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Kurzfassung

Das Aufkommen der Halbleiterindustrie in der zweiten Hälfte des letzten Jahrhunderts eröffnete
überraschende neue Perspektiven für die Entwicklung dynamisch-mechanischer Systeme.
Sie ermöglichte dank der sich ständig weiterentwickelnden Mikrofabrikationsmethoden die
Entwicklung von mikroelektromechanischen Systemen (MEMS), gefolgt von ihrem Äquivalent
im Nanometerbereich, den NEMS. Heutzutage machen M/NEMS neben elektrischen, optischen
und telekommunikativen Komponenten einen großen Teil der Industrie für Miniatursensoren
aus. Da diese winzigen dynamischen elektromechanischen Systeme mitunter Kopplungen
zwischen Freiheitsgraden sowie Nichtlinearitäten aufweisen, spielt die Theorie der Stabilität
dynamischer Systeme eine wichtige Rolle bei ihrem Entwurf und ihrer Umsetzung.
In der Praxis werden Stabilitätsprobleme oft aus zwei verschiedenen Perspektiven ange-

gangen. Die erste, meist bei linearen Systemen, zielt darauf ab, jegliche Instabilitäten zu
vermeiden, da diese zerstörerische Folgen für Komponenten in mechanischen, elektrischen
und elektronischen Systemen haben könnten. Im Gegensatz dazu zielt die zweite Perspektive
bei nichtlinearen Systemen darauf ab, das System in Regionen der Instabilität für die triviale
Lösung zu treiben, während nach stabilen stationären nichttrivialen Lösungen der zugrunde
liegenden Differentialgleichungen gesucht wird.
Mit dem Aufkommen von Mikro- und Nanosystemen könnte die zweite Perspektive mehr an

Bedeutung gewinnen. Das liegt daran, dass diese Systeme unter normalen Betriebsbedingungen
ein typisches nichtlineares Verhalten und höhere Amplituden aufweisen können als makroska-
lige Systeme. Höhere Amplituden ermöglichen in diesem Sinne eine bessere Verstärkung einer
Eingangsanregung und damit eine höhere Empfindlichkeit von Miniaturmessgeräten. Sind die
Systemparameter zudem zeitperiodisch, könnte sich die triviale Lösung bei den so genann-
ten parametrischen Resonanzen als instabil erweisen. Bekannt als parametrisches Pumpen in
Mikro- und Nanosystemen wird die Systemantwort in der Regel bei diesen Resonanzfrequenzen
verstärkt.
Aus diesen Gründen konzentriert sich diese Arbeit hauptsächlich auf parametrisch angeregte

nichtlineare Systeme. Dennoch wird in dieser Arbeit ein systematischer Denkansatz verfolgt, bei
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dem die Ursprünge der Destabilisierung in zeitinvarianten Systemen untersucht werden, bevor
eine theoretische Studie über zeitperiodische Systeme im Allgemeinen und zeitperiodische
nichtlineare Systeme im Besonderen durchgeführt wird.
In dieser theoretischen Studie wird eine innovative Idee für die M/NEMS-Industrie vorgestellt,

nämlich die breitbandige parametrische Verstärkung durch eine bimodale Anregungsmethode.
Diese Idee wird dann in Mikrosystemen anhand eines speziellen Beispiels, dem Mikrogyroskop,
umgesetzt. Da dieses Gerät im Vergleich zu anderen Trägheitssensoren sehr kostengünstig ist,
wird es derzeit weiterentwickelt, um eine höhere Empfindlichkeit und Genauigkeit zu erreichen.
Zu diesem Zweck werden die theoretischen Ergebnisse, einschließlich der erwähnten Idee, in
diesem Gerät umgesetzt und erweisen sich somit als effektiver Beitrag zu seiner Leistung.
Außerdem wird eine experimentelle Untersuchung an einem analogen Mikrosystem durch-

geführt. Durch die experimentelle Studie wird ein elektronisches System eingeführt, um die
vorgeschlagene bimodale parametrische Anregungsmethode auf das Mikrosystem anzuwenden.
Durch den Vergleich der Stabilitätskarten in Theorie und Experiment wird das theoretische
Modell validiert.
Abschließend wird in dieser Arbeit eine theoretische Studie über parametererregte nicht-

lineare Systeme durchgeführt, dann auf Mikrogyroskopen implementiert und schließlich ex-
perimentell validiert. Dadurch setzt diese Arbeit einen ersten Schritt für den Einsatz der
vorgeschlagenen Anregungsmethode in der M/NEMS-Industrie.
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Abstract

The commencement of the semi-conductor industry in the second half of the last century gave
a surprising new outlook for engineered dynamical mechanical systems. It enabled, thanks to
the continuously evolving microfabrication methods, the implementation of Micro Electrome-
chanical systems (MEMS) followed by their nano-counterpart or NEMS. Nowadays M/NEMS
constitute a massive portion of the small-scaled sensors industry, in addition to electrical, optical
and telecommunication components. Since these tiny dynamical electromechanical systems
involve sometimes couplings between degrees of freedom as well as nonlinearities, the theory
of stability in dynamical systems plays a significant role in their design and implementation.
From a practical point of view, the approach to stability problems often takes two different

perspectives. The first one, most commonly in linear systems, aims to avoid any instability
which could cause destructive consequences for mechanical structures or for electrical and
electronic components. On the contrary in nonlinear systems, the second perspective aims to
drive the system into regions of instability for the trivial solution, while searching for stable
nontrivial steady-state solutions of the underlying differential equations.
With the advent of micro and nanosystems, the second perspective could acquire increased

importance. This is attributed to their capability to exhibit typical nonlinear behavior and
higher amplitudes at normal operation conditions, when compared to macroscale systems.
Higher amplitudes, in this sense, allows for a better amplification of an input excitation, and
thereby higher sensitivity for miniature sensors and measurement devices. In addition, if the
system parameters were time-periodic, the trivial solution could turn to be unstable at the so
called parametric resonances. Known as parametric pumping in micro and nanosystems, the
system’s response is usually amplified at these resonance frequencies for higher sensitivity and
accuracy.
For these reasons, this work is mainly focused on parametrically excited nonlinear systems.

Nevertheless, a systematic approach is followed in this thesis, where the origins of destabilization
are surveyed in time-invariant systems before proceeding to carry out a theoretical study on
time-periodic systems in general, and time-periodic nonlinear systems in particular.
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Through this theoretical study, a novel idea for the M/NEMS industry is presented, namely
the broadband parametric amplification using a bimodal excitation method. This idea is then
implemented in microsystems, by investigating a particular example, that is the microgyorscope.
Given the low-cost of this device in comparison with other inertial sensors, it is being currently
enhanced to reach a relatively higher sensitivity and accuracy. To this end, the theoretical
findings, including the mentioned idea, are implemented in this device and prove to contribute
effectively to its performance.
Moreover, an experimental investigation is carried out on an analogous microsystem. Through

the experimental study, an electronic system is introduced to apply the proposed bimodal
parametric excitation method on the microsystem. By comparing the stability charts in theory
and experiment, the theoretical model could be validated.
In conclusion, a theoretical study is carried out through this work on parametrically excited

nonlinear systems, then implemented on microgyroscopes, and finally experimentally validated.
Thereby, this work puts a first milestone for the utilization of the proposed excitation method
in the M/NEMS industry.
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1 Introduction

The study of motion extends back in history for about three millennia since the start of
civilization in Egypt, Mesopotamia and China, motivated by the periodicity of celestial bodies
motion, and gravity on earth, among other phenomena. However, the surviving texts in the
context of deducing laws of motion carried the names of Greek philosophers, as Aristotle and
Archimedes, then those of Islamic scholars, as Ibn-Sina (Lat. Avicenna) and Ibn-Bajja (Lat.
Avempace), all through the Renaissance scientists Galileo Galilei and Isaac Newton [1, 2],
when these laws took finally a correct mathematical form.
The study of dynamical systems started to take its formalism from the works of Hamilton,

Lagrange, Jacobi and Poincaré. This study is concerned with any mathematically defined system
with state variables that undergo time evolution after being set initially to some initial conditions,
or subjected to external excitation. The definition itself implies the time differentiation of the
state variables. Time, therefore, provides the basic mathematical structure of a dynamical
system, as being the independent variable. However, if the system parameters happen to be
time-dependent, a totally different system will then be studied, which is called a time-varying
system. A special type is time-periodic systems, where the time-varying system parameter has a
specific periodic time.
Turning from this abstract picture to more physical grounds, we find that the most common

dynamical systems in classical mechanics involve oscillations, as a result of having an inertia and
a restoring force. This essentially means that the mathematical formulation includes second
order derivatives.
The dynamical system in this sense could include linear as well as nonlinear terms. Although

almost all phenomena are nonlinear in nature, the linear approximation was found in most
practical cases to be satisfactory. However, at high amplitudes or special conditions the linearized
models lose ground in favor of nonlinear models.
Besides time-periodicity and nonlinearity, the dimensionality of the system has a significant

influence on its dynamics. Although systems are naturally continuous in classical physics, the
discretization in space was found to be of great importance, reducing a partial differential
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equation to a set of n ordinary differential equations, thus defining the system’s dimensions.
By classifying dynamical systems according to the three aforementioned aspects, that is,

time-dependency of system parameters, linearity or nonlinearity, and dimensionality, we find
the class of multi-degree-of-freedom (M-DoF), nonlinear, time-periodic systems of great interest.
The interest in this class of problems arose due to two different reasons. Firstly, although each
of the three aspects of this class was discussed extensively in the literature, but much lesser
focus is given to this class specifically, formed by the combination of them. Secondly, this
class of problems happens to appear naturally in an important and exponentially increasing
branch of applications of dynamical systems, which is micro- and nanosystems [3, 4]. For these
reasons a large interest is grown over time to explore this class of problems more thoroughly
on one side, and on the other side to consider the implementation of this theoretical work
for the development of micro and nanosystems. From a practical point of view, the time-
periodicity of system parameters could be understood as parametric excitation of the system.
Therefore, a compact name for this class of problems is given under the title of parametric
excitation of coupled nonlinear microelectromechanical systems, where coupled hints at the
multi-dimensional systems. Microsystems are specified here, while nanosystems are excluded,
since only microsystems were considered in this work, however, the theoretical results can be
extended to nanosystems as well.
A large portion of micro- or nanoelectromechanical systems (M/NEMS) can be categorized

as sensors and actuators, whose most important key performance indicator is the sensitivity to
measured quantities. Thus, numerous amplification techniques were introduced to improve the
sensitivity of these devices. From this perspective, parametric excitation offers here an important
method of amplification, named parametric amplification, which gained a significant importance
for small-scaled sensors exhibiting oscillatory motion, such as resonators. The connection
between parametric excitation and signal amplification comes through the destabilization effect
of parametric excitation. Therefore, through the analysis of parametrically excited nonlinear
MEMS, special attention will be given to the destabilization of the trivial stationary solution,
and thereby, to the effect of nontrivial steady-state solutions, in promoting the amplification of
the response.
This work, however, will discuss also the destabilization and amplification effects in linear

and time-invariant systems, before going through nonlinear time-periodic ones. This approach
will help to add more explanation and insights into the targeted class of problems.
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1.1 Parametric excitation

The term parametric excitation refers to the existence of displacement-dependent or velocity-
dependent or sometimes inertia-dependent terms with time-periodic coefficients in the system’s
differential equations, where the excitation of the system takes place through the system
parameters. The behavior of these systems was known to be first discussed by Faraday through
his experiments on producing wave motion in fluids by vibrating a membrane or a plate in
1831 [5]. Faraday waves, were therefore named after him, and refer to unstable nonlinear
standing waves appearing on liquids enclosed in a vibrating container. He observed that these
waves have one half the excitation frequency, which is the typical signature of the primary
parametric resonance. These were explained afterwards by Lord Rayleigh in 1883 by relating
them to the Mathieu equation [6]. Mathieu studied standing waves in fluids, and was interested
in putting a theory describing the natural modes of lakes with elliptical boundaries. In 1873
through his study, the well-known equation of motion with parametric excitation was deduced
and bore his name, to be the Mathieu equation.
In the following decade 1880s, two major developments were introduced. Floquet presented

his theory to solve time-periodic differential equations, which can offer a numerical solution.
This solution serves as a reference for verifying approximate analytical solutions. The second
achievement was Hill’s infinite determinants, which were basically intended to solve the three
body problem, known as Hill’s lunar equation [7]. Through his work, the solar perturbations
of the lunar periodic motion lead to differential equations with time-periodic coefficients. Then
through the use of the Fourier series to solve it, he could arrive at Hill’s infinite determinants,
through which the borders of stability could be derived [8]. The well-known stability chart for
the Mathieu equation was presented first by Ince in 1927 and by M.J.O. Strutt in 1928 [9],
the former was out of a mathematical interest while the latter was to describe the electronic
motion in periodic crystal lattices. In this latter research field specifically the prominent Bloch’s
theorem in quantum mechanics was introduced for the same problem, based on the Floquet
theory but expanded in three dimensions [10].
Turning the problem into multi-degree-of-freedom systems, other phenomena can be obser-

ved. An overview of the effects of parametric excitation in multi-degree-of-freedom systems is
given in Mettler [11]. In the few decades afterwards, articles and monographs were published
explaining the instability conditions, and deducing approximate analytical expressions for the
stability borders for primary and secondary combination resonances [8, 12, 13, 14]. Theoretical
investigations were carried out from different perspectives. The first approach, which started
with Mathieu’s work itself, is to explore the stability/instability conditions under parametric
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excitation in various system configurations, with linear or nonlinear elements [15, 16, 17, 18].
Moreover, an exact solution for the Mathieu equation was always an endeavor. Different studies
approached this problem series expansion, such as Laurent series [19]. Another approach,
however, is to find stabilizing effects of parametric excitation. This approach stems from the
investigation of A.Tondl [20], and introducing the term anti-resonance in this context [21]. The
formulation of full suppression of self-excited vibrations through parametric excitation was
further studied afterwards [21, 22]. This stabilizing effect was brought further by F.Dohnal by
deriving approximate analytical expressions for stability boundary curves under synchronous
parametric excitation at combination frequencies [23] and extended afterwards by including a
second order approximation using the averaging method [24].
Experimentally investigating parametric resonances, on the other hand, dates back to Fa-

raday’s and Mathieu’s works on standing waves in fluids. In the past decades, several experi-
mental investigations were conducted. Following the previously mentioned classification, one
approach is to offer experimental proof for the stabilizing effect of the parametric excitati-
on [25, 26, 27, 28]. Nevertheless, experiments were also conducted to explore the instability
regions, sometimes named Arnold tongues, in the stability chart. They were conducted in macro
systems [29, 30, 31], or in microsystems [32]. In experimental investigations of parametric
resonances there is a common contrast between macro and microsystems. In the former case,
there exist experimental studies to exhibit parametric resonances for the sake of understanding
the phenomenon, such as in [33], but these resonances are rarely considered beneficial in
macrosystems. At this scale, it is usually referred to resonances as being detrimental to the
structure’s health, since the system’s nonlinearities can not usually offer enough limitation
of amplitudes without causing failure or fatigue, that is why normally a control scheme is
presented in order to control the response amplitude [29]. An exceptional study, however, is
conducted by Rhoads et al where they investigated the possibility of constructing a macro
parametric amplifier in analogy with microsystems [34].
A specific phenomenon receives a special attention in this work, namely, the broadband

destabilization effect. In his investigations about parametric excitation of M-DoF systems,
Cesari [35] in a special case found that instability can be caused at all excitation frequencies,
that is when a phase-shift in the parametric excitation coupling terms was included, this was
called afterwards as the case of total instability. Further contributions to this problem were
given by Schmieg [36], who investigated the problem analytically using slowly varying phase
and amplitude to determine the stability borderlines. Moreover, he could validate his work
experimentally on an analogue electrical circuit. Eicher [18, 12] also considered this case of
excitation with a specific focus on the determination of stability borderlines, and their shifting
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in the stability chart as a result of including a phase-shift in the excitation terms. Recently,
Karev et al [37, 38] included the effect of circulatory and gyroscopic effects in the study of
the problem, seeking a better generalization of the problem. A more compact name, namely
asynchronous parametric excitation [39, 38], is given to this case where the coupling terms
in the parametric excitation matrix are phase-shifted. This expression will be used in this
work interchangeably with phase-shifted parametric excitation, more specifically when the
phase-shift is equal to π/2.
Investigating this problem in nonlinear systems makes it a more specified problem, since

most of the previously mentioned works were on linear systems with some brief calculations
after adding nonlinear terms [40, 36]. This, however, did not include several possible cases,
such as the inclusion of intrinsic parametric excitation terms or the consideration of nonlinear
damping [36]. In a broader field of research, parametrically excited two-degree-of-freedom
nonlinear systems we discussed before in the literature [41, 42], however, with less attention to
coupling parametric excitation terms (off-diagonal terms in the parametric excitation matrix),
much less including a phase-shift between these terms. According to this reviewed literature, it
could be concluded that the asynchronous parametric amplification of nonlinear systems was
not thoroughly enough discussed in the literature, which makes this point an interesting point
of study in this thesis, especially due to its relevance to micro- and nanosystems, which leads
us to the next section.

1.2 Nonlinear dynamics of M/NEMS

Micro- and nano-electromechanical systems (M/NEMS) represent an increasingly developing
technology that gradually wide-spread to include a wide spectrum of applications, thanks to to
the evolving micro-fabrication techniques. They constitute nowadays important elements in
electrical, electronic, optical and telecommunication systems. Examples include radio-frequency
(RF) components, such as switches and filters, in addition to optical elements, as digital micro-
mirrors devices (DMD) and equalizers, not to mention microwave oscillators and photonic
crystals, to name a few [43]. In the sensors industry, they stand out in comparison with
other technologies in measuring physical or chemical quantities [44]. A great portion of the
commercially available accelerometers, micro-gyroscopes, time-keeping oscillators, mass- and
force-sensors are based on such devices [45]. This extends to include bio-MEMS used in
genomic and protein analysis [46], not to mention imaging technologies, most importantly the
atomic force microscope (AFM) [47]. Furthermore, in fundamental science research extensive
effort is put to understand atomic, molecular and quantum phenomena using NEMS [48].
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Moreover, NEMS started to take part in the continuously growing pursuit of developing quantum
technologies since the first signs of quantum-behavior in a nanosystem [49]. Most recently,
nanomechanical resonators could play an important role in the transfer of quantum information
(a qubit) from the microwave regime into the optical one [50].
Due to the significantly high amplitudes and the used material properties, M/NEMS can

exhibit nonlinear phenomena under normal operating conditions. Nonlinear terms in differen-
tial equations of physical systems arise out of different origins, such as geometry, elasticity,
piezoelectricity, and motion constrains among others. However, in M/NEMS the influence of
these forces turns to be of larger significance, in addition to the presence of other forces which
were not commonly considered in macrosystems, such as van der Waals, Casimir, and adhesion
forces. The greater influence of all the mentioned forces is related to the miniature scale of the
system’s characteristic dimensions, which can be better explained by non-dimensionalization of
the mathematical model [4]. This influence can also be attributed to the strong intercoupling
of different forces, since transduction from one type of force field to another does not always
have to be linear. An illustrating example is the bimorph actuators, which transforms electrical
potential to thermal flow and afterwards to elastic deflection at the same spot simultaneous-
ly [51, 52]. In addition, micro and nano devices are sometimes also designed to exhibit a
nonlinear behavior for the sake of amplification and enhancement of sensitivity [53].
In M/NEMS, the search for a resonator design with a higher amplification factor Q is steadily

increasing [54]. To this end, several nonlinear dynamical phenomena, such as nonlinear modal
couplings, internal resonances, sub- and superharmonic resonances are exploited for the sake of
obtaining high oscillation amplitudes [55]. On another hand, at millikelvin temperatures nano-
oscillators could approach the quantum-ground state level, i.e. the quantization of vibrations
states [56]. These efforts lead to the idea of realizing a quantum bit (qubit) based on nano-
mechanical resonators, which could have significant implications in the development of the
widely pursued quantum information systems. This idea relies largely on the anharmonicity of
the oscillator which could be achieved by introducing nonlinearities in the system [57].
For better amplification and higher Q factor, parametric resonances are commonly used as

mechanical amplifiers in N/MEMS [58], and called parametric amplifiers, which refers also to
electronic or optical parametric amplifiers. Mechanical amplification in this sense has other
advantages than just increasing the sensitivity or the gain of the system. An additional benefit is
that they can be superior to electronic counterparts in terms of secondary noise production [59].
Moreover, mechanical parametric amplification provides thermal noise squeezing effect, which
could have significant implications in terms of measurement precision at the nanoscale [60].
Thus, parametric excitation in M/NEMS plays an important role to achieve better sensitivity
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as well as precision levels. The investigation of parametric excitations in MEMS was first carried
out in the well known work by Rugar and Grütter[60], in which they report the noise squeezing
effect of parametric resonances. Afterwards, a long list of scientists dedicated extensive research
to the subject. Turner et al [32] reported detecting five parametric resonances in a torsional
MEMS resonator. In the last two decades, the parametric amplification scheme paved its
way into different applications, such as mass-sensing [61], inertial sensing [62, 63, 64, 65],
microscanners [66] and atomic force microscopy [67].
In conclusion, the nonlinear dynamical behavior is more pronounced in micro and nano-

systems than larger scaled systems. In addition, parametric excitation of these systems is a
preferable amplification method for the explained reasons. For these reasons, applying the
theory of parametrically excited nonlinear systems on M/NEMS would be of significant interest.
In this work, the theoretical study is applied on the micro-ring gyroscope. Thus, a review of
the previous research work on these devices is given special attention in the next section.

1.2.1 Micro-gyroscopes

MEM gyroscopes are an example of Coriolis Vibratory Gyroscopes (CVG), also called Vibrating
Structure Gyroscopes (VSG). They are usually based on two degree of freedom models, repre-
senting the drive and sense modes. Different structures were used for these models, which
can be sorted into discrete and continuous systems [68]. An example of the former is the
vibrating comb gyroscope and of the latter is the micro-ring gyroscope. In both cases the
primary/drive mode is actuated by an external force, and coupled to the secondary/sense
mode by the gyroscopic Coriolis forces only under the rotation of the ring reference frame.
The coupling gyroscopic force is linear in the rotation rate, and acts as an excitation for the
secondary/sense mode. The amplitude of the sense mode is then correlated to the rotation
rate, and thus the rotation rate could be measured.
Micro-gyroscopes were developed extensively in the last three decades. However, these

developments fall short of attaining the performance of other conventional gyroscopes [69].
Being lighter, smaller in size and lower in cost MEM gyroscopes can offer great potential for
navigation systems if they acquired the needed performance measures. These measures are
mainly the bias stability, the Angle Random Walk (ARW) and the scale-factor (sensitivity).
These could be greatly enhanced by decreasing noise and increasing sensitivity [70, 71]. Until
recently, researchers sought improvement of MEM gyroscopes to reach the tactical grade (0.1
deg/h Bias Stability) [72, 73]. However, the aim is still to reach the inertial grade (<0.01
deg/h) in MEM gyroscopes [73].
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A major problem here is that the Coriolis force Fcoriolis = 2mΩẋ is usually very small, where
m is the vibrating mass, Ω is the reference frame rate of rotation, that is to be measured, and x is
the primary/drive mode displacement. Both the massm and rotation rate Ω have relatively very
small values. Therefore, in order to attain high scale factor (sensitivity) of the measurement
a significantly high actuation force is to be used. However, this leads to higher noise due to
the electric feedthrough caused by parasitic capacitance [71]. On the other hand, another
major problem is the mismatch between the drive and sense modes. That is because if they
are untuned, the Coriolis gyroscopic term Fcoriolis = 2mΩẋ, resulting from the primary mode
oscillation x, will not be in resonance with the secondary/sense natural frequency. Therefore in
order to increase the system sensitivity and decrease noise, i.e. increase Signal to Noise Ratio
(SNR), several design and control schemes have been introduced in the literature to address
both mentioned problems [64, 74, 63].
On the other hand, in designing high Q devices, for attaining high sensitivity, signals would

be impaired by mechanical and electronic noises, a main source of which is the electronic
amplification of the small value Coriolis force [75]. A mechanical-based amplification can
then offer a better solution with respect to noise reduction before the electronic readout
interface [74]. In that sense, parametric resonances proved to be significantly advantageous,
since they are not damping-dependent and cause noise squeezing [60, 76], which can enhance
both ARW and bias stability. Moreover, parametric amplification can spare the need for higher
amplitude of forcing elements, this leads to lower electrical feedthrough due to parasitic
capacitances [71]. In this way, it is possible to increase the device’s sensitivity without impairing
the SNR.
In MEM gyroscopes parametric excitations were first considered by Oropeza-Ramos et al [62]

for the conventional comb-gyroscopes and by Gallacher et al [64] for micro-ring gyroscopes.
To the best of the authors’ knowledge, in most of the investigated cases in the literature only
one degree of freedom was parametrically excited except for few studies, like the one by the
Gallacher team [71] and in the recent one by Zhou et al [77]. However, both contributions did
not investigate the coupling between the two parametric excitations. Parametric resonances
were investigated as well in gyroscopes that exhibit nonlinear effects, either for the sake of
optimizing the parametric amplification [74], or to investigate the possibility of having self-
induced parametric amplification [78, 76] or for increasing the bandwidth of amplification [63].
In all the given cases, the parametric amplification is sought in general at the parametric

resonance frequencies, and mainly at the primary resonance frequency, which is double the
natural frequency. Authors normally differentiate between a parametric resonance and a
parametric amplification [67]. While the former describes having an unstable trivial solution,
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the latter suggests exciting the system just below instability, both excitation schemes are
applied at the parametric resonance frequency. However, in the first case the amplitude is
only limited through the nonlinear response, i.e. by having a nontrivial stable solution. For
the case of parametric amplification, an important common remark in the literature is that
the amplification gain is highly sensitive to the phase shift between the parametric excitation
and the drive forcing excitation. Using this observation, either the amplification gain or the
suppression of the quadrature errors could be optimized [74, 76].
However, tuning the parametric excitation frequency at the system’s resonant frequencies

can be also challenging, and the loss of the quality factor, i.e. the sensitivity, can follow a slight
mistuning. For this sake, the broadband destabilization effect described before could be of major
significance. This effect occurs through an asynchronous coupling parametric excitation, which
was neither investigated before for nonlinear systems in enough detail as explained, nor was it
exploited for microsystems, neither theoretically nor experimentally. Thus, a specific interest
arises in this case to investigate this effect in microsystems due to its uniqueness in the theory
of parametric excitation, taking the micro-ring gyroscope as a suitable example.

1.3 Problem statement and research objectives

According to the previous review of literature, several research questions could be found, which
were either not investigated in enough detail or were not discussed at all.
Firstly, although the theory of parametric excitation or the theory of differential equations with

time-periodic coefficients were investigated for about one and half centuries, a lesser effort was
given to specific cases for M-DoF systems. More precisely, the broadband destabilization effect
appearing through asynchronous coupling parametric excitation, in other words parametric
excitation with phase-shifted off-diagonal terms, in two-degree-of-freedom systems were only
discussed in a few number of contributions. This indicates that this case is still not adequately
covered. This was found to be correct, especially when a nonlinear system is addressed.
Moreover, the analytical description of parametric amplification below the onset of instability,
named non-resonant parametric amplification in this work, was not elaborated before in the
literature despite the importance of this effect in parametric amplifiers.
Secondly, micro and nanosystems exhibit a nonlinear behavior more significantly than macro-

systems as explained. For these systems, a nonlinear modeling should be highly recommended
for a precise description of the system dynamics. Moreover, the implementation of parametric
excitation in these systems proved through the past three decades to be of significant value.
Therefore, the exploitation of the theory of parametric excitation in nonlinearly modeled micro
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and nanosystems should be considered necessary. However, the discussion in the literature on
the nonlinear analysis of these systems is far from being comprehensive . On the other hand,
the broadband destabilization effect happens to be of major importance in terms of increasing
systems’ sensitivity and adding flexibility to the tuning of the excitation frequency. Both of
these benefits are considered important performance indicators in the sensors industry.
Thirdly, the experimental validation of the aforementioned asynchronous parametric excitati-

on was not implemented before in mechanical systems. In addition, the behavior of the system
at the difference combination frequency had never been experimented in any type of systems.
Moreover, since this excitation scheme offers instability at non-resonant frequencies, thus, the
instability conditions at these frequencies should be also explored.
These unaddressed questions leaves the opportunity to be covered through this work. There-

fore, the main research objectives of this work will be:
• Introducing a more detailed investigation of parametrically excited nonlinear systems,
while studying the role of asynchronous excitation.

• Presenting an analytical explanation for the parametric amplification in the vicinity of
the instability threshold.

• Implementing the discussed theory of parametric excitation in micro-ring gyroscopes
using linear and nonlinear modeling.

• Carrying out an experimental investigation to explore the instability conditions of a
two-degree-of-freedom microsystem using the discussed theory for the sake of validation.

1.4 Outline

This work can be divided into three major domains of contribution. First, a development
in the theory of time-periodic multi-degree-of-freedom systems is introduced and especially
when nonlinearities are involved. Secondly, an implementation in a MEMS, namely, micro-
ring gyroscope, is provided, again through linear and nonlinear modeling. And finally, an
experimental validation of the mostly used mathematical model in this work is presented.
The first domain is presented in chapter 3. However, a preparatory discussion about sources

of destabilization in time-invariant systems is presented first in chapter 2, with some newly
analyzed problems. A part of section 2.3, was published in an original research paper [79],
where a simple circulatory nonlinear system was analyzed explaining how an autonomous
nonlinear system could exhibit instability through follower forces.
Through the discussion, a bottom-up approach is followed. This means that the discussion
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starts with the simplest form of the equation of motion, explaining the possible sources of
instability or destabilization, that is in linear time-invariant single-degree-of-freedom (S-DoF)
systems. Then we turn to M-DoF systems and observe the added sources of destabilization by
increasing the dimensionality. The discussion proceeds to include nonlinear systems looking as
well for the added sources of instability. This approach is then extended as well to time-periodic
systems in chapter 3. Using this approach, a break-down of the sources of destabilization could
be introduced giving a deeper insight into different phenomena.
In chapter 3, the discussion starts with results from previous works about Mathieu equation

and proceeds again to M-DoF time-periodic systems giving some more insights into them by
applying a numerical analysis using the Floquet theory and an analytical one using the method
of normal forms. Section 3.1 was published as a part of an original paper [80]. At the end of this
section an analytical study is presented in order to explain the parametric amplification which
occurs near the border of instability. Afterwards, the discussion follows towards parametrically
excited nonlinear M-DoF systems, where the multiple scales method is used to carry out a
bifurcation analysis around the resonant frequencies. Through the analysis, some interesting
results are presented, giving some understanding of this class of systems before implementing
the theory in microsystems. Section 3.2 constitutes most of the original work [81] submitted
and being reviewed.
The second domain of this work is concerned with the implementation of the discussed

theory in micro-ring gyroscopes. We start our discussion with linear modeling of the micro
gyroscope in chapter 4 using Hamilton’s principle, then the origin of the intrinsic parametric
excitation is calculated. Afterwards, the asynchronous parametric excitation is introduced to the
micro gyroscope through a suggested electronic circuit, and the amplification of the system’s
response was obtained. Most of this chapter is a part of a published original paper [80], with
some results published in [82]. The discussion then continues to the case of the nonlinearly
modeled micro-ring gyroscope in chapter 5 In this case the autonomous system is first analyzed,
i.e. without parametric excitation, and the fixed points were identified. Afterwards a simplified
excited model is investigated to obtain some first understanding of the system, since the
system’s equations are shown to be of high complexity. Afterwards, the system is analyzed
again using the method of normal forms in full detail and the resonance curves and limit cycles
were obtained. A part of this chapter is published in the original article [83].
Finally, this work is concluded by validating the linear time-periodic systemwith asynchronous

parametric excitation experimentally in chapter 6. This is carried out on a system of two
coupled micro-cantilevers. We first introduce the test-rig and the system of measurement, the
preliminary experiments were discussed, and the application of the bimodal asynchronous
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parametric excitation is explained. The results were discussed afterwards and compared to the
mathematical model.
The experimental work was carried out in collaboration with the research team of Prof.

Thomas Sattel at the mechatronics department of the Technical University of Ilmenau. The
electronic circuit was partly implemented by Hans-Georg Pietscher for the pre-amplification of
the micro-cantilevers, in addition he contributed to bring up the setup of the software platform
used for measurement and excitation. Moreover, the technical advice of Robert Reichert was also
considerably valuable in the phase of electronic circuit implementation. However, the design
and implementation of the electronic circuit board used for the parametric excitation, which is
the contribution of this work, is accomplished by the author, in addition to the measurement
scripts and the carrying out of the experiments.
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2 Time-invariant systems

In this chapter, the stability of time-invariant systems will be briefly discussed. Since this
work is mainly concerned with parametrically excited nonlinear systems, the understanding
of the stability problem in time-invariant systems will serve as a suitable introduction. In
this introduction, however, two nonlinear systems will be newly discussed. One is concerned
with the coupling between two Duffing oscillators, and the other focuses on the effect of
circulatory forces. The latter example can also serve to understand the role of the asymmetry
of the stiffness matrix, in a wide sense, in destabilizing the system. The chapter will begin by
discussing time-invariant linear systems and proceed with nonlinear systems.

2.1 Time-invariant linear systems

Consider a generic oscillatory system of the form

Mq̈(t) + (D +G) q̇(t) + (K +N ) q(t) = f(t), (2.1)

where q(t),f(t) are a time-dependent vectors, ( )̇ = d/dt,

M = MT , D = DT , K = KT ,

G = −GT , N = −NT ,

andM ,D,K are the mass, damping and stiffness positive-definite symmetric matrices respec-
tively, while G,N are the gyroscopic and circulatory skew-symmetric matrices respectively.
These definitions will be maintained throughout the thesis unless otherwise stated.
To discuss the stability of this system’s solutions, we define the stability of a solution in the

sense of Lyapunov stability. For an autonomous linear or nonlinear system, where f(t) = 0, we
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rewrite the system in first order to be

ż(t) = f(z), (2.2)

where f(z) is the system’s vector field, then the Lyapunov stability means [84]:
For a fixed point z∗, where f(z∗) = 0, z∗is said to be Lyapunov stable if, given ϵ > 0, there

exists a δ = δ(ϵ) > 0 such that, for any other solution, y(t) of (2.2), satisfying |z∗(t0)−y(t0)| < δ,
then |z∗(t)− y(t)| < ϵ for t > t0, t0 ∈ R.

