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Abstract

Effective range corrections contribute to pionless effective field theory at next-to-leading order. In a
three-particle system described in the particle-dimer picture they enter in the dimer propagator. They
can be included perturbatively or non-perturbatively. In a finite volume the perturbative method can
lead to singular behavior close to physical bound states. The non-perturbative or resummized method
exhibits a spurious pole.
In this thesis, we investigate the problems caused by this spurious pole in infinite volume. We develop a
non-perturbative method to avoid these problems. This is accomplished by expanding the contribution
of the spurious pole, while treating the contribution of the physical pole exactly. We show that this
method leads to a change of the renormalization prescription of the three-body forces. This new method
is tested for several model potentials and different observables, including the particle-dimer phase shift
and three-body bound states. We observe good convergence and prove that the method preserves the
internal consistency of the pionless effective field theory.
In the second part of the thesis, we investigate the effect of the spurious poles on the three-body
quantization condition in a finite volume and show that it leads to a spurious series of scattering states
and an un-physical merging of energy levels in the energy spectrum. We extend the new non-perturbative
method, developed in infinite volume, to finite volume. Finally, we use the method to calculate the
energy spectrum and show that we can reproduce the spectrum of a Yamaguchi model very accurately.
Moreover, the description of the model improves order by order of the effective filed theory.

Zusammenfassung

Die effektive Reichweite trägt in pionenloser effektiver Feldtheorie in erster Korrektur zur führenden
Ordnung bei. Ein Drei-Teilchen System kann im Teilchen-Dimer Bild beschrieben werden. Dabei treten
die Korrekturen durch die effektive Reichweite im Dimer-Propagator auf. Sie können störungstheoretisch
oder nicht störungstheoretisch betrachtet werden. Bei Rechnungen im endlichen Volumen kann die
störungstheoretische Betrachtung zu singulärem Verhalten nahe physikalischer Bindungszustände führen.
Die nicht störungstheoretische bzw. resummierte Betrachtung enthält einen unphysikalischen Pol.
In dieser Dissertation werden die Probleme, die dieser unphysikalische Pol im unendlichen Volumen
verursacht, untersucht. Es wird eine nicht störungstheoretische Methode entwickelt, um diese Probleme
zu umgehen. Dies wird erreicht, indem der Beitrag des unphysikalischen Pols für kleine Energien
entwickelt wird. Gleichzeitig betrachten wir den Beitrag des physikalischen Pols exakt. Es wird gezeigt,
dass diese Methode zu einer Änderung der Renomierungsvorschriften der Drei-Teilchen Kräfte führt.
Die neue Methode wird an verschiedenen Modellen und für verschiedene Observablen getestet. Diese
Observablen beinhalten die Partikel-Dimer Phasenverschiebung und gebundene Drei-Teilchen Zustände.
Es werden gute Übereinstimmungen erzielt. Außerdem wird gezeigt, dass die Methode die interne
Konsistenz der pionlosen effektiven Feldtheorie erhält.
Im zweiten Teil der Dissertation werden die Probleme untersucht, die der unphysikalische Pol in der
Quantisierungsbedingung im endlichen Volumen verursacht. Der Pol führt zu einer Reihe von un-
physikalischen Streuzuständen im Energiespektrum und unphysikalischen Verschmelzungen zwischen
verschiedenen Energieleveln. Die nicht störungstheoretische Methode, die im unendlichen Volumen en-
twickelt wurde, wird auf das endliche Volumen erweitert. Abschließend wird die Methode verwendet um
das Energiespektrum zu berechnen. Es wird gezeigt, dass damit das Spektrum eines Yamaguchi-Modells
akkurat reproduziert werden kann. Die Beschreibung des Models verbessert sich Ordnung für Ordnung
der effektiven Feldtheorie.
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1 Introduction

Powerful tools in nuclear physics are effective field theories (EFTs). They are based on the observation
that low-energy (mlow) phenomena in physics are not sensitive to details of the interaction at short
distances (or high energies (mhigh)). This separation of scales can be used to construct simple theories
that consider only the relevant degrees of freedom. For example, the fundamental theory of the strong
interaction, namely quantum chromodynamics (QCD), contains quarks and gluons as degrees of freedom.
For low-energy calculations, EFTs, containing hadrons as degrees of freedom, can be used instead.
Observables are calculated as expansions in mlow/mhigh. The details of the QCD at short distances are
encoded in the interaction strengths of the EFT. These are constants that have to be obtained from
experiments or calculated from the more fundamental theory. An early introduction to this concept is
given in [71], more recent reviews are for example [7, 24, 31].
An important example of an EFT is pionless effective field theory (̸ πEFT) [15, 43, 44, 68]. It can be used
to describe the interaction of nucleons at momenta small compared to the pion mass, mhigh ∼ mπ ≈
140 MeV. For momenta close or larger than the pion mass, ̸ πEFT will break down. The pion exchange
can not be treated as a short-range interaction and pions have to be included as a degree of freedom
explicitly. This is done in chiral EFT [71, 72]. For even higher momenta additional, more heavy, meson
have to be included.
In this thesis, we focus on systems with an unnaturally large scattering length 1/a ∼ mlow ≪ mπ and
a naturally sized effective range 1/r ∼ mhigh. This means ̸ πEFT can be used for typical momenta of
p ∼ 1/a. A prominent example of such a system is neutron-proton scattering in the S-wave triplet (3S1)
or singlet channel (1S0).

A convenient way to describe a three-particle system with a large scattering length a in ̸ πEFT is the
particle dimer picture [4, 5, 12, 42]. An auxiliary field, a dimer, is introduced, this consists of two particles.
The information of the two-particle system is encoded in the dimer field, which can be used in the three-
body system. This results in an effective two-body problem. An important quantity of this picture is the
dimer propagator. At leading-order (LO)1 this can be obtained by a re-summation of an infinite amount
of Feynman diagrams with a momentum independent two-body interaction [12]. This interaction can
be connected to the two-body scattering length a. The resulting propagator can exhibit a pole with a
physical meaning. This physical pole gives the binding energy of a two-body bound state. In the context
of neutron-proton scattering, this state is the deuteron. Next-to-leading order (NLO) corrections to this
propagator can be obtained by adding a two-body interaction proportional to the kinetic energy of the
dimer. This additional interaction can be connected to the two-body effective range r. Therefore, these
NLO corrections are also called range corrections. Since r/a ∼ mlow/mhigh ≪ 1, these corrections have
to be included perturbatively. This can be accomplished by inserting the energy-dependent interaction
1The separation of scales in an EFT allows an expansion in mlow/mhigh. This leads to a power counting, such that corrections
at NLO are suppressed compared to LO by (mlow/mhigh)

1. Correction at N2LO are suppressed by (mlow/mhigh)
2 and so

on.
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once between two LO propagators [2, 5]. However, at higher orders, the perturbative range insertion
becomes increasingly complicated. It requires the fully off-shell LO propagators. A commonly used
method to avoid this is a non-perturbative approach. The corrections are included in the denominator
of the propagator and a re-summation, similar to the LO case, is performed [12, 49]. This results in a
dimer propagator given by

τ(k∗) =
1

−1/a− r/2 (k∗)2 + k∗
,

where k∗ is the magnitude of the relative momentum of the two particles constituting the dimer in their
center-of-mass frame. This is a very appealing form, it can be directly related to the two-particle scattering
amplitude in the effective range expansion (ERE) at NLO. In this context, the expansion to higher orders,
including for example the shape parameter, is straightforward. However, the re-summarized form comes
with a huge downside. As pointed out for example in [6, 28], it exhibits a deep spurious pole. In contrast
to the physical pole mentioned above, this pole has no connection to a real physical system. Worse, it
can have a negative residue, which leads to violation of unitary, negative spectral densities, and strong
numerical instabilities. All of these are serious issues. Without special methods, the propagator above
can not be used. An additional way of understanding these problems is that the ERE is used outside its
range of applicability and therefore it is not surprising that it leads to non-physical predictions there.
One existing method to avoid these poles is the usage of an ultraviolet cutoff below the position of the
pole [6]. This leads to a strong restriction for the cutoff and therefore a restriction of the accuracy
of the EFT, which, in general, one likes to avoid. Another method is a perturbative expansion of the
propagator for small effective range r, see for example [4, 32, 40] for a NLO expansion and [39, 69] for
an expansion at N2LO. While this perturbative method works very well in infinite volume, it has problems
with convergence in finite volume [59], see more on the importance and recent developments for finite
volume calculations below. Due to the discretized momenta in finite volume, the resummed propagator
has to be exchanged by [33, 34]

τL(k, (k∗)2) =
1

−1/a− r/2 (k∗)2 + S(k, (k∗)2)
,

with the momentum k of the dimer and the function

S(k, (k∗)2) = −4π

L3

∑︂
p

1

p2 + pk+ k2/4 + (k∗)2
, with p ∈ 2π

L
Z3 .

L is the size of the finite volume. This function has a series of singularities above the elastic threshold,
(k∗)2 < 0. These singularities are connected to a discrete series of scattering states in finite volume. The
problem with the perturbative method is, that these singularities will appear in the expansion in the
denominator in higher and higher powers. This will make numerical calculations extremely difficult.
Therefore, there is a strong need for a non-perturbative method to solve the issue of spurious poles in
the resummed propagator.
The major focus of this thesis is to develop such a non-perturbative method. This will be accomplished by
separating the contribution of the physical pole from the contribution of the spurious pole and expanding
only the latter. By doing so, we will remove the singularity of the spurious pole, while simultaneously
avoiding the higher-order singularities of the function S(k, (k∗)2). The seemingly inconsistent treatment
of the two contributions will be justified by a change of the renormalization prescription of the three-body
forces of the ̸ πEFT.
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As discussed above, ab-initio calculations are very difficult. One of the most promising methods to do so
are calculations on the lattice. The idea of this is, that the space-time will be treated as if it is discretized.
Therefore, the considered particles are put on a space-time lattice. This allows for various simplifications
of the system, such as allowing the particles to only interact with the next neighboring space-time points.
An example of this is lattice QCD [20, 73]. If QCD is put on a lattice, this allows ab-initio access to
hadronic processes. However, if numerical calculations are done, the lattice has to end somewhere. An
infinite amount of space-time points can not be calculated. Therefore, lattice calculations have to be
done in finite volume. An often used finite volume is a cube with periodic boundary conditions2. If one
wants to connect results from the lattice to an EFT, it is crucial to understand how an EFT behaves in
finite volume. Early works addressing this are for example [53, 54]. More recent reviews on the EFTs in
finite volume are given by [38, 57]. An important result recently obtained is the quantization condition
in finite volume, see [33, 34] for the formalism used in this thesis. An equivalent formulation is given in
[35, 36, 56]. This condition allows direct calculations of the volume-dependent three-particle bound
and scattering states in ̸ πEFT in finite volume. In [21] the quantization condition was simplified by
projecting it on the irreducible representations of the cubic group. Since the used finite volume is a cube,
the spherical symmetry is reduced to the symmetry of a cube [58, 41]. Therefore, the standard form of a
partial-wave expansion can not be used. An additional effect of the finite volume is that only discrete
momenta are allowed. This leads to a collapse of momentum integrals to sums. A direct consequence of
this is the above form of the dimer propagator in finite volume. To be able to include range corrections to
the quantization condition in finite volume, it is necessary to have a non-perturbative method to solve the
issues discussed above. After we will have developed such a method in infinite volume, we will extend
this method to the finite volume.

This thesis is organized as follows. We start by giving a short overview of the physical concepts that are
relevant in the context of the thesis. This includes the elastic scattering of two and three particles, the
partial wave expansion, and the parametrization of the scattering amplitude by using the phase shift
and the corresponding ERE. We follow this with a summary of the concept of ̸ πEFT. Then we give the
setup for the main part of the thesis by introducing the particle-dimer picture with a special interest
in the inclusion of range corrections. We will show how the range corrections can be included in the
dimer propagator in a perturbative [2, 5], as well as in a non-perturbative [12, 49] way. The first chapter
is closed by a resume of finite volume physics. We discuss the general motivation for physics in a box
with periodic boundary conditions, give a definition, and investigate the direct consequences of this.
This includes the discretization of momentum and the reduced cubic symmetry. Finally, we give the
three-body quantization condition in finite volume [33, 34] and show how this can be solved for binding
energies exploiting the cubic symmetry of the system [21].

In the second part of the thesis, we investigate the issue of spurious poles in infinite volume. As already
mentioned the spurious poles are caused by using the ERE outside its range of validity. This and the
direct critical consequences of this, namely the negative residue, violation of the unitary relation, and
numerical problems, are investigated in detail. We follow this section with a summary of existing methods,
which includes the restriction to a low cutoff and a perturbative expansion of the propagator. Here, we
especially focus on the problems we see with these methods regarding calculations in finite volume.
Thereby, we highlight the need for a non-perturbative method to deal with the issue of the spurious
2The boundary conditions are important since they define, how particles close to the end of the volume interact with the edge.
Periodic boundary conditions ensure, that the end of the volume is not different to other space-time points.
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pole. The remaining part of the chapter is dedicated to the development of such a non-perturbative
method. We will introduce the method and carefully show that the method can be justified analytically.
In a follow-up step, we will use the method to numerically reproduce the results of selected models. We
will show that the non-perturbative method can reproduce the particle-dimer phase shift and bound
states of a Yamaguchi model as well as a Gauss model. Additionally, we show that the method conserves
the internal consistency of an effective field theory. This will be done by using Lepage plots [51] and a
consistency assessment [26, 27].

In the third chapter of the thesis, spurious poles in the finite volume are investigated. We start this
by showing how an expected energy spectrum of a Yamaguchi model looks like. It contains bound
and scattering states. We will investigate briefly how these states behave with increasing volume size
and compare this to the analysis of [21]. Then we follow by showing how the spurious pole expresses
itself in finite volume. The pole will cause an additional spurious spectrum of scattering states. It also
causes non-physical merging of energy levels, something that will be forbidden in a correct theory by the
avoided-level-crossing. In the next section, we will adapt the non-perturbative method to calculations in
finite volume. The section will be closed by calculating the energy spectrum using our non-perturbative
method and comparing it to the spectrum of the Yamaguchi model. We will show that the method can
describe the model accurately and that the description will improve order by order of the ̸ πEFT.

In the last part of the thesis, we summarize our findings and give an outlook on closely connected open
questions and natural ways to extend the non-perturbative method to further systems.
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2 Physical foundation

In this chapter physical concepts, that are relevant in the context of this thesis, are summarized. These
include non-relativistic scattering, effective field theories, especially pionless effective field theory in the
particle-dimer picture, and physics in a finite volume.

2.1 Scattering theory

In this section general aspects of elastic scattering are summarized, following the introduction given in
[77]. We focus on the case of two non-relativistic, spinless particles.
Consider a two-body system, with relative distance r between the particles and asymptotic relative
momentum p. The relative dynamics of the system can be described by a wave function Ψp(r). Far away
from the center of scattering (where the particles touch each other, r = 0), the wave function can be
described as a superposition of an incoming plane wave and a scattered spherical wave.

Ψp(r)
r→∞−→ eipr +

eipr

r
f(p,q) . (2.1)

The quantity f(p,q) is the scattering amplitude, it depends on the in-going (p) and out-going (q)
momenta. The scattering amplitude can be connected to the experimentally measurable differential
cross-section by

dσ

dΩ
(p,q) = |f(p,q)|2. (2.2)

The scattering amplitude is further related to the on-shell T -Matrix via

f(p,q) = −m

4π
⟨p| T (E = Ep) |q⟩, (2.3)

with Ep = p2/m. Also note, that |p| = |q|, due to energy conservation in elastic scattering. In a two-
particle system, only the on-shell T -matrix is relevant. However, in the three-particle system it enters
off-shell. The full off-shell T -matrix is given by

T (p,q, E) = ⟨p| T (E) |q⟩, (2.4)

where the momenta p, q, and the energy E are not connected. Due to |p| = |q|, the scattering amplitude
does only depend on |p| and the angle Θ between p and q. Therefore a partial-wave expansion can be
performed. This yields

f(p,q) =
∞∑︂
l=0

(2l + 1)fl(p)Pl(cos(Θ)), (2.5)

13



where fl(p) are the partial waves, l stands for the different angular momenta, and Pl(cos(Θ)) are
the Legendre polynomials. By investigating the long-distance behavior of the wave function with this
expansion, and the expansion of the incoming plane wave in spherical waves, the scattering can be
written as

Ψp(r)
r→∞−→

∑︂
l

(2l + 1)

(︄
Pl(cos(Θ))

eipr − e−i(pr−lπ)

2ipr
+ fl(p)Pl(cos(Θ))

eipr

r

)︄
,

=
∑︂
l

(2l + 1)
Pl(cos(Θ))

2ip

(︄
[1 + 2ipfl(p)]

eipr

r
− e−i(pr−lπ)

r

)︄
.

(2.6)

This allows to further interpret the scattering process. If no scattering takes place, the plane wave can be
described by the sum of a spherical in-coming wave − exp(−i(pr − lπ))/r and an out-going spherical
wave exp(ipr)/r. The scattering modifies the coefficient of the out-going wave. This coefficient is the
so-called, S-matrix, or more precisely the l-th diagonal element of the S-matrix.

Sl(p) = 1 + 2ipfl(p). (2.7)

The S-matrix fulfills an unitarity relation |Sl| = 1. Therefore it can be parameterized by

Sl(p) = e2iδl(p), (2.8)

with the l-wave phase shift δl(p). Inserting this parameterization in equation (2.6) allows a physical
interpretation of the phase shift. For δl(p) = 0 no scattering appears. For δl(p) ̸= 0 the only change in
the wave function at a large distance is a shift in the phase of the out-going wave.
With the phase shift fl(p) can be written as

fl(p) =
Sl(p)− 1

2ip
=

1

p cot(δl(p))− ip
. (2.9)

2.1.1 Phase shift and effective range expansion

For small momenta the phase shift, or more precisely, the quantity in the denominator of equation (2.9)
can be expanded. This expansion is called effective rage expansion (ERE) [9, 65]. For the l-th partial
wave, it yields

pl cot δl = −1/al +
rl
2
p2 + Plp

4 + · · · , (2.10)

with the l-wave scattering length al, the l-wave effective range rl, and the l-wave shape parameter Pl.
For this thesis, the S-wave (l = 0) is the most relevant partial wave. For S-wave interactions the effective
range expansion is given by

p cot δS = −1/aS +
rS
2
p2 + PSp

4 + · · · , (2.11)

with the S-wave scattering length aS , the S-wave effective range rS , and the S-wave shape parameter
PS . For the rest of the thesis, we will always investigate S-waves, therefore we drop the subscribed S.
Combining the ERE and equation (2.2) gives a connection between the scattering length and the total
cross-section

lim
E→0

σ(E) = 4πa2. (2.12)
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2.1.2 Poles of the scattering amplitude and bound states

Two-body bound states can be identified with poles of the partial-wave scattering amplitude. In the
complex momentum plane, they appear on the positive imaginary axis p = iγ with γ > 0. This
corresponds to a negative relative energy

E =
p2

m
< 0. (2.13)

For S-waves a condition for bound states due to equation (2.9) yields

p cot δS(p = iγ) = ip . (2.14)

Two-body states with a pole on the negative imaginary axis are called virtual states. States with a pole
at negative imaginary part and non-zero positive real part are called resonances. This pole structure is
shown in figure 2.1.
Note that the dimer propagator, introduced later, is proportional to the two-body scattering amplitude
(compare to figure 2.3). Therefore its poles also are connected to bound states, virtual states, and
resonances.

Im(p)

Re(p)

Figure 2.1: The pole structure of the complex momentum plane. The red crosses are bound states, the
blue crosses are virtual states, and the orange cross represents a resonance.

2.1.3 Partial wave expansion

A general form of the partial wave expansion is given by [21]

f(p) =
√
4π
∑︂
l,m

Yl,m(p̂)fl,m(p),

fl,m(p) =
1√
4π

∫︂
dΩY ∗

l,m(p̂)f(p),
(2.15)

where Yl,m(p̂) are spherical harmonics. In the case where f(p) depends only on one angle, this reduces
to the expansion in the Legendre polynomials as used in equation (2.5).
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2.2 Effective field theory (EFT)

The following introduction to EFTs is inspired by [12] and [80]. Low-energy (mlow) phenomena in
physics are not sensitive to details of the interaction at short distances (or high energies (mhigh)). This
separation of scales can be used to construct simple theories that consider only the relevant degrees
of freedom. This is done in EFTs. By the relevant degrees of freedom we mean particle fields, that
can be resolved in the investigated energy region. These fields are used to construct the most general
Lagrangian. It was shown in [70] that this Lagrangian has to obey all the symmetries of the problem
(e.g. Galilean invariance). A Lagrangian which is constructed this way contains an infinite amount
of interaction terms in addition to the kinetic terms. By using the separation of scales the relevance
of each of these interactions can be obtained. By introducing a power counting it can be shown, that
each interaction term scales like (mlow/mhigh)

n, with different n ∈ N for the different interactions. At a
chosen accuracy only interactions with corresponding n or lower contribute. Once the relevant terms at
a given order n are identified, only a few low-energy constants parametrizing these terms remain. These
coupling constants can be determined by matching calculated observables to experimental results, or in
the case of this thesis to results of model calculations. This power counting also allows a robust error
estimation. The first neglected interaction terms are of order of (mlow/mhigh)

n+1. Therefore an error
estimation of an observable O is given by O (mlow/mhigh)

n+1.

In this thesis, we investigate a three-particle system in non-relativistic ̸ πEFT [15, 43, 44, 68] with a shallow
bound two-particle subsystem. This subsystem is often called a dimer. Such a system exhibits an un-
naturally large two-body scattering length a. The binding energy of the dimer is approximately 1/(a2m).
Since the dimer is only shallowly bound, the corresponding binding momentum k1 = 1/a ∼ mlow scales
like the low-energy scale of the theory. On the other hand side, the effective range r of the two-body
system is assumed to be of natural size, so it is 1/r ∼ mhigh. This case can be summarized by a≫ r and
the following power counting can be established:

1

a
∼ p ∼ mlow;

1

r
∼ mhigh;

mlow

mhigh
≪ 1, (2.16)

with a typical momentum p of the interaction. A very prominent example of such a system is the
neutron-proton scattering in the triplet channel 3S1. The corresponding scattering length is a = 5.42 fm
and the effective range is r = 1.75 fm [19]. These values lead to a shallow bound two-body dimer at
ED = 2.22 MeV. This state is better known as the deuteron. In this thesis we will investigate a bosonic
equivalent of this system, using the same values of a and r. For these values we obtain r ≈ a/3 and
1/r = 112.35 MeV ≈ mhigh = mπ = 140 MeV.

2.3 The three-body system in the particle-dimer picture

The particle dimer picture is a technique to simplify three-particle systems by introducing an auxiliary
field, the dimer. A detailed introduction to this picture is for example given in [4, 5, 12, 42]. The
idea is that this dimer is a two-particle system in itself. The information of the two-particle system is
encoded in the dimer field which can be used in the three-body system resulting in an effective two-body
problem. This effective two-particle system contains the dimer and one single particle. If one matches
the appearing dimer-related quantities to the two- and three-body forces of the three-particle theory,
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the particle dimer picture is mathematically equivalent to the three-body system. Except for terms at
higher-order in the EFT expansion, meaning terms suppressed by orders of mlow/mhigh. This matching
has been considered in the literature already many times (see, e.g. [3, 4, 12]).
For a system with S-wave interactions the Lagrangian in the particle-dimer formalism takes the following
form [6]:

Ld =ψ†
(︃
i∂0 +

∇2

2m

)︃
ψ + σd†

(︃
i∂0 +

∇2

4m
+∆

)︃
d+

f0
2
(d†ψ2 + h.c.)

+ h0d
†dψ†ψ + h2d

†d(ψ†∇2ψ + (∇2ψ†)ψ) + · · · .
(2.17)

d denotes the dimer field and ψ is the single-particle field. m is the mass of the single-particle. The sign
of σ = ±1 is linked to the sign of the effective range r. In our case (r > 0) this implies σ = −1. f0 is the
strength of the decay (re-combination) of a dimer into two single particles, which is connected to the
two-body scattering length a. The terms proportional to h0 and h2 are three-body forces. Note that an
EFT for three bosons needs a three-body force even at LO to describe three-body observables correctly
[4, 18]. The h0 term is such a leading order three-body force, the h2 is a N2LO three-body force. The
ellipses in the second line stand for higher-order three-body forces. Higher-order three-body forces come
with additional factors of (∇2)n and are suppressed by (mlow/mhigh)

2n.
Note that the particle dimer picture will work especially well in a system with a physical two-body bound
state. This is the case we consider in this thesis. The unnaturally large positive two-body scattering
length a leads to a two-body shallow bound state with ED ≈ 1/a2m. However, the particle dimer picture
will also work if such a state is not present in the theory.
The Lagrangian in the particle dimer picture leads to the following one and two-body Feynman rules
[6, 5]. For the single-particle propagator one obtains

S1(p0,p) =
i

p0 − p2/(2m) + iε
. (2.18)

The bare dimer propagator at LO is connected to the term σd†∆d in the Lagrangian. It is given by

SLOD = − i

∆
. (2.19)

The bare dimer propagator at NLO is connected to the full kinetic term shown in equation (2.17). It is
given by

SNLOD (p0,p) = − i

∆+ p0 − p2/(4m)
. (2.20)

Note that these bare propagators cannot describe the propagation of the dimer sufficiently. Due to the
dimer being a two-particle system in itself, a dressed propagator has to be used, see next section. Finally,
the leading-order dimer-decay (=recombine) vertex is given by

V
(0)

d†ψ2 = −if0. (2.21)

2.3.1 The dressed dimer propagator

In this section, we calculate the dressed dimer propagator. We start by obtaining the propagator in
leading order, meaning taking only the scattering length a into account. In a second step, we will
include corrections due to the effective range r, this will be accomplished by two different methods:
non-perturbatively and perturbatively.
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= + + + · · ·

= + .

Figure 2.2: Feynman diagrams for the dressed dimer propagator (thick double line). The thin double line
stands for the bare propagator at LO, the single lines stand for single-particle propagators.
The contact between two single-particle lines and a bare propagator stand for the LO vertex
V

(0)

d†ψ2 . At leading order, all amount of insertion of additional loops contribute. In the second
line, the infinite series of diagrams is summed into an integral expression.

The dimer propagator in leading-order

We start, by investigating the dimer propagator at leading order. Since the dimer is a two-particle system
the dimer propagator is more complicated than the bare dimer propagator that one obtains from the
Lagrangian (equation (2.19)). Due to the term proportional to d†ψ2 in the Lagrangian the dimer can
break up into two single particles and recombine. This can happen multiple times. The corresponding
Feynman diagrams can be seen in figure 2.2. This diagrammatic expression is also called the Dyson
equation. All these diagrams contribute and therefore the propagator contains infinite many loops. The
full dimer propagator is called dressed dimer propagator. For each insertion of a loop, we add a loop,
two times the dimer-decay vertex V (0)

d†ψ2 and one bare propagator. The loops1 count as p1 ∼ mlow. The
vertices together with the bare propagator count as a ∼ 1/mlow (see below). Therefore each single
insertion counts as ap ∼ 1. In other words, the inclusion of one additional loop does not change the
power counting of the diagram. It becomes clear that all infinite parts of figure 2.2 have to be taken into
account.
We calculate the contribution of a single loop times one bare propagator. Let the in-going momentum
(energy) be p (p0) and the loop momentum (energy) q (q0) be distributed to one loop-particle having a
momentum (energy) of p+ q (p0 + q0) and the other loop-particle having −q (−q0). The contribution

1The loops contain two times the single-particle propagator ∼ p−1 p−1 and the measure of three-dimensional integral ∼ p3.
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gives

Loop · SLOD = (−if0)
∫︂ Λ d3q

(2π)3
dq0
2π

i

−q0 − q2/(2m) + iε

i

p0 + q0 − (q+ p)2/(2m) + iε
(−if0)

−i
∆

= −f
2
0

∆
m

∫︂ Λ d3q′

(2π)3
1

mp0 − p2/4− q′2 + iε

=
f20
∆

m

4π

⎛⎝2Λ

π
+

√︃
p2

4
−mp0 − iε arctan

⎛⎝
√︂

p2
4 −mp0 − iε

Λ

⎞⎠−
√︃

p2

4
−mp0 − iε

⎞⎠
=
f20
∆

m

4π

(︄
2Λ

π
−
√︃

p2

4
−mp0 − iε

)︄
+ · · · .

