in (3.33) and separating according to the order of ¢ gives: for

€,

Dgulo + W%Ulo = 0, (336&)
D8/U/20 + W§UQO = O, (336]3)
while for €,
Dgun + wfun = —,ulDoum — ’1711’&10 COS(th) — 7712U20 COS(th) — 2D0D1U10 + FO Sin(QfTo),

(3.37a)
D(Z)UQl + w%ugl = _ILLQDOUQO — T21U10 COS(th + C) — T22U20 COS(th) — 2DOD1U20, (337]))

and finally for €2,

DSUlQ + W%Ulg = — U1 (DOUH + Dlulo) — N11U11 COS(th) — N12U21 COS(th)

(3.38a)
— Diuig — 2Dy Daurg — 2D Dy,
D(2)U22 + w%qu = —Mz(D0U211 + D1U20) — M21U11 COS(th + C) — T)22U21 COS(th) (3.38D)
- D%UQO - 2DOD2U20 - 2DOD1U21. .
The zeroth order differential equations (3.36) gives the solution
uyo(To, Th, To) = Ar(Th, To)e™ ™ + Ay (Ty, Ty)e™ ™70, (3.39a)
U920 (T(), Tl: Tg) = A2 (Tl, TQ)inQTO + /IQ (Tl, TQ)G_inTO, (339]3)
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then inserting this solution in (3.37) gives

Diuyy + wiugg = —A, (%Wlﬁ“wlgp)% + %ﬁnéwﬁ%m + mlwlei“lTO)
— Ay (%771261(%—9;,)% + %nlgei(wﬁﬂp)%) — 2iw e Dy A (3.40a)
n %Fg(e_meo _ Ty 4 OC,

Dijugy + wiug = — Ay (%nzzei(wl_gp)% + %mw“wﬁgp)% + imwgei“ﬂ“)

1 , , 1 A A .
— Al <§7721€Z(QJ1_QZ))TO_ZC + §U2162(WI+QP)TO+ZC) — QiWQelszODlAQ + CC

(3.40b)

Since the amplification problem is defined at the maximum possible amplitude, the forced
excitation will be tuned here around its frequency €2y ~ w;. To consider that in our calculation
a detuning parameter o is introduced such that

Qf =wp +€0y. (3.41)

As explained before in section 2.2.1 we eliminate the secular terms and then obtain the
solvability conditions

2iw1D1A1 + iulwlAl + %FoeiUle = 0, (3423)

2iw2D1A2 + i/LQWQAQ = 0, (342b)

giving the amplitude solutions

_eiO'le FO
2(pwy + 2iopwn)
AQ(Tl, Tg) = G_MQTI/QBQ (Tg), (343]3)

ATy, Ty) = + e mT2B | (Ty), (3.43a)

where the amplitudes correspond to the ordinary homogeneous and particular solutions of a
forced damped linear system. After eliminating the secular terms, the differential equations of
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the first order read

1 A 1 .
Dguu + w%un = —A (5771161(““_917”0 + 577116’(‘”1+Q”)T0>
(3.44a)

1 ) 1 )
_ A2 <§n12eZ(W1—Qp)TO + 57’]126Z(W1+QP)T0) + CC’

1 . 1 .
Diuz + wiyuz = —As (5772262(‘”_9”):[’0 + 5772262(WI+QP)T°>
(3.44b)

— A (1n21ei(wlﬂp)TOi< + 1n21€i(w1+ﬂp)To+iC) +CC.
2 2
Solving (3.44) yields both homogeneous and particular solutions

U1l = Uiip + Utlp, U21 = U21p 1 U21p, (3.45)

the latter gives, however, information about the amplification. Thus, we display here only the
particular solution at resonance o; = 0 for convenience, that is

_ Fonu . )
Uiiplo;=0 = o 0 (201 )? — O2) (€2, cos(wyt) cos Q,t + 2wy sin(wst) sin Qt) | (3.46a)
Uiyl = —Fona1 ( cos((Q, — w1t + ¢) cos((Q, + w1t + Q) )
T 2w \(Q — (@1 —w2) (@ — (@1 Fwr) (R (w1 —w2))(Q + (w1 Fwr))
(3.46b)

Here we see obviously the effect of parametric excitation, as an amplifier, on the first-order
correction w1, uo;. For more elaboration, we extract the amplitude of the correction terms to
the first order in each degree of freedom as

—Fona
prawr (2 — (w1 — w2)?) (22 — (w1 + w2)?)’

Fonu

U =
| 11p‘ lelQp((le)Q _ Q}%),

(3.47)

|Usip| =

which is plotted against the parametric excitation frequency 2, in Fig. 3.7.

Through these expressions and the corresponding figures we can understand the effect of
non-resonant parametric amplification. The shown steady-state amplitudes are totally governed
by the parametric excitation, specifically, if 7;; = 0 the whole response vanishes. This should
not cause a confusion with our understanding about the steady-state response of a forced
excited system, in which the solution has a steady state amplitude in absence of any parametric
excitation, since we are discussing only the correction terms u1, us;. However, as shown before
in (3.43), the typical steady-state amplitude for a forced linear system does exist. Secondly,
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we could obviously see, that the amplitudes Uy, Us;, are amplified even at non-resonant
frequencies, i.e. not only at parametric resonance frequencies. Although this solution is a
first-order correction to the basic solution, it can have an effect on the homogeneous part of
the basic solution afterwards, as will be explained.

We proceed with the analysis by inserting (3.39),(3.43) and (3.45) in (3.38) and extracting
the secular terms to give the solvability conditions

e (4wt — Q2)

) €_U1T1/2
2ie M2, Dy By + 10 =) (M%(Qz —4w?) + n*(-2 +

4(4&}% — QZ P (Qp +wp — UJQ)(QP + wq + (.UQ)
N e~ (4w? — QIQ)) Fyeitori=¢) ( e2itn?
(—Qp —|—CL)1 —CL)2>(—QP+CL)1 +CL)2> 8(/,L1 +2iaf)w1 (Qp+w1 —wg)(Qp—i—wl +WQ)
2 2
n iC(As 2 2n
4 —dor - —L ) =0
+(—Qp+(.d1 —CL)2>(—Qp—|—CU1 +CL)2> te ( oy Uf 4(,0% — Q%)>
(3.48a)
—2? 4 (02 — dw? iy
mwm&+( n4?(& 2M4@+- exg+ r—
Wy — Wy — W w W
200 pon R AR L (3.48b)

ein?
(Q, + w1 — w2) (=) + w1 + wo)

Solving these solvability conditions with the ansatz B;(Ty) = Boe*?2, By(Th) = Byge 22
gives

Bl(Tg) :Bloe(A_iGI)TQ, (3493)
BQ(TQ) :B20€(_A+i®2)T2, (349b)
where
0, — 1 (12 + 2 20 (wi — wj + Q2) cos()
TR T IR T @ — (0 — e — (@t @)
1 2n? 2% (w? — w3 — Q2) cos(C)
Oy = 8_(_:u% B 400202 T 02 : 22 B 2 3 ) (3.50)
w2 w3 (5 — (w1 — w2)?) (2 — (w1 + w2)?)
A= 1%, sin(¢)

2((925 = (w1 = w2)*)( — (w1 + w2)?))
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Figure 3.7: Amplitudes of the first approximation solution |A;y,], |A21,| With respect to the
parametric excitation frequency 2, where w; = 1, w, = V5, = 0.15, Fy = 1,m =
10,¢ = —7/2.

and finally the solution of (3.33) to the first order approximation gives

_ : K ;
. TEL4A) i(wr—O1)t 0 iQ st
U1 = BlO 6( Tt e — - et 4+ CC,
2wy (1 + 2i(Qp — wy)) (3.51)
—no

u20 — BQO 6( 2 A)ei(w2+@1)t _'_ 007

where perturbation parameter is set to one, ¢ = 1, and By, By are constants determined by
initial conditions. A closer look at the real part of the homogeneous solution in both degrees of
freedom, that is

_ b -

—H1 —H 182 sin(C)
A= —L24+ A= + , 3.52a
! 2 2 _2 [Q% — (wl — UJQ)2] [Q% — (w1 + CL)Q)Q} | ( )

- . :

— 2 — e 18 sin(C)
Ay = 2 A = — , 3.52b
2 2 2 _2 [Q}% — (w1 — w2>2] [Qg — (w1 + w2)2} ] ( )

we find them exactly the same as derived in 3.29 using the method of normal forms, and
A, » are the Lyapunov exponents of this system. This is not much surprising, since the only
difference between both problems is the additional forced excitation, which is added to the
final solution of this system as a particular solution. However, this proves formally the effect of
destabilization of the solution in the amplification of the forced response w1, uz.
The stability of the trivial solution is then governed by the maximum value of A; and A,
that is
Aaz = maz(Aq, Ay), (3.53)
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Figure 3.8: A, against 2, for two phase-shift values

which is plotted against the parametric excitation frequency for two different phase-shifts ¢
in Fig. 3.8. We define A, as A,,,, when n = 0, i.e. at no parametric excitation. In this way,
we can identify the destabilization effect for both phase-shift values. As we can see through
the figure, ( = —7/2 causes a destabilization for a broad frequency band between w, — w;
and wy + w;. It must be noted here that our discussion concerning the destabilization effect
influences the homogeneous solution of (3.51) only, which is a transient response. Therefore,
this does not explain why should the whole solution be amplified. Since this amplification effect
is well-known experimentally [108], an suggestive explanation is proposed here. We consider
the case when A, , are near zero, in this case the transiency turns out to be very slow, and have
a near-steady-state response, therefore, the harmonic part of the homogeneous solution takes
an amplitude B;, or B,y which depends on the initial conditions, including the perturbing
solutions wu;; and us;, which depend on both the parametric excitation and the forced excitation
amplitude as well. This means that driving the system exponent near the zero value allows
other perturbations to add to the whole response. This collective response then adds to the
particular solution in wu;y. This could also explain why this effect occurs only in the vicinity
of instability, in other words, just under the instability tongue in the stability chart [108]. In
order to simulate the amplification effect a time-integration is carried out at three different
parametric excitation amplitudes, away from instability, near instability, and in instability and
plotted in Fig. 3.9. Here we can see clearly the existence of a critical value of = 0.94 at which
amplification is observed, and only a slight increase in 1 to 0.95 causes instability. The critical
value lies at the border of instability for the given system parameters and parametric excitation
frequency. This critical value could be calculated using the approximate solution (3.52) to
be 0.9. This discrepancy is attributed to the analytical approximation. Moreover, the system
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Figure 3.9: Integrated time response of u; where wy; = 1,wy = /5,11 = 0.1, 9 = 0.2, Fy =
1L,y =1,(=—-71/2,Q, = 2.5.