While z∗is said to be asymptotically stable if it is Lyapunov stable and there exists a δ > 0 such
that, for any other solution, y(t) of (2.2), if |z∗(t0)− y(t0)| < δ, then lim

t→∞
|z∗(t)− y(t)| = 0.

In linear systems, as in the case here, this stability definition reduces to the examination of
the real parts of the system’s eigenvalues. The system is then called Lyapunov stable, if and only
if all real parts of the eigenvalues are not positive, and the algebraic and geometric multiplicities
of the eigenvalues with vanishing real parts coincide. While the system is asymptotically stable
if the real parts of all eigenvalues are strictly negative [85]. However to determine the stability
of a fixed point z∗ in a nonlinear system, some information could be deduced by linearization.
The same stability criterion then applies by linearization of the nonlinear system but only if
the fixed point is hyperbolic according to the Hartman-Grobman theorem, that is when no
real part of any eigenvalue of the linearized system vanishes. However, if the fixed point is
non-hyperbolic, the stability of the solution in the linearized system can not be extended to the
corresponding stability in the nonlinear system [86], and a nonlinear stability analysis will
then be required.
The bottom-up approach explained in the introduction to study the potential sources of

system’s destabilization in these systems is to be followed here by discussing first a single-
degree-of-freedom (S-DoF) system. In this case only mass, damping and stiffness terms will
be included, since gyroscopic and circulatory forces can only exist in multi-degree-of-freedom
(M-DoF) systems. In a S-DoF system instability is caused by either negative damping or stiffness
terms, or by the appearance of secular terms in the trivial solution due to resonance at zero
damping.
By adding degrees of freedom to the S-DoF system, the trivial solution could be then

destabilized due to the appearance of skew-symmetric couplings existing in G,N matrices.
Firstly, the circulatory non-conservative forces can destabilize the solution of an undamped
system if they were large enough. Briefly, if we considerD = 0,G = 0,f(t) = 0 in (2.1), giving
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anMKN system, in which

M =

[︄
1 0

0 1

]︄
, K =

[︄
ω2
1 0

0 ω2
2

]︄
, N =

[︄
0 −p
p 0

]︄
, (2.3)

the characteristic equation becomes

λ21,2 =
−(ω2

1 + ω2
2)

2
± 1

2

√︂
(ω2

1 − ω2
2)

2 − 4p2 (2.4)

and the instability condition reads

4p2 > (ω2
1 − ω2

2)
2, (2.5)

which means that large non-conservative circulatory forces can cause flutter instability [87].
Another destabilization effect occurs by adding positive damping to the this sameMKN

system. Although damping, in general, is thought of as a stabilizing mechanism, but in this case
it destabilizes the system’s trivial solution, this phenomenon is called Ziegler destabilization
paradox [85, 88]. The destabilization paradox occurs as well for aMDGK in the case of
having a negative stiffness element in theK matrix and a stabilizing gyroscopic matrix. That
means, in the undamped versionMGK system, the system’s trivial solution is stabilized by
the gyroscopic forces, since the negative stiffness terms alone drive the solution into instability.
However, if pervasive damping is added to this stabilized solution, it looses its stability again [87],
yielding another form of the destabilization paradox.

2.2 Time-invariant nonlinear systems

We turn now to discuss the effect of adding nonlinear terms to the system. This changes the
system (2.1) into

Mq̈(t) + (D +G) q̇(t) + (K +N ) q(t) + fnl(q, q̇, t) = f(t), (2.6)

where the vector fnl represents the added nonlinear terms. We will follow the discussed
perspective in highlighting the sources of destabilization by building up the complexity of the
system step by step and discovering these sources in each step. In the current case an example
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will be discussed for elaboration. Consider the two-degree-of-freedom system

ü1 + ω2
1u1 + µ1u̇1 + k1u

3
1 + γ1u̇

3
1 − α1u2 = 0, (2.7)

ü2 + ω2
2u2 + µ2u̇2 + k2u

3
2 + γ2u̇

3
2 − α2u1 = F cos(Ωf t), (2.8)

where ω2
i , αi and µi represent the stiffness and damping matrix elements respectively, ki, γi

represent the nonlinear terms, and F,Ωf the forced excitation amplitude and frequency. This
system represents two Duffing oscillators with a single linear stiffness coupling element αi.
Without this coupling the system will lose the effect of dimensionality on its behavior.

2.2.1 The multiple scales method

In order to analyze the system’s behavior and the stability of its solutions, the multiple scales
method is used [41, 89]. A first step is to examine the effect of perturbing the corresponding
linear system by adding the small parameter ϵ, that is

ü1 + ω2
1u1 + ϵ

(︁
µ1u̇1 + k1u

3
1 + γ1u̇

3
1 − α1u2

)︁
= 0, (2.9)

ü2 + ω2
2u2 + ϵ

(︁
µ2u̇2 + k2u

3
2 + γ2u̇

3
2 − α2u1

)︁
= ϵF cos(Ωf t), (2.10)

then we seek a solution in an expanded form

u1(t; ϵ) = u10(T0, T1) + ϵu11(T0, T1) + ..., (2.11a)

u2(t; ϵ) = u20(T0, T1) + ϵu21(T0, T1) + ..., (2.11b)

where Ti = ϵit, Di = ∂/∂Ti and

∂

∂t
= D0 + ϵD1 + ...,

∂2

∂t2
= D2

0 + 2ϵD0D1 + ... .

(2.12)

Inserting (2.11) and (2.12) in (2.9) and separating according to the order of ϵ gives: for ϵ0,

D2
0u10 + ω2

1u10 = 0, (2.13a)

D2
0u20 + ω2

2u20 = 0, (2.13b)
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while for ϵ1,

D2
0u11 + ω2

1u11 = −µ1D0u10 − k1u
3
10 − γ1D0u

3
10 + α1u20 + 2D0D1u10, (2.14a)

D2
0u21 + ω2

2u21 = −µ2D0u20 − k2u
3
20 − γ2D0u

3
20 + α2u10 + 2D0D1u20 + F cos(ΩfT0). (2.14b)

Solving (2.13) gives as usual

u10(T0, T1) = A1(T1)e
iω1T0 + A1̄(T1)e

−iω1T0 , (2.15a)

u20(T0, T1) = A2(T1)e
iω2T0 + A2̄(T1)e

−iω2T0 , (2.15b)

by inserting this solution in (2.14) we get

D2
0u11 + ω2

1u11 =− ieiω1T0µ1ω1A1 − e3iω1T0k1A1 + ie3iω1T0γ1ω
3
1A

3
1 + eiω2T0α1A2

− 3eiω1T0k1A
2
1A1̄ − 3ieiω1T0γ1ω

3
1A

2
1A1̄ − 2ieiω1T0ω1D1A1 + CC,

(2.16a)

D2
0u21 + ω2

2u21 =− ieiω2T0µ2ω2A2 − e3iω2T0k2A2 + ie3iω2T0γ2ω
3
2A

3
2 + eiω1T0α2A1

− 3eiω2T0k2A
2
2A2̄ − 3ieiω2T0γ2ω

3
2A

2
2A2̄ − 2ieiω2T0ω2D1A2 +

1

2
eiΩfT0F + CC,

(2.16b)
where CC corresponds to the complex conjugates of the right hand side terms.
In view of (2.11), the solution of (2.16) represents the perturbation of the basic harmonic

solution (2.15), which therefore includes all the interesting dynamics of the system. Since
the main assumption here is that the expansion in (2.11) is converging to an unattainable
exact solution, then the terms u11, u21 should not be unbounded. This means, all sources of
resonances, named secular terms, in (2.16) should be eliminated. This procedure puts a limiting
condition on the amplitudes of first order correction terms u11, u21 in order to adhere to the
asymptotic convergence of the solution. This is based on the fact that the nonlinear terms, in
addition to the forcing term here, act only as a perturbation of a corresponding linear system.
In order to eliminate the secular terms a distinction should be made between different

resonance cases in the system, since for each case different terms appear to be resonant. In the
general non-resonant case, that is when Ωf not near any of the system resonance frequencies,
eliminating the secular terms gives differential equations for the amplitudes A1, A2, which are

2iω1D1A1 + iµ1ω1A1 + 3k1A
2
1A1̄ + 3iγ1ω

3
1A

2
1A1̄ = 0, (2.17a)
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2iω2D1A2 + iµ2ω2A2 + 3k2A
2
2A2̄ + 3iγ2ω

3
2A

2
2A2̄ = 0. (2.17b)

It should be noted here, that the forced excitation is considered to be a weak one, as a result
we notice no effect in the amplitudes equations at non-resonant frequencies. However, if a hard
excitation is considered, that is not multiplied by the small parameter ϵ, this means rewriting
(2.13) and (2.14) to be

D2
0u10 + ω2

1u10 = 0, (2.18a)

D2
0u20 + ω2

2u20 = F cos(ΩfT0), (2.18b)

D2
0u11 + ω2

1u11 = −µ1D0u10 − k1u
3
10 − γ1D0u

3
10 + α1u20 + 2D0D1u10, (2.19a)

D2
0u21 + ω2

2u21 = −µ2D0u20 − k2u
3
20 − γ2D0u

3
20 + α2u10 + 2D0D1u20, (2.19b)

then the solution of the zero-order equation will be

u10(T0, T1) = A1(T1)e
iω1T0 + A1̄(T1)e

−iω1T0 , (2.20a)

u20(T0, T1) = A2(T1)e
iω2T0 + A2̄(T1)e

−iω2T0 + Γcos(ΩfT0), (2.20b)

where Γ = F/(ω2
2 − Ω2

f ). Then substituting this solution again into (2.19) and eliminating the
secular terms yields

2iω1D1A1 + iµ1ω1A1 + 3k1A
2
1A1̄ + 3iγ1ω

3
1A

2
1A1̄ = 0, (2.21a)

2iω2D1A2 + iµ2ω2A2 + 3k2A
2
2A2̄ + 3iγ2ω

3
2A

2
2A2̄ +

3Γ2

2
A2(k2 + iγ2Ω

2
fω2) = 0, (2.21b)

which encompasses an additional term when compared to (2.17) corresponding to the effect of
the external excitation. This case, however, becomes interesting only for observing the forced
excitation effect in the non-resonant case, or in the case of studying sub- and superharmonic
resonances.
As a first attempt, we study the case of the unforced Duffing oscillator, i.e. Γ = 0, by

investigating three parameters which are affecting the system dynamics, the linear and nonlinear
damping coefficients µi, γi and the nonlinear stiffness coefficient ki, especially when they change
their sign. However, ωi is always positive since we assume all the systems studied here to be
oscillatory. Another remark about (2.17) and (2.21) is that they do not include any trace of α,
this means that the coupling between both degrees of freedom does not affect the non-resonant
condition. This means as well that studying any of both degrees of freedom is fairly equivalent
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and can be done individually. Thus, in speaking about the autonomous non-resonant case the
system reduces to a S-DoF system. This matches with our bottom-up study program here,
through which the causes of instability are studied by adding building blocks to the system in
the sense of mathematical terms.
The autonomous Duffing equation is studied extensively through the literature, see for

instance [41, 90]. But for the sake of this work we will only be interested in the case when the
nonlinearity brings an additional source of instability. First, we solve (2.21a) by writing the
amplitude A in a polar form

A1(T1) = a1(T1)e
iϕ1(T1), (2.22)

where a and ϕ are real functions of T1.
Substituting (2.22) in (2.21a) and separating real and imaginary parts gives

−2ω1aϕ
′
1 = 0, 2ω1a

′
1 + µ1ω1a1 + 3γ1ω

3
1a

3
1 = 0, (2.23)

where the prime dictates a time-differentiation where there is only one time scale in this
equation. Here we find clearly that we have nontrivial steady state amplitudes a1, namely, by
setting a′1 = 0 we get

µ1ω1a1 + 3γ1ω
3
1a

3
1 = 0, (2.24)

which means that the possible steady state values of a1 are

a∗1 = 0, a∗1 =

√︃
−µ1

3γ1ω2
1

(2.25)

where the second value exists only if µ1 and γ1 have opposite signs. To examine the stability of
these solutions, we plug them in the differential equation (2.23), linearize around the fixed
point and calculate the eigenvalues. For any fixed point from (2.25), let a1 = a∗1 + δa1, after
linearization this gives

δa′1 + (µ1 + 9γ1ω
2
1a

∗2
1 )δa1 = 0. (2.26)

If the nontrivial value of a∗1 in (2.25) is inserted, this gives a negative damping with the
eigenvalue λ = 2µ1. This means, if the system has a positive linear damping µ1 > 0 but a
negative nonlinear damping γ1, an unstable limit cycle is obtained due to a subcritical Hopf
bifurcation. Thus, if a perturbation is initiated outside the limit cycle, the perturbed amplitude
δa1 and thus the perturbed solution u1 = a1 cos(ω1t+ ϕ1) will grow forever, even if the system
has a positive linear damping µ1 > 0. This instability is of pure nonlinear origin, and could not
be deduced by linear analysis [90].
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Although we started our analysis with a non-autonomous system, we could see that assuming
a weak force reduced the system into an autonomous one at non-resonant frequencies. However,
a different result is obtained for the same assumption but while detuning the excitation frequency
around the natural frequency of the second degree of freedom, that is

Ωf = ω2 + ϵσ, (2.27)

where σ is the detuning parameter. By plugging (2.27) in (2.16), this yields

2iω1D1A1 + iµ1ω1A1 + 3k1A
2
1A1̄ + 3iγ1ω

3
1A

2
1A1̄ = 0, (2.28a)

2iω2D1A2 + iµ2ω2A2 + 3k2A
2
2A2̄ + 3iγ2ω

3
2A

2
2A2̄ −

1

2
FeiσT1 = 0. (2.28b)

Again the amplitudes will be written in polar form

A1(T1) = a1(T1)e
iϕ1(T1), (2.29a)

A2(T1) = a2(T1)e
iϕ2(T1), (2.29b)

then by substituting in (2.28) and separating real and imaginary parts give

ω1a
′
1 +

1

2
µ1ω1a1 +

3

8
γ1ω

3
1a

3
1 = 0 (2.30a)

ω1a1ϕ
′
1 −

3

8
k1a

3
1 = 0 (2.30b)

ω2a
′
2 +

1

2
µ2ω2a2 +

3

8
γ2ω

3
2a

3
2 −

1

2
F sin(σT1 − ϕ2) = 0, (2.30c)

ω2a2ϕ2 −
3

8
k2a

3
2 +

1

2
F cos(σT1 − ϕ2) = 0 (2.30d)

Since the arguments of the trigonometric functions are composed of two terms which are
functions of the independent variable T1, a change of coordinates would be necessary in order
to find the stationary solutions of this system. By letting ϕ1 = σT1 − θ1 and ϕ2 = σT1 − θ2 we
find

ω1a
′
1 +

1

2
µ1ω1a1 +

3

8
γ1ω

3
1a

3
1 = 0 (2.31a)

ω1a1(σ − θ′1)−
3

8
k1a

3
1 = 0 (2.31b)
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Figure 2.1: Resonance curve of Duffing oscillator according to (2.32), where ω2 =
√
3, µ2 =

0.2, k2 = 5, F = 1 and γ2 = 0.

ω2a
′
2 +

1

2
µ2ω2a2 +

3

8
γ2ω

3
2a

3
2 −

1

2
F sin(θ2) = 0, (2.31c)

ω2a2(σ − θ′2)−
3

8
k2a

3
2 +

1

2
F cos(θ2) = 0 (2.31d)

then by setting a′2 = 0 and θ′2 = 0 we get the steady-state solutions. The equations show how
the two degrees of freedom are uncoupled, which means that the coupling stiffness terms have
no effect. Finally, the two last equations are solved for a2 to give the resonance equation

(48F 2k2 + 128σ(µ2
2 + 4σ2)ω3

2)a
2
2 − 48(k2(µ

2
2 + 12σ2)ω2

2 − 4γ2µ2σω
5
2)a

4
2

+ 72(3k22σω2 − k2γ2µ2ω
4
2 + γ22σω

7
2)a

6
2 − 27k2(k

2
2 + γ22ω

6
2)a

8
2 − 128F 2σω2 = 0.

(2.32)

By plotting the resonance equation in Fig. 2.1, it shows the typical Duffing resonance curve
for a S-DoF system. The first degree of freedom, however, behaves as an unforced Duffing
oscillator as discussed before. This means that no coupling exists between both degrees of
freedoms and thus no energy transfer.

2.2.2 1:1 Internal resonance

Another nonlinear phenomenon that could cause response amplification or destabilization of
solutions is the internal resonance. To illustrate this phenomenon it will be assumed that the
natural frequencies of the system are nearly equal, i.e. ω1 ≃ ω2. This case has a particular
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importance in some microsystems. A typical example would be the micro-ring gyroscope,
which due to its axis-symmetry exhibits a degenerate first natural frequency, thus having two
eigenfunctions or modes for the same frequency. In practice this degeneracy is broken due to
fabrication limitations, but both natural frequencies remain similar. This particular example
will be discussed in chapters 4 and 5.
To analyze this case, we return again to (2.16) but with a new resonance condition. We will

assume having the second DoF tuned at resonance, that is

Ωf = ω2 + ϵσ1, (2.33)

while the first DoF has a similar natural frequency as discussed before, this means

ω1 = ω2 + ϵσ2. (2.34)

By plugging these resonance conditions into (2.16), and in order to eliminate the secular
terms, we get the following solvability conditions

2iω1e
iσ2T1ω1A

′
1 + iµ1ω1e

iσ2T1ω1A1 + 3eiσ2T1k1A
2
1A1̄ + 3ieiσ2T1γ1ω

3
1A

2
1A1̄ − α1A2 = 0, (2.35a)

2iω2A
′
2 + iµ2ω2A2 + 3k2A

2
2A2̄ + 3iγ2ω

3
2A

2
2A2̄ −

1

2
FeiσT1 − α2e

iσ2T1A1 = 0. (2.35b)

Here we can see the appearance of the coupling terms α1A2, α2A1 for the first time through
our analysis. As before, we put the amplitudes in polar form

A1 =
1

2
a1e

iϕ1 , (2.36a)

A2 =
1

2
a2e

iϕ2 , (2.36b)

then inserting them into the solvability conditions and separating real and imaginary parts
gives

ω1a1ϕ
′
1 −

3

8
k1a

3
1 +

1

2
α1a2 cos(σ2T1 + ϕ1 − ϕ2) = 0 (2.37a)

ω1a
′
1 +

1

2
µ1ω1a1 +

3

8
γ1ω

3
1a

3
1 +

1

2
α1a2 sin(σ2T1 + ϕ1 − ϕ2) = 0 (2.37b)

ω2a2ϕ
′
2 −

3

8
k2a

3
2 +

1

2
α2a1 cos(σ2T1 + ϕ1 − ϕ2) +

1

2
F cos(σ1T1 − ϕ2) = 0 (2.37c)

ω2a
′
2 +

1

2
µ2ω2a2 +

3

8
γ2ω

3
2a

3
2 −

1

2
α2a1 sin(σ2T1 + ϕ1 − ϕ2)−

1

2
F sin(σ1T1 − ϕ2) = 0 (2.37d)
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Figure 2.2: Resonance curves of a1 and a2 under 1:1 internal resonance according to (2.38),
where ω1 = 0.97, ω2 = 0.95, k1 = 0.3, k2 = 0.6, α1 = 0.2, α2 = 0.4, µ1 = 0.2, µ2 =
0.3, F = 0.5, γ1 = γ2 = 0 and σ2 = 0.02.

Following the same procedure as before, we define δ2 = σ2T1 + ϕ1 − ϕ2 and δ1 = σ1t1 − ϕ2.
For the sake of stationary solutions we set then a′1 = 0, a′2 = 0, while ϕ′

1 = σ1 − σ2, ϕ
′
2 = σ1

which lead to δ′1 = δ′2 = 0. Solving the four algebraic equations yields two coupled resonance
equations

a21
(︁
64(µ2

1 + 4(σ1 − σ2)
2)(σ1 − σ2)ω

3
1 + 24k1α

2
1a

2
2

)︁
+ 64α2

1(σ2 − σ1)ω1a
2
2

+
(︁
−24k1(µ

2
1 + 12(σ1 − σ2)

2)ω2
1 + 96γ1µ1(σ1 − σ2)ω

5
1

)︁
a41

+ 36
(︁
3k21(σ1 − σ2)ω1 − k1γ1µ1ω

4
1 + γ21(σ1 − σ2)ω

7
1

)︁
a61 −

27

2
k1(k

2
1 + γ21ω

6
1)a

8
1 = 0,

(2.38a)

− 256F 2α2
1a

2
2 + 256α2

1(µ
2
2 + 4σ2

1)ω
2
2a

4
2 + 384α2

1ω2(−2k2σ1 + γ2µ2ω
3
2)a

6
2 + 144α2

1(k
2
2 + γ22ω

6
2)a

8
2

+ a21
(︁
512α1α2(µ1µ2 + 4σ1(σ2 − σ1))ω1ω2a

2
2 + 384α1α2ω1(2k2(σ1 − σ2) + γ2µ1ω

3
2)a

4
2

)︁
+ a41

(︁
256α2

2(µ
2
1 + 4(σ1 − σ2)

2)ω2
1 + 384α1α2(2k1σ1 + γ1µ2ω

3
1)ω2a

2
2 + 288α1α2(γ1γ2ω

3
1ω

3
2 − k1k2)a

4
2

)︁
+ 384α2

2ω1(2k1(σ2 − σ1) + γ1µ1ω
3
1)a

6
1 + 144α2

2(k
2
1 + γ21ω

6
1)a

8
1 = 0.

(2.38b)

Through Fig. 2.2 a typical resonance curve for internal resonances is depicted. The spacing
between the two peaks in each figure relies on the detuning parameter σ2. By increasing σ2 one
of the peaks keeps increasing and the other decreases until the first one disappears at a large
detuning between the two frequencies. Moreover, at some value of σ2 a bifurcation occurs and
an isolated branch (isola) in each of the resonance frequency curves appears, which is shown
in Fig. 2.3. Through these figures multiple solutions appear at some excitation frequencies,
some of them are isolated from other solutions which causes a sudden jump in amplitude by
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varying the excitation frequency. Both multi-stability and jumps could be beneficial as well as
detrimental with respect to different applications.
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Figure 2.3: Resonance curves and isolas of a1 and a2 under 1:1 internal resonance according
to (2.38), where ω1 = 0.97, ω2 = 0.95, k1 = 0.3, k2 = 0.6, α1 = 0.2, α2 = 0.4, µ1 =
0.2, µ2 = 0.3, F = 0.5, γ1 = γ2 = 0 and σ2 = 0.3.

2.3 Circulatory forces: an example

Another source of instability is discussed in this section, where circulatory forces are considered
again but in a more elaborate nonlinear case. Circulatory forces (also named follower or
non-conservative positional forces) grasped the attention of the academic community since
the famous work of Ziegler [91]. These non-potential positional forces were found to cause
instability of the trivial solution in the system under certain conditions [92, 93]. In addition,
they were found to have a practical significance in several applications extending from the
phenomenon of intense angular self-oscillations of a carriage wheel to the squealing brakes
and the self-excited vibrations in paper calenders [85].
Since most mechanical systems can be reduced to lumped-parameter systems, a basic under-

standing of the phenomenon can be attained from the simplest possible mechanical system, i.e.
two degree-of-freedom (2-DoF) mass-spring system. In an attempt to investigate the effect of
circulatory forces in its simplest case, in [87] a 2-DoF system was presented, which will be
further analyzed in this section.
Fig.2.4 shows a 2-DoF system composed of a point mass supported by two orthogonal springs

and pressed against a rotating disc underneath, which causes a frictional force acting on the
point mass in the direction of relative velocity. The contact between the point mass and the
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Figure 2.4: Point mass on a rotating disc (left), free-body diagram (right), courtesy of P. Hage-
dorn [87]

disc is assumed to be always slipping, without any sticking.
The equations of motion will be derived according to the free-body diagram shown in

Fig. 2.4 [87]. The disturbing force here is the frictional force R applied on the point mass due
to its slip-friction with the rotating disc, which is calculated in vector form to be

R⃗ = −µN v⃗rel
|v⃗rel|

, (2.39)

where v⃗rel is the velocity of the point mass P with respect to the rotating disc. We define P ∗ to
be the point on the rotating disc in contact with P . Thus, to calculate v⃗rel as follows

v⃗rel = v⃗|P − v⃗|P ∗ = [q̇1n⃗1 + q̇2n⃗2]− [−(q20 + q2)Ω n⃗1 + (q10 + q2)Ω n⃗2]

= (q̇1 + (q20 + q2)Ω) n⃗1 + (q̇2 − (q10 + q1)Ω) n⃗2.
(2.40)

Applying Newton’s second law on the point mass, and separating into the two orthogonal
directions gives

mq1̈ + (F10 + k1q1) = −µN (q1̇ + (q20 + q2)Ω)√︁
(q1̇ + (q20 + q2)Ω)2 + (q2̇ − (q10 + q1)Ω)2

, (2.41a)

mq2̈ + (F20 + k2q2) = −µN (q2̇ − (q10 + q1)Ω)√︁
(q1̇ + (q20 + q2)Ω)2 + (q2̇ − (q10 + q1)Ω)2

, (2.41b)

where the spring forces at the stationary point q1 = q10, q2 = q20 can be calculated to be

F10 = −µN q20Ω√︁
q220Ω

2 + q210Ω
2
, F20 = µN

q10Ω√︁
q220Ω

2 + q210Ω
2
.
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2.3.1 Nonlinear analysis

We start with non-dimensionalization of the system to reduce the system to its simplest form
and identify the influencing parameters. We introduce the non-dimensional time τ and the
normalized displacement ui to be

τ = Ωt ui =
qi
a
, i = 1, 2 (2.42)

then the differentiation with respect to time gives

u′ =
du

dτ
=
du

dt

dt

dτ
=

1

aΩ
q̇,

u′′ =
d2u

dτ 2
=
d2u

dt2
d2t

dτ 2
=

1

aΩ2
q̈.

(2.43)

For simplicity we will set our coordinates so that q10 = q20 = a, in this case the equations of
motion become

maΩ2u′′1 + (F10 + k1au1) = −µN aΩu′1 + (a+ au2)Ω√︁
(aΩu′1 + (a+ au2)Ω)2 + (q2̇ − (aΩu′2 − (a+ au1)Ω)2

,

(2.44a)
maΩ2u′′2 + (F20 + k2au2) = −µN aΩu′2 − (a+ au1)Ω√︁

(aΩu′1 + (a+ au2)Ω)2 + (q2̇ − (aΩu′2 − (a+ au1)Ω)2
,

(2.44b)
where

F10 = −F20 = −µN√
2

(2.45)

Dividing by maΩ2 leads to

u′′1 + (−η + k̄1u1) = −
√
2η

u′1 + (1 + u2)√︁
(u′1 + (1 + u2))2 + (u′2 − (1 + u1))2

, (2.46a)

u′′2 + (η + k̄2u2) = −
√
2η

u′2 − (1 + u1)√︁
(u′1 + (1 + u2))2 + (u′2 − (1 + u1))2

, (2.46b)

where
kī =

ki
mΩ2

, η =
µN√
2maΩ2

. (2.47)

In order to determine the solutions of the system and their stability, (2.46) is then rewritten
in four dimensional first-order system

v′1 − v2 = 0, (2.48a)
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Figure 2.5: The trivial and nontrivial fixed points in the parameter space γ1 − γ2, see (2.50)

v′2 + k̄1v1 +
√
2η

v2 + (1 + v3)√︁
(v2 + (1 + v3))2 + (v4 − (1 + v1))2

− η = 0, (2.48b)

v′3 − v4 = 0, (2.48c)

v′4 + k̄2v3 +
√
2η

v4 − (1 + v1)√︁
(v2 + (1 + v3))2 + (v4 − (1 + v1))2

+ η = 0, (2.48d)

then by setting v′1 = v′2 = v′3 = v′4 = 0 to find the stationary points we get

k̄1v1st +
√
2η

1 + v3st√︁
(1 + v3st)2 + (1 + v1st)2

− η = 0, (2.49a)

k̄2v3st −
√
2η

1 + v1st√︁
(1 + v3st)2 + (1 + v1st)2

+ η = 0. (2.49b)

and v2st = v4st = 0, where the index st means stationary.
The equations (2.49) allow another simplification by dividing by η to give

γ1v1st +
√
2

1 + v3st√︁
(1 + v3st)2 + (1 + v1st)2

− 1 = 0, (2.50a)

γ2v3st −
√
2

1 + v1st√︁
(1 + v3st)2 + (1 + v1st)2

+ 1 = 0, (2.50b)

with only two parameters γ1, γ2.
First, we study the existence of nontrivial stationary solutions by varying the parameters

γ1, γ2. This could be depicted in the parameter space γ1 − γ2 in Fig. 2.5 . In this figure we can
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identify at each pair of parameters whether we have only the trivial stationary solution, shown
in blue, or if at least a nontrivial stationary solution exists which is shown in white.
An example of the nontrivial stationary points is shown in Fig. 2.6, where v1st of the fixed

points is depicted with respect to γ1. This serves as vertical cross sections in Fig. 2.5 at two
different γ2 values. By calculating the eigenvalues for all nontrivial solutions, it was found that
at least one stable fixed point is present.
In order to verify the stability of the nontrivial solution, direct numerical integration is

applied on the original system of differential equations (2.48) and a projection of the phase
space in the v1 − v3 plane is plotted in Fig. 2.7. It can be shown that the positive and negative
values of the nontrivial fixed points v1st are stable. Moreover, a stable limit cycle could also
be found, which relates to flutter instability discussed before in section 2.1. We proceed by
studying the stability of the trivial solution. To this end we calculate the Jacobian matrix of the
system (2.48), that is

J =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0

−k1̄ +
√
2ηψ1ψ2

Ψ
−
√
2ηψ2

2

Ψ
−
√
2ηψ2

2

Ψ

−
√
2ηψ1ψ2

Ψ
0 0 0 1√
2ηψ2

1

Ψ
−
√
2ηψ1ψ2

Ψ
−k2̄ −

√
2ηψ1ψ2

Ψ
−
√
2ηψ2

1

Ψ

⎤⎥⎥⎥⎥⎥⎥⎦ (2.51)

where
Ψ =

(︁
ψ2
1 + ψ2

2

)︁3/2
, ψ1 = (1 + v2 + v3), ψ2 = (1 + v1 − v4).

At the fixed point vst = 0 we have

Ψ = 23/2, ψ1 = 1, ψ2 = 1, (2.52)

which lets the evaluation of the Jacobian to be

J |v=0 =

⎡⎢⎢⎢⎢⎢⎣
0 1 0 0

−k1̄ +
η

2
−η
2

−η
2

−η
2

0 0 0 1
η

2

−η
2

−k2̄ −
η

2
−η
2

⎤⎥⎥⎥⎥⎥⎦ (2.53)

The Jacobian matrix here contains three system parameters k̄1, k̄2 and η. By setting η = 1

and varying the other two parameters, this gives us an indication about trivial solution stability
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Figure 2.6: The stationary solutions of v1 with respect to γ1 at two different γ2 values.
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Figure 2.7: Time trajectories of the system variables near the trivial solution in the projection
v1-v3 of the phase space.
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for the ratio between excitation and system stiffness, which is corresponding to γi in (2.50) .
The same approach will be used analytically in the next subsection.
Using this approach the eigenvalues of the Jacobian could then be calculated at each evaluated

pair of (k̄1, k̄2), which gives the required information on the trivial solution stability at each
point of the parameter space (k̄1-k̄2).
The real parts of the eigenvalues are calculated, and the maximum real part is checked

whether it is positive, thus indicating instability according to the definition of stability discussed
in section 2.1. In Fig. 2.8 themaximum real part of the eigenvalues at each point of the parameter
space is shown in terms of a color spectrum appearing in the legend on the top of the figure. The
true blue color represents a stable solution, whereas all other colors represent the instability of
the trivial solution at different levels.
Some observations could be made from this figure. First, although the slip-only friction

is normally attributed to damping the system, we find here a totally different picture. The
frictional force does contribute to the damping mechanism but it induces circulatory forces as
well. This could be noticed from the Jacobian matrix (2.53) by observing the two elements

J23 =
∂f2
∂v3

=
∂f2
∂q2

= −η
2
, J41 =

∂f4
∂v1

=
∂f4
∂q1

=
η

2
, (2.54)

where fi is the vector field for the degree of freedom i. These two elements represent the system’s
circulatory forces by definition. Since in our case the damping coefficients and stiffnesses are
positive, therefore, there is no reason for instability in our case except for the existence of the
circulatory forces.
Secondly, we observe that as long as k̄1 ≃ k̄2 the trivial solution is stable, and for regions of

significantly dissimilar stiffnesses the trivial solution is greatly destabilized.
And thirdly, by comparing Fig. 2.8 with Fig. 2.5 we find that the trivial solution is destabilized

in some parts, for instance where k̄2 < 0.5, where no nontrivial solution exists. That means at
these parts the system has no stable solution.
In conclusion, the system shows its propensity to instability even though the mechanical

system from the first sight seems to have no peculiarities to exhibit instability. Thereby, this
system could illustrate the influence of circulatory forces remarkably in such a simple mechanical
system.
In addition, this gives some insight about the effect of losing the symmetry of the stiffness

matrix. Since any asymmetric real matrix can be decomposed to the sum of symmetric and
skew-symmetric matrices, circulatory forces then hint at losing (breaking) the symmetry of the
stiffness matrix in a wide sense, i.e. displacement-proportional matrix. A detailed explanation

30



-0.1584 -0.0792 0 0.0792 0.1584 0.2376 0.3168 0.3960

0.0 0.5 1.0 1.5 2.0

0.0

0.2

0.4

0.6

0.8

1.0

Figure 2.8: Maximum real part of the eigenvalues for the trivial fixed point in the parameter
space k̄1-k̄2, see (2.53).

of the conditions of instability in these systems can be found in [94]. This occurs as well when
the stiffness matrix becomes time-dependent as a parametric excitation, as will be explained in
chapter 3. In this case, if the symmetry of the parametric excitation matrix is lost by adding
a phase-shift in its off-diagonal terms, we observe a significantly special case, that is the
asynchronous parametric excitation, which will be given special attention in the next chapters.

