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Abstract                                     .        

 

Within the next decades, energy systems must be decarbonized and rely on renewable energy sources in the 
electricity, heat, and mobility sectors. This requires sector-coupling technologies such as electrolyzers, heat 
pumps, or charging infrastructure for electric vehicles. Additionally, energy transport networks for electricity 
and gas, including hydrogen, must be expanded. To design future energy systems cost-efficiently, those sectors 
and the energy transport infrastructure can no longer be considered independently but require an integrated 
assessment approach. 

While the decarbonization of Germany's electricity and heat sectors has progressed since 1990, the emissions 
in the mobility sector stagnate. The decarbonization of the mobility sector requires new powertrain technologies 
and energy infrastructure enabling the utilization of electricity, hydrogen, or electricity-based fuels. Especially a 
carbon-neutral hydrogen supply chain and the charging infrastructure for battery electric vehicles are new, 
disruptive elements in the energy system. Electrolyzers, hydrogen storage, and the corresponding transport 
infrastructure couple the mobility sector indirectly with the electricity sector. This affects the electricity demand 
and provides flexibility for intermittent renewable energy sources. Charging stations couple the mobility sector 
directly with the electricity sector. The upcoming electrical charging demand is driven by electric vehicle drivers' 
heterogenous driving and charging behavior, which can differ significantly from conventional refueling behavior 
today.  

In the present thesis, a model framework is developed and applied to analyze the interdependencies of a 
decarbonized mobility sector and the energy supply, energy transport, and charging infrastructure of a carbon-
neutral, multi-modal energy system. The analysis aims at assessing cost-optimal energy carriers in the mobility 
sector and the correspondingly required renewable energy sources, energy imports, storage capacities, and 
transport infrastructure for electricity and hydrogen in Germany. Further, it aims at assessing the required 
charging infrastructure for battery electric vehicles, including slow and fast charging technologies at various 
locations. The impact of differently designed charging infrastructure networks on the multi-modal energy 
system is analyzed regarding the electricity charging peak load and the available flexibility from controlled 
charging processes.  

The developed framework consists of a mathematical energy system optimization model and an agent-based 
electric vehicle simulation. The energy system model is parametrized to optimally design a carbon-neutral 
German multi-modal energy system in 2045 with its energy supply, transport, and demand infrastructure. It 
considers 38 administrative areas in Germany and 13 energy exchange countries in Europe. A scenario-based 
local sensitivity analysis is applied to assess the impact of different energy carriers in the mobility sector on the 
multi-modal energy system and to assess the cost-optimal energy carriers in the mobility sector under 
consideration of different energy supply and transport scenarios.  

The agent-based simulation focuses on the charging and driving behavior of battery electric passenger vehicles. 
It is applied to identify Pareto optimal charging infrastructure network designs for rural and urban areas. The 
output is used to parametrize the charging infrastructure and electric vehicle charging demand time series in 
the energy system optimization model. A sensitivity analysis is applied by varying the availability of slow and fast 
charging stations at different locations in an urban and a rural area to assess the impact of different charging 
infrastructure network designs on the electricity charging peak load and the available flexibility from electric 
vehicle charging. 

The analysis in the energy system model shows that efforts to enable a high electrification rate in the mobility 
sector can be considered no-regret measures. However, uncertainties in the availability and costs of energy 
supply and transport infrastructure primarily affect the cost-optimal electrification rate of capital-intensive 
technologies such as heavy-duty vehicles and buses. While electricity-based fuels are mainly consumed by 
heavy-duty vehicles, busses, ships, and airplanes, hydrogen can cost-optimally complement the electrification 
of light-duty vehicles and passenger cars. Both generation of hydrogen and electricity-based fuels can be cost-
competitive at locations with large wind power generation in Germany, with electrolyzers operating in hours 
with low marginal electricity costs, compared to international locations. If hydrogen is used directly in the 
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mobility sector, the required hydrogen transport infrastructure must be expanded from connecting only 
hydrogen generation and import regions with industrial demand regions towards a country-wide coverage. 

Furthermore, the results show that each 10%-increase of the electrification rate in the mobility sector requires 
an additional stationary energy storage capacity of 250 GWh, including thermal storage, hydrogen storage, and 
battery storage. However, the required battery storage capacity can be reduced by up to 45 GWh by controlled 
charging of electric passenger vehicle fleets. 

The charging infrastructure network design significantly affects the volume of dispatched flexibility from battery 
electric vehicles and, correspondingly, the required battery storage capacity within the energy system. Fostering 
a dense network of fast chargers can significantly reduce the required number of slow chargers in the initial 
market phase of electric vehicles. With a growing number of electric vehicles, the design of regional charging 
infrastructure networks can be used increasingly effectively to reduce the electricity charging peak load and 
increase the available flexibility of a fleet of electric vehicles. 

This thesis contributes to the research on decarbonized energy systems and shows the need for an integrated 
design process for future energy systems. It additionally reveals the relevance of comprehensively designing 
charging infrastructure networks for battery electric vehicles by quantifying the impact of different charging 
infrastructure networks on the charging peak load, on the available flexibility of charging processes, and on a 
fully multi-modal energy system. 
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Kurzfassung 

 

Um die Klimaerwärmung zu begrenzen, müssen Energiesysteme in den nächsten drei Jahrzehnten vollständig 
dekarbonisiert und die Sektoren Strom, Wärme und Verkehr durch erneuerbare Energien versorgt werden. Dazu 
sind sektorkoppelnde Technologien, wie Elektrolyseure, Wärmepumpen und Ladeinfrastruktur für 
Elektrofahrzeuge notwendig. Stromnetze müssen ausgebaut und Gaspipelinesysteme für den Transport von 
Wasserstoff befähigt werden. Aufgrund der Komplexität von solch integrierten Energiesystemen, können die 
Verbrauchssektoren und die Energietransportinfrastruktur nicht mehr unabhängig voneinander betrachtet 
werden, sondern erfordern einen integrierten Bewertungsansatz. 

Während die CO2 Emissionen im Strom- und Wärmesektor in Deutschland seit 1990 reduziert werden konnten, 
emittiert der Verkehrssektor noch die gleichen Emissionen wie im Jahr 1990. Die Transformation des 
Verkehrssektors benötigt neue Antriebstechnologien und neue Energieinfrastruktur, die die Nutzung von Strom, 
Wasserstoff oder strombasierten Kraftstoffen ermöglichen. Neue und disruptive Schlüsselelemente im 
Energiesystem sind dabei die Versorgungsinfrastruktur für CO2-neutralen Wasserstoff und der Aufbau von 
Ladeinfrastruktur für Elektrofahrzeuge. Elektrolyseure, Wasserstoffspeicher und die entsprechende 
Pipelineinfrastruktur koppeln den Mobilitätssektor indirekt mit dem Stromsektor. Dies wirkt sich auf die 
Stromnachfrage aus und bietet Flexibilität für die intermittierenden erneuerbaren Energiequellen. 
Ladestationen koppeln den Mobilitätssektor direkt mit dem Stromsektor, wobei der entstehende 
Stromladebedarf durch das heterogene Fahr- und Ladeverhalten von Fahrzeughaltern beeinflusst wird.  

In der vorliegenden Doktorarbeit wird ein agenten-basiertes Modell entwickelt und mit einer mathematischen 
Optimierung gekoppelt, um die Wechselwirkungen eines dekarbonisierten Verkehrssektors mit der 
Energieversorgungs-, der Energietransport- und der Ladeinfrastruktur zu analysieren. Die Analyse identifiziert 
kostenoptimale Energieträger im Verkehrssektor und die benötigten Erneuerbare-Energien-Anlagen, 
Energieimporte, Speicherkapazitäten, sowie die Strom- und Wasserstofftransportinfrastruktur. Darüber hinaus 
soll die erforderliche Ladeinfrastruktur für batterieelektrische Fahrzeuge, einschließlich Langsam- und 
Schnellladetechnologien zu Hause, am Arbeitsplatz, an öffentlichen Plätzen und auf den Autobahnen, sowie die 
Auswirkungen unterschiedlich gestalteter Ladeinfrastrukturnetze auf das multimodale Energiesystem bewertet 
werden. Diese Auswirkungen werden in Bezug auf die elektrische Spitzenlast durch gleichzeitig auftretende 
Ladevorgänge und die verfügbare Flexibilität durch gesteuerte Ladevorgänge bestimmt.  

Das mathematische Optimierungsmodell ist so parametrisiert, dass ein CO2-neutrales, deutsches, multimodales 
Energiesystem im Jahr 2045 mit seiner Energieversorgungs-, Transport- und Nachfragestruktur optimiert 
werden kann. Dabei wird das deutsche Energiesystem in 38 Regionen unterteilt abgebildet und der 
Energieaustausch mit 13 europäischen Ländern modelliert. Eine Szenario-basierte, lokale Sensitivitätsanalyse 
wird angewandt, um die Auswirkungen verschiedener Energieträger im Verkehrssektor auf das multi-modale 
Energiesystem zu bewerten und die kostenoptimalen Energieträger im Verkehrssektor unter Berücksichtigung 
unterschiedlicher Energieversorgungs- und Transportkosten sowie verschiedener Technologieausbaugrenzen 
und Importverfügbarkeiten von strombasierten Energieträgern zu bewerten.  

Die agentenbasierte Simulation bildet das Lade- und Fahrverhalten batterieelektrischer PKWs ab. Sie wird 
genutzt, um Pareto-optimale regionale Ladeinfrastrukturausgestaltungen für einen ländlichen und einen 
städtischen Raum zu untersuchen. Die Ergebnisse werden zur Parametrisierung der Ladeinfrastruktur und der 
zeitlich aufgelösten Ladeprozesse im Optimierungsmodell des Energiesystems verwendet. Des Weiteren wird 
eine Sensitivitätsanalyse durchgeführt, bei der die Verfügbarkeit von Langsam- und Schnellladestationen an 
verschiedenen Standorten in der agentenbasierten Simulation variiert wird, um die Auswirkungen verschiedener 
Ausgestaltungen des Netzwerks an Ladeinfrastruktur auf die elektrische Spitzenlast und die verfügbare 
Flexibilität der Ladevorgänge zu bewerten. 

Die durchgeführte Analyse im Energiesystemmodell zeigt, dass eine hohe Elektrifizierungsrate im 
Verkehrssektor in allen Szenarien kosten-optimal ist. Veränderungen der Verfügbarkeit und der Kosten der 
Energieversorgungs- und - Energietransportinfrastruktur wirken sich hierbei vor allem auf die 
Elektrifizierungsrate von kapitalintensiven Fahrzeugtechnologien – schweren Nutzfahrzeuge und Busse – aus. 
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Während strombasierte Kraftstoffe vor allem Anwendung bei schweren Nutzfahrzeugen wie Bussen, Schiffen 
und Flugzeugen finden, kann Wasserstoff die Elektrifizierung von leichten Nutzfahrzeugen und 
Personenkraftwagen kostenoptimal ergänzen. Die Analyse zeigt, dass Wasserstoff und strombasierte Kraftstoffe 
an Standorten mit hoher Windstromerzeugung in Deutschland in Stunden mit niedrigen Stromgrenzkosten 
kostenoptimal erzeugt werden können. Für den Einsatz von Wasserstoff im Verkehrssektor muss die 
erforderliche Wasserstofftransportinfrastruktur von Wasserstofferzeugungs- und Importregionen im Norden 
des Landes von einem auf Industrieregionen begrenzten Pipelinenetzwerk zu einer flächendeckenden 
Pipelineinfrastruktur ausgebaut werden. 

Darüber hinaus zeigen die Ergebnisse, dass bei einer Erhöhung der Elektrifizierungsrate im Verkehrssektor um 
10% eine zusätzliche stationäre Energiespeicherkapazität von 250 GWh – thermische Speicher, 
Wasserstoffspeicher und Batteriespeicher – erforderlich ist. Die insgesamt benötigte stationäre 
Batteriespeicherkapazität kann durch gesteuertes Laden von Elektro-Pkw-Flotten um bis zu 45 GWh reduziert 
werden. 

Die Ausgestaltung von regionalen Ladeinfrastrukturnetzwerken hat einen erheblichen Einfluss auf die von 
batteriebetriebenen Elektrofahrzeugen bereitgestellte Flexibilität und dementsprechend auf die erforderliche 
stationäre Batteriespeicherkapazität im Energiesystem. Besonders in der Anfangsphase des Markthochlaufs für 
Elektrofahrzeuge kann das Schnellladen die Anzahl der benötigten Ladesäulen signifikant reduzieren. Mit 
zunehmender Anzahl von Elektrofahrzeugen kann ein effizientes regionales Ladeinfrastrukturnetz so 
ausgestaltet werden, dass die Spitzenlast beim Laden von Strom minimiert und die verfügbare Flexibilität der 
Elektrofahrzeugflotte maximiert wird. 

Diese Arbeit leistet einen Beitrag zur Forschung über die Ausgestaltung eines dekarbonisierten Energiesystems 
und zeigt die Notwendigkeit eines integrierten Prozesses für zukünftige Energiesysteme. Darüber hinaus wird 
die Relevanz einer umfassenden Ausarbeitung von Ladeinfrastrukturnetzen für batterieelektrische Fahrzeuge 
aufgezeigt, um Herausforderungen bei der Integration von Elektrofahrzeugen gezielt zu reduzieren. 
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1 Introduction 

 

Societies today consume large amounts of energy to power different applications across all sectors. In 2019, 
fossil energy carriers account for a significant share of the overall energy consumption. While Germany uses 
612 TWh of natural gas and oil to heat buildings, warm water, and for industrial process heating in the year 2019 
[1], its people drive 739 billion kilometers [2] in vehicles consuming 725 TWh of energy [3], mainly by combusting 
oil derivatives in internal combustion engines (ICE) [4]. Beyond that, lights, computers, medical equipment in 
hospitals, and large industry processes are powered by 578 TWh of electricity per year. 60% of the electricity is 
still generated in conventional power plants in 2019 [1]. The supply chain for fossil energy carriers was 
established over many decades. Oil and Gas, which are consumed in Germany, are mainly produced in Russia, 
Norway, and Northern Africa, and transported via pipelines and ships to Germany. The oil then is refined in 20 
refineries in Germany and, inter alia, fueled at 14000 refueling stations across the country [5]. 

When burning fossil fuels 711-million tons of carbon dioxide were released into the atmosphere in Germany in 
2019 [6]. A substance, which is proven to be primarily liable for the anthropogenic climate warming. This poses 
one of the main challenges in the 21st century, namely, keeping climate warming below 1.5°C as 195 countries 
worldwide agreed to in the Paris Agreement in 2015.  

Renewable energy sources (RES) must be utilized within the sectors heat, electricity, and mobility [7]. This can 
be enabled by sector-coupling technologies such as heat pumps and electric vehicles, which gain increasing 
importance [2], [7]. In addition, electricity-based energy carriers, such as electrolysis hydrogen or Fischer-
Tropsch (FT) diesel increase the number of applications for RES, where a direct electrification is not economically 
or technically reasonable today. RES will be at the center of most energetic applications within a decarbonized 
energy system, which thus will contain many sector-coupling technologies [7], [8].  

The German government agreed to CO2 reduction targets in the Kyoto protocol and tightened its targets yet 
again in 2021 with the amendment of the Climate Change Act [9] to reach carbon-neutrality in 2045 instead of 
2050. Furthermore, sector-specific targets were announced prior to the amendment of the Climate Change 
Act [9]. The mobility sector must cut its emissions until 2030 by 40-42%, and thus 1.5 million1 public charging 
points for 15 million Battery Electric passenger Vehicles (BEVs) shall be installed [12].  

To make the transformation of the energy system efficient across all sectors, the interactions between sectors 
and investments in new key energy infrastructure, such as hydrogen pipelines or charging stations, must be 
understood. The present thesis analyzes those interactions for a future carbon-neutral energy system of 
Germany. 

 

1.1 Motivation 

 

The annual CO2 emissions in Germany have been reduced by 32% from 1990 to 2019 (cf. Figure 1-1) [1]. 
Considering the climate targets of Germany further 68% of CO2 reduction are necessary in the upcoming 25 
years. Differentiating the development by sectors reveals that the electricity and heat sector each reduced the 
CO2 emissions by almost 40%. In contrast, the mobility sector’s decarbonization did not progress and it 
contributed with 23% to the total emissions in Germany in 2019. Thereof, the road transportation sector is the 
mode of transportation consuming the most energy and contributing with 96% to the emissions in the mobility 
sector [6]. 

As the transformation across all sectors, especially the mobility sector, must start and gain momentum 
immediately, less carbon intense technologies, need to enter the market or increase their market share soon. 
The need is not only relevant to reach short-term targets of a total of 65% CO2 reduction until 2030 but ultimately 

 

1 One public charging point per ten BEVs is required according to the ‘Masterplan Ladeinfrastruktur’ and the Directive 2014/94/EU [10, p. 94], [11].  
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to not miss the chance of limiting climate warming by reaching carbon-neutrality by 2045 [9]. Less carbon intense 
technologies comprise, for instance, vehicles with alternative powertrains including BEVs and fuel cell vehicles 
fueled by carbon-neutrally generated hydrogen. However, ICEs could still have relevant market share in a 
decarbonized mobility sector if powered with carbon-neutrally generated electricity-based methane (e-
methane) or fuels (e-fuels).  

 

 

Independently of the technology that dominates in the mobility sector, major energy infrastructure investments 
arise: first, for converting wind and solar radiation into electricity, hydrogen, e-methane, and e-fuels, second, 
for energy transport and distribution, and finally, for new charging and refueling infrastructure. Especially the 
charging infrastructure differs significantly from the existing refueling infrastructure and so does the refueling 
behavior of drivers [5]. Charging points need to greatly outnumber the existing refueling stations, due to longer 
charging times and shorter driving ranges [13], [14]. In contrast to existing refueling infrastructure, they can be 
distributed across different types of locations: at home for private use, at workplaces for employees, along 
highways for public, and in public locations for public or semi-public (e.g., customers of, e.g., supermarkets) 
usage. The investment in such a future charging infrastructure might even exceed the costs for electricity 
distribution grid extensions [14], [15]. Charging stations are not only a prerequisite for an increasing market 
share of BEVs but also a sector-coupling element, linking the mobility and electricity sectors directly. The 
complex charging behavior across different locations, the high investments, and the impact on the electricity 
sector show the relevance of analyzing future designs of charging infrastructure networks in a carbon-neutral 
energy system. 

Furthermore, the utilization of electricity, hydrogen, or e-fuels has different advantages and disadvantages as 
well as impacts on the overall energy system. While directly using electricity is energetically the most efficient 
path [14], [16], the intermittency of RES, the additional stress to an only slowly expanding electricity grid and 
the challenges of battery electric storages must be tackled. Those challenges are, e.g., the usage of metals that 
are rare, the need to improve recycling, a low gravimetric energy density limiting the range of BEVs, and no fit 
as seasonal storage for the energy system [14], [17], [18]. Hydrogen conversely seems to overcome some of 
those challenges. Due to better storage capabilities, and better international long-distance transport than 
electricity, it can help to harness more RES – even in international locations with excellent wind and solar 
conditions. But hydrogen requires a completely new generation and transport infrastructure and sacrifices in 

 

Figure 1-1 - Development of CO2 emissions in Germany from 1990 to 2019 [1]. 
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energy efficiency. Finally, even if utilizing e- fuels would result in the lowest energy efficiency compared to the 
direct use of electricity or hydrogen, they come with the lowest efforts for transport, distribution and refueling 
infrastructure adjustments and the least disruptive changes on the automotive market [19], [20].  

An effective utilization of RES is crucial for a decarbonized energy system independent of the utilized energy 
carrier in the end application to minimize system costs. Flexible technologies on the demand side and energy 
storage, which can balance the intermittent availability of RES, increase the effectiveness of RES in an integrated 
energy system. While sector-coupling increases the complexity of a multi-modal energy system (MMES), it has 
the potential to provide flexibility [21], [22]. A decarbonized mobility sector can offer different sources of 
flexibility in dependency of the developments in the automotive market. Those sources of flexibility are, for 
instance, electrolyzers with hydrogen storages or controlled charging processes of BEVs. The aggregated 
capacity of batteries installed in BEVs reaches already today the total capacity of the German national pumped-
hydrogen storages [23]. Nevertheless, understanding the availability of those batteries in BEVs for the balancing 
needs of the MMES is crucial for the integrated decarbonization. 

Sector-coupling and the new infrastructure contribute significantly to increasing the complexity of a 
decarbonized MMES, since developments in the mobility sector directly impact other sectors while competing 
for RES. Simultaneously, sharing energy transport infrastructure across sectors allows to increase the utilization 
of cost-intensive infrastructures to transport the energy from the generation region to the demand region. The 
arising complexity can be handled by applying mathematical optimization models to plan the decarbonization 
of an MMES [24], [25]. They help to handle the complexity and to analyze interactions between different 
technologies in the country-energy system.  

To sum up the challenge, the decarbonization of the mobility sector becomes increasingly important and 
requires an integrated energy system assessment including the sectors of electricity, heat, and mobility as well 
as the relevant energy transport, charging, and refueling infrastructure. The complex task of planning the 
decarbonization of an MMES can be abstracted in mathematical energy system models [24], [25], commonly 
used to assess investments under consideration of their projected operation. To assess the role of the mobility 
sector within an MMES under fair competition between different energy carriers and technologies, the following 
five aspects need to be considered in a model: 

(a) Multi-modality: The electricity, heat, and mobility sectors, and their interactions, including the 

competition for RES between these sectors must be considered. 

(b) Mobility technologies: Different vehicle types and different suitable fuels require the coverage of the 

transportation modes road, rail, ship, and aviation with powertrain technologies allowing the utilization 

of electricity, gaseous, or liquid energy carriers. 

(c) Energy supply infrastructure: The inland conversion of electricity, heat, hydrogen, and electricity-based 

energy carriers considering the competition for intermittent RES and the competition with energy 

imports in terms of overall energy supply costs must be considered.  

(d) Energy transport infrastructure: Since energy supply and consumption sites differ in location, the 

national energy transport infrastructure for electricity, hydrogen, methane, and liquid fuels needs to be 

considered. 

(e) Charging and refueling infrastructure: The refueling and charging infrastructure costs need to be 

represented as indispensable prerequisite for the mobility sector’s transformation.  

 

1.2 Literature review 

 

The existing literature is grouped here into four categories and assessed based on the five aspects (a)-(e) (cf. 
Section 1.1). The four categories are firstly, studies focusing on multi-modal energy systems, secondly energy 
transport infrastructure, thirdly charging and refueling infrastructure, and finally mobility sector studies 
assessing a variety of different mobility technologies. While the categories are derived based on the aspects (a)-



 

  4 

(e), a separate category for the energy supply infrastructure (aspect (c)) is not outlined since this aspect is 
considered in multi-modal and mobility sector studies. Even though the existing literature already provides 
extensive insights into different aspects of the energy system transformation, the following analysis identifies a 
gap in the analysis of cross-sectoral effects rooted in the mobility sector under consideration of energy 
infrastructure. 

 

Multi-modal energy system studies  

Several MMES studies, which focus on the decarbonization of the German energy system until 2030 or 2050 
have been published [8], [26]–[28]. Their distinctive mark is to include sector-coupling technologies such as heat 
pumps and electric vehicles and to analyze several energy sectors simultaneously, including their interactions. 
Inherently, the consideration of several sectors requires modeling a variety of different technologies, which can 
lead to increasing complexity requiring extensive computation power [25]. One way to deal with that is to focus 
on specific technologies and neglect others.  

Regarding the coverage of the mobility sector, some MMES studies include only the road transportation sector 
[16], [29]. While Felgenhauer [16] tailors his analysis to the comparison of BEVs and FCEVs on a regional level, 
Robinius et al. [29] determine hydrogen demands for the road transportation sector exogenously.  

A more comprehensive picture of the mobility sector is covered by other modelers by adding rail, water, and air 
transportation technologies in the optimization model [21], [30]–[36]. This can result in increased utilization of 
electricity-based energy carriers [32]. Bartholdsen et al. [30] consider internal combustion engines, fuel cells and 
electric powertrains, but the considered technologies are still limited in the scope of powertrain and 
transportation mode combinations. Focusing on cross-sectoral interactions, Palzer [36] optimizes only road 
transportation technologies and only covers the energy demands for trains, ships, and aviation by liquid 
hydrogen. The same approach is used by Sterchele [21] to assess load balancing options within an MMES. The 
author founds that controlled charging of BEVs and heat generators with thermal storage are suitable options 
to balance intermittent renewables. None of these studies considers refueling and charging infrastructure and 
only Bartholdsen et al. [30], Brown et al. [32], Müller et al. [35] and Metzger et al. [34] include electricity 
transport restrictions but no gas transport restrictions. Further, the electricity transport restrictions in Müller et 
al. [35] and Metzger et al. [34] are implemented in a separate model, which allows for conducting load flow 
calculations on the electricity line level. Nevertheless, similar to Robinius et al. [29], who apply seven sub-
models, including energy transport infrastructure modeling, this restricts the capability of investigating 
interactions between the energy transport infrastructure and the MMES. Further, Lester et al. [33] and 
Bramstoft et al. [31] only include transport costs for biomass, which is converted to biofuel, but do not consider 
the electrification of the road transportation sector. Finally, the above mentioned MMES studies show a 
shortcoming with regard to modeling the import of electricity-based energy carriers.  

Finally, there is a variety of MMES studies, which publish different scenarios for the German energy system. 
Some of those studies show a detailed representation of energy supply and the mobility sector and partly energy 
transport infrastructure. These studies are referenced and discussed subsequently and can be considered as 
relevant literature for the German energy system. However, they do not target an analysis of the interaction of 
the mobility sector with the MMES.  

In 2020, Robinius et al. published a comprehensive MMES study focusing on the transformation of the German 
energy system until 2050, including various coupled and iteratively applied models [27]: an energy system 
investment model with a system cost minimization target optimizing the electricity, heat, and mobility sectors 
simultaneously; models for the electricity transmission grid simulation with a direct current load flow 
calculation; an international trade model for commodity import prices and restrictions; and a hydrogen 
infrastructure model. Still, while, e.g., hydrogen refueling is covered, this comprehensive study does not include 
a detailed charging infrastructure network modeling and it does not rely on a model-based derivation of 
controlled charging assumptions for BEVs. Further, the model framework does not include a combined 
electricity, methane and hydrogen transport infrastructure optimization. A similar gap due to a variety of applied 
models exists in another comprehensive study from the Federal Ministry for Economic Affairs and Energy 
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(BMWi) [7]. This study models the decarbonization of the German energy system, including the most relevant 
aspects with a high degree of detail.  

Furthermore, the ‘Dena Leitstudie’ [26] from 2018 assesses an 80% and a 95% decarbonization scenario for 
2050. While this study covers a multi-modal technology optimization with a mobility sector covering road, rail, 
water, and air transportation, it only considers the electricity transmission system, including a DC load flow 
calculation for a reduced transmission system. The studies ‘Klimapfade für Deutschland 2.0‘ [8], 
'Klimschutzszenario‘ [37], ‘Energiemarkt 2030 und 2050‘ [38], ‘Wege zu einem Klimaneutralen Energiesystem‘ 
[28], ‘Sektorkopplung’ [39] and ‘Interaktion EE-Strom, Wärme und Verkehr’ [40] publish MMES decarbonization 
pathways for 80% and 95% CO2 reduction targets until 2050 without covering the energy transport infrastructure 
in detail. The same gap is valid for the study ‘Klimaneutrales Deutschland 2045’ [41] but for the target year 2045. 

With some of the MMES studies mentioned above (e.g. [29]–[31], [34], [35]) also considering energy transport 
infrastructures, the importance of this element in a model is emphasized. Nevertheless, the representation of 
infrastructure in these studies is either on a low spatial resolution or focuses solely on electricity or hydrogen 
transport. This restriction eliminates the option to fully evaluate the cost-optimal energy transport routes in an 
MMES. In a nutshell, it could be shown, that there is a lack of consideration of multi-modal energy transport, 
refueling and charging infrastructure in MMES studies. Moreover, only few studies cover all mobility sector 
technologies comprehensively.  

 

Energy transport infrastructure studies 

Publications in the category of energy transport infrastructure model the transport infrastructure for energy 
carriers with a high spatial or temporal resolution and under consideration of a physical power or gas flow 
calculation. The focus of the analyzed literature is on the long-term planning of energy transmission 
infrastructure with a target year of 2030 or 2050.  

Most infrastructure studies focus on a single energy carrier. Their target is to derive explicit measures for 
electricity grid or pipeline extensions und upgrades. The most relevant studies for the German electricity or gas 
transport system are the ‘Grid Development Plan Electricity’ and the ‘Grid Development Plan Gas’ [42], [43]. 
Driven by the Energiewirtschaftsgesetz (§ 12b I 2 EnWG), both studies are released biennially by the electricity 
transmission system operators and the gas transmission system operators. The grid extension measures are 
identified for the next ten to 15 years based on exogenously defined scenario assumptions for technology 
projections. This includes, e.g., the electrification rate in the mobility and heat sector, and electricity supply 
technologies. Even though a planning process integrating the gas and electricity infrastructure does not exist 
yet, the relevance is accentuated by current developments regarding a ‘System Development Plan’ [44]. 
Nevertheless, both electricity and gas infrastructure studies are independently conducted and lack multi-
modality as well as a representation of the mobility sector. 

The equivalent to the Grid Development Plan on the European level is the ‘Ten Year Network Development Plan’. 
Further, studies and articles focusing solely on the development of the electricity transmission grid with a 
reduced granularity exist on the European level [45]–[47] and for Germany [48].  

Different approaches for assessing the required gas transport system extensions exist, which all result in 
deviating conclusions. Haumeier et al. conclude from a GIS-based area potential and gas power flow analysis 
that the gas pipeline infrastructure can limit the power to gas capacities in Germany [49]. Gillesen et al. evaluate 
the integration of the renewable gases into the German gas system until 2050 using an optimization model, 
which incorporates gas flows, and conclude that further extension of natural gas pipelines is not necessary [50]. 
Hauser et al. apply a gas market model to assess congestions in the German gas transmission network in 2030 
[51]. Their linear optimization includes more than 1400 pipelines, and the gas demand is regionalized to 400 
regions in Germany. The authors argue that a projected increasing gas demand could overload the pipelines 
during a few hours per year. 

In contrast, research dealing with hydrogen transport infrastructure is found to explicitly center the analysis on 
the mobility sector as hydrogen sink. A first approach of modeling a spatially highly resolved hydrogen pipeline 
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network for Germany was conducted by Krieg in 2012 [52]. In 2016, Robinius extended this analysis by 
introducing an electricity and gas market into the model [53]. Reuss and Stöckl et al. focus on the competition 
between liquid, gaseous and organic hydrogen carriers for the inner-German transport [54]–[56]. The three 
doctoral theses from Krieg, Reuß and Robinius suggest explicit hydrogen transport routes from electrolyzer 
locations in Germany to hubs on municipality level and its further distribution to refueling stations. Still, no 
integrated consideration of the mobility sector and its technology mix is conducted, which goes beyond 
assuming refueling stations as hydrogen sink. 

All infrastructure studies mentioned to this point show that energy transport infrastructure studies focus 
specifically only on transport infrastructure for one energy carrier, neglect an integrated multi-modal 
optimization of supply and demand technologies, consider no representation of different mobility sector 
technologies, and finally omit the consideration of energy import routes.  

After all, the following two studies from the United Kingdom (UK) go beyond a pure hydrogen scope by including 
electricity transport technologies. Samsatli et al. [57] conducted an analysis focusing on supplying hydrogen for 
fuel cell electric passenger vehicles to different regions in the UK. Thereby, he analyzed the competition of 
electricity and hydrogen transport options. A further analysis from Samsatli and Samsatli [58] assesses the 
hydrogen and electricity transport infrastructure for a hydrogen demand in the heat sector including the option 
to repurpose natural gas infrastructure. While this analysis improves the multi-modal energy transport 
representation it does not focus on the different technologies in the mobility sector. 

Finally, two studies incorporate a combined optimization of electricity, hydrogen, and methane transport 
infrastructure for the case of Germany. In a study from TenneT and Gasunie [59] a joint energy transport system 
extension for electricity, methane, and hydrogen is modeled based the administrative NUTS2 level in Germany 
and Netherlands for three different scenarios until 2050. A similar consideration of energy transport 
infrastructure with an increased scope in terms of multi-modal technologies is modeled in Gils et al. [22]. They 
integrate hydrogen, methane, and electricity infrastructure into a sector-coupling energy system optimization 
model. They focus on the interaction of the hydrogen infrastructure with the energy system and an assessment 
of the robustness of the outcome against different infrastructure-based measures such as a limited power grid 
extension. Nevertheless, the regional scope is limited to ten regions in Gils et al. and both studies define end 
use technologies and energy demands in the mobility sector exogenously.  

In conclusion, this section shows that most of the literature in the energy transport infrastructure category 
focuses on a high degree of detail but only for a single commodity to derive specific grid extension measures. 
Studies focusing on more than one commodity for the energy transport reduce the degree of detail regarding 
infrastructure elements, and do not optimize end use technologies in the mobility sector jointly with the 
infrastructure. The importance of an integrated planning process of different energy transport options is 
additionally outlined by the potential of increased flexibility for the MMES through interactions of the electricity, 
methane, and hydrogen systems which in turn results in decreased overall system costs [60]. Finally, refueling 
or charging infrastructure is also under-represented in the category of energy transport infrastructure studies. 
It is solely considered in the hydrogen network studies as hydrogen sink. 

 

Charging and refueling infrastructure studies 

Since modelers try to limit the complexity of their models, they usually do not consider the refueling and 
charging infrastructure as shown above. However neglecting this cost term in a cost-optimal model can cause 
significant deviations since the buildup for new refueling and charging infrastructure contributes significantly to 
the overall mobility costs [14], [15], [61]. There are basically three approaches to be distinguished in literature 
covering refueling and charging infrastructure. 

• First, studies that allocate hydrogen refueling infrastructure [52]–[54] or charging infrastructure [14] 
within Germany and use these allocated stations as sink in their model. While this allows for a detailed 
modeling of energy transport and distribution infrastructure, the number of refueling stations and the 
demand are defined exogenously.  
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• Second, studies that incorporate cost terms for refueling and charging infrastructure into their model 
[62]. This approach represents a less detailed coverage without geographic allocation of refueling and 
charging infrastructure, but the required total capacity and costs can be optimized, and level out the 
field of competition between technologies in the mobility sector. Nevertheless, the cost terms and 
infrastructure demand are not assessed fundamentally. 

• And third, studies that focus entirely on refueling and charging network design but lack the integration 
of insights into a broader energy system scope, as described below.  

Grüger [63] identifies in his dissertation the required hydrogen refueling infrastructure for commercial fleets 
using an optimization model. Rose [64] develops in his dissertation an optimization model to assesses the 
hydrogen refueling investments for heavy-duty trucks in Germany in 2050. Melaina and Bremson [65] analyze 
the required alternative refueling infrastructure for passenger cars on a city scope for the US.  

While the number of publications on BEV charging and its impact on distribution grids is large, the subsequent 
focus lies on explicit charging infrastructure network studies. Grube et al. estimate the cost of charging 
infrastructure for Germany with consideration of regional differences but without a fundamental model-based 
assessment of required chargers [66]. While Funke et al. [67], Gnann et al. [13], and Jochem et al. [68] assess 
the demand for fast charging infrastructure along the German highway, other studies such as Nicholas and 
Wappelhorst [69], Brost et al. [70], and Pagany et al. [71] allocate charging infrastructure on a regional level. 
These regional studies reveal a more accurate assessment, but they cannot be generalized easily to the country 
level and neglect interactions between different types of chargers. Finally, a meta study from VDE|FNN and 
BDEW assesses 157 publications for the integration of BEVs into the electricity system [72]. Some of the gaps in 
research they derive are that the consideration of regional differences as well as interactions between different 
charger types and locations are not covered in literature accurately. Further, the analysis in this section shows, 
that a detailed representation of charging infrastructure is not covered in energy system studies but only as 
stand-alone. 

Mobility studies: 

The following paragraphs analyze publications focusing on the German mobility sector. In comparison to the 
MMES studies, the authors deal distinctively with the decarbonization of the mobility sector. Those studies have 
in common that they consider numerous different technologies in the mobility sector and comprehensively 
integrate alternative energy carriers in the assessment. 

Hacker et al. [73] investigate the impact of an increased electrification in the mobility sector on the German 
electricity sector until 2050. They assess various vehicle technologies in the TEMPS model and couple it with a 
linear optimization model representing the electricity sector. While Hacker et al. focus on electrification 
strategies, the TEMPS model is also used to derive a detailed strategy to decarbonize the mobility sector until 
2050 in Kasten et al. [74], but without an assessment of impacts on the electricity sector. In contrast, Weger et 
al. [75] assess the shift towards a hydrogen-based mobility sector in terms of greenhouse gas emissions. They 
assess different emission factors similar to Matthias et al. [76], who built up a tool chain to model spatiotemporal 
transport sector emission distributions for 2040. Both articles do not cover interactions with the entire MMES. 

Millinger et al. [77] use a linear optimization model to assess the potential of electricity-based energy carriers 
and biofuels for the entire German mobility sector. While timely varying excess electricity from RES is considered 
in the optimization, the installed capacities in the electricity sector are fixed and not optimized. In contrast, 
Helgeson and Peter [62] model the transformation of the road transport sector until 2050 in Europe considering 
direct electrification and different electricity-based energy carriers. Thereby, they include the electricity sector 
and different power-to-x technologies in the optimization. By additionally modeling the mobility sector 
decoupled from the electricity sector they conclude that a coupled framework is important to lift synergies 
between the sectors. This ultimately results in lower system transformation costs. The authors focus strongly on 
the interaction of both sectors and include cost terms for charging and refueling infrastructure. However, they 
do not elaborate on the derivation of the charging infrastructure costs. Further, it was not in their scope to 
include the heat sector, energy transport infrastructure, or rail and inland navigation.  
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Bramstoft and Skytte [78] model Sweden’s MMES considering different alternative fuels for the mobility sector 
in the STREAM model in 2050. However, the energy transport infrastructure is not considered. A similar gap 
exists in Shafiei et al. [96], who focus on a comparison between BEVs and fuel cell passenger vehicles, and their 
refueling and charging infrastructure costs in Iceland. Therefore, a system-dynamics simulation model is built 
but no MMES assessment and no energy transport infrastructure costs are mentioned. 

As a concluding remark, it is emphasized that different scenarios for the direct and indirect electrification of the 
mobility sector exist in literature. A comprehensive multi-modal model framework is required, inter alia, to not 
neglected the competition about scarce RES between the electricity, heat and mobility sector [79]. Further, the 
above literature analysis identifies the additional shortcoming of not considering energy transport infrastructure 
costs. 

 

Research gap: 

The analysis above shows that a variety of research exists in the field of analyzing a decarbonized mobility sector. 
It also reveals the need for further research as a variety of MMES studies with different granularity levels and 
varying representations of energy transport systems are available and none of these studies covers the 
integrated optimization of the energy transport infrastructure. The publications [22], [44], [59], [60] emphasize 
the relevance of a combined optimization. Nevertheless, analyzing the impact of a MMES optimization, including 
multi-modal energy transport, on a decarbonized energy system remains open. 

Figure 1-2 shows the identified research gap and summarizes the analysis above using a qualitative classification 
for each group of studies regarding the five aspects (a)-(e) described above. From the inside of the spider chart 
to the outside the classifications are ‘out of scope’, ‘limited consideration’, most aspects are ‘covered’ and 
‘detailed representation and evaluation’. The three dotted lines represent each one group of studies. Charging 
and refueling infrastructure studies are excluded in the figure since the aspects (a)-(d) are out of scope in today’s 
existing scientific literature on this topic. As shown in the figure, MMES studies and energy transport 
infrastructure studies have a detailed representation of the aspects in the categories multi-modality and energy 
transport, respectively. Additionally, they complementarily cover the three remaining categories. In contrast, 
the assessed group of mobility studies represents mobility technologies and their energy supply up to a detailed 
level but is limited in terms of energy transport and multi-modality. 

The present thesis fills the research gap of MMES studies by integrating an enhanced coverage of energy 
transport infrastructure and a more detailed representation charging and refueling infrastructure. While 
contributing to closing this gap might sacrifice details of infrastructure and mobility studies, the here developed 
approach can be considered Pareto optimal compared to existing MMES studies.  

Four distinct statements regarding this gap are derived from the literature analysis and ultimately support the 
allocation of the research gap in Figure 1-2: 

(1) First, the assessment of the role of the mobility sector in a decarbonized German MMES lacks consideration 

of the associated energy transport as well as charging and refueling infrastructure. 

(2) Second, a lack of multi-modality while simultaneously optimizing the technologies in the mobility sector and 

corresponding energy carrier supply is identified. Therefore, only limited statements can be made about the 

competition between the heat, electricity, and mobility sector in terms of scarce RES.  

(3) Third, there is no joint analysis of the required electricity grid and gas pipeline capacities between regions 

within an MMES optimization while assessing the decarbonization of the mobility sector.  

(4) Finally, there is no analysis and representation of detailed charging infrastructure networks considering the 

charging and driving behavior of drivers, which includes the interactions between different types of charging 

locations and the impact of charging infrastructure on electrical load profiles and flexibility. A specific 

representation of charging infrastructure within MMES still needs to be analyzed.  

