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Kurzfassung

Numerische Feldsimulationen spielen eine wichtige Rolle für das Verständnis und die Vorhersage
von Quenchereignissen in supraleitenden Beschleunigermagneten. Allerdings werfen sie dabei ein
geometrisches wie auch physikalisches Multi-Skalen-Problem auf. So müssen bei der Modellierung
der Beschleunigermagnete, die mehrere Meter lang sind, geometrische Details in der Größenord-
nung von Mikro- bis Millimetern aufgelöst werden. Ein Quenchereignis breitet sich in kürzester
Zeit über mehrere geometrische Größenordnungen aus und beeinflusst die Eigenschaften des
supraleitenden Materials dabei massiv. Eine volle dreidimensionale Finite-Elemente-Simulation
mit ausreichender Genauigkeit des nichtlinearen magneto-thermischen Quenchverhaltens ist
schlichtweg unmöglich.
Diese Dissertation präsentiert ein alternatives Vorgehen zur Berechnung und Analyse von dreidi-

mensionalen Effekten, wie sie bei Quenchereignissen auftreten. Dazu wird eine zweidimensionale
Finite-Elemente-Methode auf der transversalen Magnetquerschnittsfläche mit einer eindimen-
sionalen Spektrale-Elemente-Methode auf Basis von orthogonalen Polynomen in longitudinaler
Richtung kombiniert. Das Resultat ist eine quasi-dreidimensionale Methode mit hybriden Form-
funktionen. Diese Methode wird zunächst formuliert, in einer objekt-orientierten Programmstruk-
tur implementiert und anhand von Konvergenzstudien und Referenzsimulationen verifiziert. Für
die Anwendung der Methode auf Quenchsimulationen wird dieses quasi-dreidimensionale Gerüst
um dedizierte Quenchzustands- und Endwicklungsmodelle sowie Feld-Netzwerkkopplung, rele-
vante Randbedingungen und effiziente nichtlineare Iterationsverfahren erweitert. Schließlich wird
dieses quasi-dreidimensionale Simulationsverfahren für die nichtlineare magneto-thermisch stark
gekoppelte Quenchsimulation von supraleitenden Kabeln und Magnetspulen angewandt. Verglei-
che mit konventionellen dreidimensionalen Finite-Elemente-Lösern zeigen, dass das vorgestellte
numerische Verfahren präzisere Ergebnisse liefert und dabei sehr viel weniger Rechenaufwand
benötigt. Damit ist die entwickelte quasi-dreidimensionale Simulationsmethode ein wertvolles
Werkzeug, um Quenchereignisse in supraleitenden Beschleunigermagneten zu analysieren.
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Abstract

Numerical field simulation plays a crucial role in understanding and predicting quench phenomena
in superconducting accelerator magnets. However, they impose a geometrical as well as physical
multi-scale problem. A model of an accelerator magnet, which is several meters in length, has to
resolve geometrical details in the order of micro- to millimeters. A quench propagates over several
geometrical orders of magnitude in a very short time, massively affecting the properties of the
superconducting material in the process. A full three-dimensional finite element simulation with
sufficient accuracy of the nonlinear magneto-thermal quench behavior is therefore far beyond
reach.
This dissertation presents an alternative approach to the calculation and analysis of three-

dimensional effects arising in quench scenarios. To this end, a two-dimensional finite element
method on the transversal magnet cross-section is combined with a one-dimensional spectral
element method based on orthogonal polynomials in the longitudinal direction. The result is
a quasi-three-dimensional method with hybrid shape functions. This method is formulated,
implemented in an object-oriented program structure, and verified by convergence studies and
reference simulations. For the application of the method to quench simulations, this quasi-three-
dimensional framework is extended by dedicated quench state and end winding models as well as
field-circuit coupling, relevant boundary conditions, and efficient nonlinear iteration procedures.
Finally, this quasi-three-dimensional simulation approach is applied to the nonlinear magneto-
thermal strongly coupled quench simulation of superconducting cables and coils. Comparisons
with conventional three-dimensional finite element solvers show that the presented numerical
method yields more accurate results while requiring much less computational effort. Thus, the
developed quasi-three-dimensional simulation method is a valuable tool to analyze quenching
scenarios in superconducting accelerator magnets.
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Nomenclatura

Symbols

A⃗ Vs/m magnetic vector potential
⌢ae Vs line-integrated magnetic vector potential w.r.t. the e-th line

B⃗ T magnetic flux density

Bcrit T critical magnetic flux density

cp J/(kg K) specific heat capacity

CV J/(m3K) volumetric heat capacity

D⃗ As/m2 electric displacement field

E number of edge degrees of freedom

E⃗ V/m electric field strength

H⃗ A/m magnetic field strength

H1 Hilbert space

H1
0 Hilbert space with compact support

i A current

J number of nodal degrees of freedom

J⃗ A/m2 electric current density

Jcrit A/m2 critical current density

J⃗e A/m2 eddy current density

J⃗m A/m2 magnetization current density

L2 function space of square-integrable functions

Lq Legendre polynomial of q-th order

LOq Lobatto polynomial of q-th order

ℓz m longitudinal length

M⃗ A/m magnetization

N maximal polynomial order

NFE number of finite elements
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NSE number of spectral elements

Nj nodal shape function for node j

n⃗ normal vector

PN
0 function space of orthogonal polynomials with maximal order of N

qqs 1 quench state function

qV W/m3 volumetric heat flux

r⃗ m spatial coordinate

S m2 area

S01 function space of first-order splines with compact support

T triangular FE

Tq Chebyshev polynomial of q-th order

t s time

V m3 volume, domain

Vh m3 computational domain

W number of half-turns

W J energy

w⃗
(ℓ)
j longitudinal edge shape function of edge j

w⃗
(t)
e transversal edge shape function of edge e

u V voltage

α W/(m2K) heat transfer coefficient

∂n 1/m partial derivative in normal direction

∂t 1/s partial derivative in time

∂x 1/m partial derivative in the spatial x-direction

∂y 1/m partial derivative in the spatial y-direction

∂z 1/m partial derivative in the spatial z-direction

Γ boundary

ζ Lagrange multiplier

ϑ K temperature

ϑcrit K critical temperature

ϑcs K current sharing temperature

ϑfluid K temperature of the ambient fluid
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λ W/(mK) thermal conductivity

µ Vs/(Am) magnetic permeability

µ0 Vs/(Am) vacuum permeability

ν Am/(Vs) magnetic reluctivity

ξ⃗ m−1 voltage distribution function

ρ Ωm electric resistivity

ϱd kg/m3 density

σ S/m electric conductivity

τ s time constant

ϕ V electric scalar potential

ϕq modified Lobatto polynomial of q-th order

∇ 1/m Nabla operator

Acronyms

1D one-dimensional

2D two-dimensional

3D three-dimensional

BC Boundary Condition

BVP Boundary Value Problem

CAD Computer-Aided Design

CLIQ Coupling Loss Induced Quench

DoF Degrees of Freedom

FE Finite Element

FEM Finite Element Method

IFCC Interfilament Coupling Current

IFCL Interfilament Coupling Loss

LHC Large Hadron Collider

MNA Modified Nodal Analysis

MQS magnetoquasistatic

MVP Magnetic Vector Potential

NbTi Niobium-Titanium
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Nb3Sn Niobium-Three-Tinn

PDE Partial Differential Equation

Q3D Quasi-three-dimensional

SE Spectral Element

SEM Spectral Element Method
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1. Introduction

Man’s relations to man do not captivate
my fancy. It is man’s relation to the
cosmos – to the unknown – which alone
arouses in me the spark of creative
imagination.

H. P. Lovecraft

Why does our universe exist and what is its ultimate fate? How is our reality shaped by the
Higgs mechanism, super-symmetry, extra dimensions, dark matter and dark energy? Particle
accelerators play a key role in answering these existential questions and uncovering the secrets of
the universe [Rus10]. For this on-going quest, higher and higher particle energies are striven for,
which are necessary to make new discoveries [Qui19]. For example, although the existence of the
Higgs boson had been already predicted in 1964, it was not until 2012 that the necessary particle
energies could be generated to actually discover the Higgs boson at the Large Hadron Collider
(LHC) at CERN [ATL12]. For future experiments, higher luminosities are currently sought at the
LHC [Bor17].
Only superconducting magnets are able to provide the necessary high magnetic field strengths

to keep such highly energized particles on the accelerator trajectory [Rus10]. Superconducting
materials lose their electrical resistivity upon falling below a critical temperature, turning into
the so-called superconducting state [BK13]. Then, they are able to carry high currents without
generating any heat as opposed to normalconductors such as copper. With these high currents,
magnet coils wound from superconducting cables are able to generate much stronger magnetic
field strengths than conventional iron-based magnets could provide. These magnetic field strengths
are needed to achieve higher particle energies [Rus10].
A major issue with superconducting magnets, however, is the quench phenomenon, which

is a sudden shift from superconducting to normalconducting state upon surpassing the critical
temperature [Wil83]. Although the superconducting magnets are constantly being cooled by a
cryogenic cooling system based on liquid helium, local temperature increases can occur, e.g. due
to manufacturing flaws, helium leaks in cooling pipes, power cuts or radiation [Ten13]. The
quenched magnet regions, which are then normalconducting, begin to generate heat. This can lead
to a domino effect: The normalconducting regions heat up the superconducting regions beyond the
critical temperature, turning them also normalconducting and heating up more superconducting
material, and so on, resulting into a thermal run-away.
The generated heat in a superconducting magnet correlates to its stored energy, which is very

large. For example, the LHC main dipole magnet stores an amount of energy that is almost twice
the energy released by an explosion of one kilogram of TNT, and which would be able to melt
one liter of copper [Bru+04]. An uncontrolled quench could, therefore, lead to dramatic thermal
consequences, in the worst case resulting into a partial melt-away of the magnet coil.
In the 80s and 90s, the quench behaviors of the superconducting magnets of the early accel-
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Figure 1.1.: Concept of the Q3Dmethod in a Cartesian coordinate system. Triangular 2D elements
are combined with 1D line elements, which results into Q3D prism elements.

erators such as HERA, SSC and RHIC have been estimated by manual calculations [Ten+88;
He93; Mur+94]. Today, however, for an in-depth investigation of the quench phenomenon in
superconducting accelerator magnets, analytical methods are out of question, as the problem is
too complex to be solved manually on a piece of paper. Experimental analysis is also no viable
option, since the construction cost of 1.5 to 2 million Euros per magnet [TTS18] is too high,
and quench experiments of this magnitude are too dangerous. So, numerical simulations and
computational engineering – also called the third paradigm of scientific discovery [Rüd+18] –
play a crucial role in improving our understanding of the quench phenomenon, and consequently
in designing more reliable and efficient protection systems for accelerator magnets.

However, the quench simulation of superconducting accelerator magnets presents computational
engineers with a major challenge by its a multi-scale nature: While a typical accelerator magnet
is very long (over 10m), its diameter is only a fraction thereof (about 0.5m). Many geometrical
details on the micrometer and millimeter scale must be resolved [Bru+04], in particular, the
quench phenomenon itself, which occurs on the scale of millimeters. Moreover, quench simu-
lation is a highly multi-physical problem, for which one has to consider mutually-dependent
thermal and electromagnetic phenomena as well as special superconducting effects and material
characteristics [Rus10].

On the one hand, this makes a three-dimensional (3D) simulation approach simply unfeasible,
as the computational costs would be vastly expensive. On the other hand, two-dimensional (2D)
simulation approaches considering only the magnet cross-section are often too inaccurate and
serve at most for an initial estimate of the quantities of interest [Jan+21].

This thesis contributes to closing the gap between too inaccurate 2D simulation approaches
and too costly 3D simulation approaches by establishing a so-called quasi-3D (Q3D) simulation
approach tailored for the quench simulation of superconducting accelerator magnets. To this end,
a hybrid method is developed, which combines a 2D treatment of the transversal cross-section of
the magnet with a one-dimensional (1D) treatment of its longitudinal dimension. More precisely,
the geometrical details of the magnet cross-sections are resolved using triangular elements, while
the quench phenomenon along the magnet is resolved by line elements. Their combination results
into Q3D prism elements as shown in Fig. 1.1, which are able to reproduce the 3D physical effects
in the magnet model very well. In this way, an adequate accuracy at reasonable computational
costs is achieved, thus providing a remedy to the multi-scale problem of quench simulation of
superconducting accelerator magnets.
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Thesis Overview

The thesis is structured as follows. Chapter 1 provides an introduction to the challenges of quench
simulation of superconducting accelerator magnets.
Chapter 2 summarizes the fundamentals of superconductivity in the context of superconduct-

ing magnet coils, and briefly discusses numerical methods and their suitability for the quench
simulation of superconducting accelerator magnets. It also summarizes the scientific contributions
of this work.
Chapter 3 introduces the magneto-thermal quench modeling for superconducting coils. After

presenting a superconducting coil as lead example, the magnetic and thermal models are derived
and a magneto-thermal coupling is introduced. A smooth quench state function modeling the
transition between normal-conducting and superconducting state is developed based on the
observations in [Bot14]. Lastly, end winding models are introduced, which cover for magnetic
and thermal coil end effects.
Chapter 4 introduces the numerical ingredients needed for the construction of the Q3D method.

First, the weak formulation of the magneto-thermal model is derived and general numerical
discretization aspects are discussed, which are common to all numerical methods as the temporal
discretization and the nonlinear iteration scheme. Then, the 2D finite element (FE) method (FEM)
and the 1D spectral element (SE) method (SEM) are discussed. After an analysis of different
orthogonal polynomials regarding their suitability for the Q3D method, the modified Lobatto
polynomials, which were first formulated in [FD15], are introduced as optimal choice. Lastly,
field-circuit coupling is briefly explained to be employed to connect the end windings of the
superconducting coil to each other and to an external circuit.
Chapter 5 introduces the Q3D discretization approach for superconducting accelerator magnets,

which is applied on the magneto-thermal model for quench simulation. The resulting systems of
equations and all involved discrete quantities are derived. Subsequently, all boundary conditions
relevant for quench simulation are discussed in the Q3D context. In the end, the implementation
of the Q3D simulation approach as well as the program structure of a Q3D quench simulation tool
are explained.
Chapter 6 presents the results of several Q3D quench simulation studies. First, the results

of a convergence study are discussed, which verify the Q3D method. Second, the findings of a
thermal simulation of a pack of Rutherford cables are presented [DCD20]. Third, superconducting
effects in a superconducting cable are computed using a Q3D magnetic simulation [DD21].
Fourth, a quenching scenario in a single superconducting multi-filamentary wire is investigated
employing a nonlinear magneto-thermal Q3D simulation approach [DSD22]. Fifth, the findings
of a Q3D quench simulation of the superconducting coil previously introduced as lead example
are presented.
Finally, conclusions are drawn in Chapter 7.
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2. Fundamentals and Starting Point

"Begin at the beginning," the king said,
gravely, "and go on till you come to the
end; then stop."

Lewis Carroll, Alice in Wonderland

This chapter acquaints the reader with the relevant fundamentals on superconductivity regard-
ing superconducting accelerator magnets, and provides a starting point for the Q3D simulation
approach.

2.1. Fundamentals of Superconductivity for Accelerator Magnets

During cryogenic experiments with liquid helium in the year 1911, the Dutch physicist Heike
Kamerlingh-Onnes observed that the electrical resistance of mercury jumps to exactly zero upon
falling below a critical temperature of 4.2 K [Kam12], see Fig. 2.1a. With this, the phenomenon of
superconductivity and the first superconducting material were discovered. In general, the state of a
superconductor depends on the working point described by the parameter triple (ϑ,B, J), where ϑ
is the temperature in K, B = |B⃗| is the magnitude of the magnetic flux density B⃗ in T, and J = |J⃗ |
is the magnitude of the electric current density J⃗ in A/m2 [BK13]. If the working point is below
the so-called critical surface, which is defined by the critical temperature ϑcrit, the critical magnetic
flux density Bcrit, and the critical electric current density Jcrit (see Fig. 2.1b, purple surface), the
superconductor is in the superconducting state, otherwise it is normalconducting [BK13].
During the superconducting state, a superconductor is able to conduct currents without produc-

ing Joule losses. Furthermore, it exhibits perfect diamagnetism, i.e. an external magnetic field B⃗ext

is completely expelled from the superconductor as long as |B⃗ext| < Bcrit. This behavior contrasts
with a hypothetical perfect conductor, which would freeze the magnetic field in its interior upon
reaching a perfectly conducting state. This would lead to different outcomes depending on the
previous history of the experiment [BK13]. A superconductor, however, always expels a magnetic
field from its interior, regardless whether there already existed one when entering or leaving the
superconducting state [BK13]. This is at least true for so-called superconductors of type I. For
superconductors of type II, the perfect diamagnetism is hold to a first critical field Bcrit,1. For
Bcrit,1 < |B⃗ext| < Bcrit,2, however, the superconductor enters the Shubnikov state, where it is
penetrated by a grid of magnetic flux vortices [BK13]. To achieve this diamagnetism, screening
currents are induced in the superconductor when exposed to a time-varying magnetic field. These
currents generate a magnetization M⃗ counteracting the external field variation [BK13].

The Quench Phenomenon

The sudden transition from the superconducting to the normalconducting state is called a
quench [Wil83]. The quench phenomenon is a major issue in superconducting accelerator magnets,
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Figure 2.1.: Upon reaching the superconducting state, the electrical resistance instantaneously
vanishes (a). This transition depends on the electrical current density, the magnetic
flux density and the temperature (b).
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Figure 2.2.: At the left, a Rutherford cable is shown which features multiple wires and is wrapped
up in a glass fibre insulation. At the center, the cross-section of the Rutherford cable
is shown. At the right, the cross-section of a single wire is seen, consisting of several
superconducting filaments embedded in copper. Pictures adapted from [SZ19].

since the affected regions begin to produce Joule losses, i.e. heat losses. These losses are typically
very high due to the high currents applied to the magnets. During continuous operation, quench
phenomena arise locally and may vanish due to cooling. In the worst case, however, a quench can
lead to a thermal run-away resulting into extensive damages or even the destruction of the magnet
coil. Hence, a reliable quench protection system is mandatory, which is triggered upon quench
detection, i.e. when predefined voltage or resistance thresholds are exceeded [Ste+19]. Today,
these thresholds are equipped with a large safety margin leading to frequent and unnecessary
shutdowns, which considerably reduce the availability of the whole accelerator machine due to
false triggers [Apo15]. To reduce their amount and therefore increase the availability of the
accelerator, quench phenomena need to be understood better and the quench detection has to get
preciser.

The Interfilament Coupling Phenomenon

The superconducting coils used in accelerator magnets are made of superconducting multi-
filamentary cables such as Rutherford-type cables [Bru+04]. Figure 2.2 shows the structure of
such a cable: It has a flattened form and consists of compacted multi-filamentary wires, in which
approx. 105 superconducting filaments made of Niobium-Titanium (NbTi) or Niobium-Three-Tinn
(Nb3Sn) are embedded in a copper matrix [SZ19] for thermal stability reasons [Ver95]. The cable
is wrapped up by a thin glass fibre insulation.
If the filaments were embedded in vacuum, the filaments would be electrically isolated from

each other. Then, the external magnetic field would induce screening currents into each filament
separately, which generate a magnetization completely compensating for the external field in the
interior of the filament. This behavior is shown in Fig. 2.3a, where the transversal cross-section of
three superconducting filaments in a non-conducting medium with electrical conductivity σ = 0
is seen. The external magnetic flux density B⃗ext induces screening currents, which are shown in
blue and red for the major in-coming and out-coming current part, respectively, and in purple for
the minor transversal current part. This screening current distribution yields a magnetization M⃗

7
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(b) Normalconducting medium.

Figure 2.3.: Behavior of the screening currents in superconducting filaments (blue) in the case
of a non-conducting medium (gray) and of a normalconducting medium (orange),
respectively, when an external magnetic flux density (black arrow) is applied. The
symbols ⊙ and ⊗ indicate whether a current flows from the paper plane to the
observer or vice versa, respectively. The purple arrows illustrate the transversal flow
of the screening currents. Green arrows indicate the magnetization yielded by the
respective screening current distribution.

for each filament as shown in Fig. 2.3a.
However, copper is a normalconducting medium with a high electrical conductivity σ ≫ 0. As

a consequence, a part of the induced screening currents in the filaments migrates through the
copper medium into the other filaments, causing the filament currents to couple with each other.
These currents are called interfilament coupling currents (IFCCs) [Ver95]. Figure 2.3b shows this
phenomenon, which leads to a different current distribution and, thus, magnetization distribution
compared to the non-conducting case in Fig. 2.3a. Furthermore, it causes heat losses in form of
interfilament coupling losses (IFCLs) [Ver95]. During normal operation, these heat losses are
disadvantageous, but in case of a quench, they can be exploited to heat up the entire magnet as
done in the quench protection system CLIQ [Rav+14]. Similarly, interstrand coupling currents
occur between the strands of a superconducting cable and also lead to heat losses [Ver95]. For
the quench simulation, it is, therefore, important to take these phenomena into account.

2.2. Review of Numerical Techniques for Multi-Scale Problems

As discussed in Chapter 1, the quench simulation of superconducting accelerator magnets is
particularly challenging for computational engineers due to the imposed multi-scale and multi-
physical properties of the problem. For example, Fig. 2.4a shows the cross-section of the LHC main
dipole, which is around 0.5m wide. It consists of an iron yoke around two beam pipes, which are
surrounded by a superconducting coil configuration. In Fig. 2.4b, a part of the superconducting
coil is seen, where the white rectangles represent superconducting cables and the black trapezoids
are copper keystones, which contribute to the shape of the coil. Three superconducting cables are
shown in detail in Fig. 2.4c. They are wrapped by a glass fibre insulation (thick black lines), and
consist by several superconducting multi-filamentary wires (circles). In these wires, a multitude
of superconducting filaments are embedded, whose dimensions are on the scale of micrometers.
Obviously, the magnet shown in Fig. 2.4 features many geometrical details, which are on the
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Figure 2.4.: The cross-section of the LHC main dipole (a) consists of an iron yoke around two
beam pipes, which are surrounded by superconducting coils [Bru+04]. The coil
configuration (b) consists of superconducting cables (white) and copper keystones
(black) [Ver95]. The cables (c) are wrapped by a glass fibre insulation (thick black
lines), and consist of several superconducting multi-filamentary wires (circles).

scale of millimeters, and also the quench phenomenon occurs on the scale of millimeters. Moreover,
the superconducting filaments in a wire are on the scale of micrometers, see Fig. 2.2. At the same
time, this magnet is over 10m long [Bru+04]. A numerical method for quench simulation has to
overcome this high ratio between the spatial dimensions of superconducting accelerator magnets.
In the following, selected numerical methods and modeling approaches are introduced and their
suitability for tackling this multi-scale challenge is discussed.

Homogenization Approaches

Homogenization approaches are modeling techniques used to handle spatial scales of different
magnitudes, on which physical phenomena occur. In the simplest realization, geometrical objects
in a certain scale of magnitude are not modeled explicitly, but the related physical effects are
included into the model in a mathematical way. For example, the superconducting filaments in a
superconducting wire, which are on the scale of micrometers, are typically not modeled explicitly,
but the wires are homogenized to a bulk material with averaged material properties [Bor+18].
The IFCCs arising in the wire are then included into the model by an additional magnetization
term in the magnetic formulation based on the characteristic time constant for the IFCC phe-
nomenon [Ver95]. In this way, the micrometer scale is removed from the model, thus greatly
reducing the computational effort for the simulation of the superconducting cable at the cost of
modeling accuracy. While this approach works well for the superconducting filaments and the
IFCC phenomenon, the quench phenomenon cannot be dealt with by such a homogenization
approach.

