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Zusammenfassung

Die Vorhersage von Rissen in duktilen Materialien ist ein wichtiges Ziel der Bruchmechanik mit zahlreichen
Anwendungen in der Strukturanalyse und der Mechanik. Diese Arbeit befasst sich mit zwei verschiede-
nen Methoden zur Modellierung solcher Probleme, die erfolgreich fiir elastische Materialien eingesetzt
wurden und in den letzten Jahren die Aufmerksamkeit im Forschungsgebiet der Bruchmechanik auf sich
gezogen haben. Die erste Methode nutzt den Ansatz der Konfigurationskrafte und betrachtet mogliche
Erweiterungen auf elastisch-plastische Materialien mit isotroper und kinematischer Verfestigung. Die
Analyse von numerischen Beispielen macht allerdings deutlich, dass diese Methode im Allgemeinen nicht
geeignet ist. Dies macht sich dadurch bemerkbar, dass mathematisch die resultierenden Formulierungen
von J-Integralen pfadabhingig sind, und physikalisch durch die Erkenntnis, dass es nicht einfach ist, eine
Rissantriebskraft eindeutig zu definieren. Daher wird eine zweite Methode angewandyt, die die Rissausbrei-
tung fiir duktile Materialien im Rahmen von Phasenfeldtheorien und nicht-konventioneller Thermodynamik
behandelt. Auch hier wird Plastizitdt mit isotroper und kinematischer Verfestigung angenommen. Numeri-
sche Beispiele und physikalische Uberlegungen legen nahe, die Methoden und Konzepte der traditionellen
Kontinuumsschiadigungsmechanik als Grundlage fiir die konstitutive Modellierung zu verwenden. Darauf
aufbauend wird ein neues Phasenfeldmodell fiir duktile Rissausbreitung vorgeschlagen. Die Fahigkeiten
des Modells werden anhand von ein-, zwei- und dreidimensionalen Beispielen iiberpriift, die mit Hilfe von
finiten Elementen berechnet wurden. Die Analyse dieser Beispiele zeigt, dass das vorgeschlagene Modell
gut fiir die Berechnung von Risspfaden in duktilen Materialien unter komplexen und insbesondere unter
zyklischen Lasten geeignet ist.
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Abstract

Crack propagation in ductile materials is a major objective of fracture mechanics with numerous applications
in structural analysis and engineering mechanics. The thesis is concerned with two different methods of
modelling such issues, which have been employed successfully for problems in elasticity and have drawn
attention in the fracture mechanics community in the recent years. The first one utilises the configurational
forces approach and considers possible extensions to elastic-plastic materials with isotropic and kinematic
hardening. The analysis of calculated examples makes clear that this method is generally not an appropriate
one. Mathematically, this becomes noticeable by the fact that resulting J-integral expressions are path-
dependent and physically, through the knowledge that it is not an easy matter to define a crack driving
force unambiguously. Hence, a second method is applied, which addresses crack propagation for ductile
materials in the frameworks of phase field theories and non-conventional thermodynamics. Again, plasticity
with isotropic and kinematic hardening is supposed. Simulated examples and physical considerations
suggest to employ the methods and ideas of traditional continuum damage mechanics as basis for the
constitutive modelling. Accordingly, a new phase field model for ductile crack propagation is proposed.
The capabilities of the model are verified with reference to one-, two- and three-dimensional examples,
calculated with the finite element method. The analysis of these examples reveals that the proposed model
is well suited for predicting crack propagation in ductile materials, subject to complex and in particular to
cyclic loading conditions.
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1 Introduction

It is a great aim of mechanics to predict crack propagation in structural components under complex loading
conditions. In particular, cyclic loading conditions are very important for practical applications. The
design of constructions based solely on experiments is very time consuming, expensive and cumbersome.
Therefore, it is desirable to have available sophisticated models predicting accurately the material behaviour.
On the other hand, specific experimental programs are necessary for the calibration and validation of such
models.

One of the first, and at the same time one of the most important experimental approaches for metallic
materials undergoing cyclic loadings is the Wohler experiment, cf. Wohler [137, 136] and Radaj and
Vormwald [114] and the references cited there. Adequate incorporation of the Wohler experiments into
theoretical models remains still a major challenge in the field of mechanics. For small loading amplitudes,
i.e. for amplitudes in the subcritical loading regime, a well-established theory is the Paris-Erdogan law,
cf. Paris and Erdogan [112]. This constitutive model is expressed in terms of the cyclic stress intensity factor.
It is known that stress intensity factors can be brought in relation to energetic approaches, as, e.g. the
J-integral proposed by Rice [116] and Cherepanov [38] or the energy release rate introduced by Griffith
[50]. Unfortunately, all these methods are justified only for elastic material behaviour. Appropriate
modifications or extensions of these concepts are necessary and have been proposed in the past, in order to
address components subject to plastic deformations, see, e.g. Vormwald [134] and the references cited
there. The development of such methods is a great challenge, and in particular the prediction of the crack
propagation direction is yet an open question.

Alternative approaches to linear elastic fracture mechanics, proposed in the recent past, are methods based
on configurational forces and on ideas introduced in the framework of phase field theories. Both approaches
have successfully been applied to complex loading histories in the case of elasticity. Configurational forces
have been introduced for the first time by Eshelby [43], in order to describe the material behaviour in the
presence of inhomogeneities, as, e.g. defects or cracks. They are the thermodynamical driving forces for
the motion of existing inhomogeneities in the material. For fracture mechanics problems in elasticity, the
configurational force at the crack tip essentially leads to the J-integral. In the framework of configurational
forces plastic deformations are viewed as inhomogeneities as well. This raises the hope that an extension
of the configurational force method could be appropriate for addressing lifetime predictions for materials
exhibiting plastic deformations. However, such extensions are not a straight forward task and are actually
under investigation.

Phase field theories originate from the Landau-theory on phase transformations, e.g. in two-phase
materials, cf. Landau [80]. This approach is based on the introduction of an order parameter (phase field
variable) distinguishing between the two phases. In order to have a continuous transformation between
the two phases, the energy functional is assumed to depend, besides on the order parameter itself, also
on its spatial gradients. These ideas have been successfully applied also to brittle fracture mechanics, in
order to regularise the sharp crack topology, see, e.g. Bourdin et al. [23]. The major advantage of this
method is that complex crack phenomena, such as crack initiation or kinking and branching of cracks, are
addressed intrinsically without need for additional assumptions. In essence, the phase field variable is the
same as the damage variable in continuum damage mechanics, when the latter is enhanced by gradient




effects. The extension of phase field theories to account for ductile fracture mechanics is topic of ongoing
investigations in the literature that have just started.

Synthesis and structure of the thesis

The present thesis is devoted to a study of ductile crack propagation in metallic materials. It is a cumulative
work, the essential part of which consists of three publications. Two of the publications are already pressed
in journals, while the third has been submitted for publication. For the sake of uniformity and different
from the original publications, consecutive numbering of sections, equations, figures, tables and references
is utilised. Occasionally, footnotes clarify slight deviations from the original publications and provide
additional information. The work is organised in four parts. In part I, some theoretical preliminaries,
concerning fundamental relations in continuum (chapter 2) and fracture mechanics (chapter 3), are
summarised. Subject of the investigations in part II is the description of ductile fracture by means of
configurational forces. The goal is to answer the question, whether or not it is possible to apply the method
of configurational forces to address crack propagation in incremental plasticity adequately. According to
the assumptions made, it is shown that this method fails to address crack propagation under cyclic loading
conditions and hence in general. Therefore, another possibility for modelling crack propagation in ductile
materials is discussed in the framework of phase field theories. This is the object of part III. Opposite to
existing approaches, the formulations are based on non-conventional thermodynamics, which allows a
simple structure of the theory. First (chapter 7), an analysis of commonly used phase field models, extended
to capture elastoplastic material properties, is given. From the results of these investigations it is concluded
that the basic structure of the considered phase field models generally fails to describe appropriately cyclic
plasticity phenomena. The usual way proposed in the literature to model cyclic loading histories, even
in the case of elasticity, is to introduce in the theory so-called fatigue degradation functions, cf. Alessi
et al. [7]. These approaches are rather generalisations of the ideas developed in brittle fracture mechanics,
where the relevant crack propagation mechanism is based on the debonding of atomic planes. In contrast
to that, a phase field theory for elastic-plastic materials exhibiting isotropic and kinematic hardening is
proposed in chapter 9 which accounts for initiation, growth and coalescence of voids, driven by plastic
deformation. The main ideas are adopted from traditional continuum damage mechanics. Calculated
examples demonstrate that this theory is appropriate for crack propagation in ductile materials subject to
complex and in particular to cyclic loading histories. The thesis closes with a summary, discussion and
outlook in part IV.
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2 Basic relations of continuum thermomechanics

In order to highlight the concepts and the assumptions made in the configurational forces and the phase
field approaches to ductile failure, it is convenient to summarise some basic relations of classical continuum
thermomechanics and some methods of fracture mechanics. The formulations are given in a form which is
appropriate for the aims of the thesis. For further material, the reader might consult the text books Ogden
[110], Holzapfel [61], Gurtin et al. [55], Malvern [87], Liu [84], Anderson [11], Kuna [78], Gross and
Seelig [51], Maugin [89], and Radaj and Vormwald [114].

2.1 Kinematics, configurations and deformation of material bodies

Let & be an Euclidean point space with associated Euclidean vector space E and let O be an origin in &.
Then, every point in & might be identified by a location vector in E. In classical mechanics used here, & is
set equal to E so that points and location vectors coincide. A material body is viewed as a set 13 of material
particles X' to which can be assigned a range V in E. A configuration is defined as a map x : B — E,
assigning a vector x to each material particle X" in 3:

X = x=%(X). (2.1)

As usual, the inverse map X ! is assumed to exist. It is common to denote the range V = x(B) also as
configuration. A sequence of configurations parametrised by time ¢,

is called motion of the body. Material bodies will deform when subjected to loads. Mathematically, the
deformation of bodies can be expressed by introducing the notions of reference and actual configuration. The
reference (or Lagrange) configuration is an arbitrary chosen, but fixed, i.e. time independent, configuration.
In that configuration, each material particle X is assigned the point X,

X =xp(X) & X =x5'(X). (2.3)

The range Rr = xr(B) € E is also denoted as reference configuration. For fixed time ¢, the configuration
defined by Eq. (2.2) is called actual (or spatial or Eulerian) configuration. The range R; = x(B,t) € E,
for t = const. is also called actual configuration. An alternative representation of the motion arises by
replacing A" in Eq. (2.2) with the aid of Eq. (2.3):

x =X (x5 (X),t) == x(X, 1) (2.4)
It is supposed that for fixed time ¢ the inverse
X = X(x,1) (2.5)

exists. Two different basis systems in E are commonly used in non-linear continuum mechanics. Let {X;}
be a Cartesian coordinate system in R and {z;} be a Cartesian coordinate system in R, which induce




Figure 2.1: Reference, initial and actual configuration.

the basis systems {E;} and {e;}, respectively. Accordingly, the location vectors X and x obey the component
representations
X= XzEu X = I;€;. (26)

In the following, use is made of the summation convention and, if not stated others, all indices take values
in the range (1,2, 3).

The configuration at time ¢ = 0 is called initial configuration R (see Fig. 2.1). The location vectors in
this configuration are denoted by xy, Xo = Xo(X) = X(X, 0). For the purposes of the thesis it is sufficient to
suppose that initial and reference configuration coincide.

Let (-) = d(-)/dt, so that
OX(X, 1)

ot
denotes the velocity field of the material body. The so-called Eulerian representation of the velocity field
arises by expressing v in terms of x with the aid of Eq. (2.5):

v:=x(X,t) = 2.7)

v=v(X,t). (2.8)
The deformation gradient F is defined by
F(X,t) = 8Xg§’ b _ Grad x(X, t), (2.9)

where Grad denotes the gradient operator with respect to R p. Geometrically, F maps line elements dX in
R g to line elements dx in R, cf. Fig. 2.2,

dx = F(X, t)dX. (2.10)

Equation (2.10) and Fig. 2.2 suggest that F is a two-point, second-order tensor field and accordingly it
obeys the component representation




Figure 2.2: Maps induced by the deformation gradient F.

where ® is the tensor product and

6:@
0X;’
Let dA = mdA and dV be surface and volume elements in R , respectively, where m is a unit vector. The
corresponding elements in R; are denoted respectively by da = nda and dv, where again n is a unit vector,
see Fig. 2.3. The relations between these surface and volume elements are expressed in terms of F and
read

Fij = (2.12)

da= (detF)F'"'dA & n;da = (detF)(F'1);;m;dA, (2.13)
dv = (detF)dV. (2.14)

Here, AT, A~! and det A are the transposed, the inverse and the determinant of a second-order tensor A,
respectively, and AT-! = (AT)~1,
The deformation gradient F can be represented with the help of the displacement vector u,

u=xXt)-X o u=u(Xpt). (2.15)
Then,
ou;
0X;’
where 1 is the second-order unit tensor and ¢;; is the Kronecker delta.

Strain tensors are functions of the deformation gradient F and can be introduced by considering scalar
differences, as, e.g. the scalar difference A defined by

F=1+Gradu <& Fjj=0;+ (2.16)

1

A=l (dx-dx —dX-dX) =dX- [2 (F'F - 1)} dXx, (2.17)

T2
where - signifies the scalar product between two vectors. According to this definition, A is a measure for
the change of length of line elements and the tensor
1
G:=_(F'F-1 2.18
 (F'F - 1) 218)

is called Green’s strain tensor.
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Figure 2.3: Surface elements and traction vectors in Rz and R;.

2.2 Mechanical balance laws and stress tensors

Balance laws are mathematical statements which hold for all material bodies irrespective of individual
constitutive properties. The most important mechanical balance laws are the balance of linear and angular
momentum and the balance of mechanical power.

The balance of linear momentum states that the time rate of the linear momentum vector is equal to
the resultant force acting on the body. Omitting acceleration forces this law reduces to the equilibrium
equations of statics and takes the form

/tda~|—/bdv:0. (2.19)

OR Ri

In this equation, b denotes the force per unit volume in R; and t is the traction vector on the boundary OR;.
The traction vector can be expressed on the one hand in terms of the force p acting on the boundary 0R,,

_dp

t =
da’

(2.20)

and on the other hand, according to the Cauchy theorem, in terms of the Cauchy stress tensor o = o (X, )
and the unit normal vector n,

t=o(x,t)n. (2.21)

The balance of angular momentum states that the rate of angular momentum is equal to the resultant
moment acting on the body. This law, together with the balance of linear momentum, is equivalent to the
symmetry of the Cauchy stress tensor,

o=o". (2.22)

By localising Eq. (2.19), and denoting by div the divergence operator with respect to R,
dive +b=0 in Ry, (2.23)

which is the local form of the equilibrium equations.
Alternatively and equivalently, the equilibrium equations can be formulated with respect to R p. To this

end, define the traction vector T by

dp da
=44 at, (2.24)




the first Piola-Kirchhoff stress tensor S = S(X, t) by

T =S(X,t)m, (2.25)
and the force per unit volume in Ry, by, by
br = (detF)b = g‘ib. (2.26)
Then, the equilibrium equation (2.19) may be formulated with respect to Ry as follows:
/ TdA + /bR dV =0. (2.27)
ORR Rp
After localisation,
DivS+br =0 in Rp, (2.28)
where the divergence operator Div is referred to R . From Egs. (2.13), (2.21) and (2.25), it follows that
S = (detF)oF'!,  SFT =Fs’. (2.29)

Note in passing, that o acts on R, whereas S is a two-point tensor and acts on vectors in R g and furnishes
vectors in R;.

Besides the equilibrium equations, the mechanical power can be expressed also with respect to both R
and R;. Let W(R;) be the mechanical power with respect to R, i.e. the power of the external forces t
and b:

W(Ry) = / t-vda + /b -vdw. (2.30)
OR¢ Ri
By using Eqgs. (2.24) and (2.26), this power can be recast with respect to R g:
W(RR) = / T-vdA + /bR-vdV. (2.31)
ORR Rr

The integration operations in the last equation make sense, since, by virtue of Eq. (2.4), the scalar fields in
the integrals may be expressed as functions of X.

2.3 Reynolds transport theorem

Of central importance in continuum mechanics theories is the Reynolds transport theorem, which is useful
when calculating integrals over time dependent regions. Let A = A(X, t) be a scalar field in R; and consider
the integral

A(t) = / A(x, t) do, (2.32)
Q

where the region 2 = Q(t) € R; may be a function of time ¢. According to the Reynolds transport theorem,
the rate A is given by

A= / axg;, D gy + / A(x, t)U,, da. (2.33)
Q 9)

The first term on the right-hand side is a volume integral accounting for the rate of the field A in the interior

of Q). The second term is a surface integral and accounts for the change of A due to a flux through the

surface 052, where U, (x,t), x € 09 is the normal velocity of the boundary surface 0f2. Note that generally,

the surface 02 need not necessarily be a material surface. For a proof of this theorem see, e.g. Liu [84].




2.4 Small deformations

The basic relations summarised above are referred to finite deformations (geometrically non-linear formu-
lation). They are useful only for the geometrical interpretation of configurational forces. The remaining
part of the thesis is concerned with small deformations, which are defined by the condition that the
Euclidean norm of Grad u is very small, i.e. h := ||Gradu|| < 1. In this so-called geometrically linear
case, V. = Rr ~ R, coincide approximately, so that {z;} ~ {X;} and all partial derivatives may be
referred to the coordinates {x;}. To within an error of O(h?), Green’s strain tensor is approximated by the
(infinitesimal) strain tensor €, with components

o 1 8u1 6uj
Eij = 5 ((%:j + 8«%‘) . (2.34)

Moreover, all stress tensors coincide approximately with the Cauchy stress tensor o and all equilibrium
equations become the same as in Eq. (2.23), the component form of which reads

0o

b; = 0. 2.35
Ox; + 0 ( )
Thus, and as v = 1, the mechanical power in Egs. (2.30) and (2.31) becomes
W) = /t~ﬁda+/b~ﬁdv. (2.36)
v 1%

The following fundamental relations of thermodynamics are formulated only for small deformations.

2.5 Conventional thermodynamics (for classical continua)

In addition to the mechanical variables, the description of thermomechanical processes is based on thermal
variables. Let e(x,t) be the internal energy per unit volume, v (x,¢) the free energy per unit volume,
0(x,t) > 0 the absolute temperature and 7(x,¢) the entropy per unit volume. The most important
postulates (balance equations and inequations) in thermodynamics are the first and the second law. In the
absence of inertial terms, the global form of the first (energy) law reads

i /edV =W(V)+Q(V), (2.37)
\%

where Q(V) is the heat power. Neglecting heat supply, Q(V') is given by (cf. Gurtin et al. [55, sec. 26])

Q(V) = —/q-ndA, (2.38)

ov

where q = q(x, ) is the heat flux vector field. In part III non-conventional thermodynamics is supposed, by
adding to Q(V) a further energy flux term accounting for non-locality effects.

Turning back to the conventional thermodynamics discussed here, the second law postulates non-
negativity of the entropy production. It is expressed by the inequality

c(ijt /ndV +/;q¢ni dA >0, (2.39)

\% ov

10



where the left-hand side defines the entropy production in global form. Postulate (2.39) is also known as
Clausius-Duhem inequality. Note in passing, that the non-conventional thermodynamics adopted in part III
postulates the same inequality as second law.

The free energy 1 is related to the internal energy e through the Legendre-transformation

e =1+ no, (2.40)

which implies
/edV—/de—l—/nﬁdV. (2.41)
v 1% 1%

Classical continua satisfy conditions admitting localisation of the governing equations. Proceeding to derive
local forms of the first and second law, it is noted that

d
el = [ ¢ 2.42
& /edV /edV (2.42)
1% 1l v
and -
4 / dv| = / \% (2.43)
ar | ) TV T )1 '
1% 1l v
Thus, by invoking Egs. (2.36) and (2.38), the first law (2.37) may be written in the form
/édV = /O’ijnjiti dA + / biu; dV — /qini dA. (2.44)
v v v v

Using the Gauss theorem on the surface integrals on the right-hand side,

. Ooyj . Ot . 0q
— 50 — o — bty =0. 2.
/[e oz, U Gjﬁmj biti; + 8@] dV =0 (2.45)

By appealing to the equilibrium equations (2.35), the definition of the strain tensor (2.34) and the symmetry
of the stress tensor, the last equation simplifies to

/ [é oty + gj] v — o, (2.46)

and by localisation,
9qi

Dy
The latter is the local form of the first law. Keeping in mind the Legendre-transformation (2.40), the last
equation furnishes

e — J,;jéz'j + =0. (2.47)

dq;
(91'1'

The local form of the second law follows from Eq. (2.39) by taking into account Eq. (2.43):

Uz'jéij - T,Z) — 977 — 9’!7 — =0. (248)

1
14 ov
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Using once more the Gauss theorem, it follows that

i /0
/{ﬁ+a@/)]m/2& (2.50)
aﬂfi
v
and by localisation
h+-a%i{);zo. (2.51)
This local form of the second law can be recast by appealing to Eq. (2.48),
) : .1 00
o€y — Y —nlb — 5%’% > 0. (2.52)

For isothermal deformations and uniformly distributed temperature, i.e. for pure mechanical approaches,
this inequality reduces to a local free energy imbalance (cf. e.g. Gurtin et al. [55, sec. 27]),

oijéi; — P > 0. (2.53)

Stated in words, only a part of the expanded stress power o;;¢;; will contribute to the dissipated work. The
remaining power will contribute to the energy stored in the material.

Material bodies containing sharp cracks do not satisfy the conditions for localisation, so that only global
forms of the equations can be employed. The global counterpart of the last inequality can be established as
follows. When thermal influences are neglected, then the energy law (2.37) reduces to

d
T / edV| =W((V(a)), (2.54)
V(a)
while the second law (2.39) becomes
d / av| > o (2.55)
dt e =5 '
V(a)
or equivalently
9g / dv| >0 (2.56)
V(a)

Next, by taking the time derivative of Eq. (2.41) and keeping in mind that § = 0 everywhere,

d d d
V(a) V(a) V(a)

By combining Egs. (2.54), (2.56) and (2.57),

d

¢(V(a),d) =W(V(a)) - &

/ »dV | >0, (2.58)
V(a)
which is the global counterpart of inequality (2.53). This inequality is the starting point of the thermody-
namical analysis in sec. 5.A where the volume range of the body is denoted by 2.
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3 Concepts of brittle fracture mechanics

There are several concepts which have been introduced for brittle fracture over the past century, whose
understanding is essential for every fracture mechanics theory. The most important of them are Griffith’s
energy release rate, the J-integral and the K'-concept of stress intensity factors. This section provides a
short summary of these concepts for the case of elasticity (brittle fracture). For further information, the
reader is referred to the text books Anderson [11], Kuna [78], Gross and Seelig [51], Radaj and Vormwald
[114], and Maugin [89].

3.1 Griffith's theory for brittle materials

The mechanism of crack propagation in brittle materials is supposed to be the creation of new surfaces
in a body due to separation of atomic planes, cf. Griffith [50]. Whether or not a pre-existing crack will
propagate depends on a global energy balance. Assuming conservative total potential energy of the body;,
Griffith [50] states that a crack will only propagate if the extension of the crack will cause a decrease of
potential energy. This decrease must equal the surface energy of the newly created surfaces, cf. Rice [117].

To illustrate, consider a two-dimensional body occupying the surface region V. The body contains
a predefined crack C, parametrised by its length a = a(t), C = C(a). Denote by II®) the potential
of external forces and by ¢ the free energy per unit volume, so that the potential of internal forces is
o = fV(a) ¥ (e(x,t,a))dV. Thus, the total potential energy of the body is, cf. Bourdin et al. [23], Maugin
[93], Lemaitre and Chaboche [83], and Anderson [11],

TI(t,a) = / P(e(x,t,a))dV + M (t,u(x, t,a)). (3.1)
V(a)

The energy release rate at time ¢ is then defined by

OTI(t, )
Oa '’

and gives the energy per unit crack length, which is available for crack growth. It can be shown, see
Anderson [11, sec. A3.3], that

G(t,a) :=— (3.2)

G(t,a) = / |:¢n1_tiaw] ds, (3.3)

(9:131
oV (a)

where n; is the first component of the outward unit normal n on 0V and ds is the arc length of the boundary
line OV'.

