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Abstract

Mesoporous materials, with pore size of 2-50 nm, are gaining increasing attention in applications such as
gas separation, purification of wastewater, energy storage, drug deliver and catalytic processes due to their
high surface area, tunable pore structure and large pore volume. In all of these applications, the desired
performance depends strongly on the pore structure, such as pore size, pore length, tortuosity, volume and
connectivity. Understanding the structure-performance relationship and exploiting it to the development of
advanced mesoporous materials require an unambiguous understanding of the three dimensional (3D) pore
structures. This requires reliable relevant characterization techniques. Electron tomography (ET) is a powerful
technique to obtain 3D morphological information at the corresponding length scale for mesoporous materials.
A very promising feature of ET is that no prior assumptions on the pore shape are needed, which is normally
inevitable when using traditional diffraction or diffusion based bulk characterization techniques, allowing it to
be particularly suitable for analyzing complex disordered pore structures.

However, an accurate quantitative interpretation of the solid/void network from ET is still a challenge.
The reconstruction of a 3D volume from a tilt series is mathematically an underdetermined problem due to
the discrete sampling and limited practical tilt range, which means that there is no analytical solution and
an approximation to the original structure is therefore pursued using appropriate algorithms. In addition,
constraints and imperfections (e.g. noise, limited tilting parameters and misalignment of projections) in an
experimental setup inevitably cause artifacts and errors in the final reconstruction. The overall aim of the
thesis is to develop and evaluate approaches to extract an accurate quantitative 3D morphological description
of the pore network in mesoporous materials. To achieve this, two aspects are considered: evaluating the
reconstruction performance and improving the experimental methodology.

In a fundamental study, the reconstruction accuracy of the three main-stream algorithms simultane-
ous iterative reconstruction technique (SIRT), total variation minimization (TVM) and discrete algebraic
reconstruction technique (DART) were systematically investigated for mesoporous materials using different
realistic tilt-series based on a set of phantom simulations. While the reconstruction accuracy has been partially
addressed in previous publications focusing on the residual number of misclassified pixels, this analysis
has been extended to consider effects on the pore morphology and diffusion properties due to aggregated
reconstruction artifacts (inhomogeneously distributed misclassified pixels) thereby developing a more relevant
estimate of the reconstruction performance. It was found that DART outperforms the other two methods
in reliably revealing small pores and narrow channels, especially when the number of projections and the
tilt-range are limited. The accurately segmented reconstruction from DART makes it possible to achieve reliable
quantification of pores structure, which in turn leads to a reliable evaluation of effective diffusion coefficients.
Moreover, the influence of different acquisition and reconstruction parameters on the reconstructed 3D volume
and a quantitative analysis of pore features is discussed. With this, a practical guide for optimizing acquisition
and reconstruction parameters and how to evaluate the accuracy when describing the mesoporous structure
is provided.
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As seen in the fundamental parameter study, one of the strongest limitations in electron tomography
is the limited tilt-range. To ultimately solve this missing wedge problem, 360◦ ET can be used by tilting
a needle-shaped specimen over the full tilt range and thus filling the missing information. Obviously, the
necessity of specimen processing to a needle shape with a diameter of a few tens of nanometer limits this
technique for a wide range of materials, e.g. porous materials and any material in form of loose powders.
Driven by this consideration, a new universal, yet facile sample preparation method for 360◦ ET was developed.
A single nanoparticle or a few separate nanoparticles are selected in a TEM or SEM and the selected objects
with the supporting film are adhered to an easily prepared sharp tungsten tip, which is mounted to a full-range
tomography holder tip. This method shows great flexibility and works for almost all types of powder materials
without invasive FIB processing directly on the sample. Test results for 360◦ tomography are shown using a
Pt@TiO2 hollow cage catalyst.

Finally, as an example for a real application, ET is applied to uncover the leaching behavior of Pd
nanoparticles supported on mesoporous carbon (CMK3) during formic acid decomposition in batch and
fixed bed reactors. Using the knowledge from the first part (fundamental study) as guideline, the DART
algorithm with optimized reconstruction parameters was used to quantitatively characterize the spatial and
size distribution of the Pd nanoparticles in the three Pd@CMK3 catalysts before and after the reaction. A
quantitative analysis of the tomographic data enables precise tracking of the evolution of the supported
particles with a statistical analysis of the distribution on the internal and external support surface. Based
on this quantitative analysis, the evolution of Pd nanoparticles during the catalytic process is discussed and
related to the catalytic performance differences observed for the fixed bed and batch reactor. In the future,
this information can be used to design catalysts with improved properties to optimize the reaction conditions.
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1. Introduction

In this chapter, a brief history of mesoporous materials, their types, applications and the correlation between
pore structure and some of performance aspects will be introduced. This will be followed by a brief introduction
of gas adsorption, mercury intrusion porosimetry (MIP) and small-angle X-ray scattering (SAXS) as three bulk
characterization techniques for mesoporous materials. A more detailed overview of the application and the
state of the art in electron tomography of mesoporous materials will conclude this chapter.

1.1. Motivation and background

Porous media are present in nature at a variety of length scales : sponges that live under water absorb nutrients
through centimeter to millimeter interconnecting pores in their bodies; natural cork with micrometer pores
has been widely used as stoppers to provide added value to wine by allowing a very small amount of air to
gradually enter the bottle, allowing the wine to slowly grow in the bottle, making the wine more mellow;
natural zeolites, formed from volcanic rocks and ash layers reacting with alkaline groundwater, have a porous
structure with pore size smaller than 1 nm that can accommodate a wide variety of cations (such as K+, Na+,
Ca2+, Mg2+) and are able to adsorb certain sized molecules. [1] It can be seen that nature is like a craftsman
with rich experience, using his ingenious skills to build thousands of pore structures, and the developments in
science and technology have further enriched these pore structures. More and more artificial porous materials
with sophisticated and complex structures are being constructed and excavated, e.g. porous plastics, porous
carbon, porous silicon, porous metals (oxides), porous glass, et cetera (etc.). With the characteristics of large
specific surface area, high porosity, low density and high specific strength, porous materials are widely used
in various fields, ranging from environment, health, energy to heterogenous catalysis.

Mesoporous materials with pore sizes between 2 to 50 nm have larger pores and allow faster mass transfer
than microporous materials. Compared with macroporous materials, they show greater specific surface area
and more prominent nano-confinement effects. These outstanding properties make mesoporous materials of
great interest to both academia and industry. In the area of environmental protection, mesoporous materials
are used for wastewater treatment by adsorbing organic dyes and pollutants from wastewater. [2] In the
medical field, mesoporous materials are used as drug carriers and controlled-release systems, controlling
the rate and period of drug delivery (i.e. time-release dosage). [3], [4] In the field of energy, mesoporous
materials are commonly used as electrodes for energy storage in batteries and capacitors. With the ultra-high
specific surface area and tailored pore structure, they are able to improve the storage capacity and the ion
transmission efficiency. [5], [6] In heterogenous catalysis, mesoporous materials are utilized in applications
such as cracking and other petrochemical conversions, acid/base reactions for fine chemicals synthesis, redox
catalysis, etc., which has been well documented in recent reviews. [7]–[9]

In all applications of mesoporous materials, the performance is strongly affected by the specific pore
structure. As an example, a heterogenous catalyst consists of a porous support and the active material (Figure
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1.1), the main role of porous support is to increase the interaction between reactants and active sites by
increasing the dispersion of active sites, thus increasing the catalytic activity. In addition, the stability and
catalytic selectivity can also be optimized by tuning the pore size due to confinement effects inside the pores.
[10] The variation in pore size and connectivity may also affect the catalytic performance by controlling the
diffusion rate of reactants and products during the reaction. [11] More detailed examples of such structure-
performance relationships can be seen in section 1.2.4. The development of characterization techniques
to understand this pore structures is therefore crucial to design and optimize new, improved materials for
catalysis.

Figure 1.1: Some of the factors that affect the catalytic performance of a heterogenous catalyst consisting of a porous
support and the active nanoparticles.

Various characterization techniques have been used to extract pore information frommesoporous materials,
such as gas physisorption, MIP and SAXS. However, these bulk measurements rely on an assumption of a
specific geometry of the pore shape and are not sufficient to fully describe disordered pore structures. As an
alternative, ET has been shown to provide statistically relevant information on pore structures by reconstructing
the 3D pore network from a sufficient number of different projections of a porous material. [12]–[14] However,
a quantitative interpretation of ET results is still far from straightforward and an accurate quantification of the
pore space is challenging because of constraints from the experimental setups during data acquisition such as
missing wedge and limited sampling as well as reconstruction artifacts introduced by alignment errors and
the reconstruction algorithm. Based on these considerations, the aim of this thesis is to improve the accuracy
of tomographic reconstruction of mesoporous structures by using advanced reconstruction algorithms and
improved experimental data acquisition.
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1.2. Mesoporous materials

According to the definition from the international Union of Pure and Applied Chemistry (IUPAC) in 1985,
porous materials are classified into three major categories depending on their pore sizes : microporous
materials with pore sizes below 2 nm, mesoporous materials with pore sizes between 2 and 50 nm, and
macroporous materials with pore sizes exceeding 50 nm. [15]

1.2.1. Research history

The first report of mesoporous materials came from Yanagisawa et al. [16] in 1990, in which one kind
of mesoporous silica with pore size around 2-4 nm was synthesized using ion exchange of the layered
polysilicate kanemite with alkyltrimethylammonium cationic surfactants (Cn-TMA). Unfortunately, the limited
characterization data in this work led to disregard of their results. In 1992, Kresge et al. [17] from Mobil
research and development corporation reported the preparation of a family of ordered mesoporous molecular
sieves (M41S) with pore sizes of 1.6-10 nm by a block copolymer template mechanism. Three different
mesophases in this family including lamellar (MCM-50) [18], hexagonal (MCM-41) [19] and cubic (MCM-48)
[20] phases have been identified by transmission electron microscopy (TEM). These impressive discoveries
resulted in a worldwide resurgence and dramatic increase in the number of publications in this area. In
1998, Zhao et al. [21] reported the synthesis of another type of hexagonal array of pores namely Santa
Barbara Amorphous no 15 (SBA-15) with tunable pore size (4.6-30 nm). This new mesoporous material
has not only shown larger pores and thick pore walls, but also excellent thermal, mechanical and chemical
resistance, which makes it a super star and expands its applications in many areas such as catalysis [22],
adsorption and separation [23], [24]. Their emerging applications have boosted the development of many
other ordered mesoporous silica materials such as Fudan University Material (FDU-n) series [25], [26],
Michigan State University material (MSU-n) series [27], Korea Advanced Institute of Science and Technology
(KIT-n) series [28] and anionic-surfactant-templated mesoporous silica (AMS-n) series [29]. Meanwhile,
ordered mesoporous silica has also been used as a template for the synthesis of other ordered mesoporous
materials, such as the families of ordered mesoporous carbon (CMK-n) series : CMK-1 from MCM-48, CMK-2
from SBA-1, CMK-3 from SBA-15, CMK-4 from MCM-48 and CMK-5 from SBA-15. [30]–[32] Figure 1.2 shows
the numbers of published papers in the field of mesoporous materials since 1992, according to the web of
science, demonstrating the progress in this field.
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Figure 1.2: Numbers of published papers in the field of mesoporous materials since 1992 (source: web of science).

1.2.2. Types of mesoporous materials

Many types of mesoporous materials have been reported during the past few decades, which include carbon
materials [32], carbon nitrides [33], silica materials [34], metal oxides [35], metal sulfides [36], metal
nitrides [37] and metal organic frameworks (MOFs) [38]. They can be generally divided into two categories
according to the characteristics of the pore arrangement : ordered mesoporous materials and disordered
mesoporous materials. It is worth noting that different from traditional crystal structures at the atomic scale,
the general designation of “ordered mesoporous materials” is referring to the regular pore space arrangement,
whereas the structure of ordered mesoporous material itself is indeed amorphous.

Figure 1.3 shows the representative structure of several ordered mesoporous silica materials. The first one
is two-dimensionally ordered hexagonal phase with the P6mm symmetry, which was built by close-packed
hexagonal arrays of cylindrical surfactant micelles, such as MCM-41 [19] and SBA-15 [21]. It should be
noted that SBA-15 also exhibits large complementary micropores, which are arranged in a disordered fashion
interconnecting adjacent mesopores. [39]–[41] The second one represents three-dimensionally ordered cubic
phases with different symmetry. For example, the face-centered cubic (Fm3m̄) pore structure is regarded as
close packing of spherical mesopores, each connected to 12 nearest neighbor mesopores, such as FDU-12 [26]
and KIT-5 [42], while for the body-centered cubic (Im3m̄) pore structure, each mesopore is connected to
8 neighboring mesopores such as SBA-16 [43] and FDU-1 [25]. Therefore, in a cubic cage structure there
can be different spatial arrangements of spherical micelles. The bicontinuous cubic gyroid phase with Ia3d̄
symmetry is another even more complex cubic mesophase that can be regarded as 2 interwoven cylindrical
channels, which leads to adsorption properties similar to two dimensional (2D) hexagonal materials without
pore blocking effects, such as MCM-48 [44] and KIT-6 [28]. Another ordered mesoporous structure with
lamellar symmetry such as MCM-50 [18] consists of interlayers.

For disordered mesoporous materials, there is no single structural description such as unit cell, space
group and symmetry as for ordered mesoporous materials, since all of them show irregular pore networks.
However, these materials can also be described by mesopore characteristics including diameter, length, volume,
connectivity and tortuosity. Compared to well-ordered pores, the disordered pore networks allow for a higher
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Figure 1.3:Models of different mesoporous structures, including their symmetries and the representative examples
(modified from literature [34]).

3D interconnectivity inside the pore domain, providing more variety of the pore structure. Other outstanding
properties of such disordered pores can be found in their large surface area, high plasticity, and usually no
template is required during the synthesis. Overall, this has resulted in disordered mesoporous materials as an
important class of materials with a wide application range in many fields.

To get a better understanding of the pore distribution inside a solid phase, a more generic classification
can be used to describe the pores according to their availability to an external fluid. As shown in Figure
1.4a, pores that are completely isolated from their neighbors are described as closed pores (like region a).
This type of pore is not contributing to fluid flow and adsorption of gases, but it influences the macroscopic
properties of solid materials such as bulk density, mechanical strength and thermal conductivity. In contrast,
the pores connected to the external surface of the body are described as open pores. Among them, those
open only at one end (like regions b and f) are described as blind or dead-end pores, and others that are
open at two ends (like region e) are named as through pores. Pores may also be classified according to their
shape, such as cylindrical (cylinder closed at one end or cylinder open at both ends), cone shaped, slit shaped,
interstice between closed-packing spheres and inkbottle (Figure 1.4b). These assumptions on the pore shape
play an important role for some conventional bulk characterization techniques to extract quantitative pore
information, as will be discussed in next section.
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Figure 1.4: (a) Schematic cross-section of a porous solid, adapted from [45] and (b) schematic pore classification,
according to their availability to the surrounding, figure adapted from [46].

1.2.3. Application

In addition to application in electrodes, water treatment, drug delivery and heterogenous catalysis mentioned
in section 1.1, mesoporous materials have been reported to be used in many other research fields, such as
gas storage [47], capturing and binding of carbon dioxide (CO) [48], sensors [49], biomass conversion [50],
biodegradation of inorganic materials [51], phase separation in liquid chromatography [52], etc. For medical
applications, related works can be seen in magnetic resonance imaging (MRI) studies [53], ultrasound therapy
[54], enzyme immobilization [55], antigen targeting [56], etc.

1.2.4. Structure-performance relationship of mesoporous materials

In all the applications mentioned above, the performance of mesoporous materials depends on the pore
structure including the mesopore size, pore shape, volume, surface area and connectivity. In the case of
heterogeneous catalysis, confinement and mass transfer effects have been identified to lead to optimum
conditions for the formation of a specific product during the catalytic reaction. As indicated in Figure 1.1,
mesoporous materials play an important role as support for the active metal particles by immobilizing them
inside the pores, thus improving their stability during catalyst synthesis and catalytic reactions. In addition,
defined pore structures not only allow reaction mixtures (including reactant and product molecules) with a
certain size to access and detach from the active sites, but also reduce the diffusion speed of large molecules,
thus affecting the catalytic activity and selectivity. [10], [57] In contrast to macropores, which are responsible
for advection-dominated transport through the material, diffusion-limited transport prevails in the mesoporous
space. [11] The complex mesoporous structure tunes the diffusion rate of reactants and products during
the chemical reaction, which also influences the activity and selectivity for specific catalytic products. These
effects of the mesoporous support enable optimization of the catalytic performance by modifying the pore
size and pore morphology based on an understanding of the structure-performance relationship. [58]

For example, Ziegler and coworkers presented a new approach that utilizes spatial confinement to optimize
macrocyclization selectivity in olefin metathesis using a Ru catalyst selectively immobilized inside SBA-15
silica with tunable pore size. [59] As shown in Figure 1.5a, parallel reactions of ring-closing metathesis
(RCM) and acyclic diene metathesis (ADMET) oligomerization compete to a substantial extent during olefin

24



metathesis. For catalysts supported in SBA-15 with the right pore diameter, confinement allows unhindered
access to the catalyst only for one single diene molecule at a time, thus blocking simultaneous access of several
diene molecules. This results in macrocyclization dominating over oligomerization, leading to an increasing
selectivity of the macro(mono)cyclization (MMC) product. However, the conversion shows an opposite trend
due to the limited diffusion of reactant molecules inside the SBA-15 particles under experimental conditions
(Figure 1.5b). Smaller pore sizes slow down the transport of the reaction mixtures to and from the catalytic
centers, which explains the lower activity. In this way, a correlation between the catalytic performance and
the pore size of support was established, enabling the determination of a narrow operational window for
optimal macrocyclization selectivity.

Figure 1.5: (a) Schematic illustration of macrocyclization in confined geometries and (b) the ratio between MMC product
and all undesired oligomerization products and conversion as a function of reaction time obtained in the
RCM using two SBA-15 supported Ruthenium catalysts with average pore diameters of 5 and 6.2 nm and a
homogeneous catalyst, reproduced from [59].

Such tunable catalytic performance affected by pore size can also be seen in the work from Zhao’s group,
where N-doped mesoporous carbon nanospheres (NMCNs) with large tunable pore sizes showed different
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electrocatalytic activity in oxygen reduction reaction (ORR) as shown in Figure 1.6a,b. [60] With increasing
pore size, the onset potential is shifted to more positive values and the limiting current density becomes
higher, resulting in a better electrocatalytic activity for the ORR. As another example, by constructing a set
of Au/TiO2 catalysts (Figure 1.6c,d), where Au nanoparticles are immobilized on hierarchical bouquet-like
mesoporous TiO2 supports with different porous frameworks, the same group showed the dependence of the
catalytic performance for cis-semihydrogenation of alkynes on the pore morphology. [61] Both the activity and
selectivity increase with the increasing architectural complexity of the mesoporous TiO2. This performance
improvement is attributed to an efficient mass transfer due to the high interconnectivity of the mesopores inside
the super-structured support, providing an increasing interaction between the active sites and surrounding
reactants.

Figure 1.6: (a) Illustration and scanning electron microscopy images of NMCNs with various pore sizes, (b) ORR catalytic
activities of the series of NMCNs and Pt/C electrodes, modified from [60]. (c) Illustration and (S)TEM images
of Au/TiO2 catalysts with various architectural TiO2 supports, and (d) semi-hydrogenation performance of
the 3D mesoporous bouquet-posy-like TiO2 superstructure supported catalysts, modified from [61].

For usage in drug delivery, mesoporous materials are usually soaked in a highly concentrated drug solution
before drying to incorporate the medication. The release rate can be experimentally measured by emerging the
drug-charged carriers into simulated target fluids (e.g. stomach or proximal intestine fluids) and following the
drug concentration evolution. Both incorporation and release are mainly based on the adsorption/desorption
properties of mesoporous materials. One key parameter for such deliver is pore size, as shown in the work
from Horcajada et al., where they found a decrease in the delivery rate when ibuprofen was incorporated
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into MCM-41 mesoporous materials as the pore size decreases from 3.6 to 2.5 nm. [62] In addition, the
surface physicochemical properties (roughness, stiffness, etc.) of the porous carrier also play a critical role for
intracellular drug deliver by modifying their interaction with cell membranes. For example, Wang et al. have
fabricated a novel virus-like mesoporous silica nanoparticle with uniform particle size and a spiky tubular
surface via a single-micelle epitaxial growth approach. [63] In comparison to conventional mesoporous
silica nanoparticles with smooth surfaces, the virus-like nanoparticles show superior cellular uptake, unique
internalization pathways and extended blood circulation duration.

All the examples mentioned above illustrate that establishing the structure-performance relationship
requires an unambiguous understanding of the mesopore structure, including the morphology of the solid
phase, the pores and the structure of the interior surfaces. Therefore, it is necessary to develop reliable
structure characterization techniques.

1.3. General characterization of mesoporous materials

In this section, three commonly used bulk characterization techniques for mesoporous materials including gas
adsorption, mercury intrusion porosimetry and small-angle X-ray scattering will be introduced briefly.

1.3.1. Gas adsorption

Gas adsorption is one of the major characterization techniques for porous materials, allowing determination
of the specific surface area, pore volume and pore size. Various gas molecules such as N2, H2O, Ar, CO2 and
He can be used as probe molecules for the analysis of porous systems. Figure 1.7a shows an illustration of
different stages for gas adsorption on a rough solid surface. The gas adsorption starts from the gas molecules
adsorbed randomly on the sample surface by van der Waals forces at low pressure. As gas pressure increases,
all adsorbed molecules are in contact with the surface layer of the adsorbent, leading to monolayer adsorption.
Further increasing the gas pressure will cause the beginning of multi-layer coverage, where not all adsorbed
molecules are in direct contact with the adsorbent surface. At this stage, the surface area of porous materials
is usually evaluated by the Brunauer–Emmett–Teller (BET) method, an extension of the Langmuir model
of monolayer adsorption to multilayer adsorption. [64] In mesopores, multilayer adsorption is followed by
pore/capillary condensation, a phenomenon where the gas condenses to a liquid-like phase in the pore at a
pressure p less than the saturation pressure p0 of the bulk liquid. [65] This liquid-like adsorbed phase has a
meniscus where the curvature is associated with the Kelvin equation [66], thus the pore size can be evaluated
using the BJH (Barret, Joyer and Halenda) method, based on the assumption that all pores are rigid and of
regular shape, and that there are no micropores or macropores beyond the scope of the isotherm [67]. At
higher gas pressure, a complete coverage of the sample by adsorbed molecules is possible and all the pores
are filled, enabling determination of the pore volume.

The primary data obtained during a gas adsorption experiment is the dependence of the amount of
adsorbed probe gas on the relative equilibrium pressure, the so-called physisorption isotherm (Figure 1.7b).
For mesoporous materials, it is widely accepted that there is a correlation between the shape of the hysteresis
loop and the pore structure of the adsorbent. As shown in Figure 1.7c-f, the shape of the hysteresis loop is
characteristic for the underlying desorptionmechanisms and enables discrimination of various pore connectivity
types. [65] However, it should be noted that a detailed interpretation of such a correlation is difficult and
ambiguous as the standard analysis depends on an assumption of the pore morphology.
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Figure 1.7: (a) Illustration of gas adsorption on a rough solid surface at different gas pressure (adapted from Micromeritics
Instrument Corporation), (b) classification of physisorption isotherms and (c-f) hysteresis loops and their
correlation with pore structure, adapted from [65], [68].

1.3.2. Mercury intrusion porosimetry

MIP is recommended by the IUPAC as a standard measure of total pore volume and pore size distribution (PSD)
in the macro- and mesopore range. [45] The principle of MIP is that mercury intrusion into pores requires
application of a high pressure since mercury does not wet the solid spontaneously. In practice, mercury is
introduced by progressively increasing the pressure to fill the dried sample, where the air/fluid inside the pores
has been removed in advance. The corresponding volume V of the intruded mercury with increased pressure
P is monitored, resulting in an accessible pore volume as a function of the applied pressure. According to the
Young-Laplace equation [69], [70], the pressure difference ∆P between the pressure PHg in the mercury and
Pg in the gas phase can be described by the surface tension γHg of mercury and the radius rm of the spherical
meniscus:

∆P = PHg − Pg = −2γHg/rm (1.1)

For cylindrical pores with radius rp and rp = rmcosθc, the Washburn equation [71] can be obtained by:

rp = − (2γHg cos θc) /∆P (1.2)

where θc is the contact angle between mercury and the solid surface. With this, the PSD can be inferred by
plotting the cumulative pore volume or its first derivative as a function of pore diameter/radius.
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However, it is worth noting that pores are not perfectly uniform for real porous materials, in which the
entrance opening to a pore is usually smaller than the actual cavity. Therefore, one may argue that MIP
actually measures the entrance size at the sample surface towards that pore, as it determines the mercury
intrusion pressure, rather than the internal or average pore size. It can also not be used to analyze closed
pores as the mercury has no access to those pores. Thus, MIP will always show smaller pore sizes than the
real physical sizes. [72] The misinterpretation of pore size distribution from MIP can be seen in the work by
Sidney Diamond, who states that MIP measurements should be abandoned as measure of the actual pore
sizes present in hydrated cementitious materials. [73]

1.3.3. Small-angle X-ray scattering

Early in the 1950s, SAXS has been used to study nanoparticles [74] and became an immensely powerful
method to determine object size, size distribution, shape, and surface structure [75]. Depending on the
electron density of the material, the scattered X-ray intensity distribution provides structural information in
reciprocal space. SAXS represents commonly the region of scattering angle below 5◦ in X-ray diffraction, within
which a decrease in intensity with increasing angle due to the electronic density heterogeneities of the medium
can be observed without the disturbance of sharp maxima due to long-range periodicity in solids. [76] As SAXS
measures only electron density differences, a nanopore can be regarded as an “inverse” nanoparticle, allowing
one to adapt the same principles and theory for colloidal particles to examine nanoporous structures. Generally,
SAXS is used to determine the pore size distribution and specific surface area of both closed and open pores,
whose sizes are in the range from micropores to macropores (∼0.5-100 nm). SAXS data are often presented as
a plot of the logarithm of the scattering intensity I, as a function of the scattering vector/momentum transfer
q, defined as:

q = 4π sin θx/λ (1.3)

where λ is the X-ray wavelength and 2θ is the scattering angle. For regions where the scattering vector is
approaching zero (q < 1.3/RG), Guinier demonstrated that the scattering curve depends on the diameter of
scattering object [74]:

I(q) = I(0) exp
(︁
−RG

2q2/3
)︁

(1.4)

Here, RG is the electronic radius of gyration of a particle about its electronic center of mass. Therefore, the
logarithm of I is proportional to q2, and the corresponding RG can be obtained. With an assumption of the
pore shape, R can also be calculated. For instance, for a spherical pore of radius R, RG = (3/5)1/2R and for a
thin disk-shaped pore with radius R, RG is given by RG = (1/2)1/2R. Thereby the mean pore radius can be
obtained. In addition, the total surface area per unit mass (SSAXS) of the interface of the particles can be
also obtained from the SAXS data using Porod’s law at the high q regime: [77], [78]

SSAXS =
πϕ(1− ϕ) limq→∞

{︁
q4I(q)

}︁∫︁∞
0 q2I(q)dq

(1.5)

where ϕ is the porosity of the solid. It is worth noting that ϕ must be determined by independent means
before calculation of SSAXS . The pore volume cannot be obtained from SAXS measurements.
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1.4. 3D characterization of mesoporous materials by electron tomography

Compared to the bulk techniques mentioned above, which provide an average measure of the pore structure
and pore volume based on standard pore models such as slit-shaped or cylindrical pores, numerous reports have
demonstrated that ET is able to provide high quality 3D structural information at the nanoscale without any
assumption on the pore shape. [13], [79]–[81] This makes it a promising and widely used technique for pore
structure analysis, especially for materials with irregular pores. Based on the segmented 3D reconstruction,
quantitative information on the pore network such as pore size, pore length, tortuosity and connectivity can be
extracted by using skeletonization and chord length distribution (CLD) analysis. More details about the pore
analysis by ET can be found in Chapter 2. ET has been extensively applied in heterogeneous catalysis, mainly
focusing on the 3D morphology of supports and the 3D distribution/location of supported metal nanoparticles
(NPs).