is time-integrated at various excitation frequencies in the broadband destabilization interval
and in each time a critical value is obtained, below which an amplification of the response is
observed, and which is near to the critical value calculated using the approximate analytical
method. This completes our verification for the hypothesis that the destabilization of the trivial
solution corresponds to an amplification of the system’s response.

3.2 Nonlinear time-periodic systems

The analysis proceeds further with a nonlinear version of the previously discussed parametrically
excited system. In this case, in order to achieve the amplification of the system’s response under
the parametric resonance, then the study will be focused on the dynamics inside the instability
regions of the trivial stationary solution, and thereby this would be called a resonant parametric
amplification as discussed before in section 3.1.6. Similar two-degree of freedom systems
were previously investigated with different analytical methods, using multiple scales, normal
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form or averaging methods [42, 15, 109, 110]. However, since the asynchronous parametric
excitation was not given appropriate attention until recently, the investigation of this excitation
case in presence of nonlinearities was only found in [40], in which the parametric excitation
was not fully populated, and only combination resonances were considered with dissimilar
natural frequencies. In this work, the asynchronous parametric excitation is considered in a
two DoF system, with a fully populated excitation matrix. Moreover, the nontrivial solutions
are discussed at all resonant frequencies, and a more detailed bifurcation analysis is carried
out.

Thus, we consider a perturbed two DoF nonlinear system

uy + wivg + €[y + yud + aquf + niug cos(Qpt) + miaus cos(Q,t)] = 0 (3.54)
ug + WSUQ + E[MQUIQ + ’}/QUg + Oégul23 + M21U COS(th + C) + N22U2 COS(th)] =0

with cubic stiffness and damping nonlinearities having the coefficients v; and «; , i = 1,2,
respectively, and having natural frequencies wy, ws. Without the given parametric excitation,
the two DoF would be rather uncoupled, the coupling is then achieved through the parametric
excitation terms, which have the coefficients 7, and 7,;, where the latter includes a phase
shift ¢. In addition the system includes conventional parametric excitation terms as well
with coefficients 7;;, i = 1, 2. Here there is no forced excitation, that is, the system is purely
parametrically excited. All terms but the linear oscillator terms are considered to be small,
which is indicated by the perturbation arbitrary parameter ¢ << 1.

3.2.1 Perturbation analysis

The method of multiple scales [41, 89] is used to analyze the given problem up to the first
order. One seeks an expansion in the form
Ul(t, 6) = ulo(T(), Tl) + EUH(T(), Tl) —+ ceny (3553)
UQ(t7 6) = Ugo(To, Tl) + 6U21(T0, Tl) + cevy (355]3)

where T; = €'t, D; = 0/9T; and

0

a = DO —|— 6D1 —|— cees
92 (3.56)
ﬁ = D(Q) —|— 2€D0D1 4+ ...
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Inserting (3.55) and (3.56) in (3.54) and separating according to the order of ¢ gives:

for €,
Diuyg + wiug = 0, (3.57a)
DgUQO + WSUQO = 0, (357]3)
while for €,
DSUH —I— W%UH = —MlDoulo — %u?o — alDOui’O — 7]11U10 COS(th) — 7712’LL20 COS(th) — 2DOD1U10,
(3.58a)
Diugy +witigr = — 1o Dotiag — Yoty — cta Dotiay — N21U10 cos(2,t+C) — naatiag cos(2pt) —2Dy Dy usgy.
(3.58b)
Solving (3.57) gives
UIO(T07 Tl) = A1 (Tl)eiwlTO + Al(T1>€7iw1To, (359&)
UQ()(T(), Tl) = AQ(T1)€iw2TO + /IQ(Tl)G_iw2TO, (359]3)

where the amplitudes A;, A, represent the slow-scale variables, which will exhibit the system’s
stability in the further calculations, while the exponential expressions represent the fast-scale
periodic solution.

Inserting (3.59) in (3.58) gives

Diugy + wiugy = — 7y (A3e70 4 3A2A,e™170) — o (—jw? A3 To 4303 AT A e T0)
_ %nllAl(ei(wlﬂp)To + ei(w1+Qp)To> . %n12A2(€i(wgﬂp)To + ei(w2+Qp)T0)
- i2W1D1A1€iw1TO — z',ulwlAlei“’lTO + CC,
(3.60a)
Dugy + wiugy = — Yo (A3e™T0 4 3A3 Ape™2T0) — iy (—iwi Ade™2T0 4 §3w3 A2 Aye™2T0)
1 ) ) ) ) 1 ) .
. 57721141 (ez(wl—Qp)To—zC + 62(W1+Qp)To+lC) . §n22A2<€Z(w2—Qp)To + ez(wg—i—Qp)To)
— iQWQDlAQGiWQTO - ilLLQWQAQeinTO + CC,
(3.60b)
where C'C stands for the complex conjugates of the preceding terms in each equation.

Since equations (3.60) have secular terms, which contain e*®i70, thus, all particular solutions
of uy; and w5 are unstable, which contradicts being a finer correction in (3.55). Therefore, the
secular terms must vanish. However, these terms are to be known depending on the frequency

interval chosen for the solution, whether it is away from resonance frequencies or nearly tuned
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to them. For this reason, the following sections will represent the different cases according
to the resonant conditions. First, we will study the cases of primary parametric resonance for
one degree of freedom, since the primary resonance at the other frequency will give the same
behavior. Then we will turn to the interesting case of having 1:1 internal resonance between
both DoFs, while one of them being excited parametrically as well. And finally, the nontrivial
solutions, or limit cycles, are found at the summation and difference combination frequencies.

3.2.2 Primary parametric resonance

For this case we introduce a detuning parameter, which leads to secular or small-divisor terms
in (3.60), that is
Q, = 2wy + €op, (3.61)

where 0, = O(1) is the detuning parameter for the primary parametric resonance. Inserting
(3.61) in (3.60) and equating secular terms to zero yields

_ _ 1 _
i2w1D1A1 + i,ulwlAl + 3’)/1./4%141 + i3a1wi’A%A1 + 57711A1€Z%T1 = 0, (3628.)

12wy Dy Ay + ipiowy Ag + 375 A5 Ay + i3awi A5 Ay = 0. (3.62b)

Since these equations contain complex variables A, A,, a transformation in polar coordinates
is suggested as follows,

1 , 1 .
Al(Tl) = §CL1 (Tl)eﬂﬁl(Tl), AQ(Tl) = éag(Tl)eubQ(Tl). (363)

Substituting (3.63) in (3.62) and separating real and imaginary terms gives

wiDyay + %,ulwlal + galwi’a:f + %7711@1 sin(#;) = 0, (3.64a)
%wlal(Dﬁl —0,) + g%a‘;’ + ;lnnal cos(fy) =0, (3.64b)
woDiay + %ugwgag + §a2wg’a‘; =0, (3.64¢)

woas D105 — gygag =0, (3.644d)

where 6, = 0,71 — 2¢, and 0, = ¢,. Steady state solutions of the system (3.54) are obtained
by calculating the fixed points of (3.64), that is, Dya; = 0 and D6; = 0, for i = 1, 2. Thus, the
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Figure 3.10: Frequency-response curve at the primary parametric resonance of the first DoF

fixed points are

%,ulwlal + galwfa? + %17711@1 sin(f;) = 0, (3.65a)
—%wlalap + g’yla? + innal cos(f;) = 0, (3.65b)
%Mg&)gag + §a2w§’a§ =0, (3.65¢)

g’}/gag =0. (3.65d)

Obviously, the steady state amplitude of the second oscillator a, vanishes, while that of the
first one a; is given by the resonance equation

—9(7{ + ajwy)al + 24(mnopwn — annwi)ai + (4nfy — 16(ui + o7)wi)ar = 0. (3.66)
Thereby, either we have a trivial solution
ap = 0

or

L2 |20 — 2ot + VB nw? + AR () — 4pdet) + aduf (n) — 4o?)
a = —_ .
! 3 v+ ajwf

(3.67)
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Figure 3.11: Phase plot for the complex plane of the a,(77)

The frequency-response curve corresponding to the nontrivial solution (3.67) is presented

in Fig. 3.10 for the parameter values w; = 1, iy

at 0, = —0.1. Although the system incorporates Duffing-type nonlinearities, the nontrivial
solution here differs substantially from that of a forced Duffing oscillator with regard of the
type of excitation. At the point (o, = 0.1) another bifurcation occurs, where a smaller unstable
limit cycle appears in addition to the stable one in another interval o, €]0.1,0.25[. The phase
portrait before and after the bifurcation point is represented in Fig. 3.11 in complex phase

= 0,’}/1 = 007, a; = 0.03 and M1 = 0.2. A
nonlinear resonance behavior is exhibited, and a stable limit cycle is born after a bifurcation

space of the slow variable a;, where A, is represented in complex form

Ay = (ape — iagn)es ™

instead of the polar one used in the analysis. This is depicted as having a saddle trivial fixed
point in the first interval and a stable focus. While in the second interval, the stable focus is
replaced by a saddle and another stable focus, whilst the trivial solution turns to be stable
again. Thus in the second interval two stable solutions exist, at the trivial fixed point and a

nontrivial one.