The Griffith criterion states that propagation of the crack may only occur if G equals a critical value G,
known as fracture toughness. Generally, i.e. for three-dimensional problems, this toughness is correlated
to the specific surface energy vs of the material by G. = 2vs. Hence, crack propagation is determined by a
global, energetic criterion and is in particular independent of the strains in the vicinity of the crack tip,
cf. Rice [117]. This macroscopic criterion on the one hand allows a very simple and efficient treatment of
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fracture processes in brittle fracture, which is why it has been successfully applied for almost a century. On
the other hand, it comes at the cost, that a predefined crack must be given, which precludes the description
of complex crack phenomena such as crack initiation or kinking and branching of cracks.

3.2 Stress intensity factors

The near tip stress fields indicate a singularity in the case of linear elastic material behaviour and plane
stress or plane strain states. With respect to a polar coordinate system {r, 6}, with origin at the crack tip,
the asymptotic representation of the stress components for mode I loading has the form, cf. Anderson [11],

ﬂ
\2mr

The coefficient K is the leading term and is called stress intensity factor, while f;; are the angle functions.
Similar representations hold also for mode II and mode III loadings. According to Eq. (3.4), the order of
singularity is of the type r—1/2. For general plane state problems the near tip stress fields are superpositions
of the modi I, IT and III asymptotic representations. Even for general, three-dimensional stress states, the
near tip stress fields may be represented pointwise as superpositions of asymptotic solutions of form (3.4).

Physically, the stress components cannot be singular at » = 0. Therefore, formulas of type (3.4) are
correct only in the vicinity of the crack tip (not at » = 0). Accordingly, the stress intensity factors reflect
indirectly the stress state at » = 0, and have been recognised as fracture mechanics parameters. Fracture
criteria based on stress intensity factors are related to those based on energy release rate, cf. Anderson
[11]. This concept is presented here only for sake of completeness, regarding the classical approaches in
brittle fracture mechanics, and is not relevant for the remainder of the thesis.

oij(r,0) = fij(#) + higher order terms. (3.4)

3.3 J-integral

The integral in Eq. (3.3) is a specific representation of the energy release rate G, first introduced indepen-
dently by Rice [116] and Cherepanov [38]. It turned out to be of central significance in fracture mechanics.
Especially, under certain assumptions, its value is the same for every integration contour I'* surrounding
the crack tip. This suggests to introduce a new fracture mechanics parameter, called the J-integral, defined
by

Ou;
J(t,a) = / [1/1711 — tzazl] ds, (3.5)
F*
so that the value of G(¢, a) is equal to the value of J(t, a),
G(t,a) = J(t,a). (3.6)

The conditions for path-independence are homogeneous body with elastic material behaviour, no volume
forces, straight crack and traction-free crack flanks. For such cases, the J-integral represents also the
thermodynamic crack driving force, cf. also sec. 3.4.

The J-integral is particularly easy to calculate in a finite element procedure, since all necessary quantities
are known anyway during such. Moreover, the path-independence allows a calculation far away from the
crack tip, where the calculated results suffer from numerical inaccuracies due to the stress singularity in
the linear elastic case.
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Vi) =WV UV,

Figure 3.1: Region V' (a) = V4 U V4, containing a crack tip. V; and V> are separated by a contour I'*.

3.4 Dissipation caused by crack propagation

Because of crack propagation, the body geometry will change with time. Moreover, the stresses at the
crack tip are singular, which requires careful handling when evaluating the governing thermodynamical
equations. The appropriate form of the second law for such problems is the global inequality (2.58).
Focusing attention to plane state problems, consider a region V' (a) containing the crack tip, see Fig. 3.1.
Due to the singularities of the near tip stress field, a convenient way to evaluate inequality (2.58),

B(V(a), a) 1= W(V(a))—;it /wdv , 3.7)
V(a)

is to separate V'(a) by a line I'* into two parts V; and Vs, V(a) = V4 UV, (cf. Fig. 3.1). Now, it can be
shown, cf. Maugin [93], that

a, (3.8)

. . ou;
®(V(a),a) = lrl*lr_r}()/ (wnl - axulaijnj> ds

T=

where s is the arc length of I'*. On comparing the term in brackets on the right-hand side with G in
Eq. (3.3), it is concluded that

. ou;
F1*113O <wn1 - 6zlaijnJ-> ds =G(t,a) (3.9
I‘*
and hence
®(V(a),a) =G(t,a)a = J(t,a)a. (3.10)

3.5 Configurational forces

The J-integral in brittle fracture mechanics might be motivated by the calculation of the energy release
rate or the dissipation caused by crack propagation. Another possibility for introducing J-integrals
is the configurational (or material) force approach. The definition of configurational forces can be well
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motivated geometrically by considering the equilibrium equations in a finite deformations setting. Generally,
configurational forces represent the thermodynamic driving forces for any kind of defect or inhomogeneity
in the material.

The advantage of this approach is that it leads to the classical .J-integral in the case of brittle fracture
mechanics. Additionally, it offers possibilities for defining extensions of the J-integral in the case of inelastic
material behaviour, as discussed in part II, as well as to predict the direction of crack propagation, cf.
Maugin [91]. The objective of this section is to provide a geometrical introduction of material forces. The
following formulations go back essentially to Maugin [89].

It has been suggested in sec. 2.2 that the Cauchy stress tensor is a second-order tensor acting on vectors
in R;. Therefore, with respect to the basis {e;} in R, o can be represented in the form

g =0;€ Qe (3.11)
The first Piola-Kirchhoff stress tensor S is defined in Eq. (2.25),
S = (detF)oF' ! = (detF)o;;e; ® (F'e;) . (3.12)

Since Fflej is a vector in R g, see Fig. 2.2, S is a two point, second-order tensor, as mentioned in sec. 2.2.
Although Div is a differential operator in Ry, the vectors DivS and by in Eq. (2.28) are in the actual
configuration R;. To see that, let &Ek denote the Nabla-operator in R p and assume for S the component
representation S = S;;e; ® E;. Then,

(‘9Sij

X (3.13)

: 0Si;
DivS = axz (e; ®E;) [Ex] =

which is a vector in R;. A true formulation of the equilibrium equations relative to R p may be obtained by
multiplying Eq. (2.28) with FT, cf. Eq. (2.11),

F' (DivS +bg) =0 (3.14)

& (FrunEn @ €p) [(Zf{j + (bR)i> ei] =0 (3.15)

& [anSXj + Fm(bR)i] E,=0 (3.16)

& {;}Xj(ﬂnsij) — ‘?;gsij + Fm(bR)Z-] E, =0. (3.17)

For definiteness, consider an inhomogeneous elastic body, with free energy per unit volume in Ry

Y= Q)(X7t) :@Z}(F(X,t),X), (3.18)
obeying the elasticity law )
- OW(FX)
Sij = oF,; (3.19)

The term 0Fj,/0X; in Eq. (3.17) can be reformulated with the help of Eq. (2.12),

= = . 3.20
00X, 0X,0X; 0X, ( )
Together with the identity
_ ey ~
v _ 00 0Fy , o9 (3.21)

0X,  0F,0X,  0X,’
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Eq. (3.17) may be recast as

O ipogy_ 00 0 oo e
On the other hand, ) )
0 0 o -
Y = - (¥0n;), (3.23)

X, 0X; "V 90X,

so that, after substitution into Eq. (3.22),

0 _ o
— (FinSij — j —+F i| E, =0. 2
lﬁX]( ZnS’LJ wén]) + 8Xn + m(bR)z] n 0 (3 4)
This suggests the following definitions:
C:= Y1 —F'S = (¢0,; — FinSij)En @ E; = C,;E, @ E;, (3.25)
. o o .
inh .__ — _ inh
= X 8XnE" fnEny, (3.26)
foulk.— _FTb, = —(F},.(b,):)E, = fPUKE,. (3.27)

To conclude, applying these definitions, the equilibrium equations (3.24) take the form

DivC + finh | gbulk _ g (3.28)
aC,; .
&= X? + finh 4 pbule _ . (3.29)
J

The stress tensor C acts only on vectors in Rz and is referred to as Eshelby or energy-momentum tensor.
The volume forces fi"! and Pk are vectors in R i and are called material (configurational) volume force
due to inhomogeneities in the material body and material (configurational) volume force due to external
loads, respectively. The name material force is motivated by the fact that these forces act on the reference
configuration R i, which is referred to as material configuration, whenever the material body B itself
is identified by Ry, cf. Gurtin [54] and Maugin [89]. Similarly, the equilibrium equations (3.28) and
(3.29) are called material equilibrium equations since they are referred to the material configuration. This
accomplishes the geometrically motivated introduction of configurational forces.

The theory presented in part II is referred to small deformations. In this case, all configurations coincide,
Xy =~ i, Div &~ div, Grad ~ grad, b ~ by and all stress tensors can be set equal to o. The free energy in
Eq. (3.18) is then expressed in terms of the infinitesimal strain ¢,

v =%, 1) = P(e(x,1),%), (3.30)
and C, finh fPulk become
C~ 91— (1+gradu)’e =41 — (gradu)’ — o, (3.31)
finh ~ —gi = —grad v, (3.32)
fouk ~ (1 4 gradu)™ = —(gradu)™b — b. (3.33)
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After substitution of these equations into the material equilibrium equation (3.28),

div (41 — (gradu)”o) — grad+ — (gradu)™b — (dive + b) = 0,

and by virtue of Eq. (2.35),

DIVC + finh + fbulk — 0
dC,;
0X,;

o + fqi—bnh + f’sulk — O,

where now, in the small deformation setting,

C:=11— (gradu)’o,
finh .— _grad ),

foulk .— _(gradu)"b.

(3.34)

(3.35)
(3.36)

(3.37)
(3.38)
(3.39)

These equations are derived in sec. 5 directly, by multiplying the equilibrium equations (2.35) with

(gradu)T.

The relation to the J-integral may be established by taking the surface integral of Eq. (3.36) over the area
V4, see Fig. 3.1. For simplicity, V5 is supposed to be a disk with radius r. Let FP be the configurational

force per unit length, owing to fi"" with components
Fip =1lim [ fitdvs.
n r—0 fn 2

Vs

Next, neglect forces f*** and take the surface integral of Eq. (3.36) over V3,

r—0

lim / 9Chi qyy + Fiip — .
6.%'j
Vs

By using the Gauss theorem and Egs. (3.37), (2.21),

: . . o
FiP=—lim [ Cyyn;ds =~ lim (1/mn - ajt") ds.
n
8V2 8V2

Of interest is the first component of this formula,
Fi? = - lim (zbnl - g;fiti) ds.
Since n; = 0 and ¢; = 0 on the crack flanks, cf. Fig. 3.1, the last integral reduces to
Fip— lim / (1/1711 - gziti> ds.
s

Evidently, this result holds for arbitrary lines I', implying that, cf. sec. 3.3,

FiP— _J

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)
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3.6 Phase field models for brittle fracture

Phase field models were introduced in fracture mechanics independently by several authors, see, e.g. Franc-
fort and Marigo [45], Bourdin et al. [22, 23], Buliga [27], Aranson et al. [14], and Karma et al. [66]. Here,
the procedure of Bourdin and co-authors will be outlined briefly.

To overcome the limitations of the classical Griffith theory mentioned in sec. 3.1, Francfort and Marigo
[45] reformulated the theory in an equivalent, variational setting, based on energy minimisation principles.
Whether or not a crack propagates is determined on the basis of minimisation of the total energy functional
with respect to the displacement field and the crack configuration: Crack propagation will only occur, if the
propagation leads to a decrease in total energy. The major benefit of this equivalent formulation of Griffith’s
theory is that it allows to generalise the original theory by dropping the requirement of a predefined crack.
Postulating the energy minimisation principle to hold always, the crack will propagate along the path that
leads to the least total energy in the body. Even if no crack is predefined at all, one will initiate if it causes
a decrease in total energy. Complex crack phenomena can therefore be dealt with in the framework of this
theory.

Although the variational formulation is in principle able to handle the drawbacks of the initial theory,
it comes at the cost, that the crack path and displacement field are now unknown. The mathematical
problem at hand, a so-called free discontinuity problem, is very challenging to solve, if possible at all, due
to the fact that the displacement field is discontinuous at the (unknown) crack geometry. This kind of
mathematical interfacial problem is encountered very often in all kinds of research disciplines, e.g. in the
theory of phase transitions (cf. Landau [80]) and phase separations (cf. Cahn [28]), solidification dynamics
(cf. Fix [44] and Langer [81]), supraconductors (cf. Ginzburg and Landau [48]), and many more, and
the same solution procedure can be applied to all these cases. In order to avoid the mentioned difficulties,
following the suggestion of, e.g. Bourdin et al. [22] or Buliga [27], the crack surface is regularised, i.e. an
order parameter (phase field variable) D € [0, 1] is introduced to distinguish continuously between broken
(D = 1) and intact (D = 0) material states. The sharp crack topology is thus replaced by a smeared crack,
so that no discontinuities arise in the displacement field across the crack. The width of this smeared crack,
i.e. the amount of regularisation, is determined by a so-called length scale parameter /.

For the calculation of the surface energy of the smeared crack, a functional proposed in Mumford and
Shah [106] and further developed by Ambrosio and Tortorelli [9] in the context of image segmentation is
utilised. Accordingly, the surface energy of a sharp crack I, given by

U (T) = / G.dA, (3.46)
r
can be approximated with the help of the functional
U () ~ U (D) = gz (D? + 1?||VDJ]?) av. (3.47)
v

Based on arguments of so-called I'-convergence, it can be shown that the solution of the regularised
variational problem converges to the classical Griffith solution in the limiting case of I — 0, cf. Braides [24].
The displacement and phase field are now obtained by solving the minimisation problem in the regularised
setting.

The phase field variable D can be identified with the scalar damage variable in continuum damage
mechanics. Thus, the phase field theory (for fixed parameter /) is nothing but continuum damage mechanics
enhanced by gradient effects.
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Part i

Configurational force approach to ductile
fracture
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4 Objectives of the first paper

The J-integral was introduced in sec. 3.3 as one of the central parameters for the characterisation of brittle
fracture. There are two key aspects for the significance of the J-integral: 1) Path-independence in the
case of homogeneous, elastic material behaviour and 2) applicability beyond the limits of brittle fracture
mechanics, when proportional loading conditions prevail and inelastic material behaviour is approximated
with a non-linear elastic constitutive law (also known as deformation plasticity). Unfortunately, these
prerequisites are not met in the case of ductile materials under cyclic loading. Several possibilities to solve
this issue are discussed, e.g. in Vormwald [134]. However, there are again theoretical limitations for the
applicability of the concepts and the definition of the crack driving force is not always clear (cf. related
remarks in [134]). Besides that, the prediction of crack paths, especially in the case of non-proportional
and/or mixed-mode loading conditions is still a great challenge.

This part consists of a paper which aims to investigate, if ductile crack growth can be addressed adequately
within the framework of configurational forces. For elastic problems, the configurational force at the crack
tip provides the driving force for the motion of the crack tip and is equal to the J-integral. The main focus of
this part is on the proper definition of the thermodynamic crack driving force in incremental plasticity under
cyclic loading conditions. From the thermodynamic analysis given for elastic-plastic material behaviour, it
can be inferred that the crack driving force should account, besides for the motion of the crack tip, also
for the movement of the plastic zone. Three possibilities for J-integral definitions are then proposed with
regard to the equilibrium equations of material forces (cf. Eq. (3.35)). It is shown that, different to the
elastic case, plastic deformations now induce a volume distributed configurational force which renders the
J-integrals to be path-dependent. The identification of the plastic zone associated with crack propagation
is therefore of major importance for the unambiguous definition of a crack driving force.

The three proposed J-integrals are examined with the help of finite element calculations, which are
referred to a Compact Tension-specimen under cyclic loading conditions. Plasticity with isotropic and
kinematic hardening is supposed to apply. Unfortunately, the analysis suggests, at least for the considered
cases, that the configurational forces method fails to describe appropriately the complex phenomena of
fracture in plasticity.
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Abstract The configurational force concept is known to describe adequately the crack driving force
in linear fracture mechanics. It is unclear however, if and how the crack driving force can be defined
in the case of elastic-plastic material properties. In metal plasticity, many materials exhibit hardening
effects when sufficiently large loads are applied. Von Mises yield function with isotropic and kinematic
hardening is a common assumption in many models. Kinematic and isotropic hardening turn out to be
very important whenever cyclic loading histories are applied. This holds equally regardless of whether the
induced deformations are homogeneous or non-homogeneous. The aim of the present paper is to discuss
the effect of non-linear isotropic and kinematic hardening on the response of the configurational forces
and to provide suitable concepts for the thermodynamic description of elastic-plastic fracture problems.
Further, the applicability of the shown concepts is discussed.

Keywords Configurational forces, J-integral, Elastic-plastic fracture mechanics, Crack driving force,
Incremental plasticity

5.1 Introduction

The well-known J-integral was first introduced independently by Cherepanov and Rice [38, 116] as a path-
independent integral for two-dimensional crack problems. Especially Rice’s works on the topic promoted
the application of the J-integral, regarding the fact that J was easily calculated in terms of the finite
element method. The path-independence holds particularly in the elastic case (among other assumptions),
where stresses can be derived from a potential. If so, J was shown to be equal to the energy-release
rate and therefore to be equal to the thermodynamic crack driving force. The path-independence of the
J-integral can be maintained even in the plastic regime, if the elastic-plastic material law can be idealized
as a non-linear elastic material law. The latter is also known as deformation theory of plasticity. This
assumption holds only true as long as proportional loading conditions prevail. However, these conditions
are not met if crack growth takes place, where local unloading in front of the crack tip occurs, or cyclic
loading conditions are applied. Therefore, incremental plasticity has to be used and, consequently, the
J-integral becomes path-dependent in these cases.
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A lot of effort was made in the past to maintain the path-independence of the .J-integral by adding
further terms, to account for possible non-proportional loading conditions, plastic deformations, body
forces, and other sources, that lead to the described path-dependence, see e.g. [121, 16, 71] and the works
cited there. However, these concepts often lack of physical significance. In particular, it is not clear if and
how, the thermodynamic crack driving force can be defined for such cases.

The concept of configurational forces on the other hand, is known to adequately describe thermodynamic
driving forces for any kinds of defects and inhomogeneities in a body. The concept is based on the pioneering
works of John D. Eshelby, who first defined the (configurational) force on an elastic singularity [43],
following further works on what he called Maxwell tensor of elasticity and later energy-momentum tensor,
today in his honour also called as Eshelby tensor. In his work, he defined the force on the elastic singularity
as the negative gradient of the total potential energy of the body with respect to the position of the defect.
Equivalent names that were adopted later in the literature are among others configurational force, material
force, and (thermodynamic) driving force. Other authors who should be mentioned for their contributions
to this topic are Maugin ([89] and the works cited there), Gurtin ([52] and the works cited there), Kienzler
and Herrmann [70] and Miiller et al. [104, 105]. As all these authors point out, it is important to distinguish
between the well-known Newtonian forces, which are associated with deformations in the physical space, as
it is referred to, and configurational forces, associated with deformations in the material space. Accordingly,
the two described force systems are acting parallel to each other. As it turns out, the J-integral in the
elastic regime as described above, is nothing more than a configurational force acting on the crack tip.

The purpose of this paper is therefore to investigate, whether or not it is possible to extend the J-integral
concept to incremental plasticity material models, when the necessary conditions for path-independence are
not met. To achieve this, the concept of configurational forces shall be invoked, since its applicability is not
confined on a specific constitutive law. Special attention in this context will be given to the thermodynamic
analysis of this case, in terms of evaluation of the second law of thermodynamics during crack growth.
Possible J-integral concepts will finally be discussed on the basis of a finite element analysis of a Compact
Tension-specimen.

5.2 Chaboche plasticity model

In the following, all tensorial components are referred to a Cartesian coordinate system {z;} and the
summation convention about repeated indices applies. Confining on small, isothermal deformations,
plasticity models usually suppose the additive decomposition of the strain tensor € into elastic and plastic
parts, €€ and P,

€ij = €55 + sfj, (5.1)

to apply. The strain tensor is calculated as the symmetric part of the displacement gradient

- 1 8u1 6uj

Moreover, in metal plasticity the assumption is often made, that the elasticity law is independent of the
previous plastic deformations, suggesting for the free energy per unit volume ¢ a decomposition of the
form

¥ =X, 1) = P(e(x,1),q,%) = 1 (e%,%) + ' (q,X). (5.3)

. . ~ . . . ~h, . .
In this equation, ¥° denotes the elastic energy in the material, ¢ is the energy stored in the material
due to hardening effects and q denotes a set of scalar and tensorial hardening variables. Using standard
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methods of thermodynamics the elasticity law

o _ oY

= e e
Oei;  Oe;

(5.4)

Uij

can be established, where o is the Cauchy stress tensor. In the present paper linear isotropic elasticity is

assumed by a quadratic potential /¢ = %5§Cijkleﬁl, with C being the isotropic fourth-order elasticity tensor,

expressed in terms of Young’s modulus E and Poisson’s ratio v. Thus, from Eq. (5.4),
oy = Cijuacyy- (5.5)

Chaboche’s plasticity model is adopted with a von Mises yield function of the form

f = \/g(sij - aij)(Sij - Oéij) —k—R S 0 (56)

where s and « denote the deviatoric stress tensor and the deviatoric back-stress tensor respectively. The
initial size of the yield surface in Eq. (5.6) is denoted by % and the increase in yield surface size is denoted
by R. Further, the associated normality condition for the plastic strain applies,

. . Of
P\ .
6” 6017

(5.7)

Here, A denotes a proportionality factor, which has to be determined by the consistency condition. Kinematic
hardening is modelled by the Armstrong-Frederick law with one back-stress tensor in this paper,

2
3

dij = 2O — yaip, (5.8)

and isotropic hardening is formulated in direct analogy to that by
R=0b(Q - R)p. (5.9)

In Egs. (5.8) and (5.9), C, v, b, Q denote material parameters and p is the plastic arc length defined by

p= %é%éfj. (5.10)
Both hardening rules can be integrated directly for uniaxial loading, leading to an exponential law with
saturation values C'/~y and @ for pure kinematic and pure isotropic hardening respectively.

All boundary value problems in this paper are calculated by the finite element software ABAQUS/CAE
2017. Only pure isotropic and pure kinematic hardening will be discussed. For reasons of comparability,
the material parameters are chosen so, that the uniaxial stress-strain responses for pure isotropic hardening
and pure kinematic hardening are coincident, cf. Fig. 5.1. The elasticity parameters are £ = 200000 MPa
and v = 0.3, the initial yield stress is k = 270 MPa and the uniaxial tensile strength (which corresponds to
the sum of initial yield stress and saturation value for the considered hardening) is 435 MPa.

At this point, some remarks about the implementation of the Chaboche model in ABAQUS should be
made. As mentioned, the above equations hold for small deformations only. But since fracture mechanical
problems are accompanied by large deformations in the vicinity of the crack tip, FE-simulations are carried
out for large deformations for the purpose of this paper. Nevertheless, comparing the material responses
from a uniaxial tensile test for small and for large deformations, leads to the suggestion that the Chaboche

27



o [MPa]

200 |

oL . . e[
0 0.01 0.02

Figure 5.1: Coincident graphs according to pure isotropic and pure kinematic hardening.
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Figure 5.2: Uniaxial material responses. a Uniaxial ratcheting due to pure kinematic hardening. b Uniaxial cyclic relaxation due
to pure kinematic hardening. ¢ Uniaxial cyclic hardening due to pure isotropic hardening.

model is not implemented in ABAQUS for large deformations (the calculated differences in all stress
measures are vanishingly small). It seems, that only the strain measure is changed from e to log(e).
Therefore, later evaluations in terms of configurational forces and J-integrals will be carried out with the
respective equations for small deformations as well.