1.4.1. Support morphology

The first application of ET in heterogenous catalyst was published by Koster et al., in which the 3D structure of
a metal/zeolite crystal (Ag/NaY) was determined and the viability of 3D imaging of mesopores in zeolites was
shown by bright field ET. [84] Since then, ET has been widely used to study how pre- or post- treatments, e.g.

Figure 1.8: Cross-sections through 3D reconstructions from electron tomography reveal the variations of mesoporous
structures in zeolite crystals caused by different post-synthesis treatments: (a) zeolite Y, (b) steamed zeolite
Y (USY) and (c) steamed and acid leached zeolite Y, adapted from [82]; (d) commercial zeolite Y (HY-30),
(e) base-leached HY-30 with 0.05m NaOH (HY-A) and (f) base-leached HY-30 with 0.10m NaOH (HY-B),
adapted from [83].
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steaming [85], [86], acid leaching [82], base leaching [83] and carbon templating [87] affect the size, shape,
3D distribution and connectivity of the mesopores in zeolites during synthesis. Figure 1.8 shows variations of
the mesoporous structure in zeolite crystals caused by different post-synthesis treatments, which indicates that
steaming, acid and base leaching treatments are efficient ways to obtain highly mesoporous zeolite Y crystals.
As the mesopores control accessibility and transport of reactants and products, they have great influence on
catalytic activity, selectivity and stability. Therefore, there is great interest in characterization of the shape and
connectivity of mesopores in zeolite crystals, e.g. for application in cracking of heavy oil fractions, cumene
production, alkane hydroisomerization and fine chemicals synthesis. [88]

Apart from zeolites, ET has also been widely used for structural elucidation of mesoporous silicas, which
is a commonly used support for heterogenous catalysts due to their high specific surface area and versatile
pore structures. Ulrich Tallarek’s group has studied morphology–transport relationships quantitatively for
ordered mesoporous silicas such as SBA-15 and KIT-6 [89], [90] and disordered mesoporous silicas [13],

Figure 1.9: (a-c) Sections from two reconstructed SBA-15 silica blocks, highlighting important morphological features
of the prepared SBA-15 silica sample, adapted from [89]; (d) particle size tuning of dendritic mesoporous
silica nanoparticles (DMSNs) by seed-growth method and radial analysis of porosity in the core and the shell
region of the particle based on 3D tomographic reconstruction, adapted from [14]

[14] by means of direct numerical simulation of hindered diffusion in realistic geometrical models of the pore
space obtained from the segmented reconstructions by ET. As shown in Figure 1.9a-c, the morphological
features of SBA-15 were revealed from a tomographic reconstruction, where the hexagonally arranged primary
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mesopores are laterally connected by secondary (intrawall) mesopores. [89] Based on the 3D tomographic
reconstructions of dendritic mesoporous silica nanoparticles (DMSNs), the dependency of 3D pore structures
on the particle diameter can be obtained using a radial analysis of the porosity in the core and shell regions,
as seen in Figure 1.9d. [14] The 3D morphology of other mesoporous silica materials, e.g. MCM-48 [91] and
FDU-12 [92] have also been revealed by ET. Using electron tomography, local fine structural details inside
the pore space can be detected quantitatively, which could not be identified by bulk analysis methods (e.g.,
nitrogen physisorption and SAXS).

Another example for the application of ET in mesoporous oxides can be seen in Figure 1.10, where
mesoporous CeO2 synthesized by thermal hydrolysis is used as a case study to elucidate the transformation of
a disordered mesopore space upon thermally induced crystallization and sintering. [81] From the segmentation
results of the fresh sample and that after aging at 800ºC in water atmosphere, it is clear that both samples
exhibit highly disordered porous structures, while the CeO2 networks get thicker and the pores get larger
after aging. The pore size distributions obtained from the skeletonization analysis of the 3D reconstructions
for both samples are in good agreement with that obtained by N2 physisorption.

Figure 1.10: Segmented slices and the corresponding pore size distribution of (a) fresh (400◦C) and (b) aged (800◦C)
CeO2 samples, adapted form [81].

1.4.2. 3D distribution and location of supported NPs

Various studies have shown that the catalytic performance is highly correlated with the local distributions
of nanoparticles supported on porous catalysts, mainly due to confinement effects, transport properties and
interaction with the support surface. One example is a carbon nanotubes (CNTs) supported catalyst, where it
has been demonstrated that PtRu nanoparticles inside the CNTs are more active than those on the external
surface of CNTs for cinnamaldehyde hydrogenation. [93] Similar work by Villa et al. showed that impregnated
Au nanoparticles trapped within N-functionalized carbon nanofibers (N-CNFs) are more active for polyol
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oxidation and promote a selectivity towards di-acid products, whereas Au NPs trapped on the surface by
sol immobilization result in C–C cleavage as major byproduct. [94] More details about confinement effects
inside carbon nanotubes can be found in a review by X. Bao et. al. [95] For other supported catalysts using
more complex porous supports, ET has shown the promising ability to precisely determine the location of
nanoparticles. In a series works by the research groups of Krijn P. de Jong [96], [97] and Paul A. Midgley
[98]–[100], the 3D morphology and location of small metal (< 10 nm) particles, e.g. Cu, CuZn, NiO, RuPt,
Au and ZrO2, deposited inside SBA-15 and disordered mesoporous silica have been revealed by ET. Figure
1.11 shows recent work by W. Wang et al., [101] where the different 3D distribution of Pd nanoparticles
on three Pd/CMK-3 catalysts synthesized by different methods including incipient wetness impregnation
(PdIW/CMK-3), wet impregnation (PdIMP/CMK-3) and sol immobilization (PdPVA/CMK-3) was demonstrated
using quantitative ET method. The resulting structural differences have been correlated with their diverse
catalytic performance in furfural hydrogenation.

Figure 1.11: 2D slices of (a) PdIW/CMK-3, (b) PdIMP/CMK-3 and (c) PdPVA/CMK-3 reconstruction and the corresponding
representative 3D visualization (d–f). The yellow and red circles in a-c highlight Pd nanoparticles on the
external surface and inside of the porous support, adapted from [101].

ET is also widely used in other fields in addition to catalysis. As an example for lithium ion batteries,
where mesoporous materials are usually applied as Li-metal ‘host’ to inhibit lithium dendrite growth and
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protect the Li anode [102], ET has shown promising ability in monitoring the structural evolution during the
charge-discharge process. With this, a deeper understanding of the lifetime, reliability and capacity of the
tested battery can be achieved. A study by Lin and coworkers describes the propagation and deformation
processes of lithiation fronts in a NiO nanoplate. [103] The authors revealed that the NiO-Ni transition on the
electrode surface is an inhomogeneous phase transition process. Using ET, they found that the Ni particles
are in contact with each other and form a 3D porous network rather than being distributed discretely. Such
an interconnected architecture not only enhances the charge transfer, but also plays an important role in
structural integrity. In a very recent study by Jin et al., the 3D interconnected porous structure inside the
entire body of a mesoporous single-crystalline lithium titanite microrod was revealed by high-angle annular
dark field (HAADF) - scanning transmission electron microscopy (STEM) tomography, which is responsible for
the high rate capability. [104] This superior property can be explained by a communicating pore structure,
as it provides an efficient percolation channel for electrolyte permeation and enables rapid diffusion of Li+
during charge-discharge cycling. Another example for the application of ET in mesoporous materials can
be found in chromatographic adsorbents. [105] Based on a tomographic reconstruction, the geometry and
the interconnectivity of the pore network of three adsorbents was extracted quantitatively. Such structural
information can then be used as input parameters for a structural evaluation and construction of engineered
pore models, and further for the study of solute intraparticle transport.

1.4.3. Electron tomography containing chemical information

Not limited to the conventional bright field (BF)-TEM or (HA)ADF-STEM projections, spectroscopic signals
from energy dispersive X-ray spectroscopy (EDS), electron energy loss spectroscopy (EELS) or energy filtered
TEM (EFTEM) can also be used to obtain 3D mapping of composition and local elemental concentrations [106],
local valence state [107], electronic [108] and optical [109] properties. Figure 1.12a,b show two studies by
EDS tomography of Au-Ag nanorings and nanocubes, in which the 3D elemental distribution and concentration
are retrieved. [106], [110] Figure 1.12c shows EELS tomography of a ceria nanoparticle in which the particle
surface is predominantly in the Ce3+ state, compared to the Ce4+ core. [108] Figure 1.12d shows the iron
distribution in a core-shell iron oxide particle reconstructed based on EELS tomography. [111] The morphology
of an iron-based catalyst nanoparticle on top of a multiwall carbon nanotube (CNT) was revealed by a 3D iron
elemental map using EFTEM tomography, as shown in Figure 1.12e. [112] However, it has to be considered
that a high electron dose is often needed for analytical ET compared to conventional (S)TEM tomography,
which can lead to structural and morphological changes caused by electron beam damage. Nevertheless, rapid
advances in hardware coupled with data handling capabilities and reconstruction algorithms has brought
good possibilities to acquire high quality spectrum imaging ET with reduced total electron dose. For example,
the development of silicon drift EDS detector (SDD) and in-column configuration close to the TEM specimen
has greatly improved the ability to perform EDS spectral imaging for a wider range of specimen tilt angles
with reasonable acquisition time. Improvements in EELS spectrometers, including image filter system, and
cameras as well as direct pixelated electron detectors can shorten the acquisition time and reduce the electron
dose for EELS and EFTEM ET.

Although mapping elemental concentrations directly theoretically satisfies the projection requirement
(see section 2.5.1), two factors need to be taken into account for reliable quantitative EELS tomography:

(i) Influence of multiple inelastic scattering becomes significant and the apparent elemental signal may
actually begin to fall when the sample thickness is larger than the inelastic mean free path, so that the
core-loss signal from such specimens (or at some high tilt angle) will no longer satisfy the projection
requirement;
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(ii) Complications might arise in crystalline specimens due to the strong diffraction contrast and anisotropic
materials due to the remarkable response deviation with tilt for STEM-EELS.

Figure 1.12: EDS tomography of (a) Au-Ag bimetallic nanorings with different Au-Ag ratios [106], and (b) Au@Ag
nanocube [110]. EELS tomography of (c) valence state mapping of a ceria nanoparticle [108] and (d)
changes in Fe valency in a FeO/Fe3O4 nanocube [111]. EFTEM tomography of (e) elemental mapping of an
iron-filled multiwalled carbon nanotube [112].

One major consideration for EDS tomography is detector shadowing by the sample holder and the bars of
the TEM grid during tilting. Shadowing of X-ray detectors will cause intensity variations as a function of tilt
angle (Figure 1.13d) and will lead to artifacts within the tomographic reconstructions. A phantom simulation
demonstrated the influence of intensity variations due to the shadowing effects for the reconstruction (Figure
1.13a-c). Both reconstructions show streaking and elongation artifacts. However, the reconstruction based
on varying intensities caused by shadowing effects also show noticeable inconsistencies in the reconstructed
intensities, as indicated by the white arrows in Figure 1.13c, where the intensity of the outer ring is reduced
in the sections corresponding to low angle projections with lower signals. To compensate detector shadowing
and reduce the variations at different tilt angles, one way is to acquire all spectra using a constant time and
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normalization of the total counts prior the reconstruction. [113] Another way is to adjust the acquisition time
at each tilt angle to achieve a constant total X-ray signal for each projection (Figure 1.13e, f). This allows
for the maximum tolerable electron dose to be optimally distributed over all projections or can be used to
minimize the total acquisition time. Another challenge for quantitative EDS tomography is X-ray adsorption,
which can be corrected/refined either in data pre-processing by using e.g., Cliff-Lorimer [114] and ζ-factor
methods [115], or during the iterative reconstruction process [116].

Figure 1.13: (a-c) phantom simulation of artifacts associated with variations in projection intensities due to detector
shadowing: (a) a 2D phantom, (b) the object reconstructed using 15 simulated projections with an increment
of 10◦ and a tilt range of ±70◦, each with the same total intensity, and (c) the same object reconstructed
from the same tilt conditions while the total intensity for each projection varies in a similar way to the
shadowing variations, adapted from [117]. (d-f) Time-varied acquisition scheme for recording tomographic
STEM-EDS data, adapted from [106].

1.4.4. Fast tomography

Using conventional (S)TEM tomography normally takes a long time to acquire one tilt series, whether it is
acquired manually or with automation software, typically around one hour. When combined with spectroscopic
techniques, additional data needs to be acquired at every tilt angle, leading to an increased acquisition time
of several hours or even more than 10 hours. Though this approach is sufficient for ex-situ analysis of samples
stable under electron beam irradiation, the long acquisition time hinders observation of dynamic processes,
especially for beam sensitive specimens and during in situ experiments. To solve these problems, a new
technique called fast ET, which reduces the acquisition time to a few minutes or even less than one minute
per tilt series, has been proposed recently. [118], [119] Both TEM and STEM mode can be used for the fast
ET data acquisition and two approaches have been reported depending on the way of holder tilting. The
first approach is continuous fast ET (CFET), where the projections are acquired continuously during tilting of
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the holder while focusing and tracking of the object is performed manually. However, the continuous tilting
of the holder inevitably causes mechanical movement of the goniometer during the data acquisition, thus
resulting in blurring artifacts in TEM mode and scanning distortions seen as streaking artifacts in STEM
mode. [119] These artifacts can be circumvented by using another approach, incremental fast ET (IFET),
where the sample is rapidly tilted between consecutive tilting angles, allowing for a predefined relaxation
time to stabilize the holder at a certain tilt angle, while continuously acquiring projection images. In this case,
only the projections acquired when the holder is stabilized are used for further reconstruction, leading to a
better-quality reconstruction compared to that from the CFET method. [119]

Figure 1.14: Calcination study by operando electron tomography of the same silicalite-1 hollow zeolites containing Ag
NPs at (A) 20◦C in high vacuum, (B) 280◦C and (C) 450◦C under a 1.8 mbar of O2, adapted from [120].
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Various works have shown the powerful ability of fast ET for delivering valuable insights in material
science, either by revealing the 3D structure of beam sensitive materials or following the structural evolution
during dynamic processes. Koneti and co-workers succeeded in imaging a polymer nanocomposite by making
use of BF-IFET with a total acquisition time of 200s and a tilt range of 140◦. [119] The first fast operando ET
experiments of nanocatalysts was performed by Roiban and co-workers, in which the in situ calcination of silica
zeolites encaging silver nanoparticles was studied using the BF-CFET approach. [121] As shown in Figure 1.14,
three tomographic series with a tilt range of -25◦ to 42◦ were acquired within ∼2 min at 20◦C in high vacuum,
at 280 and 450◦C at 1.8 mbar of O2. Based on the 3D reconstructions of the catalysts and the statistical
analysis of Ag NPs, the ripening and location change of Ag particles can be observed. In a series of works from
the Electron Microscopy for Materials Science group at the University of Antwerp, fast ET in HAADF-STEM
mode was used for in situ visualizations of heat-induced morphological transformation on crystalline NPs, e.g.
highly anisotropic Au nanostars [121], AuPd octopods [122] and alloying in Au@Ag@SiO2 NPs with various
shapes [123].

1.4.5. Summary of characterization methods for mesoporous materials

Table 1.1 summarizes a comparison of the discussed characterization methods for mesoporous materials.
From the above introduction of the main characterization techniques and the characteristics of mesoporous
materials, it is clear that all of them are able to extract basic pore information such as pore size and distribution,
pore volume, etc. Although the bulk techniques (gas adsorption, MIP and SAXS) allow to a certain extent
quantification of the structure of mesoporous materials over a wide range of scales, the determination of

Table 1.1.: Summary of common characterization techniques used in mesoporous materials

Gas adsorption Mercury intrusion
porosity

Small-angel
X-ray scattering Electron tomography

Information
type

Surface area, pore
volume, pore size &
distribution

Pore volume,
pore size & distribution

Surface area, pore size
& distribution

Surface area,
pore volume, shape,
pore size & distribution,

connectivity

Pore size range Micro-, meso- and
macro- pores

Meso- and
macro-pores

Micro-, meso- and
macro- pores

Meso- and
macro-pores

Pore shape
assumption Yes Yes Yes No

Advantages Measurement for wide
range of scales

Measurement for
wide range of scales

Measurement for wide
range of scales; can
measure open, closed
pores and solid

Can measure open,
closed pores and solid;
3d pore /wall geometry

and topology

Disadvantages Can measure only
open pores

Can measure only
open pores

Complicate data fitting;
no pore volume
information

Local measurement;
rely on reconstruction
& segmentation

Sample damage No Yes No Depending on
the samples

pore size relies on an assumption of a simplified pore shape (cylindrical or slit-like pores), which might cause
inaccurate results for complex pore systems. Due to the technical limitations, both gas adsorption and MIP
methods have no access to closed pores and cannot probe the solid/wall structure. ET evaluates the pore
structure based on a reconstructed 3D tomographic volume without prior assumption of the pore model,
resulting in high resolution real pore information especially for irregular mesopore materials. Based on the
segmentation, quantitative analysis can be performed both on pore and solid structures. More importantly,
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geometrical information about the average pore/wall size and the statistical distribution of the pore/wall
size can be obtained by using e.g. CLD analysis and topological information about pore/wall tortuosities and
pore/wall coordination numbers can be also achieved after skeletonization. The skeletonization technique
was used for the quantitative analysis of all pore structures in this thesis.

1.5. State of the art of electron tomography

While ET has shown a promising ability for 3D characterization of mesoporous materials, a quantitative and
accurate interpretation of the solid/void network from the ET results is still challenging due to constraints
during tilt-series acquisition such as the missing wedge, limited sampling, signal-to-noise ratio of the camera or
detector as well as reconstruction artifacts introduced by alignment errors and reconstruction algorithms. To
solved such problems and improve the fidelity of the segmentation and thus the quantification of mesoporous
structures, many efforts mainly including advanced reconstruction algorithms and experimental data sampling
have been made.

From an algorithmic aspect, one approach to improve the quality of the reconstruction is by using advanced
image processing, such as denoising [124] and enhancing the local contrast [12], or by introducing constraints
during the reconstruction such as using a modified SIRT. The additional constrains can be a mask highlighting
the object to be reconstructed [125] or by simultaneously minimizing projection differences and regularization
object constraints e.g. in TVM based algorithms [126], [127]. The segmentation can also be integrated into
iterative reconstruction procedures. For example, watershed segmentation has been combined with SIRT
reconstruction with the prior knowledge that there exist many local regions of void space [128]. For a sample
consisting of just a few a priori known components, each with uniform density, it is well known that DART can
directly result in a segmented 3D structure [129]. More details about the reconstruction algorithms will be
described in Chapter 2. However, an objective and comprehensive assessment of the effectiveness of different
algorithms and approaches for a quantitative analysis of mesoporous materials is still limited and difficult in
experimental practice. To get accurate reconstructions and evaluate the specific features for porous materials,
a thorough survey of the dependence on different acquisition conditions is needed to optimize the acquisition
and reconstruction methods and to judge the reliability of the obtained structure and depending properties.

On the other hand, filling in the missing information caused by a limited experimental tilt range has been
regarded as the fundamental solution for solving the missing wedge problem. Methods for partial reduction
of the missing wedge experimentally include dual-axis tomography, where the specimen is tilted along two
orthogonal axes so that the missing volume is reduced to a missing pyramid [130], [131], or using conical tilt
tomography where the specimen is first tilted to the maximum angle and then rotated in small increments until
completing a 360◦ turn, such that missing volume is reduced to a missing cone [132]. However, the complicate
operation and difficult tilt series alignment have limited their application in electron tomography. Alternatively,
a new type of on-axis rotation holder equipped with a needle shape tip makes it possible to achieve full-range
tilting (±90◦) without too much extra work compared to conventional single tilt tomography. It has been the
most popular way for solving the missing wedge problem experimentally in recent years. Unlike conventional
single tilt holders using TEM grids, sample preparation, especially for fine powder samples, is still the biggest
challenge for full tilt tomography. Similar to atom probe tomography (APT) [133], specimens for full tilt
tomography are required to be mounted on a needle/rod shaped tip. This usually requires reshaping the
sample in a focus ion beam (FIB) instrument. So far, not many methods can be found in the literature for
specimen preparation for powder samples to perform the full tilt tomography. There are limited examples
such as dispersing nanoparticles in solution and dropping them onto a modified tip [134], [135], using carbon
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nanofibers as bridge to carry a powder specimen on a holder tip [136] and the so-called ‘stamp’ method that
enables in situ transfer of a single particle from a suitable substrate onto a tailored tip within a SEM/FIB
instrument equipped with a suitable micromanipulator [137], [138]. However, these methods still suffer from
either shadowing problems or do not allow selecting ultra-small nanoparticles. Therefore, a more facile and
reliable preparation method, which can achieve precise picking of selected nanoparticles that is more or less
insensitive to the tip size so that the selected particles are completely visible in all TEM projections, would be
of great interest for many electron tomography applications.

1.6. Motivation of thesis

As mentioned in section 1.1, a reliable qualitative and quantitative 3D characterization of mesoporous materials
plays a key role in understanding the structure-property relationship for various applications and further
development of novel advanced materials. Using electron tomography, high quality 3D structural information
at the nanoscale can be obtained for complex mesoporous materials. However, a reliable quantitative inter-
pretation of ET results (reconstruction and segmentation) regarding the key features of porous structures is
still far from straightforward and challenging because of various constraints and imperfections during data
acquisition and reconstruction procedures. To solve these problems, two different approaches are usually
considered: development of advanced reconstruction algorithms and improved experimental data sampling
approaches.

From an algorithm aspect, the most popular method to reconstruct under sampled data is using prior
knowledge about the specimen, providing a way to make an informed guess about the missing information,
e.g. TVM and DART. Although several works have been performed to compare these algorithms based on
either experimental data or phantom studies, [139], [140] an objective and comprehensive assessment of
the effectiveness of different algorithms and their reliability for a quantitative analysis of porous materials is
still limited. In particular for application to mesoporous materials, an analysis based on a simple evaluation
of misclassified voxels and average residual errors using a model structure is not enough. It is of great
importance to evaluate the reconstruction algorithms considering the adjustable parameters, experimental
conditions, and errors due to imperfect alignment looking at pore size, shape and connectivity as critical
structural quantities, which are directly related to the properties of the porous material. To get accurate
reconstructions and to evaluate these specific features for porous materials, an analysis of the dependence
on different acquisition conditions, such as noise level, tilt-range and number of projections as well as the
reconstruction and segmentation parameters is necessary to optimize the acquisition and reconstruction
methods and to judge the reliability of the obtained structure and depending properties. In contrast to real
experimental datasets without a known ground truth, assessment of reconstruction algorithms based on
simulated tilt-series from artificial phantom structures with selected, representative pore structures allows to
provide useful insights on how to effectively measure specific features for mesoporous materials.

In addition, an on-axis rotation holder equipped with a needle shaped tip makes it possible to achieve
full-range tilting (±90◦) without too much additional work compared to conventional single tilt tomography.
This so-called 360◦ ET or full-range ET has been the most popular way for solving missing the wedge problem
experimentally in recent years. However, unlike conventional single tilt holders using TEM grids, sample
preparation especially for fine powders is still a big challenge for 360◦ ET as specimens are required to be
mounted on a needle/rod shaped tip.
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The aim of the work presented in this thesis is to explore new methods to improve the fidelity of tomo-
graphic reconstructions for mesoporous materials, both in terms of reconstruction algorithm and experimental
aspects, and apply them to real catalytic systems.

Prior to introducing and discussing the results, a brief introduction to electron microscopy is provided
in Chapter 2 including the general microscope setup, TEM and STEM imaging. Electron tomography is
introduced in more detail as this is the main method used in this thesis. This includes the working principles
and fundamentals, the experimental workflow, reconstruction algorithms, segmentation as well as quantitative
analysis.

As mentioned above, a comprehensive evaluation of the fidelity of different reconstruction algorithms
with limited data for a quantitative analysis of mesoporous materials is of great importance. To determine
the influence of data constraints as well as the selected parameters for each reconstruction algorithm using
mesoporous features, effective simulations based on ground truth are required. In Chapter 3, the reconstruction
reliability of the three main-stream algorithms SIRT, TVM and DART was systematically investigated for
different imperfect (realistic) conditions for mesoporous materials based on a set of artificial phantoms
mimicking real mesoporous materials. The influence of different acquisition and reconstruction parameters
on the reconstructed 3D volume and the quantitative analysis of pore features is discussed. Skeleton analysis
and diffusion simulations are used to evaluate the quality of the corresponding reconstructions using the
original phantom as ground truth. The aim is to provide a practical guideline for optimizing acquisition and
reconstruction parameters and how to evaluate the accuracy when describing the mesoporous structure.

