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Kurzfassung

Diese Dissertation beschreibt drei Ansätze zur Richtungsschätzung (DOA) oder Beam-

forming in der Array-Signalverarbeitung aus der Perspektive der Sparsity. Im ersten

Teil dieser Dissertation betrachten wir das Design von Sparse-Array-Beamformern

basierend auf der Alternating Direction Method of Multipliers (ADMM); im zweiten

Teil dieser Dissertation wird das Problem der gemeinsamen DOA-Schätzung und der

Detektion von gestörten Sensoren untersucht; und Gitter unabhängige DOA-Schätzung

wird im letzten Teil dieser Dissertation untersucht.

Im ersten Teil dieser Arbeit entwickeln wir einen Sparse-Array-Designalgorithmus für

adaptives Beamforming. Unsere Strategie basiert darauf, ein sparses Beamformer-

Gewicht zu finden, um das Ausgangssignal-zu-Interferenz-plus-Rausch-Verhältnis

(SINR) zu maximieren. Das vorgeschlagene Verfahren verwendet das ADMM und lässt

Lösungen in geschlossener Form bei jeder ADMM-Iteration zu. Die Konvergenzeigen-

schaften des Algorithmus werden analysiert, indem die Monotonie und Beschränktheit

der erweiterten Lagrange-Funktion gezeigt werden. Außerdem beweisen wir, dass der

vorgeschlagene Algorithmus gegen die Menge der stationären Punkte von Karush-Kuhn-

Tucker konvergiert. Die numerischen Ergebnisse zeigen seine hervorragende Leistung,

die mit der des erschöpfenden Suchansatzes vergleichbar ist, etwas besser als die der

State-of-the-Art-Löser und mehrere andere Sparse-Array-Designstrategien in Bezug auf

das Ausgabe-SINR deutlich übertrifft. Darüber hinaus übertrifft der vorgeschlagene

ADMM-Algorithmus seine Konkurrenten hinsichtlich der Rechenkosten.

Gestörte Sensoren könnten zufällig auftreten und zum Ausfall eines Sensor-Array-

Systems führen. Im zweiten Teil dieser Arbeit betrachten wir ein Array-Modell, in dem

eine kleine Anzahl von Sensoren durch unbekannte Sensorverstärkung und Phasenfehler

gestört wird. Mit einem solchen Array-Modell wird das Problem der gemeinsamen DOA-

Schätzung und der Detektion von gestörten Sensoren im Rahmen der Low-Rank- und

Row-Sparse-Zerlegung formuliert. Wir leiten ein Verfahren der iterativ-neugewichtete

kleinste Quadrate (IRLS) her um das resultierende Problem zu lösen. Die Konvergen-

zeigenschaft des IRLS-Algorithmus wird anhand der Monotonie und Beschränktheit

der Zielfunktion analysiert. Es werden umfangreiche Simulationen hinsichtlich Pa-

rameterauswahl, Konvergenzgeschwindigkeit, Rechenkomplexität und Leistung der

DOA-Schätzung, sowie der Erkennung von gestörten Sensoren durchgeführt. Obwohl

der IRLS-Algorithmus bei der Erkennung der gestörten Sensoren etwas schlechter als der

ADMM ist, zeigen die Ergebnisse, dass unserer Ansatz mehrere hochmoderne Techniken

in Bezug auf Konvergenzgeschwindigkeit, Rechenaufwand und DOA-Schätzleistung

übertrifft.
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Im letzten Teil dieser Arbeit wird das Problem der Gitter unabhängigen DOA-Schätzung

untersucht. Wir entwickeln eine Methode, um gemeinsam die nächsten Ortsfre-

quenz -Gitter (den Sinus der DOA) und die Lücken zwischen den geschätzten Gittern

und den entsprechenden Frequenzen zu schätzen. Unter Verwendung einer Taylor-

Approximation zweiter Ordnung wird das Datenmodell im Rahmen der Joint-Sparse-

Darstellung formuliert. Wir weisen auf eine wichtige Eigenschaft der interessierenden

Signale im Modell hin, nämlich die Proportionalitätsbeziehung. Es hat sich empirisch

gezeigt, dass die Proportionalitätsbeziehung insofern nützlich ist, da sie die Wahrschein-

lichkeit erhöht, dass die Mischmatrix die blockbeschränkte Isometrieeigenschaft erfüllt.

Simulationsbeispiele demonstrieren die Effektivität und Überlegenheit der vorgeschlage-

nen Methode gegenüber mehreren hochmodernen gitterbasierten Ansätzen.
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Abstract

This dissertation details three approaches for direction-of-arrival (DOA) estimation

or beamforming in array signal processing from the perspective of sparsity. In the

first part of this dissertation, we consider sparse array beamformer design based on

the alternating direction method of multipliers (ADMM); in the second part of this

dissertation, the problem of joint DOA estimation and distorted sensor detection is

investigated; and off-grid DOA estimation is studied in the last part of this dissertation.

In the first part of this thesis, we devise a sparse array design algorithm for adaptive

beamforming. Our strategy is based on finding a sparse beamformer weight to maximize

the output signal-to-interference-plus-noise ratio (SINR). The proposed method utilizes

ADMM, and admits closed-form solutions at each ADMM iteration. The algorithm

convergence properties are analyzed by showing the monotonicity and boundedness of

the augmented Lagrangian function. In addition, we prove that the proposed algorithm

converges to the set of Karush-Kuhn-Tucker stationary points. Numerical results

exhibit its excellent performance, which is comparable to that of the exhaustive search

approach, slightly better than those of the state-of-the-art solvers, and significantly

outperforms several other sparse array design strategies, in terms of output SINR.

Moreover, the proposed ADMM algorithm outperforms its competitors, in terms of

computational cost.

Distorted sensors could occur randomly and may lead to the breakdown of a sensor array

system. In the second part of this thesis, we consider an array model in which a small

number of sensors are distorted by unknown sensor gain and phase errors. With such

an array model, the problem of joint DOA estimation and distorted sensor detection

is formulated under the framework of low-rank and row-sparse decomposition. We

derive an iteratively reweighted least squares (IRLS) algorithm to solve the resulting

problem. The convergence property of the IRLS algorithm is analyzed by means of the

monotonicity and boundedness of the objective function. Extensive simulations are

conducted in view of parameter selection, convergence speed, computational complexity,

and performance of DOA estimation as well as distorted sensor detection. Even though

the IRLS algorithm is slightly worse than the ADMM in detecting the distorted sensors,

the results show that our approach outperforms several state-of-the-art techniques in

terms of convergence speed, computational cost, and DOA estimation performance.

In the last part of this thesis, the problem of off-grid DOA estimation is investigated.

We develop a method to jointly estimate the closest spatial frequency (the sine of DOA)

grids, and the gaps between the estimated grids and the corresponding frequencies.
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By using a second-order Taylor approximation, the data model under the framework

of joint-sparse representation is formulated. We point out an important property of

the signals of interest in the model, namely the proportionality relationship. The

proportionality relationship is empirically demonstrated to be useful in the sense that

it increases the probability of the mixing matrix satisfying the block restricted isometry

property. Simulation examples demonstrate the effectiveness and superiority of the

proposed method against several state-of-the-art grid-based approaches.
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Chapter 1

Introduction

In various real-world applications, such as wireless communications, multiple input

multiple output (MIMO) radar, radio astronomy, sonar, and bioinformatics, engineers

are facing the problem that huge data are obtained and needed to be dealt with. It is

observed that many practical signals are compressible in the sense that they can be well

approximated by sparse signals [FR13a]. Note that exploiting the sparsity of the data is

helpful in storing and processing them. Therefore, sparsity has become a more and more

important property in many research fields, see for example [SFH22,CPP13,FGG+14,

TYN14,AGM18,FHM+18,SZL14a,ZFWS20,LLWL18,DBXC17,DT15,MSG12,WSP17,

YXZ13,LSG17,JYMZS21,TMZ21].

In array signal processing, the techniques of sparsity have been applied for different

purposes, mainly including direction-of-arrival (DOA) estimation [BAPW08,LSZN09,

MBZJ09,HM10,YXZ13,SZL14b,LAAZ15,YLSX18,SCL+21], beamforming [SZL14a,

WATA14,HMP18,DXP21,XLD+21,SFH22,FHM+18,LLWL18,NSYC10,GK14,DT15,

MSG13,HA19,ZFWS20,DGB22,ZCS+17,ATSMR+21,ZFW21,CZW+21], source detec-

tion [BZP02,PZBL07,DRZA10,SBL11b,CP11,RHE12,YDZ12,LZ13,LZ15,MMKBZ+16],

and sensor diagnosis [YL99,MCR+12,ZWCS15,LV19,NLEF09,PGW02,SPPZ18,AA17,

HZ21]. In this dissertation, we focus on sparse array beamformer design, DOA estima-

tion using a sparsely distorted sensor array, and distorted sensor detection. Specifically

speaking, this dissertation consists of the following three parts:

• We study the problem of sparse array beamformer design by using alternating

direction method of multipliers (ADMM). Our goal is twofold. On the one hand,

we select less sensors in order to reduce the processing cost. On the other hand,

we wish to keep the beamformer output signal-to-interference-plus-noise ratio

(SINR) as large as possible.

• We investigate the problem of joint DOA estimation and distorted sensor detection.

We consider an array model within which a small number of sensors are distorted

by sensor gain and phase uncertainties. The positions of the distorted sensors are

random and unknown.

• We study off-grid DOA estimation problem. Since the number of sources is always

much less than the number of possible pre-set angular grids, we have sparsity in

the whole angular region. By using a second-order Taylor approximation, the

data model under the framework of joint-sparse representation is formulated.
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1.1 Research Contributions

In this thesis, several advances with respect to sparse array signal processing, are

detailed. Our proposed sparse array design strategy admits closed-form solutions at

each ADMM iteration. Besides, a convergence analysis of the proposed algorithm is

provided by showing the monotonicity and boundedness of the augmented Lagrangian

function. Additionally, it is proved that the proposed algorithm converges to the set

of Karush-Kuhn-Tucker (KKT) stationary points. Simulation results demonstrate

excellent behavior of our scheme, as it outperforms several existing methods, and

is comparable to the exhaustive search approach. Moreover, the proposed method

consumes much less computing power than the other tested approaches.

Our proposed iteratively reweighted least squares (IRLS) method has good performance

in both DOA estimation and distorted sensor detection. We analyzed the convergence

property of the algorithm, and show that the solution converges to a KKT point. The

limit point is proved to be globally optimal. Moreover, the computational complexity

of the IRLS algorithm as well as the singular value thresholding, accelerated proximal

gradient, and ADMM methods are theoretically analyzed. Extensive simulations are

conducted in view of parameter selection, convergence speed, computational time, and

performance of DOA estimation and distorted sensor detection.

Our proposed off-grid DOA estimation algorithm is based on a second-order Taylor

approximation. We point out an important property of the signals of interest in the

model, namely the proportionality relationship, which is empirically demonstrated to

be useful in the sense that it increases the probability of the mixing matrix satisfying

the block restricted isometry property. We compare the proposed method with several

state-of-the-art grid-based approaches, in terms of DOA estimation accuracy and

computational cost. Simulation examples demonstrate the effectiveness and superiority

of the proposed method against these competing approaches.

1.2 Thesis Structure

In Chapter 2, necessary background knowledge is presented. First, DOA estimation and

beamforming are introduced. Second, standard ADMM iteration steps are reviewed.

In Chapter 3, the problem of sparse array beamformer design is studied. We develop

a method based on ADMM, which results in closed-form solution at each iteration.

In Chapter 4, we consider the problem of joint DOA estimation and distorted sensor
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detection. It is formulated under the framework of low-rank and row-sparse decom-

position. We derive an IRLS algorithm to solve the resulting problem. In Chapter 5,

off-grid DOA estimation problem is investigated. We propose a second-order Taylor

approximation method. Conclusions and potential for further research are detailed in

Chapter 6.

1.3 Publications

The following publications have been produced during the period of doctoral candidacy.

Internationally Refereed Journal Articles

• H. Huang, H. C. So, and A. M. Zoubir, ‘‘Convergence Analysis of Consensus-

ADMM for General QCQP,’’ to be submitted.

• H. Huang, H. C. So, and A. M. Zoubir, ‘‘Sparse Array Beamformer Design via

ADMM,’’ submitted to IEEE Transactions on Signal Processing, August 2022.

• H. Huang, Q. Liu, H. C. So, and A. M. Zoubir, ‘‘Low-Rank and Row-Sparse

Decomposition for Joint DOA Estimation and Distorted Sensor Detection,’’ sub-

mitted to IEEE Transactions on Aerospace and Electronic Systems, August

2022.

• H. Huang, H. C. So, and A. M. Zoubir, ‘‘Off-Grid Direction-of-Arrival Estimation

Using Second-Order Taylor Approximation,’’ Signal Processing, vol. 196, pp.

108513, July 2022.

Internationally Refereed Conference Papers

• H. Huang, H. C. So, and A. M. Zoubir, ‘‘Sparse Array Beamformer Design

via ADMM,’’ In Proceedings of IEEE Sensor Array and Multichannel Signal

Processing Workshop (SAM 2022), Trondheim, Norway, June 2022.

• H. Huang and A. M. Zoubir, ‘‘Low-Rank and Sparse Decomposition for Joint

DOA Estimation and Contaminated Sensors Detection with Sparsely Contami-

nated Arrays,’’ In Proceedings of International Conference on Acoustics, Speech,

and Signal Processing (ICASSP 2021), Toronto, Canada, June 2021.
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• H. Huang, A. M. Zoubir, and H. C. So, ‘‘A Compressive Sensing Approach for

Single-Snapshot Adaptive Beamforming,’’ In Proceedings of IEEE Sensor Array

and Multichannel Signal Processing Workshop (SAM 2020), Hangzhou, China,

June 2020.

• H. Huang, H. C. So, and A. M. Zoubir, ‘‘Extended Cyclic Coordinate Descent

for Robust Row-Sparse Signal Reconstruction in the Presence of Outliers,’’ In Pro-

ceedings of International Conference on Acoustics, Speech, and Signal Processing

(ICASSP 2020), Barcelona, Spain, May 2020.

• H. Huang, M. Fauß, and A. M. Zoubir, ‘‘Block Sparsity-Based DOA Estimation

with Sensor Gain and Phase Uncertainties,’’ In Proceedings of European Signal

Processing Conference (EUSIPCO 2019), A Coruña, Spain, September 2019.
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Chapter 2

Fundamentals

In this chapter, some basic concepts that are relevant for the thesis are introduced. First,

two main tasks in array signal processing, i.e., direction-of-arrival (DOA) estimation

and beamforming, are detailed. Then, the alternating direction method of multipliers

(ADMM) is briefly introduced, focussing on its most important steps.

2.1 DOA Estimation

The problem of retrieving information conveyed in propagating waves occurs in a wide

range of applications including radar, sonar, wireless communications, geophysics and

biomedical engineering. Methods for processing data measured by sensor arrays have

attracted much attention over last four decades [KV96,CVY14].

Early space-time processing techniques represent DOA in terms of a spatial spectrum.

The resulting Fourier transform based conventional beamformer, however, is subject to

resolution limitation due to finite array aperture. Similar to its temporal counterpart,

the spatial periodogram can not benefit from increasing signal-to-noise ratio (SNR)

or number of samples. Better estimates can be achieved by applying a windowing

function to reduce spectral leakage effects. The minimum variance distortionless

response (MVDR) beamformer [Cap69] overcomes the resolution limitation of Fourier

based techniques by formulating the spectrum estimation as a constrained optimization

problem. Also, its performance can be enhanced by high SNR.

The multiple signal classification (MUSIC) algorithm [Sch86] is representative of sub-

space methods based on eigenstructure of the spatial correlation matrix. In addition

to high resolution, MUSIC takes advantage of SNR, number of sensors and number

of samples. It improves estimation accuracy with respect to all dimensions and is

statistically efficient. However, in the presence of correlated source signals, subspace

methods degrade dramatically as the signal subspace suffers from rank deficiency.

On the other hand, parametric methods such as the maximum likelihood (ML) approach

[Bö86,ZW88] fully exploit the data model, leading to statistically efficient estimators.

More importantly, they maintain their good performance in critical scenarios involving
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signal coherence, closely located signals and low SNRs. The optimal properties come at

the price of an increased computational complexity. Hence, efficient implementation is

crucial for parametric methods.

More recently, the methods proposed in [Fuc01, MCW05] view DOA estimation as

sparse signal recovery and assign DOA estimates to signals with nonzero entry. In

this approach, the first step is to find a sparse representation of the array output data.

For example, the beamforming output in the frequency domain [Fuc01] or the array

observation [MCW05] can be used to construct a sparse data representation. Then,

the underlying optimization problem (typically convex) will be solved to find nonzero

components. DOA estimates are finally obtained from angles associated with nonzero

components.

2.2 Beamforming

Adaptive beamforming is a versatile approach to detect and estimate the signal-of-

interest (SOI) at the output of sensor array using data adaptive spatial or spatio-

temporal filtering and interference cancellation [VT02]. Being a very central problem

of array processing, adaptive beamforming has found numerous application to radar,

sonar, radio astronomy, biomedicine, wireless communications, among others. The

connection of adaptive beamforming to adaptive filtering is emphasized in [Vor14].

The major differences, however, come from the fact that adaptive filtering is based on

temporal processing of a signal, while adaptive beamforming is concerned with spatial

processing. The latter also indicates that the signal is sampled in space, i.e., the signal

is measured by an array of spatially distributed antenna sensors.

The traditional approach to the design of adaptive beamforming is to maximize the

beamformer output signal-to-interference-plus-noise ratio (SINR) assuming that there

is no SOI component in the beamforming training data [Vor14]. The data model can

be given as follows. Consider a compact uniform linear array (ULA) consisting of M

antenna sensors. Denote x(t) ∈ CM as the observation vector of the array, which can

be modeled as:

x(t) = a(θ0)s0(t) +
K∑
k=1

a(θk)sk(t) + n(t), (2.1)

where t = 1, 2, · · · , T denotes the time index, with T being the total number of available

snapshots, θ0 and s0(t) are the DOA and waveform of the SOI, respectively, while θk
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and sk(t) denote those of the k-th interference signal. We consider one SOI and K

unknown interferers in the data model. In addition, n(t) ∈ CM stands for a spatially

and temporally white zero-mean Gaussian noise vector, and the array steering vector

a(θ) ∈ CM takes the following form

a(θ) = [1, e−π sin(θ), · · · , e−π(M−1) sin(θ)]T. (2.2)

For the simplicity of notation, we denote a(θk) as ak, for all k = 0, 1, · · · , K, here and

subsequently.

The beamformer output is calculated as

y(t) = wHx(t), (2.3)

in which w ∈ CM is the beamformer weight vector to be designed. The beamformer

output SINR is defined as [Vor14]

SINR =
σ2
s |wHa0|2

wHRi+nw
, (2.4)

where σ2
s = E{|s0(t)|2} is the power of the SOI, and Ri+n is the interference-plus-noise

covariance matrix, which can be written as

Ri+n =
K∑
k=1

σ2
kaka

H
k + σ2

nI, (2.5)

assuming that the interference signals are uncorrelated with the noise. In (2.5), σ2
k =

E{|sk(t)|2} is the power of the k-th interference signal, and σ2
n is the noise power.