Further insight could be drawn from this analysis by setting the detuning parameter o, = 0
and at the same time cancelling the linear damping, i.e. ;1 = 0. In this case the nontrivial
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solution (3.67) reduces to

4772 1/4

7 + ajuwt

which will be called I for further analysis. As we see in this expression the amplitude of the
oscillation is determined mainly by the parametric excitation amplitude 7;; and the nonlinear
terms 71, ;. Here it can be clearly stated that in the case of the absence of any of them we will
be left with only the trivial fixed point. Although it might seem to contradict the fact that the
unforced Duffing oscillator has nontrivial solutions even without any parametric excitation, the
main difference here is that the linear damping was set to zero [90]. The I" value is considered
here to represent a nontrivial solution without perturbing with the linear damping and the
detuning of the excitation frequency. The effect of perturbing this solution with varying both of
them will be studied next.

Substituting the value of I" back in (3.66), while keeping the detuning parameter o, = 0 but
allowing the linear damping p; to vary, gives

6 2 4202
ai + 1! (%) a¥ + 1 ( AL 1) ay =0, (3.70)
M1 1

solving this resonance equation gives again
ap =0 (3.71)

or

6 2 4 2,2
at + 1 <w) a2 +T* ( A 1) — 0, (3.72)
Ui UiN!
which is clearly a quadratic equation in a;. Using combined parameters and rewriting it gives

ai + T2 + T2, = 0, (3.73)

N TR B e
@ =— + 3 [8=7 — 41M=,. (3.74)

For relatively high excitation amplitudes with respect to system parameters, we find the

which has a solution of

combined parameters =, =, and I to have values smaller than one. In this case =, will dominate
the solution. And in order to have a real-valued ay, i.e. positive-valued a?, =, must then be

negative. Thus a real valued a; can only take place if positive square root solution was selected
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Figure 3.12: Nontrivial solution by varying the system linear damping ;, while o, = 0. Other
parameter values read w; = 1,7, = 0.07,; = 0.03

and if =, < 0. Reading the =, term from (3.72) and applying this condition yields

o < (3.75)
2(4)1 2&)1

which could be confirmed by numerically solving (3.72) and plotting the solution in Fig.3.12(a).

However, if the excitation amplitudes were relatively small, causing the combined parameters
values to be larger than one, we find =; to be dominating. In this case, a real-valued «a is only
possible for ; < 0, as shown in the same figure.

The plotted solution in Fig. 3.12 corresponds to the solution of the main resonance equation
at 0, = 0 in Fig. 3.10, where only a stable solution exists. However if another value of o, was
chosen which includes an unstable solution as well, this should give another dimension to the
problem. Thereby, by returning to (3.66) it can be written in

61w 42
at + T (51 —~ #ap> a? 4+ T (EQ + 77—210;) =0, (3.76)
11 11

which gives the admissible amplitude values shown in Fig.3.13 by varying the linear damping 1,
again. The figure shows isolated stable and unstable steady-state solutions. This is particularly
interesting, since the variation of the linear damping could cause an abrupt increase or decrease
in the amplitude of the response at a bifurcation point. This high sensitivity of the response at
the bifurcation point could be of a significant importance for systems, where high sensitivity is
pursued using a bifurcation control scheme.
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Figure 3.13: Nontrivial solution by varying the system linear damping 1, at two different values
for the detuning parameter o,,. Other parameter valuesreadw; = 1,7, = 0.07, a1 =
0.03,7711 =0.2.

3.2.3 Internal resonance under parametric excitation

The case of 1:1 internal resonance stands to be relevant for systems involving degenerate or
similar eigenvalues w; ~ wy. This happens to be the case for structures with axis-symmetric
geometry. A motivating example is the micro-ring gyroscope, which will be analyzed afterwards
in chapters 4 and 5. It was also shown in section 3.1.5 that the degeneracy of eigenvalues or
even the nearness to one another leads to a large broadband effect between the difference and
summation combination frequencies. In the nonlinear case, however, another phenomenon
could take place, which is the internal resonance, provided that one eigenfrequency is in the
vicinity of the other, this would only occur when the ring’s geometry is highly symmetric around
the axis.

In this case we introduce an additional detuning parameter o;, where

(3.77)

Wo = W1 + €04p,

while the previous one (3.61) remains effective. Returning to (3.60) and this time inserting
both (3.61) and (3.77) gives the solvability conditions

_ 1 _ 1 _
i2w1D1A1 + i,ulwlAl + 3("}/1 -+ ialwf’)A%Al -+ 57711A16WPT1 —+ 5771214261(017702'")711 = O, (3783)

) , _ 1 _ . 1 _
i2w2610mT1 D1A2+i/,LQCU2€lUinT1Al+3(72+ia2wg)A§A2€ZUinTl +5n21A1€zapT1+lC+§n22A2€z(apfoin)T1
(3.78b)
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Figure 3.14: Nontrivial solutions for a; and a, by detuning o, in case of tuned 1:1 internal
resonance, where w; = 1,; = 0,7, = 0.1, ; = 0.02,711 = 12 = 191 = 1,190 = 0
and o, = 0,fori =1, 2.

In order to investigate the exchange of energy when only one DoF is parametrically excited,
we put 705 = 0, while the phase shift is firstly not taken into consideration, i.e. { = 0. As
previously done, we insert (3.63) in (3.78) then separate real and imaginary parts to yield

wia; D¢y — g%a:{’ — %7’]12&2 cos(fy) — innal cos(fy) = 0, (3.79a)

wiDia; + %/Lwlal + 2a1w§’ai’ — imgag sin(6;) + %17711@1 cos(fy) = 0, (3.79b)
wWoo D1 hg — gfygag - inglal cos(6y) =0, (3.79¢)

woDias + %,L@wzag + gagwg’ag — inmal sin(f;) = 0, (3.79d)

where 91 = gbl + ¢2 + (CTm — Up)Tl and 92 = —2¢1 + UpTl-

The steady state solutions are then sought when

Dl&l = O, D1a2 = 0, and
D1(91 =0and D1(92 :O, or D1¢1 20'/2 and D1¢2 20'/2—0'1',

(3.80)

which when substituted in (3.79) and solved for a; and a, give the two resonance equations

9(75 + ajws)as + 24ws(—720, + 27204, + aapiows )ay + 16ws (13 + (0, — 204,)%)a3 — 4n3,a7 = 0,
(3.81a)
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Figure 3.15: Nontrivial solutions for a; and a, by detuning o, in case of tuned 1:1 internal
resonance, where , where w; = 1,; = 0,7, = 0.1, ; = 0.02, 712 = 121 = 1,109 =
an—in =0 and m1 = 0, fori = 1,2

931 (7 + afw?)a] + 2415, (anmwy — yiopwi)a; + ai [—4n5, (ni, — 4(uF + o))
+24n19m21 (11(0p — 203,) — o ppw? ) waas — 18019M21 (Y172 + alagwi’wg’)ag] (3.81b)
+ dmanaiar [(maner — 8(pape + 0,(0 — 204,) )wiws)a3 + 6wy (120, — aopyws)az] = 0.

Figure(3.14) depicts the frequency-response curves for the amplitudes of both degrees of
freedom, which were calculated by solving (3.81) while detuning o,,.. These values represent
a perfectly symmetrical system (o, = 0) with zero linear damping. The resonance curves
show the typical " M” shape due to the internal resonance, moreover, the hardening nonlinear
stiffness causes all curves to bend to the right. In addition, multiple nontrivial points could
be calculated by detuning the excitation frequency. This results in a complex phase space
containing various fixed points at a given excitation frequency, which therefore requires a
careful stability analysis in future work. However, when the external parametric excitation
np1 is turned off, the internal resonance’s typical behavior vanishes (see Fig.3.15), and the
frequency-response curves show only stable and unstable limit cycles similar to the case of
primary parametric resonance discussed before. Nevertheless, a distinction should be made
here between this case and the case of parametric resonance by observing the solvability
conditions in both cases, i.e. in (3.62) and (3.78). In the case of primary resonance we have
only one excitation source, which is 7;;. The energy, however, could not be transferred to the
second degree of freedom, due to the absence of internal resonance. In the case discussed here
we do have three excitation sources, 7,1, 712 and 7y;. If the first one is turned off, the other
two remain effective, causing a transfer of energy at the primary resonance frequency. These
coupling excitation terms will show up again to be influencing the system’s behavior under
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combination resonance, as will be discussed afterwards. Furthermore, while having zero 7,
and )52, we have a cross parametric resonance through 7, and ;. This leads to the response
depicted in Fig.3.15.