Given the difficulty in sample preparation for 360◦ ET, Chapter 4 shows a new preparation method that
enables transfer of a selected individual nanoparticle or a few separated nanoparticles by cutting a piece of
carbon film supporting the specimen and mounting them on a full range tomography holder tip with the help
of an easily prepared sharp tungsten tip using FIB. The application of this new method is demonstrated by
performing 360◦ ET on a hollow Pt/TiO2 catalyst showing high quality reconstruction without missing wedge
artifacts.

As one specific example for the application of electron tomography for mesoporous materials, Chapter 5
shows the identification of the differences in the structure of Pd/CMK3 catalysts used in batch and fixed bed
reactors for formic acid decomposition. Quantitative analysis of the tomographic data of the fresh and used
catalysts enables precise tracking of the evolution of the active metal particles inside the mesopores and on
the external surface. The observed structural differences are considered to be the reason for the different
catalytic performance in terms of activity and stability during formic acid decomposition.

In addition to the results discussed in chapters 3-5, electron tomography has been applied to solve a large
number of 3D structures of mesoporous materials, supporting fundamental research in catalysis, hydrogen
storage and battery. This has resulted in 16 additional scientific publications generated as part of my PhD
thesis in the publication list at the end of this thesis.
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2. Electron Tomography

This chapter provides a brief introduction of electron microscopy, the basic mathematical foundation of
electron tomography and its workflow including data acquisition, tilt series alignment, reconstruction and
post processing. Among them, the limitations (missing wedge) of data acquisition by conventional single tilt
holder and the resulting artifacts for reconstruction from various algorithms are discussed.

2.1. A brief history

Advanced (S)TEM imaging as well as spectroscopic techniques enable the characterization of nanomaterials,
from morphological imaging at the low micron level down to the atomic scale, providing both structural and
chemical information. However, most TEM based techniques only provide 2D projections of the real 3D objects,
which is often not sufficient and may even lead to an incorrect understanding of the nature of nanomaterials.
Therefore, a 3D characterization method is necessary in many cases. Electron tomography is such a technique
using a series of 2D projections obtained at different tilt angles to reconstruct the 3D morphology of complex
materials.

The term “tomography” is derived from two ancient greek words: τσµoς (tomos) meaning to cut or
section, and γράφε (graphein) meaning to write. Tomography concerns the visualization of slices through
objects. The mathematical foundations for tomography were first developed by the Austrian mathematician
Johann Radon in 1917, who proposed the so-called Radon transform. [141], [142] Further development in
this field came after more than forty years, when the physicist Allan MacLeod Cormack formulated some of
the mathematical principles for an implementation of x-ray tomographic reconstruction for medical use in
1963. [143] Since then, the use and development of tomography scanners for medical imaging proliferated.
In 1971, Godfrey Hounsfield who works at Electric and Musical Industries (EMI) validated Cormack’s work by
building a prototype CT scanner. [144] For their contribution to medicine, Cormack and Hounsfield shared
the Nobel Prize in Physiology in 1979.

In electron microscopy, the first examples for 3D reconstructions using TEM were published in 1968
in three seminal papers. The first paper from De Rosier and Klug determined the 3D structure of the tail
of the bacteriophage T4 with helical symmetry (Figure 2.1) from only one single projection. [145] This
work is actually an example using electron crystallography, in which diffraction patterns/high-resolution
images are acquired from biological objects, to extract the “average” molecule or unit cell of an object by a
number of optical and computer methods. Due to the contribution to the development of crystallographic
electron microscopy and to the study of the structure of biologically important nucleic acid-protein complexes,
Klug won the Nobel Prize in Chemistry in 1982. The second paper from Hoppe and coworkers showed
how asymmetric objects can be reconstructed from a sufficient number of projections. [146] This method
is well known as single-particle analysis and widely applied for biological samples. The third paper from
Hart and coworkers offered a means to determine 3D structures of low-contrast biological specimens at high
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resolution using an average re-projection calculated from a tilt series of images. [147] These attempts are
considered as the starting point for the development of electron tomography. This technique remained in the
field of life science until 1988 when Spontak et al. first used it in materials science to visualize 3D polymer
microstructures. [148] However, its popularity has increased only in the last decades due to the introduction
of novel tomographic imaging modes, automation of microscope control, new reconstruction algorithms and
the increased speed and ease of computation. [79] The first example of modern electron tomography for
materials science was published in 2000 by of Koster and co-workers in Utrecht, who used bright field TEM
tomography to reconstruct porous zeolites [84] and later in 2001 and 2003 by Weyland and Midgley [149],
[150], which present the catalysis work based on STEM tomography and the development of Z-contrast and
EFTEM tomography.

Figure 2.1: Aaron Klug and his work on 3D reconstruction of the structure of the tail of bacteriophage T4 in 1968,
reproduced from [145].

2.2. Introduction to electron microscopy (EM)

The basis for electron microscopy is an electron microscope with a basic setup analogous to an optical
microscope, consisting of an electron source and a system of lenses used to illuminate a specific part of the
sample and to magnify images of the projected samples. The signals for imaging are generated from the
interaction of the electron beam with the specimen. One advantage of using an electron beam is the short
wavelength in the pm range, which enables to achieve high-resolution imaging down to the sub-Ångstrom
level. Another advantage is that negatively charged electrons can be focused easily by electromagnetic lenses.
In this section, the two main types of electron microscopes, transmission electron microscopes and scanning
electron microscopes will be introduced and the signal generation will be briefly discussed.
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2.2.1. Electron-matter interaction

When an incident electron beam hits a specimen, a large amount of information can be gained, as shown in
Figure 2.2a. For the electrons that go through the specimen, besides the directly transmitted part that suffers
no detectable interaction with the specimen, they are either scattered elastically or inelastically depending on
whether there is an energy loss during the Coulomb interaction. This results in a non-uniform distribution
of electrons emerging from the exit surface of the specimen that contains structural, chemical and other
information about the specimen. Given the wave nature of the electrons, the scattered electrons can be divided
into coherent and incoherent depending on the phase change. Elastic scattering occurs when there is no loss
of energy of the incident electrons, meaning that the wavelength is maintained, but the travel direction might
be changed due to scattering. As shown in Figure 2.2b, low-angle elastic scattering (< 3◦) occurs when the
incident electron interacts with the electron cloud of the specimen. These coherently scattered electrons can
be used to analyze the crystal structure as they result in an electron diffraction pattern. High-angle scattering
(>3◦) mainly occurs when the incident beam interacts with the nucleus by Rutherford scattering with the
scattering probability roughly proportional to the atomic number (Z) of the element squared. This high-angle,
forward scattering can be used to form so called Z-contrast images, where the image contrast is not (too
strongly) affected by the orientation of the specimen, providing high quality, linear intensity projections of
the scattering power of the object. In some cases when the incident electrons hit the nucleus directly, the
scattering angle can be larger than 90◦. These backscattered electrons (BSE) are usually used for the imaging
in SEM.

Figure 2.2: (a) Signals generated from the interaction between electrons and a thin specimen; (b) schematic of electron
scattering by a single atom, adopted from [151].

In the case of inelastic scattering, the incident electron transfers energy to the specimen, generating a
range of signals, such as characteristic X-rays, secondary electrons (SE), cathodoluminescence (CL), Auger
electrons, plasmons and phonons. The energy lost from the primary electron can be used in EELS, which
enables to identify the composition, bonding/valence state, the structure, the free-electron density, the band
gap and the thickness of the specimen. The generated signals can also be exploited to characterize the
materials. Considering the situation in a single atom, for example, when a high-energy incident electron
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knocks out an inner-shell electron, this atom is ionized to an excited state and will return to a lower unoccupied
state by filling in the hole with an outer-shell electron. This process will be accompanied by the emission of
either a photon (X-ray) or an Auger electron. As both the emitted X-ray and Auger electrons are characteristic
for each type of atom, they can be used for qualitative and semi-quantitative analysis of elements in EDS and
Auger electron spectroscopy.

2.2.2. TEM setup

The optical setup of a TEM can be seen in Figure 2.3, from top to bottom it includes an electron source (gun),
a condenser system, objective lenses and a projection system as the main optical components. Two types of
electron sources including thermionic (LaB6) and field-emission sources (Schottky/cold FEG) are commonly
used to generate an electron beam either by heating or applying a high electric potential. The condenser

Figure 2.3: (left) Representation of optical components in an advanced TEM equipped with probe corrector (a Themis
300 used in this thesis), and (right) schematic diagram of TEM illumination, adopted from [152].

system often consists of three electromagnetic lenses and apertures in modern TEMs, which are used to adjust
the intensity, illuminated area and convergence angle of the electron beam on the specimen. An advantage of
using an aperture is improving the coherence of the electron beam as all the high angle electrons are blocked
and only the electrons close to the optical axis are allowed to pass. Below the three-condenser system, a mini
condenser lens is added and joined with the upper objective lens, enables switch between TEM and STEM
mode. After passing through the upper part of the objective system, the electron beam hits the specimen and
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generates the signals mentioned in section 2.2.1, that can be used for imaging, spectroscopy and diffraction.
A first magnified image is formed at the intermediate image plane and a diffraction pattern at the back focus
plane (BFP) of the objective lens. After further magnified by the projection system, they can be viewed with a
camera or on the viewing screen. However, the electromagnetic lenses are not perfect and often suffer from
spherical aberration (Cs), chromatic aberration (Cc) and astigmatism, decreasing the resolution of the final
image. These problems can be partially compensated by Cs (image/probe), Cc correctors and stigmators in
advanced TEM.

2.2.3. Imaging modes of TEM

The three imaging modes commonly used in a TEM are diffraction mode, imaging mode and STEM mode. In
both imaging and diffraction modes, a parallel beam formed by the condenser system is used to illuminate
the region of interest (ROI) of the specimen. After interacting with the specimen, the transmitted electrons
(scattered and unscattered) are focused by the objective lens, forming an image at the intermediate image
plane and a diffraction pattern at the BFP of the objective lens. Operation in imaging and diffraction mode
can be switched by tuning the strength of the intermediate lens to focus on the intermediate image plane

Figure 2.4: Schematic representation of the beam path in imaging, diffraction and STEM mode in a TEM, reproduced
from [153].

for imaging or the BFP for diffraction (Figure 2.4a,b). In imaging mode, BF and dark field (DF) images can
be obtained separately by selecting the unscattered (direct) beam or a scattered beam for imaging. The BF
images originates from two types of amplitude contrast: mass-thickness contrast and diffraction contrast. As
its name implies, mass-thickness contrast depends on the mass (related to the atomic number Z and density)
and thickness of the specimen, with higher Z and thicker regions scattering more electrons, thus reducing the
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intensity of the direct beam and causing these regions to appear darker in the image. Mass–thickness contrast
dominates mainly for non–crystalline materials while diffraction contrast is more important for crystalline
specimens, where the intensity of the BF image highly depends on the orientation of the crystal and the
diffracted beams excited and blocked by an objective aperture. In a DF image, only the regions of crystals
where the chosen diffracted beams are excited will appear bright.

Rather than using a parallel beam as introduced above, a finely focused probe produced by the condenser
system is used to scan parallel to the optical axis across the sample using the double deflection scan coils
in STEM mode (Figure 2.4c). During scanning, the electrons transmitted with different scattering angles
are collected by various detectors. For example, the direct beam or low-angle scattered electrons (< 10
mrad) are collected by a BF detector to form a BF-STEM image with information similar to BF-TEM images.
The higher scattered electrons (10-50 mrad) are collected by an angular dark field (ADF) detector and
the resultant ADF image is complementary to a DF-TEM image with an aperture corresponding to the ADF
detector shape. To collect the electrons scattered to higher angles (> 50 mrad), a HAADF detector is used.
Such high-scattered electrons are dominated by Rutherford scattering and thermally diffuse scattering, with
the intensity roughly proportional the atomic number Z squared and the sample thickness. In addition to
imaging, STEM is also commonly combined with analytical techniques such as EDS and EELS to provide the
corresponding information on the specimen.

2.2.4. Scanning electron microscopy and focus ion beam systems

Scanning electron microscopy (SEM) is a frequently used technique for studying the surface of bulk materials.
Analogous to STEM imaging, SEM uses a fine electron beam (typical with an energy between 0.2 - 30 keV)
focused by the condenser system to scan across the specimen surface using pairs of scanning coils. The signals

Figure 2.5: Image of a Dual-beam FIB and schematic representation of the main optical components (FEI Strata 400 S
used in this thesis).

used for SEM imaging are typically the secondary electrons, back-scattered electrons and characteristic X-rays,
making it possible to measure the surface structure and composition of the specimen. A FIB system uses setup
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resembling a SEM but with a focused ion beam (typically Ga+) instead of electrons, allowing for imaging at
low beam currents and structuring the sample surface at high beam currents. With a built-in micromanipulator,
the ROI of the specimen can be extracted precisely by in situ lift-out and attach to a typical TEM half grid
after cutting a section of the sample free. Combining SEM and FIB in a single instrument, both imaging and
nanofabrication can be achieved (Figure 2.5). In such a dual-beam system, a gas injection system (GIS) is
usually employed for selective deposition of materials, e.g. Pt or carbon on the sample surface to protect
the surface and enabling nanoscale welding, e.g. to connect to micromanipulator for in situ lift-out of TEM
samples. This technique is widely used to prepare TEM lamella from bulk materials. [154]–[156]

2.3. Mathematical foundation of tomographic image reconstruction

The Radon transform

The Radon transform R describes the projection process by mapping a 2D function f(x,y) in real space by
line integrals f along all possible lines L:

Rf =

∫︂
L
f(x, y)ds (2.1)

Figure 2.6: Illumination of the Radon transform of (a) point, (b) 2D and (c) 3D object.

As shown in Figure 2.6a, a given point object p(x, y) in Cartesian space can be described using polar
coordinates (r, ϕ) as r =

√︁
(x2 + y2), ϕ = tan−1(y/x). Suppose that this point object is projected (Radon

transformed) along the projection direction L for all tilt angles θ (the angle between the horizontal and
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projection direction), the distance between its corresponding position in projection plane and coordinate
origin can then be calculated as l = rcos(θ − ϕ), resulting in a sine wave. That is why the Radon space image
is often termed as a ‘sinogram’. The Radon transform of a 2D object is a linear projection of all points. In other
words, the projections of an object along the tilt angles θ are the sum of sine waves. Thus, the Radon transform
bridges the real space object and its projections in Radon space when the projection requirement (detailed
explanation in section 2.5.1) is fulfilled, which implies the possibility that the real space structure can be
recovered from the Radon domain by an inversion of the Radon transform. However, the sampling of the object
by projections is in practice discrete and the tilt-range might be limited, so that the inverse Radon transform is
not uniquely solvable. Reconstruction from a limited number of projections is usually used to yield an adequate
approximation to the original object. Experimentally, after tomographic data acquisition of a 3D object (Figure
2.6c), a sinogram (bottom right) can be built by slicing the aligned projection stack perpendicular to the tilt
axis (bottom left). Each sinogram slice allows to compute a 2D reconstruction corresponding to one section of
the final volume. At the end, the 3D structure is built by stacking the reconstructed 2D sections corresponding
to their original sequence.

2.4. Electron tomography workflow

Typically, a complete workflow for tomographic analysis includes tilt series acquisition, alignment, reconstruc-
tion and 3D visualization, as shown in Figure 2.7, potentially follow by further quantification of the 3D model.
More details for each step can be found in section 2.5-2.8.

Figure 2.7: Schematic representation of a tomographic reconstruction: 1) acquisition of projection images at different
tilt-angles, 2) alignment and reconstruction, 3) post processing and visualization, (figure courtesy of C.
Kübel).
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2.5. Data acquisition

2.5.1. Projection requirement

One key issue that needs to be considered before data acquisition is the ‘projection requirement’, which
originated from Radon in 1917 [141] and was extended by Hawkers in 1992. [157] It states that the projected
signal for electron tomography must be a strict monotonic function of a physical property of the sample under
investigation, e.g. density, thickness, magnetic or electrical properties. In reality, slight variations from the
projection requirement can be tolerated, where proper tomographic reconstructions can still be obtained.
[158] However, research on electron tomography indicates that immediately interpretable signals that meet
the projection requirement are far simpler to handle than those that do not. [159] Therefore, choosing a
suitable imaging mode based on the sample properties to fulfill the projection requirement is important for
tomographic experiments.

2.5.2. Imaging modes in ET

Among various electron microscopy techniques, BF-TEM and HAADF-STEM are nowadays the two standard
imaging modes used in electron tomography. For many years, BF-TEM was used for biological specimens, since
they are often non-crystalline and thin, weakly scattering objects. [160] For these samples, mass-thickness
is the main contribution to image formation, which approximately obeys the projection requirement. For
strongly scattering crystalline specimens, diffraction contrast dominates the BF-TEM images, which is very
sensitive to the orientation of the sample. In addition, Fresnel contrast that depends on the defocus also
contributes to BF-TEM imaging. This will break the projection criterion, limiting its application for many
materials. In contrast, HAADF-STEM imaging, has become the most widely utilized technique for ET in
materials science. [149] The motivation for collecting HAADF signals lies in the fact that contributions to the
image from Bragg scattering is minimized at high detection angles with a large angular integration range.
The signal intensity varies monotonically with the thickness of the specimen and the atomic number as long
the sample is sufficiently thin. Moreover, the HAADF signal is approximately proportional to the square
of the atomic number (Z2), making it sensitive to compositional variations in the material. With this high
contrast and improved visibility, HAADF-STEM has proven to be particularly effective for 3D imaging of buried
nanoparticles [161] and catalysts in light supports [101], [162].

2.5.3. Projection geometry

Single-tilt

A typical tilt-series for data acquisition in ET can be obtained by tilting the ROI with respect to the
electron beam. This can be performed easily using a single tilt tomography holder (Figure 2.8c). Considering
the influence of beam damage to the specimens, data acquisition usually uses tilt increments of 1◦ to 5◦.
However, several factors such as the limited objective lens pole piece gap and shadowing by the grid or the
TEM holder restricts the maximum tilt-range that can be achieved. In addition, the specimen geometry also
plays a significant role limiting the tilt range. For instance, the projected thickness increases with tilt angle
for slab-like specimens (Figure 2.8a), and only a small fraction of sample is in focus at high tilt angles. An
other issue is that parts of the sample outside the field of view at 0◦ tilt can contribute to the image at high tilt
angles and overlap with the ROI. Theses problems can be solved by using rod-like specimens (Figure 2.8b),
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where there is no increase in projected thickness with tilt, no overlap problem, and the whole specimen can
be kept at a constant focus for all tilt angles. Considering the limitations mentioned above, a typical tilt range
in single tilt-axis tomography is around ±70◦, which will result in the so-called missing wedge problem. More
details about the missing wedge problem will be provided in section 2.7.1.

Figure 2.8: Specimen geometry : (a) slab-like specimen, (b) rod-like specimen and images of standard Fischione (c)
single tilt holder, (d) double tilt holder and (e) on-axis tomography holder.

Double-tilt and 360◦ holder

To overcome the missing wedge problem to some extent, an improved tilt scheme can be used to acquire
data around two perpendicular tilt axes with a dual-axis tomography holder (Figure 2.8d), which reduces
the missing wedge to a missing pyramid. [131] However, the more complicated operation and tilt-series
alignment for this technique limit its application. In recent years, an on-axis rotation holder (Figure 2.8e) has
been introduced to enable acquisition of tilt series over a full 180◦ range for rod-like samples and achieve
reconstructions without typical missing wedge artifacts. The biggest challenge in this technique is the sample
preparation, as specimens are required to be mounted on a needle shaped tip. While some approaches have
been reported using a FIB instrument to extract and mill the specimen into a needle geometry, [163], [164]
FIB based methods are not suitable for nanoparticles and other fine powders.
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2.5.4. Resolution

The resolution of the reconstruction in conventional ET can be estimated using the Crowther criterion. [165]
Assuming perfect alignment, the resolution along the tilt axis (X) only depends on the resolution of the input
image. However, for the Y direction, which is perpendicular to the tilt axis X and the optical axis (Z), the
resolution is limited by the sampling rate and the dimension of the material, as shown in formula 2-2 :

dy = π
D

N
(2.2)

where D is the diameter of the reconstructed object and N is the number of projections. In the direction
parallel to electron beam, the resolution is further reduced due to the missing wedge [152], which can be
approximated by multiplying the resolution in the Y direction by an elongation factor (eyz). This can be
expressed as :

dz = dy · eyz with eyz =
√︃

α+ sinα · cosα
α− sinα · cosα

(2.3)

where α is the maximum tilt angle, directly determining the value of eyz. For a typical tilt range of ±75◦,
eyz is around 1.2 and increasing for a reduced tilt range. This results in an anisotropic resolution depending
on the orientation, which causes elongation artifacts to appear along Z direction or so-called missing wedge
direction. Nevertheless, the Crowther criterion only provides a rough resolution estimate, which is valid at the
outer diameter of the reconstructed volume. In practice, typically a higher resolution can be obtained when
some constraints are introduced during the reconstruction (as seen in section 2.7).

2.5.5. Implementation of data acquisition

The acquisition of a tomographic tilt series is straightforward and mainly includes four steps as seen in Figure
2.9. The first step is tilting the sample into the desired orientation with a preset tilt interval. As there are
always small shifts in x, y and z direction between two successive tilt projections, the shift in x and y direction
can be tracked by cross-correlation and compensated by an image shift in TEM mode and beam shift in STEM
mode. The object of interest is refocused before the full image is acquired. Then the sample is tilted to the
next tilt angle and the previous steps are repeated.

Figure 2.9:Workflow for tomographic data acquisition.

In practice, the data acquisition can be performed either manually or automatically. Compared to the
tedious manual acquisition, which highly depends on the operator, the automatic procedure not only eases
the acquisition process, but also reduce the total dose on the sample by incorporating a predefined holder
calibration file. The purpose of the holder calibration is to measure a set of predictable lateral (x, y) and vertical
(defocus/z) shifts at a series of tilt angles in advance and use these values as a coarse compensation to the
mostly reproducible mechanical imperfections for a specific TEM stage for the experimental data acquisition.
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This facilitates tracking of the object in the field of view after each tilt, thus reducing the time and beam
exposure in relocating the region of interest. Another benefit of automated acquisition is the possibility of
integrating dynamic focusing for STEM tomography, which compensates for the focus differences encountered
in a slab-shaped sample at high tilt angles, thus ensuring that different parts of the sample at different height
are at reasonably well focus in every frame. Nevertheless, dynamic focusing does not help with the problem of
focus spread in thick samples. In this case, increasing the focal depth of STEM is of great importance. This
can be achieved by reducing the convergence angle using a weaker condenser lens or a smaller C2 aperture to
increase the depth of focus.

2.6. Tilt-series alignment

As the projected images of a tilt series are recorded only with shift correction during tracking by cross-
correlation, small uncompensated shifts in any direction between two successive projections are inevitable. In
addition to image shift, other factors that lead to the misalignment of tilt series should be also considered. For
instance, the imperfect rotation axis and magnification changes caused by an imperfect optical system sensitive
to focus changes, and slight deviations of tilt angles because of an imperfect mechanical control of the stage.
To ensure a high quality 3D reconstruction, the acquired tilt series must be aligned to a common coordinate
system corresponding to a tilt around a well-defined axis with sub-pixel accuracy. The most commonly used
methods for alignment in electron tomography including cross-correlation, center of mass and fiducial marker
tracking methods will be introduced in this section.

2.6.1. Cross-correlation

The basic purpose of the cross-correlation function (CCF) is to determine the XY shifts between every two
consecutive images (IA, IB) of the tilt series. CCF provides an output image whose maximum intensity peak
indicates the shift required to bring the features from the two similar images into best coincidence, which can
be calculated as :

CCFr =
∑︂

IAr+r′ · IBr′ = F−1 [F (IA) · F (IB)
∗] (2.4)

where F and F−1 correspond to the Fourier transform and inverse Fourier transform. Figure 2.10a-c shows an
example for a real application in ET. One problem for this method is a quite broad CCF peak is usually obtained
when calculating the CCF from two images directly. This is worse when dealing with low-contrast images or
noisy images, in which the identical signal is not dominating and the cross-correlation peak might be indistinct.
To improve the shift measurement, one or more filtering processes are often used to enhance or reduce the
influence of certain features in the images. As shown in Figure 2.10d-f, a much sharper cross-correlation
peak can be achieved by using a high bandpass filter. Nevertheless, the cross-correlation match will never be
exact as the projected view of the specimen is similar but not identical for successive tilts. This may become
more critical for slab-like and thicker specimens, where additional features are brought into the field of view.
Foreshortening of features in projection at successively higher tilts can be significant in these specimens. In
this case, a linear stretch (1/cosθ) perpendicular to the tilt axis is needed, which enables recovery of the
spatial correspondence between successive projections. [159], [166]

Another problem of this method is the cumulative error. When aligning a tilt series by cross-correlation,
the projections are aligned one by one, i.e., the actual projection is aligned using the previous projection as
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reference. Then the aligned second projection will be used as a new reference to align the next projection
and so on. The consequence of this is that, small subpixel misalignment errors occurring between each set of
projections, are building up to a significant error over the tilt series. In addition, variations in the tilt-axis
orientation, tilt angle and magnification cannot be compensated by cross-correlation alignment.

Figure 2.10: Determining the relative shift between two tilt series images by cross-correlation. (a,b) Successive tilt series
images and (c) the corresponding cross-correlation indicating their relative shift. (d,e) Band pass filtering of
the images to yield (f) a sharper cross-correlation peak.

2.6.2. Tilt axis adjustment

As the cross-correlation only aligns the image shift in lateral and vertical direction, the identification of the
position and orientation of the tilt axis has to be performed manually. As an example, artifacts caused by tilt
axis misalignment for on a HAADF-STEM tilt series of gold dog-bone nanoparticles can be seen in Figure 2.11.
[159] When the tilt axis is correctly positioned, all reconstructed particles show a high symmetry and roughly
round shape in cross-section (depending on the effect of missing wedge), regardless of their spatial location in
the reconstructed volume (Figure 2.11b). However, an incorrect tilt axis angle will introduce ‘banana’ artifacts
in opposite directions at the top and bottom of reconstructed slices while the reconstruction of the central
slice remains correct, as indicated schematically in the lower right corner in Figure 2.11c. Similarly, a lateral
shift of the tilt axis will also cause ‘banana’ artifacts in a common direction in all reconstructed slices (Figure
2.11d). Thus, the misaligned tilt axis can be adjusted easily by minimizing these ‘banana’ artifacts.
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Figure 2.11: Tilt axis alignment by minimization of arcing artifacts based on a HAADF-STEM tomographic series of gold
dog-bone nanoparticles, adapted from [159].