Maximizing the output SINR leads to the MVDR beamformer design [Cap69]:

min
w

wHRi+nw subject to |wHa0|2 = 1. (2.6)

Since Ri+n is not available in practice, a common approach is, to replace it by the

received data covariance matrix Rx = σ2
sa0a

H
0 + Ri+n which can be easily estimated

[SGLW03], as:

min
w

wHRxw subject to |wHa0|2 ≥ 1. (2.7)

It is worth noting that the equality constraint is relaxed to an inequality one, since the

output power of the SOI is included as part of the objective function [HA19,HA21].

The above problems have a closed-form solution as wopt = P{σ2
sR
−1
i+na0a

H
0 } =

P{σ2
sR
−1
x a0a

H
0 }, where P{·} denotes the principal eigenvector of its input matrix.

Substituting wopt into (2.4) yields the corresponding optimum output SINR as

SINRopt =
σ2
s |wH

opta0|2

wH
optRi+nwopt

= λmax(σ
2
sR
−1
i+na0a

H
0 ), (2.8)

where λmax(·) is the maximal eigenvalue of the input matrix.
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2.3 Alternating Direction Method of Multipliers

ADMM is an algorithm that is intended to blend the decomposability of dual ascent with

the superior convergence properties of the method of multipliers [BPC+11]. This section

describes the basic steps of ADMM, which are relevant for the main contributions in

Chapter 3. ADMM solves problems in the form:

min
x∈Cn

f(x) + g(x) s.t. x ∈ X , (2.9)

with X denoting the feasible set which is assumed to be nonempty.

The standard steps for scaled-form ADMM iterations are as follows.

Step i). We formulate Problem (2.9) by introducing an auxiliary variable z ∈ Cn and

settling the original variable x and the auxiliary variable z in a separable manner, as

min f(x) + g(z) s.t. x ∈ X and z = x, (2.10)

with variables x and z.

Step ii). We form the scaled-form augmented Lagrangian function according to

Problem (2.10), by dealing with the equality constraints therein, i.e., z = x, as

L(x, z,u) , f(x) + g(z) +
ρ

2
(‖z− x + u‖22 − ‖u‖22), (2.11)

where u ∈ Cn is the scaled dual variable, and ρ > 0 is the augmented Lagrangian

parameter.

Step iii). The scaled-form ADMM updating equations can be written down by

separately solving for the variables, as follows

x(k+1) = arg min
x∈X

f(x) +
ρ

2
‖z(k) − x + u(k)‖22 (2.12a)

z(k+1) = arg min
z

g(z) +
ρ

2
‖z− x(k+1) + u(k)‖22 (2.12b)

u(k+1) = u(k) + z(k+1) − x(k+1) (2.12c)

where superscript ·(k) denotes the corresponding variable at the k-th ADMM iteration.

2.4 Summary

In this chapter, some basic concepts that are relevant for the thesis were introduced.

Firstly, two main tasks in array signal processing, including direction-of-arrival (DOA)

estimation and beamforming, were introduced in detail. Then, the alternating direction

method of multipliers (ADMM) was briefly introduced, focussing on its significant

steps.
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Chapter 3

Beamforming with a Sparse Array

In this chapter, we devise a sparse array design algorithm for adaptive beamforming. Our

strategy is based on finding a sparse beamformer weight to maximize the output signal-

to-interference-plus-noise ratio (SINR). The proposed method utilizes the alternating

direction method of multipliers (ADMM), and admits closed-form solutions at each

ADMM iteration. The algorithms convergence properties are analyzed by showing the

monotonicity and boundedness of the augmented Lagrangian function. In addition, we

prove that the proposed algorithm converges to a set of Karush-Kuhn-Tucker stationary

points. Numerical results exhibit its excellent performance, which is comparable to

that of the exhaustive search approach. The proposed algorithm is slightly better than

those of the state-of-the-art solvers, including the semidefinite relaxation (SDR), its

variant (SDR-V), and the successive convex approximation (SCA) approaches, and

significantly outperforms several other sparse array design strategies, in terms of output

SINR. Moreover, the proposed ADMM algorithm outperforms the SDR, SDR-V, and

SCA methods in terms of computational cost.

The key contributions presented in this chapter originate from [HSZ22b] and [HSZ22c].

The remainder of this chapter is organized as follows: The motivation is given in Section

3.1. The signal model is established in Section 3.2. The proposed approach is presented

in Section 3.3 and the convergence analyses are given in Section 3.4. ADMM with

re-weighted `1-norm regularization is proposed in Section 3.5. Section 3.6 shows the

simulation results, and Section 3.7 summarizes the chapter.

3.1 Motivation

Adaptive arrays have been widely applied in diverse practical applications, such as

radar, sonar, wireless communications, to name just a few [Gab76]. One of their

uses is beamforming, which is to extract the signal-of-interest (SOI) while suppressing

interference and noise [Vor14]. It has been reported that the performance of beamforming

is affected by not only the beamformer weight, but also the array configuration [Lin82].

In this sense, conventional uniform arrays may not be the optimal choices for adaptive

beamformer design. On the other hand, sparse arrays achieve increased array aperture

and degrees of freedom while reducing the hardware complexity, as compared to
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conventional uniform arrays. Thus, sparse arrays could be a better option for adaptive

beamformer design.

To this end, in recent years, several strategies for designing sparse array beam-

formers have been proposed [SZL14a, WATA14, HMP18, EM20, DXP21, XLD+21,

VCN+21, SFH22, CPP13, FHM+18, LLWL18, NSYC10, GK14, HL14, DT15, MSG12,

MSG13,HA19,HA21,ZFWS20,DGB22,ZCS+17,ATSMR+21,ZFW21,YQF+19,WGG21,

CZW+21]. These methods can be roughly divided into three categories: Greedy

based [SZL14a,WATA14,HMP18], machine learning based [EM20,DXP21,XLD+21,

VCN+21,SFH22], and optimization based [SFH22,CPP13,FHM+18,LLWL18,NSYC10,

MSG12, MSG13, GK14, HL14, DT15, ZFWS20, HA19, HA21, ZCS+17, ATSMR+21,

ZFW21, YQF+19, WGG21, CZW+21, DGB22] approaches. The greedy procedure

in [SZL14a, WATA14, HMP18] largely reduces the combinatorial exploration space,

but can result in a highly suboptimal solution. Machine learning techniques

[EM20, DXP21, XLD+21, VCN+21, SFH22] require prior data for their training step,

which might be unavailable in some practical scenarios.

On the other hand, optimization based methods include branch and bound (B&B)

[SFH22], mixed-integer programming (MIP) [CPP13,FHM+18,LLWL18], semidefinite

relaxation (SDR) [MSG12, MSG13, HA19, HA21, ZFWS20, DGB22], and successive

convex approximation (SCA) [ZCS+17, ATSMR+21, ZFW21]. B&B and MIP are

capable of finding the global optimum at the cost of a large computational burden.

SDR and SCA based methods are computationally expensive when the dimension of the

resulting matrix is high [MHG+15,HS16]. Besides, the relaxation nature of SDR usually

leads to a solution with a rank not being one, in which case extra post-processing

based on randomization is needed [SDL06]. Moreover, note that the SDR methods

in [MSG12,MSG13,HA19,HA21] utilize the `1-norm square instead of the `1-norm for

sparsity promotion. Although the simulation results in these papers and also in Section

3.6.3 of the present chapter demonstrate the usefulness of the SDR-type methods, no

theoretical support is available due to the convexity of the Pareto boundary that is not

guaranteed (which has also been mentioned in [MSG12] and [MSG13]). On the other

hand, another downside of the SCA approach lies in the fact that it requires a feasible

starting point, which could be a difficult task on its own [MHG+15].

In this chapter, a sparse array design algorithm based on the alternating direction method

of multipliers (ADMM) is devised for adaptive beamforming. The proposed technique

admits closed-form solutions at each ADMM iteration. Convergence analyses of the

proposed algorithm are provided by showing the monotonicity and boundedness of the

augmented Lagrangian function. Additionally, it is proved that the proposed algorithm

converges to the set of Karush-Kuhn-Tucker (KKT) stationary points. Simulation
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results demonstrate excellent behavior of our scheme, as it outperforms several existing

methods, and is comparable to the exhaustive search approach.

Our algorithms and theoretical results are developed primarily on the basis of the ideas

presented in [HS16] and [HLR16]. Several differences are highlighted as follows.

• Different from [HS16] which used ADMM to solve general quadratically con-

strained quadratic programming (QCQP) problems, we focus on a specific QCQP

problem that arises in sparse array beamformer design. Our problem involves

an `1-norm regularization and thus our solution is sparse, which is not the case

in [HS16].

• Another important difference between our work and [HS16] lies in the fact that

the latter only provides a weaker convergence result, i.e., if ADMM converges

for their problem, then it converges to a KKT stationary point, see Theorem

1 in [HS16]. On the other hand, we show stronger convergence results for our

algorithm. That is, we first prove the convergence of the proposed algorithm

under a mild condition, and then we prove that it converges to a KKT stationary

point.

• Note that [HLR16] needed extra assumptions on the Lipschitz gradient continuity

as well as the boundedness of their objective function. In our work, we require

neither such assumptions nor any other assumptions.

• Since [HLR16] considered general non-convex problems, no explicit expressions

for their parameters were derived. On the contrary, as we consider a specific

non-convex problem of sparse array beamformer design, the properties of our

objective function have been investigated and thus several parameters are given

in an explicit manner. See for example the augmented Lagrangian parameter ρ

and the strongly convex parameter γv in Lemma 3.1.

• The results in [HLR16] were based on the augmented Lagrangian function, while we

exploit the scaled-form augmented Lagrangian function. This results in significant

differences in the following three aspects: i) the proof of the monotonicity of the

augmented Lagrangian function, ii) the proof of the property of the point sequence,

and iii) the proof that the algorithm converges to the set of KKT stationary

points; see the proofs of Lemma 3.1, Theorem 3.2, and Theorem 3.3, respectively.

Notations: In this chapter, bold-faced lower-case and upper-case letters stand for vectors

and matrices, respectively. I denotes the identity matrix of appropriate dimensions,
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1M is the M × M all-one matrix, 1 and 0 are the all-one and all-zero vectors of

appropriate lengths, respectively. Superscripts ·T, ·H and ·−1 stand for transpose,

Hermitian transpose and inverse operators, respectively. C is the set of complex

numbers, <{·} returns the real part of its input variable, and  =
√
−1. E{·} denotes

expectation. P{·} returns the principal eigenvector of the input matrix, while λmax(·)
and λmin(·) are the largest and smallest eigenvalues of the input matrix, respectively.

‖ · ‖0 denotes the `0-quasi-norm counting the non-zero entries of the input vector, ‖ · ‖1
and ‖ · ‖2 represent the `1-norm and the `2-norm of a vector, respectively. Besides,

sign(·), �, �, and | · | stand for the sign function, the multiplication, the division, and

the absolute operators, respectively, all in an element-wise fashion. (·)+ stands for

the element-wise plus function defined as (x)+ , max{x, 0}, where max{a, b} returns

the maximum value between a and b. 〈x,y〉 = xHy is the inner product of x and

y. trace{·} denotes the trace of a matrix. X � 0 and X � Y indicate that X and

X−Y are positive semidefinite, respectively. The symbol ≥ between two matrices is

element-wise larger than or equal to.

3.2 Signal Model

We consider a compact uniform linear array (ULA) consisting of M antenna sensors,

where the term compact means that the element-spacing of two adjacent antennas is

equal to half-wavelength of the incident signals. We refer to the ULA with element-

spacing larger than half-wavelength as sparse ULA. Denote x(t) ∈ CM as the observation

vector of the compact ULA, which can be modeled as:

x(t) = a(θ0)s0(t) +
K∑
k=1

a(θk)sk(t) + n(t), (3.1)

where t = 1, 2, · · · , T denotes the time index, with T being the total number of available

snapshots, θ0 and s0(t) are the direction-of-arrival (DOA) and waveform of the SOI,

respectively, while θk and sk(t) denote those of the k-th interference signal. We consider

one SOI and K unknown interferers in the data model. In addition, n(t) ∈ CM stands

for a spatially and temporally white zero-mean Gaussian noise vector, and the array

steering vector a(θ) ∈ CM takes the form as

a(θ) =
[
1, e−π sin(θ), · · · , e−π(M−1) sin(θ)

]T
. (3.2)

For the simplicity of notation, we denote a(θk) as ak, for all k = 0, 1, · · · , K, here and

subsequently.
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The beamformer output is calculated as

y(t) = wHx(t), (3.3)

in which w ∈ CM is the beamformer weight vector to be designed. The beamformer

output signal-to-interference-plus-noise ratio (SINR) is defined as [Vor14]

SINR =
σ2
s |wHa0|2

wHRi+nw
, (3.4)

where σ2
s = E{|s0(t)|2} is the power of the SOI, and Ri+n is the interference-plus-noise

covariance matrix, which can be written as

Ri+n =
K∑
k=1

σ2
kaka

H
k + σ2

nI, (3.5)

assuming that the interference signals are uncorrelated with the noise. In (3.5), σ2
k =

E{|sk(t)|2} is the power of the k-th interference signal, and σ2
n is the noise power.

One of the most prevailing strategies for beamformer design is to maximize the output

SINR, which leads to the minimum variance distortionless response (MVDR) beamformer

design [Cap69]:

min
w

wHRi+nw s.t. |wHa0|2 = 1. (3.6)

The above problem can be reformulated equivalently by replacing the in practice

unattainable Ri+n by the received data covariance matrix Rx = σ2
sa0a

H
0 + Ri+n which

can be easily estimated [SGLW03], as:

min
w

wHRxw s.t. |wHa0|2 ≥ 1. (3.7)

It is worth noting that the equality constraint is relaxed to an inequality one, since

the output power of the SOI is included as part of the objective function in (3.7)

[HA19,HA21].

The above problems have the closed-form solution wopt = P{σ2
sR
−1
i+na0a

H
0 } =

P{σ2
sR
−1
x a0a

H
0 }. Substituting wopt into (3.4) yields the corresponding optimum output

SINR

SINRopt =
σ2
s |wH

opta0|2

wH
optRi+nwopt

= λmax(σ
2
sR
−1
i+na0a

H
0 ). (3.8)
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3.3 Sparse Array Beamformer Design

3.3.1 Sparse Beamforming Problem

In this subchapter, we consider the situation where only L ≤M radio-frequency (RF)

chains are available [MSG12], and thus only L antennas can be simultaneously utilized

for beamformer design. The problem can be formulated as [MSG12, MSG13, HA19,

HA21]:

min
w

wHRxw s.t. |wHa0|2 ≥ 1 and ‖w‖0 = L. (3.9)

This is a combinatorial problem, and there are
(
M
L

)
possible options. It could be an

extremely huge number when M is large and L is moderate. For instance, if M = 100

and L = 20, there are totally
(
100
20

)
> 5× 1020 subproblems [DXP21]. Even if a modern

machine (as fast as 10−10 seconds per subproblem) is used to solve this problem, it still

needs more than 1.5 thousand years in total. Such computation times seem infeasible for

the problem at hand and thus more computationally efficient approaches are required.

One widespread method is to replace the non-convex constraint ‖w‖0 = L with its

convex surrogates, such as the `1-norm. By doing so and writing the `1-norm in the

objective function as a penalty, we relax Problem (3.9) to [MSG12,ZFWS20,HA19,HA21]

min
w

wHRxw + λ‖w‖1 s.t. |wHa0|2 ≥ 1, (3.10)

where λ > 0 is a tuning parameter controlling the sparsity of the solution (i.e., the

number of selected sensors). The above problem is QCQP [PB17] with `1-regularization,

and it is still non-convex because of its constraint. State-of-the-art solvers include SDR,

SCA, ADMM, and their variants, see [PB17,MHG+15,BV04,HS16,BPC+11,LMS+10] for

general QCQP problems and [MSG12,MSG13,ZFWS20,HA19,HA21,ZCS+17,DGB22,

CHL21,CL22,LML+18,WWS21,CT17] for specific QCQP problems with applications

in MIMO radar, wireless communications, and so on. In the following subsection, we

develop a method based on ADMM for solving Problem (3.10), which will be shown to

have closed-form solutions at each iteration.
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3.3.2 Proposed ADMM

To solve Problem (3.10) using ADMM, we first introduce an auxiliary variable v ∈ CM

and reformulate (3.10) into

min
w,v

vHRxv + λ‖w‖1 (3.11a)

s.t.

{
|wHa0|2 ≥ 1

w = v.
(3.11b)

Then we can write down the scaled-form ADMM iterations for Problem (3.10) as

[BPC+11]

w ←

 arg min
w

λ‖w‖1 +
ρ

2
‖w − v + u‖22

s.t. |wHa0|2 ≥ 1
(3.12a)

v ← arg min
v

vHRxv +
ρ

2
‖w − v + u‖22 (3.12b)

u ← u + w − v (3.12c)

where the original variable w and the auxiliary variable v are separately treated in

(3.12a) and (3.12b), respectively, u is the scaled dual variable corresponding to the

equality constraint in (3.11b), i.e., w = v, and ρ > 0 is the augmented Lagrangian

parameter.

In what follows, we show that (3.12) has closed-form solutions at each ADMM iteration,

by deducing w and v from (3.12a) and (3.12b), respectively. First of all, from (3.12b),

it is simple to arrive at the closed-form solution of w in a least-squares form, as

v = ρ(2Rx + ρI)−1(w + u). (3.13)

Now we turn to (3.12a). We solve (3.12a) in two steps: i) we consider the unconstrained

minimization problem by directly removing its constraint; ii) we check whether the

solution obtained from Step i) satisfies the constraint, and update the final solution

accordingly. Details are provided as follows.

Step i): We consider the following unconstrained minimization problem

min
w

λ‖w‖1 +
ρ

2
‖w − v + u‖22. (3.14)
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By calculating the subgradient of the objective function in (3.14) with respect to (w.r.t.)

w, and setting the resultant expression equal to zero, we obtain its solution, denoted

by w̄, as

w̄ = sign(v − u)�
(
|v − u| − λ

ρ

)
+

. (3.15)

The detailed derivation of (3.15) from Problem (3.14) is omitted here, and the interested

readers are referred to the similar result in Lemma 1 in [ZKOM18].

Step ii): We check whether or not w̄ obtained from (3.15) statisfies |w̄Ha0| ≥ 1. If it

is, then the solution to (3.12a), referred to as ŵ, is ŵ = w̄. If it is not, then ŵ can be

found via the following theorem.

Theorem 3.1 Denote ŵ and w̄ as the solutions to Problems (3.12a) and (3.14),

respectively. If w̄ does not satisfy |w̄Ha0| ≥ 1, then ŵ equals the one in {w : |wHa0|2 ≥
1}, such that it is closest (in an `2-norm sense) to w̄.

Proof: See Appendix A.1. �

Besides the above mathematical proof, we give an illustrative example for Theorem 3.1,

by showing the near-symmetric structure of the objective function around its stationary

point1. For simplicity, the variable is set to be real-valued and the dimension M = 1.

The parameters are λ = 1, ρ = 4, a0 = 1/2, and −v + u = −1. Hence Problem (3.12a)

becomes

min
w

f(w) , |w|+ 2(w − 1)2 s.t. |w| ≥ 2, (3.16)

with its stationary point w0 falling outside its feasible region |w| ≥ 2, as in Figure 3.1.