(2.22)

The integral is ultraviolet divergent, Therefore it has to be regularized. We do this by using a sharp cutoff
Λ. In the second step we have shifted q′ = q+ p2/2, in the third step the Sokhotski–Plemelj theorem
(equation (3.31)) was used and in the final step the arctan(x) was expanded for small arguments2. With
this expression the dressed propagator can be calculated using the expression for a geometric series.

iτ ′LO(p, p0) =
iSD

1− Loop · SD
=

1

∆− f20Λm/(2π
2) + f20m/(4π)

√︁
p2/4−mp0 − iε

. (2.23)

Note that this propagator depends on the momentum cutoff Λ. Physical observables cannot depend on it.
To remove the Λ-dependence the bare couplings in the Lagrangian f0 and ∆ have to be re-normalized.
In the present form of the propagator, this is especially simple. The propagator is directly connected
to the two-body scattering amplitude. The on-shell two-body T -matrix can be obtained by adding the
dimer-decay vertex on both sides to the propagator, which is shown in figure 2.3. Therefore,

T (k) = (if0)τ
′LO
(︃
p0 =

k2

m
,p = 0

)︃
(if0)

=
−f20

∆− f20Λm/(2π
2) + f20m/(4π)

√
−k2 − iε

=
4π/m

−4π∆/(f20m) + 2Λ/π − ik − iε
.

(2.24)

This can be compared to the well known form of the on-shell two-body T -matrix using the effective
range expansion:

T (k) =
4π/m

k cot δ − ik − iε
=

4π/m

−1/a+ · · · − ik − iε
. (2.25)

By comparing the expressions one obtains the re-normalization condition for the two-body coupling
constants ∆ and f0.

−1

a
= −4π∆

f20m
+

2Λ

π
. (2.26)

Note that this means f20m/∆ ∼ a. Therefore, the result of equation 2.22 indeed scales like ap ∼ 1, as
anticipated. All insertions of additional loops in figure 2.2 must be taken into account at LO. We conclude
this section by giving the dimer propagator at LO as it will be used in the Faddeev equation below (in
2This can be done, since p ∼ p0 ∼ mlow and Λ ∼ mhigh, so p/Λ ∼ mlow/mhigh ≪ 1.
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there the multiplicative factors have been absorbed in the normalization of the particle-dimer scattering
amplitude):

τLO(k∗) =
1

−1/a+ k∗
, (2.27)

with (k∗)2 = 3/4k2 −mk0.

= .

Figure 2.3: The two-body scattering amplitude T (k) in terms of the dimer propagator. The blob with
the oblique lines is the two-body scattering amplitude, the thick double line represents the
dressed dimer propagator, the small circles stand for the dimer-decay vertices V (0)

d†ψ2 .

Non-perturbative range corrections to the propagator

NLO
= + + + · · · .

Figure 2.4: Feynman diagrams for the dressed dimer propagator including range corrections. The
notation is the same as in figure 2.2, but with the dashed double lines being the bare dimer
propagator at NLO. This bare propagator is given by equation (2.20).

There are two ways to include range corrections: perturbatively or non-perturbatively. We briefly
summarize both methods and discuss how they are related to each other. For the non-perturbative
method we follow the steps discussed in [12], also see [49]. The effective range r in the effective range
expansion appears in combination with the momentum squared. Therefore it is natural to include an
additional term in the Lagrangian containing derivatives, this can be done3 by adding additional parts to
the kinetic term in the Lagrangian. In equation (2.17) this is already done. The additional terms lead to
the changed bare dimer propagator at NLO. This is given by equation (2.20). The dressed propagator
has to be modified accordingly. The Dyson series for this can be seen in figure 2.4. The structure of the
series is the same as at LO. Therefore we can repeat the steps of the last section, but the LO propagator
has to be changed by the NLO version. A easy way of doing so is to exchange ∆ by ∆+ p0 − p2/(4m).

3Note that this is not unique, alternatively one can add additional decay vertices with derivative terms, this can be seen for
example in [34].
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For the propagator this yields

iτ ′NLO(p, p0) =
1

∆− (p2/(4m)− p0)− f20Λm/(2π
2) + f20m/(4π)

√︁
p2/4−mp0 − iε

. (2.28)

This leads to a two-body scattering amplitude of

T (k) =
4π/m

−4π∆/(f20m) + 2Λ/π + 4π/(f20m
2) k2 − ik − iε

. (2.29)

Comparing this to the NLO version of equation (2.25) directly leads to the effective range expansion in
the denominator.

TNLO(k) =
4π/m

k cot δ − ik − iε
=

4π/m

−1/a+ r/2k2 · · · − ik − iε
. (2.30)

Therefore the corresponding propagator at NLO as it will appear in the Faddeev equation is

τNLO(k∗) =
1

−1/a− r/2(k∗)2 + k∗
. (2.31)

Note that the superscribed NLO can be misleading. In the theory we investigate it is r ≪ a. If we want
to investigate the power-counting of τNLO(k∗), it can be expanded for small r. This leads to

τNLO(k∗) = τLO(k∗) +

∞∑︂
n=1

n!(k∗)2n

(−1/a+ k∗)n+1

(︂r
2

)︂n
. (2.32)

Therefore the corrections to the LO propagator scale like p2np−n−1rn ∼ mlow(mlow/mhigh)
n. In other

word they are suppressed compared to the LO propagator by (mlow/mhigh)
n. Strictly speaking only the

first term n = 1 is a NLO quantity. The propagator τNLO(k∗) also contains contributions of higher order.
However, it does not contain all possible higher order parts. At N3LO for example corrections due to the
shape parameter have to be included. But since higher order contributions can be ignored in an EFT
for mlow/mhigh ≪ 1, TNLO(k) and the following τNLO(k∗) can be used as if it are NLO quantities. This
method is also called re-summation, since the non-perturbative propagator contains all parts of the sum
in equation (2.32).
The benefit of this method is, that the form of equation (2.29) and equation (2.30) are the same. The
single terms of the famous effective range expansion can be read off easily. Also, the inclusion of higher-
order terms is straightforward. Additional derivative terms in the kinetic part can be directly connected to
the higher-order parts (shape parameter, . . . ) of an ERE. Note, in this case, additional coupling constants
are needed. However, it also comes with a downside, equation (2.31) can exhibit spurious poles. In fact,
this is the major topic of this thesis and will be discussed below in all detail.
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Perturbative range corrections to the propagator

NLO
=

LO
+

LO LO
.

Figure 2.5: The dressed NLO dimer propagator in the perturbative method. The thick double line with
the superscribed LO (NLO) is the dressed dimer propagator at LO (NLO) and the red filled
square is the momentum dependent vertex V ′(2)

d†d
.

In this section we summarize the method explained in [2, 5]. The perturbative method is based on the
natural-sized effective range r ∼ 1/mhigh and the unnaturally large scattering length a≫ r. Based on
this the bare propagator at NLO can be expanded:

SNLOD (p0,p) = − i

∆+mp0 − 3
4p2

=
−i
∆

(︄
1−

(︃
mp0 −

3

4
p2

)︃1

+ · · ·

)︄
. (2.33)

Therefore, the correction to the LO propagator can be understood as an additional possible vertex:

Vd†d = if2(k
∗)2. (2.34)

With some coupling f2. If we are interested in the propagator at NLO, meaning a propagator that includes
all terms proportional to (mlow/mhigh)

0 and (mlow/mhigh)
1, one insertion of this vertex per diagram is

sufficient. The NLO correction to the propagator can be obtained by simply adding the LO propagator
from both sides to one single NLO vertex. This can be seen in figure 2.5. Therefore the NLO correction
to the propagator τ(k∗)NLOcor is given by

τNLOcor (k∗) = τLO(k∗)V ′
d†dτ

LO(k∗) = if2
(k∗)2

(−1/a+ k∗)2
. (2.35)

This expression can be compared to the perturbative expansion of the two-body scattering amplitude
given by equation (2.32). This results in the perturbative dimer propagator:

τNLOpert (k∗) = τLO(k∗) + τNLOcor (k∗) =
1

−1/a+ k∗
+
r

2

(k∗)2

(−1/a+ k∗)2
. (2.36)

The relation between the non-perturbative and the perturbative method is clear. By expanding the
non-perturbative propagator (equation (2.31)) for small values of the effective range, one obtains the
perturbative expression. The higher-order terms can be obtained in the perturbative method by inserting
the vertex V ′(2)

d†d
multiple times. The benefit of the perturbative method is that the propagator τNLOpert (k∗)

actually is a NLO quantity, it contains all terms suppressed to the LO diagrams by mlow/mhigh and no
higher-order terms. However, the sum is slightly more complicated to implement than the single term in
the non-perturbative method and the larger exponent of the physical pole in the denominator of the
corrections will result in convergence issues in finite volume, compare to section 3.1.4. In this thesis, we
use the non-perturbative method, meaning the propagator given by equation (2.31).
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2.3.2 The Faddeev equation in the particle-dimer picture

= + +

+ +

+ + · · · .

Figure 2.6: The Faddeev equation written in Feynman diagrams. The blob with the oblique lines is the
particle dimer scattering amplitude. The thin double line is the bare dimer propagator. The
thick double line is the dressed dimer propagator, we use the non-perturbative NLO version
of it, which is given by equation (2.31). The single line stands for a single-particle propagator.
The green filled circle is a three-body vertex proportional to p0 and the blue filled square is
a three-body vertex proportional to p2. The second three-body force does not contribute
before N2LO. The ellipses stand for even higher-order three-body forces.

Equipped with the dressed dimer propagator, the three-particle system can be described in the particle
dimer picture. The particle dimer scattering amplitudeM(p,q, E) is proportional to the three-particle
scattering amplitude. p (q) denotes the in-going (out-going) relative momentum between the particle
and the dimer. E is the transferred energy. The particle dimer scattering amplitude can be calculated
by solving the Faddeev equation. A more detailed derivation of the Faddeev equation can be found in
[12]. A representation in Feynman diagrams of the Faddeev equation can be seen in figure 2.6. The
first diagram on the right-hand side of this stands for the one-particle exchange. The dimer can decay
and one of the containing particles can form a new dimer with the single-particle. The second diagram
is a LO three-body force. In the particle dimer picture, three-body forces are caused by terms in the
Lagrangian containing d†dψ†ψ. The third term denotes the first higher-order three-body force, this
appears at N2LO. Note that all combinations of LO diagrams also contribute to LO. Therefore all iterations
of these diagrams have to be taken into account. This is shown in the second line of figure 2.6. In the
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third line, all iterations of the N2LO diagrams are shown. The ellipses stand for higher-order three-body
forces.
The Faddeev equation can be written as [12]

M(p,q;E) = Z(p,q;E) + 8π

∫︂ Λ d3k
(2π)3

Z(p, k;E)τ(k∗)M(k,q;E). (2.37)

The loop integral diverges for large momenta k, therefore it has to be regularized. We choose a sharp
ultraviolet cutoffΛ as in the last section. The dimer decay vertices have been absorbed in the normalization
of the scattering amplitude. All diagrams of the first line of figure 2.6 have been summarized in the
potential Z(p,q;E), that is given by

Z(p,q;E) =
1

p2 + q2 + pq−mE
+
H0(Λ)

Λ2
+
H2(Λ)

Λ4

3

8

(︁
p2 + q2

)︁
+ · · · . (2.38)

The coefficients H0(Λ) and H2(Λ) are the re-normalized three-body forces. The re-normalization cancels
the Λ-dependence of the integral, see below for details. The values of the coefficients H0 and H2 have to
be fine-tuned to reproduce three-body observables. This will be done for example in section 3.3.2. At
N2LO, this includes the term proportional to H2, this fine-tuning is complicated since H0 and H2 cannot
be obtained separately. A slightly different potential can be obtained by introducing a trimer auxiliary
field[5]:

Z(p,q;E) =
1

p2 + q2 + pq−mE
+
H0

Λ2
+
H2

Λ4
(mE + γ2) + · · · , (2.39)

with γ =
√
mEd and the binding energy Ed of the dimer. At N2LO both potentials are equivalent, up

to higher orders of the EFT both potentials lead to the same physics. This is proven in [5], in [25] it
is assumed that they are also equivalent for higher orders. This potential allows for an independent
calculation of H0 and H2 and will be used below.
Note that the Faddeev equation (2.37) for Λ → ∞ and without three-body forces, meaningH0 = 0, H2 =
0, · · · , is equivalent to the famous Skorniakov-Ter-Martirosian (STM) equation [67]. Therefore, the
version above with three-body forces is also called STM3 equation.
As introduced in the last section, the dimer propagator is given by

τ(k, E) = τ(k∗) =
1

k∗ cot δ(k∗) + k∗
, (2.40)

with the two-particle phase shift δ(k∗). We use the following notation for the loop momentum k∗:

k∗ =

√︃
3

4
k2 −mE. (2.41)

The quantity k∗ cot δ(k∗) can be expanded by using the ERE (equation (2.11)). Using the LO of this
gives the LO propagator (equation (2.27)), using the NLO gives the fully re-summed NLO propagator
(equation (2.31).
Following the line of reasoning in [12] the re-normalized LO three-body force can be calculated for a
given cutoff by

H0(Λ) =
cos [s0 ln(Λ/Λ

∗) + arctan(s0)]

cos [s0 ln(Λ/Λ∗)− arctan(s0)]
, (2.42)
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where Λ∗ is a three-body quantity that has to be obtained by fine-tuning to three-body observables
and with s0 a constant that belongs to the discrete scaling of Efimov states, see below. It is given by
s0 ≈ 1.0062. If one does all calculations for the same cutoff Λ′, the three body forceH0(Λ

′) can be treated
as as a constant. This constant can be obtained once, and the Λ-dependence in equation (2.42) can be
ignored. Please note that we modify equation (2.42) in the non-perturbative method, developed below,
by adding constant and Λ-dependent terms to it. For a fixed Λ′ this means changing the constant H0(Λ

′)
by an other constant H ′

0(Λ
′).

By performing a partial-wave expansion (compare to section 2.1.3) of the Faddeev equation and projecting
to S-waves, meaning l = 0, a relation for the S-wave scattering amplitude can be obtained.

MS(p, q, E) = ZS(p, q, E) +
4

π

∫︂ Λ

0
dk k2 ZS(p, k, E)τ(k∗)MS(k, q, E), (2.43)

with the S-wave projection of the potential

ZS(p, q, E) =
1

2pq

p2 + q2 + pq −mE

p2 + q2 − pq −mE
+
H0

Λ2
+
H2

Λ4
(mE −mEd) + · · · . (2.44)

The S-wave scattering amplitude is connected to the S-wave particle-dimer phase shift δ(3)S by

MS(p, p, Ep) =
N

p cot δ
(3)
S − ip

, (2.45)

with Ep = 3/4 p2/m− Ed and a normalization N . The normalization is calculated in the appendix. For
the rest of the thesis we will always consider S-wave quantities, therefore the subscript S will be dropped
everywhere in the notation below.

2.4 Efimov states

Efimov [23] discovered that for a three-particle system with an infinite large two-body scattering length
1/a = 0 an infinite amount of three-body bound states will appear. A more recent revive is given by [13].
These states have a fixed scaling between their binding energy:

E(n+1)

E(n)
= e−2π/s0 . (2.46)

While this discrete scaling is only exact in the unitary limit 1/a = 0, the infinite amount of states will
also appear for a finite large value of a. The series of bound states will obviously be cut by the cutoff,
however, by increasing the value of Λ, more and more of such states should be found. In section 3.3.5 we
will see exactly such behavior in our numerical results.

2.5 Finite volume

In this section we introduce the concepts of physics in a finite volume. We discuss why this is interesting,
what we mean by finite volume, what consequences this has to momentum space, and finally we will
re-derive the quantization condition in finite volume.
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2.5.1 Motivation

Calculations from first principles in physics are often very challenging. The most fundamental theory
available for the strong interaction is QCD. It contains quarks and gluons as degrees of freedom. Since
ab-initio calculations are very challenging powerful numerical methods have to be used. One of the most
promising methods to do so are calculations on the lattice. The idea of this is, that the space-time will
be treated as if it is discretized. Therefore the considered particles are put on a space-time lattice. This
allows for various simplifications of the system, such as allowing the particles to only interact with the
next neighboring space-time points. In the context of the strong interaction, an example of this is lattice
QCD [20, 73]. In the low-energy context of this thesis, there is no need to treat the time coordinate
in the same manner as the spacial ones. It has not to be discretized. For three space dimensions, a
three-dimensional lattice is used. See figure 2.7 for a schematic representation of this. The single space
points have a distance of dlat to each other, this is also called lattice spacing. To connect results from the
lattice to continuous space, the limit dlat → 0 has to be considered. For example, this can be done by
repeating the calculations for multiple values of dlat and extrapolating to zero.
Besides this, an additional restriction has to be made. The discrete space-time in finite volume still
contains an infinite amount of points. This is not accessible by numerical calculations. Even a computer
can not deal with infinite many terms. Therefore the space has to be restricted, the calculations have
to be performed in finite volume. An often-used choice is a finite cubic volume. The benefit of a cubic
volume is that all three space dimensions are treated equally. Additionally, the number of space points
can be calculated easily. It is given by (L/dlat)3 for a cube with edge length L.
Please note that this specification of the volume is not sufficient to perform lattice calculations. A second,
needed information is the behavior of the system at the edge of the volume. Therefore, some set of
boundary conditions has to be applied. A typical choice is periodic boundary conditions. One does not
want to treat space points at the edge of the volume differently than any other space point. After all, in
infinite volume, those points are not special in any way. If another set of boundary conditions is used,
for example, a hard wall, the space points at the edge have fewer neighbors than every other space
point. This could lead to an effective, additionally attractive, or repulsive interaction. By using periodic
boundary conditions this can be avoided. The points at the edge ’see’ the points at the other edge as
their neighbors. Therefore they have the same amount of neighbors as every other space point of the
lattice. A schematic representation of periodic boundary conditions is shown in figure 2.8.

2.5.2 Set up

In the context of this thesis finite volume always means a cubic box with edge length L and periodic
boundary conditions, compare to figure 2.8. This is a standard choice, that is used in multiple lattice
calculations [20, 73]. It is especially elegant to use in position space, since all Cartesian coordinate
directions are restricted in the same way. The periodic boundary conditions (that is the behaviour of the
wave function Ψ(r) at the surface of the cube) for m particles is defined by

Ψ(r1 + Ln1, · · · , rm + Lnm) = Ψ(r1, · · · , rm), with ni ∈ Z3. (2.47)

Here ri is the position of the i-th particle. One way of visualizing these conditions is, to connect the
surfaces of the box, so particles can leave on one side and enter on the other side. In a 1-D reduction of
a box, a line, this would mean, connecting the endpoints of the line and therefore creating a circle. A
2-D analog would be a square. Connecting the edges of this square creates a torus. For a 3-D box, the
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Figure 2.7: A schematic representation of a lattice. The position-space is discrete. Particles can only
be on the blue or red dots. The distance between two neighbouring points is given by the
lattice spacing dlat. Note that the position-space points at the surface of the finite cubic
volume (blue dots) have a different number of neighbours that the points in the inner (red
dot). To hinder this special treatment periodic boundary conditions are used.

resulting geometric object is a hyper-torus. Along these lines, an experimental realization of finite volume
with periodic boundary conditions can be done. For example, see [16, 17]. However, these realizations
are not what is considered here. In this thesis we understand finite volume as a tool to enable lattice
calculations. Therefore it is necessary to be able to connect the calculations in finite volume to physics in
the infinite volume.
Another way to visualize the boundary conditions is, to fill the whole space with identical copies of the
system. In this context, the Lüscher effect can be understood by particles leaving the box and interacting
with the n-th copy of it.
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L
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L

Figure 2.8: Three particles in a finite cubic volume with edge length L (a box) with periodic boundary
conditions.

While in this thesis we always consider the boundary conditions given by equation (2.47) other conditions
are possible. Different boundary conditions are for example hard walls or twisted periodic boundaries.
The latter is important in the context of the topological effect [10]. Note that all choices of boundary
conditions influence the results in slightly different ways. It is even possible to exploit these differences
to obtain additional information about the physical system [55].
An obvious characteristic of calculations in final volume is that for L→ ∞ the volume is infinite again.
Thus in this limit, the observables for the ‘finite’ volume must reproduce observables calculated in infinite
volume. This can be used as a simple check of consistency. In the numerical calculations below we will
always compare the finite volume results to the infinite volume results to see this convergence.

Finite volume in momentum space

Since we regard the EFT and especially the Faddeev equation (2.37) in momentum space, it is necessary
to understand the impact of finite volume (= limited position space) on physics in momentum space. It is
well known that the transition between position and momentum space is given by the Fourier transform.
Consider a two-particle system with relative distance r, relative momentum q. The Fourier transform
yields

Ψ(q) =
∫︂

d3r

(2π)3
eiqrΨ(r). (2.48)

Shifting the integrand by nL leads to

Ψ(q) =
∫︂

d3r

(2π)3
eiqr+iqnLΨ(r+ nL) =

∫︂
d3r

(2π)3
eiqr+qnLΨ(r). (2.49)
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In the last step the boundary condition, equation (2.47), has been used. Equation (2.48) and equation
(2.49) can be simultaneously true, if and only if the additional exponential factor equals one, therefore

qnL ∈ 2π Z. (2.50)

Since n ∈ Z, this leads to

q ∈ 2π

L
Z3. (2.51)

So in a finite volume with periodic boundary conditions, only discrete momenta are allowed. This
discretization of momenta can be understood by phenomenologically comparing it to the well-known
result for a particle in an infinite square well potential. Note that this example of a square-well potential
does not have a direct connection to the way finite volume is used here, but it should make the connection
between limited position space and discrete momenta comprehensible. In this system the special periodic
boundary conditions are

Ψ(0) = Ψ(L) = 0, (2.52)

due to the infinite potential at the borders of the well at x = 0 and x = L. The results for the wave
function are given by (for example [75])

Ψn(x) =

√︃
2

L
sin(xkn); with kn ∈ π

L
Z. (2.53)

Only discrete values of the wavenumber kn are allowed. Only waves are possible, that fit in the well, This
is shown in figure 2.9.

A direct consequence of the discrete momenta, according to equation 2.51, is that appearing momentum
integrals collapse to sums over the allowed momenta.∫︂

d3q
(2π)3

f(q) → 1

L3

∑︂
q∈2π/L·Z3

f(q). (2.54)

Finally, we note that for L → ∞ the distance between two neighboring momenta vanishes, and the
continuum is restored.

2.5.3 Quantization condition in finite volume

We consider the same non-relativistic system in the particle dimer-picture as before. For a relativistic-
invariant form see [61]. The Faddeev equation (equation (2.37) in infinite volume) takes a different form
in finite volume. As discussed before only discrete momenta are allowed due to the periodic boundary
conditions. Therefore, the loop integral collapses to a sum over the discrete momenta. In this section all
momenta have to be understood as k ∈ 2π/LZ3. This reads

ML(p,q, E) = Z(p,q, E) +
1

L3

Λ∑︂
k

Z(p, k, E)τL(k∗)ML(k,q, E). (2.55)

Note that the calculation of the dressed dimer propagator τ(k∗) also contains loop integrals in infinite
volume (compare to equation (2.22) for example). The dimer propagator has to be exchanged by a
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L

Figure 2.9: Results for the wave function of one particle in a infinite square-well potential, schematic
representation. This system shall motivate the connection between finite volume, boundary
conditions and discrete momentum space. Only wave functions that fulfill the boundary con-
dition (here Ψ(0) = Ψ(L) = 0) are allowed. This leads to waves with discrete wavenumbers.
Compare to [75].

finite volume version of it: τ(k∗) → τL(k∗). As shown for example in [33, 34] the equivalent of the fully
re-summed propagator is given by

τL(k∗) = τL(k, E) =
1

k∗ cot δ(k∗) + SL(k, E)
=

1

−1/a− r(k∗)2/2 + SL(k, E)
, (2.56)

where the ERE has been used up to NLO and

S(k, E) = −4π

L3

∑︂
p

1

p2 + pk+ k2 −mE
. (2.57)

This sum is a direct consequence of the discrete momentum in the loops appearing in the dressed dimer
propagator. The sum diverges in the ultraviolet and has to be regularized and re-normalized. A simple
way to accomplish this is [34] to subtract and add the same sum for some energy −µ2 < 0.

S(k, E) =
(︁
S(k, E)− S(k,−µ2)

)︁
+ S(k,−µ2). (2.58)
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The term in the brackets is finite and µ-dependent. The second term can be re-written using Poisson’s
summation formula (equatuion (4.10)), it yields

S(k,−µ2) = µ−
∑︂
n ̸=0

1

nL
exp

(︃
− i

2
Lkn− nLµ

)︃
, (2.59)

with n ∈ Z3 and n = |n|. The µ-dependence of this cancels this of the term in the brackets. A similar
approach can be used to write S(k, (k∗)2) = k∗ +∆(L, k∗). In [47, 46, 48] this has be done to derive
expressions for the finite volume corrections to two- and three-body bound states. In section 4.1 we use
these results to investigate our obtained bound states.
At energies close to the binding energy Ei of a three-body state the scattering amplitude can be written
as

ML(p,q, E) =
hi(p)hi(q)
E − Ei

+ regular terms . (2.60)

This means the in- and out-going momenta decouple. Also note that this expression becomes singular at
the binding energy. Therefore the in-homogeneous part of the Faddeev equation can be ignored. Doing
so leads to a homogeneous version of equation (2.55).

hi(p) =
1

L3

Λ∑︂
k

Z(p, k, E)τL(k∗)hi(k). (2.61)

Due to the discrete momentum this can be understood as a matrix equation. This has solutions only if

det
(︁
τL(k∗)− Z(p, k, E)

)︁
= 0 . (2.62)

Therefore the solutions for the energy E of this equation are the binding energies Ei of the three-
particle states. Equation (2.62) is also called quantization condition. Also note that it has solutions for
mE = (k∗)2 < 0, this solutions correspond to scattering states. While this could be used to determine
the finite volume energy spectrum, meaning the bound states and scattering states for different volume
sizes L, it is very difficult to solve. The argument of the determinant is a N3 ×N3 matrix, where N is
given by max{n; 2πn/L < Λ}. The number of element of the matrix scale with the inverse volume size
by 1/L6. For all but very small L this is not practical. A way to reduce this drastically is to perform a
partial-wave expansion. However, since the finite volume is a cube, the system is not spherical symmetric.
In [21] a projecting of the quantization condition to the irreducible representations of the octahedral
group was derived. The octahedral group is the symmetry group of a cube. This qualitatively resembles
the partial-wave expansion in the infinite volume. In the next section we will discus the a few aspects of
the octahedral group. We follow this, by briefly summarizing the projecting of the quantization condition
to the irreducible representations with focus on S-wave interactions.

2.5.4 The octahedral or cubic group

If a cubic volume is used the position-space is no longer spherical symmetric. Instead, the symmetry is
reduced to the symmetry of a cube. This symmetry is given by the octahedral group, this is also called
the cubic group, crystallographic point group, or angular momentum group of the cubic lattice [41]. We
will call it the cubic group G, and the elements of the group g. The cubic group is a finite subgroup of
the continuum rotation group SO3 In this section we introduce the group similar to [8, 21]. An older
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more mathematical-oriented introduction is given in [58].
The cubic group consists of 24 rotations Ra and the inversion I of all axes. Combined this are |G| = 48
elements. These rotations can be understood as all rotations, that image a cube to itself. If the origin of
Cartesian coordinates x, y, z is at the center of the cube with axes parallel to the edges of the cube, the
rotations are given by five conjugacy classes [41]:

(I) The identity (1 Rotation).

(3C2) Rotations with an angle of π about the three coordinate axes (3 rotations).

(8C4) Rotations with an angle of ±2π/3 about the four body diagonals, given by x = y = z (2× 4 = 8
rotations).

(6C4) Rotations with an angle of ±π/2 about the three coordinate axes(2× 3 = 6 rotations).

(6C ′
2) Rotations with an angle of π about the axes parallel to six face diagonals, given by e.g. x = y = 0
(6 rotations).

A matrix representation Ra of this rotations can be found in [8]. A general element of the cubic group is
given by g = RaI, where I is the identity or the inversion of all axes. The cubic group has five irreducible
representations [21]:

(A1) The trivial one-dimensional representation, it is given by 1 for all elements of G.

(A2) The one-dimensional representation which is −1 for all elements in the classes 6C4 and 6C ′
2 and

+1 else.

(E) The two-dimensional representation. The corresponding matrices are given in [8].

(T1) The three-dimensional representation. The matrices are given in [8].

(T2) The three-dimensional representation. The matrices are the same as for T1, but with an additional
−1 for the classes 6C4 and 6C ′

2.

Finally, the inversion doubles the number of representations. For each representation we get X → X±.
This means there are ten irreducible representations: A±

1 , A
±
2 , E

±, T±
1 , T

±
2 .