There are comprehensive studies such as [7], [27], covering most of the aspects (a)-(e), and thus represent some 
aspects on a very detailed level. Nevertheless, since they use a variety of different models, the capability of 
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analyzing interactions between, for instance, transport infrastructure and the decarbonization of the mobility 
sector is limited. Moreover, these studies focus on specific scenarios and not on a more fundamental 
understanding of the interactions within a MMES. 

 

 

1.3 Research questions and objective 

 

Planning a complex system like the German MMES requires modeling tools to assess the interactions between 
different sectors. Since the mobility sector in Germany is by far the sector with the least decarbonization 
progress until 2021 compared to 1990 (cf. Figure 1-1), the present thesis focuses on the assessment of a 
decarbonized mobility sector within the German MMES. It is fundamental to incorporate costs and restrictions 
of relevant national energy transport, charging, and refueling infrastructure in this process. Aiming to contribute 
to the literature by addressing the research gaps (1) – (4) (cf. Section 1.2), the following objective and research 
questions are derived. 

The present doctoral thesis aims to cost-optimally identify the required and inter-regional energy infrastructural 
measures to decarbonize the mobility sector as part of the German MMES. Those infrastructural measures are 
identified on an aggregated regional level based on a resolution of 38 regions in Germany. Further, the impact 
of different energy carriers in the mobility sector on the energy supply and energy transport under consideration 
of charging and refueling infrastructure is assessed. Two significant new infrastructure elements are examined 
in greater detail: charging infrastructure and hydrogen transport infrastructure. Both elements are 
underrepresented in the MMES literature while still gaining increased public and political attention. In Table 1-1, 
the three central research questions of the present thesis are identified. 

 

Figure 1-2 –  Identification of the research gap by classification of existing literature and assessment based on 
five derived key aspects for the decarbonization of a multi-modal energy system.  
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To answer the research questions, an MMES model framework is extended and parametrized to incorporate 
mobility sector characteristics such as distributed controlled charging, as well as electricity, methane, and 
hydrogen transport restrictions. This framework is based on an existing linear optimization model called Energy 
System Development Planner (ESDP) [35], which is extended and parametrized according to the requirements 
formulated in Section 2. Furthermore, an agent-based model to incorporate driving and charging behavior into 
the charging infrastructure planning process is developed and coupled to ESDP. The model coupling approach 
derived in the present thesis allows to derive general statements about charging infrastructure networks in the 
agent-based model and enables an accurate representation of BEVs and its charging infrastructure in ESDP, 
including a model-based derivation of controlled charging restrictions.  

The complex nature of an MMES does not allow considering all elements to the same extent. Hence, the 
following restrictions to the scope of the present thesis are made. First, the alternative energy carriers 
considered in the mobility sector focus on electricity and electricity-based energy carriers, which are derivatives 
of hydrogen. A detailed assessment of biofuels produced from biomass are intentionally out of scope here due 
to competing interests of area usage for biomass crops with food production and photovoltaics (lower areal 
efficiency for energy production of biomass). Biomass from residues is not elaborated due to its limited potential 
[77], [80], [81]. Second, the energy transport is modeled for electricity, methane, and gaseous hydrogen. The 
transport of liquid energy carriers is not focused since it is assumed that this transport mode is regarding its 
complexity and its costs similar to the existing liquid energy carrier transport of oil and its derivatives (cf. [5], 
[19]). Third, since this study focuses on the country-level modeling, no assessment and detailed modeling of 
energy distribution networks is conducted. Finally, it is not meant to derive explicit infrastructural measures on 
an individual asset level, such as power transmission line extensions as, e.g., in the Grid Development Plan. This 
limitation is applied here since detailed planning for single assets in 2045 would imply too many uncertainties 
to derive meaningful statements. Therefore, assets in the energy system are not modeled individually but 
aggregated on a regional level. Furthermore, the present thesis focuses on the role of the mobility sector within 
an MMES and assesses energy-related measures for the decarbonization. This means that consequences of a 
modal shift, e.g., from road to rail, and new concepts such as autonomous driving, are not analyzed here. 

 

1.4 Structure of thesis 

 

The present thesis is structured in eight sections, including the introduction section. The requirements of a 
model framework to answers the research questions are analyzed in Section 2. This includes, for instance, the 
questions of which technologies need to be considered to which spatial and temporal resolution. The applied 
ESDP model and the here newly developed agent-based model are described in Sections 3 and 4. The method 

 Research questions 

RQ1 What are the optimal energy carriers to fuel a decarbonized mobility sector and how does the 
required energy supply and transport infrastructure impact the share of those energy carriers 
in a cost-optimally decarbonized Multi-modal Energy System? 

RQ2 How does a decarbonized mobility sector generally impact the energy supply, transport, and 
demand structure of the Multi-modal Energy System, and in particular, what is the impact of 
the charging infrastructure network design and battery electric vehicles’ flexibility? 

RQ3 How to design charging infrastructure networks and how does the infrastructure affect the 
battery electric vehicles’ charging peak load and available flexibility? 

Table 1-1 – Research questions. 
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of assessing charging infrastructure networks, the coupling process of both models, including implemented 
expansions in ESDP, as well as the techno-economic parametrization of the MMES follow in Section 5. The 
techno-economic parametrization of the MMES in ESDP includes the derivation of input parameters for BEVs in 
the agent-based model. Finally, Section 6 shows the results and answers the research questions. A discussion of 
the results follows in Section 7, and Section 8 contains the conclusion and outlook. 

 

 

Figure 1-3 – Structure of thesis.  
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2 Analysis 

 

A model framework to assess the role of the mobility sector in an MMES under consideration of energy transport 
infrastructure and charging infrastructure must consist of a variety of technologies and energy carriers. The 
analysis identifies first the technologies and energy carriers in the mobility sector that must be considered in a 
model (cf. Section 2.1). Second, the technologies in the MMES and subsequently the model implications such as 
the required spatial and temporal resolution are derived (cf. Section 2.2). And third, the specific requirements 
for modeling electric vehicles and charging infrastructure are analyzed (cf. Section 2.3). 

 

2.1 Energy carriers and technologies to decarbonize the mobility sector 

 

Transportation demand 

The mobility sector in Germany can be subdivided into freight and passenger transportation with an annual 
passenger transportation capacity of 1169 billion passenger kilometers (Gpkm) and an annual freight 
transportation capacity of 701 billion ton-kilometers (Gtkm) in 2019 [4]. These units of transportation 
measurement describe the factor of distance and weight of transported goods and passengers respectively and 
are shown in Figure 2-1.  

While 71% of the freight transportation capacity is provided by heavy and light-duty trucks, shipping and rail 
transportation make up another 26%. Since the freight transportation capacity for crude oil via pipeline and the 
aviation capacity account for only 2.5% and 0.2% of the total transportation capacity, they can be neglected with 
only a minor loss of accuracy in an MMES. International freight vehicles and vessels accounted for 30% of 
Germany's total freight transportation capacity in 2019 [4]. 

Passengers are transported to 78% in cars and 22% in busses, coaches, trains, and aviation. While those modes 
of transportation need to be considered, there is only a minor share of inland passenger transportation by ships 
in Germany, which can here be neglected in the context of an MMES. A more detailed view of passenger cars to 
assess energy carriers in the mobility sector is reasonable due to the large share of total passenger 
transportation. Therefore, to reduce the complexity of the overall MMES, the number of considered inland 
shipping and aviation technologies should be limited primarily and powertrain technologies for passenger cars 
should be considered comprehensively. This is further supported by the required energy of passenger cars 
amounting to 56% of the total energy demand in the mobility sector (cf. Figure 2-2). Further, differentiating 
between regional and long-distance traffic for busses, coaches, and trains is considered not relevant for 
answering the research questions in the present thesis. Hence, regional, and long-distance traffic is considered 
together as aggregated demand served by the same set of technologies.  
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Powertrains  

Different technologies for each modality in the freight and passenger transportation sector exist. Those 
technologies are differentiated by their powertrains and by their consumed fuel. The powertrain converts 
electrical or chemical energy in the engine into kinetic energy and finally into propulsion. Three main 
powertrains are distinguished: ICE, fuel cell electric, and battery electric. 

First, an ICE is a thermal engine that converts chemical energy in the form of a fuel-air mixture into mechanical 
energy by combustion. The most common ICEs are the Otto and Diesel engines, which ignite fuel by external 
spark ignition or internal compression ignition, respectively [82].  

Second, the fuel cell electric powertrain uses an electric machine to convert electrical energy into mechanical 
energy analogously to an electric powertrain. In contrast to the battery electric powertrain, the fuel is stored as 
gas or liquid and uses a fuel cell to convert the chemical energy into electrical energy by a chemical reaction of 
the fuel and an oxidant [82]. In the present thesis, the term fuel cell is referred to the most relevant fuel cell for 
vehicles, the hydrogen-oxygen fuel cell with Proton Exchange Membrane technology [83]. 

 

Figure 2-2 – Energy consumption in the mobility sector in 2019 based on [4]. 

 

Figure 2-1 – Transportation capacity in Passenger-distance (left) and freight-distance (right) in 2019 based 
on [4]. 
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Third, the electric powertrain with a battery as electrochemical energy storage or with a direct electricity supply 
from overhead lines, a so-called catenary system. Catenary systems exist today primarily along railways, but first 
pilot systems are installed along the German highway for heavy-duty trucks and in cities for busses [84].  

Finally, different combinations of these powertrains exist in hybrid vehicles. To increase the overall powertrain 
efficiency, the most suitable combination uses the electric powertrain as one component to improve the overall 
efficiency and reduce operational carbon emissions. A mild hybrid electric vehicle uses electric energy primarily 
during acceleration and starting. A plug-in hybrid electric vehicle can drive fully electric and recharge its battery 
via a plug. Since no full-electric driving is possible in mild hybrid electric vehicles, they do not differ significantly 
from ICEs in terms of fuel consumption and thus do not need to be explicitly considered in an MMES 
optimization. Therefore, electric hybrids considered in the scope here can incorporate ICEs or fuel cell 
powertrains. 

 

Alternative energy carriers 

The discussed powertrains can use different energy carriers. While ICEs can burn a variety of different fuels, the 
application of fuel cells in the mobility sector and electric powertrains can be limited to hydrogen and electricity, 
respectively, in an MMES. Using other energy carriers such as methanol in fuel cells can be neglected in an MMES 
study due to a low relevance in the literature (cf. analysis below in Table 2-1). Considering electricity and 
hydrogen as energy carriers will be of utmost relevance for assessing the decarbonization of the mobility sector 
[5], [74]. Further, an MMES study needs to consider different types of fuels to account for different well-to-
wheel efficiencies and greenhouse gas emissions. Even though the final energy demand of, e.g., inland shipping 
is relatively low, all modes of transportation, including shipping, aviation, train, heavy and light-duty vehicles, 
busses, and passenger cars, need to be considered. This is because different fuels can be expected to be used 
for road, rail, water, and air transportation and additionally to accurately account for the competition for energy 
carriers that are generated from RES. Based on CO2 emissions of the generated electricity, hydrogen from 
electrolysis and its derivatives reduce the overall emissions in the mobility sector. 

Today, the crude oil derivatives gasoline and diesel are the dominant fuels in the mobility sector. Compared to 
hydrogen, the two crude oil derivatives have similar chemical characteristics as well as similar production, 
transport, and distribution procedures. Thus, a differentiation is not necessary for a macro-economic model 
focusing on the interactions of the mobility sector with the energy system. Therefore, diesel, gasoline, and 
electricity-based liquid fuels (e-Fuels), which also show similar combustion characteristics [19], can be 
considered, following literature, as perfect substitutes without significant loss of accuracy [62]. Subsequently, 
mixtures of liquid fuels with, e.g., ethanol (E5, E10), an alcohol produced from bio-organic materials, need no 
explicit representation in a macro-economic MMES optimization. This might be evaluated differently in a 
mobility sector study.  

As a by-product of the refinery process or the oil and gas extraction process, a mixture of Butane and Propane 
is used as Liquified Petroleum Gas. While it is worldwide used, its future application in Germany and the 
European Union is not prioritized [10]. Further, crude oil utilization in the mobility sector must decrease, and 
subsequently, the need for refineries as of today might decline as well. This would result in lower availability of 
Liquified Petroleum Gas as a byproduct. In addition, its characteristics, and requirements for engines, as well as 
the extraction and distribution, do not differ significantly from other fuels. Therefore, a consideration in an 
MMES is considered not necessary.  

Furthermore, in 2019 about 81 thousand passenger vehicles used natural gas in an ICE [4]. This is either 
compressed natural gas (CNG) or liquified natural gas (LNG); both chemically consist primarily of methane. The 
European Commission supports the buildup of CNG and LNG infrastructures for cars and trucks to meet climate 
targets [10]. Since the major difference of the gas in both states of aggregation is the volumetric energy density, 
they are suitable for different applications in the mobility sector as discussed below.  

 

 



 

  15 

Hydrogen 

Hydrogen (H2) is increasingly discussed as an enabler for the energy transition due to the versatile applications 
in the electricity, heat, and mobility sector [7], [27], [75]. Its high gravimetric energy density of a lower heating 
value of 33.33 kWh per kg can be an advantage for applications in the mobility sector. Contrary, its low 
volumetric energy density of 0.09 kg per m3 at atmospheric pressure to 42 kg per m3 at 700bar can pose design 
challenges in terms of onboard space. Today hydrogen is mainly produced by steam methane reforming from 
natural gas [85]. Still, water electrolysis using renewable electricity has the potential to generate carbon-neutral 
hydrogen, often referred to as green hydrogen.  

To create propulsion in a vehicle, hydrogen can be burned in ICEs or used in fuel cell powertrains. Hydrogen’s 
high laminar flame speed and the availability of lean unthrottled operation improve the engine’s thermal 
efficiency compared to a gasoline-operation mode. Nevertheless, pre-ignition and backfiring are critical issues 
[86], which are not further analyzed here but reveal requirements to adjust today’s ICEs for the use of hydrogen 
[87]. Alternatively, fuel cell powertrains are already available at a low scale today, revealing higher efficiencies 
than combustion [82].  

Hydrogens’ low volumetric energy density is a limiting factor for the range of a vehicle or vessel. Hydrogen tanks 
require more space and, therefore, new design concepts. This is especially relevant for freight transport 
applications. Thus, liquid hydrogen with its higher volumetric energy density of 71kg per m3 than gaseous 
compressed hydrogen is discussed for ships and HDV [74]. Anyway, Liquified Hydrogen (LH2) must be cooled 
down and kept at a temperature of -252.9 centigrade. Even though LH2 and Gaseous Hydrogen (GH2) are 
considered across all transportation modes in [88], a reduced consideration of hydrogen is reasonable by 
including only one state of aggregation per transportation mode. The same reduced scope is, for instance, used 
in [62], [74], and it is regarded as reasonable in the MMES context as analyzed below. 

 

e-Fuels 

Chemical synthesis processes can process hydrogen to products that chemically resemble conventional fuels 
and gases. The main reason to consider these hydrogen derivatives is the increased volumetric energy density 
compared to hydrogen, the usability of existing transport, distribution and refueling infrastructure, and the 
compatibility with existing ICE technologies [20], [77], [89].  

A variety of e-Fuels can be distinguished based on the production process. The most relevant processes in the 
an MMES context are the methanation, the Fischer Tropsch (FT) synthesis and the methanol synthesis [26], [62], 
[77], [90]. Due to the assumed hydrogen production from water electrolysis with electricity, these fuels are 
considered e-Fuels even though the exotherm reactions used to convert hydrogen to a hydrocarbon do not 
require additional electricity input. The generated heat can be used for the direct air capture process of CO2 [89]. 
Considering the CO2 supply in detail for synthesis processes is out of scope here, but it is covered in the cost 
estimation of those processes to guarantee an accurate representation of the costs.  

The process of methanation generates methane from hydrogen utilizing the exact reverse reaction as the steam 
methane reforming process, which converts methane to hydrogen. If the used hydrogen is generated from 
electricity, its output is considered e-methane. It is produced from hydrogen and carbon dioxide (CO2) or carbon 
monoxide (CO) according to the chemical Sabatier reaction shown in Equations (2-1)-(2-2). As an exotherm 
reaction it does not require additional electricity or heat input. The efficiency can be as high as 80%, and it 
requires 0.198 kg of CO2 for 1 kWh of methane [89]. The resulting chemically pure methane (CH4) resembles 
natural gas, which consist of 85-98% of methane depending on its origin [91]. Therefore, in the context of an 
MMES, gaseous e-methane can be considered a perfect substitute for natural gas using the same transport and 
refueling infrastructure [89]. 

𝐶𝑂 + 3𝐻2 → 𝐶𝐻4 +𝐻2𝑂 (2-1) 

𝐶𝑂2 + 4𝐻2 → 𝐶𝐻4 + 2𝐻2𝑂 (2-2) 
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Liquid e-fuels such as e-gasoline, e-diesel, e-methanol, Dimethyl ether, Polyoxymethylene ethers, or n-alkalines 
are discussed as alternatives for fossil diesel and gasoline [89], [92]. They can be used in ICEs with only minor 
adjustments, and all but Dimethyl ether and Polyoxymethylene ethers can rely on existing infrastructure for 
transport, distribution, and refueling [86], [89]. With its additional specifications for infrastructure but its 
assumed minor impact on the overall energy system compared to other e-fuels, Dimethyl ether and 
Polyoxymethylene can be neglected in an MMES optimization. A further elaboration of e-methanol and e-diesel 
generation processes follows. 

The methanol synthesis uses hydrogen and carbon dioxide as reactants similar to the methanation process, as 
shown in Equations (2-3)-(2-4). To yield methanol (CH3OH), the reverse water gas shift reaction converts carbon 
dioxide into carbon monoxide, and the hydrogenation further converts it into the alcohol methanol. Methanol 
is liquid at ambient temperature and standard pressure. Even though methanol fuel cells exist, the more relevant 
use case discussed in literature is the combustion of methanol. According to Yugo and Soler, current 
infrastructures can be used with only minor adjustments for methanol transport, distribution, and refueling [20]. 

𝐶𝑂2 + 3𝐻2 → 𝐶𝐻3𝑂𝐻 +𝐻2𝑂 (2-3) 

𝐶𝑂 + 2𝐻2 → 𝐶𝐻3𝑂𝐻 (2-4) 

The FT synthesis converts gas to a liquid. Hydrogen and a carbon monoxide mixture as input of the reverse water 
gas shift reaction result in different hydrocarbons with FT diesel assumed here as the most relevant for the 
mobility sector. Equation (2-5) shows the chemical reactions. Due to its high chemical similarity to diesel, it can 
use today’s infrastructure at no additional costs [5]. 

𝑛 𝐶𝑂 + 2𝑛 𝐻2 → (𝐶𝐻2)𝑛 + 𝑛 𝐻2𝑂 (2-5) 

To summarize, the most relevant fuels to consider in the mobility sector as part of an MMES optimization are 
electricity, hydrogen, methane, FT diesel, and methanol. The category of liquid fuels can represent fossil and 
liquid e-fuels for which no further specification of vehicle technologies is required due to its similar combustion 
characteristics and infrastructure requirements. Still, the consideration of different generation pathways for 
hydrogen or liquid fuels is reasonable to account for different efficiencies. 

 

Analysis of powertrain-fuel combinations for different transport modes 

Different powertrain-fuel combinations are relevant for a decarbonized mobility sector, which are analyzed 
subsequently. Table 2-1 summarizes the combinations which are appropriate based on a literature review. The 
most relevant fuel-powertrain combinations are marked in green. This table is not meant to give a complete 
overview of all considered technologies in each assessed publication but rather to identify relevant and non-
relevant combinations by exemplarily highlighting sources that cover certain combinations. 

The following limitations regarding the technologies are derived as reasonable. Due to its high infrastructural 
investments, the catenary system is only assessed for HDVs and trains. Even though catenary systems for busses 
exist today, the application and its costs depend significantly on local factors, which require detailed regional 
analyses and are therefore not considered [74]. This decision reflects the set of assessed technologies in the 
literature. Due to the low volumetric energy density, compressed gas and GH2 are not combined with HDV, ships, 
and aviation since the additional space for a larger tank compared to liquified gas would require major changes 
regarding the design of the vehicles and vessel [5], [62], [93], [94]. Batteries are not considered for vessels in 
analogy to [74]. Furthermore, powertrains and fuels for aviation have specific requirements regarding 
volumetric and gravimetric energy densities. For inland aviation, with its small overall demand, liquid e-jet fuels 
burned in ICEs are the most relevant technology to consider. Therefore, no other technology is considered for 
aviation. 

Further, it can be derived from the literature that an aggregated modeling of technologies based on powertrain 
and fuel type as, e.g., in [36], is sufficient. There is no need to further disaggregate the vehicle market into 
different vehicle sizes since this is not assumed to impact the market shares of the power trains [95]. 
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 ICEV FCEV BEV PHEV Catenary 

Passenger Cars 

Electricity   [5], [20], [62], [73], 
[74], [88] 

  

GH2  [20], [26], [62], 
[78], [83], [88] 

 [83], [95], 
[96] 

 

LH2 [95] [26], [83]  [95]  

CG [20], [62], [83], 
[84], [88], [95] 

  [62], [88]  

LG [26], [83], [95]     

e-Fuel [20], [26], [62], 
[78], [84], [88] 

[95] methanol  [62], [73], 
[88] 

 

Busses and Coaches 

Electricity   [26], [78]   

GH2  [26], [88]    

LH2  [26]    

CG [74]     

LG      

e-Fuel [73], [78]   [26]  

Light Duty Vehicles (LDV) 

Electricity   [62], [73], [78], [88]   

GH2  [26], [62], [74], 
[78], [88] 

   

LH2      

CG [62], [73], [74]   [62]  

LG      

e-Fuel [62], [78]   [62], [73]  

Heavy Duty Vehicles (HDV) 

Electricity   [26], [62], [73], [78], 
[88] 

 [5], [73] 

GH2  [20]    

LH2 [19], [62], [74], 
[97] 

[19], [74]    

CG [19], [20], [26], 
[73], [93]  

    

LG [5], [10], [19], 
[62], [62], [74] 

  [62]  

e-Fuel [19], [20], [62], 
[78], [84], [93] 

  [62], [73], 
[74] 

[73], [88] 

Trains 

Electricity     [73], [78] 

GH2  [26], [88]    

LH2  [26], [88]    

CG      

LG      

e-Fuel [26], [78], [88]     

Ships (Inland Navigation) 

Electricity      

GH2      

LH2 [74], [93]     

CG [20], [26], [88]     

LG [10], [26], [74], 
[78], [93], [98] 
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e-Fuel [20], [78], [98]     

Aviation 

Electricity      

GH2  [88]    

LH2  [26]    

CG      

LG      

e-Fuel [20], [78]     

Table 2-1 – Identification of relevant powertrain and fuel combinations based on the literature. White – not considered 
here; green – high relevance in literature; ICEV – Internal Combustion Engine Vehicle; FCEV – Fuel Cell Electric 
Vehicle; CG & LG – compressed & liquid gas (methane) 

 

Charging, refueling, and fuel distribution infrastructure 

Refueling and charging infrastructure investments are critical cost factors when assessing the mobility sector's 
decarbonization and need to be included in the analysis [95]. For liquid e-fuels, the existing distribution and 
refueling infrastructure can be used [5], [20], [33], [77], [89]. Only minor adjustments in refueling infrastructure 
are required depending on the characteristics of the fuel at dispensers, pumps, or valves, which are considered 
non-significant compared to the investments in new infrastructure for hydrogen and electric vehicles [5]. Hence, 
differentiation of technologies for liquid fuel refueling infrastructure is not required here.  

Using hydrogen in the mobility sector requires a new refueling, distribution, and transport infrastructure. A 
reassignment of existing natural gas transport and distribution infrastructure is discussed, and about 91 
hydrogen refueling stations exist in Germany in November 2021 already [99], [100]. Even though different 
dispensers with different pressure levels between 350 - 700 bar exist, the convergency to only one technology 
in the future is assumed here. Further, differentiation is assumed with high uncertainties for cost developments 
for both technologies and with only a minor impact on the energy system. The number of required stations in 
Germany per vehicle is supposed across the literature to be about nine to eleven thousand if the penetration 
exceeds 50% for FCEV cars [14], [63], [65]. Apart from the initial infrastructure network, there is a high consensus 
about the required network and costs. Due to the duration of a refueling process below 5 minutes, the refueling 
behavior and required refueling network of hydrogen, methane, and e-fuels are similar to today’s systems [5]. 
Hence, a fundamental assessment of those refueling modes is not required here. 

In contrast, charging infrastructure for BEVs differs significantly from todays’ refueling systems in terms of the 
number of chargers, costs, spatial distribution, and charging behavior. Additionally, there is no consensus about 
the required number of charging points. Projections range from 2 to 70 BEVs per 3.7 kW-22 kW charging 
point [14]. Charging at different locations such as home, work, or highways with varying charging speeds 
increases complexity and interactions between different types of charging stations (cf. Section 2.3). Compared 
to refueling stations, charging stations are considered a sector-coupling element, directly coupling the electricity 
and mobility sector. Therefore, the timing of the charging processes impacts the electricity sector immediately. 
Finally, there are high costs associated with building up a charging infrastructure network [8], [14], [15]. The 
Federation of German Industry (BDI) [8] estimates investments of 75 billion € in (semi-)public charging 
infrastructure between 2021 and 2030, which is 9% of the total required climate protection measure 
investments until 2030. Robinius et al. [14] state that the total infrastructure investments for distribution grid 
components and a charging infrastructure network consisting of Mode 1, 2, 3, and 4 chargers (cf. Section 2.3) 
amounts to 40 – 62 billion € for 20 million BEVs. Up to 73% of this investment is allocated to the charging 
infrastructure. This is valid for passenger BEVs and shows the importance of analyzing and planning charging 
infrastructure accurately. Therefore, Section 2.3 investigates the requirements for a representation of BEVs in 
detail. 

A major requirement for assessing a carbon-neutral mobility sector is a technology-neutral assessment within 
an integrated energy system. Therefore, the following subsection analyses the MMES requirements beyond the 
mobility sector. 
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2.2 Multi-modal energy supply and transport infrastructure  

 

To assess a decarbonized MMES, different aspects need to be considered and result in specific requirements for 
an optimization model. Those are: 

1. Consideration of supply and transport infrastructure as well as demands in the electricity, heat, and 
mobility sector to consider competition for scarce RES between different applications. 

2. Technology-neutral competition between carbon-neutral energy carriers in the mobility sector, 
including energy transport infrastructures. 

3. Modeling of sector-coupling elements between the mobility and electricity sector, including the 
provision of flexibility.  

4. Limited computational effort. 

 

The first aspect requires a complete picture of an MMES enabling the optimized utilization of RES and imported 
energy carriers across different applications in all sectors. Figure 2-3 shows the main technologies of a 
decarbonized MMES, including the energy transport, refueling, and charging infrastructure. The required 
mobility sector technologies and energy carriers are identified in Section 2.1.  

 

Further, all electricity demands must be considered, such as the electricity demand for information and 
communication technologies, lightning, cooling, motors, or electrical heating. The heat sector demands consist 
of process heating at high temperatures for the industry, space heating primarily in buildings, and water heating. 
Integrating technologies that cover those demands by utilization of electricity, methane, hydrogen, or e-fuels 
enables modeling of the competition of energy carriers in the MMES. Therefore, the optimization of investments 
and the optimized dispatch of different technologies per sector must be integrated. That means that the 
optimizer needs the degree of freedom to choose, for instance, in the case of an applied CO2 restriction and 
scarce RES due to land availabilities and weather patterns, whether the electrification of the heat or the mobility 
sector should be prioritized.  

In addition, hydrogen, e-fuels, or e-methane can be imported to satisfy the end energy usages in the heat, 
mobility, or electricity sector. A comprehensive model must optimize the buildup and operation of electrolyzers 
and synthesis processes in Germany in competition with import costs for those energy carriers. To enable the 
competition for energy carriers between the mobility and the heat sector, it can be followed that the 
technologies for heat generation need to comprise electrical heat pumps, gas, and hydrogen boilers and 
furnaces, gas power plants for combined heat, as well as power generation fueled by methane or hydrogen.  
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Furthermore, aspect two requires incorporating investments in electricity, hydrogen, and methane transport 
infrastructure into a model since literature reveals that this can be a substantial cost factor in the 
decarbonization of the mobility sector [95]. The transport of liquid fuels can be assumed to use existing 
infrastructure to significantly lower costs and is out of scope here. The relevance of the methane infrastructure 
also in a decarbonized energy system is underlined in the meta-study from VNG [101]. Incorporating energy 
transport constraints of these commodities enables optimized decisions. For instance, if an electrolyzer should 
be installed in the hydrogen demand region supplied by electricity from the electricity transmission grid or it can 
be installed in another area with higher renewable electricity availability and subsequent hydrogen transport 
via pipeline or trailer to the demand region. For a fair competition between the energy transport options, models 
must have the same degree of detail regarding the modeled physical principles of the energy transport.  

Modeling multi-modal energy transport infrastructure requires a spatial resolution high enough not to 
underestimate required investments and to cover major bottlenecks in the electricity grid and pipeline 
networks. Since the computational effort (cf. aspect four) of an MMES can be significant already for just one 
single region, the spatial resolution must be chosen carefully [25]. The state of the art in so-called multi-region 
models is to reduce the representation of energy transport constraints to aggregated constraints between 
regions [102], [103]. A representation of physical constraints such as a pressure drop is commonly not 
considered for gas flows in MMES models, as the meta-study from Groissböck et al. showed based on 33 open 
source energy system models [104]. Further, a linearized approach regarding electricity and gas flows, including 
hydrogen and energy transport asset costs, is not only commonly used [24], [57], [59], [105] but also 
recommended for MMES studies, which do not focus on strategic asset planning, based on an analysis in [105], 
[106]. This is due to a minor impact on the overall system and comparatively high costs of the computational 
effort. Even a highly detailed gas grid model from Hauser et al. considers pressure and flow rate constant within 
gas pipelines [107]. To aggregate the electricity transport capacities between regions, a power flow calculation 
is commonly used to derive Net Transfer Capacities (NTCs) for the electricity transport, representing the 
maximum physical electricity flow between both regions [108]. The actual transport distance can vary from 
connection to connection between two regions. A simplified way is to model distance to distance matrices from 
the center of each region, which is considered state of the art in energy system modeling [22], [57], [59], [109]. 

 

Figure 2-3 – The mobility sector as part of a multi-modal energy system.  
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A higher spatial resolution can counteract the herewith introduced inaccuracy. It is concluded that modeling 
inter-regional transport capacities is sufficient for long-term investment planning and operational utilization in 
an MMES. The physical representation of energy flows can be substituted in the optimization by an approach of 
optimally controlled energy flows between regions to answer the research questions in the present thesis.  

Following the temporal and spatial requirements for a model are derived. In a fully decarbonized MMES, wind 
and solar RES must be utilized across all sectors. Their weather-dependent volatility is crucial to be considered 
in a model in a temporal as well as in a spatial dimension. Modeling one-hour time steps can achieve a temporally 
sufficient resolution for the operation of RES and other generators as it is state of the art in energy system 
modeling and sufficient to depict short-term variations [110], [111]. This temporal resolution is also sufficient 
for modeling flexible loads such as a fleet of BEVs [112]. Further, locational differences of solar radiation and 
wind need to be taken into account by disaggregating the model into several sub-regions [25]. Sub-regions are 
also important for modeling energy transport routes as described above. It can be differentiated between single 
point, multi-region, and grid node resolutions. The single point resolution for an entire country like Germany 
cannot guarantee a sufficient representation of weather patterns leading to a significant inaccuracy in residual 
energy demands [29]. Furthermore, energy transport restrictions cannot be considered, but only cost terms 
based on country-wide energy generation and demand patterns can be estimated. This can result in solid 
deviations of installed capacities and generated energies per technology as analyzed by Robinius et al. [29]. A 
representation of each grid node as a single region with up to 500 regions is used in studies focusing on the 
energy transport of a single commodity. Nevertheless, this detailed representation is non-trivial for studies 
considering several energy transportation systems. Furthermore, a lack of accurate data in a high spatial 
resolution can lead to errors in energy system studies with grid load resolution such as an overestimated energy 
curtailment and renewable energy surpluses [29], [110]. A high spatial resolution increases computational 
efforts, which can be exponentially increasing with the number of regions, which is a limiting factor in large 
MMES models [25], [60], [113]. In contrast, a multi-region approach can overcome the challenges and drawbacks 
of single point and grid node models while still capturing renewable energy feed-in and energy transport 
restrictions sufficiently. A study from Frysztacki et al. [110] showed on a European level that 181 regions could 
represent the spatial differences of solar and wind patterns in a model, and 90 regions could be sufficient for 
covering major bottlenecks in the considered electricity grid. Applying the higher number to the size of Germany 
holding about 6.7% of the European land area (without Russia, Turkey, Ukraine, Moldavia, Belarus, and 
Greenland), since they were not modeled by Frysztacki et al.) reveals that a resolution of at least 13 regions in 
Germany should be modeled. This number is derived presuming that the number of regions can be linearly 
scaled to Germany and by assuming that the same variations in weather patterns exist across the entire 
continent. Only the electricity transportation system was considered in this publication. Due to the simplified 
estimation of the required 13 regions and since only the electricity transport system is considered by Frysztacki 
et al. a higher resolution is reasonable in the MMES here. With the NUTS2 representation of administrative 
areas, 38 inner German regions exist, with relatively high availability of spatially resolved data. Energy system 
or weather-based clustering approaches for regions within a country are not considered here [114], [115]. This 
decision is made since the energy system-based clustering does not incorporate gaseous infrastructures, and 
the weather-based clustering does not include energy system parameters, which are assumed to be required to 
gain a substantial benefit over the chosen administrative areas. Further development of these approaches is out 
of scope here. 

MMES optimizations are commonly formulated as linear programs [25]. Following state of the art, the MMES 
here is also based on a linear programming approach without integer variables. The model complexity and thus 
the computational effort of linear programs depends on the number of decision variables and constraints. Since 
increasing temporal and spatial resolution increases the number of variables and constraints significantly, 
methods for complexity reduction are commonly used [25], [116]. The approach of time-series aggregation is 
used to reduce the number of time steps within the year. Here, a selection of representative weeks is primarily 
conducted under consideration of the maximum and minimum residual electric load, consideration of weeks 
within different months of the year as well the criteria that the potential average full load hours of PV and wind 
turbines over the time step selection should meet the average full load hours of the entire year. Figure 2-4 
benchmarks a time series reduction to four, six, and eight representative weeks against an optimization with 
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twelve representative weeks. A carbon-neutral German energy system is therefore optimized considering 
different numbers of representative weeks. It shows the deviation of key parameters of the model such as 
CAPEX, OPEX, and electricity prices. Thin weeks represent here an additional time step reduction to three hours 
instead of an hourly interval, which is here not influencing the observed model outputs. It shows that selecting 
six instead of four weeks can reduce the deviation compared to the twelve thin weeks for all key variables to 
below 3%. An extended investigation showed that a similar behavior, with a deviation less than 8% in the six 
thin weeks scenario. This is analyzed for all generation, demand, transport, and storage technologies in terms 
of the optimized capacities and operation. Therefore, all optimizations in the present thesis use the 
representative six thin weeks. 

 

 

As one great advantage, all considered liquid fuels, but liquid hydrogen and liquid gas can be stored easily at 
ambient temperature and normal pressure (Yugo & Soler). This provides flexibility to the MMES. Therefore, the 
storage capabilities of other energy carriers must be considered in a model as well. Further, due to the hourly 
and seasonally varying demand for electricity and heat as well as the availability of renewable energies, storage 
technologies need to be considered. In the context of the analysis here, the most relevant technologies are 
hydrogen storages and Li-Ion Batteries – stationary and in electric vehicles. The mobile batteries require a unique 
representation to make up for the fact that the batteries are not always connected to the grid, and the electricity 
is consumed for driving purposes. Further, this flexibility from charging processes is restricted in time due to 
BEVs’ parking duration, and it therefore needs a different representation compared to a stationary battery. This 
is analyzed in Section 2.3. 

 

2.3 Requirements to model electric vehicles and charging infrastructure 

 

BEVs require a more detailed representation as indicated in Sections 2.1-2.2 due to the fundamentally new 
charging behavior compared to todays’ refueling behavior, the new requirements for charging infrastructure, 
the insufficient representation in literature, and due to the potential of BEVs to provide flexibility to the 
electricity sector. The flexibility potential of BEVs differs in its modeling requirements fundamentally from 
stationary storages. This is mainly since the primary use case of the BEV’s battery is driving and due to the 
restricted temporal availability of shifting charging processes in time. The latter depends on the power rating of 
charging stations, the remaining energy in the BEV’s battery at arrival, and the driver’s preferences. The flexible 

 

Figure 2-4 – Impact of the number of modeled representative weeks and the time interval compared to a 
twelve-week optimization in a carbon-neutral German energy system. ‘Thin weeks’ refer to a 
three-hour time step, and ‘weeks’ refer to an hourly time step.  
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share of charging processes varies significantly in time [117], and it is often not assessed fundamentally but only 
estimated as a constant share of the total battery capacity of a vehicle’s fleet, such as in [27], [36]. It could be 
shown in a fundamental analysis in [118] that the size of the installed batteries in electric vehicles does not 
correlate with the available flexibility of charging processes. This is primarily because the essential drivers of the 
available flexibility of a fleet of BEVs are short parking durations, short recharging times due to relatively high 
SOCs in general, the type of charging infrastructure that can be used during a day, and the energy consumption 
of BEVs. Therefore, it is of high relevance here to fundamentally derive the temporally resolved flexibility. 
Additional flexibility can be leveraged from the vehicle’s batteries if vehicles are enabled to feed electricity back 
into the electricity grid. This is commonly known as vehicle-to-grid concept. However, the challenge of 
incentivizing vehicle owners to participate must be increasingly considered. Since the flexibility is already large 
even without vehicle-to-grid, and here incentives are only covered from a systemic point of view, the vehicle-
to-grid mode is not covered in the present thesis. 

Additionally, the charging infrastructure network design must be assessed fundamentally to accurately derive 
the flexibility [118] and determine the charging infrastructure's costs. This is not covered in the literature yet. 
Based on the ‘Directive 2014/94/EU on the deployment of alternative fuels infrastructure (AFID)’, charging 
stations are categorized by their power rating into normal charging (≤22 kW) and fast charging (>22 kW) [10]. 
Additionally, in DIN EN IEC 61851-1, four different charging modes are differentiated [119]: 

• Mode 1: alternating current charging at a domestic or industrial 1-phase or 3-phase socket without 
communication between vehicle and infrastructure 

• Mode 2: alternating current charging at a domestic or industrial 1-phase or 3-phase socket with ‘In Cable 
Control and Protection Device’ in the vehicle for control and protection 

• Mode 3: alternating current (AC) 1-phase or 3-phase charging via installed charging device (e.g., wallbox) 
with ‘Type 2’ plug. This mode is available for a power rating of 3.7 kW-44 kW.  

• Mode 4: direct current (DC) charging at installed charging device with ‘Combo 2’ plug. This mode is 
commonly used with power ratings greater 50 kW, even though smaller power ratings are available. 

Finally, the following aspects must be covered to enhance the representation of electric vehicles and their 
charging infrastructure as a sector-coupling element in energy system analyses: 

• Heterogenous driving and charging behavior: end consumers are highly heterogeneous in their driving 
and charging behavior. This heterogeneity must be covered, which requires representing individual 
vehicles in a model. 

• Dynamic electricity demand: the electricity demand increases with each driven trip of a vehicle. But this 
demand can only be satisfied at locations where a charging station is installed. Therefore, this demand 
must be considered depending on the BEVs’ location and the charging availabilities along its daily or 
even weekly route. The availability of chargers at different locations also impacts the timing of the 
electricity demand. This raises the requirement for a spatial representation and a representation of 
charging stations at different locations in a model.  

• High spatial resolution: the spatial resolution must consider different locations such as workplaces, 
homes, or public places. The required spatial resolution deviates, depending on the assessed region. 

• Charging stations: the availability of charging stations across different locations must be covered to 
model the competition for chargers as this impacts the timing of the electricity demand. Different 
charger types, including alternating current technology with 3.7 kW-22 kW (Mode 3) and direct current 
technology with power rating greater than 50 kW (Mode 4), have different roles in an overall charging 
infrastructure network. The demand for those types of chargers must be considered systematically. The 
demand cannot be assessed independently for each mode or location since the deployment of one 
charger impacts the demand for chargers at other locations. For the assessment of the electrical 
charging load, its flexibility, and the total required number of charging stations, a differentiation 
between those chargers is here sufficient in terms of charging power.  

• Temporally resolved assessment of shiftable charging processes: the flexibility of a fleet varies over 
time and depends on the charging infrastructure network design, as well as the BEVs charging and 
driving behavior. 
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• Country-level: derived temporally resolved electricity demands, including their flexibility and the need 
for charging infrastructure, must be able to be interpreted in the linear MMES optimization model on 
country level. Modeling on individual BEV and charger level would require large computational efforts 
if modeled for an entire country. Therefore, the model should focus on a regional level such as 
municipalities. This requires a model setup, which can be applied to different types of regions. Modeling 
than, for instance, rural and urban areas allow to scale up the results to country level or to NUTS2 level, 
which is used in the MMES optimization. 