2.3.2 Linearized system

Up to this point the stability of different system solutions was studied numerically. An analytical
approach will then be conducted to understand the stability of system’s trivial solution. In
order to do that, we linearize the system around the trivial solution to be

u′′1 + k̄1u1 +
η

2
[u′1 + u′2 + (u2 − u1)] = 0,

u′′2 + k̄2u2 +
η

2
[u′1 + u′2 + (u2 − u1)] = 0.

(2.55)
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It can be represented in matrix form as

Mu′′ + Du′ + (K + N)u = 0 (2.56)

where
M =

[︄
1 0

0 1

]︄
, D =

η

2

[︄
1 1

1 1

]︄
,

K =

[︄
k̄1 − η

2
0

0 k̄2 +
η
2

]︄
, N =

[︄
0 η

2

−η
2

0

]︄
.

(2.57)

For the ansatz

u1(t) = U1e
λt, (2.58a)

u2(t) = U2e
λt, (2.58b)

we find the characteristic equation to be

λ4 + ηλ3 + [k̄1 + k̄2]λ
2 +

η

2
[k̄1 + k̄2]λ+

η

2
[k̄1 − k̄2] + k̄1k̄2 = 0. (2.59)

Due to the relative complexity of the characteristic equation, we study as a first attempt the
special case of k̄1 = k̄2. In this case the characteristic equation becomes

λ4 + ηλ3 + 2k̄λ2 + ηk̄λ+ k̄
2
= 0. (2.60)

with the roots
λ1,2 =

1

2
[−η ±

√︂
η2 − 4k̄] λ3,4 = ±i

√︁
k̄. (2.61)

The first two eigenvalues show an upper limit of zero for the real part, when k̄ << η, while
the last two eigenvalues have no real parts. This means, that if the system stiffnesses are exactly
equal, the trivial solution proves to be stable or marginally stable for any given frictional force
η. This complies very well with the previous numerical study conducted. In Fig. 2.8 all the real
parts of the system’s eigenvalues are either negative or zero when k̄1 = k̄2

In the general case, however, we use the Routh-Hurwitz criterion to obtain the stability of
the trivial solution. The criterion states that for the characteristic equation

a0λ
4 + a1λ

3 + a2λ
2 + a3λ+ a4 = 0 (2.62)
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the condition for all roots to have negative real parts, thereby asymptotic stability, is that all
the inequalities [95, 96]

C1 : ∆1 = a1 > 0, C2 : ∆2 = a1a2 − a0a3 > 0

C3 : ∆3 = a3∆2 − a21a4 > 0, C4 : ∆4 = a4∆3 > 0
(2.63)

The criterion in our case states that if the inequalities

C1 : η > 0, (2.64a)

C2 :
η

2
(k̄1 + k̄2) > 0, (2.64b)

C3 :
η2

4
(k̄1 − k̄2)

[︁
(k̄1 − k̄2)− 2η

]︁
> 0, (2.64c)

C4 :
η

2
[k̄1 − k̄2] + k̄1k̄2 > 0 (2.64d)

are satisfied, this would be a sufficient and necessary condition that each eigenvalue has a
negative real part.
In our mechanical system, k̄1,2 and η are always positive, which means that the first two

inequalities are always satisfied. However, for the last two inequalities we differentiate between
two cases, k̄1 > k̄2 or k̄2 > k̄1. For k̄1 > k̄2 the last inequality is always satisfied, however the
third one will not if η > (k̄1−k̄2)

2
.

In the other case, k̄2 > k̄1, we rewrite the third inequality in the form

(k̄2 − k̄1)
[︁
(k̄2 − k̄1) + 2η

]︁
> 0, (2.65)

which is obviously satisfied. To study the last inequality in this case, we divide it with k̄1k̄2,
yielding

η

2
[
1

k̄1
− 1

k̄2
] < 1. (2.66)

But because 1

k̄1
− 1

k̄2
in the case k̄2 > k̄1 is always positive, this means that the inequality

will not be satisfied if
1

k̄1
− 1

k̄2
>

2

η
. (2.67)

In summary, the trivial solution does not include negative real parts in two different cases,
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that is

η

⎧⎪⎪⎪⎨⎪⎪⎪⎩
>
k̄1 − k̄2

2
, k̄1 > k̄2

>
2k̄1k̄2
k̄2 − k̄1

, k̄1 < k̄2,

(2.68)

which means, that satisfying the inequalities (2.68) either leads to the instability of the trivial
solution according to the linear analysis, or to a zero real part.
By close observation of the instability conditions for the trivial solution in (2.68) we can

see that instability can not occur for exactly equal stiffnesses, which was proved before in
the special case k̄1 = k̄2, and supported by the previous numerical calculation of the system’s
exponents. And secondly, if the frictional force could exceed the difference between both
stiffness values, the trivial solution turns to be unstable. This case could only happen if the
stiffnesses are away from equality and when their values are quite small. This same observation
could be made again from Fig. 2.8 and its succeeding discussion.

2.4 Conclusion

In summary, several observations could be obtained by analysing time-invariant systems. In the
system of coupled two Duffing oscillators, although the system is relatively simple, the one-to-
one internal resonance could initiate strange behaviors, such as an isola. This case specifically
is important for the next chapters, since this type of internal resonance appear in systems
with degenerate natural frequencies, which is the case for the axis-symmetric micro-gyroscope.
In the other example, circulatory forces were found to influence the dynamics of the system,
either linear or nonlinear if they were large enough with respect to system stiffness coefficients.
Moreover, in the nonlinear system they were found to cause a destabilization of the trivial
solution even when no nontrivial solution exists, which is a divergence case. For some values of
system parameters, they could even initiate a limit cycle in the absence of external excitation
or negative damping. Moreover, circulatory forces corresponds to having a skew-symmetric
displacement-proportional matrix, in other words, it corresponds to introducing an asymmetry
in the stiffness matrix. For time-periodic stiffness matrices, discussed in the next chapters,
their symmetry could be lost by adding a phase-shift to the off-diagonal terms leading to other
destabilization phenomena. These aspects and sources of instability should be noted through
our bottom-up approach to help in understanding more complex systems.
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3 Time-periodic systems

In this chapter, the analysis of dynamical systems proceeds towards time-periodic systems,
where the sources of destabilization of solutions and the amplification of the system’s response
are discussed. Time-periodic systems are a specific type of time-varying systems of differential
equations, where their coefficients are time-periodic. This time-periodicity allows for using the
well-known Floquet theory to analyze the stability of these systems’ solutions. The difference
between these systems and their corresponding ones with constant coefficients requires a
different measure of stability. Stability can no longer be determined by the real parts of the
system’s eigenvalues. However, in the Floquet formulation of the problem we arrive at a quite
similar stability condition using the system’s characteristic exponents due to Lyapunov [97].
The motivation for studying these systems dates back to the nineteenth century in the

works of Faraday, Lord Rayleigh and Mathieu in explaining natural phenomena [5]. However,
nowadays many practical applications make use of parametric excitation in obtaining better
performance. This proves to be of significant importance in microsystems [58], which constitute
the main application discussed in this thesis.
Using the same approach as the previous chapter, we start by discussing linear time-periodic

systems, in general, and the asynchronous parametric excitation in particular using the method
of normal forms. The discussion extends to the case of forced parametrically excited systems,
where both forced and parametric excitations exist. This type of systems was discussed in the
literature for decades [8], however, not for the asynchronous excitation case. Moreover, the
correspondence between the destabilization of the trivial fixed point and the amplification of
the response is discussed.
Finally, we arrive at time-periodic nonlinear systems, where the multiple scales method is

used to analyze the possible nontrivial solutions and the corresponding bifurcations at resonant
frequencies. In this way, this chapter gives an overall picture on the dynamics of M-DoF time-
periodic linear and nonlinear systems under asynchronous excitation, which also serves as a
theoretical background for the following chapters.
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3.1 Linear time-periodic systems

Here we confine ourselves to the linear M-DoF system

Mq̈ + (D +G) q̇ + (K +C(t)) q = f(t). (3.1)

where

M =

[︄
1 0

0 1

]︄
, D =

[︄
δ11 δ12

δ21 δ22

]︄
, G = γ

[︄
0 1

−1 0

]︄
, f(t) =

[︄
f1(t)

f2(t)

]︄
.

K =

[︄
ω2
1 0

0 ω2
2

]︄
, C(t) =

[︄
ξ11 cos(Ωpt+ ζ11) ξ12 cos(Ωpt+ ζ12)

ξ21 cos(Ωpt+ ζ21) ξ22 cos(Ωpt+ ζ22)

]︄
,

This linear equation considers a certain type of systems with periodically time-varying
coefficients known as parametrically excited systems, where C(t) is the parametric excitation
matrix, with amplitudes ξij, frequency Ωp and phases ζij. Here the time-periodicity appears
only in displacement proportional terms, or in the stiffness matrix in a wide sense. Time-
periodic inertia or time-periodic velocity proportional coefficients are not included, and constant
circulatory forces are not considered.
In this case, the stability analysis of the trivial fixed point can not be carried out by evaluating

the real parts of the eigenvalues, since the system is non-autonomous. Instead, a solution
can be sought for by linearizing around a periodic solution [98]. Moreover, the fact that the
time-dependent coefficients have a period time T simplifies the problem as will be discussed
afterwards.
Studying the stability of a periodic solution can be carried out with the help of the Poincaré

map. This could be visualized by considering the time variable in (3.13) to be an additional
degree of freedom. In this case, a hyperplane could be placed at T-periods along this new
coordinate, and the vector flow could be traced by its intersection with this plane. If the time
coordinate is turned to be polar, such that the angular coordinate will be θ = 2πt/T (mod 2π),
we have only one hyperplane and vector flow will intersect it at every period T , this hyperplane
is the Poincaré map. Thus we obtain a discretization for the system, and the stability turns from
being studied around a periodic solution to be studied around a fixed point on the Poincaré
map [99]. This is very similar to the approach of the Floquet theory, where the stability of the
trivial solution is then determined around this fixed point [100].
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3.1.1 Floquet theory

According to the previous discussion, Floquet theory is introduced here to determine the
stability of time-periodic linear systems. First, the M-DoF system (3.1) with f = 0 is converted
into a first order four dimensional system leading to

ż = A(t)z. (3.2)

According to Floquet ansatz, the fundamental matrix Z(t) can be written as

Z(t) = P (t)eBt, (3.3)

where each of Z, P,B is an n× n matrix, P (t) = P (t+ T ), and B is constant. By translating
Z(t) in time with the periodic time T , (3.3) gives

Z(t+ T ) = P (t+ T )eB(t+T )

= P (t)eBteBT

= Z(t)C,

(3.4)

which means that a translation by a time-period is only a linear transformation by the constant
matrix C, called the monodromy matrix. This matrix describes the time evolution of the system
solutions represented by the fundamental matrix Z(t), and thus carries the information about
the stability of the system’s solutions.
According to Floquet, the stability of the trivial solution can be obtained numerically by

choosing the initial conditions
Z(0) = I4×4, (3.5)

where I4×4 is the identity matrix of the size four.
The system’s fundamental matrixZ(t) is then calculated, which for the given initial conditions

constitute the monodromy matrix when t = T = 2π
Ωp
, since according to (3.4)

C = Z(
2π

Ωp

), since Z(T ) = Z(0)C (3.6)

By evaluating the eigenvalues of this matrix, we obtain the Floquet characteristic multipliers
µ, which represent the eigenvalues of the Poincaré map generated by the section orthogonal to
the periodic solution [100]. Then

νi =
1

T
ln(µi). (3.7)
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are the system’s Floquet characteristic exponents, and their real parts are found to be Lyapunov
characteristic exponents [101].
The same criterion of stability of a fixed point explained in section 2.1 can be extended

here for the periodic solution of a non-autonomous system. If all Lyapunov exponents are
negative, which means that all Floquet multipliers are inside the unit circle of the complex
plane, the solution is said to be asymptotically stable. While if any Lyapunov exponent is positive,
which means that any Floquet multiplier lies outside the unit circle, the system is said to be
unstable. Moreover for nonlinear systems, if none of the Floquet multipliers associated with
a non-hyperbolic solution lies outside the unit circle, in other words if none of the Lyapunov
exponents is positive, then a nonlinear analysis is necessary to determine the stability [99].
The Floquet theorem implies also that (3.2) can be transformed by

z(t) = P (t)y(t) (3.8)

which gives
ẏ = P−1(AP − Ṗ )y, (3.9)

but since
P (t) = Z(t)e−Bt (3.10)

then

Ṗ = Że−Bt −BZe−Bt

= AP − PB
(3.11)

finally
ẏ = By (3.12)

which is a linear system with constant coefficients. From this result we understand that the
transformation by a T-periodic operator in (3.8) changes the problem into a linear system
with constant coefficients in (3.12). This is called Lyapunov reducibility theorem as a result of
Floquet-Lyapunov transformation [14].

3.1.2 Parametrically excited systems

Following the same bottom-up approach as previously discussed, the first insights about
parametrically excited systems could be obtained by reducing this system into a S-DoF one,
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Figure 3.1: Stability chart of Mathieu equation (3.13) for two damping coefficients d = 0, d =
0.01

which is the Mathieu-Hill equation [8]

mq̈ + dq̇ + (k + ξcos(Ωpt))q = 0. (3.13)

Although the equation seems to be simple, an exact closed-form solution could not be
attained [102]. Therefore in order to study the dynamics in this system either approximate
analytical methods are used or a numerical integration is carried out.
In the linear case we are interested in studying the stability of the trivial fixed point for

different system parameters. Here we vary only the parametric excitation parameters: amplitude
ξ and frequency Ωp. By examining the stability of the trivial fixed point using Floquet theory as
explained before, we could depict the result at each point in the parameter space Ωp-ξ which is
known as the stability chart.
In Fig. 3.1 the stability chart of Mathieu equation (3.13) is depicted for two cases, when there

is no damping, i.e. d = 0, and when a small damping d = 0.01 is included. Only the instability
points are shown in the stability diagram, where the red points correspond to the damped
case and the blue ones to the undamped. Few observations could be made. First, we observe
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the destabilization of the trivial fixed point at frequencies Ωp = 2ω/n, where ω =
√︁
k/m

and n ∈ N, in separated regions called instability tongues or Arnold’s tongues. This result is
obtained numerically, analytically using Hill’s infinite determinants [8] or using perturbation
and averaging methods [103]. Secondly, the existence of damping causes the instability tongues
to shrink upwards. And finally, the primary resonance region is much larger than the others,
and its corresponding singularity in the solution has the largest influence on the solution.
We conclude that adding a time-periodic term in simple mass-spring-damper system adds

another sort of instability to the system. In accordance with the approach used in this thesis
to address the problem of stability in different systems, we then proceed by adding other
dimensions and finally by adding nonlinearities.

3.1.3 Bimodal parametric excitation

The instability due to parametric resonance is then extended to M-DoF systems. In these
systems, however, this kind of instability not only occurs at Ωp = 2ωi/n, which are called
here primary parametric resonances, but also at combination or secondary resonances, i.e. at
Ωp = |ωi±ωj|/n, where i = 1, 2, n ∈ N. Moreover, we discuss also the possibility of destabilizing
the trivial solution at non-resonant frequencies as well. To discuss these phenomena we are
concerned with the two-degree of freedom system

Mq̈ + (D +G) q̇ + (K +C(t)) q = 0, (3.14)

which is the same as (3.1) but without forced excitation, i.e. f = 0.
In order to illustrate the effect of increased dimensionality, as we did in time-invariant

systems, as well as the effect of the coupling terms in C(t)

C(t) =

[︄
ξ11 cos(Ωpt+ ζ11) ξ12 cos(Ωpt+ ζ12)

ξ21 cos(Ωpt+ ζ21) ξ22 cos(Ωpt+ ζ22)

]︄
. (3.15)

We consider three types of special cases. In the first case (system I), the off-diagonal terms
are canceled, i.e. ξ12 = 0, ξ21 = 0, whilst in system II, the matrix is fully populated but
all terms are in-phase, i.e. ξ12 ̸= 0, ξ21 ̸= 0, ζij = 0, and finally in system III the matrix
is the same as in system II but includes a phase shift between the off-diagonal terms, i.e.
ξ12 ̸= 0, ξ21 ̸= 0, ζ21 = −π/2, ζ11 = ζ12 = ζ22 = 0. This last case is called asynchronous parametric
excitation through this work.
According to section 3.1.1, the system’s trivial solution is unstable if at least one Lyapunov
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Figure 3.2: The effect of coupling terms of C(t). System I: ξ12 = ξ21 = 0, system II: ξ12 = ξ21 =
ξ, ζ11 = ζ12 = ζ21 = ζ22 = 0, system III: ξ12 = ξ21 = ξ, ζ11 = ζ21 = ζ22 = 0, ζ12 =
−π/2. For all systems: ξ11 = ξ22 = ξ, ξ = 0.3, γ = 0.1, δ11 = 0.01, δ22 = 0.005, δ12 =
δ21 = 0, ω1 = 1, ω2 = 2.

exponent λi is positive. Thus, we search for the maximum exponent

λmax = max(
1

T
ln |µ|), (3.16)

where µ is the Floquet characteristic multiplier of the monodromy matrix, see (3.7). Then the
maximum Lyapunov exponent is calculated for given system parameters and at each parametric
excitation frequency Ωp in a defined interval.
Fig. 3.2 shows how the coupling terms can affect the system’s stability. That is, without

any coupling terms, i.e. for system I, instability occurs mainly at the parametric resonance
frequencies, i.e. Ωp =

ωi ± ωj

n
, n ∈ N. For system II, we obtain a similar behavior but with an

increased tendency of instability at the combination resonance frequencies, i.e. Ωp = ω1 ± ω2.
However, in system III, the phase shift ζ21 = −π/2 causes a significantly different behavior.

In this case the system exhibits instability at non-resonant frequencies, which leads to a
broadband destabilizing effect, for instance in the interval [ω2 − ω1, ω2 + ω1]. This follows the
analysis by Karev [37, 38], where the condition for global effects, e.g. the explained broadband
destabilization, was given as ζ12−ζ21 ̸= πm, m ∈ Z. This is indeed our case, since ζ12−ζ21 = π/2.
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In order to elaborate on this idea, Fig. 3.3 shows the instability regions in the parameter
space Ωp-ξ. As shown in the figure, the trivial solution in a broad frequency band and when
ξ > 0.27 is unstable due to the proposed parametric excitation method, and specifically due
to the presence of the phase shift between the coupling off-diagonal terms. This differs from
the case of synchronous C(t), i.e. systems I and II, in which we can not achieve broadband
instability at small excitation amplitude ξ.
The variation in the system’s eigenvalues, and specifically the increase of the maximum

eigenvalue in a broad frequency band could be understood as a negative-damping effect, which
potentially implies an amplification of the system’s forced response under the given parametric
excitation frequency. Hence, we conclude from this section, that through this proposed method
of excitation, a parametric amplification can be acquired not only at resonant frequencies as
reported before in the literature [67], but also at non-resonant frequencies. This will be further
discussed in section 3.1.6.
Having this effect on a broad band of frequencies can be promising in different ways for

the micro sensors technology. Firstly, the tuning of the parametric excitation frequency is less
sensitive. Secondly, this can allow for a potential noise squeezing effect [60] also in the broad
frequency band. Moreover, since the change in the system’s eigenvalues with respect to the
excitation frequency is not abrupt but gradual and continuous, we can think of a frequency
Ωp tuning of the amplification gain instead of tuning it through the parametric excitation
amplitude ξij.

3.1.4 The method of normal forms

In order to discuss the stability of the micro-ring gyroscope, an analytical method, namely
the normal form method, is used. This method is explained in different sources on nonlinear
mechanics, a brief exposition can be found in [104, 84] and a more detailed one can be found
in [105, 106, 107], where the last reference is followed in our calculations.
As in the numerical Floquet calculations we start from the first-order four dimensional

system (3.2). However, since the system is not autonomous, we rewrite the time-periodic
coefficients as additional variables, changing the system from non-autonomous linear system
into an autonomous nonlinear one. In addition, some dummy variables are also introduced for
the sake of having more representative and insightful analytical expressions at the end.
Applying these to (3.14) after excluding the external forcing gives
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Figure 3.3: Stability chart of system (3.14) in the parameter space Ωp-ξ where ξ12 = ξ21 =
ξ, ζ11 = ζ21 = ζ22 = 0, ξ11 = ξ22 = ξ, γ = 0.1, δ11 = 0.01, δ22 = 0.005, δ12 = δ21 =
0, ω1 = 1, ω2 = 2, and ζ21 = −π/2
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Figure 3.4: Stability chart of system (3.14) in the parameter spaceΩp-ξ, same parameter values
as Fig. 3.3, except for ζ21 = 0
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ż1 = z2, (3.17a)

ż2 =

[︃
−ω2

1 −
1

2
ξ11
(︁
eiζ11z5 + e−iζ11z6

)︁]︃
z1 −

1

2
ξ12
(︁
eiζ12z5 + e−iζ12z6

)︁
z3 − (δ11z2 + (δ12 + γ)z4) z7,

(3.17b)
ż3 = z4, (3.17c)

ż4 = −1

2
ξ21
(︁
eiζ21z5 + e−iζ21z6

)︁
z1 −

[︃
ω2
2 +

1

2
ξ22
(︁
eiζ22z5 + e−iζ22z6

)︁]︃
z3 − ((δ21 − γ)z2 + δ22z4) z7,

(3.17d)
ż5 = iΩpz5, (3.17e)
ż6 = −iΩpz6, (3.17f)
ż7 = 0, (3.17g)

where

z1 = q1, z2 = q̇1, z3 = q2, z4 = q̇2, z5 = eiΩpt, z6 = −eiΩpt, z7 = 1.

A linear transformation
x = Rz (3.18)

is applied, such that in the new coordinates the equations are transformed into

ẋ = ˜︁f(x) = Λx+ ˜︁F 2(x) + ˜︁F 3(x) + ... (3.19)

where Λ is the Jordan form and ˜︁F i are the nonlinear terms of monomials of order i in x.
The essence of the normal form method is to apply a nonlinear transformation resulting in

the minimal amount of nonlinear terms in the transformed system, i.e. the normal form. This is
done through the nonlinear near-identity transformation

x = ˜︁g(y) = y + ˜︁G2(y) + ˜︁G3(y) + ... (3.20)

to obtain the normal form

ẏ = ˜︁h(x) = Λy + ˜︂H2(y) + ˜︂H3(y) + ... (3.21)
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then by inserting (3.21) and (3.20) in (3.19) we get the partial differential equation

∂˜︁g(y)
∂y

˜︁h(y) = ˜︁f(˜︁g(y)). (3.22)

Then (3.22) is solved for ˜︁Gi, so that we obtain ˜︂H i with the minimum possible nonlinear
terms. Next we define each monomial in the form ym1

1 ym2
2 ym3

3 ...ym7
7 . Using (3.22) we find a

condition for each monomial in each differential equation, by which the monomial is transferred
from ˜︁f(x) to ˜︁h(y) without being eliminated, otherwise, i.e. if the condition is not met, this
monomial can be eliminated and thereby simplifying the resulting normal form ˜︁h(y). This
condition is called a resonance condition which by solving (3.22) reads

λj =
7∑︂

i=1

miλi, j ∈ {1, 2, .., 7}. (3.23)

where j corresponds to the differential equation żj = f(z) and the sum on the right hand side
is calculated for each monomial in row j of the matrix ˜︁h . Then for the given case, (3.23) reads
λj = (m1−m2)ω1+(m3−m4)ω2+(m5−m6)Ωp, λj ∈ {ω1,−ω1, ω2,−ω2,Ωp,−Ωp, 0}. (3.24)

Since the resonance condition depends on system eigenvalues, the transferred monomials
from ˜︁f to ˜︁h depend on the resonances taken into consideration. That means, we have always
the choice to consider all excitation frequencies or to exclude some or all resonance frequencies.
However, including all the resonance frequencies leads to higher complexity of the normal form,
and sometimes to the impossibility of transforming the normal form into polar coordinates,
which are normally convenient in the final representation of the system.
After proceeding with the mentioned calculations, the dummy variables are substituted with

their original forms
y5 = eiΩpt, y6 = e−iΩpt, y7 = 1, (3.25)

then finally we arrive at the normal form (3.21) after excluding the terms higher than the third
order.
Since we expect periodic solutions, a transformation in the polar coordinates should usually

simplify the end expressions and give more insight into the response amplitudes. This is done
through the transformation

y1 =
1

2
ω1e

i(ϕ1(t)+
1
2
Ωpt) r1(t), (3.26a)
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y2 =
1

2
ω1e

−i(ϕ1(t)+
1
2
Ωpt) r1(t), (3.26b)

y3 =
1

2
ω2e

i(ϕ1(t)+
1
2
Ωpt) r2(t), (3.26c)

y4 =
1

2
ω2e

−i(ϕ1(t)+
1
2
Ωpt) r2(t). (3.26d)

In the present case, the normal form method is applied at all given frequencies except for the
combined and difference resonance frequencies Ωp = ω1 ± ω2, which means that the primary
resonances Ωp = 2ωi, i = 1, 2 are included in the analysis. Moreover, it is assumed that the
system does not include coupling damping terms, i.e. δ21 = δ12 = 0 and that the only non-zero
phase shift in the parametric excitation matrix would be ζ21, i.e. ζ11 = ζ22 = ζ12 = 0. This leads
to

ṙ1 =

[︃
−1

2
δ11 +

ξ21ξ12Ωp sin(ζ21)

2(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)
+
ξ12γ cos(2ϕ1)

4(ω2
1 − ω2

2)

+
γξ21(Ωp − ω1) cos(ζ21 − 2ϕ1)

4ω1(Ωp − (ω1 − ω2))(Ωp − (ω1 + ω2))
+

1

16Ωpω2
1

ξ11 (δ11(Ωp + 2ω1) cos(2ϕ1)− 4Ωpω1 sin(2ϕ1))

]︃
r1,

(3.27a)

ṙ2 =

[︃
−1

2
δ22 −

ξ21ξ12Ωp sin(ζ21)

2(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)
+
ξ21γ cos(ζ21 − 2ϕ2)

4(ω2
1 − ω2

2)

+
γξ12(Ωp − ω2) cos(2ϕ2)

4ω2(Ωp − (ω2 − ω1))(Ωp − (ω1 + ω2))
+

1

16Ωpω2
2

ξ22 (δ22(Ωp + 2ω2) cos(2ϕ2)− 4Ωpω2 sin(2ϕ2))

]︃
r2,

(3.27b)

while ϕ̇1 = f(ϕ1), ϕ̇2 = f(ϕ2).
The last expressions can be simplified to include only the first two terms in each equation of

(3.27) if the primary resonances are not to be included.
In order to verify our results, equations (3.27) will be compared to the numerical results

obtained before by the Floquet method before. The comparison is depicted in Fig. 3.5. Here
we can see a very good agreement between both of them including at the primary resonances
Ωp = 2ωi, i = 1, 2. As expected, the mismatch between both methods appears only at the
combination and difference resonances.
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Figure 3.5: Comparison of the results of the normal form method to the numerical Floquet
method for the values of λmax w.r.t Ωp where ξ12 = ξ21 = ξ, ζ21 = −π/2, ζ11 = ζ21 =
ζ22 = 0, ξ11 = ξ22 = ξ, γ = 0.1, δ11 = 0.01, δ22 = 0.005, δ12 = δ21 = 0, ω1 = 1 and
ω2 = 2.

3.1.5 Simplified analytical expression

Given that the normal form shows an appropriate representation of the system dynamics, we
shall use a further simplified version of (3.27) for the sake of better understanding.
First by excluding all resonances from our normal form transformation, and moreover by

assuming that all the parametric excitation terms have the same amplitude, i.e. ξ11 = ξ12 =

ξ21 = ξ22 = ξ, we get

ṙ1 =

[︃
−1

2
δ11 +

ξ2Ωp sin(ζ21)

2(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

]︃
r1, (3.28a)

ṙ2 =

[︃
−1

2
δ22 −

ξ2Ωp sin(ζ21)

2(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)

]︃
r2. (3.28b)

The coefficients of the transformed system variables r1 and r2 are in our case the determinants
of stability, since they represent the real parts of the eigenvalues of the transformed system,
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represented by

λ1 = −1

2
δ11 +

[︄
ξ2Ωp sin(ζ21)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ , (3.29a)

λ2 = −1

2
δ22 −

[︄
ξ2Ωp sin(ζ21)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ . (3.29b)

A major goal in this discussion is to determine the effect of the parametric excitation pa-
rameters (ξ,Ωp) on system stability. By investigating the dependency of the maximum real
eigenvalue λmax = max(λ1, λ2) on the parametric excitation frequency, as shown in Fig. 3.5,
we find that there is a region of frequencies between ∆ω = ω2 − ω1 and Σω = ω2 + ω1 where
the value of the maximum eigenvalue can be controlled for stabilization or destabilization, and
becomes remarkable when the natural frequencies are large and their difference is small. In
this region the value of maximum eigenvalue reaches a local maximum or a local minimum
according to the value of ξ as can be seen in Fig. 3.6. This band of frequencies is of special
importance to the case of microsystems, since in this case the sum of eigenfrequencies Σω is
relatively large (in the order of (O(105)Hz)) and the difference between them ∆ω is relatively
small (O(103)Hz). Therefore in order to find the local maximum/minimum, λ is differentiated
with respect to Ωp and the expression is equated to zero. A more special case occurs in micro
gyroscopes, where the ring is usually designed to be symmetric, while the asymmetry appears
due to limited fabrication precision. However even if the undamped natural frequencies are
dissimilar, as seen in Fig. 3.6, we have ∆ω << Σω by at least one order of magnitude. This
assumption leads to a simplification for the value of the local minimum/maximum of λmax, this
value we shall notate as λ∗.
Starting with the differentiation of λ with respect to Ωp and equating to zero, we find

Ω2
p =

∆ω2 + Σω2

6
± 1

6

√︁
(∆ω2 + Σω2)2 + 12∆ω2Σω2, (3.30)

where ∆ω = ω2 −ω1 and Σω = ω2 +ω1 as explained previously. Then following the assumption
∆ω << Σω, we get

Ω∗ ≃ 1√
3
Σω, (3.31)

where Ω∗ represents the parametric excitation frequency at the local minimum of the maximum
eigenvalue . Applying this result to (3.29), we find the local extremum of λmax to be

λ∗ ≃ max(
−δ11
2

− δλ,
−δ22
2

+ δλ), δλ =
3
√
3

4

ξ2 sin(ζ21)

Σω3
. (3.32)
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Figure 3.6: Maximum Lyapunov exponent λmax against parametric excitation frequency Ωp for
a system with large and similar natural frequencies ω1 = 2π × 100krad/sec, ω2 =
2π × 120krad/sec, displaying the local minimum at λ∗ and Ω∗.

This approximation can give us a better insight into how the system is near to instability
given the system parameters. This was found to be sufficiently accurate, under the assumption
∆ω << Σω.
From (3.32) we can infer that the destabilization of the system is highly affected by the ratio
ξ2

Σω3
. This means that in order to attain a destabilization effect at non-resonant frequencies of

such a system with high eigenfrequencies, we need comparably a high excitation amplitude.
Then the fraction of δλ can be designed in the damping order of magnitude O(δij) for the
sake of having a better tuning for the excitation amplitude with respect to the corresponding
device’s response.
In conclusion, by investigating the system (3.14) for stability, different conditions were found

to cause destabilization of the trivial solution. The nontrivial solutions do not exist in this
case due to the assumed linearity. Other aspects of this investigation are considered in [38].
However, a specific case was focused on, namely, when the coupling parametric excitation terms
were phase-shifted with π/2, where a broadband destabilization was elaborated, especially for
micro- and nanosystems with axis-symmetric geometry.
In terms of microsystems, as explained before, the key indicator to be discussed here is

sensitivity, whose enhancement in our excitation method occurs due to parametric amplification.
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Up to this point, we could prove how the trivial solution could be destabilized, but to translate
this into amplification, the addition of a forced excitation is then necessary.

3.1.6 Parametric amplification

As previously explained in the introduction, we seek to increase the system’s response amplitude
through parametric excitation, this is one of the main goals of this thesis. This leads directly
to an enhancement of the sensitivity of micro or nano-sensor systems. Two main types of
enhancement are targeted, one is through non-resonant parametric amplification which is
amplifying the forced response of the system in a pramateric non-resonant case while assuming
system’s linearity. Thus, the amplification occurs outside the instability regions of the stability
chart (see Figs.3.3, 3.4), i.e. without parametric resonance, since driving a linear system into
instability of its trivial solution means an unbounded response. The second method is through
parametric resonance allowing for resonant parametric amplification, through which we look for
a nontrivial solution with a higher amplitude, and thereby an amplified response [67].
So far we are interested in a linearly modeled system. The response of nonlinear systems

will discussed in the next section.
Therefore, in order to investigate the non-resonant parametric amplification case, the system

should have two types of excitation, that is, the forced excitation which gives the drive of the
system, and the parametric excitation which destabilizes the system for the sake of amplification.
This means we are willing to explain the connection between destabilization of the trivial
solution of the autonomous system and the amplification of the system response after the
addition of the external forced excitation.
To this end, we put the system (3.1) in a perturbed form, that is

u′′1 + ω2
1u1 + ϵ[µ1u

′
1 + η11u1 cos(Ωpt) + η12u2 cos(Ωpt)] = ϵF0 sin(Ωf t)

u′′2 + ω2
2u2 + ϵ[µ2u

′
2 + η21u1 cos(Ωpt+ ζ) + η22u2 cos(Ωpt)] = 0,

(3.33)

where only the first degree of freedom is forced excited with F0 sin(Ωf t) and the parametric
excitation matrix is fully populated with a phase-shift at one of its off-diagonal terms, that is

C(t) =

[︄
η11 cos(Ωpt) η12 cos(Ωpt)

η21 cos(Ωpt+ ζ) η22 cos(Ωpt)

]︄
.

