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Multi-agent systems allow system-wide, energy efficient control of fluid systems, 

fulfilling volume flow demands even in the face of disruptions

within the communication network.

MOTIVATION

ensuring fluid systems fulfil their function while

(i) minimising effort

▪ set-up and start-up

▪ energy consumption

(ii) maximising acceptability

▪ transparency

▪ comprehensibility

▪ traceability

(iii) maximising availability in the face of disruptions

METHODS

combining advantages of centralised system-wide control

and local component control in distributed multi-agent 

system (MAS)

comparison of methods for designing the MAS:

(i) control technology

(distributed) model-predictive control (D)MPC

(ii) machine learning

multi-agent deep reinforcement learning (MADRL)

(iii) game theory

market mechnism for trading gurantees of volume flow

USE-CASE

▪ model of a high-rise building scaled to 5 m with central

and decentral pumping station and five consumers on 

five floors

▪ representative load profile of 30 minutes duration with

phases of high, medium, low and zero demand

▪ simplified load profile of 30 seconds duration for tracing

and comprehending decisions made by the multi-agent 

system

RESULTS

(i) DMPC performance close to optimum of centralised

system-wide control

(ii) costs of MADRL and markget mechanism 30-40%

higher

(iii) costs of the different approaches pareto-optimal with

regard to conflicting optimisation goals energy

efficiency and control accuracy

(iv) DMPC and one MADRL approach more robust with

regard to a disruption within the communication

network compared to centralised control
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(OpenModelica)

Test RigMulti-Agent System

(Python environment)

Functional

Mock-Up Unit
NI-DAQmx API

(Python)

Co-Simulation of FMUs with Integrated Research Data Management (SOFIRpy)

physical connection communication connection

localcentralised agent-based
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• What is my purpose?

• What can I monitor?

• What can I influence?

Purpose: fulfill volume flow demand

Monitor: target and actual volume flow

Variable: valve opening

Costs: 𝑐valve,𝑖,𝑡 = 𝜆𝑖 𝑄𝑖,𝑡,demand − 𝑄𝑖,𝑡,actual
2
, ∀𝑡 ∈ 𝒯, 𝑖 ∈ 𝒱

Purpose: minimise power consumption

Monitor: power consumption, volume flow

Variable: on/off, rotational velocity

Costs: 𝑐pump 𝑖,𝑡 = 𝜆𝑖
𝑃𝑖,𝑡−𝑃𝑖,min

𝑃𝑖,max

2

, ∀𝑡 ∈ 𝒯, 𝑖 ∈ 𝒫

distributed model

predictive control

(DMPC)

reinforcement

learning (RL)

BLACKBOXWHITEBOX

model

free RL

model

based RL

DMPC,

axiomatic

and model

based

R
IG

ID
F

L
E

X
IB

L
E

DMPC,

data driven

mechanism design

domain

specific

negotiation

Scan the QR code to leave feedback, 

discuss and find contact details!

Valve 4

Valve 5

Valve 3

Valve 2

Valve 1

Pump 1

Pump 2

The costs of the physical system exceed

those of the simulation by ≈51%.

The simulated model does not consider

system dynamics.
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