Finite Element Methods

Finite element (FE) methods (FEM) are nowadays widely used in several commercial and open-
source simulation softwares, e.g. [COM], [Das19] and [DG19]. They have been first applied in
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1956 in structural mechanics and aeronautical sciences [Tur+56]. The idea is to subdivide the
computational domain into multiple elements, creating a mesh on whose entities the solution
is computed. In this way, the geometrical complexity of the magnet’s cross-section can be very
well resolved by FEs. In the context of the FEM, a mesh of high quality is quasi-uniform, i.e. the
elements are roughly the same size, or at least the mesh size varies only gradually over the
domain [Bra12]. Considering the geometrical details in the magnet’s cross-section and the small
quench phenomenon size along the magnet’s length, the use of a three-dimensional (3D) FEM
would lead to a very fine discretization of the domain and, thus, to unreasonably long computa-
tional times and extraordinary high demands for computational memory [Tro+19]. Hence, the
computational domain is often reduced to the two-dimensional (2D) magnet cross-section. This
simplified 2D cross-sectional model is then solved much more computationally efficient than the
complex 3D model [Bor+18]. Naturally, the neglection of the longitudinal dimension leads to
inaccurate simulation results. This is especially true for self-protected superconducting magnets,
where the stored energy has to be dissipated within the magnet coils [Jan+21]. In this case, it
is absolutely essential to take the thermal diffusion and quench development in all three spatial
dimensions into account [Jan+21].

Spectral Element Methods

Another class of numerical methods are spectral methods. They use global higher-order basis
functions to resolve the solution on a simple reference domain such as a line, a quadrangle or a
cuboid [Can+06]. The original domain has to be mapped on this reference domain, which gets
more complicated the more complex the original domain is. In 1984, following the idea of the
FEM, the method has been expanded on several elements, which lead to the spectral element
(SE) method (SEM) [Pat84]. The idea is to divide the complicated geometry in multiple domains,
which in turn can be mapped easier on the reference entity [Kop09]. The quench phenomenon
along the magnet’s length could be resolved very well in this way. Still, the cross-section of an
accelerator magnet consists of too many details to construct an efficient 3D SEM for the purpose
of quench simulation.

Quasi-3D Methods

So-called quasi-3D (Q3D) methods combine the benefits of the FEM and SEM. To this end, a
symmetry plane of the model is exploited to reduce the 3D geometry to a 2D cross-section,
on which a 2D FEM is applied. In the third spatial dimension, a 1D SEM is employed to take
asymmetrical physical effects andmaterial distributions into account. This approach has similarities
to anisotropic p-refinement [OB90], graded meshing [ASW96], and FEMs utilizing prismatic
FEs and anisotropic hp-refinement [Jor+12]. In the latter case, the discretization is primarily
h-refined in the xy-plane, while being p-refined in z-direction [Jor+12]. In comparison, Q3D
methods have the advantages that the SE discretization converges exponentially (instead of only
polynomially) and that the Q3D matrices can be assembled very efficiently thanks to their natural
Kronecker tensor product structure.
In previous works of the author, a rotational Q3D method using axisymmetrical 2D FE in the

cross-sectional plane and trigonometrical functions in the azimuthal direction has been utilized
successfully for the simulation of cylindrical induction-heating devices [DD17] and high-voltage
arresters [DSD19]. For the case of superconducting accelerator magnets, this thesis develops
a translational Q3D method, where the transversal cross-section is discretized with a 2D FEM
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and the longitudinal direction is resolved by a 1D SEM using orthogonal polynomials, resulting
into Q3D prism elements, see Fig. 1.1. Herein, a 2D triangular FE in the xy-plane is combined
with a 1D SE line in the z-direction, yielding a Q3D prism in the 3D space. This numerical
simulation approach is very well suited to tackle the multi-scale problem of quench simulation of
superconducting accelerator magnets and is the focus of this thesis.

2.3. Scientific Contribution

The scientific contributions of this thesis are summarized as follows. A list of related journal
publications and conference contributions is found in the curriculum vitae in the appendix.

Derivation & Construction of Efficient Q3D Nodal and Edge Formulations

The Q3D formulations are derived for the thermal problem based on the heat conduction equation
and the magnetic problem based on the magnetoquasistatic equation, respectively. The discrete
quantities are written out in terms of the reference element approach [Bra12] for nodal and edge
elements. Furthermore, the Q3D discrete quantites are brought to a Kronecker tensor product
form allowing for a concise notation and an efficient assembly.
Different orthogonal polynomial bases are analyzed and compared to each other in regard to

their suitability for the longitudinal component of the Q3D method. Finally, the modified Lobatto
polynomials [FD15] are selected, for which this thesis proposes an efficient nonlinear iteration
scheme to tackle the strongly coupled co-simulated nonlinear magneto-thermal problem.

Establishment of a Q3D Simulation Approach for Quench Simulation

A complete Q3D simulation approach including nonlinear material characteristics, multi-physical
coupling, field-circuit coupling, the IFCC phenomenon and relevant boundary conditions is
established for the quench simulation of superconducting coils. For the sharp transition between
superconducting and normalconducting state, a smooth quench state model is developed based
on the current sharing phenomenon in multi-filamentary superconducting cables and related
observations regarding the maximum heat loss density [Bot14].

Implementation & Numerical Verification of the Q3D Simulation Approach

The Q3D simulation approach is implemented in an object-oriented programming framework
in MATLAB [MAT20], for which a suitable software structure is developed. The Q3D method is
numerically verified by consistency checks, convergence studies and 3D reference simulations.
Several functionalities for a convenient setup, efficient execution and diverse post-processing of a
quench simulation are implemented.

Application to Quench Simulation & Comparison to 3D Simulation Approaches

The proposed Q3D simulation approach is applied successfully to several quenching scenarios,
and compared against 3D reference simulations. The implemented simulation studies include
thermal and magnetic simulations of superconducting multi-filamentary cables as well as coupled
magneto-thermal quench simulations of superconducting cables and coils.
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3. Quench Modeling in Superconducting Coils

Mercury has passed into a new state,
which on account of its extraordinary
electrical properties may be called the
superconductive state.

Heike Kamerlingh-Onnes

Quench simulation requires the modeling of multiple effects as it involves mutually-dependent
electromagnetic and thermal phenomena. To this end, this chapter acquaints the reader with the
relevant physics, and presents the mathematical models which have to be solved numerically.

3.1. Lead Example

A superconducting coil consists of a number of W̃ windings, which are wound back and forth in
longitudinal direction, see Fig. 3.1. To apply the Q3D method for the simulation of such coils, the
end windings are neglected in a first step, since they obviously break the translational symmetry
requirement of the method, see Fig. 3.1, where the Q3D domain is marked in purple. This is
a valid approximation, if the coil is very long compared to its diameter, which is typically the
case for dipole and quadrupole accelerator magnets [Sch10]. Since the goal of the Q3D method
is to reproduce 3D effects as accurately as possible, the coil end effects are taken into account
nonetheless by separate end winding models, see Sec. 3.5.
In the following, the Q3D model of a superconducting coil with W̃ = 12 windings and a length

of ℓz in m will serve as a lead example, see Fig. 3.2. Instead of counting full windings, the number
W = 2W̃ of half-turns is counted, which is the number of direction reversals of the cable. This
number coincides with the number of cable cross-sections seen in the xy-plane of the Q3D model,
and isW = 24 for the lead example seen in Fig. 3.2.

Domain Notation

Figure 3.2 shows the notation of the individual volumes and boundaries of the lead example.
Herein, the cable volumes are denoted with Vw, w = 1, . . . ,W and are wrapped by a thin glass
fibre insulation Vins. Together, they form the coil, which is placed in a vacuum domain V0. The
total domain is denoted with V = V0 ∪ Vins ∪ Vw, w = 1, . . . ,W and its boundary consists of
non-overlapping surfaces ΓDir ∪ ΓNeum ∪ Γ+

w ∪ Γ−
w = ∂V, w = 1, . . . ,W, where Γ+

w and Γ−
w denote

the front and back surfaces of the cables Vw. In V , the magnetic problem is solved, see Sec. 3.2.
The thermal model is computed in a sub-domain of V ⊃ V ′ = Vins ∪ Vw, w = 1, . . . ,W with
non-overlapping surfaces Γiso∪Γadi∪Γcon∪Γ+

w ∪Γ−
w = ∂V ′, w = 1, . . . ,W, excluding the vacuum

domain. The convection effects of the liquid helium flowing around the coil are considered by
applying Robin boundary conditions on Γcon, see Sec. 3.3.
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back end winding

x
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z

Figure 3.1.: Sketch of a 3D superconducting magnet coil. The central geometry fulfills the trans-
lational symmetry requirement, and serves as Q3D model. The coil end effects are
modeled separately. Figure adapted from [SZ19].

Homogenization Approach

A single wire of a superconducting multi-filamentary cable (see Fig. 2.2) has a diameter of 0.1-
3mm, and consists of around 105 superconducting filaments with a diameter in the range of
1-20µm [SZ19]. Obviously, an explicit discretization of the individual wires, let alone the filaments,
is not a feasible option in terms of computational costs. Hence, a homogenization approach is
employed, where the cable cross-section is homogenized to a bulk taking the proportions of
the different materials into account [Bor+18]. To this end, a copper-to-superconductor-ratio
parameter κCu/SC is defined, such that the effective value for an arbitrary material property X in
a cable is given as

Xeff =
|Swire|
|Sw|

(
κCu/SC

κCu/SC + 1
XCu +

1

κCu/SC + 1
XSC

)
, (3.1)

where XCu and XSC stand for the respective material characteristics of copper and the supercon-
ducting material, respectively [Bor+18]. Furthermore, |Swire| denotes the wire cross-section area
and |Sw| the w-th half-turn cross-section area, such that the factor |Swire|

|Sw| represents the ratio of
wire-to-vacuum-material in the cable [Bor+18]. Then,

κCu =
|Swire|
|Sw|

κCu/SC

κCu/SC + 1
, (3.2)

κSC =
|Swire|
|Sw|

1

κCu/SC + 1
(3.3)
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Figure 3.2.: Sketch of the lead example, i.e. a superconducting coil with W = 24 half-turns in an
elliptic vacuum domain. The total domain is denoted with V and includes both green
and purple parts. The sub-domain V ′ ⊂ V is represented only by the purple entities.

denote the proportions of copper and superconducting material in a half-turn, respectively.

3.2. Magnetic Model

Maxwell’s Theory

For the quench simulation of superconducting coils, the electromagnetic phenomena are modeled
by two of Maxwell’s equations [Jac98],

∇× E⃗(r⃗, t) = −∂tB⃗(r⃗, t) Faraday’s law, (3.4)

∇× H⃗(r⃗, t) = J⃗(r⃗, t) + ∂tD⃗(r⃗, t) Ampère’s law. (3.5)

Herein, E⃗ : R3 × R 7→ R3 is the electric field strength in V/m, B⃗ : R3 × R 7→ R3 is the magnetic
flux density in T, H⃗ is the magnetic field strength in A/m, J⃗ : R3 × R 7→ R3 is the electric current
density in A/m2, and D⃗ : R3×R 7→ R3 is the electric flux density in As/m2. All quantities depend
on the spatial coordinate r⃗ in m and the time t in s. The macroscopic fields H⃗ and B⃗ are connected
through the magnetic permeability µ in H/m by [Jac98]

B⃗(r⃗, t) = µ(r⃗, H⃗) H⃗(r⃗, t). (3.6)
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This quantity can be decomposed into

µ(r⃗, t) = µ0 µr(r⃗, H⃗) (3.7)

with the vacuum permeability µ0 = 4π · 10−7H/m and the unitless relative permeability µr.
Alternatively, the relation (3.6) is often expressed via the magnetic reluctivity ν = µ−1 in m/H as

H⃗(r⃗, t) = ν(r⃗, H⃗) B⃗(r⃗, t). (3.8)

In addition, J⃗ is connected to E⃗ via Ohm’s law [Jac98]

J⃗(r⃗, t) = σ(r⃗, ϑ) E⃗(r⃗, t), (3.9)

where σ is the electric conductivity in S/m depending on the temperature ϑ in K [Rus10].
Using the lemmata of Poincaré [Rus10], it is possible to express E⃗ and B⃗ in terms of the electric

scalar potential ϕ in V and the magnetic vector potential (MVP) A⃗ in Vs/m as

E⃗(r⃗, t) = −∇ϕ(r⃗, t)− ∂tA⃗(r⃗, t), (3.10)

B⃗(r⃗, t) = ∇× A⃗(r⃗, t). (3.11)

Maxwell’s equations (3.4)–(3.5) are invariant under the gauge transformations

ϕ∗(r⃗, t) = ϕ(r⃗, t)− ∂tΛ(r⃗, t), (3.12)

A⃗∗(r⃗, t) = A⃗(r⃗, t) +∇Λ(r⃗, t), (3.13)

where Λ is an arbitrary scalar field, meaning that the observable physical fields E⃗ and B⃗ are not
influenced by the choice of Λ. Because of the arbitrariness of Λ, the electric scalar potential ϕ is
only unique up to a constant and the magnetic vector potential A⃗ is only unique up to a gradient
field [Ham99]. While the definition of a ground potential already resolves this issue for ϕ, a gauge
condition is necessary for A⃗. In this work, the Coulomb gauge

∇ · A⃗(r⃗, t) = 0 (3.14)

is utilized, which is motivated from Helmholtz’ theorem stating that a vector field is uniquely
determined by its sources and curls [Rus10].

Magnetoquasistatic Formulation

Due to ∂tD⃗ ≪ J⃗ in superconducting coils, Ampère’s law (3.5) is reduced to

∇× H⃗(r⃗, t) = J⃗(r⃗, t). (3.15)

Using (3.8) and (3.11), one obtains the MQS formulation in terms of the MVP A⃗ in a 3D domain
V ⊂ R3, reading

∇×
(
ν(r⃗, H⃗)∇× A⃗(r⃗, t)

)
= J⃗(r⃗, t) in V . (3.16)

The current density on the right-hand side is composed of two parts,

J⃗(r⃗, t) = J⃗m(r⃗, t) + J⃗e(r⃗, t). (3.17)
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The magnetization current density

J⃗m(r⃗, t) = ∇× M⃗IFCC(r⃗, t) (3.18)

models the IFCC phenomenon that generates a magnetization

M⃗IFCC(r⃗, t) = −ν(r⃗, H⃗)τ(r⃗, ϑ) ∂tB⃗(r⃗, t). (3.19)

Here, τ is a given characteristic IFCC time constant in s [Ver95], which depends on the temperature
ϑ in K, since the IFCC effect does not occur in normalconducting regions (ϑ > ϑcrit). With (3.11),
the IFCC magnetization current density (3.18) is expressed in terms of the MVP as

J⃗m(r⃗, t) = −∇×
(
ν(r⃗, H⃗)τ(r⃗, ϑ)∇× ∂tA⃗(r⃗, t)

)
. (3.20)

The current density component J⃗e follows Ohm’s law (3.9). With (3.10), it is expressed in terms
of the MVP and the electric scalar potential as

J⃗e(r⃗, t) = −σ(r⃗, ϑ) ∂tA⃗(r⃗, t)− σ(r⃗, ϑ)∇ϕ(r⃗, t). (3.21)

The first term describes eddy currents as a consequence of time-varying magnetic fields, while
the second term models impressed currents. The negative gradient of the electric potential is
rewritten as

−∇ϕ(r⃗, t) =
W∑

w=1

uw(t) ξ⃗w(r⃗), w = 1, . . . ,W (3.22)

in terms of a voltage drop uw in V along the w-th half-turn of the coil [SDW13]. Herein,

ξ⃗w(r⃗) =
Tw(r⃗)

ℓw
e⃗z, w = 1, . . . ,W (3.23)

is the voltage distribution function in m−1, where ℓw denotes the half-turn’s length in m and

Tw(r⃗) =

{
1 if r⃗ ∈ Vw,
0 if r⃗ /∈ Vw,

w = 1, . . . ,W (3.24)

is the characteristic function for Vw, the volume of thew-th half-turn [SDW13]. For non-overlapping
domains Vw, it holds ξ⃗w · ξ⃗v = 0 for v ̸= w. The current flowing through the v-th half-turn is linked
to the MVP and the voltage drop by [SDW13]

iv(t) =

∫
V

J⃗e(r⃗, t) · ξ⃗v(r⃗) dV. (3.25)

Due to the serial connection of the coil windings and the alternating winding direction of the
half-turns, it holds

iv(t) = (−1)v isrc(t), v = 1, . . . ,W, (3.26)
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where isrc is the source current in A. Additionally, boundary conditions (BCs) apply on the domain’s
boundary ∂V = ΓDir ∪ ΓNeum,

B⃗(r⃗, t) = B⃗ext(r⃗, t) on Γext (3.27a)

n⃗× A⃗(r⃗, t) = 0 on ΓDir, (3.27b)

n⃗× H⃗(r⃗, t) = 0 on ΓNeum, (3.27c)

where n⃗ is the outward-pointing normal vector with respect to the boundary, and B⃗ext represents
an external magnetic field. Mathematically, (3.27a) is an inhomogeneous Dirichlet BC, while
(3.27b) is a homogeneous Dirichlet BC, which forces the normal component of the magnetic field
to vanish at the boundary ΓDir. Furthermore, an initial condition

A⃗(r⃗, t = 0) = A⃗0(r⃗) in V (3.28)

with the initial MVP A⃗0 holds. Despite of defining BCs, the MVP is not unique, as already discussed.
To resolve this issue, the Coulomb gauge condition (3.14) is utilized. In the end, the nonlinear
magnetic boundary value problem (BVP) of the quench model is obtained:

Magnetic Model:

∇×
(
ν(r⃗, H⃗)∇× A⃗(r⃗, t)

)
= J⃗m(r⃗, t) + J⃗e(r⃗, t) in V , (3.29a)

J⃗m(r⃗, t) = −∇×
(
ν(r⃗, H⃗)τ(ϑ)∇× ∂tA⃗(r⃗, t)

)
, (3.29b)

J⃗e(r⃗, t) = −σ(r⃗, ϑ) ∂tA⃗(r⃗, t) + σ(r⃗, ϑ)uw(t) ξ⃗w(r⃗, t), (3.29c)

isrc(t) = (−1)v
∫
V

J⃗e(r⃗, t) · ξ⃗v(r⃗) dV, (3.29d)

∇ · A⃗(r⃗, t) = 0 in V , (3.29e)

B⃗(r⃗, t) = B⃗ext(r⃗, t) on Γext, (3.29f)

n⃗× A⃗(r⃗, t) = 0 on ΓDir, (3.29g)

n⃗× H⃗(r⃗, t) = 0 on ΓNeum, (3.29h)

A⃗(r⃗, t = 0) = A⃗0(r⃗) in V , (3.29i)

for v, w = 1, . . . ,W and a given source current isrc.

3.3. Thermal Model

Heat is transferred either by conduction, convection or thermal radiation [VDI10]. For the quench
problem, heat conduction within the cables and convective heat transfer within the cooling medium
play the main role for the temperature dynamics. The heat transfer is described by the transient
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heat conduction equation

−∇ · (λ(ϑ)∇ϑ(r⃗, t)) + CV(ϑ)∂tϑ(r⃗, t) = qV(r⃗, t) in V ′ (3.30)

with ϑ : R3 × R→ R as the scalar temperature field in K, λ as thermal conductivity in W/(mK),
CV = ϱdcp as the volumetric heat capacity in J/(m3 K), which is composed of the density ϱd in
kg/m−3 and the specific heat capacity cp in J/(kg K), and qV as volumetric heat flux density in
W/m3, representing a heat excitation density in the domain [VDI10]. Note that the material
properties depend on the temperature, which makes the problem nonlinear.
In addition to the PDE (3.30), BCs apply on the domain’s boundary ∂V = Γiso ∩ Γadi ∩ Γcon,

ϑ(r⃗, t) = ϑiso(r⃗, t) on Γiso, (3.31a)
−λ(r⃗, t) ∂nϑ(r⃗, t) = 0 on Γadi, (3.31b)
−λ(r⃗, t) ∂nϑ(r⃗, t) = α(r⃗, ϑ) (ϑ(r⃗, t)− ϑfluid) on Γcon. (3.31c)

Herein, ∂n = n⃗ ·∇ is the partial derivative in normal direction, (3.31a) describes an isothermal BC,
i.e. a fixed temperature ϑiso on the boundary Γiso; (3.31b) represents an adiabatic BC, meaning
that the heat flux vanishes on the boundary Γadi; and (3.31c) takes the convective heat transfer
through the ambient boundary Γcon into account, where α is the heat transfer coefficient in
W/(m2K) and ϑfluid is the temperature of the ambient fluid in K. Furthermore, an initial condition
with the initial temperature distribution ϑ0 holds,

ϑ(r⃗, t = 0) = ϑ0(r⃗) in V . (3.32)

Together, (3.30), (3.31) and (3.32) form the thermal BVP:

Thermal Model:

−∇ · (λ(r⃗, ϑ)∇ϑ(r⃗, t)) + CV(r⃗, ϑ)∂tϑ(r⃗, t) = qV(r⃗, t) in V ′, (3.33a)
ϑ(r⃗, t) = ϑiso(r⃗, t) on Γiso, (3.33b)

−λ(r⃗, ϑ) ∂nϑ(r⃗, t) = 0 on Γadi, (3.33c)
−λ(r⃗, ϑ) ∂nϑ(r⃗, t) = α(r⃗, ϑ) (ϑ(r⃗, t)− ϑfluid) on Γcon, (3.33d)

ϑ(r⃗, t = 0) = ϑ0(r⃗) in V ′. (3.33e)

The thermal model (3.33) is coupled to the magnetic model (3.29) through the heat losses
generated by the different current components in (3.17),

qV(r⃗, t) = qm(r⃗, t) + qe(r⃗, t) (3.34)

with the IFCL density arising through the IFCC magnetization currents,

qm(r⃗, t) = ν(r⃗, H⃗)τ(r⃗, ϑ)
∥∥∥∇× ∂tA⃗(r⃗, t)∥∥∥2 , (3.35)
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Figure 3.3.: Current sharing phenomenon in a multi-filamentary superconducting cable. Super-
conducting regions are depicted in white, normalconducting regions in shades of
gray indicating their electrical conductivity. Arrows visualize the source current flow.
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1

ϑ (K)

q q
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)

Figure 3.4.: Smooth quench state model based on the current sharing and critical temperature
of the superconductor [DSD22].

and the Ohmic loss density due to the eddy currents and the voltage drop along the w-th half-turn,

qe(r⃗, t) = σ(r⃗, ϑ)
∥∥∥∂tA⃗(r⃗, t)∥∥∥2 + σ(r⃗, ϑ)

∥∥∥uw(t) ξ⃗w(r⃗)∥∥∥2 . (3.36)

3.4. Quench State Model

Depending on whether a specific region in the model is currently superconducting or normal-
conducting, different effects and material characteristics apply. In superconducting regions, the
IFCCs (3.20), and thus IFCLs (3.35), have to be taken into account, which are characterized by
the IFCC time constant τ . In normalconducting regions, Ohmic currents (3.21) and Ohmic heat
losses (3.36) arise, which are characterized by the electric conductivity σ. Upon quenching, the
governing effects and material characteristics change.
To model this transition of physical phenomena, a temperature-dependent quench state func-

tion qqs(ϑ) : R 7→ [0, 1] is defined [DSD22]. This function takes the current sharing phe-
nomenon [Sha15] into account which occurs in superconducting multi-filamentary wires, as
shown in Fig. 3.3. If the temperature in a superconducting filament rises above a current sharing
temperature ϑcs, the filament starts to quench, i.e. its resistivity rises. The source current in this
filament begins to favor paths in the surrounding copper matrix, although a part of the current still
flows through the partly quenched filament segment. However, when the temperature surpasses
the critical temperature ϑcrit, the filament segment is shifted completely to normalconducting
state. As the electrical conductivity of NbTi and Nb3Sn is lower than of copper, the source current
will mainly flow around the quenched spot via the copper matrix.
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Thus, for ϑ ≤ ϑcs, no Joule losses arise, while for ϑ ≥ ϑcrit, the maximum Joule losses are
generated. For ϑcs < ϑ < ϑcrit, the Joule losses increase linearly [Bot14]. Based on these
observations, the quench state function is constructed as a sigmoidal function,

qqs(ϑ) =

(
1 + exp

(
−16 ϑ− ϑcrit

ϑcrit − ϑcs
+ 8

))−1

, (3.37)

which is shown in Fig. 3.4. This smooth function is preferred over a simpler linear ramp function
to avoid discontinuities which could disturb the convergence of the nonlinear iteration procedure.
With this, τ and σ can be modeled as quench-state-dependent materials by

τ(r⃗, ϑ) = (1− qqs(ϑ))κSCτSC, (3.38)
σ(r⃗, ϑ) = qqs(ϑ)κCuσNC(r⃗, ϑ) (3.39)

with τSC as IFCC time constant of the superconductor, and σNC as the effective electrical conduc-
tivity of the material in normalconducting state. In this way, the IFCC effects are dominant in
superconducting regions (through τ), while the Ohmic effects dominate in the normalconducting
and quenched regions (through σ). Regions with ϑcs < ϑ < ϑcrit are in the intermediate current
sharing state, where both effects take part.