The multiple scales method is then used to analyze the system response under weak excitation
up to the second order. The solution will be then perturbed according to
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u1(t; ϵ) = u10(T0, T1, T2) + ϵu11(T0, T1, T2) + ϵ2u12(T0, T1, T2) + ..., (3.34a)

u2(t; ϵ) = u20(T0, T1, T2) + ϵu21(T0, T1, T2) + ϵ2u22(T0, T1, T2) + ..., (3.34b)

where Ti = ϵit and
∂

∂t
= D0 + ϵD1 + ϵ2D2...,

∂2

∂t2
= D2

0 + 2ϵD0D1 + ϵ2(D2
1 +D0D2),

(3.35)

where Dn
i = ∂n/∂nTi.

Inserting (3.34) and (3.35) in (3.33) and separating according to the order of ϵ gives: for
ϵ0,

D2
0u10 + ω2

1u10 = 0, (3.36a)

D2
0u20 + ω2

2u20 = 0, (3.36b)

while for ϵ1,

D2
0u11 + ω2

1u11 = −µ1D0u10 − η11u10 cos(Ωpt)− η12u20 cos(Ωpt)− 2D0D1u10 + F0 sin(ΩfT0),

(3.37a)
D2

0u21 + ω2
2u21 = −µ2D0u20 − η21u10 cos(Ωpt+ ζ)− η22u20 cos(Ωpt)− 2D0D1u20, (3.37b)

and finally for ϵ2,

D2
0u12 + ω2

1u12 = −µ1(D0u11 +D1u10)− η11u11 cos(Ωpt)− η12u21 cos(Ωpt)

−D2
1u10 − 2D0D2u10 − 2D0D1u11,

(3.38a)

D2
0u22 + ω2

2u22 = −µ2(D0u211 +D1u20)− η21u11 cos(Ωpt+ ζ)− η22u21 cos(Ωpt)

−D2
1u20 − 2D0D2u20 − 2D0D1u21.

(3.38b)

The zeroth order differential equations (3.36) gives the solution

u10(T0, T1, T2) = A1(T1, T2)e
iω1T0 + A1̄(T1, T2)e

−iω1T0 , (3.39a)

u20(T0, T1, T2) = A2(T1, T2)e
iω2T0 + A2̄(T1, T2)e

−iω2T0 , (3.39b)
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then inserting this solution in (3.37) gives

D2
0u11 + ω2

1u11 = −A1

(︃
1

2
η11e

i(ω1−Ωp)T0 +
1

2
η11e

i(ω1+Ωp)T0 + iµ1ω1e
iω1T0

)︃
− A2

(︃
1

2
η12e

i(ω1−Ωp)T0 +
1

2
η12e

i(ω1+Ωp)T0

)︃
− 2iω1e

iω1T0D1A1

+
i

2
F0(e

−iΩfT0 − eiΩfT0) + CC,

(3.40a)

D2
0u21 + ω2

2u21 = −A2

(︃
1

2
η22e

i(ω1−Ωp)T0 +
1

2
η22e

i(ω1+Ωp)T0 + iµ2ω2e
iω2T0

)︃
− A1

(︃
1

2
η21e

i(ω1−Ωp)T0−iζ +
1

2
η21e

i(ω1+Ωp)T0+iζ

)︃
− 2iω2e

iω2T0D1A2 + CC.

(3.40b)

Since the amplification problem is defined at the maximum possible amplitude, the forced
excitation will be tuned here around its frequency Ωf ≃ ω1. To consider that in our calculation
a detuning parameter σf is introduced such that

Ωf = ω1 + ϵσf . (3.41)

As explained before in section 2.2.1 we eliminate the secular terms and then obtain the
solvability conditions

2iω1D1A1 + iµ1ω1A1 +
i

2
F0e

iσfT1 = 0, (3.42a)

2iω2D1A2 + iµ2ω2A2 = 0, (3.42b)

giving the amplitude solutions

A1(T1, T2) =
−eiσfT1F0

2(µ1ω1 + 2iσfω1)
+ e−µ1T1/2B1(T2), (3.43a)

A2(T1, T2) = e−µ2T1/2B2(T2), (3.43b)

where the amplitudes correspond to the ordinary homogeneous and particular solutions of a
forced damped linear system. After eliminating the secular terms, the differential equations of
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the first order read

D2
0u11 + ω2

1u11 = −A1

(︃
1

2
η11e

i(ω1−Ωp)T0 +
1

2
η11e

i(ω1+Ωp)T0

)︃
− A2

(︃
1

2
η12e

i(ω1−Ωp)T0 +
1

2
η12e

i(ω1+Ωp)T0

)︃
+ CC,

(3.44a)

D2
0u21 + ω2

2u21 = −A2

(︃
1

2
η22e

i(ω1−Ωp)T0 +
1

2
η22e

i(ω1+Ωp)T0

)︃
− A1

(︃
1

2
η21e

i(ω1−Ωp)T0−iζ +
1

2
η21e

i(ω1+Ωp)T0+iζ

)︃
+ CC.

(3.44b)

Solving (3.44) yields both homogeneous and particular solutions

u11 = u11h + u11p, u21 = u21h + u21p, (3.45)

the latter gives, however, information about the amplification. Thus, we display here only the
particular solution at resonance σf = 0 for convenience, that is

u11p|σf=0 =
F0η11

µ1ω1Ωp((2ω1)2 − Ω2
p)

(Ωp cos(ω1t) cosΩpt+ 2ω1 sin(ω1t) sinΩpt) , (3.46a)

u21p|σf=0 =
−F0η21
2µ1ω1

(︃
cos((Ωp − ω1)t+ ζ)

(Ωp − (ω1 − ω2))(Ωp − (ω1 + ω2))
+

cos((Ωp + ω1)t+ ζ)

(Ωp + (ω1 − ω2))(Ωp + (ω1 + ω2))

)︃
.

(3.46b)

Here we see obviously the effect of parametric excitation, as an amplifier, on the first-order
correction u11, u21. For more elaboration, we extract the amplitude of the correction terms to
the first order in each degree of freedom as

|U11p| =
F0η11

µ1ω1Ωp((2ω1)2 − Ω2
p)
, |U21p| =

−F0η21
µ1ω1(Ω2

p − (ω1 − ω2)2)(Ω2
p − (ω1 + ω2)2)

, (3.47)

which is plotted against the parametric excitation frequency Ωp in Fig. 3.7.
Through these expressions and the corresponding figures we can understand the effect of

non-resonant parametric amplification. The shown steady-state amplitudes are totally governed
by the parametric excitation, specifically, if ηij = 0 the whole response vanishes. This should
not cause a confusion with our understanding about the steady-state response of a forced
excited system, in which the solution has a steady state amplitude in absence of any parametric
excitation, since we are discussing only the correction terms u11, u21. However, as shown before
in (3.43), the typical steady-state amplitude for a forced linear system does exist. Secondly,
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we could obviously see, that the amplitudes U11p, U21p are amplified even at non-resonant
frequencies, i.e. not only at parametric resonance frequencies. Although this solution is a
first-order correction to the basic solution, it can have an effect on the homogeneous part of
the basic solution afterwards, as will be explained.
We proceed with the analysis by inserting (3.39),(3.43) and (3.45) in (3.38) and extracting

the secular terms to give the solvability conditions

2ie−µ1T1/2ω1D2B1 +
e−µ1T1/2

4(4ω2
1 − Ω2

p)

(︄
µ2
1(Ω

2
p − 4ω2

1) + η2(−2 +
eiζ(4ω2

1 − Ω2
p)

(Ωp + ω1 − ω2)(Ωp + ω1 + ω2)

+
e−iζ(4ω2

1 − Ω2
p)

(−Ωp + ω1 − ω2)(−Ωp + ω1 + ω2)
)

)︄
B1 −

F0e
i(σfT1−ζ)

8(µ1 + 2iσf )ω1

(︃
e2iζη2

(Ωp + ω1 − ω2)(Ωp + ω1 + ω2)

+
η2

(−Ωp + ω1 − ω2)(−Ωp + ω1 + ω2)
+ eiζ(4iµ1σf − 4σ2

f −
2η2

4ω2
1 − Ω2

p

)

)︃
= 0

(3.48a)

2iω2D2B2 +

(︃−2η2 + µ2
2(Ω

2
p − 4ω2

2)

4ω2
2 − Ω2

p

+ (
e−iζη2

(Ωp + ω2 − ω1)(Ωp + ω1 + ω2)

− eiζη2

(Ωp + ω1 − ω2)(−Ωp + ω1 + ω2)
)

)︃
B2 = 0

(3.48b)

Solving these solvability conditions with the ansatz B1(T2) = B10e
λ1T2 , B2(T2) = B20e

λ2T2

gives

B1(T2) =B10e
(Λ−iΘ1)T2 , (3.49a)

B2(T2) =B20e
(−Λ+iΘ2)T2 , (3.49b)

where

Θ1 =
1

8ω1

(µ2
1 +

2η2

4ω2
1Ω

2
p

−
2η2(ω2

1 − ω2
2 + Ω2

p) cos(ζ)

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)
)

Θ2 =
1

8ω2

(−µ2
2 −

2η2

4ω2
2Ω

2
p

−
2η2(ω2

1 − ω2
2 − Ω2

p) cos(ζ)

(Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2)
)

Λ =
η2Ωp sin(ζ)

2((Ω2
p − (ω1 − ω2)2)(Ω2

p − (ω1 + ω2)2))

(3.50)
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Figure 3.7: Amplitudes of the first approximation solution |Λ11p|, |Λ21p| with respect to the
parametric excitation frequencyΩp, where ω1 = 1, ω2 =

√
5, µ1 = 0.15, F0 = 1, ηij =

10, ζ = −π/2.

and finally the solution of (3.33) to the first order approximation gives

u10 = B10 e
(
−µ1
2

+Λ)ei(ω1−Θ1)t − F0

2ω1(µ1 + 2i(Ωf − ω1))
eiΩf t + CC,

u20 = B20 e
(
−µ2
2

−Λ)ei(ω2+Θ1)t + CC,

(3.51)

where perturbation parameter is set to one, ϵ = 1, and B10, B20 are constants determined by
initial conditions. A closer look at the real part of the homogeneous solution in both degrees of
freedom, that is

Λ1 =
−µ1

2
+ Λ =

−µ1

2
+

[︄
η2Ωp sin(ζ)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ , (3.52a)

Λ2 =
−µ2

2
− Λ =

−µ2

2
−

[︄
η2Ωp sin(ζ)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ , (3.52b)

we find them exactly the same as derived in 3.29 using the method of normal forms, and
Λ1,2 are the Lyapunov exponents of this system. This is not much surprising, since the only
difference between both problems is the additional forced excitation, which is added to the
final solution of this system as a particular solution. However, this proves formally the effect of
destabilization of the solution in the amplification of the forced response u10, u20.
The stability of the trivial solution is then governed by the maximum value of Λ1 and Λ2,

that is
Λmax = max(Λ1,Λ2), (3.53)
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Figure 3.8: Λmax against Ωp for two phase-shift values

which is plotted against the parametric excitation frequency for two different phase-shifts ζ
in Fig. 3.8. We define Λ0 as Λmax when η = 0, i.e. at no parametric excitation. In this way,
we can identify the destabilization effect for both phase-shift values. As we can see through
the figure, ζ = −π/2 causes a destabilization for a broad frequency band between ω2 − ω1

and ω2 + ω1. It must be noted here that our discussion concerning the destabilization effect
influences the homogeneous solution of (3.51) only, which is a transient response. Therefore,
this does not explain why should the whole solution be amplified. Since this amplification effect
is well-known experimentally [108], an suggestive explanation is proposed here. We consider
the case when Λ1,2 are near zero, in this case the transiency turns out to be very slow, and have
a near-steady-state response, therefore, the harmonic part of the homogeneous solution takes
an amplitude B10 or B20 which depends on the initial conditions, including the perturbing
solutions u11 and u21, which depend on both the parametric excitation and the forced excitation
amplitude as well. This means that driving the system exponent near the zero value allows
other perturbations to add to the whole response. This collective response then adds to the
particular solution in u10. This could also explain why this effect occurs only in the vicinity
of instability, in other words, just under the instability tongue in the stability chart [108]. In
order to simulate the amplification effect a time-integration is carried out at three different
parametric excitation amplitudes, away from instability, near instability, and in instability and
plotted in Fig. 3.9. Here we can see clearly the existence of a critical value of η = 0.94 at which
amplification is observed, and only a slight increase in η to 0.95 causes instability. The critical
value lies at the border of instability for the given system parameters and parametric excitation
frequency. This critical value could be calculated using the approximate solution (3.52) to
be 0.9. This discrepancy is attributed to the analytical approximation. Moreover, the system
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Figure 3.9: Integrated time response of u1 where ω1 = 1, ω2 =
√
5, µ1 = 0.1, µ2 = 0.2, F0 =

1,Ωf = 1, ζ = −π/2,Ωp = 2.5.

is time-integrated at various excitation frequencies in the broadband destabilization interval
and in each time a critical value is obtained, below which an amplification of the response is
observed, and which is near to the critical value calculated using the approximate analytical
method. This completes our verification for the hypothesis that the destabilization of the trivial
solution corresponds to an amplification of the system’s response.

3.2 Nonlinear time-periodic systems

The analysis proceeds further with a nonlinear version of the previously discussed parametrically
excited system. In this case, in order to achieve the amplification of the system’s response under
the parametric resonance, then the study will be focused on the dynamics inside the instability
regions of the trivial stationary solution, and thereby this would be called a resonant parametric
amplification as discussed before in section 3.1.6. Similar two-degree of freedom systems
were previously investigated with different analytical methods, using multiple scales, normal
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form or averaging methods [42, 15, 109, 110]. However, since the asynchronous parametric
excitation was not given appropriate attention until recently, the investigation of this excitation
case in presence of nonlinearities was only found in [40], in which the parametric excitation
was not fully populated, and only combination resonances were considered with dissimilar
natural frequencies. In this work, the asynchronous parametric excitation is considered in a
two DoF system, with a fully populated excitation matrix. Moreover, the nontrivial solutions
are discussed at all resonant frequencies, and a more detailed bifurcation analysis is carried
out.
Thus, we consider a perturbed two DoF nonlinear system

u′′1 + ω2
1u1 + ϵ[µ1u

′
1 + γ1u

3
1 + α1u

′3
1 + η11u1 cos(Ωpt) + η12u2 cos(Ωpt)] = 0

u′′2 + ω2
2u2 + ϵ[µ2u

′
2 + γ2u

3
2 + α2u

′3
2 + η21u1 cos(Ωpt+ ζ) + η22u2 cos(Ωpt)] = 0

(3.54)

with cubic stiffness and damping nonlinearities having the coefficients γi and αi , i = 1, 2,
respectively, and having natural frequencies ω1, ω2. Without the given parametric excitation,
the two DoF would be rather uncoupled, the coupling is then achieved through the parametric
excitation terms, which have the coefficients η12 and η21, where the latter includes a phase
shift ζ. In addition the system includes conventional parametric excitation terms as well
with coefficients ηii, i = 1, 2. Here there is no forced excitation, that is, the system is purely
parametrically excited. All terms but the linear oscillator terms are considered to be small,
which is indicated by the perturbation arbitrary parameter ϵ << 1.

3.2.1 Perturbation analysis

The method of multiple scales [41, 89] is used to analyze the given problem up to the first
order. One seeks an expansion in the form

u1(t; ϵ) = u10(T0, T1) + ϵu11(T0, T1) + ..., (3.55a)

u2(t; ϵ) = u20(T0, T1) + ϵu21(T0, T1) + ..., (3.55b)

where Ti = ϵit, Di = ∂/∂Ti and

∂

∂t
= D0 + ϵD1 + ...,

∂2

∂t2
= D2

0 + 2ϵD0D1 + ... .

(3.56)
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Inserting (3.55) and (3.56) in (3.54) and separating according to the order of ϵ gives:
for ϵ0,

D2
0u10 + ω2

1u10 = 0, (3.57a)

D2
0u20 + ω2

2u20 = 0, (3.57b)

while for ϵ1,

D2
0u11 + ω2

1u11 = −µ1D0u10 − γ1u
3
10 − α1D0u

3
10 − η11u10 cos(Ωpt)− η12u20 cos(Ωpt)− 2D0D1u10,

(3.58a)
D2

0u21+ω
2
2u21 = −µ2D0u20−γ2u320−α2D0u

3
20−η21u10 cos(Ωpt+ζ)−η22u20 cos(Ωpt)−2D0D1u20.

(3.58b)
Solving (3.57) gives

u10(T0, T1) = A1(T1)e
iω1T0 + A1̄(T1)e

−iω1T0 , (3.59a)

u20(T0, T1) = A2(T1)e
iω2T0 + A2̄(T1)e

−iω2T0 , (3.59b)

where the amplitudes A1, A2 represent the slow-scale variables, which will exhibit the system’s
stability in the further calculations, while the exponential expressions represent the fast-scale
periodic solution.
Inserting (3.59) in (3.58) gives

D2
0u11 + ω2

1u11 =− γ1(A
3
1e

i3ω1T0 + 3A2
1A1̄e

iω1T0)− α1(−iω3
1A

3
1e

i3ω1T0 + i3ω3
1A

2
1A1̄e

iω1T0)

− 1

2
η11A1(e

i(ω1−Ωp)T0 + ei(ω1+Ωp)T0)− 1

2
η12A2(e

i(ω2−Ωp)T0 + ei(ω2+Ωp)T0)

− i2ω1D1A1e
iω1T0 − iµ1ω1A1e

iω1T0 + CC,
(3.60a)

D2
0u21 + ω2

1u21 =− γ2(A
3
2e

i3ω2T0 + 3A2
2A2̄e

iω2T0)− α2(−iω3
2A

3
2e

i3ω2T0 + i3ω3
2A

2
2A2̄e

iω2T0)

− 1

2
η21A1(e

i(ω1−Ωp)T0−iζ + ei(ω1+Ωp)T0+iζ)− 1

2
η22A2(e

i(ω2−Ωp)T0 + ei(ω2+Ωp)T0)

− i2ω2D1A2e
iω2T0 − iµ2ω2A2e

iω2T0 + CC,

(3.60b)
where CC stands for the complex conjugates of the preceding terms in each equation.
Since equations (3.60) have secular terms, which contain e±iωiT0 , thus, all particular solutions

of u11 and u12 are unstable, which contradicts being a finer correction in (3.55). Therefore, the
secular terms must vanish. However, these terms are to be known depending on the frequency
interval chosen for the solution, whether it is away from resonance frequencies or nearly tuned
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to them. For this reason, the following sections will represent the different cases according
to the resonant conditions. First, we will study the cases of primary parametric resonance for
one degree of freedom, since the primary resonance at the other frequency will give the same
behavior. Then we will turn to the interesting case of having 1:1 internal resonance between
both DoFs, while one of them being excited parametrically as well. And finally, the nontrivial
solutions, or limit cycles, are found at the summation and difference combination frequencies.

3.2.2 Primary parametric resonance

For this case we introduce a detuning parameter, which leads to secular or small-divisor terms
in (3.60), that is

Ωp = 2ω1 + ϵσp, (3.61)

where σp = O(1) is the detuning parameter for the primary parametric resonance. Inserting
(3.61) in (3.60) and equating secular terms to zero yields

i2ω1D1A1 + iµ1ω1A1 + 3γ1A
2
1A1̄ + i3α1ω

3
1A

2
1A1̄ +

1

2
η11A1̄e

iσpT1 = 0, (3.62a)

i2ω2D1A2 + iµ2ω2A2 + 3γ2A
2
2A2̄ + i3α2ω

3
2A

2
2A2̄ = 0. (3.62b)

Since these equations contain complex variablesA1, A2, a transformation in polar coordinates
is suggested as follows,

A1(T1) =
1

2
a1(T1)e

iϕ1(T1), A2(T1) =
1

2
a2(T1)e

iϕ2(T1). (3.63)

Substituting (3.63) in (3.62) and separating real and imaginary terms gives

ω1D1a1 +
1

2
µ1ω1a1 +

3

8
α1ω

3
1a

3
1 +

1

4
η11a1 sin(θ1) = 0, (3.64a)

1

2
ω1a1(D1θ1 − σp) +

3

8
γ1a

3
1 +

1

4
η11a1 cos(θ1) = 0, (3.64b)

ω2D1a2 +
1

2
µ2ω2a2 +

3

8
α2ω

3
2a

3
2 = 0, (3.64c)

ω2a2D1θ2 −
3

8
γ2a

3
2 = 0, (3.64d)

where θ1 = σpT1 − 2ϕ1 and θ2 = ϕ2. Steady state solutions of the system (3.54) are obtained
by calculating the fixed points of (3.64), that is, D1ai = 0 and D1θi = 0, for i = 1, 2. Thus, the
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Figure 3.10: Frequency-response curve at the primary parametric resonance of the first DoF

fixed points are

1

2
µ1ω1a1 +

3

8
α1ω

3
1a

3
1 +

1

4
η11a1 sin(θ1) = 0, (3.65a)

−1

2
ω1a1σp +

3

8
γ1a

3
1 +

1

4
η11a1 cos(θ1) = 0, (3.65b)

1

2
µ2ω2a2 +

3

8
α2ω

3
2a

3
2 = 0, (3.65c)

3

8
γ2a

3
2 = 0. (3.65d)

Obviously, the steady state amplitude of the second oscillator a2 vanishes, while that of the
first one a1 is given by the resonance equation

−9(γ21 + α2
1ω

6
1)a

5
1 + 24(γ1σpω1 − α1µ1ω

4
1)a

3
1 + (4η211 − 16(µ2

1 + σ2
p)ω

2
1)a1 = 0. (3.66)

Thereby, either we have a trivial solution

a1 = 0

or

a1 = ±
√︃

2

3

⌜⃓⃓⎷2γ1σpω1 − 2α1µ1ω4
1 ±

√︂
−8α1γ1µ1σpω5

1 + γ21(η
2
11 − 4µ2

1ω
2
1) + α2

1ω
6
1(η

2
11 − 4σ2

pω
2
1)

γ21 + α2
1ω

6
1

.

(3.67)
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Figure 3.11: Phase plot for the complex plane of the a1(T1)

The frequency-response curve corresponding to the nontrivial solution (3.67) is presented
in Fig. 3.10 for the parameter values ω1 = 1, µ1 = 0, γ1 = 0.07, α1 = 0.03 and η11 = 0.2. A
nonlinear resonance behavior is exhibited, and a stable limit cycle is born after a bifurcation
at σp = −0.1. Although the system incorporates Duffing-type nonlinearities, the nontrivial
solution here differs substantially from that of a forced Duffing oscillator with regard of the
type of excitation. At the point (σp = 0.1) another bifurcation occurs, where a smaller unstable
limit cycle appears in addition to the stable one in another interval σp ∈]0.1, 0.25[. The phase
portrait before and after the bifurcation point is represented in Fig. 3.11 in complex phase
space of the slow variable a1, where A1 is represented in complex form

A1 = (aRe − iaIm)e
1
2
iσpT1 (3.68)

instead of the polar one used in the analysis. This is depicted as having a saddle trivial fixed
point in the first interval and a stable focus. While in the second interval, the stable focus is
replaced by a saddle and another stable focus, whilst the trivial solution turns to be stable
again. Thus in the second interval two stable solutions exist, at the trivial fixed point and a
nontrivial one.
Further insight could be drawn from this analysis by setting the detuning parameter σp = 0

and at the same time cancelling the linear damping, i.e. µ1 = 0. In this case the nontrivial
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solution (3.67) reduces to
a1 = Γ =

(︃
4η211

9(γ21 + α2
1ω

6
1)

)︃1/4

, (3.69)

which will be called Γ for further analysis. As we see in this expression the amplitude of the
oscillation is determined mainly by the parametric excitation amplitude η11 and the nonlinear
terms γ1, α1. Here it can be clearly stated that in the case of the absence of any of them we will
be left with only the trivial fixed point. Although it might seem to contradict the fact that the
unforced Duffing oscillator has nontrivial solutions even without any parametric excitation, the
main difference here is that the linear damping was set to zero [90]. The Γ value is considered
here to represent a nontrivial solution without perturbing with the linear damping and the
detuning of the excitation frequency. The effect of perturbing this solution with varying both of
them will be studied next.
Substituting the value of Γ back in (3.66), while keeping the detuning parameter σp = 0 but

allowing the linear damping µ1 to vary, gives

a51 + Γ4

(︃
6α1µ1ω

2
1

η211

)︃
a31 + Γ4

(︃
4µ2

1ω
2
1

η211
− 1

)︃
a1 = 0, (3.70)

solving this resonance equation gives again

a1 = 0 (3.71)

or
a41 + Γ4

(︃
6α1µ1ω

2
1

η211

)︃
a21 + Γ4

(︃
4µ2

1ω
2
1

η211
− 1

)︃
= 0, (3.72)

which is clearly a quadratic equation in a1. Using combined parameters and rewriting it gives

a41 + Γ4Ξ1a
2
1 + Γ4Ξ2 = 0, (3.73)

which has a solution of
a21 =

−Γ4Ξ1

2
± 1

2

√︂
Γ8Ξ2

1 − 4Γ4Ξ2. (3.74)

For relatively high excitation amplitudes with respect to system parameters, we find the
combined parameters Ξ1,Ξ2 and Γ to have values smaller than one. In this case Ξ2 will dominate
the solution. And in order to have a real-valued a1, i.e. positive-valued a21, Ξ2 must then be
negative. Thus a real valued a1 can only take place if positive square root solution was selected
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Figure 3.12: Nontrivial solution by varying the system linear damping µ1, while σp = 0. Other
parameter values read ω1 = 1, γ1 = 0.07, α1 = 0.03

and if Ξ2 < 0. Reading the Ξ2 term from (3.72) and applying this condition yields

− η11
2ω1

< µ1 <
η11
2ω1

, (3.75)

which could be confirmed by numerically solving (3.72) and plotting the solution in Fig.3.12(a).

However, if the excitation amplitudes were relatively small, causing the combined parameters
values to be larger than one, we find Ξ1 to be dominating. In this case, a real-valued a1 is only
possible for µ1 < 0, as shown in the same figure.
The plotted solution in Fig. 3.12 corresponds to the solution of the main resonance equation

at σp = 0 in Fig. 3.10, where only a stable solution exists. However if another value of σp was
chosen which includes an unstable solution as well, this should give another dimension to the
problem. Thereby, by returning to (3.66) it can be written in

a41 + Γ4

(︃
Ξ1 −

6γ1ω1

η211
σp

)︃
a21 + Γ4

(︃
Ξ2 +

4ω2
1

η211
σ2
p

)︃
= 0, (3.76)

which gives the admissible amplitude values shown in Fig.3.13 by varying the linear damping µ1

again. The figure shows isolated stable and unstable steady-state solutions. This is particularly
interesting, since the variation of the linear damping could cause an abrupt increase or decrease
in the amplitude of the response at a bifurcation point. This high sensitivity of the response at
the bifurcation point could be of a significant importance for systems, where high sensitivity is
pursued using a bifurcation control scheme.
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Figure 3.13: Nontrivial solution by varying the system linear damping µ1 at two different values
for the detuning parameter σp. Other parameter values readω1 = 1, γ1 = 0.07, α1 =
0.03, η11 = 0.2.

3.2.3 Internal resonance under parametric excitation

The case of 1:1 internal resonance stands to be relevant for systems involving degenerate or
similar eigenvalues ω1 ≃ ω2. This happens to be the case for structures with axis-symmetric
geometry. A motivating example is the micro-ring gyroscope, which will be analyzed afterwards
in chapters 4 and 5. It was also shown in section 3.1.5 that the degeneracy of eigenvalues or
even the nearness to one another leads to a large broadband effect between the difference and
summation combination frequencies. In the nonlinear case, however, another phenomenon
could take place, which is the internal resonance, provided that one eigenfrequency is in the
vicinity of the other, this would only occur when the ring’s geometry is highly symmetric around
the axis.
In this case we introduce an additional detuning parameter σin where

ω2 = ω1 + ϵσin, (3.77)

while the previous one (3.61) remains effective. Returning to (3.60) and this time inserting
both (3.61) and (3.77) gives the solvability conditions

i2ω1D1A1 + iµ1ω1A1 + 3(γ1 + iα1ω
3
1)A

2
1A1̄ +

1

2
η11A1̄e

iσpT1 +
1

2
η12A2̄e

i(σp−σin)T1 = 0, (3.78a)

i2ω2e
iσinT1D1A2+iµ2ω2e

iσinT1A1+3(γ2+iα2ω
3
2)A

2
2A2̄e

iσinT1+
1

2
η21A1̄e

iσpT1+iζ+
1

2
η22A2̄e

i(σp−σin)T1 = 0.

(3.78b)
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Figure 3.14: Nontrivial solutions for a1 and a2 by detuning σp in case of tuned 1:1 internal
resonance, where ωi = 1, µi = 0, γi = 0.1, αi = 0.02, η11 = η12 = η21 = 1, η22 = 0
and σin = 0, for i = 1, 2.

In order to investigate the exchange of energy when only one DoF is parametrically excited,
we put η22 = 0, while the phase shift is firstly not taken into consideration, i.e. ζ = 0. As
previously done, we insert (3.63) in (3.78) then separate real and imaginary parts to yield

ω1a1D1ϕ1 −
3

8
γ1a

3
1 −

1

4
η12a2 cos(θ1)−

1

4
η11a1 cos(θ2) = 0, (3.79a)

ω1D1a1 +
1

2
µω1a1 +

3

8
α1ω

3
1a

3
1 −

1

4
η12a2 sin(θ1) +

1

4
η11a1 cos(θ2) = 0, (3.79b)

ω2a2D1ϕ2 −
3

8
γ2a

3
2 −

1

4
η21a1 cos(θ1) = 0, (3.79c)

ω2D1a2 +
1

2
µ2ω2a2 +

3

8
α2ω

3
2a

3
2 −

1

4
η21a1 sin(θ1) = 0, (3.79d)

where θ1 = ϕ1 + ϕ2 + (σin − σp)T1 and θ2 = −2ϕ1 + σpT1.
The steady state solutions are then sought when

D1a1 = 0, D1a2 = 0, and
D1θ1 = 0 and D1θ2 = 0, or D1ϕ1 = σ/2 and D1ϕ2 = σ/2− σi,

(3.80)

which when substituted in (3.79) and solved for a1 and a2 give the two resonance equations

9(γ22 + α2
2ω

6
2)a

6
2 + 24ω2(−γ2σp + 2γ2σin + α2µ2ω

3
2)a

4
2 + 16ω2

2(µ
2
2 + (σp − 2σin)

2)a22 − 4η221a
2
1 = 0,

(3.81a)
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Figure 3.15: Nontrivial solutions for a1 and a2 by detuning σp in case of tuned 1:1 internal
resonance, where , where ωi = 1, µi = 0, γi = 0.1, αi = 0.02, η12 = η21 = 1, η22 =
0, σin = 0 and η11 = 0, for i = 1, 2.
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]︁
= 0.

(3.81b)

Figure(3.14) depicts the frequency-response curves for the amplitudes of both degrees of
freedom, which were calculated by solving (3.81) while detuning σp. These values represent
a perfectly symmetrical system (σin = 0) with zero linear damping. The resonance curves
show the typical ”M” shape due to the internal resonance, moreover, the hardening nonlinear
stiffness causes all curves to bend to the right. In addition, multiple nontrivial points could
be calculated by detuning the excitation frequency. This results in a complex phase space
containing various fixed points at a given excitation frequency, which therefore requires a
careful stability analysis in future work. However, when the external parametric excitation
η11 is turned off, the internal resonance’s typical behavior vanishes (see Fig.3.15), and the
frequency-response curves show only stable and unstable limit cycles similar to the case of
primary parametric resonance discussed before. Nevertheless, a distinction should be made
here between this case and the case of parametric resonance by observing the solvability
conditions in both cases, i.e. in (3.62) and (3.78). In the case of primary resonance we have
only one excitation source, which is η11. The energy, however, could not be transferred to the
second degree of freedom, due to the absence of internal resonance. In the case discussed here
we do have three excitation sources, η11, η12 and η21. If the first one is turned off, the other
two remain effective, causing a transfer of energy at the primary resonance frequency. These
coupling excitation terms will show up again to be influencing the system’s behavior under
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combination resonance, as will be discussed afterwards. Furthermore, while having zero η11
and η22, we have a cross parametric resonance through η12 and η21. This leads to the response
depicted in Fig.3.15.

3.2.4 Combination parametric resonances

Summation parametric resonance

We apply the same analysis as before for the case of combination parametric resonances, where
the parametric excitation frequency is in the neighborhood of the summation or the difference
frequencies, that is Ωp ≃ |ω1 ± ω2|. Beginning with the summation resonance we introduce the
detuning parameter σs, where

Ωp = ω1 + ω2 + ϵσs, (3.82)

then as before, the resonance condition (3.82) is then inserted in (3.60), to give the solvability
conditions

i2ω1D1A1 + iµ1ω1A1 + 3γ1A
2
1A1̄ + i3α1ω

3
1A

2
1A1̄ +

1

2
η12A2̄e

iσsT1 = 0, (3.83a)

i2ω2D1A2 + iµ2ω2A2 + 3γ2A
2
2A2̄ + i3α2ω

3
2A

2
2A2̄ +

1

2
η21A1̄e

i(σsT1+ζ) = 0. (3.83b)

Putting the amplitudes A1(T1), A2(T1) in polar form according to (3.63), substituting in
(3.83) and separating real and imaginary terms gives

D1a1 = −1

2
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3

8
α1ω

2
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3
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1

4ω1

η12a2 sin(θ1) (3.84a)
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2
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8
α2ω

2
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3
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η21a1 sin(θ1) cos(ζ)−
1

4ω2

η21a1 cos(θ1) sin(ζ) (3.84b)
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+
1

4ω2

η21
a1
a2

cos(θ1) cos(ζ)−
1

4ω2

η21
a1
a2

sin(θ1) sin(ζ), (3.84d)

where θ1 = σsT1 − ϕ1 − ϕ2 and θ2 = ϕ2. Steady-state solutions are then obtained by calculating
the fixed points of (3.84), that is when D1ai = 0 and D1θi = 0, for i = 1, 2. However, in this
case the effect of the asynchronicity of the parametric excitation, i.e. the presence of the phase
shift ζ, heavily influences the nontrivial solutions and limit cycle oscillations. Therefore, we
present the nontrivial solutions in two different cases, synchronous ζ = 0 and asynchronous
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ζ = −π/2. This latter particular phase-shift is chosen according to our analysis of the trivial
solution discussed before.
If ζ = 0, then the fixed points of equations (3.84) could be determined from

−1

2
µ1a1 −

3

8
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2
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3
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1
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8
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cos(θ1) = 0, (3.85c)

while under asynchronous excitation, ζ = −π/2, the equations read
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8
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− 1

4ω2

η21
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sin(θ1)−
1

4ω1

η12
a2
a1

cos(θ1) = 0. (3.86c)

From these equations it can be observed that only the η21 excitation terms are changed.
Furthermore, although the modulation equations (3.84) were in four variables, only three of
them influence the vector fields excluding θ2, which lead to three algebraic equations in three
variables to determine the fixed points.