Those aspects cannot be covered in an MMES optimization on country level directly. Therefore, it is required to 
introduce another model capable of assessing the spatial and temporal electrical charging demand, including its 
flexibility and capable of deriving suitable charging infrastructure network designs. While the model must 
represent individual vehicles and assets, it must still be able to be generalized to a country-level representation. 
Finally, the derived outputs must be integrated into the energy system optimization tool. 
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3 Applied multi-modal energy system model 

 

The present thesis uses a linear optimization approach to assess an MMES. An existing modeling framework is 
parametrized to represent the commodities and technologies of a MMES as defined in Section 2. The applied 
model framework can be considered as state of the art in energy system optimization models and satisfies the 
modeling requirements in Section 2.2. Those are the temporal and spatial resolution, the aggregated 
consideration of technologies within each modeled region, modeling of different commodities and sector-
coupling technologies, and the possibility to optimize supply, transport, and demand infrastructure 
simultaneously with different technologies competing about RES.  

Subsequently, the model framework is described in Section 3.1, and a mathematical formulation of the model 
follows in section 3.2. Implemented extensions to the model to meet the specific requirements of eMobility 
charging are described in Section 5.2.1. The derived techno-economic parametrization of the model follows in 
Section 5.3. 

 

3.1 Model framework 

 

The multi-modal model of the German energy system is here set up in the ‘Energy System Planner’ (ESDP). This 
modeling framework is depicted in Figure 3-1 and can be applied to build and optimize Linear Programs (LP) and 
Mixed Integer Linear Programs representing, for instance, large, complex MMESs. The model is based on 
developments from Schaber and Steinke [120], was first presented in 2015 by Raths et al. [121], and extended 
and applied in several further publications [34], [35], [117], [122]–[125]. 

 

ESDP is implemented as a cost-optimizing macroeconomic equilibrium model, optimizing the dispatch of 
modeled technologies, for instance, on an hourly basis. Simultaneously, it optimizes the capacity investments 
for a specified target year or multiple years. The model can be parametrized for various possible technologies 
and commodities across different sectors such as the heat, electricity, or mobility sector. Further, single point 
and multiple-region models, including energy flows between regions, can be differentiated.  

 

Figure 3-1 – Input-Output model framework of the ESDP.  
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Parameters such as lifetime, investment costs, operational costs, capacity restrictions, and energy restrictions 
can be defined for each technology per year and region. Further, general parameters for an optimization 
scenario apply, for instance, the Weighted Average Capital Costs (WACC) and the yearly CO2 emission limits. The 
optimization output includes for all technologies their capacities and hourly dispatch, energy flows across 
regions, system costs, and marginal commodity prices.  

The modeling approach is based on so-called conversion processes as illustrated in Figure 3-3. Each conversion 
process cp takes one or multiple input commodities and converts them in one or multiple conversion 
subprocesses cs into output commodities using a subprocess-specific, yearly efficiency 𝜂𝑐𝑠,𝑦 (cf. Eq. 3.8). An 

entire country energy system model consists of multiple interconnected conversion processes representing 
different technologies and optional transport processes defining the inter-regional energy transport 
technologies such as the electricity transmission grid or gas pipelines. If multiple regions are considered, each 
conversion process and commodity is defined for each region, and the optimization balances supply, demand, 
imports, and exports for each commodity on a regional level. Energy transport processes allow and restrict the 

transfer of commodities from one region to another, as depicted in Figure 3-2. 

 

This modeling approach can be considered state of the art for large-scale energy system optimization compared 
to other energy system models as reviewed in [24], [104], [126]. Since it can be applied to meet the requirements 
formulated in Section 2, it is considered reasonable to address the research questions RQ 1-4 derived in Section 
1.3.  

 

Figure 3-3 – Representation of a conversion process in ESDP. Several input and output commodities can be 
applied.  

 

Figure 3-2 – Illustration of center-to-center commodity transport between three exemplary regions in 
ESDP.  
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The ESDP framework uses GAMS 30.3.0 Minor Release from March 6, 2020, and the CPLEX optimization package 
12.12.0. The parametrization of different technologies and scenarios is managed using Excel and a PostgreSQL 
database controlled via a MATLAB interface.  

 

3.2 Mathematical description of the model 

 

Subsequently, the main applied equations of the linear problem are described. This contains the objective 
function, the power balance equation for conversion processes and commodities, power restrictions for 
conversion processes, global emission constraints, and the energy transport equations. Not explicitly stated here 
are, e.g., time consistency of capacities over multiple years, and special restrictions setting variables according 
to time-dependent input parameters.  

In order to minimize the social-welfare the objective of the model is to minimize the capital and operational 
expenditures 𝐶capex,conv, 𝐶opex,conv and 𝐶capex,trsp, 𝐶opex,trsp of all energy conversion processes 𝑐𝑝 ∈ 𝐶𝑃, 
which consist of one or more conversion subprocesses 𝑐𝑠 ∈ 𝐶𝑆, and all energy transport processes of all 
commodities 𝑐𝑜 ∈ 𝐶𝑂trsp over all considered years 𝑦 ∈ 𝑌 and regions 𝑥 ∈ 𝑋 (cf. Eq 3.1-3.5). CP, CS, CO, Y, and 
X are the corresponding sets. 

𝐦𝐢𝐧(𝑪𝐜𝐚𝐩𝐞𝐱,𝐜𝐨𝐧𝐯 + 𝑪𝐜𝐚𝐩𝐞𝐱,𝐭𝐫𝐬𝐩 + 𝑪𝐨𝐩𝐞𝐱,𝐜𝐨𝐧𝐯 + 𝑪𝐨𝐩𝐞𝐱,𝐭𝐫𝐬𝐩) (3-1) 

with  

𝐶capex,conv = ∑ ∑ (𝐹𝑦
d ∙ ∑ (𝑁𝑐𝑠,𝑦 ∙ ∑ (𝑘𝑐𝑠,𝑥,𝑦

new ∙ 𝐶𝑐𝑠,𝑦
inv + 𝑘𝑐𝑠,𝑥,𝑦

sto,new ∙ 𝐶𝑐𝑠,𝑦
sto,inv)𝑥 )𝑐𝑠∈𝑐𝑝 )𝑦𝑐𝑝   (3-2) 

𝐶capex,trsp = ∑ ∑ (𝐹𝑦
d ∙ 𝑁𝑐𝑜,𝑦 ∙ 𝑔𝑐𝑜,𝑦

new,tot ∙ 𝐶𝑐𝑜,𝑦
trsp,inv

)𝑦𝑐𝑜   (3-3) 

𝐶opex,conv = ∑ ∑ (𝐹𝑦
d ∙ ∑ (𝑒𝑐𝑠,𝑦

out,tot ∙ 𝐶𝑐𝑠,𝑦
om,eout + 𝑘𝑐𝑠,𝑦

tot ∙ 𝐶𝑐𝑠,𝑦
om,cap

+ 𝑘𝑐𝑠,𝑦
sto,tot ∙ 𝐶𝑐𝑠,𝑦

om,sto)𝑐𝑠∈𝑐𝑝 )𝑦𝑐𝑝   (3-4) 

𝐶opex,trsp = ∑ ∑ (𝐹𝑦
d ∙ 𝑔𝑐𝑜,𝑦

tot ∙ 𝐶𝑐𝑜,𝑦
om,trsp

)𝑦𝑐𝑜   (3-5) 

The annuity factors of a conversion subprocess and transport processes are 𝑁𝑐𝑠,𝑦 and 𝑁𝑐𝑜,𝑦 respectively, which 

are calculated based on the weighted average cost of capital and the lifetime. The applied macro-economic 

discount factor is 𝐹𝑦
d. The newly build capacities of a conversion subprocess and storage subprocess are 𝑘𝑐𝑠,𝑥,𝑦

new  

and 𝑘𝑐𝑠,𝑥,𝑦
sto,new, the total capacities of subprocesses are 𝑘𝑐𝑠,𝑦

tot  and 𝑘𝑐𝑠,𝑦
sto,tot, and 𝑔𝑐𝑜,𝑦 is the transport process 

capacity. 𝐶𝑐𝑠,𝑦
inv  and 𝐶𝑐𝑠,𝑦

sto,inv are the specific investment cost for conversion and storage subprocesses, 𝐶𝑐𝑜,𝑦
trsp,inv

 

and 𝐶𝑐𝑜,𝑦
om,trsp

 are the specific investment and operational cost parameters for transport processes, 𝐶𝑐𝑠,𝑦
om,eout and 

𝐶𝑐𝑠,𝑦
om,cap

 are the variable and fixed operational cost parameters of conversion subprocesses, 𝐶𝑐𝑠,𝑦
om,sto is the 

operational cost parameter for storages.  

This is subject to the balance equation matching supply and demand within each time step 𝑡 ∈ 𝑇 and each region 
𝑥 ∈ 𝑋 for each conversion process 𝑐𝑝 ∈ 𝐶𝑃  (Equation (3-6)) and for each commodity (Equation (3-7)). The 
efficiency 𝜂𝑐𝑠,𝑦 connects the input and output of a conversion process. The energy imported at each time step 

into region 𝑥0 is 𝑝𝑐𝑜,𝑡,𝑥2,𝑥0,𝑦
out,trp

 and the exported energy is 𝑝𝑐𝑜,𝑡,𝑥0,𝑥1,𝑦
in,trp

 (cf. Equation (3-12)). 

∑ 𝑝𝑐𝑠,𝑦,𝑡,𝑥
in

𝑐𝑠∈𝑐𝑝

= ∑ (
𝑝𝑐𝑠,𝑦,𝑡,𝑥
out

𝜂𝑐𝑠,𝑦
)

𝑐𝑠∈𝑐𝑝

, ∀𝑐𝑝, 𝑦, 𝑡, 𝑥 
(3-6) 

∑𝑝𝑐𝑠,𝑐𝑜,𝑦,𝑡,𝑥0
in

𝑐𝑠

+ ∑ 𝑝𝑐𝑜,𝑡,𝑥0,𝑥1,𝑦
in,trp

𝑥1∈𝑋

=∑𝑝𝑐𝑠,𝑐𝑜,𝑦,𝑡,𝑥0
out

𝑐𝑠

+ ∑ 𝑝𝑐𝑜,𝑡,𝑥2,𝑥0,𝑦
out,trp

𝑥2∈𝑋

, ∀𝑐𝑜, 𝑦, 𝑡, 𝑥0 ∈ 𝑋 (3-7) 
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As optional constraint, global CO2 emissions 𝑜𝑦
tot,Y are limited according to Equations (3-8)-(3-9) based on the 

product of the total annual energy output 𝑒𝑐𝑠,𝑦
out,tot from a conversion process and the emission factor of a 

commodity 𝐹𝑐𝑠,𝑦
CO2, which is defined for the commodity generating conversion process cs. 

𝑜𝑦
tot,Y =∑(𝑒𝑐𝑠,𝑦

out,tot ∙ 𝐹𝑐𝑠,𝑦
CO2)

𝑐𝑠

 (3-8) 

𝑜𝑦
tot,Y ≤ 𝑂𝑦

CO2,Y (3-9) 

In a multi-region model the total energy output of a conversion process is defined as the sum of its power output 
𝑝𝑐𝑠,𝑦,𝑥,𝑡
out  over all regions and time steps (cf. Equation (3-10)). 

𝑒𝑐𝑠,𝑦
out,tot =∑∑(𝑝𝑐𝑠,𝑦,𝑥,𝑡

out ∙ ∆𝑡 ∙ 𝑤)

𝑥𝑡

, ∀𝑦 ∈ 𝑌, 𝑐𝑠 ∈ 𝐶𝑆 (3-10) 

To reduce the computational effort, different time step lengths ∆𝑡, for instance, 1 hour or 3 hours, can be 
applied. A weighting factor  

𝑤 =
𝑁∆t

8760
 

(3-11) 

for the power output is therefore introduced with 𝑁∆t as the total number of considered time steps within a 
year. 

Further, in a multi-region model as considered here, commodity flows between regions and their corresponding 
transport capacities can be described as follows. The set of equations (3-12)-(3-16) is valid for all 
commodities co, which are modeled as transport commodities and between two regions 𝑥0 and 𝑥1, for which a 

link between the regions is considered with a distance 𝐿𝑐𝑜,𝑥0,𝑥1
link , which is greater than zero. The energy flow 

between regions 𝑥0,𝑥1 ∈ 𝑋 is then 

𝑝𝑐𝑜,𝑡,𝑥0,𝑥1,𝑦
out,trp

= 𝑝𝑐𝑜,𝑡,𝑥0,𝑥1,𝑦
in,trp

∙ 𝜂𝑐𝑜,𝑦
trp

∙ 𝐿𝑐𝑜,𝑥0,𝑥1
link , ∀𝑡 ∈ 𝑇, 𝑦 ∈ 𝑌 (3-12) 

with the distance-dependent transport efficiency 𝜂𝑐𝑜,𝑦
trp

 and its incoming power being limited by the installed 

transport capacity 𝑔𝑐𝑜,𝑥0,𝑥1,𝑦 according to Equation (3-13). 

𝑝𝑐𝑜,𝑡,𝑥,𝑥1,𝑦
in,trp

≤ 𝑔𝑐𝑜,𝑥0,𝑥1,𝑦, ∀𝑡 ∈ 𝑇, 𝑦 ∈ 𝑌 (3-13) 

This installed transport capacity is the sum of the capacity existing before the optimization period 𝑔𝑐𝑜,𝑥0,𝑥1,𝑦
res  and 

the additional transport capacity 𝑔𝑐𝑜,𝑥0,𝑥1,𝑦1
new  installed by the optimizer in each considered year 𝑦1. 

𝑔𝑐𝑜,𝑥0,𝑥1,𝑦 = 𝑔𝑐𝑜,𝑥0,𝑥1,𝑦
res +∑𝑔𝑐𝑜,𝑥0,𝑥1,𝑦1

new  

𝑦1

 (3-14) 

The total and new transport capacity of a commodity, as shown in equations (3-15)-(3-16), is used for the cost 
calculation and defined by adding up all capacities in all modeled regions.  

𝑔𝑐𝑜,𝑦
tot =

1

2
∑∑(𝑔𝑐𝑜,𝑥0,𝑥1,𝑦 ∙ 𝐿𝑐𝑜,𝑥0,𝑥1

link )

𝑥1𝑥0

, ∀𝑦 ∈ 𝑌 
(3-15) 

𝑔𝑐𝑜,𝑦
new,tot =

1

2
∑∑(𝑔𝑐𝑜,𝑥0,𝑥1,𝑦

new ∙ 𝐿𝑐𝑜,𝑥0,𝑥1
link )

𝑥1𝑥0

, ∀𝑦 ∈ 𝑌 
(3-16) 

Finally, the energy storage balance equation defines the stored energy 𝐸𝑐𝑠,𝑥,𝑦,𝑡
st  within a conversion step and its 

time consistency including a self-discharge rate 𝜂𝑐𝑠,𝑦
selfdischar as well as storage efficiency for incoming energy 𝜂𝑐𝑠,𝑦

st  

and for outflowing energy 𝜂𝑐𝑠,𝑦. Equation (3-17) is only valid for conversion steps with storage capability as 

indicated during the parametrization of the model. If only selected time slices within a year, e.g., six 
representative weeks, are modeled, it is assumed that the energy storage level changes in unmodeled time steps 
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exactly according to the change in the last modeled time slice. A time slice is here represented, e.g., by a 
representative week. 

𝑒𝑐𝑠,𝑥,𝑦,𝑡
st = 𝑒𝑐𝑠,𝑥,𝑦,𝑡−1

st ∙ (1 − 𝜂𝑐𝑠,𝑦
selfdischar) ∙ ∆𝑡 + 𝜂𝑐𝑠,𝑦

st ∙ 𝑝𝑐𝑠,𝑥,𝑦,𝑡
in ∙ ∆𝑡 − 𝑝𝑐𝑠,𝑥,𝑦,𝑡

out ∙
∆𝑡

𝜂𝑐𝑠,𝑦
  (3-17) 
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4 Developed e-Mobility charging infrastructure model 

 

As derived in Section 2, it is required to explicitly model eMobility charging behavior and infrastructure to answer 
the research questions. Therefore, a new approach is developed in the present thesis focusing on charging 
demand and charging infrastructure. The implemented framework is described in Section 4.2, and the model 
behavior, including a validation based on empirical data, is shown in Section 4.3. 

 

4.1 Relevant simulation techniques 

 

Simulation models can be used to assess future charging infrastructure requirements and the integration of BEVs 
into the energy system using electrical load profiles and the available flexibility of BEVs. Several simulation and 
modeling techniques exist in the literature, which were already applied to the case of BEV charging. The 
suitability of three different methods is subsequently described based on the requirements derived in Section 2. 

Equation-based models apply a set of differential equations expressing relations between measurable 
characteristics of interest [127]. This allows modeling a temporally dynamic charging demand. As top-down 
models, they are not found suitable due to their high complexity when modeling spatially resolved systems and 
their shortcomings in modeling heterogeneity.  

In contrast, using the stochastic process of Markov-chains allows to model BEV charging behavior as a bottom-
up approach, including a spatial resolution. Individually parametrized vehicles are modeled by their likelihood 
of being in a current state, such as ‘driving’ or ‘parking’, and their probability of transition into another state 
[128]–[130]. The probabilities are usually derived from travel statistics. Nevertheless, these models are limited 
when it comes to modeling charging infrastructure networks with individual chargers interacting with BEVs 
[131].  

The model class of Agent-based Simulations is the most suitable for the derived requirements, beneficial for 
highly distributed and heterogeneous systems with discrete decision processes [131]. The basic idea of an agent-
based model is to represent individuals, entities and their socio-economic interactions with their environment 
or technical subsystems [132]. So-called agents, consisting of a set of attributes and rules, interact within each 
time step with other agents or with the environment. These interactions following the rules of each agent 
emerge then into a complex system behavior. A general set-up of an agent-based model is depicted in Figure 
4-1. Agents, which can, e.g., represent a vehicle driver or a charging station, and their environment, consisting 
of time and space, are parametrized based on empirical data and from literature derived theory about their 
behavior and interactions. 

Furthermore, the suitability regarding the requirements formulated in Section 2 is also underlined by the 
application of this model class in literature [133], [134]. Additionally, the published literature reveals the gap of 
a detailed spatial resolution and an accurate representation of charging station networks. This gap is filled with 
the framework implemented in the present thesis. A first version is presented in [117], and an extended version 
is published in [118]. Anyway, since agent-based models gain complexity quickly with an increasing number of 
agents and different behavioral rules, the applied rules and attributes must be designed to be as simple as 
possible. Therefore, the parametrization here follows, for instance, the currently predominant ‘charge at arrival’ 
strategy for all agents and the system behavior is validated based on empirical data. The implemented model 
and its behavior are described in the following. 
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4.2 Agent-based eMobility model framework 

 

The here developed Agent-based eMobility Model (ABM eMob) is implemented in NetLogo 6.1.0, a 
programmable modeling environment [135]. Figure 4-2 shows the implemented user interface with a section 
for input parameters on the left-hand side, on the right-hand side a representation of the considered region, 
including geographical information system data such as streets, administrative areas, and allocated charging 
stations, as well as several figures representing the output behavior of the system. This figure only illustrates 
the implemented graphical user interface in NetLogo; all relevant inputs are described in Figure 4-3. The ABM 
eMob simulates BEV agents' driving and charging behavior within a region across different locations such as 
home, work, or public over a defined period. The individual behavior of each BEV over time emerges into a 
measurable system behavior, which is here primarily the electrical charging load over time, the available 
flexibility of charging processes measured in shiftable energy per hour, and the Service Quality of the deployed 
Charging Infrastructure network (SQCI) within the simulated region. The SQCI indicates if the number of charging 
stations applied in the simulation is sufficient to supply the charging demand of the simulated BEVs. 

 

Figure 4-1 – General principle of Agent-based Simulations based on [132]. 
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Figure 4-3 shows the input parameters of the model, which can be divided into general, regional, technology, 
and behavioral parameters. They allow an individual parametrization of the simulation for different scenarios 
and regions. While the model is designed for simulating a ‘regional charging system’, inter-regional trips are 
considered to represent the charging demand of commuters traveling into or out of a region. The model consists 
of three types of agents: BEVs, charging stations, and Locations.  

BEV agents represent the vehicle technology in terms of battery size, energy consumption, onboard charger, 
and its driver's charging and driving behavior (cf. Section 4.2.1).  

The charging demand of BEVs is dynamic in time and space. This means that the demand can be fulfilled at 
different locations at different times because vehicles drive from one location to another. Therefore, the 
location of a placed charging station can impact the location of the electricity demand as well as the timing of 
the charging processes within a region. Locational agents represent this spatial resolution in the model. They 
can be differentiated by multiple types of locations and represent in the following the locations home, work, 
and public. Several instances of each type of location can be modeled. The number of locational instances of the 
same type, in the following called ‘location duplicates’, combined with the number of modeled BEVs defines the 
spatial resolution of the model (cf. Section 4.2.3). Further, this ratio also reflects the modeled BEV penetration 
level within a region. The more BEVs per location are simulated, the higher the BEVs penetration level. 
Consequently, lower BEV penetration levels require more charging stations per BEV to reach a sufficient spatial 
coverage level in the simulation. This reflects, for instance, the requirements of large initial charging 
infrastructure networks during the market introduction phase of BEVs due to the spatial distribution of charging 
demands.  

Charging station agents represent the charging station technology. Each charging station is assigned to a 
particular type of location and randomly located at a specific locational duplicate. Therefore, some public 
locations may be equipped with several charging stations, while other public locations are not equipped with 
any charging station. This feature represents that a BEV cannot charge at every destination. Nevertheless, when 
overbuilding the charging infrastructure, this discrepancy diminishes. The number of plugs (charging points) and 
the maximum charging power per plug can be defined for each charging station. If a BEV connects to a charging 
point of a charging station, this agent’s charging point is not available for other BEVs until the BEV disconnects. 
This represents a charging point scarcity and competition within the region. Home chargers are allocated 
stochastically according to a specified home charger access rate within the modeled region. They are assigned 
to the houses of individual BEVs, represented by the location home. Consisting of only one charging point they 
can only be accessed by the single corresponding BEV, which is assigned to the same house. Each modeled BEV 

 

Figure 4-2 – Graphical user interface of implemented Agent-based eMobility Model (ABM eMob) in NetLogo.  
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is assigned randomly to a house before the simulation commences. Further, DCFC charging is not represented 
with these charging station agents, but its modeling follows a stochastic approach, as explained in Section 4.2.1. 

 

 

4.2.1 Mobility and charging demand modeling 

 

The driving behavior of BEVs is characterized by the driving profiles, which are randomly assigned for the entire 
simulation period to each BEV from the pool of driving profiles. These driving profiles can either be taken from 
a set of trips from a mobility study or are derived as synthetic driving profiles based on travel statistics. Since 
here, a data set of authentic trips from the Mobility in Germany 2017 (MiD17) [136] study is available, the 
synthetic profile generation is not further described. The dataset contains daily mobility routes of 316 thousand 
people and a classification of the region to which each route is allocated. For a single BEV, a daily route consists 
of several trips driven by the same vehicle during a day, including data about the origin, destination, speed, and 
distance. The availability of driving profiles based on routes, leads to consecutive changes in the state of charge 
of a BEV’s battery. In total 525 thousand trips with cars are recorded in the dataset. Empty and unreasonable 
data, such as trips above 1000km and a speed greater 180km/h are not considered thus reducing the pool of 
driving profiles to 457 thousand trips. 

The regional classification of a route is based on the ‘Regional Statistical Spatial Typology for Mobility and 
Transport Research’ (RegioStaR) of the Germany Federal Ministry of Transport and Digital Infrastructure and the 
German Federal Ministry for Building Transport and Urban Development. This enables regionally differentiated 
driving profiles. The profiles are additionally categorized regarding different user groups of BEVs, which here are 
commuters and non-commuters. The share of both is a regionally differentiated input parameter (cf. Figure 4-3) 
and, therefore, varies with regard to the simulated region (cf. [118]). Additionally, a daily mobility quote based 
on MiD17 is considered per day to account for the fact that not all vehicles are used every day. Those data reveal, 
for instance, that 17% fewer people are leaving their homes on Sundays compared to an average weekday in 
Germany [137]. Figure 4-4 shows the flow chart of the simulation, including the driving and charging rules of 
BEVs and the interactions between different types of agents. 

 

Figure 4-3 – Input-Output model framework of the ABM eMob. Input parameters with a BEV agent or charging station 
agent symbol represent the parametrization of the corresponding main agents’ attributes. 
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Each BEV drives and parks according to its driving profiles without any deviation. Equation (4-1) describes the 
change of the SOC of a BEV i within time step t if the vehicle is driving. 𝐾𝑖 is the battery’s capacity in kWh. 

𝑆𝑂𝐶𝑖,𝑡 = 𝑆𝑂𝐶𝑖,𝑡−1 −
𝐶𝑖 ∙ 𝐷𝑖,𝑡 ∙ 𝛽𝑇ambient,𝑉𝑖,𝑡  

𝐾𝑖
    

(4-1) 

The consumed energy is based on the BEVs’ energy consumption rate 𝐶𝑖 in kWh per km at a speed of 50km/h 

and an ambient temperature 𝑇ambient of 20 °C, as well as on the driven distance 𝐷𝑖,𝑡. To account for different 

energy consumption rates in dependence of the ambient temperature 𝑇ambient and the current BEVs speed 𝑉𝑖,𝑡, 
an adjustment factor 𝛽 is introduced. It is derived based on Schmidt [138]. The derived adjustment factors for 
different temperatures are shown in Figure 4-5.  

One abstract but a central feature of the approach of BEVs driving according to their driving profiles without any 
deviation independent of their SOC is that BEVs can drive with an empty battery in the model (cf. Figure 4-4). 
Even though this deviates from reality, the driven kilometers with an empty battery can be measured in the 
model and used as an indicator for the SQCI. The lower the total number of driven kilometers with an empty 
battery in the simulated system, the better the charging infrastructure coverage in the simulation for the 
simulated dynamic charging demand. It is assumed to be an appropriate measure since the preferred charging 
location is at destinations where the driver of the BEV parks anyway. A similar measure is, for instance, used in 
Nicholas et al. and van der Kam et al. [134], [139]. An analysis in the ABM eMob showed that in a scenario with 
strong overbuilding of AC charging infrastructure at home, work, and public and without any DCFC charging 
opportunities, the empty battery kilometers occur only due to long trips, which the type of vehicle cannot cover 

 

Figure 4-4 – Flow chart of the ABM eMob showing the main procedures and the interactions between BEVs, Charging 
Stations, and Locations. This flow chart only shows a ‘charge at arrival’ charging strategy for BEVs.  
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without stopping in between for recharging. By reducing the AC charging availability, additional empty battery 
kilometers occur due to several consecutive trips without available recharging at the parking destinations and 
subsequently also due to trips starting with an empty battery. 

 

 

In the scope here, each BEV follows the charging strategy ‘Charge at Arrival’ to recharge the battery. A BEV 
charges its battery immediately after arrival at a destination until its battery reaches the BEV’s desired minimum 
SOC threshold before departure or until the BEV departs again. The charging strategy defines whether a BEV 
wants to charge within the current time step, but the charging process can only start if a charging station is 
available at the current location (cf. Figure 4-4). The change of SOC of a BEV i in time step t in which a charging 
process occurs is defined by  

𝑆𝑂𝐶𝑖,𝑡 = 𝑆𝑂𝐶𝑖,𝑡−1 +
𝑝𝑗 ∙ ∆𝑡

𝐾𝑖
 

 (4-2) 

with 𝐾𝑖 being the batteries capacity and 𝑃𝑗 the available power supply  

𝑝𝑗 =

{
 
 

 
 𝑃𝑗

max,                                   𝑖𝑓 𝑆𝑂𝐶𝑖,𝑡−1 +
𝑃𝑗
max ∙ ∆𝑡

𝐾𝑖
≤ 1

(1 − 𝑆𝑂𝐶𝑖,𝑡−1) ∙ 𝐾𝑖, 𝑖𝑓 𝑆𝑂𝐶𝑖,𝑡−1 +
𝑃𝑗
max ∙ ∆𝑡

𝐾𝑖
> 1

 

 (4-3) 

from the BEVs onboard charger and the charging station j, to which the BEV is connected. Equation (4-3) 
represents a simplified constant current constant voltage charging process of the battery with its characteristic 
of reduced charging power at the end of the charging process. 𝑃𝑗

max is the maximum power rating of the charging 

station. The equation shows that the charging power in the last time step before reaching a SOC of 100% is 
reduced from the maximum available charging power 𝑃𝑗

max of the charging system to the required charging 

power to exactly meet an SOC of 100% within this time step. This simultaneously prevents the SOC from 
increasing above 100% in the simulation. 

Suppose the selected time step within a simulation is greater than a vehicle’s charging time 𝑡charge. In that case, 
the charging power 𝑝𝑗  is reduced for that charging process to not overestimate the simultaneity of several short 

charging processes within one time step and to still ensure a consistent SOC for each BEV according to Equation 
(4-1) (cf. Equation (4-4)).  

 

Figure 4-5 – Adjustment factor 𝛽 for BEVs energy consumption in dependency of the ambient temperature 
and the average driving speed of a trip derived based on Schmidt, 2016 [138].  
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𝑝𝑗,𝑡 = {

𝑝𝑗,𝑡       , ∀𝑡
charge,ac ≥ ∆𝑡

𝑝𝑗,𝑡 ∙
𝑡charge,ac

∆𝑡
      , ∀ 𝑡charge,ac < ∆𝑡

 

(4-4) 

In this case, the assumed charging time for AC charging is fixed to 𝑡charge,ac, which is assumed in the following 
to 20 minutes if the simulation time step is set to one hour. While the actual charging peak can be 
underestimated for single BEVs, it is regarded as a valid simplification for large BEV fleets. 

Charging station agents only represent charging activities at BEVs destinations such as home, work, 
supermarkets, restaurants, or other points of interest. A charging infrastructure network, which focuses on 
these charging locations, maximizes the driver’s comfort since no detours or additional stops are required [140]. 
AC chargers can usually provide these charging services with a power rating between 3.7 kW and 22 kW. In 
contrast, fast charging activities are assumed to occur only to avoid the SOC from dropping below a threshold 
defined by the vehicle’s charging strategy. To minimize the time for a designated fast charging stop, these 
chargers are assumed to be DCFC chargers with 50 kW or more. The model applies a stochastic representation 
of these chargers. If the SOC of a currently driving BEV drops below its individual minimum threshold, and if the 
trip of the BEV is at least 30 minutes, the BEV starts to look for a fast-charging opportunity along its way. The 
minimum SOC threshold is assumed to 30% here. The probability 𝜒𝑖  to find a charging station along its way 
within the time step 𝑡 is assumed to be 

𝜒𝑖,𝑡 =
𝐷𝑖,𝑡

𝐷𝐶𝐹𝐶 𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒
 

(4-5) 

with the assumed distance between DCFC stations in the region as set by the input parameter ‘DCFC coverage’. 
This parameter can be interpreted as the distance between two stations on, for instance, the highway. A 
differentiation between DCFC charging within the considered city and on highways is made based on the current 
traveling speed of the BEV. Trips with a recorded speed which is on average faster than 50km/h, are presumed 
as trips outside of the considered region. This classification is relevant to exclude fast charging activities outside 
the region when measuring the charging power within the considered region. All fast-charging processes are 

assumed to last for a fixed period 𝑡charge,dcfc, which is subsequently assumed to ten minutes. If the simulated 
time step is greater than the assumed charging period, the charged energy in the charging period with the 

maximum power 𝑃𝑖
dcfc,max is averaged over the entire time step ∆𝑡 to obtain the charging power 𝑝𝑡

dcfc. This 
charging power is then accounted for in the aggregated charging demand profile. This is considered a reasonable 
simplification in modeling large fleets in analogy to the AC charging described above. Equation (4-6) defines the 

fast-charging power 𝑃𝑡,𝑖,𝑧
dcfc for a BEV 𝑖 ∈ 𝐼, which is charging at a fast-charging station of type 𝑧 ∈

{ℎ𝑖𝑔ℎ𝑤𝑎𝑦, 𝑐𝑖𝑡𝑦} in time step t. 

𝑝𝑡,𝑖,𝑧
dcfc = {

𝑃𝑧
dcfc,max                                , ∀𝑡charge,dcfc > ∆𝑡

𝑃𝑧
dcfc,max ∙

𝑡charge,dcfc

∆𝑡
      , ∀𝑡charge,dcfc ≤ ∆𝑡

 

(4-6) 

Finally, the aggregated charging demand 𝑝𝑡 of all charging processes in the considered region can be derived as 
a sum over all charging processes, excluding the fast-charging activities on highways. Highway charging is still 
accounted for but assumed to be not within the assessed regional scope. 

𝑝𝑡 =∑𝑝𝑗,𝑡
𝑗

+ ∑𝑝𝑧,𝑡
𝑧

     , ∀𝑗 ∈ 𝐽, 𝑧 ∈ 𝑍\ℎ𝑖𝑔ℎ𝑤𝑎𝑦 (4-7) 

 

4.2.2 Flexibility of charging processes 

 

With the introduction of electric vehicles in the mobility sector, many Lithium-Ion batteries are installed. Using 
these batteries is broadly discussed to integrate renewables, reduce grid congestions, or reduce vehicle owners’ 
charging costs [141]–[144]. It could be shown by Husarek et al. in [118] that even a simple shift in time of a 
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planned charging process during the same parking process yields enormous flexibility potentials. In the present 

thesis, flexibility from a charging process is subsequently defined as the energy per time step 𝑃flex that can be 

shifted in time for 𝑡delay time steps. The flexibility is assessed only for the charging strategy ‘Charge at Arrival’. 

To determine the flexibility, the difference of the planned parking duration 𝑡𝑖,𝑡𝑎
park

 of a BEV according to its driving 

profile and the required charging time 𝑡𝑖,𝑡a
charge

 to reach a predefined SOC is calculated at each arrival of a BEV in 

𝑡a ∈ 𝑇 if a charging station is available at the BEVs location according to Equation (4-8). 

𝑡𝑖,𝑡𝑎
delay

= 𝑡𝑖,𝑡𝑎
charge

− 𝑡𝑖,𝑡𝑎
park

      , ∀𝑖 ∈ 𝐼, 𝑡a ∈ 𝑇 (4-8) 

Suppose 𝑡𝑖,𝑡a
delay

 is greater zero. In that case, it indicates that a charging process can be shifted, and it defines the 

maximum available delay time of the process under the condition that the SOC of the BEV still reaches the 
desired SOC before departure. The corresponding flexible charging power is then derived according to Equation 
(4-9) based on the charging power 𝑝𝑗,𝑡 for all time steps starting from the arrival time 𝑡a until the latest time 

step in which the charging process must start to still reach the desired SOC before the next departure. 

𝑝𝑗,𝑡
flex = 𝑝𝑗,𝑡      , ∀ 𝑡

a ≤ 𝑡 ≤ 𝑡a + 𝑡𝑑𝑒𝑙𝑦 − 1 (4-9) 

The total flexibility categorized by its realizable delay time is then  

𝑝
𝑡delay
flex =∑∑𝑝𝑗,𝑡

flex

𝑗𝑡

      , ∀𝑡delay ∈ 𝑇𝑑𝑒𝑙𝑎𝑦    (4-10) 

for all uniquely occurring delay times 𝑡delay in the set of potentially realizable delay times 𝑇𝑑𝑒𝑙𝑎𝑦 for the entire 
simulation period and all locations.  

 

4.2.3 Representation of spatial resolution and BEV penetration 

 

Since the computational effort of the ABM eMob increases significantly with an increasing number of modeled 
BEVs, high penetration levels within a region are not efficiently modeled by simply increasing the number of 
BEVs. Therefore, the following hypothesis is made to model a high penetration rate without increasing the 
number of BEVs: The number of modeled BEVs and the number of modeled locational duplicates can be 
substituted based on a linear relationship while the total energy demand per type of location is constant. This 
relation is formulated in Equation (4-11) with 𝑚𝑝𝑙𝑎𝑐𝑒𝑠,𝑠,𝑀BEV  being the number of modeled workplaces and 

public places with 𝑝𝑙𝑎𝑐𝑒𝑠 ∈ {𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒𝑠, 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑙𝑎𝑐𝑒𝑠}, 𝑀BEV the number of modeled BEVs, and 𝑆𝐵𝐸𝑉 the 

share of BEVs in relation to the total number of cars 𝑁cars,tot within the region. 𝑁𝑝𝑙𝑎𝑐𝑒𝑠
tot  is the total number of 

potential charging locations in the region (cf. Section 5.1). 

𝑚𝑝𝑙𝑎𝑐𝑒𝑠,𝑠,𝑀BEV =
𝑁𝑝𝑙𝑎𝑐𝑒𝑠
tot

𝑁cars,tot
∙
𝑀BEV

𝑆𝐵𝐸𝑉
, ∀ 𝑝𝑙𝑎𝑐𝑒𝑠 ∈ {𝑤𝑜𝑟𝑘𝑝𝑙𝑎𝑐𝑒𝑠, 𝑝𝑢𝑏𝑙𝑖𝑐 𝑝𝑙𝑎𝑐𝑒𝑠} 

(4-11) 

Figure 4-6 (a) shows exemplarily the linear substitution rates for workplaces in an urban area, and Figure 4-6 (b) 
compares the number of modeled public and workplaces in dependency of the electrification rate of passenger 
cars for the same urban area. 

The hypothesis stated above can be validated by defining a BEV penetration scenario and varying the ratio so 
that this scenario is represented with different numbers of BEVs and modeled locational duplicates. If the energy 
consumed, for instance, over all public locations, stays the same, the hypothesis can be verified. An analysis 
varying the number of BEVs between 500 and 1000 and the number of modeled public and workplaces according 
to the defined substitution rate is conducted to verify the hypothesis above. Thereby, the number of public 
chargers is set so that each public location has exactly one public charger with a power rating of 22 kW in all 
scenarios. This analysis revealed that the same energy output aggregated over all public locations can be 
obtained. Therefore, this approach is considered as validated subsequently and applied in all further analyses to 
define different penetration rates for a specific region. 
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4.3 Model behavior and benchmarking 

 

Subsequently, the model behavior described in Section 4.2.1 is investigated for the ‘charge at arrival’ strategy. 
Therefore, first, the SOC over time is evaluated, second, aggregated charging profiles for a BEV fleet are 
presented and validated, and finally, a global sensitivity analysis of the ABM eMob is conducted. 

 

State of charge assessment 

Driving profiles are taken from the MiD17 study and filtered by commuter and non-commuter profiles. Figure 
4-7 shows a two-weekly SOC curve for a single BEV of type commuter. The SOC changes due to charging and 
driving activities according to Equations 4.23-4.24. The figure shows additionally that the BEV is driving every 
weekday to work and stops along its way infrequently at public places before parking at home overnight. While 
the observed BEV charges every day at home to a SOC of 100%, no charging activities at work occur due to a 
lack of charging infrastructure. Regular charging also occurs in public places. The plot indicates that only short 
trips occur for the observed vehicle each day with a minimum SOC of 87% on Wednesday of the first week. 
Additionally, due to the charge at arrival strategy, many short charging processes occur.  

 

Figure 4-6 – (a) Linear substitution rate of modeled BEVs 𝑚BEV and modeled places 𝑚𝑝𝑙𝑎𝑐𝑒𝑠,𝑠,𝑚BEV  exemplarily 

depicted for workplaces, and (b) number of modeled places 𝑚𝑝𝑙𝑎𝑐𝑒𝑠,𝑠,𝑚BEV  in dependence of the 

electrification rate. Both depicted curves relate to an urban area with 110 thousand passenger cars, 168 
industrial and commercial work areas, and 719 identified relevant public locations. 
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Figure 4-8 shows the mean SOC of a fleet of 1000 BEVs over time, including its standard deviation. The SOC stays 
above 95% during the week and only drops at weekends below that value due to longer driving distances. The 
standard deviation drops below 85% on Sundays. The relatively high average SOC indicates that sufficient 
charging infrastructure is available to recharge the consumed energy. 

 

Figure 4-7 – State of charge over time on a 15-minute time interval of an exemplary BEV with the user 
profile ‘commuter’. The upper figure shows the location of the BEV over time according to the 
driving profile, and the lower plot indicates the resulting SOC over time. 
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Finally, Figure 4-9 exemplifies the aggregated charging profile of a fleet of 1000 BEVs in a rural area subdivided 
into the charging categories home, work, public, city, and highway (cf. 4.26). It shows that a morning and evening 
peak occur around 8 am and 6 pm. The morning peak is mainly caused by work charging and the evening peak 
due to the home and public charging load. In this example, public and work charging are the dominating charging 
modes for the electrical load due to the high assumed availability of work and public chargers with 5 BEVs per 
charging point at public and work locations each. Finally, fast-charging power increases on the weekend when 
driving distances increase and vehicles cannot recharge at workplaces. The overall electrical load from charging 
within this region occurs on Friday at 5 pm with about 1.6 MW per 1000 BEVs. It is to mention that this is 

 

Figure 4-8 – State of Charge of a fleet of 1000 BEVs averaged in each 15-minute time step for two exemplary weeks. 