Some more remarks can be made concerning the material response of the Chaboche model in general.
If uniaxial cyclic strain or stress controlled loading conditions apply, then the stress distributions will
generally depend on the assumed hardening rule. For instance, it is well known for the assumed hardening
laws, that the ratcheting phenomenon due to force controlled loading with non-vanishing mean stress
and the cyclic relaxation phenomenon due to strain controlled loading with non-vanishing mean strain
can be predicted only by the kinematic hardening rule (see Figs. 5.2a,b), whereas the cyclic hardening
phenomenon can be predicted only by the isotropic hardening rule (see Fig. 5.2c). Similar distributions
apply also for corresponding plane strain loading conditions (see Figs. 5.3).

However, there are some distributions for cyclic loading which are not reflected in a similar fashion in
the corresponding plane strain case. As an example, consider stress controlled loading with vanishing
mean stress. According to isotropic hardening, only elastic responses arise for all cycles after the first
unloading (see Fig. 5.4a), whereas stabilized hysteresis loop is predicted by pure kinematic hardening
(see Fig. 5.4b). It can be recognized from Figs. 5.4a-5.4d, that the shape of the stress distributions in
the plane strain case is for pure kinematic hardening similar to that in the uniaxial case. However, this
does not hold for pure isotropic hardening: Different to Fig. 5.4a, there are hysteresis loops present in
Fig. 5.4c. The reason for this behaviour lies within the assumption of plane strain conditions. For a tension
test, loaded in e;-direction in the e;-ez-plane, €33 = 0 holds true. This does not imply, that £§; = 553 =0
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Figure 5.3: Plane strain material responses. a Plane strain ratcheting. b Plane strain cyclic relaxation. c Plane strain cyclic
hardening.

if plastic deformation occurs. On the contrary, due to the requirement of plastic incompressibility, the
out-of-plane strains are e§; = —¢5, # 0 for this case. Together with the von Mises yield criterion, this leads
to the unexpected hysteresis loops in Fig. 5.4c.

On the basis of the above discussions it is clear, that the hardening properties can significantly affect the
predicted material responses. Therefore it is of interest to discuss whether the hardening properties affect
parameters characterizing elastic-plastic fracture mechanics. In view of the results for cyclic loading in this
section, it is natural to expect some effect of the hardening properties on crack parameters. One could also
pose the reverse, perhaps academic question, which crack parameters reflect noticeably different responses
for pure isotropic and pure kinematic hardening, whenever cracks are subjected to cyclic loading. These
issues will be discussed in the remainder of the paper.

5.3 Configurational force approach

Configurational forces are considered to be thermodynamic driving forces for any kind of inhomogeneities
and defects in materials, especially cracks, and can thus be accounted for the description of the behaviour of
such. In general, a configurational, or material, force at a defect can be calculated as the negative gradient
of the total potential energy IT of the body with respect to the location [43].

Although Newtonian and configurational forces are closely connected to each other, it is very important
to distinguish these two. Newtonian forces act in the actual configuration, whereas material forces act in
the reference configuration of a body. Thus, material forces introduce a new system of forces, that acts
parallel to the Newtonian force system.

There are several different ways to introduce the concept of configurational forces. In the following,
Maugin’s direct approach of rewriting the equation of balance of linear momentum is shown in the special
case of small deformations, cf. [89, 105, 90, 41, 93, 42]. Consequently, configurational forces can be
derived by considering the equilibrium equations (neglecting inertia) with body forces per unit volume b,

0ijj + bi =0, (5.11)
and by multiplying with the transposed of the displacement gradient (uk,i)T,
(uri)" 0ijj + (uri) b =0, (5.12)

where (-),j means partial differentiation of (-) with respect to z; and u; are the components of the
displacement vector, cf. Eq. (5.2). Application of the chain rule and taking into account Egs. (5.3) and
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Figure 5.4: Stress distributions due to cyclic loading with vanishing mean stress and corresponding counterparts for plane strain.
a Pure isotropic hardening, uniaxial case. b Pure kinematic hardening, uniaxial case. ¢ Pure isotropic hardening,
plane strain case. d Pure kinematic hardening, plane strain case.

(5.4) leads to

57
(ui,kaij),j — %gij,k -+ ui,kbi =0. (5.13)
ij

On the other hand the gradient of the free energy density ¢ is defined as, cf. Eq. (5.3),

o o N
€ijk T 8fqlqzk (5.14)

(grad )i = V4 = Vu+ e

Inserting Egs. (5.1), (5.4) and (5.14) into Eq. (5.13) with @Zk = @7;7]-(5,{]- (6, denotes the Kronecker-Delta
symbol) finally leads to

_ - Nl
(VOkj — wikoij),j — ¥ g — Uibi — Jq@-,k +oye; = 0. (5.15)
7
The configurational or material balance of momentum can now be introduced as
g + S + R+ 7 =0, (5.16)

with the following definitions of the Eshelby stress tensor C and configurational volume forces due to
inhomogeneities ™" (depicted by the explicit dependence of the energy density ) on the location x),
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Figure 5.5: A two-dimensional body containing a mathematically sharp crack. A circular disk of radius r is drawn around the
crack tip with boundary I" and outward unit normal vector n.

configurational volume forces due to Newtonian volume forces acting in the bulk f®* and configurational
volume forces due to plastic deformation fP,

Crj = @51@' — W k0ij, (5.17)

==y, (5.18)

Fe = —uy b, (5.19)
o

I = o-ijEZPng - 82%’,1@, (5.20)

Configurational volume forces in the bulk completely disappear only in the special case of an elastic body
without any inhomogeneities and without Newtonian volume forces acting in the bulk. Then, and only
then, the Eshelby stress tensor is divergence-free in the bulk, Cy; ; = 0.

As briefly mentioned at the beginning of this section, configurational forces can be used to adequately
describe the behaviour of cracks. This can easily be understood if the connection to Griffiths’s energy-
release rate! G = —0T1/da and Rice’s J-integral is established. Consider a two dimensional, elastic body
containing a mathematically sharp crack without any body forces acting in the bulk and traction-free crack
flanks, as depicted in Fig. 5.5. A global, time-independent Cartesian coordinate system {x;} is introduced
with basis vectors e;. As mentioned above, no material volume force will appear in the bulk in this case.
Since the stresses and strains are singular at the crack tip, the standard and configurational balance of
linear momentum cannot be localized at the tip. Introducing the areas A and D, separated by the contour
I’ with radius r, A surrounding the crack tip and Q2 = AU D, as depicted in Fig. 5.5, the configurational
balances of linear momentum can be evaluated in the bulk D in the local form,

Cj,; = 0, in the bulk D, (5.21)

!In the original paper Irwin’s energy release rate is mentioned, but Griffith’s energy release rate is more appropriate.
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cf. Eq. (5.16), and at the crack tip A in global form [54, 127],

lil‘I(l] / Cijn;ds + ]:,?p = 0, at the crack tip A. (5.22)
T

r
The contour T is chosen for reasons of convenience to be a circle here, as depicted in Fig. 5.5. In general,
the shape can be chosen arbitrarily. From Egs. (5.21) and (5.22) it follows that there is only one single
configurational force F"P inside the body, emanating from the very crack tip.

On the other hand, the J-integral is known to be independent of the integration contour I" and to be
equal to the energy-release rate for the described setting [116, 118],

J=Jr=gG, (5.23)
with
Jr = /Wdl‘g — tiu;ds. (5.24)
r
Here, W denotes the strain energy density,
t
W= /aijéijdt. (5.25)
0

In the case of elasticity, W = 1 holds, and the J-integral can be rewritten with Eq. (5.17) as

JF = /C’ljnjds. (5.26)
r
Moreover, it can be seen from Eq. (5.22), together with Egs. (5.24) and (5.23), that

FiP=— hm/cljnjds =—limJr=-J=-G. (5.27)
r—0 r—0
r
In other words, in the case of a cracked, elastic body without Newtonian body forces acting in the bulk, the
J-integral, Griffith’s energy-release rate G and the e;-component of the configurational force emanating
from the crack tip F,” are equivalent. Moreover, they all describe the thermodynamic driving force for the
propagation of the crack tip through the material.

Uncertainties arise in the case of ductile fracture modelled with incremental plasticity, where the
assumption of an elastic body does not hold any more. It is unclear, if and how the thermodynamic crack
driving force can be defined in such a case. This issue will be addressed in detail in the next section, where
the process of crack propagation is analysed with regard to the second law of thermodynamics and with
regard to the associated thermodynamic driving forces, for brittle as well as for ductile fracture.

5.4 Thermodynamic analysis of crack growth

The aim of this section is to examine the process of crack growth from the point of view of continuum
mechanics with regards to the second law of thermodynamics. The case of brittle fracture has already been
mentioned briefly in the previous section and will be recalled in more detail for better understanding of
the approach in general, and for clarification of some particular aspects and differences in comparison to
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ductile fracture, most importantly concerning the thermodynamic driving force for the propagation of the
crack tip. In this context, the seeming paradox of vanishing energy-release rate and thus vanishing crack
driving force in elastoplastic fracture has often been addressed in literature, and will be of great importance
for this section as well. For this purpose, Rice’s thermodynamic examination of crack growth [118, 117]
together with numerical evaluations confirming his results [67, 94, 95, 25, 73] will be recalled in terms of
the concept of configurational forces and the assumed Chaboche plasticity model.

Consider again a two-dimensional body () containing a mathematically sharp crack. No Newtonian
body forces are acting in the bulk and the crack flanks are assumed to be traction-free. At this point, no
specifications about the constitutive behaviour of the material shall be made. Note, that the area 2 does not
contain the outer boundaries of the body. Evaluating the second law of thermodynamics in the mechanical
version for () leads to the conclusion that there are two sources of dissipation during crack propagation
(cf. [56] and sec. 5.A for more details),

P(Q2) = Ppyk + Prip > 0. (5.28)

The first source is dissipation in the bulk &, caused by inelastic material behaviour. The second is
dissipation due to crack propagation in the material, which is as well an irreversible process.

First, the case of pure elasticity will be discussed. Dissipation in the bulk will then be equal to zero,
Ppuk = 0. In terms of configurational forces, this means that the Eshelby stress tensor C is divergence-free
in the bulk, since there are no Newtonian volume forces acting, no inhomogeneities of any kind or other
sources of dissipation in ). In this particular case, Egs. (5.21) and (5.22) hold true and thus, only one
single configurational force FUP at the very crack tip will appear. Moreover, since configurational volume
forces f vanish, evaluation of Eq. (5.22) is independent of the choice of the contour I". This agrees with the
path-independence of Rice’s J-integral in the case of (possibly non-linear) elasticity. Furthermore, it can
be shown that the dissipation due to crack propagation through the material ®, can be calculated for this
case as [127, 56]

Oyp = G = aJ = —aF,", (5.29)

where we made use of Eq. (5.27). Associated quantities in the dissipation inequality like ¢ and e.g. G
in Eq. (5.29) are thermodynamically conjugate to each other. Otherwise stated, this means that the
energy-release rate and hence, the J-integral and the configurational force at the crack tip as well, is the
thermodynamic driving force for the crack propagation in the case of an elastic material. This agrees with
Rice’s definition of the time rate of energy flow to the crack tip [118].

Next, the case of an elastic-plastic material will be discussed. As long as it is assured, that the load is
increased monotonically and no unloading happens in the body, i.e. proportional loading conditions prevail,
an elastic-plastic material law can be approximated as a non-linear elastic one, also known as deformation
plasticity. Provided that, the same conclusions for the dissipation as in the linear elastic case are obtained
as described above. More precisely, the plastic dissipation in the bulk &y, for a non-linear elastic material
law is zero. Besides that, the authors of [73] have shown, that in terms of configurational forces, this
approximation of the constitutive behaviour leads to physically inappropriate results, even in the case of
proportional loading conditions. Anyhow, it is clear that the above assumptions are severely violated in the
case of cyclic loading conditions or crack growth, where local unloading in the vicinity of the crack tip
does occur even for monotonic loading.

Thus, incremental plasticity has to be used for an adequate modelling of an elastic-plastic specimen.
Evaluation of the Clausius-Duhem inequality again leads to Eq. (5.28). In contrast to the previous discussion,
®pux # 0 now holds for this case. For incremental plasticity models that assume the additive decomposition
of the strain, cf. Eq. (5.1), and a definition of the free energy density similar to Eq. (5.3), the dissipation in
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the bulk can be calculated as, cf. sec. 5.A,

. -h
Dy = /Giﬁfj -1 dA. (5.30)
Q

Due to the plastic dissipation, configurational volume forces, defined with Eq. (5.20), now appear in the
bulk. As a consequence, the Eshelby stress tensor C is not any more divergence-free and thus, F, ,Sp needs

necessarily to be evaluated in the limiting case » — 0 as in Eq. (5.22). In other words, F, ,?p is dependent of
the choice of the integration path I', which agrees with the path-dependence of the Rice’s J-integral for an
incremental plasticity model.

The second, and far more important difference to the previously mentioned cases is, that the thermody-
namic crack driving force and thus all quantities of Eq. (5.27) are equal to zero under certain assumptions.
Rice named this phenomenon the "paradox of elastic-plastic fracture mechanics” [118]. This behaviour
shall be elucidated in more detail.

First, consider an elastic-ideal plastic material and a stationary crack under the assumption of small
deformations. For that case, the HRR-field solutions by Hutchinson [64] and Rice and Rosengren [119]
provide a 1/r-singularity for the free energy density and the product of stresses and strains, v, o;je;; ~ 1/7.
Since the shape of the integration contour is arbitrary, Eq. (5.27) can be evaluated in the limiting case for a
circle with radius r,

2
Jip — gtie — _ 7P lim / (1015 — oijui)n;ds ~ lim / %rd& #0, (5.31)
r 0

where J% and GUP are introduced as the limiting values for r — 0 of J and G respectively. Generally
spoken, finite values for J can only be obtained if the 1/r-singularity holds true. This is the case in linear
elasticity as well.

In contrast to that, the singularity order of a growing crack is known to decrease as the crack extends [140].
In the case of an elastic-ideal plastic material under steady-state conditions?, the singularity will be of
order In(1/r) [118]. In that case, evaluation of Eq. (5.27) for a circular path I" leads to

27
Jup — gip — _ Fip lirr(l)/ln(l/r)rdt? =0. (5.32)
r—
0

Similar conclusions can be drawn for hardening materials [118, 140].

If finite deformations are assumed, then the J-integral vanishes even for a stationary crack. Due to crack
tip blunting, the singularity vanishes with increasing load [25, 140]. This has also been subject to several
numerical studies in the past [67, 94, 95, 25, 73, 68].

From the physical point of view, this means, that for the described cases, the thermodynamic crack driving
force vanishes. In other words, no energy surplus is generated by the applied loading. According to a Griffith
type criterion for crack propagation, where the generation of new surfaces requires a minimum of twice
the specific surface energy 2vg, no crack growth is possible. The reason is, that the idealized assumption of
a Griffith type of crack is only met for brittle fracture. For these cases, the fracture mechanisms are based
on the normal separation of atomic planes, without leaving any irreversible deformations behind, and

2Steady state conditions prevail, if the local stress and strain fields are independent of time and crack extension, i.e.
éij = —daz’:‘ij/alj and d’ij = —daﬁij/8$1 [140]

34



{ &

a Aa a Aa

Figure 5.6: a A stationary crack with associated crack tip plastic zone. b Interpretation of a driving force acting on the very
crack tip in ductile fracture. ¢ Combined movement of crack tip and associated plastic zone, leaving a plastic wake
behind [73].

Griffith’s criterion for crack propagation, developed by examination of the second law of thermodynamics
as well, applies [118],
(G —27s)a = 0. (5.33)

However, these conditions do not apply in the case of ductile fracture, accompanied by (possibly large)
plastic zones around the crack tip. Here, the fracture mechanism is based on the coalescence of voids due
to high strains in front of the crack tip. As a consequence, the length scale for crack propagation is not
any more on the order of atomic spacings, but on the order of the mean spacing of the voids. Therefore,
deformations near the crack tip and fracture process cannot any more be regarded as uncoupled, which
is a basic assumption for the application of Griffith’s criterion for crack propagation [117]. One way to
combine both approaches is to introduce finite crack extension steps, cf. [67, 68]. Assuming a discontinuous,
two-stage process for crack growth, first crack tip blunting and void growth and second crack extension
due to instability of the ligament, seems to coincide with experimental results [73].

In the remainder of the section, a second possibility to solve the paradox of vanishing crack driving
force shall be discussed, for which the introduced framework of configurational force can be deployed
beneficially. A crack in a ductile material is always accompanied by a crack tip plastic zone. Moreover, no
crack growth in a ductile material can occur, without simultaneous movement of the associated plastic zone,
as outlined by the authors of [73], cf. Fig. 5.6. Therefore, a thermodynamic driving force for the combined
movement of the crack tip and the crack tip plastic zone has to be calculated; a pure crack driving force is
physically not adequate. In the configurational force concept, plastic deformations are treated as any other
inhomogeneity, and thus it provides an appropriate framework for the calculation of the combined driving
force.

Invoking these findings into the configurational balance of linear momentum for an elastic-plastic body (2,
Fig. 5.5, leads to

Cyj; + ff =0, in the bulk D, (5.34)
lin%/ijnde =0, at the crack tip A. (5.35)
r—>
r
Since the integral in Eq. (5.35) is equal to zero in the limiting case of » — 0, the configurational balance of

linear momentum reduces to
Cij; + f£ =0, in the bulk Q. (5.36)
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Therefore, it follows that a JP-integral for an arbitrary contour I', surrounding the complete area €2, can be
defined in analogy to Eq. (5.26) as

JIB = /C’ljnde: —/f?dA (537)
r Q

A second possibility to define a JP-integral arises from the manipulation
Chjj + fE = ($0rj — wikoij) g + aijery = W = (V0 — uikoij) j + 04jeh; (5.38)

In the elastic case, JU was the thermodynamic conjugate to @ because of the fact that ®y, = a.J".
Since this term is equal to zero in the elastic-plastic case, and the Clausius-Duhem inequality reduces to
O(Q) = Ppy(2) > 0, no driving force for the combined movement of crack tip and associated plastic
zone can be identified as a thermodynamic conjugate to the velocity of this kind of defect. Therefore, it is
legitimate to define an alternative J-integral as

JIEP = /(weélj — u;,1045)n;dS = —/JijefﬂdA. (5.39)
I Q

It is worth mentioning, that a similar approach has also been studied in the past by Kishimoto and
co-authors [71, 12, 13, 721, referred to as .J -integral.

To provide a concept, that is adequate for the description of ductile fracture, some more requirements
have to be met. First, the concept needs to be applicable, irrespective of the applied load. More precisely,
the crack tip plastic zone, that will be taken into account to evaluate a JP- or J°P-integral, has to be
unambiguously identifiable. This question is not trivially answered, especially in the case of uncontained
yielding, where plastic deformations can occur in the complete body. A second requirement, arising
from an academic point of view and the discussion at the end of sec. 5.2, is which hardening parameters
reflect noticeably different responses for pure isotropic and pure kinematic hardening whenever cracks are
subjected to cyclic loading. Possible .J-integral concepts to solve these issues will be discussed in the next
section, based on numerical studies of a Compact Tension-specimen.

5.5 J-integral concepts and numerical studies

In order to discuss potential J¢P-integral concepts, finite element calculations were performed on the basis
of a Compact Tension-specimen model, cf. Fig. 5.7. All finite element calculations were performed with
the commercial FE-software ABAQUS 2017 with implicit analysis. The dimensions for the C(T)-specimen
were taken basically from the ASTM standard [65], but had to be adjusted at some points. Especially the
notch behind the crack tip was moved further away from the crack tip to prevent interference of the crack
tip plastic zone with the plastic deformation around the notch due to high compressive stresses in some
load cases. However, the detailed specifications of the geometry are not of interest for the purpose of this
paper and same results can be obtained with any arbitrarily chosen, two dimensional geometry containing
a crack. Due to symmetry, only half of the specimen is modelled with a rigid body as a counterpart for
possible crack flank contact. All nodes on the ligament are fixed in y-direction and the load application
point is fixed in z-direction. Mode I, force controlled cyclic loading conditions are imposed with different
maximum loads and different R,-ratios, R, = Fiin/Fmax. The time evolution of the loading is depicted in
Fig. 5.8. Plane strain conditions are assumed in all cases.

The FE-mesh of the specimen consists of 4-node isoparametric elements with full integration. The mesh
size at the crack tip is m = 0.1 mm and m = 1.0 mm in the rest of the model, where m denotes the element
edge length.
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Figure 5.7: Compact Tension-specimen with crack tip plastic zone and a possible path I'** for evaluation.
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Figure 5.8: Time evolution of the applied loading for R, = 0 and R, = 0.5.

The further assumptions are, as throughout the paper, traction-free crack flanks and no Newtonian body
forces acting in the bulk. The material parameters for the Chaboche plasticity model are the same as in
sec. 5.2. At the left boundary, a small strip of pure elastic material is attached to account for the otherwise
very high deformations in the vicinity of the load application point. Finite deformations are assumed for
the finite element calculations, to take into account the blunting of the crack tip. Nevertheless, since the
Chaboche model seems to be implemented only for small deformations (see corresponding remarks in
sec. 5.2), J-integral evaluations were performed using the formulas for small deformations as derived in
the previous sections.

The J-integral calculations were performed with a self-written post-processing routine in the program-
ming language Python 2.7.3. The routine is based on the concept of configurational forces and follows
the standard methods proposed by Miiller et al. [104, 103]. Based on a numerical Gauss integration,
the routine calculates configurational nodal forces for every element. It should be remarked, that the
chosen element type is not suitable for the calculation of the plastic strain gradient appearing in the surface
integral of Eq. (5.39). Nevertheless, this is not necessary since only the line integral of Eq. (5.39) needs to
be evaluated for the computation of configurational nodal forces.

The aim of this section is to compare possible JP-integrals and to decide whether or not these are
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Figure 5.9: JP*-values corresponding to Fiax and Fy, as function of time for 500 cycles. a Fnax = 35kN, Ry = 0. b Fax = 35KkN,
Rs = 0.5. ¢ Fnax = 27kN, Ry, = 0. d Fax = 27kN, R, = 0.5.

suitable as concepts to derive the crack driving force. The first such concept is to chose I" so, that the
complete crack tip plastic zone is included, cf. Fig. 5.7. Accordingly, integrals are denoted as JP* with
contour I'P% Values for JP* are path-independent only as long as I'P* does not intersect the plastic zone,
cf. [73]. Focus in this paper is set on JP*-integrals based on the formulation in Eq. (5.39). Evaluations for
this concept in the case of ideal plasticity can further be found in [73] and other works of the authors.

In Figs. 5.9, the evolution of JP* for pure isotropic and for pure kinematic hardening for maximum
loads of F' = 27kN and F' = 35kN, as well as R,-ratios of R, = 0 and R, = 0.5 is displayed. In all cases,
large scale yielding conditions prevail. Upper and lower graphs in each figure correspond to maximum
and minimum load respectively. The general tendency which can be stated, is that all graphs indicate
qualitatively similar forms for the 500 calculated load cycles. The quantitative differences increase with
increasing values of Fiy,x and decrease with increasing values of R,,. Also, all JP%-values for Fiax = 27 kN
are smaller than the corresponding values for Fiax = 35kN. It is worth remarking, that all values of JP*
are non-negative. This agrees with the results from [73, 109].

The reason for the above similarities is, that pure isotropic and pure kinematic hardening in the presented
model are equivalent for the first loading until the maximum load. All needed quantities for the J-integral
evaluations are therefore equal. The following cyclic loading affects only the much smaller cyclic plastic

38



—o—Isotropic hardening
—a—Kinematic hardening

J (k] /m?]