3.2.4 Combination parametric resonances
Summation parametric resonance

We apply the same analysis as before for the case of combination parametric resonances, where
the parametric excitation frequency is in the neighborhood of the summation or the difference
frequencies, that is 2, ~ |w; & w»|. Beginning with the summation resonance we introduce the
detuning parameter o,, where

Q, = w1 + wy + €0y, (3.82)
then as before, the resonance condition (3.82) is then inserted in (3.60), to give the solvability
conditions

_ _ 1 _
i2w1D1A1 + i,ulwlAl + 3’71A%A1 + ?:3011(,0?14%141 + 577121426105711 = 0, (3833)
_ S
iQWZDlAQ + i,lLQ(UQAQ + 372A%A2 + Z?)O(g(x)%A%AQ + 57721A16Z(05T1+<) =0. (383]3)

Putting the amplitudes A;(7}), A2(73) in polar form according to (3.63), substituting in
(3.83) and separating real and imaginary terms gives

1

3 .
Dia,y —§u1a1 galw%a? - 4—w17712a2 sin(6,) (3.84a)
Diaz = — 211203 — 23033 — —— 3101 5in () cos(C) — — (61) sin(C) (3.84b)
Ay = —— oGy — —QoW5a5 — ——1)91G1 SIN cos(() — —m91aq COS sin }
1A2 2/12 2 3 2Wo Uy 4w27721 1 1 4w27721 1 1
3via?  3v,a 1 a 1 a; . . 1 a
D0, = o, — ;:)11 — gj}; — 4w2?721a_: cos(6y) cos(¢) + 4_u)27721a_; sin(6q) sin(¢) — ﬂ””a_? cos(61),
(3.840)
3v9a2 1 a 1 ai . .
D10y = gj}; + mnma—; cos(fy) cos(¢) — 4_w2n21a_; sin(6;) sin((), (3.84d)

where 6, = 0,77 — ¢1 — ¢ and 0, = ¢,. Steady-state solutions are then obtained by calculating
the fixed points of (3.84), that is when D;a; = 0 and D:6; = 0, for i = 1, 2. However, in this
case the effect of the asynchronicity of the parametric excitation, i.e. the presence of the phase
shift ¢, heavily influences the nontrivial solutions and limit cycle oscillations. Therefore, we
present the nontrivial solutions in two different cases, synchronous ¢ = 0 and asynchronous
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¢ = —mn/2. This latter particular phase-shift is chosen according to our analysis of the trivial
solution discussed before.

If ¢ = 0, then the fixed points of equations (3.84) could be determined from

1 3 1 )
—gHa — galwfai’ — 4—Mn12a2 sin(f;) =0 (3.85a)
! S el — sin(6;) = 0 (3.85b)
——loly — — W5y — ——11 Gy SIN = .
2#2 2 3 2Wo Uy 4w27]21 1 1
3via?  3yead 1 a, 1 ay
s — — — — 4+ — N — 0,) =0, 3.85
8(4.!1 8002 4&)2 & Qo + 4(4.)1 2 aq COS( 1) ( C)
while under asynchronous excitation, ( = —x/2, the equations read
1 3 1
—gHar = galwfa‘i’ — 4_wl7712a2 sin(f;) =0 (3.86a)
1 3 9 3 1
—gHaa2 = gangaQ + 4—Mngla1 cos(61) =0 (3.86b)
371a% 372a§ 1 a . 1 as
s — — — — 0,) — —nin— 0,) = 0. 3.86
8&)1 8W2 4&)2 1 a9 Sln( 1) 4&)1 2 aq COS( 1) ( C)

From these equations it can be observed that only the 7, excitation terms are changed.
Furthermore, although the modulation equations (3.84) were in four variables, only three of
them influence the vector fields excluding 6, which lead to three algebraic equations in three
variables to determine the fixed points.

Stability analysis

In order to determine the stability of the obtained nontrivial steady-state solutions, the solution
is perturbed using

ai (Tl) = ajg + Aal (Tl), ag(Tl) = a9y + AGQ(Tl), (91 (Tl) = 910 + A91 (Tl), (387)

compactly written
Z(Tl) =2z + AZ(Tl), (388)

which is then inserted in the modulation equations (3.84) to give

N af(AZ, zO)
Ay =822, L NT 3.8
o 0Az |Az=zo + (3.89)
where J = %\ As-—o is the Jacobian matrix evaluated at the fixed point and NLT

represents the nonlinear terms.

69



35 T T 2.0
3.0 15i
2.5" I
— 2.0 N I
3 3 10
1.5 ] [
1.0 .05
0.5 ;
0,07 T S S S R R ‘E 0_0; P I SRR BN
-0.2 0.0 0.2 0.4 -0.2 0.0 0.2 0.4
O Os
(a) a1 (b) az

Figure 3.16: Nontrivial solutions for a; and a, by detuning o, about the summation frequency,
when w; = 1,wy = /5,7 = 0.07,0, = 0.03,m;; = 1, 4,5 = 1,2and { = 0.

After eliminating the nonlinear terms, the linearized system presents an eigensystem with
the eigenvectors being tangent to the system’s nonlinear manifolds. The stability of the fixed
point of the nonlinear system can be deduced from the eigenvalues of the linearized system,
as long as the fixed point is hyperbolic according to Hartman-Grobman theorem [86]. In this
view, if all the eigenvalues at the investigated fixed point have negative real parts, the fixed
point and the corresponding solution are considered asymptotically stable. While the existence
of a single positive eigenvalue implies the instability of the solution. However, if the largest
eigenvalue is strictly zero, then the stability of the solution cannot be determined by a linear
analysis [99].

In this synchronous excitation case, the steady-state solutions are deduced by solving the
equations (3.85), then the stability of each fixed point is determined as previously discussed
and the result is then plotted in Fig. 3.16, where the blue and red points represent stable and
unstable limit cycles respectively. The parametric resonance curve is shown to be similar to
primary resonances (see Fig. 3.10), where the amplitude of the second degree of freedom as, is
lower than the first one a;.

In the other case, when ( = —x /2, the fixed points of (3.84) are determined through solving
(3.86). The resonance curves in this case are then depicted in Fig. 3.17. In this figure, it can be
observed that all the nontrivial solutions, or limit cycles, are found to be stable for the given
detuning interval. However, the resonance curves of both degrees of freedom have different
profiles. Furthermore, detuning the excitation frequency has opposite effects on the amplitudes
of the limit cycles of both degrees of freedom; by positive detuning a, exhibits higher amplitude
than a4, while by negative detuning the opposite occurs.
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Figure 3.17: Nontrivial solutions for a; and a, by detuning o, about the summation frequency,
when w, = 1,wy = /5,79 = 0.07,; = 0.03,7;; = 1, i, = 1,2and {( = —7/2

Difference parametric resonance

The perturbation analysis is carried out for the difference parametric resonance case, where
the parametric excitation frequency is in the neighborhood of the difference frequency or
), >~ |wy — wy|. In this case the parametric excitation frequency is detuned through

Qp = €04 + (w2 — wl), (390)

where o, is the detuning parameter, and w, is assumed to be larger than w; without loss of
generality. By inserting this condition again into (3.60) the solvability conditions become

_ _ 1 )
i2w1D1A1 + iﬂlwlAl + 3"}/114%141 + i3a1wi’AfA1 —+ 577121426710‘1711 = O, (3913)

_ _ 1 .
’iQWQDlAQ + i/LQQ)QAQ + 3’)/214%142 + 2.3042(,&};143142 + EnglAlez(UdTH_O = 0. (391]3)

Before indulging into the procedure of finding the nontrivial solutions, we can observe the
differences in the solvability conditions between summation and difference resonances. By
comparing (3.91) and (3.83), we can obviously see that all terms are the same in both equations
except for the coupling term in each equation, which causes a vast difference in the end results.

Following the same procedure as before, the modulation equations are found to be

1 3 . 1

D1a1 — 5,&1@1 éalwfa‘f — 4—CL)17712612 Sin(91) (3923)
1 3 5,4, 1 : 1 :
Diay = — JH2a2 — g&gwgaQ + 4—@7721@1 sin(6;) cos(¢) — 4—@7)21@1 cos(f;) sin(Q) (3.92b)
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3 2 3 2 1 1 . .
D0, = — 04— N Ry 7721ﬂ cos(fy) cos(¢) + —7721ﬂ sin(6;) sin(()
8wi 8wy  dwy ' ag dwp ™ az (3.92¢)
1 Q9 .
- 4—7712— cos(61),
W1

D16, _ 3105 + LUZla— cos(6;) cos(¢) + LT]Qlﬂ sin(6) sin(() (3.92d)

Swy 4wy T ag 4wy T ay ’

where in this case we put 6; = (¢ — ¢1) — T104 and 0 = ¢». The modulation equations are
then separated into real and imaginary parts, and solved to obtain the steady-state solutions
when D16, =0, D16, = 0, D1a; = 0 and D;a, = 0. The resulting equations are again given in
two cases. Thus for the synchronous excitation case ¢ = 0, they yield

1 3 1
—§,u1a1 — galwfaf — 4—Mn12a2 sin(f;) =0 (3.93a)
! S ol — in(f,) =0 (3.93b)
—— a0y — = QW55 + ——1N)91 a1 SIN = .
2#2 2 3 2Wo Qg 40.)27721 1 1
371@% 3fyga§ 1 ai 1 as
—04 — — 0) — —np— 0 0, 3.93
(oF) 8(,(}1 + 8w2 +4w 7721@2 COS( 1) T 17712 COS( 1) ( 9 C)
while if the parametric excitation is asynchronous, i.e. { = —7 /2, this gives
L 3 wlad — in(6;) = 0 (3.94a)
——[l1a] — —Wia; — ——1MN12a9 Sin = .
2#1 1 3 1wiay 4w17712 2 1
—1 a 3a w2ad + L aj cos(f;) =0 (3.94b)
2#2 2 — 3 2Wo Ay 4w27721 1 1) = .
371a% 372a§ 1 ai 1 as
—0gq — — — 0) — —ni2— 0) =0 3.94
04 8&}1 + 8w2 4&}27]21@2 COS( 1) 4(,017]12@1 COS( 1) s ( 9 C)

By solving the equations in the synchronous excitation case, an interesting result is observed:
nontrivial solutions do not exist. This comes inline with our stability analysis of the trivial
solution, where no resonance was found at the difference combination frequency, instead an
anti-resonance could be detected. According to this observation, a correspondence between
the stability of the trivial solution and the existence of the nontrivial ones can be proposed.