 

Figure 4-9 – Aggregated charging power per 1000 BEVs subdivided by location and power rating of charging stations 
for one exemplary week in an urban area, assuming a high availability of charging stations. 
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obtained from a single simulation run for a specific scenario. Different parameter settings and different driving 
processes drawn from the pool of driving processes impact the aggregated charging profile within each 
simulation run. However, the overall tendency of morning and evening peaks is constant over different 
simulations if the model parametrization is unchanged. 

 

Charging profile validation 

The model output is used to assess the impact of BEVs on the energy system and identify BEVs' charging 
infrastructure requirements. A high accuracy compared to real-world data is essential for the quality of the 
derived insights. Hecht et al. published an empirical data set of usage patterns of 26,951 charging stations 
between December 2019 and March 2020 across Germany [145]. The published data are subsequently 
compared to the ABM eMob model output.  

The observed data in the dataset are taken from different websites such as ‘Chargemap’ reporting the status of 
public charging stations on a five- or 20-minute interval. Newly starting charging events within one time step 
are derived from these data. About 71% of the recorded data belong to charging stations with a power rating of 
22 kW, including industrial, residential, suburban, and urban locations [145].  

Therefore, the newly starting charging events in the ABM eMob are observed for 22 kW public chargers and 
11 kW work chargers and compared to the empirical data. It is assumed that in 2019 most of the BEV owners 
are early adopters having access to home charging. The corresponding input parameter ‘home charger access’ 
is subsequently set to 90%. Additionally, 10% of these home charging processes are accounted for to represent 
on-street charging. With 83 thousand registered BEVs in Germany in 2019 [146], excluding Hybrid Electric 
Vehicles, and with about 30 thousand publicly reported charging points until the end of 2019, there are between 
two and three BEVs per public charging station [147]. This ratio is applied in the ABM eMob with 250 charging 
points at public locations and 100 at work locations. As the empirical data set represents the entire country by 
Hecht et al., the MiD17 driving profiles are not filtered according to a regional classification. 

Figure 4-10 shows the newly starting charging events of the ABM eMob compared to the empirical data. The 
dotted line represents the hourly mean value of new public charging events from 50 simulations in the 
ABM eMob, and the corresponding shadowed area shows the standard deviation per hour. The solid line shows 
the new events of an exemplary week as published in the empirical data. Since the data set contains only one 
week of the new starting events, the standard deviation is taken from the active events per hour as published 
in the appendix in [145].  

The comparison shows that the ABM eMob can represent the temporal resolution of public charging events for 
a day with high accuracy. Differences between weekdays and weekends are modeled accurately, and the 
charging peak times around 8 am to 9 am and 6 pm align temporally with the empirical data. Additionally, the 
decreased charging events after 7 pm in the ABM eMob match the decline in the empirical data. 

The average standard deviation over the week is with 14.5% around the mean value on average significantly 
lower in the ABM eMob than the weekly averaged standard deviation of 22% around the mean in the empirical 
data. One reason could be that the penetration of BEVs in 2019 is still below 1%, and the utilization of public 
chargers is therefore very low. This can decrease the simultaneity and, in turn, increase the standard deviation 
shown here. It can be assumed that this standard deviation would decrease with an increasing penetration level. 
Further, the standard deviation of the ABM eMob, in contrast, is limited by the number of different driving 
profiles in the pool of MiD17. Additionally, the model is parametrized here with only one public and one 
workplace, which increases the charging station availability for BEVs in the model and decreases the standard 
deviation. This was chosen since determining an accurate number of public and work charging locations on 
country level seems unreasonable. Finally, the standard deviation decreases with an increasing number of 
repeated simulations in the model.  

Nevertheless, the lower standard deviation is not considered to decrease the accuracy of the model, which could 
be shown in the above. The validation focuses only on public chargers. Further modes of charging are not 
validated due to a lack of empirical data. 
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Global sensitivity analysis of model  

The parametrization of the model can significantly impact the observed outputs [118]. A reasonable 
parametrization is therefore a central step for the analysis of a ‘regional charging system’. To comprehensively 
assess the behavior of the ABM eMob, a multi-output global Sobol Sensitivity analysis [148]–[150] is conducted 
and published in Husarek et al. 2021 [118]. It shows the impact of different input parameters on multiple output 
parameters. In a global sensitivity analysis, all input parameters are simultaneously varied over their full range. 
The approach from Sobol aims especially at non-linear and non-monotonic models such as Agent-based models. 
Sobol indices are calculated describing the impact of each individual input parameter on the total observed 
output variance of an output parameter based on a variance decomposition.  

Here, potential parameter ranges are defined for 10 BEV and charging station agent input parameters based on 
the literature, and subsequently, 8800 experiments were obtained applying a Saltelli sampling method [150] 
with a sample size of 400. The Saltelli sampling allows an efficient experimental design for a Sobol sensitivity 
analysis [151], [152]. It was conducted for a rural and an urban area. To assess the ABM eMob output, a 
combined evaluation of total order Sobol indices and the Pearson Correlation coefficient was derived, allowing 
to interpret the explained output parameter variance by a single input parameter and simultaneously the 
direction of a linear correlation. To obtain the Sobol indices, the output variances are decomposed into partial 
variances referring to each input parameter by calculating the variance while varying one input parameter and 
keeping all other inputs constant. Further, Total Order Sobol indices additionally contain the effect of varying 
several parameters together. Compared to the first-order indices, they also contain second-order effects, which 
describe the impact of varying more than one parameter simultaneously. This means, for instance, that the 
combined effect on the required number of charging stations in a region by small battery sizes and high vehicle 
consumption rates can be measured.  

 

Figure 4-10 – ABM eMob validation comparing empirical data of newly starting charging events per hour 
from public 12 kW-25 kW charging stations with a mean value of 50 ABM eMob simulations. 
The shadowed areas show the standard deviation (std). 
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Figure 4-11 shows the derived Total Order Sobol indices for 17 output parameters2 and ten input parameters, 
including the sign of the Pearson Correlation Coefficient for the assessed urban system. It shows that the energy 
consumption of BEVs has a significant impact on most output parameters. Showing a positive correlation, it 
explains 78% of the variance of the peak load of the modeled system and an additional 40% of the highway 
charging peak. Simultaneously but negatively correlating, an increasing energy demand explains 80% of the daily 
shiftable energy demand output variance and 45% of the region’s SQCI output variance. Therefore, this is a 
highly relevant input parameter, which needs to be chosen carefully to design a sufficient charging infrastructure 
network and assess the integration into energy systems. In contrast, the battery size of a BEV is highly relevant 
for the SQCI, but it does not impact the available flexibility significantly. This is because the average SOC of a 
BEVs fleet is relatively high over the course of one week (cf. Figure 4-8), and, therefore, the flexibility is primarily 
defined by the parking duration. Further, the charging power of charging stations reveals less impact on the 
model output than the number of deployed charging stations.  

 

 

The conducted analysis concludes the following key impacts on the output parameters of the ABM eMob [118]: 

“Energy demand and battery size of BEVs are the main driver for the required charging 
infrastructure. • Charging power (except highway) explains less than 16% of the peak load 

variance and is therefore significantly less influential compared to BEVs’ energy 
consumption and charger availability; • Highway charging peak load is explained by up to 
55% by highway charging power; • Residential peak load explained by up to 51% by home 
charger access; • Cross-locational effects matter: home charging peak explained up to 18% 

by public charger availability; • Low effect of charging station parameters on shiftable 

 

2 The output parameters labeled with EnergyServed refer to the served energy in kWh per indicated location (home, work, public, highway). 

 

Figure 4-11 – Total Order Sobol indices and sign of Pearson Correlation Coefficient for an urban area for 17 output and 
ten input parameters from [118]. 
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energy, but the average delay time is explained up to 59% by charger’s availability; • Highly 
competitive market: number of public chargers explain up to 69% of the utilization of public 

chargers.”  
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5 Method 

 

Interactions of the mobility sector and the MMES are assessed by applying the ESDP and the ABM eMob (cf. 
Sections 3 and 4). The combined model framework allows identifying optimal capacities and their operation in 
the MMES as well as fundamental insights about the necessary charging infrastructure for an electrified 
passenger car sector. Figure 5-1 shows the procedure to answer the three research questions (cf. Table 1-1). 

The developed ABM eMob is applied to answer Research Question 3. A rural and an urban area are investigated 
to assess the different charging demand and charging infrastructure requirements. A sensitivity analysis of the 
charging infrastructure is conducted for both regions to explore potential charging infrastructure network 
designs and their impact on the BEVs’ charging peak load and flexibility. A charging infrastructure network design 
is defined here as a specific combination of the number of charging points per power rating at different locations. 
The sensitivity analysis is further used to define Pareto-optimal charging infrastructure designs (cf. Section 5.1). 
Subsequently, two Pareto optimal scenarios are used to parametrize eMobility conversion processes in ESDP as 
described in Section 5.2. This parametrization focuses primarily on the derived charging infrastructure network 
costs, temporally resolved electricity charging demand, and temporally resolved flexibility potential of the 
charging processes (cf. Sections 5.2.2-5.2.3). 

Assessing interactions of the mobility sector with the energy transport infrastructure for electricity, methane, 
and hydrogen simultaneously within an MMES requires a comprehensive parameterization of these processes 
in ESDP. The derived parametrization of the most relevant conversion and transport processes within the MMES 
is described in Section 0. Finally, a local sensitivity analysis is conducted in the ESDP to answer Research 
Questions 1 and 2 (cf. Section 5.4). Thereby, the interactions of the mobility sector with the energy transport 
infrastructure, the energy supply, and the flexibility of BEVs are investigated. 

Figure 5-2 shows the applied model framework, including the MMES model, which is parametrized in ESDP and 
the ABM eMob. It indicates the fundamental differences between both model techniques and that the model 
coupling focuses only on BEVs for passengers and their charging infrastructure. This applied framework allows 
simulating driving and charging behavior of individual BEVs, including their charging infrastructure, with a high 
degree of detail and to incorporate it into the German multi-region MMES. While the ESDP assumes perfect 
foresight for all considered time steps and years, the ABM eMob does not. This means that a BEV in the discrete 

 

Figure 5-1 – Overview of the procedure of thesis.  
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event simulation, which drives towards a location where it can charge, does not know if the charging point is 
available at time of arrival or if it is occupied. 

 

5.1 Designing regional charging infrastructure networks 

 

The ABM eMob is designed to assess regional charging infrastructure networks and to simulate the electricity 
charging demand of BEV charging processes at different locations over time. Due to the spatial and temporal 
dynamics of BEVs’ charging demand, a charging infrastructure analysis is conducted, considering an entire 
region, including different modes of charging and locations. Since the ABM eMob simulates several consecutive 
days, weeks, or months, with consistent SOCs in time and space, the model allows considering cross-locational 
effects and regional differences (cf. [118]). Cross-locational effects include that charging demand served at one 
location must not be served at another location anymore and are considered in designing charging infrastructure 
networks.  

A simulated region is defined here as a system, commonly based on administrative borders, where driving and 
charging activities are simulated. Such a system interacts with its neighboring regions by modeling inter-regional 
commuters as described in Section 4.2. A region is characterized by its population, the number of cars per 
inhabitant, the employment rate, the number of inter-region commuters traveling into or out of the simulated 
system, the rate of vehicles having access to private parking as an indicator for the access to home charging, and 
by its driving patterns. Additionally, the number of potential workplaces and public places for charging 
infrastructure are identified for each region as a measure of the required spatial resolution in the model.  

Table 5-1 shows the parametrization for an urban and rural area. The parametrization of the urban area is based 
on the city of Kiel and the rural area is based on the municipality of Steinburg (cf. [118]). Both regions are in the 
state and NUTS2 region of Schleswig Holstein in Northern Germany. The driving profiles are obtained from 
MiD17 [136] and filtered by the municipality type. One major difference is that BEVs commute into the urban 
area during the day and commute out of the rural area. This is reflected in the parameter ‘inter-regional 
commuters’, which is an import parameter to differentiate the charging infrastructure design in both regions. 
The vehicle parameters are assumed equal for both subsequently considered regions, with consumption rates 
between 16 kWh/km and 24 kWh/km, and battery sizes between 40 kWh and 80 kWh. 

 

Figure 5-2 – Applied model framework, including the model coupling of the ESDP and the ABM eMob. 
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The number of potential available public places for charging stations is estimated based on points of interest, 
which are considered relevant, such as supermarkets, parking lots, or shopping malls. The geoinformation 
system data of these relevant points of interest are extracted from OpenStreetMaps and intersected with a 
raster of the size 150m x 150m. This is presumed comfortable walking distance. For each square with one or 
more relevant points of interest allocated, only one public place is modeled, and scaled according to Equation 
(4-11). Aggregating all points of interest within a square is used to not overestimate a high density of points of 
interest within a vicinity. To obtain the number of workplaces in a region, industrial and commercial areas are 
counted based on land use data from OpenStreetMap. It is assumed that those are areas with a high density of 
workplaces, and it reflects joint charging hubs in these areas rather than individual charging stations at each 
workplace. The estimated numbers here can vary significantly in reality. However, applying a consistent method 
to estimate them enables comparability between different regions, while their main characteristics in terms of 
spatial resolution are still assumed to be reflected. 

The charging infrastructure sensitivity analysis (cf. Figure 5-1) is applied to assess different charging 
infrastructure combinations, their impact on the peak load and flexibility, and to derive Pareto optimal designs. 
This procedure, which is applied to a rural and an urban area for the three different BEV penetration levels of 
1%, 20%, and 80%, is shown in Figure 5-3. A variation of the number of charging points per location with different 
power ratings is conducted. A full factorial design combining all possible factor variations is applied to obtain 
the set of scenarios. This experimental design allows gaining full insight into various specific combinations of 
charging stations, which is required to derive specific combinations. However, it comes with an exponentially 

increasing number of scenarios by 2𝑘 with k describing the number of assessed factors. Therefore, the assessed 
parameter variations are kept to a minimum as defined in Table 5-2. Home chargers are assumed to be built to 
their maximum availability and are not included in the parameter variations. Highway and city fast charging are 
assessed with two different values for the DCFC coverage each. Hence, the assessment focuses on public and 
work chargers and their interactions with low and high DCFC coverages.  

 

 

Figure 5-3 – Method for determining the Pareto optimal set of charging infrastructure designs. 

Regional parameters Rural Urban 

Driving profiles based in MiD17 
filtered by municipality type 

Small-town area, village Regiopolis 

Home charger access 84% 60% 

Share of commuters 49% 46% 

Inter-regional commuters -23% 36% 

BEVs in region 8,400 11,000 

Assessed BEV penetration levels 1%, 20%, 80%  1%, 20%, 80% 

Table 5-1 – Regional parametrization of ABM eMob based on [118]. 
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In step two, each defined scenario is repeated 40 times resulting in a total simulation number of 4 thousand per 
region and assessed penetration level. Repetition of each scenario is necessary to account for the stochastic 
factors in the model. Those are predominantly the different driving profiles, which are randomly drawn from 
the pool of driving profiles and assigned to BEVs within each simulation. Further, factors are the random order 
of simulating each BEV in each time step, the probabilistic assignment of home charger access to each BEV 
according to the overall home charger availability, and the probabilistic assignment of vehicle parameters to 
each BEV agent. The required sample size of 40 is derived as sufficient following the procedure described in 
Appendix A.  

To increase the speed of all simulations, the pyNetLogo extension [153] is used and set up to run the ABM eMob 
from Python in combination with the multiprocessing package [154]. This enables a parallelization of the 
simulation runs on multiple threads.  

In step three, the solution space of all scenarios is restricted based on the SQCI. This leaves only the simulations 
with a sufficient number of charging points to supply the charging demand. In step four, the Pareto optimal set 
of scenarios is obtained. While the Pareto-optimum is primarily derived for the model coupling procedure, steps 
one to three are simultaneously used to analyze the impact on the charging peak and flexibility as required for 
research question three. Steps three and four are described in detail in the following Section. 

 

5.1.1 Method to derive a Pareto optimal charging infrastructure design 

Three essential criteria are considered here to design regional charging infrastructure networks. First, is the SQCI 
(cf. Section 4.2.1), which guarantees a sufficient supply of charging stations covering the dynamic charging 
demand within the entire region. Second is the regionally aggregated electrical charging peak of all charging 
processes, and the third is the regionally aggregated flexibility of all charging processes measured in shiftable 
electrical energy demand per day. The latter could be used, for instance, to relieve grid congestions or to 
integrate volatile energy sources if incentivized effectively. The aggregated charging peak load within the region 
is considered an indicator of the electricity grid's additional stress due to electric vehicles. Further, minimizing 
this peak load reduces the impact on the overall electricity system peak load of BEVs on the country energy 
system level. The effect of charging infrastructure on the occurring regional charging peak load is shown in Figure 
4-11 in the first column.  

To integrate all three criteria a multi-objective optimization is used. The suggested procedure finds a Pareto 
optimal charging infrastructure design regarding the three key model outputs SQCI, aggregated charging peak 
load within the region, and flexibility of the charging processes. The Pareto optimum is allocated by minimizing 
the charging peak within the region and maximizing the total available flexibility under the restriction of reaching 
a sufficient SQCI, as described below.  

Suppose a scenario 𝜔 from the set of all scenarios 𝛺 is defined by its output parameters SQCI𝜔 ∈ 𝑆𝑄𝐶𝐼, the 
peak load 𝑝𝜔 ∈ 𝑃, and the flexibility 𝑓𝜔 ∈ 𝐹. The sets SQCI, P and F describe the service quality of the charging 

Charger type 3.7kW 11kW 22kW 50kW 150kW 

Location Home Work Public City Highway 

BEVs per charging point Not varied 5, 10, 15, 
20, 25, 32, 
42, 50, 
100, 250 

5, 10, 15, 
20, 25, 32, 
42, 50, 100, 
250 

- - 

DCFC coverage in km - - - 5, 25 25, 50 

Table 5-2 – Parameter variations for charging infrastructure sensitivity analysis. DCFC – Direct Current Fast Charging 
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infrastructure network, the peak load, and the available flexibility for all scenarios 𝜔 ∈ Ω. Those parameters 
define the mean values over all simulations of the same scenario 𝜔. Each scenario 𝜔 is simulated 40 times and 
the set of scenarios 𝛺 corresponds to the full factorial design according to the parameter variations in Table 5-2.  

First, SQCI𝜔 defines, whether a simulated charging infrastructure network is sufficient to supply the regional 

charging demand. The set of feasible allocations is denoted as ΩS, i.e., 

ΩS = {𝜔 ∈ Ω: SQCIω ≥ 𝐿}, (5-1) 

where L is the threshold for the SQCI. A threshold of 99.6% is defined by taking the upper 95% confidence interval 
of the SQCI of 40 repeated simulations of a scenario with unlimited charging stations at work, public, and home 
locations. Not reaching an SQCI of 100% is because the considered driving profiles are based on ICE cars and not 
BEVs, while the modeled charging station network is designed to maximize the driver’s comfort without 
consideration of detours and additional stops for recharging (cf. Section 4).  

Further, Pareto optimal scenarios are identified based on two objectives: the minimization of 𝑝𝜔 (Equation (5-2)) 
and the maximization of 𝑓𝜔 (Equation (5-3)). Thereby, 𝑝𝜔 is the maximum charging power in one time step as 
sum over all vehicles i (Equation (5-4)). And 𝑓𝜔 is defined as the daily averaged flexibility over all charging 
processes (Equation (5-5)).  

min
𝜔∈ΩS

 𝑝𝜔 (5-2) 

min
𝜔∈ΩS

 𝑓𝜔 (5-3) 

𝑤𝑖𝑡ℎ 𝑝𝜔 = max
t∈T

∑ 𝑝𝜔,𝑖,𝑡
charge

𝑀BEV

𝑖=1

, ∀𝜔 ∈ Ωs 

(5-4) 

𝑎𝑛𝑑 𝑓𝜔 =
(∑ ∑ 𝑓𝜔,𝑖,𝑡

charge𝑇
𝑡=1

𝑀BEV

𝑖=1 )

𝑁days
, ∀𝜔 ∈ Ωs 

(5-5) 

𝑝𝜔,𝑖,𝑡
charge

 is the electrical charging power of BEV i in scenario 𝜔 at time step 𝑡 ∈ 𝛵 = {1,…𝑇s}. 𝑇s is the last time 

step of the simulation period 𝑇. 𝑓𝜔,𝑖,𝑡
charge

 is the available shiftable energy of a BEV’s charging process with 𝑁days 

representing the number of simulated days and 𝑀BEV is the total number of simulated BEVs. 

Both objectives can be formulated as maximization by introducing the set of target values 𝑢𝑗(𝜔) 𝑤𝑖𝑡ℎ 𝑗 ∈ {𝑝, 𝑓} 

for each scenario 𝜔, with 

𝑢𝑝(𝜔) = −𝑝𝜔, 𝑢𝑓(𝜔) = 𝑓𝜔. (5-6) 

Finally, the strongly Pareto optimal allocation with 𝜔’, 𝜔’’ ∈ Ωs is formulated as: 

𝜔′ is pareto optimal:⟺ ¬(∃𝜔′′: (∀𝑗: 𝑢𝑗(𝜔
′′) ≥ 𝑢𝑗(𝜔

′)) ∧ (∃𝑗: 𝑢𝑗(𝜔
′′) > 𝑢𝑗(𝜔

′)))  (5-7) 

The set of all Pareto efficient scenarios, for which Equation (5-7) is valid, is then summarized as Ωpo ⊆ Ωs. 

 

5.1.2 Comparison of two Pareto optimal charging infrastructure designs 

Reasonable compositions of different charging stations at different locations are derived as Pareto optimal set 
through multiple simulations in the ABM as described in Section 5.1. Two different charging infrastructure 
designs are assessed and subsequently used in the ESDP (cf. Section 5.2). This allows here to compare the impact 
of different designs on the MMES.  

Therefore, two Pareto optimal charging infrastructure designs are selected from the set of all Pareto optimal 
scenarios Ωpo with respect to the objectives as formulated in Equations (5-8)-(5-9). Following the procedure 
presented in [155], this is firstly the Pareto optimal scenario 𝜔p from the set of Pareto optimal scenarios Ωpo 
with the lowest charging peak  
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𝜔p = arg min
ω∈Ωpo

𝑝𝜔 (5-8) 

and secondly, the scenario 𝜔f with the highest flexibility 

𝜔f = argmax
ω∈Ωpo

𝑓𝜔. (5-9) 

Figure 5-4 shows the Pareto frontier and the two selected scenarios 𝜔𝑓 and 𝜔𝑝, which are used to parametrize 
two scenarios in the ESDP (cf. Section 5.2). 

 

 

Table 5-3 summarizes the simulated number of charging points in both scenarios, and Table 5-4 summarizes the 
key differences of both scenarios, which are used as input parameter in the model coupling. The charging costs 
for 2045 in Table 5-4 presume a cost reduction potential of 20% compared to 2020.  

The charging infrastructure network scenario with the minimal peak load requires only up to 50% of the number 

of chargers of the High Flexibility scenario 𝜔𝑓 (cf. Table 5-3). Work chargers exceed the public chargers in rural 
areas by factor three in the Low Peak scenario 𝜔𝑝. A balanced number of work and public chargers occurs in the 
urban area in 𝜔𝑝 as well as in the High Flexibility scenario in both regions. The DCFC coverage is converted to a 
required number of fast chargers so that the maximum fast charging peak load is satisfied. This results in two to 
three DCFC chargers of 50 kW and three to five 150 kW DCFC chargers per 1000 BEVs. To interpret this number, 
it needs to be reminded that transit and long-distance travel during holiday is not explicitly considered in this 
scenario, which could result in a higher number. The table shows that the highest flexibility occurs by maximizing 
the number of work and public chargers.  

Both scenarios differ by factor two in terms of charging infrastructure network utilization (cf. Table 5-4). This is 
defined based on the maximum number of simultaneously occupied chargers (3.7 kW-150 kW). The maximum 
utilization here is 26.6% occurring in the simulated urban area. It means that serving a maximum charging peak 
load of 5.2 MW per 1000 BEVs (cf. Figure 5-4) requires four times as much charger capacity in the entire charging 
network in the region. This utilization rate is relevant for the model coupling procedure. The capital expenditures 
per 1000 BEVs for a Low Peak network reach from 1.8 million € (urban) to 2 million € (rural) and for a High 

 

Figure 5-4 – Pareto optimal charging infrastructure scenarios and identified extreme scenarios 𝜔𝑓 and 𝜔𝑝 
for the urban and rural areas. 
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Flexibility network from 2.9 million € (urban) to 3.2 million € (rural)3. Lower costs in urban areas are mainly due 
to the assumed lower number of home chargers. The specific capital expenditure of a charging infrastructure 
network ranges from 239 €/kW to 330 €/kW. Those specific costs must be considered jointly with the maximum 
utilization rate of the network in an MMES optimization.  

The assumed individual charging station cost for the conducted network cost calculation, including a 20% cost 
reduction until 2045, are 1360 € for a home charger, 4400 € for 11 kW-22 kW charging stations with two plugs, 
20 thousand € per 50 kW charging point, and 50 thousand € per 150 kW charging point. Those assumptions are 
derived based on [14], [156], [157]. 

 

 

3 The here calculated costs are in the range of the costs stated by Robinius et al. [14]: 40 billion € to 62 billion € of infrastructure costs per 20 million BEVs 

(about 40% BEV penetration), with charger network costs of about 73% of those total infrastructure costs. This amounts to 2 million € to 3.1 million 

€ per 1000 BEVs. However, calculated costs in this thesis focus on a BEV penetration level of 80% in Germany. 

 Minimum peak load 
scenario, 𝝎𝒑  

Maximum flexibility 

scenario, 𝝎𝒇 

Number of home chargers (3.7kW) Rural: 840            
Urban: 600 

Rural: 840              
Urban: 600 

Number of public chargers (22kW) Rural: 20              
Urban: 50 

Rural: 200                
Urban: 200 

Number of work chargers (11kW) Rural: 66               
Urban: 50 

Rural: 200                 
Urban: 200 

Number of city chargers (50kW) Rural: 3                        
Urban: 3 

Rural: 2                        
Urban: 3 

Number of highway chargers (150kW) Rural: 3                           
Urban: 5 

Rural: 3                        
Urban: 5 

Table 5-3 – Pareto optimal number of charging points in a rural and urban area per 1000 BEVs. 

 

 Minimal peak load 
scenario, 𝝎𝒑  

Maximum flexibility 

scenario, 𝝎𝒇 

Total charging network capacity Rural:4874kW            
Urban: 4770kW 

Rural: 10258kW            
Urban: 9720kW 

Maximum utilization factor of charging 
network 

Rural: 21.7%              
Urban: 26.6% 

Rural: 11.9%                
Urban: 17.2% 

Capital expenditures of charging network 
in 2020  

Rural: 2.01mio. €               
Urban: 1.78mio. € 

Rural: 3.17mio. €                 
Urban: 2.9mio. € 

Capital expenditures of charging network 
in 2045 

Rural: 1.6mio. €               
Urban: 1.4mio. € 

Rural: 2.5mio. €                 
Urban: 2.3mio. € 

Specific costs of charging infrastructure 
network in 2045 

Rural: 330.4€/kW     
Urban: 299€/kW 

Rural: 247€/kW                 
Urban: 239€/kW 

Table 5-4 –  Comparison of key parameters of two Pareto optimal charging infrastructure networks. 
Individual charging station costs for network cost calculation are based on [14], [156], [157], 
assuming a 20% cost reduction by 2045. 
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5.2 Model coupling 

The ABM eMob is used to generate input parameters for the charging processes of BEVs in ESDP, including their 
charging power, their flexibility, the charging infrastructure network costs, and its utilization rate. Parametrizing 
ESDP by applying the ABM eMob enables an accurate representation of the highly heterogeneous BEV charging 
processes in a linear country energy system optimization. The individual parametrization of charging stations, 
urban and rural regions, as well as vehicle technologies and behaviors, can be analyzed in the ABM eMob and 
then be aggregated for use in ESDP. Coupling both models enables a modeling framework from individual BEV 
and charger levels to an MMES representation on country. 

Figure 5-5 shows the implemented soft coupling approach between the ABM eMob and the ESDP and the 
applied tools. The coupling is realized by three consecutive steps. The simulation of multiple scenarios in the 
ABM eMob, a data analysis and handover procedure, including the identification of Pareto optimal scenarios, 
and the ESDP model. Data from the ABM eMob are analyzed in Python and transferred to an Excel format, which 
can be used to parametrize the ESDP model. Time series for charging demand and available flexibility are 
prepared in Python, saved in Excel, and then uploaded to an SQL database, which is part of the ESDP model 
framework. Cost parameters and average utilization of the charging infrastructure network are derived in an 
additional assessment in Python and are assigned together with the corresponding time series for charging 
demand and flexibility to the conversion process of charging infrastructure networks in the MMES 
parametrization in ESDP. 

As shown in Figure 5-6, two charging infrastructure network conversion processes are modeled in ESDP. 
Electricity from the distribution grid can flow into both conversion processes. The commodity ‘electricity BEV’ 
as conversion process output represents the energy flowing into the BEVs’ battery in a consecutive conversion 
process. Both charging infrastructure conversion processes represent an entire charging infrastructure network, 
including 3.7-22 kW AC chargers at home, work, and public, and DCFC chargers with 50 kW to 150 kW. To 
accurately represent the flexibility of a fleet of BEVs with different possible delay times of each charging 
processes, the aggregated charging profiles are disaggregated according to their possible delay times. Therefore, 
each charging network conversion process generates four different output commodities. One of them is a static 
output, representing charging processes, which cannot be shifted in time. Another one reflects charging 
processes with short-term flexibility of delay times up to three hours. These processes occur predominantly in 
public locations. The second flexible process represents medium-term delay times between four and nine hours, 
occurring predominantly at work. And finally, long-term shiftable processes with more than ten-hour delay times 

 

Figure 5-5 – Soft coupling of the ABM eMob and the ESDP in three steps. 
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predominantly occur at home. The share of each output commodity from the total energy output is predefined 
by the annual energy share of the total aggregated charging profile, and the energy of each output commodity, 
e1, e2, e3, and e4. The temporal distribution of e1 to e4 follows a predefined charging demand profile.  

To incorporate an accurate representation of the BEVs’ flexibility, a demand-side management method is newly 
integrated into ESDP, which is applied to the charging infrastructure representation with respect to the output 
commodities that have a delay time other than zero (e2, e3, e4). This method enables the optimizer to alter the 
predefined charging profile in the range of the corresponding delay time. A detailed description of the demand 
side management for electric vehicle charging follows in Section 5.2.1, the derivation of the electric charging 
demand profiles from the ABM eMob in Section 5.2.2, and the corresponding flexibility parameters for the 
demand side management approach are derived in Section 5.2.3. 

 

 

 

5.2.1 Demand side management for battery electric vehicles in ESDP 

 

The model coupling procedure is developed to accurately parametrize charging infrastructure, BEV charging 
processes, and their corresponding flexibility. Several challenges exist when modeling electric vehicles in a large 
energy system model with a regionally aggregated representation of technologies. First, the charging of vehicles 
depends on time and location of each BEV, and the corresponding flexibility is restricted to the parking duration. 
Those aspects are not trivial to represent in an energy system model but might be approximated by modeling a 
virtual battery for the BEV charging process. Such a model only represents, e.g., one huge battery for all vehicles 
or, if differentiated, e.g., one for each user group. However, using a battery cannot circumvent the effect that 
one vehicle charges electricity and another vehicle drives with this electricity from the single modelled battery. 
The high flexibility of a large battery for all BEVs without temporal restrictions of how long energy can be stored 
does also not consider regular charging and parking behaviors such as modeled in the ABM eMob. If driving and 
charging behavior is considered, only approximately 10% to 20% of the battery capacity of a fleet of BEVs can 

 

Figure 5-6 – Representation of charging infrastructure networks for electric passenger vehicle fleets and 
their flexibility in ESDP. 
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be used for flexibility provision [118]. Additionally, the timing of delayed charging processes is restricted by the 
SOC of each BEVs battery and the parking duration. If the SOC of each BEV and the parking duration are not 
considered, unrealistic state of charges might be neglected. In contrast to the approach of modeling a battery, 
considering a fixed load profile ensures a reasonable temporal distribution of the electricity demand of BEVs but 
it would not allow covering the flexibility of charging processes. Finally, a more realistic and flexible charging 
load can be obtained if the number of parking vehicles is used to derive the maximum possible power input and 
output of a battery in each time step. But this approach still considers a single large battery and cannot ensure 
the temporal and spatial consistency of the SOC of the fleet of vehicles.  

As one particular requirement for the accurate representation of the flexibility of BEVs in an MMES, it must be 
assured that the parking duration can be considered to only charge the battery when a vehicle is parking at the 
corresponding charging station. Therefore, the battery equation (3-17) is not suitable, but an alternative set of 
equations needs to be able to restrict the charged energy to only occur during the parking time of vehicles. 

In the following, a procedure for dealing with these challenges is proposed in three steps: 

1. A fixed charging profile is derived from the ABM eMob and set in ESDP for BEV charging. 
2. A charging infrastructure network design consisting implicitly of different types of chargers and 

locations to ensure a consistent charging station network design together with the derived charging 
profiles is modeled (cf. Figure 5-6). 

3. The flexibility of charging processes is represented based on an existing, but here adjusted, and 
extended load shifting method for linear energy system optimization, as described in the following. Its 
parametrization using the ABM eMob is described in subsections 5.2.2-5.2.3. 

The integrated demand-side management implementation here is based on Zerrahn et al. [158], who published 
a method to represent load shifting in linear energy system models. This method is applied in other energy 
system models and can therefore be considered as state of the art here [159], [160]. To couple the ESDP and 
the ABM eMob, this method is, on the one hand, tailored to the use of BEV charging processes and, on the other 
hand, kept general enough to represent additional load shifting processes in future applications, which are not 
in the scope of the present thesis. 

The following adjustments to the approach presented in [158] are made: 

▪ Introduction of investment cost for investments in, for instance, load management systems and 
variable costs for the shifted energy (cf. Equation 5.55-5.56) 

▪ Differentiation between forward and backward load shift time and therefore, allowing asymmetric 
shift times: This is, e.g., required to couple the model based on the charging strategy ‘charge at 
arrival’, for which only a forward shift in time is reasonable because the original load profile is based 
on BEVs starting to charge immediately at their arrival.  

▪ Upshift and downshift restrictions relative to the conversion process variables instead of restrictions 
based on absolute input parameters: This allows optimizing the capacity of the entire conversion 
process for a target year or over multiple years while the relative maximum load shift potential is 
restricted to the optimized conversion process capacity. 

▪ The equations are adjusted to be used in a multi-region model and thus contain a regional variable 
component. 
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The method, which is implemented in GAMS, is described subsequently. It is based on an energy demand time 
series as input and enables the optimizer to deviate from that profile as illustrated in Figure 5-7.  

Three newly introduced variable sets γ𝑐𝑠,𝑦,𝑡,𝑥
up

 , 𝛾𝑐𝑠,𝑦,𝑡,tt,𝑥
down  and 𝛾𝑐𝑠,𝑦,𝑡,𝑥

down,sum with  

𝛾𝑐𝑠,𝑦,𝑡,𝑥
up

≥ 0 𝑎𝑛𝑑 𝛾𝑐𝑠,𝑦,𝑡,tt,𝑥
down ≥ 0 (5-10) 

∑ 𝛾𝑐𝑠,𝑦,𝑡,𝑡𝑡,𝑥
down = 𝛾𝑐𝑠,𝑦,𝑡,𝑥

down,sum

𝑡+𝛿𝑐𝑠
for

𝑡𝑡=𝑡−𝛿𝑐𝑠
back

 

(5-11) 

represent the total power being shifted upwards (γ𝑐𝑠,𝑦,𝑡,𝑥
up

 ) in one time step t and the power shifted downwards 

(𝛾𝑐𝑠,𝑦,𝑡,tt,𝑥
down , 𝛾𝑐𝑠,𝑦,𝑡,𝑥

down,sum) from the demand time series. The indices indicate that the implementation allows a 

regional differentiation of shifted load, which means that a downshift in a region 𝑥1 ∈ 𝑋 must be accompanied 
by an upshift in region 𝑥1 according to Equation (5-12), which couples the up- and downshift variables in time 

to temporally redistribute the energy demand within the allowed shift times 𝛿𝑐𝑠
back and 𝛿𝑐𝑠

for. 𝛾𝑐𝑠,𝑦,𝑡,tt,𝑥
down  is a 

downshift in time step tt, which is linked to an upshift in t. 𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum is a variable, which is used to simplify the 

equations and can be interpreted as the total downshift in one time step t. This total downshift (𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum) can 

consist of multiple downshifts (𝛾𝑐𝑠,𝑦,𝑡,tt,𝑥
down ) each being linked to upshifts in different time steps. 

Potential efficiency losses due to the load shift are set by the parameter 𝜂𝑐𝑠
dsm. The following set of equations 

(5-12)-(5-22) is valid for each time step 𝑡 ∈ 𝑇, each region 𝑥 ∈ 𝑋, each year 𝑦 ∈ 𝑌, and for each conversion 
subprocess 𝑐𝑠 ∈ 𝐶𝑆 with the forward or backward shift time being greater than zero.  

𝜂𝑐𝑠
dsm ∗ 𝛾𝑐𝑠,𝑦,𝑡,𝑥

up
= ∑ 𝛾𝑐𝑠,𝑦,𝑡,𝑡𝑡,𝑥

down

𝑡+𝛿𝑐𝑠
back

𝑡𝑡=𝑡−𝛿𝑐𝑠
for

 

(5-12) 

Equation (5-12) allows shifting a unit of load, which was scheduled according to a specified normalized time 

series 𝑃𝑐𝑠,𝑥,𝑡
out,norm, forward or backward in time. Corresponding load shift restrictions are formulated in equations 

(5-13)-(5-16), defining the maximum deviation from the energy demand time series in each time step t. 

𝛾𝑐𝑠,𝑦,𝑡,𝑥
up

≤ 𝑘𝑐𝑠,𝑦,𝑥 ∙ 𝑉𝑐𝑠,𝑦,𝑥
avg

∙ 𝐾𝑐𝑠,𝑦,𝑥
up,max

 (5-13) 

 

Figure 5-7 – Illustration of load shifting approach based on a given energy demand time series with asymmetric 
forward and backward shift times. 
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𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum ≤ 𝑝𝑐𝑠,𝑦,𝑡,𝑥

out ∙ 𝐾𝑐𝑠,𝑦,𝑥
do,max (5-14) 

𝛾𝑐𝑠,𝑦,𝑡,𝑥
up

+ 𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum ≤ max{𝐾𝑐𝑠,𝑦,𝑥

up,max
∙ 𝑃𝑐𝑠,𝑥

out,max,norm, 𝐾𝑐𝑠,𝑦,𝑥
do,max ∙ 𝑃𝑐𝑠,𝑥,𝑡

out,norm} ∙
𝑒𝑐𝑠,𝑦,𝑥
out,tot

∆𝑡 ∙ 𝑤
 

(5-15) 

𝛾𝑐𝑠,𝑦,𝑡,𝑥
up

+ 𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum ≤ 𝑘cs,y,x

dsm  (5-16) 

Equations (5-13) and (5-14) restrict the upshifted and downshifted energy within a single time step. Deviating 
from the formulation from Zerrahn and Scholl, the upshifted and downshifted energy here are not restricted 
based on an absolute capacity. Instead, the maximum upshift is set in percent of the variable defining the 

installed conversion process capacity 𝑘𝑐𝑠,𝑦,𝑥 of the conversion process, its average technical availability 𝑉𝑐𝑠,𝑦,𝑥
avg

 

parameter and the parameter 𝐾𝑐𝑠,𝑦,𝑥
up,max

, which describes the maximum upshift in percent of the installed 

conversion subprocess capacity. This allows optimizing the conversion process capacity and its load shift capacity 
simultaneously, with the load shift capacity being restricted in relation to the installed conversion process 
capacity. Applying this to BEV charging, it can be interpreted in a way that the available controlled charging 

capacity is restricted based on the installed charging stations. In contrast, the parameter 𝑘𝑐𝑠,𝑦,𝑥
do,max in Equation 

(5-14) restricts the downshifted energy in time step t in percent of the load of the energy demand time series in 
t. For a fleet of BEVs, it means that if, e.g., 90% of the charging load in t would be available for a shift in time and 
that at least 10% of the charging vehicles are not available for flexibility provision. According to the changes in 
equations (5-13) and (5-14) and the formulation presented by Zerrahn and Scholl, Equation (5-15) restricts the 
combined up and downshift energy as the maximum of the restrictions in Equations (5-13) and  (5-14). The 

formulation here must rely on the energy output 𝑒𝑐𝑠,𝑦,𝑥
out,tot of the conversion process to avoid a non-convex 

formulation if variables such as 𝑝𝑐𝑠,𝑦,𝑡,𝑥
out  (cf. Section 3) would be considered within the ‘max’-statement. 

Therefore, the formulation refers to 𝑃𝑐𝑠,𝑥,𝑡
out,norm, the given time series with 8760 values normalized to the sum 

over all its values, and its maximum value 𝑃𝑐𝑠,𝑥
out,max,norm ∈ 𝑃𝑐𝑠,𝑥,𝑡

out,norm. Finally, the capacity kcs,y,x
dsm  within a region 

x is defined here as the maximum simultaneously occurring upshift and downshift per time step according to 
Equation (5-16). This is here interpreted as the capacity of the required load management systems to realize the 
maximum occurring load shift in time.  