Shells

In this section, we order all the discrete three-dimensional momenta into different shells. These shells
are analog to the shells in the partial wave expansion, there they are given by all momenta with the
same absolute momentum |p|. Our following definition of the shells is completely equivalent to [21]. All
momenta in this section are given in units of 2π/L. We define a shell number s. This number increases
with increasing value of |p|. The idea of this shells is, that all momenta in a shell can be created from
one reference vector p0, by acting with the group elements on it p = gp0. A way of understanding this is
that elements of g can permutate the coefficients of a three-dimensional Cartesian vector. This leads to
different types of shells that can not mix. These shells are:

(a) The first type of shell contains only one shell and only one vector, namely (0, 0, 0). We will label it
by s = 1. All elements of the cubic group leave it invariant.
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(b) The second type of shells is given by p0 = (n, 0, 0), with n ∈ Z. This are all momenta on the
coordinate axes. In each shell of this type there are θ(s) = 6 elements. For example the shell s = 2
with momentum |p| = 1 contains (1, 0, 0), (−1, 0, 0), (0, 1, 0), (0,−1, 0), (0, 0, 1), and (0, 0,−1).

(c) The third type of shells is given by p0 = (n,±n, 0), with n ∈ Z. This are all momenta on the
diagonals between two axes. In each shell of this type there are θ(s) = 12 elements.

(d) The fourth type of shells is given by p0 = (n,m, 0), with n ̸= m and n,m ∈ Z. In each shell of this
type there are θ(s) = 24 elements.

(e) The fourth type of shells is given by p0 = (n,±n,m), with n ̸= m and n,m ∈ Z. In each shell of
this type there are θ(s) = 24 elements.

(f) The fifth type of shells is given by p0 = (n,±n,±n), with n ∈ Z. In each shell of this type there
are θ(s) = 8 elements.

(g) The fifth type of shells is given by p0 = (n,m, l), with n ̸= m ̸= l and n,m, l ∈ Z. In each shell of
this type there are θ(s) = 48 elements.

Here Z does not include the zero. In figure 2.10 a two-dimensional simplification of the shells is shown.
An interesting observation is, that for higher absolute momenta, different shells appear, that have the
same absolute momentum but are not connected by the cubic group. In three-dimensions this appears
first for |p| = 9. This can be created by a type (b) shell by p0 = (3, 0, 0). It can also be created by a
type (e) shell by p0 = (2, 2, 1). We count these as two different shells. For the shown example they are
s = 9 and s = 10. In figure 2.11 a two-dimensional simplification is shown. These different shells with
the same absolute momentum can be seen as a leftover of the spherical symmetry in infinite volume.
For these values of the absolute momentum, additional rotations leave the system invariant. This is a
hint for a larger symmetry. For higher momenta, this will appear more often, compare to figure 4.6.
Additionally, it will also appear more often if the volume size is increased. Increasing volume means
decreasing the distance between different absolute momenta. The shells begin to overlap by going to the
limit L→ ∞. In this sense, the spherical symmetry can be restored by sending the cubic volume size to
infinite. This is expected since there is no difference between an infinite-sized cube or an infinite-sized
sphere mathematically.
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Figure 2.10: Visualization of the shells in 2D. Plotted are the discrete momenta in units of 2π/L. The
shells contain all momenta {p} with the same absolute value |p| that can be transformed
to each other by elements g of the cubic group G. The different colors label the different
types of shells. In this two-dimensional simplification, only the shells that contain at least
one zero appear. The single point in the origin is the shell of type (a), The red dots are shells
of type (b), the blue dots are shells of type (c), and the green dots are shells of type (d).
The black dashed line circles indicate the same absolute momentum. In two dimensions
the cubic group is reduced to the symmetry of a square. This contains mirroring on the
coordinate axes and mirroring on the diagonals of the square. The reader can verify that all
momenta of the same shell can be transferred into each other by this symmetry operation.
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Figure 2.11: Two examples of shells with the same absolute value |p| (black dashed circles) that are
not connected by elements of the cubic group. The green dots indicate a shell of type
(d). They can not be mapped to the red dots (a shell of type (b)) and vice versa. They are
treated as two separate shells. The first two overlapping shells that are shown, are given by
|p| = 5, with p0 = (5, 0) for the type (b) and p0 = (4, 3) for the type (d) shell. The second two
overlapping shells, are given by |p| = 10, with p0 = (10, 0) for the type (b) and p0 = (8, 6) for
the type (d) shell.

Expansion in the irreducible representation

The following section is based on [21]. For the cubic group G a counterpart of the partial-wave expansion
(equation (2.15)) can be defined.

f(p) = f(gp0) =
∑︂
Γ

∑︂
ρ,σ

TΓ
σ,ρ(g)f

Γ
ρ,σ(p0), (2.63)

where Γ counts all irreducible representations: Γ ∈ {A±
1 , A

±
2 , E

±, T±
1 , T

±
2 }. The functions TΓ

σ,ρ are the
matrix representation of a element g ∈ G in a given representation Γ. All possible TΓ

σ,ρ are given in [21].
In the context of this thesis, only A+

1 is relevant, see below. This is also known as the trivial representation
and yields for all g

TA
+

σ,ρ (g) = 1. (2.64)

This corresponds to the S-wave spherical harmonic Y0,0(p̂) = 1. The Schur orthogonality relations (for
example [78]) yields ∑︂

g∈G
TΓ
σ,ρ(g)

(︂
TΓ′
λ,γ(g)

)︂∗
=

|G|
sΓ
δΓ,Γ′δσ,λδρ,λ. (2.65)
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sΓ is the dimension of the representation Γ. And |G| = 48 is the number of elements in G. With this the
quantity fΓρ,σ(p0) can be determined.

∑︂
g∈G

(︁
TΓ
λ,δ(g)

)︁∗
f(gp0) =

|G|
sΓ
fΓδ,λ(p0). (2.66)

This can be seen as the analog of the second part of the equation (2.15).

2.5.5 The quantization condition in the irreducible representation

The following derivation is based on [21]. In the last section an analog of the partial-wave expansion
for the cubic group G has been derived. With this the quantization condition (equation (2.61)) can be
simplified. First we exchange the sum over the discrete momentum by a sum over all elements g of the
group G and a sum over all shells s.

h(p) = 1

L3

Λ∑︂
k

Z(p, k, E)τL(k∗)h(k)

=
1

L3

∑︂
s

∑︂
g∈G

θ(s)τL(s)

|G|
Z(p, gk0)τL(k∗)h(gk0(s)).

(2.67)

The factor θ(s)/|G| cancels the fact, that a specific momentum can be constructed form k0 by different
elements g, and therefore appears multiple times in the sum. Also note, τ(k∗) only depends on the
absolute value of k, therefore we write τL(s). We have also dropped the E-dependence to simplify the
notation. Multiplying with

(︂
TΓ
σ,λ(g

′)
)︂∗
, summarizing over all g ∈ G and using equation (2.66) yields

|G|
sΓ
hΓλ,σ(r) =

1

L3

∑︂
s

∑︂
Γ′

∑︂
ρ,δ

θ(s)τL(s)

|G|
ZΓ,Γ′

λ,σ;ρ,δ(r, s)h
Γ′
ρ,δ(s), (2.68)

with the projection of the potential

ZΓ,Γ′

λ,σ;ρ,δ(r, s) =
∑︂
g,g′∈G

(︁
TΓ
σ,λ(g

′)
)︁∗
Z(g′p0(r), gk0(s))TΓ′

δ,ρ(g)

=
∑︂
g,g′∈G

(︁
TΓ
σ,λ(g

′)
)︁∗
Z(g−1g′p0(r), k0(s))TΓ′

δ,ρ(g).
(2.69)

In the last step we used that the potential only depends on the angle between the momenta, meaning
Z(gp, gk) = Z(p, k). Since the group G is complete, it yields g−1g′ ∈ G. Therefore we can define a new
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g′′ = g−1g′ ∈ G and obtain

ZΓ,Γ′

λ,σ;ρ,δ(r, s) =
∑︂

g,g′′∈G

(︁
TΓ
σ,λ(g g

′′)
)︁∗
Z(g′′p0(r), k0(s))TΓ′

δ,ρ(g)

=
∑︂

g,g′′∈G

∑︂
ω

(︁
TΓ
σ,ω(g)

)︁∗ (︁
TΓ
ω,λ(g

′′)
)︁∗
Z(g′′p0(r), k0(s))TΓ′

δ,ρ(g)

=
∑︂
g′′∈G

∑︂
ω

|G|
sΓ
δΓ,Γ′δσ,δδω,ρ

(︁
TΓ
ω,λ(g

′′)
)︁∗
Z(g′′p0(r), k0(s)))

=
∑︂
g∈G

|G|
sΓ
δΓ,Γ′δσ,δ

(︁
TΓ
ρ,λ(g)

)︁∗
Z(gp0(r), k0(s)))

=
|G|
sΓ
δΓ,Γ′δσ,δZ

Γ
λ,ρ(r, s) .

(2.70)

In the third step we have used the Schur orthogonality relation (equation (2.65)). We have defined the
potential in the irreducible representation by

ZΓ
λ,ρ(r, s) =

∑︂
g∈G

(︁
TΓ
ρ,λ(g))

)︁∗
Z(gp0(r), k0(s)). (2.71)

Inserting this into equation (2.68) simplifies it to

hΓλ,σ(r) =
1

L3

∑︂
s

θ(s)τL(s)

|G|
∑︂
ρ

ZΓ
λ,ρ(r, s)h

Γ
ρ,σ(s). (2.72)

Analogous to the before this has a solution if

det

(︃
τL(s)−1δr,sδλ,ρ −

θ(s)

GL3
ZΓ
λ,ρ(r, s)

)︃
= 0. (2.73)

This is the quantization condition in the irreducible representation. Note that this only depends on the
shell numbers but not the direction of a single momentum. This reduces the dimension of the matrix
drastically. This is a N × N matrix, however each element contains a sum over all g ∈ G, so this are
48N2 terms. Also note that the number of shells that fit under the ultraviolet cutoff does not scale linear
with the inverse of L, The density of the shells increase with increasing L, compare this to the discussion
around figure 4.6. However, the amount of terms is reduced heavily compared to equation (2.62).
For S-waves only the trivial representation A+ contributes, therefore for S-waves the quantization
qondition simplifies to

det

(︃
τL(s)−1δr,s −

θ(s)

GL3
ZA

+
(r, s)

)︃
= 0, with ZA+

(r, s) =
∑︂
g∈G

Z(gp0(r), k0(s)). (2.74)

Note that the case of S-wave interactions is chosen since it is especially simple. Only one representation
contributes, for higher partial waves this is not true, different representations will enter for the same
partial wave, see for example [49].

37





3 Spurious poles in infinite volume

The methods, results and discussions presented in this chapter have been partially published in [22].
They are the result of a cooperation with the other authors of this article.

3.1 The problem of spurious poles

As discussed above, the particle-dimer scattering amplitude can be obtained by solving the Faddeev
equation:

M(p,q;E) = Z(p,q;E) + 8π

∫︂ Λ d3k
(2π)3

Z(p, k;E)τ(k∗)M(k,q;E) , (3.1)

where a sharp ultraviolet cutoff Λ has been used to regularize the loop integral (compare to equation
(2.37)). A graphical representation using Feynman diagrams is given in figure 2.6. The dimer propagator
is given by

τ(k, E) = τ(k∗) =
1

k∗ cot δ(k∗) + k∗
, (3.2)

with the two-particle phase shift δ(k∗). How this quantity appears can be seen in section 2.3. In this
thesis we use the re-summarized propagator at NLO given by equation (2.31). We use the following
notation for the loop momentum k∗.

k∗ =

√︃
3

4
k2 −mE. (3.3)

It is chosen such that k∗ ∈ R below the two-body break-up threshold 4/3mE < k2. Note that this differs
by the more commonly used definition by a factor of i. The two-particle phase shift δ is accessible in an
EFT by using the effective range expansion (ERE). On a more fundamental level this means the two-body
coupling constants in the re-normalized Lagrangian density are fine-tuned to reproduce the parameters
of the ERE. More details on this can be found in section 2.2. The ERE for S-waves is given by

k∗ cot δ(k∗) = −1

a
− r

2
(k∗)2 +O

(︁
r3(k∗)4

)︁
, (3.4)

where a is the scattering length and r is the effective range, the physical interpretation of this values
is discussed in section 2.1.1. As already mentioned in that section, the ERE is an expansion for small
momenta k∗.
Keeping only the leading order (LO) term (∼ (k∗)0), results in a pole of τ(k∗) at k∗ = 1/a. In a
theory with a physical dimer, meaning a bound state of two particles, the binding energy of the state is
ELOD = 1/(ma2).
For example considering proton-neutron scattering1 in the S-wave triplet channel (3S1) the scattering
1Of course here we discuss spin-less particles, however the extension does not hinder the argument.
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length aLO = 4.4 fm results in a pole at k∗ = 45.5 MeV. Therefore the binding energy of this state is
EB = (k∗)2/M = 2.2 MeV, this is the binding energy of the deuteron, where M is the nucleon mass.
Data taken from [19].
However, considering the next-to-leading order (NLO) term (∼ (k∗)2) of the ERE, meaning adding range
corrections, this leads to a dimer propagator τ(k∗) that exhibits two poles:

k1 =
2/a

1 +
√︁
1− 2r/a

≃ 1

a
, k2 =

1 +
√︁
1− 2r/a

r
≃ 2

r
. (3.5)

The shown approximations are for case of a naturally large effective range and an unnaturally large
scattering length2, so r ≪ a. The pole k1 obviously corresponds to the pole at 1/a found before, which
is connected to the physical dimer. However the second pole k2 is suspicious. First, in the case of n-p
scattering, there is no deep bound state of the deuteron, so the theory seems to predict a state3 that is
not found in experiments. Second, the range correction in the ERE should not cause additional physical
states if considered strictly perturbatively. However, including it in the non-perturbative way introduced
in section 2.3.1 causes an additional pole but this pole should not be related to a physical state. Third,
the propagator at the additional state k2 can have a negative residue, this is a crucial problem, since it is
connected to negative spectral densities and it contributes to the unitary relation in an un-physical way.
Fourth, the presence of the pole makes the numerical standard techniques impossible. The latter two
issues will be discussed in more detail in the next section. It becomes clear that the additional pole is
un-physical or spurious.
The presence of such pole can be explained by taking a closer look at the ERE. This is an expansion for
small values of k∗. Small in this context means that the term test for divergence requires rk∗ < 1 for the
ERE to converge. At the region of the spurious pole k2 this is not the case rk2 ≃ 2. Strictly speaking, the
ERE cannot be used for such high momenta and it is not surprising that it predicts un-physical behaviour
in this region. Note that, in general, it is not a problem to use the ERE in the particle-dimer picture
outside its range of validity. The propagator appears in the Faddeev equation only in combination with
the potential of the interaction Z(p, k, E). By definition, this has to converge to zero for large momenta.
This must be the case, since for very high momenta, which means high energy, the particles will not be
influenced by an interaction in a meaning full way. So τ(k∗) · Z((p, k, E) → 0 for k∗ ≫ k1. For example,
the logarithmic decrease in the S-wave projection of the potential (2.44) should fall faster than τ(k∗). In
absence of a spurious pole (for example at LO), this is full-filled. However the singularity at k2 violates
this. The unmodified dimer propagator in ERE at NLO cannot be used around k2. In the following we
discuss the problems caused by the pole in more detail to further highlight the need for an alternative
method.

3.1.1 Negative residue, violation of unitarity and un-physical spectral density

The main physical issue with the spurious pole is, that it can exhibit a negative residue. In section 3.15 we
will discuss how this appears and for which values of the scattering length a and the effective range r this
is the case. In this section, we explain why this negative residue is un-physical and leads to predictions
that are not meaningful.

2This is the case where pionless EFT is expected to work especially well.
3As discussed above, poles of the propagator or the related two-body scattering amplitude have physical meaning, they are
bound states, virtual states or resonances. Compare to section 2.1.2.
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We start by investigating the presence of the spurious pole to the unitarity relation for the S-matrix. With
the S-matrix S, as defined in equation (2.7), the unitarity relation reads:

S† S = I, (3.6)

with the identity matrix I. The S-matrix can be parameterized by the phase shift δ. For a system with
only one channel, this means S is a one times one matrix, i.e.,

S = e2iδ. (3.7)

The unitarity relation directly leads to the condition δ ∈ R. Further the unitarity relation is connected to
the conservation of the probability current. For a properly normalized in-going (out-going) state Ψin (out)

it must hold that

1 = Ψ†
outΨout = Ψ†

inS
†SΨin = Ψ†

inΨin = 1. (3.8)

The out-going probability must be the same as the in-going. However, if multiple channels are possible,
and those additional channels are not treated explicitly, the phase shift can have a positive imaginary
part. This leads to

Ψ†
outΨout = Ψ†

inS
†SΨin = Ψ†

ine
−4Im[δ]Ψin = e−4Im[δ]. (3.9)

For Im[δ] = 0 the one channel result is reproduced. For Im[δ] > 0 the probability of the out-going
state is less than one and a part of the probability current is going to the other channels. In the case
of particle-dimer scattering this can be understood as follows. If there is not enough energy in the
system to break the dimer (D) into two particles (p) there is only one channel: pD → pD. Consequently,
Im[δpD→pD] = 0. If enough energy is present the dimer can split and the channel pD → ppp opens. A
part of the probability current can go into this additional channel, therefore Im[δpD→pD] > 0. This is
exactly the case we find in the numerical calculations below for example in figure 3.5. The break-up
energy of the dimer is encoded in the Faddeev equation by the physical pole k1. In section 3.3.2 we show
how the presence of the pole k1 results in an imaginary part of the Faddeev equation and therefore leads
to an imaginary part of the phase shift. Now the first problem with the spurious pole is obvious. The
additional pole k2 will contribute to the imaginary part and therefore to the unitary relation as well. An
additional channel pD′ → ppp is opened, with a deeply bound dimer D′. In the case of neutron deuteron
scattering such a deep deuteron state does not exist, as discussed above. However, the formalism will
find the additional un-physical channel and the predictions will be incorrect.
The second problem which regards to the unitarity relation is even more critical. The negative residue
of the propagator at the position of the spurious pole will cause a negative imaginary part of the phase
shift. To see this, we refer to section 3.3.2. In short, the negative residue will add an overall minus sign,
which leads to the opposite sign compared to the physical pole. This results in a negative imaginary part
Im[δ] < 0. With this, the right-hand side of the equation (3.9) becomes larger than one. In other words,
the out-going probability is larger than one, which is clearly un-physical. There cannot be a chance of
more than one for the channel to happen.

An additional issue, where the influence of the negative residue can be seen more directly, is related to
the spectral density ρ(M2). In [76] it is defined by

ρ(E2) =
∑︂
λ

2πZλδ(E
2 −m2

λ) +multi-particle scattering states for E2 ≳ (2m)2. (3.10)
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The index λ stands for single particles with mass mλ = m and possible n-body bound states with a
mass of mλ = (nm − E

(λ)
B ). E(λ)

B is the binding energy of the bound state λ. The quantity Zλ is the
field-strength renormalization of the corresponding state. In this context, the spectral density Zλ can be
understood as the probability to create the corresponding state out of the vacuum. According to [12]
the field-strength renormalization of two-body bound states is directly proportional to the residue Z of
the two-particle scattering amplitude4 at the position of the bound-state pole. For the spurious pole k2
the residue can be negative. Therefore it can have a negative probability for this state to be created from
the vacuum. Additionally, in the positive definite spectral density [52] a negative contribution appears.
Both is not meaningful, negative probabilities and negative densities are not defined. In figure 3.1 the
spectral density for a theory with single-particle mass m, a physical bound state k1, and the spurious
state k2 with negative residue is sketched.

M

ρ(M )

m

Two-body states

Bound state

Spurious state

2 2 2

(2m-k  /m)

(2m-k  /m)

(2m)

2

22

2

2
2

1

Single Particle

Figure 3.1: Spectral density with a single particle state with massM = m, a physical bound state at
M = 2m−k21/m and a spurious state atM = 2m−k22/m. The spurious state has a negative
residue. This causes a un-physical negative density (red). Also shown is a continuum of
two-particle scattering states. The scattering states start at two times the single particle
mass. Figure recreated from [76] (with the addition of the spurious state).

3.1.2 Numerical issues caused by the spurious pole

Besides this crucial physical issues, the additional pole has a devastating impact in numerical calculations.
In the standard prescription (as described in section 3.3.2) the loop integral is discretized by a Gaussian
match. The integral is approximated by a sum with n terms. The limit n→ ∞ restores the integral. In
other words, for large n the approximation converges to the integral. In actual calculations one can take
a large finite value for n and test the convergence. This can be done for example by increasing n slightly,
if the integral is converged the results can vary only a little. For example in figure 3.4 this is done. A
4Therefore it is also proportional to the pole of the dimer propagator in the particle-dimer picture.

42



change of n by 10% causes changes in the result of less than 1%. However, if the spurious pole is not
treated specially, the value of the propagator at the pole position is, loosely speaking, infinite. For a
momentum close to the pole, the propagator is a large number. The term of the sum which is closest to
the pole will therefore dominate the entire sum. By slightly varying n the distance to the pole changes
slightly but the value of the propagator changes largely. For example the value of the propagator near
the pole is τ(1.0001 k2) ≈ −94 MeV−1. For a tiny change it is τ(1.0002 k2) ≈ −47 MeV−1. It is clear
that this is not converged in the number of steps n at all. In the limit n → ∞ it diverges, the whole
approximation of the integral can not be used. Please note, the standard method, meaning a shift of iϵ
can not be used. Using this would contribute to the unitary relation, and even worse, cause un-physical
negative imaginary parts of the phase shift. This is discussed in detail in section 3.3.2.
Please note that this numerical issue only appears if the spurious pole lies on the path of integration.
Therefore a sharp cutoff Λ below the pole position removes the problem. However, this reduces the
precision of the theory, this is discussed in section 3.1.4 in detail.

3.1.3 Condition for the problems caused by the spurious pole

In this section we investigate in which case the spurious pole k2 appears and when it will cause the issues
discussed above. As explained above, the reason for the unphysical behavior is the negative residue. In
the following we investigate when this is the case.
First, we note, r > 0 results5 in k1 > 0 and k2 > 0, therefore k1 is a shallow pole, while k2 is a deep pole.
In the other case, r < 0, it still yields k1 > 0 but k2 < 0. In other words, the second pole is not related to
an additional spurious bound state but to a virtual state.
We continue this by investigating the residue of the propagator for the different cases. The residue Zki is
defined by the propagator expanded around the pole ki.

τ(k∗) =
Zki

Ek∗ − Eki
+ regular, (3.11)

with the energy Ek = k2/m. The residue can be calculated using the first term of a Laurent series.

Z−1
ki

=
d

dEk∗

(︁
τ(Ek∗)

−1
)︁ ⃓⃓
Ek∗=Eki

=
d

dEk∗

(︃
−1

a
− r

2
mEk∗ +

√︁
mEk∗

)︃ ⃓⃓⃓⃓
Ek∗=Eki

= −rm
2

+
m

2
(mEki)

−1/2 =
m

2

(︁
k−1
i − r

)︁
.

(3.12)

Using a≫ r, this results for the shallow pole in

Zk1 =
2

m
(a− r)−1 > 0, (3.13)

which is positive for r > 0 as well as for r < 0. On the other hand, for the deep pole it reads

Zk2 =
2

m

(︂r
2
− r
)︂−1

= − 4

mr
. (3.14)

This is positive for r < 0, which corresponds to a virtual state. For r > 0 it is negative, this is exactly the
case where the problems discussed in the last section will appear. This is a spurious pole.
Finally, we note that the spurious pole only causes problems if it lies on the path of integration in the
5In this thesis, we always assume the scattering length to be positive.
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Faddeev equation (equation (3.1)). This goes from k = 0 to k = Λ with a ultra-violet cutoff Λ. This
means as long as E < 0 the quantity k∗ is always reel and positive. Therefore, the spurious pole is
problematic if k2 ∈ R and k2 > 0. In figure 3.3 the inverse propagator τ−1(k∗) is shown for different r in
units of a. It becomes clear that the condition for a problematic spurious pole for a > 0 is given by

0 < r <
a

2
. (3.15)

r<0

0<r<a/2

r>a/2

-4 -2 0 2 4 6 8 10

-4

-2

0

2
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k* a

τ E
R
E

-
1
a

Figure 3.2: The denominator of the dimer propagator τ(k∗) in units of the scattering length a. Shown is
the ERE up to next-to-leading order, this means it includes the range corrections. In green
dashed for negative values of the effective range r, in red for values of r with 0 < r < a/2
and in blue dotted for r > a/2. It can be seen, that only for 0 < r < a/2 the denominator has
two roots in R+. Since the path of integration in the Faddeev equation is real and positive,
only in this region the second root can cause problems as a spurious pole.

3.1.4 Existing methods

In this section we discuss methods to solve the issues caused by the spurious pole that already have been
proposed before. We especially focus on explaining why and in what situation they can not be used to
highlight the need for our new non-perturbative method.

Low cutoff

The most straightforward method to solve the problems discussed above is to regulate the loop integral
by a sharp ultra-violet cutoff Λ, as done in equation (3.1), and choose Λ < k2. By doing so the spurious
pole does not lie in path of integration. The numerical issues are avoided entirely. Recall that it causes
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no problems to use the ERE outside its range of applicability as long as it is non singular. This method of
cutting away the spurious pole is for example used in [6].
While this is very easy to implement, it comes with a serious downside. Consider a theory with a
breakdown scale Λb. Besides the correction due to omitted physics starting around Λb, errors to the theory
are given by regularization artefacts. To ensure that the leading corrections to an EFT is actually given
by powers of (p/Λb), one has to demand Λ ≳ Λb. This becomes clear by looking at the re-normalization
prescription, equation (2.22). The omitted terms are proportional to

ap arctan
(︂ p
Λ

)︂
=
ap2

Λ
+ · · · ∼ p

Λ
, (3.16)

for a typical momentum p ∼ 1/a < Λ. If the spurious pole lies below the breakup scale k2 < Λb the
method therefore requires Λ < Λb. So the leading corrections are given by orders of (p/Λ) > (p/Λb). In
other words, by using a low cutoff one loses accuracy of the EFT predictions.

Additionally, if the application in lattice calculations is considered, recall, besides the finite volume the
lattice is defined by a discretized position space. The particles can only sit on the lattice points (compare
to figure ??). Similar to the case of limited position space that is linked to discrete momentum space, as
shown in section 2.5.2, discrete position space is connected to a limited momentum space. Therefore,
analogous to equation (2.51), the minimal distance between two lattice points (lattice spacing dlat) is
inverse proportional to the cutoff Λ. So restricting the cutoff to be below k2, forces a lower border to dlat.
So the continuum limit dlat → 0 can not be reached. Besides this theoretical limit, the lower border can
lower the accuracy of the calculations in this manner.

Fully perturbative method

An often used method, is to fully, perturbatively expand the propagator in the effective range r. This was
introduced by [4, 32, 40] in NLO and extended to N2LO in [39, 69]. The expanded propagator τpert(k∗)
in powers of r up to order NmLO yields6

τmpert(k
∗) =

m∑︂
n=0

n!(k∗)2n

(−1/a+ k∗)n+1

(︂r
2

)︂n
. (3.17)

This does not exhibit the spurious pole at any given finite order m. This works very well in infinite
volume, and is quite straight forward to implement. However in finite volume calculations we expect this
to be problematic. As discussed in section 2.5.3, the propagator in a finite volume has to be replaced by
a finite volume version of it. This is given by

τL(k, E) =
1

k∗ cot δ(k∗) + S((k, (k∗)2)
, (3.18)

with the function

S(k, (k∗)2) = −4π

L3

∑︂
p

1

p2 + pk+ k2/4 + (k∗)2
, with p ∈ 2π

L
Z3. (3.19)

6Here we reformulate the result of [39] into our notation.
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In infinite volume this sum converges to an integral and gives the well known result of equation (3.2).
The problem with the expansion (3.17) is, in finite volume the quantity k∗ in the denominator has to be
replaced by S(k, E), accordingly. Above the elastic threshold S(k, E) has an infinite amount of poles,
compare to figure 4.1. These poles are directly responsible for the infinite tower of scattering states of the
two-particle subsystem. This tower of scattering states can be seen for example in the energy spectrum
in figure 4.1. In infinite volume this poles condense to an elastic cut, which is a direct consequence of
S(k, E) → k∗ for L → ∞. In a finite volume, the expansion is producing denominators that become
more and more singular with increasing order n. The expansion in r will not work around this additional
poles. Compare this argument to [59].