Thanks to the convexity and near-symmetric structure of the objective function f(w),

finding its minimum is equivalent to determining the point (inside the feasible region)

closest to its stationary point w0. In Figure 3.1, it is easy to see that w = 2 is such a

point, and thus it is the solution to Problem (3.16).

Consequently, if w̄ obtained from (3.15) does not satisfy |w̄Ha0| ≥ 1, then according to

Theorem 3.1, ŵ can be found by solving the following minimization problem

ŵ ← arg min
w
‖w − w̄‖22 s.t. |wHa0|2 ≥ 1, (3.17)

1We say a function f(x) has a near-symmetric structure around a point x0 if and only if f(x0+x) ≈
f(x0 − x) holds for any x.
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Figure 3.1: Illustration of the near-symmetric structure of f(w).

which is equivalent to

ŵ ← arg min
w
‖w − w̄‖22 s.t. |wHa0|2 = 1. (3.18)

The equivalence between Problems (3.17) and (3.18) is straightforward, and it indicates

that the solutions to Problem (3.17) always fall on the boundary of its feasible region.

Problem (3.18) has the following closed-form solution as [HS16]

ŵ = w̄ +
1− |w̄Ha0|
‖a0‖22|w̄Ha0|

a0w̄
Ha0. (3.19)

Eventually, by considering Steps i) and ii) simultaneously and making use of the plus

function, the solution to (3.12a) can be written in a single formula as

ŵ = w̄ +

(
1− |w̄Ha0|

)
+

‖a0‖22|w̄Ha0|
a0w̄

Ha0, (3.20)

where w̄ is given in (3.15).

So far, we have derived closed-form solutions for w and v at each ADMM iteration.

The complete ADMM for solving Problem (3.10) is summarized in Algorithm 3.1, where

kmax denotes a large scalar and η a small one, used to terminate the iteration, and
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Algorithm 3.1 ADMM for solving Problem (3.10)

Input : Rx ∈ CM×M , a0 ∈ CM , λ, ρ, kmax, η
Output : ŵ ∈ CM

Initialize: v(0) ← vinit, u(0) ← uinit, k ← 0

1: while not converged do

2: w̄(k+1) ← sign(v(k) − u(k))�
(
|v(k) − u(k)| − λ

ρ

)
+

3: w(k+1) ← w̄(k+1) +
(1−|w̄H

(k+1)
a0|)

+

‖a0‖22|w̄H
(k+1)

a0|
a0w̄

H
(k+1)a0

4: v(k+1) ← ρ(2Rx + ρI)−1(w(k+1) + u(k))
5: u(k+1) ← u(k) + w(k+1) − v(k+1)

6: converged ← k+1 ≥ kmax or ‖w(k+1)−v(k+1)‖2 ≤ η
7: k ← k + 1

8: end while
9: ŵ← w(k)

subscript ·(k) denotes the variable at the k-th iteration. The convergence property of

the proposed ADMM algorithm will be discussed in Section 3.4.

We have the following remarks:

• Note that we can attain any level of sparsity (i.e., any number L out of M sensors

in sparse array design), by carefully tuning the value of λ. This shall be verified

in the simulation section, see Figure 3.3 in Section 3.6.

• To ensure selection of L sensors, an appropriate value of λ is typically found by

carrying out a binary search over a probable interval of λ, say [λL, λU ]. To be

precise, we begin by solving a sparse ŵ using Algorithm 3.1, with λ = (λL+λU )/2.

If ‖ŵ‖0 > L (resp. ‖ŵ‖0 < L), then we update λL = λ (resp. λU = λ), and

solve another sparse ŵ with λ = (λL + λU)/2. We repeat the above step until

‖ŵ‖0 = L.

• Note that the solution of (3.10) is not exactly equal to the one of (3.9). Therefore,

after the solution of desired sparsity of (3.10) is obtained, one should solve a

reduced-size minimization problem similar to (3.7) as a last step, omitting the

sensors corresponding to the zero entries of the solution.

3.4 Convergence Analysis

The convergence properties of Algorithm 3.1 are presented in this section. We start

with two lemmata, which show the monotonicity and boundedness of the augmented
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Lagrangian function of Problem (3.11). Two theorems are then provided to show that

the proposed algorithm converges and that it converges to a stationary point.

The augmented Lagrangian function regarding Problem (3.11) can be written as

L(w,v,u) , λ‖w‖1 + vHRxv + ρ
2
(‖w − v + u‖22 − ‖u‖22). As stated in Section 3.3.2,

w, v, and u are the original, auxiliary, and dual variables, respectively, and ρ > 0 is

the augmented Lagrangian parameter. In what follows, Lemma 3.1 shows that the

function value of L(w,v,u) is non-increasing, and Lemma 3.2 shows that the function

value L(w,v,u) is bounded from below, on the condition that ρ is larger than or equal

to a certain value.

Lemma 3.1 As long as the parameter ρ ≥ 2
√

2λmax(Rx), the point sequence produces

a monotonically non-increasing objective function value sequence {L(w(k),v(k),u(k))}.
That is, L(w(k+1),v(k+1),u(k+1)) ≤ L(w(k),v(k),u(k)) holds for all k = 0, 1, 2, · · · .

Proof: See Appendix A.2. �

Lemma 3.2 The function value of L(w,v,u) is bounded from below by 0, as long as2

ρ ≥ 2λ2max(Rx)

λmin(Rx)
. (3.21)

Proof: See Appendix A.3. �

With Lemmata 3.1 and 3.2, we have the following theorem.

Theorem 3.2 As long as the augmented Lagrangian parameter

ρ ≥ max

{
2
√

2λmax(Rx),
2λ2max(Rx)

λmin(Rx)

}
, (3.22)

the objective function value sequence {L(w(k),v(k),u(k))} generated by Algorithm 3.1

converges. Furthermore, as k →∞, we have w(k+1) = w(k), v(k+1) = v(k), u(k+1) = u(k),

and w(k) = v(k).

2It is worth noting that the lower bound here is not tight, see Appendix A.3.
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Proof: See Appendix A.4. �

Moreover, the following theorem shows that the limit point of Algorithm 3.1 is a

stationary point.

Theorem 3.3 Denote the limit point obtained by the proposed algorithm stated in

Algorithm 3.1 as (w(k+1),v(k+1),u(k+1)). Then, it satisfies the KKT conditions of

Problem (3.11), as

0 = 2Rxv(k+1) − y(k+1), (3.23a)

w(k+1) ∈ arg min
w

{
λ‖w‖1 + µ?(|wHa0|2 − 1)

+<{〈y(k+1),w−v(k+1)〉}

}
, (3.23b)

w(k+1) = v(k+1), (3.23c)

where y(k+1) = ρu(k+1) is the dual variable corresponding to the equality constraint

in (3.11b), and µ? denotes the optimal dual variable corresponding to the inequality

constraint in (3.11b). In words, any limit point of Algorithm 3.1 is a stationary solution

to Problem (3.11).

Proof: See Appendix A.5. �

3.5 ADMM with Re-weighted `1-norm

As has been well-documented in the literature, see e.g. [CWB08], the iteratively re-

weighted `1-norm penalty has remarkable advantages over the conventional `1-norm.

Therefore, in this section, we propose an improved approach on the basis of Algorithm

3.1, by replacing the `1-norm regularization in (3.10) with the re-weighted `1-norm.

That is, Problem (3.10) is modified as

min
w

wHRxw + λ‖1� (|g|+ ε)�w‖1 (3.24a)

s.t. |wHa0|2 ≥ 1, (3.24b)

where g equals w obtained from the previous iteration, and ε > 0 is a small scalar

providing stability and ensuring that a zero-valued component in w does not strictly

prohibit a non-zero estimate at the next iteration. Note that once the non-zero entries of

the solution of Problem (3.24) are identified, their influence is down-weighted in order to
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Algorithm 3.2 ADMM for solving Problem (3.24)

Input : Rx ∈ CM×M , a0 ∈ CM , λ, ρ, ε, kmax, η
Output : ŵ ∈ CM

Initialize: v(0) ← vinit, u(0) ← uinit, k ← 0

1: while not converged do
2: w̄(k+1) ← sign(v(k) − u(k))�

(
|v(k) − u(k)| − (λ1)�[ρ(|v(k)|+ ε)]

)
+

3: w(k+1) ← w̄(k+1) +
(1−|w̄H

(k+1)
a0|)

+

‖a0‖22|w̄H
(k+1)

a0|
a0w̄

H
(k+1)a0

4: v(k+1) ← ρ(2Rx + ρI)−1(w(k+1) + u(k))
5: u(k+1) ← u(k) + w(k+1) − v(k+1)

6: converged ← k+1 ≥ kmax or ‖w(k+1)−v(k+1)‖2 ≤ η
7: k ← k + 1

8: end while
9: ŵ← w(k)

allow more sensitivity for identifying the remaining small but non-zero entries [CWB08].

This results in a better behavior of (3.24) than (3.10), which will be corroborated in

Section 3.6.1.

The ADMM iteration for Problem (3.24) is the same as (3.12) except for (3.12a) which

should be replaced by

w←

arg min
w

λ‖1�(|g|+ε)�w‖1 +
ρ

2
‖w−v+u‖22

s.t. |wHa0|2 ≥ 1.
(3.25)

Accordingly, the result of w̄ in (3.15) now becomes

w̄ = sign(v − u)� (|v − u| − (λ1)� [ρ(|g|+ ε)])+, (3.26)

and the complete ADMM for solving Problem (3.24) is summarized in Algorithm 3.2.

The convergence property of Algorithm 3.2, and the comparison between Algorithms

3.1 and 3.2, will be presented using simulations in Section 3.6.1.

3.6 Simulation Results

In this section, we present numerical examples to demonstrate the effectiveness of the

proposed algorithms, i.e., Algorithms 3.1 and 3.2. We first examine behavior of the

algorithms in Section 3.6.1, in terms of convergence property and beamformer weight

sparsity control. Then, in Section 3.6.2, we compare the computational complexity of

the proposed algorithms to those of other state-of-the-art approaches, including SDR,



22 Chapter 3: Beamforming with a Sparse Array

an SDR variant, and SCA, presented in [MSG12], [HA19], and [PB17], respectively. In

Section 3.6.3, we finally test the performance of sparse array beamformers designed by

using different strategies, in terms of array beampattern and output SINR.

3.6.1 Convergence and Sparsity Control

First example: A compact ULA consisting of M = 12 antenna sensors is utilized,

while T = 100 snapshots, one SOI from θ0 = 0◦ and K = 2 interference signals from

θ1 = −10◦ and θ2 = 10◦, respectively, are considered. The signal-to-noise ratio (SNR)

and interference-to-noise ratio (INR) are SNR = 10 dB and INR = 20 dB, respectively.

The two proposed algorithms, i.e., Algorithms 3.1 and 3.2 are examined, where the

parameters are ε = 10−10, kmax = 103, η = 10−12, uinit = 0, and vinit is drawn from

the complex standard normal distribution. Three scenarios with different values of the

tuning parameter λ and the augmented Lagrangian parameter ρ are considered. The

results of L(w(k),v(k),u(k)) versus the ADMM iteration index k are given in Figure

3.2. It is seen that the function value sequence {L(w(k),v(k),u(k))} of Algorithm 3.1

is monotonically non-increasing and bounded from below, which is consistent with

the theoretical analyses in Section 3.4. Additionally, we also observe that although

the function value sequence {L(w(k),v(k),u(k))} of Algorithm 3.2 is not monotonically

non-increasing, it converges eventually. Moreover, Algorithm 3.2 converges faster than

Algorithm 3.1.

Second example: A compact ULA of M = 12 antenna sensors is used, and we wish

to select L sensors for the beamformer. We consider 8 situations with different SNR,

decreasing from 20 dB to −15 dB with a stepsize of 5 dB. The interference-to-noise

ratio is INR = 10 dB, the augmented Lagrangian parameter is ρ = 2 × 104, and the

other parameters are the same as those in the first example. We test the sparsity of the

beamformer weight obtained via Algorithms 3.1 and 3.2 w.r.t. the tuning parameter λ.

The curves are averaged over 1000 Monte Carlo runs, and they are displayed in Figure

3.3. It can be seen that, for all 8 situations, any level of sparsity (from 1 to 11) could

be attained by both algorithms, and that a larger λ produces a smaller sparsity of ŵ,

as expected. In addition, the curves by using Algorithm 3.1 decrease far more rapidly

than those by using Algorithm 3.2, which implies that it is much easier to tune λ for a

specific level of sparsity when Algorithm 3.2 is employed.

Because of the better behavior of Algorithm 3.2, rather than both Algorithms 3.1 and

3.2, we solely consider Algorithm 3.2 in the remaining simulations, and it will be labelled

as ‘‘ADMM’’.
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Figure 3.2: Function value of L(w(k),v(k),u(k)) versus iteration index k. (1st example)
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3.6.2 Computational Complexity

We start by rewriting the state-of-the-art methods to suit our problem, i.e., Problem

(3.24), using our notations, as [MSG12]

min
W

trace{RxW}+ λ · trace{B|W|} (3.27a)

s.t.

{
trace{a0a

H
0 W} ≥ 1,

W � 0,
(3.27b)

and [HA19]

min
W,W̃

trace{RxW}+ λ · trace{BW̃} (3.28a)

s.t.


trace{a0a

H
0 W} ≥ 1,

W � 0,

W̃ ≥ |W|,
(3.28b)

where B = 1M � (|G| + ε), with G being equal to W obtained from the previous

iteration. Problems (3.27) and (3.28) are referred to as SDR and SDR-V (short for

‘‘SDR Variant’’), respectively, in the remaining simulations. If the solution W to

Problems (3.27) and (3.28) is of rank one, their beamformer weight can be calculated as

the principal eigenvector of W; otherwise, extra post-processing based on randomization

is required [SDL06].

On the other hand, Problem (3.24) can be recast as [PB17]

min
w

wHRxw + λ‖b�w‖1 (3.29a)

s.t. 2<{gHa0a
H
0 w} − |gHa0|2 ≥ 1, (3.29b)

where b = 1� (|g|+ ε) with g being equal to w obtained from the previous iteration,

the same as what has been introduced in Section 3.5. Problem (3.29) is denoted as SCA

in the remaining simulations. The key of the success of SCA method lies in the fact that

|wHa0|2 is a concave function w.r.t. w and thus |wHa0|2 ≤ 2<{gHa0a
H
0 w} − |gHa0|2

holds for all w and any given (known) g.

If a general-purpose SDR solver, such as the interior point method, is adopted to

solve Problems (3.27) and (3.28), the worst case complexity can be as high as O(M6.5)

per iteration [HS16]. The cost of solving Problem (3.29) could be smaller, if further

effort is made, for instance, by taking care of the structure of the problem. However,

since this is out of the scope of this chapter, in our simulations, we simply utilize the
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CVX toolbox [GB14] to solve the aforementioned three problems. As for the proposed

algorithms, their computational cost primarily comes from the inverse operation, i.e.,

(2Rx + ρI)−1, which consumes O(M3). Furthermore, we can cache the result of

(2Rx + ρI)−1 to save computations in the subsequent iterations.

It is worth noting that when B in (3.27) and (3.28) and b in (3.29) are fixed as B = 1M

and b = 1, Problems (3.27), (3.28), and (3.29) reduce to three approaches for solving

Problem (3.10), which correspond to Algorithm 3.1. As has been confirmed by the

numerical results in Section 3.6.1, algorithms with re-weighted `1-norm regularization

are more efficient in the sense that they converge faster and are much easier to

control the sparsity of solution, compared to their counterparts with conventional

`1-norm regularization. Therefore, only the former group of approaches, i.e., the above-

mentioned SDR (3.27), SDR-V (3.28), SCA (3.29), and Algorithm 3.2, are considered

in the following simulations.

Third example: We wish to choose L = 4 out of M = 12 antenna sensors from a

compact ULA. One SOI from θ0 = 0◦ and K = 2 interferers from θ1 = −10◦ and

θ2 = 10◦, respectively, are considered, while SNR = 0 dB and INR = 20 dB. The

number of snapshots T varies uniformly from 10 to 150 with a stepsize of 10. The other

parameters for Algorithm 3.2 are the same as those of the first example, except for ρ

which is set to ρ = 103 in this example. The central processing unit (CPU) times of the

examined approaches are averaged over 100 Monte Carlo runs, and they are plotted in

Figure 3.4. It is seen that their CPU times are almost unchanged when T varies, and

that of the ADMM method is around 10−1 seconds which is about 103 times less than

those of the SDR, SDR-V, and SCA methods (which take around 102 seconds).

Fourth example: We wish to select L = 4 out of M sensors from a compact ULA.

The number of snapshots is fixed as T = 100, and the number of sensors M changes

from 10 to 20. The other parameters remain unchanged as those of the third example.

The CPU times of the examined methods are shown in Figure 3.5, from which it is

seen that the CPU times of the SDR, SDR-V, and ADMM methods increase as M

increases, while the CPU time of the SCA method keeps almost unchanged when M

varies. In addition, the CPU time of the proposed algorithm is much smaller than those

of the other three tested approaches. Note that there is a jump of the ADMM curve at

M = 15. This is caused by the increased number of iterations when M ≥ 16.

Fifth example: We wish to select L out of M = 12 sensors from a compact ULA. The

number of snapshots is fixed as T = 100, and the number of selected sensors L changes

from 3 to 12. The other parameters remain unchanged as those of the third example.

The CPU times of the examined methods are drawn in Figure 3.6, from which it is seen
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Figure 3.6: Averaged CPU time versus L. (5th example)

that the CPU times of all the four methods increase as L increases. Besides, the CPU

time of the proposed algorithm is shown again much less than those of the other three

tested methods.

3.6.3 Beamforming Performance

In the following simulations, we examine the beamforming performance of the proposed

algorithm compared with several other sparse array design strategies, in terms of

beampattern and output SINR.

Sixth example: We choose L = 4 out of M = 12 sensors. One SOI from θ0 = 0◦

and K = 3 interferers from θ1 = −40◦, θ2 = 30◦, and θ3 = 50◦, are considered,

while SNR = 0 dB and INR = 20 dB. Different sparse array design strategies are

examined, including enumeration (i.e., exhaustive search), compact ULA, sparse ULA,

random array, nested array [PV10], coprime array [VP11, QZA15], SDR [MSG12],

SDR-V [HA19], SCA [PB17], and the proposed ADMM. The result of using the whole

ULA is also included. Their beampatterns are depicted in Figure 3.7, where we separate

them into two subfigures and the ADMM is drawn in both, for a better comparison.

From Figure 3.7 we observe that the proposed ADMM method provides lower sidelobe
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Table 3.1: Output SINR of sixth example.

Method SINR (dB) Method SINR (dB)

Whole ULA 6.0913 Compact ULA 4.1546

Best via Enum. 4.7157 Coprime 3.0643

ADMM 4.3854 Random 0.5537

SDR 4.3589 Nested 0.4340

SDR-V 4.3589 Sparse ULA −15.8124

SCA 4.2961 Worst via Enum. −16.8793

and deeper nulls towards the interferences, compared to the others. Their output SINRs

in this example are given in TABLE 3.1.