Further, the power balance equation for each conversion process4 needs to be formulated as in Equation (5-17) 

with 𝑝𝑐𝑠,𝑦,𝑡,𝑥
out  and 𝑝𝑐𝑠,𝑦,𝑡,𝑥

𝑖𝑛  being the input and output energy per time step and 𝜂𝑐𝑠 the overall conversion process 

efficiency. This power balance equation is valid for conversion processes with a load shift time parameter greater 
zero. 

𝑝𝑐𝑠,𝑦,𝑡,𝑥
in − 𝛾𝑐𝑠,𝑦,𝑡,𝑥

up
+ 𝛾𝑐𝑠,𝑦,𝑡,𝑥

down,sum =
𝑝𝑐𝑠,𝑦,𝑡,𝑥
out

𝜂𝑐𝑠
 

(5-17) 

This ensures the power balance within each time step. The time consistency of load shift capacities of a 
conversion process over multiple years is defined in Equation (5-18) as a sum over all years from the first 

considered year 𝑦first to the year y. 

𝑘𝑐𝑠,𝑦,𝑥
dsm = ∑ 𝑘𝑐𝑠,𝑦′,𝑥

dsm,new

𝑦

𝑦′=𝑦first

 
(5-18) 

𝑘𝑐𝑠,𝑦
dsm,new,tot = ∑𝑘𝑐𝑠,𝑦,𝑥

dsm,new

𝑥∈𝑋

 (5-19) 

𝑘cs,y
dsm,tot = ∑𝑘𝑐𝑠,𝑦,𝑥

dsm

𝑥∈𝑋

 (5-20) 

 

4 Only the power balance for the sum over all conversion processes is formulated in Section 3 (cf. Equation (3-6)), which now is only valid for all conversion 

subprocesses without demand side management. 
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Equations (5-19) to (5-20) define, as the sum over all regions, the total annually new and the total installed load 
shift capacity of a corresponding conversion process for each year, respectively.  

Finally, three parameters representing the capital and operational expenditures of a load shift process are 
introduced (cf. Equations (5-21)-(5-22)) and integrated into the total cost equation here. 

𝐶𝑐𝑠,𝑦
capex,DSM

= 𝐶𝑐𝑠
inv ∙ 𝑘cs,y

dsm,new,tot (5-21) 

𝐶𝑐𝑠,𝑦
opex,DSM

=
1

2
∑𝐶𝑐𝑠

m ∙ (𝛾𝑐𝑠,𝑦,𝑡,𝑥
up

+ 𝛾𝑐𝑠,𝑦,𝑡,𝑥
down,sum)

𝑡,𝑥

∙ ∆𝑡 ∙ 𝑤 + 𝑘cs,y
dsm,tot ∙ 𝐶𝑐𝑠

om  
(5-22) 

Capital expenditures 𝐶𝑐𝑠
inv are based on the annual new installed capacity in Euro per kW. These costs can occur, 

for instance, for load management systems and communication technology that need to be installed to enable 
the load shift. The operational expenditures are set as marginal costs 𝐶𝑐𝑠

m in Euro per kWh of the shifted load 
and as fixed operational and maintenance costs 𝐶𝑐𝑠

om in Euro per kW per year of the total installed load shift 
capacity of a conversion process. 

 

5.2.2 Electric charging profiles 

 

Two annual charging profiles are generated for the two Pareto optimal scenarios with the minimum charging 
peak and the maximum flexibility of BEVs (cf. Equation (5-8)-(5-9)). The procedure is described for one region 
and then applied to a rural and an urban area.  

As a first step, charging profiles for three representative periods, which each consist of four consecutive weeks, 
with low, medium, and high average ambient temperatures are simulated in the ABM eMob with an hourly time 
step. An hourly interval was chosen to match the time step in ESDP. Since ESDP requires yearly profiles of 8760 
hours, the three simulated representative periods5 are scaled to a full yearly profile based on the expected 
temperature-dependent energy consumption of the fleet of BEVs within each month of the year. The expected 
energy consumption for each period is derived based on the energy consumption in the three simulated 
representative periods. For that, a piecewise linear scaling is applied in dependency of the actual monthly 

averaged temperatures 𝑇avg , the considered ambient temperatures 𝑇ambient (cf. Section 4.2.1) in the three 

representative periods (set here to 𝑇low, 𝑇mid, and 𝑇high), and the total energy demand of all BEVs within the 

considered region for each simulated representative period (𝐸tot,low, 𝐸tot,mid, and 𝐸tot,high).  

Equation (5-23) defines the temperature-dependent scaling factor 𝑓(𝑇avg ), which is interpreted as the energy 
demand of 1000 BEVs in dependency of the ambient temperature per period (cf. Figure 4-5 for the effect of 
temperature on the BEVs energy demand). If a normalized charging profile is multiplied by the scaling factor, 
one obtains charging profiles for the corresponding ambient temperature. This is used to create a yearly charging 
profile based on monthly deviating ambient temperatures. The scaling factor is obtained by interpolating 
between the BEVs’ energy demand of the simulated representative period with the lowest and the medium 

temperatures 𝐸tot,low and 𝐸tot,mid, as well as between the medium and the highest temperatures 𝐸tot,mid and 

𝐸tot,high. The actual monthly temperatures are here taken from the weather year 2012. 𝑇low and 𝑇high are 
chosen for the simulations so that they represent the lowest monthly averaged temperature and the highest 
monthly averaged temperature in 2012. Each representative period is simulated 100 times and the average 
energy demand is considered in the following. 

 

5 A total of 2016 hours was simulated: 4 weeks of 168 hours for three representative periods with low, medium, and high temperatures 
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𝑓(𝑇avg(𝑡) ) =

{
 
 

 
 
𝐸tot,low +

(𝐸tot,mid − 𝐸tot,low)

𝑇mid − 𝑇low
∙ 𝑇avg, 𝑖𝑓 𝑇avg ≤ 𝑇mid

𝐸tot,mid +
(𝐸tot,high − 𝐸tot,mid)

𝑇high − 𝑇mid
∙ 𝑇avg, 𝑖𝑓 𝑇avg > 𝑇mid

  

(5-23) 

Then, the three simulated representative time series are normalized each to their monthly BEVs’ energy demand 
and multiplied with the scaling factor 𝑓(𝑇avg(𝑡)) (cf. Equation (5-24)). In other words, the normalized monthly 

charging profiles (𝑃𝑡′(𝑡)
low , 𝑃𝑡′(𝑡)

mid , 𝑃𝑡′(𝑡)
high

) are multiplied by the expected energy demand within each month of the 

year. 𝑃𝑡 with 𝑡 ∈ {1,… ,8760} is the resulting yearly charging profile, whereas the time of the year t defines the 
corresponding temperature 𝑇avg(𝑡) according to the curve in Figure 5-8. 𝑇avg(𝑡) is constant for each t in the 

same month. 𝑃𝑡′(𝑡)
low , 𝑃𝑡′(𝑡)

mid and 𝑃𝑡′(𝑡)
high

 are the normalized charging profiles for the representative periods with the 

lowest, medium, and highest temperatures respectively and with 𝑡′(𝑡) = {𝑡 ∈ {1,… ,8760}|𝑡 𝑚𝑜𝑑 672} defined 
for exactly 4 weeks with hourly resolution (672 hours). The formulation of 𝑡′(𝑡) is used to link each hourly energy 

demand of, e.g., 𝑃𝑡′(𝑡)
low  to an hour of the year with the same weekday and time of day. 

𝑃𝑡 =

{
 
 
 

 
 
 𝑃𝑡′(𝑡)

low 𝑓(𝑇avg(𝑡)), 𝑖𝑓 𝑇avg(𝑡) ≤ 𝑇mid − (
𝑇mid − 𝑇low

3
 )                                                     

𝑃𝑡′(𝑡)
mid𝑓(𝑇avg(𝑡)) , 𝑖𝑓 𝑇mid − (

𝑇mid − 𝑇low

3
 ) < 𝑇avg(𝑡)  ≤  𝑇mid + (

𝑇mid − 𝑇low

3
 )

𝑃
𝑡′(𝑡)
high

𝑓(𝑇avg(𝑡)), 𝑖𝑓 𝑇avg(𝑡) >  𝑇mid + (
𝑇mid − 𝑇low

3
 )                                                    

   

(5-24) 

Figure 5-8 shows the scaling factor (total charged energy within four consecutive weeks per 1000 BEVs) for each 
month of the year. Additionally, the average temperatures 𝑇avg(𝑡), including day and night temperatures of the 
year 2012, are depicted for the location Schleswig within the NUTS2 region Schleswig-Holstein. Adjusting the 
average temperatures to the hours of the day in which most driving activities are expected is not considered as 
hourly and daily temperature variations are not considered in the simulation. This is justifiable here since the 
introduced error by predicting hourly temperature variations based on historic data is assumed significantly 
greater than the error by using a monthly average value. The latter still accounts reasonable for the seasonal 
differences in temperature, which cause larger temperature deviations than hourly variations. 

 

 

Figure 5-8 – Temperature-dependent scaling of monthly charging demand based on the weather year 
2012. The scaling factor refers to the monthly charged energy normalized to a fleet of 1000 
BEVs. 
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Finally, the yearly charging profiles 𝑃𝑡, which are derived for the rural (𝑃𝑡
rural) and the urban area (𝑃𝑡

urban), are 
scaled from the municipality level to the NUTS2 level (cf. Equation (5-25)). The same scaling procedure is also 
applied for the flexibility, the average utilization of the charging infrastructure network, and the charging 

infrastructure costs. In Equation (5-25), weighting factors (𝑁𝑥
cars,tot,urban and 𝑁𝑥

cars,tot,urban) representing the 
total numbers of all vehicles in urban and rural municipalities within one NUTS2 region x are multiplied with the 
rural and urban charging profiles based on each municipality’s RegioStaR classification and the BEV penetration 

rate 𝑆BEV of the scenario. This represents for each NUTS2 region x the corresponding mixture of BEVs in urban 

and rural municipalities. The number of urban and rural vehicles is divided by 1000 since 𝑃𝑡
𝑢𝑟𝑏𝑎𝑛 and 𝑃𝑡

𝑟𝑢𝑟𝑎𝑙 are 
normalized to 1000 BEVs. 

 

𝑃𝑥,𝑡
charge

= (𝑃𝑡
urban  

𝑁𝑥
cars,tot,urban

1000
+ 𝑃𝑡

rural  
𝑁𝑥
cars,tot,rural

1000
) ∙ 𝑆BEV,  

 ∀𝑥 ∈ 𝑋, 𝑡 ∈ 𝑇  

(5-25) 

Figure 5-9 shows exemplarily the regional charging infrastructure requirements of public chargers on the 
municipality level for 20% BEV penetration in Germany. Values of zero indicate a lack of data in the data set. The 
resulting seasonal variations of the electrical charging demand as well as regional differences on the NUTS2 level 
are shown in Figure 5-10 as overlapping line plots. Here, regional differences in electrical charging demand are 
predominantly determined by the population and the number of vehicles per region. It reveals that the 
electricity demand and its corresponding peak load decrease in summer to 64% of the winter charging peak. 
Further, it shows the region Duesseldorf as the region with the highest expected electricity demand from electric 
vehicles and the state of Bremen with the lowest expected demand. The difference in charging demand can be 
explained by the differences in population and number of vehicles. 

 

 

Figure 5-9 – Regional requirements of 11 – 22 kW chargers at work and public places on the municipality 
level for a BEV penetration of 20%. 
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Figure 5-11 shows the final derived aggregated charging profiles for the entire country for one exemplary week 
normalized to the annual BEVs’ energy demand. The shown two charging profiles represent the two considered 
Pareto optimal charging infrastructure network designs. The figure shows that the ‘high Flexibility’ charging 
infrastructure design significantly increases the morning and evening charging load. In contrast, the ‘low Peak’ 
design has a more evenly distributed charging demand over the day, resulting in a lower peak and higher 
demand during midday and at night compared to the ‘high Flexibility’ scenario. The difference between both 
charging profiles shows the importance of accurately considering charging infrastructure networks when 
assessing the electrical charging load. In general, the figure indicates that a high availability of charging 
infrastructure as in the ‘high Flexibility’ scenario - or even not restricting the availability of charging 
infrastructure in a BEV simulation - can result in significantly higher projected charging peaks of a fleet of BEVs 
of up to 30% compared to a charging infrastructure design scenario, which minimizes the peak load. 

 

 

Figure 5-10 – Aggregated charging profiles at 80% BEV penetration in five exemplary NUTS2 regions for 8760 
hours of the year, considering the Pareto optimal charging infrastructure design with the 
minimal charging peak load. Curves are overlapping each other. 

 

Figure 5-11 – Aggregated charging profile for Germany for an exemplary week normalized to the total annual charging 
demand in Germany for the two Pareto optimal charging infrastructure designs with the minimal charging 
peak (low Peak) and the maximum available flexibility (high Flexibility).  
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5.2.3 Flexibility of charging profiles 

 

The applied representation of charging infrastructure and the demand side management method for the output 
commodities with a delay time greater than zero (cf. Figure 5-6) requires the following inputs to characterize 
the flexibility: one or multiple flexible charging profiles per NUTS2 region with a corresponding maximal delay 
time, one static charging profile per NUTS2 region representing the charging processes, which cannot be shifted 
in time, and the share of energy output per applied charging and flexibility time series. The fixed energy share 
guarantees that the optimizer does not use, e.g., only the process with the highest flexibility. This fixed energy 
share is required, since the aggregated profiles originate from individual charging processes of BEVs in the ABM 
eMob, which correspond to exact parking durations, states of SOC and available charging power ratings. 

A yearly charging profile 𝑃𝑥,𝑡
charge

 is subdivided into a static time series 𝑃𝑥,𝑡
static and multiple flexible charging time 

series 𝑃𝑥,𝑡,𝐷1,𝐷2
flex . The flexible time series are charging profiles, which are defined by a range of realizable minimum 

and maximum delay times (𝐷1 and 𝐷2) of the individual charging processes. This allows to derive multiple 
flexible charging time series for parametrization of the MMES in ESDP which correspond to charging processes 

with different realizable delay times. To obtain the decomposed charging profiles, the profile 𝑃𝑥,𝑡
charge

 is 

decomposed into its individual charging power blocks 𝑃𝑥,𝑖,𝑡,𝑑 as indicated in Figure 5-12, keeping for each block 
the information of its potential delay time d. All charging power blocks are obtained from the ABM eMob. One 
charging power block is here defined as the charged energy of a single BEV i in time step t, which can be shifted 
in time for up to d hours. Then, for each hour of the year the charging power blocks of all BEVs 𝑖 = {1,… , 𝐼}, 
which correspond to a specified range of realizable delay times6 𝐷1 ≤ 𝑑 < 𝐷2, are aggregated according to 
Equations (5-26) and (5-27). 

Equation (5-26) describes the static charging demand, which cannot be shifted in time. Equation (5-27) shows 
the aggregation of flexible charging power blocks with a specified time shift range between 𝐷1 and 𝐷2. The 
flexible charging blocks are clustered by applying Equation (5-27) with the delay times 1-3 hours, 4-9 hours, and 
greater than ten hours to differentiate between different delay times.  

𝑃𝑥,𝑡
static =∑𝑃𝑥,𝑖,𝑡,𝑑=0 

𝐼

𝑖=0

∀𝑡 ∈ 𝑇, 𝑥 ∈ 𝑋 
(5-26) 

𝑃𝑥,𝑡,𝐷1,𝐷2
flex =∑ ∑ 𝑃𝑥,𝑖,𝑡,𝑑 

𝐷2

𝑑=𝐷1

𝐼

𝑖=0

∀𝑡 ∈ 𝑇, 𝑥 ∈ 𝑋 

(5-27) 

 

6 𝑑𝑖,1 and 𝑑𝑖,2  

 

Figure 5-12 – Decomposition of charging processes of BEVs into individual charging blocks 𝑃𝑖,𝑡,𝑑. 
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Figure 5-13 shows the final subdivided charging profiles (𝑃𝑡
static, 𝑃𝑡,1,3

flex , 𝑃𝑡,4,9
flex , 𝑃𝑡,10,50

flex ) and the total charging 

profile 𝑃𝑡
charge

 for the two assessed Pareto optimal scenarios aggregated for Germany (sum over all NUTS2 
regions x) considering 80% of BEV penetration. The charging peak differs in both charging infrastructure 
scenarios by 10 GW. It reveals that significantly more electricity demand cannot be shifted in time in the Low 
Peak scenario than in the High Flexibility scenario. The short-term flexibility below 3 hours delay time is 
scattered across the day, reaching its maximum on the weekend. Medium-term flexibility between 4 - 9 hours 
delay time occurs predominantly during the morning hours at workplaces. This flexibility is significantly higher 
in the flexible charging infrastructure scenario due to the higher availability of work chargers. While at the 
evening charging peak around 5 pm, a high share of long-term flexibility with delay times greater than ten hours 
is available, the possible delay time reduces during late evening and night hours. The available long-term 
flexibility reaches its maximum on Friday to Sunday since most vehicles are not leaving home as early in the next 
morning compared to weekdays. In general, the Low Peak scenario has a higher share of potential delay times 
greater than ten hours, and the High Flexibility scenario has a larger share of charging processes, which can be 
shifted for 1-3 hours. This is mainly due to an increased charging demand at home in the Low Peak scenario due 
to lower public and work charger availability. This statement is valid for the here applied charge at arrival 
strategy. 

 

 

 

 

 

Figure 5-13 – Charging demand of High Flexibility (upper) and Low Peak (lower) charging infrastructure 
scenario for an exemplary week (Monday-Sunday) decomposed into different realizable delay 
times. 
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5.3 Techno-economic parametrization of the MMES 

 

The implemented MMES model in ESDP is based on a model of the German electricity sector as published by 
Kolster et al. [123]. It is spatially resolved to 38 NUTS2 regions in Germany and twelve energy exchange 
countries, resolved to the country-level: Austria, Belgium, Switzerland, Czech Republic, Denmark, France, 
Luxembourg, Netherlands, Norway, Poland, and Sweden. All 38 NUTS2 region names are shown in Appendix B 
and referred to throughout the thesis. The original model includes electricity and heat sector technologies 
relevant for the application to the year 2030 and to assess the potential of flexibility provision from distribution 
grids to the transmission grid. It consists of a representation of the German AC and DC grid as planned for the 
year 2030. The implementation here sets up on the same set of technologies but extends the scope towards an 
MMES adding the mobility sector, including charging and refueling infrastructure, energy transport 
infrastructure for methane and hydrogen, synthesis technologies for electricity-based fuel production, and 
technologies for the supply of hydrogen, including, for example, international import routes, and hydrogen 
usage in gas turbines. Further, all technologies in the model are parametrized for the year 2045 regarding 
capacity and energy constraints where applicable, as well as cost assumptions. All following parametrizations 
described in Section 0 are exclusively used in the present thesis. The regional scope of the energy exchange 
countries with infrastructure connection to Germany was expanded by Russia as a gas supplier to include 
methane import routes. Nevertheless, the energy system of Russia is not included since no electricity grid 
connections exist. The model generally applies end energy usages in the different modeled sectors and cost-
optimizes the energy supply, transport, storage, and demand technologies and their dispatch, considering a 
carbon emission restriction for the modeled year 2045.  

 

5.3.1 Electricity and heat sector  

 

The modeled electricity demand is subdivided into an exogenously fixed demand and an electricity demand 
arising from technologies optimized in the model, such as electrolysis or heat pumps. The exogenous demand 
represents the demand in the electricity sector, such as the electricity demand for information and 
communication technologies, lighting, electric motors, and cooling. A constant annual demand of 377 TWh from 
2019 to 2045 is assumed due to contrary effects of increasing electrical efficiencies and demands due to 
digitalization and communication technologies between 2019 and 2045 [161]. Electricity demand for electric 
heating and usage in the mobility sector is excluded since it is modeled explicitly as a technology supplying the 
end energy demand in the heat or mobility sector. The electricity demand in the electricity sector is 
disaggregated based on population and gross domestic product on the NUTS2 level, as shown in Figure 5-14. 
The temporal distribution is based on Germany's normalized historical electricity load data for 2012 provided 
from ENTSO-E, as shown in Figure 5-15. 

The heat demand is split into process heating and space and water heating. A constant yearly process heat 
demand of 551 TWh as in 2018 [162] is assumed with a uniform distribution over 8760 hours. Regional 
differences occur mainly based on the distribution of industrial sites per NUTS2 region. The industrial gas 
demand from the data set published in [163] for 2015 is considered to distribute the process heat demand in 
space. It is assumed that no major locational changes in industrial sites will occur until 2045. In 2018, space and 
water heating accounted for 757 TWh of heat demand [162]. This is assumed to decline by 51% until 2045 due 
to efficiency measures in buildings to 500 TWh. Gas heating is one of the major technologies for heating in today. 
Hence, the gas demand of households is used to spatially disaggregate the demand to the NUTS2 regions based 
on the data published in [163]. The temporal distribution is based on the heating demand in Germany in 2015 
based on data published in the EU project ‘Heat Roadmap Europe 4’ for Germany [164]. 
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The model converts energy from solar radiation and wind into electricity. The efficiency is incorporated in the 
hourly capacity factors for the technologies on a regional level. It differs between regions based on historical 
weather data of 2012 as derived from the MERRA-2 database from the Modern-Era Retrospective analysis for 
Research and Applications, Version 2 database (MERRA-2) from NASA. Here, it is differentiated between Wind 
onshore and offshore turbines, as well as rooftop and ground-mounted PV. This allows distinguishing in terms 
of costs as well as temporal and regional availabilities. The used hourly and regionally differentiated capacity 
factors are described in the following.  

For each hour and region, the capacity factor describes the available capacity of, for instance, all installed wind 
onshore turbines within a region. This temporal availability of PV and Wind energy is modeled based on weather 
data of the year 2012. Therefore, hourly averaged data for solar radiation and wind speeds at different heights 
are taken from the MERRA-2 database. The spatial resolution of the weather data is available on a raster of 
0.625 longitude and 0.5° latitude, which corresponds approximately to 48 km x 57 km in Germany. The MERRA-
2 cells are then intersected with the NUTS 2 regions to obtain regional availability profiles for onshore wind 
turbines, offshore wind turbines, rooftop PV, and ground-mounted PV on the NUTS 2 level. Offshore wind 

 

Figure 5-14 – Regional distribution of annual heat and electricity demand on NUTS2 level normalized to the 
highest occurring value within one region. 

 

 

Figure 5-15 - Temporal distribution of electricity and heat demand in Germany normalized to the maximum 
demand within one hour of the year. 
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capacity factors are based on international exclusive economic zones, which are then allocated to the nearest 
NUTS2 region in Germany. 

To generate the available wind generation from the weather data, an optimized wind turbine for the 
characteristic full load hours in each cell, the air pressure at the hub height as well as the rotor area and the 
rotor efficiency, which depends on the corresponding wind speed and the chosen turbine are considered. The 
availability profiles or time-dependent capacity factors for wind are normalized to the highest available capacity 
factor over all regions and all hours of the weather year 2012. 

The hourly capacity factors for PV are based on the horizontal solar radiation, divided into diffuse and direct 
radiation by the Erbs model [165]. To obtain the hourly capacity factors, the angle of incidence of the radiation 
at each hour of the year, the albedo effect, the ambient temperature, the low light behavior of a module, as 
well as the optimal orientation with a 40° angle for the PV modules are considered. Further, an efficiency 
reduction factor of 0.8 is applied to the hourly available capacities due to, for instance, electrical losses and 
module degradation. Hourly capacity factors for rooftop and ground-mounted PV are not differentiated. 

Figure 5-16 shows the full load hours (FLH) for PV and wind onshore turbines, ranging from 1033 hours in 
Schleswig-Holstein to 1271 hours in Tubingen. For comparison, the country-wide averaged full load hours of the 
modeled European countries are 874 hours in Norway and 1335 hours in Switzerland for PV. Further, the 
maximum assumed capacity per region is restricted based on land restrictions of the ENSPRESO dataset [166].  

Wind and PV energy generation in the model follows the weather patterns but can be curtailed by the optimizer. 
In addition, gas power plants running on hydrogen or the gas mix from the pipeline system as well as waste, 
biomass, and hydro powerplants are considered. The heat demand can be supplied by solar thermal systems, 
electric heat pumps, gas power plants, boilers, and furnaces. The last three technologies can be fueled by the 
gas mix from the modeled gas pipelines or pure hydrogen. Further, a district heating grid can distribute centrally 
produced heat from, e.g., bulk generation to meet the end demand. Maximum capacities for heat and electricity 
generating technologies are restricted based on [167].  

The electricity generation capacities in non-German regions are not optimized but fixed here according to the 
TYNDP scenario ‘National Trends’ [168]. Since the capacity projections in this data set are only available from 
2025 to 2040, they are extrapolated linearly to 2045 here. A decrease in nuclear capacities in the EU is assumed 
in this scenario in all countries but not in the UK. The electricity demand in the modeled twelve non-German 
countries is 1941 TWh, including mobility and heat applications since those are only modeled explicitly for 
German regions. Further, natural gas demand in the modeled European countries is integrated to model gas 

 

Figure 5-16 – Regionally distributed full load hours of Wind onshore turbines and photovoltaics based on the 
weather year 2012. 
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exports from Germany to represent an accurate utilization of the gas transmission pipelines (cf. Section 5.3.4). 
Other energy demands in non-German countries are not considered in the model.  

 

Electricity transport infrastructure 

Supplying electricity from different sources to the demand requires transmission and distribution infrastructure 
with 220 kV-380 kV or 0.4 kV-110 kV, respectively. Here, two main assumptions apply to the parametrization. 
First, electricity is only transported between NUTS2 regions using the transmission grid, and second, it is 
distributed within a NUTS2 region using the distribution grid. The distribution grid is only considered in terms of 
costs per kilowatt-hour, representing grid fees of five cents per kilowatt-hour in total, from which 20% are 
presumed at the transmission level. Most loads are assumed to be connected to the distribution grid. They, 
therefore, access electricity to its hourly generation costs from the electricity generation mix, including losses 
of 6% per kWh, transmission costs if transported to another region, and distribution costs of four cents per kWh. 
Only central batteries, central electrolysis as well as rail and catenary systems are modeled to be connected to 
the transmission grid directly or free of distribution grid charges. Other bulk consumers, e.g., in the industry, are 
not explicitly modeled, and hence, no exception for distribution grid costs for their electricity consumption is 
integrated. 

The Alternating Current (AC) electricity transmission grid capacities are optimized for 2045 endogenously. 
Anyway, this transmission infrastructure, as it existed in 2017, is considered an initial grid for the 2045 
optimization. Challenges regarding the social acceptance of newly built overhead transmission lines exist. 
Therefore, it is assumed that the existing connections can only be reinforced, but no new connections between 
regions, which are not connected in 2017, are available. In addition, planned Direct Current (DC) corridors, as 
considered in [169], are integrated into the initial grid for 2045. Those DC links connected regions in northern 
Germany with regions in Southern Germany, directly reaching across multiple NUTS2 regions. They include 
‘Ultranet’, ‘Southlink 1’ and ‘Southlink 2’as well as ‘East-South link’, and they are not further optimized. The AC 
electricity transmission grid is implemented as Net Transfer Capacities (NTCs) between the NUTS2 regions. Those 
consider thermal limits of power lines, including an AC power flow calculation and security of supply as an n-1 
criterium. The resulting initial AC and DC grid is shown in Figure 5-17. Grid extensions in the optimization are 
considered with costs of 500 €/km per 1 MW capacity [170]. Costs for substations are considered in the 
distribution grid fees.  
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5.3.2 Mobility sector, including refueling and charging infrastructure 

The mobility sector is modeled, analog to the electricity and heat sector, based on its useful energies, which are 
split into freight and passenger demands and further into the modalities of car, bus, Light-Duty Vehicles (LDV), 
Heavy-Duty Vehicles (HDV), train, ship, and aviation. Figure 5-18 and Figure 5-19 illustrate the modeled 
technologies and demands in the freight and passenger transportation sectors based on the most relevant 
powertrain-fuel combinations derived in Section 2.1. Each demand process is fixed in its annual output 
representing the corresponding mobility demand in Gtkm or Gpkm in Germany. The modal split is not optimized 
in the model. To convert the Gpkm and Gtkm to energy demands that can be supplied in the form of energy, 
three values are required per technology: The average payload or an average number of passengers per vehicle 
and vessel, the annually averaged covered kilometers, and the vehicles energy consumption per kilometer. The 
efficiency parameter of a conversion process (cf. Equation 3.11) is then used to convert the units. Figure 5-20 
illustrates the unit conversion exemplarily for BEVs. The present approach is adopted from Most, who 
implemented the mobility sector in the European context in the plan4res project [171]. Further, the modeled 
vehicle technologies are shown in the figure. These technologies are optimized, including the required refueling 
and charging infrastructure as described below.  

 

Figure 5-17 – Initial net transfer capacities (NTCs) of electricity transmission grid based on publicly available 
data from 2016 and 2017 for the AC grid and planned DC links for 2030. 
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Figure 5-18 – Freight transportation modeling. For abbreviations, see the caption of Figure 5-19. 

 

Figure 5-19 – Passenger transportation modeling. LF – Liquid Fuel; PHEV – Plug-In Hybrid Electric Vehicle; FC 
– Fuel Cell; TG- Transmission Grid; DG – Distribution Grid; LCH4 – Liquified methane; LP – 
charging infrastructure network designed to minimize the charging peak load; HF – charging 
infrastructure network designed to maximize the flexibility; HDV – Heavy Duty Vehicle; LDV – 
Light Duty Vehicle. 
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Furthermore, each mobility demand process is disaggregated on the NUTS2 level in analogy to [122]. The 
mobility demand for passenger cars and buses is distributed according to the NUTS2 population and the vehicle 
density in each region. The freight transportation is disaggregated based on the freight traffic performance in 
ton-kilometers. Aviation demand is also assumed to correlate with population density. The rail demand for 
freight and passenger transport is based on the number of train stations per NUTS2 region obtained from 
OpenStreetMap. Finally, inland shipping is based on inland port locations and their respective annual cargo 
handling volumes. Figure 5-21 shows the distribution of the demand. The worldwide largest inland port in 
Duisburg is in the NUTS2 region of Düsseldorf, which therefore dominates the regional distribution for inland 
shipping. In contrast, the largest demand for passenger road transport occurs in NUTS2 regions with large 
populations such as Düsseldorf, Upper Bavaria, Stuttgart, or Berlin.  

All passenger transport demands are assumed to temporally align with the passenger car traffic volume in each 
hour of the year. The considered time series is based on traffic measurements in the year 2007 and accounts for 
changed traffic volumes on weekends and public holidays. For road freight transport, a time series for one 
representative week is derived based on [73] and extrapolated to the entire year without consideration of 
holidays and seasonal variations. Compared to passenger transport, one major difference is the reduced traffic 

 

Figure 5-21 – Regional distribution of passenger and freight demand; normalized to the highest annual demand within 
one NUTS2 region. 

 

Figure 5-20 – Unit conversion from TWh to Gpkm for Battery Electric Vehicles.  
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volume on Sundays in Germany, as shown in Figure 5-22. Additionally, the difference between the day and night 
traffic volume is lower for freight transportation by up to 60%.  

The costs of mobility technologies can vary significantly based on the vehicles’ additional technical features, 
entertainment systems, brand, or design. In a macro-economic energy system optimization, these costs are 
considered non-relevant and should not depend on the vehicle’s powertrain. These vehicle costs are adjusted 

by subtracting the cost 𝑐𝑣
tech of each transport technology v within one segment by costs 𝑐𝑟𝑒𝑓

tech of a reference 

technology reflecting today’s dominating technology. For passenger cars, the reference technology is an ICE car. 
These delta costs are divided by the average annual mileage of the vehicles segment to obtain the conversion 
process costs in Euro per kilometer (cf. Equation (5-27)). The applied delta costs are converted to an annuity and 
then considered in Equation 3.4 in ESDP. It can be interpreted as additional costs for switching from the 
reference technology to a new powertrain technology.  

𝐶𝑐𝑠
capex

=
𝑐𝑣
tech − 𝑐𝑟𝑒𝑓

tech

𝑑𝑦,𝑣
milage,avg

 
(5-27) 

All assumed techno-economic parameters for technologies in the mobility sector are listed in Appendix C. 

 

Refueling infrastructure modeling 

New technologies and energy carriers in the mobility sector require new refueling and charging infrastructure 
networks. It is assumed that liquid fuels from Fischer-Tropsch (FT) synthesis can use the existing distribution and 
refueling infrastructure at no additional costs. Costs for replacing valves or pumps are not considered since they 
are assumed to be significantly lower than new infrastructure investments for hydrogen and electricity refueling 
(cf. Section 2).  

Figure 5-18 and Figure 5-19 show the considered refueling and charging technologies. Vehicles refueling at liquid 
fuel dispensers are assumed equally capable of running with todays’ fossil liquid fuels, liquid e-fuels, or biofuels. 
Only one refueling technology for these fuels is modeled according to the requirements derived in Section 2. 
Gas fueling stations are considered, which are supplied from the pipeline gas mix within a region (cf. Section 
5.3.4). Estimated costs for a methane refueling station amount to 61 thousand Euros per dispenser [5]. With an 
assumed refueling speed of five minutes per 500 km range, including the time for payment, with an ICE car 
running on methane with a consumption rate of 0.7 kWh per kilometer, the specific costs are 14.5 € per kW. 
Considering this technology as mature, no cost reductions until 2045 are assumed. An additional refueling 
station supplying LNG to trucks and ships is included assuming that the costs for both modalities are the same. 

 

Figure 5-22 – Hourly passenger and freight traffic demand volume normalized to the annual traffic volume. 
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The gas can either be liquified at the refueling station or be imported in liquid form from abroad. Total refueling 
station costs per LNG dispenser can be estimated at 382 thousand Euros [5], presuming a liquid gas supply to 
the station. Assuming more powerful pumps compared to passenger cars and higher energy consumption of 
LNG trucks of 2.36kWh per kilometer, the refueling time for 500 kilometers is the same as for CNG cars. This 
results in specific costs of 54 € per kW.  

Hydrogen refueling stations provide in the model hydrogen to all hydrogen consuming technologies regardless 
of the modality. The cost of building up an entirely new hydrogen refueling station with eight dispensers is 
estimated to be 3.3 million euros [5], [63]. The time to refuel the hydrogen tank at 700 bar is assumed to be five 
minutes. Considering a consumption rate of 0.28 kWh hydrogen per kilometer for a passenger car, the specific 
costs are 245 € per kW. Since no large-scale roll-out of hydrogen infrastructure occurred until 2022, the economy 
of scale effects can be expected if the market volume increases. Further, increasing the number of dispensers 
per refueling station when the fuel cell vehicle market is more mature can additionally bring down costs in the 
future. Therefore, a cost decline of 50% until 2045 is assumed. The same costs are considered for LNG hydrogen 
stations. Still, the liquefaction of gaseous hydrogen is modeled additionally as described in Section 5.3.3. 

To provide electricity to vehicles, charging infrastructure and catenary systems are distinguished. Distribution 
grid costs are not applied to catenary systems here. The overall efficiency of delivering electricity from the 
transmission grid to a catenary HDVs is 89%. This includes an efficiency of 97% for the transformer, 98% for the 
rectifier, 95% for the catenary line, and 99% for the pantograph [172]. To build up a catenary system, high 
upfront investment costs are necessary. The specific costs are estimated based on [74], [173] to 889 € per kW. 
Furthermore, due to different power ratings, costs, and utilization of required charging stations, the charging 
infrastructure is distinguished for battery electric LDVs, HDVs, and busses, as well as for battery electric 
passenger cars (BEVs), including PHEV. A detailed approach for BEVs is relevant (cf. Section 2) and considered as 
described in Sections 5.1-5.2 due to its complex network structure. In contrast, charging stations for electric 
LDVs, HDVs and busses are assumed to be placed primarily in depots. The charging infrastructure costs can be 
summarized as specific costs of 492 € per kW in 2030. This considers 600 kW and 150 kW chargers supplying 20 
and 0.91 vehicles on average per day for 322 € per kW and 433 € per kW, respectively [174]. A cost reduction of 
20% is assumed until 2045.  

If not specified otherwise, the unit kilowatt is referred to the corresponding commodity. The estimated specific 
costs for the refueling stations are in a similar order of magnitude as, e.g., in Helgeson and Peters [62]. 

Since LDVs, HDVs, and busses park at nighttime, the charging is assumed to occur mainly at night, 
complementary to the freight road traffic. The derived temporal distribution of the electricity demand for LDVs, 
HDVs, and buses is shown in Figure 5-23. To account for additional fast charging stops during the day, an 
adjustment factor, shown in the figure, is applied to the profile. 
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5.3.3 Hydrogen supply chain 

A fundamental hydrogen supply chain representation is inevitable to model the competition between energy 
carriers in the mobility sector. Figure 5-24 shows the implemented conversion processes that include hydrogen 
generation, import, storage, transport, distribution, and demand processes. Electricity demand for the 
compression is also indicated in the figure. The derived parametrization of these technologies is described 
subsequently. 

Multiple demand applications for hydrogen are implemented, such as hydrogen ready gas turbines (cf. Section 
5.3.1), hydrogen boilers and furnaces (cf. Section 5.3.1), technologies in the mobility sector (cf. Section 5.3.2), 
and synthesis processes generating e-fuels (cf. Section 5.3.4). Methanation, FT, and methanol synthesis are 
assumed to be placed at central transmission pipeline hubs and require no further distribution via tailer. 
Contrasting, it is not assumed for gas turbines and industry since those sites are considered not to change. This 
follows a scenario assumption, where transmission pipelines arrive in a central hub in a NUTS2 region. This can 
impact the final hydrogen applications due to six cents per kilowatt-hour distribution costs, estimated based on 
[54], and assumed losses of five percent. A sensitivity with assumed distributed hydrogen hubs is applied to 
assess this assumption (cf. Section 5.4). 

Since this model only considers energy applications, hydrogen as feedstock in, for instance, the steel or ammonia 
industry is not optimized. Since a representation of centralized hydrogen demand might impact the usage in the 
mobility sector and the required hydrogen supply infrastructure, an exogenously defined demand of 84 TWh is 
considered. This assumes a centralized hydrogen supply to 70% of the steel production in 2017, 50% of 2017’s 
ammonia generation, and 80% of the demand in refineries. This demand is regionally distributed. Steel 
production locations in Germany are weighted with their steel production volume in million tons, ammonia 
production locations, and refinery locations weighted by their annual fuel processing capacities. The derived 
regional distribution is based on [175]–[177] and shown in Figure 5-25. Additional upcoming non-energetic 
hydrogen demand, not covered in the 84 TWh, is supposed to be supplied by on-site generation, which is not 
covered for non-energetic demands in the present thesis. 

 

Figure 5-23 – Temporally resolved truck and bus charging demand normalized to the annual demand.  
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Import routes 

Several import routes for hydrogen to Germany could be established in the future. Differences in origin, 
electricity source, and mode of transport are represented in the model by different import costs. The import 
location is highly relevant for designing a hydrogen pipeline network. Therefore, the NUTS2 import region is 
distinguished for each route. Following the import route options as published in [122], four different routes are 
implemented, as indicated in Figure 5-26. A pipeline infrastructure for importing hydrogen from Northern 

 

Figure 5-24 – Hydrogen supply chain modeled in ESDP. 

 

Figure 5-25 – Industrial hydrogen demand distribution (steel, ammonia, refinery) normalized to the 
maximum annual value within one NUTS2 region.  



 

  74 

Europe, Southern Europe, and Northern Africa is presumed. Those pipelines are supposed to arrive via Denmark 
in Schleswig-Holstein, France in Southwest Germany, and Italy and Switzerland in Freiburg. Imports from 
overseas arrive at the port of Rotterdam as liquid hydrogen, which is then gasified and transported via 
established gas pipeline routes to regions in Western Germany. All cost assumptions refer to the import costs 
at the German border. Varying cost assumptions in the literature are shown in Figure 5-30 and considered in the 
sensitivity analysis described in Section 5.3.4. Import volumes are optimized but restricted based on [178]. For 
the sake of security of supply and political independency, a diversification strategy for hydrogen imports is 
presumed. All four routes are established, delivering a minimum of about five Terawatt-hours to Germany. 
Natural gas imports paired with ‘carbon capture and storage, and a pyrolysis system for hydrogen generation in 
Germany is not covered. Also, no hydrogen export is covered.  

 

Electrolyzer 

Two conversion processes generating hydrogen from electricity in Germany are optimized in the model in terms 
of location, capacity, and operation. One represents large-scale central electrolyzer processes, and one 
describes decentral small-scale on-site electrolyzers processes. The water demand of approximately nine 
kilogram per kilogram of generated hydrogen is not modeled here explicitly as in Germany the costs for water 
can be neglected compared to the costs for electricity. Table 5-5 summarizes the techno-economic 
parametrization of the electrolyzers. 