Expansion in the momentum

Another approach for solving the problems of the spurious pole was proposed in [63] and more recently
in [64]. They keep the propagator full non-perturbatively, subtract the contribution of the spurious pole
and then add an expansion of the contribution for small momenta:

τ(k∗) → τ ′(k∗) = τ(k∗)− Zk2

(︄
1

k∗ − k2
+

1

k2
+
k∗

k22
+

(k∗)2

k32

)︄
, (3.20)

with the residue Zk2 of the propagator at the position of the spurious pole k2. The equation is taken from
[64] and rewritten in the notation of this thesis. This method is similar to our non-perturbative method
presented in the next section. However, it differs significantly. The expansion added in the method of
[64] is an expansion in the momentum k∗, the expansion in our method is an expansion in the energy
E ∼ (k∗)2. This difference is crucial, since the change in the propagator in the way of [64] will not lead
to an additional low-energy polynomial in the effective potential (compare to the next section) but an
additional momentum polynomial. The odd powers of this momentum polynomial cannot be absorbed in
the renormalization prescription. Therefore we expect this method to produce problems at higher orders
of the EFT.

3.2 The non-perturbative method

In this section a non perturbative method to include range corrections that does not exhibit spurious
poles is developed. The dimer propagator in NLO of the ERE that exhibits a spurious pole is given by
equation (3.2) and (3.4). It has the poles k1 and k2 as in equation (3.5). By performing a partial fraction
decomposition, it therefore can be written as

τ(k∗) =
2(k1 + k2)/r

(k2 − k1)(k∗ + k2)(k∗ − k1)
− 4k2/r

(k2 − k1)((k∗)2 − k22)
. (3.21)

The first part diverges at the position of the physical pole k1 and can be treated with standard methods7.
In this work, the Sokhotski-Plemelj theorem is used, more details are given in section 3.3.2. Therefore,
the first part will be taken exactly non perturbatively. This ensures, that the issues with convergence in a
finite volume, as discussed above, will not appear. The second part diverges at the position of the spurious
7Recall that the iϵ is encoded in k∗ via E → E + iϵ.
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pole k2. A simple iϵ would create an additional unphysical imaginary part, which violates unitary and
causality. This is similar to the discussion concerning the negative residue in section (3.1). To formulate
our new non perturbative method the quantity f(k∗) is introduced:

f(k∗) = − 4k2/r

(k2 − k1)((k∗)2 − k22)
− 4k2/r

(k2 − k1)k22

[︃
1 +

(k∗)2

k22
+

(k∗)4

k42
+ · · ·

]︃
. (3.22)

The first part is the contribution of the spurious pole to τ(k∗), the second part is a Taylor expansion of
this in (k∗)2/k22. Note that (k∗)2/k22 < 1 in the region of unnatural momenta k ∼ 1/a ∼ Mlow, since
k2 ∼ 2/r ∼Mhigh. Using this, the Faddeev equation (3.1) can be reformulated as

M(p,q;E) =W (p,q;E) + 8π

∫︂ Λ d3k
(2π)3

W (p, k;E)(τ(k∗)− f(k∗))M(k,q;E) ,

W (p,q;E) = Z(p,q;E) + 8π

∫︂ Λ d3k
(2π)3

Z(p, k;E)f(k∗)W (k,q;E) . (3.23)

with an effective potentialW (p,q;E). Note that the quantity (τ(k∗)− f(k∗)) is nothing else than the
propagator τ(k∗), with the contribution of the spurious pole replaced by its Taylor expansion. Most
important, it is regular at the position of the spurious pole as long as only a finite number of terms in the
expansion in f(k∗) are considered. In other words, the singularity at k2 is shifted from the propagator
τ(k∗) to the effective potential W (p,q;E). In section 3.2.1 it will be shown, that the integral in the
determining equation ofW is given by a low-energy polynomial. In this case, the integral part can be
absorbed in the low-energy polynomial (the three-body forces) of the original potential Z(p,q;E) (given
by equation 2.39). By doing so, the effective potential can be written as

W (p,q;E) =
1

p2 + q2 + pq−mE
+
H ′

0

Λ2
+
H ′

2

Λ4
(mE − γ2) + · · · . (3.24)

So the difference betweenW (p,q;E) and Z(p,q;E) can be absorbed by a change of the renormalization
prescription. In other words W = Z, if different values of the three-body forces H0, H2, · · · are used,
different than the values one would calculate from the Lagrangian
It is clear that only a finite number of terms in the expansion in f(k∗) can be taken into account. It is
also obvious that the ideal number of terms one should consider is directly connected to the number of
three-body forces in the potential Z(p,q;E) and therefore to the considered order of the EFT. A detailed
discussion and predictions for the ideal number is given in section 3.2.2 as well as a numerical analysis in
section 3.3.5. To clarify, we introduce the notation τi(k∗) = τ(k∗)− fi(k

∗), where fi(k∗) is the expansion
in equation (3.22) up to the i-th order. It yields

τ1(k
∗) =

2(k1 + k2)/r

(k2 − k1)(k∗ + k2)(k∗ − k1)
+

4k2/r

(k2 − k1)k22
,

τ2(k
∗) =

2(k1 + k2)/r

(k2 − k1)(k∗ + k2)(k∗ − k1)
+

4k2/r

(k2 − k1)k22

(︃
1 +

(k∗)2

k22

)︃
,

τ3(k
∗) =

2(k1 + k2)/r

(k2 − k1)(k∗ + k2)(k∗ − k1)
+

4k2/r

(k2 − k1)k22

(︃
1 +

(k∗)2

k22
+

(k∗)4

k42

)︃
.

(3.25)

In figure 3.3 this three orders of τi(k∗) compared to the original propagator in the effective range
expansion can be seen. As expected they all describe the original propagator very precise at the position
of the physical pole k1. They do not exhibit the spurious pole. And they differ to the original propagator
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for large momenta by a polynomial. The resulting change in physical observables can be removed by
changing the renormalization prescription as proved in the next section.
To conclude, to avoid the problems caused by the spurious state the following modified version of the
Faddeev equation (2.37) can be solved:

M(p,q;E) = Z(p,q;E) + 8π

∫︂ Λ d3k
(2π)3

Z(p, k;E)τi(k
∗)M(k,q;E). (3.26)

Here and everywhere below the differences betweenW (p, k;E) and Z(p, k;E) or more precise between
the three-body forces H0, H2, · · · and H ′

0, H
′
2, · · · have been dropped. Since the three-body forces are

fine-tuned to reproduce three-body observables of a model or experiments, there are no real differences
from a users point of view.
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Figure 3.3: The dimer propagator τ(k∗) in units of the scattering length a. For demonstration purposes
we choose r ≃ a/3. Shown is the propagator τERE(k∗) in the effective range expansion up to
NLO in red and the propagator in the different orders of the subtraction scheme as described
by equation (3.25), the constant leading order subtraction τ1(k∗) in black dotted, the next-to-
leading order τ2(k∗) proportional to (k∗)2 in green dashed and the next-to-next-to-leading
order τ3(k∗) proportional to (k∗)4 in cyan dot-dashed. It can be seen that all orders describe
the ERE very precise around the physical pole k1 a ≃ 1. By construction none of them, except
the ERE, exhibits the spurious pole k2. For k∗ < k2 the description becomes better order by
order of the subtraction scheme. For large values of k∗ the differ from τERE(k

∗). However
they differ only by a polynomial in (k∗)2. The resulting difference in observables can be
removed by changing the renormalization prescription of the EFT.

3.2.1 The effective potential W

In this section it is shown that the difference between the potential Z(p,q;E) and the effective potential
W (p,q;E) can be absorbed by a redefinition of the three-boy forces H0, H2, · · · . To proof this, we show
the difference is given by a low-energy polynomial. By this we mean two cases,
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(a) The difference is given by a polynomial in the energy E or a polynomial the momenta squared, p2

or q2. In this case the polynomial can be absorbed by redefining the constants H0, H2, · · · of the
three-body forces, as given by equation (2.38) or (2.39).

(b) The difference is given by a polynomial of the cut-off Λ. In this case it can also be absorbed by the
three-body forces. The Λ-dependence of H0(Λ), H2(Λ) has to be changed accordingly. This can be
done by changing equation (2.42).

Before we show this, we anticipate that the coefficients of the polynomials are, in general, complex
numbers. This is actually the case, for example a non-vanishing imaginary part will be shown explicitly in
equation (3.32). If one likes to absorb this into the three-body forces, they also would need to be complex.
Complex three-body forces are not an unknown concept. Physical deep bound two-body states, states
above the break-up scale of the EFT

√︁
|mEB| > Λb, can be included by complex three-body couplings

[11]. This is exclusive for states with a clear physical meaning. An additional imaginary part contributes
to the unitary relation. The spurious pole k2 however is an artefact, as stated above. It must not have a
physical equivalent in the imaginary part of H0, H2, · · · . Since the exact theory has no spurious poles, it
is save to remove this, by dropping the imaginary part in the corrections in the effective potential W
entirely. By doing so, we ensure that the unitary relation is not modified by the artefact. Also compare
this to the discussion around equation (3.85). As will be stated there, an additional imaginary part in
W gives an additional contribution to the imaginary part of the particle-dimer phase shift. Due to the
negative residue of the spurious pole, this can be negative. This is un-physical, therefore the imaginary
part should be dropped.
The potential Z(p,q;E) describes a one particle exchange and three-body contact interactions8, it is
given by equation (2.39). The effective potential W (p,q;E) is used to carry the singularity of the
propagator, it is defined in equation (3.23) in the last section. By iteration of this equation we obtain a
Born series

W = Z + ZfZ + ZfZfZ + · · · = Z +W (1) +W (2) + · · · . (3.27)

We focus on showingW (1) is a low-energy polynomial, the other parts will be analogous.

W (1) = 8π

∫︂ Λ d3k
(2π)3

Z(p, k;E)f(k∗)Z(k,q;E)

=W (1)
ee +W

(1)
e0 +W

(1)
0e +W

(1)
00 +W

(1)
02 +W

(1)
20 +W

(1)
22 + · · · .

(3.28)

Here we split the contribution from the original potential Z(p, k;E) into the component of the one
particle exchange, denoted by a subscript e, and the components of the three-body forces, denoted by
subscript 0, 2, . . . . The number counts the power of k∗ of the three-body force.

8Compare this to the Feynman diagrams in figure 2.6.
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The contribution of two leading order three-body forces W
(1)
00

We start with the most simple contributionW (1)
00 . This describes the pairing of the leading order three-body

forces H0/Λ
2 of both potentials Z(p, k;E) and Z(k,q;E).

W
(1)
00 = 8π

∫︂ Λ d3k
(2π)3

H0

Λ2
f(k∗)

H0

Λ2
= −32πk2/r

k2 − k1

(︃
H0

Λ2

)︃2

I00 , with

I00 =

∫︂ Λ d3k
(2π)3

{︃
1

k∗2 − k22 − iε
+

1

k22

(︃
1 +

k∗2

k22
+ · · ·

)︃}︃
= Ipole00 + Iexpand00 .

(3.29)

The negative sign of −iε is equivalent to the prescription E → E + iε. In the last step the integral I00 is
divided in the part containing the spurious pole Ipole00 and a part from the expansion Iexpand00 . The first
part can be rewritten as

Ipole00 =

∫︂ Λ dk

2π2
k2

3/4k2 − (mE + k22)− iε

=

∫︂ Λ dk

2π2
4/3k2

(k −
√︁
4/3
√︁
mE + k22 − iε)(k +

√︁
4/3
√︁
mE + k22 + iε)

.

(3.30)

It is use-full to use the Sokhotski–Plemelj theorem:

lim
ϵ→0

∫︂ b

a
dx

f(x)

x− c± iϵ
= P

∫︂ b

a
dx

f(x)

x− c
∓ iπf(c), (3.31)

if c ∈ [a, b] and P denotes the principal value integral. With this the imaginary part of the integral I00 is
given by

Im I00 = Im Ipole00 =
2

3
√
3π

√︂
k22 +mE =

2k2

3
√
3π

{︃
1 +

mE

k22
+ · · ·

}︃
. (3.32)

In the last step the root is expanded for small mE/k22. The result is a polynomial in the energy E.
ThereforeW (1)

00 has a non-vanishing imaginary part. In principle, it can be absorbed in the three-body
forces, since it is a polynomial. To perform this one would need complex three-body couplings with the
consequences discussed above. Imaginary three-body forces can only be caused by deep physical states,
in the original system there are no such states, and therefore the new method is not allowed to have
them. Consequently, we drop all imaginary parts. The real part of Ipole00 is

ReIpole00 = P
∫︂ Λ

0

dk

2π2
k2

3/4k2 − (mE + k22)

=
2

3π2

(︄
Λ−

√︃
4

3

√︂
mE + k22 arctan

[︄√︁
4/3
√︁
mE + k22
Λ

]︄)︄
=

2

3π2
Λ + · · · .

(3.33)

Finally the total real part of I00 is given by

Re I00 = Re Ipole00 + Iexpand00 =
2

3π2
Λ +

1

2π2k22

(︃
1

3
Λ3 +

1

k22

(︃
3

20
Λ5 − 1

3
Λ3mE

)︃
+ · · ·

)︃
. (3.34)

This is a polynomial in the sharp cut-off Λ and the energy E. This can be adsorbed by a redefinition of
the three-body forces as discussed above in case (b).
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The contribution of the mixing of a one-particle exchange and a leading order three-body forceW (1)
e0

In the second part, we consider W (1)
e0 , meaning the combination of a one-particle exchange from one

Z(p, k;E) and the leading order three-body force H0/Λ
2 from the other Z(k,q;E) .9

W
(1)
e0 = 8π

∫︂ Λ d3k
(2π)3

1

p2 + pk+ k2 −mE − iϵ
f(k∗)

H0

Λ2
= −32πk2/r

k2 − k1

H0

Λ2
Ie0 . (3.35)

Similar to above the integral Ie0 can be divided into the part of the spurious pole and the expansion in
f(k∗).

Ie0 =

∫︂ Λ d3k
(2π)3

1

(p2 + pk+ k2 −mE − iϵ)

{︃
1

k∗2 − k22 − iε
+

1

k22

(︃
1 +

k∗2

k22
+ · · ·

)︃}︃
= Ipolee0 + Iexpande0 .

(3.36)

The pole contribution is given by

Ipolee0 =

∫︂ Λ d3k
(2π)3

4

3

1

(p2 + pk+ k2 −mE − iϵ)(k2 − ρ2 − iϵ)
, (3.37)

with ρ2 = 4/3(k22 +mE). Extending the upper border from this integral from Λ to infinity is equivalent
to adding a low-energy polynomial.10

Ipole,∞e0 = Ipolee0 − polynomial. (3.38)

Using this and the ’Feynman-trick’ [76]

1

AaBb
=

Γ(a+ b)

Γ(a)Γ(b)

∫︂ 1

0

dxxa−1

[xA+ (1− x)B]a+b
, (3.39)

the integral Ipole,∞e0 can be written as

Ipole,∞e0 =
4

3

∫︂ 1

0
dx

∫︂ ∞ d3k
(2π)3

1[︂
k2 + xp2 + xpk− xmE − (1− x)ρ2 − iϵ

]︂2
=

4

3

∫︂ 1

0
dx

∫︂ ∞ d3k
(2π)3

1[︂
k2 + x(1− x/4)p2 − xmE − (1− x)ρ2 − iϵ

]︂2 . (3.40)

In the second step the loop momentum k is shifted to k− x/2p. Since the integration goes to infinity in
all directions, this does not change the integral. Now the integrand does only depend on k2, and can be
calculated using for example [76]:∫︂

dDx

(2π)D
1

(x2 +∆)n
=

1

(4π)D/2
D

2

Γ(n−D/2)

Γ(n)

(︃
1

∆

)︃n−D/2
, (3.41)

9The other similar contribution, namelyW (1)
0e will be completely equivalent.

10Since Λ > ρ, there is no additional pole in 1/(k2 − ρ2) if k > Λ.
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which is known from dimensional regularization. Therefore

Ipole,∞e0 =
4

3

1

8π

∫︂ 1

0
dx

1

[x(1− x/4)p2 − xmE − (1− x)ρ2 − iϵ]1/2

=
1

6π

∫︂ 1

0
dx

1

[A2 − 1/4p2(x− x0)2 − iϵ]1/2
,

(3.42)

where

x0 =
2(p2 −mE + ρ2)

p2
; and A2 =

(p2 −mE + ρ2)2

p2
− ρ2. (3.43)

It yields with p =
√︁
p2

Ipole,∞e0 =
−1

3πip
ln

[︄
(x− x0) + i

√︄
4A2

p2
− (x− x0)2 − iϵ

]︄ ⃓⃓⃓⃓1
0

=
1

4π

1

k22

√︃
−mE +

3

4
p2 − iϵ+ · · ·+ polynomial.

(3.44)

The calculation for the last step can be found in appendix 6.1 in more detail. The first part is not a
polynomial in the energy E. However we continue by calculating the part from the expansion. Firstly we
consider only the leading order in k∗/k2 of the expansion of the quantity f(k∗).

Iexpande0,LO =

∫︂ Λ d3k
(2π)3

1

k22

1

(p2 + pk+ k2 −mE − iϵ)

=
1

k22

∫︂ Λ d3k
(2π)3

(︃
1

(p2 + pk+ k2 −mE − iϵ)
− 1

k2 − µ2

)︃
+

1

k22

∫︂ Λ d3k
(2π)3

1

k2 − µ2

=
1

k22

∫︂ ∞ d3k
(2π)3

(︃
1

(p2 + pk+ k2 −mE − iϵ)
− 1

k2 − µ2

)︃
+

1

k22

∫︂ Λ d3k
(2π)3

1

k2 − µ2

− 1

k22

∫︂ ∞

Λ

d3k
(2π)3

(︃
1

(p2 + pk+ k2 −mE − iϵ)
− 1

k2 − µ2

)︃
=

1

k22

∫︂ ∞ d3k
(2π)3

(︃
1

(p2 + pk+ k2 −mE − iϵ)
− 1

k2 − µ2

)︃
+ polynomial,

(3.45)

where we introduce a arbitrary scale µ, to ensure the integral is finite.11 Now the finite integral can be
solved using dimensional regularization and a shift k → k− p/2 similar to above.

Iexpande0,LO = − 1

4π

1

k22

√︃
−mE +

3

4
p2 − iϵ+ polynomial. (3.46)

The non-polynomial part of Iexpande0,LO cancels exactly the leading order non-polynomial part of equation
(3.44). It becomes clear that higher orders in the expansion of f(k∗) will cancel the higher orders of
Ipolee0 in a similar pattern. To conclude, this contribution toW (1) is also a low-energy polynomial in the
meaning of case (a) above.
11The divergent parts ∼ Λ, µ are absorbed in the polynomial.
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The contribution of two one-particle exchangesW (1)
ee

Finally we show that the contribution of the one-particle exchange for both potentials Z is also given
by a low-energy polynomial. Again the integral can be divided in a part with the spurious pole and the
expansion:

W (2)
ee = −32πk2/r

k2 − k1
(Ipoleee − Isubtree ) ,

Ipoleee =
4

3

∫︂ Λ d3k
(2π)3

1

p2 + pk+ k2 −mE − iε

1

k2 − ρ2 − iε

1

k2 + kq+ q2 −mE − iε
,

Iexpandee = − 1

k22

∫︂ Λ d3k
(2π)3

1

p2 + pk+ k2 −mE − iε

(︃
1 +

k∗2

k22
+ · · ·

)︃
1

k2 + kq+ q2 −mE − iε
.

(3.47)

The pole-integral Ipoleee is ultraviolet-finite, which can be seen by simple power-counting arguments.
Therefore the limit Λ → ∞ can be taken. This integral can be rewritten by using the ’Feynman-trick’,
equation (3.39), twice.

Ipoleee =
4

3

∫︂ 1

0
dx

∫︂ ∞ d3k
(2π)3

1[︂
k2 −mE + xp2 + (1− x)q2 + xpk+ (1− x)qk

]︂2 1

k2 − ρ2 − iε

=
4Γ(3)

3

∫︂ 1

0
dx

∫︂ 1

0
dy Ipole,kee ,

(3.48)

with the momentum integral

Ipole,kee =

∫︂ ∞ d3k
(2π)3

y[︂
k2 − ymE + y(xp2 + (1− x)q2 + xpk+ (1− x)qk)− (1− y)ρ2 − iϵ

]︂3 . (3.49)
Analog to equation (3.44) this can be shifted by k → k− y/2(xp+ (1− x)q).

Ipole,kee =

∫︂ ∞ d3k
(2π)3

y[︂
k2 − ymE − 1/4y2((xp+ (1− x)q)2 + y(xp2 + (1− x)q2)− (1− y)ρ2 − iϵ

]︂3
=

1

32π

y

[−ymE − 1/4y2((xp+ (1− x)q)2 + y(xp2 + (1− x)q2)− (1− y)ρ2 − iϵ]3/2
.

(3.50)

In the last step equation (3.41) was used. Therefore

Ipoleee =
1

12π

∫︂ 1

0
dx

∫︂ 1

0
dy

y

(A+By + Cy2 − iε)3/2
, (3.51)

with the short notation

A = −ρ2, B = −mE + ρ2 + xp2 + (1− x)q2, C = −1

4
(xp+ (1− x)q)2 . (3.52)
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The integral over the variable y can be performed, yielding:

Ipoleee =
1

6π

∫︂ 1

0
dx

1

4AC −B2

(︃
2A

(A− iε)1/2
− 2A+B

(A+B + C − iε)1/2

)︃
=

1

6π

∫︂ 1

0
dx

1

4AC −B2

(︃
2A

(−β2 − iε)1/2

− 2A+B

(−mE + xp2 + (1− x)q2 − 1
4 (xp+ (1− x)q)2 − iε)1/2

)︃
.

(3.53)

The first part is a low-energy polynomial, for the second part we expand the fraction for large values of
ρ ∼ k2 ∼Mhigh.

− 2A+B

4AC −B2
= − 3

4k22
− 3

16k22

(︁
5mE − 9(xp2 + (1− x)q2 + 3(xp+ (1− x)q)2)

)︁
+ · · · . (3.54)

We pause the calculation of the x-integral and turn our attention to the integral Iexpandee depending to the
expansion in f(k∗). We consider the leading order of this expansion.

Iexpandee,LO =
1

k22

∫︂ ∞

0

d3k
(2π)3

1

p2 + pk+ k2 −mE − iε

1

k2 + kq+ q2 −mE − iε

=
1

k22

∫︂ 1

0
dx

∫︂ ∞

0

d3k
(2π)3

1[︂
k2 −mE − iε+ xpk+ xp2 + (1− x)kq+ (1− x)q2

]︂2
=

1

k22

1

8π

∫︂ 1

0
dx

1

(−mE + xp2 + (1− x)q2 − 1
4 (xp+ (1− x)q)2 − iε)1/2

.

(3.55)

Here the ’Feynman-trick’, a shift k → k− 1/2(xp+ (1− x)q) and the dimensional regularization integral
are used once more. The result is exactly the same integral as in the first part in the expansion (3.54) of
the non-polynomial part of Ipoleee , except a relative minus sign. So they cancel in equation (3.47). Higher
orders in the expansion in Iexpandee will cancel higher orders of equation (3.54) similarly. Therefore the
correction to the potential given by W (1)

ee is indeed a low-energy polynomial as in case (a), discussed
above.

Other contributions toW (1) and higher orders of the effective potentialW

In the last section, it was shown that all considered contributions to the effective potentialW at leading-
orderW (1) are low-energy polynomials. This was shown explicitly forW (1)

ee ,W (1)
e0 andW

(1)
00 . However

the leading-orderW (1) contains, in principle, an infinite amount of additional terms likeW (1)
e2 ,W

(1)
e4 , · · · .

Those terms correspond to additional three-body forces proportional to (k∗/Λ)2, (k∗/Λ)4, · · · . In other
words the number of terms is only limited by the order of the EFT. Without showing the calculations for
the additional terms in detail we argue that they are also low-energy polynomials.
On a mathematical level the correction W (1)

e2 differs from W
(1)
e0 by an additional factor of (k∗)2 =

3/4k2 −mE in the integrand and constants.

W
(1)
e2 = 8π

∫︂ Λ d3k
(2π)3

3/4k2 −mE

p2 + pk+ k2 −mE − iϵ
f(k∗)

H2

Λ4
= −32πk2/r

k2 − k1

H2

Λ4

(︃
3

4
· Ie2 −mE · Ie0

)︃
. (3.56)
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The ’new’ integral Ie2 is the same as the ’old’ one Ie0 except an additional factor k2.

Ie2 =

∫︂ Λ d3k
(2π)3

k2

(p2 + pk+ k2 −mE − iϵ)

{︃
1

k∗2 − k22 − iε
+

1

k22

(︃
1 +

k∗2

k22
+ · · ·

)︃}︃
. (3.57)

While this additional factor indeed makes the calculations more difficult, the general pattern is unchanged.
The non-polynomial part of the pole 1/(k∗2 − k22 − iϵ) will be canceled exactly by the non-polynomial
part of the expansion, soW (1)

e2 is also a low-energy polynomial. This argument holds for all additional
three-body forces, the appearing integrals can be reduced to already known integrals with additional
factors of k2. Similar contributions like W (1)

02 or W
(1)
22 can be reduced to integrals known from W

(1)
00

modulo additional factors of k2. To summarize all contributions to the leading order correction to the
potential are low-energy polynomials. Therefore the entire leading order correction is a low-energy
polynomial.

Finally, we discuss higher order corrections in the Born series shown in equation (3.27). The second
order is given by

W (2) = 16π2
∫︂ Λ d3k

(2π)3
Z(p, k;E)f(k∗)

∫︂ Λ d3k′

(2π)3
Z(k, k′;E)f(k′∗)Z(k′,q;E). (3.58)

It is obvious that the integral over k′ is the same as for W (1), which is, as we showed, a low-energy
polynomial in k2, q2 and E. This leads to the integral over k containing only parts like W (1)

e0 or W
(1)
00 ,

which are also low-energy polynomials. This argument can be extended to an arbitrary number of
iterations in the Born series. So it holds for all orders,W (n) is a low-energy polynomial.

To summarize the last sections, we showed that all corrections to the effective potential are low-energy
polynomials, so

W (p,q;E) = Z(p,q;E) + polynomial. (3.59)

Therefore the difference between the effective potentialW and the physical potential Z can be absorbed
by a change of the renormalization prescription. This can be achieved by simply changing the values of
the three-body forces H0(Λ), H2(Λ), · · · for a given cut-off Λ.

3.2.2 Order of the subtracted polynomial

The core of the method we present here is the changed propagator τi(k∗) = τ(k∗)− fi(k
∗), where the

index i counts the number of terms in the expansion of the contribution of the spurious pole in (k∗/k2)2.
The expressions for i = 1, 2, 3 are given by equation (3.25). At first thought one could assume, that
accuracy of the method can be increased by adding more terms. Indeed, the propagator around the
physical pole k1 ∼ 1/a is reproduced more precisely by adding more terms, this can be seen in figure
3.3. But fi(k∗) is also part of the effective potentialW , given by equation (3.23). In the last section we
have carefully demonstrated, that the correction due to fi(k∗) is given by a low energy polynomial and
therefore can be absorbed in the three-body forces of the original potential Z(p, k, E). Obviously, this is
only true if for a given order of the polynomial there is a three-body force with the same momentum
dependence. Higher order terms cannot be absorbed, and therefore will not improve the accuracy of the
EFT. So what is the optimal number of subtractions i for a given order of the EFT.
Note that this is a highly non-perturbative problem, so a perturbative power-counting argument can only
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give a hint of the optimal choice. A numerical check is highly needed, this will be performed in section
3.3.5. The usage of numerical results in this manner was also used for example in [4], to show the need
for a three-body force at LO in pionless EFT for three bosons. Being aware of this shortfalls the power-
counting can be established as the following. The corrections toW are given byW (1),W (2), · · · , defined
in equation (3.27). The single parts that contribute to this are the potential Z(p, q, E), the subtraction
fi(k

∗) and the integration measure. For small momenta Z counts as O(p−2) and the integration measure
d3k counts as O(p3). Note that fi(k∗) is given by the entire pole contribution minus the expansion up to
order 2(i− 1). Therefore fi(k∗) counts as the first not subtracted term. So the quantities f1(k∗), f2(k∗),
f3(k

∗) count as O(p2), O(p4) and O(p6) respectively. Each iteration of the Born series forW contains an
additional factor of Z, f and d3k, therefore the counting increases by at least O(p−2+2+3) = O(p3). So
the leading correction toW is given byW (1).
For the subtraction f1(k∗) it follows, W (1),f1 counts as O(p3−2+2−2) = O(p1). For f2(k∗) the quantity
W (1),f2 counts as O(p3−2+4−2) = O(p3). And for f3(k∗) it is W (1),f3 = O(p3−2+6−2) = O(p5). If the
theory contains only one three-body interaction H0 (this is the case at LO and NLO) this counts as
O(p0). Therefore the first neglected corrections to the potential Z(p, k, E) are at order ∆ZNLO = O(p2).
Following this power-counting rules, the leading order corrections to the effective potentialWNLO

fi
at

NLO of the EFT with i subtractions are given by

∆WNLO
f1 = ∆ZNLO +W (1),f1 = O(p2) +O(p1) = O(p1),

∆WNLO
f2 = ∆ZNLO +W (1),f2 = O(p2) +O(p3) = O(p2),

∆WNLO
f3 = ∆ZNLO +W (1),f3 = O(p2) +O(p5) = O(p2).