2.6.3. Fiducial marker tracking

An alternative to cross-correlation is the fiducial marker tracking method, in which fiducial markers (often
colloidal gold particles, which are assumed to be immobile with respect to the specimen structure) are added to
the specimen. Figure 2.12b-h shows Au particles distributed randomly on the sample in all projections. These
markers can be easily tracked in the images due to their high contrast. In practice, the tracking procedure
mainly involves three steps, as illustrated in Figure 2.12a:

(i) 20-30 markers are usually selected and the positions of these markers are tracked throughout the whole
tilt series. This process can be carried out automatically after an initial cross-correlation alignment of
the tilt-series;
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(ii) The 3D position of each marker is estimated and used to predict the corresponding 2D projected positions
in all views of the tilt series;

(iii) The alignment of the tilt series is refined by minimizing the difference between the experimental marker
positions and the calculated positions.

This process is iteratively repeated to refine the alignment of all the projections. During the refinement process,
it is also possible to correct to a certain extent for image distortions, tilt axis orientation, inaccuracies of the tilt
angle, magnification variations, beam tilt and sample shrinkage, yielding an overall alignment with average
residual errors at the sub-pixel level. Therefore, the fiducial marker-based alignment procedure is superior to
the cross-correlation for obtaining an accurate alignment of the projected images.

Figure 2.12: Illustration of alignment by fiducial marker tracking method.

Other alignment approaches such as center of mass (CM) and common line are also used, especially in
atomic-scale ET. [167]–[169] The CM method assumes that the position of the center of mass is the same
in all projections when tilting the object. In practice, the tilt series can be aligned to the common axis by
shifting all projections so that their center of mass is located at the same position. The idea of common line
alignment comes from the Fourier slice theorem, where the Fourier transform of all projections will intersect
on a single line along the tilt axis for a single tilt tomographic series in Fourier space. In real space, this means
that if the measured 2D projection images were further projected onto the tilt axis to obtain one dimensional
(1D) profiles, they all should be exactly the same. By using cross-correlation, all 1D projected curves can be
aligned together along the tilt axis. Is has to be noted that the common line method cannot align the tilt series
along the direction perpendicular to the tilt axis. Unlike cross-correlation, both CM and common line methods
align all the projections based on one common image as reference rather than aligning the projections one
by one, thus avoiding the problem of accumulative error and thus potentially give rise to higher alignment
accuracy. However, one common problem for both methods is their sensitivity to the background and noise, so
proper background subtraction and denoising should be done prior to the alignment. In addition, similar to
the cross-correlation method, these two methods only allow the alignment of spatial image shifts, further
steps are needed for tilt axis alignment and it is not possible to compensate for other alignment error sources.
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2.7. Reconstruction algorithms

Various reconstruction algorithms have been applied in ET, among them three mainstream classes are in-
troduced in this thesis: (weighted) back projection, conventional iterative reconstruction methods such as
algebraic Reconstruction Technique (ART) and SIRT, and advanced iterative reconstruction methods using
prior knowledge like TVM and DART. To better understand reconstruction artifacts caused from constrained
sampling, a brief introduction to the Fourier/Central slice theorem will also be provided in this section.

2.7.1. Fourier/Central slice theorem and missing wedge

The Fourier/central slice theorem was introduced for tomography by Bracewell in 1956 [170], which states
that the Fourier transform of a 2D projection at an angle θ is a central section through the Fourier space of the
3D object at the same angle. As shown in Figure 2.13a, recording projections at various tilt angles is then
equivalent to sampling 3D Fourier space at the corresponding angles. Therefore, a limited tilt range during
the acquisition results in a missing wedge of information in the 3D Fourier space. In addition, the discrete
angular increment will result in a higher sampling density at low spatial frequencies compared to high spatial
frequencies (Figure 2.13b), resulting in a blurring of the reconstruction.

Figure 2.13: Schematic representation of (a) Fourier slice theorem from Friedrich et al. [171] and (b) missing wedge
from limited angular sampling (figure courtesy of C. Kübel)

.

2.7.2. Backprojection

Backprojection (BP) is the process of propagating each projection along the projection direction back. Figure
2.14a-e shows BP reconstructions of a KIT logo from various projections. By backpropagating an infinite
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number of projections, the summation of the back projected rays in the reconstruction space will generate the
original object. However, the number of projections in a real experiment is limited. According to the Fourier
slice theory (Figure 2.13), the Fourier domain of the object is sampled in such a way that the low frequencies
are sampled much more densely than the high frequencies. The more severe undersampling for higher spatial
frequencies causes the reconstruction to appear blurred, especially edges (Figure 2.14e).

Figure 2.14: (a-e) Backprojection and (f-j) weighted backprojection reconstructions using Ram-Lak filter of the KIT logo
from various projections within a tilt range of ±90◦.

To partially overcome this problem, a proper filter like a Ram-Lak filter (inset in Figure 2.14f) can be
applied to the projections in the Fourier domain. This is so-called weighted back projection (WBP), in which
the low frequencies will be suppressed, thus avoiding overly blurred back projected reconstructions. To start a
WBP reconstruction, the raw projections are Fourier transformed using FFT method. The resulting transformed
image is then filtered by multiplying with a Ram-Lak filter to reduce the low frequencies and enhance the
high frequencies. Typically, there is also a cut-off defined above which all frequencies are set to zero to reduce
noise. After the filtering, the previous transformed image is inversely Fourier transformed to a new set of
projections, which will be used as input for the BP to obtain the final reconstruction. Figure 2.14f-j shows the
WBP reconstructions of the same KIT logo from various projections. With a sufficient number of projections,
the reconstructed image preserves sharp edges much better compared to BP. This method is still widely used
nowadays especially in computed tomography or even electron tomography because of the simple principle
and fast reconstruction. Nevertheless, it should be noted that using a filter during the WBP reconstruction can
induce artifacts in the reconstruction. More details will be discussed in the next section.

2.7.3. Iterative methods

Another approach in ET is the application of iterative algorithms using additional constraints, which aim to find
the best match between experimental projected images and forward projection images from the reconstructed
tomogram, by refining the reconstructed object iteratively. According to the Radon transform, the projection
process in tomography can be expressed as a linear operator W that maps the object function x ∈ Rn to the
projection vector p ∈ Rn:
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Wx = p (2.5)

which can be expressed as:

⎛⎜⎝ w1,1 w1,n
... · · ·

...
wm,1 wm,n

⎞⎟⎠
⎛⎜⎝ x1
...
xn

⎞⎟⎠ =

⎛⎜⎝ p1
...
pm

⎞⎟⎠ (2.6)

where n = k2 represents the size of reconstructed object (here an example of a 2D object) and m = k × h
corresponds to the total size of projection data with the number of projection angles of h. W ∈ Rm×n is the
projection matrix, in which each row represents the projection operator for a single ray at a given projection
angle and each row of p represents the corresponding projection data. The problem of reconstructing the object
is equivalent to finding x ∈ Rn for a given projection matrix W and measured projection data p such that
Wx = p is fulfilled. In practice, this problem is underdetermined as m < n in most cases, and the projection
data often contains noise or other errors. In this case, a solution is to seek the minimum of ∥Wx− p∥ with
some vector norm, e.g. l2-norm (∥y∥22 =

∑︁n−1
i=0 y2i for y ∈ Rn), using iterative methods:

x∗ = argmin
x

∥p−Wx∥22 (2.7)

Algebraic Reconstruction Technique

The principle used by ART is rather straightforward and was proposed by Kaczmarz in 1937 [172] and
then introduced to the field of ET by Gordon, Bender and Herman in 1970 [173]. A simple example in which
a 2D matrix with four unknown pixels was reconstructed by three projections can be seen in Figure 2.15,
where the iterative procedure includes three steps :

(i) Make an initial guess for the solution, typically with all pixels set to zero;

(ii) Compute the weighted difference between projections and guess along a certain projection ray. For the
first row in Figure 2.15a, the weighted difference is (7-0)/2=3.5;

(iii) Update the reconstructed matrix by adding the weighted difference to the previous values of the
corresponding pixel hit by the projection ray.

Therefore, each pixel in the first row should be 0+3.5 = 3.5, as shown in Figure 2.15b. With the same
procedure, all the pixels are updated iteratively, so that a refined 2D matrix can be retrieved. In a real
reconstruction of a tomographic dataset from a tilt range of ±70◦, typically, 70-140 projections (depending on
the tilt step) with a size of 1024×1024 are used, the reconstruction is usually carried out iteratively. However,
this method is quite sensitive to noise and is not guaranteed to converge.
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Figure 2.15: Illustration of ART reconstruction for a simple 2D matrix with four unknown pixels from three projections.

Simultaneous Iterative Reconstruction Technique

One year after the introduction of ART for ET, Gilbert suggested a modified approach which is widely
known as SIRT. [174] As its name implies, SIRT is an iterative method that updates the reconstruction using all
the available projection data simultaneously, making it less sensitive to noise than ART. More specifically, SIRT
converges with sufficient iterations in the absence of noise. Figure 2.16 shows the workflow for this technique.
Starting from an initial reconstruction obtained by e.g. WBP, the obtained reconstruction is re-projected
along the original experimental tilt angles, resulting in a set of new computed projections. These computed
projections are either subtracted from the measured projections (additive SIRT) or the experimental projections
are divided by the computed projections (multiplicative SIRT). The resulting difference projections are back
projected to get a difference reconstruction. Then the current reconstruction is updated by adding/multiplying
the difference reconstruction. This process is repeated until a certain iteration number is reached.

However, it is not true that better reconstructions are obtained with an increasing number of iterations. It
has been found that in the presence of noise, the results tend to be a better approximation of the 3D structure
of the studied object after a few iterations, but above a certain number of iterations the resemblance starts to
deteriorate, even though the match between the experimental and the re-projected images can be maintained
or even improved. This problem occurs when there is a high noise level in the experimental projections,
where the noise in the original experimental data is averaged during the iterations between forward- and
back-projections.
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Figure 2.16: The flow chart for SIRT (figure courtesy of P. Midgley from University of Cambridge).

Figure 2.17 shows a comparison of WBP and SIRT reconstruction from a full tilt range with 91 projections.
The Ram-Lak filter using during WBP reconstruction introduces strong artifacts for the intensities, as visible in
Figure 2.17b, where the intensity of the vacuum area around the KIT logo is almost identical to the intensity
of the logo. This will become a serious problem especially for imaging specimens with low- and high-density

Figure 2.17: Comparison of the reconstruction of the KIT logo using WBP and SIRT methods.

components. In the SIRT reconstruction of the same data, the contrast is better preserved. However, clear
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streaking artifacts which are caused by the discrete sampling can be seen in both reconstructions.

The missing wedge problem caused by the limited tilt range is another challenge for SIRT. Figure 2.18
showed SIRT reconstruction from a set of series of the TU Darmstadt logo with different tilt ranges and a tilt
step of 2◦. For the tilt range of ±90◦, meaning no missing wedge, all the detailed features can be reconstructed
perfectly when ignoring the streaking artifacts. With a reduced tilt range (sever) elongation artifacts appear
and some features are missing in the missing wedge direction. This problem will strongly affect the accuracy
of the reconstruction especially for some small features, e.g. isolated pores or embedded particles. As single
tilt ET with limited tilt range is still the routine technique in material science, alternative approaches that are
able to reduce or even solve the missing wedge problem remain avidly sought after.

Figure 2.18: Evaluation of the SIRT reconstruction for the missing wedge problem using the TU Darmstadt logo.

2.7.4. Advanced iterative algorithms using prior knowledge

With the improved computation power and the development of new mathematical methods, advanced
algorithms have been proposed in ET by incorporating prior assumptions on the measured objects.

Total variation minimization

TVM is based on compressed sensing image processing methods, which aims to exploit the knowledge
that the reconstructed object has a sparse representation. Sparse means that most of the elements are zero in
a system. For example, although the image in Figure 2.19a is not sparse due to the existence of many non-zero
pixels, the image in Figure 2.19b shows that the gradient is sparse. As most continuous areas have the same
intensity, the corresponding gradient is zero. In nanostructured materials consisting of finite components, it
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is often reasonable to assume that the gradient of the object is sparse. A convenient way to implement this
sparsity in a tomographic reconstruction is by simultaneously minimizing the projection difference between
the reconstructed object and the original projections and the total variation of the reconstructed object :

x∗ = argmin
x

[︂
TV (x) +

µ

2
∥p−Wx∥22

]︂
(2.8)

where TV is the total variation computed as the norm of the discrete gradient of the reconstructed object
and µ is a regularization parameter. This parameter penalizes the TV with the difference between the
measured projection p and the reconstructed projectionWx, where a large µ leads to a result closer to a
SIRT reconstruction with high frequency details while a small µ will suppress noise, thus choosing a proper
µ is of great importance to obtain a reasonable reconstruction. The influence of µ on the reconstruction is
shown in Figure 2.19c-e. An underestimation of µ leads to a reconstruction in which noise is suppressed,
while high frequency details of the reconstruction are wiped out as well. A large value of µ leads to a result
that resembles a SIRT reconstruction, in which both missing wedge artifacts and noise are observed in the
resulting reconstruction.

Figure 2.19: (a) Shepp-logan phantom object, (b) gradient image of this phantom and (c-e) influence of the regularization
parameter µ on the quality of the reconstruction by TVM from a tilt range of ±70◦ with an increment of 2◦,
reproduced from [127].

Figure 2.20 shows a comparison of TVM and SIRT for PbSe–CdSe core shell nanoparticles. Figure c
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and d are two corresponding slices in xy plane. Both SIRT and TVM perform well in the xy plane (the
projection direction), while it is clear that the SIRT reconstruction is more elongated in comparison to the
TVM reconstruction in the xz plane (the missing wedge direction). An additional advantage of the TVM
reconstruction is that, after the minimization of the gradient, the reconstruction shows better signal to noise
ratio, resulting an easier segmentation for quantitative analysis.

Figure 2.20: SIRT and TVM reconstructions of the PbSe–CdSe core shell nanoparticles. (a,b) show a voltex visualization
of the SIRT and the TVM reconstruction. Orthoslices of the SIRT and TVM reconstruction in (c,d) xy plane
and (e,f) xz plane, reproduced from [127].

Discrete algebraic reconstruction technique (DART)

Another algorithm that incorporates prior knowledge is DART, which assumes that the unknown object
consists of a small number (i.e., two to five) of different materials, each corresponding to a certain gray level
in the reconstruction. [129] Such prior knowledge is valid for a wide range of tomography applications, such
as porous materials, which normally have only two components: material and pores. A simple workflow for
DART is schematically illustrated in Figure 2.21, in which a 2D binary image is supposed to be reconstructed
from some available projections and two gray levels for this model image are known in advance, either black
or white. The DART algorithm starts from an initial reconstruction, by e.g. WBP or SIRT, followed by an
initial segmentation based on preset grey levels to obtain a binary image. Based on this segmentation, one
can see that the pixels in interior of the object as well as in the background that has a certain distance from
the boundary have the correct gray level. The next step is to identify all the boundary and non-boundary
pixels. All non-boundary pixels are assigned with their corresponding grey levels, in the current case either
white or black. Afterwards another reconstruction is performed, but only boundary pixels are allowed to be
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updated. In this way a new reconstruction where the non-boundary pixels are kept at the original value and
some boundary pixels change their grey levels can be obtained. This process is repeated iteratively until the
expected number of iterations are achieved. In practice, for some systems with small features, instead of only
updating the boundary pixels, a certain percentage of randomly selected non-boundary pixels could also be
updated so that small features will not be washed out during the initial iterations. In addition, smoothing or
positive constraint can be also introduced during the reconstruction to improve the signal to noise ratio and
reliability.

Figure 2.21: The flow chart of DART, reproduced from [129].

Figure 2.22 shows a comparison of SIRT, TVM and DART reconstructions of Au nanoparticles, where it can
be seen that a reasonable accuracy of the particle shape can be obtained by all three reconstruction algorithms
in xy direction, while elongation along the missing wedge direction present in the SIRT reconstruction is
largely removed with TVM and DART. From the isosurface rendering, it appears that the small Au particles
(encircled in Figure 2.22a-c) are reconstructed well from TVM and DART reconstructions, while they cannot
be observed in the SIRT reconstruction. Compared to SIRT, TVM promotes broadly homogeneous intensity in
the nanoparticles and sharp boundaries by using a total variation regularization. However, intensity variations
in the nanoparticles caused by residual diffraction contrast in the original projection can be observed in both
SIRT and TVM reconstruction. Such intensity variations in the nanoparticles do not appear in the DART
reconstruction due to the specific characteristic of the algorithm. One slight problem for the DART algorithm
in this study is that, the residual diffraction contrast that is present in the projections may hamper the correct
estimation of the boundaries as it breaks the purely thickness dependence of the signal, leading to small
artifacts as indicated by a white arrow in Figure 2.22i.

Given all reconstruction methods mentioned above, a considerable advantage of DART is that the re-
constructed structures are segmented during the reconstruction process, as they are assigned to a particular
grey value for each component. This is quite helpful and able to avoid the risk of artifacts introduction by
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further segmentation for a quantitative analysis, especially for porous materials, which mainly focuses on the
measurement of pore size distribution, pore length, tortuosity, etc.

Figure 2.22: Comparison of SIRT reconstruction, TVM reconstruction and DART reconstruction of a series of Au nanopar-
ticles in (a-f) xy direction and (g-i) xz direction, reproduced from [139].

2.7.5. Other reconstruction algorithms

In addition to the reconstruction methods mentioned above, other methods and algorithms such as single-
particle reconstruction [175], generalized Fourier iterative reconstruction (GENFIRE) [176], Bayesian recon-
struction [177], etc., also show promising reconstruction abilities for specific types of materials and imaging
conditions. For example, single-particle method, a reconstruction technique that has been well documented in
biological science based on sufficient number projections of identical particles recorded at different viewing
angles, has been used to determine the 3D structure of particularly stable atomic clusters and nanoparticles,
such as Au68 [178] and Pt NPs [175]. The GENFIRE algorithm is an iterative technique that incorporates
interpolation and physical constraints between real and reciprocal space, and has been mainly reported for
atomic-resolution reconstructions of crystalline nanoparticles. [179], [180] Bayesian approaches are another
tomographic reconstruction technique using prior information (e.g. intensity) of the target object during the
reconstruction to suppress noise, while it suffers either from over-smoothing effects or staircase effects when
distinguishing edges from noise. [181] With the rapid development of computational power and the rise of
artificial intelligence, machine learning based techniques have also been used for tomographic reconstructions
in recent years. [182], [183] These approaches will not be considered in this thesis. Given the mesoporous
materials of interest, especially for those with a narrow pore size (e.g. ∼ 5 nm) in this thesis, an accurate
quantitative analysis of the pore structures is always pursued. This requires the algorithm to be able to
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maintain good fidelity of the final reconstruction during denoising in the reconstruction process. Therefore,
this thesis did not focus on algorithms such as GENFIRE and Bayesian reconstruction, instead, the efficiency
and reliability of three commonly used reconstruction algorithms (SIRT, TVM and DART) are evaluated.

2.8. Post processing

2.8.1. Segmentation

For mesoporous materials, the extraction of quantitative information on the pore network such as pore size,
pore length, tortuosity and connectivity from tomographic reconstruction, requires segmentation. Various
segmentation methods have been reported for tomographic data [184]–[186], with ‘simple’ thresholding
approaches, either global or local thresholding, being most widely used. Methods for threshold selection fall
broadly into two categories: threshold estimates solely based on the reconstructed tomogram or examined
using projection data. The first group tries to define thresholds based on the histogram of the reconstructed
volume such as Otsu’s clustering method [187] or k-mean clustering methods [188]. These methods work well
if the contrast between two materials is sufficiently large. In the case of mesoporous materials such as carbon
and silica, which are widely used in heterogeneous catalysis, the grey levels of materials and pores overlap
considerably in the reconstructed tomogram. In particular, for the well-established reconstruction approaches
such as WBP and SIRT, there is a significant grey level overlap because the reconstructed intensities strongly
depend on the local neighborhood and structure in the projections. For example, the reconstructed intensities
of small metallic nanoparticles in a HAADF-STEM tomogram are lower than the intensities of the large support
particle due to the systematic errors related to the reconstruction algorithms. [189] Similarly, the reconstructed
intensity of isolated small pores is higher compared to the intensity of large pores, resulting in great challenges
for accurate segmentation by histogram-based thresholding methods. Another segmentation method called
projection distance minimization (PDM) was proposed by Batenburg et al. [190]. The main idea of this method
is to use the tomographic projection data to determine optimal threshold values by minimizing the difference
between the forward projection of the segmented image and the measured projection data. From various
simulation experiments, it has been demonstrated that this method yields superior results compared to classical
thresholding algorithms. However, PDM does not solve the inherent problem of the intensity dependence on
different pore sizes and connectivities since it simply results in the best overall compromise between over- and
under- segmentation of different pore sizes. Further research by J. Batenburg and coworkers revealed that the
segmentation can be improved using local thresholding based on PDM compared to global thresholding, in
particular, when the initial reconstruction contains artifacts. [191] Although PDM based methods succeed in
an optimized threshold selection, the final segmentation still strongly relies on the reliability of the initial
reconstruction, which limits its application.

2.8.2. 3D visualization

The most direct and simplest way of visualizing 3D image data is an orthoslice, which is taken orthogonally to
the primary reconstruction axes and the intensity often represents a physical property of the material, e.g.
density (Figure 2.23a). Based on these 2D slices, some direct impression of the morphology inside the measured
materials, e.g. disordered/ordered pores, size and distribution can be readily obtained. This visualization
method is particularly useful e.g. for supported catalysts to identify whether nanoparticles are located inside
or outside of the support. Alternatively, a 3D visualization of the reconstructed volume can be achieved in
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e.g. Avizo software (Thermo Fisher Scientific). For instance, shaded and classical texture-based volume
rendering (VRT) technique in the volren module enables a direct 3D visualization with customized colors and
transparency with virtual lighting effects for better rendering of complex spatial structures and enhancing
fine details, as shown in Figure 2.23b. Another visualization method volume rendering or voxel projection is
analogous to the original projection process on the microscope, visualizing the intensity distribution through a
reconstruction volume by computing a projection through the volume (Figure 2.23c). Based on the segmented
volume, surface rendering creates a 3D surface representing the boundaries between different materials or
phases by computing a triangular approximation of the interfaces. This module is usually applied by combining
a smoothing operation to enhance the recognizable surface morphology, as shown in Figure 2.23d.

Figure 2.23: Various 3D visualization modes of porous CeO2 in avizo software: (a) orthoslice; (b) volren by VRT technique;
(c) volume rendering and (d) generate surface with a Gaussian filter kernel of 5.

2.8.3. Quantification

As mentioned in section 1.3, the average measure of the pore structure and pore volume from bulk techniques
relies on standard pore models. Alternative methods to locally extract quantitative information from disordered
porous structures are necessary to complement the bulk measurements. This can be achieved by using image
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analysis such as skeleton analysis and CLD analysis based on the segmented 3D reconstruction from ET. With
the segmented volume, the transport properties inside the mesoporous space can also be investigated using
diffusion simulations.

Skeleton analysis

Skeleton analysis is a powerful technique for porous materials by extracting quantified structural features
like pore diameter, pore length, coordination number and tortuosity based on the 3D segmented volume.
[12], [81] To start the skeletonization, a distance map is first calculated based on the segmented volume, in
which the value of each voxel is set equal to the distance to the nearest border voxel. This is used to guide the
thinning procedure and provide an estimate of the thickness (radius) of the solid/pore space. Afterwards,
a thinning procedure removes voxel by voxel from the segmented object until only a string of connected
voxels remains. In this way, the pore space is reduced to a branch-node network, while both the geometrical
and topological information are preserved (Figure 2.24). As the branch-node network has recorded the
information including the distance to the nearest boundary (thickness/radius) at each voxel, branching or
endpoints of the network and the number of voxels along the skeleton, the basic statistics about the pore
structure features can then be computed. For example, the mean radius of each individual pore was calculated
as the average radius along each skeleton segment. The pore length was obtained from the flow path between
two adjacent skeleton nodes. The pore coordination number was determined by counting the number of
individual branches sharing a common node, and the tortuosity was defined as the ratio of actual flow path
length to the Euclidian distance between the two ends of the flow path.

Chord length distributions analysis

As shown in Figure 2.24, CLD analysis, also known as mean path length distributions, starts from a certain
amount of seed points that are randomly placed within the solid/pore space. Then vectors from each seed
point are projected in angularly equi-spaced directions until they hit a phase boundary. The chord lengths are
calculated as the sum of the absolute lengths of pairs of opposed vectors. In most cases, the chords probe a
single pore, while some chords also probe adjacent pores. The CLD analysis therefore reveals information
about the local (pore level) and short-range (a few pores) heterogeneity. Based on the calculated chord length,
a chord length distribution is plotted and can be fitted with a k-Γ function [192]:

f (lchord ) =
kk

Γ(k)

lk−1
chord
µk

exp

(︃
−k · lchord

µ

)︃
(2.9)

where lchord denotes the chord length, Γ(k) is the gamma function, µ is a first-moment parameter corresponding
to the mean chord length of the investigated phase, and k is a second moment parameter related to the
statistical dispersion defined by µ and the standard deviation of the distribution: k = µ2/σ2. The higher the
k-value, the more homogeneous is the respective phase, i.e., the more homogenous is the morphology over a
length scale of a few pores.
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Figure 2.24: Schematic illustration of the quantitative analysis of porous materials by skeletonization and CLD analysis.