Seventh example: We consider the scenario with one SOI whose DOA θ0 changes

from −60◦ to 60◦, and K = 2 interferers from θ1 = θ0 − 10◦ and θ2 = θ0 + 10◦,

respectively. The remaining parameters are unchanged as those in the third example.

The output SINR versus DOA of the SOI is plotted in Figure 3.8. It is seen that the

proposed method has excellent performance, whose output SINR is less than 0.4 dB

lower than that of the best case via enumeration, very close (within 0.6 dB) to the

optimal SINR, slightly larger than those of the SDR, SDR-V, and SCA methods, and

at least about 2 dB larger than those of the other approaches. Two exceptions occur at

θ0 = −55◦ and θ0 = 55◦, in which cases the output SINR of ADMM is about 2.5 dB

lower than those of the best case via enumeration, SDR, SDR-V, and SCA methods,

and is still significantly higher than those of the other approaches. Another interesting

result is that the performance of the nested array and the coprime array is even worse

than that of the random array. This is because the goal of nested array and coprime

array is to make sure more continuous virtual sensors exist in their difference coarray,

such that they can estimate more sources than physical sensors. In other words, nested

array and coprime are designed to obtain better performance in DOA estimation, but

not necessary to have good performance in beamforming in terms of SINR.

Eighth example: The SNR varies from −20 dB to 12 dB with a stepsize of 2 dB. The

DOA of the SOI is θ0 = 0◦ and K = 2 interference signals come from θ1 = −10◦ and 10◦.

The other parameters are unchanged compared with those of the previous example. The

output SINR versus SNR is depicted in Figure 3.9a. To provide a clearer vision of the

results, we calculate the SINR departure of the corresponding methods from the optimal

SINR, and draw them in Figure 3.9b. The figures demonstrate better performance of

the proposed scheme than the other sparse array design techniques (except for the best
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Figure 3.7: Beampattern comparison with 1 SOI and 3 interferers. (6th example)
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case via enumeration) in terms of output SINR. It is also observed that in the large

SNR region, the SINR of the whole array is even smaller than those of sparse arrays.

This verifies the statement that the performance of beamforming is affected by not only

the beamformer weight, but also the array configuration [Lin82]. The reason comes

from two aspects: On one hand, the performance of MVDR beamformer degrades when

SNR is high, since the SOI presents in the training data [Vor14]. On the other hand,

the calculation of SINR for the whole array is different from that for the sparse arrays,

that is, the length of the beamformer weight and the size of Ri+n, used for calculating

SINR, are different.

Ninth example: We examine the output SINR versus the number of snapshots. The

simulation setup is the same as that of the third example. The results are shown in

Figure 3.10, from which we observe that the output SINR of the proposed ADMM is

close to that of the best case via enumeration, slightly larger than those of the SDR,

SDR-V, and SCA approaches, and significantly larger than those of the others.

Tenth example: We examine the output SINR versus the number of sensors. The

simulation setup is unchanged as that of the fourth example. The results are plotted in

Figure 3.11, from which we again observe that the output SINR of the ADMM is close

to that of the best case via enumeration, slightly larger than those of the SDR, SDR-V,

and SCA methods, and significantly larger than those of the others.
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Figure 3.9: Output SINR versus input SNR. (8th example)
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Figure 3.10: Output SINR versus T . (9th example)
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Eleventh example: We examine the output SINR versus the number of selected

sensors. The simulation setup is the same as that of the fifth example. Note that, some

previous methods are not included in this example since they do not apply to the entire

range of L. The results are displayed in Figure 3.12. It is seen that when L approaches

M = 12, the output SINR of all the tested methods converge to one point, because in

this case (L = M) all the methods select the same sensors, i.e., the whole ULA. On

the other hand, when L < 12, the proposed ADMM has higher output SINR than the

other tested approaches (except for the best case via enumeration).

3.7 Summary

An algorithm based on alternating direction method of multipliers (ADMM) for sparse

array beamformer design was proposed. Our approach provides closed-form solutions at

each ADMM iteration. Theoretical analyses and numerical simulations were provided

to show the convergence of the proposed algorithm. In addition, the algorithm was

proven to converge to the set of stationary points. The ADMM algorithm was shown

comparable to the exhaustive search method, and slightly better than the state-of-the-art

solvers, including the semidefinite relaxation (SDR), an SDR variant (SDR-V), and the

successive convex approximation (SCA) methods, and significantly better than several

other sparse array design strategies in terms of output signal-to-interference-plus-noise

ratio. Moreover, the proposed ADMM algorithm outperformed the SDR, SDR-V, and

SCA approaches in terms of computational cost.
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Chapter 4

DOA Estimation with a Sparsely Distorted
Array

Distorted sensors could occur randomly and may lead to the breakdown of a sensor

array system. We consider an array model within which a small number of sensors are

distorted by unknown sensor gain and phase errors. With such an array model, the

problem of joint direction-of-arrival (DOA) estimation and distorted sensor detection is

formulated under the framework of low-rank and row-sparse decomposition. We derive

an iteratively reweighted least squares (IRLS) algorithm to solve the resulting problem

in both noiseless and noisy cases. The convergence property of the IRLS algorithm

is analyzed by means of the monotonicity and boundedness of the objective function.

Extensive simulations are conducted regarding parameter selection, convergence speed,

computational complexity, and performances of DOA estimation as well as distorted

sensor detection. Even though the IRLS algorithm is slightly worse than the alternating

direction method of multipliers in detecting the distorted sensors, the results show that

our approach outperforms several state-of-the-art techniques in terms of convergence

speed, computational cost, and DOA estimation performance.

The key contributions presented in this chapter originate from [HZ21] and [HLSZ22].

The structure of this chapter is as follows: Motivation is presented in 4.1. The signal

model and problem statement are established in Section 4.2. A review of state-of-the-art

works is provided in Section 4.3. Section 4.4 derives an IRLS algorithm for joint DOA

estimation and distorted sensor detection. Numerical results are given in Section 4.5,

while Section 4.6 summarizes this chapter.

4.1 Motivation

Direction-of-arrival (DOA) estimation is one of the most important topics in array

signal processing, which has found numerous applications in radar, sonar, wireless

communications, to name just a few [KV96,VT02,Vib14]. Many classical approaches

have been proposed, including multiple signal classification (MUSIC) [Sch86], estima-

tion of signal parameters via rotational invariance techniques (ESPRIT) [RK89], and

maximum likelihood methods [Bö86,ZW88]. However, it is known that most of these

high-resolution algorithms rely heavily on the exact knowledge of the array manifold,
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and hence their performance may greatly suffer when the sensor array encounters

distortions [VGLM03,WZW17,WDC+17,YdL17,RCC+18,HFZ19], such as unknown

sensor gain and phase uncertainties, which is the focus of this chapter. More recently,

techniques based on low-rank and sparse matrix decomposition have been applied to

DOA estimation or tracking, see e.g. [LLXZ15,Das17,MTPK14,MTPK19]. However,

these works merely consider the well-calibrated array, and they are not straightforwardly

applicable to an array with sensor errors.

There is a large number of works devoted to handle distorted or completely failed sensors

[YL99,VSS07,MCR+12,ORM12,HZR12,ZWCS15,WZN17,LV19,SVWW96,NLEF09,

JDC+13,PGW02,SG04,LC12,SPP14,LC14,SPPZ18,AA17,LRW19,HZ21]. In [YL99],

the genetic algorithm [Hol92] was applied for array failure correction. A minimal resource

allocation network was used for DOA estimation under array sensor failure [VSS07],

which requires a training procedure with no failed sensors. A Bayesian compressive

sensing approach was proposed in [ORM12], which needs a noise-free array as a reference.

Methods using difference co-array were developed in [ZWCS15,WZN17,LV19]. The idea

of [ZWCS15] was based on the fact that positions corresponding to damaged sensors may

be occupied by virtual sensors and thus the impact of sensor failure could be avoided.

However, this is not applicable when the failed sensors are located on the first or last

position of the array, or when the malfunctioned sensors occur on symmetrical positions

of the array, in which situations there exist holes in the difference co-array. On the

other hand, [WZN17] and [LV19] restricted the array to some special sparse structures,

such as co-prime and nested arrays. Approaches based on pre-calibrated sensors have

been well-documented in the past decades [PGW02,SG04,LC12,SPP14,LC14,SPPZ18].

These methods require the knowledge of the calibrated sensors and they are time- and

energy-consuming.

To circumvent the above-mentioned shortcomings, and to tackle the DOA estimation

problem with an array in which a few sensors are distorted by unknown sensor gain

and phase uncertainties, we formulate the problem under the framework of low-rank

and row-sparse decomposition (LR2SD), which can be regarded as a special structure

of low-rank and sparse decomposition (LRSD). Note that LRSD is also known as

robust principal component analysis (RPCA) [VBJN18,VCB18,BJZ+18]. The LRSD

technique has become a popular tool in finding a low-dimensional subspace from sparsely

and arbitrarily corrupted observations, and it has wide applications in science and

engineering, ranging from bioinformatics, web search, to imaging, audio and video

processing [Jol86,WPM+09,ZLT+11,LCM10,BIK+18]. Another special structure of

LRSD is low-rank and column-sparse decomposition (LRCSD) [XCS12,LLY10,LLY+13,

LLY15,LGS19], also known as RPCA-outlier pursuit [ZLZC15,LRR+18,GBZ12,RW14],

which has been recently proposed to handle the scenarios where corruptions take place
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column-sparsely, meaning that the corruption matrix is column-wise sparse. Such

situations occur for example when a fraction of the data vectors are grossly corrupted

by outliers [LLY+13,LGS19].

Several algorithms have been contributed to solve the LRSD and LRCSD problems,

such as singular value thresholding (SVT) [CCS10], accelerated proximal gradient

(APG) [BT09], alternating direction method of multipliers (ADMM) [LCM10,LGS19],

and iteratively reweighted least squares (IRLS) [LLY15,LGS19,GBZ12,RW14]. The

SVT, APG, and ADMM methods will be reviewed in Section 4.3 in the context of joint

DOA estimation and distorted sensor detection. The above three methods require one

singular value decomposition (SVD) in each iteration, which may be unbearable for

large scale problems. Instead, IRLS relies on simple linear algebra, and it generally has

a linear convergence rate [DDFG09,BBPB14,EV19,SV21,KVS21]. In this sense, the

IRLS is more efficient in solving the corresponding problems.

Therefore, in the present chapter, we develop an IRLS algorithm for joint DOA

estimation and distorted sensor detection. The main contributions include:

• Both noiseless and noisy cases are considered. The convergence property of the

algorithm is analyzed, via the monotonicity and boundedness of the objective

function.

• The computational complexities of the IRLS algorithm as well as the SVT, APG,

and ADMM methods are theoretically analyzed.

• Extensive simulations are conducted in view of parameter selection, convergence

speed, computational time, and performance of DOA estimation and distorted

sensor detection.

Notations: In this chapter, bold-faced lower-case and upper-case letters stand for vectors

and matrices, respectively. Superscripts ·T and ·H denote transpose and Hermitian

transpose, respectively. C is the set of complex numbers, and  =
√
−1. For a real-

valued scalar a, |a| denotes its absolute value. The minimum value of two scalars

a and b is denoted as min{a, b}. ‖ · ‖2 is the `2 norm of a vector. ‖ · ‖F and ‖ · ‖∗
represent the Frobenius norm and the nuclear norm (sum of singular values) of a

matrix, respectively. ‖ · ‖2,0 and ‖ · ‖2,1 denote the `2,0 mixed-norm and `2,1 mixed-

norm of a matrix, respectively, whose definitions are given as ‖V‖2,0 , card({‖Vi,:‖2})
and ‖V‖2,1 ,

∑M
i=1 ‖Vi,:‖2, for V ∈ CM×T , where card(·) is the cardinality of a set,

{‖Vi,:‖2} = {‖V1,:‖2, ‖V2,:‖2, · · · , ‖VM,:‖2}, and Vi,: is the i-th row of V. rank(·) is
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Figure 4.1: Illustration of array structure of interest.

the rank operator, defined as rank(Z) , card({σi(Z)}), with σi(Z) being the i-th largest

singular value of Z and {σi(Z)} denoting the set containing all singular values of Z.

For two matrices X and Y of the same dimensions, we define their Frobenius inner

product as 〈X,Y〉 , trace(XHY), where trace(·) denotes the trace of a square matrix.

4.2 Signal Model and Problem Statement

Suppose that a linear antenna array of M sensors receives K far-field narrowband

signals from directions θ = [θ1, θ2, · · · , θ(k)]T. The antenna array of interest is assumed

to be randomly and sparsely distorted by sensor gain and phase uncertainty (the number

of distorted sensors is far smaller than M). Further, we assume that the number of

distorted sensors and their positions are unknown. Figure 4.1 illustrates the array

model, where the black circles stand for perfect sensors and the green boxes refer to

distorted ones. The green boxes appear randomly and sparsely within the whole linear

array.

The array observation can be written as

y(t) = Γ̆As(t) + n(t) , (I + Γ)As(t) + n(t),

where t = 1, 2, · · · , T denotes the time index, T is the total number of available

snapshots, s(t) ∈ CK and n(t) ∈ CM are signal and noise vectors, respectively. The

steering matrix A = [a(θ1), a(θ2), · · · , a(θ(k))] ∈ CM×K has steering vectors as columns,

where the steering vector a(θ(k)) is a function of θ(k), for k = 1, 2, · · · , K. In addition,

Γ̆ , I + Γ indicates the electronic sensor status (either perfect or distorted), where

I is the M ×M identity matrix, and Γ is a diagonal matrix with its main diagonal,

γ = [γ1, γ2, · · · , γM ]T, being a sparse vector. Specifically, for m = 1, 2, · · · ,M

γm

{
= 0, if the m-th sensor is perfect,

6= 0, if the m-th sensor is distorted.

The non-zero γm denotes sensor gain and phase error, namely, γm = ρme
φm , where ρm

and φm are the gain and phase errors of the m-th sensor, respectively.
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Collecting all the snapshots into a matrix, we have

Y = (I + Γ)AS + N, (4.1)

where Y = [y(1),y(2), · · · ,y(T )] ∈ CM×T contains the measurements,

S = [s(1), s(2), · · · , s(T )] ∈ CK×T denotes the signal matrix, and N =

[n(1),n(2), · · · ,n(T )] ∈ CM×T is the noise matrix. Defining Z , AS and V , ΓAS,

(4.1) becomes:

Y = Z + V + N, (4.2)

where Z ∈ CM×T is a low-rank matrix of rank K (in general K < min{M,T}), and

V ∈ CM×T is a row-sparse (meaning that only a few rows are non-zero) matrix due to

the sparsity of the main diagonal of Γ.

Given the array measurements Y, our task is to simultaneously estimate the incoming

directions of signals and detect the distorted sensors within the array. Note that the

number of distorted sensors is small, but unknown, and their positions are unknown as

well.

4.3 Related Works

Related works for solving the joint DOA estimation and distorted sensor detection

include SVT, APG, and ADMM. The SVT method was first proposed for matrix

completion, see for example [CCS10]. By adapting the SVT algorithm to our problem,

we need to solve

min
Z,V,W

‖Z‖∗ + λ‖V‖2,1 +
1

2τ
‖Z‖2F +

1

2τ
‖V‖2F +

1

τ
〈W,Y−Z−V〉, (4.3)

where λ is a tuning parameter, τ is a large positive scalar such that the objective

function is perturbed slightly. The SVT approach iteratively updates Z, V, and W. Z

and V are updated by solving the above problem with W fixed. Then W is updated

as W = Y − Z−V. The following well-known results are used when updating Z and

V [CCS10]:

LSκ(S)RH = arg min
X

κ‖X‖∗ +
1

2
‖X−C‖2F,

Sκ(C) = arg min
X

κ‖X‖2,1 +
1

2
‖X−C‖2F,
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where LSRH is the SVD of C and the element-wise soft-thresholding operator is defined

as:

Sκ(x) =


x− κ, if x > κ,

x+ κ, if x < κ,

0, otherwise,

with parameter κ > 0. The applicability of SVT is limited since it is difficult to select

the step size for speedup [LCM10].

The second method is APG, whose updating equation can be given as [BT09]

(Z(k+1),V(k+1)) = arg min
Z,V

h(Z,V) (4.4)

where subscript ·(k) denotes the variable at the k-th iteration, h(Z,V) , p(Z(k),V(k)) +

〈∇Z(k)
p(Z,V(k)),Z−Z(k)〉+ 〈∇V(k)

p(Z(k),V),V−V(k)〉+µM‖Z + V−Z(k)−V(k)‖2F +

q(Z,V), with p(Z,V) , 1
µ
‖Y − Z −V‖2F, q(Z,V) , ‖Z‖∗ + λ‖V‖2,1, and µ being a

small positive scalar. The detailed algorithm can be found in [BT09] and also [LCM10].

As for ADMM, we consider the following problem

min
Z,V
‖Z‖∗ + λ‖V‖2,1 s.t. Y = Z + V, (4.5)

and its augmented Lagrangian function is Lµ(Z,V,W) = ‖Z‖∗ + λ‖V‖2,1 + 〈W,Y−
Z−V〉+ µ

2
‖Y−Z−V‖2F, where W denotes the dual variable and µ is the augmented

Lagrangian parameter. Then ADMM updates Z, V, and W, in a sequential manner. Z

and V are solved by minimizing Lµ(Z,V,W) with respect to (w.r.t.) Z (resp. V) while

keeping V (resp. Z) and W unchanged; W is updated as W = W + µ(Y − Z−V)

[BPC+11].

All the aforementioned three algorithms require performing one SVD per iteration.

Therefore, their computational complexity is extremely high, especially when the

problem size is large. Their convergence speed and computational cost will be compared

in simulations.

4.4 Proposed Method

In this section, we develop an IRLS algorithm for the task of jointly estimating DOAs

of sources and detecting distorted sensors. We start by considering the noiseless case,

and then focus on the noisy case.
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4.4.1 Noiseless Case

In the noiseless case, the data model (4.2) is simplified as Y = Z + V. Therefore, we

formulate the following LR2SD problem, as

min
Z,V

rank(Z) + λ‖V‖2,0 s.t. Y = Z + V, (4.6)

where λ is a tuning parameter. By substituting the equality constraint into the objective,

and replacing the rank and `2,0 mixed-norm with the nuclear norm and `2,1 mixed-norm,

respectively, we have its convex counterpart, as

min
Z
‖Z‖∗ + λ‖Y−Z‖2,1. (4.7)

The nuclear norm and the `2,1 mixed-norm are non-smooth, and thus they are not

differentiable at some points. To deal with this issue, we introduce a smoothing

parameter µ, and obtain the gradients as

∂‖[Z, µI]‖∗
∂Z

= PZ

∂‖[Y−Z, µ1]‖2,1
∂Z

= Q(Z−Y),

where 1 is an all-ones vector of appropriate length, P ,
(
ZZH + µ2I

)− 1
2 and

Q ,


1√

‖(Y−Z)1,:‖22 + µ2

. . .

1√
‖(Y−Z)M,:‖22 + µ2

. (4.8)

The problem to be solved now turns to be

min
Z

f(Z) , ‖[Z, µI]‖∗ + λ‖[Y−Z, µ1]‖2,1, (4.9)

where the objective function f(Z) is differentiable everywhere w.r.t. Z, as long as µ 6= 0.