(3.60)

In other words using f2 instead of f1 increases the accuracy by a power of one. But using f3 instead of f2
does not increase it at all. Therefore, the ideal choice for the number of subtractions at NLO is given by
f2, and one should use the modified propagator τ2(k∗) in the Faddeev equation. At N2LO the situation
changes, we have an additional three-body force proportional to p2, so the corrections to the potential
are ∆ZN2LO = O(p4). For the corrections to the effective potential this leads to

∆WN2LO
f1 = ∆ZN

2LO +W (1),f1 = O(p4) +O(p1) = O(p1),

∆WN2LO
f2 = ∆ZN

2LO +W (1),f2 = O(p4) +O(p3) = O(p3),

∆WN2LO
f3 = ∆ZN

2LO +W (1),f3 = O(p4) +O(p5) = O(p4).

(3.61)

The accuracy increases by using f2 instead of f1 by a power of two but it further increases by one, if one
uses f3 instead of f2. At this point the accuracy of the potential Z(p, k, E) is reached and it cannot be
improved by adding subtractions in fi. So the optimal choice for the propagator at N2LO is τ3(k∗). In
table 3.2.2 these findings are collected.
The arguments in this section can easily be extended to higher orders of the EFT, each time when a
additional three-body force is added, the power of the neglected corrections in the potential Z(p, k, E)
increases by two. A additional subtraction in fi(k∗) increases the order of W (1),fi by, again, two. It
becomes clear, that for every additional three-body force an additional subtraction should be used. Note
that, at this point, this extension cannot be tested easily. At N3LO of the EFT the shape parameter P is
included in the ERE, and therefore additional spurious poles can appear. To be able to deal with them
the non-perturbative method has to be extended to higher orders of the EFT. In the outlook of this thesis,
this is sketched.
We close the section by reminding, that perturbative power-counting arguments can only give an
estimation of the optimal number of subtractions. In section 3.3.5, more robust conclusions based on
numerical results are given.
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Table 3.1: Appearance of 2- and 3-body parameters per order of the EFT power counting and the
prediction of the optimal choice for the propagator.

Order 2-body parameters 3-body parameters Predicted optimal propagator
LO a H0 -
NLO a, r H0 τ2(k

∗)
N2LO a, r H0, H2 τ3(k

∗)

3.3 Numerical test

In this section we test the method developed above numerically. To accomplish this, an EFT using the
method is used to predict or describe different model potentials. These models act as an underlying
exact theory. Therefore they do not exhibit spurious poles. We investigate three identical bosons. The
bosons interact pairwise via a separable S-wave potential and are described in the particle-dimer picture.
The first model uses the Yamaguchi potential [74] as interaction, the second uses a Gaussian potential
[?]. We will fine-tune the two-body parameters a and r of the EFT fitting the parameters of the pairwise
interaction of the two models. The three-body interaction strengths H0, H2, · · · are given to reproduce
three-body results of the models at chosen values of momentum. Finally, we investigate how well our
predictions of the EFT describe the models. Observables we look at are the real and imaginary part of the
particle-dimer phase shift δ(3), the combination p cot δ(3) which is closely related to the particle-dimer
scattering amplitude and three-body bound states.

3.3.1 Yamaguchi model

The first model we use to test our method is the Yamaguchi model [74]. The pairwise two-body interaction
in the model is given by the Yamaguchi potential VY (p, q). This is a separable potential, with the regulator
χ(p). In this section we follow the well known procedure for separable potentials, as described in detail
for example in [79].

VY (p, q) = λχ(p)χ(q) , where χ(p) = β2

β2 + p2
. (3.62)

The value λ gives the strength of the potential, β is connected to the range. Those two-body parameters
can be connected to the scattering length a and the effective range r of an EFT. To do this we calculate
the two-body scattering amplitude for the Yamaguchi potential.

tY (p, q, z) = χ(p)dY (z)χ(q), (3.63)

with

dY (z) =

[︃
1

λ
−
∫︂ ∞

0

d3q

(2π)3
χ2(q)

z − Eq − iϵ

]︃−1

, (3.64)
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where Eq = q2/m. The integral can be solved analytically. With this the on-shell two-body scattering
amplitude tY yields

ty(p, p, Ep) = χ2(p)

[︃
1

λ
− mβ3

8π(p+ iβ)2

]︃−1

=

[︃(︃
mβ

8π
+

1

λ

)︃
+

(︃
2

β2λ
− m

8πβ

)︃
p2 +

1

β4λ
p4 +

m

4π
ip

]︃−1

= −4π

m

[︃(︃
−β
2
− 4π

mλ

)︃
+

(︃
1

2β
− 8π

mβ2λ

)︃
p2 − 4π

mβ4λ
p4 − ip

]︃−1

.

(3.65)

Here the amplitude is expanded in the momentum p. Note that this is exact, for the Yamaguchi potential
there are no contributions beyond p4. The requirement tEFT (p, p, Ep) = #tY (p, p, Ep), leads to rules that
connects the EFT two-body parameters to the Yamaguchi parameters. The constant of proportionally is
chosen, such that the imaginary part of the denominator in tEFT (p, p, Ep) and tY (p, p, Ep) is −p in both
cases. This results in rules for the scattering length a, the effective range r and the shape parameter P4:

−1

a
= −β

2
− 4π

mλ
, r =

1

β
− 16π

mβ2λ
and P4 = − 4π

mβ4λ
. (3.66)

In the numerical calculations in the next sections we choose a and r equal12 to the np-triplet scattering
parameters a = 5.4164 fm and r = 1.7536 fm [19]. Using the neutron mass m = 939.565 MeV gives the
Yamaguchi parameters as

λ = −0.00013 MeV−2, β = 278.796 MeV. (3.67)

These values give a shape parameter P4 = 0.131 fm3. This does not appear in the EFT power counting
before N3LO. Since the value is small compared to a and r the results at N2LO can be slightly better
than one would expect. The chosen values result in a two-body bound state (in the Yamaguchi model
and in the EFT) with mass Md = 2m − Ed and a binding energy Ed = 2.22 MeV. In the case of np
scattering this would be the deuteron. This means a physical pole in the two-body scattering amplitude
at k1 =

√
mEd = 45.69 MeV. The unmodified EFT gives an additional spurious pole at k2 = 179.37 MeV.

The model we consider does not contain additional three-body forces13. The particle-dimer scattering
amplitude MY (k, p, E) in the Yamaguchi model in S-wave can be calculated by solving the Faddeev
equation:

MY (k, p, E) = 2ZY (k, p, E) +
1

π2

∫︂ ∞

0
dqq2ZY (k, q, E)τY (q, E)MY (q, p, E), (3.68)

with the dimer propagator τY (q, E), given by

τY (q, E) = dY (z)
⃓⃓
z=3q2/(4m)−E−iϵ =

8π

mβ3
(β + γ)2(β +

√︁
3q2/4−mE)2

2β + γ +
√︁
3q2/4−mE

1

γ −
√︁
3q2/4−mE

, (3.69)

12In this thesis we study three bosons, so those parameters are not directly linked to any real physical problem. However
with the chosen values direct calculations are possible and they allow a intuition for the appearing values. For example
the physical pole k1 of this values is given by ≊ 46 MeV, which gives a binding energy of the corresponding dimer of
k2
1/m ≊ 2.2 MeV. Obviously this is the binding energy of the deuteron in the fermionic case. The generalisation of our
method to particles with spin is straightforward.

13However the EFT does. A pionless EFT for three bosons needs three-body forces starting at leading order to describe
three-body systems correctly [4].
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where we used the notation γ =
√︁
−mλβ3/(8π)− β =

√
mEd and E → E + iϵ is implicit. As mentioned

above only a one-particle exchange and no three-body forces are considered as possible interactions. For
a separable potential in S-wave this yields

ZY (p, q, E) =
1

2

∫︂ 1

−1
d cos θp,q

χ(q+ 1/2p)χ(−p− 1/2q)
E − p2/(2m)− q2/(2m)− (q+ q)2/(2m)

=
m

2

∫︂ 1

−1
du

β2

β2 + p2/4 + q2 + pqu

β2

β2 + p2 + q2/4 + pqu

1

mE − p2 − q2 − pqu
.

(3.70)

Before we discuss the numerical treatment of the model we introduce the particle-dimer phase shift δ(3)Y

in the Yamaguchi model by

MY (p, p, Ep) = − 3mβ3

8γ(β + γ)3
1

p cot δ
(3)
Y − ip

. (3.71)

Note that the normalization is different to the normalization in case of the EFT. This does not cause
problems, since only observables like δ(3) or the bound states are compared, which are obviously
independent of this normalization. The normalization is calculated in appendix 6.2.2.

The EFT at LO

The relations to connect the EFT to the model (equation (3.66)) are given with respect to the EFT in
NLO (and higher). In principle, it is possible to also use them for LO by calculating the scattering length
a, as stated, and setting the effective range to zero, r = 0. However, this would give the physical pole k1,
therefore the binding energy of the dimer and the break-up incorrect or unprecise. Alternative one could
use the binding energy of the dimer as an input directly. Since there is only one parameter at LO they
can be connected uniquely. In the following we use this. The scattering length at LO is given by

aLO =
(︂√︁

|MEd|
)︂−1

= 4.3193 fm. (3.72)

The propagator at LO also leads to a different kernel K(p, q, Eq) in the treatment of the physical pole.
The kernel Ki(p, q, k) for NLO and N2LO will be introduced in equation (3.75). For the LO calculations
this kernel is exchanged by the following LO version.

K(p, q, k) = Z(p, k, Eq)
4k2

π

1/aLO +

√︂
3/4(k2 − q2) + (1/aLO)2

3/4(q + k)
. (3.73)

The remaining treatment of the physical pole and the discretization are completely analogous to below.
But the normalization is also slightly different than in NLO (and N2LO), it is given by

MLO(p, p, Ep) =
3aLO

16

1

p cot δ
(3)
LO − ip

. (3.74)

This is shown in appendix around equation (6.15).
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Numerical treatment and error estimation of the Yamaguchi model

Equation (3.68) can be solved for the scattering amplitude using numerical standard procedures. We
approximate the integral by a sum with Gaussian weights, and take care of the physical pole k1 with a
method based on the Sokhotski–Plemelj theorem (equation (3.31)). The same method is also used for the
numerical EFT calculations. The method is explained in detail in section 3.3.2. Further we use a cutoff
Λ = 1500 MeV to regulate the integral. Contrary to the integrals in the EFT the integral in equation
(3.68) is ultraviolet finite, due to the regulator χ(p). So this cutoff has no connection to regularization
and really is an approximation. To ensure this and estimate the error caused by this approximation we
repeat the calculations for slightly varied values of Λ and calculated the relative difference for chosen
values of momentum. The resulting error is less than 1% for all momenta considered.
The second origin of numerical errors for the Yamaguchi model are the number of steps in the Gaussian
approximation of the integral. We use n = 1000 steps. In figure 3.4 this is investigated. Similar to above
we slightly vary the number of steps, and compare the results to each other. A variation of 10% causes
deviations of less than 0.07%.
Also note that we do not use contour rotation or similar techniques to deal with the branch cut above
the two-body break-up. We use a brute force approach, this means simply choosing a lot of steps of
discretization to integrate over it. This can be done, since the singularities of the branch cut are removable
singularities. This method was used for similar systems for example in [49]. While this very simple to
implement, it creates slightly larger numerical errors above the break-up. If fact it can be seen in figure
3.4, the numerical errors increase heavily above the break-up. However, in the context of this thesis the
accomplished numerical accuracy is sufficient compared to the EFT error.
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Figure 3.4: Relative difference between the results for numerical calculations with n = 1000 and n =
1100 discretization steps. The difference of 10% in the number of steps causes deviations
of less than 0.7%. Below the break-up (gray line) the difference is even smaller.
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3.3.2 Numerical treatment of Faddeev equations

In this section we discuss the numerical treatment of Faddeev equations. The principal method is the
same for the EFT, the Yamaguchi and Gauss model. To obtain the particle-dimer scattering amplitude for
the three cases the following Faddeev equations have to be solved. For the EFT using the method for the
spurious pole use equation (3.26) and for the Yamaguchi model use equation (3.68). In this section we
we show the numerical method for the EFT. The other cases are similar, additional remarks are given in
the corresponding sections. The numerical treatment contains two steps. The treatment of the physical
pole k1 and the discretization of the loop integral. In absence of a physical pole the first step can be
skipped.

Treatment of the physical pole

In this section the Sokhotski-Plemelj theorem (equation (3.31)) is used to avoid numerical problems
caused by the physical pole k1. The particle-dimer S-wave phase shift can be obtained by setting the
S-wave projection of the Faddeev equation (3.26) on-shell, mEq = 3q2/4 − mED = 3q2/4 − k21. By
factoring out the pole explicitly, this can be written as

M(p, q, Eq) = Z(p, q, Eq) +
4

π

∫︂ Λ

0
dk k2 Z(p, k, Eq)τi(k

∗)M(k, q, Eq)

= Z(p, q, Eq) +

∫︂ Λ

0
dk
Ki(p, q, k)

k − q − iε
M(k, q, Eq),

(3.75)

with the potential in S-wave projection (given by equation 2.44) and a kernel Ki(p, q, k). The kernel is
given by

Ki(p, q, k) =
4

π
k2Z(p, k, Eq)τi(k

∗)(k − q − iε) =
4

π
k2Z(p, k, Eq)τ

rest
i (k∗). (3.76)

The quantity τ resti (k∗) is the modified propagator without the part that diverges at the position of the
physical pole (k − q). This can be calculated by using the first part of a Laurent series:

τ resti (k∗) =

(︃
d

dq
τ−1
i (q∗)

)︃−1 ⃓⃓⃓⃓
q→k

. (3.77)

Alternatively at the position of the physical pole 14 in the kernel K(p, q, q) one can re-substitute τi(k∗) →
τ(k∗). This allows an easy analytic calculation of the kernel:

τ resti (k∗)|k=q → τ rest(k∗) =
−2/r

√︁
3/4(k2 − q2) + k21 + k1

3/4(k + q)(
√︁

3/4(k2 − q2) + k21 − k2)
. (3.78)

Due to the different propagator at LO of the EFT, for the calculations in LO the kernel has to be exchanged
by the LO version of it. This can be seen in equation (3.73). Using the Sokhotski-Plemelj theorem the
Faddeev equation reads

M(p, q, Eq) = Z(p, q, Eq) + P
∫︂ Λ

0
dk
Ki(p, q, k)

k − q
M(k, q, Eq) + iπKi(p, q, q)M(p, q, Eq). (3.79)

14This means k = q. Here the modified propagator τi(k∗) is the same as the unmodified version τ(k∗) by construction.
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By adding and subtracting the kernel at q = k it yields

M(p, q, Eq) = Z(p, q, Eq) + P
∫︂ Λ

0
dk
Ki(p, q, k)M(k, q, Eq)−Ki(p, q, q)M(q, q, Eq)

k − q

+ P
∫︂ Λ

0
dk
Ki(p, q, q)M(q, q, Eq)

k − q
+ iπKi(p, q, q)M(p, q, Eq).

(3.80)

The first integral is finite at the position of the pole. Therefore the principal value integral is the same as
a standard integral. The second integral can be solved exactly.

M(p, q, Eq) = Z(p, q, Eq) +

∫︂ Λ

0
dk
Ki(p, q, k)M(k, q, Eq)−Ki(p, q, q)M(q, q, Eq)

k − q

+ ln

[︃
Λ− q

q

]︃
Ki(p, q, q)M(q, q, Eq) + iπKi(p, q, q)M(p, q, Eq)

= Z(p, q, Eq) +

∫︂ Λ

0
dk
Ki(p, q, k)M(k, q, Eq)

k − q
+ w(q)Ki(p, q, q)M(p, q, Eq),

(3.81)

with the weight of the pole contribution

w(q) = −
∫︂ Λ

0
dk

1

k − q
+ ln

[︃
Λ− q

q

]︃
+ iπ. (3.82)

If the discretization of the integrals is done properly the divergence of the first part is canceled by the
divergence in w(q) exactly.

For the Yamaguchi model the numerical approach is the same. Except the kernel for the EFT Ki(p, q, k)
is exchanged by a kernel for the Yamaguchi model. The kernel for the model is given by

KY (p, q, k) =
1

π2
k2ZY (p, k, Eq)τ

rest
Y (k∗), (3.83)

with the remaining propagator at the position of the physical pole k = q:

τ restY (k∗)|k=q =
16π

3m

γ

β3
(β + γ)3

k
. (3.84)

Before we show the discretization, we discuss why this method can not be used for the spurious pole k2.
At a purely mathematical level a shift of −iϵ would solve the numerical problem of diverging integrals.
However, using this and the Sokhotski-Plemelj theorem gives rise to an additional imaginary part as
can be seen above. This is unphysical since a change in the imaginary part of M(p, p, Ep) would also
change the imaginary part of the particle-dimer phase shift δ(3). A non-vanishing imaginary part of the
particle-dimer phase shift δ(3) is directly connected to additional channels of the investigated system. For
example the physical pole, which is connected to a bound dimer state, results in a positive imaginary
part above 4/3ED. This can be seen for example in figure 3.5 (below). This shows an additional possible
interaction, namely the break-up of the dimer into two single particles. This can be understood easily by
remembering the connection of the S-wave phase shift to the S-matrix

S0(p) = e2iδ0 . (3.85)
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A positive imaginary part of the phase shift gives an exponential function with a negative real exponent,
so a damping. In other words the amplitude of the outgoing current is lower than amplitude of the
incoming current. The missing part goes to the additional channel, which is not included in the theory
explicitly.
So, an imaginary part caused by the spurious pole would mean an additional channel, and therefore a
possible additional physical particle. As we discussed above this is not the case, the pole is an artefact of
the ERE and does not represent additional physics. A closer inspection of the kernel in this case further
highlights the problem. Ki(p, q, k) can be interpreted by the ’−1’ part of a Laurent series, this is given
the residuum at k = k2. As we discussed above this is negative for the spurious pole. So it can result
in a negative imaginary part of the phase shift.15 This means for the S-matrix an exponential function
with a positive real exponent. So, the amplitude of the outgoing current can be larger than the incoming
current. This violates causality and clearly is unphysical. So, treating the spurious pole as a physical one
does not work. It is necessary to use specific methods like the method presented in this thesis.

Discretization

In this section it is described how the Faddeev equations can be solved numerically. We assume that
the physical pole is already treated as shown in the last section. So, we solve equation (3.81) instead
of equation (3.26). For the Yamaguchi model use the corresponding Faddeev equation with the kernel
given by equation (3.83). The loop integral is approximated by a discretized version, which is given by∫︂ Λ

0
dk →

N∑︂
j=1

ωjkj , (3.86)

with the Gaussian weights ωj . For the integral in the pole contribution w(q) (equation (3.82)) the same
discretization is used. Therefore the discrete version of the Faddeev equation yields

M(p, q, Eq) = Z(p, q, Eq) +

N∑︂
j=1

ωj
Ki(p, q, kj)

kj − q
M(kj , q, Eq) + w(q)Ki(p, q, kN+1)M(q, q, Eq), (3.87)

where the discretized version of the weight of the pole is

w(q) = ln ((Λ− q)/q)−
N∑︂
j=1

wj/(qj − q) + iπ. (3.88)

To obtain a solvable system, also the in-going momenta p are discretized, p → ki. To get a quadratic
matrix this follows the same prescription as k, especially the number of steps N are the same,

M(ki, q, Eq) = Z(ki, q, Eq) +
N∑︂
j=1

ωj
Ki(ki, q, kj)

kj − q
M(kj , q, Eq) + w(q)Ki(ki, q, q)M(q, q, Eq). (3.89)

The final trick is to add an additional step in the discretization of p→ ki as

kN+1 = q. (3.90)
15The relation between the sign of the kernel and the sign of Im[δ(3)] is not obvious. A short motivation is that the sign for the
physical pole is positive, which causes a positive imaginary part. The spurious pole has a negative sign, so one expects a
negative imaginary part.
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We can identify the same q in the pole contribution and write

M(ki, q, Eq) = Z(ki, q, Eq) +
N∑︂
j=1

ωj
Ki(ki, q, kj)

kj − q
M(kj , q, Eq) + w(q)Ki(ki, q, kN+1)M(kN+1, q, Eq).

(3.91)

Note that, in this sense, the index i goes from 1 to N + 1 and if the pole contribution is added to the
sum the index j also goes up to N + 1. Therefore we can write the N + 1 equations for ki all as a matrix
equation.

M⃗(q) = Z⃗(q) +K(q)M⃗(q), (3.92)

with the vectors

M⃗(q) =

⎛⎜⎜⎜⎝
M(k1, q, Eq)

...
M(kN , q, Eq)
M(kN+1, q, Eq)

⎞⎟⎟⎟⎠ and Z⃗(q) =

⎛⎜⎜⎜⎝
Z(k1, q, Eq)

...
Z(kN , q, Eq)
Z(kN+1, q, Eq)

⎞⎟⎟⎟⎠ . (3.93)

The (n+ 1)× (n+ 1) matrix K(q) is given by the elements

Kij(q) =

{︄
ωjK(ki, q, kj)/(kj − q), if j ∈ [1, · · · , N ]

w(q)K(ki, q, kN + 1), if j = N + 1.
(3.94)

The linear system (3.92) can be solved by using standard numerical methods. For the results shown in
the next chapters we us the command ’LinearSolve’ in Mathematica by Wolfram Research. In a last step
the result for the scattering amplitude is solved for the particle-dimer phaseshift δ. The relation between
these quantities is

MY (p, p, Ep) =
3

32

r

k1
(k2 − k1)

1

p cot δ
(3)
Y − ip

. (3.95)

The normalization is calculated in the appendix.

Three-body forces for the EFT

Above we discussed how the two-body parameters a and r of the EFT can be adjusted to reproduce the
Yamaguchi parameters λ and β. Although the Yamaguchi model has no additional three-body forces,
pionless EFT needs three-body forces to correctly reproduce three-body observables of the model, even at
leading order [4]. In table 3.2.2 it is shown at which order of the EFT expansion how many three-body
forces are considered. Since regularization of the divergent loop integrals in the Faddeev equation the
three-body forces have to be renormalized. In this thesis a sharp ultraviolet cut-off Λ is used to regularize
the integrals, therefore all three-body forces are Λ-dependent quantities H0(Λ), H2(Λ), · · · . As discussed
in section 2.2 there are, in general, two methods to obtain the values of the three-body forces.

(a) If the more fundamental theory or (as here) the exact model is known, they can be calculated as
Λ-dependent functions. Unfortunately, this is not possible easily, if the method presented in this
thesis is used. This is due to the change of the renormalization prescription described in section
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3.2.1. There it is shown in detail, that the effective potentialW is the original potential Z plus a
low energy polynomial. This additional polynomial is than absorbed into the three-body forces.
Consequently the values of H0(Λ), H2(Λ), · · · change. To be able to calculate this new values to
the exact model, the polynomial has to be calculated. This is not done here, however is possible
along the analytic calculations shown in section 3.2.1.

(b) If three-body observables of the model (or experimental three-body observables) are known, the
three-body forces can be fine-tuned to reproduce these values. This highlights the EFT concept,
that the details of short range physics are not relevant for the system at low energies. For each
three-body force one additional input parameter is needed.

Here the second method is used. The Yamaguchi model mimics the ’real physics’ we want to describe. So
we calculate three-body observables in the model and use them as input to the EFT. Then the three-body
forces are fine-tuned to reproduce them. For the first three-body force H0 we calculate the quantity
p cot(δ

(3)
Y (p)) in the model at p = 0.001 MeV. This is approximately16 given by the negative inverse of

three-body scattering length a(3). The fine-tuning is done by performing the following prescription.
We choose an arbitrary value forH0, do the calculations for the EFT and compare the result to the result of
the model, ∆O(H0) = p cot(δ

(3)
Y )− p cot(δ

(3)
EFT )|p=0. Then the value of H0 is varied H ′

0 = H0 +∆H0 and
the new result is compared to the model again. If the result is closer than before, |∆O(H ′

0)| < |∆O(H0)|,
we keep the new H ′

0 and repeat this. If the result is worse, the direction of the shift is changed
H ′

0 = H0 −∆H0. If the sign of the difference changes, sgn [∆O(H ′
0)] ̸= sgn [∆O(H0)], the last step is

repeated with H ′
0 = H0 +∆/2. This is repeated until ∆O(H ′

0)/(p cot(δ
(3)
Y )) < 5 · 10−4.

At LO and NLO of the EFT there is only this single three-body force. At N2LO an additional three-body force
proportional to H2 appears. Analogous to above it would be convenient to fine-tune this to the effective
range r(3). This can be done for example by calculating the second derivative of p cot(δ(3)Y ) at threshold.
However, to obtain the derivatives, multiple points near threshold have to be calculated. Therefore we
save calculation time and fine-tune H2 to a single point, namely to p cot(δ(3)Y (p)) at p = 10 MeV. The
matching to this single result is performed equivalent to the prescription for H0. Please note, in the
momentum scheme (equation (2.38)) the result at threshold depends on both three-body forces H0 and
H2. The calculations would be slightly more complicated, so we use the energy scheme (equation (2.39)).
In this scheme the quantity p cot(δ(3))|p=0 is independent of H2, such that H0 can be obtained and fixed.
Afterwards H2 can be obtained separately.
As discussed above the results for the three-body forces are cut-off dependent, in the following we choose
Λ = 250 MeV or Λ = 600 MeV. Also note, since the absorbed polynomial depends of the number of
subtractions in the propagator (equation (3.25)), the values ofH0 andH2 also dependent on this number.
The final results we obtain for the three-body forces are given in table 3.2.

16The effective range expansion yields p cot(δ(3))|p=0 = −1/a(3). For technical reasons the calculations at the threshold
p = 0 MeV are challenging. So, we approximate a(3) by being very close to the threshold.

65



Table 3.2: The three-body couplings H0 and H2 for the different values of the cutoff Λ, and different
number of subtractions in the propagator τ(k) (no subtraction is needed at LO). All quantities
are given in MeV units. The values ofH0 are the same at NLO and N2LO, whereasH2 = 0 at
NLO.

τi H0(Λ = 250) H2(Λ = 250) H0(Λ = 600) H2(Λ = 600)

LO -2.65 0.20
τ1 -0.41 0.13 0.43 -4.10

NLO & N2LO τ2 -0.59 0.32 -0.55 1.01
τ3 -0.66 0.42 3.71 1111.5

66



3.3.3 Particle-dimer phase shift
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Figure 3.5: Numerical results for real (above) and imaginary (below) part of the particle-dimer phase
shift δ for the Yamaguchi model. Red solid line: the result obtained in the Yamaguchi model;
in purple dotted: the LO result; in black dashed: the NLO result for τ1; in gray dot-dashed: the
N2LO result for τ2. For the real part the NLO and N2LO results are on top of the Yamaguchi
model. For the imaginary part the N2LO results are on top of the model. The cutoff was set
to the value Λ = 250 MeV.
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In this section the results for the particle-dimer phase shift δ(3) are shown17. The parameters of the EFT
are fine-tuned to reproduce the Yamaguchi model. This is described in detail above. The Yamaguchi and
the two-body parameters of the EFT are given by equation (3.67), the three-body forces of the EFT by
table 3.2. We investigate how precise the description is.
The EFT using the method presented in this thesis contains two different expansions:

(a) The EFT expansion (i.e., including more derivative terms in the Lagrangian that are accompanied
with the independent couplings). This expansion is labeled by LO, NLO, and N2LO. The amount of
two- and three-body parameters per order is given by table 3.2.2.

(b) The Taylor-expansion of the spurious pole given by the different orders of τi(k∗), defined by equation
(3.25).

The convergence of these expansions needs to be investigated separately. In this section we focus on the
first expansion and choose the subtracted propagators τ1(k∗) and τ2(k∗) in the calculations at NLO and
N2LO, respectively18. This differs to the expectation given in section 3.2.2 by one. We will motivate this
choice by numerical results discussed in section 3.3.5.
In the upper part of figure 3.5 the results for the real part of the particle-dimer phase shift are shown. In
the EFT a sharp cut-off of Λ = 250 MeV is chosen. It can be seen that LO is precise only at small momenta,
whereas NLO can describe data at much higher values of the relative momentum p. The situation further
improves at N2LO. However this improvement is very small (practically not visible at this scale). In the
lower part of figure 3.5 the imaginary part of δ is shown. It can be seen that the NLO and N2LO results
describe the model better than the LO results, while the N2LO results are clearly improved compared
to NLO. To summarize the results, the EFT at different orders behaves as expected. It can predict the
Yamaguchi model, and it improves order by order. However, if this improvement follows the systematic
improvement that defines EFT, a more elaborate study of the problem is necessary. This is performed in
the next section, using the so-called Lepage plots and a constancy assessment.
The errors of the EFT calculation for p > 1/a can be estimated as (p/Λ)n+1 at NnLO. A more detailed
evaluation of the EFT errors is presented in the discussion of possible choices for τi(k∗) below.