1000
Time [s]

Figure 5.10: J*”-values corresponding to Fiax and Fiin as function of time for 500 cycles. a Finax = 35kN, Ry = 0. b Finax = 35KkN,
Ro = 0.5. € Finax = 27kN, Ry = 0. d Finax = 27kN, R, = 0.5.

zone around the crack tip. But since the complete plastic zone is taken into account, the first load influences
significantly the behaviour of J-integrals for all following load cycles. A second problem arises, if the
applied loads lead to general yielding conditions, so that plastic deformation can occur throughout the
complete body of the C(T)-specimen. In that case, identification of a complete plastic zone is not any more
possible. Altogether, this concept does not meet the proposed requirements.

The second concept, which shall be discussed, is that of taking into account only the so-called active
plastic zone, i.e., all material points or rather elements in the FE-model, that do actually yield during a load
cycle. For the lower load reversal points, this coincides with the reverse cyclic plastic zone. Accordingly
evaluated integrals are denoted as J?P%, again based on Eq. (5.39), cf. Figs. 5.10.

Now, however, no regular tendencies in the forms of the graphs can be stated. It can be seen, that
the graphs intersect each other and that even negative J?P%*-values appear. In comparison to Figs. 5.9,
it can be concluded, that the J?P%-values reflect bigger differences between the graphs attributed to the
different hardening rules. In other words, J?P* reflects more qualitative differences in the distributions
induced by the two hardening models. The negative values for J2P* at the lower load reversal points Fyi,
can be explained by the fact, that the integration contour is smaller than in case of Figs. 5.9, implying a
stronger influence of the existing residual stresses. Generally, it should be noted, that some irregularities in
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Figure 5.11: J®*-values for Fmax = 35 kN and different R, -ratios for the third load cycle.

the responses can be the consequence of the mesh discretization. To be more specific, as the integration
contours are now smaller than in the case of JP* and the values of the stress and strain gradients in
the vicinity of the crack tip are large, the accuracy of the numerical results will depend stronger on the
mesh discretization. Consequently, the rather coarse mesh chosen here leads to the observable numerical
instabilities in Figs. 5.10. Although this concept better reflects the differences for different hardening rules,
the problem of the active zone identification in the case of general yielding conditions is still not solved.
This concept is therefore not suitable as well with regards to the proposed requirements.

To solve this issue, the third concept is based on an identification routine for the plastic zone that
needs to be considered. The idea is, to take into account only those material points, that do actually
yield as a consequence of crack growth. To identify those elements in the FE-model, an artificial crack
growth is simulated with the node-release technique, while the applied load is held constant. Yielding
elements can then be identified by determining the increase in the equivalent plastic strain after crack

eq _ ~€q &g eq ..
growth, Ae®d =¢ o o growth — Ebefore crack growth® Further, Ae®d shall be greater or equal than a minimum

threshold value Asi?in. With this addition, an effective plastic zone can be uniquely identified irrespective
of the applied load, by simply adjusting the minimum threshold value. Associated integrals are denoted
as JP% The downside of this concept is, that each J-integral evaluation needs necessarily a crack growth
simulation to be performed first, leading to a huge numerical effort. As a consequence, results are shown
only exemplary for the unloading branch during the third loading cycle, cf. Fig. 5.11. It seems that the
different hardening rules are well reflected by differences in the forms of the graphs. For both hardening
rules, elastic unloading takes place first (except perhaps in the vicinity of the crack tip), leading to similar
forms of the graphs until ¢ = 7.5 s for both cases of considered R,-ratios. After that, the influence of the
evolution of the reverse cyclic plastic zone grows in the case of R, = 0, leading to the divergence between
the corresponding graphs for the two hardening rules. In the case of R, = 0.5, the evolution of the reverse
cyclic plastic zone is not as pronounced, leading to a much smaller divergence between the corresponding
graphs. Although this concept could possibly solve previously mentioned issues, it is not applicable to even
a reasonably large amount of data, which is why it cannot be evaluated further.

For the evaluation of the proposed J-integrals, more than the here mentioned load cases were consid-
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ered, including displacement controlled simulations and several more, positive and negative R,-ratios.
Nevertheless, these results are not depicted here since they have not revealed any new insights to the
proposed problems.

5.6 Discussion

In essence, the results shown in the previous section indicate that a thermodynamic crack driving force
for crack growth can only be determined in the case of brittle fracture. Despite the fact that the concept
of configurational forces provides a convenient framework for the description of thermodynamic driving
forces, it did not provide any suitable solutions to the presented issues. For crack growth in ductile materials
a driving force is, if possible at all, not easily to be determined. It was outlined, that for such a case, the
driving force at the very crack tip is equal to zero, and that a driving force for the combined movement of
the crack and the associated crack tip plastic plastic zone has to be determined. The proposed concepts are
based on this assumption. It has been shown that some of the discussed approaches reflect more sensitively
differences arising for the assumed hardening hypothesis. Yet, the criterion of unrestricted applicability
has not been met by any of the approaches presented here. The main reason for these consequences is the
assumption that ductile fracture is in the same way describable by means of classical fracture mechanics
as brittle fracture. According to Rice [118], ductile fracture problems can not be described by a pure
continuum mechanical solution, uncoupled from the micromechanical processes taking place in the process
zone around the crack tip. The associated fracture mechanisms for brittle and ductile fracture were
addressed in sec. 5.4. Further investigations could therefore include these processes. Other possibilities
that can be found in the literature, are to introduce a notch instead of a sharp crack tip, and in addition to
that a damaged zone [135, 26]. However, taking into account such assumptions was not in the sense of
this work.

5.7 Conclusion

The purpose of this paper was to define the thermodynamic crack driving force in the case of incremental
plasticity and cyclic loading on the basis of the configurational force concept. Some general remarks about
the adopted Chaboche plasticity model concerning applications in plane strain conditions, as well as the
implementation in ABAQUS where made at first. Configurational forces were introduced in a general
manner, and the equivalence of Rice’s J-integral, the energy-release rate and the crack tip configurational
force was shown in the elastic regime. Evaluation of the second law of thermodynamics for crack growth
in ductile metals and the paradox of vanishing crack driving force at the crack tip were essential for the
further discussion about the applicability of possible J-integral concepts in elastoplasticity. More precisely,
the aim of the proposed concepts was to define the crack driving force for the combined movement of
the crack tip and the associated plastic zone, with regards to the mentioned requirements for general
applicability. Based on the following results of the numerical analysis of a Compact Tension-specimen, none
of the presented concepts could meet all the proposed requirements. The conclusion therefore drawn is,
that ductile fracture can not be described the same way as brittle fracture. In particular, the assumptions of
a mathematically sharp crack and the pure continuum mechanical approach for the solution, uncoupled
from micromechanical processes, seem not to be appropriate for the discussed and related constitutive
models.
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Appendix

5.A Second law of thermodynamics for crack propagation

The following evaluation of the second law of thermodynamics has been performed in a similar manner
by Maugin for the pure elastic case [89] and is extended here to the elastic-plastic case, without any
specific assumptions about the constitutive equations of the incremental plasticity model. Consider a two
dimensional (and possibly infinite) body with a mathematically sharp, growing crack of length a(t), c.f.
Fig. 5.A.1. The area (2 is drawn around the crack tip. A global, time-independent Cartesian coordinate
system {x;} is introduced with basis vectors e;, and a second Cartesian coordinate system {¢;} is located at
the moving crack tip with ; = z; — a(t) and & = x2. The boundary value problem shall be defined as
follows. The outer boundary of 2 is subdivided into the parts 9§, 92, and 0%,, with ¢; = t; the tractions
acting on 0€);, u; = u; the deformations defined on 92, and ¢; = 0 on the traction free crack surface 952,,.
Furthermore, small and isothermal deformations are assumed. The second law of thermodynamics in the
mechanical version, also known as Clausius-Duhem inequality, then reads

Q) =W — i/z/sz > 0. (5.40)
Q

Omitting body forces, the mechanical power is defined as

W= / Hiids, (5.41)
o0

and the free energy density per unit volume ¢ is defined as in Eq. (5.3).
In the following, the dissipation shall be evaluated for a growing crack. For that purpose, 2 is split up
into areas A and D, separated by the contour I', with 2 = A U D. Equation (5.40) is then rewritten as

d d
Q) =W o [vdd- ¢ /wdA > 0. (5.42)
A D

Due to the fact, that the areas A and D evolve within time, the time derivatives in Eq. (5.42) are not
easily determined. First, the time derivative of a quantity f = f(x;,t) = f(&;,t), defined in different frames,
is written as

p_df_of _of  ofog

dt ot ot 0& ot (5.43)

Second, area A is not assumed to be a material area, i.e. an area associated with always the same
material points, but to maintain always the same geometrically shape as the crack propagates. In other
words, for a fixed point within A with coordinates &;, quantities f(&;,t) vary over time only due to the
explicit time-dependence of f. Therefore, the time derivative for such reduces to

;_of

F= : (5.44)
ot ¢; fixed

The integral limits for area A are fixed in the {¢; }-frame as well, which is why the second term in Eq. (5.42)
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Figure 5.A.1: Area and normal definitions around the crack tip.

finally reduces to

&; fixed % 861'3' ot aén ot Li fixed

dt ot
A A
= / b+ 204 da (5.45)
04y, ¢, fixed
A
For calculation of the integral over area D, application of Reynolds transport theorem leads to
d np -
@ /wdA = EdA + / YU, dS. (5.46)
D D oD

The velocity U,, of the boundary 0D is equal to zero on the outer boundary of D and U,, = v;m; =
(ae10;1)m; = —any on I', with m; = —n;, m; being the outward unit normal vector on 9D and n; the
outward unit normal vector on 0A. Hence, together with the time derivative for ¢ (&;;(x;, 1), q),

d T P
oy / PpdA = / T T 5gldA—a / ¥n1dS. (5.47)
D D r
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The area integral in Eq. (5.47) can furthermore be substituted using the mechanical energy balance and

€ij *a &P
/tﬂlidS: /O'ijéijdA

& / 0ije5;dA = / t;i;dS — / oijép;dA. (5.48)

D

152

Together with 0D = 0 + T, 4; = 0 on 0f2 and
aﬂl($l, t) o 8&1(5“ t) . a@ﬂl(@, t)

YT T T ot 96, (5.49)
on I" the first term on the right-hand side of Eq. (5.485) can be written as
Guz aﬂl (&, t)
/ t;u;dS = /J”m] 5 ds — /Uijmj T&ds
r
= — / O'ijéijdA + d/UijandS. (5.50)
) &; fixed & Oy

For the further manipulation, the Gauss-theorem for converting line-integrals to area-integrals is applied,
together with m; = —n;. Inserting Eq. (5.41), (5.45), (5.48) and (5.50) into Eq. (5.42) finally yields

() :/Cajé‘.’. _ 9% da

o OV, [ O
p i
ij a(?nqn + /O’ijé‘ij — qudA + a/wnl — O'Z'jnjaixlds > 0. (5.51)

r

% &; fixed

The first two terms represent dissipation in the bulk due to the inelastic material behaviour. The third term
is equal to the energy-release rate G and the J-integral, as well as the e;-component of the configurational
force at the crack tip f{lp, known from the purely elastic solution. Caution is advised of course in the
determination of the free energy density. In contrast to the elastic solution, where ¢ = ¢, p = ¢¢ + P
needs to be inserted here, cf. Eq. (5.3). Besides that, the J-integral is known to be path-dependent in the
case of non-elastic material behaviour, which is why the limiting case with » — 0 has to be considered for
an unambiguous definition of J and G. Since area A shrinks to zero together with T', the plastic dissipation
in the bulk in area A tends to zero as well. Finally, the dissipation for a crack tip propagating through
elastic-plastic material can be calculated as

P(Q2) = Ppyk + Prip > 0 (5.52)
with ~
oY
Dy = /UUE% a¢qu (5.53)
q
Q
and o
—tlima | dne — g ZH 49 — _ _ tip
Dip —lli%a/wnl oijn; 8x1d5 7lg%a,g IIIT(I)(LJ[‘ hrn aFir. (5.54)
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Part Il

Phase field approach to ductile fracture
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6 Objectives of the second paper

As shown in the last part, configurational forces do not seem to be an appropriate method for describing
crack propagation in ductile materials. Therefore, in this part of the thesis, a further approach, known as
phase field method, will be examined. The main benefits of phase field models in brittle fracture mechanics
are that the limitations of the classical Griffith theory can be overcome, i.e. complex crack phenomena,
such as crack initiation or kinking of cracks, can be modelled without making any further assumptions.

The aim of part III is to discuss possible extensions to elastoplasticity of the phase field theory. The part
consists of the second and the third paper. In the second paper, a non-conventional thermodynamics is
adopted as the appropriate framework. The considered phase field formulations of brittle fracture, extended
to elastoplasticity, is found to be unable to address cyclic loading phenomena adequately. This conclusion
is based on simulations of one- and two-dimensional examples and plastic material behaviour exhibiting
isotropic and kinematic hardening. The reason is that the crack propagation mechanism in ductile materials
is fundamentally different from the one for brittle fracture. It is argued that the appropriate damage law
should rather be formulated in accordance with the experience of traditional continuum damage mechanics.
In fact, this is the object of the third paper.
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Abstract The fundamental idea in phase field theories is to assume the presence of an additional state
variable, the so-called phase field, and its gradient in the general functional used for the description of
the behaviour of materials. In linear elastic fracture mechanics the phase field is employed to capture the
surface energy of the crack, while in damage mechanics it represents the variable of isotropic damage.
The present paper is concerned, in the context of plasticity and ductile fracture, with a commonly used
phase field model in fracture mechanics. On the one hand, an appropriate framework for thermodynamical
consistency is outlined. On the other hand, an analysis of the model responses for cyclic loading conditions
and pure kinematic or pure isotropic hardening are shown.

Keywords Phase field, Damage, Plasticity, Hardening, Non-standard thermodynamics

7.1 Introduction

In fracture mechanics, the phase field theory has been introduced and developed in order to capture the
surface energy of cracks. There have also been various attempts to extend these ideas to describe crack
propagation in the case of materials exhibiting plastic material properties (see, e.g., [8, 19, 76, 97], among
others). The basic idea of phase field theories is to introduce an additional variable and its gradient in the
constitutive functional modelling of the material response. Such variables are employed in physics in order
to model phase transformations and the corresponding theories are known as Cahn-Hilliard theories (see,
e.g., [53, 29]). Generally, the gradient of the phase field variable is introduced in the theory in order to
regularize the resulting field equations. In continuum damage mechanics the phase field corresponds to
the isotropic damage variable and reflects, in a natural way, the physical mechanisms of crack initiation
and crack propagation. The evolution of damage during the loading process causes a softening material
response, rendering loss of ellipticity in the governing differential equations. Regularization by taking
into account, e.g., the gradient of the damage variable, is a possibility to avoid such problems [107, 21].
Thus, any gradient enhanced isotropic damage theory is in principle a phase field theory (see also related
remarks in [21]).
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The particular advantage of damage models based on the concepts of the phase field theory, is that
fracture mechanics phenomena, such as initiation, propagation, kinking and bifurcation of cracks, can
be conveniently addressed in a unified manner [8]. Especially, phase field models have been applied
successfully, e.g., in fracture of quasi-brittle and ductile materials [99, 75, 22, 8, 20, 76, 97], dynamic
fracture mechanics [60, 20], and fatigue crack propagation [122, 85, 7]. The numerical benefit of the
phase field method, when modelling crack propagation, is that all state variables remain continuous and
the crack geometry is determined by critical values of the phase field variable. Therefore, the theory is
suitable to describe equally well, both two and three dimensional problems.

A feature of special interest, when dealing with phase field models, is the appropriate thermodynamics
framework. As stated above, phase field theories in fracture mechanics are nothing but gradient damage
theories. Therefore, if the free energy function should depend explicitly on the phase field variable and
its gradient, then thermodynamics frameworks for gradient enhanced theories in continuum mechanics
will be suitable for phase field models as well. Thermodynamical concepts based on the existence of
so-called microforces offer the possibility to elaborate gradients of state variables in the constitutive
theory. Such ideas were introduced by Gurtin [53] and have been applied to phase field models, e.g.,
by Borden et al. [19]. An alternative framework for gradient enhanced theories is to adopt concepts of
non-conventional thermodynamics. A basic assumption in these concepts is the existence of an energy flux
vector besides the standard heat flux vector (cf. [40]). Following Toupin [129], Dunn and Serrin [40]
developed a non-conventional thermodynamics theory to address gradient elasticity of the Korteweg type.
The main ideas of [40] are adopted in the present work to address gradient enhanced damage in plasticity.
Our special interest is in a phase field law in common use, made widely known by Miehe and co-workers [99,
98]. This law has been introduced primarily to model brittle fracture and is employed in several works
to model ductile fracture under monotonic loading conditions. However, the question arises whether this
model works equally well, when cyclic loading conditions prevail.

Thus, the paper provides both a thermodynamical and a mechanical analysis of the damage law proposed
in [99, 98, 97]. On the one hand, consistency of the model with the governing equations of the assumed
non-conventional thermodynamics is verified for the case, where the free energy function depends explicitly
on the phase field variable and its gradient. On the other hand, the abilities of the model to address crack
initiation and crack propagation in plasticity are reviewed. In particular, the predicted model responses
in the case of cyclic loading conditions and pure kinematic or pure isotropic hardening are analysed. It
is shown, that the considered model, in its basic form, is not able to describe cyclic loading programs
adequately. This might be the motivation, e.g., for Ulloa et al. [132] and Seles et al. [124], who introduced
interesting extensions of the model, allowing them to describe loading histories involving cyclic parts.
These extensions rely upon the work of Alessi et al. [7] and are briefly discussed at the end of the paper.
Alternative possibilities, based on the concepts of continuum damage mechanics are also proposed.

7.2 Plasticity coupled with damage

A von Mises plasticity model coupled with damage and exhibiting isotropic and kinematic hardening is
assumed. All tensorial components are referred to a Cartesian coordinate system {x;}. Unless stated
otherwise, all indices will have the range of integers (1, 2, 3), while summation over repeated indices is
implied. Confining on small deformations, the components ¢;; of the strain tensor € are denoted by

L 1 811,, 6uj
E’L] = 5 <8{L‘j + a‘]jl) 3 (7.1)
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where u; are the components of the displacement vector u. As usual, it is assumed that the additive
decomposition of the strain tensor into elastic and plastic parts, e¢ and &P respectively, applies,

Eij = 6% + 6% (72)

Let D € [0, 1] be a scalar valued damage (phase field) variable and denote by VD the gradient of D. In
analogy to the concepts of continuum damage mechanics (cf., e.g., [35]), the decomposition

¥ 1= Pep + YD = Ve + Y5 + PFR) 4y, (7.3)
Vep = Yo +Pp, Py = P 4 ki), (7.4)

is assumed for the free energy per unit volume 1. In metal plasticity, the parts . and z/)l(fso), J(ka), Yp

are responsible for the energies stored in the material due to elastic deformation of the lattice and due
to distortion of the lattice caused by isotropic hardening, kinematic hardening and damage evolution,
respectively. There are some characteristic features with regard to the form of «. First, a common
assumption is, that ¢, = ¥.(e° D). Often, an additive decomposition of 1), into tensile and compressive
contributions ¢} and +_ is adopted. A possibility advocated, e.g., by Miehe et al. [99], is to relate v and
¥ to the sign of the principal strains. This approach will not be considered here, because of numerical
instabilities and convergence problems in the case of plasticity (cf. also related remarks in [19]). Another
possibility proposed by Amor et al. [10] and used in the current paper, is based on a volumetric-deviatoric
split and can be expressed in the form

e = Ye(e®, D) =9 (€%, D) + ¢ (€°), (7.5)
= (D) = (D) = o) { KERa? + uicy e | 7.6
Yo = Ui () = SR (~<i), 7.7)

where K is the compression modulus, 4 is the shear modulus, ¢g(D) is a scalar valued degradation function
and (z) := 1(z + |z|). Tensile and compressive contributions to the elastic part of the free energy are
distinguished on the basis of the sign of the trace of the elastic strain tensor. Damage accumulation affects
only the tensile part by reduction of the elastic stiffness through ¢g(D). A common assumption for the
degradation function is

g(D) = (1 — D)% + &, (7.8)

where k < 1 is a parameter for numerical stability. In Eq. (7.6) and in the following, undegradated parts
of the free energy are denoted with the superscript 0. The elasticity law for the Cauchy stress o may then
be viewed as defined by the potential relation

oy

_ et Y-

_l’_
Oeg; 0ef

ij

= K [9(D)(efy) = (—ef)] 015 + 9(D)2ple)) ™, (7.9)

where §;; is the Kronecker-delta symbol and A%V is the deviator of the second-order tensor A.

Another characteristic feature concerns the form of v,, which may or may not depend on the damage
variable D. Generally, in continuum damage mechanics the assumed form of v, is closely related to the
assumed form of the yield function. There are several concepts for deriving the form of the part ¢, and
the form of the yield function from corresponding plasticity models without damage mechanisms. These
concepts are based on the principles of stress, strain or energy equivalence (see, e.g., [82, 18, 32, 35, 49]).
Here, we adopt the formulations proposed in Grammenoudis et al. [49], which are based on a specific
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version of the principle of energy equivalence. Moreover, for the purpose of the present work, it suffices to
confine to linear isotropic and linear kinematic hardenings. Hence,

Wy = (s, €7, D) = g(D)Yf (s, €”) = g(D)y ™) + g(D)yf*™), (7.10)
000) = 44000) (5) .= %752, (7.11)
00k = y0fkin) (9 .= %Cg;jg%, (7.12)
PO om0 4 g000) 4 y0im) (7.13)

where ~, ¢ are the respective hardening coefficients. On defining by (-) the derivative of (-) with respect to
time ¢, the plastic arc length s is given by

2
& e 2D P
5= gsijeij. (7.14)
Scalar internal stress R reflecting isotropic hardening and the backstress tensor £ of kinematic hardening

are given by the potential relations

€5 = E(e? D) = o = g(D)ect 7.16)
ij

A generalization of the von Mises yield function reads in [49]

F:F(U,R,E,D) = gf(D)f(a-vsz)_k(]’ (717)
f= \/g(%‘ = &) (i — £3) %" — R. (7.18)

In this equation, kg is a material parameter representing the initial yield stress and g;(D) is a further
degradation function capturing damage mechanisms during plastic flow. Here,

g5(D) =g (D) (7.19)

is chosen, so that the yield function in Eq. (7.17) is the same as in Borden et al. [19], Kuhn et al. [76] and
Huang et al. [63]. Other possibilities for the function g are discussed in Reckwerth et al. [115]. For the
evolution law of plastic strain, an associated normality rule is assumed,

oF
‘p. = A
5” 80'1']'7

(7.20)

with A denoting a scalar plastic multiplier, together with the Kuhn-Tucker conditions (cf. [128, 58]),

A >0, F <0, AF =0, (7.21)
and the consistency condition, that during plastic flow

A >0, F <o, AF =0. (7.22)

A further characteristic feature of interest refers to the term v¢)p. Some works (see, e.g., [99, 98, 97]),
dealing with classical thermodynamics, assume a vanishing part ¢)p and incorporate VD in the postulated
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damage criterion and dissipation function. Other approaches, pursued, e.g., by Borden et al. [19], admit the
existence of 1) and assume it to depend on D and V D. Such works deal with classical thermodynamics, but
postulate the existence of microforces and related balance laws, in order to render the constitutive theory
thermodynamically consistent. The microforces approach has been employed by Gurtin in order to establish
equations of the Ginzburg-Landau and Cahn-Hilliard type [53]. Note, that an evolution equation of the
Ginzburg-Landau type for the damage variable in plasticity coupled with damage has been supposed in the
works [75, 76, 108]. Generally, when gradients of state variables are present in the response function for 1,
classical thermodynamics, dealing only with classical forces, is not an appropriate framework. Whenever
Y p, and therefore v too, depend on VD, an alternative to the approach based on microforces, in order to
achieve thermodynamical consistency, is provided by non-conventional thermodynamics frameworks. In
the next section, the non-conventional thermodynamics proposed by Dunn and Serrin [40] are applied in
order to model gradient damage mechanisms. The obtained results rely upon the ansatz

1

l
Yp =¢p(D,VD) =G, (21D2 + QHVDW) , (7.23)
which is standard in this subject matter (cf., e.g., [45, 75, 63, 19, 8]). In this equation, G. and [ are

material parameters, with [ denoting a material internal length.