By solving the equations (3.94) the nontrivial solutions (limit cycles) are calculated, their
stability is investigated and plotted in Fig. 3.18. The resonance curves are shown to be signi-
ficantly similar and mirrored around the zero detuning parameter when compared to those
calculated around the summation resonance. This result should be related to the difference in
the solvability conditions (3.83) and (3.91) where the excitation terms in each case are found
to be the complex conjugate of the corresponding ones in the other case.
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Figure 3.18: Nontrivial solutions for a; and a, by detuning o, about the difference frequency,
whenw, = 1,wy = /5,7 = 0.07,; = 0.03,n,; = 1, i,j = 1,2 and { = —7/2.

3.3 Conclusion

Through the presented work in this chapter several observations could be summarized. Firstly,
the broadband destabilization effect was proved numerically and analytically for linear systems
with asynchronous coupling parametric excitation. This effect can be obviously seen in the
stability chart in Fig. 3.3. The shape of the instability region in this chart will be observed
repeatedly in the next chapters, where the asynchronous excitation is applied on different
examples. Accordingly, the topology shown in Fig. 3.3 can be considered typical for this type
of excitation.

Secondly, a direct correspondence between the destabilization of the trivial solution and
the amplification of the response could be elaborated analytically for linear systems which
is a non-resonant parametric amplification in this case. This was explained in the vicinity of
the border of instability, which confirms the experimental observations reported in numerous
previous works. This relies on the fact that the maximum real part of the system’s eigenvalues
approach zero, thereby, causing the transient homogeneous solution to be nearly steady. In
this way, the initial conditions of the homogeneous solution will be perturbed by higher order
corrections deduced according to the multiple scales method. But since these correction terms
are influenced by the broadband destabilization effect, therefore, this could be transferred to
the main solution to the first order of approximation. This could be verified numerically as well
using direct numerical integration of the original system.

Thirdly, nonlinear time-periodic systems exhibit several types of instability. Destabilization
in these systems occurs due to different reasons. Resonances and transfer of energy between
coupled degrees of freedom contribute to this destabilization, moreover, the addition of a
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phase-shift between the coupling parametric excitation terms changes the nontrivial solutions.
Through the variation of the linear damping coefficient at the primary parametric resonance,
the nontrivial solutions seemed to be limited in domain, but more interestingly it could cause
isolated steady-state solutions as well when the excitation frequency is correctly adjusted in a
region of multiple limit cycles. In addition, the case of internal resonance shows an influence of
each excitation term. Even when the intrinsic excitation terms (diagonal terms in the parametric
excitation matrix) are turned off, the coupling excitation terms could cause a cross excitation
in both degrees of freedom. At combination resonances, the nontrivial steady-state solutions
were obtained, where the asynchronous excitation is shown to have a major effect. In particular,
the inclusion of the phase shift between the off-diagonal parametric excitation terms leads
to the occurrence of parametric resonance and existence of limit cycles at the difference
combination frequency. In addition, the stable and unstable limit cycles existing in the vicinity
of the summation combination frequency under synchronous parametric excitation change
into only stable ones under asynchronous excitation.

In conclusion, all these observations in addition to those obtained for time-invariant systems
form a theoretical background about the behavior of dynamical systems when subjected to
different sources of destabilization. In time-invariant systems it was shown that the introduction
of asymmetry in the stiffness matrix due to circulatory forces could lead to instability. This
happens as well in time-periodic systems, since the inclusion of a phase-shift between the
off-diagonal terms introduces an asymmetry to the parametric excitation matrix. Through
asynchronous parametric excitation, it is shown in this chapter that the trivial solution could be
destabilized at a broad band of frequencies. Moreover, this is linked to a broadband parametric
amplification through an analytical study. In addition, this asynchronicity showed an important
effect on the nontrivial steady-state solutions at combination resonance frequencies.

All these observations show the significance of the discussed methods of excitation in dynami-
cal systems especially for those of high natural frequencies as discussed in section 3.1.5, which
is a characteristic of micro and nanosystems. In the next two chapters, micro-ring gyroscopes
are modeled and their dynamical behavior under asynchronous bimodal parametric excitation
is studied, where the previous theoretical observations were found significantly beneficial.
Moreover, the same excitation method is realized afterwards experimentally and presented in
chapter 6.
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4 Micro-ring gyroscopes: a linear model

In this chapter, we start applying the discussed theoretical results in the previous chapters
on a microsystem, namely, the micro-ring gyroscope. The gyroscope is modeled both linearly
and nonlinearly, the first case is presented in this chapter, while the next chapter is concerned
with the nonlinear model. Micro-ring gyroscopes are found to be an appropriate application
for the theoretical study previously discussed. This is related to being experimented under
parametric pumping in various previous works, as well as having an axis-symmetrical geometry
that emphasizes the broadband destabilization effect.

After introducing the principles of vibrating structure gyroscopes, a mechanical analysis of
the micro-ring gyroscope using Hamilton’s principle is first given. Then the system is discretized
using Galerkin’s method, and the electrostatic excitation terms are derived theoretically. We
propose an electronic circuit for implementing the phase-shifted coupling of the bimodal
parametric excitation. The two-degree of freedom system is then numerically analyzed using
Floquet’s method, and the broadband amplification effect is discussed. The normal form method
is used to obtain a semi-analytical solution in order to give more insight into the dynamical
behavior. Finally the proposed method of excitation is applied on a typical micro-ring gyroscope
presented before in the literature, which was experimentally investigated. At the end, we show
how this excitation method can be advantageous to the micro-sensors technology.

4.1 Vibrating structure gyroscopes

Vibrating structure gyroscopes are inertial sensors to measure the angular rate. They share the
name gyroscope with gimbal-gyroscopes, not because of the existence of gyroscopic coupling,
which exists only in a three dimensional system, but since they induce gyroscopic terms in
the system. Moreover, they are used, like gimbal gyroscopes in measuring the angular rate
and orientation of their reference frame. In order to explain this, consider a two-degree-of-
freedom system shown in Fig. 4.1. If the rotation rate 2 = 0, both degrees of freedom are
uncoupled. That means, if the first degree of freedom is excited by a force F,, the other degree
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of freedom stays unmoved. The coupling occurs only when the frame rotates. In this case the
two-degree-of-freedom model with respect to the rotating frame takes the form

mi + c, @ + kyx = F, + 2mS. 7,
(4.1)
my + cyy + kyy = —2mQ. @,

where m is the mass of the lumped mass vibrating in two orthogonal directions z, y, while
Csy, ks, are the damping and stiffness coefficients respectively. Only the first degree of freedom
is excited by F,. The two equations are coupled due to Coriolis forces which are inertial forces
initiated with respect to the rotating frame, and energy is transferred from the first degree of
freedom to the second one. Since the Coriolis force is the only force acting on the second degree
of freedom, then, the amplitude y could be easily correlated to it, and therefore correlated to
the rotation rate €),. Through this correlation the rotation rate can be evaluated.

Commercially this type of vibrating gyroscopes, using a lumped mass, is the common type
of micro-gyroscopes typically used in mobile phones. However, other more expensive types
do exist, which are used in more sophisticated applications for navigation due to their higher
sensitivity and reliability such as micro-ring gyroscopes [111]. In this thesis, the micro-ring
gyroscope is studied, which is based on an elastic ring vibrating only in-plane.

A

Q

Figure 4.1: Principle of a vibratory structure gyroscope
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4.2 Parametric in-plane vibrations in thin elastic inextensible
rings

We start the analysis with the basic theoretical development of the micro-ring structure and
the effect of parametric and forced excitations on its vibrations. Next, we shift the attention
to the micro-ring gyroscopes. Through this approach we seek to develop a generic theoretical
framework for parametrically excited micro-ring gyroscopes, while preserving two things;
firstly, not referring the reader to external literature in the theory of elasticity or the theory of
vibrations, and secondly, not relying on ad-hoc physical assumptions, in order to have a model
for micro-ring gyroscopes strictly based on a mathematical derivation.

4.2.1 Determination of the free ring’s natural frequencies

1

p,E,A Iz /,....--4—-.\.#

u(6,t)

v(0,t)

Figure 4.2: Ring in-plane deformation

Beginning with the theory of thin elastic rings, the in-plane vibrations of an elastic ring are
illustrated in Fig 4.2. Every infinitesimal element has two degrees of freedom in the plane of
vibration. Their displacements are described in local polar coordinates through the variables
u(t,d) and v(t,0). The ring is first analyzed with a given generic external force acting in the
radial direction.
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A generic equation of motion will be sought for the shown system, which provides the base
for all following analyses. The system is investigated through Hamilton’s principle leading to
the ring’s partial differential equation (PDE) and its solution.