Further, we discuss physical interpretations of the results of the particle-dimer phase shift. Remember that
the investigated model describes three identical bosons interacting pairwise by the Yamagchi potential,
such that this are observations for the model and not directly connected to a real physical system.
(Compare to the discussion in section 3.3.1.)
It can be noted, that the imaginary part is zero for p ≲ 55 MeV and positive above. This is consistent with
the expectations. The positive imaginary part indicates an additional channel, so a additional possible
interaction, namely the dimer break-up. Compare this to the discussion around equation (3.85). The
expected value for the dimer break-up is 4/3MED → p ≈ 53 MeV.
We close this section by repeating the numerical calculations for a different choice of the cut-off, Λ =
600 MeV. The results for the phase shift can be seen in Fig. 3.6. It can be seen that all observations
discussed above also holds here. The description of the EFT improves order by order for the real part as
well as for the imaginary part. This fulfils the requirement of an EFT, more precise of the renormalization,
that all observables are cut-off independent, except corrections of order (p/Λ)n+1.

17To simplify the notation the superscribed (3) is dropped here and in the sections below.
18At LO there are no range corrections. Therefore there is no spurious pole and the method is not used.
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Figure 3.6: Numerical results for real (above) and imaginary (below) part of the particle-dimer phase
shift δ for the Yamaguchi model. Red solid line: the result obtained in the Yamaguchi model;
in purple dotted: the LO result; in black dashed: the NLO result for τ1; in gray dot-dashed: the
N2LO result for τ2. For the real part the NLO and N2LO results are on top of the Yamaguchi
model. For the imaginary part the N2LO results are on top of the model. The cutoff was set
to the value Λ = 600 MeV.
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3.3.4 Lepage plots and consistency assessment

In the last section we have shown that our non-perturbative method can reproduce the results of a Yam-
aguchi model. Notwithstanding this, in the context of EFT the systematic improvement of the description
order by order is equally important. Let p ∼Mlow be the momentum of the system19, and the break-down
scale Λb ∼Mhigh is the limit, where neglected low-distance physics become important. In this case, the
EFT claims to describe a physical system exact up to corrections of order (p/Λb)n. The power n of this
corrections increases order by order of the EFT. For the pionless EFT considered here, the correction to
the results at LO is (p/Λb)1, at NLO (p/Λb)

2 and at NnLO (p/Λb)
n+1. This systematic improvement can be

used as an error estimation of the theory. This is done for example in figure 3.9 and figure 3.10. This can
also be exploited as a check for the consistency of the EFT. The re-normalization (and every change to it,
as performed using our method) has to preserve this systematic improvement. A well established method
was proposed by Lepage [51]. If results of the fundamental theory (or experimental data) are available,
double-logarithmic plots, so called Lepage plots, allow one to directly determine n and therefore test
the systematic increase of n. A similar test was suggested by Grießhammer [27, 26] recently, where
the EFT is compared to the same EFT for a different cut-off Λ. This can test the consistency of the EFT
without needing known models (or data). In the following, we will describe these tests in more detail
and perform them for the EFT using our non-perturbative method.

We start with the Lepage plots. We want to use our EFT to describe an observable, say the particle-dimer
phaseshift δ. The EFT of order NnLO claims to be exact up to corrections of (p/Λb)n+1. Therefore⃓⃓⃓⃓

δY − δEFT
δY

⃓⃓⃓⃓
= c(ktyp, p,Λb,Λ)

(︃
(ktyp, p)

Λb

)︃n+1−η
+ · · · , (3.96)

where δY is the phase shift for the Yamaguchi model, δEFT is the phase shift calculated with the
EFT. c(ktyp, p,Λb,Λ) is the proportionality constant of the correction. The constant can depend on
the momenta, but it can be assumed to be slowly varying compared to (p/Λ)n, compare to [27]. The
quantity η describes the corrections due to the denominator and its p-dependence. In general, this
can not be predicted. The momentum ktyp ∼ Mlow is a typical momentum of the system. This causes
additional corrections to the corrections described above. These corrections follow the same pattern as
the corrections proportional to p. Equation (3.96) is meant in the way that the leading contributions to
the corrections are given by (p/Λb) if p > ktyp and by (ktyp/Λb) if p < ktyp. In the following we assume
p≫ ktyp. This will be discussed below. Therefore, taking the logarithm on both sides yields

ln

[︃⃓⃓⃓⃓
δY − δEFT

δY

⃓⃓⃓⃓]︃
≈ c′ + (n+ 1− η) ln

[︃
p

Λb

]︃
= c′′ + (n+ 1− η) ln [p] . (3.97)

Here, c′ and c′′ stand for some constants in which the different momentum independent parts are
absorbed. Hence, the slope in a double-logarithmic plot gives the order n of the neglected terms. To de-
termine this slope, a linear function can be fitted to the numerical results. The fit for the LO results of the
EFT can be used to determine η. Since n ∈ N0, the slope has to increase from order to order by exactly20
one. This can be used as a criterium to evaluate the consistency of the description of the model by the EFT.

19This is the momentum for which the EFT is designed to work.
20An increase of exactly one is the theoretical prediction. Obviously, the actual increase of the fitted slopes can deviate due to
numerical uncertainty. This will be discussed below.
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Additionally, the internal consistency of an EFT can be investigated following the same lines. In [26] and
more elaborated in [27], Griesshammer suggested a consistency assessment, that does not depend on a
model or data at all. Analogous to above, an EFT claims to be exact to some order of (p/Λb)n. If one
compares the same EFT at the same order, but for different cut-offs, say Λ1 < Λ2, they can only differ in
terms proportional to the next order (p/Λb)n+1. Therefore, for an observable, e.g. the particle-dimer
phase shift, it yields⃓⃓⃓⃓

δEFT (Λ2) − δEFT (Λ1)

δEFT (Λ2)

⃓⃓⃓⃓
= c(Λ1,Λ2, ktyp, p,Λb)

(︃
(ktyp, p,Λ1,Λ2)

Λb

)︃n+1−η
+ · · · . (3.98)

Here the slowly varying function c(Λ1,Λ2, ktyp, p,Λb) can obviously depend on both cut-offs Λ1 and Λ2.
Effectively, the more precise EFT (the EFT with the higher cut-off) takes the role of the model. The
quantity η describes the LO p-dependence of δEFT (Λ2), and will be determined from the fit at the LO.
Note that the η for the consistency assessment does not have to be the same as for the Lepage plots.
Similarly to above, the slope of the linear fit to a double-logarithmic plot gives the exponent of equation
(3.98). The exponent has to increase by exactly one, order by order of the EFT.

As mentioned above, the dependence of equation (3.96) and equation (3.98) on the typical momentum
ktyp complicates the determination of the slopes. This can be circumvented by restricting the analysis
to the region defined by ktyp ≪ p. An additional restriction is given by the break-down scale Λb of the
EFT. At p ∼ Λb the EFT is not expected to work at all. This gives the “window of opportunity”, where the
slopes can be determined:

ktyp ≪ p≪ Λb ∼ Λ . (3.99)

The typical momentum for the system given by equation (3.67) is ktyp ∼ 1/a ≈ 37 MeV. The situation
becomes slightly more complex due to the value of the model δY = 0 MeV for p ≈ 80 MeV. (Compare to
figure 3.5.) This is part of the denominator in equation (3.96) and expresses itself via a spike in the Lepage
plots. This spike makes the determination of the order n through the slopes impossible. The same problem
appears in the consistency assessment, since NLO and N2LO predict δEFT = 0 MeV, correctly. To avoid
this, we restrict our-self to a lower upper border of the “window of opportunity”. We choose the window
to be between 42 MeV and 55 MeV. The major source of uncertainty for the slopes is caused by the choice
of the window. By slightly varying the borders we estimate the error of the obtained slopes by around 10%.

In figure 3.7 (above) the Lepage plots are shown for the real part of the particle-dimer phase shift Re[δ].
Figure 3.7 (below) shows the consistency assessment. We show the results for LO, NLO and N2LO for the
EFT for a cut-off of Λ = 250 MeV. The number of subtractions i in τi is chosen according to the results of
the next chapter. We choose τ1 for NLO and τ2 for N2LO . The slopes are obtained in the highlighted
“window of opportunity”. They are given in table 3.3 (left). In the table we also give the additional
results for the different choices of i. The corresponding Lepage plots and consistency assessments can
be seen in figure 6.1 in the appendix. First, we note that all slopes increase order by order as expected.
Second, the obtained increase agrees with the expected increase of approximately one, if the 10% error
is considered. Third, the difference between the slopes for one order but different τi is not significant.
Besides the arguments given in the next chapter, this motivates to take the most simple case, namely τ1,
for NLO. For N2LO there is an additional three-body force H2, so one more subtraction has to be be used.
Note that the slope for N2LO and τ2 in the consistency assessment is unnaturally large. This is due to an
accidental zero around p ≈ 30 MeV. This is caused by a change of the sign of δEFT (Λ2) − δEFT (Λ1) and
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has no direct physical implication. The corresponding values for τ1 and τ3 are close to the expected value
of 5, their plots do not exhibit accidental zeros, see figure 6.1 in the appendix.
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Figure 3.7: Lepage plot (above) and consistency assessment (below) for the particle-dimer phase shift
in the Yamaguchi model. The “window of opportunity” is chosen to be between 42 MeV and
55 MeV for all orders (gray shaded region). The spike (zero of δ (figure 3.5)) around 80 MeV
limits us to low energy regions. Note that the LO result does not predict this zero, therefore
the spike is not visible in the consistency assessment at LO. For the Lepage plot the results
are divided by the Yamaguchi results. Therefore, the spike can be seen at all orders. As
expected, the slope is increasing by approximately one, order by order. The deviant value for
N2LO τ2 is due to the accidental zero around 30 MeV (change in the sign), compare to [27].
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Table 3.3: Results for the slopes for the particle-dimer phase shifts δ fitted in the “window of opportunity”
for the Yamaguchi model. The uncertainty in the slopes is about 10%. Left for the Lepage
plot, right for the consistency assessment. The value with the asterisk * is unnaturally large
due to an accidental zero, compare to figure 3.7 (below).
slope fit LO NLO N2LO
no sub. 2.7
τ1 3.4 4.4
τ2 3.6 4.7
τ3 3.6 5.0

slope fit LO NLO N2LO
no sub. 3.0
τ1 3.8 5.3
τ2 4.0 7.2*
τ3 4.0 4.9

To further investigate the systematics of the EFT using our method, we repeat this analysis for the
quantity Re[p cot δ] (the observable considered in [27]). This follows the exact same lines as above,
replace δx by p cot δx in equation (3.98). Obviously, the values of c and more important η change, besides
the p-dependence is unchanged. The consistency assessment is shown in figure 3.8, the obtained slopes
are given in table 3.4. It can be seen that the general pattern is unchanged. The slope increases order
by order, and the increase is approximately one. We also compare our results to the results in [27].
Although the investigated system is not exactly identical to the three bosons here, the obtained results
are very close for LO and NLO. For N2LO τ1 gives a comparable slope, our result for τ2 is unexpected
large, again due to the accidental zero. However, the result for τ3 is significant smaller, this further
motivates our choice to recommend not using three subtractions at N2LO.

Table 3.4: Slope fits for k cot δ in the consistency assessment for the Yamaguchi model. The “window
of opportunity” was chosen between 42 MeV and 55 MeV. The uncertainty in the slopes is
about 10%. Shown are the fits to the results for Re[p cot δ]. The value with the asterisk * is
unnaturally large due to an accidental zero.

slope LO NLO N2LO
fit in [27] 1.9 2.9 4.8
our fit, no sub. 1.8
our fit, τ1 2.8 4.6
our fit, τ2 2.9 6.1*
our fit, τ3 2.8 3.6

To summarize the results of the last sections, using an EFT, while treating the spurious pole non-
perturbatively as proposed above, we have explicitly demonstrated that the numerical solution converges
to the exact result, obtained in the Yamaguchi model. Additional, we have shown that this convergence
follows the systematic improvement postulated by the definition of an EFT.
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Figure 3.8: The consistency assessment for the quantity Re[p cot δ], zoomed to the “window of oppor-
tunity” (shaded in gray), which is chosen to be between 42 MeV and 55 MeV. Note that all
orders can be described in the window by linear functions very precisely. The slope shown
in the inset describes the order of the EFT. The increase from LO to NLO is one as expected.
The increase from NLO to N2LO is larger than expected, due to the accidental zero around
30 MeV, compare to figure 3.7.

3.3.5 Order of the subtracted polynomial

In section 3.2.2 we predicted the optimal number of terms i of the modified propagator τi(k∗). The pre-
dictions for the EFT are τ2(k∗) at NLO and τ3(k∗) at N2LO, compare to table 3.2.2. As already mentioned,
these predictions are based on perturbative power-counting arguments, which can only give a hint for a
highly non-perturbative problem. In this section we revisit the question of the preferred choice for i, but
confront it with numerical results. We consider three observables: the particle-dimer phaseshift (real and
imaginary part), the slopes of the Lepage and consistency assessment plots, and the three-body bound
states.

(a) The particle-dimer phaseshift. The results for the real/imaginary part of the phaseshift can be seen
in figure 3.9 (above/below) at NLO of the EFT. The results for the first three values of i are shown.
We zoomed into the region above 50 MeV, since below this value there is no difference visible
between the different i. For the real part, the results for τ1(k∗) describe the Yamaguchi model
best. τ2(k∗) gives slightly worse results, and it gets worse for τ3(k∗). This is especially true for the
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position of the predicted zero21. For the imaginary part a tiny improvement from τ1(k
∗) to τ2(k∗)

is visible. However, this only holds for very large values of the momentum p and the improvement
is well below the expected EFT accuracy. The results for τ1(k∗) agree with the model everywhere
within the EFT uncertainty, except for the largest considered values of momentum. There is no
further improvement from τ2(k

∗) to τ3(k∗). This indicates that at NLO the propagator τ1(k∗) is the
best choice.
For N2LO (compare to figure 3.10) the real part of the phaseshift is again described best by τ1(k∗).
However the difference between τ1(k∗) and τ2(k∗) is smaller than the error bands. On the other
hand, the imaginary part is described best by τ2(k∗) and the improvement is significant. There is
no improvement form τ2(k

∗) to τ3(k∗), neither in the real nor in the imaginary part. We conclude,
τ2(k

∗) is the optimal choice at N2LO.

(b) The slopes of the Lepage plots and the consistency assessment. In table 3.3 the results are given for
the different orders of the EFT and the different values of i. All obtained slopes22 of the same order
of the EFT agree within the estimated error of 10%. No improvement between the different choices
of i can be noted at all. Therefore it is reasonable to choose the smallest value for i available at
NLO, this means τ1(k∗). If one considers only the slopes, there is no specific reason not to choose
τ1(k

∗) also at N2LO. However, this also is not an argument against τ2(k∗).

(c) The three-body bound states. The bound states, and how they can be calculated, will be discussed
in the next section. At this point we state that the Yamaguchi model exhibits two bound states, one
shallow bound state at EshallowB = −2.356MeV and a deep bound state at EdeepB = −24.797MeV. In
table 3.3.5 the predictions of the EFT for the different orders and τi(k∗) can be seen. The shallow
state can be described by all orders and all choices of i with high accuracy, there is no significant
difference between the choices of i. In case of the deep bound state there are differences. For NLO
the state is described the best by τ1(k∗). τ2(k∗) gives a worse result and τ3(k∗) is even worse. For
N2LO the best prediction is given by τ2(k∗), while the difference between τ1(k∗) and τ2(k∗) is very
small. τ3(k∗) is, again, the worst.

To conclude these observations, for the EFT at NLO the best choice is τ1(k∗). All three benchmarks
agree on this. At N2LO (a) and (c) indicate that one is advised to choose τ2(k∗), while (b) gives no
clear statement, but also does not disagree with τ2(k∗). Therefore we advice to choose τ2(k∗). While
this disagrees with the predictions based on perturbative arguments given before, we highlight that the
general pattern of higher i at higher EFT orders holds. Increasing the order of the EFT, therefore including
an additional three-body force, allows us to absorb an additional term in the expansion in τi(k∗). The
optimal choice for i increases with the number of three-body forces. In table 3.3.5 we summarize the
results of this section. Finally note, these observations also hold for the different choices of the effective
range and the Gauss model as will be discussed below.

21Note that the shown error bands at a predicted value of zero are not meaning full. This is due to the fact that the error is
estimated as a relative error of (p/Λ)2. While this is appropriate else, for a value of zero this creates an absolute error of
zero.

22Except the diverging value for N2LO and τ2(k∗), due to the accidental zero. Compare to the discussion under figure 3.8
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Table 3.5: The optimal choice for the propagator at different orders of the EFT based on numerical
calculations.

Order 2-body parameters 3-body parameters Obtained optimal propagator
LO a H0 -
NLO a, r H0 τ1(k

∗)
N2LO a, r H0, H2 τ2(k

∗)

Yamaguchi

NLO τ1

NLO τ2

NLO τ3
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Figure 3.9: Real (above) and imaginary (below) part of the particle-dimer phase shift δ calculated for the
Yamaguchi model and the EFT at NLO for different choices of the number of subtractions in
the propagator τi(k∗). The uncertainty bands are estimated using a naive power-counting of
the EFT error, given by Re[δ] (p/Λ)2 and Im[δ] (p/Λ)2.
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Figure 3.10: Real (above) and imaginary (below) part of the particle-dimer phase shift δ calculated for the
Yamaguchi model and the EFT at N2LO for different choices of the number of subtractions
in the propagator τi(k∗). The uncertainty bands are estimated by a naive power-counting
of the EFT error, given by Re[δ] (p/Λ)3 and Im[δ] (p/Λ)3.
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Bound states

As an additional test of the non-perturbative method, we search for three-body bound states in the EFT
and compare them to the bound states of the Yamaguchi model. As described before, at the energy of a
bound state EB the scattering amplitude becomes singular. Since the inhomogeneous part of the Faddeev
equation (3.26) will not become singular, therefore it is sufficient to consider only the homogenus part
of it

M(p, q, E) =
4

π

∫︂ Λ

0
dk k2Z(p, k, E)τi(k

∗)M(k, q, E). (3.100)

Furthermore, at the position of the bound state EB the momentum dependence decouples and the
scattering amplitude can be parameterized as

M(k, q, E) =
g(k)g(q)

E − EB
, (3.101)

with some momentum dependence function g(q). Employing this expression, the homogenus Faddeev
equation can be written as

g(p) =
4

π

∫︂ Λ

0
dk k2Z(p, k, E)τi(k

∗)g(k). (3.102)

This can be solved by discretization of p and k along the same lines as in equation (3.86) and (3.92).
Doing so results in a matix equation

g⃗ = K(E)g⃗, (3.103)

with a quadratic n×n kernel matrixK(E), where n is the number of discretization steps. The components
are

Kij(E) =
4ωj
π
k2jZ(ki, kj , E)τi

(︄√︃
3

4
k2j −mE

)︄
. (3.104)

Equation (3.103) has a solution exactly if

det (In −K(E)) = 0, (3.105)

with the n× n identity matrix In. In figure 3.11 such a determinant is shown exemplary as a function of
the energy E for τ1(k∗) at NLO. We choose n = 250 steps for the discretization and Λ = 250 MeV. The
number of roots gives the number of bound states and their positions the energies EB of the states. Note
that this is only true for energies below the two-body threshold. Above this a continuum of scattering
states is expected. Due to the discretization this continuum collapses to an infinite amount of roots. For
the Yamaguchi model instead of equation (3.100) the homogenus version of equation (3.68) is used,
which results in a kernel matrix KY (E) with components

KY,ij(E) =
4ωj
π
k2jZY (ki, kj , E)τY (kj , E) . (3.106)

For the propagator τY (q, E) see equation (3.69) and for the potential Z(p, k, E) see equation (3.70).
In the case of the Yamaguchi model we find two bound states: one shallow bound state at EshallowB =
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−2.356 MeV and an additional deep bound state at EdeepB = −24.797 MeV. The name shallow refers
to the relatively small difference between the three-body bound state and the binding energy of the
dimer ED = k21/M ≈ 2.2 MeV. In table 3.3.5 the results for these two bound states are compared to
the corresponding predictions of the EFT in our different expansions. It can be seen that the shallow
bound state can be predicted very accurately at all orders. An improvement from LO to NLO is visible.
However, the values do barely change from NLO to N2LO. This fulfills the expectations, the corrections
of the EFT due to a naive power counting are of the order of |EB|(

√︁
M |EB|/Λ)1 ≈ 0.4 MeV at LO,

|EB|(
√︁
M |EB|/Λ)2 ≈ 0.09 MeV at NLO and |EB|(

√︁
M |EB|/Λ)2 ≈ 0.01 MeV for N2LO. Within these

error bars all results agree perfectly with the model. For the deep bound state this is technically also the
case. However, the error bars are very large, since in the model

√︂
M |EdeepB |/Λ ≈ 61%. The predictions

are not very repayable for states with such high binding momenta. However, they all qualitatively agree
with the model. Note that this is not the case at LO, there |EB|(

√︁
M |EB|/Λ)1 ≈ 147 MeV > |EB|. So

the error bar is larger than the result. We have repeated the LO calculation for a higher cutoff Λ = 600
MeV and obtain EdeepB = −34.10 MeV, which is of the correct order.
Finally we note that the results for the shallow bound state do not change much with the number of
subtractions i in the propagator τi(k∗).In contrast to that, for the deep bound state the results depend
on i more heavily. The results that lie the closest to the model are the EFT that uses τ1(k∗) at NLO and
the EFT that uses τ2(k∗) at N2LO. This strengthens the conclusions for the optimal subtraction given in
section 3.3.5 further.

Table 3.6: Three-body bound states calculated for the Yamaguchi model and the EFT at different orders
and different numbers of subtractions. All in units of MeV and for the ultraviolet cutoff
Λ = 250 MeV. The calculations are done with n = 250 steps. For the deep bound state at
LO (highlighted by ∗) the error bar is larger than the result and thereby the value can not be
trusted.

bound state Yamaguchi LO NLO τ1 NLO τ2 NLO τ3 N2LO τ1 N2LO τ2 N2LO τ3
EshallowB -2.36 -2.29 -2.39 -2.39 -2.39 -2.39 -2.39 -2.34
EdeepB -24.80 -113.03* -23.96 -29.11 -40.22 -21.88 -22.07 -18.62

We close the section about bound states with a comment on the Efimov effect. As described in [?], an
EFT contains an infinite number of bound states in the unitary limit 1/a→ 0. In this limit these obey
a discrete scaling EnB/E

n+1
B = # for all states n. By increasing the cutoff Λ more and more of those

bound states can be found. For a finite scattering length the discrete scaling is not true anymore, while
by increasing the cutoff additional states should become visible. In table 3.3.5 this can be seen, for
increasing cutoffs we found additional bound states. Note that here only a qualitative argument can be
made, since those additional states lie below the energy regions the EFT can access due to the limitation
by the break-down scale Λb.

Table 3.7: Number of three-body bound states found by using the EFT at N2LO and τ2(k∗) for different
cutoffs Λ.

cutoff Λ/MeV 250 600 850 1000 1700
number of bound states 2 3 4 4 5
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Figure 3.11: Determinant of the identity matrix minus the kernel. The roots of the determinant give the
energy of the bound states EB . The result for NLO and τ1(k∗) is shown as an example.

3.3.6 Different choice of the effective range

To further test the non-perturbative method, we investigate a slightly different model than before. In this
section we use the same Yamaguchi model as introduced before but with a different set of parameters λ
and β. We aim to see if the conclusions taken before also hold for this variation. Also remember that for
the parameters used before we found a zero for the particle-dimer phaseshift δY = 0 at approximately 80
MeV. This resulted in a spike in the Lepage plots and in the consistency assessment. Therefore we were
limited to a rather small upper border of the ’window of opportunity’ (compare to the discussion below
equation (3.99).) The position of the zero is mostly determined by the effective range. In this section we
choose for the EFT r′ = 0.8768 fm and a = 5.4164 fm, so the same scattering length a and the half of
the effective range used before. According to equation (3.66) this results in the following Yamaguchi
parameters.

λ = −0.000049 MeV−2, β = 622.5 MeV. (3.107)

Note that the corresponding set of a and r also implies a spurious pole, compare to equation (3.15). The
spurious pole is positioned at k2 = 410.1 MeV, while the physical pole is at k1 = 40.0 MeV. The values of
the three-body forces are obtained as described in the second part of section 3.3.2. The results for the
different orders of the EFT and different numbers of subtractions in the modified propagator τi(k∗) are
given in table 3.8. The results for the quantity p cot δ, with the particle-dimer phaseshift δ, can be seen
in figure 3.12. They are calculated using a cutoff of Λ = 250 MeV. The results for same quantity p cot δ
but a cutoff Λ = 600 MeV can be seen in figure 6.2 in the appendix. It can be seen that all observations
for the previous choice of r also hold here. The description of the model at LO is only accurate for small
momenta, while at NLO this improves for higher momenta and it further improves at N2LO. To investigate
the improvement order by order the Lepage plots and the consistency assessment are done (according to
section 3.3.4). In the upper part of figure 3.13 the Lepage plot is shown, while the lower panel contains
the consistency assessment. Since a peak is not present, the “window of opportunity” can be chosen to
be larger than before. We choose a range from p = 75 MeV to p = 125 MeV. The plotted quantity is
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Table 3.8: The three-body couplingsH0 andH2 for the effective range r′ = 0.8768 fm. Shown are the
results for the different values of the cutoff Λ, and different numbers of subtractions in the
propagator τ(k) (no subtraction is needed at LO). All quantities are given in MeV units. The
values ofH0 are the same at NLO and N2LO, whereasH2 = 0 at NLO.

τi H0(Λ = 250) H2(Λ = 250) H0(Λ = 600) H2(Λ = 600)

LO -7.16 0.73
τ1 1.90 5.56 -0.57 -0.21

NLO & N2LO τ2 1.52 5.01 -0.78 0.38
τ3 1.45 4.96 -0.86 0.76

Table 3.9: Results for the slopes of the quantity p cot δ fitted in the “window of opportunity” for the
Yamaguchi model with r′ = 0.8768. Left for the Lepage plot, right for the consistency
assessment.
slope fit LO NLO N2LO
no sub. 0.8
τ1 3.2 4.6
τ2 3.0 4.4
τ2 3.1 4.4

slope fit LO NLO N2LO
no sub. 2.2
τ1 3.0 4.4
τ2 3.1 4.3
τ2 3.1 4.3

linear in this whole region for all orders of the EFT and all numbers i of subtractions in the propagator
τi(k

∗). In the inlays of the two plots the fitted slopes are shown for the optimal choice of i according
to the discussion in section 3.3.5. The slopes for all i < 4 are given in table 3.9. Again all important
previous observations hold. The value of the slopes increase order by order of the EFT. The increase from
NLO to N2LO in the Lepage plot is close to one. In the consistency assessment the increase from LO to
NLO and the increase from NLO to N2LO are both close to one. The step from LO to NLO in the Lepage
plot is slightly larger than expected. Finally we note that there is no significant difference in the slopes at
a given order of the EFT for the different number of subtractions i. This strengthens the assumption that
in the case of the previous choice of r the deviating value for the slope in the consistency assessment for
N2LO and τ2(k∗) was caused by a accidental zero and therefore has no physical implication (compare to
table 3.3).
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Figure 3.12: Numerical results for real (above) and imaginary (below) part of the quantity p cot δ with
the particle-dimer phase shift δ for the Yamaguchi model and the corresponding EFT with
the effective range r′ = 0.8768 fm. Red line: the result obtained in the Yamaguchi model; in
purple dotted: the LO result; in black dashed: the NLO result for τ1; in gray dot-dashed: the
N2LO result for τ2.
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Figure 3.13: The Lepage plot (above) and the consistency assessment (below) for of the quantity p cot δ,
with the particle-dimer phase shift δ in the Yamaguchi model with the effective range
r′ = 0.8768 fm. In purple dotted: the LO result; in black dashed: the NLO result for τ1; in
gray dot-dashed: the N2LO result for τ2. The cutoff was set to the value Λ = 250 MeV in the
Lepage plot and to Λ1 = 250 MeV and Λ2 = 600 MeV in the consistency assessment. The
inlays show the slopes for the ideal choice of the propagator τi(k∗) according to section
3.3.5. The increase of the slopes order by order fits the expected increase, which is one,
very accurate. In contrast to this, the increase in the Lepage plot from LO to NLO is twice
as large as expected.
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3.3.7 Gauss model

We close the chapter and the analysis of the non-perturbative method in infinite volume by showing that
the method can not only be used for the Yamaguchi model. For this purpose we investigate a model with
a different interaction. In this section we choose a model interacting via a separable Gauss potential.
The separable potential is treated along the lines of [79]. For this separable potential equation (3.62)
holds with the exception that the regulator is given by a Gaussian function.