3.5. End Winding Models

The half-turns in the coil model are numbered from w = 1, . . . ,W such that the first half-turn
(w = 1) is the outermost half-turn, followed by the half-turn on the other side of the coil package
(w = 2) which is directly connected to that first half-turn, followed by the next half-turn (w = 3)
connected to the second one, and so on, until the last half-turn (w = W) is reached. Figure 3.5
shows this winding scheme for an exemplary coil withW = 4 half-turns. The respective domains
are analogously enumerated and denoted as Vw, while the back surfaces (n⃗ = −e⃗z) and front
surfaces (n⃗ = +e⃗z) are called Γ−

w and Γ+
w , respectively, where n⃗ is the outward-pointing normal

vector with respect to the volume Vw. In a multi-layered coil as in the lead example shown in
Fig. 3.2, the numbering scheme starts at the inner- and undermost half-turn on the left coil
package side. When a layer is numbered through, the lastly numbered half-turn of this layer
connects to the innermost half-turn of the layer on top of that in the other coil package side, see
also Fig. 3.2.
The half-turns are electrically isolated from each other in transversal direction, i.e. there is no

transversal current flow. Thermally, they are separated by a thin glass fibre insulation layer with a
very low thermal conductivity. This results into a very low transversal heat flux and, thus, a steep
temperature drop across the insulation layers [SWS22].

Connecting Half-Turns by Circuit Links

For the magnetic model, the respective half-turns are connected to each other by establishing
circuit links between them. In this context, each half-turn domain Vw is treated as a solid
conductor [SDW13] with a voltage drop uw from Γ+

w to Γ−
w for odd w and Γ−

w to Γ+
w for even

w, respectively. Following the winding scheme mentioned before, a serial connection of solid
conductors from w = 1 to w = W is obtained. At Γ+

1 and Γ+
W, the model is connected to an

external circuit which can consist of arbitrary lumped elements [SDW13]. In the simplest case,
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Figure 3.5.: A sketch showing the coil winding connections and numbering scheme for an exem-
plary coil with W = 4 half-turns.

Γ+
1 is connected to a voltage source usrc while Γ

+
W is grounded as shown in Fig. 3.5.

Connecting Half-Turns by Floating Boundaries

For the thermal model, the temperature distribution across the half-turn cross-sections can be
assumed as constant due to the high thermal conductivity of copper and NbTi or Nb3Sn as metallic
materials and the small cross-section area of a half-turn. Therefore, BCs of the form

ϑ|Γ−
w
= ϑ|Γ−

w+1
, w = 2n+ 1, n = 0, . . . ,

W

2
− 1, (3.40a)

ϑ|Γ+
w
= ϑ|Γ+

w+1
, w = 2n, n = 1, . . . ,

W

2
− 1 (3.40b)

can be applied for the temperatures on the half-turn end surfaces. These conditions are floating
BCs [DBH03]: The temperature values on these surfaces are constant but not known beforehand.
They are only determined by solving the BVP. In this way, the connected half-turns share the same
temperature at their respective end surfaces. Note that Γ+

1 and Γ
+
W are not included in (3.40), as

these are the half-turn surfaces connected to the external circuit. On these boundaries, isothermal
BCs (3.33b) are assumed.

22



4. Numerical Ingredients for the Q3D Method

"Double, double, toil and trouble;
Fire burn and cauldron bubble!"

William Shakespeare, Macbeth

The Q3D method is a hybrid numerical approach, which combines a 2D FEM in the xy-plane and
a 1D SEM in the z-direction to achieve an efficient numerical technique for the quench simulation
of long superconducting coils. In order to build and apply this method, this chapter collects and
presents all ingredients needed to boil down the Q3D method in the subsequent Chapter 5.

4.1. Weak Formulation of the Magneto-Thermal Model

The thermal and magnetic models are transferred into their weak forms. In a next step, the
discrete forms are obtained, see Sec. 4.2. In the following, the dependence on the spatial and
temporal coordinates r⃗ and t will be left out for the sake of readability.

Weak Formulation of the Thermal Model

The heat conduction equation (3.33a) is multiplied with a test function ϑ′ ∈ U′ of a not yet
specified function space U′, and the PDE is integrated over the domain V , yielding

−
∫
V

∇ · (λ∇ϑ)ϑ′ dV +

∫
V

CV∂tϑϑ
′ dV =

∫
V

qVϑ
′ dV ∀ϑ′ ∈ U′. (4.1)

Using integration by parts and Gauss’ theorem [Bos98], (4.1) becomes∫
V

λ∇ϑ · ∇ϑ′ dV −
∫
∂V

λ∂nϑϑ
′ dS +

∫
V

CV∂tϑϑ
′ dV =

∫
V

qVϑ
′ dV ∀ϑ′ ∈ U′. (4.2)

To finally obtain the weak formulation, one needs to specify the function space U, in which the
solution ϑ is searched, as well as the function space U′ of the test functions ϑ′. The function spaces
U and U′ should be chosen in a way such that the integrals in (4.2) are well-defined and that the
boundary integral term vanishes [BS08]. To this end, they are chosen as

U = U′ = H1
0 (V ) =

{
u ∈ H1(V ) : u = 0 on Γiso

}
(4.3)

with the Hilbert space
H1(V ) = {u : ∇u ∈ L2(V )} (4.4)
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and the function space of square-integrable functions,

L2(V ) =

u :

∫
V

|u|2 dV <∞

 . (4.5)

In the end, the weak formulation for the thermal model reads:


Find ϑ ∈ H1

0 (V ) s.t.∫
V

λ∇ϑ · ∇ϑ′ dV +

∫
V

CV∂tϑϑ
′ dV =

∫
V

qVϑ
′ dV ∀ϑ′ ∈ H1

0 (V ). (4.6)

Note that this weak formulation is only valid for homogeneous Dirichlet BCs due to ϑ ∈ H1
0 (V ).

Section 5.3 will show how to consider a scenario with inhomogeneous Dirichlet boundaries in the
Q3D setting.

Weak Formulation for the Magnetic Model

The MQS potential formulation (3.29a) is multiplied with a vectorial test function A⃗′ ∈ V′ and
the PDE is integrated over the domain V . Integration by parts, vector-algebraic manipulation and
applying Stokes’ theorem [Bos98] lead to∫

V

ν∇× A⃗ · ∇ × A⃗′ dV +

∫
∂V

(ν∇× A⃗)× A⃗′ · dS⃗ =

∫
V

J⃗ · A⃗′dV ∀A⃗′ ∈ V′. (4.7)

Due to the De Rham sequence [Rus10], one chooses

V = V′ = H0(curl;V ) = {v⃗ ∈ H(curl;V ) : v⃗ × n⃗ = 0 on ΓDir} (4.8)

with
H(curl;V ) = {v⃗ : ∇× v⃗ ∈ L2(V )} (4.9)

as the function space of curl-conforming functions in order to ensure that the integrals in (4.7) are
well-defined. Considering (3.17), the current density in the right-hand side of (4.7) consists of
two parts, J⃗ = J⃗e + J⃗m. Thus, the right-hand side of (4.7) is decomposed into two parts reading∫

V

J⃗m · A⃗′ dV =

∫
V

ντ∇× ∂tA⃗ · ∇ × A⃗′ dV, (4.10)

∫
V

J⃗e · A⃗′ dV = −
∫
V

σ∂tA⃗ · A⃗′ dV + uw

∫
V

σξ⃗w · A⃗′ dV (4.11)

using (3.20), (3.21) and (3.22).
The gauge condition (3.29e) is taken into account by introducing Lagrange multipliers ζ ∈

H1
0 (V ) and adding the negative gradient −∇ζ as additional term to (4.7)[CDN18]. By gathering
all equations, one finally obtains the weak formulation for the magnetic problem:
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Find A⃗ ∈ H0(curl;V ), ζ ∈ H1
0 (V ), uw ∈ R, with w = 1, . . . ,W s.t.

(I):
∫
V

ν∇× A⃗ · ∇ × A⃗′ dV +

∫
V

ντ∇× ∂tA⃗ · ∇ × A⃗′ dV +

∫
V

σ∂tA⃗ · A⃗′ dV

−
∫
V

∇ζ · A⃗′ dV −
W∑

w=1

uw

∫
V

σξ⃗w · A⃗′ dV = 0 ∀A⃗′ ∈ H0(curl;V ),

(II): −
∫
V

A⃗ · ∇ζ ′ dV = 0 ∀ζ ′ ∈ H1
0 (V ),

(III): −
∫
V

σ ∂tA⃗ · ξ⃗v dV + uw

∫
V

σ ξ⃗w · ξ⃗v dV = iv, v = 1, . . . ,W.

(4.12)

As in the case of the thermal problem, this weak formulation is only valid for problems with
homogeneous Dirichlet BCs due to the choice of A⃗ ∈ H0(curl;V ). Inhomogeneous Dirichlet
boundaries are covered in Sec. 5.3 for the Q3D setting.

4.2. Discretization of the Magneto-Thermal Model

Discretization of the Domain

The domain V is discretized into a computational domain Vh, and the continuous weak formulation
is translated into a discrete weak formulation. Herein, the subscript h denotes a method-dependent
discretization parameter. With h→ 0, the solution of the discrete problem should converge against
the solution of the continuous problem [Bra12]. The nature of this spatial discretization and, thus,
of the resulting mesh depends on the employed numerical method and the dimensionality of the
considered domain:

• In the 2D FEM, a triangulation of the 2D cross-section Ω ⊂ V leads to triangles T and the
2D Cartesian computational domain Ωh, see Sec. 4.3. For first-order FEM, the discretization
parameter h relates to the mesh length, meaning that convergence is achieved by refining
the triangular mesh [Bra12].

• In the 1D SEM, the interval I is subdivided into line elements Ik, see Sec. 4.4. Here, the
discrete solution converges with the refinement of the mesh and also with increasing order
of the employed basis functions [STW11].

• In the Q3D hybrid method, the 3D domain is discretized using prism elements P as a
combination of 2D triangles T in the cross-section Ωh and 1D lines Ik in the third dimension,
see Chapter 5. Here, a convergence is achieved by either refining the FE or SE mesh, or by
increasing the order of the basis functions.
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Discretization of Function Spaces

The discrete weak formulation is obtained by approximating the original function space U by
finite-dimensional closed function subspace Uh ⊂ U. The concrete definition of Uh depends on
the choice of the numerical method:

• In the first-order FEM with nodal shape functions, Uh = S10(Ωh)∩H1
0 (Ωh) with S10(Ωh) being

the function space of continuous splines of first order (hat functions) with compact support
on the domain Ωh, see Sec. 4.3.

• In the FEM with first-order edge shape functions, Uh = S10(Ωh) ∩H0(curl; Ωh), see Sec. 4.3.

• In the SEM, Uh = PN
0 (I) ∩ H1

0 (I) with PN
0 (I) being the function space of continuous

orthogonal polynomials with a maximal order of N with compact support on the interval I,
see Sec. 4.4.

• In the Q3D hybrid method, Uh = U2DFE
h (Ωh)× U1DSE

h (I), i.e. a tensorial product of the 2D
FE and 1D SE function spaces is used, see Chapter 5.

Discretization of the Solution

The temperature and MVP are approximated as

ϑ(r⃗, t) ≈
J∑

j=1

ϑj(t) vj(r⃗), (4.13)

A⃗(r⃗, t) ≈
E∑

e=1

⌢ae(t) v⃗e(r⃗) (4.14)

with J scalar shape functions vj(r⃗) ∈ Uh(Vh) and E vectorial shape functions v⃗e(r⃗) ∈ Uh(curl;V ),
where J and E are the numbers of degrees of freedom (DoF) for the temperature and the MVP,
respectively. Here, ϑj are the temperature coefficients, and ⌢ae are the MVP coefficients. The bow
indicates that ⌢ae represent the line-integrated MVP1 in Vs as opposed to the MVP, which is in
Vs/m.
Following the Ritz-Galerkin approach, the same test functions vi(r⃗), i = 1, ..., J and v⃗e(r⃗), e =

1, . . . ,E are used. Eventually, one obtains for the thermal problem (4.6) the spatially discretized
formulation

Find uj , j = 1, . . . , J s.t.
J∑

j=1

ϑj

∫
Vh

λ∇vj · ∇vi dV +

J∑
j=1

∂tϑj

∫
Vh

CVvjvi dV =

∫
Vh

qVvi dV ∀vi ∈ Uh.
(4.15)

1This notation is taken from the finite integration technique [CW01].
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Analogously, the magnetic problem (4.12) is translated into

Find ⌢ae with e = 1, . . . ,E; uw with w = 1, . . . ,W; ζj with j = 1, . . . , J s.t.

(I):
E∑

e=1

⌢ae

∫
Vh

ν∇× v⃗e · ∇ × v⃗d dV +
E∑

e=1

∂t
⌢ae

∫
Vh

ντ∇× v⃗e · ∇ × v⃗d dV

+

E∑
e=1

∂t
⌢ae

∫
Vh

σv⃗e · v⃗d dV −
J∑

j=1

ζj

∫
Vh

∇vj · v⃗d dV

−
W∑

w=1

uw

∫
Vh

ξ⃗w · v⃗d dV = 0 ∀v⃗d ∈ Vh,

(II): −
E∑

e=1

⌢ae

∫
Vh

v⃗e · ∇vi dV = 0 ∀vi ∈ Uh,

(III): −
E∑

e=1

∂t
⌢ae

∫
Vh

σv⃗e · ξ⃗v dV +

W∑
w=1

uw

∫
Vh

σξ⃗w · ξ⃗v dV = iv, v = 1, . . . ,W.

(4.16)

Here, the Lagrange multipliers ζ are discretized with nodal shape functions vj(r⃗) ∈ Uh(Vh).

Translation into a System of Equations

Next, the terms in the discrete formulations (4.15) and (4.16) are written in a system of equations,
such that they can be expressed as matrices and vectors. In the following notation, the subscript
of a discrete quantity indicates the material parameter for a matrix and a function for a vector,
respectively. For the thermal problem (4.15), the entries of the matrices and vectors arise as

(Kn
λ)ij =

∫
Vh

λ∇vj · ∇vi dV thermal conductance matrix, (4.17)

(
Mn

CV

)
ij
=

∫
Vh

CVvjvi dV thermal capacitance matrix, (4.18)

(qV)i =

∫
Vh

qVvi dV thermal load vector. (4.19)

The matrices (4.17) and (4.18) are also commonly refered to as stiffness matrix and mass matrix,
respectively. Eventually, this leads to the thermal semi-discrete system of equations

Kn
λϑ+Mn

CV

dϑ

dt
= qV, (4.20)
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where the vector ϑ collects the temperature coefficients ϑj . For the magnetic problem (4.16), the
matrices read

(Ke
c)de =

∫
Vh

c∇× v⃗e · ∇ × v⃗d dV magnetic reluctance matrix, (4.21)

(Me
σ)de =

∫
Vh

σv⃗e · v⃗d dV electrical conductance matrix, (4.22)

(C1)ie =

∫
Vh

v⃗e · ∇vi dV node-edge coupling matrix, (4.23)

(Xσ)dw =

∫
Vh

σξ⃗w · v⃗d dV winding matrix, (4.24)

(Gσ)vw =

∫
Vh

σξ⃗w · ξ⃗v dV direct current conductance matrix. (4.25)

with c ∈ {ν, ντ}. Finally, this leads to the magnetic semi-discrete system of equationsKe
ν +Ke

ντ
d
dt +Me

σ
d
dt −Xσ CT

1

−XT
σ

d
dt Gσ 0

C1 0 0

⌢a
u
ζ

 =

0i
0

 . (4.26)

Here, ⌢a collects the MVP coefficients ⌢ae, u the voltage drops uw per half-turn, ζ the Lagrange
multipliers ζj and i the half-turn currents iv.

Temporal Discretization

After the spatial discretization, the temporal derivative d
dt still needs to be discretized in order to

obtain fully discrete systems of equations. To this end, the continuous time range t = [0, tend] is
discretized into time instances ti, i = 1, . . . , Ntime and the i-th time step is defined as∆ti = ti+1−ti.
In this work, a backward implicit Euler scheme [Qua17] is applied to (4.20) and (4.26), where
the solution vectors represent the solution in the next time step ti+1,

ϑ(i+1) := ϑ(t = ti+1) and ⌢a(i+1) := ⌢a(t = ti+1), (4.27)

and the time derivative of a discrete quantity x at ti+1 is approximated as

dx(ti+1)

dt
≈ x(i+1) − x(i)

∆ti
. (4.28)

With this, the thermal system of equations finally reads

Kn
λ(ϑ

(i+1)) ϑ(i+1) +
1

∆ti
Mn

CV
(ϑ(i+1)) ϑ(i+1) = qV(ϑ

(i+1)) +
1

∆ti
Mn

CV
(ϑ(i)) ϑ(i), (4.29)
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Figure 4.1.: Nonlinear iteration scheme for the magneto-thermal coupled problem utilizing the
alternating nonlinear method [SJ17]. Herein, the magnetic and thermal solver are ap-
plied successively. Then, prescribed convergence criteria are checked such as (4.31)
and whether a maximum iteration number has been reached.

and the magnetic system of equations reads

Ke
ν +

1
∆ti

(
Ke

ντ (ϑ
(i+1)) +Me

σ(ϑ
(i+1))

)
−Xσ(ϑ

(i+1)) CT
1

− 1
∆ti

XT
σ

(
ϑ(i+1)

)
Gσ

(
ϑ(i+1)

)
0

C1 0 0

⌢a(i+1)

u(i+1)

ζ(i+1)

 =

 1
∆ti

(
Ke

ντ (ϑ
(i)) +Me

σ(ϑ
(i))
)
⌢a(i)

i− 1
∆ti

XT
σ

(
ϑ(i)

)
⌢a(i)

0

 .
(4.30)

Note that there exist more sophisticated time discretization schemes, see e.g. [ND96; CWW02;
Cor+17]. However, as this work emphasizes the spatial discretization of quench simulation, a
more elaborated temporal discretization is not pursued.

Nonlinear Iteration Scheme

The multi-physical quench simulation requires to solve two strongly coupled nonlinear system of
equations, which represent the co-simulated thermal and magnetic problems. Different approaches
exist to handle such coupled nonlinear systems. Here, the alternating nonlinear method is
employed, which works best for avoiding over-solving, thus increasing the overall computational
efficiency [SJ17]. In this approach, the magnetic and thermal solver are solved successively in
one nonlinear iteration (k + 1), and the residuals of both solvers are checked for the convergence
criteria

∆(k+1) =
1

2

(
||ϑ(k+1) − ϑ(k)||2
||ϑ(k+1)||2

+
||⌢a(k+1) − ⌢a(k)||2
||⌢a(k+1)||2

)
< ϵtol. (4.31)

with a prescribed tolerance ϵtol. Here, ∆(k+1) represents the averaged relative difference of the
temperature and MVP solution compared to the previous iteration k. The scheme of the alternating
nonlinear method is shown in Fig. 4.1.
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Algorithm 1 Fixed point iteration scheme.
Require: Initial iterate ϑ(0) as solution of the previous time step, iteration counter k = 0, maximal
iteration number kmax, initial difference ∆(0) =∞, convergence tolerance ϵtol.
while

(
∆(k) > ϵtol

)
and (k ≤ kmax) do

Assemble system matrix A(ϑ(k)) and right-hand side b(ϑ(0)).
Solve A(ϑ(k))ϑ(k+1) = b(ϑ(0)) for ϑ(k+1).
Compute ∆(k+1) = ||ϑ(k+1)−ϑ(k)||2

||ϑ(k+1)||2
.

Set k ← k + 1.
end while

As nonlinear iteration scheme, this work employs a fixed point iteration, also known as method
of successive substitution [Hau09]. The idea is to linearize the nonlinear system of equations
in the working point ϑ(k), and to successively solve the system in each iteration (k + 1) for the
working point ϑ(k+1). The scheme ends when either the solution achieves a satisfying convergence
criterion or a prescribed number of maximal iterations is reached [Hau09]. Algorithm 1 shows
the procedure for a general nonlinear system of equations A(ϑ)ϑ = b. In the context of the
alternating nonlinear method, this procedure is performed in each iteration for both the magnetic
and thermal system of equations.