7.3 Thermodynamical formulation

7.3.1 Non-conventional thermodynamics

Let V' be the range in the three dimensional Euclidean point space occupied by a material body B, with
boundary 0V, and denote by n the outward unit vector on 9V. The location vector to material points
in V' U 0V is denoted by x with components z;. In standard thermodynamics, the energy balance law is
expressed in terms of the heat flux vector q. For the aims of the present work, and following the suggestions
by Toupin [129] and Dunn and Serrin [40], the conventional form of the energy balance law is generalized
by admitting the existence of an energy flux vector q’, besides the heat flux vector q. Thus, omitting
acceleration terms, body forces and heat supply, and denoting by e the internal energy per unit volume,
the global form of the energy balance law reads

((l:lt/edV: /niO'Z'jle dA — /q:nz dA — /qini dA. (7.24)
\% ov oV oV

After localization, and keeping in mind the definition of strain in Eq. (7.1), the local form of the energy
balance
e = O’ijéij — azqg - 61611 (7.25)

is obtained, where 9;(-) = 9(-)/dz;. The energy carriers responsible for q' in the cases of gradient elasticity,
gradient plasticity and gradient damage mechanisms may be viewed to be related to interstitials, dislocations
and initiation and evolution of damage defects, respectively.

Let # > 0 be the absolute temperature, 1 the entropy per unit volume and v, as above, the free energy
per unit volume, so that the Legendre transformation

e=1vY+0n (7.26)

applies. For general thermomechanical processes, the constitutive theory dealt with, is characterized by a
free energy of the form
v =1(e s,e’, D, VD,0). (7.27)
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It follows from Egs. (7.25) and (7.26), that
oijéi; — O — 0 — 6 — 0,q; — 0,g; = 0. (7.28)
Further, the validity of the Clausius-Duhem inequality in the local form is assumed (cf. [40])
n+a(0)>o (7.29)
or equivalently, by virtue of Eq. (7.28),
Oijtij — 0id — b —nb — 0 g;0;0 > 0. (7.30)

In the next section, the response function for the energy flux vector q’ is specified.

7.3.2 Dissipation Inequality
Egs. (7.2) and (7.27) are now inserted into Eq. (7.30), to obtain

: oY 0 p 0¥ OV, OV oY W,
ijéij — 0iqj — €ij — R e ——D D
7t = O~ | e~ g S5 T 58t gt T ap” T arwy, VPt ae?
—nf — 56@-9 > 0. (7.31)
Using standard arguments, it can be deduced from this inequality, that
e D
oy — oY(es, s, e ,D,VD,é?)7 (7.32)
Oeg;
_ 0Y(e%,s,eP,D,VD,0)
and that
o, o o : 1_
~0iq; — &+ =D D);| = -,0:6 > 0. 3
Oidi [ 9s° ar T pp” t awny, VP T gh%f =0 (7.34)
As usual, the sufficient conditions
o, O, o o
~d} — | o = &+ D D :
¢ [ 0ijéL; +88+8p &t 5p +0(V )Z(V )i| >0, (7.35)
eqza 0>0, (7.36)

are assumed for Eq. (7.34) to apply. Equation (7.35) is called the intrinsic dissipation inequality. In the
remainder of the paper, isothermal deformations with uniformly distributed temperature are supposed to
apply, so that 6 can be omitted in the response functions. Then, by assuming ¢ to be given as in sec. 7.2,
so that 0;; in Eq. (7.32) is given by the elasticity law (7.9), and making use of the potential relations for
&, R introduced in Egs. (7.15) and (7.16), Eq. (7.35) becomes

S .8 [ o .
- i(h (Ulj 57,]) — Rs — ED 8561 (8(VD)ZD> > 0. (737)
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Here, the variational derivative §v)/0D is defined through

sy oy D o
6D~ 9D Oz (8(VD)Z->' (7.38)

During plastic flow

ko

3
— Ty — £..)dev( 5. . _ ¢, \dev —
F=0< \/2 (015 — &ij) 4 (05 — &ij) R+ 97(D)’ (7.39)
so that evolution equation (7.20) can be written in the form
p 3 (0ij — &ij)*
p _ 2 J J
&ij = 5 g5 ( )R—i— ko/gf(Dy (7.40)
from which 5 = Ag;(D). It follows, that
(a--—§~~)é’-”-:(a»'—g--)de"é’-’-: <R+ Ko >s (7.41)
J J/=13 J J %] gf(D) ’
or
(0ij — &ij)et: — Rs = P (7.42)
1] 7=y gf(D) =
provided g¢(D), kg > 0. Therefore, it suffices to require
o - 0 oY -
—0;q, — —D — D) > 43
%4 = 550~ o (a(vp)i > =0, (7.43)

in order to satisfy Eq. (7.37). The simplest possibility to always fulfil this inequality is to make the
constitutive assumption
_ 9
%= " 9(vD),

where ¢; are the components of a divergence-free vector c¢. For reasons of simplicity, ¢ is assumed to vanish
in the following. This way, Eq. (7.43) reduces to

D+ ¢ = —G.l(VD);D +¢;, (7.44)

QD >0, (7.45)

where

_0 _ Qe YD
D 9D 6D’
Before closing this section, it should be mentioned, that Maugin [91] also derived Eq. (7.45) without

assuming the existence of an energy flux vector in the energy balance law. His theory is based on a

form of the second law proposed by Miiller [102], which introduces an extra entropy flux term in the

Clausius-Duhem inequality, besides the classical one. Therefore, for general thermomechanical processes,

the two approaches are different.

Q= (7.46)

7.4 The damage law of Miehe and co-workers

The aim of this section is to prove consistency with the adopted non-conventional thermodynamics of a
damage law in common use, which has been proposed by Miehe and co-workers (see, e.g., [98]).
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It can be recognized from Eq. (7.45), that (2 is the driving force for damage evolution. Therefore, in
analogy to plasticity and in order to always fulfil Eq. (7.45), the existence of a damage function Fp < 0 of
2 is admitted with the assumption that the set of (2-values with Fp < 0 includes 2 = 0. Damage evolution
takes place only when the damage condition Fp = 0 holds. Additionally, D is set to be directed along the
outward normal to the level set of Fp, D = ApdFp /09, where Fp, Ap are subject to the Kuhn-Tucker
conditions

Ap >0, Fp <0, ApFp =0, (7.47)

and the consistency condition during damage evolution
Ap >0, Fp<o, ApFp =0 (7.48)

(cf. Egs. (7.21) and (7.22)). A simple form for Fp reads
Fp:=Q—kp <0, (7.49)

where kp is the analog of the yield stress in the yield function and can depend on the material state.
Aifantis [2] proposed to assume the yield stress in gradient plasticity as a function of the plastic arc length
s and its spatial derivative As, where A is the Laplace operator. In its linear form, and when the initial
yield stress kg vanishes, this function reads

R =7s—alAs (7.50)

and represents isotropic hardening, where ~ is defined as in Eq. (7.15) and « is a further non-negative
material parameter (cf. also sec. 89 in [55]). In the damage model, D is considered to be the counterpart
of s in plasticity. Further, it is assumed, that kp in Eq. (7.49) does not include a constant threshold and it

is remarked from Eq. (7.23), that
5¢D _ G

Ge g 12
s = (D-IPAD). (7.51)
A comparison of the latter with Eq. (7.50) suggests to set
_ 20D
kp = 5@, (7.52)
with 3 being a non-negative parameter. It follows from Egs. (7.46), (7.49) and (7.52), that
a¢ep &;Z)D
- < —. .
op < (B+1)55 (7.53)
Then, from Egs. (7.4)—(7.8), (7.10) and (7.13), we have
al[)e S0 in
~S2 = 2(1- DYyl =2(1- D) ( OF 4 p0lis0) 0k >) >0, (7.54)
and by virtue of Eq. (7.53),
)
— > 0. .
5D = 0 (7.55)

Because of the latter, the sufficient and necessary condition for Eq. (7.45) is D > 0, which means that
damage can only increase and that healing processes are excluded. In fact, from Egs. (7.47)-(7.49), we
have

D=Ap >0, (7.56)
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and hence Eq. (7.45) is always satisfied. The two Egs. (7.53) and (7.56) are essentially the damage law
proposed in Miehe et al. [98]. It is readily seen, from Egs. (7.51), (7.53) and (7.54), that during damage
evolution

2(1— D)o — (B+ 1)%(1} —I’AD) =0. (7.57)

Clearly, during damage evolution wg; is a monotonically increasing function of time and thus, following
Miehe et al. [98], it is convenient to define the history variable

H(x,t) == max Y2t (x, 7). (7.58)
T€[0,t]
Hence, the governing partial differential equation to be solved for the phase field problem reads
2(1 - DYH — (B+ 1)%(1) —*AD) =0. (7.59)

Section 7.6 provides an analysis of the damage model with reference to one- and two-dimensional examples.

7.5 Finite element implementation

The numerical integration of the constitutive theory presented in the previous sections is performed in a
finite-element framework, with the damage variable being treated as an additional degree of freedom at
every node. A staggered algorithm, as proposed in Miehe et al. [98], is implemented in the commercial
software package ABAQUS. Within a time increment, the displacement problem is solved first, while the
damage variable is held constant. In a second step, the phase field problem is solved, while the displacement
is held constant. A user material subroutine (UMAT) has been developed for the displacement problem,
which is based on the method of elastic predictor and plastic corrector, cf. Simo and Hughes [128]. The
required consistent tangent operator is calculated by numerical differentiation. The solution of the phase
field problem is based on a weak form of the partial differential equation Eq. (7.59), see, e.g. [88, 124].
The discretized form of the resulting formulation was incorporated in a user element subroutine (UEL).
The advantage of the staggered algorithm is its great robustness. This is of particular interest, since the
deformations in the vicinity of the crack tip are very high, which can lead to convergence problems in the
context of elastoplastic material models.

For the examples discussed in the next section, linear shape functions for both the displacement and
the phase field problem are used. All material parameters are listed in Table 7.1. Note, that the material
parameters in the phase field model are the same as in [99].

K

I

ko

v =3c¢/2

(1+8)Ge

l

175,000 MPa

80, 769 MPa

200 MPa

5000 MPa

2.7N/mm

0.0075 mm

Table 7.1: Material parameters used in the finite element model.

7.6 Analysis of predicted responses

It is of interest now to analyse the effect of the damage model on the predicted responses. For the aims
of the present paper, as mentioned in the introduction, it suffices to confine the analysis to cyclic loading
conditions for the cases of pure kinematic or pure isotropic hardening. The discussions rely upon one- and
two-dimensional examples. The one-dimensional examples refer to an eight-node element, cf. Fig. 7.1,
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Figure 7.1: (a) One-dimensional model. Eight-node element subjected to tension/compression loading along the xs-axis. (b)
Identical (e, o)-distributions due to pure isotropic and pure kinematic hardening for monotonic loading conditions.
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Figure 7.2: Geometry and loading history for the cracked specimen. The specimen is discretized by 6684 linear, four-node plane
strain elements. All dimensions are in mm.

while the two-dimensional examples concern the cracked specimen shown in Fig. 7.2. In the latter, linear
four-node plane strain elements (CPE4) are used for the displacement problem. In all cases, homogeneous
Neumann boundary conditions are supposed to apply for the phase field problem. In order to facilitate
comparison of the results, the material parameters for isotropic and kinematic hardening are chosen in the
form v = 3¢/2, so that the predicted strain—stress distributions for one-dimensional monotonic loading
are identical. This is demonstrated in Fig. 7.1b, where o = 092 and € = ey are the stress and strain
components in the loading direction. Note that only the form of the strain—stress curve in Fig. 7.1b, which is
a characteristic feature of the assumptions made, is of interest. Moreover, such distributions as (e, o) indicate
graphs of points (e(t),o(t)) parametrized by time ¢. In both, the one- and the two-dimensional examples,
the top boundary is subjected to a prescribed displacement, while all other boundary conditions are as
shown in Figs. 7.1 and 7.2. The imposed displacement in the one-dimensional case varies harmonically
with vanishing mean value. This corresponds to strain-controlled, homogeneous tension/compression
loading between two bounding strains —¢y and ¢y. The cracked specimen is also subjected to harmonically
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Figure 7.3: Cyclic, uniaxial tension/compression loading: pure kinematic hardening. Predicted (a) (g, o)-distribution and (b)
(e, D)-distribution.
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Figure 7.4: (a) (22, 022)-distribution and (b) (e, D)-distribution for the first integration point behind the crack tip.

varying displacement, but with positive mean value, cf. Fig. 7.2.

First, pure kinematic hardening in the one-dimensional case is considered. From the predicted (¢, o)-
distributions displayed in Fig. 7.3a, it can be recognized, that the material response reduces to a closed
hysteresis loop just after one loading cycle. This behaviour is quite similar to the case of cyclic plasticity
without damage and arises from the fact, that damage evolution is involved only in the first tension loading
branch (see Fig. 7.3b). It becomes clear from Eq. (7.59), that damage evolution can only occuy, if the
value of the history variable H increases. In the present case, the maximum value of 4, and hence of the
damage variable D too, is obtained at the end of the first tension loading branch. After that, both H and
D always remain constant for this model. As a consequence, the split in the elasticity law in Eq. (7.9) has
a negligible effect and the maximal amounts of the plastic strains in both tension and compression, remain
constant and practically equal to each other.

These issues for one-dimensional homogeneous deformations are somewhat similar in the case of the
cracked specimen indicated in Fig. 7.2. To elucidate, the nearest integration point behind the crack tip is
considered. The predicted (e92, 092)- and (&, D)-distributions for this point are shown in Fig. 7.4a,b and
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Figure 7.5: Pure kinematic hardening: damage evolution for the cracked specimen after (a) one loading cycle and after (b) ten
loading cycles.

reveal, that after the first tension loading branch, the damage value remains practically constant, whereas
the plastic strain is changing in every loading cycle. The damage distribution for the whole specimen after
one and after ten loading cycles is shown in Fig. 7.5a,b, where the respective maximum values of damage
are depicted in a red colour. It is obvious, that damage does not accumulate and therefore the model fails
to describe fatigue crack propagation. These results make clear, that in general, the adopted phase field
theory is not qualified to address ductile fracture, when only kinematic hardening is present.

Next, the case of pure isotropic hardening is discussed. Predicted responses for the imposed one-
dimensional cyclic loading conditions are illustrated in Figs. 7.6 and 7.7, where e? = I, . It can be seen from
Figs. 7.6d and 7.7d, that the increase of damage is practically equal for tension and for compression. The
reason for this behaviour is that the history variable H in Eq. (7.59) is dominated by ¢2(ZSO), which increases
practically equally in both tension and compression, see Fig. 7.8. That means, the tension/compression
asymmetry in the elasticity law has a minor influence on the damage model under consideration.

It can be seen from Figs. 7.6b and 7.7b, that with increasing number of loading cycles, the amount
of plastic strain decreases and approaches to a constant value. This is a consequence of the assumption,
that the mean value of the strain disappears. At the same time, the plastic arc length s and the damage
variable D approach to limits s* and D*, each of which is a monotonically increasing function of . This
behaviour is again similar to the case of cyclic plasticity without damage. Actually, it can be verified for
cyclic plasticity without damage, that the yield radius approaches a limiting value kg + s*. The value s*
can be estimated from the yield condition and the elasticity law to be s* = (Eey — ko) /7, where E is the
Young’s modulus. It is worth remarking, that opposite to the case of plasticity without damage, there is a
limiting constant value of plastic strain, which is negative. This is an implication of both the split in the
elasticity law in Eq. (7.9), that now has a noticeable influence, and the isotropic hardening, that changes
in every cycle. It is concluded, that for the considered one-dimensional problems, similarly to the case of
pure kinematic hardening, damage accumulation can be bounded by values smaller than one.

Opposite to pure kinematic hardening, these conclusions do not hold for the structural problem of
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Figure 7.6: Pure isotropic hardening: cyclic, uniaxial tension/compression loading with 9 = 0,01. Predicted (a) (e,0)-
distribution, (b) (¢, ?)-distribution, (¢) (¢, s)-distribution and (d) (e, D)-distribution.

the cracked specimen. Since the amount of the local strains are not subjected to constraints, damage
accumulates continuously in the vicinity of the crack tip and approaches 1. Fig. 7.9a,b illustrates the
damage distribution after one and after ten loading cycles and makes clear, that the range with values
of D close to 1 becomes larger with increasing number of loading cycles. Consequently, a description of
fatigue crack propagation is possible in principle. However, the following should be remarked. It is well
known, that linear isotropic hardening cannot capture adequately effects of cyclic plasticity. Furthermore,
if non-linear isotropic hardening is assumed, so that R is bounded from above, then this model does not
permit D — 1 even for monotonic, homogeneous loading. This assertion can be proved on the basis of
Eq. (7.59), from which

o

l

D (7.60)

Evidently, D — 1 only when H — oo, which cannot happen, as wg; , and hence H too, are bounded for
this case.
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Figure 7.7: Pure isotropic hardening: cyclic, uniaxial tension/compression loading with £9 = 0,03. Predicted (a) (e,0)-
distribution, (b) (t, e?)-distribution, (¢) (¢, s)-distribution and (d) (e, D)-distribution.

7.7 Concluding remarks

The present paper provides an analysis of a phase field model in common use. The analysis comprises
thermodynamical aspects and characteristic features concerning ductile fracture mechanics. It is shown
that, if the free energy function depends explicitly on D, VD, then thermodynamical consistency of the
phase field model can be well addressed in the framework of non-conventional thermodynamics. The basic
structure of the constitutive theory is adopted from phenomenological plasticity combined with continuum
damage mechanics methods. For the sake of simplicity, only pure kinematic or pure isotropic hardening
are incorporated. It is shown, with reference to cyclic loading conditions, that the phase field model under
consideration, in its basic form, is not able to address ductile fracture mechanics problems. A further
characteristic feature is that tension/compression asymmetry is modelled in the elastic part of the free
energy function and cannot be controlled separately by material parameters during plastic loading.

The results of this or similar analyses were certainly known, e.g., to the authors of the papers Ul-
loa et al. [132] and Seles et al. [124]. Therefore, as mentioned in the introduction, based on an idea
developed for the first time in Alessi et al. [7], these authors proposed extensions of the basic structure
of the model by introducing a further degradation function, depending on a so-called fatigue variable. It
is worth noting, that like the basic form of the model discussed in the present paper, the fatigue gener-
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alizations of the model are rather extended models of fracture mechanics. As such, they originate from
the regularization of sharp crack topologies, where the relevant crack propagation mechanism is based
on the debonding of atomic planes. Therefore, both the formulations in Miehe and co-workers [97, 99,
98], as well as the mentioned fatigue extensions, only consider degradation of the material stiffnesses in
the free energy. Energy stored in the material due to the damage process, as modelled by the part ¢p
in the present paper, is not intended. Note also, that cyclic loading effects are reflected in the work of
Alessi et al. [7] by degradation of the fracture toughness depending on the accumulated plastic strain. It
should be outlined, however, that the present forms of these extensions deal with evolution equations of
the damage variable that do not account for plastic rate effects.

An alternative to such approaches arises, if the analysis above is interpreted to suggest modelling of the
constitutive response of ductile materials within the context of continuum damage mechanics. Accordingly,
the failure process of, e.g., metallic materials, has to be viewed as the result of initiation, growth and
coalescence of voids. Opposite to brittle materials, local distortion of the lattice due to the existence of
voids will now contribute to the energy stored in the material in terms of the part ¢)p, besides the energy
stored due to the elastic deformation of the lattice and distortion of the lattice due to the creation and
motion of dislocations, leading to hardening effects. The analysis of the present paper demonstrates, that
non-conventional thermodynamics is an appropriate framework for free energy functions of such forms.
Further, according to the methods of continuum damage mechanics, the evolution equation of D should be
related to the rate of the plastic arc length $. A common simplification is to regard the tension/compression
asymmetry to be relevant only for the damage law. In this case, the asymmetry can be reflected by the
damage potential on which the damage evolution is based (see, e.g., Malcher and Mamyia [86] and the
references cited there). This way, tension/compression asymmetry aspects can be controlled by material
parameters. The thermodynamics adopted can address such issues appropriately as well. It is perhaps
of interest to remark, that the structure of such continuum damage mechanics models is different from
the one according to ductile fracture models, e.g., by Park and Kim [113], Papasidero et al. [111] or
Cerik et al. [31]. A damage indicator variable is also used in these ductile fracture models, but this variable
does not affect the elastic—plastic model responses. Of course, micromechanics damage models of the
Gurson type (see, e.g., Tvergaard and Needleman [131]) can also be incorporated, but such models do not
account for damage degradation of the elasticity response as well, which is fundamental in the basic form
of the model considered in this paper. A phase field theory for ductile materials of the proposed type will
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be discussed in forthcoming papers.
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8 Objectives of the third paper

The analysis in the second paper showed, that a straight-forward application of phase field models for
elasticity to material models of elastoplasticity is not possible. Most importantly, the adopted formulation
of the phase field did not account for the evolution of plastic deformations. However, crack propagation in
ductile materials relies upon the initiation, growth and coalescence of voids due to plastic strains in the
vicinity of the crack tip, cf. Anderson [11]. Second, the analysis showed that damage evolution under
tension and compression loading was almost identical, which is not physically sound. The third aspect
concerns cyclic loading conditions, which cannot be handled by classical phase field formulations of brittle
fracture.

To address all of the above issues, a new phase field theory for crack propagation in ductile materials,
based on ideas of continuum damage mechanics, is proposed in the third paper. The thermodynamical
consistency of this theory is accomplished in the framework of the non-conventional thermodynamics
adopted. The specific features of this model are the forms of the free energy function, the isotropic hardening
law and the evolution equation for the damage variable. The proposed theory is verified by analysing several
numerical examples. The results indicate that the theory is able to capture crack propagation in ductile
materials under monotonic and cyclic loading conditions. Especially, it is not necessary to incorporate
so-called fatigue degradation functions. A short experimental verification with reference to measured strain
distributions is also given.
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Abstract In the present work, a phase field approach for ductile fracture and fatigue failure in the
framework of non-conventional thermodynamics is proposed. In contrast to brittle fracture, the physical
mechanisms for fracture are supposed to be initiation, growth and coalescence of voids, driven by plastic
deformation. Thus, the aim of the paper is to demonstrate how well-established ingredients of plasticity,
continuum damage mechanics and phase field theories can be fit in the adopted framework. The main
features of the proposed theory are that damage evolution is coupled to the evolution of plastic strain, that
the appropriate modelling of yield stress effects in the free energy function is of central importance and
that fatigue failure can be captured without employing fatigue degradation functions. Various numerical
examples and comparisons with experimental data demonstrate the capabilities of the model.

Keywords Phase field, Plasticity, Ductile fracture mechanics, Damage mechanics, Non-conventional
thermodynamics

9.1 Introduction

Approaches to brittle fracture using energetic concepts are often based on the minimisation of functionals
representing the total energy of the material body, see Bourdin et al. [23]. According to the phase field
approach to fracture, the sharp crack topology reflected in the energy functional of traditional fracture
mechanics is approximated by a sequence of regularised functionals. These functionals are parametrised
by a small parameter [ and depend, besides the displacement field, on a so-called phase field variable
€ [0,1], distinguishing smoothly between intact (D = 0) and broken (D = 1) material states, cf.
Bourdin et al. [23, Ch. 8], Bourdin et al. [22] and Wu et al. [138], and the references cited there. Using
I'-convergence results, it is shown that, in the limiting case | — 0, solutions on the basis of the regularised
functionals converge to the solution of the original problem.
There are also other phase field approaches to fracture, e.g., by posing the problem in the setting of the
Ginzburg-Landau equation (see, e.g., Hakim and Karma [57], Kuhn et al. [76], Kuhn and Miiller [75], Noll
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et al. [108], and Miranville [100]) or on the basis of Gurtin’s [53] microforce and microstress balances
(see, e.g., Borden et al. [19], Lo et al. [85], Kristensen et al. [74], Silva Jr et al. [126], and Khalil et al.
[69]) or in the framework of non-conventional thermodynamics (see Tsakmakis and Vormwald [130]).
Note that a standard way to overcome problems of thermodynamic consistency is to require validity of the
second law of thermodynamics only in global form combined with specific boundary conditions for the
phase field (see, e.g., Wu et al. [138] and Shanthraj et al. [125]).