VG(p, q) = λχG(p)χG(q), χG(p) = e−p
2/λ2G . (3.108)

Using this potential the calculation of the two-body scattering amplitude yields

tG(p, q, z) = χG(p)dG(z)χG(q), (3.109)

where dG(z) can be calculated using equation (3.64), for E < 0 this results in

dG(E)−1 = 2π2
[︃√︁

mEd exp

(︃
2mEd
λ2G

)︃
erfc

(︃√
2mEd
λG

)︃
−
√
−E exp

(︃
−2E

λ2G

)︃
erfc

(︃√
−2E

λG

)︃]︃
= 2π2

√︁
mEd exp

(︃
2mEd
λ2G

)︃
erfc

(︃√
2mEd
λG

)︃
+ 2π2ip− 4

√
2π3/2

λG
p2 +O

(︁
p3
)︁
,

(3.110)

which can be found in [82]. erfc means the error-function. Note that we have exchanged the parameter
λ in the separable potential by the parameter Ed. Similar to the Yamaguchi model the terms of equation
(3.110) can be compared to an ERE order by order. This results in conditions that connect the Gaussian
parameters λG and Ed to the scattering length a and the effective range r.

1

a
=
√︁
mEd exp

(︃
2mEd
λ2G

)︃
erfc

(︃√
2mEd
λG

)︃
,
r

2
=

4
√
2π3/2

λG2π2
. (3.111)

We use the same scattering length a = 5.4194 fm and effective range r = 1.7536 fm as in section 3.3.1.
For the Gauss model this results in λG = 359.134 MeV. The parameter Ed is equivalent to the position of
the root of d−1

G (E) and therefore is the value of a two-body bound state (the dimer). For the values above
this is given by Ed ≈ 2.22 MeV, and corresponds to the deuteron (if fermions would be considered). The
dimer-propagator τG(q, E) is given by

τG(q, E) = dG(z)
⃓⃓
z=3q2/(4m)−E−iϵ. (3.112)

The potential ZG(p, q, E) is discussed in the next subsection. In the numerical calculations we use the
non-expanded equation for dG(z) (first line of equation (3.110)).
To test our non-perturbative method the EFT is used to describe this model. The three-body forces are
fine-tuned to reproduce the Gauss results at p = 0.001 MeV for H0 and at p = 10 MeV for H2. The
prescription is described in section 3.3.2. The resulting values for the different orders of the EFT and the
different choices of the propagator τi(k∗) can be seen in Table 3.10.

Numerical treatment of the one particle exchange in the Gauss model

We investigate only a one particle exchange and no further three-body interactions. According to [79]
the potential ZG(p, q, E) in S-wave is given by (compare to equation (3.70) for the Yamaguchi potential)
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Table 3.10: The three-body couplingsH0 andH2 for the Gauss model and different values of the cutoff
Λ. All quantities are given in MeV units. The values of H0 are the same at NLO and N2LO,
whereasH2 = 0 at NLO.

τi H0(Λ = 250) H2(Λ = 250) H0(Λ = 600) H2(Λ = 600)

LO 2.18 0.15
τ1 -0.45 1.00 0.29 18.94

NLO & N2LO τ2 -0.62 1.04 -0.57 3.62
τ3 -0.69 1.13 1.08 284.1

ZG(p, q, E) =
1

2

∫︂ 1

−1
d cos θp,q

exp
[︂
− (p/2 + q)2 /β2

]︂
exp

[︂
− (q/2 + p)2 /β2

]︂
E − p2/(2m)− q2/(2m)− (p+ q)2/(2m)

. (3.113)

This has a pole for (︂
q+

p

2

)︂2
=

3

4
p2 −mE , or

(︂ q

2
+ p

)︂2
=

3

4
q2 −mE. (3.114)

If unmodified, this pole can create difficulties if the angular integral is evaluated numerically. To
circumvent this, we subtract and add the contribution at the pole position, which enables a specific
treatment of this term.

ZG(p, q, E) =
m

2

∫︂ 1

−1
du

1

mE − p2 − q2 − pq u
exp

[︃
−q

2 + p2/4 + pq u

β2

]︃
exp

[︃
−q

2/4 + p2 + pq u

β2

]︃
− m

2

∫︂ 1

−1
du

1

mE − p2 − q2 − pq u
exp

[︃
−3p2/4−mE

β2

]︃
exp

[︃
−3q2/4−mE

β2

]︃
+
m

2

∫︂ 1

−1
du

1

mE − p2 − q2 − pq u
exp

[︃
−3p2/4−mE

β2

]︃
exp

[︃
−3q2/4−mE

β2

]︃
.

(3.115)

The original kernel together with the subtracted term is regular at the pole position, the nominator
approaches zero faster than the denominator. The added term has no angular dependency and the
integral can be calculated analytically.

ZG(p, q, E) =
m

2

∫︂ 1

−1
du

1

mE − p2 − q2 − pq u

(︄
exp

[︃
−q

2 + p2/4 + pq u

β2

]︃
exp

[︃
−q

2/4 + p2 + pq u

β2

]︃

− exp

[︃
−3p2/4−mE

β2

]︃
exp

[︃
−3q2/4−mE

β2

]︃)︄

− m

2

1

pq
exp

[︃
−3p2/4−mE

β2

]︃
exp

[︃
−3q2/4−mE

β2

]︃
ln

[︃
mE − p2 − q2 − pq

mE − p2 − q2 + pq

]︃
.

(3.116)

The remaining integral can be calculated by the standard Gaussian method, similar to section 3.3.2.
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Results for the phase shift and the Lepage analysis

In this section we analyse the numerical results for the Gauss potential as introduced in the last section.
The results for the quantity p cot δ, with the particle-dimer phase shift δ can be seen in figure 3.14, above
for the real part and below for the imaginary part. Since the parameters of the Gauss potential are chosen
to produce the same scattering length and effective range as the Yamaguchi potential in section 3.3.1, the
results for the models look similar. The LO EFT result for the real part can describe the model accurately
only for small relative momenta p, at NLO using our non-perturbative method with the propagator τ1(k∗)
the description is improved significantly. Using N2LO and τ2(k∗) improves the situation further. For the
imaginary part this is also true, but the improvement from NLO to N2LO is only very small. Besides this,
all results are in perfect agreement with our expectations.

In figure 3.15 (above) the Lepage plot is shown. We zoomed into the “window of opportunity”, the
window is chosen to reach from 42 MeV to 55 MeV. It can be seen that the results, indeed, can be
described very accurately by linear functions. The resulting slopes are given in table 3.11 (left). The
slope increases from LO to NLO by one for τ1(k∗), as expected. For τ2(k∗) and τ3(k∗) the increase is
slightly larger, even in the context of the estimated error of 10%. This indicates that τ1(k∗) is the correct
choice as discussed in section 3.3.5. The increase from NLO to N2LO is larger than expected, it is around
three instead of one. This can be explained by an accidental zero around 30 MeV (see figure 6.3 in the
appendix for the whole momentum region). The zero appears for all choices of τi(k∗), therefore this
results can not be trusted.
The consistency assessment is given in figure 3.15 (below), while the corresponding slopes are shown in
table 3.11 (right). Within the window the results can be described by linear functions, the slopes for LO
and NLO are in perfect agreement with the expectations. The increase from NLO to N2LO also satisfies
the expectations for τ1(k∗) and τ3(k∗). For τ2(k∗) the increase is larger than the expected increase of
one. The result seems to be better than expected. This might indicate a very small value of the shape
parameter, meaning that there is only a small difference between N2LO and N3LO.
Besides this last comment, all results agree with the expectations. Therefore the EFT using our non-
perturbative method, passes the Lepage and the consistency test also for the Gauss model.

Table 3.11: Results of the slopes for the real part of the quantity k cot δ for the Gauss model fitted in the
“window of opportunity”. Left for the Lepage plot, right for the consistency assessment. All
results for the Lepage plot for N2LO, marked by an asterisk, exhibit a accidental zero and are
therefore unexpected large.
slope fit LO NLO N2LO
no sub. 1.1
τ1 2.0 5.6*
τ2 2.3 5.5*
τ3 2.5 5.3*

slope fit LO NLO N2LO
no sub. 2.0
τ1 3.1 4.4
τ2 3.3 5.3
τ3 3.2 3.8
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Figure 3.14: Numerical results for real (above) and imaginary (below) part of the quantity p cot δ with the
particle-dimer phase shift δ for the Gauss model. The scattering length is a = 5.42 fm and
the effective range r = 1.75 fm (the same values as for the Yamaguchi model in figure 3.5).
Red line: the result obtained in the Gauss model; in purple dotted: the LO result; in black
dashed: the NLO result for τ1; in gray dot-dashed: the N2LO result for τ2. The description of
the model by the EFT increases order by order.
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Figure 3.15: The Lepage plot (above) and the consistency assessment (below) for of the quantity p cot δ,
with the particle-dimer phase shift δ in the Gauss model. In purple dotted: the LO result; in
black dashed: the NLO result for τ1; in gray dot-dashed: the N2LO result for τ2. The cutoff
was set to the value Λ = 250 MeV in the Lepage plot and to Λ1 = 250 MeV and Λ2 = 600
MeV in the assessment. The inlays show the slopes of the ideal choice of the propagator
τi(k

∗) according to section 3.3.5. The “window of opportunity” is chosen between 42 MeV
and 55MeV. As expected, the slopes increase from LO to NLO by approximately one, for the
Lepage plot as well as for the consistency assessment. The increase from NLO to N2LO is
slightly larger than expected, this can be explained by accidental zeros around p ≈ 30 MeV,
compare to figure 6.3 in the appendix.

89



3.4 Conclusion for the infinite-volume case

In this section we make conclusions based on the results of our investigations in infinite volume. Effective
range corrections can be included in the three-body system in the particle-dimer picture by using the ERE
for the two-body phase shift (equation (3.4)). The range corrections appear at NLO in the power-counting
of the EFT. However by doing so one creates a spurious pole. In section 3.1 we showed, that this pole
violates unitarity and leads to negative probabilities. Additionally, we obtained a condition for the pole
to create numerical problems. This is given by

0 < r <
a

2
, (3.117)

with the scattering length a and the effective range r. In this region special methods must be used to
circumvent the problems. In section 3.1.4 we summarized existing methods to do so. We stated that
they either lead to a loss of accuracy or create additional problems with diverging expressions when
adopted to a finite volume. Therefore we motivated the need for a new non-perturbative method. In
section 3.2 we developed such a method. The method can be summarized as follows. Exchange the
dimer propagator τ(k∗) by

τ(k∗) → τi(k
∗), (3.118)

with a modified propagator τi(k∗) given by equation 3.25. We expand the contribution of the spurious
pole in (k∗)2 and keep the first i terms. The contribution of the physical pole is not modified, thus the
label non-perturbative. Therefore we prevent the convergence issues in finite volume. Then the difference
between the new and original propagator is included in the three-body forces. The real part of this is
absorbed in the renormalization prescription. The imaginary part, which causes the unphysical behaviour,
is dropped. In section 3.2.1 we showed that this is allowed by carefully proving that the difference causes
only an additional low-energy polynomial in an effective potential.
We tested the new non-perturbative method in infinite volume by using it to describe both, a Yamaguchi
model and a Gauss model. By employing numerical calculations for the particle-dimer phase shift and
three-body bound states, we showed that the method can describe the models very accurately. An
improvement compared to LO calculations (where the spurious pole does not appear) can be realised.
We used Lepage plots to show that this improvement of the description of the models follows the general
expectations for EFTs. Additionally we used a consistency assessment to test the internal pattern of the
EFT using our method. The method passes the test for all considered cases.
Finally, we give a prediction for the optimal choice of terms to keep in τi(k∗). In section 3.2.2 we estimated
this to be i = 2 for NLO and i = 3 for N2LO. This is based on perturbative power-counting arguments,
for a non-perturbative problem. Therefore we revisited this question in section 3.3.5 by investigating the
numerical results. We come to the final conclusion that the ideal choice is i = 1 for NLO and i = 2 for
N2LO. The remaining part of this thesis will be focused on adapting the non-perturbative method to a
finite volume.
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4 Spurious poles in finite volume

The methods, results and discussions presented in this chapter have been published in parts in [62].
They are the result of a cooperation with the other authors of this article. We especially highlight that the
numerical calculations in finite volume have been performed by using the computer program developed
and provided by J. Y. Pang [81]. Additionally, some of the calculations have been directly performed by
J. Y. Pang, which it is marked on the corresponding figures. The code is based on [33, 34] and [21], a
summary of the concepts is given in section 2.5.3.

4.1 Yamaguchi model in finite volume

Before we address the problem of spurious poles and our non-perturbative solution to it, we show what
the EFT should reproduce if working correctly. We are interested in the finite volume energy spectra of
bound and scattering states. This observable is very important in finite volume. It was investigated in
multiple publications over the last two decades, for example [45, 47, 29, 30, 14]. We choose a model to
produce such a spectrum. The model we investigate is the same separable Yamaguchi model introduced
in section 3.3.1. We choose the same Yamaguchi parameters λ = −0.00013 MeV−2, β = 278.796 MeV.
According to equation (3.66) they correspond to the ERE parameters a = 5.4164 fm and r = 1.7536 fm
and a dimer at Ed = 2.22 MeV. As discussed in section 3.3.5, in infinite volume these values result
in a shallow three-body bound state at EshallowB = −2.36 MeV and a deep three-body bound state at
EdeepB = −24.80 MeV. In the limit L→ ∞ the energy spectra have to converge to these values.
Using the code by [81] to solve equation (2.74) with the Yamaguchi propagator (equation (3.69)) and
the potential given by equation (3.70) creates the finite volume spectrum for the model. We use a cutoff
Λ = 1500 MeV. Note that this value is large enough such that the numerical problems of the difference
between the cutoff and the highest shell are negligible, compare to section 4.4.1. The spectrum can be
seen in figure 4.1. The points are the roots of equation (2.74). The roots can be divided into two types.
On the one hand, the results below the the energy of the dimer Ed. These are three-body bound states of
the system. And one the other hand, results above the energy of the dimer. They correspond to scattering
states. In the following, we will discuss the cases separately.
Due to the similar systems we investigate, the resulting spectrum looks very similar to the results of
[33, 34] and [21].

Bound states

We find two bound states, one converges to EshallowB for large volume L and a second one converging to
EdeepB . This is in perfect agreement with the infinite volume results. The finite volume corrections (the
difference between Ei∞ and EiL) to both states can be seen in figures 4.2 and 4.3. The first for the deep
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Figure 4.1: The finite volume spectrum for the Yamaguchi model. Plotted are the roots of equation
(2.74). Below the break up they correspond to bound states. The deep bound state Edeep
is given by the red line, the shallow bound state Eshallow in purple dashed. Above the break
up the roots correspond to scattering states, the first four are shown in black dotted. Also
shown are the infinite volume results for the bound states (gray line for the deep state and
gray dashed for the shallow state). For large volume L the finite volume results converge to
the infinite volume counterparts. Data provided by [81].

state and second for the shallow state. Due to the similar systems and results the following analysis is
heavily inspired by [21].
According to [60] or [37] the correction for a three-particle bound state is given by

EB,L − EB,∞ =
c

L3/2
exp

(︃
− 2√

3
κL

)︃
, (4.1)

with a volume independent constant c. The binding momentum is given by κ =
√︁
|mEB|. In a theory

that supports a bound two-body state, meaning the dimer in our case, an additional possibility is a
bound state of this dimer and the third particle. For a bound state of a dimer and a particle (an effective
two-body system) the finite volume correction is given by the well known result of Lüscher [53] (for a
more resent derivation see for example [50])

EB,L − EB,∞ =
c′

L
exp

(︃
− 2√

3

√︁
κ2 − a−2L

)︃
, (4.2)
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with a volume independent constant c′. In reality the actual bound states can be superpositions of both
cases. For the shallow state one expects it to be more like a dimer and a single particle, since the binding
energy is close to the energy of the dimer. For the deep state no such argument can be made. In figures
4.2 and 4.3 a superposition of both cases is fitted to the results. Note that the volume region calculated
is to narrow to resolve the polynomial suppression of L, only the exponential part can be obtained.
Therefore, we fit the following equation to the numerical results:

EB,L − EB,∞ = c exp

(︃
− 2√

3
κL

)︃
+ c′ exp

(︃
− 2√

3

√︁
κ2 − a−2L

)︃
. (4.3)

For the shallow bound state we obtain c/c′ ≈ 0.1. So, the state can be described very accurately by the
binding of the dimer and a single state. For the deep state we find c/c′ ≈ 2.1. This state contains both,
the bound state of a dimer and a single particle as well as a three particle bound state. A more detailed
discussion of the bound states as superposition of three-body and particle-dimer bound states can be
found in [21].
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Figure 4.2: The finite volume corrections to the deep bound state. Also shown is a fit of the superposition
of the possible finite volume corrections. We obtain that both corrections, meaning the
correction due to a bound state of a dimer and a single particle as well as the correction due
to a bound state off three particles, are needed. Data of the Yamaguchi model (red dots)
provided by [81].
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Figure 4.3: The finite volume corrections to the shallow bound state. Also shown is a fit of the super-
position of the possible finite volume corrections. We obtain that the shallow state can be
described as a bound state of a particle and a dimer. The contribution of the three-particle
bound state can be neglected. Data of the Yamaguchi model (red dots) provided by [81].

Scattering states

For the scattering states there are again two possible cases, the scattering of three single particles and
the scattering of the dimer and a particle. For the particles to scatter, they need some relative momentum
to each other. Therefore, there must be energy in the system. For three-particles in infinite volume this is
the case for E > 0, obviously. However, in finite volume the momenta are discrete. Hence the scattering
is discrete and the minimal energy is determined by the lowest possible discrete momentum p = 2π/L.
So, we expect a series of discrete states that converge to E = 0 for L→ ∞. Since there are an infinite
number of such states the continuous scattering is restored in this limit.
The other possibility is the scattering of a particle and the dimer. Similar to above, a discrete spectrum of
scattering states is expected, that converges to a continuous spectrum for infinite volume. In contrast to
above, it starts not at E = 0, but E = −Ed. The dimer has a positive binding energy, the system gains
energy by forming a dimer. This energy allows relative momenta between the dimer and the particle
even at E < 0. Consequently, we expect a discrete spectrum of scattering states that converge to −Ed for
L→ ∞.
In figure 4.1 this behaviour is hinted. For the lowest lying scattering states this can be verified. By
fitting a polynomial in 1/L the infinite volume behaviour of the states can be approximated. The fit
results in EL→∞ = −2.28 MeV ≈ −Ed for the lowest lying state. For the second and third state we
obtain EL→∞ = 0. For the fourth state we obtain EL→∞ = −2.91 MeV, which is smaller than expected.
However, for this state the calculated volume range seems to be to small to obtain the correct convergence
pattern. For the last shown state we get EL→∞ = 0. We conclude, that the scattering states converge to
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zero or −Ed, as expected. A more detailed analysis of the two kinds of scattering states can be found in
[1, 66].

4.2 Spurious poles and spurious scattering states

The problems with the spurious pole k2, caused by using the ERE outside its range of applicability,
manifest themselves in finite volume different than in infinite volume. We are interested in the finite
volume energy spectrum, as introduced in the last section at the example of the Yamaguchi model. While
the physical problems (negative residue, negative spectral density and violation of unitarity) stay, the
numerical problem (results does not converge in the number of steps of discretization) does not appear.
Compare this to section 3.1. However, a different problem appears. To see this we calculate the spectrum
for the unmodified EFT at NLO (section 2.3), where the unmodified finite volume propagator τL(k∗)
(equation (2.56)) is used. This means using the ERE (equation (3.4)) up to NLO. The propagator exhibits
the spurious pole. We consider the same values of scattering length a = 5.4164 fm and effective range
r = 1.7536 fm as resulting from the Yamaguchi model in the last section. These values result in a physical
pole of the dimer propagator at k1 = 45.69 MeV and a spurious pole at k2 = 179.37 MeV. The interaction
Z(p, q, E) is given by equation (2.44), where we choose an arbitrary1 value for the three-body force H0.
In figure 4.4 the resulting spectrum can be seen. The spectrum exhibits two clear differences to the
spectrum of the Yamaguchi model (figure 4.1):

(a) There is a new series of states, behaving like scattering states. Additional to the states converging
to zero and the physical pole, as discussed above, we find states that converge to a lower energy for
large volume L. An exponential fit shows that they converge to k22/m = 34.2 MeV. So, these states
are connected to the scattering of one particle and the spurious state. The system gains energy
by forming this spurious bound state. The energy can be transformed into relative momentum
and scattering states appear. However, as stated multiple times in this thesis, the spurious pole is
an artefact of the ERE and has no physical meaning. There is no deep two-body state in the real
system. Therefore, this additional scattering is an artefact. Consequently, in the Yamaguchi model
it can not be seen. This is exactly where the problems regarding the spurious pole as an additional
bound state manifest themselves. The method developed in the next sections must not have this
spurious scattering states.

(b) By recalculating the spectrum in higher resolution (figure 4.5) an even more critical difference to
the Yamaguchi model (or any meaningful physical theory) can be seen. The spurious scattering
states seem to merge with the other states of the spectrum. For example at L = 1.33a the lowest
spurious scattering state merges directly into (what seems to be) the shallow bound state. At
L = 1.47a this state than merges into the second spurious scattering state. This behaviour is
clearly non-physical. First, the same state has different energies for the same volume size L. For
example the merged state described above has an energy of E = −0.78 MeV, E = −0.27 MeV,
E = −0.08 MeV or E = 0.41 MeV at L = 1.45 a. This is not meaningful. Second, there is a
theoretical argument that forbids this in a physical theory, the so called avoided-level-crossing,
for example [8]. Assume we have a theory with two volume-dependent states E1(L) and E2(L).

1At this moment the aim is to show the problem, not to accurately reproduce the model. Since the EFT with the spurious
pole is unphysical, we do not focus on fine-tuning the three-body forces. When we introduce and test our non-perturbative
method this will be done for the modified EFT. The problems discussed here are not related to the choice of H0. This would
only change the infinite volume limit of the bound states.
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Further assume that the Lagrangian of the theory contains a term such that this states can interact
with each other. Let the interaction strength of it be g. Consider now a particular value of L = L′,
for which E1(L

′) = E2(L
′), if g = 0. In the vicinity of this L′, the energy is determined from the

secular equation:

det

(︃
E − E1 g H12

g H12 E − E2

)︃
= 0 , (4.4)

here, H12 stands for the matrix element of the Hamiltonian that describes the transition between
the two states and g for the strength of this transition. This equation has solutions for

E± =
1

2
(E1 − E2)±

√︃
1

4
(E1 − E2)2 + g2H2

12 . (4.5)

For g = 0 the two solutions coincide for L = L′ as expected. But for g ̸= 0 they can never be the
same. If g is small they come close to each other, but can never touch each other. By this mechanism
a level crossing is avoided. In contrast to these arguments for a physical theory, in the theory with
the spurious pole it can be: g2 < 0, due to the negative residue of the propagator at the position of
the spurious pole. This causes the non-physical level crossing seen in figure 4.5.

To summarize, using the unmodified dimer propagator τ(k∗) creates additional spurious scattering states.
The wrong sign of the residue of the corresponding pole causes non-physical merging of states. In the
context of this thesis the correct spectra and the structure of the poles of the dimer propagator are always
known. However, in general applications the amount of two-body bound states, and therefore the amount
of scattering thresholds, might be unknown. So, in this case the findings of (a) are not a clear indicator
of spurious behavior. Taking a look at figure 4.4 without knowledge of the model results (figure 4.1)
might lead to the conclusion, that there are two bound two-body subsystems at k21/m and k22/m. But a
closer look and the findings described in (b) are clear indicators that this is not the case. The merging of
the different levels will not happen in a meaningful theory. Something like this should be forbidden by
the avoided-level-crossing. This is non-physical and can be used to identify spurious scattering states
and the incorrect implementation of the dimer propagator.

4.3 Adaption of the non-perturbative method to finite volume

In the last section, we demonstrated the devastating effects of the spurious pole to the finite volume
spectrum. In this section, we will adapt the non-perturbative method, developed above in the infinite
volume, to the finite volume and thereby solve the problems caused by the pole.
We follow the same idea as before and define a new propagator similar to equation (3.25) by

τLi (k
∗) = τL(k∗)− fLi (k

∗), (4.6)

with the unmodified dimer propagator in finite volume τL(k∗) given by equation (2.56). The function
fLi (k

∗) is chosen, such that τLi (k∗) does not exhibit the spurious pole and the change of the finite volume
counterpart of the effective potentialWL(p, q, E) is a low energy polynomial, than the change can be
absorbed in a change of the renormalization prescription similar to the infinite volume case. We follow
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Figure 4.4: The spurious finite volume spectrum. Here the unmodified dimer propagator τ(k∗) which
exhibits a spurious pole at k2 = 179.37 MeV is used. This corresponds to an additional (spu-
rious) bound state at k22/m = 34.24 MeV ≈ 0.94 a in infinite volume (gray line). Compared to
the Yamaguchi spectrum, shown in figure 4.1, additional scattering states are found. They
converge to the spurious bound state.
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Figure 4.5: The spurious finite volume spectrum in higher resolution. It can be seen, that the additional
scattering states in figure 4.4 merge with the shallow bound state and other scattering
states. The expected avoided level-crossing is not present. The states can be transformed in
to each other by changing the volume size L. This is clearly non-physical and a consequence
of the negative residue of the spurious pole.
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this by the same steps, done in infinite volume. With this new propagator the Faddeev equation in finite
volume (equation (2.55)) can be re-written as

ML(p,q;E) =WL(p,q;E) +
1

L3

Λ∑︂
k

WL(p, k;E)τLi (k
∗)ML(k,q;E) ,

WL(p,q;E) = Z(p,q;E) +
1

L3

Λ∑︂
k

Z(p, k;E)fLi (k
∗)WL(k,q;E) . (4.7)

The aim is to choose fLi (k∗) such, thatWL = Z+ polynomial, as we have done in the infinite volume
case. An obvious first choice is fLi (k∗) = fi(k

∗), meaning choosing the same function fi(k∗) as in infinite
volume. But the situation in finite volume is slightly different than in infinite volume. The analysis in
section 3.2.1 is based on a perturbation of the effective potentialW (p, q, E). In infinite volume, this does
not create a problem. However, in finite volume the singularities of the one-particle exchange in the
potential Z(p, q, E) above the three-particle threshold hinders this perturbative arguments. In infinite
volume, these singularities condense to a branch cut, and are removable. In finite volume the effective
potential should be calculated non-perturbatively. While the perturbative calculation in infinite volume
can not change the pole positions, and therefore does not change the energy levels, the non-perturbatively
calculation in finite volume can change the structure of the energy levels. This is what happens. It
can be shown [81], that the singularity structure of W (p, q, E) and Z(p, q, E) is different above the
threshold. This can be understood by comparing the quantity Z(p, k, E)τL(k

∗) in the Faddeev equation
to Z(p, k, E)fi(k

∗) in the definition of the effective potential. τL(k∗) becomes zero exactly at those
energies where Z(p, q, E) is singular (i.e., at the free three-particle energies). This is a direct result of the
replacement of the branch-cut k∗ → S(k∗). S(k∗) is singular at the free three-particle energies, so τL(k∗)
is zero. Therefore, the product Z(p, k, E)τL(k

∗) is regular. A detailed analysis of this can be found in
[56]. On the other hand, fi(k∗) is a continuous function above threshold. So the product Z(p, k, E)fi(k

∗)
is singular at these energies. By writing down explicitly the matrix equation that relatesW (p, q, E) and
Z(p, q, E) in a finite volume, one can verify that the poles in Z(p, q, E), corresponding to the excited
levels, are spitted into several levels inW (p, q, E). Although this splitting is small, as fi(k∗) is small at
small momenta, the singularity structure ofW (p, q, E) and Z(p, q, E) is indeed different and replacing
W (p, q, E) by Z(p, q, E) in the quantization condition cannot be justified. Compare this discussion to
[62].
Note that this issues only appear above the three-particle threshold. Therefore, a simple solution for the
problem is to choose

fLi (k
∗) =

{︃
fi(k

∗) (k∗)2 ≥ 0 ,
0 else . (4.8)

This ensures, that the quantity Z(p, k, E)fi(k
∗) is regular above threshold and that the spurious pole

disappears in τLi (k∗). Doing so, allows to repeat the perturbative calculations for the effective potential
W (p, q, E). With this calculations one can prove that the effective potential in finite volume can be
written as

WL(p,q;E) = Z(p,q;E) + polynomial . (4.9)

Therefore, the change can be absorbed in the three-body forces as in the infinite volume case. The
calculations can be found in [62]. Here we sketch the general idea of the prove. A very useful tool in
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finite volume calculations is Poisson’s summation formula:∑︂
n∈Z

f(n) =
∑︂
m∈Z

∫︂ ∞

−∞
dtf(t)e−2πimt . (4.10)

A sum of a function f(n) over an integer n can be replaced by the sum over the Fourier transform of that
function over an other integer m. After separating the factor 2π/L from k, this can be used to re-write a
perturbative expansion of equation (4.7). Now the m = 0 terms in this new sum are exactly the infinite
volume parts discussed in section 3.2.1. This results in polynomial corrections as shown above. The other
parts are suppressed with at least exp[−Lk] and also result in a polynomial.
To summarize, the problem caused by the spurious pole can be avoided by changing the propagator
by τLi (k∗). The particular choice of fLi (k∗) given by equation 4.8 ensures that all consequences2 of this
can be absorbed in a change of the renormalization prescription. We close this section by noting, that
the choice of fLi (k∗) is not unique. Other choices are possible as long as they fit these two criteria. An
example of a different choice can be found in [62]. In the following, we show that the specific choice of
equation (4.8) is working. This will be done by comparing numerical results using this to the spectrum
of the Yamaguchi model.