4.3. First Ingredient: 2D Finite Element Method

In the Q3D method, the 2D FEM is employed to discretize the transversal cross-section of the
superconducting coil. To this end, the 2D xy-cross-section Ω is partitioned into a mesh

Th = {Tt, t = 1, . . . , NFE} (4.32)

consisting of a total of NFE triangular non-overlapping FEs Tt, Nn non-hanging nodes, and Ne

edges. This yields the computational domain [Bra12]

Ωh =
⋃

T∈Th

T. (4.33)

Nodal Shape Functions

The linear 2D nodal shape function N (T )
j : R2 7→ [0, 1] for node j on the element T ∈ Th is given

as
N

(T )
j (x, y) = a

(T )
j x+ b

(T )
j y + c(T ) ∈ H1(Ωh), (4.34)

where a(T )
j , b

(T )
j , c

(T )
j ∈ R are coefficients depending on the location of the element T , such that

the nodal property

N
(T )
j (r⃗) =

{
1 on node i = j,
0 on node i ̸= j, (4.35)

is fulfilled. From node j, N (T )
j linearly decays to zero on all other nodes i ̸= j belonging to T and

is zero on all other elements T ′ ̸= T as shown by the color scheme in Fig. 4.2a. Hence, the global
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Figure 4.2.: Nodal property of linear 2D nodal shape functions: The function Nj equals one on
its own node j, and linearly decays to zero for all other nodes i ̸= j, see (a). In a
3D perspective, where the third axis represents the value of Nj , the 2D nodal shape
function resembles a hat, see (b).

nodal function
Nj(x, y) =

∑
T∈Th

N
(T )
j (x, y) (4.36)

is a hat function with local support on all elements T featuring node j [ZTT05]. This means,
that Nj = 1 on the node j, and that Nj decays linearly to zero to all other nodes i, which belong
to elements T containing node j. In a 3D perspective, where the third dimension reflects the
function’s value, Nj resembles a hat as shown in Fig. 4.2b. With that properties, Nj is continuous
in every spatial direction, which makes it appropriate for approximating physical fields exhibiting
this type of continuity such as the temperature,

ϑ(x, y; t) ≈
J∑

j=1

ϑj(t)Nj(x, y). (4.37)

Edge Shape Functions

For the correct representation of the MVP, edge shape functions are employed, which are H(curl)-
conforming [Bos98] as required by the weak formulation (4.12). In general, an edge shape
function is associated with an edge e = (i, j) from a node i to a node j of the mesh, and is
expressed in terms of the nodal shape functions as

w⃗e(r⃗) = Ni(r⃗)∇Nj(r⃗)−Nj(r⃗)∇Ni(r⃗) ∈ H1(curl; Ωh). (4.38)

In a 2D Cartesian xy-plane, two types of edge functions are distinguished.
A transversal edge function w⃗(t)

e (x, y) : R2 7→ [0, 1] × [0, 1] × [0], e = 1, . . . , Ne, is associated
to an edge e = (i, j) in the mesh as shown in Fig. 4.3 as purple arrow. It follows the general
expression (4.38)

w⃗(t)
e (x, y) = Ni(x, y)∇Nj(x, y)−Nj(x, y)∇Ni(x, y). (4.39)

Note that ∇ = (∂x, ∂y, ∂z)
T is the 3D gradient. However, as the 2D nodal shape functions do not

depend on z, the third component of w⃗(t)
e is always zero.
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Figure 4.3.: Two types of edge functions in a 2D Cartesian mesh arise: Transversal (or tangential)
edges (purple) are associated with the mesh edges e connecting two mesh nodes i
and j (red). Meanwhile, longitudinal (or normal) edges (blue) perpendicularly emerge
from the mesh nodes j into z-direction.

A longitudinal edge function w⃗(ℓ)
j (x, y) : R2 7→ [0]× [0]× [0, 1], j = 1, . . . , Nn, is associated to

an edge standing perpendicularly on a node j and pointing into positive z-direction, as shown in
Fig. 4.3 as blue arrow. It is expressed in terms of nodal functions as

w⃗
(ℓ)
j (x, y) =

Nj(x, y)

ℓz
e⃗z, (4.40)

where e⃗z is the unit vector in z-direction, and ℓz is the depth of the geometry, i.e. the length of
the longitudinal edge.
As a consequence of this distinction, the MVP is approximated by a decomposition into a

transversal component lying in the xy-plane and a longitudinal component pointing in z-direction,

A⃗(x, y; t) ≈
E∑

e=1

⌢a(t)e (t) w⃗(t)
e (x, y) +

J∑
j=1

⌢a
(ℓ)
j (t) w⃗

(ℓ)
j (x, y) (4.41)

where ⌢a(t)e and ⌢a
(ℓ)
j are the transversal and longitudinal MVP coefficients, respectively.

Matrix Assembly

For the thermal system of equations (4.20), the 2D FE matrices and vectors (4.17), (4.18) and
(4.19) read (

KFE,n
λ

)
ij
=

∫
Ωh

λ(x, y)∇Nj(x, y) · ∇Ni(x, y) dxdy, (4.42)

(
MFE,n

CV

)
ij
=

∫
Ωh

CV(x, y)Nj(x, y)Ni(x, y) dxdy, (4.43)

(
qFE
V

)
i
=

∫
Ωh

qV(x, y)Ni(x, y) dxdy. (4.44)
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For the magnetic systems of equation (4.26), in the case of the transversal edge shape functions,
the matrices (4.21)–(4.24) read(

KFE,t
c

)
de

=

∫
Ωh

c(x, y)∇× w⃗(t)
e (x, y) · ∇ × w⃗(t)

d (x, y) dxdy, (4.45)

(
MFE,t

σ

)
de

=

∫
Ωh

σ(x, y)w⃗(t)
e (x, y) · w⃗(t)

d (x, y) dxdy, (4.46)

(
CFE,t

1

)
ie
=

∫
Ωh

w⃗(t)
e (x, y) · ∇Ni(x, y) dxdy, (4.47)

(
XFE,t

σ

)
dw

= 0. (4.48)

Here, the transversal winding matrix (4.48) is zero, since the scalar product between the transver-
sal edge shape function (lying in the xy-plane) and the voltage distribution function ξ⃗w (pointing
in z-direction) is zero. The material parameter c is substituted either with ν or ντ . In the case of
longitudinal edge shape functions, the matrices read(

KFE,ℓ
c

)
ij
=

∫
Ωh

c(x, y)∇Nj(x, y) · ∇Ni(x, y)ℓ
−2
z dxdy, (4.49)

(
MFE,ℓ

σ

)
ij
=

∫
Ωh

σ(x, y)Nj(x, y)Ni(x, y)ℓ
−2
z dxdy, (4.50)

(
CFE,ℓ

1

)
i′j

= 0, (4.51)(
XFE,ℓ

σ

)
iw

=

∫
Ωh

σ(x, y)Tw(x, y)Ni(x, y)ℓ
−2
z dxdy. (4.52)

Here, the node-edge coupling matrix CFE,ℓ
1 is a zero matrix, because the gradient term in (4.23)

lies in the xy-plane and the longitudinal edge shape function points in z-direction. In contrast
to the transversal case, the longitudinal winding matrix is not zero, since the longitudinal edge
shape functions point in the same direction as the voltage distribution functions ξ⃗w.
For the calculation of the matrices and vectors, the reference element approach is used [Bra12].

In this process, the integrals over Ωh are expressed as sums of integrals over T in the image
coordinate system. Then, they are transformed into integrals over the reference element T̂ in the
reference coordinate system utilizing appropriate mapping theorems. The detailed calculations
are left to Appendix A.1.
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4.4. Second Ingredient: 1D Spectral Element Method

Consider the general 1D BVP

−α(z)∂2zu(z) + β(z)∂zu(z) + γ(z)u(z) = f(z) in I = [0, ℓz], (4.53a)
u(0) = 0, (4.53b)
u(ℓz) = 0, (4.53c)

with an unknown function u(z), parameters α(z), β(z), γ(z) ≥ 0 and a known right-hand side
f(z). Following the procedure in Sec. 4.1, the weak formulation reads

Find u(z) ∈ P s.t.∫
I

α(z)∂zu(z)∂zv(z) dz +

∫
I

β(z)∂zu(z)v(z) dz +

∫
I

γ(z)u(z)v(z) dz

=

∫
I

f(z)v(z) dz ∀v(z) ∈ P′

(4.54)

with test functions v(z), the solution function space P and the test function space P′. To solve
this BVP with the SEM, the interval I is partitioned in NSE subintervals Ik = [zk, zk+1] ⊂ I
called spectral elements (SE). The solution is expanded on an element Ik in terms of polynomials
pkq (z) ∈ PN

0 of order q as [STW11]

u(z) ≈
Q∑

q=1

ũkq p
k
q (z) ∀k (4.55)

with Q as the total number of considered polynomial orders and the function space

PN
0 =

{
pkq (z) ∈ H1

0 (Ik) : pkq (z) is a polynomial of order q ≤ N
}

(4.56)

of element-wise continuous polynomials pkq (z) with a maximal order N . While the coefficients
in the linear FEM discretization are nodal, i.e., they represent directly the physical values at the
DoFs, the coefficients ũkq are in general modal [STW11], i.e., they do not represent physical values
(e.g. the temperature), but the weight of the q-th polynomial mode pkq (z) in element k.

With this definition, the polynomials are not necessarily continuous along the interval I. However,
a correct representation of the temperature and the MVP needs at least C0-continuity along z.
Therefore, either the continuity has to be imposed or appropriate polynomials pkq (z) have to be
chosen such that this continuity is intrinsically given.

The SEM differs from the FEM also in the choice of the inner product. As the SEM relies
on orthogonality properties of the employed polynomials, a polynomial-dependent weighting
function w(z) is required within the inner product to fulfill the orthogonality relation [STW11].
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This yields the discrete weak formulation

Find ũkq , q = 1, . . . ,Q, k = 1, . . . , NSE s.t.∑
q

ũkq

∫
I

α(z)∂zp
k
q (z) ∂z

(
pkp(z)w(z)

)
dz +

∫
I

β(z)∂zp
k
q (z) p

k
p(z)w(z) dz

+

∫
I

γ(z)pkq (z) p
k
p(z)w(z) dz

 =

∫
I

f(z)pkp(z)w(z) dz ∀pkp(z)w(z) ∈ PN
0 .

(4.57)

This leads to the discrete system of equations(
KSE

α +DSE
β +MSE

γ

)
ũ = f̃ (4.58)

with (
KSE

α

)(k)
pq

=

∫
I

α(z)∂zp
k
q (z) ∂zp

k
p(z)w(z) dz spectral stiffness matrix, (4.59)

(
DSE

β

)(k)
pq

=

∫
I

β(z)∂zp
k
q (z) p

k
p(z)w(z) dz spectral damping matrix, (4.60)

(
MSE

γ

)(k)
pq

=

∫
I

γ(z)pkq (z) p
k
p(z)w(z) dz spectral mass matrix, (4.61)

(
f̃
)(k)
p

=

∫
I

f(z) pkp(z)w(z) dz spectral load vector, (4.62)

and a vector ũ collecting the solution coefficients [STW11].
The choice of the polynomials pkq (z) determines the structure of the matrices and the properties of

the approximation for u(z). Ideally, the chosen polynomial basis fulfills the following requirements:

1. To achieve a high computational efficiency, the polynomial basis produces
a) sparse matrices (4.59), (4.60) and (4.61)
b) with closed form expressions.

2. To correctly represent the physics and avoid imposing additional constraints, the polynomial
basis intrinsically fulfills C0-continuity across the SE interfaces.

3. The polynomial basis enables an easy incorporation of boundary conditions without the
need to manipulate multiple polynomial modes ũkq .

4. The polynomial basis has a weighting function w(z) ≡ 1 leading to easier calculations.

Table 4.1 compares the Lagrange, Legendre, Chebyshev, Lobatto and modified Lobatto polyno-
mial bases regarding those requirements [STW11], [FD15]. Note that although the Lagrange
polynomial basis fulfills almost all requirements and is a popular choice for SEMs as it leads to a
diagonal mass matrix [KT99], it heavily violates the sparsity requirement as it produces a fully
populated stiffness matrixKSE

α . This would fatally reduce the computational efficiency of the Q3D
method, thus disqualifying the Lagrange polynomials for utilization in the Q3D discretization.
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Table 4.1.: Comparison between different polynomial bases w.r.t the requirements described in
Section 4.4. A green checkmark indicates complete fulfillment, a yellow checkmark
partial fulfillment, and a red cross non-fulfillment.

Requirement Lagrange Legendre Chebyshev Lobatto Mod. Lobatto

(1a) Sparse matrices ✗ ✓ ✓ ✓ ✓

(1b) Closed form ✓ ✓ ✓ ✓ ✓

(2) C0-continuity ✓ ✗ ✗ ✗ ✓

(3) Easy BC incorporation ✓ ✗ ✗ ✗ ✓

(4) w(z) ≡ 1 ✓ ✓ ✗ ✗ ✓

Eventually, only the modified Lobatto polynomials meet all requirements simultaneously. Hence,
they are introduced in detail in the following.

Modified Lobatto Polynomials

The Lobatto polynomial of q-th order is defined as [Poz14]

LOq(ẑ) = L′
q+1(ẑ), (4.63)

with ẑ ∈ Î = [−1, 1] where L′
q+1 is the derivative of the Legendre polynomial of (q + 1)-th order.

Lobatto polynomials are orthogonal on the interval Î = [−1, 1] [FD15],∫
Î

LOp(ẑ)LOq(ẑ)w(ẑ) dẑ =
2(p+ 1)(p+ 2)

2p+ 3
δpq, (4.64)

with a weight function
w(ẑ) = 1− ẑ2 (4.65)

and the Kronecker delta defined as

δpq =

{
1, p = q,
0, p ̸= q.

(4.66)

The modified Lobatto polynomials on the reference interval Î = [−1, 1] are defined in terms of
Lobatto polynomials (4.63) as [FD15]

ϕ̂q(ẑ) =


1−ẑ
2 , q = 1,

1−ẑ2

4 LOq−2(ẑ), q = 2, . . . , N,

1+ẑ
2 , q = N + 1,

(4.67)

where N is the maximal polynomial order. Using the derivate relation, which links the Lobatto
polynomials LOq−1 of order (q − 1) to the Legendre polynomials Lq of q-th order [FD15],

∂ẑ
(
(ẑ2 − 1)LOq−1(ẑ)

)
= q(q + 1)Lq(ẑ), (4.68)
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Figure 4.4.: Modified Lobatto polynomials (4.67) (left) and their derivatives (4.69) (right) for
N = 6 on the reference interval.

the derivatives of (4.67) are obtained [FD15],

∂zϕ̂q(ẑ) =


−1

2 , q = 1,

− q(q−1)
4 Lq−1(ẑ), q = 2, . . . , N,

+1
2 , q = N + 1.

(4.69)

Figure 4.4 shows the modified Lobatto polynomials (4.67) and their derivative (4.69) for N = 6
on the reference interval. Here, two types of modes q can be distinguished:

• The boundary modes q = 1 and q = N + 1 are described by hat functions and are therefore
nodal, i.e. the corresponding coefficients ũk1 and ũkN+1 represent the actual physical values
at zk and zk+1, respectively.

• The inner modes q = 2, . . . , N are expressed in terms of Lobatto polynomials, and are
therefore modal. The orthogonality property (4.64) of the Lobatto polynomials leads to low
interactions between themselves and, thus, sparse inner matrices.

Through the nodal property of the boundary modes, C0-continuity between two neighboring
elements Ik and Ik+1 is automatically imposed by setting

ũkN+1 = ũk+1
1 . (4.70)

Due to the compact support of ϕ(k)q on the k-th SE, the q-th global SE modified Lobatto shape
function can be defined as the sum of the local shape functions,

ϕq(z) =

NSE∑
k=1

ϕ(k)q (z). (4.71)
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A function f(z) can be expanded in terms of modified Lobatto polynomials of maximal polynomial
order N as

f(z) ≈
N+1∑
m=1

f̃mϕm(z). (4.72)

The spectral coefficients f̃m are collected in a vector f̃ , which is calculated by a forward transform,

f̃ = V−1f , (4.73)

where
(V)ij = ϕ̂j(z

(LGL)
i ) (4.74)

is the Vandermonde matrix [Poz14] of the modified Lobatto polynomials, z(LGL)
i are the Legendre-

Gauss-Lobatto (LGL) nodes, which are obtained by the Newton method [STW11] using an
approximation by [Let78] as initial guess, and

(f)i = f(z
(LGL)
i ) (4.75)

collects the function evaluations of f(z) at the LGL nodes. To recover the function f(z) from given
spectral coefficients f̃ , the Vandermonde matrix is utilized for a backward transform,

f = Vf̃ , (4.76)

delivering the evaluations of f(z) at the LGL nodes. Both the forward and backward transforms
(4.73) and (4.76) have to be performed for each SE individually.

Linear Spectral Matrices

Using the modified Lobatto polynomials, the element-wise spectral stiffness matrix

(
KSE

α

)(k)
pq

=

∫
Ik

α(k)∂zϕ
(k)
q (z) ∂zϕ

(k)
p (z) dz (4.77)

is an inner diagonal matrix with four additional outer entries, resulting into maximal (N + 3)
non-zero entries per element in total. The element-wise spectral damping matrix

(
DSE

β

)(k)
pq

=

∫
Ik

β(k)∂zϕ
(k)
q (z)ϕ(k)p (z) dz (4.78)

is an inner two-banded matrix with diagonals below and above the main diagonal and with
eight additional entries. Thus, this matrix has a total of maximal (2N + 4) non-zero entries. The
element-wise spectral mass matrix

(
MSE

γ

)(k)
pq

=

∫
Ik

γ(k)ϕ(k)q (z)ϕ(k)p (z) dz (4.79)

is an inner tridiagonal matrix with twelve additional outer entries, such that this matrix has a total
of maximal (3N + 7) non-zero entries. All in all, this confirms that the usage of modified Lobatto
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Figure 4.5.: Sparse structure of element-wise spectral matrices withmodified Lobatto polynomial
basis and element-wise constant material parameters. The purple squares indicate
outer entries produced by boundary modes or interactions with boundary modes,
while the black lines represent the inner diagonals generated by the inner modes.

polynomials as SE basis functions leads to highly sparse matrices. The described sparsity patterns
of (4.77)–(4.79) are shown in Fig. 4.5, where the outer entries generated by the boundary modes
are colored in purple, while the inner bands produced by the inner modes are visualized by black
lines. The closed forms of (4.77)–(4.79) are given in Appendix A.2.

Nonlinear Spectral Matrices

In the case of a nonlinear material relation, e.g. a temperature-dependent thermal conductivity
λ = λ(ϑ), the material function is forward transformed in terms of polynomials ψ(k)

m yielding
corresponding spectral coefficients λ̃(k)m ,

λ(z) ≈
N∑

m=0

λ̃(k)m ψ(k)
m (z) ∀k. (4.80)

Thus, the nonlinear element-wise spectral stiffness, damping and mass matrices are calculated by
a polynomial triple product integral,

(
KSE

α

)(k)
pq

=

N∑
m=0

α̃(k)
m

∫
Ik

ψ(k)
m (z)∂zϕ

(k)
q (z) ∂zϕ

(k)
p (z) dz, (4.81)

(
DSE

β

)(k)
pq

=
N∑

m=0

β̃(k)m

∫
Ik

ψ(k)
m (z)∂zϕ

(k)
q (z)ϕ(k)p (z) dz, (4.82)

(
MSE

γ

)(k)
pq

=
N∑

m=0

γ̃(k)m

∫
Ik

ψ(k)
m (z)ϕ(k)q (z)ϕ(k)p (z) dz. (4.83)

In general, it is very difficult if not impossible to find a closed form for such polynomial triple product
integrals [GN07]. Numerical integration or semi-analytical computation tools have to be utilized.
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Figure 4.6.: Concept of the tensor contraction used to calculate the nonlinear spectral matrices:
The tensor contraction of a third order tensor with entries (p, q,m) with a vector with
entriesm on the left-hand side yields a matrix with entries (p, q) on the right-hand
side.

Performing a numerical integration in each nonlinear iteration, however, is computationally very
demanding. Therefore, an approach originating in the efficient implementation of higher-order
FEM is employed [KL07]: For a fixed order N , the third order reference tensors

(
KSE

)
mpq

=

∫
Î

ψm(ẑ)∂ẑϕ̂q(ẑ)∂ẑϕ̂p(ẑ) dẑ, (4.84)

(
DSE

)
mpq

=

∫
Î

ψm(ẑ)∂ẑϕ̂q(ẑ)ϕ̂p(ẑ) dẑ, (4.85)

(
MSE

)
mpq

=

∫
Î

ψm(ẑ)ϕ̂q(ẑ)ϕ̂p(ẑ) dẑ, (4.86)

are computed using semi-analytical integration. This computation is performed only once, after
which the reference tensors are stored in a database. Note that (4.84)–(4.86) do not contain any
geometry or material information.
Next, the material function λ is evaluated along z for the current working point u, and the

spectral material coefficients λ̃(k)m are calculated in terms of the polynomials ψ(k)
m for each SE

k = 1, . . . , NSE. This yields a spectral material coefficient vector λ̃(k) ∈ RN for each SE k. Then,
the element-wise nonlinear spectral matrices are obtained by a tensor contraction [KL07],(

KSE
α

)(k)
= KSE : α̃(k) b−1

k , (4.87)(
DSE

β

)(k)
= DSE : β̃(k), (4.88)(

MSE
γ

)(k)
= MSE : γ̃(k) bk, (4.89)

where the geometrical information is included through mapping coefficients bk, see Appendix A.2.
Basically, the tensor contraction operator : performs the sum operation in (4.81)–(4.83) in an
efficient way, as shown in Fig. 4.6.
Finally, one last question remains: Which polynomials ψ(k)

m are optimal for this tensor contrac-
tion approach? As the polynomial triple product integrals are calculated on beforehand, the focus
for answering this question should be placed on the efficient computation of the spectral material
coefficients λ̃(k)m . Therefore, Chebyshev polynomials Tm are the ideal choice because the corre-

40



Spectral temperature
coefficients ϑ̃q

Nonlinear material
curve

FFT

Spectral Chebyshev
material coefficients λ̃(k)m

Tensor contraction

Spectral nonlinear matrix

Blab Precomputed
reference tensors

Figure 4.7.: Efficient scheme to assemble the nonlinear SEmatrices: The nonlinearmaterial curve
is evaluated at the current working point using the spectral temperature coefficients.
By employing a FFT, the spectral Chebyshev material coefficients are obtained. In
a tensor contraction operation with precomputed reference tensors, the spectral
nonlinear matrix is finally computed. Material curve taken from [Rus10].

sponding spectral coefficients can be computed efficiently using a Fast Fourier Transform (FFT) or
a Discrete Cosine Transform (DCT) [Mak80; STW11]. To this end, four steps are performed:

1. The nonlinear material curve is evaluated at the current working point ϑ̃(k+1).

2. Using FFT or DCT, the spectral Chebyshev material coefficients are calculated.

3. Precomputed reference tensors are tensor-contracted with the material coefficient vector to
compute the element-wise nonlinear spectral matrices.

4. The element-wise nonlinear spectral matrices are assembled to a global SE matrix.

This procedure is visualized in the scheme seen in Fig. 4.7.

4.5. Seasoning: Field-Circuit Coupling

For the quench simulation, a field-circuit coupling approach [SDW13] is applied to include coil
end effects by using end winding models, see Sec. 3.5. With this, an external circuit is also taken
into account, to which the superconducting coil is connected. In this work, a very simple external
circuit is considered, where the coil is connected to a voltage source usrc at Γ+

1 , and to ground
at Γ+

W, see Fig. 3.5. Furthermore, the end windings are linked to each other by ideal electrical
connections, as shown in Fig. 3.5. The resulting electrical circuit is seen in Fig. 4.8. Here, the
half-turns are modeled as solid conductors, meaning that the voltage drop along the w-th half-turn
is applied as a potential difference between the end winding interfaces Γ±

w [SDW13],

uw(t) = ϕw+1(t)− ϕw(t). (4.90)
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Figure 4.8.: Schematic of a simple superconducting coil circuit. The half-turns Vw are modeled
as solid conductors and connected in series at their surfaces Γ±

w to a voltage source,
the ground and each other, respectively.

For all voltage drops uw, w = 1, . . . ,W, this relation is expressed in a discrete form as

usol(t) = AT
solϕ(t), (4.91)

where the vectors usol and ϕ collect the voltage drops uw and circuit node potentials ϕw, respec-
tively. Asol is an incidence matrix with respect to the solid conductors Vw [SDW13]. By following
Kirchhoff’s law and rewriting for the nodal potentials [SDW13], the circuit equations

AViV(t)−AsolX
T
σ
⌢a(t) +AsolGσA

T
solϕ(t) = 0 (4.92a)

AT
Vϕ(t) = usrc(t) (4.92b)

are obtained, where AV is an incidence matrix selecting the voltage source in the circuit, and
iV is the vector of voltage source currents. This approach is known as a modified nodal analysis
(MNA) [SDW13]. Combining the circuit equations (4.92) with the MQS field equations (4.26) by
using (4.91) yields the semi-discrete field-circuit coupled system of equations

Me
σ +Ke

ντ 0 0 0
−XT

σ 0 0 0
0 0 0 0
0 0 0 0

 d

dt


⌢a
ϕ
iV
ζ

+


Ke

ν −XσA
T
sol 0 CT

1

0 AsolGσA
T
sol AV 0

0 −AT
V 0 0

C1 0 0 0




⌢a
ϕ
iV
ζ

 =


0
0
−usrc
0

 . (4.93)
Of course, this procedure can be expanded for multiple voltage sources, other linear lumped
elements such as inductors and capacitors as well as nonlinear lumped elements [SDW13; Cor20].
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5. Quasi-3D Method for Quench Simulation

"Either this is madness or it is Hell."
"It is neither," calmly replied the voice of
the Sphere, "it is Knowledge; it is Three
Dimensions: open your eye once again
and try to look steadily."