Stability analysis

In order to determine the stability of the obtained nontrivial steady-state solutions, the solution
is perturbed using

a1(T1) = a10 +∆a1(T1), a2(T1) = a20 +∆a2(T1), θ1(T1) = θ10 +∆θ1(T1), (3.87)

compactly written
z(T1) = z0 +∆z(T1), (3.88)

which is then inserted in the modulation equations (3.84) to give

∆ż =
∂f(∆z, z0)

∂∆z
|∆z=z0 +NLT, (3.89)

where J = ∂f(∆z,z0)
∂∆z

|∆z=0 is the Jacobian matrix evaluated at the fixed point and NLT
represents the nonlinear terms.
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Figure 3.16: Nontrivial solutions for a1 and a2 by detuning σs about the summation frequency,
when ω1 = 1, ω2 =

√
5, γi = 0.07, αi = 0.03, ηij = 1, i, j = 1, 2 and ζ = 0.

After eliminating the nonlinear terms, the linearized system presents an eigensystem with
the eigenvectors being tangent to the system’s nonlinear manifolds. The stability of the fixed
point of the nonlinear system can be deduced from the eigenvalues of the linearized system,
as long as the fixed point is hyperbolic according to Hartman-Grobman theorem [86]. In this
view, if all the eigenvalues at the investigated fixed point have negative real parts, the fixed
point and the corresponding solution are considered asymptotically stable. While the existence
of a single positive eigenvalue implies the instability of the solution. However, if the largest
eigenvalue is strictly zero, then the stability of the solution cannot be determined by a linear
analysis [99].
In this synchronous excitation case, the steady-state solutions are deduced by solving the

equations (3.85), then the stability of each fixed point is determined as previously discussed
and the result is then plotted in Fig. 3.16, where the blue and red points represent stable and
unstable limit cycles respectively. The parametric resonance curve is shown to be similar to
primary resonances (see Fig. 3.10), where the amplitude of the second degree of freedom a2 is
lower than the first one a1.
In the other case, when ζ = −π/2, the fixed points of (3.84) are determined through solving

(3.86). The resonance curves in this case are then depicted in Fig. 3.17. In this figure, it can be
observed that all the nontrivial solutions, or limit cycles, are found to be stable for the given
detuning interval. However, the resonance curves of both degrees of freedom have different
profiles. Furthermore, detuning the excitation frequency has opposite effects on the amplitudes
of the limit cycles of both degrees of freedom; by positive detuning a2 exhibits higher amplitude
than a1, while by negative detuning the opposite occurs.
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Figure 3.17: Nontrivial solutions for a1 and a2 by detuning σs about the summation frequency,
when ω1 = 1, ω2 =

√
5, γi = 0.07, αi = 0.03, ηij = 1, i, j = 1, 2 and ζ = −π/2

Difference parametric resonance

The perturbation analysis is carried out for the difference parametric resonance case, where
the parametric excitation frequency is in the neighborhood of the difference frequency or
Ωp ≃ |ω2 − ω1|. In this case the parametric excitation frequency is detuned through

Ωp = ϵσd + (ω2 − ω1), (3.90)

where σd is the detuning parameter, and ω2 is assumed to be larger than ω1 without loss of
generality. By inserting this condition again into (3.60) the solvability conditions become

i2ω1D1A1 + iµ1ω1A1 + 3γ1A
2
1A1̄ + i3α1ω

3
1A

2
1A1̄ +
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2
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3
2A

2
2A2̄ +

1

2
η21A1e

i(σdT1+ζ) = 0. (3.91b)

Before indulging into the procedure of finding the nontrivial solutions, we can observe the
differences in the solvability conditions between summation and difference resonances. By
comparing (3.91) and (3.83), we can obviously see that all terms are the same in both equations
except for the coupling term in each equation, which causes a vast difference in the end results.
Following the same procedure as before, the modulation equations are found to be
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71



D1θ1 =− σd −
3γ1a

2
1

8ω1

+
3γ2a

2
2

8ω2

+
1

4ω2

η21
a1
a2

cos(θ1) cos(ζ) +
1

4ω2

η21
a1
a2

sin(θ1) sin(ζ)

− 1

4ω1

η12
a2
a1

cos(θ1),

(3.92c)

D1θ2 =
3γ2a

2
2

8ω2

+
1

4ω2

η21
a1
a2

cos(θ1) cos(ζ) +
1

4ω2

η21
a1
a2

sin(θ1) sin(ζ), (3.92d)

where in this case we put θ1 = (ϕ2 − ϕ1) − T1σd and θ2 = ϕ2. The modulation equations are
then separated into real and imaginary parts, and solved to obtain the steady-state solutions
when D1θ1 = 0, D1θ2 = 0, D1a1 = 0 and D1a2 = 0. The resulting equations are again given in
two cases. Thus for the synchronous excitation case ζ = 0, they yield
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while if the parametric excitation is asynchronous, i.e. ζ = −π/2, this gives
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By solving the equations in the synchronous excitation case, an interesting result is observed:
nontrivial solutions do not exist. This comes inline with our stability analysis of the trivial
solution, where no resonance was found at the difference combination frequency, instead an
anti-resonance could be detected. According to this observation, a correspondence between
the stability of the trivial solution and the existence of the nontrivial ones can be proposed.
By solving the equations (3.94) the nontrivial solutions (limit cycles) are calculated, their

stability is investigated and plotted in Fig. 3.18. The resonance curves are shown to be signi-
ficantly similar and mirrored around the zero detuning parameter when compared to those
calculated around the summation resonance. This result should be related to the difference in
the solvability conditions (3.83) and (3.91) where the excitation terms in each case are found
to be the complex conjugate of the corresponding ones in the other case.
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Figure 3.18: Nontrivial solutions for a1 and a2 by detuning σd about the difference frequency,
when ω1 = 1, ω2 =

√
5, γi = 0.07, αi = 0.03, ηij = 1, i, j = 1, 2 and ζ = −π/2.

3.3 Conclusion

Through the presented work in this chapter several observations could be summarized. Firstly,
the broadband destabilization effect was proved numerically and analytically for linear systems
with asynchronous coupling parametric excitation. This effect can be obviously seen in the
stability chart in Fig. 3.3. The shape of the instability region in this chart will be observed
repeatedly in the next chapters, where the asynchronous excitation is applied on different
examples. Accordingly, the topology shown in Fig. 3.3 can be considered typical for this type
of excitation.
Secondly, a direct correspondence between the destabilization of the trivial solution and

the amplification of the response could be elaborated analytically for linear systems which
is a non-resonant parametric amplification in this case. This was explained in the vicinity of
the border of instability, which confirms the experimental observations reported in numerous
previous works. This relies on the fact that the maximum real part of the system’s eigenvalues
approach zero, thereby, causing the transient homogeneous solution to be nearly steady. In
this way, the initial conditions of the homogeneous solution will be perturbed by higher order
corrections deduced according to the multiple scales method. But since these correction terms
are influenced by the broadband destabilization effect, therefore, this could be transferred to
the main solution to the first order of approximation. This could be verified numerically as well
using direct numerical integration of the original system.
Thirdly, nonlinear time-periodic systems exhibit several types of instability. Destabilization

in these systems occurs due to different reasons. Resonances and transfer of energy between
coupled degrees of freedom contribute to this destabilization, moreover, the addition of a
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phase-shift between the coupling parametric excitation terms changes the nontrivial solutions.
Through the variation of the linear damping coefficient at the primary parametric resonance,
the nontrivial solutions seemed to be limited in domain, but more interestingly it could cause
isolated steady-state solutions as well when the excitation frequency is correctly adjusted in a
region of multiple limit cycles. In addition, the case of internal resonance shows an influence of
each excitation term. Even when the intrinsic excitation terms (diagonal terms in the parametric
excitation matrix) are turned off, the coupling excitation terms could cause a cross excitation
in both degrees of freedom. At combination resonances, the nontrivial steady-state solutions
were obtained, where the asynchronous excitation is shown to have a major effect. In particular,
the inclusion of the phase shift between the off-diagonal parametric excitation terms leads
to the occurrence of parametric resonance and existence of limit cycles at the difference
combination frequency. In addition, the stable and unstable limit cycles existing in the vicinity
of the summation combination frequency under synchronous parametric excitation change
into only stable ones under asynchronous excitation.
In conclusion, all these observations in addition to those obtained for time-invariant systems

form a theoretical background about the behavior of dynamical systems when subjected to
different sources of destabilization. In time-invariant systems it was shown that the introduction
of asymmetry in the stiffness matrix due to circulatory forces could lead to instability. This
happens as well in time-periodic systems, since the inclusion of a phase-shift between the
off-diagonal terms introduces an asymmetry to the parametric excitation matrix. Through
asynchronous parametric excitation, it is shown in this chapter that the trivial solution could be
destabilized at a broad band of frequencies. Moreover, this is linked to a broadband parametric
amplification through an analytical study. In addition, this asynchronicity showed an important
effect on the nontrivial steady-state solutions at combination resonance frequencies.
All these observations show the significance of the discussed methods of excitation in dynami-

cal systems especially for those of high natural frequencies as discussed in section 3.1.5, which
is a characteristic of micro and nanosystems. In the next two chapters, micro-ring gyroscopes
are modeled and their dynamical behavior under asynchronous bimodal parametric excitation
is studied, where the previous theoretical observations were found significantly beneficial.
Moreover, the same excitation method is realized afterwards experimentally and presented in
chapter 6.
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4 Micro-ring gyroscopes: a linear model

In this chapter, we start applying the discussed theoretical results in the previous chapters
on a microsystem, namely, the micro-ring gyroscope. The gyroscope is modeled both linearly
and nonlinearly, the first case is presented in this chapter, while the next chapter is concerned
with the nonlinear model. Micro-ring gyroscopes are found to be an appropriate application
for the theoretical study previously discussed. This is related to being experimented under
parametric pumping in various previous works, as well as having an axis-symmetrical geometry
that emphasizes the broadband destabilization effect.
After introducing the principles of vibrating structure gyroscopes, a mechanical analysis of

the micro-ring gyroscope using Hamilton’s principle is first given. Then the system is discretized
using Galerkin’s method, and the electrostatic excitation terms are derived theoretically. We
propose an electronic circuit for implementing the phase-shifted coupling of the bimodal
parametric excitation. The two-degree of freedom system is then numerically analyzed using
Floquet’s method, and the broadband amplification effect is discussed. The normal form method
is used to obtain a semi-analytical solution in order to give more insight into the dynamical
behavior. Finally the proposed method of excitation is applied on a typical micro-ring gyroscope
presented before in the literature, which was experimentally investigated. At the end, we show
how this excitation method can be advantageous to the micro-sensors technology.

4.1 Vibrating structure gyroscopes

Vibrating structure gyroscopes are inertial sensors to measure the angular rate. They share the
name gyroscope with gimbal-gyroscopes, not because of the existence of gyroscopic coupling,
which exists only in a three dimensional system, but since they induce gyroscopic terms in
the system. Moreover, they are used, like gimbal gyroscopes in measuring the angular rate
and orientation of their reference frame. In order to explain this, consider a two-degree-of-
freedom system shown in Fig. 4.1. If the rotation rate Ω = 0, both degrees of freedom are
uncoupled. That means, if the first degree of freedom is excited by a force Fa, the other degree
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of freedom stays unmoved. The coupling occurs only when the frame rotates. In this case the
two-degree-of-freedom model with respect to the rotating frame takes the form

mẍ+ cxẋ+ kxx = Fa + 2mΩzẏ,

mÿ + cyẏ + kyy = −2mΩzẋ,
(4.1)

where m is the mass of the lumped mass vibrating in two orthogonal directions x, y, while
cx,y, kx,y are the damping and stiffness coefficients respectively. Only the first degree of freedom
is excited by Fa. The two equations are coupled due to Coriolis forces which are inertial forces
initiated with respect to the rotating frame, and energy is transferred from the first degree of
freedom to the second one. Since the Coriolis force is the only force acting on the second degree
of freedom, then, the amplitude y could be easily correlated to it, and therefore correlated to
the rotation rate Ωz. Through this correlation the rotation rate can be evaluated.
Commercially this type of vibrating gyroscopes, using a lumped mass, is the common type

of micro-gyroscopes typically used in mobile phones. However, other more expensive types
do exist, which are used in more sophisticated applications for navigation due to their higher
sensitivity and reliability such as micro-ring gyroscopes [111]. In this thesis, the micro-ring
gyroscope is studied, which is based on an elastic ring vibrating only in-plane.

Figure 4.1: Principle of a vibratory structure gyroscope
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4.2 Parametric in-plane vibrations in thin elastic inextensible
rings

We start the analysis with the basic theoretical development of the micro-ring structure and
the effect of parametric and forced excitations on its vibrations. Next, we shift the attention
to the micro-ring gyroscopes. Through this approach we seek to develop a generic theoretical
framework for parametrically excited micro-ring gyroscopes, while preserving two things;
firstly, not referring the reader to external literature in the theory of elasticity or the theory of
vibrations, and secondly, not relying on ad-hoc physical assumptions, in order to have a model
for micro-ring gyroscopes strictly based on a mathematical derivation.

4.2.1 Determination of the free ring’s natural frequencies

R

Figure 4.2: Ring in-plane deformation

Beginning with the theory of thin elastic rings, the in-plane vibrations of an elastic ring are
illustrated in Fig 4.2. Every infinitesimal element has two degrees of freedom in the plane of
vibration. Their displacements are described in local polar coordinates through the variables
u(t, θ) and v(t, θ). The ring is first analyzed with a given generic external force acting in the
radial direction.
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A generic equation of motion will be sought for the shown system, which provides the base
for all following analyses. The system is investigated through Hamilton’s principle leading to
the ring’s partial differential equation (PDE) and its solution.
The kinetic energy for the ring is

T =
1

2
ρAR

∫︂ 2π

0

⟨v,v⟩ dθ, (4.2)

where v = [u̇, v̇] represents the velocity of each infinitesimal element, A is the cross sectional
area, R the radius of the ring centerline and ρ the ring’s uniform density. Regarding the strain
energy, it is assumed that the ring is elastic and that Hook’s law applies, which means σ = Eϵ,
where σ is the stress at a point, ϵ the strain and E Young’s modulus for an isotropic material.
Therefore the elastic energy is

U =
ER

2

∫︂ 2π

0

∫︂
A

ϵ2 dA dθ. (4.3)

Here ϵ represents the normal (longitudinal) strain along the ring centerline, which can be
calculated, for small strains, from the relation

ϵ =
1

R
[−u+ ∂v

∂θ
− x

R

∂

∂θ
(v +

∂u

∂θ
)], (4.4)

where x represents the distance of a typical element of the ring from the centroidal axis [112].
The last equation follows the Bernoulli-Euler hypothesis [113], in which the straight lines (or the
plane) perpendicular to the tangent to the ring centerline remain straight and perpendicular to
its tangent line after deformation. A last assumption in this hypothesis is the inextensionality
of the centerline, which means that ϵ = 0 at x = 0, this gives

u =
∂v

∂θ
, (4.5)

which eliminates the first two terms in the strain expression, which represent the extensional
strain in the ring.
By inserting (4.4) with (4.5) in (4.3), we obtain

U =
EIz
2R3

∫︂ 2π

0

(u+
∂2u

∂θ2
)2dθ, (4.6)

which represents the strain energy due to in-plain bending.
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Finally, the work done by two orthogonal external distributed forces fu(θ, t), fv(θ, t), i.e. in
both u and v coordinates, is expressed as

Wnc =

∫︂ 2π

0

[Rfu(θ, t)u+Rfv(θ, t)v] dθ, (4.7)

where fu and fv are the forces per unit length. The variation of the kinetic energy is

δT = ρAR

∫︂ 2π

0

∂2

∂t2

(︃
∂2v

∂θ2
− v

)︃
δvdθ, (4.8)

while that of potential energy is

δU = −EI
R3

∫︂ 2π

0

(︃
∂2v

∂θ2
+ 2

∂4v

∂θ4
+
∂6v

∂θ6

)︃
δv dθ, (4.9)

and for the work done by the external force the variation will be

δWnc = R

∫︂ 2π

0

[︃
fv −

∂fu
∂θ

]︃
δv dθ. (4.10)

Inserting all terms in Hamilton’s principle∫︂ t2

t1

(δT − δU + δWnc) dt = 0 (4.11)

yields the well known equation of motion for a free undamped elastic inextensible thin ring
[114, 112]

EI

ρAR4

(︃
∂2v

∂θ2
+ 2

∂4v

∂θ4
+
∂6v

∂θ6

)︃
+
∂2

∂t2

(︃
∂2v

∂θ2
− v

)︃
+

1

ρA

[︃
fv −

∂fu
∂θ

]︃
= 0, (4.12)

with
v(0, t) = v(0 + 2π, t). (4.13)

As a first step, we solve this partial differential equation (PDE) for f(θ, t) = 0 (or fv, fu = 0),
in order to get the system natural frequencies and vibration modes.
We first look for the solutions of the type

v(θ, t) = V (θ)q(t). (4.14)
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By substituting into (4.12), and separating the temporal and spatial variables we get

d2V (θ)

dθ2
+ 2

d4V (θ)

dθ4
+
d6V (θ)

dθ6
− ω2ρAR4

EI

[︃
d2V (θ)

dθ2
− V (θ)

]︃
= 0, (4.15)

V (n)(0, t) = V (n)(2π, t), n = 0, 1, 2, 3, (4.16)

and
q̈(t) + ω2q(t) = 0. (4.17)

The eigenfunctions of (4.15) along with (4.16) are obviously sin(nθ) and cos(nθ), nϵN.
Substituting them into (4.15) gives the corresponding eigenvalues

ω2
n =

EIn2(n2 − 1)2

AR4ρ(n2 + 1)
. (4.18)

where n = 0 and n = 1 correspond to the ring’s rotational and translational rigid body modes
respectively.
A general solution for the tangential displacement is therefore given by

v(θ, t) = (K + Lt) +
n=1∑︂
∞

(An sin(ωnt) +Bn cos(ωnt)) (Sn sin(nθ) + Cn cos(nθ)) . (4.19)

4.3 Forced and parametric excitation

So far a general solution for the partial differential equation of the inextensible ring was found,
but the main aim is to model the micro-ring gyroscope. To this end we assume that the whole
system of the ring and its supports rotate at a given constant but small speed of rotation with
respect to an inertial reference frame.
For this sake, we add a constant speed rotation of the ring reference frame which will alter

the kinetic energy expression as follows. Returning to (4.2), we define now the tangential
displacement in the non-inertial rotating frame to be

v = [u̇, v̇]T +Ω× [u, v]T , (4.20)

where Ω = Ωzêz represents the rate of rotation of the ring body fixed frame around the axis
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êz normal to the ring plane. In this case the kinetic energy is

T =
1

2
πρAR

∫︂ 2π

0

[︁
u̇2 + v̇2 + Ω2

z(u
2 + v2) + 2Ωz(uv̇ − u̇v)

]︁
dθ. (4.21)

Using the expressions of potential energy and external work done as previously stated in
(4.6) and (4.7), Hamilton’s principle gives

∫︂ t2

t1

∫︂ 2π

0

[︃
EI

R3

(︃
∂2v

∂θ2
+ 2

∂4v

∂θ4
+
∂6v

∂θ6

)︃
+ ρAR

(︃
∂2

∂t2

(︃
∂2v

∂θ2
− v

)︃
− Ω2

z

(︃
∂2v

∂θ2
− v

)︃
− 4Ωz

∂2v

dθdt

)︃
+R

(︃
fv −

∂fu
∂θ

)︃]︃
δv dθdt = 0,

(4.22)

with the essential boundary condition v(n)(0, t) = v(n)(2π, t).
This leads to the partial differential equation of this system

EI

ρAR4

(︃
∂2v

∂θ2
+ 2

∂4v

∂θ4
+
∂6v

∂θ6

)︃
+

(︃
∂2

∂t2

(︃
∂2v

∂θ2
− v

)︃
− Ω2

z

(︃
∂2v

∂θ2
− v

)︃
− 4Ωz

∂2v

dθdt

)︃
+

1

ρA

(︃
fv −

∂fu
∂θ

)︃
= 0.

(4.23)

Here fu and fv represent the external distributed (per unit length) load in radial and
tangential directions respectively. These loads can be thought of as being a forced excitation,
parametric excitation, damping or external support. In this case we will be interested in
obtaining the differential equation for an excited rotating ring gyroscope with elastic support.
Therefore, we will assume having a radial parametric force as well as a forced excitation force

fu1 = Fex(θ, t) + Fp(θ, t) u = Fex(θ, t) + Fp(θ, t)
∂v

∂θ
, (4.24)

as well as an elastic support in both radial and tangential directions

fu2 = −kuu, fv2 = −kvv. (4.25)

This leads to the PDE for a parametrically and externally excited elastic inextensible ring
elastically supported with respect to a constant-speed rotating frame in the form
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EI

ρAR4

(︃
∂2v

∂θ2
+ 2

∂4v

∂θ4
+
∂6v

∂θ6

)︃
+

(︃
∂2

∂t2

(︃
∂2v

∂θ2
− v

)︃
− Ω2

z

(︃
∂2v

∂θ2
− v

)︃
− 4Ωz

∂2v

dθdt

)︃
+

1

ρA

(︃
(ku − Fp)

∂2v

∂θ2
− ∂Fp

∂θ

∂v

∂θ
− kvv

)︃
=

1

ρA

∂Fex

∂θ
. (4.26)

Galerkin’s method is used to discretize the system by the ansatz

v(θ, t) = ⟨Φ(θ), q(t)⟩, (4.27)

where
Φ(θ) = [sin(2θ) cos(2θ) sin(3θ) cos(3θ) ...], (4.28)

and
q(t) = [q1(t) q2(t) q3(t) q4(t) ...], (4.29)

where Φ(θ) represents a vector of the system eigenfunctions (mode shapes) starting from the
first vibration mode, i.e. when n = 2 in the general solution (see (4.19)), while q(t) is a vector
of the unknown modal coordinates. This can be also represented in the general form

v(θ, t) =
N∑︂
i=1

ϕi(θ)qi(t). (4.30)

We specify our attention to the case of a discretized two degree of freedom system represen-
ting the first two elastic degenerate modes, which are found to be spatially shifted by 45◦, this
means

v(θ, t) ≃ sin(2θ)q1(t) + cos(2θ)q2(t). (4.31)

The external forced and parametric excitations should be assumed in a general form in order
to obtain the system’s ordinary differential equations (ODEs). Simulating these forces, however,
requires taking into consideration that these forces are applied only at the electrodes, therefore
they are discontinuous with respect to θ.
This was found to be mathematically complicated if compared to another approach. In

the following approximate approach we model the external forces as a power series of the
trigonometric shape functions Φ(θ) while preserving the angular distribution by choosing the

82



argument of each function to be 2θ. This leads to

Fp =
∞∑︂
k=1

Fp1−k(t) sin
k(2θ) + Fp2−k(t) cos

k(2θ), (4.32)

while the forced excitation will be represented as

Fex =
∞∑︂
k=1

−Fe1−k(t) cos
k(2θ) + Fp2−k(t) sin

k(2θ). (4.33)

Inserting (4.30) into (4.26) leads to

N∑︂
i=1

[− (ϕ′′
i − ϕi)] q̈i +

N∑︂
i=1

[4Ωzϕ
′
i] q̇i +

N∑︂
i=1

[︃
1

ρA
Fpϕ

′′
i

]︃
qi +

N∑︂
i=1

[︃
1

ρA
F ′
pϕ

′
i

]︃
qi

+
N∑︂
i=1

[︃
− EI

ρAR4

(︁
ϕ′′
i + 2ϕIV

i + ϕV I
i

)︁
+ Ω2

z (ϕ
′′
i − ϕi)−

1

ρA
(kuϕ

′′
i − kvvϕi)

]︃
qi =

1

ρA
F ′
ex. (4.34)

(4.34) is then multiplied by any of the base functions ϕj and integrated over the domain to
give N equations ϕi (i = 1, 2, ...N)

N∑︂
i=1

[︃
−
∫︂ 2π

0

(ϕ′′
i − ϕi)ϕjdθ

]︃
q̈i +

N∑︂
i=1

[︃∫︂ 2π

0

4Ωzϕ
′
iϕjdθ

]︃
q̇i

+
N∑︂
i=1

[︃∫︂ 2π

0

1

ρA
Fpϕ

′′
i ϕjdθ

]︃
qi +

N∑︂
i=1

[︃∫︂ 2π

0

1

ρA
F ′
pϕ

′
iϕjdθ

]︃
qi

+
N∑︂
i=1

[︃∫︂ 2π

0

− EI

ρAR4

(︁
ϕ′′
i + 2ϕIV

i + ϕV I
i

)︁
ϕj + Ω2

z (ϕ
′′
i − ϕi)ϕj −

1

ρA
(kuϕ

′′
i − kvvϕi)ϕjdθ

]︃
qi

=

[︃∫︂ 2π

0

1

ρA
F ′
exϕjdθ

]︃
.

(4.35)

Then (4.31), (4.32) and (4.33) are inserted to get the final discretized system. We found
that, using (4.32) and (4.33) results in non vanishing terms for the components with even
powers k ∈ 2, 4, 6, ... in case of the parametric forces, while only the odd powers k ∈ 1, 3, 5, ...

remain in case of the forced excitation forces. For the case of k → ∞, angular distributed point
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forces are simulated. Applying that, we get

2∑︂
i

mij q̈i +
2∑︂
i

gij q̇i +
2∑︂
i

κijqi +
2∑︂
i

cij(t)qi = fj(θ, t), (4.36)

or in matrix form
Mq̈ +Gq̇ +Kq +C(t)q = f . (4.37)

where
M =

[︄
1 0

0 1

]︄
, G =

8

5
Ω

[︄
0 1

−1 0

]︄
, f =

1

2ρA

[︄
Fe1(t)

Fe2(t)

]︄
.

K =

(︃
36EI

5ρAR4
− Ω2 +

1

5ρA
[4ku + kv]

)︃[︄
1 0

0 1

]︄
, C(t) =

−2

5πρA

[︄
Fp1(t) 0

0 Fp2(t)

]︄
Here we showed that a self-excited parametric excitation of each mode is possible by choosing

the correct spatial distribution of the electrodes to correspond to the ring anti-nodes. This can
be extended by an external control circuit into having a fully populated C(t) matrix, that is,
having coupling terms

C(t) =
−2

5πρA

[︄
Fp11(t) Fp12(t)

Fp21(t) Fp22(t)

]︄
,

or in other words a coupled bimodal parametric excitation. However, the implementation of
this matrix will be then through an external electronic circuit. This means that without such a
circuit, the coupling terms are not feasible under the construction presented in this section in
correspondence to Fig. 4.2. Moreover by considering a damping matrixD we arrive at

Mq̈ + (D +G) q̇ + (K +C(t)) q = f . (4.38)

4.3.1 Determination of the excitation terms

Till now we assumed having a general expression of excitation according to (4.10) and then it
was specified by (4.24), but we did not derive yet these expressions (i.e. Fp and Fex) according
to the underlying physics.
We start by applying the electrostatic force through any electrode (see Fig. 4.3), and returning

to (4.11), the work done is to be considered. For the given case, a micro-ring is assumed to be
excited by an electrostatic force through distributed electrodes around the ring. Taking one
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v(t,�)

Fp1

Figure 4.3: Applying electrostatic force Fp1

electrode for convenience, The virtual work of the electrostatic force can be then computed as

δW =
∂Ee

∂u
δu(t, θ), (4.39)

where Ee is the electrostatic energy stored between the micro-ring and the electrode.

The electrostatic energy is introduced as

Ee =
1

2

ϵeAe

d
V 2(θ, t), (4.40)

where ϵe is the permittivity, Ae is the surface area of the circular segment normal to the electric
field, d is the separating distance between the electrode and the ring and V is the applied
voltage.
Since an inplane vibration is assumed, the distance d is a function of the radial displacement

u, while the surface area Ae is bRdθ. Putting this together gives

Ee =
1

2
ϵebRV

2(θ, t)

∫︂ α+θ̄k

−α+θ̄k

1

d
dθ, (4.41)

where b is the ring thickness and d = d0−u. Without loss of generality, letF (θ, t) = 1
2
ϵebRV

2(θ, t).
Expanding 1

d
=

1

d0 − u
with respect to u up to the second order in u leads to
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Ee =
F (θ, t)

d0

∫︂ α+θ̄k

−α+θ̄k

[︃
1 +

u

d0
+
u2

d20

]︃
dθ. (4.42)

According to (4.39), the virtual work done by the electrostatic force is then

δW =
F (θ, t)

d20

∫︂ α+θ̄k

−α+θ̄k

[︃
1 +

2u

d0

]︃
δudθ (4.43)

Changing the displacement variable from u to v gives

δW =

∫︂ α+θ̄k

−α+θ̄k

[︃
F (θ, t)

d20
+

2F (θ, t)

d30

∂v

∂θ

]︃
∂δv

∂θ
dθ. (4.44)

Integrating by parts gives

δW =

[︃(︃
F (θ, t)

d20
+

2F (θ, t)

d30

∂v

∂θ

)︃
δv

]︃α+θ̄k

−α+θ̄k

−
∫︂ α+θ̄k

−α+θ̄k

[︃
1

d20

∂F

∂θ
+

2

d30

∂F

∂θ

∂v

∂θ
+

2

d30
F
∂2v

∂θ2

]︃
δvdθ

(4.45)
By comparing (4.45) with the partial differential equation of the whole system (4.26) we

can now understand the effect of the electrostatic force on the investigated micro-ring. We can
see that the integral part of (4.45) comprises three different terms, an external excitation term
that does not depend on the displacement

R
∂Fex

∂θ
=

1

d20

∂F

∂θ
=
ϵebR

2d20

∂V 2(θ, t)

∂θ
,

that means the external force symbol in (4.26) is found to be

Fex(θ, t) =
1

2d20
ϵebV

2(θ, t), (4.46)

and comparing the other two terms as well gives the parametric force as

Fp(θ, t) =
1

d30
ϵebV

2(θ, t), (4.47)

which asserts the observation by Rhoads et al [58] that all micro/nanoresonators with variable
gap electrostatic actuators inherently induce parametric excitation.
By comparing the Hamilton’s principle (4.22) used for deriving the PDE (4.26) with the

expression of the virtual work (4.45), however, another important remark should be added.
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In (4.45) the integral operates on a limited domain [−α+ θ̄k,+α+ θ̄k], whilst in (4.22) it is
on the whole circle. The usual way of handling this is through discretizing the integral, this
however would involve a lot of complications. Another solution is introduced in (4.32) and
(4.33), whereby the force is distributed but through trigonometric functions which can be
treated easily through Galerkin’s method. However, these force distributions represent only
an approximation for the discontinuously distributed forces for the sake of simplifying the
mathematical work and without losing generality as well.
Thus, we can rewrite the discretized system as

Mq̈ + (D +G) q̇ + (K +C(t)) q = f . (4.48)

where
M =

[︄
1 0

0 1

]︄
, G =

8

5
Ω

[︄
0 1

−1 0

]︄
, f =

ϵb

2d20ρA

[︄
V 2
1 (θ, t)

V 2
2 (θ, t)

]︄
.

K =

(︃
36EI

5ρAR4
− Ω2 +

1

5ρA
[4ku + kv]

)︃[︄
1 0

0 1

]︄
, C(t) =

−2ϵb

5πd30ρA

[︄
V 2
1 (θ, t) 0

0 V 2
2 (θ, t)

]︄
.

4.4 Modal coupling

4.4.1 Motivation

So far we have modeled the micro ring gyroscope as a discrete two-degree of freedom system,
but which is subjected to uncoupled parametric excitation, that means, C(t) did not have any
off diagonal terms. However, introducing off diagonal terms, hence modal coupling, brings
new and different phenomena, which are the main contribution of this work to the field of
micro sensors. Through the publications mentioned in the introduction, it was found that
"global effects"for the parametric excitation can be found, i.e. not confined to the parametric
resonances or anti-resonances [37, 38].
To the best of the authors’ knowledge, this was not studied before in the field of micro

sensors and transducers. We shall begin by exploring the effect of adding coupling terms in the
parametric excitation matrix. In doing so we will use in this section arbitrary values, which do
not correspond to gyroscopes, for the sake of illustration. After explaining the phenomena in
the next section, a practical example is given.
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q1

q2

Figure 4.4: A proposed electronic circuit for inducing coupling terms in the parametric excita-
tion matrix. Cij represent the elements of the parametric excitation matrix, while
ξij represent only the amplitudes of the corresponding terms.

4.4.2 Electronic implementation

The proposed amplification method can be implemented by adding an electronic circuit. As seen
from section 4.3.1, the coupling terms are feasible only by introducing an external coupling
element. To this end, we propose the electronic circuit shown in Fig. 4.4.
As explained before, the two orthogonal modes of the micro ring are shifted by θ̄ = 45◦. In

Fig. 4.4 eight electrodes are depicted, where each two interact with a vibration mode. For
instance, let the antinodes of the first mode be at angles θ̄ = 0◦, 90◦, 180◦, 270◦, while those
for the second mode are shifted by 45◦. Hence, we consider the electrode at θ̄ = 0◦ as a sense
electrode for the first mode, while that for the second mode to be at θ̄ = 45◦. The remaining
two electrodes connected to the circuit represent two of the drive electrodes.
As shown in the figure the displacement signals are acquired through buffer amplifiers [115],

then multiplied by a periodic signal Cij = ξij cos(Ωpt+ ζij) before being fed into the correspon-
ding drive electrode. Returning to (4.48), the parametric excitation matrix components for the
shown system in Fig. 4.4 will be

C(t) =

[︄
C11(t) C12(t)

C21(t) C22(t)

]︄
. (4.49)
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Moreover, since we have concluded in section 3.1.3 that the required broadband effect
requires a phase shift between C12 and C21, applied here as shown in Fig. 4.4 using a phase
shifter or an all-pass filter with a phase shift ζc between these two input signals.
In this way, the model turns to be exactly the same one presented before in section 3.1.3.