Central electrolysis refers to large-scale systems being connected directly to an electricity generation source so 
that no distribution costs for electricity occur. This is represented in the model by the electrolysis being fed 
directly by the electricity from the transmission grid. The considered water electrolysis produces ‘green 
hydrogen’ if the electricity supply within the considered year is carbon neutral. This thesis focuses on a carbon-
neutral MMES. Hence, the inland located electrolyzers generate green hydrogen. The costs are based on the 
long-term costs for Polymer Electrolyte Membrane Electrolysis technology as estimated in [179]. An outlet 
pressure of 30 bar is assumed in accordance with [54], [56]. Contrary to the modeled decentral electrolyzer, this 
hydrogen can be transported between NUTS2 regions.  

Decentral electrolysis represents hydrogen generation from small-scale on-site electrolyzers. The hydrogen at 
30 bar must be compressed for storage in a high-pressure tank at 300 bar before it is consumed at, for instance, 
a refueling station. This hydrogen is consumed in the model in the NUTS2 region where it is produced. Costs are 
based on [180] and are calculated here for a site with a maximum load of two tons of hydrogen demand per 
day, corresponding to a small truck refueling station with 38 served trucks per day [64]. Cost reductions and 
efficiency gains until 2045 are incorporated analog to the central electrolyzer. The assumed capacity of the 
electrolyzer is 2.78 MWH2, and the corresponding compressor unit is here designed to a maximum hydrogen 
flow per day of 83.33 kg H2 or 2.78 MWh, respectively, with a lower heating value of 33.33 kWh/kgH2. The low-
pressure storage vessel is not represented in the estimated costs but modeled explicitly, as explained below. 
The efficiency long-term efficiency gain projected for central electrolyzers in [179] is also presumed for decentral 
electrolyzers here. 
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Hydrogen storage 

Hydrogen can be stored in the model in decentral and central pressure vessels at 250 bar and in salt cavern 
storage. Several salt caverns suitable for gas storage exist in Germany [181], [182]. Salt caverns are already used 
for hydrogen storage in the United States of America and could also be utilized in Germany for large-scale 
hydrogen storage [182]. Since all available salt caverns in Germany differ significantly in size and costs for 

 

Figure 5-26 – Hydrogen import routes with maximum supply volumes and costs to Germany as assumed for 
the reference scenario in 2045 [122]. Assumptions are based on [40],[41],[178]. The arrow 
sizes do not indicate costs or volumes for an import route. 

Technology Lifetime  Investment 
costs in 
€/kW 

O&M in 
percent of 
investment 

Efficiency Outlet 
pressure 

Central Electrolyzer 20a 539 1.5%/a 74% 30bar 

Decentral Electrolyzer 20a 771 4%/a 48% 30bar 

Table 5-5 – Electrolyzer cost assumptions based on [179] and [180]. 
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realization as hydrogen storage, a model cavern is applied according to Stolzenburg et al [182]. This approach is 
already used in literature, for instance, in [54], [183]. The defined model cavern has a storage capacity of 
133.33 GWh of H2, holding a volume of 500,000 m³, which represents the average size of German salt caverns. 
The techno-economic parameters are summarized in Table 5-6. Since compressor units are modeled individually 
here, the investment costs of 92 million €, according to Stolzenburg et al. [182], are reduced by the given 
compressor investments of 30 million €.  

Large upfront investments are required to enable a salt cavern for hydrogen, especially including the overground 
infrastructure. Due to the characteristics of a linear program without integer variables, the application of base 
investment costs independent of the installed capacity is not possible. Therefore, a linear assumption of the 
overall costs of the model salt cavern is used here as simplification. Such a cost assumption reflects an 
investment into several small caverns in proximity with only one overground investment due to joint utilization 
of overground infrastructures. The linear cost assumptions are based on 62.6 million € for a 133.33 GWh salt 
cavern. A sensitivity regarding the salt caverns’ availability is conducted to assess the overall impact of this 
simplification on the MMES (cf. Section 5.4). Further, the C-rate is fixed to 0.003 kW per kWh based on a 
400 MWH2 output capacity. A low C-rate reflects the characteristics of salt cavern storages with a large volume 
in this linear approach. The assumed efficiency includes the energy demand for the drying of hydrogen. 
Additional electricity demand for operation of in- and outlet compressors is modeled as separate conversion 
processes described below. The assumed regional availability of salt caverns is based on [182], [184]. 

 

 

Compression 

Compression units of hydrogen are an essential part of the hydrogen supply infrastructure. They compress 
gaseous hydrogen to the required pressure of the storage, pipeline, or refueling stations. Due to the volumetric 
density of hydrogen being lower by factor three compared to methane, more compression stages and, 
therefore, more energy is required to reach the same pressure level [185]. This increases the necessity to 
explicitly model the compression of hydrogen along its supply chain. The compression costs and required energy 
rely non-linearly on the inlet and outlet pressure difference and the electrical power rating [54], [186]. Figure 
5-27 shows the specific costs in dependency on the power rating. Additional installation costs can be 
differentiated based on the application and its associated site specifications. Nexant [186] adjusts the non-linear 
cost function by a cost factor for a large or small installation. Reuß [54] modified the function by a long-term 
cost projection and differentiated the installation cost factor between the applications of a salt cavern, pipeline, 
and trailer. For comparison, specific cost estimation for the year 2035, without relating to the electrical power 
rating of the compressor, is used by Runge et al. [61] and included in Figure 5-27. 

Three compression units are differentiated here based on the application and outlet pressure to represent 
differences in required compression work. The outlet pressure is the main driver for sizing, costs, and electricity 
demand [186], [187]. Table 5-7 summarizes the techno-economic parametrization. Figure 5-27 indicates that 
compressors 1 and 2, which compress hydrogen to 250 bar, assume a large compressor for trailer application 
based on the cost curve of Reuß [54]. Compressor 3 is based on the cost curve for cavern storage application 

Technology Lifetime  Investment 
costs in 
€/kWh 

O&M in 
percent of 
investment 

Roundtrip 
efficiency 

Storage 
pressure 

C-rate in 
kW/kWh 

Model salt cavern 40a 0.47 2%/a 97.8% >100bar 0.003 

Decentral pressure 
vessel 

30a 15  2%/a 95% 250bar - 

Central pressure 
vessel 

30a 15  2%/a 95% 250bar - 

Table 5-6 – Techno-economic parametrization of hydrogen storage technologies based on [27], [54], [61], [182]. 
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from Reuß [54], considering a 7.2 MW power rating for the model salt cavern according to Stolzenburg et 
al.[182]. The cost curve for pipelines from Reuß reveals a similar cost term for a 12.5 MW power rating compared 
to the 7.2 MW power rating for cavern application. Therefore, applying the same cost term for both applications 
is considered reasonable. For additional comparison of the electrical power rating, Figure 5-27 indicates the cost 
for a 5 MW compressor, which is the size of installed hydrogen compression units in 2020 [185], and a 16 MW 
compressor as the largest available commercial size according to Nexant in 2008 [186]. 

 

 

 

 

 

 

 

 

Figure 5-27 – Specific hydrogen compression costs. 

Compressor 
category 

Lifetime  Investment 
costs for 
electrical 
power in 
€/kW 

O&M in 
€/kW/a 

Efficiency 
(boil-offs) 

In- & 
outlet 
pressure 
in bar 

Electricity 
demand in 
percentage 
of LHV of 
H2 

Compressor 1 15a 1124 30 99.5% In:  
30-100 
Out: 250 

4.9% 

Compressor 2 15a 1124 30 99.5% In:  
100-250 
Out: 250 

6.5% 

Compressor 3 15a 930 30 99.5% In  
30-250 
Out: 100 

2% 

Table 5-7 – Techno-economic parametrization and categorization of hydrogen compressors based on [27], [54], 
[61], [182]. 
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Pipelines and trailer 

Hydrogen can be transported in the moel between NUTS2 regions via pipeline or GH2 trailer. Both hydrogen 
transport capacities are optimized in the model. Hydrogen distribution within a region, for instance, to refueling 
stations, is assumed only via GH2 trailer with a fixed cost term of 6.15 €/kWh, which is derived from [54]. 
Distribution costs vary significantly in the literature between 0.5 ct/kWh and 24 ct/kWh assuming a pipeline 
distribution or LH2 trailer distribution, respectively [188]. The modeled distribution conversion process only 
reflects the distribution costs and losses based on the total trailer capacity within a region. In the following, the 
parametrization of the pipeline transport process for inter-regional hydrogen transport is elaborated. 

Hydrogen pipeline costs estimations vary significantly across the literature. Reuß [54] and Reuß et al. [55] use a 
non-linear cost curve, shown in Figure 5-28. This curve shows the estimated costs per meter depending on the 
pipeline diameter. They differ in the assumed recompression costs along a pipeline section.  

ESDP requires a linear parametrization of the pipeline. In the present thesis, a linear relation of the costs is 
assumed depending on the transport distance and the pipeline capacity. Therefore, only a diameter of 753 mm 
is considered as available pipeline size. This is the averaged pipeline diameter from the data set of the considered 
natural gas pipelines as derived from the dataset of German natural gas pipelines [163]. The pipeline capacity 
for hydrogen transport is considered similar to the capacity of methane transport [185]. Therefore, the capacity 
of a 753 mm hydrogen pipeline at 100 bar can be estimated according to Table 5-10. Then, a linear relation of 
the costs in dependency of the capacity is assumed (cf. Figure 5-29). 

Furthermore, recompression of the hydrogen in a pipeline from 30 bar to 100 bar is required approximately 
every 250 km [52]. With an average center-to-center distance of 138 km between the NUTS2 regions and a 
compression unit explicitly modeled at the entry and exit point of an inter-region connection, a recompression 
unit is not considered in the estimation here. Correspondingly, the transport efficiency only includes 0.5% boil-
off losses but no further energy demand for recompression. Due to the possible transport of hydrogen across 
several NUTS2 regions, this assumption might underestimate the hydrogen transport costs. Therefore, as 
described in Section 5.4, a sensitivity analysis of the pipeline costs is conducted with an alternative 
parametrization considering recompression costs. Thus, the cost curve from Reuß et al. [55], which is based on 
Krieg [52], is linearized in the same diameter, and additional energy demand of 1.8% per 250 km is modeled for 
the recompression according to Krieg. 

Figure 5-29 compares the derived linearized costs with costs derived from a cost overview published in [188].  

 

Figure 5-28 – Specific pipeline investment costs in dependency on the diameter based on Reuß [54] and 

Reuß et al. [55] 
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Table 5-8 summarizes the techno-economic parametrization of the modeled technologies. Anyway, different 
pipeline assumptions, including a reassignment, are not optimized against a newly built pipeline but are 
considered in a sensitivity described in Section 5.4. 

Finally, a linear modeling approach does not allow to model the fair competition between GH2 trailer transport 
and pipeline transport since it is not possible to represent high investment base costs independent of the 
capacity without integer variables. Additionally, very low pipeline capacities can occur in a linear model. Still, 
trailers might be economically viable for low volumes and lower distances [55]. Therefore, small, unrealistic 
transmission pipeline sizes below 100 MW are filtered in a postprocessing. 

 

 

 

 

Figure 5-29 – Linearized specific hydrogen pipeline investment cost comparison for 138 km distance. The terms ‘New’ 
and ‘Reassigned’ indicate a newly built hydrogen and a reassigned pipeline. Costs are derived based on 
[54], [55], [99], [188]. 

Transport 
technology 

Lifetime  Investment 
costs in 
€/MW/km 

O&M in 
€/MW/km/a 

Losses per 
100km  

Operating 
pressure 

H2 Pipeline with 
recompression 

40a 283 1 0.7% 70-100bar 

H2 Pipeline without 
recompression 

40a 128 1 0.005% 30-100bar 

H2 Pipeline 
reassignment 

40a 10 1 0.005% 70-100bar 

GH2 trailer transport 10a 754 55 0.46% 250bar 

Table 5-8 – Techno-economic parametrization of hydrogen transport technologies based on [52], [54], [55]. All 
pipeline cost assumptions relate to a pipeline diameter of 753mm. 
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5.3.4 Electricity-based fuels and methane supply chain 

 

e-Fuels 

E-fuels can be allocated from the optimizer in the mobility sector (e.g., Section 5.3.2) and in, e.g., different heat 
boilers and furnaces. Imported e-fuels are assumed to be generated explicitly from carbon-neutral electricity 
sources. This is represented in the import costs assumptions. Figure 5-30 gives an overview of different import 
prices estimated in the literature [61], [178], [189], [190]. If generated inland, they consume hydrogen, which is 
either imported or generated from the hourly electricity mix. Inland generation of e-fuels is differentiated 
between FT synthesis and Methanol synthesis. Additionally, e-methane can be generated by a methanation 
process. All three conversion steps rely on direct air capture as a CO2 source. The e-fuel distribution costs amount 
to 0.1 ct/kWh, according to Helgeson and Peter [62]. E-fuels and biofuels are not differentiated in the application 
technologies in the model, only in their generation process. Table 5-9 summarizes the techno-economic 
parametrization. 

 

 

 

 

 

Figure 5-30 – Comparison of projected import cost for e-Fuel, e-Methane and Hydrogen based on [61], [178], [189], 
[190]. 

Technology Lifetime  Investment 
costs in 
€/kW 

O&M in % of 
investment 

Efficiency CO2 costs in 
€/t 

Methanation 30 500 4%/a 77% 50 

Methanol synthesis 30 500 4%/a 79% 50 

FT Synthesis 30 500 4%/a 79% 50 

Table 5-9 – Techno-economic parametrization and categorization of synthesis processes based on [90], [179]. 
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Methane 

Today, natural gas is supplied to Germany from Russia, the Netherlands, Norway, and a small fraction of inland 
production. The latter is not considered in the model. Germany is a transit land for gas, exporting in 2015 about 
1000 TWh/a of natural gas to neighboring countries [191]. In 2045 the gas export to other countries must still 
be guaranteed. Imports of natural gas, the transport through the modeled gas pipeline network, and the exports 
as in 2015 are modeled here. A decrease of 75% due to climate actions in neighboring countries is assumed, 
deviating from the export volume in 2015. 

The modeled gas price is not distinguished between the import countries due to political influences on costs and 
high uncertainties. Since the model does not include carbon capture and storage, this natural gas cannot be 
used in a carbon-neutral energy system in Germany. Therefore, e-methane imports are established, assuming a 
synthetic gas production abroad from renewable electricity.  

 

Natural gas pipelines 

The third explicitly modeled energy transport infrastructure element is the natural gas transmission pipeline 
system in Germany, including its import and export capacities. This infrastructure can be used in the model to 
transport natural gas, e-methane, and biogas equivalently. In addition, up to 10% of hydrogen can be fed into 
the pipeline network as defined by DVGW [192]. The restriction of a maximum hydrogen share of 2% in a gas 
distribution grid with CNG refueling stations is neglected here. Further, inter-regional transport capacities for 
methane are derived as described in the following.  

The gas pipeline network representation (cf. [122]) is derived based on data published in the LKD-EU project, 
which is also available at SciGrid Gas [163]. This data set includes geoinformation system data of nodes and 
pipelines, including the diameter, the operating pressure level, and the pipeline class of each pipeline. Since 
capacity information is covered incompletely with capacity information for only 13% of all pipelines, and for 
consistency, capacity information is derived based on the operating pressure and pipeline diameter. Therefore, 
the natural gas pipeline classification (cf. Table 5-10), published in [191], is used. A continuous operation with 
the maximum gas flow for 24 hours is assumed to transform the gas mass flow per day to Gigawatts. Each 
pipeline’s entry and exit points are intersected with the NUTS2 regions. Finally, all pipelines connecting the same 
two NUTS2 regions are aggregated. The initial data set and the derived aggregated inter-regional capacities are 
shown in Figure 5-31. Compression units for operating the pipeline system are usually operated utilizing the 
transported gas in the pipeline itself. Therefore, the energy demand for compressing the methane for the 
transport along a 250 km route and additional boil-offs are represented in terms of 0.5% of transport losses 
[193] without additional electricity demand as assumed for hydrogen compressors. 

This derived natural gas network representation is set as fixed capacity in the model. It is not further optimized 
in 2045 since a decrease in gas demand is expected in Germany and its neighboring countries [194], [195]. A 
scenario-based approach is chosen considering the reassignment of natural gas pipelines to hydrogen (cf. 
Section 5.4). Dismantling of pipeline capacities is not considered here. 
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5.4 Procedure of sensitivity analysis in ESDP 

 

A local sensitivity analysis is conducted to assess the impact of different parameters in the MMES on the 
decarbonization of the mobility sector. Main parameter variations are conducted and categorized into the 
groups ‘energy supply’, ‘energy transport’ and ‘mobility sector’. Additionally, two extreme mobility sector 
scenarios are defined to assess the impact of different energy carriers in the mobility sector on the MMES. The 
mobility sector is in these two scenarios not optimized, but a fixed technology mix is assumed. One represents 

 

Figure 5-31 – Derived inter-regional methane transport capacities (right) from natural gas pipeline dataset 
(left) published by Kunz et al. [163]. 

Pipeline 
Class 

Pressure 
in bar 

Diameter in mm Transport capacity in GWh/day 

A 100 1000 ≤ x ≤1400 651 ≤ x ≤1275 

B 100 700 ≤ x ≤1000 80≤ x ≤651 

C 63 500 ≤ x ≤700 41≤ x ≤201 

D 25 350 ≤ x ≤500 20≤ x ≤41 

E 25 250 ≤ x ≤350 4≤ x ≤20 

F 63 100 ≤ x ≤200 4 ≤ x ≤16 

G 63 10 ≤ x ≤100 4 

Table 5-10 – Classification and capacity assignment for natural gas pipelines (adopted from [163]). 
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a high electrification in the mobility sector, the other represents a high usage of hydrogen in the mobility sector. 
All parameter variations are based on the reference scenario ‘CN45-ref’ targeting a carbon-neutral MMES in 
2045. Table 5-11 summarizes all scenarios.  

The scenarios ‘Energy copper plate’ and ‘No Refueling Costs’ are motivated from a modeler’s perspective. They 
are used to assess the impact of these cost terms in a model, which are often neglected in energy system 
studies (cf. Section 1.2). A scenario assessing the impact of the availability of cavern storages is categorized in 
the energy transport category. Scenarios in the energy supply category vary the import or inland generation 
costs for different energy carriers based on the cost overview in Figure 5-30. Additionally, one scenario 
restricting the onshore wind turbine capacity and one scenario restricting the hydrogen inland generation are 
included in this category.  

The ‘Distributed H2 Hubs’ scenario reduces the distribution costs of hydrogen to 50% compared to the reference 
scenario. The costs are assumed for all technologies, including synthesis processes, to assess the impact of the 
assumption of no distribution costs for synthesis processes in the reference scenario (cf. Section 5.3.3). This can 
be interpreted in a way that optimized hydrogen pipeline networks build as center-to-center connections 
between two regions from the source to several distributed hubs within each region. The assumed distribution 
distance for the GH2 trailer is reduced by 50% to 50-60 km for all demand processes. Synthesis processes are not 
directly connected to the hubs as in the reference scenario. The distribution costs decline to 2.7-3.24 ct/kWh 
according to [188] and are set to 3 ct/kWh in this scenario here. 

Since projections for vehicle costs are highly uncertain [95], a scenario with equal vehicle costs across all 
technologies in the same segment is integrated to reduce the impact of vehicle costs in the model. 

All scenarios in Table 5-11, but the last two, assume a charging infrastructure network design, which minimizes 
the charging peak load. Controlled charging using the demand side management method described in 5.2.1 is 
not allowed in those scenarios. BEVs charge according to their charging profiles derived based on the charge at 
arrival strategy. 

Additionally, two scenarios are integrated to assess the impact of BEVs’ flexibility and their charging 
infrastructure on the MMES. Therefore, controlled charging is used based on the integrated demand-side 
management method. One scenario uses the costs, charging profiles, and flexibility of the Low Peak charging 
network design and the other scenario is based on the charging network design maximizing BEV’s flexibility. 
These scenarios are listed last in the Table. 

Additional costs are parametrized in the demand side management method representing load management 
costs for a control box and the communication infrastructure. They are assumed for the year 2045 to 2.5% of 
the charging stations’ capital expenditures. For public and work charging, this is assumed for a charging station 
with two charging points and for home charging for a charging station with only one. The specific costs are 2.1-
9 €/kW plus 2% of those costs for fixed operation and maintenance costs. The cost estimation does not include 
compensation payments for vehicle owners or costs for occupying the charging station for longer than required.  

Due to presumed grid restrictions, the maximum simultaneously occurring upshift of charging load from the 
original charging profile due to controlled charging is limited to 35% (Low Peak scenario) and 70% (High Flexibility 
scenario) of the maximum occurring charging peak load. It is assumed that the increased number of charging 
stations in the High Flexibility scenario allows a better distribution of flexible provision across different grid 
areas, which increases the overall upshift capability.  

Furthermore, the 3-hour delay charging processes occur predominantly at public charging locations. It is 
assumed that 70% of potentially flexible public charging processes planned according to the Charge at Arrival 
strategy are available simultaneously for a shift. This includes a risk discount since the projected flexibility can 
differ from the realizable flexibility due to spontaneous decisions of drivers. The same assumption applies to 
home charging. Work charging is assumed to be more predictable and is therefore only limited to 90%. Those 
assumptions are valid for both charging infrastructure scenarios. 
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Identifier Category Motivation Description of 
parameter 
variations 

Value in the reference 
scenario 

CN45-ref Reference Carbon-neutral MMES 
in 2045 

- - 

Wind Onshore 
Restricted 

Energy supply Tight land restrictions 
for onshore wind 
turbines remain 
unchanged as in 2020 

150GW maximum 
onshore wind 
capacity  

250GW 

Direct Air 
Capture 
expensive 

Energy supply Decelerated decrease 
of Direct Air Capture 
cost  

CO2 prices for e-fuel 
synthesis in 
Germany: 200€/𝑡𝐶𝑂2 

50€/𝑡𝐶𝑂2 

Low H2 Import 
Costs 

Energy supply International H2 
imports are fostered 
by politics to 
guarantee the lowest 
H2 import costs  

GH2: 5-10ct/kWh 
depending on import 
route; cost 
difference between 
import routes 
according to the 
reference scenario 

7- 12ct/kWh 

Low Fuel Costs Energy supply International H2 & e-
fuels (gaseous and 
liquid) imports 
fostered by politics 

e-Fuel: 10.4ct/kWh       
e-CH4: 7.1ct/kWh       
GH2: 5-10ct/kWh  

 

15.3ct/kWh 
10.6ct/kWh 7-
12ct/kWh 

High Fuel Costs Energy supply Worldwide 
competition increases 
market prices of H2 & 
e-fuels  

e-fuel: 19ct/kWh       
e-CH4: 16ct/kWh    
GH2: 14-19ct/kWh  

 

15.3ct/kWh 
10.6ct/kWh 7-
12ct/kWh 

High e-Fuel 
Costs 

Energy supply Worldwide e-fuel 
demand increases 
market prices; H2 
import routes are not 
impacted 

 

e-fuel: 19ct/kWh  15.3ct/kWh  

Green LCH4 
Imports 

Energy supply Green synthetic liquid 
fuel imports routes 
are built up  

LCH4: 9.4ct/kWh Not applicable 

Low CH4 Costs Energy supply E-methane import 
routes established 
cost-efficiently to 
substitute natural gas 

e-CH4: 7.1ct/kWh  10.6ct/kWh 

100% H2 
Imports 

Energy supply Low economic viability 
of electrolyzers in 
Germany hinders 
investors 

No inland H2 
generation 

Optimized electrolysis 
capacity and 
generation 

Table 5-11 – Scenario descriptions for sensitivity analysis in ESDP (part 1 of 3). 
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Energy Copper 
Plate 

Energy 
transport 

Model: impact of 
neglecting energy 
transport costs in 
energy system studies 

All energy transports 
free of costs 

cf. Section 5.3 

Restricted Grid 
Expansion 

Energy 
transport 

Low acceptance of 
new electricity 
transmission lines by 
the population 
decelerates the 
expansion until 2045 

Maximum capacity 
of each connection 
restricted to 150% of 
the 2017 net transfer 
capacities 

Maximum restricted 
to 300% 

H2 Pipe 
Recompression 

Energy 
transport 

Model: additional 
recompression along 
each pipeline  

283€/MW/km (cf. 
Table 5.8) 

128 €/MW/km 

NG Pipe 30% 
Reassignment 

Energy 
transport 

Natural Gas (NG) 
pipeline system 
operators reassign a 
few pipelines for H2 

30% of NG pipeline 
capacity in Germany 
used for H2 (costs: cf. 
Table 5.8) 

0% 

NG Pipe 70% 
Reassignment 

Energy 
transport 

NG pipeline system 
operators reassign 
most pipelines for H2, 
only securing crucial 
European connections 
for NG 

70% of NG pipeline 
capacity in Germany 
used for H2 (costs: cf. 
Table 5.8) 

0% 

Only GH2 
Trailer 

Energy 
transport 

Large infrastructure 
pipeline projects are 
not realized until 2045 

Only transport via 
GH2 trailer (costs: cf. 
Table 5.8)  

Pipeline and trailer 
transport optimized 

Distributed H2 
Hubs 

Energy 
transport 

Efficiently planned 
pipeline network from 
sink to a source with 
distributed hubs 
within one region 
minimizes the total 
distribution distance 
within each region; all 
applications pay the 
same distribution 
costs 

3ct/kWh H2 
distribution for all 
applications, 
including synthesis 
processes 

6.15ct/kWh for all 
applications, but 
synthesis processes 
(cf. Section 5.33) 

No H2 Cavern 
Storage 

Energy 
transport 

Cavern storages in 
Germany are not cost-
efficiently established 
as large-scale H2 
storages 

Maximum cavern 
storage capacity of 
0GWh 

930GWh 

Table 5-11 – Scenario descriptions for sensitivity analysis in ESDP (part 2 of 3). 
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No Refueling 
Costs 

Mobility sector Model: impact of 
neglecting refueling 
and charging 
infrastructure costs in 
energy system studies 

No costs for 
refueling and 
charging processes 

cf. Section 5.3.2 

Equal Vehicle 
Costs 

Mobility sector Diversification of 
technologies in 
international 
automotive markets  

Equal costs for all 
mobility 
technologies, 
including road, rail, 
and water 

Appendix C 

Hydrogen 
Mobility 

Mobility 
technologies 
fixed 

Hydrogen usage in the 
mobility sector 

Road transportation 
and inland shipping: 
60%-95%; rail: >40% 
of non-electrified rail 
transportation 

Optimized with an 
upper limit of 95%; rail 
limit of 50% 

Electric 
Mobility 

Mobility 
technologies 
fixed 

Electrification of road 
transportation  

Penetration rates: 
BEVs, Bus Battery, 
LDV Battery: 90%-
95%; HDV battery 
60%-95% 

Optimized with an 
upper limit of 95% 
penetration rate 

Controlled 
Charging Low 
Peak 

Controlled 
Charging 

Pareto optimal 
charging 
infrastructure design, 
which minimizes the 
total charging peak 

Controlled charging Charge at Arrival 
without controlled 
charging 

Controlled 
Charging High 
Flexibility 

Controlled 
Charging 

Pareto optimal 
charging 
infrastructure design, 
which maximizes the 
total daily flexibility of 
BEVs 

Controlled charging Not considered 

Table 5-11 – Scenario descriptions for sensitivity analysis in ESDP (part 3 of 3). 

The model is built up in GAMS and solved with CPLEX using an interior-point approach. This solving algorithm is 
chosen because it is considered best practice for large linear energy system models [196].  

The linear problem has a size of 7.4 Gigabytes. After pre-solving the problem in CPLEX, the model is reduced to 
2.38 million rows, 4.47 million columns, and 13.55 million non-zero coefficients. Every third hour of six 
representative weeks is modeled to reduce the complexity and the computational effort (cf. Section 2). The total 
parallel computation time using 32 threads on a server is about 3 hours.  
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6 Results 

 

The interactions of a decarbonized mobility sector and the energy supply, transport, refueling, and charging 
infrastructure requires a fundamental modeling and simulation framework. After the framework is described in 
the previous sections, the research questions are answered consecutively in this section. 

The MMES optimization is analyzed for the target year 2045. Existing assets and planned assets, according to 
the NEP 2030 (2019), are set as initially installed capacities, and the capacity expansion and the technologies’ 
operation are optimized for the target year 2045. Nuclear, lignite, and coal power plants will be phased out 
before 2045. The reference scenario ‘CN45-ref’ targets a carbon-neutral energy system in Germany in 2045. The 
mobility demand is assumed to increase by 14.6% compared to 2020 based on an EU reference scenario [197]. 
This includes, inter alia, 5.6% growth in private road transportation, 61.4% in passenger rail transportation, 
11.9% in road freight transportation, and 24% growth in freight rail transportation. Weighted average costs of 
capital are assumed to be 7%. 

The total multi-modal energy demand in the optimized reference scenario is 1898 TWh in Germany in 2045 (cf. 
Figure 6-1). All demands but the energy demand in the mobility sector, electricity exports, and electricity losses 
are exogenously fixed. Efficiency gains of, e.g., 18% for HDV IC-LF compared to 2020 and especially of 78% by 
BEVs compared to Car ICE-LF in 2020, reduce the mobility sector’s energy consumption by a factor of 2.8 from 
761 TWh to 272 TWh in 2045. Direct electrification can be cost-optimally achieved in many applications in the 
heat and mobility sector, which increases the share of MMES’s electricity consumption from the overall end 
energy usage to 63%. To supply this, the electricity generation increases by 210% compared to 2019. A major 
share of 93% is generated by renewables with wind turbines and PV capacities of 601 GW. Since PV is the 
cheapest source of electricity, it is installed up to its available maximum capacity of 343 GW, including roof and 
ground-mounted systems. In contrast, onshore and offshore turbine capacities are not fully expanded in the 
model. Especially, offshore turbines are capital-intensive investments, and hence, only 15 GW are installed 
despite their 4170 full load hours. Additionally, offshore turbines require the largest grid investment. Presumed 
weighted average cost of capital of 7% further increase the costs of capital-intensive investments. Contrary, PV 
has the lowest capital expenditures of all three technologies and additionally the most even spatial distribution 
across Germany. Those advantages exceed the low availability of solar energy of on average 1140 full load hours. 
The volatile generation capacities are supplemented by 114 GW of the flexible assets (batteries and imports, 
excluding gas power plants). The latter is considered here as flexible but still relies in the model on the hourly 

 

Figure 6-1 – Total final energy consumption (left) and electricity supply capacities (right) in the reference 
scenario. 
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availability of the electricity generation and the hourly demand in each country. In neighboring countries, 78 GW 
of gas power plants and 30 GW of battery capacity are installed.  

 

The seasonality of electricity generation from wind turbines is contrary to PV generation (cf. Figure 6-2). While 
wind energy is primarily generated in January and late October, PV peaks of up to 240 GW occur predominantly 
from March to August. In total, 3% of the annual wind and solar energy is curtailed predominantly in January 

 

 

Figure 6-2 – Electricity generation (top) and demand (bottom) for six representative weeks on a three-
hourly time step.  
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and March. The high generation of RES with a peak of more than 300 GW and a generation above 200 GW for 
several consecutive days drives the curtailments. In contrast, daily PV peaks in summer are not curtailed since 
battery storages and heat pumps provide enough short-term flexibility. Gas turbines fueled by e-methane run 
in times of low availability of renewable energy sources. This is mainly in October to generate electricity and 
heat. Hydrogen is not used in gas turbines. 

The electricity peak load is supplied by volatile RES, secured capacities and flexible sources on. Including the 
operation of flexible demands balancing the RES, it amounts to 335 GW. This is about four times as high as in 
2019, and it is mainly driven by the need to balance the increased PV and wind turbine capacities. Heat pumps, 
electrolyzers, and batteries are the main sources of flexibility on the demand side, whereas residential heat 
pumps operate primarily in winter to satisfy the space heating demand. This aligns with the higher availability 
of RES in winter and reduces battery utilization in winter. Batteries function as short-term storage 
complementing the daily PV generation. Electrolyzers operate more versatile, generating large amounts of 
hydrogen in January and March, which is then stored and used across the year. In summer, electrolyzers mainly 
operate to balance the PV peak generation.  

The mobility sector’s electrification is mainly driven by passenger cars and LDV. The consumed electricity of the 
mobility technologies transporting passengers and freights amounts with 142 TWh in 2045 to 10% of the total 
electricity demand. Passengers are transported to 71% by BEVs consuming 104 TWh of electricity (cf. Figure 6-3). 
While this is 95% of the individual passenger road transportation, fuel cell vehicles complement the segment 
with 5%, consuming 8 TWh. Hydrogen is not further used in the mobility sector. Inland flights, still relying on 
ICEs combusting e-fuels, account for 16% of the total energy demand while serving only 8% of the traveled 
kilometers. Public road passenger transportation by busses is split into e-fuel combustion and battery-electric 
powertrains. The electrification of the freight transportation is only in the LDV segment cost-optimal, and only 
1% of the energy consumed by HDV is provided by Catenary powertrains. HDV-ICEs consume 90% of the road 
freight transportation’s energy and serve 63% of the road freight transportation demand. Ships running on e-
fuels demand 7.6% of the total energy of freight transportation.  

 

 

Figure 6-3 – Mobility sector demand in traffic capacity (inner circle) and energy consumption (outer circle) 
for passenger (left) and freight (right) transportation 
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The optimized energy transport networks depend on the regional generation capacities of electricity and 
hydrogen. Figure 6-4 shows the capacities for onshore wind turbines, PV, and Electrolyzers on the NUTS2 level. 
PV is installed up to its maximum capacity within each region, resulting in a more balanced distribution over the 
entire country than wind turbines. Onshore wind turbines are primarily installed in regions with high full load 
hours in northern Germany (cf. Figure 5-16) and in regions with large available land areas, such as Mecklenburg-
Western Pomerania, reaching a capacity of 45 GW. The optimizer allocates 37 GW of electrolyzer capacities in 
Germany, leading to 130 TWh of hydrogen generation in Germany. Those electrolyzers are predominantly 
installed in four regions: Mecklenburg-Western Pomerania (15 GW), Schleswig-Holstein (8.9 GW), Weser-Ems 
(7.2 GW), and Saxony-Anhalt (4.7 GW). Additionally, 59 TWh (81% of the imported hydrogen) comes from 
Northern Europe and lands in Schleswig-Holstein via pipeline. The marginal costs of inland generated hydrogen 
depend strongly on the time of operation. Electrolyzers operate to 99% in times with available electricity prices 
below 5 €/MWh. Operating 3000 hours of the year, the average variable hydrogen generation costs are 
3.5 ct/kWh7. The volume-weighted average marginal costs of inland hydrogen generation are 7 ct/kWh.8 This 
shows that the electrolyzer utilizes low electricity costs to generate hydrogen if the marginal costs of hydrogen 
stay below the import costs from Northern Europe and Southern Europe. The low electricity costs and the High 
Flexibility of electrolyzers explain the high amount of inland generated hydrogen in the model. It can be derived 
that transporting electricity is avoided by optimally allocating the electrolyzers in locations with a high 
renewable electricity generation potential.  

 

The mobility sector’s demand for e-fuels can be generated inland due to the low hydrogen generation costs. 
While a total of 206 TWh of hydrogen is consumed in 2045, only 8 TWh of hydrogen is directly used in the 
mobility sector. A large share of 41% is consumed in the steel and ammonia industry, but the most significant 
share of 55% is used in FT synthesis processes generating e-fuels for the mobility sector. It shows that this is 
cost-competitive against e-fuel import costs of 15.3 ct/kWh due to low hydrogen costs. Using existing vehicle 
technologies for e-fuels as well as transport, distribution, and refueling infrastructure favors the usage of e-fuels 
over hydrogen. Therefore, electricity transportation and grid extensions are reduced by converting electricity 
into hydrogen and e-fuels.  

 

Figure 6-5 shows the optimized transport capacities between NUTS2 regions for hydrogen and electricity as delta 
capacities to the initial grid in 2017, and methane. With total electricity grid capacities up to 15 GW and 
hydrogen capacities up to 10 GW, both energy transport infrastructures stay 10 below the methane network. 
The net transfer capacities of electricity in 2017, in comparison, are 1.9 GW and reach a maximum of 5 GW. One 
reason for not reaching methane transport capacities is that no hydrogen exports are considered in the 
optimization, which could increase the hydrogen pipeline capacity between German regions. However, an 
enormous extension of electricity grids by factor three is required. Minimal electricity grid extensions occur in 
the south, south-west, and east of Germany. Larger grid extensions of 5 GW-10 GW are calculated, e.g., in 
Schleswig-Holstein, Hessen, between Thuringia and Upper Franconia, and between Weser-Ems and Muenster. 
Those extensions connect regions with low installations of wind turbines with wind-dominated regions in the 
North. An exception is in the North-East, from Mecklenburg-Western Pomerania and Brandenburg to other 
regions, where only minor electricity grid extensions are installed in wind-dominated regions. Instead, the 
optimizer installs hydrogen pipelines of up to 5 GW in Mecklenburg-Western Pomerania, converting wind energy 
to hydrogen and transporting it via pipelines to other regions. Additionally, the electricity grid is expanded 
between Schleswig-Holstein and Mecklenburg-Western Pomerania by up to 4 GW to increase the electricity 
available for the hydrogen conversion. The very high hydrogen availability by inland electrolysis and imports in 
Northern Germany strongly affects the structure of the hydrogen pipeline network. The hydrogen is distributed 

 

7 The given cost of hydrogen is here based on the hourly marginal electricity costs by multiplying the generated hydrogen in each hour with the marginal 

electricity costs. The marginal electricity costs are costs for an additional incremental unit of electricity demand in the model. Further, capital 

expenditures are not integrated in this price. 

8 This means, that 130TWh of hydrogen can be generated for marginal costs below 7 ct/kWh. 
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southwards to the rest of Germany with pipeline capacities of 9 GW-10 GW. Only Tubingen and Swabia in the 
South are supplied by trailer due to low hydrogen demands and long transport distances.  

 

 

 

 

6.1 Energy carriers in the mobility sector  

 

The robustness of the above-presented cost-optimal energy carriers in the mobility sector is assessed in this 
section. Detailed insights into the technology mix of the passenger and freight transportation sectors are shown 
in Appendix D and mentioned throughout the following paragraphs. 

The total energy demand in the mobility sector ranges from 243 TWh to 295 TWh, with its minimum and 
maximum energy demand occurring in the fixed mobility sector scenarios (cf. Figure 6-6). The total energy 
consumption in the Hydrogen Mobility scenario exceeds the consumption in the Electric Mobility scenario by 

 

Figure 6-5 – Energy transport capacities of commodities methane, electricity (expansions to 2017), and hydrogen 
(region names in Appendix B). 

 

Figure 6-4 – Regional capacities for Onshore Wind Turbines, PV, and Electrolyzers (region names in Appendix B). 
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20%. This is caused by the lower efficiency of fuel cell vehicles of 40% compared to direct usage of electricity. 
However, the mobility sector is still electrified by 30%, reducing the total increase of energy consumption in the 
mobility sector. 

Electricity and liquid fuels are the dominating energy carriers in most scenarios. Nevertheless, the number of 
scenarios showing a specific energy carrier as cost-optimal does not directly indicate their relevance. Electricity 
provides 46% (123 TWh) to 66% (171 TWh) of the total energy demand, excluding the Hydrogen Mobility 
scenario. The lowest direct electricity consumption in the mobility occurs if electricity transmission grid 
extensions are restricted (Restricted Grid Expansion). The restriction increases the need for flexibility, which can 
be provided from electrolyzers and hydrogen storage. Decreased electrification rates of 68% and 4% of busses 
and passenger cars, respectively, reduce the electricity demand in the mobility sector by 5% compared to the 
reference scenario.  

 

 

Further, depending on the scenario, the e-fuel consumption is between 46 TWh and 139 TWh. Its utilization is 
low if both e-fuel and hydrogen costs increase simultaneously (High Fuel Costs), alternative powertrain 
technology costs even out with ICE costs (Equal Vehicle Costs), e-methane is available at low costs (Low CH4 
Costs), energy transport or refueling costs are neglected (No Refueling Costs), hydrogen is import to 100% (100% 
H2 Imports), or if H2 distribution costs to refueling station decreases by simultaneously increasing the hydrogen 
distribution for usage in FT synthesis (Distributed H2 Hubs). The latter scenario is the only scenario with cost-
optimized energy carriers in the mobility sector, in which the reduced e-fuel consumption is substituted by 
hydrogen. 

The consumption of hydrogen in the mobility sector is below 18 TWh. It only increases to 44 TWh if the hydrogen 
vehicle powertrain costs are equal to other vehicle technologies (Equal Vehicle Costs) and to 79 TWh if 
distributed hydrogen pipeline hubs (Distributed H2 Hubs) are realized. The latter decreases the overall hydrogen 
distribution costs for the sake of higher hydrogen distribution costs to synthesis process locations. In contrast, 
a reduction of costs for hydrogen imports by 14% (lowest import route at 5.9 cents per kWh) does not increase 

 

Figure 6-6 – Cost-optimal energy carriers in the mobility sector for the reference scenario CN45-ref, 19 additional 
scenarios, and the two fixed mobility sector scenarios Hydrogen Mobility and Electric Mobility.  
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the hydrogen share in the mobility sector. This is due to the cost-efficient pathway of converting hydrogen into 
e-fuels while using existing vehicle technologies at lower costs and existing infrastructures for transport, 
distribution and refueling. The technology-neutral assessment here shows that the hydrogen generation or 
import cost itself is not the main lever for a direct hydrogen usage in the mobility sector. Increased variable 
synthesis costs (Direct Air Capture expensive) increase the hydrogen usage only slightly by 9 TWh in the 
passenger car segment. The main lever is the cost ratio between synthesis costs and hydrogen costs at the 
refueling station. If this is balanced (Distributed H2 Hubs), hydrogen is not converted to e-fuel but used directly 
in passenger cars and LDV. Simultaneously, instead of liquifying the hydrogen for usage in the HDV segment, the 
electrification increases by 90%. 