Edwin Abbott Abbott, Flatland

This chapter brings the numerical components of the previous chapter together to derive the
Q3D method for the quench simulation of a superconducting magnet coil. Furthermore, the
implementation of the Q3D method with focus on the structure of the implemented framework is
presented.

5.1. Quasi-3D Discretization of the Magneto-Thermal Model

Index Notation

In the Q3D setting, a physical quantity is approximated with hybrid FE-SE shape functions, which
are products of 2D FE and 1D SE shape functions. The 2D FE nodal and edge shape functions Nj

and w⃗(t)
e are associated to FE DoFs such as the j-th node and the e-th edge, respectively, while

the 1D SE shape functions ϕq are related to the q-th polynomial mode. This leads to a combined
index jq corresponding to the q-th mode in the j-th node, and eq corresponding to the q-th mode
in the e-th edge, respectively.
In practice, the entries are sorted per 2D FE DoF i, polynomial mode q and also SE k in a way

that depends on the evaluation order of the FE and SE matrix products, leading to a global Q3D
index n(i, k, q). In the following, however, the discrete Q3D quantity entries are denoted with the
combined index notation for the sake of comprehensibility and to underline the hybrid character
of the Q3D discretization. The global Q3D index and the influence of the product evaluation order
are discussed at the end of this section.

Quasi-3D Thermal Model

In the translational Q3D setting, the temperature is discretized with hybrid shape functions consist-
ing of products between 2D FE nodal functions (4.34) and modified Lobatto polynomials (4.67),

ϑ(r⃗, t) ≈
Nn∑
j=1

N+1∑
q=1

ϑjq(t) Nj(x, y)ϕq(z). (5.1)

Herein, Nn is the total number of nodes in the 2D FE mesh, and N is the maximal polynomial
order of the modified Lobatto polynomials. This discretization is applied to the thermal weak

43



formulation (4.6). The test function is composed as

ϑ′(r⃗, t) ≈ Ni(x, y) ϕp(z). (5.2)

Both the ansatz and test functions are thus from Uh = H1
0 (Ωh)× PN

0 (I), which is the product of
the corresponding 2D FE nodal and 1D SE function spaces. The gradient of (5.1) is computed to

∇ϑ(r⃗, t) ≈
∑
jq

ϑjq(t)∇ (Nj(x, y) ϕq(z))

=
∑
jq

ϑjq(t)

[
∇xyNj(x, y) ϕq(z)
Nj(x, y) ∂zϕq(z)

]
,

(5.3)

with ∇xy = [∂x, ∂y]
T as the 2D Nabla operator in the xy-plane and

∑
jq as abbreviation for the

double sum
∑Nn

j=1

∑N
q=1. Naturally by definition of the Q3D shape function, the derivatives in x

and y affect only the FE part, while the derivative in z affects only the SE part. Thus, the weak
heat conduction equation becomes∑

jq

ϑjq

∫
Vh

λ

[
∇xyNj ϕq
Nj ∂zϕq

]
·
[
∇xyNi ϕp
Ni ∂zϕp

]
dV

︸ ︷︷ ︸
=(KQ3D

λ )
ijpq

+
∑
jq

dϑjq
dt

∫
Vh

CVNjϕqNiϕp dV

︸ ︷︷ ︸
=
(
MQ3D

CV

)
ijpq

=

∫
Vh

qVNiϕp dV

︸ ︷︷ ︸
=(qQ3D

V )
ip

,

(5.4)

where the temporal and spatial dependencies are left out for the sake of readability. Next, the
volume integral over the computational domain Vh is decomposed into a surface integral over the
2D cross-section Ωh and a line integral over the 1D interval I. Furthermore, it is assumed that the
material parameter can be split into a transversal part λ(t) and a longitudinal part λ(ℓ) as

λ(x, y, z) = λ(t)(x, y)λ(ℓ)(z). (5.5)

This assumption is necessary to pull apart the volume integrals into transversal and longitudinal
integrals, such that the stiffness term in (5.4) reads(

KQ3D
λ

)
ijpq

=

∫
I

λ(ℓ)ϕqϕp dz

︸ ︷︷ ︸
=(MSE

λ )
pq

∫
Ωh

λ(t)∇xyNj · ∇xyNi dxdy

︸ ︷︷ ︸
=(KFE,n

λ )
ij

+

∫
I

λ(ℓ)∂zϕq∂zϕp dz

︸ ︷︷ ︸
=(KSE

λ )
pq

∫
Ωh

λ(t)NjNi dxdy

︸ ︷︷ ︸
=(MFE,n

λ )
ij

(5.6)
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The integrals are identified with the 2D FE nodal stiffness and mass matrix (4.42) and (4.43),
and the 1D SE stiffness and mass matrix (4.77) and (4.79), respectively. By using the Kronecker
tensor product notation [Loa00], the Q3D nodal stiffness matrix is obtained by

KQ3D,n
λ = MSE

λ ⊗KFE,n
λ +KSE

λ ⊗MFE,n
λ . (5.7)

In the same way, the mass term in (5.4) is expressed by(
MQ3D

CV

)
ijpq

=

∫
I

C
(ℓ)
V ϕqϕp dz

︸ ︷︷ ︸
=
(
MSE

CV

)
pq

∫
Ωh

C
(t)
V NjNi dxdy

︸ ︷︷ ︸
=
(
MFE,n

CV

)
ij

, (5.8)

and is computed in a Kronecker tensor product of the 1D SE mass matrix (4.79) and the 2D FE
nodal mass matrix (4.43) by

MQ3D,n
CV

= MSE
CV
⊗MFE,n

CV
. (5.9)

The right-hand side term becomes(
qQ3D
V

)
ip
=

∫
I

q
(ℓ)
V ϕp dz

︸ ︷︷ ︸
=qSE

V

∫
Ωh

q
(t)
V Ni dxdy

︸ ︷︷ ︸
=qFE,n

V

, (5.10)

such that the Q3D nodal load vector is obtained by

qQ3D,n
V = qSE

V ⊗ qFE,n
V . (5.11)

Finally, the semi-discrete thermal Q3D system of equations reads

KQ3D,n
λ ϑ+MQ3D,n

CV

dϑ

dt
= qQ3D,n

V , (5.12)

where the vector ϑ collects the Q3D temperature coefficients ϑjq. Regarding the Q3D prism
element shown in Fig. 5.1, these coefficients are associated to the prism’s nodes. The dimension
of the system is NQ3D,n ×NQ3D,n with

NQ3D,n = Nn (NNSE + 1) , (5.13)

which consists of the dimension of the nodal FE system Nn and the dimension of the SE system,
(NNSE+1). This number also coincides with the total number of temperature DoF. To obtain a full
discrete system of equation, the temporal derivative in (5.12) has to be discretized as discussed
in Sec. 4.2.
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ẑ = +1
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ẑ = −1

x̂

ŷ

ẑ

T̂

Î

longitudinal
edge

transversal
edgee

j

P̂ = Î × T̂

Figure 5.1.: Composition of the reference Q3D prism element P̂ from a 2D FE triangle T̂ =
{(0, 0), (0, 1), (1, 0)} (red) and a reference 1D interval Î = [−1, 1] (blue). The transver-
sal edges e are associated to the triangle’s edges; the longitudinal edges j are allo-
cated along the prism’s length. A longitudinal and transversal edge are exemplary
shown as a blue and red arrow, respectively. Figure adapted from [DD21].

Quasi-3D Magnetic Model

The MVP is decomposed into a transversal component A⃗(t) lying in the xy-plane, and a longitudinal
component A⃗(ℓ) pointing in z-direction,

A⃗(r⃗, t) =

[
A⃗(t)(r⃗, t)

A⃗(ℓ)(r⃗, t)

]
. (5.14)

A⃗(t) and A⃗(ℓ) are separately discretized with hybrid shape functions consisting of the 2D FE
transversal edge function (4.39) and the 2D FE longitudinal edge function (4.40), respectively,
multiplied with modified Lobatto polynomials (4.67),

A⃗(r⃗, t) ≈
Ne∑
e=1

N+1∑
q=1

⌢a(t)eq (t) w⃗
(t)
e (x, y)ϕq(z)︸ ︷︷ ︸

≈A⃗(t)(r⃗,t)

+

Nn∑
j=1

N+1∑
w=1

⌢a
(ℓ)
jw(t) w⃗

(ℓ)
j (x, y)ϕw(z)︸ ︷︷ ︸

≈A⃗(ℓ)(r⃗,t)

(5.15)

Here, Ne denotes the total number of edges in the 2D FE mesh. In the Q3D context, A⃗(t) is then
associated to a transversal edge, which belongs to a FE, while A⃗(ℓ) is related to a longitudinal edge,
which is associated to a node of the FE mesh and is oriented along the spectral mesh, see Fig. 5.1.
In the context of the Q3D prism element P , A⃗(t) is allocated on its triangular cross-section, while
A⃗(ℓ) is allocated along the prism’s length.
This discretization is applied to the magnetic weak formulation (4.12). The test function is

composed as
A⃗′(r⃗, t) = w⃗

(t)
d (x, y)ϕp(z) + w⃗

(ℓ)
i (x, y)ϕv(z). (5.16)

Thus, both the ansatz and test functions belong to Vh = H0(curl; Ωh) × PN
0 (I), which is the

46



product of the corresponding 2D FE edge and 1D SE function spaces. The curl of (5.15) reads

∇× A⃗(r⃗, t) ≈
∑
ejqw

∇×


⌢a(t)eq (t) w

(t)
e,x(x, y)ϕq(z)

⌢a(t)eq (t) w
(t)
e,y(x, y)ϕq(z)

⌢a
(ℓ)
jw(t) Nj(x, y)ϕw(z)



=
∑
ejqw


⌢a
(ℓ)
jw(t)∂yNj(x, y)ϕw(z)− ⌢a(t)eq (t)w

(t)
e,x(x, y) ∂zϕq(z)

⌢a(t)eq (t)w
(t)
e,x(x, y) ∂zϕq(z)− ⌢a

(ℓ)
jw(t)∂xNj(x, y)ϕw(z)

⌢a(t)eq (t)
(
∂xw

(t)
e,y(x, y)− ∂yw(t)

e,x(x, y)
)
ϕq(z)


(5.17)

with the abbreviation
∑

ejqw for the quadruple sum
∑Ne

e=1

∑Nn
j=1

∑N+1
q=1

∑N+1
w=1 and by writing the

longitudinal edge shape functions out as w⃗(ℓ)
i = Ni e⃗z. In the following, the individual terms of

the MQS formulation in the Q3D setting are investigated and put into a compact Kronecker tensor
product form. For the sake of brevity, the spatial and temporal dependencies are left out. The
Q3D curlcurl term of the weak MQS formulation reads

(
KQ3D,e

ν

)
deijpqvw

=

∫
Vh

ν


∂yNj ϕw − w(t)

e,x ∂zϕq

w
(t)
e,x ∂zϕq − ∂xNj ϕw(
∂xw

(t)
e,y − ∂yw(t)

e,x

)
ϕq

 ·

∂yNi ϕv − w(t)

d,x ∂zϕp

w
(t)
d,x ∂zϕp − ∂xNi ϕv(
∂xw

(t)
d,y − ∂yw

(t)
d,x

)
ϕp

 dV. (5.18)

Several terms arise from the scalar product in this integrand, which are compiled to

(
KQ3D,e

ν

)
deijpqvw

=

∫
I

ν(ℓ)ϕqϕp dz

︸ ︷︷ ︸
=(MSE

ν )pq

∫
Ωh

ν(t)∇xy × w⃗(t)
e · ∇xy × w⃗(t)

d dxdy

︸ ︷︷ ︸
=(KFE,t

ν )
de

(5.19a)

+

∫
I

ν(ℓ)∂zϕq∂zϕp dz

︸ ︷︷ ︸
=(KSE

ν )pq

∫
Ωh

ν(t)w⃗(t)
e · w⃗

(t)
d dxdy

︸ ︷︷ ︸
=(MFE,t

ν )
de

(5.19b)

+

∫
I

ν(ℓ)ϕwϕv dz

︸ ︷︷ ︸
=(MSE

ν )vw

∫
Ωh

ν(t)∇xyNj · ∇xyNi dxdy

︸ ︷︷ ︸
=
(
KFE,ℓ

ν

)
ij

(5.19c)

−
∫
I

ν(ℓ)∂zϕqϕv dz

︸ ︷︷ ︸
=(DSE

ν )vq

∫
Ωh

ν(t)w⃗(t)
e · ∇xyNi dxdy

︸ ︷︷ ︸
=(CFE,t

ν )
ie

(5.19d)

−
∫
I

ν(ℓ)ϕw∂zϕp dz

︸ ︷︷ ︸
=(DSE

ν )Tpw

∫
Ωh

ν(t)∇xyNj · w⃗(t)
d dxdy

︸ ︷︷ ︸
=(CFE,t

ν )
T

dj

. (5.19e)

Again, the integrals in longitudinal direction are identified with 1D SE matrices, while the integrals
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over the transversal cross-section are identified with 2D FE matrices. The integral products lead
to Kronecker tensor products. With this, (5.19a) and (5.19b) form the Q3D transversal stiffness
matrix,

KQ3D,t
ν = MSE

ν ⊗KFE,t
ν +KSE

ν ⊗MFE,t
ν , (5.20)

(5.19c) represents the Q3D longitudinal curlcurl matrix,

KQ3D,ℓ
ν = MSE

ν ⊗KFE,ℓ
ν , (5.21)

and (5.19d) and (5.19e) yield matrices coupling the transversal and longitudinal parts with each
other,

CQ3D,tℓ
ν = −DSE

ν ⊗CFE,t
ν , (5.22)

CQ3D,ℓt
ν =

(
CQ3D,tℓ

ν

)T
. (5.23)

In the end, the Q3D curlcurl matrix reads

KQ3D,e
ν =

 KQ3D,t
ν CQ3D,tℓ

ν(
CQ3D,tℓ

ν

)T
KQ3D,ℓ

ν

 . (5.24)

The Q3D edge-mass matrix reads

(
MQ3D,e

σ

)
deijpqvw

=

∫
Vh

σ

w(t)
e,xϕq

w
(t)
e,yϕq
Njϕw

 ·
w

(t)
d,xϕp

w
(t)
d,yϕp
Niϕv

 dV. (5.25)

By expanding the scalar product, two terms arise, which are compactly expressed by

(
MQ3D,e

σ

)
deijpqvw

=

∫
I

σ(ℓ)ϕqϕp dz

︸ ︷︷ ︸
=(MSE

σ )pq

∫
Ωh

σ(t)w⃗(t)
e · w⃗

(t)
d dxdy

︸ ︷︷ ︸
=(MFE,t

σ )
de

(5.26a)

+

∫
I

σ(ℓ)ϕwϕv dz

︸ ︷︷ ︸
=(MSE

σ )vw

∫
Ωh

σ(t)NjNi dxdy

︸ ︷︷ ︸
=
(
MFE,ℓ

σ

)
ij

. (5.26b)

Again, the integrals can be identified with 1D SE and 2D FE matrices, respectively. In this way,
(5.26a) yields the Q3D transversal edge-mass matrix

MQ3D,t
σ = MSE

σ ⊗MFE,t
σ , (5.27)

and (5.26b) the Q3D longitudinal edge-mass matrix

MQ3D,ℓ
σ = MSE

σ ⊗MFE,ℓ
σ . (5.28)

48



Together, they form the Q3D edge-mass matrix

MQ3D,e
σ =

[
MQ3D,t

σ 0

0 MQ3D,ℓ
σ

]
. (5.29)

The sparsity pattern of the Q3D edge mass matrix is shown in Fig. 5.4b for an exemplary Q3D dis-
cretization, where the diagonal block matrix structure containing the transversal and longitudinal
edge mass matrices is clearly distinguishable. From the Coulomb gauge condition, the terms

(
CQ3D

1

)
deijpqvw

=

∫
Vh

w
(t)
d,xϕp

w
(t)
d,yϕp
Niϕv

 · ∇ (Njϕq) dV, (5.30a)

(
C̃Q3D

1

)
deijpqvw

=

∫
Vh

∇ (Niϕp) ·

w(t)
e,xϕq

w
(t)
e,yϕq
Njϕw

 dV (5.30b)

arise. The term (5.30a) is decomposed into(
CQ3D

1

)
deijpqvw

=

∫
I

ϕpϕq dz

︸ ︷︷ ︸
=(MSE

1 )
pq

∫
Ωh

w⃗
(t)
d · ∇xyNj dxdy

︸ ︷︷ ︸
=(CFE,t

1 )
T

dj

(5.31a)

+

∫
I

∂zϕqϕp dz

︸ ︷︷ ︸
=(DSE

1 )
pq

∫
Ωh

NjNi dxdy

︸ ︷︷ ︸
=(MFE,n

1 )
ij

(5.31b)

and (5.30b) is expressed in the same way but with flipped indices. Finally, (5.30a) and (5.30b)
are written as

CQ3D
1 =

[
MSE

1 ⊗
(
CFE,t

1

)T
DSE

1 ⊗MFE,n
1

]
, (5.32)

C̃Q3D
1 =

(
CQ3D

)T
. (5.33)

From the mixed voltage distribution terms, the matrices

(
XQ3D

σ

)
diptv

=

∫
Vh

σ
Tt
ℓt
e⃗z ·

w
(t)
d,xϕp

w
(t)
d,yϕp
Niϕv

 dV, (5.34a)

(
X̃Q3D

σ

)
ejqsw

=

∫
Vh

σ

w(t)
e,xϕq

w
(t)
e,yϕq
Njϕw

 · Ts
ℓs
e⃗z dV (5.34b)

arise. Obviously, both terms have only a longitudinal component, since the voltage distribution
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function ξ⃗ purely points in z-direction. The term (5.34a) is written out as

(
XQ3D

σ

)
itv

=

∫
I

σ(ℓ)ϕv dz

︸ ︷︷ ︸
=(fSEσ )v

∫
Ωh

σ(t)ℓ−1
t TtNi dxdy

︸ ︷︷ ︸
=(XFE

σ )it

. (5.35)

Again, (5.34b) is expressed in the same way but with flipped indices. Then, (5.34a) and (5.34b)
are expressed as

XQ3D
σ = fSEσ ⊗XFE

σ , (5.36)

X̃Q3D
σ =

(
XQ3D

σ

)T
, (5.37)

where (
fSEσ
)
p
=

∫
I

σ(ℓ) ϕp dz (5.38)

is the spectral load vector with the electrical conductivity as right-hand side function. In the end,
the semi-discrete magnetic Q3D system of equations is obtained,

KQ3D,e
ν +

(
KQ3D,e

ντ +MQ3D,e
σ

)
d
dt −X

Q3D
σ −

(
CQ3D

1

)T
−
(
XQ3D

σ

)T
d
dt Gσ 0

−CQ3D
1 0 0


⌢a
u
ζ

 =

0i
0

 , (5.39)

where ⌢a unites the Q3D coefficients of the transversal and longitudinal component of the MVP,

⌢a =

[
⌢a(t)

⌢a(ℓ)

]
, (5.40)

which has a total of
NQ3D,MVP = (Ne +Nn)(NNSE + 1) (5.41)

entries. The Lagrange multiplier coefficient vector ζ has NQ3D,n entries, and the voltage drop
vector u hasW entries. Overall, the total number of DoF of the gauged system (5.39) results to

NQ3D,e = (Ne + 2Nn)(NNSE + 1) +W. (5.42)

Finally, one has to discretize the temporal derivative in (5.39) to obtain a fully discrete system of
equations that can be solved numerically as described in Sec. 4.2. Furthermore, one can expand
(5.39) for a field-circuit coupling as discussed in Sec. 4.5.

Given a FE DoF (node or edge) index i ∈ 1, . . . , NFE,DoF, a SE index k ∈ 1, . . . , NSE and a mode
q ∈ 1, . . . , N + 1, the corresponding global Q3D index is obtained by the formula

n(i, k, q) = i+ [(q − 1) +N (k − 1)]NFE,DoF, (5.43)

where NFE,DoF stands for the total number of FE DoFs, i.e. Nn in the nodal case and Ne in the
edge case.
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Figure 5.2.: Kronecker tensor product structure of the Q3D matrices: On the top level, there are
block matrices for each SE which consist of a mode-wise block matrix pattern. These
lowest level block matrices are the 2D FE matrices with node-wise and edge-wise
entries for the nodal and edge matrices, respectively. Figure adapted from [DCD20].

5.2. Idiosyncrasies of the Quasi-3D Method

The Q3D hybrid basis functions are composed of the products of FE and SE basis functions. As a
result, the Q3D discrete quantities are constructed by performing Kronecker tensor products of
2D FE and 1D SE quantities. This leads to special properties for the Q3D systems of equations and
the Q3D method in general, which are discussed in the following.

Quasi-3D Matrix Structures

The Kronecker tensor product of SE and FE matrices creates a special pattern for the Q3D matrix
as shown in Fig. 5.2: On the top level, a diagonal overlapping block matrix structure is visible.
Each of these blocks is a spectral method matrix with a mode-wise block matrix pattern. These,
in turn, are the 2D FE matrices, whose entries are either node- or edge-wise depending on the
chosen shape functions.
Figure 5.3 shows the sparsity pattern for both the Q3D nodal stiffness matrix (divgrad matrix)

KQ3D,n
λ and the Q3D nodal mass matrixMQ3D,n

CV
for an exemplary Q3D discretization withNn = 29,

Ne = 68, NSE = 2 and N = 6. Since they both involve the spectral Lobatto mass matrix (4.79)
with its tridiagonal structure, both Q3D nodal matrices share the same sparsity pattern. Here,
one can clearly distinguish the two block matrices corresponding to the two SEs. Therein, the
N + 1 = 7 modal block matrix structure is visible. In turn, each modal block matrix exhibits the
structure of a nodal FE matrix.
Figure 5.4 shows the sparsity pattern for the ungauged Q3D edge stiffness matrix (curlcurl

matrix)KQ3D,e
ν and the ungauged Q3D edge mass matrixMQ3D,e

σ for the same Q3D configuration.
On top of the SE block level, the Q3D edge matrices are partitioned in a transversal part (top
left block) and a longitudinal part (bottom right block). In Fig. 5.4a, the additional transversal-
longitudinal coupling termsCQ3D,tℓ

ν andCQ3D,ℓt
ν of the Q3D curlcurl matrix are visible as secondary

rectangular matrix blocks.
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Figure 5.3.: Sparsity pattern for the Q3D nodal stiffness matrix (divgrad matrix) KQ3D,n
λ and

Q3D nodal mass matrix MQ3D,n
CV

for an exemplary Q3D discretization with Nn = 29,
Ne = 68,NSE = 2 andN = 6, resulting into 7425 non-zero (nz) entries. The two block
matrices corresponding to the two SEs are clearly distinguishable, as well as the
N + 1 = 7 modal block matrix structure within.
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(a) Q3D edge stiffness matrix KQ3D,e
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(b) Q3D edge mass matrix matrix MQ3D,e
σ .