It is worth remarking that the standard forms of phase field models for brittle fracture fail to describe
evolution of the phase field under cyclic loading conditions. Thus, fatigue phenomena due to subcritical
loads cannot be modelled. To overcome this problem, fatigue degradation functions have been introduced,
which reduce the material toughness during cyclic loading. To our knowledge, a fatigue degradation
function for phase field models has been proposed for the first time in Alessi et al. [7]. This approach is
similar to concepts of cohesive zone fracture models, dealing with functions of memory variables for crack
opening, cf. Mesgarnejad et al. [96] and Abdelmoula et al. [1].

Phase field modelling of ductile fracture has been proposed, among others, in Noll et al. [108], Borden et
al. [19], Khalil et al. [69], Seles et al. [123], Miehe et al. [97], Ambati et al. [8], Alessi et al. [5], Ulloa et al.
[132], Yin and Kaliske [139], and Alessi et al. [6]. Because of reasons somewhat similar to those in brittle
fracture, standard forms of phase field models fail also to describe appropriately ductile fracture, when
cyclic loading conditions are imposed. A discussion of these features for the case of elastic-plastic material
behaviour exhibiting isotropic and kinematic hardening is provided in Tsakmakis and Vormwald [130].
Evidently, these issues were known, e.g. to the authors of the papers Ulloa et al. [132], Seles et al. [123],
and Khalil et al. [69]. These interesting works are rather generalisations of the ideas developed in brittle
fracture mechanics, where the relevant crack propagation mechanism is based on the debonding of atomic
planes. For example, they deal with evolution equations of the phase field variable that do not account for
plastic rate effects. Here it is supposed that the relevant failure mechanism in ductile materials originates
from initiation, growth and coalescence of voids, which is driven by plastic deformations. Such mechanisms
are accounted for in the concepts of continuum damage mechanics. In fact, continuum damage models
appropriately enhanced by gradient effects are nothing but phase field theories for fracture. Therefore, the
terms ’damage’ and ’phase field’ will be used synonymously in the present work.

The aim of the paper is to formulate a phase field theory for ductile fracture and fatigue failure in the
framework of non-conventional thermodynamics. The main physical mechanisms for ductile crack growth
are assumed to be driven by plastic deformations, so that well-established concepts of continuum damage
mechanics are adopted and generalised appropriately. Moreover, it is shown, how existing ingredients
of fatigue phase field models might fit into the general framework of the paper. An examination of the
relevance of such modelling aspects is also provided. Of central importance is the modelling of yield stress
effects, isotropic hardening and damage in the free energy function. Therefore, a large part of the work is
devoted to the study of this modelling. Several examples and comparisons with experimental data are
discussed in order to verify the capabilities of the proposed theory.

9.2 Basic relations

9.2.1 Adopted non-conventional thermodynamics framework

As in Tsakmakis and Vormwald [130], the non-conventional thermodynamics adopted in the present work
is the one proposed by Dunn and Serrin [40]. Let 5 be a material body occupying the range V' in the
three-dimensional Euclidean point space, with boundary 0V and outward normal vector n. Material points
in V U 0V are described by location vectors x with components z;, i € (1,2, 3), in a Cartesian coordinate
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system. Summation over repeated indices is implied. All deformations are supposed to be small, so that
1
€ij = §(Ui7j + Ujﬂ‘) (9.1)

are the components of the strain tensor €. In Eq. (9.1), u; are the components of the displacement vector u
and use has been made of the notation (-) ; = 9(-)/0x;. Dunn and Serrin [40], following a suggestion of
Toupin [129], generalised the classical energy balance law by admitting the existence of an energy flux
vector q', besides the conventional heat flux vector q. Omitting inertia terms, body forces and heat supply,
the global form of the energy balance then reads

iﬁ/edv: /O’Z‘jnj’[l,i dA—/q;TLZClA—/anZ dA, (9.2)

Vv ov ov oV

where e denotes the internal energy per unit volume, o;; = o;; are the components of the Cauchy stress

tensor o and ¢ is the time. Moreover, (-) = J(-)/0t denotes the partial time derivative. By localization of
Eq. (9.2), the local form of the energy balance

&= 0ijéij — Qi — Qi (9.3)

is obtained. The energy carriers causing q’ in the present theory are thought to be connected to interstitials,
dislocations and initiation and evolution of damage defects. According to Eq. (9.2), beyond classical
boundary conditions, non-classical ones related to q' are required additionally. Such non-classical boundary
conditions depend on the constitutive form of q’ and are stipulated in the present paper in section 9.4.

Let n be the entropy per unit volume, 6 > 0 the absolute temperature and ) the free energy per unit
volume, so that the Legendre transformation

applies. Then Eq. (9.3) can be rewritten in the form

0ijéij — dj — 00 — 977 - QQ,i —q;; =0. (9.5)

)

For the assumptions made, the Clausius-Duhem inequality in local form is postulated by

i+ (%) =0 9.6)

)

or equivalently, by incorporating Eq. (9.5),
) . .1
oijéij = i =¥ =10 = 5a:0,i 2 0. (9.7)

In case that isothermal deformations with uniformly distributed temperature are assumed to apply, inequal-
ity (9.7) reduces to
oijéij — qi; — ¥ > 0. (9.8)

If there is no energy flux, i.e. @' = 0, Eq. (9.7) becomes the classical Clausius-Duhem inequality in local
form, which in turn, in cases where thermal influences are negligible (cf. Gurtin et al. [55, sec. 29]),
reduces to the free energy imbalance

O‘ijéij — ¢ 2 0. (99)
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In addition, the equilibrium equations
0ij,5 (X, t) =0 (910)

for every x in V' hold, and the concomitant boundary conditions
either ¢; = 04N or u; (9.11D)

have to be prescribed on V.

Note that the local equations (9.5) and (9.8) hold true irrespective of specific boundary conditions
for q'. Generally, more sophisticated non-conventional thermodynamics theories might be elaborated, when
formulating non-localities in time and space, cf. Alber et al. [4, 3]. However, for the aims of the present
paper, the adopted non-conventional thermodynamics framework of Dunn and Serrin [40] is perfectly
sufficient.

9.2.2 A general structure of plasticity models
9.2.2.1 Dissipation inequality

An elegant approach to plasticity is provided by the theory of generalised standard materials (see, e.g. Ger-
main et al. [46] and Maugin [92, p. 117]). The framework of this theory, which is referred to by Lemaitre
and Chaboche [83, p. 193] as generalised normality hypothesis, is based on two scalar valued functions
only, the free energy and the dissipation potential. All constitutive equations can then be derived from these
two functions. An extension of this framework, dealing with three scalar functions, has been proposed
in Lemaitre and Chaboche [83, sec. 5.3.3 and 5.4.4]. The three functions are the free energy, the yield
function and the dissipation potential. Further extensions, dealing with even more functions have been
suggested in Chaboche [34]. Unfortunately, in some cases the definition of dissipation potentials is artificial,
cumbersome and even restrictive as regards the description of material properties. The most general
framework for plasticity arises by dealing with the free energy, the yield function and with sufficient
conditions for the dissipation inequality. This general way will be pursued in the following.

The plasticity model we are concerned with in the present paper relies upon three fundamental concepts.
First, the additive decomposition of the strain tensor € into elastic and plastic parts, e and &?, is assumed
to apply, i.e.

€ij = €5 + 5’;]-. (9.12)

Second, the yield condition is specified by a von Mises yield function incorporating isotropic and kinematic
hardening. Third, the form of the flow rule is assumed to be the associated normality condition.

Isotropic hardening is of central importance not only because of the influence on the shapes of the
strain-stress responses. There are two further important aspects: The effect of the isotropic hardening
model 1) on the energy stored in the material due to plastic deformations and 2) on the evolution of
the phase field variable in the case of cyclic loading conditions. To elucidate the first aspect a general
formulation of the isotropic hardening law is presented, allowing to capture the essential features when
modelling the energy stored in the material due to plastic deformations. These issues are discussed in detail
in the present and the next section without consideration of damage. In order to highlight the significance
of the isotropic hardening model on the phase field theory, however, it will be sufficient to concentrate only
on a simplified version of the model.

Letr;, I =1,2,..., be scalar internal strains and Y;, J = 1, 2, ..., be second-order internal strain tensors,
reflecting isotropic and kinematic hardening effects, respectively. Stresses conjugate to r; and Y; are
denoted by R; and &, respectively. Chaboche et al. [37] proposed to set R := >, R; for the internal
stress describing isotropic hardening and £ := ) ; £ ; for the back-stress tensor of kinematic hardening.
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For the aims of the present paper, and for definiteness, we set I = 1,2 and J = 1, so that R = Ry + R and
Y=Y,£=¢;.

Focussing attention on elastoplasticity with isotropic and kinematic hardening, first the free energy
without damage, v°, is specified. The additive decomposition (see Lemaitre and Chaboche [83, p. 189])

W0 = 0%, 11,0, Y) = 90 + 5 =y 4 ¢p0lie0) 4 ypO(kin) (9.13)

is supposed, where ¥0 = 90(e€), o = 205 (r 1)) and po*™ = p2* ™ (y). For the aims of sec-
tion 9.2, it is not necessary to specify the response function of 1/?. Both linear and quadratic terms in r;
and r, are admitted in ng(wo), and following Lammer and Tsakmakis [79] we set

. 1 1
2(”0) =kir1 + 5717"% + koro + 5727"§= (9.14)
. 1
w}())(km) — §an1/ij7 (9.15)

with k1, k2, 71, 72 and ¢ being non-negative material parameters. Hence,

R = R; + Ry, (9.16)
P 0(iso) 9 0(is0)
Ry = dgﬁ =ki+mr, Ra:= wapm = ko + Y2re, (9.17)
and oCkin)
6 mn
&ij = %Z)Y = cYjj. (9.18)

It is convenient to introduce the notation
Ry ==y, Ry == 7ar9, (9.19)

so that B )
Ry = k1 + Ry, Ry = ko + Ro. (9.20)

From Egs. (9.14) and (9.17), it can be seen that the constant stresses k1, ko are energetic, i.e. they
contribute to the work stored in the material, but do not cause any hardening. In the remainder of the
paper it will be shown that stresses k1, ko have significant influence on both the modelling of the ratio of
stored energy to plastic work and the damage evolution.

If thermal aspects are neglected, then, for classical elastoplasticity considered in this section, the
imbalance law (9.9) holds, and by using in (9.9) the equations (9.12)-(9.18), it follows that

o2 oY ) . .
(Uij — awee> + awe €ij — Ry71 — Rorg — §inij > 0. (9.21)
e e
Standard arguments in plasticity theory allow to conclude from (9.21) the elasticity law
0(-e
Uij = 0’(/)6(65 ) (922)
Oeg;
and the dissipation inequality
0ijél; — Riiy — Roig — &Y 5
:(Uij — &ﬂ&% — Ri71 — Rorg + fw(aEf] — YZJ) > 0. (9.23)
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Clearly,
(05 — fz’j)éfj — Ry71 — Rarg > 0, (9.24)
&ij(E; —Yij) 2 0 (9.25)

are sufficient conditions for inequality (9.23).

9.2.2.2 Evolution laws

In metal plasticity, the von Mises yield function with isotropic and kinematic hardening is widely used and
will also be assumed here:

F=F(o,R &) =f—ko=/3J2(c — &) — R— ko, (9.26)
J2(o = §) 123(% — &) (03 — &))" (9.27)

The equation F' = 0 describes the yield condition, while A%V denotes the deviator of a second-order
tensor A. Further, ky = const. is the part of the initial yield stress contributing to the dissipated work.
Another form of the yield function F' arises by replacing R in (9.26) with the aid of Egs. (9.16) and (9.20):

F:f—ko:\/3J2(0'—€)—Rl—Rg—kl—kQ—k‘O. (928)

This form of F' inevitably leads to the interpretation, that 02 := ko + k1 + ko is the proper initial yield
stress. Accordingly, this initial yield stress consists of the part kg, which contributes only to the dissipated
work, and the part k; + ko, which contributes to the energy stored in the material.

The evolution law for P (flow rule) is defined by the associated normality rule
OF o 3A (Uij — fij)dev

*J 0oij 2 /3Jy(0 —€) ( )

together with the Karush-Kuhn-Tucker conditions (cf. Simo and Hughes [128, sec. 2.2], Han and Reddy
[58, sec. 13.5])
A >0, F <o, AF =0, (9.30)

and the consistency condition, that during plastic flow
A >0, F <o, AF =0. (9.31)
If s denotes the plastic arc length, defined by

X 2.,.

5= 58%6%, (9.32)
it is readily seen that A = 5. Using these relations in inequality (9.24), it can be proved that during plastic
flow
3 (03 — &)™
2/3J3(0 — &)

or, by virtue of (9.26), (9.27), (9.16), (9.20) and F = 0,

(015 — &ij) 5 — Ry — Rorg > 0, (9.33)

kos + k‘l(S — ’i’l) + k‘g(s — 7.“2) + Rl(é’ — 7'“1) + Rg(é’ — 7;‘2) > 0. (9.34)
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Every evolution equation for 71, ry satisfying s > 71 > 0,$ > 7o > 0 will be compatible with inequal-
ity (9.34). For instance, this holds true for the evolution laws

7;‘1 = 041(1 — 517“1)..9, 7.“2 = 012(1 — ,821”2):9, (935)

where a1, as, (1, B2 are scalars subject to 0 < a3 < 1,0 < ay < 1 and S, 82 > 0. To see this, it is noted
that for homogeneous initial conditions 71 (s = 0) = r2(s = 0) = 0 the solutions of the ordinary differential
equations are

1 1

B B
Therefore, using Eq. (9.35)4, it can be calculated that 5§ — 71 > § — ailh = B1r15 > 0. A similar estimation

holds for 7. Finally, assume for the kinematic hardening the Armstrong-Frederick rule (cf. Armstrong and
Frederick [15], Chaboche [36])

71 (1- e_o‘lﬂls) >0, 71 (1-— e_O‘Q’BQS) > 0. (9.36)

Yij =&l — bsYy;. (9.37)

It is not difficult to verify, by appealing to (9.18), that inequality (9.25) becomes géfij&j > 0, which is
always satisfied, provided that the scalar b is non-negative.

9.2.2.3 Ratio of energy stored in the material to plastic work

The aim of this section is to motivate the isotropic hardening rules established in the last section by providing
experimental evidence with reference to the energy stored in the material during plastic flow. Let 1V, be
the expended plastic work per unit volume, W, be the energy per unit volume stored in the material due
to plastic deformations, and consider a homogeneous body under tensile loading. For various metallic
materials, distributions of W, /W), as functions of s have been determined experimentally by Chrysochoos
and are reported in Chaboche [33]. Chaboche showed that common constitutive laws of isotropic and
kinematic hardening fail to describe even qualitatively the experimental results for W(s)/W)(s), at least
for polycrystalline solids. He argued, that a saturated isotropic hardening is necessary in the isotropic
hardening theory in order to reflect the trends of the experimental data. Here, the suggestion made by
Chaboche has been modified and generalised, as presented in the last section. Irrespective of physical
interpretation, the saturated isotropic hardening in Chaboche’s proposal corresponds to the term k; + ks in
Eqg. (9.28), but otherwise the models for isotropic hardening in the present paper and in Chaboche [33]
are different.

The capability of the proposed isotropic hardening model in predicting distributions W(s)/Wp(s) is now
analysed. For monotonic, one-dimensional tensile loading, the plastic work W), reads

/ dey; / dey; del;7 .
0 0

and can be calculated with the help of the normality condition (9.29), the identity A = 3, the yield condition
F = 0 and the relations (9.18)-(9.20). After some manipulations, IV, becomes

r 3
Wp = (ko + k1 + kg)s + / <’71?”1 + Yorg + 20Yn>d§. (9.39)
0
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Figure 9.1: Distributions of W, /W, for various sets of material parameters. The graphs demonstrate, that the proposed model is
capable to describe a large amount of different material responses.

For homogeneous initial conditions, it can be seen that Y1; = %(1 — e ) and, using the solutions (9.36),
that

Mo, | 3¢ gl V2 3c
Wy=(ko+ki+hka+——+-—2-4+")s— - — V. 40
P ( 0 ! 2 ,81 ,32 2()) y Oél,Blrl (XQ,BQTQ 2b 1 (94 )

The energy stored in the material due to plastic deformation is given by

1 1 3
W =9 = kiry + 57””% + kory + 5727% + chﬁ. (9.41)

Predicted W;(s)/W,(s) distributions for several combinations of parameters are displayed in Fig. 9.1.
These distributions make clear, that the proposed model is capable of covering a large range of possible
material responses.

The effect, e.g. of k1, can be highlighted by setting ks = v = 0 and varying ko, k1 so, that kg+k%; = const.,
while all other material parameters are held fixed. The predicted responses are shown in Fig. 9.2a. It
can be recognised, that with increasing values of k;, the maximum values of the curves W, /W, are also
increasing and at the same time the maximum points are moving to the left on the s-axis.

Parameters «; and ay have also a strong influence on the predicted W(s)/W,(s) distributions. For
ko = 2 = 0 the influence of o, is demonstrated in Fig. 9.2b. It can be seen, that increasing values of
imply increasing values of W, /W, but in difference to Fig. 9.2a there is only marginal influence on the
s-coordinate of the maximum points of the curves.

Finally, responses predicted with material parameters corresponding to the ones used in Chaboche [33]
in a model designed with two back-stresses £, and &5, but without non-linear isotropic hardening will
be discussed. The model used by Chaboche turned out to describe fairly accurately the experimental
results of Chrysochoos concerning steel XC38. These experiments comprise o11(s) and W(s)/W,(s) curves
measured under uniaxial tensile loading conditions. For the material parameters in Table 9.1, curves
Ws(s)/Wp(s) and o11(s) predicted by the model proposed here are shown in Fig. 9.3. These curves are
nearly identical to those calculated in Chaboche [33] and therefore meet also very well the experimental
results.

For simplicity, the remainder of the paper is referred to a reduced form of the model. Changing notation,
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Figure 9.2: Distributions of W, /W, for a) varying k1 (ko + k1 = const., k2 = 2 = 0) and b) varying a1 (k2 = 2 = 0). All other
material parameters are held fixed.

this can be summarised as follows:

W0 =90, 5,1, Y) = 9 + o = o0+ g, (9.42)
Y0 = Fas+ gor?, wi = Zovyy, 9.43)
oy = gfé (9.44)
B = 8¢§:SO), R 8‘”§i50) — = a%%(/kn) — vy, (0.45)
D = 03¢}, — k1s — Ri — §;Y 5 > 0, (9.46)

F:f—k():\/3J2(O’-£)-R-]%1-k0, (947)

OF  0\/313(0 — €)

P A =A .

&= N0 Do : (9.48)
5= %éfjéfj =A (9.49)
= (1-Br)s, (9.50)
Yij =&l — bsYy;. (9.51)

9.3 Proposed phase field model for ductile fracture

9.3.1 Extension of the plasticity model to include damage

The aim is now to extend the plasticity model (9.42)-(9.51) to account for damage effects. As in the last
section, the evolution equations for the internal state variables will be established as sufficient conditions

ko ky ko |ar | Br | M| a2 | B2 V2 b c
111MPa | 131 MPa | O 1 0 0 1 27 | 6426 MPa | 405 | 31050 MPa

Table 9.1: Material parameters
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Figure 9.3: Distributions of a) W, /W), and b) 011 (s) for steel XC38 predicted by the plasticity model proposed in the present paper.
The graphs are nearly identical to those presented in Chaboche [33] and describe fairly accurately the corresponding
experiments of Chrysochoos reported in Chaboche [33].

for the dissipation inequality.

9.3.1.1 Free energy potential

Let the decomposition (9.12) still apply,
€ =€+ &P, (9.52)

and note that, when plastic deformations occur, ductile materials are subject to damage evolution, which
might be captured by the damage (phase field) variable D € [0, 1]. Suppose now the response functions of
the free energy for undamaged elastic-plastic materials, established in Egs. (9.42) and (9.43), to apply.
The common hypothesis of many phase field theories is adopted, namely that some parts or terms of
these response functions hold equally for the damaged material but are degradated by a differentiable,
monotonically decreasing function g(D), with ¢g(0) = 1 and ¢g(1) = 0. The damaged material, however,
will store additional energy due to the evolution of damage. This additional energy, denoted by ¢ p, is
supposed to be a function of D, VD and y, where V is the Nabla-operator and y is an additional scalar
internal variable, modelling fatigue phenomena. Altogether,

¢ = w(Ee,S,T,Y,D,VD,X) = wep(se,S,T,Y,D) +'¢D(D,VD,X)

= e(e%, D) + p(s,1,Y, D) +¢p(D, VD, x), (9.53)
with
by = g(D)YS (5,1, Y) = g(D)wo) (s,1) + g(D)p*m (), (9.54)
and (cf. Eq. (9.43))
150 7. 1 kin 1
U0 = Fys + 577“2, yolkin) = §CY§jY§j- (9.55)

Equations (9.54) and (9.55) express the assumption, that compressive and tensile contributions to the
plastic part of the free energy are degradated equally.
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The stresses conjugate to s, 7, Y and y are

0 . 0
ki = a%} =9(D)k1, R:= 8% = g(D)r, (9.56)
0 0
ij

As an elastic part of free energy was not needed in section 9.2, this part will be specified now. Following
Amor et al. [10], the volumetric-deviatoric split

1
ACORE §K<6ik>2 + (e (e5,)°, (9.58)

9o () 1= K (i) (959

for linear isotropic elasticity is introduced. In these equations, K is the compression modulus, y is the shear
modulus and (-) are the Macaulay-brackets, i.e. (z) := 3(z + |z|). Tensile and compressive contributions
are distinguished on the basis of the sign of the trace of °. In contrast to the plastic parts of free energy,
the extension of Egs. (9.58), (9.59) to incorporate damage is based on the physical idea, that damage
accumulation degradates only the tensile part /0. Thus,

e = te(e%, D) =0 (¢, D) + 1) ()
=g(D)ye* (%) + 12~ (e°).

It must be noticed, that the methods used in traditional continuum damage mechanics for establishing
the response functions of the damaged material, from the known ones of the undamaged material, are
different from those in the phase field approach and lead generally to different results (see sec. 9.A).

A common feature of phase field fracture approaches is that their theory deals with terms of the form
(cf., e.g. Ambati et al. [8], Borden et al. [19], Kuhn et al. [76], Francfort and Marigo [45], and Huang and
Gao [63])

(9.60)

G. (1 1
vp(D,VD) = =~ <2D2 + 2l2]|VDH2>. (9.61)
In this formulation, G, is a material parameter, [ is an internal length and ||v|| := |/v;v; is the Euclidean

norm of a vector v. In brittle fracture, [ is used as a mathematical parameter in order to regularise the sharp
crack topology (see related remarks in section 9.1). However, in gradient damage mechanics [ is rather
a fixed material parameter and has to be determined from experiments, c.f. Wu et al. [138, p. 14] and
Amor et al. [10]. In this context, G/l should also be thought of as a material parameter. There are works
assuming 17, as a part of the free energy (see, e.g. Borden et al. [19], Ambati et al. [8], and Noll et al.
[108]) and others postulating the existence of a free energy, which does not include v, (see, e.g. Miehe
et al. [97, 99, 98]). In traditional continuum damage mechanics terms like ¢}, are included in order to fit
the postulated damage criterion in the thermodynamic framework, see Saanouni [120, sec. 2.4]. Physically,
however, the term ¢}, models energy stored in the material due to the evolution of damage, the latter
implying a local distortion of the lattice and of the surrounding microstructure. In the present paper, the
term ¢}, is assumed to be present in the free energy and it will be shown, that this part is in fact related to
a damage criterion. However, there is another aspect to which attention should be paid now.