Diffusion simulation

Both skeleton and CLD analysis are able to extract structural features of pores. However, the average
geometrical quantification of the structure of mesoporous materials obtained by these methods might not be
sufficient. For example, for application in heterogenous catalysis and gas separation, transport properties are
essential to understand gas and liquid diffusion in a 3D porous network, one of the most important aspects
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for catalytic/separation performance. Based on the segmented tomographic data, morphology-transport
relationships of mesoporous structures can be investigated using diffusion simulations, as mentioned in section
1.4.1. Typically, the simulation was performed in the spherical porous particles using a random-walk approach,
where a large number N of passive, i.e., nonadsorbing and nonreacting tracer particles were initially (at t =
0) distributed randomly and uniformly throughout the entire pore space of the particles. Then, each tracer
was iteratively displaced within the pore space due to random (Brownian) motion. The displacement ∆r of
every tracer during a time step ∆t was calculated from a Gaussian distribution with zero mean and standard
deviation (2Dm∆t)1/2 along each Cartesian coordinate, where Dm is the molecular diffusion coefficient in
free space. The value of ∆t was chosen such that the average diffusive displacement at each iteration does not
exceed half the voxel size. A multiple-rejection boundary condition was realized at the pore walls. If a tracer
leaves the particle, its random-walk stopped. The amount of tracers N(t) remaining inside the particle was
recorded after each time step. The effective diffusion coefficient Deff was determined from the best fit of the
simulated N(t)-values to the analytical model for emptying an ideal sphere by diffusion : [193]
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−n2π2Defft

r2p

)︃]︃
(2.10)

where rp denotes the particle radius.

2.9. Equipment and software used in this thesis

2.9.1. Transmission electron microscopy

A Themis 300 TEM equipped with a Schottky FEG, a probe corrector and a Super-X EDS detector was used to
acquire the experimental data for chapters 4 and 5. This microscope was operated at 300 kV and the data
analysis was performed using Velox software. To increase the depth of field, a small convergence angle of
around 8 mrad was used either by selecting a small C2 aperture or using a weaker condenser lens. The spot
size of C1 was set to 4-8, resulting in a beam current ranging from 50-100 pA and a probe diameter of around
180 pm after the aberration correction. For the acquisition of tomographic data, HAADF-STEM tilt series
were collected using the Xplore3D software (Thermo Fisher Scientific) with auto focus and tracking before
acquisition. Conventional ET was performed using a Fischione 2020 tomography holder. To ensure a sufficient
tilt range, particles located at the center region of the grid windows not blocked by other neighboring particles
were commonly selected, thus a typical tilt range greater than ±70◦ could be achieved. For the 360◦ ET, a
Fischione 2050 on-axis rotation tomography holder was used. Sample preparation and parameters for ET
measurements are described in the corresponding experimental chapters.

2.9.2. Dual beam focus ion beam - scanning electron microscopy

A FEI Strata 400 S equipped with a Schottky FEG electron source and a Gallium liquid metal ion source was
used for the sample preparation of 360◦ ET in chapter 4. This dual-beam FIB-SEM system was equipped with
an Omniprobe 200 manipulator with independent x,y,z motion, a flip stage, and a gas injection system with
Pt, C and W precursors. The high tension used for SEM imaging was 5 kV and the range for FIB was between
2 kV - 30 kV. Detailed parameters about the electron and ion beam currents used for milling and Pt deposition
are descripted in chapter 4.
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2.9.3. IMOD

Alignment of the tilt series was performed in IMOD (version 4.7) using colloidal Au particles as fiducial
markers. Typically, a coarse aligned stack was initially produced by cross-correlation calculation for the
original tilt series in the ‘coarse alignment complete’ module. Then around 20 fiducial markers (supported
metal particles or colloidal Au particles) in one projection were manually selected as starting seeds in the
‘seed model’ module, followed by a combination procedure of automatic and manual tracking so that the
corresponding beads in all projections were marked through the ‘fix fiducial model’ module. The resulting
fiducial model was used to calculate the alignment error and the beads with large residual error were corrected
iteratively using ‘edit fiducial model’ module. It is worth noting that, although this correction process can be
performed automatically, manual correction is sometimes necessary due to the inaccurate calculation of some
beads. To reduce alignment artifacts in the reconstruction, a residual error smaller than 0.7 pixels is usually
pursued for the final alignment.

2.9.4. ASTRA toolbox

The SIRT and DART reconstructions in chapter 3 and chapter 5 were performed using the ASTRA toolbox [194]
in Matlab. The simulation work with the largest dimension of 512×512×512 in chapter 3 was performed on
a Windows Server (2012 R2) equipped with a Tesla K40c graphics card. The reconstructions in chapter 5 with
a dimension of 1024×1024×1024 were performed on a Windows Server (2019) equipped with a NVIDIA
Quadro RTX 8000 graphics card.

SIRT

It is well known that the SIRT convergence is poor for noisy data and the final reconstruction depends
on the number of iterations used for the reconstruction. To clarify the relationship between the number
of iterations and the reconstructions in chapter 3, series of iterations were tested for three different noise
levels with a positive constraint. The reconstructed tomograms were further filtered by convolution with an
adjustable filter kernel and radius prior to segmentation. The threshold used for segmentation was estimated
by PDM method [190] until the relative number of misclassified pixels (rNMP) was at a minimum compared
to the phantom reference.

DART

As introduced in section 2.7.3, the DART reconstruction starts from an initial reconstruction and a
threshold is selected for each material class present and applied to segment the reconstruction based on prior
knowledge of grey levels. To reduce noise effects, a certain percentage of random pixels (depends on the
random probability r) and a smoothing process can be included. In this thesis, a SIRT reconstruction was
used as input for DART and a convolution filter controlled by a smoothing kernel k and smoothing radius b is
applied to improve the signal to noise ratio during the reconstruction. After the initial SIRT reconstruction with
a preset number of iterations was calculated, the main loop for DART was repeated a certain number of times
and then SIRT with another preset number of iterations was included for each iteration to ensure convergence.
The initial grey levels were set based on a rough estimation of the intensity of each component in the SIRT
reconstruction. The initial threshold was set to the average value of the grey levels. In the simulation work in
chapter 3, the grey levels and threshold used for segmentation in each loop were optimized by PDM while
other parameters r, k and b were not changed between iterations. These three parameters were optimized by
minimizing the rNMP using the phantom as reference.
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2.9.5. TVAL3 package

The TVM reconstructions in chapter 3 were implemented using the TVAL3 package in Matlab with an isotropic
TV/L2+ model, which was provided by Li et al. [195], [196] The algorithm is based on the total variation
regularization model and uses the augmented Lagrangian method (ALM) and the alternating direction method
(ADM) to find a solution in an iterative process. This iteration scheme stops when the average difference
between two successive reconstructions becomes smaller than a predefined tolerance value. The mathematical
model can be written as follows :

min
u∈Rn2

∑︂
i

∥Diu∥2 +
µ

2
∥Au− b∥22, s.t. u ≥ 0 (2.11)

while this function is not convex and not straightforward to be minimized, wi can be defined as a set of
constraints to obtain a differentiable objective function from u:

min
u∈Rn2
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2
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which can be transformed into the corresponding augmented Lagrangian problem :
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∥Diu− wi∥22 +

µ

2
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where u ∈ Rn2 is the reconstructed image with a size of n × n, Diu is the discrete gradient vector of u at
position i; b ∈ Rmn is the sinogram of u with m(m < n) projections in the tilt series; A ∈ Rn2×mn is the
projection matrix; and σ is the Lagrange multiplier. Two parameters need to be considered for this algorithm
including the primary penalty parameter µ and a secondary penalty parameter β. Here, µ penalizes the
difference between the measured sinogram b and the reconstructed sinogram Au, where a large µ leads to a
result closer to a SIRT reconstruction with high frequency details while a small µ will suppress noise. β is the
weighting factor of the squared l2-norm term containing the gradient (Diu). It controls the smoothing level of
the solution, thus stronger smoothing can be achieved by using a larger β to filter image details and increase
the presence of constant intensity regions (patches or stripes) in the reconstructed volume. [126] For each
reconstruction, both µ and β were tested in the range of 21 to 213 in order to enhance the signal to noise ratio
for the final reconstruction. To ensure convergence, a maximum iteration of 300 was used and the tolerance
value was set to 10−3. The threshold for the segmentation was estimated using the PDM algorithm analogous
to the SIRT post processing.

2.9.6. Inspect3D

The SIRT reconstructions in chapter 4 were performed using the Inspect 3D software (v4.4, Thermo Fisher
Scientific) with 100 iterations for each tomogram. This commercial software is more user friendly and can be
used to analyze larger datasets (2048×2048×2048 number of projections), which is limited in the ASTRA
toolbox using the same computer.
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2.9.7. Avizo

3D visualization including orthoslices, volume and surface rendering, as well as the skeletonization analysis in
this thesis were performed using Avizo 2020.2 (Thermo Fisher Scientific). In the 3D phantom study in chapter
3, all quantified structural features were calculated based on the skeleton analysis using the Auto Skeleton
module. The initial segmentation was first refined by removing unconnected and small islands with a diameter
smaller than 3 voxels, which are caused by reconstruction artifacts. Then a skeletonization procedure was
performed to reduce the pore space to a branch-node network (Skeleton). All branches shorter than 2 voxels
were removed and not assigned as side branches. This is reasonable to allow for a certain pore diameter
variation along the main branch thereby improving the reliability of the quantification. Afterwards, the basic
statistics were computed using the Trace Correlation Lines module. Details for the calculation of each pore
feature can be seen in section 2.8.3.

2.9.8. Diffusion simulation

The 3D diffusive mass transport simulations presented in chapter 3 were done by the research partners, Dr.
Dzmitry Hlushkou and Prof. Ulrich Tallarek at Philipps-Universität Marburg. The simulation was performed
using a random-walk approach, where 106 passive tracer particles were used. In addition to point-like tracers
(i.e., the tracer diameter is 0), finite-size tracers with different diameters, ranging from 1 to 4 voxels (with
one-voxel increment) were also used to simulate the transport properties. It is worth noting that the entire
void space of the porous particles can be reached by point-like tracers, while the accessible void space for
finite-size tracers is smaller due to their steric interactions with the solid pore walls. Thus, the accessible
porosity εa for tracers with a given diameter was defined as the volume fraction of the spherical particles that
is actually accessible for the center of the tracers.
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3. Quantitative Analysis of Mesoporous Structures by
Electron Tomography: A Phantom Study

This chapter is reorganized from ‘X. Huang, D. Hlushkou, D. Wang, U. Tallarek and C. Kübel, Quantitative
Analysis of Mesoporous Structures by Electron Tomography: A Phantom Study’, which has been accepted in
Ultramicroscopy (DOI: https://doi.org/10.1016/j.ultramic.2022.113639)

3.1. Introduction

ET has attracted significant attention for a quantitative analysis of mesoporous materials, especially for complex
disordered pore structures, as no prior assumptions on the pore shape are needed, which is normally inevitable
when using traditional bulk characterization techniques. However, a quantitative interpretation of ET results
is still far from straightforward and an accurate quantification of the pore space is challenging because of
constraints during tilt-series acquisition such as missing wedge and limited sampling as well as reconstruction
artifacts introduced by alignment errors and the reconstruction algorithm. In addition, to extract quantitative
information on the pore network such as pore size, pore length, tortuosity and connectivity from a tomographic
reconstruction, segmentation is essential. Although significant efforts have been dedicated to improve the
fidelity of the segmentation for mesoporous materials [12], [124]–[128], an objective and comprehensive
assessment of the accuracy of different algorithms and approaches for a quantitative analysis of mesoporous
materials is still limited, in particular, an analysis beyond a simple evaluation of misclassified voxels and
average residual errors looking more towards applications. In addition to the pore size distribution, one
important property of mesoporous materials is their connectivity and constrictivity, which affects transportation
properties in applications like catalysis. To get accurate reconstructions and evaluate these specific features
for porous materials, an analysis of the dependence on different acquisition conditions, such as noise level,
tilt-range and increment as well as the reconstruction and segmentation parameters is needed to optimize the
acquisition and reconstruction methods and to judge the reliability of the obtained structure and depending
properties.

In this chapter, a set of 2D and 3D binary images with various pore features was created as test structures.
These test structures were used to assess the fidelity of the three main-stream algorithms SIRT, TVM and DART
for mesoporous materials for different imperfect (realistic) tilt-series based on a set of phantom simulations.
The effect of these reconstruction approaches on the pore morphology quantification is discussed with respect
to pore size, pore length, tortuosity and connectivity as well as differences in diffusion properties based on a
3D phantom study. For each algorithm, different reconstruction and segmentation parameters were evaluated
and optimized using the phantom as ground truth. Moreover, the effect of the initial reconstruction for a DART
reconstruction is discussed. It showed that DART outperforms the other two methods in reliably revealing
small pores and narrow channels, especially when the number of projections is strongly constrained. The
accurate segmented reconstruction from DART makes it possible to achieve reliable quantification of pores
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structure, which in turn leads to reliable evaluation of effective diffusion coefficients. In addition, the influence
of different acquisition and reconstruction parameters on the reconstructed 3D volume and the quantitative
analysis of pore features is discussed. This work aims to provide a practical guide for optimizing acquisition
and reconstruction parameters and how to evaluate the accuracy when describing the mesoporous structure.

3.2. Methods

SIRT and DART reconstructions in this work were implemented using the ASTRA toolbox in Matlab [194].
TVM reconstructions were implemented using the TVAL3 package in Matlab with an isotropic TV/L2+ model
[195], [196]. In the 3D phantom study, all quantified structural features including pore diameter, pore length,
coordination number and tortuosity were calculated based on the skeleton analysis performed in Avizo (version
2020.2, Thermo Fisher Scientific). All segmentation results were evaluated using the minimum rNMP as a
common global analysis criterion. The rNMP value is defined as the number of pixels that were misclassified
(with respect to the reference), both for the pores and the material, reported as percentage of the total number
of pixels. The detailed parameters for reconstruction and quantification have been descripted in Chapter 2.

3.3. Results and discussion

3.3.1. Noise effects

Noise in STEM images has been extensively studied. [197], [198] Considering the characteristics of the
image acquisition process in STEM using a HAADF detector, where the electrons arriving at the detector can
be modelled as a Poisson process in case of low counts, while further additive noise from the detector and
electronic circuits can be modelled as a Gaussian process. Together the noise in HAADF-STEM images can be
modelled as:

Y = αZ + E with

{︄
Z ∼ P

(︂
X0

α

)︂
E ∼ N

(︁
µ, σ2

)︁ (3.1)

where α is the gain of the detector and µ corresponds to a detector offset; Z and E are two independent
variables following a Poisson and a Gaussian distribution; σ is the standard deviation of E; X0 is the true
signal without noise.

To mimic the real experimental conditions with noise effects, the parameters describing the Poisson-
Gaussian noise were estimated using a Themis 300 microscope, operated at 300 kV. As Gaussian noise is
signal-independent, it can be estimated directly from images in regions not containing any sample (e.g. regions
corresponding to vacuum in STEM). According to equation 3.1, the noise model corresponds to pure Gaussian
noise when α = 0. For instance, Figure 3.1a shows a HAADF-STEM image acquired in a vacuum region with a
gain of 0 and offset of 42.3% (a typical parameter used in real experiments), where the intensity histogram
shows a standard Gaussian distribution. The parameters µ and σ for the Gaussian noise can be obtained from
the mean and standard deviation fitting a Gaussian function of the curve.

Estimation of the Poisson noise is more complicated as it is a signal-dependent noise and factors that might
affect the signal collected by the HAADF detector need to be considered. Figure 3.1b shows the dependence of
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Figure 3.1: Estimation of Poisson-Gaussian noise using a Themis 300 microscope: (a) HAADF-STEM image acquired from
vacuum region and the corresponding intensity histogram, (b) the intensity of a cross crating Au sample as a
function of the gain setting, (c) HAADF-STEM vacuum signal acquired in image mode at large defocus with
the electron beam scanning across the HAADF detector and (d) linear relationship between image counts
and beam current at a dwell time of 5 µs and a gain setting of 30.7%.

the counts on the gain setting for a cross-crating Au sample, resulting in an increasing intensity in the STEM
images. Therefore, an accurate estimate of the real number of electrons on the detector is needed. For this
purpose, an HAADF-STEM image in image mode (diffraction has been deactivated) at a given dwell time ti
in a vacuum region was acquired. With this setup, electrons are converged to a probe and hit the detector
directly, so that the bright region in Figure 3.1c reflects the shape of the HAADF detector. The image was
acquired at large defocus to reduce damage to the detector. Based on this image, the apparent average counts
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can be determined. The current has been recorded directly from the present screen current Iim, allowing a
rough estimation of the number of electrons (Ni) for each pixel:

Ni = Iim × ti × C (3.2)

where C corresponds the elementary charge (1C = 6.241×1018e). Thus, the correlation of the counts in
a HAADF-STEM image to the real number of electrons on the detector is obtained. Figure 3.1d shows the
resulting linear relationship between counts and current at a dwell time of 5 µs and a gain setting of 30.7%.
In a typical HAADF-STEM tomographic data acquisition in a Themis 300 microscope operated at 300 kV, the
measured counts are mainly in the range of 5k-50k, depending on the current, camera length and gain setting,
corresponding to a real number of electrons in the range of 400-2000. Comparable noise levels were used for
the simulations in this work. Alternatively, several methods have been developed to estimate the amount of
mixed Poisson-Gaussian noise only based on STEM images, such as a linear regression based method [199],
variance stabilizing transforms [200] and expectation-maximization method [201].

To investigate noise effects on the reconstruction of small pores, a 400×400 pixel phantom of spherical
pores with different diameters (5, 10, 15 and 20 pixels) as shown in Figure 3.11a was created . Based on the
sinogram from 71/91 projections with a tilt step of 2◦ corresponding to a tilt angle range of ±70◦/±90◦, a
mixture of Poisson and Gaussian noise was added where the Poisson noise ratio per pixel was varied from
4×102 up to 4×106 and the standard deviation of the Gaussian noise was σ = 0.01. The Gaussian noise was
kept the same for all simulations in this work. The Matlab code for the introduction of Poisson-Gaussian noise
to the true signal is shown in Figure 3.2.

Figure 3.2:MATLAB code for Poisson-Gaussian noise introducing to a sinogram.

Tests with different noise levels were performed for each reconstruction algorithm to get an overall
impression of the effect of noise on the final reconstruction. Figure 3.3 shows the simulated sinograms
with three different noise levels and the corresponding rNMP as a function of iterations for the SIRT-based
segmentation when no filter is used during the reconstruction. It is clear that the SIRT reconstruction converged
after around 100 iterations and the rNMP does not change further for noise free or moderate noisy data (1600
counts), while the reconstruction does not converge and becomes worse after 50 iterations for high noise data
(400 counts). However, many falsely segmented voxels can be corrected by applying a convolution filter prior
to segmentation. Figure 3.4 shows that the final segmentation will also converge with increased iterations
even for high noisy data if a suitable filter is applied.

80



Figure 3.3: Simulated sinograms for the phantom in Figure 3.11a with three different noise levels and the corresponding
rNMP as a function of iterations from a segmented_SIRT reconstruction. For each noise level, no filter was
used during the reconstruction. The tilt range is ±70◦ with an increment of 2◦.
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Figure 3.4: rNMP as a function of iterations at three different noise levels: (a-e) noise free, (f-j) 1600 counts and (k-o)
400 counts from a segmented_SIRT reconstruction. For each noise level, a convolution filter with various
filter kernel and radius b were used during the reconstruction (from column 1 to 5: the corresponding kernels
are 1 to 5). The dimension of the filter matrix w is determined by the kernel: w = 2× kernel+1. The central
value of the matrix is 1− b, while all the other values are equal to b/(w2 − 1). The tilt range is ±70◦ with an
increment of 2◦.

The reconstruction error in TVM using µ and β combinations covering a wide range of 21-213 is shown in
Figure 3.5. As expected, large µ values lead to high quality reconstructions for noise free datasets. This is
easily understood via equation 2.11, as large µ controls the main weighting of the l2 term, yielding similar
results to SIRT. Nevertheless, the additional constraint in TVM leads to smaller rNMP values compared to
SIRT. With the noise level increasing, smaller µ values are more favorable. In this case, β has a large influence
on the reconstruction and a smaller value for β is more favorable. These findings are consistent with the work
of López-Haro et al., who exploited an automated procedure for optimization the two parameters (µ and β)
to analyze carbon-based porous materials using TVM. [126]
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Figure 3.5: rNMP as a function of µ and β at three different noise level: (a) noise free, (b) 1600 counts and (c) 400
counts from a segmented_TVM reconstruction. The tilt range is ±70◦ with an increment of 2◦.

Noise effects on choosing the parameters for DART were also evaluated. Figure 3.6 to Figure 3.8 show
the rNMP as a function of iterations, random probability r, smoothing kernel k and smoothing radius b at
different noise levels in a DART reconstruction. It is obvious that mild filtering (small k and b) and small r
yield more accurate reconstructions for noise free/moderate-noisy data, fitting to the results of Batenburg and
coworkers [129]. In their work, the two smoothing parameters stay fixed, while r is varied to minimize noise.
However, the iterations will not converge without a strong smoothing even when a large r is used for noisy
data. In this case, stronger smoothing (larger k and b) combined with a moderate r will yield more accurate
results for these structures (Figure 3.8).
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Figure 3.6: rNMP as a function of iterations at different random probability r, smoothing radius: (a-e) b=0.1, (f-j) b=0.3,
(k-o) b=0.5, (p-t) b=0.7 and (u-y) b=0.9, and smoothing kernel (from column 1 to 5: the corresponding
kernels are 1 to 5) in DART reconstructions based on noise free tilt series. The tilt range is ±70◦ with an
increment of 2◦.
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Figure 3.7: rNMP as a function of iterations at different random probability r, smoothing radius: (a-e) b=0.1, (f-j) b=0.3,
(k-o) b=0.5, (p-t) b=0.7 and (u-y) b=0.9, and smoothing kernel (from column 1 to 5: the corresponding
kernels are 1 to 5) in DART reconstructions based on noisy tilt series (1600 counts). The tilt range is ±70◦
with an increment of 2◦.
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Figure 3.8: rNMP as a function of iterations at different random probability r, smoothing radius: (a-e) b=0.1, (f-j)b=0.3,
(k-o) b=0.5, (p-t) b=0.7 and (u-y) b=0.9, and smoothing kernel (from column 1 to 5: the corresponding
kernels are 1 to 5) in DART reconstructions based on noisy tilt series (400 counts). The tilt range is ±70◦
with an increment of 2◦.

To evaluate the effect of the initial reconstruction on the DART convergence and results, a 2D phantom
(1024×1024 pixels) with a complicated disordered pore structure (Figure 3.9a) was used to simulate the
DART reconstruction from 1D projections. The rNMP values were calculated as a function of the number of
iterations in DART starting from three different initial reconstructions including an all-zero image, a SIRT
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reconstruction and a TVM reconstruction, as shown in Figure 3.9b. During the DART reconstruction, the main
loop was iterated 50 times followed by 150 iterations for SIRT. A probability of 0.1 was used to re-evaluate
random pixels and a convolution filter with kernel 1 and radius 0.9 was used for smoothing the reconstruction
before further segmentation. It is surprising that the rNMP converged to similar values after 20 iterations
despite the huge difference of the three initial reconstructions. A more reliable initial reconstruction e.g.
reconstruction by TVM, only leads to faster convergence in DART, while it has little influence on the final
reconstruction after sufficient iterations.

Figure 3.9: (a) 2d phantom for the test the influence of the starting structure on the DART reconstruction. (b) rNMP as a
function of the number of iterations for DART from three initial reconstructions with a tilt range of ±70◦
with an increment of 2◦. The number of counts for the Poisson noise is 1600 and the standard deviation for
the Gaussian noise σ = 0.01.

A more revealing comparison is presented in Figure 3.10, which shows the reconstruction after different
iterations for the different initial reconstructions in DART. When using a blank image as input for the DART
reconstruction, a very rough image is produced after the first segmentation (1 iteration, Figure 3.10a), resulting
in a rNMP value of 75%. The reconstruction became more and more reliable with increasing number of
iterations until it does not change anymore after a sufficient number of iterations. The reason why the DART
algorithm can succeed without an initial reconstruction depends on the possibility for a certain percentage of
random pixels (10% in this case) to change their classification at each iteration. With sufficient iteration time
(as long as the random probability is not 0), basically all the pixels have a chance to be adjusted. When starting
from a SIRT reconstruction as the initial reconstruction, a rough reconstruction is already produced after the
first iteration (Figure 3.10e) and the final reconstruction converges after around 10 iterations (Figure 3.10g).
A quite reliable reconstruction was obtained already after the first iteration when using a TVM reconstruction
as initial reconstruction and the final result quickly converge after around five iterations. This finding shows
that the image quality of the original tilt series, which is highly affected by noise and the consistence of the
alignment, instead of the initial reconstruction is the key factor to get the most reliable results, because for each
iteration the improvement in the reconstruction is solely based on the difference between the back-projected
images and the experimental projections. Appropriate smoothing at each iteration is also important in order
to suppress noise so that convergence is ensured without washing out small structural features of interests.
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Other smoothing methods during the iteration or some advance segmentation methods like local thresholding
may be also helpful to improve the final reconstruction.

Figure 3.10:Misclassified pixels of blank (a-e), SIRT (f-j) and TVM (k-o) as initial input in DART compared to the original
phantom (highlighted in Figure 3.9a) after different iterations: (column 1) 1, (column 2) 5, (column 3) 10
and (column 4) 15.

Figure 3.11b shows that the three reconstruction algorithms behave similarly with the full tilt range of
±90◦ for all noise levels tested with a higher noise level (lower number of counts) resulting in larger rNMP. It
is clear that SIRT is more sensitive to noise compared to TVM and DART for a tilt range of ±70◦, as can be seen
from Figure 3.11c. At a fairly high noise level (400 counts), the rNMP from SIRT is 7.2%, 1.6 times as high as
TVM (4.5%) and more than twice as high as DART (3.1%). Even at a fairly low noise level (4e-6 counts), the
rNMP from SIRT is 4.2%, more than three times that of TVM (1.3%) and almost eight times as high as with
DART (0.5%). These results show the superior performance of TVM and DART for the reconstruction of noisy
data, especially with a typical missing wedge.

For a better visualization of the reconstruction quality, segmentation results based on the three reconstruc-
tion methods for 400 counts are shown in Figure 3.12. Both SIRT and DART can recover the smallest pores
accurately when there is no missing wedge, while all pores with a diameter of 5 pixels disappeared from the
segmented TVM reconstruction. This is due to the large penalty parameter µ, which causes strong smoothing
of the final reconstruction but results in the lowest rNMP value. For the reconstructions from data with missing
wedge (Figure 3.12d-f), both SIRT and TVM show clearly elongation artifacts in the vertical direction and
artificial pores at random places are observed for segmented_SIRT, while elongation artifacts are highly
reduced and most small pores are correctly recovered by DART. A comparison of the segmentation results
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based on a lower noise level (1600 counts) is shown in Figure 3.13, where more accurate reconstructions
were obtained by all three algorithms.