The kinetic energy for the ring is

2m
T = %pAR/ (v,v) db, (4.2)
0

where v = [u, 0] represents the velocity of each infinitesimal element, A is the cross sectional
area, R the radius of the ring centerline and p the ring’s uniform density. Regarding the strain
energy, it is assumed that the ring is elastic and that Hook’s law applies, which means o = Ek,
where o is the stress at a point, ¢ the strain and £ Young’s modulus for an isotropic material.
Therefore the elastic energy is

E 21
U= —R/ / 2 dA db. (4.3)
2 Jo Ja

Here € represents the normal (longitudinal) strain along the ring centerline, which can be
calculated, for small strains, from the relation

e:l[—u—i—%—%%(v—i—%)], (4.4)
where z represents the distance of a typical element of the ring from the centroidal axis [112].
The last equation follows the Bernoulli-Euler hypothesis [113], in which the straight lines (or the
plane) perpendicular to the tangent to the ring centerline remain straight and perpendicular to
its tangent line after deformation. A last assumption in this hypothesis is the inextensionality

of the centerline, which means that ¢ = 0 at x = 0, this gives

U= — (4.5)

which eliminates the first two terms in the strain expression, which represent the extensional
strain in the ring.

By inserting (4.4) with (4.5) in (4.3), we obtain

EIL, [ O*u .,
U= 233/0 (u+ %) do, (4.6)

which represents the strain energy due to in-plain bending.
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Finally, the work done by two orthogonal external distributed forces f,(0,t), f,(0,t), i.e. in
both u and v coordinates, is expressed as

2m
Wi = / [Rf.(0,t)u+ Rf,(6,t)v] db, 4.7)
0

where f, and f, are the forces per unit length. The variation of the kinetic energy is

21 62 82,0

while that of potential energy is

— v) ovdb, (4.8)

oU =

E[ 2 2 4 6
(a v, v 0 ”) Sv db, (4.9)

“w ), \aee o T e

and for the work done by the external force the variation will be

2m 8fu
IWhe = R/ fo— —==—| 0vdb. (4.10)
0 a6
Inserting all terms in Hamilton’s principle
t2
/ (6T — 6U + 6W,,.) dt = 0 (4.11)
t1

yields the well known equation of motion for a free undamped elastic inextensible thin ring
[114, 112]

EI [0%*v otv 0% 9? (0% 1 Ofu
AR (w”w+%) "o (%‘) oA {fv‘%} =0, (4.12)
with
v(0,t) = v(0 + 2m,t). (4.13)

As a first step, we solve this partial differential equation (PDE) for f(6,t) = 0 (or f,, f. = 0),
in order to get the system natural frequencies and vibration modes.

We first look for the solutions of the type

v(0,t) =V (0)q(t). (4.14)
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By substituting into (4.12), and separating the temporal and spatial variables we get

PV(e)  _dV() dV(0)  WpAR* [d?V(6)
— V()| = .15
do? do* ds EI { d6? Vi )} 0 (4.15)
Vm(0,t) = V™ (2r,t), n=0,1,2,3, (4.16)
and
iq(t) +wiq(t) = 0. (4.17)

The eigenfunctions of (4.15) along with (4.16) are obviously sin(nf) and cos(nf), neN.
Substituting them into (4.15) gives the corresponding eigenvalues

,  EIn*(n®—-1)°
“n = AR*p(n? + 1)

(4.18)

where n = 0 and n = 1 correspond to the ring’s rotational and translational rigid body modes
respectively.

A general solution for the tangential displacement is therefore given by

v(0,t) = (K + Lt) + RX: (A, sin(wy,t) + By, cos(wnt)) (S sin(nb) + C,, cos(nd)) . (4.19)

o0

4.3 Forced and parametric excitation

So far a general solution for the partial differential equation of the inextensible ring was found,
but the main aim is to model the micro-ring gyroscope. To this end we assume that the whole
system of the ring and its supports rotate at a given constant but small speed of rotation with
respect to an inertial reference frame.

For this sake, we add a constant speed rotation of the ring reference frame which will alter
the kinetic energy expression as follows. Returning to (4.2), we define now the tangential

displacement in the non-inertial rotating frame to be

v = [i,0]" + Q x [u,v]”, (4.20)

where Q) = ), é, represents the rate of rotation of the ring body fixed frame around the axis
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é. normal to the ring plane. In this case the kinetic energy is

1 2
T = §7TpAR/ [4® + 0* + Q2 (v® + v%) + 2Q. (ub — ww))] db. (4.21)
0

Using the expressions of potential energy and external work done as previously stated in
(4.6) and (4.7), Hamilton’s principle gives

ot 0? (0% 5 (0% 0%
// [ (aez 2@*%)*/“3((9 (w—”>—9z(ﬁ—”)—4ﬁzm>

+R (f %’;“ﬂ v dfdt = 0,

(4.22)

with the essential boundary condition v (0,t) = v (27, t).

This leads to the partial differential equation of this system

EL (Ov 0w  Ov\ (O (v N o (00 N o Ov
pAR4 06? 00~ 06 ot? \ 06? #\ 062 “dodt
3f (4.23)

Here f, and f, represent the external distributed (per unit length) load in radial and

tangential directions respectively. These loads can be thought of as being a forced excitation,
parametric excitation, damping or external support. In this case we will be interested in
obtaining the differential equation for an excited rotating ring gyroscope with elastic support.
Therefore, we will assume having a radial parametric force as well as a forced excitation force

v
fur = Feu(0,t) + F,(0,t) u = Fop (0,1) + F (0, 1) = 50" (4.24)
as well as an elastic support in both radial and tangential directions
fu2 = _kuu7 fv2 = _kvv- (425)

This leads to the PDE for a parametrically and externally excited elastic inextensible ring
elastically supported with respect to a constant-speed rotating frame in the form
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EI (&v 0% 0%\ (& (&v N (0 N _ o O
DARI\ 902 T “901 T 966 a2 \ogz ~* A/ * dfdt

1 0%v OF, Ov 1 OF,,

Galerkin’s method is used to discretize the system by the ansatz

v(0,1) = (®(0),9(1)), (4.27)

where
®(0) = [sin(20) cos(20) sin(36) cos(30) ...], (4.28)

and
qt) = [a(t) @) @) o) -] (4.29)

where ®(0) represents a vector of the system eigenfunctions (mode shapes) starting from the
first vibration mode, i.e. when n = 2 in the general solution (see (4.19)), while g(t) is a vector
of the unknown modal coordinates. This can be also represented in the general form

N

v(0,1) = Z ¢i(0)ai(t). (4.30)

i=1

We specify our attention to the case of a discretized two degree of freedom system represen-
ting the first two elastic degenerate modes, which are found to be spatially shifted by 45°, this
means

v(0,t) >~ sin(260)q (t) + cos(260)qa(t). (4.31)

The external forced and parametric excitations should be assumed in a general form in order
to obtain the system’s ordinary differential equations (ODEs). Simulating these forces, however,
requires taking into consideration that these forces are applied only at the electrodes, therefore
they are discontinuous with respect to 6.

This was found to be mathematically complicated if compared to another approach. In
the following approximate approach we model the external forces as a power series of the
trigonometric shape functions ®(#) while preserving the angular distribution by choosing the
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argument of each function to be 26. This leads to
F, = Z )sin®(20) + Fo_x(t) cos®(20), (4.32)

while the forced excitation will be represented as
F.,= i —F.1_x(t) cos™(20) + Fpo_x(t) sin®(26). (4.33)

Inserting (4.30) into (4.26) leads to

AMZ

=1

N
[— (¢ — &)l d; + Z 4. ¢7] 4, + Z { pqﬁ;’} G+ [piAFm;} ¢
=1
1

El /1 IV VI 2 " 1 /1 R 4
[ DAR (07 +20;" +¢]") + Q2 (¢ — i) — p—A(ku@ —kvv@)} g = pAFef' (4.34)

_l’_
-

(4.34) is then multiplied by any of the base functions ¢; and integrated over the domain to
give N equations ¢; (1 = 1,2,...N)

N 2 N 2w
> {—/ (¢7 — i) ¢jd9] G + Z [/ 4Qz¢;’¢jd9:| q
i=1 0 i 0
2T 1 . Qﬂi .
B[ sl S[[ fsosl

7 EI /! /! 1 1
{/ _pAR4 (¢z +2¢5V+¢Y1) ¢j—|—Qz (6] — &) pj — IO_A(k“¢1 ~ ki) 60| g

271'1

A ex (bJ d0:|

D3
I

(4.35)

Then (4.31), (4.32) and (4.33) are inserted to get the final discretized system. We found
that, using (4.32) and (4.33) results in non vanishing terms for the components with even
powers k € 2,4,6, ... in case of the parametric forces, while only the odd powers k& € 1,3,5, ...

remain in case of the forced excitation forces. For the case of k — oo, angular distributed point
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forces are simulated. Applying that, we get

Z M + Z 9ii0; + Z Kijdi Z cij(t)a: = [f;(0,1), (4.36)

or in matrix form

Mg+Gqg+Kq+C(t)g=f. (4.37)
where
|t 0 | c_8q]0 1 | f:L F(t)
01 5 -1 0 2pA | Fo(t)
36E1 1 10 —2 |Fa(t) 0
= —92+—4ku+kv) . Ct)= ’
<5pAR4 5pA [ ) 0 1 ®) SrpA 0 Fo(t)

Here we showed that a self-excited parametric excitation of each mode is possible by choosing
the correct spatial distribution of the electrodes to correspond to the ring anti-nodes. This can
be extended by an external control circuit into having a fully populated C(¢) matrix, that is,
having coupling terms

—2
57TpA

Foui(t)  Fra(t)
Foor(t)  Fpoa(?)

or in other words a coupled bimodal parametric excitation. However, the implementation of

C(t) =

)

this matrix will be then through an external electronic circuit. This means that without such a
circuit, the coupling terms are not feasible under the construction presented in this section in
correspondence to Fig. 4.2. Moreover by considering a damping matrix D we arrive at

MG+ (D+G)g+(K+C(t)g=f. (4.38)

4.3.1 Determination of the excitation terms

Till now we assumed having a general expression of excitation according to (4.10) and then it
was specified by (4.24), but we did not derive yet these expressions (i.e. F,, and F.,) according
to the underlying physics.