The derivative of f(Z) w.r.t. Z is

∂f(Z)

∂Z
= PZ + λQ(Z−Y).

According to the Karush-Kuhn-Tucker (KKT) condition, we have PZ+λQ(Z−Y) = 0,

indicating that Z = λ(P + λQ)−1QY. This leads to the IRLS iterative process as

Z(k+1) = λ(P(k) + λQ(k))
−1Q(k)Y, (4.10)

where both P(k) and Q(k) are dependent on Z(k). The IRLS algorithm for the noiseless

case is summarized in Algorithm 4.1, where ε is a small scalar and kmax is a large scalar,

used to terminate the algorithm.
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Algorithm 4.1 IRLS algorithm for noiseless case

Input : Y ∈ CM×T , λ, µ, ε, kmax

Output : Ẑ ∈ CM×T , V̂ ∈ CM×T

Initialize: Z0 ← Zinit, V0 ← Vinit, k ← 0

1: while not converged do
2: k ← k + 1
3: calculate P(k) and Q(k)

4: update Z(k) using Z = λ(P + λQ)−1QY

5: converged ← k ≥ kmax or
|f(Z(k))−f(Z(k−1))|

|f(Z(k))|
≤ ε

6: end while
7: Ẑ← Z(k), V̂← Y−Z(k)

4.4.2 Convergence Analysis for Noiseless Case

We first provide two lemmata giving two important inequalities regarding the trace

function and the `2,1 mixed-norm. Then, we prove the monotonicity and the boundedness

of the objective function in Problem (4.9).

Lemma 4.1 (Lemma 2 in [LLY15]) For any two symmetric positive definite ma-

trices X and Y, it holds that trace
(
Y

1
2

)
− trace

(
X

1
2

)
≥ trace

(
1
2
(Y −X)HY−

1
2

)
.

Lemma 4.2 For any matrices X and Y ∈ CM×T , we have ‖Y‖2,1 − ‖X‖2,1 ≥
1
2
trace

(
H
(
YYH −XXH

))
, where

H =


1

‖Y1,:‖2
. . .

1
‖YM,:‖2

. (4.11)

Proof: Due to the concavity of function
√
x (x ≥ 0), we have

√
y −
√
x ≥ 1

2
√
y
(y − x)

for all x ≥ 0 and y ≥ 0. Therefore,

‖Y‖2,1 − ‖X‖2,1 =
M∑
i

[√
‖Yi,:‖22 −

√
‖Xi,:‖22

]

≥
M∑
i

[
1

2‖Yi,:‖2
(
‖Yi,:‖22 − ‖Xi,:‖22

)]
=

1

2
trace

(
H
(
YYH −XXH

))
,
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where H is given by (4.11). �

With Lemmata 4.1 and 4.2, we have the following theorem.

Theorem 4.1 The sequence {Z(k)} generated by Z(k+1) = λ(P(k) + λQ(k))
−1Q(k)Y

produces a non-increasing objective function defined in (4.9), i.e., f(Z(k)) ≥ f(Z(k+1))

for k = 0, 1, 2, · · · . Moreover, the sequence {Z(k)} is bounded, and limk→∞ ‖Z(k) −
Z(k+1)‖F = 0.

Proof: See Appendix B.1. �

Theorem 4.2 The objective function f(Z) = ‖[Z, µI]‖∗+λ‖[Y−Z, µ1]‖2,1 is bounded

below by |µ|(
√
M + λM).

Proof: See Appendix B.2. �

Theorem 4.3 Any limit point of the sequence {Z(k)} generated by (4.10) is a stationary

point of Problem (4.9), and moreover, the stationary point is globally optimal.

Proof: See Appendix B.3. �

4.4.3 Noisy Case

In the noisy case, the data model is as (4.2), and the problem to be solved is given as

min
Z,V

1

2
‖Y−Z−V‖2F + λ1‖Z‖∗ + λ2‖V‖2,1, (4.12)

where λ1 and λ2 are two tuning parameters. Different from the noiseless case, we

have to optimize the problem with two variables, i.e., Z and V. To proceed, we also

introduce a smoothing parameter µ into the nuclear norm and the `2,1 mixed-norm in

Problem (4.12). Therefore, the problem to be addressed is transferred to

min
Z,V

f(Z,V), (4.13)
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Algorithm 4.2 IRLS algorithm for noisy case

Input : Y ∈ CM×T , λ1, λ2, µ, ε, kmax

Output : Ẑ ∈ CM×T , V̂ ∈ CM×T

Initialize: Z0 ← Zinit, V0 ← Vinit, k ← 0

1: while not converged do
2: k ← k + 1
3: calculate P(k) and Q(k)

4: update Z(k) using Z = (I + λ1P)−1(Y −V)
5: update V(k) using V = (I + λ2Q)−1(Y − Z)

6: converged ← k ≥ kmax or
|f(Z(k),V(k))−f(Z(k−1),V(k−1))|

|f(Z(k),V(k))|
≤ ε

7: end while
8: Ẑ← Z(k), V̂← V(k)

where the objective function is defined as f(Z,V) , 1
2
‖Y−Z−V‖2F + λ1‖[Z, µI]‖∗ +

λ2‖[V, µ1]‖2,1. The derivatives of f(Z,V) w.r.t. Z and V are

∂f(Z,V)

∂Z
= (−Y + Z + V) + λ1PZ,

∂f(Z,V)

∂V
= (−Y + Z + V) + λ2QV,

respectively, where P is defined the same as that in the noiseless case, and

Q ,


1√

‖V1,:‖22+µ2

. . .

1√
‖VM,:‖22+µ2

. (4.14)

Note that Q given in (4.8) is exactly the same as the one in (4.14) since V = Y−Z in

the noiseless case.

According to the KKT condition, we have{
(I + λ1P)Z−Y + V = 0

(I + λ2Q)V −Y + Z = 0

which leads to the IRLS procedure as{
Z(k+1) = (I + λ1P(k))

−1(Y −V(k))

V(k+1) = (I + λ2Q(k))
−1(Y − Z(k+1)),

(4.15)

where P(k) and Q(k) are dependent on Z(k) and V(k), respectively. The IRLS algorithm

for the noisy case is summarized in Algorithm 4.2.
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4.4.4 Convergence Analysis for Noisy Case

In this part, the monotonicity and boundedness of the objective function f(Z,V) in

(4.13) are proved in Theorems 4.4 and 4.5, respectively.

Theorem 4.4 The sequence {(Z(k),V(k))} generated by (4.15) produces a non-

increasing objective function defined in (4.13), i.e., f(Z(k),V(k)) ≥ f(Z(k+1),V(k+1)) for

k = 0, 1, 2, · · · . Moreover, the sequence {(Z(k),V(k))} is bounded, and limk→∞ ‖Z(k) −
Z(k+1)‖F = 0 and limk→∞ ‖V(k) −V(k+1)‖F = 0.

Proof: See Appendix B.4. �

Theorem 4.5 The objective function f(Z,V) = 1
2
‖Y − Z −V‖2F + λ1‖[Z, µI]‖∗ +

λ2‖[V, µ1]‖2,1 is bounded below by |µ|(λ1
√
M + λ2M).

Proof: See Appendix B.5. �

Theorem 4.6 Any limit point of the sequence {(Z(k),V(k))} generated by (4.15) is

a stationary point of Problem (4.13), and moreover, the stationary point is globally

optimal.

Proof: See Appendix B.6. �

The differences between our work and [LLY15] are stated as follows.

• The problem formulation in [LLY15] is column-sparse, while we have row-sparsity

of V. This leads to differences in matrix multiplication and matrix derivative.

• [LLY15] considers the noiseless case only, while we consider both noiseless and

noisy cases.

• To update Z using matrices P and Q, the approach in [LLY15] involves a Sylvester

equation and utilizes the Matlab command lyap. However, our method admits a

closed-form formula, see (4.10) and (4.15).

• The proofs of convergence are not exactly the same. [LLY15] proves the mono-

tonicity of the objective and the boundedness of the sequence {Z(k)}. We prove

the monotonicity and the boundedness of the objective in both noiseless and noisy

cases.
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Algorithm 4.3 Detection of distorted sensors

Input : V̂ ∈ CM×T , h
Output: Mfail

calculate v = [‖V̂1,:‖2, ‖V̂2,:‖2, · · · , ‖V̂M,:‖2]T
calculate ṽ = sort(v, ‘ascend’)
calculate d = ṽ(2)− ṽ(1) and assign ifail = M + 1

1: for i = 3, 4, · · · ,M do
2: if ṽ(i)− ṽ(i− 1) ≥ h then
3: ifail = i and break the for loop

4: end if
5: end for
6: Mfail ←M−ifail + 1

4.4.5 DOA Estimation and Distorted Sensor Detection

Once Ẑ and V̂ are resolved, they can be adopted to estimate the DOAs and detect the

distorted sensors, respectively. Note that Z = AS can be viewed as a noise-free data

model. DOAs can be found via subspace-based methods, such as MUSIC, whose spatial

spectrum is

P (θ) =
1

aH(θ)(I− LLH)a(θ)
.

The SVD of Ẑ is Ẑ = LΣRH, where the columns of L and R contain the left and

right orthogonal base vectors of Ẑ, respectively, and Σ is a diagonal matrix whose

diagonal elements are the singular values of Ẑ arranged in descending order. Under the

assumption that the number of sources, i.e., K, is known, the DOAs are determined by

searching for the K largest peaks of P (θ).

On the other hand, the number of distorted sensors and their positions can be determined

by ‖V̂i,:‖2, i = 1, 2, · · · ,M . Algorithm 4.3 shows a strategy for detecting the distorted

sensors. In words, we first calculate the `2 norm of each row of V̂ and form a vector,

say v, and then we sort these `2 norms in ascending order and obtain ṽ. We define the

difference of the first two entries of ṽ as d = ṽ(2) − ṽ(1). Next, for i = 3, 4, · · · ,M ,

we compute ṽ(i) − ṽ(i − 1) and compare it with a threshold, say h, of large value:

if it is larger than or equal to h, we set ifail = i and break the for loop; if it is less

than h, we have ifail = M + 1. Finally, the number of distorted sensors is obtained as

Mfail = M − ifail + 1.
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4.5 Simulation Results

4.5.1 Parameter Selection

In this subsection, we discuss the problem of choosing appropriate values for µ, λ1,

and λ2 in Problem (4.13) used in Algorithm 4.2. We set ε = 10−16, kmax = 1000, and

Zinit = Vinit = O in Algorithm 4.2, where O denotes the M × T all-zeros matrix. We

define the root-mean squared error (RMSE) of DOA estimates as:

RMSE =

√√√√ 1

QK

Q∑
q=1

K∑
k=1

(θ̂k,q − θ(k))2,

where θ̂k,q is the estimate of the k-th signal in the q-th Monte Carlo trial, and Q is the

total number of Monte Carlo trials. The RMSE is used as a metric to select appropriate

values for µ, λ1, and λ2. The plots in this subsection are averaged over Q = 1000 trials.

Consider a uniform linear array (ULA) of M = 10 sensors, 4 of which at random

positions are distorted by gain and phase errors, receiving K = 2 signals with DOAs

θ = [−10◦, 10◦]T. The sensor gain and phase errors are randomly generated by drawing

from uniform distributions on [0, 10] and [−15◦, 15◦], respectively. In the first example,

we test 6 scenarios with different signal-to-noise ratios (SNRs) and different numbers

of snapshots. In Figure 4.2, we fix λ1 = 2 and λ2 = 0.2, and plot RMSE versus µ. In

the second example, we examine RMSE versus the tuning parameters λ1 and λ2 with

µ = 0.01, SNR = 0 dB, and T = 100 snapshots. The result is drawn in Figure 4.3.

We observe from Figure 4.2 that the RMSE remains unchanged and stays minimal

when µ lies within the interval [10−13, 100] for all 6 tested scenarios. Hence, we can

choose any value for µ within this interval. Since the interval covers such a large

range, the IRLS algorithm is insensitive to the smoothing parameter µ. Note that in

Figure 4.3, our goal is to find a pair of (λ1, λ2) such that the RMSE is minimized. This

demonstrates that there are many pairs of (λ1, λ2) meeting such a condition, such as

(λ1, λ2) = (2 , 0.2), which is used for Algorithm 4.2 in the following simulations.

4.5.2 Convergence Speed

We compare the convergence speed of the IRLS with several existing methods, i.e.,

SVT, APG, and ADMM. Considering again a ULA of M = 10 sensors, 4 of which
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Figure 4.2: RMSE versus µ, with M = 10 sensors (4 of which fail), K = 2 sources,
λ1 = 2, and λ2 = 0.2.

Figure 4.3: RMSE versus λ1 and λ2, with M = 10 sensors (4 of which fail), K = 2
sources, T = 100 snapshots, SNR = 0 dB, and µ = 0.01.
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Figure 4.4: Objective function value versus number of iterations at SNR = 0 dB and
T = 100 snapshots.

at random positions are distorted, receives K = 2 signals from −10◦ and 10◦. The

objective function values of the algorithms versus the number of iterations are depicted

in Figure 4.4 with SNR = 0 dB and T = 100 snapshots. We see that the IRLS algorithm

converges fastest in the sense that its objective function value decreases most rapidly,

and it requires the least number of iterations to terminate, compared with the other

three competitors.

The objective function value, CPU time and number of iterations are tabulated in Table

4.1 (upper) for SNR = 0 dB and T = 100 snapshots, and Table 4.1 (lower) for SNR

= 0 dB and T = 500 snapshots. In both settings, the IRLS algorithm has the smallest

objective function value, the least CPU time, and the least number of iterations, among

all the examined algorithms.

4.5.3 Computational Complexity

We compare the computational complexity in this subsection. Note that the SVT, APG,

and ADMM algorithms require one SVD of an M×T matrix per iteration, and the

SVD consumes the most CPU time. As for the IRLS algorithm, the main calculation is
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Table 4.1: Comparison of objective function value, CPU time and number of iterations
in two different settings.

T = 100 snapshots, SNR = 0 dB

Algorithm f(Z,V) Time (sec) No. Iter.

SVT [CCS10] 493.8653 0.1205 5

APG [BT09] 123.3227 0.8403 22

ADMM [LCM10] 123.3227 0.1029 13

IRLS 123.0227 0.0890 5

T = 500 snapshots, SNR = 0 dB

Algorithm f(Z,V) Time (sec) No. Iter.

SVT [CCS10] 1965.5994 0.6166 25

APG [BT09] 282.5776 4.3472 32

ADMM [LCM10] 282.5776 5.8497 78

IRLS 282.2776 0.1063 10

Table 4.2: Computational complexity.

Algorithm Complexity

SVT [CCS10] KsvtO(TM2)

APG [BT09] KapgO(TM2)

ADMM [LCM10] KadmmO(TM2)

IRLS KirlsO(M3)

to find the inverse of an M×M matrix per iteration. Their main computational cost is

summarized in Table 5.1, where Ksvt, Kapg, Kadmm, and Kirls denote the numbers of

iterations for the SVT, APG, ADMM, and IRLS algorithms, respectively.

Figure 4.5 plots the averaged CPU time against the number of snapshots at M = 10

sensors (4 of which distorted), K = 2 sources, SNR = 0 dB, and Q = 1000 Monte Carlo

runs. It is seen that the CPU times of the SVT, APG, and ADMM1 algorithms are

nearly linearly increasing with T . This is consistent with the theoretical analysis in

Table 5.1. Figure 4.6 displays the CPU time versus the number of sensors with T = 100

snapshots and the other parameters are the same as those in Figure 4.5. We see that the

curves of the CPU time of the SVT, APG, and ADMM algorithms are approximately

1Note that there is a jump of ADMM at T = 250. This is caused by the rapid increment of its
number of iterations Kadmm.
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Figure 4.5: Computational complexity versus number of snapshots.

linearly correlated to M in a log scale, which again matches the theoretical calculations.

4.5.4 DOA Estimation Performance

We use the RMSE and resolution probability as DOA estimation performance measures.

The resolution probability is calculated by Nsucc/Q, where Q is the number of Monte

Carlo runs, and Nsucc denotes the number of trials where all the DOAs are successfully

estimated. The trial is counted as a successful one if the following inequality is satisfied:

max(k){|θ̂(k) − θ(k)|} ≤ 0.5◦.

In the first example, we consider a ULA of M = 10 sensors, 3 of which at random

positions are distorted, K = 2 signals from −10◦ and 10◦, T = 100 snapshots, and

Q = 5000 Monte Carlo trials. The RMSE and resolution probability are depicted

in Figures 4.7 and 4.8, respectively. The traditional Cramér-Rao bound (CRB) with

known sensor errors [Del14] is plotted as a benchmark. Note that the curve labelled as

‘‘MUSIC-Known’’ denotes the MUSIC method with exact knowledge of the distorted

sensors. It is seen that the SVT and MUSIC have bad performance even when the

SNR becomes large. The APG, ADMM, and IRLS algorithms perform well when the

SNR increases, their RMSEs decrease and their resolution probabilities increase up to
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Figure 4.6: Computational complexity versus number of sensors.

1. The IRLS algorithm outperforms the other two state-of-the-art methods, i.e., APG

and ADMM.

In the next example, we examine the DOA estimation performance for different numbers

of snapshots. The SNR is set to be 0 dB, and the remaining parameters are the same

as those of the former example. The RMSE and resolution probability of the methods

are plotted in Figures 4.9 and 4.10, respectively. The results demonstrate a better

performance of the IRLS algorithm compared with the SVT, APG, and ADMM methods.

In the last example of this subsection, we evaluate the DOA estimation performance

in view of the source separation angle. The settings of SNR = 0 dB, K = 2 sources,

and T = 100 snapshots are employed. The first signal is from 0◦, while the DOA of the

second signal changes from 1◦ to 20◦ with a stepsize of 1◦. The other parameters are

unchanged as those in the first example of this subsection. The RMSE and resolution

probability versus angular separation are displayed in Figures 4.11 and 4.12, respectively.

These again indicate that the IRLS algorithm outperforms the SVT, APG, and ADMM

algorithms in terms of RMSE and resolution probability.
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Figure 4.7: RMSE versus SNR.
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Figure 4.8: Resolution probability versus SNR.
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Figure 4.9: RMSE versus number of snapshots.
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Figure 4.10: Resolution probability versus number of snapshots.
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Figure 4.11: RMSE versus source separation angle.
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Figure 4.12: Resolution probability versus source separation angle.
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Figure 4.13: Success detection rate versus SNR.

4.5.5 Distorted Sensor Detection Performance

Parallel to the three examples in Section 4.5.4, we now examine the performance of

the detection of distorted sensors of the SVT, APG, ADMM, and IRLS algorithms.

The threshold in Algorithm 4.3 is set as h = 10d. We utilize the success detection

rate as a metric, which is defined as Ndetec/Q. Ndetec is the number of trials where the

number of distorted sensors is correctly estimated, and meanwhile their positions are

exactly found. The results are given in Figures 4.13, 4.14, and 4.15, which show that

the ADMM is the best amongst all tested methods in terms of identifying the distorted

sensors, followed by the IRLS algorithm.