Phase field fracture models for monotonic loading on the basis of Eq. (9.61) have been formulated and
discussed in many works, see, e.g. the works cited in Wu et al. [138] and in particular the work of Miehe
et al. [99]. In Tsakmakis and Vormwald [130], it was examined in detail for ductile materials, that cyclic
loading histories cannot be addressed adequately on the basis of Eq. (9.61). It was also mentioned that
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such results or similar analyses were certainly known, e.g. to the authors of the papers Ulloa et al. [132]
and Seles et al. [123]. Therefore, the authors of these works, based on an idea developed for the first time
in Alessi et al. [7], proposed extensions by introducing a fatigue degradation function, depending on a
so-called fatigue variable. This idea will be examined within the assumed framework, denoting the fatigue
variable by y. It is however outlined that the existing constitutive models for the evolution of y are rather
motivated by the concepts of brittle fracture mechanics. In the present paper, the constitutive law for y
is motivated by the concepts of continuum damage mechanics for ductile materials. In particular, x will
be assumed to be positive proportional to the rate of the plastic arc length 3, implying that y increases
monotonically with s.
Altogether, 1 is postulated to have the form

¥p(D,VD,x) := ¢(x)¢p(D, VD), (9.62)

where the fatigue degradation function ¢(y) is decreasing monotonically. This property of ¢ expresses the
physical idea, that two competing processes take place: On the one hand, energy will be stored in the
material due to the evolution of micro-voids, i.e. due to the evolution of damage, and on the other hand,
evolution of damage decreases the capacity of the material to store energy. As experimental evidence is not
available to the author’s knowledge, it is supposed that ¢ is bounded from below by a constant 1 > ¢, > 0.
In the remainder of the paper and for simplicity, ¢ is defined by

B(x) = (1 — hoo)e X + do, (9.63)

with ¢, being a material parameter. Other forms of fatigue degradation functions are proposed, e.g. in
Alessi et al. [7], Carrara et al. [30], Seles$ et al. [123], and Ulloa et al. [132].

9.3.1.2 Dissipation inequality

Since the gradient of D is now present in )p, the appropriate form of the second law of thermodynamics is
supposed to be inequality (9.8). Substitution of Egs. (9.52), (9.53), (9.56) and (9.57) into (9.8) furnishes

: N . N . b -
oijij = i — lag{?eij - 78696% + k15 + Ri + &Y 4
17 17

L, O

D" " a(VD); (VD)i +yx

>0, (9.64)

or equivalently

0 0 )
<O’Z'j — w>EU — qai + L el — k1$ — Rir — §inZ-j

85% aefj Y
- oy .
QD — D) — > .
+ (a(w))i )Z yx = 0, (9.65)
where  is given by the variational derivative dv)/0D,
Oy o
Q= 5D = 3D + <8(VD)Z->J' (9.66)
Recalling Egs. (9.54) and (9.60)-(9.62), after some manipulations, {2 becomes
G
Q=g (D) — ¢(x) (D — PAD) + G.lo ;(x) D, (9.67)

l
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where
OF =0T + ), (9.68)

ep
¢ (D) = dg/0D and A is the Laplace-operator. In the spirit of the suggestions made by Maugin [91], the
constitutive equation

o
/
Pp—— -6
4 AV D); (9.69)
is postulated in the present paper. Then, by using standard arguments, it can be proved that the elasticity
law
oY Oe(e, D)
= — .70
iy a&ij 365]- (9 7 )
holds, so that (9.65) reduces to the dissipation inequality
D I:O'Z'jéfj — kls — Rir — &JYU - QD — yX
=(03j — &ij)l; — kns — R+ &5 (&0, — Vi) + QD — yx > 0. (9.71)
A more convenient form for D reads
D= D(y,iso) + D(kin) + D(D) + D(fat) >0, (972)
where the terms
DY) = (035 — &), — kvs — Ri, (9.73)
pkin) ._ fz‘j(éfj _ Yz'j)a 9.74)
DD .= OD, (9.75)
D) .— 5 (9.76)

represent dissipation powers owing to effects of yield stress and isotropic hardening, kinematic hardening,
damage evolution and fatigue, respectively. Evidently,

puiso) 5 o plkin) 5 o p® > P > 9.77)

are sufficient conditions for the dissipation inequality (9.72) to hold always.
The next steps are first to incorporate damage effects in the yield function (9.47) and then to formulate
evolution laws for the internal state variables in compatibility with the inequalities (9.77).

9.3.1.3 Yield function, evolution laws for plastic strain and isotropic hardening

When damage evolution is involved, it might be expected physically, that this will have influence on
the yield condition. The most simple possibility to elaborate such ideas, is to degradate k in the yield
function (9.47) by a new degradation function g¢(D), or alternatively to enhance f by 1/g¢(D). Accordingly,
the generalisation of the yield function in (9.47) takes the form (cf. Grammenoudis et al. [49], Borden
et al. [19], and Noll et al. [108])

F(o,ki, R, € D) = gf(lD) [V/3Ja(0 =€) — R — k1] — ko. (9.78)

This simple extension of the yield function to capture damage effects can be only a coarse approxi-
mation of the real response of metallic materials. One of the reasons is that the yield function (9.78) is
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incompressibility-preserving. In the case of damage caused by evolution of voids, however, a pressure-
sensitive yield condition should rather be considered.

It should be mentioned, that Noll et al. [108] presented a phase field model, which shows similarities
with the particular case of the current model, where g¢(D) = g(D), ko =0 and ¢ = 1.

The associated normality rule in conjunction with the yield function (9.78) furnishes

0 OF A 0+/3Ja(o — &) 3A (045 — &)
doij  gf(D) Do 29¢(D) \/3J3(c — €)
The plastic multiplier A is now related to 5 = %éfjéf . by
A = gs(D)s. 9-80)

Similar to section 9.2.2, A and F are subject to the Karush-Kuhn-Tucker conditions

A >0, F <0, AF =0, (9.81)
and the consistency condition, that during plastic flow

A >0, F <o, AF =0. (9.82)

Having established the flow rule (9.79), inequality (9.77); can be evaluated by invoking the yield
condition F' = 0, with F' given in Eq. (9.78):

3 (o) — &)™

DO — (g5 — &)= 5— k15— R
( J 5])2 3J2(0__£) 1
= (kl + R+ gf(D)k‘())$ — k15— Rr
— g;(D)kos + R(5 — i) > 0. (9.83)

Since g¢(D), ko, 5 > 0, a sufficient condition for (9.83) is to set 5 — i positive proportional to R, i.e.
§—71 = %éR, with 8 > 0. Together with the potential relation (9.56),, the evolution equation for isotropic
hardening

= (1-g(D)Br)s (9.84)

is obtained.

9.3.1.4 Evolution law for kinematic hardening

Keeping in mind the definition (9.74), inequality (9.77) will be satisfied always by setting éfj —Y;; positive
proportional to &;;, i.e. éfj — Yl-j = gégij, with b being a non-negative scalar. This, and the potential
relation 9.57); lead to the evolution law for the kinematic hardening

Yi; =&l — g(D)bsYy;. (9.85)

9.3.1.5 Evolution law for damage

In Egs. (9.75), (9.77)s, D is restricted to be non-negative (healing effects are neglected), whereas {2 can be
negative, zero or positive. According to the ideas developed in continuum damage mechanics (cf. Lemaitre
and Chaboche [83, sec. 7.4.1]), a possibility to satisfy all these requirements is to set

S . B m
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where m, ¢ are material parameters and B is a constitutive function. It is easily proved that the damage
evolution law (9.86) is in agreement with inequality (9.77)3, provided B; > 0. In particular, B; might
depend on the stress state, e.g. in terms of stress triaxiality and Lode angle. If brittle fracture should
be modelled, in addition to ductile fracture, then 5 in Eq. (9.86) should be replaced by a more general
constitutive function. Note that €2 depends on AD, and therefore the damage law (9.86) represents a
diffusion equation.

To elucidate the underlying damage criterion, it is recalled from Egs. (9.67) and (9.86), that damage
evolution takes place whenever plastic deformations occur, i.e. $§ > 0, and at the same time, the condition

~ (DY > 600 GE(D - PAD) - Gl () D ©.87)

holds. The right-hand side of (9.87) represents a damage dependent threshold value, which needs to
be overcome. It resembles the isotropic hardening criterion in gradient plasticity, cf. related remarks
in Tsakmakis and Vormwald [130], where an analogy to the gradient plasticity model of Aifantis [2] is
established.

9.3.1.6 Evolution law for the fatigue variable

Sufficient conditions for the satisfaction of inequality (9.77)4, (9.76) can be established in a manner
quite similar to the cases of isotropic and kinematic hardening. That means, x is supposed to be positive
proportional to —y, ¥ = —$Bsy, where the material parameter Bs is restricted to Bs > 0. Thus, by recalling
Egs. (9.57)2, (9.62),

X = —5Bag (). (9.88)

Since 1 < ¢, < 0, it can be seen from Eq. (9.63), that ¢/(y) < 0. Together with ¢}, > 0, it follows from
Eq. (9.88) that y is an increasing function of s, % > 0.

9.4 Numerical integration

The partial differential equations to be integrated are the equilibrium equations (9.10), subject to boundary
conditions of the form (9.11), and the diffusion equation (9.86). The concomitant boundary conditions for
the latter are suggested by the surface integral in Eq. (9.2) including q' and the constitutive form for q’
postulated in Eq. (9.69). They read

either D;n;, or D (9.89)

have to be prescribed on 0V'. In particular,
Dn; =0 everywhere on 0V (9.90)

is assumed in the following.

Let [0, T] be the considered time interval and divide it into n equidistant subintervals of size At, i.e.
T = nAt. For a given subinterval [to, 1], the notation X° = X (¢¢) and X! = X (¢;) will be used for any
time dependent variable X (¢).

The applied solution technique for the partial differential equations is a two-step staggered algorithm,
cf. Miehe et al. [98]. In the first step, the damage variable D is held constant, furnishing a pure deformation
problem governed by the equilibrium equations and the constitutive equations of elastoplasticity. The
independent degrees of freedom are the displacement components ;. This problem is solved by the
finite element method with linear shape functions. The required weak form of the equilibrium equations
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is standard and therefore taken from the literature (cf., e.g. Simo and Hughes [128]). For the local
time integrations, the elastic predictor-plastic corrector scheme is employed. In particular, an effective
integration procedure is used, allowing to reduce the system of equations to be solved to only one equation.
This procedure is an extension of the one for plasticity without damage, developed in Hartmann and Haupt
[59]. Also, the necessary consistent tangent operator is calculated by numerical differentiation.’

In the second step, the deformation is held constant and the diffusion equation is solved by the finite
element method. To enable an efficient evaluation of the Macaulay-brackets in Eq. (9.86), a two-field
procedure is pursued. That means, D and 2 are considered as independent degrees of freedom, implying
that Eq. (9.67) has to be regarded as a further field equation, besides the diffusion equation (9.86). The
weak form of (9.86) is established by first applying an implicit Euler time integration,

B
- E‘l)aMmm =0 (9-91)

D! — DO —
Note that in the case where B is a constitutive function, the values calculated in the first step have to be
used. Furthermore, As := 5'At is also known from the local time integration in the first step. Similar
remarks hold true for the other constitutive functions. The weak form attributed to Eq. (9.91) follows by
multiplication with the virtual change €2 and integration over V,

/ <D1 - D% — (1_Bll)l)qu<Ql>m) 6QdV = 0. (9.92)

On the other hand, the weak form of Eq. (9.67) is obtained by writing this equation at time ¢1,

Ge

Q'+ g (DY + o00) (D! = PADY) = Geloi(x)(D') i = 0, 9.93)

and then multiplying with the virtual change § D and integrating over V,

/ (Ql +9/ (D)) + ¢(x)%D1 — ()Gl AD' Gcw,i(x)(Dl),i) DAV =0. (9.94)

Keeping in mind the boundary condition (9.90), and applying partial integration and the divergence
theorem, it follows from Eq. (9.94) that

/

This equation represents the weak form which is sought. The remainder is standard within the framework
of finite elements. In particular, linear shape functions have also been employed for the second step and
the resulting system of equations has been implemented in the commercial software package ABAQUS.
More precisely, the integration of Egs. (9.92) and (9.95) has been implemented in a UEL subroutine, while
the integration of the plasticity model is implemented in a UMAT subroutine. Note that the latter step
includes also the numerical calculation of the internal state variable .

dV = 0. (9.95)

(9204 DM + 000G D1 3D + 60)GADY,0D),
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Figure 9.4: Predicted e11-011-responses for ny = 0,0.5,1,2,4,20,100 and a) n =1, b) n = 2.

9.5 Examples

9.5.1 Analysis of the effect of the degradation functions and the damage law with reference to
one-dimensional loading conditions

The analysis in this section is made with reference to predicted £11-011-responses of a bar under monotonic
tension and cyclic tension/compression loading conditions. The deformations are homogeneous and z; is
the direction of the axis of the bar.

Degradation functions g(D) have been discussed in many papers, see, e.g. Borden et al. [19], Borst and
Verhoosel [21], Kuhn et al. [77], and Wu et al. [138]. Here, the interest is focused on the effect of g(D) in
combination with g¢(D), cf. Eq (9.78). For this purpose, ¢ = 1 and

g(D)=(1-D)",  gp(D)=(1-D)" (9.96)

is chosen. Figure 9.4 illustrates the effect of ny = 0,0.5,1,2,4,20,100 and n = 1,2 on predicted £11-0711-
responses due to monotonic tension loading. All other material parameters are kept constant, cf. Table 9.1.
It can be seen in Fig. 9.4a that there exists some n;, with oo > n; > 1, so that only for n, > n > 1 the
graphs are concave and the strain €1, is bounded at D = 1 and o;; = 0. This is possibly the most natural
response that can be expected for metallic materials. In contrast to this, all graphs for n = 2 in Fig. 9.4b
exhibit both concave and convex shapes and 11 vanishes asymptotically as D approaches to 1 (i.e. the
strain 17 is unbounded). This entails that the numerical algorithm remains stable for n = 2. Unfortunately,
a more sophisticated numerical procedure, than the one used in the present paper, is needed in order to
guarantee numerical stability for n = 1,n, > ny > 1 and D — 1. Thus, in favour of numerical robustness,
n = ny = 2 will be set for the remainder of the paper.

The effect of the damage parameters By, m and g is illustrated in Figs. 9.5. It can be recognized from
Figs. 9.5a and 9.5b that ¢;; vanishes asymptotically as D approaches to 1. The graphs in Fig. 9.5c give
the impression, that for sufficiently large values of ¢, the o;;-stresses vanish at finite strains €17 as D — 1.
Note, however, that numerical instabilities occur in the vicinity of D = 1. It is speculated, that the stresses
vanish for these graphs asymptotically as well. Thus, the most important observation is that B; and m have
significant quantitative influence, but the shapes of the ¢;;-011-graphs are qualitatively the same. Again, it
is speculated, that this holds true for the graphs in Fig. 9.5c as well.

Further details on the numerical integration of the plasticity part of the model, going beyond the contents presented in the
submitted version of the paper can be found in the supplementary materials section A.1.
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Figure 9.5: Effect of the damage parameters By, m and g on the £11-011-responses: a) By = 0.5,1,2,5,10 with ¢ = 0,m = 1,
b) m =0.5,1,1.5,2,2.5,3 with B = 1,¢ = 0,¢c) ¢ = 0,0.5,1,1.5,2,2.5 with By = 1,m = 1. All other material
parameters are taken from Table 9.1.

The basic form of common phase field models (without fatigue degradation) has been investigated in
Tsakmakis and Vormwald [130] with reference to linear kinematic hardening (without fatigue degrada-
tion). It was shown, that such models are not able to capture damage evolution under uniaxial cyclic
tension/compression loading conditions. Different to such models, damage evolution is coupled here to
the evolution of the plastic arc length, according to the concepts of continuum damage mechanics. For
strain-controlled cyclic loading conditions with vanishing mean value and amplitude ¢, = 2%, Figs. 9.6
illustrate predicted responses of the present model according to pure linear kinematic hardening with and
without energetic yield stress part k; and fatigue degradation function ¢(y). The hardening parameter ¢
is set to 3333.33 MPa. It can be recognised, that in contrast to the models investigated in Tsakmakis and
Vormwald [130], damage evolution under cyclic loading conditions and pure kinematic hardening is now
predicted. Moreover, the fatigue degradation function has only minor influence on the predicted responses
whenever an energetic yield stress part is assumed to exist. For small values of Bj, the fatigue function has
no influence at all, cf. Fig. 9.6b, and the graphs with and without fatigue function coincide irrespective of
the existence of k1. As the existence of an energetic yield stress part is justified by considerations related to
the energy stored in the material, cf. sec. 9.2.2.3, it is assumed that this should be present in constitutive
modelling of ductile materials. Consequently, fatigue degradation functions are not necessary for ductile
materials. The results are interpreted in such a way, that ¢() is rather suitable for modelling of fatigue
effects in brittle materials or in subcritical regimes of the applied loading. In such cases, the evolution of x
should not be coupled to 5. Since, however, only ductile fracture is addressed in the present paper, ¢ = 1
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Figure 9.6: Damage evolution over time for pure kinematic hardening and a) B; = 0.2, b) B; = 0.01. Predicted responses for
k1=0,0=1;k1 =0, =¢(x) #1; k1 =50MPa, ¢ = 1; k1 = 50MPa, ¢ = ¢(x) # 1.

will be set in the remainder of the paper.

In the studies above, it was sufficient to assume B; as a material parameter. Generally, however, B;
should be assumed as a constitutive function. To be more specific, there are two aspects, which have to
be taken into account. The first aspect is that the strength capacity of damaged materials in tension and
in compression is different. Such issues are captured by the split of the elastic part of the free energy,
cf. Eq. (9.60). The second aspect concerns the damage growth, the amount of which should be larger for
tension loading compared to compression loading. The term (€2) in evolution law (9.86) cannot capture
this behaviour, because 1/}2 in Egs. (9.67), (9.68) is always positive and possibly of much higher magnitude
than 0+ (cf. also related remarks in Tsakmakis and Vormwald [130]). Therefore, considerable damage
growth can be produced during compression loading. In the present paper, such issues will be taken into
account by assuming B; to be a constitutive function of the stress triaxiality 7,

j= - (9.97)

/3 J2(o)

with o) = 0;/3, and the normalized Lode angle 6,

(9.98)

B 9 ) t dev
0r, ::1—arccos< 7det(o™) ),
0

2 (3J2(c))*/?

cf., e.g. Bao and Wierzbicki [17] and Malcher and Mamiya [86]% . For loading conditions dominated by
tension and compression, a simple form for By, which can be attributed to Bao and Wierzbicki [17], reads

(1+ 37)

) (9.99)
Bio

Bi(n) =

where B is a material parameter. For general loading conditions, more sophisticated forms for B; are nec-

2A comprehensive review on the triaxiality parameter and the Lode angle can be found in supplementary materials section A.2
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Figure 9.7: Effect of the material function B (%) according to Figure 9.8: Uniaxial strain-stress curve for structural steel S355
Eq. (9.99) (Bio = 40) on the damage evolution under cyclic loading conditions with vanishing
during one-dimensional tension/compression load- mean value.
ing for steel XC38.

essary. A possibility, proposed by Malcher and Mamiya [86] and further developed by Zhang et al. [141], is

Bi(1,8) =" a1 1 21 g2 (9.100)
Sy S1
1—h, B 1+ h,
h(7) := 5 tanh(&,7) + 5 (9.101)

with 51, S, he, §, being material parameters. The function /(7)) accounts for micro-crack closure effects.
Differences in the damage evolution caused by the two constitutive functions for B; appear particularly
in the case of non-symmetric loading conditions shown in the next section. For the one-dimensional
loading discussed here, the predicted responses are qualitatively the same. The effect of the material
function B, (7) in Eq. (9.99) on the damage evolution for imposed one-dimensional strain controlled cyclic
loading history is shown in Fig. 9.7. The material parameters are taken from Table 9.1 for steel XC38.
The illustrated ¢;;-D-graph reveals vanishing damage growth during elastic unloading and compression
loading, as requested above.

9.5.2 Two-dimensional examples - cracked specimen

The two-dimensional examples refer to a cracked specimen in plane strain state. For the finite element
calculations linear, four-node plane strain elements are used and two examples of imposed loading
conditions are discussed. The aim is to illustrate by the numerical simulations on the one hand the
capabilities of the theory in describing crack propagation during cyclic and monotonous loading. On the
other hand, the calculated examples aim to draw attention to aspects related to the crack propagation
direction. If not stated otherwise, the material parameters used in the following are calibrated for
experimental data of structural steel S355, cf. Table 9.2 and Fig. 9.8.

In the first example of loading conditions, the upper boundary line of the cracked specimen in Fig. 9.9a
is subject to harmonically varying displacement along the x2-axis with positive mean value of displacement,
cf. Fig. 9.9b. The boundaries parallel to the z5-axis are traction-free. The triaxiality effects are modelled
with the help of Eq. (9.99) and By = 20. The remaining material parameters are set to G. = 0.0025 N/mm,
[ =0.00lmm, ¢ =1, m = 2 and k; = 193 MPa. Detailed analyses of common phase field models without
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T

Figure 9.9: a) Geometry of the the cracked specimen. The specimen is discretized by 24428 linear, four-node plane strain elements.
All dimensions are in mm. b) Applied displacement over time.

fatigue degradation, reported in Tsakmakis and Vormwald [130], lead to the following conclusion: If the
material response exhibits only kinematic hardening, or kinematic hardening in conjunction with bounded
isotropic hardening, the phase field model fails to describe adequately crack propagation under cyclic
loading conditions. This is no more the case for the present model. In Fig. 9.10 it can be seen, that damage
accumulates now in each tension loading phase at the crack tip. During unloading and compression loading,
the damage variable remains constant. After 5 cycles, D = 1 is reached and the crack propagates during
each tension loading phase. The predicted crack length at time ¢ = 15s is shown in Fig. 9.11. The material
response in this simulation is supposed to exhibit Armstrong-Frederick kinematic hardening and bounded
isotropic hardening of the form in Egs. (9.84), (9.85). The amount of the saturated isotropic hardening is
small in comparison with the amount of the saturated kinematic hardening.

Generally, there are several parameters that have significant influence on the predicted direction of
crack propagation. Regarding the damage evolution equation (9.86), these are the rate of plastic arc
length 3, the thermodynamic driving force €2 and the constitutive function B;. Figure 9.12 shows the
distributions of 5 and 2 before crack initiation for the cracked specimen under cyclic loading. It can be
seen that the contours of maximum values for 5 indicate two branches, which are inclined with respect to
the z;-axis. On the contrary, the maximum values of 2 are along the symmetry axis. That means that there
is a competition between s and (2 regarding the crack propagation direction. Note that due to symmetry,
the constitutive function B; does not affect the direction of crack propagation. Furthermore, the exponents
g, m in Eq. (9.86) affect also the predicted crack paths. This is demonstrated in Fig. 9.13, where it can
be seen that, depending on the values of ¢, m, the crack path follows the x;-axis or indicates bifurcations.
Additionally, the choice of material parameters G.,[ in Eq. (9.67) influences the crack response as well,
since the magnitude of ) varies with these parameters. Similar observations have been made also in Kuhn

K I ko + k1 B8 vy b c
121154 MPa | 80769 MPa | 386 MPa | 3.2 | 66.56 MPa | 85 | 3094.7 MPa

Table 9.2: Material parameters for structural steel S355.
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Figure 9.12: Distributions of a) s and b) Q2 at the crack tip before crack initiation.

et al. [76] in the framework of a phase field theory with an evolution law for the damage variable which
is not proportional to $. These authors explained the possible directions of crack propagations with the
corresponding development of the plastic zone. In particular, they outlined the significance of the yield
stress and the hardening rule for the direction of crack propagation. It may be, that further aspects as,
e.g. deformation induced anisotropy, compressible plastic flow rules or anisotropic damage evolution can
affect crucially the direction of crack propagation. These issues are not yet investigated systematically
with reference to experimental data and represent open questions in the phase field theories for ductile
materials. In any case, the answer to such questions is beyond the aims of the present paper.