Figure 3.11: (a) 2D phantom with spherical pore with different sizes, rNMP as a function of the number of counts for the
tested three reconstructions at a tilt range of (b) ±90◦ and (c) ±70◦ with an increment of 2◦.

Figure 3.12: Comparison of SIRT (a,d), TVM (b,e) and DART (c,f) reconstructions including noise effects with a tilt range
of (a-c) ±90◦ and (d-f) ±70◦. The number of counts for the Poisson noise is 400.
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Figure 3.13: Comparison of SIRT (a,d), TVM (b,e) and DART (c,f) reconstructions including noise effects with a tilt range
of (a-c) ±90◦ and (d-f) ±70◦. The number of counts for the Poisson noise is 1600.

3.3.2. Effect of missing wedge

In this section, a 2D phantom (600×600 pixels) with an artificial pore structure (Figure 3.14a) was used to
investigate the efficiency of different reconstruction methods in revealing the pore connectivity from various
tilt series with different missing wedges. The phantom was designed to include three small pores, 6-8 pixels
wide (green arrows) connected channels in the horizontal direction, 10-20 pixels wide (red circles) narrow
necks between pores and disconnected channels, 10-15 pixels wide for solid separation of the pores (blue
triangles) as well as some other randomly distributed pores. Using this phantom, an error estimate of the
statistical variations based on 10 reconstructions for each algorithm and two noise levels was first calculated
to ensure repeatability, as shown in Figure 3.14d,e.

Figure 3.14b,c shows the rNMP as a function of the tilt range without and with noise, indicating that
DART is the most promising reconstruction method in case of the presence of a missing wedge. The rNMP of
DART is 0 even for a tilt range as low as ±50◦, when there is no noise present, resulting in a fully accurate
reconstruction of the raw phantom, far superior to SIRT and TVM with a corresponding rNMP of 13.3% and
4.6%. At moderate noise levels (1600 counts), DART still keeps an excellent accuracy with small rNMP values
for the same tilt range. A comparison of the segmentation results in Figure 3.15 clearly shows that the pore
connectivity was recovered accurately by DART for a tilt range of ±50◦ without and with moderate noise.
Strong elongation artifacts in the vertical direction can be seen for the SIRT segmentation and the area of
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narrow pore channels were mistakenly segmented so that the connected channels were misclassified to be
broken and vice versa, as shown in Figure 3.15a,d. Although elongation caused by the missing wedge was less
prominent in the TVM reconstructions compared to SIRT, most narrow channels were not recovered correctly
as showed in Figure 3.15b,e.

Figure 3.14: (a) 2d phantom for missing wedge experiments: rNMP as a function of the tilt range for three reconstructions
at 1600 counts (b) without noise and (c) with noise; An error estimate of the statistical variations based on
10 reconstructions for each algorithm and two noise levels: (d) 1600 counts and (e) 400 counts.
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Figure 3.15: Comparison of SIRT (a,d), TVM (b,e) and DART (a,f) reconstructions including missing wedge effects (a-c)
without noise and (d-f) with noise. Here, the tilted range was ±50◦, the solid and dashed lines represent
correct and wrong reconstruction features.

3.3.3. Number of projections

Classically, the more projections are used for a reconstruction, the higher resolution can be achieved, which
can be estimated for example using the Crowther criterion [202]. However, many mesoporous materials, e.g.
silica or carbon are not stable under the electron beam and a compromise has to be made between dose and
number of projections. It is necessary to consider the influence of reducing the number of projections on the
final reconstruction reliability. Here, ten different tilt increments are used to investigate the influence of the
angular sampling scheme for the same phantom with narrow bottlenecks shown in Figure 3.14a with and
without noise.

Figure 3.16 shows the rNMP as a function of tilt increment ranging from 1◦ to 10◦ without and with
noise for SIRT, TVM and DART reconstructions. Here, a tilt range of ±70◦ was used to sample the projections
and 1600 counts for the Poisson noise was used for the tilt series with noise. The results show that DART
again yields more accurate reconstructions than TVM and SIRT, both with and without noise. The rNMP for
DART with an increment of 3◦ in the presence of noise is 1.7%, around half compared with TVM (3.1%) and
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less than one third compared to SIRT (5.9%). TVM is comparable with DART for increments of 5◦ and less
without noise (Figure 3.16a).

Figure 3.16: Influence of the number of projections on the 3D reconstruction: rNMP as a function of the tilt increment
for SIRT, TVM and DART (a) without noise, (b) with noise (1600 counts). The tilt range is ±70◦.

As an illustration of the reconstruction accuracy of the pore connectivity, Figure 3.17 shows the segmen-
tation results based on SIRT, TVM and DART with an increment of 3◦, a typical experimental tilt step for
data acquisition. Again, all pore connections were accurately recovered by DART both with noise free and
moderate-noise data, with only two of the isolated pores disappearing for the noisy data. TVM also performed
fairly well for noise free data, while the reconstruction of narrow channels was unsatisfactory for noisy data.
However, SIRT failed to reconstruct most narrow channels even for noise free data. A comparison of the
segmented results with a more extreme tilt increment of 10◦ can be seen in Figure 3.18, where both SIRT and
TVM lose almost all connections for narrow channels, while DART was still able to yield reasonably accurate
reconstructions. Such superior performance of DART for the reconstruction of tilt series with large tilt steps
would be helpful for in situ investigation or beam-sensitive specimens by reducing the data acquisition time
and dose.
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Figure 3.17: Comparison of segmented reconstructions without noise (a-c) and with noise (d-f) for a tilt increment of
3◦ based on SIRT (a,d), TVM (b,e) and DART (c,f) reconstructions. The solid and dashed lines represent
correct and wrong reconstruction of narrow pores/walls. The tilt range is ±70◦.
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Figure 3.18: Comparison of segmentation without noise (row 1) and with noise (row 2) at tilt step of 10◦ from: SIRT-
based segmentation (column 1), TVM-based segmentation (column 2) and DART (column 3). The solid and
dashed lines represent correct and wrong reconstruction. The tilt range is ±70◦.

To exclude the influence of the missing wedge, the same simulations with different tilt increments covering
the full tilt range (±90◦) was performed and the results are shown in Figure 3.19-Figure 3.21. The three
algorithms show similar and excellent performance for the reconstructions of pore structures at small tilt
increments of less than 3◦, while DART is clearly superior for higher tilt increments (>5◦). These results show
again the promising ability of DART for the reconstruction of pore structures from tilt series with a limited
number of projections.
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Figure 3.19: Influence of the number of projections on the 3D reconstruction: rNMP as a function of the tilt increment
for SIRT, TVM and DART (a) without noise, (b) with noise (1600 counts). The tilt range is ±90◦.

Figure 3.20: Comparison of segmentation without noise (row 1) and with noise (row 2) with a tilt increment of 3◦:
SIRT-based segmentation (column 1), TVM-based segmentation (column 2) and DART (column 3). The
solid and dashed lines represent correct and wrong reconstructed pores. The tilt range is ±90◦.
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Figure 3.21: Comparison of segmentation without noise (row 1) and with noise (row 2) with a tilt increment of 10◦:
SIRT-based segmentation (column 1), TVM-based segmentation (column 2) and DART (column 3). The
solid and dashed lines represent correct and wrong reconstructed pores. The tilt range is ±90◦.

3.3.4. 3D model simulation

To test the influence of the reconstruction quality for a quantitative analysis of 3D pore features, a 3D phantom
of 512×512×512 voxels with an irregular pore structure was created as shown in Figure 3.22. The matlab
code for the model creation is presented in Figure 3.23. In total, 71 forward projections were simulated
covering a tilt range of ±70◦ with an increment of 2◦, which is typically used for tomographic data acquisition
in a TEM. To make the simulation realistic, Poisson noise with a mean number of counts of 1600 combined
with an additive Gaussian noise with a standard deviation of σ = 0.01 was added to the projections and each
of the projected images was misaligned by 0.4±0.2 pixel on average in either direction to mimic the inevitable
residual alignment error for experimentally acquired projected images. The resulting projections were used as
the input for SIRT, TVM and DART reconstructions.
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Figure 3.22: 3D phantom and corresponding representative slices along the xy, xz and yz planes.

Figure 3.23:MATLAB code for the creation of a 3d phantom with disordered pores.
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Representative slices after reconstruction and segmentation based on SIRT, TVM and DART are shown
in Figure 3.24. It is clear that the SIRT reconstruction and corresponding segmentation images suffer from
obvious missing wedge artifacts, which is mostly visible in the xz slices, resulting in a false reconstruction
of the pore connectivity as highlighted by red circles in the segmented structure in Figure 3.24 (column 2).
Artifacts caused by the missing wedge are reduced to some extend in the TVM reconstruction compared to
SIRT, but most narrow connected pores are still falsely segmented as disconnected (Figure 3.24, column 4).
In contrast, the reconstruction was greatly improved by DART, which suppresses the missing wedge artifacts
and keeps the correct pore connectivity (Figure 3.24, column 5). These results indicate that DART is the most
promising of the three algorithms for porous materials, consistent with the analysis of the 2D simulations.

Figure 3.24: Representative slices of SIRT reconstruction (a,f,k), SIRT-based segmentation (b,g,l), TVM reconstruction
(c,h,m), TVM-based segmentation (d,i,n) and DART (e,j,o) along the xy (a-e), xz (f-j) and yz (k-o) planes.
Narrow channels are highlighted by red circles in case the connectivity has been altered by the reconstruction
and in blue if it has been correctly reconstructed.

Figure 3.25 shows 2D slices and 3D surface rendering of the misclassified voxels for a SIRT-, TVM-based
segmentation and DART. For the creation of the surface rendering, the segmented volumes were filtered
by Gaussian smoothing with kernel size of 2. Compared to the SIRT- (11.2%) and TVM-based (9.8%)
segmentation, which exhibit large continuous areas of misclassified voxels, the misclassified voxels produced
by DART (6.4%) are more randomly distributed and mostly located as single pixels at the boundaries between
pores and solid. Therefore, the recovery of the pore network topology is less affected by the randomly
distributed misclassified voxels, even though the number of misclassified pixels in DART is only reduced by
about a factor of 1.5/2 compared to TVM/SIRT.
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Figure 3.25: Representative slices (a-c) and 3D surface rendering (d-f) of misclassified voxels from (a,d) a SIRT-based
segmentation, (b,e) a TVM-based segmentation and (c,f) DART compared with the original phantom. The
simulation parameter include: tilt range of ±70◦ with a tilt increment of 2◦, the number of counts for the
Poisson noise is 1600, each of the projection images was misaligned by 0.4±0.2 pixel on average in either
direction). The black and white pixels in figure a-c represent the false positive (overestimated) and negative
(underestimated) values. Blue and red in figure d-f correspond to the white and black voxels, respectively.

Skeleton analysis was used to quantify the 3D wall/solid morphology of the segmented reconstructions.
Significant features related to the geometry and topology of the wall network such as mean radius, wall
length and interconnectivity are summarized in Figure 3.26 and Table 3.1. The wall radius distribution
shows a higher percentage of walls with a diameter below 5 voxels in the segmented SIRT and TVM volumes,
thereby resulting in a smaller mean wall radius (Table 3.1) compared to the phantom volume. Similarly, the
smaller average wall length of the SIRT- and TVM-based segmentations was caused by the higher percentage
of chord length below 10 voxels. This error in the smaller wall size distribution for the SIRT and TVM
reconstructions comes from the large amount of isolated small wall islands caused by mistakenly breaking
the wall connectivity as shown in Figure 3.25. The average reconstructed intensity of the pores/walls varies
noticeably in different parts of the particle, rendering a global segmentation difficult. This leads to inaccurate
segmentation of the SIRT and TVM reconstructions although optimized global thresholds were calculated by
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PDM. The inaccurate segmentation also causes deviations of two important topology parameters, the branch
tortuosity (Figure 3.26c) and the coordination number of the branch-node network (Figure 3.26d). The most
reliable quantification results come from DART, which resulted in errors of only 0.45%, 0.78%, 0 and 0.4%
for the average values of wall length, mean radius, tortuosity and wall volume. Despite a global threshold
used during the DART reconstruction, with the iterative update of the boundary pixels, local features were
refined so that the segmented 3D reconstruction is very closed to the original phantom structure (Figure 3.24,
Figure 3.25).

Figure 3.26: (a) Mean radius (b) wall length (c) tortuosity and (d) coordination number distribution from a skeleton
analysis of the SIRT- and TVM-based segmentation and the DART reconstruction.
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Table 3.1.: Quantification of the wall structure based on a skeleton analysis of the 3D phantom and reconstructions.

Wall length
(voxels)

Mean Radius
(voxels) Tortuosity Wall Volume

(106 voxels3)

Phantom 17.7 ± 10.5 7.7 ± 2.3 1.10 ± 0.11 20.1
SIRT 16.0 ± 9.9 7.4 ± 2.7 1.12 ± 0.26 21.8
TVM 16.3 ± 10.1 7.3 ± 2.5 1.14 ± 0.42 19.7
DART 17.6 ± 10.5 7.8 ± 2.4 1.10 ± 0.12 20.2

1 Note: the standard deviation represents the homogeneity of the material but not the accuracy of the measurement.

To further investigate the effect of the different algorithms on the reconstructed volume and the properties
of mesoporous materials, transport properties were analyzed based on diffusion simulations [11], [89], [203],
which represent one of the most important aspects for catalytic performance. Given the significant effect
of the two penalty parameters µ and β for the final TVM reconstruction, a slight adjustment of these two
parameters was performed manually to improve the signal to noise ratio at the expense of sacrificing the
minimum of rNMP. As shown in Figure 3.27a, the parameter pair of µ = 11 and β = 5 result in a minimum
rNMP. However, the resulting reconstruction shows a fairly rough surface. A reconstruction with a smaller µ
= 10 and larger β = 9 yielded a larger rNMP value (12.3%) but a smoother surface (Figure 3.27b). This is

Figure 3.27: Representative slices of a TVM-based segmentation of reconstruction with different penalty parameters µ
and β. The effect of surface roughness resulting in narrow pore channels is highlighted by red squares.

expected since µ penalizes the difference between the measured and reconstructed sinograms and a large
µ leads to a result closer to a SIRT reconstruction, while β controls the smoothing level and a large β leads
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stronger smoothing as described in section 2.9.5. When focusing on the narrow pore channels in these two
TVM-based segmentations, it was found that some channels were narrowed or even blocked by the rough
surface. This morphological deviation caused by surface roughness plays a key role for the transportation
properties, which will be discussed later in more detail.

Figure 3.28: Representative slices of the 3d phantom before and after dilation by 0.5-2 voxels. The entire pore space
is accessible for pointlike tracers, i.e., when dilating 0 voxel. In contrast, the accessible pore space is
significantly reduced for finite-size tracers.
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The diffusion properties were simulated for a set of point-like and finite-size tracers. The point-like tracers
(tracer diameter is 0) have access to the entire pore space inside the 3D volume without steric interaction
with the walls. However, not all pores are accessible for finite-size tracers due to steric effect, depending on
the size of the object diffusing inside the pores. Some pores become “closed” due to the bottle-neck effect
for finite-sized objects. The effective porosity is represented by the accessible instead of the geometric pore
volume and the topology of the accessible pore network depends on the tracer size. The topological deviations
of the pore space for finite-size tracers due to steric effects can be represented by dilating the solid space with
the diameter dtracer/2, since the pore space accessible to the center of a finite-size tracer becomes identical to
the pore space accessible to a point-like tracer if the pore diameter is reduced by dtracer. [11] The reduction
of the accessible pore space for a set of spherical tracer particles with diameters of 1, 2, 3, and 4 voxels for
the 3d phantom is shown in Figure 3.28, where narrow constrictions become inaccessible (‘blocked’) with
increasing tracer size.

Figure 3.29 shows the dependence of accessible porosity on the tracer diameter and the differences in
accessible porosity compared to the phantom reference. It is clear that the accessible porosity decreases
monotonously with the tracer size for all reconstructions(Figure 3.28). However, the different reconstructions
show noticeable differences in the relative accessible porosity compared to phantom. For point-like tracers,
the accessible porosity mainly reflects the overall pore volume. However, for finite size tracers, the accessible
porosity is sensitive to the local pore network structure. In case of SIRT and TVM_µ11β5, the deviations from
the phantom reference increase with increasing tracer diameter, presumably due to roughness introduced
during the reconstruction as discussed below for the diffusion behavior. For TVM_µ10β9, the deviations in

Figure 3.29: (a) Accessible porosity and (b) relative accessible porosity (using the phantom as reference) calculated
from SIRT-, TVM-based segmentations and DART as a function of tracer diameter.

accessible porosity for point-like tracers are comparable to SIRT, fitting to their rNMP values (11.2% SIRT and
12.3% TVM_µ10β9). With the stronger smoothing during the TVM_µ10β9 reconstruction, the increasing
tracer size does not lead to an increased difference in accessible pore volume (Figure 3.27). Overall, the
smallest difference and dependence on tracer size was observed for the DART reconstruction, where deviations
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of less than 0.5% were found for all tracer sizes, indicating the most reliable reconstruction not only for the
pore space but also for pore network.

Similarly, a monotonic decrease in effective diffusion coefficient (Deff ) can be seen with increasing tracer
size in Figure 3.30a. It can be seen that the Deff determined from DART was closest to the ground truth
of the phantom, whereas SIRT and the two TVM reconstructions deviated more. The difference between
the reconstructions becomes clear when looking at the ratio of the effective diffusion constant Deff for the
phantom compared to the different reconstructions in Figure 3.30b. For point-like tracers the difference of
the segmented SIRT and TVM reconstructions compared with the phantom is 5% and 2.6%. With increasing
tracer diameter, the relative difference of the SIRT-based segmentation increases continuously. This increasing
discrepancy is mainly due to reconstruction errors affecting the local pore connectivity, as shown in Figure
3.25a,d. Interestingly, the transport properties determined from the two TVM-based segmentations are
noticeably different. The relative diffusion coefficients of TVM_µ11β5 increase with increasing tracer diameter,
similar to the diffusion behavior of the SIRT reconstructions, while the relative error of the diffusion coefficients
for TVM_µ10β9 is fairly constant regardless of tracer size. This difference is due to the aforementioned
morphological deviation due to the surface roughness. As a rough surface leads to local size reductions of
the pores, which become particularly important for small pores and necks between pores (Figure 3.27), this
results in the diffusion rates of large tracers to be more hindered due to surface roughness introduced during

Figure 3.30: (a) Effective diffusion coefficients and (b) relative effective coefficients (using the phantom as reference)
calculated from SIRT-, TVM-based segmentations and DART as a function of tracer diameter.

reconstruction. The larger β in the TVM_µ10β9 reduces this surface roughness and therefore results in a
better representation of the diffusion behavior in this reconstruction. In addition, the accessible porosity
and the effective diffusion coefficient show a slightly different behavior suggesting, that the TVM_µ10β9
reconstruction introduced some topological differences. As could already be seen in the accessible porosity, the
DART reconstruction is much less affected by the tracer size. This is expected from the morphology (Figure
3.25c,f) and skeletonization (Figure 3.26) results, where the DART reconstruction resembles the phantom
structure the most and retrieves accurately most of the pore connectivity with only small local variations.
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The transport properties discussed above are based on the overall reconstructed volume, a directional
dependence of the diffusion properties has not been considered. However, it has been demonstrated that
missing wedge artifacts have an impact on the reconstruction quality in the different directions, resulting
in a noticeable anisotropy of the diffusion coefficient along the three main directions of the volume. This
anisotropy is strongly reduced in the DART reconstruction compared to SIRT. [12] However, as this has been
addressed previously, the anisotropy is not considered here.

3.3.5. Parameter optimization for DART reconstruction

It has been shown that the parameters used for the different algorithms can significantly affect the recon-
struction and segmentation (Figure 3.3 to Figure 3.8). To explore the fundamental influence a parameter
optimization has for different models is thus another point of interest for practical application without knowl-

Figure 3.31: rNMP as a function of random probability, smoothing kernel k and smoothing radiusb for three different 2d
phantoms (a,d) the phantom in Figure 3.11a, (b,e) the phantom in Figure 3.14a and (c,f) the phantom
in Figure 3.9a for different Poisson noise levels: (a-c) 1600 counts and (d-f) 400 counts in the DART
reconstruction.

edge of the ground truth. As DART is superior to SIRT and TVM for the reconstruction of mesoporous
structures, the evaluation of the parameter optimization was focused on the DART algorithm. Figure 3.31
shows the dependence of rNMP on a variety of parameters for three 2D phantoms with significantly different
pore structures at two noise levels for the DART reconstruction. Although the effect of the parameter varies
for different phantoms, the optimal parameters for comparable noise levels turn out to be in a similar range.
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As indicated in the highlighted region of Figure 3.31, the lowest rNMP of all models is always achieved by a
random probability ranging from 0.1 to 0.3, regardless of noise level. Given the noise level, the high-noise
models (Figure 3.31d-f) show the least rNMP with a smoothing kernel of 2 or 3 and a smoothing radius of
0.9. In contrast, a smaller smoothing kernel of 1 or 2 is preferred with the same smoothing radius of 0.9 for
moderate-noise levels in case of disordered pore structures (Figure 3.31b-c). Overall, this behavior reflects the
fundamental role of the different parameters and most likely this observation can be extended to experimental
studies with similar structures, if the noise in the raw data can be evaluated.

3.4. Conclusion

In this work, the tomographic reconstruction accuracy achievable by three commonly used algorithms (SIRT,
TVM, DART) has been evaluated for mesoporous materials considering the most critical parameters for tilt
series acquisition such as noise, missing wedge and number of projections based on a series of 2D and 3D
phantom simulations, which also included realistic misalignment effects. Parameters that have a strong
influence on the final reconstruction have been surveyed for each algorithm and optimized by minimizing
the relative number of classified pixels using the phantom as the ground truth. The 2D simulations have
shown that the fidelity of the reconstruction of mesoporous structures strongly depends on data acquisition
parameters such as tilt step and tilt range, noise level in the raw projections and the reconstruction approach
used. However, structural features like pore shape and pore size variations also play an important role for
the reconstruction. Large pores are always reconstructed more easily with high accuracy while a faithful
reconstruction of small isolated pores with narrow channels between them is a challenge using classical
algorithms (SIRT and TVM). The systematic error in the tomographic reconstruction is thus composed by the
limits in data acquisition on the one hand and the influence of structural features of the measured object on
the other hand. With this, a systematic parameter optimizing enables an objective evaluation of these three
algorithms. In addition, although it is convenient to evaluate the reconstruction quality by the rNMP using
the phantom as ground truth, this evaluation criterion is too simplified and does not necessarily represent
the general systematic errors for parameters derived from the reconstruction. For example, the quantitative
analysis of porous structures usually focuses on the geometry and topology of pores, where pore diameter,
length, tortuosity and coordination numbers are measured from a segmented volume. In such cases, randomly
distributed misclassified pixels are unlikely to have a substantial impact on the final statistical results.

One interesting finding for DART is its insensitivity to the initial reconstruction. A more reliable initial
reconstruction only speeds up the convergence, but hardly improves the final reconstruction accuracy. The
overall finding is that all three reconstruction algorithms provide a reasonable accuracy for the basic morpho-
logical description and the determination of diffusion properties of porous materials with systematic errors
below 5% and, even in the presence of realistic noise, the errors are on the order of 10% or less. Nevertheless,
there are significant differences between the reconstruction accuracy of the different algorithms. DART
turned out to provide the most accurate reconstruction of the three algorithms with mainly slight randomly
distributed errors in the reconstruction even in the presence of a typical missing wedge and realistic noise
settings. In particular, small isolated pores and narrow channels are reconstructed well. SIRT- and TVM-
based reconstructions result in segmented volumes with a noticeably higher rNMP and, moreover, these errors
are not randomly distributed but tend to cluster leading to a breakup of structural features and a loss of small
pores/necks and therefore have a stronger effect on the morphological and diffusion properties. In particular
for extended tracers, the resulting surface roughness and additional blockages lead to increases in the error
for diffusion rate estimates. An interesting point here is also that the structure with the lowest rNMP value
does not necessarily lead to the best diffusion estimate for extended tracers.
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Considering the practical application of electron tomography to solve experimental mesoporous structures
without knowledge of the ground truth, a systematic reconstruction parameter analysis for DART, as the
most promising algorithm, indicates that noise level and a rough estimate of the structural sizes are the most
important aspects to define the best reconstruction parameters. Based on the modeling tests, the parameters
should be transferable to experimental data sets suggesting that a similar accuracy in experimental work can
be maintained as in the phantom investigations.
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4. Precisely Picking Nanoparticles by „Nano-scalpel“
for 360◦ Electron Tomography

This chapter is reorganized from ‘X. Huang, Y. Tang, C. Kübel and D. Wang, Precisely picking nanopar-
ticles by „Nano-scalpel“ for 360◦ Electron Tomography’ published in Microscopy and Microanalysis (DOI:
https://doi.org/10.1017/S1431927622012247).

4.1. Introduction

Electron tomography has gained increasing attention for the 3D characterization of nanoparticles, but the
missing wedge problem due to a limited tilt range is still a challenge for accurate reconstruction in most
experimental transmission electron microscopy (TEM) setups. Many efforts have been tried to solve the
missing wedge problem, falling roughly into two categories: advanced reconstruction algorithms and improved
data sampling. The algorithmic aspects using prior knowledge of the specimen to make an informed guess at
the missing information, such as TVM and DART, has been mentioned in Chapter 3. Advanced algorithms
can in paint missing wedge artifacts to a certain extent but cannot recover the missing structural information
completely.

360◦ ET provides an option to solve this problem fundamentally by tilting a needle-shaped specimen over
the full range. In addition, even with advanced algorithms, the quality improves by using a full tilt series.
However, sample preparation, especially for fine powders, is still challenging as the specimens are required
to be mounted on a needle/rod shaped tip. Most reported works were using a FIB to extract and mill the
specimen into a needle geometry [163], [165], which is not suitable for nanoparticles and other fine powders.
Other methods such as dispersing nanoparticles in solution on a modified tip [134], [135] or using carbon
nanofibers as bridge to connect powder specimens and holder tips [136] suffer from shadowing problem
and are not suitable to select specific particles of interest. Another method the so-call ‘stamp’ method, [137],
[138] enables in situ transfer of a single selected particle from a suitable substrate onto a tailored tip by
using a SEM/FIB instrument equipped with a suitable micromanipulator. However, several shortcoming of
this technique, such as the requirement of a special micromanipulator, risk of shadowing, inability to select
ultrafine nanoparticles smaller than 10 nm and only one particle or particle assembly that can be attached
to the tip each time, hamper its application. Therefore, a robust preparation method, which enables precise
picking of selected nanoparticles, so that they are completely visible in TEM more or less independent of the
tip size, is of great interest for many electron tomography applications.