4.6 Summary

We studied the problem of simultaneously estimating direction-of-arrival (DOA) of

signals and detecting distorted sensors. It is assumed that the distorted sensors occur

randomly, and the number of distorted sensors is much smaller than the total number

of sensors. The problem was formulated via low-rank and row-sparse decomposition,

and solved by iteratively reweighted least squares (IRLS). Both noiseless and noisy
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Figure 4.14: Success detection rate versus number of snapshots.
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Figure 4.15: Success detection rate versus source separation angle.
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cases were considered. Theoretical analyses of algorithm convergence were provided.

Computational cost of the IRLS algorithm was compared with that of several existing

methods. Simulation results were conducted for parameter selection, convergence speed,

computational time, and performance of DOA estimation as well as distorted sensor

detection. The IRLS method was demonstrated to have higher DOA estimate accuracy

and lower computational cost than other methods, and the alternating direction method

of multipliers was shown to be slightly better than the IRLS algorithm in distorted

sensor detection.
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Chapter 5

Off-grid DOA Estimation Using a Sparse
Representation

In this chapter, the problem of off-grid direction-of-arrival (DOA) estimation is in-

vestigated. We develop a grid-based method to jointly estimate the closest spatial

frequency (the sine of DOA) grids, and the gaps between the estimated grids and the

corresponding frequencies. By using a second-order Taylor approximation, the data

model under the framework of joint-sparse representation is formulated. We point out

an important property of the signals of interest in the model, namely the proportionality

relationship, which is empirically demonstrated to be useful in the sense that it increases

the probability of the mixing matrix satisfying the block restricted isometry property.

Simulation examples demonstrate the effectiveness and superiority of the proposed

method against several state-of-the-art grid-based approaches.

The key contributions presented in this chapter originate from [HSZ22a]. The structure

of this chapter is as follows: Motivation is presented in Section 5.1. Section 5.2 shows

the signal model. The proposed method and uniqueness property of the proposed

solution are detailed in Sections 5.3 and 5.4, respectively. Simulation results are given

in Section 5.5, while Section 5.6 summarizes this chapter.

5.1 Motivation

Grid-based methods have gained interest in direction-of-arrival (DOA) estimation in

recent years. Such approaches include least absolute shrinkage and selection operator

(LASSO) [Tib96, MCW05, WZ14] and sparse iterative covariance-based estimation

[SBL11a,SBL11b,SB12,BS14], among others. See [YLSX18] for a comprehensive review

of grid-based sparse methods for DOA estimation. The advantage of grid-based methods

is that they have super-high resolution even in the case when only one single snapshot is

available, provided that all the source spatial frequencies align exactly with the preset

grid. However, this condition may not be satisfied in practice, since the region of interest

(ROI) contains infinite candidates and hence grid mismatch almost always exists when

we split the ROI into a finite number of grids. This is known as the off-grid issue

and has attracted a lot of research interest in array signal processing during the past
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decade, see for example [ZLG11,YZX12,YXZ13,DB13,JH13,FGG+14,TYN14,DBXC17,

WSP17,LSG17,AGM18,WZCN18,WZYZ18,ZGSZ18,WGW19,WL21,MCW+21].

Existing solutions to tackle the off-grid problem can be categorized into three groups.

The first group uses denser grids or the coarse-to-fine strategy such as [MCW05]. The

drawbacks of these methods are twofold. On one hand, denser grids lead to extremely

expensive computational complexity; on the other hand, too dense grids may result in

weak incoherence among the steering vectors. The second group consists of the so-called

gridless approach [TBSR13,YX15,SRS+16,SSSP17,WGP19,ZRH21]. Its weakness is

that most of these methods are restricted to regularly sampled measurements that can

only be taken from a uniform linear array (ULA) [WPG21]. The last group of methods

estimates the off-grid bias together with the grids closest to the true spatial frequencies.

Representative works include the first-order Taylor approximation [JH13, TYN14]

and the neighbor-grid based method [AGM18], denoted in this chapter as 1st Taylor

G-LASSO and Neighbor G-LASSO, respectively.

It is known that in general the first-order Taylor approximation is accurate enough,

especially when the grid size is small. However, when the grid size is set not small

enough so as to save computational cost, there still exists a large bias. In such a

situation, a high-order Taylor approximation decreases the approximation error. To

this end, we introduce a second-order Taylor approximation in off-grid DOA estimation.

We observe in this case the proportionality relationship of the signals of interest. With

this, we propose a novel optimization approach which is shown by simulation to produce

more accurate frequency estimates in off-grid scenarios. Moreover, the uniqueness issue

of the proposed method is discussed by means of the restricted isometry property (RIP),

which is one of the most important tools in compressive sensing [EM09].

Notations: In this chapter, bold-faced lower-case and upper-case letters stand for vectors

and matrices, respectively. Superscripts ·T, ·H, and ·∗ denote transpose, Hermitian trans-

pose, and complex conjugate operators, respectively. vec{·} denotes the vectorization

operator, diag{·} returns a diagonal matrix whose main diagonal is given in the curly

bracket, and <{·} and ={·} are real and imaginary parts of a complex-valued variable,

respectively. � symbolizes the Khatri-Rao product. C and R are the sets of complex

and real numbers, respectively. I is the identity matrix of appropriate dimension. 0

and 1 denote the all-zeros and the all-ones vectors of appropriate length, respectively.

For a vector x, |x| and ‖x‖2 represent the element-wise absolute value and the L2 norm

of x, respectively. The symbols ≥, ≤, >, and < are element-wise greater than or equal

to, less than or equal to, greater than, and less than operators, respectively.
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5.2 Signal Model

Suppose that a linear array of M sensors whose positions are contained in q =

[q1, q2, · · · , qM ]T, receives K far-field narrowband signals from directions φ =

[φ1, φ2, · · · , φK ]T with φk ∈ [−π/2, π/2). For simplicity, we define the spatial fre-

quencies as u = [u1, u2, · · · , uK ]T with uk = sin(φk) ∈ [−1, 1). The array observation

can be modeled as

y =
K∑
k=1

ska(uk) + n = A(u)s + n,

where sk is the k-th signal waveform, s = [s1, s2, · · · , sK ]T represents the sig-

nal vector, and n ∈ CM is the noise vector. The steering matrix A(u) =

[a(u1), a(u2), · · · , a(uK)] ∈ CM×K has the steering vectors as columns, where a(uk) =

[e
2πq1
λ

uk , e
2πq2
λ

uk , · · · , e
2πqM
λ

uk ]T, for k = 1, 2, · · · , K, with λ being the signal wavelength

and  =
√
−1.

In grid-based methods, we formulate the signal model by means of a sparse representa-

tion, as

y =
L∑
l=1

xla(vl) + n = A(v)x + n,

where v = [v1, v2, · · · , vL]T denotes the frequency grid vector with L being the number

of grids (in general L�M > K), A(v) ∈ CM×L stands for the overcomplete dictionary

matrix, and x = [x1, x2, · · · , xL]T is a sparse vector whose elements xl = sk if vl = uk,

and xl = 0 otherwise. When the true frequencies do not exactly lie in the preset grids,

we encounter the off-grid issue. To handle this problem, we propose a method to

simultaneously estimate the closest frequency grids, and the gaps between the closest

grids and the true frequencies, using a second-order Taylor approximation.

5.3 Proposed Method

5.3.1 Second-order Taylor Approximation

We start by considering a second-order Taylor approximation of the steering vectors.

For any ul, we have

a(ul) ≈ a(vl) + a′(vl)pl +
a′′(vl)

2
p2l ,
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where vl is the grid closest to ul, a′(vl) = da(v)
dv

∣∣∣
v=vl

, a′′(vl) = d2a(v)
dv2

∣∣∣
v=vl

, and pl =

ul − vl ∈ [−δ/2, δ/2] with δ being the grid size. Collecting all the candidates, we have

[a(u1),· · ·, a(uL)] ≈ A(v)+A′(v)diag{p}+ 1

2
A′′(v)diag{p}2,

where A′(v) = [a′(v1), · · · , a′(vL)] ∈ CM×L, A′′(v) = [a′′(v1), · · · , a′′(vL)] ∈ CM×L, and

p = [p1, p2, · · · , pL]T. Hence, the signal model can be approximately written as:

y ≈
[
A(v) + A′(v)diag{p}+

1

2
A′′(v)diag{p}2

]
x + n

=

[
A(v),A′(v),

1

2
A′′(v)

]
x

diag{p}x
diag{p}2x

+ n, (5.1)

where the signals of interest [xT, (diag{p}x)T, (diag{p}2x)T]T are referred to as block

signal in the sequel.

5.3.2 Properties of the Block Signal

As shown in signal model (5.1), the unknown block signal is divided into three parts:

(i) x1 , x, (ii) x2 , diag{p}x, and (iii) x3 , diag{p}2x. Without loss of generality,

we assume x is a real-valued vector, see the remark below. Denote the l-th entries of

x1, x2, and x3 as x1,l, x2,l, and x3,l, respectively. We notice the following properties of

the block signal [xT
1 ,x

T
2 ,x

T
3 ]T.

• Since x is a sparse vector as mentioned in Section 5.2, x1, x2, and x3 are all

sparse and share the same sparsity pattern. This property is known as block-

sparsity [JH13] or joint-sparsity [TYN14].

• It holds that x2,l = plx1,l and x3,l = p2l x1,l. Due to −δ/2 ≤ pl ≤ δ/2, ∀l ∈
{1, 2, · · · , L}, it is easy to verify that the following inequalities hold:

−δ
2
|x1| ≤ x2 ≤

δ

2
|x1|, −

(
δ

2

)2

|x1| ≤ x3 ≤
(
δ

2

)2

|x1|. (5.2)

• It can be seen that x1, x2, and x3 satisfy the proportionality relationship, as

x22,l = x1,lx3,l, ∀l ∈ {1, 2, · · · , L}. (5.3)

Remark: For any complex-valued data model, say y = Ax, we have its real-valued

counterpart as ỹ = Ãx̃, where ỹ = [<{y}T,={y}T]T, x̃ = [<{x}T,={x}T]T, and

Ã =

[
<{A} −={A}
={A} <{A}

]
.
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5.3.3 Problem Formulation Development

Based on the aforementioned relationships among x1, x2, and x3, we propose the

following minimization problem:

min
x1,x2,x3

g(x1,x2,x3) s.t. (5.2) and (5.3). (5.4)

The cost function in (5.4) is given by

g(x1,x2,x3) ,
1

2

∥∥∥∥y−A(v)x1−A′(v)x2−
1

2
A′′(v)x3

∥∥∥∥2
2

+ µ
∥∥∥[xT

1 ,x
T
2 ,x

T
3

]T∥∥∥
2,1
, (5.5)

where µ is a regularization parameter balancing the data fitting and the model sparsity,

and ‖·‖2,1 is the mixed L2,1 norm of a vector, defined as

∥∥∥[xT
1 ,x

T
2 ,x

T
3

]T∥∥∥
2,1

=
L∑
l=1

√
|x1,l|2 + |x2,l|2 + |x3,l|2.

Problem (5.4) is non-convex and hard to solve due to its constraints. We first consider

the constraints of (5.2). The difficulty of dealing with (5.2) comes from the absolute

value operator [TYN14]. However, when the signals are assumed to be real positive,

i.e., s > 0 (and x1 = x ≥ 0), the constraints of (5.2) in (5.4) become

−δ
2
x1 ≤ x2 ≤

δ

2
x1, 0 ≤ x3 ≤

(
δ

2

)2

x1, x1 ≥ 0, (5.6)

which are linear and thus convex. It is worth pointing out that 0 ≤ x3 in (5.6) is the

result of x3,l = p2l x1,l, ∀l ∈ {1, 2, · · · , L} and x1 ≥ 0. Note that the assumption of

real positive signals is valid in various situations. For instance, in multiple-snapshot

scenarios, the signal vector denotes the signal powers which are naturally positive, see

the remark below.

In the sequel, we consider the last constraint in (5.4), viz. (5.3). Firstly, we convert

(5.3) to its equivalent form as in [PB17]:∥∥∥∥∥
[

2x2,l

x1,l − x3,l

]∥∥∥∥∥
2

= x1,l + x3,l, ∀l ∈ {1, 2, · · · , L}. (5.7)

Then, we introduce an additional variable z ∈ RL with entries zl satisfying

0 ≤ zl ≤ η, ∀l ∈ {1, 2, · · · , L}, (5.8)
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where η is a small user-defined parameter, and rewrite (5.7) as∥∥∥∥∥
[

2x2,l

x1,l − x3,l

]∥∥∥∥∥
2

≤ x1,l + x3,l + zl, ∀l ∈ {1, 2, · · · , L}, (5.9)

which belongs to the set of standard second-order cone and hence is convex.

By replacing the constraint (5.2) with (5.6) and replacing (5.3) with (5.8) and (5.9), we

finally relax the non-convex problem (5.4) into a convex one, as

min
x1,x2,x3,z

g(x1,x2,x3) s.t. (5.6), (5.8), and (5.9). (5.10)

Remark: Note that the proposed method is developed for the single-snapshot scenario.

However, it can be easily extended to the case of multiple snapshots. To be precise, when

multiple snapshots are available, we have the covariance matrix R = ARsA
H + σ2I,

where σ2 is the noise power. Note that we assume the signals to be uncorrelated with the

noise, and the noise components are independent and identically distributed. Vectoring

R yields

vec{R} = (A∗ �A)rs + σ2vec{I}, (5.11)

where rs is the main diagonal of Rs, denoting the signal powers. The data model (5.11)

is similar to the signal model introduced in Section 5.2, and therefore, we can develop

our method on the basis of (5.11).

To analyze the computational cost, we formulate Problem (5.10) under the framework

of standard second-order cone programming (SOCP) [LVBL98], as

min
x1,x2,x3,z,t

L∑
l=1

tl = 1Tt

s.t. (5.6), (5.8), and (5.9),√
|x1,l|2+|x2,l|2+|x3,l|2 ≤ tl, ∀l ∈ {1, 2, · · · , L},∥∥∥∥y−A(v)x1−A′(v)x2−

1

2
A′′(v)x3

∥∥∥∥
2

≤ ε,

where t = [t1, t2, · · · , tL]T is an auxiliary variable vector, and ε is a tuning parameter

related to µ in (5.10). The computational cost of the above problem with implementation

of SOCP is O(9(M + 1)L2 + 72L) per iteration, and the number of iterations is bounded

above by O(
√
L) [LVBL98]. The proposed second-order Taylor approximation method

is referred to as 2nd Taylor G-LASSO. The computational complexity of the 2nd Taylor

G-LASSO, as well as those of LASSO [Tib96,MCW05], Neighbor G-LASSO [AGM18],

and 1st Taylor G-LASSO [JH13,TYN14], are summarized in Table 5.1.
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Table 5.1: Computational cost using SOCP implementation.

Method Cost per Iteration No. of Iterations

LASSO O((M + 1)L2) O(1)

Neighbor G-LASSO O(4(M + 1)L2 + 12L) O(
√
L)

1st Taylor G-LASSO O(4(M + 1)L2 + 28L) O(
√
L)

2nd Taylor G-LASSO O(9(M + 1)L2 + 72L) O(
√
L)

5.4 Uniqueness Property of the Proposed Solution

Note that, for underdetermined linear systems, uniqueness of a sparse solution is one of

the fundamental problems in compressive sensing [FR13b]. In this section, we discuss

this issue in view of the proposed signal model in (5.1). To this end, we first introduce

the following definition and theorem [EM09]:

Definition 5.1 AnM×bL block matrix D is said to have the block RIP with parameter

βK, if for every K block-sparse vector c of length bL, it holds that

(1− βK)‖c‖22 ≤ ‖Dc‖22 ≤ (1 + βK)‖c‖22.

Theorem 5.1 Let y = Dc0 be measurements of a K block-sparse vector c0. If D

satisfies the block RIP with parameter β2K < 1, then there exists a unique block-sparse

vector c satisfying y = Dc; and further, if D satisfies the block RIP with β2K <
√

2− 1,

then the convex optimization problem: minc ‖c‖2,1 s.t. y = Dc, has a unique solution

and the solution is equal to c0.

Define c0 = [xT, (diag{p}x)T, (diag{p}2x)T]T and D = [A(v),A′(v), 1
2
A′′(v)]. In the

absence of noise, our proposed model in (5.1) can be rewritten as: y = Dc0. Without

loss of generality, we denote D̄ as the column-normalized matrix structured from D.

Our task is to check whether or not D̄ satisfies the block RIP with parameter β2K < 1

and β2K <
√

2 − 1. Note that determining the RIP parameter, i.e., β2K , of a given

matrix is in general an NP-hard problem [EKB10,TP14]. In what follows, we introduce

a Monte Carlo test to check the condition of the block RIP of D̄.

According to the definition, if D̄ has the block RIP with parameter β2K , then for any

2K block-sparse vector c of length bL, it holds that

(1− β2K)‖c‖22 ≤ ‖D̄c‖22 ≤ (1 + β2K)‖c‖22. (5.12)
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Note that, for any 2K block-sparse vector c, we can write its unit-norm vector as

c̄ = c/‖c‖2, such that ‖c̄‖2 = 1. As a result, (5.12) becomes:

(1− β2K) ≤ ‖D̄c‖22
‖c‖22

= ‖D̄c̄‖22 ≤ (1 + β2K).

Based on the above inequalities, the parameter β2K is calculated as

β2K = max
{
‖D̄c̄‖22 − 1 , 1− ‖D̄c̄‖22

}
. (5.13)

We randomly generate a unit-norm 2K block-sparse vector c̄, and calculate β2K using

(5.13). By repeatedly performing the above steps for 104 Monte Carlo runs, we estimate

the empirical probabilities of {β2K < 1} and {β2K <
√

2−1}. The empirical probabilities

versus block-sparsity 2K are presented in Figure 5.1, with M = 8, qm = (m−1)λ
2

(m = 1, 2, · · · ,M), L = 200, and b = 1 for LASSO, b = 2 for Neighbor G-LASSO

and 1st Taylor G-LASSO, and b = 3 for 2nd Taylor G-LASSO. It is seen that when

the block-sparsity is small (less than 8), the probabilities of {β2K < 1} of all the

tested methods are high (greater than 0.9), and their probabilities of {β2K <
√

2− 1}
are larger than 0.5. Note that in Figure 5.1, the plot of 2nd Taylor G-LASSO with

proportional signals (abbreviated as ‘‘Prop. Sig.’’ in the figure), i.e., (5.3), has the

highest probability. This reveals that the proportionality relationship of the block

signal contains useful information in the sense that it increases the probabilities of

{β2K < 1} and {β2K <
√

2− 1}.

5.5 Simulation Results

We evaluate the frequency estimation performance of 2nd Taylor G-LASSO, compared

with LASSO [Tib96,MCW05,WZ14], Neighbor G-LASSO [AGM18], and 1st Taylor

G-LASSO [JH13, TYN14]. We adopt the root-mean squared error (RMSE) and the

empirical probability of correct detection (PCD) as performance metrics, defined as

in [SP18]:

RMSE = 10 log10


√√√√ 1

KQ

K∑
k=1

Q∑
q=1

(ûk,q − uk)2


and PCD = Qsuc/Q, respectively, where ûk,q denotes the frequency estimates of the

k-th signal in the q-th Monte Carlo run, Q is the total number of Monte Carlo trials,

and Qsuc is the number of trials where the frequency estimates { ûk|k = 1, 2, · · · , K}
fulfill: maxk{|ûk − uk|} ≤ δ/2. The Cramér–Rao bound (CRB) [MCW+21] is drawn as

a benchmark for RMSE comparison. The results of single-snapshot situation are shown

in Section 5.5.1, while the results of multiple-snapshot situation are drawn in Section

5.5.2.
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Figure 5.1: Empirical probabilities of {β2K < 1} and {β2K <
√

2− 1} versus block-
sparsity 2K with 104 Monte Carlo runs, M = 8, and L = 200.