Figure 5.4.: Sparsity pattern for the Q3D edge stiffness matrix (curlcurl matrix) (5.24) and Q3D
edge mass matrix (5.29) for an exemplary Q3D discretization withNn = 29,Ne = 68,
NSE = 2 and N = 6.
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Impact of the Kronecker Tensor Product Order

It is possible to define the Kronecker tensor product in a reversed way, i.e. FE matrices ⊗ SE
matrices instead of SE matrices ⊗ FE matrices. Then, on the top level of the Q3D matrix, a 2D FE
structure would be visible with node- or edge-wise SE block matrices. Accordingly, the order of
the Q3D coefficients in the solution vector changes and with that the global index formula (5.43).
Numerical experiments show that the reversed product order does not lead to a different condition
number or computational effort to solve the Q3D system. However, because sparse direct solvers
pass through the matrix in certain directions, the Kronecker tensor product order may affect
rounding-off errors in such solvers.
The order could have more significance for dedicated algebraic techniques, in which the

Kronecker tensor products are not explicitly carried out. For example, in Runge-Kutta time
integration [Boo+07] or in stochastic collocation [RV10] of PDEs, similar Kronecker product
matrices arise. The resulting systems are then solved by multigrid solvers. In these applications, it
is indeed computationally more reasonable to choose the reversed product order, i.e. with the FE
matrix as first factor.
Either way, the Kronecker tensor product nature of the Q3D quantities leads to a very efficient

assembly of the Q3D matrices, provided that the respective 2D FE and 1D SE assembly routines
are well implemented.

Similarities and Differences to Finite Element Methods

Albeit not widely used, triangular prism elements are also known in the classical FEM [ZTT05].
For N = 1, the Q3D basis functions coincide with the FE ones using first-order triangular prism
elements.
For N > 1, the translational Q3D method resembles a 3D anisotropic hp-FEM using triangular

prism elements, for which first-order basis functions are utilized in the xy-plane, and higher-order
basis functions are employed in z-direction. Similarly to such a hp-FEM, the Q3D method needs
only a few large elements in z-direction, on which the solution is approximated with polynomial
basis functions. However, the hp-FEM typically employs hierarchical basis functions based on
normalized Legendre polynomial integrals [BS94]. This leads to a p-adaptive property, meaning
that the discretization can be refined by just adding additional basis functions without changing
the solution coefficients and the need for re-meshing. This is not true for the Q3D method,
which would need a re-calculation of the LGL nodes upon increasing the polynomial order N ,
necessitating the re-computation of the solution coefficients. On the other hand, hierarchical
functions are only approximately orthogonal [BS94], resulting into much less sparse matrices as
the Q3D method with its exactly orthogonal polynomial basis functions (see Sec. 4.4).
Furthermore, in contrast to the hp-FEM, the Q3D basis functions lead to a tensor product

character of the method. This property imposes some requirements on the model, e.g. the
materials cannot be defined prism-element-wise, but as a product of a xy-dependent quantity and
a z-dependent quantity as done for e.g. the thermal conductivity (5.5), and local refinements of
the computational domain are not possible. Breaking these requirements leads to a partial or full
loss of the tensor product character. However, this tensor product character can be exploited to
speed up the assembly and solution of the Q3D systems of equations.
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Figure 5.5.: Different types of boundaries in the Q3D model: Γhull relates to the boundary of the
2D FE computational domain, while Γfront and Γback are related to the end points of
the 1D SE interval.

5.3. Quasi-3D Boundary Conditions

As a combination of a 1D SEM and a 2D FEM, the Q3D method distinguishes three main types of
general boundaries (see Fig. 5.5):

1. The boundary of the 2D FE mesh, i.e. the transversal cross-section, which represents the
hull Γhull of the 3D geometry.

2. The back surface of the 3D geometry, Γback, which relates to one end point of the 1D SE
interval, i.e. z = 0 in the image interval and ẑ = −1 in the reference interval.

3. The front surface of the 3D geometry, Γfront, which relates to the other end point of the 1D
SE interval, i.e. z = ℓz in the image interval and ẑ = +1 in the reference interval.

BCs on Γback and Γfront involve only the boundary modes q = 1 and q = N + 1 of the Q3D
discretization, while BCs on Γhull have to take also the inner modes q = 2, . . . , N into account. In
case of the edge shape functions, only the MVP components, which are tangential with respect
to the respective boundary, are relevant for the BC treatment. Thus, on Γback and Γfront, only
the transversal MVP component is affected by BCs, while on Γhull, both the longitudinal and
transversal MVP components play a role.
In the following, the relevant BCs for quench simulation are introduced and their incorporation

into the Q3D model and the Q3D systems of equations is discussed.

Dirichlet BCs

A Dirichlet BC means that the solution u on a certain boundary ΓDir is known beforehand,

u(r⃗, t) = uDir(r⃗, t) at ΓDir. (5.44)

In the context of the thermal model, this represents an isothermal BC, i.e. a fixed temperature
at ΓDir. For the magnetic model, a homogeneous Dirichlet BC, i.e. uDir(r⃗, t) = 0, represents an
electric BC, i.e. the vanishing of the normal component of the magnetic field flux, n⃗ · B⃗ = 0,
which corresponds to n⃗ × A⃗ = 0. An inhomogeneous Dirichlet BC is used to set the magnetic
field flux on the boundary to a specified external magnetic field flux value, B⃗ = B⃗ext at ΓDir,
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see Chapter 3. In terms of the MVP, the tangential component of A⃗ is set, such that the desired
B⃗ext is obtained following B⃗ = ∇× A⃗. As the discrete problem works with line-integrated MVP
coefficients ⌢a(t)eq ,

⌢a
(ℓ)
jw ∈ R, the scalar condition (5.44) can be also considered for Dirichlet BCs

applying to the MVP. Then, u refers to the MVP coefficients, whose related component is tangential
to the boundary ΓDir, i.e. ⌢a(t)eq for Γback and Γfront, and ⌢a

(ℓ)
jw for Γhull.

The precise incorporation of the Dirichlet BC depends on the boundary type and the nature
of uDir. In the case of ΓDir = Γback or ΓDir = Γfront, only the first or last boundary modes of the
corresponding nodes and edges play a role, respectively. Let Iback and Ifront denote the index set
of mesh DoFs (nodes or edges) contained in Γback and Γfront, respectively, and u

(k)
jq be the solution

coefficient on the j-th mesh DoF for the q-th mode in the k-th SE. Then, the continuous conditions

u(r⃗, t) = uback(r⃗, t) at Γback, (5.45a)
u(r⃗, t) = ufront(r⃗, t) at Γfront (5.45b)

translate into the discrete conditions

u
(1)
i,1 (t) = ui,back(t), i ∈ Iback, (5.46a)

u
(NSE)
i,N+1(t) = ui,front(t), i ∈ Ifront, (5.46b)

with ui,back and ui,front being the Dirichlet data for the i-th mesh DoF at the back and front boundary,
respectively. In practice, only the corresponding boundary modes have to be manipulated to
incorporate Dirichlet BCs at Γback and Γfront, which is due to the nodal property of the modified
Lobatto polynomials at the boundaries of the interval I, as already discussed in Sec. 4.4.
In the case of ΓDir = Γhull, all modes and SEs of the corresponding nodes and edges are affected

by the Dirichlet BC, since the BC takes effect in the whole longitudinal dimension. Therefore, it
does not suffice to only manipulate boundary modes, especially if the Dirichlet data uhull varies in
z-direction. Then, the inner modes are generally non-zero, because they define the non-constant
nature of the solution and, thus, they are needed to represent a uhull with ∂zuhull ̸= 0. If, however,
uhull ≡ constant, then the inner modes have to be set to zero to represent the function’s constancy,
while the boundary modes are simply set to uhull.
Let Ihull denote the index set of mesh DoFs (nodes or edges) contained in Γhull. Then, the

continuous condition
u(r⃗, t) = uhull(r⃗, t) at Γhull (5.47)

translates into the discrete condition

u
(k)
iq (t) = ũ

(k)
iq,hull(t), i ∈ Ihull, (5.48)

where ũ(k)iq,hull are the coefficients of the modified Lobatto polynomial expansion of uhull for the
i-th mesh DoF, q-th mode and k-th SE. They are obtained by a forward transform (4.73) for each
i ∈ Ihull, and will display the aforementioned modal behavior.

Neumann BCs

Homogeneous Neumann BCs (3.29h) and (3.33c) are used in the magnetic and thermal model
to represent magnetic and adiabatic BCs, respectively. They are natural BCs, meaning that they
do not have to be imposed explicitly into the discrete systems of equations, as the homogeneous
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Neumann boundary integral terms in the weak formulations (4.6) and (4.12) become zero by
definition.

Robin BCs

A Robin BC (3.31c) emulates the effects of thermal convection at the boundary Γcon. On this
boundary, a heat exchange with the surrounding helium with temperature ϑfluid and heat transfer
coefficient α takes place (see Sec. 3.3). The Robin BC is incorporated into the weak thermal
formulation through the boundary integral term in (4.2), yielding

−
∫

Γcon

λ∂nϑϑ
′ dS =

∫
Γcon

α (ϑ− ϑfluid)ϑ′ dS. (5.49)

The right-hand side can be split in two boundary integral terms,

R =

∫
Γcon

αϑϑ′ dS, (5.50)

r =

∫
Γcon

αϑfluidϑ
′ dS. (5.51)

After discretization with the Q3D approximation (5.1) and (5.2), a left-hand side matrix and a
right-hand side vector arise,

(
RQ3D

α

)
ijpq

=

∫
I

α(ℓ)ϕqϕp dz

︸ ︷︷ ︸
=(MSE

α )pq

∫
Γcon

α(t)NjNi ds(x, y)

︸ ︷︷ ︸
=(RFE

α )ij

, (5.52)

(
rQ3D
α

)
ip
=

∫
I

α(ℓ)ϕp dz

︸ ︷︷ ︸
=(fSEα )p

∫
Γcon

α(t)ϑfluidNi ds(x, y)

︸ ︷︷ ︸
=(rFE

α )i

. (5.53)

Note that the FE integral parts are line integrals. As for all the other discrete Q3D quantities, the
Robin matrix (5.52) and the Robin vector (5.53) can be expressed as Kronecker tensor products
of 1D SE and 2D FE matrices and vectors,

RQ3D
α = MSE

α ⊗RFE
α , (5.54)

rQ3D
α = fSEα ⊗ rFEα . (5.55)

Finally, the Robin BCs are incorporated into the thermal model by inserting RQ3D
α and rQ3D

α into
the Q3D thermal system of equations (5.12).

Floating BCs

The floating BCs (3.40) are used to thermally connect the half-turn ends with each other, see
Sec. 3.5. To this end, macro elementsMm with multi-index m = (v, w) are introduced for each
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pair of connected floating boundaries Γm = Γv ∪ Γw, such that

Mm =
⋃

T∈Γm

T. (5.56)

Each macro element is associated with an unknown ϑm and a macro basis function [DBH03]

Mm(r⃗) =
∑
i∈Im

Ni(x, y)ϕ(m)(z), (5.57)

where the index sets Im collect the nodal indices contained in Γm. Furthermore,

ϕ(m)(z) =

{
ϕ
(1)
1 (z), Γm ⊂ Γback,

ϕ
(NSE)
N+1 (z), Γm ⊂ Γfront,

(5.58)

is one of the outermost boundary modes of the spectral modified Lobatto discretization, depending
whether the floating boundaries are located at the back or front of the model. Note that inner
modes are not involved in the floating BCs. Then, the temperature is decomposed into a non-
floating "free" component denoted by the superscript *, and a floating component denoted by
superscript f, where several DoFs are collapsed by macro elements,

ϑ(r⃗, t) ≈
∑
j∈I∗

N+1∑
q=1

ϑ∗jq(t)Nj(x, y)ϕ
(k)
q (z)︸ ︷︷ ︸

fully free part

+
∑
j′∈Im

N∑
q′=2

ϑ∗j′q′(t)Nj′(x, y)ϕ
(k)
q′ (z)︸ ︷︷ ︸

part of free inner modes

+

Nf∑
m=1

ϑfm(t)Mm(r⃗)︸ ︷︷ ︸
floating part

(5.59)

with Nf as number of floating boundary pairs and

I∗ = {1, . . . , Nn} \
Nf⋃

m=1

Im (5.60)

being the index set of all free nodes, i.e. nodes that are not contained in any floating boundary.
In the Q3D context, the free Q3D indices IQ3D

∗ include not only all modes on all SE of the nodal
indices I∗, which are not involved in the floating boundaries anyway, but also the inner modes
on all SE of the nodal indices Im of the floating boundaries, as the floating boundaries are only
located at Γback (z = 0) and Γfront (z = ℓz), yielding

IQ3D
∗ = I∗ × {1, . . . , N + 1} ∪

Nf⋃
m=1

Im × {2, . . . , N}. (5.61)

The m-th Q3D floating index set reads

IQ3D
m =

{
Im × {1}, if Γm ⊂ Γback,
Im × {N + 1}, if Γm ⊂ Γfront.

(5.62)
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With this and with having the unconstrained system of equations Aϑ = q at hand, the decompo-
sition (5.59) leads to the constrained system of equations[

A∗∗ A∗f
Af∗ Aff

] [
ϑ∗
ϑf

]
=

[
q∗
qf

]
(5.63)

as known from standard methods [DBH03]. Here, for each imposed floating BC, the corresponding
indices are summed up leading to a partial collapse of the original matrix and vector parts,

A∗∗ = (Aij)i,j∈IQ3D
∗

as extraction of the free matrix part, (5.64a)

A∗f =

 ∑
n∈IQ3D

f

Ain


i∈IQ3D

∗
1≤f≤Nf

as column-wise sum per floating BC, (5.64b)

Af∗ =

 ∑
m∈IQ3D

f

Amj


1≤f≤Nf

j∈IQ3D
∗

as row-wise sum per floating BC, (5.64c)

Aff =

 ∑
m∈IQ3D

f

∑
n∈IQ3D

f

Amn


1≤f≤Nf

as double sum per floating BC, (5.64d)

and analogously for the load vector,

q∗ = (qi)i∈IQ3D
∗

as extraction of the free vector part, (5.65a)

qf =

 ∑
m∈IQ3D

f

qm


1≤f≤Nf

as sum per floating BC. (5.65b)

Herein, A∗∗ ∈ R|IQ3D
∗ |×|IQ3D

∗ |, A∗f ∈ R|IQ3D
∗ |×Nf , Af∗ ∈ RNf×|IQ3D

∗ | and Aff ∈ RNf×Nf . The vectors
ϑ∗ ∈ R|IQ3D

∗ | and ϑf ∈ RNf collect the solution coefficients of the free DoFs and the floating
DoFs, respectively. After solving (5.63), the solution can be inflated to ϑ by appropriately setting
ϑj = (ϑf)m for j ∈ I

Q3D
m ∀m = 1, . . . , Nf and ϑj = (ϑ∗)i for j ∈ I

Q3D
∗ ∀i = 1, . . . , |IQ3D

∗ |.

5.4. Implementation and Program Structure

For a proof of concept, the proposed Q3D method is implemented in an in-house object-oriented
framework in MATLAB [MAT20]. The code is structured in the following modules:

• The 2D FEM module involves the triangular 2D FE mesh class and the 2D FE assembly
routines. The mesh object is constructed with the assistance of the open-source software
Gmsh [GR09]. The 2D FE mesh object contains information about the mesh coordinates
and topology, which is utilized by the 2D FE assembly routines.

• The 1D SEM module consists of the SE shape function class. This includes functions for
evaluating and constructing orthogonal polynomials as well as backward and forward trans-
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forming the spectral coefficients. The SE shape function constructs a 1D SE discretization
based on modified Lobatto polynomials from a given partition in z-direction and a pre-
scribed maximal polynomial order N . On this discretization, the 1D SE assembly routines
construct the 1D SE matrices and vectors. Furthermore, this module includes the database
of precomputed reference tensors for the efficient assembly of the nonlinear SE matrices
(see Sec. 4.4). The subsequent tensor contractions are performed utilizing the MATLAB
Tensor Toolbox [BK07; BK+17].

• The Q3D module contains the Q3D assembly routines, which employ the respective dis-
cretizations and assembly routines of the 2D FEM and 1D SEM packages to construct the
Q3D entities according to Sec. 5.1. Furthermore, this module provides functions for Q3D
calculations, such as for constraining the Q3D system of equations as explained in Sec. 5.3,
computing Q3D global indices following (5.43), and backward and forward transforming
the Q3D solution.

• The end winding module consists of three sub-modules:
– The MNA sub-module contains all routines for handling electrical circuits based on the
MNA.

– The Q3D MNA coupling sub-module combines Q3D and MNA entities to perform a
field-circuit coupling. This is required for the magnetic coil end effects (see Sec. 4.5).
To this end, a Q3D MNA coupler object is constructed, which delivers the coupled
system of equations (4.93) and provides functionalities for updating and indexing it.

– The Q3D floating coupling sub-module uses the Q3D floating BCs to take the thermal
coil end effects into account (see Sec. 5.3). To this end, a Q3D floating coupler object
is constructed, which constrains a given system of equations based on the provided
winding scheme information.

• Additional code capabilities are collected in a toolbox module, e.g. post-processing and
visualization functionalities as well as functions for coupling the MATLAB program with
Python [VD09] in order to utilize more powerful solvers for systems of equations such as
MUMPS [ADL00].

• Thematerialmodule contains nonlinear material characteristics for the thermal conductivity
and electric resistivity of copper, NbTi/Nb3Sn and polyimide taken from [Rus10]. They are
employed by the Q3D matrix assembly routines to construct nonlinear matrices.

These modules form the Q3D simulation code, which is utilized to execute a quench simulation
study. Such a Q3D quench simulation study typically consists of seven building blocks:

1. Model setup: The superconducting coil model is set up. This includes the definition of
physical parameters and concepts such as materials, boundary conditions, excitations and
the coil winding scheme, as well as the definition of numerical aspects such as nonlinear
iteration criteria and the time discretization.

2. 2D FE discretization: The cross-section of the superconducting coil model is discretized
using the open-source mesher Gmsh [GR09] and the 2D FEM module.

3. 1D SE discretization: The longitudinal dimension of the superconducting coil model is
discretized using the 1D SEM module.
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4. Q3D discretization: The Q3D module combines the 2D FE and 1D SE discretizations are
combined into a Q3D discretization.

5. End winding modeling: Based on the winding scheme of the superconducting coil, the end
winding module takes the coil end effects in the thermal and magnetic model into account.

6. Solving the magneto-thermal problem: In this step, the magneto-thermal systems of
equations are stated, constrained and solved. This leads to a outer transient loop consisting
of as many iterations as the number of time steps, and an inner nonlinear iteration loop with
a variable number of steps depending on the convergence criteria. In this nonlinear loop,
the magneto-thermal problem is solved following the alternating nonlinear method [SJ17]
as described in Sec. 4.2.

7. Post-processing & visualization: The obtained solution is post-processed, and the quantities
of interest are reported and visualized such as voltages, maximal temperatures, thermal
and magnetic energies, temperature curves along the half-turns, temperature and magnetic
flux density distributions in 3D space and over time, etc. Ideally, this leads to new insights
for the considered quench scenario.

Figure 5.6 shows a scheme of this procedure. The arrows indicate the data flow between the
building blocks.
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Start Q3D Quench Simulation Study

Model setup
Define physical and numerical
parameters of the model

2D FE discretization
Discretize the transversal
cross-section with 2D FEM

1D SE discretization
Discretize the longitudinal
dimension with 1D SEM

Q3D discretization
Combine 2D FE & 1D SE
into Q3D discretization

mesh file

Gmsh

2D geometry file

End winding modeling
Model end windings based on

coil winding scheme

Solve magneto-thermal problem
For each time step i:
Update time-dependent excitations; set nonlinear iteration counter k = 0

While stopping criteria are not fulfilled, do a nonlinear iteration:
Assemble magnetic system in ϑ(k)(ti+1); solve for ⌢a(k+1)(ti+1); compute qQ3D,n

V

Assemble thermal system in ϑ(k)(ti+1); solve for ϑ(k+1)(ti+1); update quench state
Increment nonlinear iteration counter: k ← k + 1

Store solution, do post-processing

Post-processing & visualization

VTK filesMATLAB plots CSV files ...

End

Figure 5.6.: Scheme of a Q3D quench simulation study. First, the physical and numerical parame-
ters of the model are set up. These data are provided to the other steps of the study.
Based on a user-given geometry, the open-source mesher Gmsh generates a 2D
triangular mesh, which is utilized for the 2D FE discretization. The Q3D discretization
step combines the 2D FE and 1D SE components. The Q3D systems of equations
are then solved in a transient nonlinear iterative procedure. At the end, the results
are post-processed and visualized.
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6. Quasi-3D Quench Simulation Studies

Amy: "I’ve never seen results like this
before."
Sheldon: "Yeah, we need to stop for
magnets on the way home; this is going
right on the fridge."

The Big Bang Theory

This chapter presents several Q3D quench simulation studies to verify the Q3D simulation
approach and to compare it against conventional 3D FE simulation approaches in terms of
computational efficiency and accuracy. After presenting the results of a convergence study, the
Q3D method is used to simulate four different superconducting models.

6.1. Convergence Study

In order to numerically verify the Q3D method, convergence studies are carried out. To this end,
the magnetostatic PDE

∇×∇× A⃗(r⃗) = J⃗(r⃗) (6.1)

with ν ≡ 1 in a cubic 3D domain Ω = [−1, 1]3 is considered, for which a manufactured solution

A⃗(r⃗) = sin(πz)e⃗x + sin(πx) sin(πy)e⃗z (6.2)

is constructed. From (6.2), it follows the magnetic flux density

B⃗(r⃗) = ∇× A⃗(r⃗) = π sin(πx) cos(πy)e⃗x + π (cos(πz)− cos(πx) sin(πy)) e⃗y, (6.3)

the source current density

J⃗(r⃗) = ∇×∇× A⃗ = π2 sin(πz)e⃗x + 2π2 sin(πx) sin(πy)e⃗z (6.4)

the magnetic energy
Wmag = 4π2 (6.5)

and appropriate BCs. The problem is repeatedly solved using different combinations of char-
acteristic mesh lengths h and maximal polynomial orders p. The computed magnetic energy
Wmag,num(h, p) is compared with the analytical magnetic energy (6.5). The relative error

ϵrel(h, p) =
|Wmag −Wmag,num(h, p)|

Wmag
(6.6)

is calculated and plotted over h in Fig. 6.1 and p in Fig. 6.2.
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Figure 6.1.: Convergence behavior of the Q3D method depending on the characteristic mesh
length h for fixed maximal polynomial orders N .
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Figure 6.2.: Convergence behavior of the Q3D method depending on the maximal polynomial
order N for fixed transversal meshes with NFE number of FEs.
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Figure 6.1 shows a quadratic convergence of the magnetic energy, which is the expected behavior
for the chosen FE discretization [BS08]. For low N , the convergence stagnates for fine meshes,
because the errors made in the spectral discretization outweigh the improvements achieved in the
mesh refinement in the cross-section. In this case, only a p-refinement can lead to better results.
In Fig. 6.2, an exponential convergence behavior is observed as expected for spectral meth-

ods [STW11]. The coarser the mesh, the earlier the convergence begins to stagnate. Again, the
reason is that the errors made in the cross-sectional FE discretization outweigh the improvements
achieved in the p-refinement. The effect seems more pronounced than in Fig. 6.1, since the SEM
converges much faster than the FEM. In conclusion, one can derive the following rules of thumb
for the Q3D setting:

1. It does not make sense to choose a very high N as the accuracy of the solution is more
influenced by the FE discretization. Experience shows that N = 6, . . . , 8 is an appropriate
choice most of the times.