In this work a new sample preparationmethod that enables the transfer of a selected individual nanoparticle
or a few separated nanoparticles has been proposed. With a piece of carbon film, specimens can be mounted
onto a full range tomography tip with the help of an easily prepared tungsten tip. Since the selected particles
are left intact on the original carbon film and they are not attached to the tip directly, it allows picking ultrafine
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nanoparticles without size limitation, avoiding the risk to damage the sample and making them accessible for
full range electron tomography. This method is demonstrated by one example of Pt nanoparticles supported
on a TiO2 hollow cage support [204], which enhances the catalytic stability of the particles due to its special
hollow structure. The hollow cage structure with a size of ∼100 nm is suitable to show the reconstruction
improvement of the cage walls in the missing wedge direction. Such delicate material with fine structures was
successfully prepared by this method, yielding a high quality tomographic reconstruction without missing
wedge effects.

4.2. Preparation of tungsten tip

The tungsten tip was prepared using an electrochemical etching method, which has been proven to be an
inexpensive, fast and reliable way to fabricate extremely sharp tips [205]–[207]. A simple setup for the etching
equipment is shown in Figure 4.1. Typically, a 1 mm diameter tungsten wire (purchased from Agar scientific
company) is dipped into a sodium hydroxide (NaOH) electrolyte and biased so that etching starts at the
air/electrolyte interface and progresses into the immersed tungsten wire. The DC bias used in this work was
around 8 V and a threshold current set to 0.2 A to control the drop off process. During the etching, necking
occurs below the air/electrolyte interface and, when the weight of the wire below the neck exceeds the tensile
strength of the thinnest part, the bottom piece drops off. Ibe et al. [208] showed the electrochemical reactions
as follows:

Cathode: 6H2O+ 6 e− −−→ 3H2(g) + 6OH− (4.1)

Anode: W(s) + 8OH− −−→ WO4
2− + 4H2O+ 6 e− (4.2)

Overall : W(s) + 2OH− + 2H2O −−→ WO4
2− + 3H2(g) (4.3)

Figure 4.1: Tungsten tip preparation by electrochemical etching.

The whole process takes around half an hour. In this way, tips with a diameter of a few hundred nanometers
can be prepared. In order to get even sharper and smaller tips, one can lift the tungsten wire a little bit from
the electrolyte surface half way during etching, while there is still enough tungsten tip submerged into the

110



electrolyte so that the drop off can occur at the gradually thinner part. The resulting tips are shown in Figure
4.2, where the diameter of the etched tips can be reduced to a range of 30-200 nm.

Figure 4.2: Scanning electron micrographs of etched tips.

4.3. Specimen selection

The dry Pt@ hollow TiO2 powder was dispersed in ethanol and drop casted on carbon coated copper TEM
grids (Quantifoil Micro Tools GmbH) with a supporting film thickness of 10-20 nm. Afterwards, the grid
was kept under a warm lamp for 10 minutes to dry completely. Fiducial Au nanoparticles (6.5 nm diameter)
were added to the grid from suspension and dried for another 30 min. The prepared grid was examined in a
Themis 300 microscope (Thermo Fisher Scientific) and the ROI was determined and labeled by identifying the
particles in TEM images at different magnifications, as shown as Figure 4.3. Using a so called “finder grid” is
of great convenience for locating and labeling, though not necessary. This step can be also performed directly
in an advanced SEM equipped with a STEM detector.
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Figure 4.3: Region of interest selection from TEM.

4.4. Specimen transfer to 360◦ tomography tip

Once the ROI has been determined by TEM at sufficiently low magnification (e.g. ∼130 x), it is easy to
precisely navigate to the same location in the SEM. In this work, a dual-beam FIB (FEI Strata 400S) equipped
with an OmniProbe 200 micromanipulator (Oxford Instruments) was used for the particle picking and in
situ lift-out. The FIB is equipped with a GIS for Pt, C and W. All Pt contacts and the patches for welding the
tungsten tip to the omniprobe and to the tomography tip were made by ion-beam-induced decomposition
of a Pt metalorganic precursor (trimethyl(methylcyclopentadienyl)platinum: C5H4CH3Pt(CH3)3) from the
GIS system at 30 kV accelerating voltage with an ion-beam current of 0.92 nA. To reduce the electron/ion-
beam-induced Pt contamination, both the electron and ion beams were switched off for a few minutes after
Pt deposition until the residual Pt precursor gas molecules were fully pumped out and the chamber vacuum
returned to a pressure lower than 10−6 mbar. The lowest ion-beam current of 1.5 pA at 30 kV was used for
cutting the carbon film. To avoid ion beam damage, all scanning was preferentially performed using only the
e-beam at 5 kV acceleration voltage and 98 pA current to track the sample and correct its drift.

Figure 4.4 shows the whole process of particle picking and mounting on a 360◦ tomography holder. First,
a sharpened tungsten tip was welded to the omniprobe by Pt deposition at a position around 20 µm from the
sharp tip. Afterwards, the tungsten tip was cut at the thicker part, around 30-40 µm from the top, by a high
ion-beam current (2.8-21 nA), depending on the diameter of the tungsten tip typically in a few tens of seconds
(Figure 4.4a). For instance, for a tungsten tip with a diameter of ∼10 µm it typically takes around 5 minutes
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to cut the tungsten tip using a 2.8 nA ion current or ∼20 s using a 21 nA current. Similarly, throughout this
work, 10-20 s of ion-beam-induced Pt deposition was enough to weld the tungsten tip for reliable lift-out. The
next step is to pick up nanoparticles from the TEM grid using the tungsten tip that has been attached to the
micromanipulator. One important aspect is the positioning of the tungsten tip, the TEM grid and the 360◦
tomography holder tip in the FIB. A picture of the prepared FIB stage is shown in Figure 4.5.

Figure 4.4: The processes of nanoparticle picking and mounting onto tomography holder tip in FIB.

Mounting of the tungsten tip to the manipulator was performed at 0 degree stage tilt (horizontal) and
without changed during the following processes. To make sure the nanoparticle picking can be performed
smoothly, it is better to approach the TEM grid with the tungsten tip at a certain angle, as shown in the inset
of Figure 4.4b. This can be achieved by loading the TEM grids on a tilt holder at an angle of around 50◦.
Another advantage of leaving an angle between the tungsten tip and TEM grid is to avoid that the end of the
tungsten tip touches the edge of the TEM grid, which will rip it off the manipulator.

The next step is cutting the carbon film. For holey or lacey carbon film, generally particles sitting close
to the edge of a hole are preferred so that the tungsten tip can easily touch the edge of the carbon film and
less cutting is needed. To ensure that the carbon film will not bend too much during the cutting process, the
following approach was used before the tungsten tip was brought into contact with carbon film. Initially, two
parallel cuts were made in the film. On one side, the two cuts went fully through the edge of the area of interest
(lower edge in Figure 4.4c) and, on the other side, two corners were left intact to maintain the connection
to the main film (upper edge in Figure 4.4c). Afterwards, the tungsten tip was approached smoothly by
controlling the manipulator to attach the side where the carbon film was already free (Figure 4.4c). It is
worth noting that the carbon film can be firmly adhered to the tungsten tip only through electrostatic forces
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Figure 4.5: Initial FIB stage setup with tungsten tip, TEM grid and 360◦ tomography holder tip loaded on it.

without Pt deposition, which avoids Pt contamination. Right after the last cut freed the two corners, the
film stayed completely flat, supported by the tungsten tip only through a small contact area (Figure 4.4d).
Moreover, to reduce ion beam damage to the carbon film as well as to the nanoparticles, the entire transfer
process was controlled only by using the electron beam, whereas the selected particles were never exposed
to the ion beam. Limited dose of ion beam was only applied to the areas being cut (as highlighted in Figure
4.4c), which was kept at a certain distance from the particles. Different types of commercial TEM grids coated
with carbon film were tested, including 100×400 mesh complete carbon film and 200 mesh holey carbon
film with patterned holes from Quantifoil and 200 mesh lacey carbon film. All of these carbon films can be
successfully cut without noticeable bending as shown in Figure 4.6.

Figure 4.6: Three commercial TEM grids covered by different carbon films including (a) 100×400 mesh carbon film
(thickness: 10-20 nm), (b) 200 mesh holey carbon film (thickness: ∼ 12 nm) with patterned holes and (c)
200 mesh lacey carbon film (thickness: ∼ 20 nm) with irregular holes.
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After successful preparation procedure, a rectangular carbon film (∼300×500 nm2) with the nanoparticles
of interest at the center was attached to the tungsten tip and cut free. The tungsten tip with the carbon
film was subsequently transferred and welded onto the 360◦ tomography holder tip by depositing a few Pt
patches with an ion-beam current of 0.46 nA (Figure 4.4e). One main advantage of leaving the W tip on
the omniprobe during the transfer is a reduced Pt contamination on the carbon film, as there is sufficient
distance between the wedding position and the carbon film for the ion-beam-induced Pt deposition. The last
step is to release the micromanipulator by cutting the junction of Pt patches with an ion-beam current of 93
pA, resulting in a tungsten tip, holding a piece of carbon film with the nanoparticles of interest, sitting on
the top of tomography holder tip (Figure 4.4f). This tip can then be transferred to the TEM for tomographic
measurements with a full tilt range. The overall transfer procedure of particles from a TEM grid to a 360◦ ET
holder tip using a FIB system is summarized schematically in Figure 4.7.

Figure 4.7: Schematic of particle pick up and amounting to a 360◦ ET holder tip using a FIB system.
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Reviewing the overall process of the proposed method for particle picking, a number of advantages stand
out immediately. First, no special manipulator is needed since the picking process can be implemented in
a conventional FIB instrument compared to the reported ‘stamping transfer’ method [137]. Thus, it can be
employed in any laboratory equipped with a standard FIB system. In addition, this method is fully compatible
with conventional TEM sample preparation of powders as suitable particles or aggregates can be conveniently
selected in TEM or SEM and the sample is then transferred to the W tip together with a piece of C film. Since a
small piece of carbon film remains on the tungsten tip, not only single particles or aggregates can be precisely
picked up, but a few particles suitably distributed can also be selected and measured at the same time. This is
helpful especially for studies that focuses on the shape of anisotropic nanoparticles, whose properties depend
on their specific anisotropic shape and the exposed surface facets [209], [210]. Moreover, the selected particles
are sitting on the carbon film instead of touching the tip directly, avoiding any mechanical damage to the
sample caused by a collision at the specimen and the tip. Such a “touching” might have significant influence on
fragile materials such as porous materials since it could easily result in cracks caused by mechanical damage
in addition to the intrinsic pores of the raw material. Another important advantage is the possibility of picking
ultrafine nanoparticles. In principle, particles of any size seen on the carbon film can be selected.

One of the major concerns with this sample preparation method for 360◦ tomography is potential Pt
contamination and additional electron and ion dose for sample searching and further FIB/SEM processing.
With the optimized procedure, the carbon film with the selected sample was attached to the tungsten tip
without using Pt deposition. Only afterwards, during the process of welding the tungsten tip to the 360◦
tomography needle, there is a minimal risk for Pt contamination to the area of interest. This contamination can
be avoided using a sufficiently long tungsten tip (30-40 µm) to increase the distance between the sample and
the welding region. EDS maps and the spectrum shown in Figure 4.8 were acquired from a sample area after
finishing the preparation. It can be seen that the Pt signal is well below the detection limit. It is inevitable that
extra electron dose is needed to determine the area of interest and to monitor the tungsten tip manipulation
in the FIB. However, the electron dose is carefully controlled in the TEM by applying low current (<100 pA)
and imaging at low magnification for searching. In the FIB/SEM, a similar electron beam current is used just
enough for identifying and locating at a low accelerating voltage of 5 kV. Therefore, the extra dose is low
compared to the total dose used for tilt-series imaging acquisition. For beam sensitive materials, consideration
of the total dose in tilt series acquisition is in principle not different from conventional tomography with
limited tilt-angle range. The dose for image acquisition, tracking and focusing throughout the tilt steps are
still the critical aspects to be considered for reasonable dose control. Nevertheless, it is always recommended
to reduce the beam exposure for such specimens to reduce beam damage as some of them, such as single
layer graphene, are easily damaged by the ion beam even at very low beam currents. [211] It is also worth
noting that, in the case where ionization is the main damage mechanism, the influence from a low voltage
(such as 5kV) in the SEM is more critical compared to 300kV in the TEM.
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Figure 4.8: EDS maps and spectrum acquired from the sample area after finishing the preparation.

4.5. Electron tomographic measurement

The electron tomographic measurement was performed using a Fischione 2050 on-axis rotation tomography
holder (E.A. Fischione Instruments, Inc., Export, PA, USA) on a Themis 300 TEM (Thermo Fisher Scientific)
operated at an acceleration voltage of 300 kV in STEM mode. A semi-convergence angle of ∼8 mrad was used
to provide sub-nanometer resolution while still keeping a relatively large focal depth. HAADF-STEM tilt series
with image dimensions of 2048×2048 pixels with a pixel size of 0.23 nm were collected using the Xplore3D
software (Thermo Fisher Scientific) with auto focus and tracking before acquisition. At each projection, a
STEM image was acquired with a dwell time of 6 µs and a total acquisition time of 27.8 s. The full-range tilt
series was achieved by tilting the stage over a certain range in combination with a manual rotation of the
holder by 90◦. At both holder rotation positions, tilt series images were recorded with 2◦ interval from -50◦ to
+50◦, to avoid the imprecision of the manual holder rotation and to ensure full coverage of the angular range.
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The two-tilt series were combined after removing one set of overlapped images and adding the angular offset,
90 degrees, between the two half series, leading to a full range tilt series consisting of 91 images. During
tilt-series acquisition, no detectable morphological changes caused by electron beam damage were observed.
Alignment of the tilt series was performed in IMOD [212] using the colloidal Au particles as fiducial markers.
Before reconstruction, the aligned series was binned by two, resulting in a pixel size of 0.46 nm. Finally, the
tomograms were reconstructed using the SIRT algorithm with 100 iterations implemented in Inspect 3D (v4.4,
Thermo Fisher Scientific). 3D volume rendering was performed in Avizo 2020.2 (Thermo Fisher Scientific).

Figure 4.9: Projections at (a) -90◦, (b) 90◦ and (c) volume rendering of the reconstructed Pt@hollow TiO2

Figure 4.9 shows two projections taken at -90◦ and 90◦ tilt with the front and back view of some hollow
cube-shaped particles and 3D volume rendering. Representative xy, xz, and yz slices of the reconstruction
from the full tilt-range are shown in Figure 4.10a-c with the x-axis parallel to the tilt axis. The wall of the
hollow nanocages can be clearly seen, which consists of an assembly of TiO2 nanoparticles with diameters of
around 10 nm, resulting in an interparticular space constituting an open 3D mesoporous network. From the
slice in yz orientation (Figure 4.10c), no visible elongation artifacts caused by a missing wedge are observed,
demonstrating the high-quality 3D reconstruction that has been achieved. For comparison, two reconstructions
from limited tilt ranges of ±70◦ (Figure 4.10d-f) and ±60◦ (Figure 4.10g-i) from the same aligned series are
shown. As expected, the reconstructed xy slices from these three reconstructions are fairly similar. However,
the contrast from the limited tilt-range series is slightly weaker compared to the full tilt-range series even
in the xy slices (Figure 4.10a,d,g). Moreover, the reconstruction quality was reduced in xz direction for the
limited tilt-range series, where the particles were reconstructed with much lower intensity compared to the
full tilt series and, the most severe problem is that some TiO2 particles are hardly visible in the slices (Figure
4.10e,h) due to the missing wedge. Strong elongation artifacts caused by missing wedge are obvious in the
yz slices for the limited tilt-range series as indicated by the red arrows (Figure 4.10f,i). The smaller the
tilt-range, the stronger is the elongation artifacts. Not only the large hollow cubes were reconstructed with an
artificial ’hexagonal’ shape, but also the small TiO2 nanoparticles are elongated in the z direction. The 3D
interparticulate network is not accurately represented with the limited tilt-range, causing significant errors in
a porosity evaluation of the mesoporous material, whereas the full-range tilt-series results in a high-quality
3D reconstruction.
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Figure 4.10: Representative slices for different tilt-ranges: (a-c) ±90◦, (d-f) ±70◦, (g-i) ±60◦ at (column 1) xy, (column
2) xz and (column 3) yz orientations. Red arrows showed strong elongation artifacts for the reconstructions
from ±60◦ and ±70◦ compared to ±90◦.

4.6. Stability of the prepared specimen

As the piece of carbon film is adhered to the tungsten tip without Pt deposition, the stability of the film is
critical point. To evaluate the film stability, two aspects need to be considered: the stability of the carbon
film on the tungsten tip during/after the sample preparation and the stability of the carbon support and
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the particles sitting on the film during data acquisition. Based on the observations, the carbon film remains
on the tungsten needle for at least several weeks and even months after successful sample preparation. A
comparison has been done by STEM imaging of the W tip, the carbon film and the sample particles directly
after preparation and 11 months later, confirming the very stable form of the whole sample (Figure 4.11).

Figure 4.11: STEM images showing a stable sample by comparing the freshly prepared sample and after 11 months of
storage.

The stability of the carbon film during tilting is critical as an unstable carbon film would lead to bending
and movement during holder tilting, causing big challenges or even failure for the further projection alignment
by conventional alignment methods, both marker-free or marker-based. Representative slices from the aligned
sinogram are shown in Figure 4.12, in which well-aligned bright sine waves caused by the fiducial Au particles
can be observed. The alignment was performed using Au particles as tracking markers, with optimization of
adjustable parameters including rotation, tilt angles and magnification during the alignment, resulting a mean
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residual alignment error of 0.7 pixels. The achieved good overall alignment demonstrates that the specimen
sitting on the cut carbon piece keeps quite stable during the whole tilting process.

Figure 4.12: Representative slices from an aligned sinogram.

4.7. Conclusion

In this work, a new sample preparation method has been introduced that enables transfer of a selected
individual nanoparticle or a few separated nanoparticles to a full-range electron tomography holder tip. This
is achieved inside a standard FIB equipped with an omniprobe by employing a readily prepared tungsten tip.
No other additional nano-manipulation setup is needed. A piece of carbon film supporting the specimen is
adhered to the tungsten tip and both are transferred to the tomography holder tip. The carbon film is stable
during the acquisition of the tilt series as proven by the excellent tilt-series alignment that could be achieved.
Since the selected specimen is well placed on the original carbon film and not in direct contact with the tip or
manipulator, this approach allows to select ultrafine nanoparticles without size limitation, avoiding the risk of
sample damaging and making it fully visible for full-range electron tomography. As a proof of concept, the
reconstruction results of Pt@hollow TiO2 nanoparticles from a full tilt-range set of projections were presented,
showing no missing wedge artifacts and overall improved quality compared to the reconstruction from limited
tilt-series.
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5. Understanding the Leaching Behavior of Pd@CMK3
Catalysts during Formic Acid Decomposition by
Electron Tomography

In this chapter, electron tomography is applied to uncover leaching and redeposition phenomena at a Pd@CMK3
catalyst during formic acid (FA) decomposition in batch and fixed bed reactors. The 3D distribution of the
Pd NPs on mesoporous carbon CMK3 support is determined by a quantitative tomographic analysis and the
observed structure is discussed in terms of differences in the activity and stability during FA decomposition.
This work has been submitted to Nanoscale Advances during the preparation of this thesis.

5.1. Introduction

Hydrogen, as a clean and reproducible carrier with high specific energy density, has been regarded as one
of the most promising energy sources for the future due to the depletion of finite fossil fuels and increasing
environmental issues such as climate change. [213], [214] One challenge for the application of hydrogen
is its storage due to the nature of hydrogen. Typically, hydrogen is stored physically as highly pressurized
hydrogen gas [215], liquid hydrogen [216] or constrained within porous networks, e.g. zeolites [217],
porous carbon [218] and metal organic frameworks [219]. It can also be chemically stored and released via
decomposition processes from compounds, such as water [220], ammonia borane [221] or formic acid [222].
The decomposition of FA has attracted increasing interest in the field of hydrogen storage due to various
advantages, e.g. it is environmentally benign, has a high volumetric hydrogen content (4.4 wt.%) and the
ability to release hydrogen under mild condition. [223] The thermodynamic properties at the decomposition
pathways of FA under standard conditions can be seen below, where FA decomposition can proceed either via
dehydrogenation to release hydrogen and carbon dioxide or dehydration producing carbon monoxide and
water: [223]

HOOH −−→ H2 +CO2,∆G◦ = −32.9 kJmol−1 (5.1)

HOOH −−→ H2O+CO,∆G◦ = −12.4 kJmol−1 (5.2)

Pd is the most active monometallic transition metals for the decomposition of FA. [224] However, one
major challenge for monometallic Pd catalysts in this system is deactivation, which is mainly due to active
sites being blocked by poisoning species (such as CO) [225], metal particle sintering and leaching [226]. In
addition to the weak interaction between active sites and the support, the leaching behaviour depends on
the experimental setup. For example, it has been demonstrated that heterogenous catalysts exhibit different
catalytic performances in batch and continuous flow reactors for a wide range of catalytic processes such
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as hydrogenation and cross coupling, due to differences in metal leaching. [227]–[229] In a typical batch
reactor, reactants including the catalyst are stirred under optimized conditions to accomplish the desired
transformation, after which the catalyst can be easily retrieved for further utilization from the reaction mixture
by a simple filtration step, as shown in Figure 5.1a. For a catalytic process accompanied by leaching, the
concentration of the metal species in solution increases during the reaction, leading to the possibility of
redeposition of the metal species on the solid support as all reactants, catalyst and products are constrained in
a reactor with limited size, leading to a limited decrease of the metal concentration. [230] In a continuous
flow process, the catalyst is placed in a packed-bed reactor (with typical packing materials such as silicon,
glass, stainless steel, ceramics or polymers) and appropriate pumping systems are used to control the flow
of the reaction mixture through the reactor. [231] As the reaction and separation of the catalyst from the
reactants and products occur simultaneously (Figure 5.1b), further separation or filtration is not necessary in
a fixed bed reactor. However, the continuous reaction stream might transport the active metal species away
from the support, leading to significant metal leaching from the packed-bed reactor. [229]

Figure 5.1: Schematic diagram of a typical lab-used batch and fixed bed reactor.

TEM has been extensively used to investigate the leaching/readsorption phenomena of supported catalysts
in batch [232], [233] as well as continuous flow [234], [235] mode by comparing the particle size and shape
of fresh and used catalysts. However, the typically obtained 2D information is not sufficient to reveal the
details of the leaching process, especially for those catalysts supported on porous materials. For example,
how does the leaching behavior of particles in interior pores and on the outside of the support differ and
how to evaluate the redeposition of NPs and their preferred redeposition sites. As introduced in Chapter
1, examination of the location and distribution of NPs in 3D volume is possible using electron tomography.
In this work, structural changes in a Pd@CMK3 catalyst during FA decomposition in batch and fixed bed
reactors were studied and correlated with the leaching behavior. CMK3 is a commercially available ordered
mesoporous carbon with a pore size of a few nanometer. Using Pd nanoparticles mainly constrained inside
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the pores, we were able to track the overall evolution of their distribution, their particle size, and the loading
after the catalytic reaction by electron tomography. In this way, it is possible to build a structure-performance
relationship for improved design of more advanced catalysts.

5.2. Materials and experimental methods

5.2.1. Synthesis of Pd@CMK3 catalyst

Pd@CMK3 was synthesized by incipient wetness impregnation. Solid K2PdCl4·2H2O (Aldrich, purity 99.99%)
(0.094 mmol of Pd,) was dissolved in water. The correct amount of solution to completely fill all pores
(based on the total pore volume calculated from N2 adsorption analysis), was added to 1 g of porous carbon.
The quantity of metal in the precursor solution was set to obtain a final metal loading of 1 wt.%. The
produced material was filtered, redispersed in water and reduced with NaBH4 (Pd/NaBH4 molar ratio of 1/8).
Afterwards, the catalyst was filtered and washed with 1 L of distilled H2O and dried at 80◦C for 4 h in air. The
synthesis was done in the group of our collaborator Dr. Alberto Villa at the University of Milano.

5.2.2. Catalytic testing – batch reactor

Liquid-phase FA decomposition was carried out in a 100 mL two-neck round-bottom flask placed in a wa-
ter/ethylene glycol bath with a magnetic stirrer and a reflux condenser. Typically, 10 mL of an aqueous solution
of 0.5 M HCOOH was placed in the reactor and heated to a constant reaction temperature of 30◦C. Once the
solution reached the desired temperature, the required amount of Pd@CMK3 catalyst (formic acid/catalyst
molar ratio of 2000/1) was added and the solution was stirred using a magnetic stirrer. Recycling tests were
performed after 30 minutes of reaction, filtering the catalyst present in the solution without further treatment.
Reproducibility tests were performed for every reaction repeating the test with the same catalyst three times.
The catalytic testing was done in the group of our collaborator Dr. Alberto Villa at the University of Milano.

5.2.3. Catalytic testing – fixed bed reactor

Liquid-phase FA decomposition in a fixed bed reactor was tested with a bed length of 7 cm (50 mg Pd@CMK3
and 50 mg silica carbide). The bed was heated to a constant reaction temperature of 30◦C. 0.5 M FA was
inserted in the reactor with a flow of 0.1, 0.3 and 0.5 mL/min. Reproducibility tests were performed for every
reaction repeating the test three times. The catalytic testing was done in the group of our collaborator Dr.
Alberto Villa at the University of Milano.