5.5.1 Single-snapshot Situation

In the first experiment, a linear array of M = 16 omnidirectional sensors is considered

to receive K = 2 signals with spatial frequencies u = [0.1815, 0.7942]T. The M = 16

sensors are randomly selected from a ULA of 20 sensors with half-wavelength inter-

element spacing. The frequency grid size is set to be δ = 0.01, and hence the number

of grids is L = 200. That is, the preset frequency grids are {−1,−0.99, · · · , 0.98, 0.99}.
Two parameters utilized in (5.10) are given as η = 10−5 and µ = σ

√
M ln(M) [BTR13]

with σ denoting the standard deviation of the noise vector, which is assumed to be

known a priori in our simulations. Q = 1000 Monte Carlo trials are performed. The

results of RMSE versus SNR and PCD versus SNR are plotted in Figures 5.2 and

5.3, respectively. It is seen that, in the large SNR region, 2nd Taylor G-LASSO has

significantly lower RMSE compared with the other grid-based approaches, and the

PCD of 2nd Taylor G-LASSO is higher than those of the other tested methods.

In the second experiment, we randomly select M sensors from a ULA of 20 sensors

with half-wavelength inter-element spacing, and M varies from 4 to 20. SNR is fixed

to 20 dB, while the remaining parameters are the same as those in the first experiment.

The RMSE and PCD are depicted in Figures 5.4 and 5.5, respectively. The results
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Figure 5.2: RMSE versus SNR with M = 16 sensors, K = 2 sources, L = 200
frequency grids, and grid size δ = 0.01.
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Figure 5.3: PCD versus SNR with M = 16 sensors, K = 2 sources, L = 200 frequency
grids, and grid size δ = 0.01.
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Figure 5.4: RMSE versus number of sensors with SNR = 20 dB, K = 2 sources,
L = 200 frequency grids, and grid size δ = 0.01.

exhibit again better performance of the proposed 2nd Taylor G-LASSO than the other

competitors.

In the third experiment, the number of frequency grids, i.e., L, varies from 50 to 500

with a step size of 50, the SNR is fixed to 20 dB, while the other parameters are

unchanged as those in the first experiment. The RMSE and PCD results are shown

in Figures 5.6 and 5.7, respectively. It can be seen that (i) When the number of grids

is L < 400 (equivalently grid size of δ > 1/200), the RMSE of 2nd Taylor G-LASSO

is evidently smaller than those of the other tested methods; and (ii) When L ≥ 400

(that is δ ≤ 1/200), the RMSE of 1st Taylor G-LASSO is very close to that of 2nd

Taylor G-LASSO. This verifies that 2nd Taylor G-LASSO works better than 1st Taylor

G-LASSO in terms of DOA estimation accuracy, especially when the grid size is not

sufficiently small.

5.5.2 Multiple-snapshot Situation

In this section, we test the performances of the proposed method and several other

algorithms in multiple-snapshot scenarios. We utilize 100 snapshots, and the other
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Figure 5.5: PCD versus number of sensors with SNR = 20 dB, K = 2 sources,
L = 200 frequency grids, and grid size δ = 0.01.
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Figure 5.6: RMSE versus number of frequency grids with SNR = 20 dB, M = 16
sensors, and K = 2 sources.
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Figure 5.7: PCD versus number of frequency grids with SNR = 20 dB, M = 16
sensors, K = 2 sources.

parameters are set to be the same as those in the first experiment. The strategy of

transforming the multiple-snapshot signal model into a single-snapshot one, which has

been detailed in the remark in Section 5.3.3, is applied to LASSO, Neighbor G-LASSO,

1st Taylor G-LASSO, and 2nd Taylor G-LASSO. In addition, in this example, we

also consider two classical methods, namely, the Capon beamforming and multiple

signal classification (MUSIC) algorithms [CVY14]. For comparison, on-grid MUSIC

with a much tinier grid size δ = 0.0001 is also examined. The RMSE and PCD are

plotted in Figures 5.8 and 5.9, respectively, from which it is seen that both Capon

beamforming and MUSIC algorithms share similar performance with LASSO in the

off-grid setup. On-grid MUSIC has the smallest RMSE and the largest PCD among

all the tested approaches. The proposed 2nd Taylor G-LASSO outperforms LASSO,

Neighbor G-LASSO, and 1st Taylor G-LASSO.

5.6 Summary

We have investigated the off-grid DOA estimation problem and have proposed a method

using the second-order Taylor approximation. By exploring the properties of the block

signal, we have added the proportionality relationship to our optimization problem. A
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Figure 5.8: RMSE versus SNR in multiple-snapshot scenarios with 100 snapshots,
M = 16 sensors, K = 2 sources.
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Figure 5.9: PCD versus SNR in multiple-snapshot scenarios with 100 snapshots,
M = 16 sensors, K = 2 sources.
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Monte Carlo test has shown the usefulness of such proportionality relationship in the

sense that it increases the probabilities of {β2K < 1} and {β2K <
√

2− 1}. Numerical

results have demonstrated that the proposed method outperforms several existing

grid-based DOA estimation approaches.
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Chapter 6

Conclusions and Outlook

This dissertation has contributed new methods of sparse array signal processing. In

particular, we have investigated two main problems in array signal processing, i.e.,

direction-of-arrival (DOA) estimation and beamforming, from the perspective of sparsity.

A summary and the main conclusions of this thesis are given in Section 6.1, while

Section 6.2 provides an outlook for possible future work.

6.1 Conclusions

In this dissertation, we focused on sparse array beamformer design, DOA estimation

using a sparsely distorted sensor array, distorted sensor detection, and DOA estimation

in an off-grid scenario. More specifically speaking, we conducted the following three

main works.

In Chapter 3, an algorithm based on alternating direction method of multipliers (ADMM)

for sparse array beamformer design was proposed. Our approach provides closed-form

solutions at each ADMM iteration. Theoretical analyses and numerical simulations were

provided to show the convergence of the proposed algorithm. In addition, the algorithm

was proved to converge to the set of stationary points. The ADMM algorithm was

shown to be comparable to the exhaustive search method, and slightly better than the

state-of-the-art solvers, including the semidefinite relaxation (SDR), an SDR variant

(SDR-V), and the successive convex approximation (SCA) methods, and significantly

better than several other sparse array design strategies in terms of output signal-to-

interference-plus-noise ratio. Moreover, the proposed ADMM algorithm outperformed

the SDR, SDR-V, and SCA approaches in terms of computational cost.

In Chapter 4, we studied the problem of simultaneously estimating the DOAs of signals

and detecting distorted sensors. It was assumed that the distorted sensors occur

randomly, and the number of distorted sensors is much smaller than the total number

of sensors. The problem was formulated via low-rank and row-sparse decomposition,

and solved by iteratively reweighted least squares (IRLS). Both noiseless and noisy

cases were considered. Theoretical analyses of algorithm convergence were provided.

The computational complexity of the IRLS algorithm was compared with that of
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several existing methods. Simulation results were conducted for parameter selection,

convergence speed, computational time, and performance of DOA estimation as well as

distorted sensor detection. The IRLS method was demonstrated to have higher DOA

estimation accuracy and lower computational cost than other methods, and the ADMM

was shown to be slightly better than the IRLS algorithm in distorted sensor detection.

In Chapter 5, we investigated the off-grid DOA estimation problem and proposed a

method using a second-order Taylor approximation. By exploring the properties of the

block signal, we added the proportionality relationship to our optimization problem.

A Monte Carlo test showed the usefulness of such proportionality relationship in the

sense that it increases the probabilities of {β2K < 1} and {β2K <
√

2− 1}. Numerical

results demonstrated that the proposed method outperforms several existing grid-based

DOA estimation approaches.

By developing these efficient methods, the property of sparsity has been demonstrated

to be very important and useful in array signal processing. More and more works based

on sparsity has appeared or will appear in the related research areas. Our work will lay

the groundwork for fantastic research to follow.

6.2 Outlook

Possible extensions of this work and open problems are listed as below. Some of them

are left open, some are the subject of ongoing research.

• In Chapter 3, we considered only one signal of interest. Along this direction, we

can extend our work to more signals of interest. The extended setting results

in a quadratically constrained quadratic program with more constraints, and

consensus ADMM, rather than ADMM, can be applied.

• In Chapter 3, our focused was on narrowband signals. We can extend our method

to wideband signals, which has found various real-world applications, see for

example [YG04, Pan10, LW10, HA19]. The tapped delay line (TDL) filtering

and discrete Fourier transform (DFT) are two typical schemes for wideband

beamforming systems [LW10,HA19]. Different from the work in Chapter 3, which

has a sparse solution, the resulting problem with wideband signals leads to group

sparsity in its beamformer weights.
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• In Chapter 4, we assumed that the number of distorted sensors is small. One of

the future works is to investigate the maximal number of distorted sensors such

that the proposed algorithm can still correctly detect all the distorted sensors,

and at the same time accurately estimate the DOAs of sources.

• In Chapter 4, the distorted sensors were considered to be contaminated by

unknown gain and phase uncertainties. Different types of sensor errors, such as

sensor mutual coupling and sensor position errors, can be considered in future

works.

• In Chapter 5, we adopted a Monte Carlo test to check whether or not the

mixing matrix satisfies the block restricted isometry property (RIP) with proper

parameter. Future work could be put on theoretically analyzing this result.

Moreover, we can extend our algorithm from second-order Taylor approximation

to higher-order Taylor approximation and explore the structure of the resulting

signal to be estimated.
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Appendix for Chapter 3

A.1 Proof of Theorem 3.1

Define the objective function as f(w) , λ‖w‖1 + ρ
2
‖w− v + u‖22, and denote w̃ as the

point within {w : |wHa0|2 ≥ 1}, such that it is closest to w̄. That is,

‖w̃ − w̄‖2 ≤ ‖w − w̄‖2 (A.1)

holds for any w ∈ {w : |wHa0|2 ≥ 1}. Our goal is to show f(w̃) ≤ f(w), for any

w ∈ {w : |wHa0|2 ≥ 1}.

As shall be shown later, the augmented Lagrangian parameter ρ is set to be large in

order to make our algorithm converge. In such a case, we have ρ� λ, and thus the

objective function

f(w) ≈ ρ

2
‖w − v + u‖22 ≈

ρ

2
‖w − w̄‖22. (A.2)

Note that, in the second approximate equality above, we have used the fact that

w̄ ≈ v − u as ρ� λ.

Suppose that there exists a point w′ ∈ {w : |wHa0|2 ≥ 1}, such that f(w′) < f(w̃).

Thus, by using (A.2), we obtain that ρ
2
‖w′ − w̄‖22 <

ρ
2
‖w̃ − w̄‖22, which contradicts

(A.1). This implies that f(w̃) ≤ f(w) holds for all feasible w, that is, w̃ is the solution

to Problem (3.12a).

A.2 Proof of Lemma 3.1

In order to show that L(w(k+1),v(k+1),u(k+1)) ≤ L(w(k),v(k),u(k)) holds ∀k =

0, 1, 2, · · · , where the objective function is defined as L(w,v,u) , λ‖w‖1 + vHRxv +
ρ
2
(‖w − v + u‖22 − ‖u‖22), we formulate their difference as

L(w(k+1),v(k+1),u(k+1))− L(w(k),v(k),u(k))

= [L(w(k+1),v(k+1),u(k+1))−L(w(k+1),v(k+1),u(k))] (A.3a)

+ [L(w(k+1),v(k+1),u(k))− L(w(k),v(k),u(k))]. (A.3b)
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In what follows, we separately deal with (A.3a) and (A.3b). For (A.3a), it is calculated

as

L(w(k+1),v(k+1),u(k+1))− L(w(k+1),v(k+1),u(k))

(a)
=
ρ

2

(
‖w(k+1) − v(k+1) + u(k+1)‖22 − ‖u(k+1)‖22
− ‖w(k+1) − v(k+1) + u(k)‖22 + ‖u(k)‖22

)
(b)
=

ρ

2

(
‖2u(k+1) − u(k)‖22 − 2‖u(k+1)‖22 + ‖u(k)‖22

)
=
ρ

2

(
2‖u(k+1) − u(k)‖22

)
(c)
= ρ

∥∥∥∥2

ρ
Rxv(k+1) −

2

ρ
Rxv(k)

∥∥∥∥2
2

(d)

≤ 4

ρ
λ2max(Rx)‖v(k+1)−v(k)‖22,

where the definition of L(w,v,u) is used in (a); w(k+1) − v(k+1) = u(k+1) − u(k) (which

is from Line 5 in Algorithm 3.1) has been utilized in (b); u(k+1) = 2
ρ
Rxv(k+1) (which is

the result by combining Lines 4 and 5 in Algorithm 3.1) has been employed in (c); and

inequality ‖Rxv‖22 = vHRH
x Rxv ≤ vH[λ2max(Rx)I]v = λ2max(Rx)‖v‖22 has been used in

(d).

Now we focus on (A.3b), which can be written as

L(w(k+1),v(k+1),u(k))− L(w(k),v(k),u(k))

=[L(w(k+1),v(k+1),u(k))− L(w(k+1),v(k),u(k))]

+ [L(w(k+1),v(k),u(k))− L(w(k),v(k),u(k))]

(a)

≤
[
<{〈∇vL(w(k+1),v(k+1),u(k)),v(k+1)−v(k)〉}−

γv

2
‖v(k+1) − v(k)‖22

]
+
[
<{〈ζw,w(k+1) −w(k)〉}−

γw

2
‖w(k+1)−w(k)‖22

]
(b)
= − γv

2
‖v(k+1) − v(k)‖22 −

γw

2
‖w(k+1)−w(k)‖22

(c)
= −

[
λmin(Rx) +

ρ

2

]
‖v(k+1) − v(k)‖22 −

γw

2
‖w(k+1) −w(k)‖22,

where in (a) we have used the fact that L(w,v,u) is strongly convex w.r.t. v and w,

with parameters γv > 0 and γw > 0, respectively [RB16], ∇vL(w(k+1),v(k+1),u(k)) =

2Rxv(k+1) − ρ(w(k+1) − v(k+1) + u(k)) and ζw ∈ ∂wL(w(k+1),v(k),u(k)); in (b) we have

used the optimality conditions of Problems (3.12b) and (3.12a); in (c) we have used

γv = 2λmin(Rx) + ρ, which is due to the facts that the objective function L(w,v,u) is

twice continuously differentiable w.r.t. v, and thus its strong convexity parameter γv

satisfies ∇2
vL(w,v,u) � γvI for all v [RB16].
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By substituting the above two inequalities back to (A.3), and denoting λmax(Rx) and

λmin(Rx) as λmax and λmin for brevity, respectively, we have

L(w(k+1),v(k+1),u(k+1))− L(w(k),v(k),u(k))

≤
[

4

ρ
λ2max − λmin −

ρ

2

]
‖v(k+1) − v(k)‖22︸ ︷︷ ︸

(i)

− γw

2
‖w(k+1) −w(k)‖22︸ ︷︷ ︸

(ii)

.

We have the following discussions regarding the two terms in the above inequality, i.e.,

(i) and (ii).

• We observe that if ρ < −
√
λ2min + 8λ2max − λmin, which should be deleted as

ρ > 0, or ρ >
√
λ2min + 8λ2max − λmin, the coefficient 4

ρ
λ2max−λmin− ρ

2
< 0 and thus

(i) ≤ 0. Furthermore, because of
√
λ2min + 8λ2max−λmin < λmin+2

√
2λmax−λmin =

2
√

2λmax, we have the first conclusion that as long as ρ ≥ 2
√

2λmax, (i) ≤ 0.

• Obviously, (ii) ≥ 0 thanks to γw > 0.

To sum up, L(w(k+1),v(k+1),u(k+1)) − L(w(k),v(k),u(k)) ≤ (i) − (ii) ≤ 0, as long as

ρ ≥ 2
√

2λmax(Rx).

A.3 Proof of Lemma 3.2

Note that the augmented Lagrangian function satisfies

L(w,v,u)

=λ‖w‖1 + vHRxv +
ρ

2
‖w−v+u‖22 −

ρ

2
‖u‖22

(a)
= λ‖w‖1 + vHRxv +

ρ

2
‖w−v+u‖22 −

ρ

2

∥∥∥∥2

ρ
Rxv

∥∥∥∥2
2

(b)

≥ λ‖w‖1 + vHRxv +
ρ

2
‖w−v+u‖22 −

2

ρ
vH[λ2max(Rx)I]v

=λ‖w‖1 + vH

(
Rx−

2

ρ
λ2max(Rx)I

)
v +

ρ

2
‖w−v+u‖22

(c)

≥ 0,

where in (a) we have used u = 2
ρ
Rxv

(
which is the result by combining (3.12c) and

(3.13)
)
; in (b) we have used the inequality ‖Rxv‖22 = vHRH

x Rxv ≤ vH[λ2max(Rx)I]v;
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and inequality (c) holds if Rx− 2
ρ
λ2max(Rx)I � 0, which indicates (3.21). Note that

inequality (c) is not tight, since the `1-norm term and the `2-norm term could be

bounded from below by some large positive value. Therefore, the second term, i.e., the

quadratic term w.r.t. v, has much space to be tuned, which results in the fact that the

lower bound for ρ in (3.21) is not tight.

A.4 Proof of Theorem 3.2

Denote L(w(k+1),v(k+1),u(k+1)) and L(w(k),v(k),u(k)) by L(k+1) and L(k), respectively.

According to Lemmata 3.1 and 3.2, the objective function value sequence {L(k)}
produced by Algorithm 3.1 converges. Further, since sequence {L(k)} converges if ρ

satisfies (3.22), we have L(k+1) − L(k) → 0 as k → ∞. On the other hand, we know

from Appendix A.2 that L(k+1) −L(k) ≤ (i)− (ii) ≤ 0, as long as (3.22) holds, where (i)

and (ii) are defined in Appendix A.2. Therefore, when (3.22) holds and k → ∞, we

have

0 = L(k+1) − L(k) ≤ (i)− (ii) ≤ 0, (A.4)

meaning that (i)− (ii) = 0 or equivalently (i) = (ii). Moreover, we have (i) ≤ 0 when

ρ ≥ 2
√

2λmax(Rx) holds, and (ii) ≥ 0. Combining (i) = (ii), (i) ≤ 0, and (ii) ≥ 0, we

have that (i) = (ii) = 0. This further indicates that

w(k+1) = w(k) and v(k+1) = v(k). (A.5)

As already mentioned in Appendix A.2, u = 2
ρ
Rxv. By jointly considering u = 2

ρ
Rxv

and v(k+1) = v(k) in (A.5), we obtain

u(k+1) = u(k). (A.6)

Moreover, combining (A.6) and u(k+1) = u(k) +w(k+1)−v(k+1) (i.e., Line 5 in Algorithm

3.1) yields

w(k+1) = v(k+1), (A.7)

as k →∞. Equivalently, w(k) = v(k) as k →∞.
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A.5 Proof of Theorem 3.3

The Lagrangian function of (3.11) is given by

λ‖w‖1 + vRxv + µ(|wHa0| − 1) + <{〈y,w−v〉}, (A.8)

where µ and y are Lagrangian dual variables corresponding to the inequality and

equality constraints, respectively. Note that the (Lagrangian) dual variable y and the

scaled dual variable u are related to each other as y = ρu [BPC+11]. A KKT point

(w?,v?) of Problem (3.11), together with the corresponding dual variables µ? and y?,

satisfies [HLR16]

0 = 2Rxv
? − y?, (A.9a)

w? ∈ arg min
w

{
λ‖w‖1 + µ?(|wHa0|2 − 1)

+<{〈y?,w−v?〉}

}
, (A.9b)

w? = v?. (A.9c)

Our aim is to show any limit point of Algorithm 3.1, referred to as (w(k+1),v(k+1),u(k+1))

or (w(k+1),v(k+1),y(k+1)/ρ), satisfies (A.9). Firstly, note that Line 4 in Algorithm 3.1

indicates

2Rxv(k+1) − ρ(w(k+1) − v(k+1) + u(k)) = 0. (A.10)

Jointly considering (A.6), (A.7), (A.10), and y(k+1) = ρu(k+1) yields 2Rxv(k+1)−y(k+1) =

0, which is (A.9a). Additionally, (A.7) shows that (A.9c) is also achieved.