2. To improve results, one should rather refine the FE mesh instead of increasing the polynomial
order of the SEM.

The results of the convergence study verify the correctness of the magnetic Q3D method. The
thermal Q3D method was successfully verified in the same manner.

6.2. Thermal Simulation of Rutherford Cables

This simulation study represents a first test of the nodal Q3D method, which is subsequently
compared to a conventional 3D FE simulation. The findings of this simulation study have been
published in [DCD20].

Model and Scenario

A thermal problem consisting of a stack of three Rutherford cables is considered as shown in
Fig. 2.4c. The cable cross-sections are homogenized following the homogenization approach
presented in Sec. 3.1, while the glass fibre insulation layers are explicitly modeled. A heat
excitation caused by a quench located in the left cable at zq = 1

3ℓz is mimicked by a prescribed
constant Gaussian heat loss density

qV(r⃗) = q̂ exp

(
−(z − zq)2

σ2q

)
χq(x, y), (6.7)

where q̂ is the excitation’s amplitude, σq is the standard deviation of the Gaussian function, and
χq is a characteristic function

χq(x, y) =

{
1, (x, y) ∈ Vq,
0, (x, y) /∈ Vq,

(6.8)

which is only non-zero in the quenching cable volume Vq. Linear material properties are assumed,
and homogeneous Neumann BCs are applied at the hull of the geometry, i.e. the cable stack is
perfectly insulated.
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Figure 6.3.: Temperature distribution in the whole Rutherford cable model presented in Sec. 6.2
after 10ms in the xz-plane (bottom), and a magnified view of the hot-spot region
(top). The individual Rutherford cables are clearly distinguishable through the steep
temperature drops at the insulation layers.
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Figure 6.4.: Temperature distribution in the Rutherford cable stack model presented in Sec. 6.2
after 10ms. The geometry is clipped at the hot-spot level z = zq. Notice how the
temperature sharply drops between the Rutherford cables due to the insulation layers,
but smoothly diffuses into longitudinal direction, making the individual Rutherford
cables clearly distinguishable [DCD20].
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Figure 6.5.: Temperature curves over time at z = zq for the quenched cable and its neighboring
cable. The green curve shows the Q3D solution without making a spectral mesh
adaptation, while the purple curve shows the Q3D solution after adapting the spectral
mesh after half-time of the simulation (indicated by a purple dot). The COMSOL
reference solution is depicted as black dashed line. Figure adapted from [DCD20].

Simulation Results and Verification

Figure 6.4 shows the temperature distribution in the xy-plane at z = zq and at the end of the
simulation time tend = 10ms. Due to the very good insulating property of the glass fibre, the heat
exchange is much faster in longitudinal than in transversal direction. As a result, there are steep
temperature drops from one cable cross-section to another. At the same time, the high thermal
conductivity of the cables leads to a homogeneous temperature distribution in the cross-section,
while the temperature smoothly varies in longitudinal direction.
Figure 6.5 shows the temperature development over time at the hot-spot point at z = zq for the

quenched (left) cable and its neighboring (central) cable. The Q3D solutions (green) align very
well with the reference solution (black) computed by a 3D FEM in COMSOL [COM], leading to
relative differences below 3% at the end of the simulation time.
Nonetheless, it is observed that the Q3D solution moves further and further away from the

reference solution over time. For this behavior, the fixed spectral discretization of the longitudinal
dimension is to blame. As soon as the steep temperature fronts of the quench move to a SE
interface, the orthogonal polynomials are no longer able to accurately resolve the temperature
distribution (see Fig. 6.6): While the temperature curve at t = 1ms (black) is resolved well by
the black SE discretization, the temperature curve at t = 4ms (purple) is especially problematic
in the two outermost SEs, which would then require a high N to accurately resolve the curves.
Hence, an adaptation of the spectral mesh is necessary, e.g. by moving the SE interfaces such that
each half of the temperature "bell" is fully embedded into one SE, as shown in green in Fig. 6.6.
Indeed, by manually adapting the spectral mesh at t = 1

2 tend, the results of the Q3D method
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Figure 6.6.: Temperature distribution in the quenched cable in z-direction for two different points
in time. The vertical lines indicate the SE interfaces and their required adaptation
(green) to the moving quench fronts [DCD20].

are slightly improved as shown in purple in Fig. 6.5, leading to relative differences below 2%.
The results could be further improved by implementing an adaptive Q3D mesh strategy, which
automatically adapts the mesh when needed. Such strategies are already known in the area of
SEMs [Mav92], and one has been successfully applied for a Q3D method using spectral wavelets
in longitudinal direction [BDD21].

Performance Comparison to a 3D FE Simulation

To compare the spatial accuracy of the Q3D method with a 3D tetrahedral FE method, steady-state
simulations are carried out to exclude time stepping errors. Different refinements of the Q3D
and 3D FE method are compared to a fine 3D FE simulation in COMSOL. To accurately compare
the two methods, the number of 2D FEs in the transversal cross-section is counted for the Q3D
discretization, while for the 3D FE discretization, the average number of triangular cut surfaces in
a cross-sectional slice is considered. The relative errors in the hot-spot temperature with respect
to the reference simulation are shown in Fig. 6.7, where the numbers below the markers indicate
the number of cross-sectional elements. Clearly, the Q3D method yields accurate results with
less computational effort than the 3D simulation, e.g. for a cross-sectional resolution with 65
triangles, the 3D FEM requires a system matrix of size 21898 × 21898, while the Q3D method
achieves a similar error with a 98% smaller system matrix of size 2405× 2405, see the horizontal
comparison in Fig. 6.7. On the other hand, if one would engage the computational resources for
a system matrix of a size of approx. 104 × 104, one could achieve a much higher cross-sectional
resolution with 915 FEs and more accurate simulation results using the Q3D method, see the
vertical comparison in Fig. 6.7.
For this model, a length of ℓz = 1m has been chosen to be able to run a 3D FE simulation with

reasonable computational costs. Note that real superconducting accelerator magnets can be over
10m long. Therefore, much more pronounced gains in computational efficiency are expected from
the Q3D method.
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Figure 6.7.: The dimension of the Q3D (purple) and 3D FE (green) system matrices are plotted
against the relative error in the hot-spot temperature w.r.t. a fine reference solution
computed by COMSOL. The numbers below the marks denote the number of triangu-
lar elements resolving the transversal cross-section (Q3D) and the average number
of triangular elements in a xy-slice (3D FE). The reference solution itself is resolved
with 252 cross-sectional elements on average. The dashed lines mark the same level
of accuracy (horizontally) and of computational efficiency (vertically), respectively.
Figure adapted from [DCD20].

6.3. Magnetic Simulation of a Superconducting Cable

This simulation study checks if the Q3D method is able to portray the IFCC effects in supercon-
ducting cables, which have been discussed in Chapter 2 and mathematically described in Sec. 3.2.
The findings of this simulation study are published in [DD21].

Model and Scenario

A cable segment with four round superconducting multi-filamentary wires is considered as shown
in Fig. 6.8. The wires are assumed to be untwisted, such that the model can be viewed as a Q3D
problem. The wire segment ΩQ ∩KQ is treated as quenched, i.e. normalconducting, all other wire
segments as superconducting. This is modeled via the IFCC time constant as

τ(r⃗) =

{
τSC, r⃗ ∈ ΩSC ∩ (KSC ∪KQ) or ΩQ ∩KSC,
0, r⃗ ∈ ΩQ ∩KQ or Ω0 ∩ (KSC ∪KQ),

(6.9)

with a constant τSC > 0. An external harmonically time-varying magnetic flux density

B⃗ext(r⃗, t) = −B̂ sin(ωt) e⃗y (6.10)
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Figure 6.8.: Geometry of the superconducting cable model for the magnetic simulation study
discussed in Sec. 6.3. Four multi-filamentary wires (highlighted in purple) are em-
bedded in a non-conducting medium (gray). The wire segment ΩQ ∩KQ is treated
as quenched (normalconducting), all other wire segments as superconducting. An
external time-varying magnetic flux density B⃗ext is applied on the model as indicated
by the arrow. Figure adapted from [DD21].

is applied at the hull of the Q3D model. Here, B̂ is the magnetic flux density amplitude and ω is
the angular frequency of the field excitation in rad/s. The model is simulated for a full excitation
time period 2πω−1. As only the magnetic effects of the IFCC are of interest for this scenario, a
quench development is not considered, meaning that the region ΩQ ∩KQ does not change in size
during the simulation time.

Simulation Results and Verification

The magnetic flux density magnitude is shown in Fig. 6.9 and Fig. 6.10 at the excitation’s peak
time. Herein, Fig. 6.9 shows a volumetric view of the model, while for Fig. 6.10, the magnetic
flux density magnitude is visualized on four slices, allowing for an inside view. As discussed in
Chapter 2, superconducting regions completely expel the magnetic field due to the diamagnetic
property of superconductors. Because of this, the positions of the four superconducting multi-
filamentary wires are clearly visible through the zero magnetic flux density (dark blue color,
i.e. |B⃗| = 0T). For the same reason, one recognizes the quenched (normalconducting) segment
part, which is penetrated by the magnetic flux density (light blue color, i.e. |B⃗| > 0T). Therefore,
these results phenomenologically validate the magnetic model introduced in Sec. 3.2.
The Q3D magnetic simulation is verified against a 3D simulation carried out in GetDP [Dul+98]

by comparing the obtained magnetic energies over time. Figure 6.11a shows an excellent agree-
ment w.r.t. the energies. The relative difference over time is shown in Fig. 6.11b, which is
approximately in the order of 10−2. In the time range, in which the energy approaches zero,
rounding errors increase the error locally.
For the 3D simulation, the full 3D geometry was discretized with 480,164 tetrahedra resulting

into 614,062 mesh edges, which is also the number of DoFs (excluding the DoFs arising from the
gauging procedure). For the Q3D model, a transversal FE mesh with NFE = 2132 triangles was
chosen, leading to Nn = 1125 mesh nodes and Ne = 3256 mesh edges. The longitudinal direction
was discretized with NSE = 3 SE, while a maximal polynomial order of N = 6 was considered.
Altogether, the total number of Q3D DoFs results into 83,239 (excluding the DoFs arising from
the gauging procedure), which is only a fraction of the number of 3D DoFs. So, compared with
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Figure 6.9.: Volumetric view of the magnetic flux density magnitude in the superconducting
cable model presented in Sec. 6.3. The quenched segment part is visible due to the
"disturbance" in the magnetic field flux density [DD21].
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Figure 6.10.: Sliced view of the magnetic flux density magnitude in the superconducting cable
model presented in Sec. 6.3. The quench segment part is penetrated by themagnetic
field, while the superconducting segments completely expel the magnetic field as
expected from theory [DD21].
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(a) Magnetic energy over time.
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Figure 6.11.: Results for the superconducting cable model presented in Sec. 6.3. The magnetic
energies obtained by the Q3D and 3D simulation are plotted over time, showing an
excellent agreement (a). The relative difference between those is plotted over time,
being on average in the magnitude of 10−2 (b). The outliers in the range [4ms, 6ms]
are caused by rounding errors, as the energy approaches zero at 5ms. Figures
adapted from [DD21].

the full 3D FE simulation, the Q3D method demonstrated a superior computational efficiency
while achieving an excellent accuracy.

6.4. Quench Simulation of a Superconducting Multi-Filamentary Wire

In the next step, a strongly coupled magneto-thermal quench simulation is conducted. A supercon-
ducting multi-filamentary wire with the quench state model introduced in Sec. 3.4 is considered.
The results are verified against a 3D FE simulation, and were published in [DSD22].

Model and Scenario

A quarter of a superconducting multi-filamentary wire with rectangular form V = [0, ℓx]× [0, ℓy]×
[0, ℓz] is considered, where ℓz ≫ ℓx, ℓy. An initial temperature distribution is defined, such that
a central segment in longitudinal direction already quenches at the beginning of the simulation
time window. The geometry is shown in Fig. 6.12. For the magnetic model, a quarter cylindrical
air domain is put around the wire. Neumann BCs are set at the boundary in the xz-plane and
yz-plane to represent symmetry planes. At the xy-plane and curved boundaries, homogeneous
Dirichlet BCs are set to force the magnetic field to vanish. For the thermal model, it suffices to
solve the thermal problem solely in the wire domain, where isothermal BCs are assumed at the
wire fronts, and adiabatic BCs are set on the wire hull.
During the quench development over time, the temperature-dependent material properties

are updated at the end of each time step according to the quench state model as discussed in
Sec. 3.4. The nonlinear material distribution along the z-direction is resolved using the Chebyshev
expansion and tensor contraction approach introduced in Sec. 4.4.
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Figure 6.12.: Geometry of the quarter superconducting multi-filamentary wire model presented
in Sec. 6.4. A quarter multi-filamentary wire (purple) is placed into an air box. The
geometry is mirrored at the xz-plane and yz-plane to represent a full wire. An
initial temperature distribution is defined, such that a segment of the wire (dark
purple) is quenched at the beginning of the simulation time window. Figure adapted
from [DSD22].

Simulation Results and Verification

The model is simulated using the Q3D method and compared to a conventional 3D FE simulation
carried out in GetDP [Dul+98]. Attention has been paid to ensure that the numbers of FEs in the
cross-section of both models are roughly the same to allow for comparability. The time range is
run through a total of 25 constant time steps. The magnetic and thermal energy are computed in
each time step by both solvers and compared to each other, see Fig. 6.13, showing an excellent
agreement between the data.
Table 6.1 lists the number of SEs and the chosen polynomial order for the Q3D method, and

compares the required number of FEs and the DoFs as well as the computation method of the
3D and Q3D solver. Due to the strong multi-scale nature of the model (ℓz ≫ ℓx, ℓy), it does not
surprise that the 3D model demands for a high number of FEs to achieve an accurate meshing
especially along the z-direction of the computational domain. On the other hand, thanks to the
spectral discretization of the longitudinal dimension, the Q3D method achieves a high accuracy
with much less DoFs in total. The ratios of the Q3D to 3D quantities in percent are given in the
right-most column of Tab. 6.1. In the end, the Q3D discretization needs only approx. 1% as
many DoFs as the conventional 3D simulation. As a consequence, on a standard workstation the
transient solution of this scenario takes only five minutes employing the Q3D solver, while the 3D
GetDP simulation takes one hour to run. This result underlines the computational superiority of
the Q3D method against the conventional 3D FEM, which improves with increasing multi-scale
ratio ℓz

ℓx+ℓy
.
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Figure 6.13.: Comparison of the magnetic and thermal energies obtained by the 3D and Q3D
solver for the superconducting multi-filamentary wire model discussed in Sec. 6.4.
In both cases, the Q3D solution aligns very well with the 3D reference solution.
Figures taken from [DSD22].

Table 6.1.: Comparison between 3D FE and Q3D simulation for the model in Sec. 6.4.
3D GetDP Q3D solver Ratio Q3D vs. 3D

#FE 1,863,431 330 0.01%
#SE – 5 –

Polynomial order – 6 –
Magnetic #DoF 1,741,669 21,979 1%
Thermal #DoF 80,735 806 1%

Computation time 1h 5min 8%

6.5. Quench Simulation of a Superconducting Coil (Lead Example)

In this final simulation study, the lead example presented in Sec. 3.1 is computed by a strongly
coupled magneto-thermal Q3D simulation, which unites all introduced features of the Q3D
simulation approach such as coil end effects and nonlinear material characteristics. Appendix B
provides the physical data of this simulation study.

Model and Scenario

The considered superconducting coil model is shown in Fig. 3.2. Following the notation introduced
in Sec. 3.5, the model is electrically connected to a constant direct voltage source usrc at Γ+

1 and is
grounded at Γ+

24 by employing field-circuit coupling, see Sec. 4.5. Also, isothermal BCs are applied
on these surfaces. The other half-turn end surfaces are electrically and thermally connected to
each other as explained in Sec. 3.5. The electrical and thermal connections are modeled such that
the current and the heat flux immediately enter the next half-turn upon reaching the end of a
half-turn. At the hull of the coil Γcon, constant Robin BCs are applied mimicking the liquid helium
cooling.

74



1 2 3 4 5 6

0

0.5

1

q (1)

f
(q
)
(1
)

Figure 6.14.: The filter function (6.12) is plotted over the polynomial modes q = 1, . . . , 6 for
N = 5. The higher the polynomial mode, the more the value of the respective
spectral coefficient is diminished. The constant modes q = 1 and q = N + 1 are
not modified.

At the beginning of the simulation time window [0, 15]ms, the 15th half-turn is quenched at
zq = ℓz

3 . This is represented by an initial Gaussian temperature distribution

ϑ(r⃗, t = 0) = ϑ0(r⃗) =

{
ϑiso in Vv, v ̸= 15,
3
2ϑcrit exp

(
− (z−zq)2

ℓ2q

)
+ ϑiso in V15.

(6.11)

Here, ℓq = ℓz
100 in m is mathematically the Gaussian function’s standard deviation, which approxi-

mately corresponds to the width of the increased temperature distribution in V15. The choice of the
initial hot-spot temperature max{ϑ0} = 3

2ϑcrit + ϑiso ensures that the model cannot recover from
the local quench, but enters a state of thermal instability. This will lead to a quench development
and, thus, a temperature increase in the whole coil.
Furthermore, two scenarios are considered: In the first scenario, the insulation between the

cables is assumed to be very good, i.e. it is modeled with a low thermal conductivity, such that
the ratio between the transversal thermal conductivity of the insulation λ(t) and the longitudinal
thermal conductivity of the cable λ(ℓ) is very low. In the second scenario, the insulation between
the cables is less good, i.e. its thermal conductivity is higher, such that the transversal-longitudinal-
ratio of the thermal conductivity is higher by an order of magnitude. This will result into different
temperature developments and also quench propagation velocities.

Numerical Challenges

This model involves multiple connected half-turns and a high multi-scale ratio. This makes the
choice of the optimal spectral discretization mesh non-trivial: The steep temperature gradients
resemble discontinuities in longitudinal direction, which can induce numerical instability problems
in the SE discretization part of the Q3D method if the spectral mesh is not chosen accordingly.
However, the steep temperature fronts also move in time, making an adaptive mesh necessary as
demonstrated in the Rutherford cable example in Sec. 6.2. In contrast to the Rutherford cable
example, the half-turns of the considered superconducting coil model are connected to each other
in longitudinal direction, which will lead to various quench front locations in the transversal
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dimension. In this way, a spectral mesh, which is ideal for one half-turn, could be suboptimal for
another half-turn. An adaptive mesh strategy for the Q3D method has to take these considerations
into account.
Besides of an adaptive mesh strategy, there are different workarounds to deal with the presence

of (quasi) discontinuities in spectral methods [PMS19]. This work utilizes a simple filter function

f(q) =

{
exp (1− q) , q < N + 1,
1, q = N + 1,

(6.12)

where q is the polynomial mode of the modified Lobatto polynomials. This function acts as a sort
of low-pass filter, which diminishes the values of the higher-order coefficients, while not modifying
the constant modes q = 1 and q = N + 1, see Fig. 6.14. Clearly, this procedure distorts the Q3D
solution and counteracts the benefits of the Q3D method. For the sake of a proof of concept,
however, the filtering approach leads to satisfactory results.

Simulation Results

Figure 6.15 and 6.16 show the temperature distribution at several time instances on a xz-plane
slicing through the central half-turns V10, . . . , V16, see also the numbering scheme in Fig. 3.2, for
the low and high transversal-longitudinal-ratio scenarios of the thermal conductivity, respectively.
A red line marks the quench hot-spot location zq in the longitudinal dimension.
In the low ratio scenario, due to the excellent thermal insulation properties of the glass fibre

separating the half-turns from each other, the heat is primarily conducted from the hot-spot
location in the 15th half-turn into longitudinal direction, see Fig. 6.15b. At the beginning, the
quench development is rather slow, as one can see by comparing Fig. 6.15a and Fig. 6.15b. The
more superconducting coil material is quenched, however, the more heat is generated by Ohmic
losses. This accelerates the quench development, see Fig. 6.15c–6.15d.
Over time, the other half-turns Vv, v ̸= 15 are heated up and quenched through the longitudinal

heat conduction over the coil end windings, while the transversal heat conduction through the
insulation layers plays a much smaller role. After 15ms, the hot-spot temperature has increased
to 85K and multiple half-turns are quenched.
In the high ratio scenario, due to the worse thermal insulation properties of the glass fibre, the

heat conduction is also conducted transversally from half-turn to half-turn, although the primary
heat conduction still occurs in longitudinal direction. This leads to an ellipsoid heat development
with its center at the quench hot-spot location zq in V15, see Fig. 6.16.
At the same time, the heat development is much faster than in the low ratio case. The hot-spot

temperature of 85K is already reached after 1.5ms, so after a tenth of the time of the low ratio
scenario.
The obtained simulation results are physically and qualitatively plausible. They show that the

Q3D simulation approach is able to portray the quench development in a superconducting coil
model by solving a transient and strongly coupled magneto-thermal problem and taking multiple
half-turns, nonlinear material characteristics and coil end effects into account.
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Figure 6.15.: Temperature development over time in the central half-turns V9, . . . , V16 (see Fig. 3.2)
from a xz-plane view (y = 0) for a low transversal-longitudinal thermal conductivity
ratio. The initial temperature increase in V15 (top half-turn) primarily leads to a heat
conduction in longitudinal direction. The red line marks the quench hot-spot zq.
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Figure 6.16.: Temperature development over time in the central half-turns V9, . . . , V16 (see Fig. 3.2)
from a xz-plane view (y = 0) for a high transversal-longitudinal thermal conductivity
ratio. The initial temperature increase in V15 (top half-turn) leads to an ellipsoidal
heat conduction with its major axis in the longitudinal direction. The red line marks
the quench hot-spot zq.
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7. Summary, Conclusions and Outlook

Geschichten haben nie ein Ende [...],
auch wenn uns die Bücher das gern
vorgaukeln. Die Geschichten gehen
immer weiter, sie enden ebenso wenig
mit der letzten Seite, wie sie mit der
ersten beginnen.

Cornelia Funke, Tintenblut

7.1. Summary

This thesis was dedicated to the improvement of the spatial resolution for the multi-scale problem
of quench simulation of superconducting accelerator magnets. This is necessary to determine
sharp but reliable thresholds for quench detection and to design secure shutdown processes in
the case of quench scenarios. A quasi-3D method with hybrid shape functions was developed,
which combined 2D finite elements in the transversal cross-section of the magnet with 1D spectral
elements in the longitudinal dimension. In this way, the method was able to resolve all geometrical
details in the magnet cross-section as well as the steep temperature gradients due to the quench
phenomenon along the magnet’s length.
For the quasi-3D quench simulation, the magnetic and thermal models were derived. Herein,

the interfilament current coupling phenomenon was included by an additional term in the magne-
toquasistatic formulation representing the magnetization current density in the superconducting
material induced by an external magnetic field. Furthermore, a smooth quench state model was
introduced, which was based on the current sharing phenomenon. In this way, the convergence
of nonlinear iteration schemes was secured. To take the coil end effects into account, this thesis
developed end winding models for the thermal and magnetic sub-problems by means of floating
boundary conditions and electrical field-circuit coupling, respectively.
For the spectral element component of the quasi-3D method, this thesis investigated the suit-

ability of several orthogonal polynomial bases with respect to computational efficiency. In the
end, the modified Lobatto polynomials proved to be the ideal polynomial basis for this quasi-3D
method. Moreover, this thesis developed an efficient nonlinear iteration scheme for the SE part
using Chebyshev polynomials and tensor contraction. In doing so, the computational effort for
the assembly of the nonlinear spectral element matrices and, thus, nonlinear quasi-3D matrices
was optimized.
The magneto-thermal model for quench simulation was discretized by means of quasi-3D

nodal and edge shape functions. The arising sub-terms of the discrete quasi-3D quantities were
identified with 2D finite element and 1D spectral element matrices and vectors. The treatment
of the boundaries of the quasi-3D computational model was discussed, and several boundary
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conditions, which are relevant for quench simulation, were formulated for the quasi-3D setting. The
whole quasi-3D simulation approach was implemented in a object-oriented MATLAB framework.
Convergence studies and reference simulations verified the numerical correctness of the quasi-

3D method. The quasi-3D simulation approach was then successfully employed in a thermal and
magnetic simulation study of superconducting cables. Furthermore, strongly coupled nonlinear
magneto-thermal simulations of a superconducting multi-filamentary wire and a superconducting
coil were conducted. Comparisons with conventional 3D finite element solvers showed that
the quasi-3D method achieved excellent accuracy while also attaining a higher computational
efficiency.