Therefore, we use the method discussed there to analyze the stability of the trivial solution.
Recalling the results using the normal form method we arrive at the Lyapunov exponents in
their simplified form to be

λ1 = −1

2
δ11 +

[︄
ξ2Ωp sin(ζ21)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ , (4.50a)

λ2 = −1

2
δ22 −

[︄
ξ2Ωp sin(ζ21)

2
[︁
Ω2

p − (ω1 − ω2)2
]︁ [︁
Ω2

p − (ω1 + ω2)2
]︁]︄ . (4.50b)

These results prove the possibility of achieving destabilization at parametric non-resonant
frequencies. Since the main goal is to have a higher amplification, this correspondence between
destabilization of the solution and amplification of response will be elaborated in the following
section using data of a realistic micro-ring-gyroscope. However, a mathematical explanation
for this correspondence is given before in section 3.1.6.

4.5 Parametric excitation of a realistic micro-gyroscope

Finally, we discuss the dynamic performance of a parametrically excited micro-ring gyroscope
using realistic values extracted from [65].
The authors in that paper use a ring of radius 4 mm, width 175 µm and thickness 100

µm. The capacitive gap was measured to be around 6.4 microns and the Q factor of the two
vibratory modes is 45000. The system was excited by a voltage about 1 V. The undamped
natural frequencies were around 16,500 Hz or 103,672.5 rad/s.
From this data the coefficients of our model were calculated to be

ω1 = 105 krad/s, δ11 = 2.5, γ = 0.015, ξ = 3.75× 105.

where the remaining parameters are chosen to be

ω2 = 110 krad/s, δ22 = 3, ζ21 = −π/2.
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Figure 4.5: (a) Lyapunov exponent against the parametric excitation frequency Ωp for various
excitation amplitudes Vp, (b) Comparing the results between Flocquet method of
the untransformed system and the system’s normal form at Vp = 3V

However, the system described in this paper differs from the one in [65], in that the cited
paper did not use a coupled 2 DoF system, but rather only a parametric excitation of a single
DoF system. Secondly, and most importantly, in [65] the parametric excitation amplitude was
kept at a very low level, so that the parametric amplification could occur only in case of a
parametric resonance 2:1. In our case, we tend to have a broader range of amplification at
other frequencies using the global effects explained before. This requires the use of a higher
value of parametric excitation.
Increasing the parametric excitation amplitude can be obtained practically either through

increasing the applied voltage to as high as 10-15 V or by decreasing the capacitance gap from
6 microns to nearly 1 micron, or by tuning both. Choosing a capacitive gap of about 3 microns
we get a parametric excitation amplitude of

ξ = 3.5× 106V 2
p (4.51)

where Vp is the drive voltage amplitude (see (4.47)). The excitation method described in
section 4.4.2 is used for the micro ring in order to amplify the gyroscope’s forced response.
Fig. 4.5 shows the broadband effects of the parametric excitation on the system’s maximum

eigenvalue. In case of no coupling in the parametric excitation matrix, i.e. parametrically
exciting the two degrees of freedom independently, we do not get any destabilization effect
except for the regions of regular parametric resonance, at double the system’s undamped
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natural frequency. But in our case, after enforcing a coupling parametric excitation between
both degrees of freedom, we get the shown effect in a broad range of frequencies. The values
of λ∗ at Ω∗ frequency here represent the analytically calculated local minimum of system’s
maximum eigenvalue (see Eq. 3.32) at a given voltage, i.e. at a given parametric excitation
amplitude. These values were deduced in section 3.1.5 to act as a measure of the system’s
propensity to destabilization, since they represent the local minimum of Lyapunov exponent in
the interval of frequencies exhibiting the broadband destabilization effect.
The figures show clearly how this method of parametric excitation can lead to a destabilization

effect in the frequency range ω2 − ω1 to ω2 + ω1 with a minimum at λ∗. This can allow for an
obvious advantage for the parametric pumping of the micro gyroscope. That is because the
destabilization effect, or the increase of the maximum eigenvalue, leads to a negative damping
effect. This is advantageous since damping can not be easily controlled in these systems. But
in our case the control of the parametric excitation voltage can allow such an effect.
According to various references [67, 65, 74] the parametric pumping (amplification) of the

system forced response is significant before reaching the instability limit, this is especially true
when the external force f1 is phase shifted with π/2 with respect to the parametric excitation
function [67, 76], in our case C11. In order to measure the amplification value, the system
response is calculated using direct integration while being parametrically excited at Ω∗ and
having a forced excitation for the primary mode of vibration q1(t) at its natural frequency
ω1. Returning to the discretized model of the micro-ring gyroscope (4.48) and by assuming
δ12 = δ21 = 0, ζ11 = ζ12 = ζ22 = 0 and ξij = ξ, i, j ∈ {1, 2} we get

Mq̈ + (D +G) q̇ + (K +C(t)) q = f . (4.52)

where

M =

[︄
1 0

0 1

]︄
, D =

[︄
δ11 0

0 δ22

]︄
, G = γ

[︄
0 1

−1 0

]︄
, f =

[︄
f1

0

]︄
.

K =

[︄
ω2
1 0

0 ω2
2

]︄
, C(t) = ξ

[︄
cos(Ωpt) cos(Ωpt)

cos(Ωpt+ ζ21) cos(Ωpt)

]︄
.

The amplitude of the time response (named q̂1amp) is then calculated for different values of
parametric excitation voltage (see 4.51) and compared to the amplitude of the system’s forced
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Figure 4.6: Response of the primary mode q1(t) for the system parameters γ = 0.015, ζ =
−π/2, δ11 = 2.5, δ22 = 3, ω1 = 105 krad/s, ω2 = 110 krad/s at the external exci-
tation frequency Ωf = ω1 and the parametric excitation frequency Ωp = Ω∗ ≃
124 krad/sec, for two different excitation voltages (a) Vp = 4.5V and (b)Vp = 5.25V ,
where the latter is just below the onset of instability.

response without parametric excitation q̂10 through the relation

Gain =
q̂1amp

q̂10
. (4.53)

The response q1(t) of 4.52 is shown in Fig. 4.6 at Ωp = Ω∗ and for two different excitation
voltages Vp = 4.5, 5.25V , referring to Fig. 4.5a. It can be seen that the response near the onset
of instability shows a beating phenomenon, which is exhibited in parametrically excited systems
under certain frequency conditions [95]. Moreover, this phenomenon can be also attributed to
our analysis in section 3.1.6, since near instability we have two oscillating terms with different
frequencies. The amplification through voltage control is depicted in Fig. 4.7, where the last
point in the graph represents the last value before the onset of the system’s instability. The
amplification gain, however, does not show very high values when compared to amplifying the
system at the parametric resonance frequencies [67]. But another advantage becomes obvious,
that is the possible tuning of parametric excitation frequency across a broad frequency range.

4.6 Conclusion

A new excitation method for micro-ring gyroscopes is introduced for the first time in this chapter.
Here we used a previously discussed coupled bimodal excitation scheme, through which a
broadband destabilization of the system’s trivial solution can be obtained, and therefore, a

92



0 1 2 3 4 5 6

0

1

2

3

4

5

6

Figure 4.7: Amplification of the primary mode response through increasing the parametric
excitation voltage, calculated by direct integration. The system parameters are
γ = 0.015, ζ = −π/2, δ11 = 2.5, δ22 = 3, ω1 = 105 krad/s, ω2 = 110 krad/s. The
external excitation is at resonance with ω1, while the system is parametrically
excited at three different frequencies shown in the figure, which all lie within the
frequency band [ω2 − ω1, ω2 + ω1].

broad band amplification of the drive mode. As shown in section 4.3, parametric self-excitation
can only be achieved for the diagonal terms of the parametric excitation matrix, however, using
the proposed electronic circuit the coupling terms can be introduced.
As discussed, this was essential in order to obtain the broadband amplification effect. Finally,

it was shown using realistic values of a micro-ring gyroscope, that the amplification at non-
resonant frequencies is practically possible. Since in this way much more flexible conditions can
be used to obtain a parametric amplification, we believe, that this new excitation method can
add a significant advantage to the parametric excitation methods used in micro gyroscopes
and the whole micro sensors technology.
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5 Micro-ring gyroscopes: a nonlinear model

In this chapter, the previously presented micro-ring gyroscope is studied again without assuming
the linearity of elastic or electrostatic forces. Given the presence of nonlinearities due to elasticity,
geometry or electromechanical coupling, the system is analyzed accordingly and Lagrange’s
equations of motion are deduced. Since the system is now nonlinear, not only the trivial solution
is studied, additionally, nontrivial solutions are investigated, and possible bifurcations are
considered. This is accomplished first for the autonomous case, where no excitation is involved.
Afterwards, a stability analysis of the system’s solutions is carried out. As a first attempt, the
system is simplified and the resonance curve under only forced excitation is obtained using
the method of normal forms. Then, the original nonlinear system is investigated in full after
applying the bimodal asynchronous parametric excitation scheme described in the previous
chapters. In this case, the dynamics of the system are investigated at the primary resonance
frequencies.

5.1 Introduction

The nonlinear behavior is proven to be dominant for the dynamics of most of micro- electrome-
chanical resonators [4, 3]. Micro-gyroscopes are no exception under resonance or instability.
This fact becomes of special importance when the system is parametrically excited [67]. At
the frequency of parametric resonance, either primary or secondary, we can choose between
operating under the threshold of instability (below the instability tongue), or in the region
of instability itself. The first alternative allows an approximated linear behavior, while that
would not normally be the case for the second alternative. As operating inside the parametric
instability region, using resonant parametric amplification as explained in section 3.1.6, can
offer higher amplification gains, a study for the micro-ring gyroscope in the nonlinear regime
is then required.
Nonlinear dynamic analysis as well as experimentation for conventional micro gyroscopes

are found in the works of Sharma et al [74] and Oropeza-Ramos [62]. Where for the latter a
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hardening Duffing effect is noticed when operating in the instability region, thereby allowing
for nonlinear modal coupling, which provided a wide-spectrum amplification for the sense
mode in case of a frequency mismatch between drive and sense modes.
The presence of nonlinear behavior in micro ring gyroscopes due to nonlinear elasticity

or large strains is also reported in different works of Gallacher’s team [116, 65] and Nitzan
et al [117, 76, 118]. However, a nonlinear analysis for the micro-ring gyroscope dynamics
was first presented in the paper by Polunin and Shaw [78], which was followed by further
sensitivity analysis by Liang et al [119]. Notwithstanding, other nonlinear effects in micro ring
gyroscopes are reported and analyzed in other works, however, due to electrostatic and/or
capacitive nonlinearities [120, 121].
Hence, our scope now is the dynamics of micro-rings undergoing large displacements

under parametric resonance, which leads us to the study of the nonlinear elasto-dynamics of
inextensible rings. The condition of inextensibility is chosen since it is found that the radial
expansion is of negligible order of magnitude [78].

5.2 Nonlinear elastic model

Starting from the classic nonlinear theory of shells due to Donnell [122], Chu [123] studied the
nonlinear vibrations of thin cylindrical shells by including nonlinear terms in strain-displacement
relations. By considering only flexural vibrations and assuming a thin shell thickness, he found
the circumferential strain to be

ϵθθ =
1

R

[︃
∂v

∂θ
+ u

]︃
+

1

2R2

(︃
∂u

∂θ

)︃2

− z
∂2u

∂θ2
, (5.1)

where R is the mean radius of the cylindrical shell, u and v are the radial and circumferential
displacements of a point on the middle surface, respectively, z and θ are the radial and angular
coordinates of the cylinder, respectively, see Fig. 5.1.
The cylinder is reduced to a ring in the well known work of Evensen [124], who found, by

assuming the inextensibility condition of the ring’s centroidal axis, that

ϵθθ|z=0 =
1

R

[︃
∂v

∂θ
+ u

]︃
+

1

2R2

(︃
∂u

∂θ

)︃2

= 0. (5.2)

Therefore, the strain energy during flexural vibrations comes up only from the bending of
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R

Figure 5.1: Ring in-plane displacements

the ring’s axis without radial expansion, it is then computed as

Ud =
EI

2R3

∫︂ 2π

0

(︃
∂2u

∂θ2

)︃2

dθ. (5.3)

The nonlinear strain behavior here is due to the nonlinear condition (5.2). Therefore the
relation between u and v is nonlinear, so if we assume

u(t, θ) = q1n(t) cos(nθ) + q2n(t) sin(nθ),

and use the inextensibility condition (5.2), we can not get to an expression for v which satisfies
the continuity of a closed circular ring. Thus, a nonlinear term is added to give

u(t, θ) = q1n(t) cos(nθ) + q2n(t) sin(nθ)−
nγ

4R

[︁
q21n(t) + q22n(t)

]︁
, (n ≥ 2), (5.4)

where in this case γ = n.
Evensen showed in the same paper that his analysis would match the experimental results

more precisely if he used a modified version of the inextensibility condition, that is

ϵθθ =
1

R

[︃
∂v

∂θ
+ u

]︃
+

1

2R2

[︄(︃
v − ∂u

∂θ

)︃2

+

(︃
∂v

∂θ
+ u

)︃2
]︄
= 0, (5.5)
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but in this case the radial displacement u should differ from (5.4) by setting γ to be

γ = n

(︃
1− 1

n2

)︃2

. (5.6)

This model describes the nonlinear vibrations of the ring due to nonlinear strain theory as ha-
ving spring-softening stiffness (Duffing) behavior, which coincides with previous studies [122].
This comes, however, in contrast with Nitzan’s assumption [117, 118].
Afterwards, Natsiavas [125] used a similar expression for the circumferential strain, that is

ϵθθ =
1

R

[︃
∂v

∂θ
+ u

]︃
+

1

2R2

(︃
v − ∂u

∂θ

)︃2

+
z

R2

(︃
∂v

∂θ
− ∂2u

∂θ2

)︃
, (5.7)

and using the same u expression proposed by Evensen [124] but with the modified definition of
γ in (5.6). The same expression was also used by Rao [112] but after excluding the nonlinear
terms, thereby complying with his linear model. The inextensibility condition puts a constraint
on the tangential and radial strains, which leads to the determination of the v expression given
u. The inextensibilty condition is then deduced by setting (5.7) to zero at the ring’s axis (i.e.
z = 0), this leads to

1

R

[︃
∂v

∂θ
+ u

]︃
+

1

2R2

(︃
v − ∂u

∂θ

)︃2

= 0, ϵθθ =
z

R2

(︃
∂v

∂θ
− ∂2u

∂θ2

)︃
(5.8)

To deduce the strain energy for this case, it will include more terms as in (5.3), this means

Ud =
EI

2R3

∫︂ 2π

0

(︃
∂v

∂θ
− ∂2u

∂θ2

)︃2

dθ, (5.9)

then by following Natsiavas choice for the v − u transformation we get

Ud =
EI

2R3

∫︂ 2π

0

[︄
u+

∂2u

∂θ2
+

1

2R

(︃
∂u

∂θ

)︃2
]︄2
dθ. (5.10)

This relation for strain energy was used by Polunin and Shaw [78] but with a negative sign
before the last term. However, the authors used Evensen’s u relation (5.4) with the unmodified
γ = n, which led them to the following expression for n = 2

u(t, θ) = q1(t) cos(2θ) + q2(t) sin(2θ)−
1

R

[︁
q21(t) + q22(t)

]︁
. (5.11)

However, here we recommend a modification to u to comply with Natsiavas’ work, and
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thereby using the definition of γ in (5.6), this gives

u(t, θ) = q1(t) cos(2θ) + q2(t) sin(2θ)−
9

16R

[︁
q21(t) + q22(t)

]︁
, (5.12)

v(t, θ) =
1

2
[−q1(t) sin(2θ) + q2 cos(2θ)] +

9

64R

[︁
(q21(t)− q22(t)) sin(4θ)− 2q1(t)q2(t) cos(4θ)

]︁
.

(5.13)
On the other hand, assuming the electrodes to cover approximately the whole ring, the total

electrostatic potential energy is given by

Ue =
ϵeRb

2d
[Vdc + Vac(t, θ)]

2

∫︂ 2π

0

(︃
1 +

u

d
+
u2

d2
+
u3

d3
+
u4

d4

)︃
dθ, (5.14)

while the system’s kinetic energy is given by

T =

∫︂ b/2

−b/2

∫︂ 2π

0

∫︂ R+h/2

R−h/2

ρr

2

[︁
(u̇− Ωv)2 + (v̇ + Ω(u+ r))2

]︁
drdθdz, (5.15)

where b is the ring’s thickness, h the ring’s width, ρ the density, R the ring’s nominal radius,
ϵe the electric permittivity, Vac, Vdc the applied alternating and direct voltages respectively, d
the gap between the ring and the electrode, and Ω the rotation of the ring’s reference frame,
which is to be measured.

5.3 Equations of motion

We start by analyzing the system using Lagrange’s equations

∂

∂t

(︃
∂L

∂q̇i

)︃
− ∂L

∂qi
= 0, (5.16)

where L = T − (Ud − Ue), and qi, i ∈ 1, 2 represents each degree of freedom. Through the
analysis, the forced excitation is assumed to be

Vac(t, θ) = V1(t) sin(2θ) + V2(t) cos(2θ). (5.17)

Then by normalizing with respect to the system’s mass and ignoring terms higher than the
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third order we get

q̈1 +
(︁
δ1(1− a1q

2
1 − a2q

2
2) + a3q2q̇2 + a6q1q̇1

)︁
q̇1 +

(︁
ω2
1(1− a1q

2
1 − a2q

2
2) + a4q

2
1 + a5q

2
2

+a7q̇
2
2 + a8q2q̈2

)︁
q1 − a9(1− a1q

2
1 − a2q

2
2)q̇2 = fa1V1(t) + fa2V1(t)q

2
1 + fa3V1(t)q

2
2 + fa4V2(t)q1q2,

(5.18a)
q̈2 +

(︁
δ2(1− b1q

2
2 − b2q

2
1) + b3q1q̇1 + b6q2q̇2

)︁
q̇2 +

(︁
ω2
2(1− b1q

2
2 − b2q

2
1) + b4q

2
2 + b5q

2
1 + b7q̇

2
1

+b8q1q̈1) q2 − b9(1− b1q
2
2 − b2q

2
1)q̇1 = fb1V2(t) + fb2V2(t)q

2
2 + fb3V2(t)q

2
1 + fb4V1(t)q1q2,

(5.18b)

with the coefficients for the given axis-symmetric ring-gyroscope mentioned in Table 5.1. In the
described system we assume experimentally determined damping coefficients δ1, δ2. Moreover,
we obtain repeated natural frequencies, or a degenerate eigenfrequency, that is

ω2
1 = ω2

2 =
1

5ρh

(︃
3Eh3

R4
− 4V 2

dcϵ

d3

)︃
(5.19)

due to the assumed geometric axis-symmetry, which can differ from reality due to manufacturing
limitations.

5.4 Autonomous nonlinear system

The nonlinear model (5.18) comprises a lot of terms, while most of them correspond to the
coupling between both degrees of freedom. However, by investigating them thoroughly it was
found that not all of them are decisive in determining the system’s behavior. We start by giving
some insights about the system. First, we consider only the autonomous case for the rest of this
section, that is,

fij = 0, i ∈ {a, b}, j ∈ {1, 2, 3, 4}. (5.20)

By observing the equations of motion of the autonomous system we can differentiate between
the intrinsic terms for each mode, which have variables of a single mode, and coupling terms,
which include variables of both modes. The former ones are represented by the terms including
the coefficients ai or bi, where i ∈ {4, 6}, while the latter are represented by the terms having
the coefficients aj or bj, where j ∈ {3, 5, 7, 8}. The terms (1−a1q21 −a2q22) (or the corresponding
ones with b coefficients) represent the expansion up to the second order of 1/(1 + a1q

2
1 + a2q

2
2),

since the denominator was originally multiplied by the inertia variables q̈1 and q̈2. Thus, a1, b1, a2
and b2 represent the nonlinear inertia terms.
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a1 = b1 2673

1280R2

a2 = b2 81

1280R2

a3 = b3 81

640R2

a4 = b4 1

320hρ
[(59E0h

3)/R6 − (384V 2
dcϵ0)/d

5]

a5 = b5 1

320hρ
[(59E0h

3)/R6 − (384V 2
dcϵ0)/d

5]

a6 = b6 2673

1280R2

a7 = b7 2511

1280R2

a8 = b8 81

40R2

a9 = −b9 8

5
Ω

fa1 = fb1 4Vdcϵ0
5d2hρ

fa2, fb2 9Vdcϵ0
5d4hρ

− 4Vdcϵ0a1
5d2hρ

, 9Vdcϵ0
5d4hρ

− 4Vdcϵ0b1
5d2hρ

fa3, fb3 3Vdcϵ0
5d4hρ

− 4Vdcϵ0a2
5d2hρ

, 3Vdcϵ0
5d4hρ

− 4Vdcϵ0b2
5d2hρ

fa4 = fb4 6Vdcϵ0
5d4hρ

Table 5.1: Coefficients of (5.18)

In order to study the system’s qualitative dynamic behavior, it is then converted into a
four-degree-of-freedom first order system of differential equations while ignoring the inertia
coupling terms, this yields

ż1 = z2, (5.21a)
ż2 =

(︁
−δ1(1− a1z

2
1 − a2z

2
3)− a3z3z4 − a6z1z2

)︁
z2 −

(︁
ω2
1(1− a1z

2
1 − a2z

2
3) + a4z

2
1 + a5z

2
3 + a7z

2
4

)︁
z1

+ a9(1− a1z
2
1 − a2z

2
3)z4,

(5.21b)
ż3 = z4, (5.21c)
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ż4 =
(︁
−δ2(1− b1z

2
3 − b2z

2
1)− b3z1z2 − b6z3z4

)︁
z4 −

(︁
ω2
2(1− b1z

2
3 − b2z

2
1) + b4z

2
3 + b5z

2
1 + b7z

2
2

)︁
z3

+ b9(1− b1z
2
3 − b2z

2
1)z2,

(5.21d)

where z1 = q1, z2 = q̇1, z3 = q2 and z4 = q̇2, or in compact form

ż = f(z). (5.22)

The system (5.22) forms a four dimensional phase space, which should be carefully considered
in order to understand the system’s dynamics. However, since a four dimensional space could
not be presented graphically, the dynamic behavior will be described by investigating the
stability of the fixed points, as well by observing the projections of some trajectories on two
dimensional planes. To determine the system’s stationary points we set ż = 0 and obtain nine
different fixed points which are listed in Table (5.2), where

χ1 =
ω1√︁

−a4 + a1ω2
1

, (5.23a)

χ2 =
ω2√︁

−b4 + b1ω2
2

, (5.23b)

ψ1 =

√︁
−b4ω2

1 + ω2
2(a5 + ω2

1(b1 − a2))√︁
a4b4 − a5b5 + (a2b5 − a1b4)ω2

1 + ω2
2(a5b2 − a4b1 + ω2

1(a1b1 − a2b2))
, (5.23c)

ψ2 =

√︁
b5ω2

1 − ω2
2(a4 + ω2

1(b2 − a1))√︁
a4b4 − a5b5 + (a2b5 − a1b4)ω2

1 + ω2
2(a5b2 − a4b1 + ω2

1(a1b1 − a2b2))
. (5.23d)

However, by observing the geometry-induced similarities in theses coefficients we find that

a1 = a6 = 33 a2 =
33

2
a3, a5 = a4, (5.24a)

b1 = b6 = 33 b2 =
33

2
b3, b5 = b4, (5.24b)

In addition, due to the assumed axis-symmetrical geometry of the micro-ring we have

ai = bi, i = 1, ..., 8, a9 = −b9, ω1 = ω2 = ω, (5.25)

these geometric properties allow the expressions (5.23) to be reduced to
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χ1 = χ2 =
ω√

−a4 + 33a2ω2
, (5.26a)

ψ1 = ψ2 =

√
a2ω4

√
2
√︁
a2ω2(−a4 + 17a2ω2)

, (5.26b)

ω =

√︄
1

5ρh

(︃
3Eh3

R4
− 4V 2

dcϵ

d3

)︃
. (5.26c)

Here it is important to differentiate first between constant parameters due to geometric or
material properties on one side, and other controllable ones. In this sense, the two parameters,
the applied direct voltage Vdc and the capacitive gap between the ring and the electrode d, are
regarded as controllable parameters, while holding the rest of the parameter values fixed. By
observing equations (5.26) we find three critical values at which the fixed points change from
real into imaginary values, i.e. they simply vanish. For the fixed points with the value χ1,2 in
(5.26a), the terms under the square root can render a negative value, thus imaginary fixed
point, if

a4 > 33a2ω
2 (5.27)

using the geometrical values in Table (5.1), this implies⎧⎪⎪⎪⎨⎪⎪⎪⎩
V 2
dc >

6839

12(891− 640(R/d)2)

Ed3h3

ϵ0R4
, for d > 8

√
10R

9
√
11

,

V 2
dc <

−6839

12(640(R/d)2 − 891)

Ed3h3

ϵ0R4
, for d < 8

√
10R

9
√
11

,

(5.28)

where the second case is physically impossible because this implies a negative Vdc.
Similarly for the value of ψ1,2 in (5.26b) we obtain imaginary fixed points if

a4 > 17a2ω
2 (5.29)

this implies ⎧⎪⎪⎪⎨⎪⎪⎪⎩
V 2
dc >

2951

12(459− 640(R/d)2)

Ed3h3

ϵ0R4
, for d > 8

√
10R

3
√
51

,

V 2
dc <

−2951

12(640(R/d)2 − 459)

Ed3h3

ϵ0R4
, for d < 8

√
10R

3
√
51

,

(5.30)

where the second case is also physically impossible for the previously mentioned reason.
In (5.26c) we observe as well that the system’s eigenfrequency could have an imaginary
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z∗1 z∗2 z∗3 z∗4
S0 0 0 0 0
S1 0 0 −χ2 0
S2 0 0 χ2 0
S3 −χ1 0 0 0
S4 χ1 0 0 0
S5 −ψ1 0 −ψ2 0
S6 −ψ1 0 ψ2 0
S7 ψ1 0 −ψ2 0
S8 ψ1 0 ψ2 0

Table 5.2: Fixed points of system (5.21)

value for a case of a relatively large V 2
dc/d

3, this means if

V 2
dc >

3

4

Ed3h3

ϵ0R4
. (5.31)

By comparing the three conditions (5.28), (5.30) and (5.31) we could obviously detect that
the critical value of the third condition is always smaller than the critical values of the first two,
and thereby will be satisfied for smaller value of Vdc. This implies that the first two conditions
can not influence the corresponding fixed points, since the third condition would have been
already satisfied and would cause all nontrivial fixed points to turn into imaginary values, due
to the presence of ω in all fixed points expressions. In summary, we do have for this system
only one possible bifurcation value, which is

V 2
dc =

3

4

Ed3h3

ϵ0R4
. (5.32)

In order to visualize these results, a numeric example is used throughout this chapter. This is
based on the experimental work of Gallacher and his team [65]. The parameter values in their
work were modified slightly and used for the linearly modeled micro-ring gyroscope in the
previous chapter. These values will be used here, which are h = 175× 10−6m, R = 4mm, d =

3 × 10−6m and the material properties of silicon are taken to be E0 = 1.9 × 1011N/m2, ρ =

2300kg/m3. Using these values, we calculate the values of χ and ψ while varying Vdc. In this
case the bifurcation limit is found to be Vdc = 95.4V .
In figures (5.2, 5.3) a bifurcation diagram for the fixed points S1, S2 in Fig. 5.2 and S7 in
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Figure 5.2: Bifurcation of the fixed points pair (blue and orange) S1, S2 or S3, S4

Figure 5.3: Bifurcation of the fixed point S7 = (0, ψ, 0,−ψ)

Fig. 5.3. However, the transition depicted in these diagrams applies for all non trivial fixed
points (see Table 5.2), and at the same bifurcation value, according to the condition (5.31).
Although a subcritical pitchfork bifurcation (in four-dimensional space) occurs at this value,
but the represented figures do not resemble the conventional pitchfork bifurcation diagram.
In theses figure we represent the real and imaginary parts of χ and ψ in Fig. 5.2 and Fig. 5.3
respectively on two axes, while displaying the bifurcation parameter Vdc on the third axis. It
can be concluded from these figures that all the nontrivial fixed points have real values up to
the bifurcation value (5.32), afterwards they change in pure imaginary values, i.e. they vanish.
Typical values before and after the bifurcation values are represented in Table 5.3.
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Before Bifurcation, Vdc = 90V After Bifurcation, Vdc = 100V

z∗1 z∗2 z∗3 z∗4 z∗1 z∗2 z∗3 z∗4

S0 0 0 0 0 0 0 0 0

S1 0 0 −8.6× 10−7 0 0 0 −7.3× 10−7i 0

S2 0 0 8.6× 10−7 0 0 0 7.3× 10−7i 0

S3 −8.6× 10−7 0 0 0 −7.3× 10−7i 0 0 0

S4 8.6× 10−7 0 0 0 7.3× 10−7i 0 0 0

S5 −6.1× 10−7 0 −6.1× 10−7 0 5.2× 10−7i 0 5.2× 10−7i 0

S6 −6.1× 10−7 0 6.1× 10−7 0 5.2× 10−7i 0 −5.2× 10−7i 0

S7 6.1× 10−7 0 −6.1× 10−7 0 −5.2× 10−7i 0 5.2× 10−7i 0

S8 6.1× 10−7 0 6.1× 10−7 0 −5.2× 10−7i 0 −5.2× 10−7i 0

Table 5.3: Fixed points of system (5.21), where h = 175 × 10−6m, R = 4mm, d = 3 ×
10−6m,E0 = 1.9×1011N/m2, ρ = 2300kg/m3 and the bifurcation value isVdc = 95.4V

5.4.1 Stability of fixed points

As shown in Table 5.2 and Table 5.3 the system under study possesses nine fixed points before
the bifurcation point and only the trivial fixed point after it. Here the stability of each fixed
point is studied. The stability of each fixed point will be investigated by first perturbing around
the fixed point by a small change in system states, that is

z = z∗ + δz, (5.33)

this gives
d(z∗ + δz)

dt
= f(z∗ + δz) (5.34)

then considering z∗ to be constant and expanding about it we get

δż = D(f(z∗))z + f̃(z), (5.35)
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where D(f(z∗)) is the Jacobian matrix of the system at the fixed point z∗. The linearized
system ,

δż = D(f(z∗))z, (5.36)

is then studied to determine the stability of (5.22) around the fixed point z∗, where the invariant
manifolds of the nonlinear system (5.22) are tangent to the eigenspace of the linearized system.
The stability of the linearized system determines the stability of the fixed point also in the
original nonlinear system provided being a non-hyperbolic fixed point [84, 99].
In order to determine the stability of the fixed point, the eigenvalues of the Jacobian matrix

are then calculated. According to the theory of asymptotic stability [98], if all eigenvalues have
negative real parts, then the fixed point is asymptotically stable, also if only one eigenvalue has
a positive real part then the fixed point is unstable.
Starting with the trivial fixed point (S0), the Jacobian matrix is calculated to give

D(f(z∗
S0
)) =

⎡⎢⎢⎢⎢⎣
0 1 0 0

−ω2 −δ1 0 a9

0 0 0 1

0 b9 −ω2 −δ2

⎤⎥⎥⎥⎥⎦ , (5.37)

the characteristic equation then reads

λ4 + 2δ λ3 + (δ2 +
64Ω2

25
+ 2ω2) λ2 + (2δω2) λ+ ω4 = 0, (5.38)

where the damping coefficients for both degrees of freedom are assumed to be equal, and a9, b9
are substituted by their values from Table 5.1.
The stability is then studied according to Hurwitz-Routh’s criterion [96]. In Hurwitz repre-

sentation
a0λ

4 + a1λ
3 + a2λ

2 + a3λ+ a4 = 0, (5.39)

the criteria yields for a characteristic equation of the fourth order the conditions

a1 > 0,

⃓⃓⃓⃓
⃓a1 a0

a3 a2

⃓⃓⃓⃓
⃓ > 0,

⃓⃓⃓⃓
⃓⃓⃓a1 a0 0

a3 a2 a1

0 a4 a3

⃓⃓⃓⃓
⃓⃓⃓ > 0, a4 > 0, (5.40)

should the conditions be satisfied, that would be necessary and also sufficient that all the roots
of the characteristic equation have negative real parts.
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Applying this procedure to (5.38) we obtain the following conditions

2δ > 0, (5.41a)
2δ ω2 > 0, (5.41b)
ω4 > 0, (5.41c)

4

25
δ2ω2(25δ2 + 64Ω2) > 0. (5.41d)

By observing these conditions we obviously conclude that the trivial fixed point is always stable,
unless the eigenfrequency ω could be driven to be negative as discussed before.
The eigenvalues are then calculated to support the previous conclusion. In the case of

having no rotation of the reference frame, i.e. Ω = 0, the eigenvalue problem is reduced to a
two-degree-of-freedom damped system with the eigenvalues

λ1,2 =
1

2

(︂
−δ ±

√
δ2 − 4ω2

)︂
λ3,4 =

1

2

(︂
−δ ±

√
δ2 − 4ω2

)︂
, (5.42)

while by putting the micro gyroscope into operation, thus having non-zero values of Ω, we get
a modified version of these eigenvalues to be

λ1,2 =
1

10

(︂
−5δ + 8iΩ±

√︁
25δ2 − 100ω2 − 80iζΩ− 64Ω2

)︂
λ3,4 =

1

10

(︂
−5δ − 8iΩ±

√︁
25δ2 − 100ω2 − 80iζΩ− 64Ω2

)︂ (5.43)

Applying these results to our numeric example we find the eigenvalues before the bifurcation
point at Vdc = 90V to be

λ1,2 = −5.324± 25562i, λ3,4 = −5.316± 25522i, (5.44)

while in case of tuning Vdc = 100V after the bifurcation point we get

λ1,2 = −24200± 20, 004i, λ3,4 = 24190± 19.996i. (5.45)

The effect of the gyroscopic forces, assuming Ω ≃ ω/1000, is observed here in the slight
modification of the natural frequencies of the first case as well as in the dissimilarity of the
effective damping in the real parts of the eigenfrequencies. After the bifurcation limit, the
imaginary frequencies lead to positive and negative real parts, i.e. a saddle point, while an
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Figure 5.4: A projection of the phase space on the plane z1 − z3 around the trivial fixed point
before the bifurcation point

imaginary part remains existing due to the gyroscopic forces. From these results, we could
conclude that before the bifurcation point we have a stable focus (see Fig. 5.4) while after
bifurcation it changes into saddle point.
In analyzing the stability of the fixed points S1-S4 we find them to have the same characteristic

equation and thereby subjected to the same Hurwitz stability conditions. The characteristic
equation for these fixed points is then

λ4 +
64a2ω

6

a4 − 33a2ω2
+ 2δλ3

a4 − 16a2ω
2

a4 − 33a2ω2
− 2δλω2(a24 − 49a2a4ω

2 + 1056a22ω
4)

(a4− 33a2ω2)2

+
λ2(25(a24δ

2 − 2a4(a4 + 16a2δ
2)ω2 + 100a2a4ω

4 − 1122a22ω
6) + 64a4(a4 − 32a2ω

2))Ω2

25(a4 − 33a2ω2)2
= 0.