Now we turn to (A.9b). According to (3.12a), we have: w(k+1)

= arg min
w

λ‖w‖1+
ρ

2
‖w−v(k)+u(k)‖22 s.t. |wHa0| ≥ 1

(a)
= arg min

w
λ‖w‖1+µ?(|wHa0|−1)+

ρ

2
‖w−v(k)+u(k)‖22

= arg min
w

{
λ‖w‖1+µ?(|wHa0|−1)+ ρ

2
‖w − v(k)‖22

+ρ
2
‖u(k)‖22+ρ<{〈u(k),w−v(k)〉}

}
(b)
= arg min

w
λ‖w‖1+µ?(|wHa0|−1)+ρ<{〈u(k),w−v(k)〉}

(c)
= arg min

w
λ‖w‖1+µ?(|wHa0|−1)+<{〈y(k+1),w−v(k+1)〉},

where in (a) we have written the constraint into the objective function by involving its

optimal dual variable µ?; in (b) we have utilized the facts that w(k+1) = w(k) = v(k)

at any limit point, and ρ
2
‖u(k)‖22 is a scalar term unrelated to w; in (c) we have used

ρu(k) = ρu(k+1) = y(k+1) and v(k) = v(k+1). This completes the proof of Theorem 3.3.
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Appendix for Chapter 4

B.1 Proof of Theorem 4.1

We calculate the difference between the objective function values in two successive

iterations as

f(Z(k))− f(Z(k+1))

= ‖[Z(k), µI]‖∗ − ‖[Z(k+1), µI]‖∗ + λ
(
‖[Y − Z(k), µ1]‖2,1 − ‖[Y − Z(k+1), µ1]‖2,1

)
= trace

((
Z(k)Z

H
(k) + µ2I

) 1
2

)
− trace

((
Z(k+1)Z

H
(k+1) + µ2I

) 1
2

)
+ λ
(
‖[Y − Z(k), µ1]‖2,1 − ‖[Y − Z(k+1), µ1]‖2,1

)
≥ trace

(
1

2

(
Z(k)Z

H
(k) − Z(k+1)Z

H
(k+1)

)
P(k)

)
+
λ

2
trace

(
Q(k)

[(
Y−Z(k)

)(
Y−Z(k)

)H − (Y−Z(k+1)

)(
Y−Z(k+1)

)H])
(B.1)

= trace

(
1

2
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

HP(k)

)
+ trace

(
(Z(k) − Z(k+1))Z

H
(k+1)P(k)

)
+
λ

2
trace

(
2Q(k)Y(Z(k+1) − Z(k))

H
)

+
λ

2
trace

(
Q(k)(Z(k)Z

H
(k) − Z(k+1)Z

H
(k+1))

)
= trace

(
1

2
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

HP(k)

)
+ trace

(
(Z(k) − Z(k+1))Z

H
(k+1)P(k)

)
+
λ

2
trace

(
2Q(k)Y(Z(k+1) − Z(k))

H
)

+
λ

2
trace

(
Q(k)(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H
)

+ λ trace
(
Q(k)(Z(k) − Z(k+1))Z

H
(k+1)

)
≥ trace

(
(Z(k) − Z(k+1))Z

H
(k+1)P(k)

)
+ trace

(
λQ(k)Y(Z(k+1) − Z(k))

H
)

+ trace
(
λQ(k)(Z(k) − Z(k+1))Z

H
(k+1)

)
(B.2)

= trace
(
(Z(k) − Z(k+1))Z

H
(k+1)(P(k) + λQ(k))

)
+ trace

(
λQ(k)Y(Z(k+1) − Z(k))

H
)

= trace
(
(P(k) + λQ(k))Z(k+1)(Z(k) − Z(k+1))

H
)

+ trace
(
λQ(k)Y(Z(k+1) − Z(k))

H
)

= trace
(
λQ(k)Y(Z(k) − Z(k+1))

H
)

+ trace
(
λQ(k)Y(Z(k+1) − Z(k))

H
)

(B.3)

= 0,

which indicates that f(Z) is a non-increasing function with sequence {Z(k)} generated

by the IRLS procedure (4.10). The first equality is based on the definition of the

objective function in (4.9), and the second equality uses ‖Z‖∗ = trace
((

ZZH
)− 1

2

)
when M < T . Inequality (B.1) holds thanks to Lemmata 4.1 and 4.2. In-

equality (B.2) holds because of trace
(
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

HP
)
≥ 0 and
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trace
(
Q(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H
)
≥ 0, which result from the fact that P and

Q are symmetric matrices and trace
(
XXH

)
= ‖X‖2F ≥ 0. Equality (B.3) holds true

according to the KKT condition, i.e., (P(k) + λQ(k))Z(k+1) = λQ(k)Y.

Since f(Z) is a non-increasing, we have

‖Z(k)‖∗ = trace
((

ZZH
)− 1

2

)
< trace

((
ZZH + µ2I

)− 1
2

)
= ‖[Z(k), µI]‖∗ ≤ f(Z(k)) ≤ f(Z0),

which indicates that the sequence {Z(k)} is bounded in terms of its nuclear norm.

Besides, combining (4.10) and (B.1) yields

f(Z(k))− f(Z(k+1))

≥ trace

(
1

2

(
Z(k)Z

H
(k) − Z(k+1)Z

H
(k+1)

)
P(k)

)
+
λ

2
trace

(
Q(k)

[(
Y−Z(k)

)(
Y−Z(k)

)H − (Y−Z(k+1)

)(
Y−Z(k+1)

)H])
=

1

2
trace

(
(P(k) + λQ(k))(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H
)

≥ 1

2

M∑
i=1

ζi(P(k)+λQ(k))ζM−i+1((Z(k)−Zk+1)(Z(k)−Zk+1)
H) (B.4)

≥ 1

2
ζM(P(k)+λQ(k))‖Z(k)−Zk+1‖2F ≥

1

2
ζmin×‖Z(k)−Zk+1‖2F,

where ζi(·) denotes the ith largest eigenvalue of its input Hermitian matrix, inequality

(B.4) follows from the fact that trace(XY) ≥
∑M

i=1 ζi(X)ζM−i+1(Y) holds for any two

positive semi-definite matrices X and Y ∈ CM×M [LLY15], and in the last inequality,

we have defined ζmin > 0 as the smallest eigenvalue of P(k)+λQ(k) over all k. Summing

all the above inequalities for all k ≥ 0, we have

f(Z0) ≥
1

2
ζmin

∞∑
k=0

‖Z(k) − Z(k+1)‖2F,

which implies that limk→∞ ‖Z(k) − Z(k+1)‖F = 0.
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B.2 Proof of Theorem 4.2

For any matrices Y and Z ∈ CM×T , we have

‖[Y−Z, µ1]‖2,1 =
M∑
i=1

√
‖(Y−Z)i,:‖22 + µ2 ≥

M∑
i=1

|µ| = |µ|M

‖[Z, µI]‖∗ = trace
((

ZZH + µ2I
) 1

2

)
≥
(
trace

(
ZZH + µ2I

)) 1
2 (B.5)

=
(
trace

(
ZZH

)
+Mµ2

) 1
2

≥
(
Mµ2

) 1
2 = |µ|

√
M.

Inequality (B.5) holds because trace
(
X

1
2

)
=
∑

i

√
ζi ≥

√∑
i ζi = (trace(X))

1
2 for any

symmetric matrix X, with ζi being the eigenvalue of X. Therefore, the objective function

in (4.9) is bounded below as f(Z) = ‖[Z, µI]‖∗ + λ‖[Y−Z, µ1]‖2,1 ≥ |µ|(
√
M + λM).

B.3 Proof of Theorem 4.3

Denote the limit point of sequence {Z(k)} as Z(k+1). Then, according to

limk→∞ ‖Z(k) − Z(k+1)‖F = 0 in Theorem 4.1 and (4.10), we have Z(k+1) = λ(P(k+1) +

λQ(k+1))
−1Q(k+1)Y, that is, P(k+1)Z(k+1) + λQ(k+1)(Z(k+1) −Y) = 0. This indicates

that Z(k+1) satisfies the KKT condition. Since Problem (4.9) is convex w.r.t. Z, the

stationary point is globally optimal.

B.4 Proof of Theorem 4.4

Similar to the proof of Theorem 4.1, we calculate the difference between the objective

function values in two successive iterations as

f(Z(k),V(k))− f(Z(k+1),V(k+1))

=
1

2
‖Y−Z(k)−V(k)‖2F −

1

2
‖Y−Z(k+1)−V(k+1)‖2F + λ1‖[Z(k), µI]‖∗ − λ1‖[Z(k+1), µI]‖∗

+ λ2‖[V(k), µ1]‖2,1 − λ2‖[V(k+1), µ1]‖2,1

≥ 1

2
‖Y−Z(k)−V(k)‖2F −

1

2
‖Y−Z(k+1)−V(k+1)‖2F + λ1 trace

(
1

2

(
Z(k)Z

H
(k) − Z(k+1)Z

H
(k+1)

)
P(k)

)
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+
λ2
2

trace
(
Q(k)

(
V(k)V

H
(k) −V(k+1)V

H
(k+1)

))
=

1

2
‖Y−Z(k)−V(k)‖2F −

1

2
‖Y−Z(k+1)−V(k+1)‖2F + λ1 trace

(
1

2

(
Z(k) − Z(k+1)

)(
Z(k) − Z(k+1)

)H
P(k)

)
+ λ1 trace

((
Z(k) − Z(k+1)

)
ZH

(k+1)P(k)

)
+
λ2
2

trace
(
Q(k)

(
V(k) −V(k+1)

)(
V(k) −V(k+1)

)H)
+ λ2 trace

(
Q(k)(V(k) −V(k+1))V

H
(k+1)

)
(B.6)

≥ 1

2
trace

(
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H + (V(k) −V(k+1))(V(k) −V(k+1))
H
)

+ trace
(
(Z(k+1)−Y)(Z(k) − Z(k+1))

H + (V(k+1)−Y)(V(k) −V(k+1))
H + Z(k)V

H
(k) − Z(k+1)V

H
(k+1)

)
+ λ1 trace

((
Z(k) − Z(k+1)

)
ZH

(k+1)P(k)

)
+ λ2 trace

(
Q(k)(V(k) −V(k+1))V

H
(k+1)

)
=

1

2
trace

(
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H + (V(k) −V(k+1))(V(k) −V(k+1))
H
)

+ trace
(
Z(k)V

H
(k) − Z(k+1)V

H
(k+1)

)
+ trace

(
−V(k)(Z(k) − Z(k+1))

H
)

+ trace
(
−Z(k)(V(k) −V(k+1))

H
)

=
1

2
trace

(
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H + (V(k) −V(k+1))(V(k) −V(k+1))
H
)

+ trace
(
(Z(k) − Z(k+1))(V(k+1) −V(k))

H
)

=
1

2
trace

(
(Z(k) − Z(k+1) −V(k) + V(k+1))(Z(k) − Z(k+1) −V(k) + V(k+1))

H
)

=
1

2
‖Z(k) − Z(k+1) −V(k) + V(k+1)‖2F ≥ 0,

which indicates that f(Z,V) is a non-increasing function. Since f(Z,V) is non-

increasing, we have

min{λ1, λ2}
(
‖[Z(k), µI]‖∗ + ‖[V(k), µ1]‖2,1

)
≤ λ1‖[Z(k), µI]‖∗ + λ2‖[V(k), µ1]‖2,1
≤ f(Z(k),V(k)) ≤ f(Z0,V0).

Hence, ‖Z(k)‖∗ + ‖V(k)‖2,1 < ‖[Z(k), µI]‖∗ + ‖[V(k), µ1]‖2,1 ≤ f(Z0,V0)
min{λ1,λ2} , which shows

that {(Z(k),V(k))} is bounded.

Besides, combining (4.15) and (B.6) yields

f(Z(k),V(k))− f(Z(k+1),V(k+1))

≥ λ1
2

trace
((

Z(k) − Z(k+1)

)(
Z(k) − Z(k+1)

)H
P(k)

)
+
λ2
2

trace
(
Q(k)

(
V(k) −V(k+1)

)(
V(k) −V(k+1)

)H)
+

1

2
trace

(
(Z(k) − Z(k+1))(Z(k) − Z(k+1))

H
)

≥ λ1
2

trace
((

Z(k) − Z(k+1)

)(
Z(k) − Z(k+1)

)H
P(k)

)
+
λ2
2

trace
(
Q(k)

(
V(k) −V(k+1)

)(
V(k) −V(k+1)

)H)
≥ λ1

2

M∑
i

ζi(P(k))ζM−i+1((Z(k)−Z(k+1))(Z(k)−Z(k+1))
H)

+
λ2
2

M∑
i

ζi(Q(k))ζM−i+1((V(k)−V(k+1))(V(k)−V(k+1))
H)
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≥ λ1
2
ζ
(P)
min × ‖Z(k)−Z(k+1)‖2F +

λ1
2
ζ
(Q)
min × ‖V(k)−V(k+1)‖2F,

where ζ
(P)
min and ζ

(Q)
min are the smallest eigenvalues of P(k) and Q(k), respectively, over all

k. Summing all the above inequalities for all k ≥ 0, we have

f(Z0,V0) ≥
λ1
2
ζ
(P)
min

∞∑
k=0

‖Z(k) − Z(k+1)‖2F +
λ2
2
ζ
(Q)
min

∞∑
k=0

‖V(k) −V(k+1)‖2F,

which implies that limk→∞ ‖Z(k) − Z(k+1)‖F = 0 and limk→∞ ‖V(k) −V(k+1)‖F = 0.

B.5 Proof of Theorem 4.5

Considering the inequalities in Appendix B.2 and ‖Y − Z −V‖2F ≥ 0, we can prove

that the objective function in (4.13) is bounded below as f(Z,V) = 1
2
‖Y−Z−V‖2F +

λ1‖[Z, µI]‖∗ + λ2‖[V, µ1]‖2,1 ≥ |µ|(λ1
√
M + λ2M).

B.6 Proof of Theorem 4.6

Denote the limit point of the sequence {(Z(k),V(k))} as (Z(k+1),V(k+1)). Then, according

to limk→∞ ‖Z(k) − Z(k+1)‖F = 0 and limk→∞ ‖V(k) −V(k+1)‖F = 0 in Theorem 4.4 and

(4.15), we have {
Z(k+1) = (I + λ1P(k+1))

−1(Y −V(k+1))

V(k+1) = (I + λ2Q(k+1))
−1(Y − Z(k+1)),

which is the KKT condition of Problem (4.13). Since Problem (4.13) is convex w.r.t. Z

and V, the stationary point is globally optimal.
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ADMM alternating direction method of multipliers

APG accelerated proximal gradient

B&B branch and bound

CPU central processing unit

CRB Cramér–Rao bound

DFT discrete Fourier transform

DOA direction-of-arrival

ESPRIT estimation of signal parameters via rotational invariance techniques

G-LASSO group least absolute shrinkage and selection operator

INR interference-to-noise ratio

IRLS iteratively reweighted least squares

KKT Karush-Kuhn-Tucker

LASSO least absolute shrinkage and selection operator

LR2SD low-rank and row-sparse decomposition

LRCSD low-rank and column-sparse decomposition

LRSD low-rank and sparse decomposition

MIMO multiple input multiple output

MIP mixed-integer programming

ML maximum likelihood

MUSIC multiple signal classification

MVDR minimum variance distortionless response

PCD probability of correct detection

RF radio-frequency

RIP restricted isometry property

RMSE root-mean squared error

ROI region of interest

RPCA robust principal component analysis

SCA successive convex approximation

SDR semidefinite relaxation

SDR-V semidefinite relaxation variant

SINR signal-to-interference-plus-noise ratio

SNR signal-to-noise ratio

SOCP second-order cone programming
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SOI signal-of-interest

SVD singular value decomposition

SVT singular value thresholding

TDL tapped delay line

ULA uniform linear array

w.r.t. with respect to
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The most important symbols in the dissertation are listed in alphabetical order.

0 all-zero vector of appropriate length

1 all-one vector of appropriate length

1M M ×M all-one matrix

C set of complex numbers

card(·) cardinality of a set

diag{·} returns a diagonal matrix whose main diagonal is given in the bracket

E{·} expectation

I identity matrix of appropriate dimension

IM M ×M identity matrix

={·} imaginary part of its input variable

 imaginary unit

max{a, b} maximum value between a and b

min{a, b} minimum value between a and b

P{·} principal eigenvector

R set of real numbers

rank(·) rank of a matrix defined as rank(Z) , card({σi(Z)})
<{·} real part of its input variable

sign(·) sign function

s.t. subject to

trace{·} matrix trace

vec{·} vectorization operator

Vi,: the ith row of V

X � 0 X is positive semidefinite

X � Y X−Y is positive semidefinite

λmax(·) the largest eigenvalue

λmin(·) the smallest eigenvalue

σi(·) the i-th largest singular value

·−1 matrix inverse

·H Hermitian transpose

·T transpose

·∗ complex conjugate

� Khatri-Rao product
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� element-wise multiplication

� element-wise division

| · | element-wise absolute value

‖ · ‖0 `0-quasi-norm counting the non-zero entries of the input vector

‖ · ‖1 `1-norm of a vector

‖ · ‖2 `2-norm of a vector

‖ · ‖2,0 `2,0 mixed-norm of a matrix defined as ‖V‖2,0 , card({‖Vi,:‖2})
‖ · ‖2,1 `2,1 mixed-norm of a matrix defined as ‖V‖2,1 ,

∑M
i=1 ‖Vi,:‖2 with

V ∈ CM×T

‖ · ‖F Frobenius norm of a matrix

‖ · ‖∗ Nuclear norm (sum of singular values) of a matrix

(·)+ element-wise plus function

〈x,y〉 inner product of x and y

≥ element-wise greater than or equal to

≤ element-wise less than or equal to

> element-wise greater than

< element-wise less than

� much larger than

� much less than
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