7.2. Conclusions

This thesis raised the following conclusions and findings:

• As already known from axisymmetric quasi-3D methods [DD17; DSD19], the discrete
quantities of the translational quasi-3D method presented in this dissertation could be
written in a concise way using the Kronecker tensor product notation. Thanks to the
mixed nodal-modal nature of the modified Lobatto polynomials, boundary and continuity
conditions could be easily imposed without increasing the system of equations.

• The implementation of the quasi-3D solver is particularly cumbersome. All details have to be
considered very carefully. Every possibility for structuring the algorithm, and by that also the
implementation, e.g. the Kronecker product structure, is helpful and necessary. Comparing
to a standard 3D finite element solver, the coding of the quasi-3D solver is significantly
larger and more vulnerable.

• The quasi-3D discretization technique is motivated by the translational symmetry of the con-
sidered magnet models. Moreover, it has been shown that the resolution in the longitudinal
direction has to be adapted to the quench hot-spot and even adapted to its development
over time. This indicates a tighter link between model and solver than is the case in a
standard 3D finite element simulation procedure. The employment of the computationally
beneficial quasi-3D method necessitates a tighter connection between solver and pre- and
post-processing routines, which is a disadvantage in the working flow of a computational
engineer.

• In comparison to standard finite element solvers, the treatment of nonlinearities is not
straightforward in the quasi-3D method. This problem was partially unforeseen. However,
the introduction of tensor contractions could alleviate the problem.

• Because of the spectral element parts, the resulting systems of equations have comparably
high condition numbers. As a consequence, a high-quality algebraic solver is needed. In this
work, for larger problems, the standard sparse direct solver of MATLAB did not suffice and
had to be replaced with MUMPS [ADL00].

• Convergence studies of the quasi-3D method confirmed the expected polynomial conver-
gence of the transversal discretization (from finite element theory [Bra12]) as well as the
expected exponential convergence of the longitudinal discretization (from spectral element
theory [STW11]).
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• The quasi-3D method has confirmed the anticipated improvement in spatial resolution for
the case of superconducting accelerator magnets. This effect is more pronounced, the higher
the multi-scale ratio is, i.e. the longer the magnet is compared to its width.

In total, the quasi-3D simulation approach demands for a very careful implementation as well
as a tighter connection between model and solver than a standard 3D finite element simulation
would need. However, this overhead is rewarded with a promising tool to study strongly coupled
nonlinear 3D magneto-thermal quench scenarios especially in long superconducting accelerator
magnets, where the multi-scale ratio is very high.

7.3. Outlook

The results presented in this thesis raise new research proposals to be tackled in future work:

• For a precise and numerically stable simulation of the quench development in longitudinal
dimension, the spectral mesh in the quasi-3D simulation approach has not only to be carefully
chosen, but to be adapted over time in order to resolve the moving quench fronts. Otherwise,
inaccurate results and numerical instabilities can occur as demonstrated in Sec. 6.2 and
Sec. 6.5. Thus, adaptive quasi-3D mesh strategies could be adopted, which efficiently adapt
the quasi-3D discretization to the quench state of the model and ensure a high computational
accuracy.

• The Kronecker tensor product structure of the quasi-3D matrices leads to special matrix
properties as discussed in Sec. 5.2. In analogy to the Kronecker product matrices arising
in Runge-Kutta time integration [Boo+07] or in stochastic collocation [RV10] for partial
differential equations, these matrix structures could be exploited to develop dedicated
algebraic techniques for solving quasi-3D systems of equations based on multilevel solvers.

• The quasi-3Dmatrix structures could be also investigated for the construction of a customized
preconditioner, which enables the efficient usage of iterative methods for the solution of the
quasi-3D systems of equations. In this way, the currently employed explicit Coulomb gauge
could be omitted in favor of the implicit gauging provided by iterative methods [Ren96].
Alternatively, a tree-cotree gauging method [MC95] for the quasi-3D discretization could be
designed. Both alternatives would reduce the size of the magnetic system and, thus, could
improve the overall computational efficiency.

As a numerical technique for spatial discretization, the quasi-3D method is not constrained to low-
temperature superconducting magnet models or quench simulation, but can be adapted for other
applications fulfilling the translational symmetry condition, e.g. for electrical machines [Jor+12].
In particular, the quench simulation of high-temperature superconducting tapes represents a
natural application field for the quasi-3D method: Due to the presence of several thin layers of
different materials and a high multi-scale ratio, conventional three-dimensional quench simulations
of superconducting tapes are computationally very demanding, and have been carried out only
for very simple models up to now [Gri16]. The quasi-3D simulation approach could be able to
solve this multi-scale problem, thus becoming a promising alternative to the semi-analytical and
two-dimensional simulation approaches used so far.
Moreover, analogously to other spatial discretization techniques, the quasi-3D method can be

combined with other numerical methods in order to complement each other in their respective
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roles and to reach even higher levels of computational efficiency. Candidates for such joint
approaches are:
• Domain decomposition: This work modeled the magnet’s end windings by a circuit model,
which was monolithically coupled to the quasi-3D model. As an alternative, the end part
could be modeled by a 3D finite element method and attached to the quasi-3D model by a
domain decomposition approach [SBG96]. In this way, the quench development in the end
windings could be resolved more accurately.

• Higher-order time integrators: An improvement of the temporal resolution and the
computational efficiency can be achieved by introducing higher-order time integrators,
e.g. Runge-Kutta methods [ND96; Boo+07], preferably with error-controlled adaptive time
stepping [CWW02].

• Data-driven solvers: The properties of superconducting materials impose a huge challenge
both modeling-wise and simulation-wise. First, the material characteristics are highly
nonlinear or even discontinuous. For example, the electrical conductivity and the volumetric
heat capacity of superconducting materials jump upon shifting from superconducting to
normalconducting state and vice versa [Rus10]. Numerically, this induces convergence
problems for the nonlinear iteration scheme. This thesis remedied that issue by introducing
a smooth quench state model in Sec. 3.4. Second, measuring the material characteristics at
the very low temperatures, in which superconducting magnets are operated, is extremely
challenging. This already uncertain measurement data is then piece-wise polynomially
fitted to obtain a material curve for quench simulation [Rus10]. In order to avoid these
inaccurate measurement data approximations, future work could look into the fusion of
a quasi-3D simulation approach with a data-driven solver, which skips the fiddly material
modeling and directly works with the measurement data [GLD20]. Thus, highly nonlinear
and discontinuous material characteristics could be handled in a genuine way, leading to a
further increase of both the computational accuracy and the computational efficiency.

• Reduced magnetic vector potential formulations: In this thesis, the superconducting
cable is spatially resolved by the combination of the 2D finite element mesh and a 1D
spectral element grid. Herein, the superconducting wires are not explicitly modeled but a
homogenization technique is employed. A promising alternative is to use a reduced magnetic
vector potential formulation, where the superconducting wires in the cable are explicitly re-
solved [Pau97]. This approach has been implemented in the ROXIE software [Rus98], which
has been particularly advantageous for optimizing the magnet’s winding geometry [AR04]
and for modeling the occurring induced effects [VAR00; ARV02]. In ROXIE, the wires are
embedded in a boundary element domain, which is coupled to a finite element domain
dealing with the permeable magnet parts. A similar approach, which embedded the wires
in a finite element domain, exists as well [DAn+22]. Here, a replacement of the 3D finite
element approach by a quasi-3D method would bring decisive advantages.

• LEDET: LEDET (lumped-element dynamic electro-thermal) is an efficient solver for quench
phenomena, employing coupled electric and thermal circuits [Rav+16]. A hybridization of
LEDET and a field solver, e.g., including the quasi-3D approach, would make sense to adapt
the spatial resolution to the problem at hand, e.g., by coupling highly resolved field model
parts in smaller, particularly vulnerable parts to electro-thermal circuits of the overall coil.
The mechanism of field-circuit coupling developed in this thesis can be extended to that
purpose.
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A. Matrix Calculations

A.1. 2D FE Matrices

In the following, all 2D FE matrices occurring in Sec. 4.3 are calculated in detail. To this end, it
is more convenient to not use the global shape function (4.34) on the image element T but the
local shape functions N̂j defined on the reference element T̂ . The reference triangle is depicted in
Fig. A.1. For the reference triangle, the reference nodal shape functions read

N̂1(x̂, ŷ) = 1− x̂− ŷ, (A.1a)
N̂2(x̂, ŷ) = x̂, (A.1b)
N̂3(x̂, ŷ) = ŷ, (A.1c)

where (x̂, ŷ) are the spatial coordinates in the reference coordinate system. The reference transver-
sal edge functions read

ˆ⃗w
(t)
1 (x, y) = ˆ⃗w

(t)
(1,2)(x, y) =

[
1− ŷ
x̂

]
, (A.2a)

ˆ⃗w
(t)
2 (x, y) = ˆ⃗w

(t)
(1,3)(x, y) =

[
ŷ

1− x̂

]
, (A.2b)

ˆ⃗w
(t)
3 (x, y) = ˆ⃗w

(t)
(2,3)(x, y) =

[
−ŷ
x̂

]
. (A.2c)

With the affine mapping FT (x̂, ŷ) 7→ (x, y),

FT (x̂, ŷz) = BT

[
x̂
ŷ

]
+ aT , (A.3)

ŷ

x̂
1

1

0

P̂1 P̂2

P̂3

T̂

Figure A.1.: Reference triangle for standard 2D FEM [ZTT05].
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it is possible to map coordinates from the reference system into the image system (x, y), and vice
versa with the inverse F−1

T [Bra12]. The mapping matrix BT and mapping vector aT are readily
obtained from the node coordinates forming the image element T [ZTT05]. In the context of
matrix assembly, one has also to map integrals and gradients involving nodal shape functions. To
this end, the transformation rules∫

T=FT (T̂ )

u(x, y) dxdy =

∫
T̂

û(x̂, ŷ)|detBT | dx̂dŷ, (A.4)

∇u(x, y) = B−T
T ∇̂û(x̂, ŷ) (A.5)

are utilized [Bra12]. In the context of edge shape functions, it is crucial to use a H(curl)-
conforming mapping to map between reference and image coordinates, which is provided by the
Piola transformation [RKL09]

v⃗(x, y) = B−T
T

ˆ⃗v(x̂, ŷ), (A.6)

∇× v⃗(x, y) = 1

detBT
BT ∇̂ × ˆ⃗v(x̂, ŷ). (A.7)

Thermal Conductance Matrix

For the thermal conductance matrix (4.17), the integral transformation rule (A.4) and the gradient
transformation (A.5) are used to obtain(

KFE,n
λ

)(T )

ij
=

∫
T

λ(T )∇N (T )
j · ∇N (T )

i dxdy

=

∫
T̂

λ(T )
(
B−T

T ∇̂N̂j

)
·
(
B−T

T ∇N̂i

)
|detBT |dx̂dŷ

= |T̂ ||detBT |λ(T )
(
B−T

T ∇̂N̂j

)
·
(
B−T

T ∇̂N̂i

)
.

(A.8)

Note that for linear nodal shape functions, the gradients are constants. Therefore, no numerical
integration is necessary.

Thermal Capacitance Matrix

For the thermal capacitance matrix (4.18), the integral transformation rule (A.4) and exact
integration are used to obtain(

MFE,n
CV

)(T )

ij
=

∫
T

C
(T )
V N

(T )
j N

(T )
i dxdy

=

∫
T̂

C
(T )
V N̂jN̂i|detBT | dx̂dŷ

=
|T̂ ||detBT |

12
C

(T )
V

2 1 1
1 2 1
1 1 2

 .
(A.9)
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Thermal Load Vector

For the thermal load vector (4.19), the integral transformation rule (A.4) and numerical integration
on the triangle [Dun85] of order Q are used to obtain

(
qFE
V

)(T )

i
=

∫
T

qVNi dxdy

=

∫
T̂

qVN̂i|detBT | dx̂dŷ

= |T̂ ||detBT |
NQ∑
q=1

ωqqV(xq, yq)N̂i(x̂q, ŷq),

(A.10)

whereNQ is the number of quadrature samples for an integration of orderQ, ωq are the quadrature
weights and (xq, yq) and (x̂q, ŷq) are the quadrature samples in the image and reference coordinate
system, respectively. For Q = 1, the volumetric heat flux is assumed to be element-wise constant.

Transversal Magnetic Reluctance Matrix

For the transversal magnetic reluctance matrix (4.45), the integral transformation rule (A.4) and
the curl transformation (A.7) are used to obtain(

KFE,t
α

)(T )

de
=

∫
T

α(T )∇× w⃗(T,t)
e (x, y) · ∇ × w⃗(T,t)

d (x, y) dxdy

=

∫
T̂

α(T ) 1

| detBT |
∇̂ × ˆ⃗w(t)

e (x̂, ŷ) · 1

| detBT |
∇̂ × ˆ⃗w

(t)
d (x̂, ŷ)|detBT |dx̂dŷ

= α(T ) |T̂ |
|detBT |

 4 −4 4
−4 4 −4
4 −4 4

 .
(A.11)

Transversal Electrical Conductance Matrix

For the transversal electrical conductance matrix, the integral transformation rule (A.4) and the
Piola transformation (A.6) is used to obtain(

MFE,t
σ

)(T )

de
=

∫
T

σ(T )w⃗(T,t)
e (x, y) · w⃗(T,t)

d (x, y) dxdy

=

∫
T̂

σ(T )
(
B−T

T
ˆ⃗w(t)
e (x̂, ŷ)

)
·
(
B−T

T
ˆ⃗w
(t)
d (x̂, ŷ)

)
|detBT |dx̂dŷ.

(A.12)

Here, the integrand is a function of second order which is calculated using exact numerical
integration on the reference triangle [Dun85].
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Node-Edge Coupling Matrix

For the node-edge coupling matrix, the integral transformation rule (A.4), the gradient transfor-
mation (A.5) and the Piola transformation (A.6) are used to obtain(

CFE,t
α

)(T )

ie
=

∫
T

α(T )w⃗(T,t)
e (x, y) · ∇N (T )

i (x, y) dxdy

=

∫
T̂

α(T )
(
B−T

T
ˆ⃗w(t)
e (x̂, ŷ)

)
·
(
B−T

T ∇̂N̂i(x̂, ŷ)
)
|detBT | dx̂dŷ.

(A.13)

Here, the integrand is a function of first order which is calculated using exact numerical integration
on the reference triangle [Dun85].

Longitudinal Magnetic Reluctance Matrix

For the longitudinal magnetic reluctance matrix, the integral transformation rule (A.4) and the
gradient transformation (A.5) are used to obtain(

KFE,ℓ
α

)(T )

ij
=

∫
T

α(T )∇N (T )
j (x, y) · ∇N (T )

i (x, y)ℓ−2
z dxdy

=

∫
T̂

α(T )
(
B−T

T ∇̂N̂j(x̂, ŷ)
)
·
(
B−T

T ∇̂N̂i(x̂, ŷ)
)
|detBT |ℓ−2

z dx̂dŷ

= |T̂ ||detBT |α(T )
(
B−T

T ∇̂N̂j(x̂, ŷ)
)
·
(
B−T

T ∇̂N̂i(x̂, ŷ)
)
ℓ−2
z .

(A.14)

Note that for linear nodal shape functions, the gradients are constants. Therefore, no numerical
integration is necessary.

Alternatively, one can retain the curl formulation and use the curl transformation (A.7),

(
KFE,ℓ

α

)(T )

ij
=

∫
T

α(T )

(
∇×

N
(T )
j (x, y)

ℓz
e⃗z

)
·

(
∇×

N
(T )
i (x, y)

ℓz
e⃗z

)
dxdy

=

∫
T̂

α(T )

ℓ2z

(
1

detBT
BT ∇̂ × N̂j(x̂, ŷ)e⃗z

)
·
(

1

detBT
BT ∇̂ × N̂i(x̂, ŷ)e⃗z

)
| detBT |dx̂dŷ

=
α(T )

ℓ2z

|T̂ |
| detBT |

(
BT

[
∂ŷN̂j(x̂, ŷ)

−∂x̂N̂j(x̂, ŷ)

])
·
(
BT

[
∂ŷN̂i(x̂, ŷ)

−∂x̂N̂i(x̂, ŷ)

])
,

(A.15)
which is equivalent to (A.14).
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Longitudinal Winding Matrix

For the longitudinal winding matrix, the integration transformation rule (A.4) is used to obtain(
XFE,ℓ

)(T )

is
=

∫
T

Ts(x, y)N
(T )
i (x, y)ℓ−1

z dxdy

=

∫
T̂

Ts(x, y)N̂i(x̂, ŷ)|detBT | dx̂dŷ

=

{
|T̂ || detBT |

6ℓz
[1, 1, 1]T, T ∈ Ss,

0, T /∈ Ss,

(A.16)

where Ss is the subregion of the s-th winding or strand.

A.2. 1D SE Modified Lobatto Matrices

In the following, the closed forms of all 1D SE matrices with modified Lobatto polynomial basis
are presented [FD15]. To this end, the reference interval Î is mapped to the image interval Ik
using a linear mapping

ẑ = bkz + ak (A.17)

with mapping coefficients

ak =
zk+1 + zk

2
, (A.18)

bk =
zk+1 − zk

2
. (A.19)

This leads to the transformation rules∫
Ik

u(z) dz =

∫
Î

u(ẑ)bk dẑ, (A.20)

ϕ(k)q (z) = b−1
k ϕ̂q(ẑ). (A.21)

Spectral Stiffness Matrix

Using (A.20) and (A.21), the spectral stiffness matrix (4.77) results to

(
KSE

α

)(k)
pq

=
α(k)

bk

{
p2(p− 1)2

8(2p− 1)
δpq

+
1

2
(δp,1δq,1 + δp,N+1δq,N+1 − δp,1δq,N+1 − δp,N+1δq,1)

}
.

(A.22)
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Spectral Damping Matrix

Using (A.20) and (A.21), the spectral damping matrix (4.78) results to

(
DSE

β

)(k)
pq

= β(k)
{
p2(p+ 1)(p− 1)

8(2p+ 1)(2p− 1)
δp,q+1

− p(p− 2)(p− 1)2

8(2p− 3)(2p− 1)
δp,q−1

+
1

2
(δp,1δq,N+1 + δp,N+1δq,N+1 − δp,1δq,1 − δp,N+1δq,1)

+
1

6
(δp,1δq,2 + δp,2δq,N+1 − δp,2δq,1 − δp,N+1δq,2)

}
.

(A.23)

Spectral Mass Matrix

Using (A.20), the spectral mass matrix (4.79) results to

(
MSE

γ

)(k)
pq

= γ(k)bk

{
1

4

p2(p− 1)2

(2p− 3)(2p− 1)(2p+ 1)
δpq

− 1

8

p(p− 1)(p+ 1)(p+ 2)

(2p− 1)(2p+ 1)(2p+ 3)
δp,q−2

− 1

8

p(p− 3)(p− 2)(p− 1)

(2p− 5)(2p− 1)(2p+ 1)
δp,q+2

+
1

3
(2δp,1δq,1 + 2δp,N+1δq,N+1 + δp,1δq,N+1 + δp,N+1δq,1)

+
1

6
(δp,1δq,2 + δp,2δq,1 + δp,2δq,N+1 + δp,N+1δq,2)

+
1

10
(δp,3δq,N+1 + δp,N+1δq,3 − δp,1δq,3 − δp,3δq,1)

}
.

(A.24)
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B. Physical Data

This chapter provides the physical data used for the superconducting coil lead example simulation
in Sec. 6.5.

B.1. Magnetic Properties

Electrical Conductivity

The effective electrical conductivity of the cables is modeled as a temperature-dependent function

σCable(ϑ) = qqs(ϑ) (κCuρCu(ϑ,B = 0) + κSCρNbTi(ϑ))
−1 (B.1)

with ρCu being the electrical resistivity of copper following the National Institute of Standards
and Technology (NIST) [Rus10; SDR92], and ρNbTi as the electrical resistivity of NbTi based on
the material data compilation of the European Fusion Development Agreement (EFDA) [Rus10;
BRS07]. Figure B.1a shows the relation (B.1) in the temperature range [4, 25]K. Note that in the
fully superconducting state (ϑ ≤ ϑcs = 6.5K), σCable = 0 due to the characteristics of the quench
state function qqs (see Sec. 3.4). This does not mean that the cable is viewed as non-conducting,
but that the Ohmic eddy current effects and losses are disregarded in that state.
For the insulation wrapped around the individual cables as well as the air domain around the

coil, the electrical conductivity is set to zero.

Characteristic Time Constant

The IFCC time constant of the cables is modeled as a temperature-dependent function

τCable(ϑ) = (1− qqs(ϑ)) τSC (B.2)

with τSC = 20ms.

B.2. Thermal Properties

Thermal Conductivity

The thermal conductivity of the cables is modeled as a temperature-dependent function

λCable(ϑ) = κCuλCu(ϑ,RRR = 100) + κSCλNbTi(ϑ) (B.3)

with λCu being the thermal resistivity of copper for a residual-resistance ratio (RRR) of 100
following NIST [Rus10; SDR92], and λNbTi as the thermal conductivity of NbTi based on the
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Figure B.1.: Effective temperature-dependent electrical and thermal conductivity of the cables.

material data compilation of EFDA [Rus10; BRS07]. Figure B.1b shows the relation (B.3) in the
temperature range [4, 25]K.
For the insulation, the thermal conductivity is modeled as a temperature-dependent function

in the case of the lower ratio between transversal and longitudinal thermal conductivity (see
Fig. 6.15),

λIns,low(ϑ) = 10p(ϑ) with p(ϑ) =

7∑
n=0

an(log ϑ)
n, (B.4)

with empirical parameters an taken from [Rus10]. Figure B.2 shows this relation in the temperature
range [4, 25]K. In the case of the higher transversal-longitudinal-ratio (see Fig. ... ), the thermal
conductivity is set to a constant value,

λIns,high = 2.5W/mK. (B.5)

Volumetric Heat Capacity

The volumetric heat capacities of the cable and the insulation are set to constant values,

CV,Cable = 500 J/(m3K), (B.6)
CV,Ins = 750 J/(m3K). (B.7)

Robin Boundary Data

The Robin BC is mimicking the cooling helium fluid surrounding the coil. The helium’s very high
thermal conductivity is taken into account by a very high heat transfer coefficient in the Robin
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Figure B.2.: Thermal conductivity of the cable insulation (B.4) in the low transversal-longitudinal-
ratio case.

boundary data,
αHe = 8000W/m2K. (B.8)

The temperature of the helium fluid is set to a constant value of ϑHe = 4K, which is identical to
the initial temperature condition and the Dirichlet BC data on the isothermal boundaries of the
coil model.
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