5.2.4. Catalyst characterization

The Pd loading of Pd@CMK3 before and after the reaction was determined using an inductively coupled
plasma atomic emission spectrometer (ICP-AES) and EDS analysis. HAADF-STEM imaging and EDS analysis
were performed on a Themis 300 TEM (Thermo Fisher Scientific) operated at 300kV, equipped with a probe
corrector and Super-X EDS detector. TEM samples were prepared by dispersing powder samples of the
Pd@CMK3 catalyst on 100×400 mesh carbon coated copper grids (Quantifoil). Around 30 regions of interest
of the same size were selected randomly and measured by EDS to evaluate the homogeneity of the Pd loading
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under identical conditions for each catalyst. The mass fraction of Pd loading was calculated by fitting the
L peak for Pd and K peak for carbon after background subtraction. The absorption correction for a sample
thickness of 400 nm and density of 2.1 g/cm3 were used. The Pd particle size distribution was estimated
from HAADF-STEM images using the software tool ImageJ (National Institutes of Health) approximating
the particles with an elliptical shape. The reported diameter of each particle is calculated as the average of
the long and short axis. For each catalyst 500-700 Pd particles from 3-4 support particles were measured
to obtained a good statistical representation. Electron tomography was performed using a Fischione 2020
tomography holder. HAADF-STEM tilt series with image dimensions of 2048×2048 pixels and a pixel size
smaller than 0.5 nm were collected using the Xplore3D software (Thermo Fisher Scientific) with auto focus
and tracking before acquisition. All tilt-series were collected over a tilt range of at least ∼70◦ with a tilt step
of 2◦. During tilt-series acquisition no detectable morphological changes caused by electron beam damage
was observed. Alignment of the tilt series was performed in IMOD version 4.7 (University of Colorado) using
supported Pd nanoparticles as fiducial markers with a mean residual alignment error smaller than 0.5 pixels.
The aligned tilt series were reconstructed using the DART algorithm [129] within the ASTRA toolbox [194].
After an initial reconstruction with 150 iterations by SIRT [174], the main loop for DART was repeated 10
times and then SIRT with another 150 iterations was included for each iteration to ensure convergence. The
grey levels used for segmentation were set based on a rough estimation of the intensity of each component
based on the initial SIRT reconstruction. The initial threshold was set to the average value of the grey levels.
During the DART reconstruction, the random probability was fixed to 0.3 and a 3×3 Gaussian filter was used
to smooth the reprojected sinogram during each loop. The Pd loading (in wt.%) of each catalyst was also
calculated based on the segmented volumes using the bulk density of metallic Pd (12.02 g/cm3) and CMK3
carbon (2.1 g/cm3). 3D visualization including volume and surface rendering was performed in Avizo 2020.2
(Thermo Fisher Scientific).

5.3. Determination of the 3D location of Pd NPs in a Pd/CMK3 catalysts

To identify the 3D location of Pd NPs, a similar but not identical procedure as reported by Wu et al. [101]
was used. Based on the DART reconstruction, it is quite straightforward to extract the features of interests,
e.g. carbon support and Pd NPs. However, as shown in Figure 5.2, it is difficult to determine the internal and
external surface of the carbon support by simple edge detection due to the existence of a large number of pores
inside the volume. Therefore, the segmented volume was dilated by certain number of voxels (depending
on the pore size) using the ‘grow’ module in Avizo to expand the solid phase and reduce the pore space,
thus filling all internal pores. The resulting volume was then eroded by the same number of voxels as used
previously during dilation using the ‘shrink’ module. The resulting volume without pores was further eroded
by certain number of voxels (depending on the pixel size) to provide a mask for the detection particles on
the outer surface. This erosion step is essential to avoid recognizing the intensity gradient between metal
particles and vacuum as carbon. In this case, Pd particles located outside the eroded mask are considered as
particles on the external surface when they are in contact with vacuum. The other particles located inside the
eroded mask are regarded as particles on internal pores. Thus, the Pd NPs located on the external surface of
the support and the particles inside the pores were extracted separately and can be used for further statistical
analysis such as the particle size and volume measurements, which will be discussed in section 5.6.
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Figure 5.2:Workflow for the determination of the Pd location in a Pd@CMK3 catalysts in 3D.

5.4. Catalytic performance during FA decomposition

The Pd@CMK3 catalyst was tested for FA dehydrogenation in a batch reactor, as a model system for liquid
orangic hydrogen carriers (LOHC) and compared with one of the best Pd-based monometallic catalyst present
in literature i.e. 1% Pd@HHT [236]. As shown in Figure 5.3a, Pd@CMK3 shows an initial activity of 3261 h−1

(calculated after 5 minutes of reaction time as mol of reacted FA to total mol of metal per hour), which is more
than 3 times higher compared to Pd@HHT (979 h−1). Moreover, Pd@CMK3 showed a conversion of 67%
after two hours of reaction time, around two times higher compared to Pd@HHT. The Pd@CMK3 catalyst was
also tested over 5h of reaction time in the fixed bed reactor with three different flow rates, i.e. 0.1, 0.3 and 0.5
mL/min. Silica carbide was mixed to the catalyst (ratio of 1:1 by weight) in order to increase the length of the
catalytic bed. From Figure 5.3b, it is clear that the catalyst reached a high conversion after 30 min of reaction
time (61%) at a flow rate of 0.1 mL/min, around 20% higher compared to the batch reactor after the same
reaction time. However, the catalyst is deactivated rapidly and the conversion decreased to only 21% after 2h
of reaction time, around 3 times lower compared to the batch reactor (67%). A similar fast deactivation can
be also seen for the higher flow rate of 0.3 mL/min (Figure 5.3b). The conversion reached only 8% after 30
min of reaction time for the flow rate of 0.5 mL/min and is deactivated further with increasing reaction time.

The catalyst stability was evaluated for the batch reactor using repeated catalytic testing. Both Pd@CMK3
and Pd@HHT catalysts were tested by filtering and reusing the catalyst without further treatment over
6 reaction runs. To compare the stability with a similar conversion, the stability test was performed on
Pd@CMK3 after 30 minutes and on Pd@HHT after 2 hours of reaction time for the FA decomposition. While
Pd@HHT rapidly deactivates (Figure 5.4a), Pd@CMK3 shows a more stable behaviour over 6 reaction cycles
(Figure 5.4b). The stability difference can be attributed to the different support structures of these two
catalysts. Compared to the Pd@HHT catalyst, where the Pd NPs are supported on the surface of high-heat
treated carbon nanofibers (HHT) having a highly graphitized surface, the Pd NPs immobilized in the porous
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Figure 5.3: Catalytic performance of Pd@CMK3 and Pd@HHT (from [235]) during FA decomposition. (a) FA conversion
as a function of reaction time on Pd@CMK3 and Pd@HHT catalysts in a batch reactor. (b) FA conversion as a
function of reaction time for Pd@CMK3 in a fixed bed reactor using a flow of 0.1, 0.3 and 0.5 mL/min.

Figure 5.4: Stability test for (a) Pd@HHT after 2 hours of reaction for FA decomposition; (b) Pd@CMK3 after 30 minutes
of reaction and (c) Pd@CMK3 after washing the catalyst in each cycle (the filtered material was placed in a
beaker with 50 mL of water under vigorous stirring for 30 minutes) in a batch reactor with a similar initial
conversion.

carbon support in Pd@CMK3 show the expected higher stability due to confinement effects. Such enhanced
stability caused by confinement effects has been reported previously by various groups [10], [59].
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5.5. 2D morphology and Pd loading of Pd@CMK3

To understand the different catalytic performance of Pd@CMK3 in the batch and fixed bed reactor, the fresh
and used catalysts were characterized using STEM to assess the particle size distribution. Figure 5.5 shows
STEM images of these three catalysts and histograms of their particle size distributions. It is clear that the
Pd NPs in the fresh catalyst are fairly homogeneously dispersed on the support with an average particle size
of 2.7 nm. The average particle size grows to 3.3 nm for both used catalysts after the reactions, indicating
particle sintering or aggregation during FA decomposition. A small number of Pd NPs with a diameter larger
than 5 nm can be found in both used samples, which was not present in the fresh sample (Figure 5.5d-f). This
aggregation of active particles might be one reason for the catalyst deactivation. To unravel the dependence
of the catalytic performance on the structural evolution, a more accurate analysis of the particle size by
alternative techniques will be discussed later.

Figure 5.5: Representative STEM images of Pd@CMK3: (a) as-prepared state, (b) after FA decomposition in the batch
reactor and (c) after FA decomposition in the fixed bed reactor together with (d-f) the corresponding
histograms of the particle size distribution.

The Pd loading was measured by EDS and ICP-AES, as shown in Figure 5.6. The Pd loading of the catalyst
was measured after the end of the stability test after the 6th cycle for the batch reactor and after 300 min.
on the fixed bed reactor. According to the ICP-AES results, the Pd loading of the as-prepared sample was 1
wt.%, as expected from the synthesis process. However, after FA decomposition, the Pd loading decreased
by 59 wt.% in the fixed bed reactor, showing severe leaching of Pd during the catalytic reaction. This fits
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roughly to the observed deactivation in Figure 5.3b, suggesting a loss of active metal content as the dominant
deactivation mechanism. For the catalyst used in the batch reactor during the stability test (Figure 5.4b),
the activity was reduced by 50% after six cycles while only 23 wt.% of Pd was lost. This difference may
be attributed to the adsorption of poisonous species such as CO on the catalyst surface, as the activity of
the catalyst could be partially recovered by washing with water (Figure 5.4c). A similar recovery of the
activity of Pd catalysts during FA decomposition by washing has also been seen in other works. [237], [238]
A quantitative EDS analysis of around 30 randomly-selected regions of interest for each of the three catalysts
deviates slightly from the ICP measurements. Considering systematic errors in EDS quantification using
different transitions lines and the limited volume analyzed, the overall agreement between ICP-AES and EDS
measurements is reasonable with the absolute quantification from ICP-AES being more accurate. However, the
EDS measurements provide statistical information on the homogeneity of the three samples. A few measured
areas exhibit significantly higher Pd loading in each of the samples indicating some inhomogeneity of the
catalyst with 5-10% of the particles exhibiting significant loading differences. Nevertheless, the overall trend
of decreasing Pd content is observed by EDS for the batch and the fixed bed reactor. However, for the fixed
bed reactor care has to be taken with the interpretation, as a loading gradient from the inlet to the outlet is
expected, which would affect the local EDS analysis.

Figure 5.6: Pd loading of Pd@CMK3 catalysts measured by (a) ICP-AES and (b) EDS based on 30 regions of interest for
each catalyst. SE in the EDS data represents the standard error with Std. the standard deviation and n the
number of observations: SE=Std./

√
n.

5.6. 3D characterization by electron tomography

Electron tomography was used to further analyze the leaching behavior of Pd NPs of the Pd@CMK3 catalyst
in both reactors based on three-dimensional nanoscale reconstructions. For each sample, three tilt series were
acquired from different CMK3 pieces as shown in Figure 5.7 and the corresponding 3D volume rendering
from the initial SIRT reconstructions can be seen in Figure 5.8.
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Figure 5.7: HAADF-STEM images of Pd@CMK3 catalysts for (a-c) fresh sample and after FA decomposition in (d-f) batch
reactor and (g-i) fixed bed reactor.
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Figure 5.8: Volume rendering from initial SIRT reconstructions of Pd@CMK3 catalysts for (a-c) a fresh sample and after
FA decomposition in (d-f) batch reactor and (g-i) fixed bed reactor.

After the DART reconstruction, the 3D location of all Pd NPs on the external/internal surface of CMK3
were extracted from the segmented volume. The detailed procedure for the extraction has been shown in
section 5.3. Figure 5.9 shows representative 2D slices from the reconstructed volume of the three Pd@CMK3
catalysts and the corresponding rendered volumes, where Pd NPs located on the external surface are marked
by red and those on the internal surface are marked by yellow circles (due to the large number of Pd NPs
inside the pores, only part of them are marked in Figure 5.9a). From the reconstructed slices, it is clear that
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the number of Pd particles is reduced after reaction in the batch reactor (Figure 5.9d-f) compared to the
as-prepared sample (Figure 5.9a-c), while a more severe loss of Pd NPs is observed after reaction in the fixed
bed reactor (Figure 5.9g-i), in agreement with the EDS and ICP results in section 5.5. At a first glance, the

Figure 5.9: Typical 2D slices from reconstructed volumes of Pd@CMK3 catalysts for (a-c) a fresh sample and after FA
decomposition in (b-f) batch reactor and (g-i) fixed bed reactor. The red and yellow circles highlight Pd
nanoparticles on the external surface and internal of the porous support.

results seem to indicate that Pd NPs inside the pores seems to be easier leached than those on the external
surface, which is most obvious in the case of the fixed bed reactor where most NPs inside the pores disappeared
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after the reaction. This is against the expectation considering confinement effects in heterogenous catalysis
where metal particles immobilized inside the porous channels often show a higher stability than those on
external surfaces. [101] A possible reason might be that leached Pd NPs are redeposited on the support during
the reaction as evident in Figure 5.8(d-i), where larger particles are observed on the external surface after the
reactions in both reactor modes compared to the fresh sample. To get a deeper understanding of the leaching
and redeposition, a quantitative analysis of the Pd NPs on the internal/external surface of the support has
been performed based on the 3D reconstructions.

The Pd loading calculated from the segmented volume is shown in Figure 5.10a, which shows a same
decreasing trend. These results show again a more significant leaching of Pd NPs in the fixed bed reactor
compared to the batch reactor during FA decomposition. The particle diameters were also calculated from the
segmented tomographic volumes using the equivalent diameter of spherical Pd particles with the same volume
(Figure 5.10b). The resulting average sizes match well with those measured from the 2D STEM images in
Figure 5.5d-f.

Figure 5.10: Pd loading calculated from the tomographic reconstructions.

Figure 5.11a shows the volume fraction of Pd NPs on the external surface in the fresh and used Pd@CMK3
catalysts. The volume of Pd NPs was measured by calculating the number of voxels contained in each particle
after segmentation and determination of the particle location. To provide some statistical sampling, the Pd
NPs from three tomograms were analyzed for each catalyst. It is obvious that the volume of Pd particles on
the external surface of the support increased in both used catalysts compared to the fresh one. For the fresh
sample, only 33% of Pd NPs were detected on the external surface of the CMK3 support, while most of the
particles are located inside the pores due to the higher inner surface area. However, after FA decomposition in
the batch reactor, the fraction of Pd NPs on the external surface increased to 45%, around 1.4 times as much
as in the fresh sample, indicating that leached Pd species are preferably redeposited on the external surface,
probably due to the slower diffusion rate inside the pores. After FA decomposition in the fixed bed reactor,
the fraction of Pd NPs on the external surface increased to 58%. Considering the overall severe Pd loss for
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this catalyst due to the constant flow of reactants and solvent through the porous support, the enrichment at
the surface is surprising. A possible explanation for the high fraction of Pd on the external surface is notable
redeposition taking place on the external surfaces even in the flow reactor, presumably due to a gradient of
Pd species over the catalyst column. Pd NPs leach fast at the top of the column, while leached Pd species
redeposit on the support surface of the catalyst located on the bottom of the column.

Figure 5.11: (a) The fraction of Pd NPs on the external surface for the fresh and used catalysts; number of particles
distributed on the internal and external support surface of Pd@CMK3 in the (b) fresh state, (c) after reaction
in the batch reactor and (d) after reaction in the fixed bed reactor. The inserted tables in b-d show the
relative volume of Pd NPs within a certain volume range on the internal and external surface. The inserted
histograms are closeup views of the limited data of particles with volume larger than 150 nm3.

Further comparison of the Pd NPs located on the internal and external support surface can be found
in Figure 5.11b-d, which shows the histograms of Pd NPs for various ranges of the particle volume. It is
clear that all catalysts show quite homogeneous particle sizes with a high fraction of very small (<15 nm3,
corresponding to a diameter smaller than 3 nm) Pd NPs and a small fraction of large particles bigger than
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95 nm3 (corresponding to a diameter around 5.5 nm). While the size distribution of particles located on the
internal and external support surface is not too different, the table in Figure 5.11b shows that the particles
located on the internal surface exhibit a higher fraction of small particles compared to the particles located
on the external surface, whereas larger particles are preferentially observed on the external surface. This
confirms that pores can reduce the formation of big particles by ripening or agglomeration.

Looking in more detail at the catalyst used in the batch reactor, the amount of small Pd NPs on the internal
and external support surface both decreased severely. The fraction of small Pd NPs (<15 nm3) on the internal
and external support surface are comparable, while an increased fraction of large particles (>95 nm3) can be
found on the external surface. Considering the strong reduction of the number of particles and only slight
reduction of Pd loading (∼23%) according to the ICP-AES and EDS results (Figure 5.6), the redeposition and
aggregation of Pd particles plays an important role for the change of the particle size evolution. According to
the diffusion simulation results from Tallarek et al., where the effective diffusion coefficient decreased rapidly
with increasing particles size [11], [203], the detachment of whole Pd particles from the CMK3 support
is unlikely. Therefore, the evolution of the particle size can be attributed to the dissolution of Pd particles,
leading to a high Pd concentration in solution and then redeposition/ripening leads to growth of the particles.
As the diffusion rate of dissolved Pd species on the external surface is faster than on the internal surface, Pd
species are preferentially redeposit on the external surface. In addition, the increase of Pd NPs on the external
surface provides more nuclear sites for the growth/ripening of the particles, resulting in a higher fraction of
the Pd volume (Figure 5.11a) and larger particle sizes (inserted table in Figure 5.11c) on the external surface.
However, the competition of dissolution and redeposition of Pd species leads to similar PSD for particles on
both external and internal surface compared to the fresh sample. This is probably attributed to the reaction
mixtures being constrained in the batch reactor with enough time for Pd dissolution and reposition during the
reaction. Overall, these observations suggest a highly dynamic equilibrium in the batch reactor with a lot of
local leaching and redeposition taking place both for particles on the internal and external support surface.
Here, the limited size of the pores limits the internal particles from growing extremely big. These observations
help to explain the stability of the catalyst in the batch reactor.

In case of the fixed bed reactor, even though a significant amount of Pd was lost from the catalyst, the
overall particle size distribution is more or less similar to the fresh sample for particles on the internal surface
of the support, where the small Pd NPs (<15 nm3) comprise the highest fraction and a decreasing fraction
belongs to particles with increasing size. The higher fraction of small particles compared to the batch reactor
might be due to the fact that the particles were eroded continuously by the flow without much redeposition
on the internal surfaces. This is not surprising as leached Pd species are easily removed from the solid support
by the continuous flows and do not have enough time for redeposition due to the short diffusion path in the
packed columns. A decreasing fraction of Pd NPs with a size smaller than 15 nm3 and an increasing fraction of
Pd NPs with a size larger than 15 nm3 was observed on the external surface. This increasing fraction of larger
particles on the external surface contributed to the increased average particle diameter observed in Figure
5.5f. One possible explanation for the redeposition of Pd on the external surface in the fixed bed reactor might
be the existence of a gradient of Pd species in the catalyst column as discussed above for the increased fraction
of particles one the external surface. The overall leaching and reposition behavior in both batch and fixed bed
reactors is summarized schematically in Figure 5.12.
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Figure 5.12: Schematic leaching and redeposition behavior of a Pd@CMK3 catalyst during formic acid decomposition in
a batch and a fixed bed reactor.

The detailed structural analysis of Pd@CMK3 before and after FA decomposition provides a good under-
standing for the structure-performance relationship in batch and fixed bed reactors. In the fixed bed reactor,
the catalyst reaches a high initial conversion during the first half hour due to the fast diffusion rate of the
reactant and products by the flow of the reactants. However, as the reaction progresses, Pd nanoparticles
are rapidly lost and only partially redeposited on the support surface, resulting in rapid deactivation of the
catalyst. In contrast, leaching of Pd NPs in the batch reactor is much slower and the leached particles are
able to redeposit both on the internal and external surfaces of the CMK3 support, thus allowing for a higher
activity and better stability.

5.7. Conclusion

This work helps to unraveled the leaching and redeposition behavior of Pd@CMK3 during FA decomposition
in batch and fixed bed reactors using a quantitative electron tomography analysis. The Pd NPs immobilized
in mesoporous CMK3 show a higher FA conversion rate and stability in batch reactors compared to other
catalysts discussed in literature such as Pd@HHT, probably due to the confinement effects of the mesopores
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of CMK3. The amount of Pd leaching was measured by ICP-AES and EDS, both showing that Pd leaching
from Pd@CMK3 is much more severe in the fixed bed than in the batch reactor. Quantitative analysis of
the tomographic data enabled precise tracking of the evolution of the number and size distribution of the
particles on the internal and external support surface. Based on the quantitative tomographic analysis, the 3D
distribution of Pd NPs in the fresh and used catalysts was systematically investigated. For fresh Pd@CMK3,
the particle size is quite homogenous everywhere in the support, on the internal and external support surface.
After the reaction in the batch reactor, leaching decreased the fraction of small Pd particles (<15 nm3) on
the internal surface. Redeposition and ripening result in the formation of particles with intermediate size
due to confinement effects inside the mesoporous space. A notable increase of the fraction of large particles
(>95 nm3) on the external surface was observed after the reaction, suggesting redeposition on the external
surface. Sufficient redeposition of leached Pd NPs apparently helps to maintain a good catalytic performance
during recycling tests. In contrast, more than half of the Pd was lost after the reaction in the fixed bed
reactor, especially particles inside the porous support. This causes a fast deactivation during FA decomposition.
However, redeposition was also observed in this case based on the increased fraction of Pd NPs on the external
surface. These results demonstrate that quantitative tomography is essential for an in-depth understanding
of the structural differences and how they affect the catalytic properties of a catalyst in different reactors.
In turn, this information can be used to precisely design catalysts with desired properties to optimize the
reaction conditions.
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6. Summary and outlook

6.1. Summary

Electron tomography has become a powerful technique for imaging the 3D structure of mesoporous materials,
while a quantitative and accurate interpretation of the solid/void network by ET is still a challenge due
to constraints during tilt-series acquisition and reconstruction artifacts introduced by alignment errors and
reconstruction algorithms. In this thesis, efforts to assess advanced reconstruction algorithms based on
phantom simulations and to improve experimental data sampling by 360◦ ET have been performed to improve
the reconstruction fidelity for mesopore structures.

In chapter 3, the tomographic reconstruction accuracy achievable by three main-stream algorithms (SIRT,
TVM, DART) for mesoporous materials was evaluated based on a series of phantom simulations considering
the most critical parameters for tilt series acquisition such as noise, missing wedge, number of projections and
realistic misaligned effects. It was found that all three reconstruction algorithms provide a reasonable accuracy
for the basic morphological description and the determination of diffusion properties of porous materials.
However, DART turned out to provide the most accurate reconstruction, especially for small isolated pores and
narrow channels with mainly slight randomly distributed errors in the reconstruction even in the presence of
a typical missing wedge and realistic noise settings. TVM and SIRT based reconstructions result in segmented
volumes with a noticeably higher relative number of misclassified pixels, which are not randomly distributed
but tend to cluster leading to a breakup of structural features and a loss of small pores/necks. Therefore,
they have a stronger effect on the morphological and diffusion properties. In terms to the reconstruction
of experimental data, a systematic reconstruction parameter analysis for DART, indicates that noise level
and a rough estimate of the structural sizes are the most important aspects to define the best reconstruction
parameters.

In Chapter 4, a new sample preparation method that enables the transfer of selected individual nanoparticle
or a few separated nanoparticles to a full range electron tomography holder tip has been proposed. This
was achieved inside a standard FIB by employing an easily prepared tungsten tip and no other additional
nano-manipulation setup was needed. The tungsten tip attaches a piece of carbon film supporting the specimen
on it and is used to transfer them to the tomography holder tip. The carbon film remains stable during the
acquisition of tilting series according to the well-aligned sinogram. As a proof of concept, the reconstruction
results of Pt@hollow TiO2 nanoparticles from a full range of projections showed no missing wedge artifacts
compared to that from limited projections.

In Chapter 5, electron tomography was used to quantify the 3D distribution of Pd NPs supported on a
mesoporous carbon (CMK3). The quantitative analysis clearly revealed the structural differences of Pd@CMK3
catalysts before and after formic acid decomposition in a batch and a fixed bed reactor. Pd particles are
leached from the internal pores are turned to aggregate and redeposited on the external surface during the
reaction in batch reactor, while more than half of the Pd species leached with only slight redeposition after
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the reaction in fixed bed reactor. This structural difference could be correlated to their different deactivation
velocity in formic acid dehydrogenation.

6.2. Outlook

Based on the fundamental study in Chapter 3, the proposed reconstruction parameter selection for the DART
algorithm can be performed for real experimental data with a limited tilt range to investigate complex meso-
porous materials, either with ordered or disordered pore structures. The resulting segmented reconstruction
can be further used to analyze the transport properties inside the pore space. Considering the potential
applications of ET for beam-sensitive materials and in situ studies, one concern could be beam damage of the
specimen due to the long acquisition time of a tilt series. Although beam damage can be reduced by using larger
tilt increments to reduce the electron dose during data acquisition, the reduction of the number of projections
might also decrease the quality of final reconstruction. This problem might be solved by using the DART
algorithm due to its promising ability in recovering small pores under large tilt increments. Similarity, this
advantage of DART could be extended to the application of in situ studies, which enables the 3D observation
of the structural evolution during heating or chemical reactions (such as oxidation and reduction).

Apart from the application for 3D morphological characterization by ET without missing wedge for
catalyst nanoparticles as demonstrated in Chapter 4, the proposed new sample preparation method can also
be extended to atomic electron tomography (AET) for precisely determining the 3D atomic positions for
nanoparticles of interest. So far, few works have shown the possibility for the atomic resolution reconstruction
using quantitative image processing and advance algorithms based on limited tilt series. [167], [169], [239]
360◦ ET would enable accessing more orientations and would thereby improve the reliability of atomically
precise reconstruction, especially in the direction parallel to the electron beam. Another application that could
benefit from this method is the quantitative analysis of mesoporous materials. In our previous work, it has
been demonstrated that the missing wedge problem significantly limits the fidelity for 3D segmentation from
a reconstruction. For example, diffusion property evaluation based on the structure model derived from DART
reconstruction but with limited tilting angle range, still showed noticeable anisotropic errors, which could be
attributed to the missing wedge artifacts. [12] This can be largely overcome by full-range ET so that reliable
reconstructions can be achieved routinely by most of the mainstream reconstruction algorithms such as SIRT
once the tilt series is well aligned and appropriate iteration numbers are performed.

With the fundamental study of the main-stream reconstruction algorithms and the experimental improve-
ment of the data acquisition regarding the critical missing wedge problem, the methodology is now well
developed for a quantitative 3D analysis of the mesoporous support. This can be used for a large number of
applications with improved accuracy of reconstruction by combining a full tilt series with optimized parameters
in DART. In addition to the application of a two-component system in chapter 3 and a three-component system
in chapter 4 & 5, the promising ability of such 360◦ ET - DART technique can be extended to more complex
materials with more (e.g. 4-5) components.
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