In the second example, the influence of the constitutive function B; on the predicted crack path is
examined with respect to non-symmetrical loading conditions. In order to highlight the effects, the material
parameters for plasticity are chosen to be v = ¢ = 10000 MPa, b = ¢ = 10, kg = 150 MPa, k; = 50 MPa and
crack propagation under displacement controlled, monotonic shear deformation is examined, cf. Fig. 9.14.
Displacement boundary conditions on the upper boundary of the specimen are imposed and boundaries
along the z,-axis are again traction-free. Depending on the choice of Bj, different crack propagation
directions are predicted: For B; = 1, the crack path follows the xz;-axis, cf. Fig. 9.15, whereas for By chosen
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Figure 9.13: Different crack propagation directions for steel S355 depending on the choice of phase field parameters. a) ¢ =
1,m=2.b)g=0,m=1.

as in Egs. (9.99) and (9.100), the crack paths depicted in Figs. 9.16 are predicted, respectively. Shanthraj
et al. [125] have modelled the same problem by employing a yield function which accounts for micro-voids
and implies plastic compressibility. Their results are somewhat similar to the results in Fig. 9.16a. Note
that for the present model, depending on the material parameters for plasticity, the influence of By can be
vanishingly small. This is in particular the case for the material parameters of the structural steel S355 in
Table 9.2. For this material, the predicted crack path is similar to the one depicted in Fig. 9.16a for both of
the considered functions for B;. Once more, this discussion makes clear that appropriate modelling of the
direction of crack propagation needs further investigation.

9.5.3 Three-dimensional examples and comparison with experimental data

The last example is devoted to a quantitative comparison of predicted strains with experimentally deter-
mined strain fields using digital image correlation. Specifically, the fatigue experiments on thin-walled
tubes of steel S355 with a non-circular hole, considered in Hos and Vormwald [62], are used. Figure 9.17
shows the form of the non-circular hole of height 4 mm and width 14 mm, cf. also Fig. 9.18. It can be
seen that fatigue cracks emanate from the hole under force-controlled tension/compression loading with
vanishing mean value and amplitude F, = 45kN. Further details on the experimental setup, including
specimen dimensions, are given in Hos and Vormwald [62].

For numerical reasons, only a small section around the left part of the hole is modelled, cf. Fig. 9.18.
The tube section is approximated by a plane section with thickness 2.6 mm and is discretised by 6130
three-dimensional, linear elements in the x1-xz5-plane with 10 elements being used in thickness direction.
The displacement on the bottom is held constant. Due to symmetry, the right boundary along the z,-axis is
kept fixed. As a further approximation, the left boundary, which is far away from the hole, is supposed
to be traction-free. On the top boundary, a harmonically varying stress with vanishing mean value and
amplitude o, = 138.4 MPa is applied, which results from the force amplitude F;, = 45kN and the area of
the cross-section A = 325.1 mm?. A crack of length 2.4 mm is predefined in the model, which corresponds
to the experimentally determined crack length after approximately 9000 loading cycles. Frictionless contact
is assumed for the predefined crack, so that interpenetration of the crack flanks is prevented.
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Figure 9.16: Crack evolution under monotonic shear loading for constitutive function B; according to a) Eq. (9.99) and
b) Eq. (9.100).

The aim is now to compare the predicted distribution of the strain component 5, in a damaged state
(i.e. during crack propagation) in the vicinity of the crack tip with the experimentally determined data.
In order to reduce the numerical effort as much as possible, the material parameters are chosen to be
G.=0.25N/mm, [ = 0.006 mm, ¢ = 1, m = 2 and k; = 50 MPa, so that the value of D = 1 at the crack tip
is reached after 4 loading cycles. It is supposed, that this is sufficient to obtain stabilised hysteresis loops
in the plasticity law, cf. Fig. 9.8. Further, the parameter B for the constitutive function in Eq. (9.99) is
set equal to 20. The experimental data, obtained by digital image correlation, are indicated in Fig. 9.19 by
the coloured contours. Red colours correspond to a value of 95 = 1.155%, which is measured at the crack
tip. The digital image correlation fails to estimate real values of strain along the crack flanks. Therefore,
the values determined in this area are artificial and also indicated in red colour. Finite element results
for the e99-component are scaled accordingly in Fig. 9.19 and indicated in terms of isolines. It can be
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Figure 9.17: Fatigue cracks in notched, thin-walled tubes of steel S355 under force-controlled tension/compression loading with
vanishing mean value and amplitude F,, = 45kN.
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Figure 9.18: Geometry of the the modelled section of the thin-walled tube with non-circular hole. All dimensions are in mm.

recognised, that within the experimental accuracy, there is a fairly good agreement between experimental
and numerical results.

9.6 Concluding remarks

A phase field theory for ductile fracture of metallic materials exhibiting isotropic and kinematic hardening
has been proposed. Common phase field theories on this topic are founded usually on variational work
approaches or concepts of microforces. Additionally, use is often made of so-called history variables.
Generally, some ideas employed in the existing models on phase field theories for ductile fracture mechanics
have been adopted from corresponding developments in linear elastic fracture mechanics.

There are several features in the proposed phase field theory, which are different in comparison to such
works. First, the model formulations are within the framework of non-standard thermodynamics, which
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Figure 9.19: Distribution of strain component 22 around the crack tip. The coloured contour plots are obtained from experimental
data by digital image correlation, while isolines in grey scales are predicted by FE-calculations. Note that the FE-
isolines describe well the boundaries of ranges with different strain values measured experimentally. The predefined
crack is indicated with the dotted line.

allows a simple theoretical structure. Second, the formulations are based on the experience and concepts
of plasticity and continuum damage mechanics. Of central importance in plasticity is the modelling of
the energy stored in the material. It has been shown that this work can be adequately described by
introducing energetic parts of yield stress. This in turn offered the possibility to capture cyclic loading
effects in the phase field theory without employing fatigue degradation functions. Well-established models
of classical continuum damage mechanics make use of constitutive functions incorporating the Lode
angle and triaxiality effects. Such formulations can be adopted in a natural way in the proposed theory.
Several examples demonstrated the capabilities of the proposed theoretical framework in predicting
crack propagation phenomena. The analysis highlighted the need for systematic in-depth investigations
concerning the crack propagation direction.

The main scope of the present paper was to establish the constitutive theory and to provide a first analysis
of the most important properties of this theory. More detailed analyses would go beyond the length of the
paper and are postponed for forthcoming papers. Finally, it should be remarked, that use of staggered
algorithms are known to suffer from convergence problems in some cases (see, e.g. Vignollet et al. [133]).
A systematic convergence analysis has not been undertaken here, but it is supposed that the employed
numerical algorithm suffices for the aims of the paper.
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Appendix

9.A Phase field vs. energy equivalence

In continuum damage mechanics, some equivalence principle is postulated, which is expressed in terms of
so-called effective variables. To elucidate the differences to the phase field approach, consider, e.g. some
part of the free energy of the undamaged material obeying a response function

P (\) = %AV, (9.102)

where ) is a scalar strain and A is a material parameter. According to the phase field approach,

~0

3", D) = g(D)I’ () = 59(D)AN 9.103)

is the corresponding response function of the damaged material. The stress conjugate to A is

~ PF
o
T= o (9.104)
On the other hand, define an effective stress
i —— (9.105)
9(D)

and assume the energy equivalence principle (see, e.g. Cordebois and Sidoroff [39]) of continuum damage
mechanics to apply. Accordingly,

M, D) = () = %A(Aeff)Q, (9.106)

with X\ being an effective scalar strain conjugate to

=0y eff
e _ 9070

\eT (9.107)
As T is conjugate to ), the relations
B 812}CDM()\, D) B a&O(Aeff) 8/\eff B effaAeff B pa a)\eff (9 108)
TTTTn T T on T Ton /(D) oA '
hold, from which
8/\eff
= Vyg(D) (9.109)
and hence
2 = \\/¢(D). (9.110)
That means, in the case where {bo is a quadratic potential,
~ CDM ~0, e 1 ~PF
¢ (D) =9 (A1) = SANG(D))? =& (A, D). (9.111)

93



e =0 . ~ CDM o ..y ~PF .
However, if ¢/ is not quadratic, then v does generally not any more coincide with ¢/ . For instance,
assume that

3° = Aor+ Z AN, (0.112)
where A is a further parameter. Then,
~ 1
0" = g(D) (AoA + §AA2) , (9.113)
whereas
DM _ ety L SANT? = 40\/g(D)A + 3 Ag (9.114)

which is different from @P in Eq. (9.113).
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Part IV

Summary, Discussion and outlook
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Summary, Discussion and outlook

There are several well-established theories addressing complex crack phenomena in brittle fracture mechan-
ics. However, modelling of ductile fracture and fatigue failure in the case of inelastic material behaviour
is yet a great challenge. Such modelling is of actual interest, as it is of major importance in engineering
applications. Two different ways for modelling of fracture, which have been applied successfully in the
case of elasticity, have been pursued in this thesis for inelasticity.

The first way is concerned with configurational forces, which for elastic material behaviour are the
thermodynamical driving forces for crack growth. Moreover, the configurational force concept in brittle
fracture mechanics implies the classical J-integral. Three possibilities to extend this concept to capture
inelastic material behaviour were discussed in the thesis. All three extensions failed to meet adequately
the imposed requirements. The reasons can be summarised as follows. The performed analysis led to
the conclusion that, different to brittle fracture, an appropriate driving force is needed not only for the
movement of the crack tip but also for the movement of the associated plastic zone. However, the associated
plastic zone cannot be identified unambiguously for general loading conditions. Closely related is also the
fact that the discussed extensions led in the end to J-integral formulas, which are path-dependent. In
conclusion, it is doubtful whether the configurational force approach can describe adequately the complex
phenomena of fracture in plasticity.

Therefore, a second way was pursued, which is known as the phase field approach. In brittle fracture
mechanics, the phase field model aims to generalise the Griffith theory by regularising the sharp crack
geometry. This theory operates with an additional state variable, the phase field, and an associated internal
length parameter. In the context of continuum damage mechanics, the phase field is known as damage
variable. First, non-conventional thermodynamics was adopted as the appropriate framework for phase field
theories. This is a new alternative in this topic and allows a simple structure of the theoretical formulations.
Then, existing phase field models of brittle fracture were extended to elastoplasticity and examined for
the cases of pure isotropic and pure kinematic hardening. The analysis showed that the basic structure of
phase field models for brittle fracture is inappropriate to address modelling of ductile fracture. Physically,
the crack propagation mechanism in the case of ductile materials relies upon the initiation, growth and
coalescence of micro-voids caused by plastic deformations. This is not reflected by the basic structure
of phase field models for brittle fracture, since in such models, the evolution of the phase field variable
is independent of the plastic strain rate. Moreover, the amount of damage evolution under compressive
loading is generally almost the same as for tension loading, since such models do not distinguish explicitly
between tension and compression states.

This motivated to propose, in conformity with the adopted non-conventional thermodynamics, a new
phase field theory for ductile fracture, in line with the ideas of traditional continuum damage mechanics.
Characteristic features of this theory are the form of the free energy function, the specific isotropic hardening
model and the evolution law for the damage variable. The free energy function accounts explicitly for
the damage variable and its gradient. This part on the one hand captures energy stored in the material
due to evolution of damage and on the other hand defines the underlying damage criterion. The isotropic
hardening model is motivated by calorimetric experiments concerning the energy stored in the material due
to plastic deformations. It has also significant influence on the proposed phase field theory. In difference
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to existing phase field models, the rate of the damage variable is proportional to both the plastic strain
rate and a constitutive function accounting for triaxiality and Lode angle. Various examples demonstrated
the capabilities of the proposed theories for predicting crack propagation under monotonic and cyclic
loading conditions. In particular, the theory allows to determine the direction of crack propagation. The
analysis of the examples also suggested that a fatigue degradation function is not necessarily needed for
proper modelling of cyclic loading conditions. Such functions are rather important when addressing fatigue
phenomena in subcritical loading regimes.

Generally, the calculated examples showed that the developed phase field model for ductile fracture is a
very powerful one, offering the possibility to address a large variety of complex crack phenomena. This
is a consequence of the fact that the relevant physical mechanisms for ductile fracture are incorporated
accordingly in the constitutive theory. However, the analysis of the examples revealed the need for further
investigations concerning the predicted direction of crack propagation. Also, more sophisticated numerical
algorithms should be developed in order to simulate complex problems in structural analysis and to predict
life times of components with reasonable effort.
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A Supplementary material

A.1 Numerical procedures

A.1.1 Extension of the elastic predictor-plastic corrector integration scheme to account for
damage effects

For the plasticity part of the model, an implicit Euler time integration scheme is adopted, see, e.g. Simo and
Hughes [128]. The procedure described below is an extension of the algorithm proposed in Hartmann and
Haupt [59] and aims to reduce the system of equations to be solved to a single equation for the calculation
of the plastic multiplier. This equation is then solved with the help of a Newton-Raphson algorithm. The
constitutive theory used is for non-linear kinematic hardening but applies equally for the linear kinematic
hardening considered in the second paper.

As described in sec. 9.4, a time interval [0, T is considered, which is divided into n equidistant subintervals
of size At, T = n/At. For a given subinterval [ty, t1], the notation X° = X (¢y) and X' = X (¢;) applies for
any time dependent variable X (¢). On defining

¢ = \/gAtél, A1)

(Uilj - z‘lj)dev

Y
R

for the rate of plastic arc length s and

1.
Nlj Dl

(A.2)

for the components of the normal to the yield surface, the plastic strain at the end of the time increment
becomes
(5)! = (e5)° + ¢, (a3)
For implicit time integration schemes, the yield condition F' = 0 must be satisfied at the end of the time
interval, cf. Simo and Hughes [128],

11

= ——— [4/3J. 1—1—R1—k]—k =0, A.4
iy Voo =€) =R =] = a9y

or equivalently, after rearrangement and multiplication by N,

) € = |2 (R b+ (D)) N, »s)

Note that since a staggered algorithm is applied, the damage variable is constant during the time integration
of the plasticity part of the model. Denote by ag the components of the trial stress tensor o™ and by de;;
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the total strain increment. The components of the deviatoric part of the stress tensor at the end of the
increment are then given with the aid of Egs. (7.9), (9.52) and (A.3) by

1.\d d
(Uzj) < :(05) - ( )2HC 1_7) (A6)
(089 =g (D)2 [(e5)° + deyy] *. A.7)
From the evolution equations for isotropic and kinematic hardening in Egs. (9.84) and (9.85), it follows
that
2
1_.0 “ _ 1
Pl +\/;g(1 9(D)5r"), A.8)
1 0 1 2 1
Yij =Y+ C(Nij - \/;Q(D)byij>v (A.9)
or equivalently
0+ /%¢
L= LA (A.10)
1+/2¢g(D)B
YO N1
Y = ¢ (A.11)
1+ \[ Cg(D
Using Egs. (A.6), (9.56)2, and adding zero-term \/%C g(D)b(a};)%e \/7 Cg(D)b(a;)3" = 0, the left-hand
side of Eq. (A.5) can be written, after several manipulations, as
1
1ydev _ (¢lydev . — (—=dev 1
) (&) I ( — haN; ) (A.12)
where
hyi=1+ \/>Cg (A.13)
he = g(D)¢ c + 2,uh1) (A.14)
B0V = Ry (0fF)0V — &) (A.15)

It is easy to deduce from Eq. (A.12), by virtue of Eq. (A.5), that

N, (A.16)

— 2
:?f" = [\/th (Rl + k1 + gf(D)k()) ~+ ho

which shows that the stress tensor E9¢V i

define the non-linear scalar function

is proportional to the normal N'. Further, with regard to Eq. (A.16),

2
Q) = |13 - vghdR*+h+gﬂDm@—h% (A.17)
which is nothing but the yield function at time ¢ = 1. As the yield condition must be satisfied at ¢t = 1,

() = 0. (A.18)

100



The solution of this equation is obtained iteratively, at every Gauss point (local iteration), with a Newton-

Raphson algorithm,

or'(¢)
a¢

() =T (¢o) + A¢ =0, (A.19)

o

where (; denotes the initial value in every iteration. The calculation of the derivative of I'* with respect to
¢ in Eq. (A.19) is lengthy, but otherwise straight-forward:

or! 2 2
5= 9(D)b [(ag)dew}j - \/; (Rl + k1 + gf(D)ko) - g(D)2uC]

2 h1g(D)(y — BR®)

2 (14+/3co(0)5)

A.1.2 Numerical calculation of the consistent tangent operator for plasticity

5 — 9(D)(c+ 2uhy). (A.20)

The analytical derivation of the consistent tangent operator, in the presence of a damage variable, is
a cumbersome matter, even in the case of the staggered algorithm. This concerns in particular the
tension/compression split in the elasticity law (9.60). The tangent operator K is therefore calculated by a
numerical perturbation technique. Let Ae be a small strain increment, i.e. Ac = 1-10~%. The components
of the tangent operator K;;;; are then given by numerical differentiation of the components of the stress
tensor o;; with respect to the components of the total strain tensor ¢;:

oij(er + Ae) — 0i5(ek)
Ae

Ky = . (A.21)

If a plastic corrector step is required for the calculation of the stress tensor in an arbitrary integration point,
then a plastic corrector step is also applied for the calculation of the tangent operator in the corresponding
integration point.

A.2 Triaxiality and Lode angle

The introduction of triaxiality parameter and Lode angle can be found in text books (see, e.g. Malvern
[87]). Let
o1 > 09 > 03 (A.22)

be the three eigenvalues of the stress tensor o, I (o), I2(o) and I3(o) the principal invariants of o,

11(0') =04 =01+ 02 + 03, (A.23)
1
I(o) := 3 [(aii)z — a,-jaij] = 0109 + 0903 + 0103, (A.24)
I3(o) :=deto = 010203. (A.25)
and o, the hydrostatic or mean stress,
1
Om i= gfl(a'). (A.26)

Tensors, which are proportional to the second-order unit tensor 1 are called spherical tensors.
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Further invariants which can be assigned to the stress tensor o are the corresponding invariants of its
deviator o9V, defined by

Ji(o) := odev = 0, (A.27)
1

Jo(0) = oo, (A.28)

J3(o) := det o9V (A.29)

(J2(o) in Eq. (A.28) was used in Eq. (9.27) of the third paper). The triaxiality parameter 7 is defined as
the dimensionless ratio (cf. also Eq. (9.97))

_ Om
L — (A.30)
T 3h(e)
It represents a further invariant of o and takes values in the interval [—o0, o0,
00 >N > —00. (A.31)

Some characteristic values of 7) are given in Table A.1. It can be recognized that hydrostatic stress states
imply unbounded values of 7. Therefore 7 is a measure for quantifying the deviation of the actual stress
state from hydrostatic states (cf. Ghajar et al. [47]).

The introduction of the Lode angle 6;, can be motivated very well by considering the following coordinate
transformation. If {01, 09,03} is viewed as a Cartesian coordinate system, inducing the orthonormal basis
(coordinate basis) {ey}, k = 1,2, 3, then every stress state can be represented by a point P with coordinates
(01,02,03) and location vector P (see Fig. A.1). Let ngy be the unit vector along the hydrostatic axis, i.e.

1
ng = 7(61 + eq + 63). (A.32)

V3

All spherical stress tensors are along this axis. Further, all planes perpendicular to ng are called octahedral
planes (O.P.) and the specific octahedral plane that includes the origin O is called the II-plane.

The idea is now to associate with the Cartesian coordinate system {1, 02,03} a cylindrical coordinate
system {r, 01, z}, having the same origin O and with the hydrostatic axis being the z-axis. The cylindrical
coordinate system is referred to as Lode or Haigh-Westergaard coordinate system and it is common to use
the notation (p, 01, &) instead of (r, 0, z), with 67, being the Lode angle. The coordinate transformation

(01,02,03) = (p,0L,§) (A.33)
Stress state | Triaxiality 7 |
Uniaxial tensile stress state 1
(0,0,0);0 >0 3
Pure shear stress state 0
(0,—0,0)
Uniaxial compression stress state 1
(0,0,0);0 <0 3
Hydrostatic stress states +oo foro >0
(0,0,0) —oo foro <0

Table A.1: Characteristic values of triaxiality 7), cf. Mirone and Corallo [101]
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&

Hydrostatic axis

Figure A.1: Visualisation of the Lode angle ;, in the {01, 02, 03} coordinate system.

can be established by considering first the projection of the point P on the hydrostatic axis, the projection
point being denoted by @) (see Fig. A.1). Then,

1 I 1 (0’ )
=|0Q|| =P -nyg=—(01+ 02+ = . A.34
€= 0G| =P-my = (o1 +02 +05) = = Z (A34)
The radial coordinate p of P is given by the absolute value of the vector Cﬁ’:
Udev
1
QP=P - QO =P ¢ny= | odev (A.35)
O.gev

= p= QP = \/212(0), (A.36)

where use of Eq. (A.28) has been made in the last equation.

The definition of the Lode angle 6, is based on the projection of the ¢;-axes, respectively the e; basis
vectors, on the II-plane. If the projection of e; and o on the II-plane is denoted by €} and o1, respectively,
then

2/3
e, =e —(e;-ng)ng= | —-1/3 |, (A.37)
-1/3
which may be normalised to give
e 1 2
= 1
e = =— 1| -1 R (A38)
leall  v6 \ 4
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cf. Fig. A.1. Similar definitions hold also for unit vectors e, and e;. The projection of poiilf on the
II-plane is point P’ in Fig. A.1. The L@) angle 6, is defined as the angle between the vectors O P’ and the
o}-axis. Thus, keeping in mind that OP’' = Q?,

Cﬁ)’ -e, = pcosfy, (A.39)

and by using Egs. (A.35), (A.38), (A.36) and Eq. (A.27),

cosfy = g (A.40)

This can be further recast by invoking the identity cos(30;) = 4cos®#; — 3cosfy, together with the
characteristic polynomial, i.e. \*> — Ja(0)\ — J3(o) = 0, with A = ¢$¢". Finally,

cos(36r) el J3(U)3 (A.41)
2 (3J2)5
or
0, = 1arccos ﬂ Jg(al . (A.42)
3 2 (3J5)2

In constitutive modelling it is useful to employ normalised forms of 6. A possibility (cf. Malcher and
Mamiya [86]) is to use the normalised Lode angle

0
eL._l—gli (A.43)

™

which can be expressed in terms of the stress invariants with the help of Eq. (A.42),

2 2
0; =1 — = arccos 7 Js(@ 1 . (A.44)
T 2 (3J)2
Note that
U‘liev > age" > Jgev (A.45)

holds for the deviator of the stress tensor and consequently, by virtue of Eq. (A.27),
oV > 0. (A.46)

This imposes that 0, is positive counter-clockwise, with §; = 0 at the e;-axis, and that #, is constraint to

gzeL>u (A.47)

In fact, for 7/2 > 0; > n/3, the stress 03 becomes greater than the stress o{¢’, which contradicts
Eq. (A.45). In the case 37/2 > 61, > 7/2, the stress of dev becomes negative, which contradicts Eq. (A.46),
while for 27 > 0, > 37/2, the stress age" becomes smaller than odev which again contradicts Eq. (A.45).

Equations. (A.34), (A.36) and (A.42) accomplish the coordinate transformation (A.33) and make clear
that p, 01, ¢ are further invariants of the stress tensor o.
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