4.4 Numerical test

In this section, the EFT using the finite volume version of our non-perturbative method is compared
to the finite volume spectrum of the Yamaguchi model. The model, the corresponding spectrum and a
physical interpretation of the results are given in section 4.1. The non-perturbative method is introduced
in section 4.3. The scattering length is a = 5.4164 fm and the scattering length is r = 1.7536 fm for NLO
and N2LO. At LO the scattering length is a = 4.3193 fm and the effective range is r = 0. According to
our findings3 in infinite volume we choose for the number of subtractions in the modified propagator
τLi (k

∗) (equation (4.6) and equation (4.8)) i = 2 at NLO and i = 2 at N2LO. For the S-wave potential
(equation (2.44)), the quantization condition takes the simple form of equation (2.74).
Because of the finite volume cutoff effects described below, we use a very large cutoff compared to our
infinite volume calculations. We use a cutoff Λ = 1700 MeV for NLO and N2LO. For LO those effects are
larger, we use a cutoff Λ = 2200 MeV for the LO calculations. The three-body forces are determined
in infinite volume in the same way as described in section 3.3.2. They are fine-tuned to reproduce the
quantity p cot δY of the model at p = 0.001MeV for H0 and at p = 50MeV for H2. In table 4.1 the results
for the three-body forces can be seen.

Table 4.1: The three-body forces H0 and H2. They are determined in infinite volume as described in
section 3.3.2. The results are given in units of MeV.

H0(Λ = 2200) H0(Λ = 1700) H2(Λ = 1700)

LO -2.01 NLO & N2LO 0.414 3.401

2Except the removing of the spurious pole.
3In section 3.3.5 we found as a optimal choice i = 1 at NLO. However, as also shown in this section, the choice i = 2 is not
significantly worse. By choosing i = 2 at NLO and N2LO (here it is the optimal choice) one can use the same value of the
three-body force H0 for both orders, and saves the determination of one three-body force.
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4.4.1 Cutoff effects

If a sharp cutoff Λ is used to regularize the loop integrals, or more precise, the loop sums in finite volume
calculation one has to be careful. Since the momentum is discrete in finite volume such a cutoff should
be understood as follows:

Λ ≥ |p| = 2π

L
|n|; n ∈ Z3. (4.11)

No momentum can be larger than the cutoff. But, in general, there there will be a non-zero distance
between Λ and the maximal value of the momentum |pmax|. This maximal value |pmax| is the actual
cutoff, meaning the highest possible momentum, of the theory. For this value the three-body forces have
to be fine-tuned. Also note, the value of |pmax| depends on the volume size L. If one uses Λ instead of
|pmax| to determine the three-body forces, this creates a systematic error. It will manifest itself in an
oscillation of the results. Say, we start at some volume size L with a value of |pmax| that is very close to
Λ. Now we increase the volume, due to equation (4.11) the value of |pmax| decreases and the distance to
Λ grows. Therefore, the systematic error in the results also grows. Eventually the distance becomes large
enough, so an additional value of |p| becomes possible. This will be the new |pmax| and the distance
between this and Λ is small again. The systematic error also is small again. Increasing L even more
repeats this process and the systematic error oscillates.
There are two ways of solving this problem. The first method is to calculate all possible values of |pmax|
for all considered values of L. Than determine the three-body forces for all values and use them as a
input to the quantization condition. Obviously, this is time consuming, it is done for example in [62].
The second method is to choose a very large value of the cutoff Λ. Because of the three-dimensionality
of p the distance between to different neighbouring values of |p| increases with increasing value of |p|.
This is visualized in figure 4.6 in a 2D simplification. Therefore the maximal difference between Λ and
|pmax| also decreases with increasing Λ. This leads to the effect being negligible for cutoffs large enough.
For the results shown below, we choose this method and a cutoff Λ = 1700 MeV.

4.4.2 The energy spectrum for the non-perturbative method

In figure 4.7 the results for the energy spectrum are shown. Shown are the numerical results for the EFT
at LO, NLO and N2LO. For the calculation of the NLO and N2LO results the non-perturbative method
is used. All results are compared to the spectrum of the Yamaguchi model. The Yamaguchi model and
a physical interpretation of the results are discussed in section 4.1. It can be seen, that the LO results
can describe the model only qualitatively. The EFT at LO finds scattering states, but their calculated
values deviate from the model significantly. The infinite volume behaviour of the shallow bound state
is obtained correctly, however, the finite volume correction for small values of L can not be predicted
by the EFT at LO precisely. The description of both, the scattering states and the shallow bound state
improves drastically if one uses the NLO calculations. The scattering states are predicted correctly, and
the finite volume correction to the shallow bound state is close to the model even for small values of the
volume size L. The situation further improves at N2LO. The shallow bound state is described especially
well by the N2LO results. Note that the deep bound state can not be described by the EFT at all orders
very well. This is due to the large value of the corresponding binding momentum κ.

κ =

√︂
mEdeepB ≈ 150 MeV . (4.12)
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Figure 4.6: Visualization of the decrease of the distance between neighbouring values of |p| in 2D.
Plotted are possible values of |p| in units of 2π/L. It can be seen, that the density of the
circles increases with increasing values of |p|. Note that the increasing of the density also
can be understand as a restoration of the spherical symmetry for L→ ∞.

This is larger than the break down scale Λb of the pionless EFT, which is given by the mass of the pion
mπ ≈ 140 MeV. Therefore the results of the EFT can not be trusted for such large momenta and it is
of no surprise, that the deep bound state can not be obtained precisely. We conclude, the EFT using
the non-perturbative method can describe the energy spectrum very precise as long as we are inside
the range of applicability of the EFT. Additional, the description increases order by order of the EFT as
expected. The non-perturbative method in finite volume fulfills all expectations.

4.5 Conclusion for the finite-volume case

We summarize our investigation of the spurious poles in finite volume. We have calculated the energy
spectrum of a Yamaguchi model in finite volume using the quantization condition given by equation
(2.74). We found two three-body bound states, namely a shallow and a deep bound state. We were able
to reproduce results of [21] and showed, the shallow bound state is mostly a bound state of the dimer
and a single particle. The deep bound state is a superposition of such particle-dimer state and a bound
state of three single particles. The spectrum also contains a series of scattering states. For the lowest
lying states we found that they converge either to zero or the binding energy of the dimer. They describe
the scattering of three single particles or the scattering of a particle and the dimer, respectively.
In the EFT with range corrections, meaning using the ERE at NLO in the dimer propagator, we have two
poles. The first pole k1 corresponds to the dimer in the model, while the second pole k2 is a spurious
pole. In the previous chapter we have discussed this in detail. In this chapter, we have investigated the
influence of the spurious pole to the finite volume energy spectrum. Using the unmodified propagator
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Figure 4.7: The energy spectrum in finite volume. Shown are the bound and scattering states dependent
on the volume size L. The red lines are the results of the Yamaguchi model, the purple dots
are the EFT results in LO, the black squares are the EFT result at NLO, and the gray triangles
are the results for the EFT at N2LO. The calculations at NLO and N2LO are performed by using
the non-perturbative method. We use two subtractions at NLO and N2LO. The improvement
of the description of the model is clearly seen order by order. Data provided by [81].

103



with the spurious pole results is a spurious spectrum. Besides the scattering states that converge either
to zero or the energy of the dimer k21/m, the spurious spectrum contains a series of scattering states that
converge to the two-body binding energy that is connected to the spurious pole k22/m. This incorrectly
predicts the scattering between a single particle and the spurious state. Even worse we obtained an
un-physical merging of different states. For the same volume size L the same state can have different
energies. In a meaningful theory this should be forbidden by avoided-level-crossings. Due to the negative
residue of the propagator at the position of the spurious pole, this mechanism is not present here. To
summarize, the unmodified propagator can not be used to calculate the energy spectrum and a special
method is needed.
Therefore, we have adopted the non-perturbative method, developed in infinite volume, to the case of
finite volume. This could be done by using a modified propagator τL(k∗) → τLi (k

∗) = τL(k∗)− fLi (k
∗),

where the function fLi (k∗) is the same as in infinite volume fLi (k∗) = fi(k
∗) below the three-particle

threshold and fLi (k∗) = 0 above the threshold. This separation is needed, since the poles of τL(k∗) above
threshold, that are connected to the three-particle scattering states, would lead to a non-polynomial
change in the effective potential and could therefore not be absorbed in the three-body forces. Equipped
with the modified non-perturbative method, we were able to calculate the energy spectrum in finite
volume. The spectrum obtained by the EFT at LO, NLO and N2LO describes the Yamaguchi model very
accurate and the description is improving order by order of the EFT as expected. We conclude, the
modified non-perturbative method is working in finite volume.
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5 Conclusion and outlook

In this chapter, we give a summary of our main results, namely the non-perturbative method for spurious
poles in infinite and finite volume. We discuss possible further projects and a few selected natural
extension routes of our non-perturbative method.

5.1 Conclusion

In this thesis, we have investigated bosonic three-particle systems, using pionless effective field theory
( ̸ πEFT) in the particle dimer picture. The considered systems we have an unnaturally large two-body
scattering length 1/a ∼ mlow and a naturally sized two-body effective range 1/r ∼ mhigh, where mlow

(mhigh) is the low (high) momentum scale of the EFT.
Range corrections can be included in the dimer propagator and enter at NLO of the power-counting of
the EFT. In the widely used non-perturbative or re-summarized method they lead to the following dimer
propagator in infinite volume

τ(k∗) =
1

−1/a− r/2 (k∗)2 + k∗
,

where k∗ is the magnitude of the relative momentum of the two particles of the dimer in their center-
of-mass frame. We have shown in section 3.15 that for 0 < r < a this propagator exhibits a spurious
pole at k2 ≈ r/2. The propagator has a negative residue at the pole position. We have shown that this
negative residue is directly connected to negative imaginary part of the particle-dimer phase shift (section
3.1.1). This leads to a violation of the unitarity relation of the S-matrix. The negative residue also causes
negative spectral densities, spectral densities are a positive definite quantity. Besides these un-physical
predictions, numerical calculations are not possible if the spurious pole is not treated specially. We have
discussed that the existing methods either lead to a loss of accuracy or have convergence issues in a finite
volume. Therefore we concluded that a new non-perturbative method, to deal with the spurious pole, is
needed.
In section 3.2, we have developed such a method, which can be described as follows. Exchange the dimer
propagator by

τ(k∗) → τi(k
∗) = τ(k∗)− fi(k

∗) ,

where the function fi(k∗) is the contribution of the spurious pole to the propagator, subtracted by an
expansion of τ(k∗) for small momenta compared to k2. This is given by

fi(k
∗) = − 4k2/r

(k2 − k1)((k∗)2 − k22)
− 4k2/r

(k2 − k1)k22

[︃
1 +

(k∗)2

k22
+

(k∗)4

k42
+ · · ·

]︃
.
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The index i counts the number of terms in the expansion. By doing so, we were able to ensure two
objectives. First, the new propagator is regular at the position of the spurious pole. Therefore the negative
residue does not appear. Second, we have not changed the contribution of the physical pole k1 at all.
This motivates the label non-perturbative and avoids the convergence issues expected in finite volume
for perturbative methods. We have demonstrated in section 3.2.1, that this change of the propagator can
be justified by a change in the re-normalization prescription of the three-body forces of the EFT. This
was done by proving analytically that the subtraction of fi(k∗) only leads to an additional low-energy
polynomial in an effective potential. Since the three-body forces are also a low-energy polynomial, the
additional terms can be absorbed in the corresponding coupling constants.
In the remaining part of the investigations in infinite volume, in section 3.3 we have calculated observables
using ̸ πEFT at LO, NLO, and N2LO numerically. At NLO and N2LO we have used our non-perturbative
method. We have investigated the particle-dimer phase shift δ, the quantity p cot δ, and binding energy
of three-body bound states. All these observables were compared to model calculations. The models
we considered were the Yamaguchi model and the Gauss model. The predictions of the EFT at the
different orders agreed within their corresponding error bands with the models. We also obtained that
the accuracy of the description increases order by order. To further investigate this increase we performed
an analysis based on Lepage plots [51]. All results of this fulfill the expectations. Additionally, we have
shown that our method conserves the power-counting of the EFT. This was done by doing a consistency
assessment [27].
In the last part of the investigations in infinite volume, in section 3.3.5, we have obtained the optimal
choice of subtractions i in the function fi(k∗) for a given order of the EFT. The results are i = 1 at NLO
and i = 2 at N2LO.

In the second part of the thesis, we have investigated the spurious pole in a finite cubic volume with
periodic boundary conditions. The motivation for such a volume are calculations on the lattice, for
example lattice QCD. We have used the quantization condition in finite volume [33, 34] to obtain
the volume-dependent energy spectrum. By using the unmodified re-summarized dimer propagator,
including the spurious pole, we showed in section 4.2 that the spurious pole leads to an un-physical
series of scattering states. The formalism treats the spurious pole as a physical two-body bound state.
Additionally, we obtained that some of the energy levels merged into each other. This is un-physical and
we connected this to the negative residue. By showing this un-physical behavior we have motivated the
need for a non-perturbative method also in finite volume. In the remaining part of the thesis, we adapted
the non-perturbative method developed in infinite volume to finite volume. This was done in section 4.3
by changing the dimer propagator in finite volume τL(k∗) by

τL(k∗) → τLi (k
∗) = τL(k∗)− fLi (k

∗) ,

with the, compared to the infinite volume case, slightly different function fLi (k∗). It is given by

fLi (k
∗) =

{︃
fi(k

∗) (k∗)2 ≥ 0 ,
0 else .

This choice of fLi (k∗) was necessary, since otherwise the additional poles of τL(k∗), compared to τ(k∗),
would result in a non-polynomial change in an effective potential above the three-body threshold
(k∗)2 < 0. Therefore it could not be absorbed in the three-body forces. This would lead to incorrect
predictions of the physical scattering states. However, by using fLi (k∗), and our non-perturbative method
in the quantization condition, we were able to calculate the energy spectrum in section 4.4.2. The ob-
tained spectrum did not exhibit the un-physical scattering states. The spectrum of the EFT described the
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spectrum of a Yamaguchi model precisely. Additionally, the description improves order by order of the EFT.

To conclude, we were able to develop a non-perturbative method to solve the issues caused by the
spurious pole in the re-summarized dimer propagator in infinite volume. We have shown, that this
method can accurately describe different models. The accuracy of the description improves order by
order of the EFT, and the method conserves the internal consistency of an EFT. In the second part, we
could extend this method to the finite volume and calculate the energy spectrum correctly.

5.2 Outlook

We finish the thesis by discussing possible further projects and extensions of our non-perturbative method.
In this thesis, we have considered range corrections. A natural next step is to include higher orders in the
ERE. The next order is proportional to the shape parameter P . Corrections due to the shape parameter
enter at N3LO of the EFT. By performing a similar re-summation, as for the range corrections, the dimer
propagator can be extended to higher-order easily, it reads

τ(k∗) =
1

−1/a− r/2 (k∗)2 + P (k∗)4 + k∗
.

This comes with the same downside as the range correction. The denominator of the propagator is a
polynomial of order four. The propagator can exhibit up to three spurious poles, k2, k3 and k4. It might
be interesting to investigate if the non-perturbative method, developed in this thesis, can be expanded to
higher orders. A possible approach could be to exchange the propagator by

τ(k∗) → τi(k
∗) = τ(k∗)− f2i (k

∗)− f3i (k
∗)− f4i (k

∗) ,

with functions f2,3,4i (k∗) similar to fi(k∗) for each spurious pole. To investigate whether this can be done,
the analytical and numerical calculations performed in this thesis have to be repeated for this situation. It
is not a priory clear if the change due to the different f2,3,4i (k∗) will also lead to a low-energy polynomial
for the potential.

In the Faddeev equation, we have exchanged the momentum dependent three-body force at N2LO by
a energy dependent three-body force. At this order it was shown in [5] that this leads to the same
physics up to higher orders of the EFT. In [25] it was assumed, that this exchange can also be done for
higher-order three-body forces. However, a strict prove of this is still missing and is an interesting further
project.

So far, we have only considered bosons. An additional interesting extension of the method is to use it for
fermionic systems, especially for nucleons. To do so, the quantization condition in finite volume [33, 34]
and their projection on the irreducible representations of the cubic group [21] has to be re-derived for
nucleons at LO. In a second step, this could be extended to NLO by using the non-perturbative propagator.

Of further interest is the extension to larger momenta. For momenta p ∼ mπ ̸ πEFT can not be used any
longer. In the region of this momenta pions have to be included explicitly. This means using chiral EFT
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instead of ̸ πEFT. An intriguing question is if and how the spurious poles manifest in such systems and if
our method can be applied there.

Finally, we have analyzed our method by comparing it to different models. However it would be beneficial
to apply the non-perturbative method to investigate real lattice data.
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6 Appendix

6.1 Details of calculations for the effective potential

In this part of the appendix we show additional details of the calculation for the effective potential. The
calculation in the last step of equation (3.44) is shown. The integral can be modified by adding and
subtracting the following term:

Ipole,∞e0 =
−1

3πip
ln

[︄
(x− x0) + i

√︄
4A2

p2
− (x− x0)2 − iϵ

]︄ ⃓⃓⃓⃓1
0

=
−1

6πip
ln

⎡⎣(x− x0) + i
√︂

4A2

p2
− (x− x0)2 − iϵ

(x− x0)− i
√︂

4A2

p2
− (x− x0)2 − iϵ

⎤⎦ ⃓⃓⃓⃓1
0

+
1

6πip
ln

[︃
(x− x0)

2 +
4A2

p2
− (x− x0)

2 − iϵ

]︃ ⃓⃓⃓⃓1
0

,

(6.1)

whereby the subtracted term was included in the logarithm of the first part and the third binomial
formula was used for the second term. The second term can be expanded in the energy as a polynomial
and therefore we drop it.

Ipole,∞e0 =
−1

6πip
ln

⎡⎣(x− x0) + i
√︂

4A2

p2
− (x− x0)2 − iϵ

(x− x0)− i
√︂

4A2

p2
− (x− x0)2 − iϵ

⎤⎦ ⃓⃓⃓⃓1
0

+ polynomial

=
−1

6πip

⎛⎝ln

⎡⎣ p
2(1− x0) + i

√︂
−mE + 3

4p
2 − iϵ

p
2(1− x0)− i

√︂
−mE + 3

4p
2 − iϵ

⎤⎦− ln

[︃−p
2x0 − ρ

−p
2x0 + ρ

]︃⎞⎠+ · · ·

=
−1

6πip
ln

⎡⎣ p
2(1−

2(p2−mE+ρ2)
p2

) + i
√︂

−mE + 3
4p

2 − iϵ

p
2(1−

2(p2−mE+ρ2)
p2

)− i
√︂

−mE + 3
4p

2 − iϵ

⎤⎦+ polynomial

=
−1

6πip
ln

⎡⎢⎣1− 5
4
p2

ρ2
+ i p

ρ2

√︂
−mE + 3

4p
2 − iϵ− ρ2

p2

(︂
i p
ρ2

√︂
−mE + 3

4p
2 − iϵ

)︂2
1− 5

4
p2

ρ2
− i p

ρ2

√︂
−mE + 3

4p
2 − iϵ− ρ2

p2

(︂
i p
ρ2

√︂
−mE + 3

4p
2 − iϵ

)︂2
⎤⎥⎦+ · · ·

=
−1

6πip

−2i p
ρ2

√︂
−mE + 3

4p
2 − iϵ

1 + 5
4
4
3mE

+ · · ·

=
1

4π

1

k22

√︃
−mE +

3

4
p2 − iϵ+ · · ·+ polynomial .

(6.2)

In the second to last step the logarithm was expanded in the root term.
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6.2 The normalization for the scattering amplitude

In this appendix we discuss the normalization of the scattering amplitudes. After a review of the K-matrix
formalism we derive the normalization for the various amplitudes used in this thesis.

6.2.1 The K-matrix formalism

In this part of the appendix we introduce briefly, how the normalization of the scattering amplitudes can
be calculated. Therefore we use the so called ’K-matrix formalism’ [6]. By normalization we mean the
quantity N in the phase-shift parameterization of the scattering amplitude:

M(p, p, Ep) = N
1

p cot δ − ip
. (6.3)

Let a general form of a Faddeev equation in S-wave be

M(p, q, E) = Z(p, q, E) +

∫︂ Λ

0
dk
f(p, k, E)

k − q − iϵ
Z(p, k, E)M(k, q, E), (6.4)

with some ’propagator’ f(p, k, E). To simplify the notation we drop the energy-dependence for the rest
of this section. By using the Sokhotski-Plemelj theorem (equation (3.31)) the contribution of the pole
can be separated:

M(p, q) =Z(p, q) + P
∫︂ Λ

0
dk
f(p, k)

k − q
Z(p, k)M(k, q)

+ iπf(p, q)Z(p, q)M(q, q),

(6.5)

with the principal value integral P. Subsequently, we introduce a matrix K(p, q) by

K(p, q) = Z(p, q) + P
∫︂ Λ

0
dk
f(p, k)

k − q
Z(p, k)K(p, k), (6.6)

This can be written as

Z(p, q) =

∫︂ Λ

0
dk

(︃
δ(q − k)− f(p, k)

P
k − q

Z(p, k)

)︃
K(p, k)

= OK(p, q),

(6.7)

Here O is an operator acting on the matrix K(p, q). This operator includes the integral above. Conse-
quently, the last equation can be written as

O−1Z(p, q) = K(p, q), (6.8)

with the inverse O−1 of this operator. Modifying the Faddeev equation (6.5) in a similar pattern yields∫︂ Λ

0
dk

(︃
δ(q − k)− f(p, k)

P
k − q

Z(p, k)

)︃
M(p, k) = Z(p, q) (1 + iπf(p, q)M(q, q)) . (6.9)
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The first part on the left-hand side is exactly the operator O. Applying O−1 from the left on both sides,
leads to

M(p, q) = K(p, q) (1 + iπf(p, q)M(q, q)) . (6.10)

Finally, setting q = p and solving for the scattering amplitude gives

M(p, p) =
1

K−1(p, p)− iπf(p, p)
=

p
πf(p,p)

p
πf(p,p)K

−1(p, p)− ip
. (6.11)

This can be compared part by part to equation (6.3). p/(πf(k, k))K−1(p, p) is just a different parameter-
ization of the phase shift δ. And the normalization N is finally given by

N =
p

πf(p, p)
. (6.12)

So, to obtain the normalization of the Yamaguchi (Gauss) model and the EFT for the different orders, all
that has to be done is to reshape the corresponding Faddeev equation into the from of equation (6.5)
and calculate p/(πf(p, p)).

6.2.2 The normalizations for the EFT at different orders and for the different models

The EFT at LO

The propagator at LO is given by

τ(k,Eq) =
1

−1/a+
√︁
3/4(k2 − q2) + 1/a2

=
1/a+

√︁
3/4(k2 − q2) + 1/a2

3/4(q + k)(q − k)
. (6.13)

Therefore

f(q, k) =
4

π
k2τ(k,Eq)(k − q). (6.14)

And for p = k = q

f(p, p) =
4

π
k2τ(k,Eq)(k − q) =

k1
p

1

k1 − k2
≈ 16

3π

p

a

⇒ N =
3

16
a.

(6.15)

The EFT at NLO and N2LO

Since the function f(p, k, E) does not depend on Z(p, q, E) the normalizations at NLO and N2LO are
the same. We use the unmodified propagator (equation (3.2)) to determine the normalization N . The
modified differs only for large values of the momentum (compare to figure 3.3). Therefore for ptyp ∼Mlow

they lead to the same N . The propagator can be written as

τ(k,Eq) =
−2/r

(k∗ − k1)(k∗ − k2)
=

−2/r(
√︁

3/4(k2 − q2) + k21 + k1)

3/4(k + q)(k − q)(
√︁

3/4(k2 − q2) + k21 − k2)
. (6.16)
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With Eq = 3q2/4−mED. And therefore

f(q, k) =
4

π
k2τ(k,Eq)(k − q). (6.17)

For p = q = k this yields

f(p, p) =
16

3π

p

r

k1
k2 − k1

. (6.18)

Consequently the normalization is given by

N =
3

32

r

k1
(k2 − k1). (6.19)

In the limit of r/a→ 0 (and therefore k1 → 1/a) this results in

N =
3

32

r

k1

(︄
2

√︁
1− 2r/a

r

)︄
→ 3

16
a. (6.20)

So the LO result is reproduced, as expected.

The Yamaguchi model

For the normalization of the scattering amplitude in the Yamaguchi model one can use the remaining
propagator τ restY (k∗) at k = q as defined in equation (3.84). Using this leads to

f(p, p) =
1

2π2
k2τ restY (k,Eq) =

8π

3m

γ

β3
(β + γ)3. (6.21)

Here the additional factor of 1/2π2 originates from the normalization of the potential ZY (p, q, E) and
the missing (2π)3 in the normalization of the integral. Therefore, the normalization of the scattering
amplitude is given by

N =
3

8

mβ3

γ(β + γ)3
. (6.22)

The Gauss model

For the Gauss model it appears to be difficult to calculate the reduced propagator τ restG (k∗) = τG(k
∗)(k−q)

analytically. This is due to the error-functions in the propagator. A numerical approach seems to be more
appealing. By using the first term of a Laurent series the propagator can be calculated numerically.

τ restG (k∗) =

(︃
d

dq
τ−1
G (q∗)

)︃−1 ⃓⃓⃓⃓
q→k

. (6.23)

On this basis the function f(q, k) is given by

f(q, k) =
4

π
k2τ restG (k,Eq). (6.24)

For given parameters λG and Ed of the Gauss model, this gives a numerical expression for the normaliza-
tion N .
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6.3 Additional numerical results for the different models

The purpose of this appendix is to provide plots of the additional results. In figure 6.1 we show the
Lepage plots and consistency assessment for the remaining choices of the propagator τi(k∗) for the
Yamaguchi model. In figure 6.2 the results for the phase-shift for the Yamaguchi model with a higher
cutoff Λ are shown. In figure 6.3 we show the Lepage plot and the consistency assessment for the Gauss
model for a larger momentum region.
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Figure 6.1: Lepage plot (above) and consistency assessment (below) for the particle-dimer phase shift
in the Yamaguchi model. Shown are the first three choices of the number of terms i in the
expansion of the modified dimer propagator τi(k∗). In the ’window of opportunity’ (gray
shaded) the slope of the different choices is very similar for the same order of the EFT
expansion. The slopes can be seen in table 3.3.
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Figure 6.2: Numerical results for real (above) and imaginary (below) part of the quantity p cot δ with the
particle-dimer phase shift δ for the Yamaguchi model with the effective range r′ = 0.8768
fm. Red line: the result obtained in the Yamaguchi model; in purple dotted: the LO result; in
black dashed: the NLO result for τ1; in gray dot-dashed: the N2LO result for τ2. For the real
part the NLO and N2LO results are on top of the Yamaguchi model. All for a cutoff Λ = 600
MeV. The results for NLO, N2LO and the model are on top of each other.
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Figure 6.3: The Lepage plot (above) and the consistency assessment (below) for the Gauss potential.
This plot is the same as in figure 3.15 but with a larger momentum regime plotted. The spike
(accidental zero) for the N2LO result in the Lepage plot can be seen clearly around 30 MeV.
This is the reason why the corresponding slope (table 3.11) in the ’window of opportunity’
(gray shaded) is to large. The consistency assessment does not exhibit such a spike.
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