We start by applying the electrostatic force through any electrode (see Fig. 4.3), and returning
to (4.11), the work done is to be considered. For the given case, a micro-ring is assumed to be
excited by an electrostatic force through distributed electrodes around the ring. Taking one
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Figure 4.3: Applying electrostatic force F,;

electrode for convenience, The virtual work of the electrostatic force can be then computed as

_OE.

oW = ou

du(t, ), (4.39)

where FE, is the electrostatic energy stored between the micro-ring and the electrode.

The electrostatic energy is introduced as

_ leAe

E.=
2 d

V3(0,1), (4.40)

where ¢, is the permittivity, A, is the surface area of the circular segment normal to the electric
field, d is the separating distance between the electrode and the ring and V is the applied
voltage.

Since an inplane vibration is assumed, the distance d is a function of the radial displacement
u, while the surface area A, is bRdf. Putting this together gives
a+0y 1

1
B, — ~e,bRV2(0,1) / b, (4.41)

where b is the ring thickness and d = dy—u. Without loss of generality, let F'(6,t) = 1e.bRV?(0, ).

1 1
Expanding 7= 7 with respect to u up to the second order in « leads to

0o— U
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F(6,t) /O‘+9‘“ [ u u2]
E. = 1+ —+ —| db. (4.42)
d() —a+ék dO d%

According to (4.39), the virtual work done by the electrostatic force is then

F L
s — £00 / {1 + —“} Sudf (4.43)

dO —a+§k 0

Changing the displacement variable from u to v gives

oW =

atOs [F(e,t) 2F (0, ) @} dév

e & 75 55 % (4.44)

70(4»9]@

Integrating by parts gives

F(0,t) 2F(0,t)vY . 1% /Wk 1OF 20Fdv 2 0%
SW = AW - e Iy SCatch [F
[( & @ )% ) BO0 T Bo000 @ a02)
(4.45)

By comparing (4.45) with the partial differential equation of the whole system (4.26) we
can now understand the effect of the electrostatic force on the investigated micro-ring. We can
see that the integral part of (4.45) comprises three different terms, an external excitation term
that does not depend on the displacement

OF. 10F  ebROV*(0,1)
00 @00 282 00

that means the external force symbol in (4.26) is found to be

R

1

F..(0,t) = 5
0

€bV2(0,1), (4.46)

and comparing the other two terms as well gives the parametric force as

1
F,(0,t) = ieebVQ(G,t), (4.47)
0

which asserts the observation by Rhoads et al [58] that all micro/nanoresonators with variable
gap electrostatic actuators inherently induce parametric excitation.

By comparing the Hamilton’s principle (4.22) used for deriving the PDE (4.26) with the
expression of the virtual work (4.45), however, another important remark should be added.
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In (4.45) the integral operates on a limited domain [—a + 8y, +« + 6], whilst in (4.22) it is
on the whole circle. The usual way of handling this is through discretizing the integral, this
however would involve a lot of complications. Another solution is introduced in (4.32) and
(4.33), whereby the force is distributed but through trigonometric functions which can be
treated easily through Galerkin’s method. However, these force distributions represent only
an approximation for the discontinuously distributed forces for the sake of simplifying the
mathematical work and without losing generality as well.

Thus, we can rewrite the discretized system as

Mg+ (D+G)g+(K+C(t)g=f. (4.48)
where
10 s [o 1 b [V2(0,0)
M = . G=20 , _ b et
[0 1] 5 [—1 0] = 2304 | v200, t)]
361 1 1 0 —2eb | V3(6,1) 0
K= —QZ+—4ku+kv> L O = = | .
(5pAR4 5pA [ ] 0 1 (®) SrdipA 0 VZ(6,1)

4.4 Modal coupling

4.4.1 Motivation

So far we have modeled the micro ring gyroscope as a discrete two-degree of freedom system,
but which is subjected to uncoupled parametric excitation, that means, C(¢) did not have any
off diagonal terms. However, introducing off diagonal terms, hence modal coupling, brings
new and different phenomena, which are the main contribution of this work to the field of
micro sensors. Through the publications mentioned in the introduction, it was found that
"global effects"for the parametric excitation can be found, i.e. not confined to the parametric
resonances or anti-resonances [37, 38].

To the best of the authors’ knowledge, this was not studied before in the field of micro
sensors and transducers. We shall begin by exploring the effect of adding coupling terms in the
parametric excitation matrix. In doing so we will use in this section arbitrary values, which do
not correspond to gyroscopes, for the sake of illustration. After explaining the phenomena in
the next section, a practical example is given.
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Figure 4.4: A proposed electronic circuit for inducing coupling terms in the parametric excita-
tion matrix. C;; represent the elements of the parametric excitation matrix, while
&;; represent only the amplitudes of the corresponding terms.

4.4.2 Electronic implementation

The proposed amplification method can be implemented by adding an electronic circuit. As seen
from section 4.3.1, the coupling terms are feasible only by introducing an external coupling
element. To this end, we propose the electronic circuit shown in Fig. 4.4.

As explained before, the two orthogonal modes of the micro ring are shifted by § = 45°. In
Fig. 4.4 eight electrodes are depicted, where each two interact with a vibration mode. For
instance, let the antinodes of the first mode be at angles # = 0°,90°, 180°,270°, while those
for the second mode are shifted by 45°. Hence, we consider the electrode at # = 0° as a sense
electrode for the first mode, while that for the second mode to be at § = 45°. The remaining
two electrodes connected to the circuit represent two of the drive electrodes.

As shown in the figure the displacement signals are acquired through buffer amplifiers [115],
then multiplied by a periodic signal C;; = &;; cos(§,t + (;;) before being fed into the correspon-
ding drive electrode. Returning to (4.48), the parametric excitation matrix components for the
shown system in Fig. 4.4 will be

Cii(t) Cia(t)

Clt) = Cor(t) Coa(t)

(4.49)
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Moreover, since we have concluded in section 3.1.3 that the required broadband effect
requires a phase shift between ', and Cy;, applied here as shown in Fig. 4.4 using a phase
shifter or an all-pass filter with a phase shift (., between these two input signals.

In this way, the model turns to be exactly the same one presented before in section 3.1.3.
Therefore, we use the method discussed there to analyze the stability of the trivial solution.
Recalling the results using the normal form method we arrive at the Lyapunov exponents in
their simplified form to be

_ 1 £2Q), sin(Ca1)
)\1 — 2511 + _2 [QIZ; _ (wl . w2>2] [9127 . (Wl + w2)2} | ) (450&1)
1 €20, sin(G) '
)\2 - 2522 _2 [Q% . (wl . w2>2} [QI% . (Wl + W2)2:| | (450]3)

These results prove the possibility of achieving destabilization at parametric non-resonant
frequencies. Since the main goal is to have a higher amplification, this correspondence between
destabilization of the solution and amplification of response will be elaborated in the following
section using data of a realistic micro-ring-gyroscope. However, a mathematical explanation
for this correspondence is given before in section 3.1.6.

4.5 Parametric excitation of a realistic micro-gyroscope

Finally, we discuss the dynamic performance of a parametrically excited micro-ring gyroscope
using realistic values extracted from [65].

The authors in that paper use a ring of radius 4 mm, width 175 pym and thickness 100
pm. The capacitive gap was measured to be around 6.4 microns and the Q factor of the two
vibratory modes is 45000. The system was excited by a voltage about 1 V. The undamped
natural frequencies were around 16,500 Hz or 103,672.5 rad/s.

From this data the coefficients of our model were calculated to be
wy = 105 krad/s, 01, =25, ~=0.015, & =3.75x 10°.
where the remaining parameters are chosen to be

wo = 110 krad/s, 29 =3, (o = —7/2.
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Figure 4.5: (a) Lyapunov exponent against the parametric excitation frequency Q, for various
excitation amplitudes V,, (b) Comparing the results between Flocquet method of
the untransformed system and the system’s normal form at V,, = 3V

However, the system described in this paper differs from the one in [65], in that the cited
paper did not use a coupled 2 DoF system, but rather only a parametric excitation of a single
DoF system. Secondly, and most importantly, in [65] the parametric excitation amplitude was
kept at a very low level, so that the parametric amplification could occur only in case of a
parametric resonance 2:1. In our case, we tend to have a broader range of amplification at
other frequencies using the global effects explained before. This requires the use of a higher
value of parametric excitation.