(5.46)

Applying the second condition in (5.40) for (5.46) gives

−2δω2(a24 − 49a2a4ω
2 + 1056a22ω

4)

(a4 − 33a2ω2)2
> 0, (5.47)

which clearly shows that it can not be satisfied as long as the eigenfrequency is real, otherwise
if it is imaginary, then the fixed point itself will not exist anymore. Hence, it would not be
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useful to investigate the satisfaction of the other Hurwitz-conditions for these fixed points.
Furthermore, in analyzing the stability of the fixed points S5-S8, they were found to have

the same characteristic equation, thus, they will be treated together using Hurwitz stability
criterion. The characteristic equation for these fixed points reads

λ4 + λ3
2a4δ

a4 − 17a2ω2
+ λ2

2500a2a4ω
4 − 28050a22ω

6 + a24(25δ
2 − 50ω2 + 64Ω2)

25(a4 − 17a2ω2)2

− λ
2a4δω

2(a4 − 33a2ω
2)

(a4 − 17a2ω2)2
− 64a2ω

6

a4 − 17a2ω2
= 0

(5.48)

The Hurwitz conditions are then examined for these fixed points. The first and third conditions
yield

2a4δ

a4 − 17a2ω2
> 0, (5.49a)

− 64a2ω
6

a4 − 17a2ω2
> 0. (5.49b)

For the case of having Vdc smaller than the bifurcation value, a2, a4 and ω2 can not be negative.
Hence, the two conditions in (5.49) are obviously in pure contradiction. This means that the
stability conditions can not be met. This implies that these fixed points as well are always
unstable, since these fixed points vanish in the other case when Vdc exceeds the bifurcation
point.
Summarizing this section, we investigated the fixed points of the autonomous system of the

nonlinearly modeled micro-ring gyroscope, and found that the system possesses eight non
trivial fixed points in addition to the trivial one. A bifurcation occurs through tuning Vdc above a
certain value (see (5.32)). Before the bifurcation value, we have a stable trivial solution, while
all other solutions are unstable. After the bifurcation value we do have only the unstable trivial
solution whose instability is obviously caused by having an imaginary eigenvalue (divergence),
and the system as a whole loses stability. Accordingly, this behavior describes a subcritical
pitchfork bifurcation, where the only persisting fixed point after bifurcation is the trivial one
while losing stability.

5.5 Nonlinear resonance of a simplified system

Provided that only the first mode is externally excited, i.e. V2(t) = 0, all forcing terms in the
second mode q2 are eliminated except for a coupled forcing element with the fb4 coefficient. In
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this sense, the second mode will be mainly excited by the gyroscopic term (coefficient b9) in a
linear fashion, if the nonlinearities were of a smaller order of magnitude under weak excitation.
In addition, all the back action terms in the first mode from the second mode were also ignored
in the vicinity of a forced primary resonance, that is, if V1(t) = Fcos(ωf t), then ωf ≃ ω1,
especially when Ω << ω1. Following these assumptions, which were previously considered
in [78], the system can be significantly simplified, and the equations (5.18) read

q̈1 + δ1(1− a1q
2
1)q̇1 + (ω2

1(1− a1q
2
1) + a4q

2
1 + a6q̇

2
1)q1 = F0

(︁
fa1 + fa2q

2
1

)︁
cos(ωf t). (5.50)

The normal form method is then used to analyze (5.50) in accordance with [107]. The
transformation will be briefly explained for convenience. By adding a detuning parameter

σ = ω1 − ωf , (5.51)

the system (5.50) is then transformed to a first order system

ż1 = z2, (5.52a)

ż2 = −δ1z5(1− a1z
2
1)z2 − (ω2

1(1− a1z
2
1) + a4z

2
1 + a6z

2
2)z1 +

F0

2

(︁
fa1 + fa2z

2
1

)︁ (︁
z23 + z24

)︁
,

(5.52b)

ż3 =
i

2
(ωf + z6) z3, (5.52c)

ż4 =
−i
2

(ωf + z6) z3, (5.52d)

ż5 = 0, ż6 = 0, (5.52e)

where z1 = q1, z2 = q1̇, while z3 = e
i
2
ωf t, z4 = e

−i
2
ωf t are additional variables to account for the

forced periodic excitation, z5 is a dummy variable to shift the linear damping into nonlinear
terms, and z6 is a dummy variable to account for the detuning parameter. Using the nonlinear
transformation and taking the resonance at the system’s natural frequency into account we
arrive at the normal form (see section 3.1.4)

ẏ = h(y, t), (5.53)

which in turns is transformed again to the polar coordinates to give

ṙ(t) =
1

4

(︃
2F0fa1cos(ϕ(t))− 4δr(t) +

1

ω1

F0fa1δsin(ϕ(t))

)︃
, (5.54a)
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Figure 5.5: Softening nonlinear resonance for the simplified equation of the drive mode (5.50)

ϕ̇(t) =
1

8ω3
1

(︁
−4ω2

1(δ
2 + 2(ωf − ω1)ω1) + (3a4 − 2a6ω

2
1)r(t)

2

+
1

r(t)
2F0fa1ω

2
1(δcos(ϕ(t))− 2ω1sin(ϕ(t)))

)︃
.

(5.54b)

By converting (5.54) nonlinearly back to the original coordinates q(t), we find the displacement
of the drive mode to be

q1(t) = −F (ωf − 3ω1)cos(ωf t)

8ω3
1

− δcos(ωf t+ ϕ(t))r(t)

2ω2
1

+

(︃
r(t)

ω1

+
(−3a4 + 2a6ω

2
1)r(t)

3

16ω5
1

)︃
sin(ωf t+ ϕ(t))− a6 − 2a4ω

2
1

32ω5
1

r(t)3 sin(3ωf t+ 3ϕ(t))

(5.55)

A softening Duffing response behavior is found as depicted in Fig. 5.5, assuming a silicon
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based ring, and using the following geometrical and electrical values

R = 4mm, d = 3µm, h = 100µm, Vdc = 10V, F = 0.5V, (5.56)

which comes in accordance with the behavior obtained in [78]. Furthermore, the mathema-
tical expression (5.55) indicates the presence of subharmonic resonances, in addition to the
frequency-amplitude dependence.

5.6 Bimodal parametric excitation

Through utilizing the bimodal parametric excitation method used in section 3.1.3, the stability
analysis is extended in this section to the nonlinearly modeled micro-ring gyroscope. It was
shown in section 3.1.6 that the destabilization effect at any parametric excitation frequency
leads as well to an amplification either within the instability regions of the trivial fixed point
or just below the instability threshold. Thereby, the parametric amplification mechanism is
extended from resonant to non-resonant excitation frequencies. In this sense, it will be only
necessary for our nonlinear analysis here to analyze the parametrically excited system and
determine the destabilization of its trivial fixed point at any given excitation frequency, in order
to prove the amplification capability. The destabilization is measured through calculating the
real parts of the system’s eigenvalues.
It should be noted also that, except for the linear parametric excitation, the following analysis

is performed without modifying the system dynamics, moreover, all the coefficients are based
on geometric, elastic and electrostatic properties. In addition, the parameter values used were
extracted from a previously experimented micro ring gyroscope.
For the sake of analyzing the stability of the system’s solutions without forced excitation,

the autonomous version of system (5.18) is used while adding the bimodal excitation method.
This is done by adding two additional terms in each equation of motion, one direct (intrinsic)
time-dependent term, ξii, and cross-coupling time dependent term, ξij, i ̸= j, each with a
corresponding phase shift ζij. This gives

q̈1 +
(︁
δ1(1− a1q

2
1 − a2q

2
2) + a3q2q̇2 + a6q1q̇1

)︁
q̇1 +

(︁
ω2
1(1− a1q

2
1 − a2q

2
2) + a4q

2
1 + a5q

2
2

+a7q̇
2
2 + a8q2q̈2

)︁
q1 − a9(1− a1q

2
1 − a2q

2
2)q̇2 + ξ11 cos(Ωpt+ ζ11)q1 + ξ12 cos(Ωpt+ ζ12) = 0,

(5.57a)

113



q̈2 +
(︁
δ2(1− b1q

2
2 − b2q

2
1) + b3q1q̇1 + b6q2q̇2

)︁
q̇2 +

(︁
ω2
2(1− b1q

2
2 − b2q

2
1) + b4q

2
2 + b5q

2
1

+b7q̇
2
1 + b8q1q̈1

)︁
q2 − b9(1− b1q

2
2 − b2q

2
1)q̇1 + ξ21 cos(Ωpt+ ζ21)q1 + ξ22 cos(Ωpt+ ζ22) = 0.

(5.57b)

Dealing with equations (5.57) as they are is quiet challenging because of being highly
nonlinear and time periodic as well. In order to have better insights and explore the system
dynamics the normal form method was used. The method of normal forms has an interesting
property in comparison with other perturbational methods, that is, it uses nonlinear coordinate
transformation, which leads to a minimal number of nonlinear terms in the normal form
coordinates.
The normal form method is described in the literature with different perspectives [105,

84, 100, 104], however, the systematic approach provided in [107] is adopted. Similar to the
analysis provided in chapter 4, the system of non-autonomous time-periodic second order
nonlinear equations (5.57) is changed into the autonomous first-order nonlinear system

ż1 = z2, (5.58a)
ż2 =

(︁
−δ1(z7 − a1z

2
1 − a2z

2
3)− a3z3z4 − a6z1z2

)︁
z2 −

(︁
ω2
1(1− a1z

2
1 − a2z

2
3) + a4z

2
1 + a5z

2
3 + a7z

2
4

)︁
z1

+ a9(z7 − a1z
2
1 − a2z

2
3)z4 −

1

2
ξ11(e

iζ11z5 + e−iζ11z6)z1 −
1

2
ξ12(e

iζ12z5 + e−iζ12z6)z3,

(5.58b)
ż3 = z4, (5.58c)
ż4 =

(︁
−δ2(z7 − b1z

2
3 − b2z

2
1)− b3z1z2 − b6z3z4

)︁
z4 −

(︁
ω2
2(1− b1z

2
3 − b2z

2
1) + b4z

2
3 + b5z

2
1 + b7z

2
2

)︁
z3

+ b9(z7 − b1z
2
3 − b2z

2
1)z2 −

1

2
ξ21(e

iζ21z5 + e−iζ21z6)z1 −
1

2
ξ22(e

iζ22z5 + e−iζ22z6)z3,

(5.58d)
ż5 = iΩpz5, (5.58e)
ż6 = −iΩpz6, (5.58f)
ż7 = 0, (5.58g)

where z1 = q1, z2 = q̇1, z3 = q2, z4 = q̇2, z5 = eiΩpt, z6 = e−iΩpt and z7 = 1 is just a dummy
variable, in compact form

ż = f(z). (5.59)

Following the same procedure while accounting for the parametric primary resonances, and
using y5 = z5 = eiΩpt, y6 = z6 = e−iΩpt and y7 = z7 = 1, we find the normal form up to the third
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Figure 5.6: Stability chart of (5.60)

order to be

ẏ1 = A1y1 + A2(t)y2 + A3y
2
1y2 + A4y1y3y4, (5.60a)

ẏ2 = B1y2 +B2(t)y1 +B3y
2
2y1 +B4y2y3y4, (5.60b)

ẏ3 = C1y3 + C2(t)y4 + C3y
2
3y4 + C4y3y1y2, (5.60c)

ẏ4 = D1y4 +D2(t)y3 +D3y
2
4y3 +D4y4y1y2, (5.60d)

where the coefficientsAi, Bi, Ci, Di are provided in Appendix 5.A. These results are then applied
on a realistic micro gyroscope [65], with the parameter values in (5.56), except for Vdc = 1V .
The parametric excitation amplitude is calculated in a similar way to chapter 4 considering an
equal amplitude for all excitation terms ξij = ξ = 6× 106 V 2

p , where Vp is the amplitude of the
applied alternating voltage.
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Figure 5.7: Maximum real parts of the eigenvalues of system (5.60) at two different voltages,
see Fig. (5.6)

In order to determine the stability of this system, the Floquet theory is applied on the
Jacobian of the system around the trivial solution. The stability is then determined by finding
the eigenvalue with the greatest real part for each excitation frequency Ωp and voltage Vp. The
stability chart is depicted in Fig. (5.6(a)) for the case of having an asynchronous excitation, i.e.
ζ21 = −π/2, while setting all other phases ζij to zero. This is to be compared to synchronous
excitation case, i.e. all phases are set to zero, in Fig. (5.6(b)).
In order to understand the destabilization shown in the stability charts with respect to the

eigenvalues, a section is made at a certain voltage in both figures 5.6(a,b) to depict a third
coordinate representing the maximum real part of system’s eigenvalues. In Fig 5.7 Lyapunov
exponents Re(λ)max are depicted with respect to the parametric excitation frequency Ωp at the
voltage values Vp = 2V, 4V .
The broadband destabilization is obvious in view of Fig. 5.6(a) and Fig. 5.7(a), where the

trivial solution is destabilized at non-resonant frequencies, resulting in positive real parts of
some of the eigenvalues which lead to broad instability domain in the stability chart at higher
levels of the excitation amplitude. This is in accordance to the previous observations of the
linearized system in chapter 4.
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However, unlike the linearized system, the destabilization of the trivial solution leads the
system’s response in this nonlinear system to be influenced by other non trivial solutions, which
are to be analyzed afterwards.

5.7 Parametric Resonances

In order to find the nontrivial solutions, or the fixed points of system (5.60), the system should
be put in autonomous form. To this end a polar coordinate transformation is used to neutralize
the time-periodicity of this system using cylindrical coordinates, in which the periodic solution
is described by the angular coordinate. This is done by choosing

y1 =
1

2
e

Ωpt

2
+ϕ1(t)ω1r1(t), (5.61a)

y2 =
1

2
e

Ωpt

2
−ϕ1(t)ω1r1(t), (5.61b)

y3 =
1

2
e

Ωpt

2
+ϕ2(t)ω2r2(t), (5.61c)

y4 =
1

2
e

Ωpt

2
−ϕ2(t)ω2r2(t). (5.61d)

Through this transformation, we could read the relation between r1 and q1 as well as between
r2 and q2. This could be also understood by tracing the different coefficients back to the original
system (5.18), see Appendix 5.A. Using this transformation, the normal form equations (5.60)
yield

ṙ1 =
δ1
8
(−4 + a1r

2
1 + 2a2r

2
2)r1 −

ξ2Ωpr1 sin(ζ21)

(Ω2
p − (ω2 − ω1)2)(Ω2

p − (ω2 + ω1)2)

+
ξr1
16ω1

(︃
4a9(ω1 − Ωp) cos(ζ21 − 2ϕ1))

(Ωp − (ω2 + ω1))(Ωp − (ω2 − ω1))
+

(︃
δ1
ω1

− 4b9ω1

ω2
1 − ω2

2

+
2δ1
Ωp

)︃
cos(2ϕ1)− 4 sin(2ϕ1)

)︃
,

(5.62a)

ṙ2 =
δ2
8
(−4 + b1r

2
2 + 2b2r

2
1)r2 −

ξ2Ωpr2 sin(ζ21)

(Ω2
p − (ω2 − ω1)2)(Ω2

p − (ω2 + ω1)2)

+
ξr2
16

(︃
4a9 cos(ζ21 − 2ϕ2)

ω2
1 − ω2

2

+
1

ω2
2

(︃
δ2 +
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117



0.00002

0.00004

0.00006

0.00008

0.00010

(a) Ωp ≃ 2ω1

0.00002

0.00004

0.00006

0.00008

0.00010

(b) Ωp ≃ 2ω2

Figure 5.8: Frequency response curves of the normal form at primary resonances for two
voltage values
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Calculating the nontrivial fixed points of the normal form in polar coordinates gives the
frequency response curves plotted in Fig. (5.8) for the same two Vp voltage values which were
used before. The system shows a highly nonlinear softening behavior around the primary
parametric resonances Ωp = 2ω1 and Ωp = 2ω2. Moreover, an interesting phenomenon appears
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in the response curve of r2 about the primary parametric resonance of the second mode. At
about 0.95× 2ω2 an isolated branch occurs, or isola [126]. Moreover, a clear distinction could
be made by comparing Fig. 5.8 with Fig. 5.5, which was calculated in the simplified case under
forced excitation. The comparison shows a much more pronounced nonlinear behavior under
parametric excitation, which could be related to the excitationmethod rather than the excitation
amplitude. The existence of nontrivial fixed points in a wide range of the subharmonic interval
could be beneficial in terms of parametric amplification, if the trivial solution is destabilized.
This would be particularly important for microsystems in general including the system under
investigation.

5.8 Conclusions

The micro-ring gyroscope is nonlinearly modeled, taking into consideration the nonlinear
elasticity following Natsiavas model [125] as well as the nonlinear electromechanical coupling
with the electrodes. All coefficients of the dynamical system are defined by geometry and
material properties or by excitation parameters. However, only two parameters, the electrode-
ring gap d and applied DC voltage Vdc, could be used to trigger different dynamic phenomena.
It was found that increasing Vdc could cause divergence (negative stiffness) and a subcritical
pitchfork bifurcation. But for further analyses only the pre-bifurcation value is used, that is,
when the trivial solution is stable. The system is first simplified and the drive mode is subjected
to forced excitation without any parametric pumping. This yielded a clear Duffing softening
behavior in the resonance curve, which comes in accordance with [78]. The system is then
analyzed when subjected to the proposed bimodal phase-shifted excitation in the previous
chapters. The system exhibits a clear softening behavior, but with extended branches to cover a
wide range of the subharmonic frequency range. However, the inclusion of back-couplings from
the sense degree of freedom q2 gives various phenomena to occur in the subharmonic region of
the primary parametric resonance frequency, including an isolated branch in the resonance
curve of the second (sense) mode.
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Appendix

Appendix 5.A Coefficients of system (5.60)
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6 Experimental investigation of a
microsystem

In this chapter, the experimental investigations and the accompanying model aim at exploring
the behavior of a two-degree-of-freedom system composed of two coupled microcantilevers
that is subjected to bimodal parametric excitation. Although different configurations of bimo-
dal parametric excitation were conducted experimentally before, but the implementation of
asynchronous parametric excitation could be found in a single publication carried out on an
electronic system [36]. Thereby, the conducted experiment in this thesis should be the first
one to be carried out on a mechanical system or on a microelectromechanical system to the
best of the author’s knowledge.
The main goal of this study is to validate some of the theoretical findings discussed in the

previous chapters, and especially the broadband destabilization phenomenon under asyn-
chronous parametric excitation. To this end, an experimental setup was implemented at the
Technical University of Ilmenau in a collaboration with the team of Prof. Thomas Sattel. The
author’s contribution in the setup included an electronic circuit to apply the bimodal parametric
excitation scheme and to study the effect of the excitation asynchronicity on the stability of the
system in view of the theory presented before. Finally, the experimental findings are compared
with numerical results calculated through a lumped-parameter model. This comparison gives
an insight for explaining and extending the experimental observations.

6.1 General experimental setup

The experimental setup used in these experiments is composed of three major systems. The
first system is the mechanical system under study which contains two microcantilevers, whose
vibrations are isolated from each other at their resonant frequencies. The second system is
composed of an electronic control circuit which was designed and implemented in cooperation
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between the two groups of Prof. Hagedorn (Technical University of Darmstadt) and Prof.
Thomas Sattel (Technical University of Ilmenau). The third one is the signal generation and
acquisition system containing digital oscilloscopes, a laser vibrometer and a computer.

(a) Stage 1
(b) Stage 2

(c) Stage 3

Figure 6.1.1: Pictures of the three-stage electronic circuit boards

6.1.1 Cantilevers

The micro-cantilevers are manufactured by the company nano analytik GmbH and attached to
a printed circuit board (PCB) with micro-SD connectivity terminals (see Fig. 6.1.2). They are
produced mainly to function as probes in Atomic Force Microscopes. The micro-cantilever has a
built-in piezoresistive sensor with a Wheatstone bridge placed at its root, and an electro-thermo-
mechanical actuator shown as a zigzag-shaped wire in the figure. The actuator is composed
of a conductive aluminum wire attached to a silicon dioxide layer situated above a silicon
substrate. Since both materials have different thermal expansion values, this configuration acts
as a bimorph actuator controlled through an applied current, which heats up the aluminum
wire. However, since this metallic layer is very thin, exceeding a certain voltage limit leads
normally to irreversible deformation and distorted dynamic behavior. This property will act as
the upper limitation condition for the excitation amplitudes used in these experiments.
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Figure 6.1.2: Microcantilever and its holding Micro-SDCard

6.1.2 Electronic circuitry

The electronic control system is developed in three stages, which are shown in Fig. 6.1.1. The
first stage (Stg1) contains a pre-amplifier for the piezo-resistive displacement sensor in addition
to being an interface between the cantilevers mounted on the micro-SD card and the rest of the
control circuit. The second stage (Stg2) comprises the amplification and filtering modules for
the incoming sensor signal, as well as current-voltage converters for excitation signals before
being applied on the thermoelectric actuator. Stg2 acts as an mid-stage between Stg1 and
the third stage (Stg3). Both the first two stages of the electronic system were developed and
assembled by Hans-Georg Pietscher in Ilmenau [127]. A brief description of the electronic
circuits for the boards Stg1 and Stg2 is provided in Appendix 6.A.
The third stage (Stg3) represents the contribution of the author and contains the parametric

excitation circuitry in addition to added nonlinear feedback signals. This is explained through
the schematic drawing in Fig. 6.1.3. In this figure both Stg1 and Stg2 are represented compactly
as amplifiers connected directly to either the sensor or the actuator of both cantilevers. However,
Stg3 interfaces only with Stg2. The input/output ports of Stg3 could be classified into incoming
sensor signals, output excitation signals and control signals. The incoming sensor signals from
Stg2 are shown in Fig. 6.1.3 as S1, the sensor signal of the first cantilever, and S2 the sensor

125



P11

P12

P21

P22

Figure 6.1.3: Schematic of Stg3 in the electronic control system (see Fig. 6.1.1(c)).

signal of the second cantilever. Stg3 can possibly send two kinds of output signals towards Stg2,
either signals carrying only parametric excitation or signals carrying parametric excitation
in addition to cubic nonlinearities. Throughout this work, only the latter is used and named
Out1 and Out2, each corresponds to one of the cantilevers. The control signals come from the
oscilloscopes (see Fig. (6.1.4)). They include parametric excitation signals, which are input to
Stg3 through the ports P11, P12, P21 and P22, and the forced excitation signals through the
ports F1 and F2.
As can be shown using Fig. (6.1.3), the role of this electronic circuit is to provide two types of

signal processing, the parametric excitation coupling and the electronic initiation of nonlinear
terms in the two-cantilever dynamical system. The first task is implemented through four
multipliers of the type MPY634KP, each one represents a parametric excitation term in the 2×2

parametric excitation matrix of the dynamical system, and each one is supplied with a single
control signal, which is named in accordance with the intended parametric excitation term. A
circuit diagram explaining the connections of the multipliers is provided in Appendix 6.B.
Putting the mechanical system in addition to the electronic one (Fig. 6.1.3) in a mathematical
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form of a two-degree-of-freedom system, we get

Mq̈ +Dq̇ +Kq + f̃nl⏞ ⏟⏟ ⏞
mechanical system

+

[︄
P11 P12

P21 P22

]︄
q +

{︄
NL1 q31

NL2 q32

}︄
=

{︄
F1

F2

}︄
⏞ ⏟⏟ ⏞

electronic system

. (6.1)

Here we have expanded the parametric excitation matrix and the forced excitation vector to
illustrate work principle of the electronic board Stg3, where q is the vector of modal coordinates,
D andK are the damping and stiffness matrices respectively, NL1 and NL2 are the coefficients
of the electronically induced nonlinear cubic terms, f̃ represents the system’s inherent nonlinear
terms, and F1 and F2 are the forced excitation terms.
In (6.1) the four parametric excitation control signals P11, P12, P21 and P22 are represented

in a 2× 2 matrix form, where P11 and P22 are intrinsic parametric excitation signals, whilst
P12 and P21 are the coupling excitation signals. In view of the schematic diagram, Fig. 6.1.3,
equation (6.1) could be explained as follows.
Firstly, as an example of the parametric excitation, the multiplier connected to the port P12

takes the sensor signal S2, multiplies it by P12 signal and inputs it to the forcing output of the
first degree of freedom Out1, which also receives the output of the multiplier feed by P11. The
same could be said for P22 and P21 feeding Out2.
Secondly, The electronically induced nonlinearities are implemented through the same type

of multipliers, where the sensor signal is multiplied by itself two times through two successive
multipliers and added to the parametric excitation signal and the forced excitation signals at
the final output Out1 or Out2. These nonlinearities correspond directly to the electronically
induced nonlinear terms NL1 × S13 and NL2 × S23, where S1, S2 are the sensor signals
corresponding to q = q1, q2 in the equation.
Thirdly, the forced excitation terms F1 and F2 are implemented by using an addition function

in the mentioned multipliers. Thus, the multiplier MPY634KP gives an output of two multiplied
signals and another added one. Then the output Out1, for instance, comprises the four forcing
elements, the two parametrically excited signals P11× S1, P12× S2, the forced excitation F1
and the induced nonlinearity S13.
To sum up the signal flow in this circuit, the sensor signals of both cantilevers S1 and S2 are

input to the four multipliers and represented in (6.1) as q1 and q2 respectively. The outputs
Out1 and Out2 are summations of the parametric excitation terms, the forced excitation terms
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Figure 6.1.4: A picture of the whole measurement system with labels indicating the main
components; the electronic system, the vibrometer, and the oscilloscopes.

and the nonlinear terms. That is,

Out1 = −P11× S1− P12× S2 + F1−NL1× S13, (6.2a)
Out2 = −P21× S1− P22× S2 + F2−NL2× S23, (6.2b)

where other gains and factors are eliminated for brevity. The negative signs before some of the
terms in (6.2) are considered to comply with the mathematical formulation in (6.1).

6.1.3 General connection plan

As can be shown in Fig. 6.1.4, the experimental setup can be broken down into the main com-
ponents mentioned before, the cantilevers, the electronic control system, and the measurement
system containing the oscilloscopes and the vibrometer. As explained before, the cantilevers are
connected to the electronic circuit via Stg1. The electronic system is interconnected according
to the requirements of each experiment, which will be explained in each experiment in detail.
Secondly, the four oscilloscopes act as a signal-acquisition and generation system, that is, they
interface with the electronic circuit to provide excitation signals or receive measured signals.
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On the other hand, the control scripts, written on Matlab (see Appendix 6.D) are used to
control these oscilloscopes. Moreover, the oscilloscopes are connected to each other via a
synchronization bus, such that they could measure and generate wave signals at the same
sample frequency and with synchronized timing. This last configuration step is significantly
important in generating different waves with certain phase-shift as will be shown afterwards.
In addition, the cantilever vibrations are measured using a laser vibrometer, which sends its
signals also to the oscilloscopes. Relying on the Doppler effect, the vibrometer measures the
vibration velocities, and in addition the vibrometer used in this work provides a hardware-based
time-integration of the velocity signal to provide a displacement signal. More information about
the devices used in the experiments is given in Appendix 6.C.
The integration of the vibrometer in the setup is important here for two reasons. Firstly, its

signals are not affected by the electronic noise that may appear in the piezoresistive sensor
signals, in that way we can differentiate between noise induced outputs and vibration induced
ones. Secondly, the vibrometer can provide a calibration relation between sensor supplied
voltage and the actual displacement values in nanometers nm. Using the gains of the whole
electronic system and the sensor gain, this information could be calculated, but the vibrometer
provides a more direct and much more accurate method for the same goal. Since only one
vibrometer is available, it points normally to the cantilever C1 in coupled system measurements.

6.2 Characterization of Cantilevers

This experiment involves the dynamic characterization of the used cantilevers, C1 and C2, in
the parametric excitation experiments carried out afterwards. The characterization includes
the determination of the natural frequency and the quality factor.

6.2.1 Experimental Setting

The experimental setup includes one cantilever, either C1 or C2, connected to a corresponding
Stg1 board, which is connected to Stg2. The parametric excitation circuit is excluded here of
course, so Stg3 is not connected in this experiment. Stg2 gains its sinusoidal forced excitation
input from an oscilloscope’s generator, and transfers it after processing to the thermo-actuator
on Stg1, which brings the cantilever into oscillation. Stg2 receives the sensor signal again from
Stg1, and forwards it after band-pass filtering again to the oscilloscope. The generator signal is
supplied by a MatLab code and the sensor signal is again acquired by the computer through
the oscilloscope. The cantilever vibrations, are measured through the sensor signal, and in
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Figure 6.2.1: The connection plan for the characterization experiment

addition through the vibrometer displacement signal.

6.2.2 Measurement procedure

The natural frequency of each cantilever is determined at first approximately using manual
tuning of the excitation frequency ωi using the oscilloscope’s manufacturer software. That was
only done in order to define a narrow frequency band, within which the frequency response
curve would be afterwards determined. Then, the frequency sweep algorithmwith the excitation
signal F = 0.5V + 1V × cos(ωf t) is used to determine the frequency response curve, where
ωf = ωi ± 500Hz, and ωi is the approximately determined cantilever’s natural frequency. In
addition, the cantilever is subjected to a step-function excitation at the natural frequency,
and then left to exhibit free oscillations. From both experiments the natural frequency and
cantilever’s quality factor in ambient atmosphere are determined.

6.2.3 Results

The frequency response curves in Fig.(6.2.2) show a purely linear response, where the natural
frequencies are found to be ωC1 = 100.98 kHz and ωC2 = 101.6 kHz, while the quality
factors are QC1 = 572 and QC2 = 612 respectively. To avoid ambiguity, the frequencies will
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Figure 6.2.2: Frequency response curves of both cantilevers

be always represented in Hz, since this unit is preferable through measurement, however
we will keep using ω instead of f . The 2π factor is taken into consideration through the
mathematical and numerical calculations. Moreover, the responses of the cantilevers acquired
through the piezoresistive sensor were calibrated using the vibrometer signals giving a a relation
of 1V (sensor response) ⇒ 83nm (vibration amplitude) for the C1 cantilever and 1V ⇒ 59nm

for the C2 cantilever.

6.3 Bimodal parametric excitation

After determining the dynamic properties of both cantilevers through the previous experiment,
we are now interested in investigating the effect of bimodal parametric excitation of the two-
cantilever-system. In order to do that the third electronic board (Stg3) is then connected to
the setup . As explained before in (6.1), there are four excitation signals (P11, P12, P22) and
(P21), whereas the phase shift of the last signal with respect to the former three signals is set
to zero or to −π/2. That is, we carry out two experiments, one with a phase shift and the other
without. In each experiment the stability chart is then determined and the effect of adding the
phase shift is discussed.

6.3.1 Experimental Setting

As depicted in Fig. (6.3.1), the two cantilevers (mounted on micro-SD cards) are connected
to the electronic control system through Stg1 board. Each Stg1 board is connected to the
corresponding Stg2 board. Both Stg2 boards are then connected to Stg3 board which is the
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Figure 6.3.1: The connection plan for the bimodal excitation experiment
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one responsible for initiating the parametric excitation of the system.
Three signal generators are used. One of them provides the parametric excitation signal

to three multipliers on the Stg3 board, which are P11, P22 and P12. The last multiplier P21 is
connected to a different signal generator in order to allow for inducing a phase shift with
respect to the other three parametric excitation elements. The third generator is then used to
provide both cantilevers with a 0.6 DC voltage. The sensor signals S1 and S2 are then captured
by the digital oscilloscopes. And finally, the potential difference at the thermoelastic actuator
is monitored, for the sake of insuring not having an overload (>2V) leading to failure. The
Wheatstone bridge voltage is set at -3 V in order to provide an adequate signal amplitude.
The vibrometer laser is pointed to cantilever C1 in the whole experiment. Unfortunately, the

vibrations of the cantilever C2 are only acquired through the piezoresistive sensor, since only
one laser vibrometer could be used.

6.3.2 An electro-thermal effect

The mathematical modeling of the electro-thermal coupling mechanism for the investigated
cantilever beams is not meant to be discussed here, however, an important feature of this
actuation method will be highlighted for the sake of completeness with respect to the design
of this experiment, and in order to explain the usage of a DC voltage in all of the described
experiments.
Through the design of bimorph electrothermal actuators it is known that the electrothermal

force acting on the mechanical system is proportional to the square of the applied voltage [128,
129], that is

Fthermal = αV (t)2. (6.3)

As a result, since the applied voltage is periodic, we obtain only an actuation at double the
excitation frequency. This means in the case of a parametric excitation the parametric force
becomes

Fp(x, t) = αF0 cos
2(Ωpt)x(t)

2 =
F0α

2
(1 + cos(2Ωpt))x(t)

2. (6.4)

To overcome this effect and to have only an excitation with Ωp frequency a forced DC voltage
is applied (corresponding to F1,F2 in (6.1)), this means

Ftot = α [FDC + FAC(t)x(t)]
2 = α [FDC + F0 cos(Ωpt)x(t)]

2 (6.5)

= α

[︃
F 2
DC + F0FDC cos(Ωpt)x(t) +

F 2
0

2
(1 + cos(2Ωpt))x(t)

2

]︃
. (6.6)
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From this equation, two main conclusions are obtained. Firstly, the parametric excitation
should have an accompanying DC forced excitation in order to have an effect from this actuation
method. And secondly, the last term does not affect our measurements, since it describes a
significantly higher frequency term which does not influence the dynamics of the mechanical
system under the applied excitation conditions.

