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Multi-agent systems allow system-wide, energy efficient control of fluid systems,
fulfiling volume flow demands even In the face of disruptions
within the communication network.

MOTIVATION

ensuring fluid systems fulfil their function while
() minimising effort
= set-up and start-up
" energy consumption
(1) maximising acceptabllity
= transparency
= comprehensibility
* traceability
(1) maximising availability in the face of disruptions

USE-CASE

= model of a high-rise building scaled to 5 m with central
and decentral pumping station and five consumers on
five floors

= representative load profile of 30 minutes duration with
phases of high, medium, low and zero demand

= simplified load profile of 30 seconds duration for tracing
and comprehending decisions made by the multi-agent
system

METHODS

combining advantages of centralised system-wide control
and local component control in distributed multi-agent
system (MAS)

comparison of methods for designing the MAS.:
(1) control technology
(distributed) model-predictive control (D)MPC
(1) machine learning
multi-agent deep reinforcement learning (MADRL)
(i) game theory
market mechnism for trading gurantees of volume flow

RESULTS

() DMPC performance close to optimum of centralised
system-wide control

(i) costs of MADRL and markget mechanism 30-40%
higher

(111) costs of the different approaches pareto-optimal with
regard to conflicting optimisation goals energy
efficiency and control accuracy

(iv) DMPC and one MADRL approach more robust with
regard to a disruption within the communication
network compared to centralised control
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“Hollnagel outlines [...] four resilience functions [...]. All four
functions (learning, responding, anticipating, monitoring) are
seen as cross-sectional claims. This means that people are
also required to learn, anticipate, monitor and respond in order

to create a resilient socio-technical system.”
Pelz et al., 2021. “Mastering Uncertainty in Mechanical Engineering.” Springer, Cham
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= The costs of the physical system exceed

those of the simulation by =~51%.

= The simulated model does not consider

system dynamics.
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