Increasing the parametric excitation amplitude can be obtained practically either through
increasing the applied voltage to as high as 10-15 V or by decreasing the capacitance gap from
6 microns to nearly 1 micron, or by tuning both. Choosing a capacitive gap of about 3 microns
we get a parametric excitation amplitude of

£ =3.5x 10V (4.51)

where V}, is the drive voltage amplitude (see (4.47)). The excitation method described in
section 4.4.2 is used for the micro ring in order to amplify the gyroscope’s forced response.
Fig. 4.5 shows the broadband effects of the parametric excitation on the system’s maximum
eigenvalue. In case of no coupling in the parametric excitation matrix, i.e. parametrically
exciting the two degrees of freedom independently, we do not get any destabilization effect
except for the regions of regular parametric resonance, at double the system’s undamped
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natural frequency. But in our case, after enforcing a coupling parametric excitation between
both degrees of freedom, we get the shown effect in a broad range of frequencies. The values
of \* at Q* frequency here represent the analytically calculated local minimum of system’s
maximum eigenvalue (see Eq. 3.32) at a given voltage, i.e. at a given parametric excitation
amplitude. These values were deduced in section 3.1.5 to act as a measure of the system’s
propensity to destabilization, since they represent the local minimum of Lyapunov exponent in
the interval of frequencies exhibiting the broadband destabilization effect.

The figures show clearly how this method of parametric excitation can lead to a destabilization
effect in the frequency range w, — w; to wy + w; with a minimum at \*. This can allow for an
obvious advantage for the parametric pumping of the micro gyroscope. That is because the
destabilization effect, or the increase of the maximum eigenvalue, leads to a negative damping
effect. This is advantageous since damping can not be easily controlled in these systems. But
in our case the control of the parametric excitation voltage can allow such an effect.

According to various references [67, 65, 74] the parametric pumping (amplification) of the
system forced response is significant before reaching the instability limit, this is especially true
when the external force f; is phase shifted with 7/2 with respect to the parametric excitation
function [67, 76], in our case C1;. In order to measure the amplification value, the system
response is calculated using direct integration while being parametrically excited at 2* and
having a forced excitation for the primary mode of vibration ¢ (¢) at its natural frequency
w;. Returning to the discretized model of the micro-ring gyroscope (4.48) and by assuming
d12 =001 =0,01=Ca=Co=0and §; =&, i, € {1,2} we get

MG+ (D+G)g+ (K+C(t)g=f. (4.52)
where
el vl el )
01 0 02 -1 0 0
K — [w% 0] | Clt) = ¢ [ cos(§2,t) cos(Q,t)
0 wi cos(Qpt + (o1)  cos(§2pt)

The amplitude of the time response (named 1amyp) 1 then calculated for different values of
parametric excitation voltage (see 4.51) and compared to the amplitude of the system’s forced
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Figure 4.6: Response of the primary mode ¢, (¢) for the system parameters v = 0.015,( =
—m/2,011 = 2.5,099 = 3,w; = 105 krad/s,wy = 110 krad/s at the external exci-
tation frequency Q; = w, and the parametric excitation frequency 2, = Q* ~
124 krad/ sec, for two different excitation voltages (a) V, = 4.5V and (b)V}, = 5.25V,
where the latter is just below the onset of instability.

response without parametric excitation ¢,, through the relation

Gain = M. (4.53)

~

q10

The response ¢, () of 4.52 is shown in Fig. 4.6 at €2, = Q* and for two different excitation
voltages V,, = 4.5, 5.25V/, referring to Fig. 4.5a. It can be seen that the response near the onset
of instability shows a beating phenomenon, which is exhibited in parametrically excited systems
under certain frequency conditions [95]. Moreover, this phenomenon can be also attributed to
our analysis in section 3.1.6, since near instability we have two oscillating terms with different
frequencies. The amplification through voltage control is depicted in Fig. 4.7, where the last
point in the graph represents the last value before the onset of the system’s instability. The
amplification gain, however, does not show very high values when compared to amplifying the
system at the parametric resonance frequencies [67]. But another advantage becomes obvious,
that is the possible tuning of parametric excitation frequency across a broad frequency range.

4.6 Conclusion

A new excitation method for micro-ring gyroscopes is introduced for the first time in this chapter.
Here we used a previously discussed coupled bimodal excitation scheme, through which a
broadband destabilization of the system’s trivial solution can be obtained, and therefore, a
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Figure 4.7: Amplification of the primary mode response through increasing the parametric
excitation voltage, calculated by direct integration. The system parameters are
v = 0.015, = —7/2,811 = 2.5,009 = 3,w; = 105 krad/s,wy = 110 krad/s. The
external excitation is at resonance with w;, while the system is parametrically
excited at three different frequencies shown in the figure, which all lie within the
frequency band [wy — wy, wy + wi].

broad band amplification of the drive mode. As shown in section 4.3, parametric self-excitation
can only be achieved for the diagonal terms of the parametric excitation matrix, however, using
the proposed electronic circuit the coupling terms can be introduced.

As discussed, this was essential in order to obtain the broadband amplification effect. Finally,
it was shown using realistic values of a micro-ring gyroscope, that the amplification at non-
resonant frequencies is practically possible. Since in this way much more flexible conditions can
be used to obtain a parametric amplification, we believe, that this new excitation method can
add a significant advantage to the parametric excitation methods used in micro gyroscopes
and the whole micro sensors technology.
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5 Micro-ring gyroscopes: a nonlinear model

In this chapter, the previously presented micro-ring gyroscope is studied again without assuming
the linearity of elastic or electrostatic forces. Given the presence of nonlinearities due to elasticity,
geometry or electromechanical coupling, the system is analyzed accordingly and Lagrange’s
equations of motion are deduced. Since the system is now nonlinear, not only the trivial solution
is studied, additionally, nontrivial solutions are investigated, and possible bifurcations are
considered. This is accomplished first for the autonomous case, where no excitation is involved.
Afterwards, a stability analysis of the system’s solutions is carried out. As a first attempt, the
system is simplified and the resonance curve under only forced excitation is obtained using
the method of normal forms. Then, the original nonlinear system is investigated in full after
applying the bimodal asynchronous parametric excitation scheme described in the previous
chapters. In this case, the dynamics of the system are investigated at the primary resonance
frequencies.

5.1 Introduction

The nonlinear behavior is proven to be dominant for the dynamics of most of micro- electrome-
chanical resonators [4, 3]. Micro-gyroscopes are no exception under resonance or instability.
This fact becomes of special importance when the system is parametrically excited [67]. At
the frequency of parametric resonance, either primary or secondary, we can choose between
operating under the threshold of instability (below the instability tongue), or in the region
of instability itself. The first alternative allows an approximated linear behavior, while that
would not normally be the case for the second alternative. As operating inside the parametric
instability region, using resonant parametric amplification as explained in section 3.1.6, can
offer higher amplification gains, a study for the micro-ring gyroscope in the nonlinear regime
is then required.

Nonlinear dynamic analysis as well as experimentation for conventional micro gyroscopes
are found in the works of Sharma et al [74] and Oropeza-Ramos [62]. Where for the latter a
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hardening Duffing effect is noticed when operating in the instability region, thereby allowing
for nonlinear modal coupling, which provided a wide-spectrum amplification for the sense
mode in case of a frequency mismatch between drive and sense modes.

The presence of nonlinear behavior in micro ring gyroscopes due to nonlinear elasticity
or large strains is also reported in different works of Gallacher’s team [116, 65] and Nitzan
et al [117, 76, 118]. However, a nonlinear analysis for the micro-ring gyroscope dynamics
was first presented in the paper by Polunin and Shaw [78], which was followed by further
sensitivity analysis by Liang et al [119]. Notwithstanding, other nonlinear effects in micro ring
gyroscopes are reported and analyzed in other works, however, due to electrostatic and/or
capacitive nonlinearities [120, 121].

Hence, our scope now is the dynamics of micro-rings undergoing large displacements
under parametric resonance, which leads us to the study of the nonlinear elasto-dynamics of
inextensible rings. The condition of inextensibility is chosen since it is found that the radial
expansion is of negligible order of magnitude [78].

5.2 Nonlinear elastic model

Starting from the classic nonlinear theory of shells due to Donnell [122], Chu [123] studied the
nonlinear vibrations of thin cylindrical shells by including nonlinear terms in strain-displacement
relations. By considering only flexural vibrations and assuming a thin shell thickness, he found
the circumferential strain to be

_Lfov 1,1 (ou) P 5.1)
PR oo " Tore\o0) " “o6% '
where R is the mean radius of the cylindrical shell, © and v are the radial and circumferential

displacements of a point on the middle surface, respectively, = and ¢ are the radial and angular
coordinates of the cylinder, respectively, see Fig. 5.1.

The cylinder is reduced to a ring in the well known work of Evensen [124], who found, by
assuming the inextensibility condition of the ring’s centroidal axis, that

1[0 1 (0w’
EQGIZZOIE{8_2+U:|+2_RQ(Q_Z) = 0. (52)

Therefore, the strain energy during flexural vibrations comes up only from the bending of
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Figure 5.1: Ring in-plane displacements

the ring’s axis without radial expansion, it is then computed as

EI [?™ [0%u)?

The nonlinear strain behavior here is due to the nonlinear condition (5.2). Therefore the

relation between v and v is nonlinear, so if we assume
u(t,0) = qun(t) cos(nd) + qan(t) sin(nh),

and use the inextensibility condition (5.2), we can not get 