6.3.3 Measurement procedure

In accordance with (6.2), the experiment is carried out through applying a parametric excitation
at each of P11, P22 and P12 with

Pij = Vp cos(Ωpt), (6.7)

while the fourth parametric excitation signal P21 has a phase shift ζ, thus

P21 = Vp cos(Ωpt+ ζ), (6.8)

where ζ = 0 in the case of no phase-shift, or ζ = −π/2, which is the only phase-shift considered
in this work. This particular phase-shift value was shown before to lead to the aimed result of
having a broadband destabilization of the trivial solution, see chapter 3.
In addition, the direct forcing component F1 and F2 are set to a constant voltage of 0.6

V. Although this does not contribute to the system dynamics, it is necessary to activate the
parametric excitation in general. This corresponds to the quadratic effect induced by thermo-
elastic excitation process explained in the previous section.
Before starting the experiment, the gains of Stg2 boards were adjusted, such that the

threshold of instability for each cantilever alone at the double of the eigenfrequency is equal
to approximately 3 V. This value was chosen in accordance with the maximum voltage the
thermo-elastic actuator can sustain.
The measurement procedure involves discretizing the two-dimensional parameter space of

excitation amplitude Vp and frequency Ωp into a grid involving the three combination resonance
frequencies 2ωC1, ωC1 + ωC2 and 2ωC2 and up to a maximum excitation voltage of 4V, with an
exception of the summation combination frequency for the phase-shifted excitation case. The
difference combination resonance frequency is investigated alone, since it lies in a far away
frequency range.
The measurement is then carried out by choosing values of the pair (Vp,Ωp) inside the

measurement grid, while the response is evaluated to give a resonance, i.e. instability, or no
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resonance. Through this binary assessment the stability chart is constructed, and the borders
of stability are found, giving the expected Arnold’s tongues shape.

6.3.4 The stability chart

As shown in figures 6.4.3 and 6.4.4, the Arnold’s tongues are found for the system with
and without a phase-shift. The bimodal parametric excitation is applied on the cantilevers at
frequency-amplitude pairs with a spacing of 10 Hz in frequency and 0.1 V in the excitation
amplitude. Then, only the instability points are shown in the figures. A fitted curve is then
computed to estimate the instability borderlines.
Fig. 6.4.3 shows different available maximum excitation amplitudes among different instabi-

lity regions. This can be explained that the maximum attainable excitation amplitude for each
instability tongue corresponds to the same maximum voltage applied on the thermoelastic
actuator. The voltage applied on the actuator, however, is a product of the excitation amplitude
and the sensor’s feedback signal since it is a parametric excitation signal. Therefore, the maxi-
mum attainable voltage on the actuator (2 V) corresponds differently to different excitation
amplitudes, which causes, as shown, different limitation values for the measured instability
tongues.
Moreover, the instability regions are found at the primary resonance frequencies Ωp =

2ωi, i = C1, C2 and at the summation frequency Ωp = ωC2 +ωC1 under synchronous excitation
(ζ = 0). While under asynchronous excitation (ζ = −π/2) an instability tongue is also observed
at the difference combination frequency Ωp = ωC2 − ωC1.
The instability tongues for the synchronous case show also a frequency and amplitude shifting

in comparison with those for ζ = −π/2. A particular feature is the high amplitude shift for the
tongue of summation combination resonance as shown in the figure. In addition, since the
maximum available voltage that could be applied on the thermoelastic actuator without failure
put a large constraint on the attainable results, the broadband destabilization feature could
not be observed.
Thus, an alternative goal was put, which is to observe other features which could be enough

to validate a mathematical model that predicts the broadband phenomenon. To this end, an
additional analysis is carried out on measured instability tongues, which is to investigate the
change in the topology of the stability chart in the two cases under study. To study the change
in the geometry of each instability tongue, the instability tongue for each resonance case is
then compared in both cases, with and without phase-shift. But since the instability tongues
showed a substantial shifting in amplitude and frequency, they were centered with respect to
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Figure 6.3.2: Comparison between the instability tongues for ζ = 0 and ζ = −π/2

each other by shifting one of them in frequency and amplitude to a common centre (Ωc, Ac).
As depicted in Fig. 6.3.2 we can see obviously an increase of the tongues’ widths in the case of
having a phase-shift. It must be noted however, that they are not that significant, since all the
experiments are done at low excitation levels. And returning to theory, this increase in width
effect occurs nonlinearly with respect to the excitation amplitude. This will be discussed again
later with respect to the model-based numerical results.

6.3.5 Experimental determination of the logarithmic increment

The change in system’s Lyapunov exponents inside the instability tongues is intended to be
measured in order to validate the previous theoretical findings for the theory of parametric
excitation [37, 80]. By linearizing the investigated system around the trivial solution the
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Figure 6.3.3: Divergent responses with different system exponents Re(λ1), Re(λ2) > 0 at
different parametric excitation frequencies Ωp1,Ωp2.

system’s Lyapunov exponent can be described by

Re(λ) = −ζdωi, (6.9)

where i = C1, C2, and ζd is the damping ratio of the linearized system, which carries a negative
value in case of instability. Therefore, for the sake of measuring Re(λ), the damping ratio
ζd is determined through the method of logarithmic decrement known from the theory of
linear vibrations [130]. However, in this case it would be more proper to call it the logarithmic
increment. In all cases, by measuring the response amplitudes x(t1) and x(t2), when t2− t1 = T ,
and T = 2π/

√︁
1− ζ2dωi, we get

x(t1)

x(t2)
= eζdωiT

cos(
√︁

1− ζ2dωit− ϕ)

cos(
√︁

1− ζ2dωit− ϕ+ 2π)
(6.10)

= eζdωiT = e

2πζd√
1−ζ2

d , (6.11)

then
δinc = ln

x(t1)

x(t2)
=

2πζd√︁
1− ζ2d

, (6.12)
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Figure 6.3.4: Measured values of Re(λ) inside the instability tongues

where in this case both ζd and δinc have negative values.
An example of two different time histories at two different parametric excitation frequencies

inside an instability tongue is shown in Fig. 6.3.3. As an example, from these two time histories
two different values of Re(λ) are calculated corresponding to two excitation frequencies Ωp.
By plotting the values of Re(λ) against excitation frequencies inside each instability tongue,
Fig. 6.3.4 is then obtained. From this figure, it could be shown that the change of Re(λ) around
the resonance frequency follows a near-parabolic shape, which coincides with the previous
theoretical findings, for instance in Fig. 3.2 in chapter 3.
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6.4 Lumped-parameter model and discussion

The two-cantilever system is modeled as a two-degree-of-freedom lumped parameter system
for the sake of having more insights about the experimental results. Each degree of freedom
is a single mode, corresponding to the cantilever’s first mode of vibration, which is normally
exhibited through measurement. However, this model is phenomenological, which means it is
meant to be a qualitative description of the cantilever motion, since a precise calibration of
system’s coefficients is not yet available due to the complexity of the electro-thermomechanical
coupling [129]. Furthermore, as shown here, a qualitative comparison will be sufficient to
discuss the experimental results through the presented model. Moreover, although the elec-
tronically induced nonlinearities (see (6.2)) are still present, they were of little influence on
the measured system behavior, thus, they were excluded from the model. And finally, the
experiment carried out on the coupled system involved time-invariant F1 and F2, which have
no dynamic effect and could be safely excluded as well. This leaves us with a linear system of
differential equations with displacement-proportional time-varying coefficients.
According to the previous arguments, (6.1) is then rewritten to be

m1x1̈ + c1x1̇ + k1x1 + ϵ11x1 cos(Ωpt) + ϵ12x2 cos(Ωpt) = 0, (6.13a)
m2x2̈ + c2x2̇ + k2x2 + ϵ21x1 cos(Ωpt+ ζ) + ϵ22x2 cos(Ωpt) = 0, (6.13b)

wheremi represents the modal masses, ki the modal stiffness coefficients, ci the modal damping
coefficients, ϵij the parametric excitation amplitudes and ζ a phase shift. By normalizing with
respect to the modal mass we get

x1̈ + 2δ1ωC1x1̇ + ω2
C1x1 + ξ11x1 cos(Ωpt) + ξ12x2 cos(Ωpt) = 0, (6.14a)

x2̈ + 2δ2ωC2x2̇ + ω2
C2x2 + ξ21x1 cos(Ωpt+ ζ) + ξ22x2 cos(Ωpt) = 0. (6.14b)

Using the characterization measurement data acquired for each cantilever (see section 6.2)
we can supply the model with δ1, δ2 and ωC1, ωC2. However the forcing elements ξij could
not be measured or calibrated. However, according to the manufacturer’s data sheet a rough
estimation could be made. The force sensitivity is of the order of V/mN which gives a net force
of about ∼ 10−3N in the range of the applied voltage and since the modal mass is of the order
of nanograms, i.e. ∼ 10−12kg, the normalized excitation amplitude ξ = ϵ/m could be of the
order of ∼ 108 − 109.
The phase-shift ζ represents the most important parameter in the discussed experiments

and therefore in this explanatory model. It will carry through our calculations only two values,
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either zero or −π/2, which resembles the experiments carried out and discussed in section 6.3.
The parametric excitation signals in the experiment explained in section 6.3 were all of the
same amplitude, thus, in this affirming model we assume that they are all equal, i.e. ξij = ξ

Therefore, the stability charts of (6.14) in the parameter space Ωp-ξ are calculated for the
two different cases, synchronous (ζ = 0) and asynchronous (ζ = −π/2). The calculation
was carried out numerically using Floquet theory [41, 80]. The results are then shown in
Fig. 6.4.1. These results are very similar to what was shown before for other parameter values
(see sections 3.1.3 and 5.6). The stability chart shown for the case of synchronous parametric
excitation represents a common one for coupled parametrically excited systems [37], however
having a phase shift of π/2 leads to a broadband destabilization. This is explained by observing
the merged instability region in Fig. 6.4.2 above approximately ξ = 3× 1010N/m.kg. In this
region, the system is unstable for a broad band of excitation frequencies.
If the system is nonlinear, the system could have other nontrivial stable solutions inside the

instability regions of the trivial solution, otherwise the system’s behavior will be unbounded.
This phenomenon becomes particularly useful for microsystems, since the nontrivial stable
solution provides an amplification of the response. Otherwise, even for linear systems, a
parametric amplification is achieved by choosing the parameters which corresponds to be just
below the instability region. For this case, the system Lyapunov exponents are significantly
increased near the border of instability, and thereby the system’s response is amplified. These
aspects were discussed in section 3.1.6.
The discussed experiment in this chapter aimed, therefore, first to validate this broadband

destabilization or amplification. However, the cantilevers’ actuators fell short of reaching the
required excitation amplitudes. Due to this limitation, the parametric excitation amplitude ξ
could not exceed 2.3× 109N/m.kg, which is shown in Figs. 6.4.2 and 6.4.1.
This model, however, could be validated through other common features between theory and

experiment. Having done that, the prediction of the model beyond the measurement constraints
could be considered at least to be feasible, and thus could be attained as soon as the practical
constraints allow. In this way, the model serves as an extension of the measured observations
towards currently unattainable ones. In other words, the broadband destabilization is predicted
by the model but yet experimentally unattainable under the available measurement conditions.
However, since the model predicts its existence, our main goal here is to validate this model for
the sake of asserting the model’s prediction.
According to this argument, we concentrate on the stability chart below themaximum possible

excitation amplitude. Therefore, the experimentally feasible parameter space is enlarged in
Figs. 6.4.3 and 6.4.4. In these figures both experimental and numerically calculated results are
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Figure 6.4.1: Calculated stability chart for the model (6.14), where ωC1 = 100.98kHz, ωC2 =
101.6kHz and ζ = 0.

Figure 6.4.2: Calculated stability chart for the model (6.14), where ωC1 = 100.98kHz, ωC2 =
101.6kHz and ζ = −π/2.
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depicted.
Before discussing the matching between model and experiment, several observations are

made between Fig. 6.4.3(c,d) and Fig. 6.4.4(c,d) to discuss the role of the phase shift ζ in
changing the stability chart at these low excitation amplitudes. Firstly, the difference com-
bination resonance appears only in the phase-shifted excitation. This observation was made
theoretically before in previous works [36, 37]. Secondly, the instability tongue corresponding
to the summation combination resonance frequency is shifted upwards in the case of the
phase-shift. Thirdly, the instability tongues of the parametric primary resonances are slightly
shifted in frequency for the asynchronous excitation case.
Additionally, another subtle observation could be made about the width of the instability

tongues. By returning to the full picture of the stability charts in Figs. 6.4.1 and 6.4.2, a
nonlinear gradual increase in the instability tongues could be observed up to the excitation
amplitude where they merge to give the broadband instability region. This increase of the
instability tongues’ widths could be observed as well at low excitation levels. In Fig. 6.4.5
a comparison between the instability tongues of both cases is depicted. Since the tongues
are shifted in amplitude and frequency, those of the phase-shifted excitation case are then
centered with respect to the in-phase excitation case for the sake of comparison. By doing
that, we observe a slight increase in the instability tongue’s width in each case, significantly
appearing in the summation resonance instability. These model-based results come inline with
the experimental observations discussed in section 6.3.
These discussed features could be observed in the experimentally obtained stability charts.

In comparing the a and b plots with the corresponding c and d plots in each of the figures 6.4.4
and 6.4.3, we can see a high topological similarity between model and experiment. The
amplitude-shift of the summation resonance instability tongue could be observed as well in
the experiment, and was checked for reproducibility in several other experiments with other
cantilevers. The model could also explain the reason behind the appearance of the difference
combination resonance in experiment when only a phase-shifted excitation is applied.
In summary, in addition to the topological similarity between the parameter spaces in the mo-

del and the experiment, three distinct features are found to exist in both of them. In comparing
the synchronous and the asynchronous excitation cases, the features are then the amplitude-
shift of the summation resonance tongue, the existence of difference combination resonances,
and the relative slight increase of instability tongues’ widths, all of them occurring under
asynchronous excitation. Since they are distinct observations in both model and experiment,
we could then affirm the validity of the presented model.
Therefore, the model is validated and predicts the broadband destabilization at higher
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excitation amplitudes than the attainable ones. Thus, the improvement of the excitation
method in further investigation is recommended for the realization of the broadband instability
effect.

6.5 Conclusions

In this chapter, the stability of the trivial solution of a coupled two-microcantilever system is
experimentally investigated. The main aim of this study is to validate the previous theoretical
findings discussed in the previous chapters. These findings included some interesting and
novel phenomena for the microsystems’ technology in general. A chief phenomenon is the
broadband destabilization of the system which could be utilized to form a broadband parametric
amplification. To this end, an electronic control circuit was built to induce a bimodal parametric
excitation mechanism in a system of two microcantilevers. The cantilevers were only coupled
through the parametric excitation. Although the broadband destabilization phenomenon could
not be observed experimentally, a mathematical model predicting the aimed broadband effect
could be validated through the experimental results. In this way, the model serves to be as an
extension of the currently available experimental findings.
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Figure 6.4.3: Stability chart of the bimodal parametrically excited system with a phase shift
ζ = −π/2, where ωC1 = 100.98 kHz, ωC2 = 101.6 kHz
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Figure 6.4.4: Stability chart of the bimodal parametrically excited system without a phase
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Appendix

Appendix 6.A Circuit diagram: Stages 1-2
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Figure 6.A.1: Circuit diagram for stages 1 and 2 in the electronic system (see Fig. 6.1.1(a,b)),
modified from [127].

Fig. 6.A.1 shows the circuit diagram for Stg1 and Stg2 boards. The figure shows six different
electronic modules numbered from 1A,1B to 6, which will be explained. In Stg1 a low-noise
instrumentation amplifier (module 3) of the type INA849 is implemented, which is supplied
with the sensor signal from the Wheatstone bridge placed on the cantilever. The output of this
amplifier is then transferred through a ribbon cable to Stg2 for further signal processing. The
cable carries, in addition, the excitation signal and the bridge voltage. This voltage is set to -3V
for all the experiments reported here, in order to provide a suitable control of the parametric
resonances. Both signals are supplied from Stg2.
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The main hardware processing of excitation and sensor signals is carried out on Stg2. As
shown in Fig. (6.A.1), Stg2 circuit is positioned in the midway between Stg1 (cantilever pre-
amplifier) and Stg3 (parametric excitation). The signals directed towards Stg1 include: the
voltage supply for the sensor bridge after passing through a voltage-current converter using
the operational amplifier OPA2211 (module 2B), in addition to the thermoactuator excitation
signal after passing also through a voltage-current converter using LM7372 (module 1B). The
pre-amplified sensor signal coming from Stg1 is then treated on Stg2 in three parallel paths.
One path includes a low-pass filter using OPA2211 (module 6), the second includes a high-pass
filter using THS4022 (module 5) and the last one includes a low- and high-pass filters using
THS4022 (module 4). All of the experiments carried out in this work use the last output, in
order to filter the signals between 1.59 kHz and 1.59 MHz.

Appendix 6.B Circuit diagram: Stage 3

(a) Schematic diagram
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Figure 6.B.1: Schematic and circuit diagrams of a multiplication module in Stage 3 board

As explained in section 6.1.2, the electronic circuit of Stage 3 board is composed of several
multiplication modules (see Fig. 6.1.3). In order to show the circuitry of this electronic board,
the circuit diagram of one multiplier is depicted in Fig. 6.B.1. This diagram is typical for all
other multiplication modules in the electronic board with slight variations. This should give
enough detail about the design of this board.
As shown in the figure the multiplier MPY634KP takes four main multiplication input signals,

along with an addition-signal, and gives a single output Vo. The output signal is then calculated
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according to
V0 =

(X1 −X2)(Y1 − Y2)

SF
+ Z2, (6.15)

where X1, X2, Y1, Y2 are the multiplication input signals, SF is a scaling factor, and Z2 is
an added signal to the whole sum. The scaling factor could be controlled by attaching the
corresponding resistance of the value

RSF = 5.4kΩ

(︃
SF

10− SF

)︃
. (6.16)

In the presented multiplication module of P11 in Fig. 6.B.1,X2 port is connected to S1 signal,
Y1 port to P11 signal, and Z2 to F1. Neglecting the scaling factor for now, we get

Vo = −P11 × S1 + F1, (6.17)

which represents a part of the total output to actuator 1 Out1 in (6.2). The negative sign used
before the first term is to comply with the mathematical model (6.1).
The inputs are attached to pull-down resistors to eliminate floating values at the multiplier

inputs. Moreover, a capacitor is connected to the input of the sensor signal to filter out DC
signals. To add the output of two multipliers according to Fig. 6.1.3, taking for instance P11

and P12 as an example, the output signal of the multiplier P11 is connected to the addition
input port Z2 in the multiplier of P12. The same case happens for successive multiplication
operations, for instance for S13, but using the multiplication input ports instead (see (6.2)).

Appendix 6.C Devices

The main devices used through the experiments are:
• Four Oscilloscopes TiePie Handyscope HS5 each with two input channels of 250 MHz
maximum bandwidth and 1 output signal generator with output frequency of up to 40
MHz and output voltage of up to +/- 12 V. That means they provide eight input channels
and four generators in general.

• Laser Vibrometer PolyTec OFV-5000 with frequency range of 0-24 MHz and maximum
velocity of 10 m/s connected to a microscopic lens 20X of aperture f/200.

• OWIS Positioning system with linear piezo-tables, in which the holders of stage 1 boards
are fixed, and another vertical table holding the laser head of the vibrometer.
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Appendix 6.D Software

The control of the whole measurement system is performed by a program composed of a
set of Matlab scripts based on Object-Oriented Programming (OOP). This program includes
several functions which are the control of the piezo-positioning system, the vibrometer and the
oscilloscopes. It was developed by the team of researchers at the Mechatronics department in
TU Ilmenau. The measurement scripts are based on their template and modified by the author
for the purposes of the explained experiments in this chapter. The main scripts used for these
experiments are the following:
• A script for carrying out stepped sweep in the frequency-amplitude parameter space.
• A script for applying linear frequency sweep to determine the natural frequencies of the
cantilevers.

• A script for measuring the gain values of Stg2.
• A script for measuring the vibration decay in a free vibration experiment.
• A script to determine the logarithmic increments at each frequency for a given amplitude.
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7 Conclusions and outlook

Parametric excitation is discussed in the literature in various forms: in single-degree-of-freedom
systems, typically the Mathieu equation, or multi-degree-of-freedom systems, also either in-
cluding synchronous or asynchronous parametric excitations, and as well as for the cases of
resonance or anti-resonance. However, much less attention is given to parametrically excited
nonlinear systems, not to mention the asynchronous parametric excitation, which refers to
having out-of-phase coupling parametric excitation terms. Additionally, this type of excitation
turned out to be of particular importance to nonlinear micro and nanosystems, however, they
were not considered before for this type of excitation. In terms of experiments, previous studies
did not consider asynchronous parametric excitation in mechanical systems. These open ques-
tions lead the motivation to write this thesis, in which the aspects mentioned are approached
throughout the thesis in a systematic way, from the simplest systems to time-periodic nonlinear
ones.
The results of this work can be classified into three major domains. In the first domain,

a theoretical study is carried out on time-periodic nonlinear systems, while considering an
example of a two-degree-of-freedom system. This class of systems manifests the major types of
destabilization, namely, nonlinearities, time-periodicity, and coupling of system’s degrees of
freedom. In addition, these systems gain their importance not only in the theory of dynamical
systems, but also because they are typically present in many micro and nanosystems. The
second domain is concerned with the implementation of the theoretical findings in micro-ring
gyroscopes, as an example of microsystems, with an emphasis on the effect of the broadband
amplification effect. Finally, the experimental realization represents the third domain, through
which an experimental study is carried out on a system of two cantilevers for the sake of
validating the discussed theoretical findings, and observing phenomena which were not before
experimentally considered. The results in each of these three domains are discussed in detail
as follows.
In the first domain of contribution, a theoretical study on linear and nonlinear time-periodic

systems is presented. Through this study, the stability of system’s solutions is shown to depend
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heavily on the synchronicity of the parametric excitation terms. Specifically, if the coupling
terms of the parametric excitation matrix are out of phase, an interesting effect is observed;
the destabilization effect in a broad band of parametric excitation frequencies. This means, in
contrast with the common utilization of parametric amplification at resonant frequencies, this
type of excitation offers a destabilization effect at non-resonant frequencies. This result was
discussed before in the literature and named the “total instability” effect, but neither was it
validated experimentally nor was it covered thoroughly for nonlinear systems. Through this
work, this phenomenon is discussed again for linear systems while giving some additional
insights. A stability chart is produced and found to appear topologically similar through
analyzing different systems incorporating this type of excitation. Since particular attention is
given in this work to small-scaled systems, a special case is considered through the discussion
where the natural frequencies are relatively large, in hundreds of kHz, while the difference
between them accounts to a smaller order of magnitude, hundreds or thousands of Hz. In this
case, a vast separation between summation and difference frequencies exists, which makes the
mentioned phenomenon more pronounced in microsystems under asynchronous parametric
excitation.
Furthermore, the discussion is then extended to forced parametrically excited systems for

the sake of elaborating on the effect of parametric amplification which plays an important role
in micro and nanosystems. Non-resonant parametric amplification has been known to resemble
an increase in the response amplitude at resonance frequencies near the border of instability.
This is precisely what differentiates it from the case of a parametric resonance, where the trivial
solution is strictly unstable. This distinction in the literature expresses itself in the selection of
the parametric excitation amplitude either to be just below the onset of instability for the case
of non-resonant parametric amplification, or to cause instability for the case of a parametric
resonance. In order to explain this, the system is analyzed analytically using the multiple
scales method in order to discuss the mechanism of non-resonant parametric amplification
mathematically. The analysis was carried out up to the second order approximation. Through
the analysis, the amplitudes of first order correction terms showed a significant dependence
on the parametric excitation. Specifically speaking, the amplification of the amplitudes of
these terms was directly related to the destabilization of the trivial solution. This means, for
the asynchronous parametric excitation, an amplification in these amplitudes is observed at
non-resonant frequencies in addition to the resonant ones leading to a broadband parametric
amplification.
The previous results are inline with the experimental studies conducted near the border of

instability, where the amplification gains were significantly increased. Nevertheless, up to this
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analysis step, it is still unclear how these correction terms could induce these amplification
gains despite being of a lower order of magnitude. This could be clarified by carrying out
the analysis up to the second order of approximation. Through this analysis the Lyapunov
exponents of the system’s homogeneous solution were deduced and found to be identical to
those in the case of unforced parametrically excited systems. Thus, only near the instability
border the homogeneous solution does start to have a significantly slow attenuating envelope,
which in short times could be of the same order of magnitude as the particular solution,
i.e. the forced response. However, the initial conditions of the homogeneous solution will
also be influenced by the perturbations induced through the correction terms, which induce a
broadband amplification effect as mentioned previously. In this way, the experimentally observed
parametric amplification could be explained by having a slow attenuated homogeneous solution
allowing a greater influence of the correction terms carrying the broadband effect, and then
added to the particular forced response. A direct time integration is carried out also at different
parametric excitation amplitudes around the stability border to investigate this correspondence
between the amplification of the response and the destabilization of the trivial solution, and it
was proved to be existing. Moreover, this could explain the reason behind having this parametric
amplification only near the onset of instability, since it only takes place when the envelope of
the homogeneous solution turns to be relatively slow.
An amplification of the response within the instability area requires the inclusion of nonlinear

terms, through which the trivial solution is destabilized. Thus, by adding nonlinear stiffness
and damping terms the system is analyzed again and other phenomena could be observed.
The system stability and the permissible nontrivial solutions were studied at resonant and
non-resonant frequencies. At non-resonant frequencies, the trivial solution gives the same
results as before in the case of the linear system. Furthermore, at the primary parametric
resonance frequency, the nontrivial steady state solutions, i.e. limit cycles, were found to be
mostly determined by the linear damping and the detuned parametric excitation frequency,
which are considered in this case to be the system’s bifurcation parameters. A significant
distinction is then made between having large excitation amplitude and having a small one. In
each case the system shows nontrivial solutions for different limited ranges of linear damping
when the excitation frequency is tuned at the parametric resonance frequency. However, by
the detuning of the excitation frequency another unstable solution appears. In this case, the
variation of linear damping shows an interesting phenomenon, an isolated nontrivial solution
in a certain domain of the linear damping. This isolated solution leads to an abrupt increase or
decrease of the system’s response through varying the system’s damping. Such a result can be of
particular importance if this system’s damping could be controlled, such as through electronic
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resistance. In this way a high sensitivity could be then obtained at the bifurcation limit, and a
bifurcation control scheme could be useful for micro or nano-applications. Although at primary
resonance frequencies the system shows an uncoupling between the two degrees of freedom, if
their natural frequencies were notably similar, an internal resonance takes place, which couples
both degrees of freedom. In addition, through this coupling the phase space is found to be
rather complex, since numerous nontrivial solutions could be calculated. This is observed by
depicting the resonance curves around the primary resonance frequency.
At combination resonance frequencies the system exhibits multiple steady-state solutions,

where both degrees of freedom are again coupled. However, the phase-shift between the
coupling parametric excitation terms, or the asynchronicity, changes the system’s behavior
substantially. At the summation frequency a synchronous excitation shows a common hardening
resonance curve, where stable and unstable limit cycles exist. However, an asynchronous excita-
tion causes the existence of only stable limit cycle in the vicinity of the summation combination
frequency. By repeating the analysis at the difference resonance frequency, nontrivial solutions
do not occur under synchronous parametric excitation, while the trivial fixed point was shown
before to be stable. However, if the parametric excitation turns to be asynchronous the stability
of the trivial fixed point is lost, causing a parametric resonance, and a nontrivial steady state
solution is found instead in the form of a stable limit cycle.
The second domain of contribution in this work involves the implementation of the theoretical

findings in a microsystem. The main application considered is the micro-ring gyroscope, for
which the parametric excitation is shown in the literature to be of significant importance. For
the linearly modeled gyroscope the broadband destabilization effect is investigated. Since the
system could be reduced to a two-degree-of-freedom system, all the results from the linear
theory of parametrically excited systems, including the broadband destabilization effect, could
be transferred easily to the analysis of the micro gyroscope. Moreover, it was emphasized
how applying this method of excitation could lead to enhancing both the sensitivity and the
accuracy. In addition, another characteristic also applies to this system, which is the capability
of tuning the excitation frequency without experiencing abrupt change in amplification. The
applicability of this characteristic relies on the fact that the amplification could be attained at a
broad frequency band.
By modeling the micro-gyroscope nonlinearly a better understanding could be attained. An

autonomous version of the system is first investigated through canceling all excitation terms. By
doing that nine fixed points are found including the trivial fixed point. A subcritical pitchfork
bifurcation is detected through varying the direct voltage applied on the gyroscope. At a certain
voltage amplitude, the system’s eigenfrequency turns to be imaginary leading to divergence.
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After bifurcation only the trivial solution persists, while all nontrivial solutions vanish. However,
due to divergence, the trivial solution also turns into a saddle point. Before the bifurcation
point, stability could only be found at the trivial fixed point. All other nontrivial points are
found to be unstable. A nonautonomous case is studied next, by considering a small excitation.
At this excitation level the back action of the sense mode on the drive mode could be neglected.
Thus, the drive mode is studied uncoupled from the sense mode. Using the method of normal
forms, a softening nonlinear effect is exhibited which confirms results from a previous study.
Moreover, by applying the bimodal excitation method, both degrees of freedom are then

coupled through different nonlinear terms. Using the method of normal forms, the system
is analyzed by tuning around the primary resonance frequencies. Through this analysis the
resonance curves for both degrees of freedom at their parametric resonance frequencies are
obtained which indicate limit cycles. Both the drive and sense modes showed again a softening
behavior. Moreover, the sense mode could exhibit an isolated resonance curve, which is more
obvious at higher excitation amplitudes.
In the third domain of contribution, the same two-degree-of-freedom system discussed

through this work was realized experimentally. The system is implemented using two microcan-
tilevers coupled only through the parametric excitation. Linearity is assumed for the behavior
of these cantilevers, while the system’s nonlinearities were found to have a minimal influence
on the system dynamics as long as the trivial solution is stable or near stability. This is found to
be useful, since it allowed the first experimental investigation of the bimodal excitation scheme
to be without other nonlinear effects.
The bimodal parametric excitation mechanism is implemented through an electronic circuit.

The circuit contained additional nonlinearities for the sake of limiting the response amplitude
when the trivial solution is destabilized at resonances. This circuit was supplemented by
a pre-amplification circuit designed by our collaborators. Both two electronic circuits were
connected to the two uncoupled microcantilevers and set for experimental study at the Technical
University of Ilmenau. The experimental study could yield the desired results and validate
the corresponding mathematical model. However, a limitation in the excitation amplitudes
was experienced, which could not allow the system to exhibit the broadband destabilization
effect. Still, this did not hinder the validation of the mathematical model, since three features
of the system were found in the experimental results to be inline with the model-based results.
The first observation is that, the instability tongue at the summation combination frequency
is shifted to higher values of excitation amplitudes under asynchronous excitation. A second
common feature is found, that is an increase of the instability tongues’ widths by imposing
asynchronous parametric excitation. And lastly that the difference combination frequency
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could only be exhibited in the asynchronous excitation case for both model and experiment. In
addition to these features, the topology of the stability chart in both theory and experiment
showed an obvious similarity under the allowed excitation amplitudes.
In conclusion, this is the first experiment to be carried out for asynchronous parametric

excitation at all resonant frequencies. Nevertheless, a single study was found on this type of
excitation, where only the summation combination resonance was considered [36]. However,
it could not be applied on mechanical systems due to practical limitations [38]. This makes
this study to be the first realization of the discussed asynchronous parametric excitation
in mechanical systems. Moreover, although the experimental realization of the difference
combination resonance was known to be hardly attainable in mechanical systems, it could be
experienced readily through this work. This may be attributed to the relatively low damping
and high attainable response amplitudes in microsystems in comparison to macro-scaled ones.
To summarize these conclusions, this work was mainly focused on nonlinear time-periodic

systems, although a few other linear and time-invariant systems were also investigated. The
important results found are as follows:
• The stability chart is constructed for linear and nonlinear dynamical systems with phase-
shifted coupled parametric excitation terms.

• The direct relation between the amplification of the system’s response and the destabili-
zation of the trivial solution could be explained analytically.

• Nonlinear time-periodic systems were investigated in some detail offering new insights
regarding the existence of limit cycles among other aspects.

• The broadband destabilization effect is found to be significant for the performance of
micro-ring gyroscopes.

• The nonlinearly modeled micro-ring gyroscope exhibits significant nonlinear effects, such
as the softening behavior, and a subcritical pitchfork bifurcation at large direct voltage.

• The mathematical model of the bimodal parametrically excited system is validated expe-
rimentally.

This work suggests some open questions to be addressed by future studies. First, the study
of the nonlinear time-periodic system still needs more investigation due to its rich and complex
dynamics. Specifically, the stability analysis for nontrivial solutions would allowmore understan-
ding of the behavior, especially when the corresponding solutions in the phase space could be
calculated. A particular study about the stability of these solutions at non-resonant frequencies
would be of major importance. That is particularly important for micro and nanosystems, since
higher parametric amplification values could be attained through optimization of controllable
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system parameters.
Secondly, perturbing nonlinear systems with circulatory forces could be informative about

their influence on the stability of system’s trivial and nontrivial solutions. A particular question
about the effect of time-dependency of these forces could be of special interest, since it forms
then an asynchronous parametric excitation.
Thirdly, although the broadband destabilization effect could not be attained experimentally

due to a practical limitation, the validated mathematical model anticipates its existence. Thus,
it is suggested to modify the excitation method in order to increase its amplitude to allow for
exhibiting this phenomenon experimentally.
Lastly and more generally, this work shows how much potential there still is in the theory

of time-periodic systems that could be implemented in nonlinear micro and nanosystems for
enhancing their performance.
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