The impact of different scenarios on the optimal energy carriers is further elaborated in Figure 6-7. The reference 
and the Electric Mobility scenario are dominated by electrification and e-fuels and are therefore drawn near the 
diagonal line. Contrary, the Hydrogen Mobility scenario is characterized by a high share of hydrogen usage and 
is hence offset. Compared to the Electric Mobility scenario, electrification is not substituted by e-fuels but by 
hydrogen. The electrification rate in the optimized scenarios ranges from 57% to 79%. 

The assessed energy supply scenarios result, but in the low methane cost scenario, in substitution of e-fuels with 
electrification or vice versa (cf. Figure 6-7). This impact can be described in three steps. 

First, three scenarios show no deviation in the mobility sector from the reference scenario. One of the scenarios 
is ff a restricted availability of land for onshore wind turbines is applied (Wind Onshore restricted). Even though 
37% fewer wind turbines are installed in this scenario, it does not impact the electrification rate. The reduced 
availability of electricity is compensated primarily by reducing the share of hydrogen generation in Germany 
from 64% to 42% and increasing the hydrogen import volumes accordingly. Further, no deviation from the 
reference scenario occurs if liquid e-methane imports are enabled to 9.4 ct/kWh (Green LCH4 Imports) or if e-

 

Figure 6-7 – Electrification and e-fuel rate in the mobility sector in dependency on the energy supply and transport 
infrastructure. Electrification and e-fuel rates are defined based on the Gpkm and Gtkm supplied by the 
corresponding commodity. The dashed line indicates the bisector along which e-fuels and electricity are 
perfectly substituted. The larger the Euclidean distance of a scenario this diagonal, the more hydrogen or 
methane is consumed in the mobility sector. 



 

  94 

fuel import costs increase by 22% to 19 ct/kWh (High e-Fuel Costs). The latter scenario has no impact since the 
optimizer does already not import e-fuels in the reference scenario. 

Second, scenarios in the energy supply category that show a reduced electrification rate by 1%. Those are 
scenarios with low assumed import costs either for all fuels, including e-methane and hydrogen (Low Fuel Costs), 
only for hydrogen (Low H2 Costs), or only for e-methane (Low CH4 Costs). In the first two of those scenarios, the 
electrification rate of the bus fleet decreases from 48% to 12%. If all fuels are available at low cost, an additional 
7% of HDVs are switched from ICE-LF to ICE-LCH4. If only e-methane is available to 7.1ct/kWh instead of 
10.6ct/kWh (Low CH4 Costs), 87% of the HDVs are switched to ICE-LCH4, and the ICE-LF busses increase from 
53% to 82%. 

Third, scenarios with high energy supply costs boost the electrification by substituting the usage of e-fuels. Those 
scenarios are characterized by a scarcity of low-cost e-fuels. High fuel import costs (High Fuel Costs), including 
e-methane and hydrogen, drive the demand for using 103 TWh of inland generated hydrogen for methanation 
instead of FT synthesis. Methane is required for heat and electricity generation in gas power plants. E-fuels from 
hydrogen imports cannot compete with the direct electrification of HDVs and busses. This argument is 
additionally supported by the scenario with 100% H2 imports, where the hydrogen is solely used to supply the 
industry and generate e-fuels for ships, aviation, and for a minor share of HDVs. Further, high e-fuel inland 
generation costs due to increased CO2 prices for synthesis processes decrease the e-fuel usage (Direct Air 
Capture expensive). E-fuel imports at 15.3 ct/kWh are not cost-competitive compared to the electrification of 
the mobility sector. This shows that the impact of the scarcity of low-cost e-fuels on the cost-optimal energy 
carriers in the mobility sector exceeds the impact of the increased electricity costs from additional electricity 
demand due to an increased electrification rate. The lower efficiency of the consumption of e-fuels in the 
mobility sector compared to electricity is one reason for the high e-fuel sensitivity of the optimal solution. The 
marginal e-fuel costs at the refueling station increase by 11% to 22%, and the higher electricity demand increases 
the marginal electricity costs at the charging station simultaneously by 7% to 18%. The optimizer increases in all 
three scenarios the electrification of busses up to 87% and the electrification of HDVs up to 80%. 

Furthermore, Figure 6-7 shows the impact of the modeled energy transport infrastructure parameter variations 
on the energy carriers in the mobility sector. The lowest electrification rate (57%) and the highest e-fuel rate 
(39%) are cost-optimal if the electricity grid expansion is restricted to 150% of the grid capacities in 2017 
(Restricted Grid Expansion). The bus fleet’s electrification rate declines in return for ICE-LF busses and increases 
the share of FC-H2 Cars by 82%, consuming 14 TWh of hydrogen, compared to the reference scenario. The 
reduced electricity transport capacities cause increased marginal electricity costs by 6% and an increased value 
of the electrolyzers’ flexibility. The latter is reflected in a 19% increase in the share of hydrogen inland 
generation. 

While reduced hydrogen transport costs by reassigning gas pipelines (NG Pipe 30% Reassignment, NG Pipe 70% 
Reassignment) do not impact the mobility sector, increased hydrogen transport costs by a factor of two due to 
increased hydrogen compression demand for the pipeline transport (H2 Pipe Recompression), or by a factor 
greater than six due to a country-wide trailer transport (Only GH2 Trailer), increase the electrification rate by 
5% and 8%, respectively. This substitution occurs in the HDV segment by introducing hybrid catenary trucks with 
battery systems. It is primarily reasoned by a decline of the full load hours of electrolyzers by 27%, leading to a 
reduction of cost-efficient FT e-fuel conversion by 54%. 

If distributed hydrogen hubs are considered for hydrogen transport (Distributed H2 Hubs), 79 TWh of hydrogen 
is used directly in the mobility sector. While this increases the overall efficiency compared to using hydrogen in 
synthesis processes, it reduces the overall hydrogen demand in the MMES by 12%. It results in the following 
changes in the different mobility sector segments compared to the reference scenario: 46% penetration of FC-
H2 Cars compared to 5%, 88% electrification of busses compared to 46%, 59% LDV FC-H2 compared to 5%, and 
90% electrification of HDV, including full Battery and Catenary Battery HDVs. The increased electrification in the 
HDV and bus segment is here cost-optimal compared to direct usage of hydrogen. Increased hydrogen costs for 
synthesis processes trigger the substitution of e-fuels since they are assumed to be not directly located at the 
transport pipeline hub but require hydrogen distribution for their hydrogen supply. Finally, if energy transport 
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costs are neglected in the MMES (Energy Copper Plate), the electrification increases by 12% by using HDV 
Catenary Battery trucks. 

Moreover, refueling and charging station costs, including catenary systems, and vehicle costs impact the optimal 
technology mix in the mobility sector as well (No Refueling Costs). If no refueling and charging station costs are 
considered in the MMES model, the electrification will increase by 10% (cf. Figure 6-7). The technology shift 
occurs in freight transportation substituting HDV ICE-LF with HDV Catenary Battery. If all transportation 
technology costs are equal (Equal Vehicle Costs), electrification and hydrogen will replace the ICE technologies. 
Busses are electrified to 96%, HDVs running on e-fuels are reduced to 5% introducing HDV Battery and Hybrid 
HDV Catenary ICE-LF trucks. But also, the electrification of passenger cars is reduced, and FC-H2 cars’ 
penetration reaches 29%. Finally, only this scenario introduces fuel cell trains on today’s non-electrified railways 
supplying 9% of the total rail transportation demand. This shows that the costs of a train are the main lever for 
the usage of fuel cell trains. 

The analysis of the energy carriers in the mobility sector shows that e-fuels and electricity9 are relevant in the 
transportation segments with capital-intensive technologies: busses, HDVs, trains, and ships10. Hydrogen and 
electricity are relevant in less capital-intensive segments: passenger cars and LDVs (cf. Appendix D). It further 
shows that especially busses and HDVs are affected by the sensitivities conducted in the MMES. This can be 
attributed to the comparatively high operational costs, with consumption rates exceeding those of ICE-LF Cars 
by a factor of five to six.11 

Now, by summarizing the key findings in the current Section, Research Question 1 can be answered. 

 

9 Not applicable here for vessels. 

10 Airplanes can only be fueled by e-fuels in the present thesis and are therefore not further specified in the analysis here. 

11 Factor based on ICE-LF technologies for cars, busses, and HDVs. 
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6.2 Energy infrastructure for a decarbonized mobility sector 

 

The impact of parametrizations of the energy system on the energy carriers in the mobility sector is investigated 
in Section 6.1. Subsequently, the mobility sectors’ impact on the MMES is assessed in the current Section. The 
assessment covers the electricity generation, the heat sector, and the hydrogen supply chain, including the 
energy transport infrastructure. While this section still includes all scenarios, the focus is on the fixed mobility 
sector scenarios Hydrogen Mobility and Electric Mobility, which represent extreme scenarios. 

While the optimized gas power plants and PV capacities are constant in all scenarios, the optimized onshore 
wind turbine capacity varies significantly from 184 GW to 250 GW, excluding the scenario with limited onshore 
wind turbine capacities (cf. Figure 6-8). In contrast, capital intensive offshore wind turbine capacities are non-
sensitive to the parameter variations and increase only from 15 GW to 37 GW or 34 GW if onshore wind turbines 

RQ1: What are the optimal energy carriers to fuel a decarbonized mobility sector and how does 
the required energy supply and transport infrastructure impact the share of those energy 
carriers in a cost-optimally decarbonized Multi-modal Energy System? 

 

Electrification: 

(a) The introduction of electric powertrains decreases the end energy demand in the mobility 
sector by up to factor three compared to 2019. 

(b) The electricity consumption in the mobility sector is between 123 TWh and 171 TWh, with an 
electrification rate in the passenger road transportation above 79%. This is only reduced to 
70% if vehicle technology costs even out across all powertrains or to 55% if annually 
averaged marginal hydrogen costs at the refueling station are 49% lower than electricity 
costs. 

(c) An electrification rate in the entire mobility sector between 63% and 79% is cost-optimal if 
liquid fuels and hydrogen are both only available at high costs, alternative powertrain costs 
even out with ICE powertrains, or hydrogen transport costs increase compared to the 
reference scenario. 

(d) An increase of the electrification rate from 61% to 67% can occur if cost parameters for 
electricity transportation or charging and refueling infrastructure are neglected. 
 

E-fuels and hydrogen: 

(e) Between 46 TWh and 139 TWh of e-fuel is consumed with an e-fuel utilization rate in the 
mobility sector varying between 13% and 39%. High e-fuel usage is cost-optimal if sufficient 
hydrogen for synthesis processes is available below 6.9 ct/kWh or CO2 costs from direct air 
capture are at 50 €/ton CO2.  

(f) Hydrogen provides between 8 TWh and 79 TWh of energy to the mobility sector. Cost-
optimal usage of hydrogen is observed, if vehicle technologies even out in 2045, or if 
hydrogen distribution cost discrepancies between synthesis processes and hydrogen 
refueling stations even out at 3 ct/kWh. 

(g) The e-fuels used are used in capital intensive modes of transportation (busses, HDV, trains, 
ships), and the hydrogen is used in segments with lower capital investments (cars, LDVs).  

(h) The cost-optimal technology mix in the mobility sector and the corresponding energy carriers 
are more sensitive on parameter changes in transportation segments with high variable 
operational expenditures (busses, HDVs). 
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are restricted to 150 GW (Wind Onshore restricted), or if both e-fuel and hydrogen import costs increase as in 
the ‘High Fuel Costs’ scenario, respectively. The total annual electricity generation increases by factor 2 to 2.6 
compared to 2019. The annual electricity generation from wind turbines and PV amounts to 938 TWh to 
1234 TWh, which is 90% to 93% of the annual electricity generation in Germany in 2045. Gas power plants run 
for 1176 to 1676 hours per year; averaged over all considered types of gas power plants, including combined 
heat and power plants.  

 

 

None of the above-mentioned variations in the electricity sector correlates to the energy carriers in the mobility 
sector but it can be attributed to the input parameter variations in the energy supply or transport infrastructure. 
The low impact of the energy carriers in the mobility sector on the electricity sector is additionally emphasized 
when comparing the two extreme scenarios, ‘Electric Mobility’ and ‘Hydrogen Mobility’. The onshore wind 
turbine capacity varies in these two scenarios by less than 4% around the reference scenario (cf. Figure 6-8) even 
though the consumed energy carriers in the mobility sector differ significantly (cf. Figure 6-6). On the contrary, 
assessing the system's battery power (in GW) shows that a large share of hydrogen in the mobility sector 
(Hydrogen Mobility) reduces the required battery power from 72 GW in ‘CN45-ref’ by 2% and an increased 
electrification rate (Electric Mobility) increases the optimal battery power by 15%. This is without assuming 
controlled charging, which is investigated in Section 6.3. The indirect flexibility of the mobility sector by 
generation and storage of hydrogen in Germany is used to balance volatile energy sources and reduces the 
required battery power. If no inland generation of electrolysis is allowed in the optimization (100% H2 Imports), 
the electrification of the mobility sector increases significantly (cf. Figure 6-7), which in turn increases the 
demand for battery power by 26% up to 91 GW. This emphasizes the relevance of the indirect flexibility of the 
mobility sector in a cost-optimal MMES. 

 

 

Figure 6-8 – Electricity generation capacities in 22 scenarios. 
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Further analysis of the mobility sector’s impact on the energy storage capacities (GWh) in the MMES shows that 
the optimizer builds 250 GWh of energy storages per 10% increased electrification rate in the mobility sector 
(cf. Figure 6-9). This includes central heat storages (120 GWh), central battery storages (21 GWh), and GH2 vessel 
storages (109 GWh). This trend is based on a linear regression with a correlation coefficient of 0.68 for battery 
storage, 0.74 for hydrogen storage, and 0.76 for heat storage. Those coefficients indicate a moderate positive 
correlation. Outliers, such as the ‘100% H2 import’ scenario, are excluded. The regression is defined between an 
electrification rate of 57% to 79% for heat and hydrogen storage. For battery storage, it is defined from 30% to 
79%. In comparison, almost 200 GWh of battery capacity in BEVs is installed per 10% increased electrification, 
considering only passenger cars and assuming an average battery capacity of 40 kWh per BEV. The potential of 
the BEVs’ batteries in the MMES to support the energy system by controlled charging is assessed in Section 6.3. 

 

The heat sector’s electrification rate is not affected by the electrification of the mobility sector (cf. Figure 6-10). 
The electrification of the heat sector is always cost-optimal in the assessed scenarios with an electrification rate 
in all scenarios above 87% and in 17 out of 22 scenarios above 91%. Solely the energy supply scenarios affect 
the electrification rate. This is reasoned primarily in a high efficiency of heat pumps. 

 

 

Figure 6-9 – Energy storage capacity in GWh in dependency on the mobility sector’s electrification rate.  
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In the mobility sector, hydrogen is consumed directly in fuel cell vehicles or indirectly by combusting e-fuels. The 
total hydrogen demand in the MMES ranges from 104 TWh to 286 TWh (cf. Figure 6-11). Up to 119 TWh of 
hydrogen is used to generate e-fuels in Germany, which are used in the mobility sector. Nevertheless, a high 
direct hydrogen demand for passenger cars of 142 TWh increases the total hydrogen demand of the mobility 
sector to its maximum value of 197 TWh in the ‘Hydrogen Mobility’ scenario. E-fuel generation in Germany is 
only relevant if the mobility sector does not use hydrogen directly. Methanation of hydrogen occurs in scenarios 
with high import costs for all energy carriers (High Fuel Costs) or if hydrogen transported between regions is 
cost intense (Only GH2 Trailer). Finally, a distributed hub concept (Distributed H2 Hubs) for hydrogen transport 
and distribution results in 15 TWh of hydrogen demand for combined cycle gas power plants and 6 TWh for 
central gas heating. However, there are no scaling effects of hydrogen usage across sectors due to an extensive 
usage in the mobility sector and the associated expansion of a hydrogen supply chain. This is mainly due to two 
reasons. First, the capital expenditures of the electrolyzers are less relevant than operational expenditures, 
which are minimized by only operating in low electricity cost periods. This means that an increased utilization 
rate of electrolyzers due to hydrogen usage across more applications is not-cost optimal. Second, the hydrogen 
generation and import costs are more relevant than the hydrogen transport costs. Therefore, a jointly used 
hydrogen pipeline network between different sectors with increasing utilization does not reduce the overall 
hydrogen costs sufficiently for a fuel switch to hydrogen in the electricity or heat sector. 

Furthermore, 71 TWh to 215 TWh of hydrogen are supplied by electrolysis in Germany (cf. Figure 6-11). 
Additional low-cost hydrogen for 6.9 ct/kWh from Northern and Southern Europe is imported, reaching up to 
its combined assumed import limit of 103 TWh. The optimizer does not choose to import a significant amount 
of hydrogen from Northern Africa for 7.9 ct/kWh resulting in an inland generation share of 34% to 94%. Large-
scale inland generation of 112 TWh hydrogen is cost optimal even in the ‘Electric Mobility’ scenario. A low share 
of inland generation is only triggered by low fuel import costs (Low Fuel Costs, Low CH4 Costs) and a low onshore 
wind turbine capacity potential (Wind Onshore restricted). The mobility sector affects the electrolyzer capacities 
if hydrogen is directly consumed, but other factors from the energy supply scenarios show at least a similar 
impact. These demand and supply structures are relevant for the required energy transport infrastructure 
assessed subsequently. 

Figure 6-13 shows the optimized hydrogen supply regionally resolved for imports and central inland electrolysis. 
Electrolyzers, flexibly operated, exhaust low electricity costs. Therefore, the demand in the Hydrogen Mobility 

 

Figure 6-10 – Electrification rate in the heat and mobility sectors.  
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scenario leads only to a minor increase in hydrogen generation from electrolysis in each region and vice versa 
for the Electric Mobility scenario. In contrast, the hydrogen imports vary strongly across the scenarios on a 
regional scale – especially in Schleswig-Holstein and Freiburg. This, in turn, leads to an increased central pipeline 
capacity between Schleswig-Holstein and Lueneburg from 10 GW to 18 GW (cf. Figure 6-12). Two new regions 
are connected to the hydrogen pipeline network in the ‘Hydrogen Mobility’ scenario, supplying Tubingen and 
Swabia. Additionally, the connections from Northern Germany through central Germany and from 
Brandenburg/Berlin southwards are extended compared to the reference scenario. The central pipeline 
segment starting in Schleswig Holstein deviates in the ‘Hydrogen Mobility’ scenario by 4.4 GW (+51%) and in the 
‘Electric Mobility’ scenario by 2.8 GW (-33%) from the reference scenario. The connection from Mecklenburg 
Western Pomerania southwards is in the ‘Electric Mobility’ scenario lower by 2.5 GW (-53%) and does not 
significantly increase in the ‘Hydrogen Mobility’ scenario. Pipelines from North to West are impacted only in the 
‘Electric Mobility’ sector by a reduction of 29% in, e.g., Muenster. The regional distribution of the hydrogen 
demand in the mobility sector, which is more evenly distributed than the industry demand, increases the 
demand for pipelines in and towards Bavaria. In contrast, pipeline capacities from Thuringia to Bavaria stay 
below 2 GW in the ‘Electric Mobility’ scenario but increase in the ‘Hydrogen Mobility’ scenario by up to 6 GW in 
Upper Franconia.  

The aggregated incoming pipeline capacity in Lueneburg and further to Hannover are greater than 5.8 GW, even 
in the ‘Electric Mobility’ scenario. This shows that the hydrogen is transported via Lueneburg southwards in all 
scenarios, and it can be supplied from Schleswig-Holstein or Mecklenburg-Western Pomerania. Additionally, 
pipelines in the West from Weser-Ems to Duesseldorf are at least 5 GW. Those identified connections can be 
suggested here as no-regret connections.  

 

Figure 6-11 –  Annual hydrogen demand (top) and supply (bottom). 
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Furthermore, no strong overall impact on the electricity transmission grid can be identified (cf. Figure 6-12). 
Only one grid extension varies significantly in the Hydrogen Mobility scenario requiring only half of the capacity 
than in the reference scenario. This East-West connection spans several inter-regional connections from 
Chemnitz over Thuringia, Upper Franconia, and Lower Franconia to Darmstadt. The high electricity grid 
expansions in Germany show that electricity grid expansions are highly relevant in a decarbonized German 

 

Figure 6-13 – Regional hydrogen imports and electrolysis generation per year in three scenarios.  

 

Figure 6-12 – Inter-regional hydrogen pipeline and electricity grid extension capacities in three scenarios. 
Grid extensions are related to the initial AC grid based on 2017. 
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MMES. Investments in the electricity transmission grid infrastructure are therefore cost-optimal almost 
independent of the here assessed scenarios. Still, the restricted grid expansion scenario shows only an increase 
of about 0.7% in total energy system expenditures. But even this scenario allows an increased transmission grid 
capacity between all neighboring regions of 50% compared to today’s grid. 

 

The impact of the mobility sector on the MMES can be summarized to answer Research Question 2 as follows: 

 

6.3 Flexibility from electric vehicles in the context of an MMES 

 

The modelled electric vehicles follow a charge at arrival strategy without flexibility from controlled charging in 
all assessed scenarios above. Controlled charging has the potential to increase the provided flexibility from the 
mobility sector to the MMES and to reduce the large stationary energy storage capacities in the MMES for the 
electrification of the mobility sector (cf. Section 6.2). Following Section 5.2.3, the derived flexibility is assessed 

RQ2 (part 1 of 2): How does a decarbonized mobility sector generally impact the energy supply, 
transport, and demand structure of the Multi-modal Energy System, and in particular, what is the 
impact of the charging infrastructure network design and battery electric vehicles’ flexibility? 

➔ The mobility sector drives in dependency of the scenario the demand for e-fuels, a hydrogen 
supply chain and energy storages. In case the mobility sector is intended to develop towards 
e-fuel or hydrogen usage, politics must enable an early buildup of the corresponding 
infrastructures to secure a cost-efficient supply. 

Energy supply and demand 

(i) The decarbonization of the mobility sector has no direct impact on electricity generation 
capacities in the cost-optimized MMES but affects the required battery power by 26%. 

(j) The electrification of the mobility sector does not influence the heat sector’s electrification 
rate, which is in all scenarios above 87%. 

(k) Electrolyzers and FT synthesis capacities vary with the e-fuel utilization rate in the mobility 
sector, but also in dependency of non-mobility sector related measures.  

➔ A strong expansion of RES is necessary and inevitable to establish cost-efficient low-cost 
inland hydrogen and e-fuel generation and could decrease the geopolitical dependency. 

Energy transport and flexibility 

(l) The required hydrogen pipeline network is impacted by the energy carriers in the mobility 
sector. A direct usage of hydrogen in the mobility sector requires especially in Southern 
Germany additional pipeline capacities of up to 286%. And through central Germany 
additional capacities of up to 4.4 GW. 

(m) A no-regret hydrogen pipeline of 5.8 GW from Lueneburg to Hannover and one from Weser-
Ems to Muenster of 5.5 GW is identified. Those connections emphasize the importance of 
the hydrogen transport from north to west and from north to central and south Germany.  

(n) The indirect flexibility of the mobility sector from electrolysis and hydrogen storage reduces 
the required battery power by 11 GW and heat storage capacities (GW) by factor two. 

(o) The cost-optimally required stationary heat, hydrogen, and battery storage capacities in the 
system increase with 10% electrification in the mobility sector by 250 GWh, or by about 
50 kWh per vehicle. 

➔ The expansion of a hydrogen pipeline network and the required central storage capacities 
scale with the hydrogen demand and the electrification rate in the mobility sector, 
respectively. 
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for a charging infrastructure scenario, which minimizes the peak load of the charging processes, and for a 
scenario, which maximizes the available flexibility of BEVs in terms of daily shiftable energy per time step (cf. 
Table 5-11). The two controlled charging scenarios are based on the reference scenario with a 95% electrification 
rate in the passenger car segment and a 5% assumed passenger road transportation increase amounting to 
about 47 million BEVs in 2045.  

A representative week in March is investigated, in which PV operate during the day and wind turbines operate 
at the end of the week, which is reflected in decreased marginal electricity costs12 (cf. Figure 6-14 ). The optimizer 
reduces only a minor share of the charged energy of charging processes with a potential three-hour delay time 
between 6 am to 9 am and between 5 pm to 6 pm if controlled charging is enabled (cf. Figure 6-14 ). Charging 
processes with six-hour delay time show with a Charge at Arrival large peak loads up to 20 GW in March around 
7 am to 8 am. Controlled charging reduces the peak to 7.7 GW, distributing the energy over the next six hours 
of the day. This load shift aligns with the PV infeed time and the corresponding lower marginal costs of electricity 
during midday realizing spreads of up to 44 €/MWh. Charging processes with a potential delay time of twelve-
hours occur predominantly when vehicles arrive home at 5 pm. If all BEVs with access to home charging start 
charging immediately after arrival, the simultaneity increases the peak of those charging processes up to 
13.5 GW. This peak can be reduced by factor two, shifting the charging processes into the night. Even though 
the electricity costs at night are up to 37 €/MWh higher, the shift is cost-optimal in the MMES. This can be 
explained by the benefit of a reduced electricity peak demand in the energy system. On Tuesday in March, e.g., 
8.7 GWh of charging load is reduced between 5 pm and 7 pm at 116-127 €/MWh and made up for between 
8 pm and 7 am at electricity costs of 147 €/MWh on average. 

 

 

12 The marginal electricity costs are not affected significantly by the load shift. Only in a few hours of the year a deviation of up to 6% occurs in the 

controlled charging scenario. 

 

Figure 6-14 – Utilization of controlled charging potential considering a high flexibility charging infrastructure design 
compared to the originating ‘Charge at Arrival’ load profile in a representative week in March 2045 
subdivided into 3-hour (top), six-hour (middle), and twelve-hour (bottom) delay time. 
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Aggregating all charging processes, which cannot be shifted in time, and all processes with different realizable 
delay times shows that 26% of the total available flexibility is utilized in both charging infrastructure scenarios 
in 2045 (cf. Table 6-1 and Table 6-2). Table 6-1 and Table 6-2 summarize the key statistics for the entire year for 
the High Flexibility and Low Peak scenario, respectively. Figure 6-15 illustrates the temporal distribution of the 
Controlled Charging and Charge and Arrival charging profiles for both scenarios exemplarily for a representative 
week in March. The optimizer shifts in the High Flexibility scenario annually 18.5 TWh and in the Low Peak 
scenario 14.3 TWh of charged energy in time. In the Low Peak scenario, the maximum peak load reduction 
amounts to 5 GW, which are realized in the evening. The load is shifted to the night, reducing the peak-to-
average ratio by 14% with a maximum annual charging peak of 27 GW. The annual charging peak in the 
maximum flexibility scenario with controlled charging is 3 GW higher than without controlled charging in the 
Low Peak scenario. It shows that the difference of the two controlled charging profiles is reduced compared to 
the two Charge at Arrival profiles.  

 

 

 

 Total  12h delay  6h delay 3h delay static 

Maximum peak, CaA 27.2GW 12.33GW 9.6GW 5.5GW 16.8GW 

Maximum peak, CC 23.6GW 8.7GW 9.65GW 5.29GW 16.8GW 

Peak reduction by CC 13.2% 29.4% -0.2% 3.6% 0% 

Peak-to-average ratio, CaA 2.2 5 4.1 3.6 2.8 

Peak-to-average ratio, CC 1.9 3.5 4.1 3.5 2.8 

Utilized flexibility 14.4TWh/a 7.6TWh/a 1.1TWh/a 5.7TWh/a - 

Utilized flexibility in % of total 
available flexibility 

25.9% 34.7% 8.2% 27.9% - 

Table 6-2 – BEV charging statistics for Charge at Arrival (CaA) and Controlled Charging (CC) with a charging 
infrastructure network design minimizing the overall peak load. 

 Total  12h delay  6h delay 3h delay static 

Maximum peak, CaA 35.2GW 13.5GW 20.6GW 17.6GW 16.3GW 

Maximum peak, CC 30.2GW 9.9GW 11.7GW 15.7GW 16.3GW 

Peak reduction by CC 14.3% 26.7% 43% 10.9% 0% 

Peak-to-average ratio, CaA 2.8 5.4 7.2 6.4 3.8 

Peak-to-average ratio, CC 2.4 3.9 4.1 5.7 3.8 

Utilized flexibility 18.5TWh/a 7.4TWh/a 8.4TWh/a 2.7TWh/a - 

Utilized flexibility in % of total 
available flexibility 

26% 33.6% 33.4% 11.22% - 

Table 6-1 – BEV charging statistics for Charge at Arrival (CaA) and Controlled Charging (CC) with a charging 
infrastructure design maximizing the daily available flexibility. 
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The utilized flexibility of both scenarios differs mainly for the six-hour delay charging processes. In the morning 
hours only 8.2% of this is utilized in the Low Peak scenario compared to 33.4% in the High Flexibility scenario. 
One reason is that the Charge at Arrival profile in the Low Peak scenario does not yield a midday valley, which is 
filled in the High Flexibility scenario predominantly by the six-hour delay charging processes at workplaces. 
Further, it cannot reduce the peak load compared to the Charge at Arrival profile.  

The low utilization of the flexibility from the charging processes with up to six-hour delay times reveals that the 
timing of all charging processes and their corresponding flexibility significantly impact the value of flexibility. 
Furthermore, the analysis of the results shows that the flexibility is in a system cost-optimization not primarily 
used to charge BEVs when the electricity price is low but to reduce the charging peak load. This indicates, even 
though not further analyzed in the present thesis, that the peak load provision is more cost-intense than the 
benefit from aligning charging profiles with the volatile renewable electricity generation. A peak load reduction 
is beyond that also beneficial for the electricity grid integration of BEVs. 

 

The usage of additional flexibility from BEVs impacts the required energy storage capacities in the MMES (cf. 
Figure 6-16). Figure 6-16 shows that the installed central heat, hydrogen vessel, and battery storage capacities 
in the reference scenario (CN45-ref) amount to 972 GWh. Flexibility from BEVs can reduce this storage capacity 
to 928 GWh or 911 GWh, depending on the charging infrastructure design. This is a reduction of at least 4.5% 
and up to 6.3% if the charging infrastructure is designed to maximize the flexibility provision. Heat storage 
capacities are reduced by 23 GWh by controlled BEV charging. However, the charging infrastructure design has 
only a minor impact of 0.7% on this reduction.  

Furthermore, the most significant impact of controlled charging is observed on central battery storage 
capacities. Compared to the reference scenario, the optimizer reduces in the MMES 45 GWh battery capacity 
and 10.5 GW of battery power, or 13.8% and 14.6%. The charging infrastructure design is responsible for 24.4% 
and 34.4% of this battery capacity and power reduction, respectively. No other flexible electricity generation 
capacities are impacted by controlled charging.  

 

Figure 6-15 – Total utilization of controlled charging potential considering a high flexibility (top) and low flexibility 
(bottom) charging infrastructure design in an exemplary week in March.  
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However, the significance of the impact on the stationary battery storage in the system must also be assessed 
in terms of system costs. Controlled charging reduces the annual capital expenditures of the MMES by 0.5% due 
to lower storage capacity investments if a Low Peak charging infrastructure design is rolled out. This includes 
the additional costs for load management described in Section 5.4 but no compensation payments for the 
vehicle owners. The investigated charging infrastructure design with High Flexibility is more cost intense than a 
Low Peak infrastructure design. This exceeds the savings from reduced storage capacities and increases the total 
annual capital expenditures by 0.6%. The operational expenses change accordingly but affect the MMES 
operational expenditures less than 0.05%. However, the reference scenario (CN45-ref) assumes the Low Peak 
charging infrastructure design. A reduction of system costs by controlled charging in the High Flexibility scenario 
could be expected if compared to a reference scenario without controlled charging but the same charging 
infrastructure design.  

 

 

 

Figure 6-16 – Impact of flexibility from BEVs on Energy storage systems in the MMES. Pumped hydro storage, 
decentral home storage, and cavern storage are not impacted and excluded here. 
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In addition to the answers to research question 2 in the previous section, the impact of charging infrastructure 
and the BEVs flexibility can be added to the summary as follows: 

 

6.4 Charging infrastructure design for electric vehicles 

 

BEVs are cost-optimally used for the decarbonization of road passenger transportation in the assessed scenarios 
(cf. Sector 6.1). The analysis in Section 6.3 emphasizes that the charging infrastructure for BEVs is an essential 
factor for the decarbonization of the MMES. The charging infrastructure network design significantly affects the 
MMES’s storage capacities and capital expenditures. A well-planed charging infrastructure design is therefore 
important. Subsequently, an analysis for designing charging infrastructure is conducted, based on the ABM 
eMob and the sensitivity analysis described in Section 5.1.  

In this section, six scenarios are investigated differentiating between a rural and an urban region (cf. Table 5-1) 
for low (1%), mid (20%), and high (80%) BEV penetration rates in the passenger road transportation sector. The 
assessed design targets the number, and the combination of different required charging stations with different 
power ratings at different locations within a region. All results in the following paragraphs are normalized to 
1000 BEVs for comparability between different BEV penetration rates. This means, that the numbers – if not 
other indicated – must be multiplied by the expected number of BEVs in a region divided by 1000 at a certain 
penetration level for an interpretation on the NUTS2 or country-level. 

Figure 6-17 shows all investigated charging infrastructure combinations for both regions and all three 
penetration levels. Simulations are filtered by their SQCI using the mean value over all simulation runs (sample 
size 40) (cf. Section 5.1). All scenarios covered by a colored area are according to Equation (5-1) in the solution 
space and can be considered suitable charging infrastructure designs in the context here.  

A fast-charging network with a high availability of fast charging points and a coverage of 25 km on highways and 
up to 5 km in cities reduces the need for public chargers in rural areas at low penetration by factor two to three 
(cf. Figure 6-17). The assessed rural area requires at a low penetration rate at least 50 public charging points and 

RQ2 (part 2 of 2): How does a decarbonized mobility sector generally impact the energy supply, 
transport, and demand structure of the Multi-modal Energy System, and in particular, what is the 
impact of the charging infrastructure network design and battery electric vehicles’ flexibility? 

(a) A charging peak load reduction of factor two can be cost optimally realized in the MMES by 
shifting charging processes towards the night, even though the electricity costs at night are 
up to 37 €/MWh higher. The benefit of a peak load reduction in the MMES exceeds the 
drawback of the higher electricity costs for charging. 

(b) Charging infrastructure impacts the value and the total dispatched volume of the BEV’s 
flexibility by up to 28%. This is due to different temporal availabilities of the flexibility, and 
the temporal distribution and peak load of the original charging profile in dependency on the 
charging infrastructure design. 

(c) Up to 18.5 TWh of flexibility per year are dispatched in the MMES cost-optimally. This is 26% 
of the available flexibility of BEVs or 19% of the energy dispatch from batteries in the 
reference scenario. 

(d) Controlled charging reduces the combined heat, hydrogen, and storage capacity by up to 
6.3%. The charging infrastructure design accounts for 27% of this reduction. 

(e) Controlled charging reduces 45 GWh and 10 GW of battery capacity and power. The charging 
infrastructure design affects the reduction by 24.4% and 34.4%, respectively. 

(f) Utilizing the flexibility of BEVs reduces the MMES total expenditures by 0.5% if the charging 
infrastructure design minimizes the peak load. Otherwise, the MMES total expenditures can 
increase by 0.6%. 
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if the fast-charging network coverage in the city and highway is low at least 200. If the number of work chargers 
is halved from 200 to 100 chargers, the minimum number of public chargers must increase by 32%. While the 
total number of work and public chargers cannot drop below 140 without violating the SQCI constraint, building 
up a charging infrastructure network without relying on work chargers is possible by increasing the number of 
public chargers to 200. However, this additionally requires a fast-charging coverage of 25 km on highways and 
5 km in the city. Supposing the fast-charging infrastructure network on highways does not exceed the coverage 
of 100 km in an early market phase, the required total number of chargers doubles. An additionally low coverage 
of fast chargers of 25 km within cities requires at least 200 public charging points per 1000 BEVs. This is 
independent of the availability of charging infrastructure at workplaces.  

The demand for public chargers in urban areas at low penetration of at least 200 is up to 200% higher than in 
rural areas. The total work and public charger demand in urban areas exceed the demand in rural areas by factor 
1.4. Two reasons are identified: the assumed 29% lower home charger availability in urban areas and the 31% 
increased number of BEVs in urban areas compared to rural areas due to inter-regional commuters. This finding 
is further supported by an analysis of the size of the solution space. Of all simulations, 6% at low penetration, 
55% at mid penetration, and 68% at high penetration are within the solution space for urban areas and 16%, 
85%, and 91% for rural areas. That means that even at high penetration levels, 34% more work and public 
charger combinations are reasonable in rural areas than in urban areas. It shows that following a demand-
oriented buildup of charging infrastructure networks in urban areas requires more charging stations than in 
urban areas. 

At mid penetration level in a rural area, the demand for charging points per 1000 BEVs can be minimized to a 
total of 24 work and public chargers. Supposing a dense DCFC network with 5 km in the city and 25 km coverage 
on highways, no more than 24 public and four work chargers or 32 public and ten work chargers are sufficient. 
Even with a low coverage of fast-charging stations, only a total of 22 work and public chargers are needed 
additionally. This increases the opportunities of designing and tailoring the charging infrastructure to an area’s 
requirements compared to an initial charging infrastructure network. Figure 6-17 shows that increasing the fast-
charging coverage in the city reduces the need for public chargers by factor three. Contrary, increasing the 
number of fast chargers on highways reduces the number of work chargers that need to be installed. The latter 
is caused by inter-regional travelers traveling relatively long distances into the area for work. If no charging 
station is available at work, it raises the need for charging on the highway. A high penetration charging network 
design differs only slightly from the mid penetration design in rural areas decreasing the minimal total charger 
demand per 1000 BEVs in rural areas by four chargers at work. 
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Urban areas at mid penetration require 217% more AC chargers than rural areas at a minimum. Especially the 
highway fast-charging network can reduce the need for public chargers by factor three. Minimal design 
combinations are 40 work and 32 public, or ten work and 66 public chargers. Reaching a high penetration, the 
number of chargers per 1000 BEVs decreases in urban areas to 54. This shows that the difference between urban 
and rural areas is most significant in low and mid penetration scenarios. Additionally, highway charging impacts 
the public charger needs at mid penetration in urban areas significantly. Large infrastructure investments are 
required especially in urban areas. Enabling the buildup of home charging in shared garages and on-street-
charging, if no private parking is available, is crucial to reach a home charger availability in urban areas of 60%. 

 

 

Figure 6-17 – Charging infrastructure network designs with sufficient charging stations to cover the BEVs’ 
charging demand at a BEV penetration rate of 1%, 20%, and 80% in (top) a rural and (bottom) 
an urban area. Points indicate simulated combinations of the number of public and work 
chargers. The colored areas indicate simulations with sufficient charging infrastructure. Each 
color represents another BEV penetration level scenario, and its brightness differentiates 
between different the assessed fast charging scenarios. Areas overlay each other so that only 
the additional design combinations are shown for, e.g., higher penetration rates. 
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Further, companies can contribute significantly to supplying the charging demand. Work charging must 
therefore be enabled and might even be subsidized. It could additionally support the initial market ramp-up of 
BEVs. 

To conclude, the answers to research question 3 are summarized following:  

 

Integrating BEVs into a region’s mobility concept can pose different challenges in each region. Those challenges 
are, for instance, required distribution grid extensions or the integration of RES with BEVs’ charging demand. A 
reasonable charging infrastructure design helps mitigate upcoming challenges. In Section 5.1, a Pareto-optimal 
design is introduced for a high penetration scenario based on maximizing the flexibility of BEVs and minimizing 
the total electricity charging peak load. Figure 6-18 compares the lever of charging infrastructure regarding the 
availability flexibility of BEVs and the charging peak load. The assessed flexibility is the total daily shiftable 
charging energy without differentiation of different delay times. 

The peak load per 1000 BEVs ranges from 930 kW to 1490 kW and 840 kW to 1160 kW in urban and rural areas. 
The daily flexibility of those charging processes ranges from 4 MWh to 6.7 MWh and from 5.4 MWh to 7 MWh 
in urban and rural areas, respectively. Thus, charging infrastructure in urban areas can be designed to decrease 
the peak load by up to 38% and increase the flexibility by 68%. In rural areas, the lever on the absolute peak load 
reduction is 57% lower than in urban areas, the lever on the flexibility increase is 59% lower. This is because the 
peak load is primarily dominated by home charging in rural areas but not in urban areas. This difference is due 
to a higher home charger availability and by longer travel distances towards home in rural areas resulting in 
larger recharging demands and hence, increased simultaneity. The drawn area’s shape and orientation indicate 
that the peak load in urban areas increases with increasing available flexibility. Rural areas show no direction of 
correlation. Only for low penetration flexibility increase and peak load decrease correlate. 

The charging infrastructure design is most relevant at mid to high penetration rates since its impact at low 
penetration on the peak load is four times (urban) and two times (rural) lower than in the high penetration 
scenario. Rural areas can especially benefit from the flexibility lever to integrate the charging demand with, e.g., 
rooftop PV. However, especially urban areas can leverage charging infrastructure by a holistic charging 
infrastructure network planning, which is even more relevant due to the expected higher charging peak in urban 
areas. A targeted charging infrastructure design can lead in the urban area of Kiel at mid penetration with 22 
thousand BEVs to a potential peak load mitigation of 15 MW and a flexibility increase of 28 MWh/day. This 
increase of flexible electricity charging demand is approximately as much as 3400 two-person households 

RQ3 (part 1 of 2): How to design charging infrastructure networks and how does the 
infrastructure affect the battery electric vehicles’ charging peak load and available flexibility? 

(a) The minimum required number of chargers per 1000 BEVs in urban areas is 125% higher than 
in rural areas due to the higher charging demand in urban areas, caused by inter-regional 
commuters, and the lower home charging availability.  

(b) In rural areas: a dense DCFC infrastructure reduces the demand for an intensive slow charger 
network at an early BEV market penetration in rural areas by up to factor three.  

(c) In urban areas: a dense DCFC network at highway locations is required to satisfy the demand 
at low penetration and it decreases the need for slow chargers at mid penetration by factor 
three.  

(d) From statement (b) and (c) it can be derived that building up a fast-charging network should 
be fostered already in an early stage of the market ramp up of BEVs. 

(e) Urban areas require 50% more AC chargers at mid penetration with 20 public and 12 work 
chargers per 1000 BEVs compared to 5 public and 16 work in rural areas.  

(f) While a dense highway fast-charging network reduces especially the need for work chargers, 
and a dense city fast-charging network reduces the need for public chargers. 

Note: mentioned numbers of charging points are normalized to 1000 BEVs. 
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consume per day13. The total minimum available flexibility in urban areas amounts at mid penetration to 
100 MWh per day, an equivalent of twelve thousand households. 

 

 

Subsequently, the design options of a charging infrastructure network to increase the flexibility and reduce the 
peak load are further investigated. Figure 6-19 shows the impact of work and public chargers on the flexibility 
and peak load normalized to 1000 BEVs for all six scenarios. The first column of plots shows the effect of varying 
the number of public chargers. The second plot shows the impact of varying the number of work chargers on 
the flexibility on the ordinate and the charging peak on the abscissa. The first three rows show the results for an 
urban area for 1%, 20%, and 80% penetration, and the last three rows for the rural region. 

Considering all penetration rates, an increasing number of work chargers increases the available flexibility. In 
urban areas, a tipping point is reached between 100 and 200 charging points at work where the peak load 
increases with an increasing number of work chargers up to 200 kW above the maximum peak value with less 
than 100 charging points. This is when the work charging peak in the morning exceeds the evening peak load. If 
large numbers of charging points are installed in a region, the balance between work and public charging must 
therefore be assessed carefully.  

In contrast, work chargers in rural areas decrease the peak load while increasing the flexibility. The additional 
work chargers reduce the charging demand at home, which is most relevant for the rural area’s peak. It can 
therefore be recommended to incentivize work charging in rural areas. The number of public chargers correlates 
positively with the daily flexibility and the peak load in the region. The benefit of the additional flexibility must 
therefore be assessed carefully. Furthermore, the flexibility and the peak load correlate in urban areas but not 
in rural areas.  

 

13 3MWh electricity consumption per year assumed for a two-person household. 

 

Figure 6-18 – Comparison of resulting flexibility and charging peak load for all charging infrastructure 
scenarios normalized to 1000 BEVs for an urban and rural area at 1%, 20%, and 80% BEV 
penetration rate. The figure shows the minimal convex hull, including the averaged values of 
all simulations for each charging infrastructure scenario. 
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Figure 6-19 – Impact of charging infrastructure design on flexibility and charging peak load. Each point 
represents one simulation, and its color indicates the simulated number of work and public 
charging points. 
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The following summarizes the key findings to answer Research Question 3: 

 

 

 

 

RQ3 (part 2 of 2): How to design charging infrastructure networks and how does the infrastructure 
affect the battery electric vehicles’ charging peak load and available flexibility? 

(g) The total charging peak load per 1000 BEVs varies in dependency on the charging 
infrastructure design between 930 kW to 1490 kW, and 840 kW to 1160 kW in urban and 
rural areas, respectively.  

(h) The total daily flexibility of 1000 BEVs varies in dependency on the charging infrastructure 
design between 4 MWh to 6.7 MWh and from 5.4 MWh to 7 MWh in urban and rural areas, 
respectively. 

(i) The design of a charging infrastructure network can decrease the BEVs’ peak load by up to 
38% and increase the flexibility by up to 67%.  

(j) Work chargers in rural areas should be incentivized since they increase the flexibility while 
decreasing the charging peak load. In contrast, work chargers in urban areas can increase the 
charging peak load, if more than 100 charging points per registered 1000 BEVs are installed. 

(k) An increasing number of public chargers increases the peak load and the flexibility in rural 
and urban areas. 

➔ These results suggest fostering fast charging networks already at a low BEV market 
penetration, while in a later stage the flexibility and peak load provision from charging 
processes at AC chargers should be integrated into the planning to lever the potential of 
BEVs for the energy system. 
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7 Discussion 

 

The applied framework of the ABM eMob and an MMES optimization allows not only to focus on BEVs’ flexibility 
and charging infrastructure network designs but to also assess the interactions of the mobility sector 
simultaneously with the MMES. 

 

The role of the mobility sector in the MMES 

The assessed carbon-neutral mobility sector and its cost-optimal energy carriers should be interpreted from an 
energy system perspective. Analyzing a carbon-neutral MMES in 2045 using a total system cost-optimization is 
a reasonable approach, which can be used for designing regulations to steer towards a cost-optimal system. 
However, the MMES model does not project energy technology or automotive market developments. Especially 
in a highly heterogenous mobility sector, where the vehicle owners do not necessarily buy vehicles based on a 
cost-optimal decision. Still, the interactions between the mobility sector and the MMES are indicative for 
relevant macro-economic or political decisions such as building up a hydrogen pipeline network and expanding 
the electricity grid.  

The MMES optimization results must further be considered in the context of a linear model without integer 
variables. Therefore, large infrastructure investments in pipelines, cavern storage, or the electricity grid can be 
inaccurate. This is especially the case if, e.g., hydrogen pipelines with very low capacities or very high capacities 
are built by the optimizer. A linear model formulation allows a continuous buildup of, e.g., cavern storage having 
large upfront investments. This behavior can favor one technology over the other. Anyway, sensitivities are used 
here for assessing the robustness of the results. 

The analysis showed, that the decarbonization of the mobility sector can be achieved in different ways with total 
annual system expenditures varying by 6%.14 The energy transport infrastructure and the charging and refueling 
infrastructure have a share of 3% and 1% of the total MMES costs, respectively. If energy transport or charging 
and refueling infrastructure costs are not considered in a MMES, the electrification of the mobility sector might 
be overestimated. While energy transport costs and restrictions showed an impact on the mobility sectors 
electrification especially a required hydrogen pipeline network would be affected significantly from hydrogen 
usage in Germany. A hydrogen pipeline network for the transportation sector, as assessed in [52]–[54], might 
therefore be considered as maximum required pipeline network. The interactions between the energy transport 
infrastructure and the mobility sector shown in the present thesis emphasize the need for integrated, sector-
coupling energy system studies. 

The energy transport infrastructure is impacted by the size of a NUTS2 region. Regions with a large land area, 
such as the NUTS2 regions in Northern Germany, offer more area for onshore wind turbines. In the approach 
here, the number of grid extensions is still reduced to a single connection independent of the regions size. A 
higher resolution of the model might deviate from the results shown in this thesis. Further, the optimized 
hydrogen pipeline network shows the required hydrogen energy transport capacities in Germany, but it neglects 
exports, which could increase the demand for pipelines with Germany as hydrogen transit country. This effect 
is counterweighted by a neglectable amount of distributed electrolyzers in the model. Especially if building up a 
sufficient hydrogen pipeline network is delayed, more distributed electrolyzers are expected to be installed 
[198]. However, the simplifications made here allow optimizing a full MMES, including electricity, hydrogen, and 
methane transport infrastructures. The effect on the mobility sector’s decarbonization of the different assessed 
energy transport elements is still valid, even though the quantification might deviate with a higher degree of 
detail in the model. Interpreting the marginal hydrogen cost difference between NUTS2 regions as hydrogen 
transport costs, the costs amount to 0.4 ct/kWh hydrogen in the reference scenario, 0.8 ct/kWh if 

 

14 Variation assessed between Controlled Charging Low Peak scenario and Hydrogen Mobility scenario. Assessed scenarios with cost variations for vehicle 

technologies or energy imports are not considered in the estimation here. 
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recompression costs are included, and 1.3ct/kWh if only GH2 trailers are allowed.15 This is in line with the lower 
cost assumptions for hydrogen transport via pipeline from Robinius et al. ranging from 0.6 ct/kWh to 1.7 ct/kWh 
[27]. Estimates summarized in a meta study from the European Commission vary between 0.5 to 4.5 ct/kWh 
hydrogen [188]. The lower cost estimation here for pipeline transport might be due to the lower spatial 
resolution of the considered hydrogen pipeline network, which is here modeled as center-to-center connection 
between NUTS2 regions. 

The inland hydrogen generation is based on regionally occurring marginal electricity prices in the model. It does 
not reflect spot market prices, which do not incorporate grid congestions. Hence, the hydrogen inland 
generation costs below 7 ct/kWh reflect marginal costs but cannot be interpreted as costs for generating 
hydrogen in Germany for investors. It does not mean necessarily that it is economically viable for investors. This 
could sufficiently reduce the installed electrolyzer capacity in Germany in the future and impact the cost-optimal 
energy carrier mix in the mobility sector. However, the resulting full load hours of 2200 h to 2900 h of 
electrolyzers in the MMES and the allocation of electrolyzers in regions with a high availability of wind energy 
aligns with results from Robinius et al. and assumptions in the Grid Development Plan 2037/2045 (2023) [27], 
[198]. While their study calculates 62 GW of electrolyzers in Germany in 2050 the present thesis shows a range 
between 29 GW and 69 GW of electrolyzers in 2045. The inland generation in Robinius at et al. is with 180 TWh 
larger than in the here assessed scenarios. This value is exceeded by 19% in the MMES only if high fuel import 
costs, including e-methane and hydrogen, are assumed. The German Grid Development Plan 2037/2045 (2023) 
assumes an inland generation of 35% which is in the range with the resulting inland generation in the MMES of 
59 TWh to 171 TWh [198]. 

The usage of hydrogen differs across studies. The assessed scenarios from Robinius et al. target an 80% and 95% 
CO2 emission reduction and show in the latter 400 TWh of hydrogen demand in the system primarily in the 
industry and mobility sector. This is 1.4 times as much as the scenario in this thesis with the highest hydrogen 
demand. A high share of hydrogen usage in the mobility sector in this study might be due to the equal vehicle 
cost assumptions for all powertrains in the passenger car sector. Still, the freight transport costs for a fuel cell 
powertrain technology are assumed higher than other technology costs. The new scenario draft of the German 
Grid Development Plan 2037/2045 (2023) projects for 2045 a hydrogen demand of 240 TWh to 450 TWh [198] 
with a major share in the industry. The study ‚Klimaneutrales Deutschland 2045‘ from Agora Energiewende 
projects 265 TWh of hydrogen demand [41]. This is primarily for power and heat generation but also partly in 
the mobility sector for freight transportation. The meta studies [198], [199] show that the here assumed 
hydrogen demand is at the lower range of other studies. One reason is a relatively low hydrogen demand in the 
mobility sector in most scenarios and the fixed industry demand here of 84 TWh, which might be exceeded in 
future. 

In contrast to the results here, e-fuels are only imported in the above-mentioned studies as well as in the 
Langfristszenarien from the BMWi [7]. Helgeson and Peter and the dena study with a European context show a 
generation potential in the EU [62], [88]. The latter study of up to 600 TWh per year [88]. However, the inland 
e-fuel generation of 119 TWh here is caused by three main factors. First, the availability of up to 130 TWh of 
hydrogen for costs below 7 ct/kWh. Second, the assumed optimal location of synthesis plants at central 
hydrogen hubs, which reduces the hydrogen distribution costs compared to a direct hydrogen usage by up to 
6 ct/kWh. Third, the assumed CO2 costs from direct air capture of 50 €/t. These assumptions are highly uncertain 
and can be challenged. Therefore, they are tested in this thesis in a sensitivity analysis. It shows, that when 
changing those assumptions, the inland generation of e-fuels drops to values between zero and 13 TWh. This is 
not in favor of imported e-fuels for 15 ct/kWh in the MMES but changes the decarbonization in the mobility 
sector towards increased electrification or a direct hydrogen usage. Large-scale imports of e-fuels are not 
relevant in any scenario. This result can only be achieved through the advantage of a full sector-coupling energy 
system optimized applied here. Even low e-fuel costs of 10.4 ct/kWh do not change this result16. Nevertheless, 

 

15 This is exemplarily calculated for the annually averaged marginal hydrogen cost difference between Mecklenburg-Western Pomerania (high generation) 

and Duesseldorf (high demand). The distance between both regions is about 600 km. 

16 The reduced e-fuel import costs are assumed here simultaneously with reduced hydrogen and e-methane import costs. 
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an assessment of reduced e-fuel import costs with a fixed e-fuel demand in the system is out of scope in this 
thesis. 

Even though a carbon-neutral system in the year 2045 is assessed, the e-fuel usage in the mobility sector must 
be considered in the context of the transformation pathway towards the carbon-neutral system. If the CO2 
reduction targets foster a technology switch in the mobility sector before low-cost e-fuels are largely available, 
lock-in effects could occur favoring the electrification or the usage of hydrogen in the mobility sector. The e-fuel 
usage in the mobility sector must here be interpreted in a way, that the transformation towards this system 
enables an early availability of e-fuels before ICE powertrains are faded out.  

The here cost-optimally derived high share of electrification for passenger cars and LDVs is within the consensus 
in the literature [7], [41], [62], [198]. The studies [7], [74] show depending on the scenario additional usage of 
e-fuel for passenger cars. Contrary, the MMES analysis shows fuel cell electric vehicles as the second relevant 
passenger transportation technology. This aligns with the study from Robinius et al., who show a fuel cell electric 
vehicle penetration of up to 40% [27]. Here, a penetration rate between 30% and 45% of fuel cell vehicles is 
reached in the optimization only if vehicle costs across powertrain technologies are balanced or if hydrogen is 
available at the refueling station below 8 ct/kWh compared to about 10 ct/kWh in the other scenarios.17 This is 
approximately a third of the costs at hydrogen refueling stations in Germany in 2022 [100].  

There is less agreement on the energy carriers used in the HDV segment. The uncertainty is supported by the 
findings in this thesis showing that the cost-efficient energy carrier is more sensitive to parameter variations. A 
partial electrification is assumed in Helgeson and Peter and in the Langfristszenarien. While in Helgeson and 
Peter methane is one major energy carrier for HDVs, the Langfristszenarien and Robinius et al. show scenario-
dependent a usage of e-fuels or hydrogen [7], [27], [62]. However, the analysis here shows that e-methane is 
only relevant if available at low costs while hydrogen and e-fuels are more expensive. Since e-methane might 
be generated from hydrogen, this assumption depends on the development of international markets and the 
buildup of alternative supply chains towards Germany compared to methane.  

The analysis here shows the range of possible decarbonization pathways and the sensitivity to the input 
parameters. It is not intended to state here if one energy carrier is more relevant than the other. Economic 
viability and geopolitics are major factors, which are not assessed here but could be highly relevant for the 
availability of low-cost energy carriers. If the increase of gas and oil prices continues due to geopolitical conflicts, 
the transition towards other technologies might be enforced earlier, which decreases alternative vehicle 
technology costs in 2045 and could cause lock-in effects. Nevertheless, the analysis shows that the electrification 
of the mobility sector is a reasonable way to reduce the dependency on foreign oil and gas imports and could at 
least in the passenger car segment be considered as no-regret solution. Additionally, the electrification of the 
heat sector should gain momentum as soon as possible reducing the international dependency and 
simultaneously targeting climate-neutrality. Current actions foster non-climate neutral alternatives to natural 
gas imports from Russia, such as LNG [200]. Methane is also supported in the Directive 2014/94/EU for the 
mobility sector. However, the analysis shows, that other energy carriers are suitable and if targeting a carbon-
neutral system, methane might only be relevant in the mobility sector if available at much lower costs than other 
energy carriers. The results presented here suggest that an early ramp-up of alternative energy carriers should 
be fostered within the next years, while increasing the speed of electrifying the heat and mobility sector. 

At the core of the transformation is inevitably a fast ramp-up of RES [7], [27], [41], [198]. The here required RES 
capacities are in the assumed range of the literature and require an increase of onshore wind turbine capacities 
of up to factor five, offshore capacities of factor two, and PV of factor ten compared to 2020. Especially the PV 
ramp-up with a required annual installation rate of 12 GW18 needs incentives for house owners to install roof-
top PV. This exceeds the currently annual installed PV capacities by more than factor two. However, this is below 
the required annual ramp-up until 2030 calculated from the ‘Energiewirtschaftliches Institut an der Uni zu Köln 
(EWI)’ in an analysis considering the coalition negotiations in 2021 [201]. The ramp-up of onshore wind 

 

17 Marginal electricity costs at the refueling station are across the assessed scenarios between 14 ct/kWh and 16 ct/kWh. 

18 Assuming a linear ramp-up from 2020 to 2045. 
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capacities of 5 GW, as stated in the analysis from the EWI, must be exceeded for the here assessed scenarios by 
up to 3 GW. This is especially challenging considering an average annual installation rate of 3 GW between 2010 
and 2020 and a rate of 1 GW to 2 GW between 2018 and 2020. The challenge is not only regarding the social 
acceptance and political decisions but additionally in terms of required materials and production capacities for 
wind turbines and PV assets. A reduced ramp-up of 4 GW is considered here in one scenario. This scenario does 
not show a significant deviation from the electrification strategy in the mobility sector but only reduced inland 
electrolysis capacities.  

 

Charging Infrastructure design and BEVs‘ flexibility  

The charging infrastructure design is based on the aggregated charging peak load within a region and its 
aggregated daily flexibility. The results of integration of BEVs’ flexibility show that those objectives are 
reasonable for an energy system assessment. The optimizer uses the flexibility to decrease the charging peak 
load of the fleet of 47 million BEVs in Germany. One advantage of focusing on those aggregated parameters is 
that different regional and urban systems can be compared. Other parameters might be suitable as well. When 
focusing on integrating BEVs and RES, e.g., a residual load minimization could be targeted for the charging 
infrastructure design. However, this depends on the historical weather data and increases the uncertainty of 
the approach.  

One challenge is to integrate BEVs into the electricity distribution grid. This is not in the scope of the present 
thesis, but it can significantly impact the charging infrastructure design. For this, the aggregated peak is not a 
sufficient measure but locally arising charging peaks and voltage quality need to be considered. Further, the 
measure of daily shiftable electricity demand does not incorporate potential delay times or the time of the 
available flexibility.  

The analysis in the present thesis shows that the timing is an important measure for the value of flexibility in an 
MMES context. Measuring the share of the flexible charging process during peak load times could overcome the 
drawback of considering a daily shiftable energy demand. Further, a combined approach of those measures 
could be suitable. The implemented framework is able to incorporate additional parameters in the multi-
objective Pareto optimization. It is suggested to precisely analyze the upcoming challenges of a specific region 
in terms of BEV integration into the energy system and derive the suitable measures individually to design a 
regional charging infrastructure network. Finally, with the present thesis focusing on a system cost optimization, 
the economic viability of charging stations is not considered. An analysis of the utilization rate of individual public 
charging stations showed that the number of public charging stations in a region is an important measure for a 
projected utilization rate of a charging station.  

The here developed charging infrastructure design method relies on the SQCI, which is one measure for the 
sufficiency of the charging infrastructure in a region. Different methods can incorporate detours or optimize the 
required charging infrastructure under the constraint of supply being equal to the demand [202]. The latter 
guarantees a sufficient supply but does not incorporate the dynamics of the charging demand.  

A range of different vehicle parameters regarding the consumption and battery size is assumed here to 
represent the heterogeneity of the future automotive market. Nevertheless, the projected consumption rates 
and battery sizes are highly uncertain and impact the ABM eMob output significantly (cf. Figure 4-11). This can 
especially result in different charging peak loads and different requirements for the number of charging stations. 
Lower consumption rates would reduce the charging peak and the number of required chargers, and a higher 
demand would increase both outputs. 

The analysis of the required charging infrastructure at different penetration levels shows, that an initial DCFC 
network is reasonable already at an early market penetration of BEVs reducing the demand of AC chargers by 
up to factor three. This can be compared with the strategy of Tesla rolling-out more than 1000 Supercharger’s 
at 112 locations until beginning of 2022 and planning to equip another 68 locations in the same year. The DCFC 
coverage represents here the availability of DCFC chargers. The simplified approach can result in an 
underestimation of the required DCFC chargers. This is because no competition around DCFC chargers is 
modeled in the ABM eMob. Furthermore, the resulting number of AC charges in the results is restricted to the 
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discrete values simulated in the scenarios. Especially scenarios with many charging points, such as at low 
penetration, are prone to overestimate the required number of chargers. This is especially the case when the 
step size between the number of chargers from one to the other scenario increases up to 100. The number of 
chargers further relies on the assumption that no comfort reduction is accepted by drivers. Otherwise, lower 
numbers might be possible.  

The results of this thesis show that at 20% BEV penetration, the number of public chargers in urban areas can 
drop to 20 per 1000 BEVs. This means that 50 BEVs share one charging point. The Pareto optimal scenarios 
reveal a demand for public chargers between 20 and 66 chargers per 1000 BEVs, which corresponds to 15-50 
BEVs per charging point at 80% penetration. In comparison, the ‘Masterplan Ladeinfrastruktur’ from the German 
government targets 10 BEVs per charging point [11]. The present analysis shows that this number is reasonable 
for an initial charging infrastructure network. Still, the number of BEVs’ sharing one public charging point can be 
reduced at mid and high penetration. Further, for a large-scale roll-out, the different needs of a roll-out must be 
considered. 

Attention must be paid interpreting the resulting peak load values. They cannot be interpreted in a way that one 
BEV increases the peak load at a local grid feeder by approximately 1 kW but in a way, that on average, for each 
vehicle in the city, an additional 1 kW of electricity peak generation must be guaranteed. The local feeder impact 
might be significantly higher. This interpretation is in line with the system view in this thesis.  

A decreasing number of flexible electricity generators until 2045 in the energy system increases the need for 
batteries to secure the load when low wind and PV energy generation occurs. The electricity grid connection of 
a region to the transmission grid could also help ensure the supply of the regional peak load. Nevertheless, the 
BEVs’ flexibility can be leveraged to reduce the impact on the electricity distribution system. The transmission 
grid expansion in the assessed MMES is not impacted by the flexibility of BEVs, which is in line with the findings 
in Robinius et al. [14]. The authors additionally state that BEVs flexibility reduces the renewable energy that has 
to be curtailed. This cannot be confirmed in the present thesis since it mainly substitutes stationary energy 
storage capacities. The different findings are due to the here technology-neutral and full multi-modal 
consideration of the energy system. The cost-optimal dispatch of the BEVs fleet in the MMES shows that the 
peak load reduction is a cost-optimal dispatch of BEVs’ flexibility on the country energy system level. Still, this 
flexibility here is a theoretical upper value, which must be incentivized for BEV owners to participate. A 
combined incentive for different challenges could be suitable since the MMES optimization showed that only 
26% of the flexibility was utilized. This leaves additional flexibility for, e.g., regional grid congestions. 
Nevertheless, a prioritization cannot be made here. Further, different applications for flexibility could require 
flexibility at peak time, which would therefore be more valuable than the midday flexibility. 

A common way of assessing the potential flexibility of BEVs is to refer to the total battery storage capacity in all 
registered vehicles [23]. This might significantly overestimate the available flexibility since the batteries are 
primarily used to satisfy the mobility demand. The utilized flexibility in the optimized MMES from BEV charging 
reaches up to 18 TWh/a, substituting 45 GWh of central battery storage or 61 GWh of total central storage 
capacities in the model. This is 26% of the total annual flexibility of a 95% electrified passenger car sector, which 
sums up to 69 TWh/a. Supposing an average BEV’s battery capacity of 45 kWh, 47 million BEVs would have a 
battery storage capacity of more than 2 TWh in a 95% electrified passenger car segment. If it is compared to 
stationary batteries and assuming two full battery cycles every week it would result in a flexible energy dispatch 
of 208 TWh/a. If that is compared to the theoretically available flexibility of 69 TWh, it reveals that 
approximately one-third of the battery’s capacity would be available for dispatch throughout the year. The 
assessed BEVs’ flexibility in the ABM eMob is already an upper limit, and batteries could operate more than two 
cycles a week, which further reduces the share. However, the flexibility of BEVs is still significant and must be 
levelized efficiently to integrate BEVs into energy systems to reduce overall system costs and drive the energy 
transition.  

In future BEVs could also operate on, e.g., the frequency reserve market [203]. Therefore, the total energy is not 
only the measure of relevance but also the power within each time step. While BEVs could theoretically shift up 
to 78% of all charging processes during evening peak load, the flexible power provision could reach an order of 
magnitude of 36 GW, assuming 1 kW per BEV charging peak load. Anyway, also this is highly uncertain due to 
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the strong dependency on the time of the day. Pooling of BEVs and primarily incentivizing the flexibility of BEVs 
efficiently is one key element for the energy transition. Lastly, bidirectional charging might increase the available 
flexibility of BEVs if incentivized efficiently. 

To realize the transformation towards an electrified passenger car sector, the buildup of charging infrastructure 
is inevitable. For a 95% electrified passenger car sector in 2045, 4.5 million AC charger (11 kW-22 kW) are 
required at public and workplaces in Germany and additionally 329 thousand fast charging points (50 kW-
150 kW).19 The total charging infrastructure investment costs amount to 68 billion € to 87 billion €.20 A linear 
ramp-up would require 200 thousand 11 kW and 22 kW charging points per year or 4000 per week.21 As shown 
in the analysis, lower penetration rates require even more charging stations per BEV, which would increase the 
required number of annually installed chargers in the next years significantly. This ramp-up must be subsidized 
and start immediately gaining momentum in the electrification of the automotive market. It is a no-regret 
measure towards a carbon-neutral energy system. 

 

 

 

19 This refers to the Pareto-optimal low peak charging infrastructure design identified here. The numbers are valid if home charging is widely available, 

and 31 million home charging points are installed for 47 million BEVs. 

20 Lower value estimated based on 2020 charging station costs, upper value based on 2045 cost estimations. 

21 About 300 charging points are build up per week at the end of 2021 [204]. 
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8 Conclusion and outlook 

RES must be utilized in the electricity, heat, and mobility sector in a decarbonized MMES. The interactions 
between a carbon-neutral mobility sector and an MMES must be understood to cost-optimally steer the 
transformation towards climate-neutrality. Especially new, disruptive infrastructure elements such as the 
hydrogen supply and charging infrastructure require increased attention in the assessment of a decarbonized 
MMES. The present thesis identified interactions that are relevant to consider while planning the 
decarbonization of the mobility sector. 

The multi-modal approach here extends former research by incorporating electricity, methane, and hydrogen 
transport infrastructure in a linear energy system optimization while optimizing the mobility sector as part of 
the MMES. This allows assessing the impact of different measures in the energy system on the energy carriers 
in a cost-optimally decarbonized mobility sector. Since the level of detail and heterogeneity of individual 
stakeholders, such as electric vehicle drivers, is limited in a country energy system model, an agent-based model 
is coupled with the energy system model for an in-depth analysis of BEVs and their required charging 
infrastructure. This allows reducing the gap in research of understanding the impact of the design of charging 
infrastructure networks on the energy system. 

The analysis here shows that a high electrification of the mobility sector is cost-efficient and primarily in the 
passenger car and light duty vehicle segment a non-regret decision. The uncertainty of energy import and 
transport costs as well as realizable expansion pathways for the inland electricity and hydrogen generation are 
especially relevant for recommending cost-efficient transportation technologies in capital-intensive 
transportation segments such as heavy-duty vehicles and busses. However, only a range of selected scenarios is 
assessed here. Quantifying tipping points between different technologies in large energy system models would 
require new methods capable of assessing significantly more scenarios. Future work could pick up on that to 
extend the analysis. An additional micro-economic perspective for different stakeholders in the mobility sector, 
such as car manufacturers and charging station operators, would further enrich the analysis and improve the 
quality of recommendations. 

An integrated approach must be chosen for planning a hydrogen supply chain since the required buildup of a 
hydrogen transport network is significantly affected by the hydrogen usage in the mobility sector. If the buildup 
does not keep pace with the developments in the mobility sector, the risk of increased hydrogen prices at 
refueling stations could finally lead to a non-optimal system. Therefore, it is highly recommended to extend the 
analysis of interactions between different sectors in a MMES by incorporating transition pathways of the energy 
system until 2045. 

In any case, it is inevitable to ramp-up wind and PV electricity generation capacities independently of the energy 
carriers in mobility sector. The number of hours with low electricity prices can be sufficient in a carbon-neutral 
system to generate hydrogen on a large-scale in Germany. Whether the hydrogen is then used directly in the 
mobility sector or processed in Fischer-Tropsch synthesis systems highly depends on the hydrogen distribution 
costs charged for both applications. Contrary to the narrative in former studies and literature, the analysis here 
showed that e-fuel generation might be cost-efficient in Germany in a carbon-neutral energy system if synthesis 
processes are allocated at central hydrogen hubs minimizing the hydrogen distribution costs. A low-cost e-fuel 
transport, distribution, and refueling system based on existing infrastructure can then be used, increasing the 
competitiveness of e-fuels compared to hydrogen. Nevertheless, the buildup of international supply chains 
should be compared in future work macro-economically to the inland generation considering the findings from 
this thesis. It is further recommended to include geopolitical uncertainties in future analysis of international 
energy supply chains. 

Flexible charging of BEVs has a large potential to contribute to a cost-efficient energy system mainly by reducing 
the aggregated charging peak load and by alignment with PV electricity generation times. It should not be 
assumed that controlled charging of BEVs reduces the curtailment of renewable electricity generation directly, 
but it rather reduces the need for stationary storage systems. However, the flexibility must be incentivized 
efficiently to leverage its potential. Studying the most effective incentive schemes is of upmost relevance for 
further research. Additionally, future research could focus on suitable applications for the flexibility from BEVs 
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such as peak load reduction, avoidance of grid congestions, avoidance of expansions in the distribution grid, 
flexibility provision for the transmission grid, economic benefits for charging station operators or BEV drivers.  

A previously unassessed effect regarding the relevance of charging infrastructure planning for the integration of 
BEVs with the energy system is analyzed. It shows that charging infrastructure can be used as a lever to reduce 
the charging peak and to increase the flexibility. This can finally reduce overall energy system costs. At an early 
stage, the charging infrastructure design must focus on realizing a large ramp-up to accelerate the 
transformation towards BEVs. In this early stage, fast-charging points reduce the total number of required slow 
chargers significantly. If the BEV penetration increases, an integrated planning of charging infrastructure and 
the energy system becomes increasingly important to first, reduce the overall charging peak load, and second 
to enable more flexible charging. It is highly recommended to consider the lever of efficiently designing charging 
infrastructure networks in urban and rural areas. While the relevance of an efficient charging infrastructure 
design is identified here focusing on the country energy system, further research should integrate local 
renewable electricity potential and distribution grid congestions into the charging infrastructure planning 
process. This should allow targeting the design to specific challenges in different regions. Incorporating 
geoinformation system data is highly recommended for this. 
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Acronyms 

 

AC Alternating Current 

BEV Battery Electric Vehicle 

DC Direct Current 

DCFC Direct Current Fast Charging 

FT Fischer-Tropsch 

HDV Heavy Duty Vehicle 

ICE Internal Combustion Engine 

LDV Light Duty Vehicle 

MiD17 Mobility in Germany 2017 [136] 

MMES Multi-modal Energy System 

RES Renewable Energy Sources 

SOC State of Charge 

SQCI Service Quality of deployed Charging Infrastructure 
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Nomenclature 

Indices, Sets, Variables and Parameters in the mathematical optimization model (ESDP): 

Index Set Description 

co CO Commodity 

cp CP Conversion process describing a conversion technology in the model, 
which consists of one or multiple conversion subprocesses cs 

cs CS Conversion subprocess describing an energy conversion steps 

t, tt T Time step 

x X Region 

y Y Year 

 

Variable Description 

e energy 

g Capacity of a transport process between two regions 

k Capacity of a conversion process defined by a single conversion 
subprocess 

𝑘dsm  Demand side management capacity of a conversion subprocess 

o CO2 emissions 

p power within each time step 

𝑒𝑠𝑡  Stored energy  

𝛾down   Load in one time step that is shifted down from an originating load 
profile 

𝛾up  Load in one time step that is shifted up from an originating load profile 

 

Parameters Description 

C Costs as capital expenditures (capex) or operational expenditures (opex) 

F Discount factor 

I Indicator defining if a commodity requires transport infrastructure two 
be transported between regions 

K Maximum demand side management shift capacity of a conversion 
subprocess 

L Distance between two regions 

N Annuity of conversion process 

O CO2 emission limit 

V Technical availability of conversion subprocess / technology 

𝜂  Efficiency of a conversion subprocess 

w Weighting factor for time steps 
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𝛿  Maximum time to shift load from one time step to another 

 

 

Indices, Sets, Variables and Parameters in the agent-based simulation model (ABM eMob): 

Index Set Description 

i I Index of battery electric vehicle 

j J Charging point 

places  Type of location 

t T Time step within simulation period T 

z Z Location of fast charging station 

 

Variable Description 

pcharge  Power supply from charging point to electric vehicle 

f 𝑐ℎ𝑎𝑟𝑔𝑒  Available shiftable energy of a BEV’s charging process 

SOC State of Charge of vehicle’s battery 

 

Parameters Description 

C Consumption rate of electric vehicle 

D Driven distance in one time step 

K Battery capacity of electric vehicle 

M Number of modeled locations of the same type 

𝑀BEV  Number of modeled battery electric vehicles 

Ncars  Total number of cars in a region 

Ntot  Total number of potential charging sites in a region 

𝑆𝐵𝐸𝑉  Share of battery electric vehicles in relation to Ncars 

𝑇𝑎𝑚𝑏𝑖𝑒𝑛𝑡   Ambient temperature for entire simulation period 
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Appendix A ABM eMob sample size 

The required sample size for a sensitivity analysis using the ABM eMob can be determined based on the 
stabilization of the coefficient of variance for all model outputs of interest as suggested in [152], [205]. The 
coefficient of variation is defined as 

𝑐𝑉,𝑘 =
𝜎𝑘
𝜇𝑘
, ∀𝑘 ∈ {𝑝, 𝑓}  

with the standard deviation 𝜎, the mean 𝜇 over a simulations and k the output parameter of interest. The 
minimum number 𝑛𝑚𝑖𝑛 of repetitions for a scenario is then defined by the number of repetitions, for which 𝑐𝑉,𝑘 
stabilizes for all considered model outputs k = {p, f} (cf. Eq. 5.39). It is in the following assessed for sample sizes 
of 𝑁 = {1,… ,200}. 

𝑛𝑚𝑖𝑛 =  𝑎𝑟𝑔𝑚𝑎𝑥𝑘|𝑐𝑣,𝑘(𝑛 − 1) − 𝑐𝑣,𝑘(𝑛)| < 𝜖, ∀𝑘 ∈ {𝑝, 𝑓}  

When applying this measure, the confidence interval of the output variable needs to be sufficiently greater than 
zero [205], which is the case for all investigated outputs of the model. Figure A-1 shows for a parametrized rural 
region with 1000 simulated BEVs the stabilization of the coefficient at a sample size of 𝑛𝑚𝑖𝑛 = 38. The threshold 
𝜖 is a subjective measure and is here set to 0.1%. 

 

 

 

 

 

 

Figure A-1 – Minimum required sample size based on stabilization of coefficient of variation.  
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Appendix B NUTS2 naming convention 

The regional resolution on the NUTS2 level is referred to in this thesis. Figure B-2 shows the naming convention 
of all 38 NUTS2 regions in Germany. 

 

 

 

 

 

 

Figure B-2 – NUTS2 resolution and naming convention. 
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Appendix C Mobility sector technology costs 

Techno-economic parameter assumptions for the year 2045. Airplanes are not listed since no competing 
technologies are optimized. 

Transportation 
technology 

Consumption in 
kWh/km 

Investment 
costs in 
thousand € 
per vehicle 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
number of 
passengers 
per vehicle 

Lifetime 
in years 

Car ICE-LF 0.4 23 3% 

14700 1.4 15 

Car ICE-CH4 0.45 24.3 3% 

Car Battery (BEV) 0.15 24.7 2% 

Car FC-GH2 0.21 24.8 3% 

Car PHEV-LF 0.4|0.15* 26 3% 

Table C-3 – Technical and economical passenger car vehicle parameters in 2045. Own assumptions based on [27], [74], 
[206]. * First number applies for ICE and second for electric powertrain. 

 

Transportation 
technology 

Consumption in 
kWh/km 

Investment 
costs in 
thousand € 
per vehicle 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
number of 
passengers 
per vehicle 

Lifetime 
in years 

Bus ICE-LF 2.42 187 3% 

57000 16.1 17 
Bus ICE-CH4 2.96 205.8 3% 

Bus Battery 1.35 213.8 2% 

Bus FC-GH2 2.24 212.9 3% 

Table C-4 - Technical and economical parameters in 2045 for busses and coaches. Own assumptions based on [27], [74], 
[206]. 

 

Transportation 
technology 

Consumption in 
kWh/km 

Investment 
costs in 
thousand € 
per vehicle 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
load in t per 
vehicle 

Lifetime 
in years 

LDV ICE-LF 0.48 45 3% 

35000 2 11 
LDV ICE-CH4 0.54 45.7 3% 

LDV Battery 0.23 46 2% 

LDV FC-GH2 0.3 46 3% 

Table C-5 - Technical and economical parameters in 2045 for Light Duty Vehicles (LDV). Own assumptions based on [27], 
[74], [206]. 
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Transportation 
technology 

Consumption in 
kWh/km 

Investment 
costs in 
thousand € 
per vehicle 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
number of 
passengers 
per vehicle 

Lifetime 
in years 

HDV ICE-LF 2.09 83 3% 

60000 

12.5 

11 
HDV ICE-LCH4 2.48 90.4 3% 

HDV Battery 1.28 97.1 2% 

HDV FC-LH2 1.7 99.5 3% 

HDV Catenary-LF 1.77 | 1.28* 102 3% 

130000 

 

HDV Catenary-
LCH4 

1.77 | 1.28* 102 3%  

HDV Catenary-
Battery 

1.28 112.1 2%  

Table C-6 - Technical and economical parameters in 2045 for Heavy Duty Vehicles (HDV). Own assumptions based on 
[27], [74], [206]. * First number applies for ICE and second for electric powertrain. 

 

Transportation 
technology 

Consumption in 
kWh/tkm 

Investment 
costs in 
million € 
per train 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
load in t per 
train 

Lifetime 
in years 

Train Catenary 0.03 4.185 2% 

200000 1* 40 Train ICE-LF 0.12 4.185 2% 

Train FC-GH2 0.06 5.6 2% 

Table C-7 - Technical and economical parameters in 2045 for trains. Own assumptions based on [27], [207]. * 
Assumptions already based on tkm. 

 

Transportation 
technology 

Consumption in 
kWh/tkm 

Investment 
costs in 
million € 
per vessel 

Maintenance 
costs in % of 
investment 
per year 

Average 
annual 
mileage in 
km 

Average 
load in t per 
vessel 

Lifetime 
in years 

Ship ICE-LF 0.11 17.5 2% 

84000 1* 60 Ship ICE-LCH4 0.11 18.6 2% 

Ship FC-LH2 0.11 19.4 2% 

Table C-8 - Technical and economical parameters in 2045 for ships. Own assumptions based on [98]. 
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Appendix D Resulting technology mix in mobility sector 

Resulting technology mix in the mobility sector for passenger transportation (cf. Figure D-9) and freight 
transportation (cf. Figure D-10) in all assessed scenarios in the MMES optimization for the year 2045. 
Additionally, the electrification rate in the passenger and freight transportation sector is shown in Figure D-11.  

Naming conventions are: LF – Liquid Fuel; PHEV – Plug-In Hybrid Electric Vehicle; FC – Fuel Cell; HDV – Heavy 
Duty Vehicle; LDV – Light Duty Vehicle. 

 

 

Figure D-9 – Technology mix in the passenger transportation sector as share of passenger kilometers in the 
corresponding segment. From top to bottom it shows cars, busses, and trains. Trains only show the non-
electrified railway systems and contain additionally the freight transportation. 
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Figure D-10 – Technology mix in the freight transportation sector as share of ton kilometers in the corresponding 
segment. 
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Figure D-11 – Electrification rate in the passenger and freight transportation sector in different scenarios compared to 
the reference scenario CN45-ref. The electrification rate is based on the electrified Gpkm and Gtkm. 
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