
Computer Science
Department
Security Engineering

Flexible Long-Term Secure
Archiving
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)
Genehmigte Dissertation von Philipp Muth aus Heidelberg
Tag der Einreichung: 4. November 2022, Tag der Prüfung: 16. Dezember 2022

1. Gutachten: Prof. Marc Fischlin
2. Gutachten: Prof. Stefan Katzenbeisser
Darmstadt, Technische Universität Darmstadt



Flexible Long-Term Secure Archiving

Accepted doctoral thesis by Philipp Muth

Date of submission: 4. November 2022
Date of thesis defense: 16. Dezember 2022

Darmstadt, Technische Universität Darmstadt

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-230837
URL: http://tuprints.ulb.tu-darmstadt.de/23083
Jahr der Veröffentlichung auf TUprints: 2023

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

Die Veröffentlichung steht unter folgender Creative Commons Lizenz:
Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/
This work is licensed under a Creative Commons License:
Attribution–ShareAlike 4.0 International
https://creativecommons.org/licenses/by-sa/4.0/

http://tuprints.ulb.tu-darmstadt.de/23083
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/


Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftlichen Version
übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht wurde. In
diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthema und Ergebnis dieses
Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter Verwendung der
angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, 4. November 2022
Philipp Muth

3



Preface

My first contact with academic research was during my master thesis at Julius-Maximilians-Universität
Würzburg. While my interest in solving hard technical problems was sparked already during my bachelor
studies, my supervisor, Prof. Jörn Steuding, managed to fully ignite my passion for research in the area of
computer science and mathematics. Whether I am overall grateful for this, cannot yet be determined with
absolut certainty.
First, I would like to thank Stefan Katzenbeisser for his supervision of this thesis and my Ph.D. studies at

TU Darmstadt. His input was most instructive in my research and shed light on many viewpoints regarding
research questions previously unnoticed.
Marc Fischlin is owed my gratitude for introducing me to the topic of security games and reduction

proofs and in that highlighting the mathematical aspects of cryptographic research. And most of all for
devoting his time to be the second examiner of my thesis and giving inspiring remarks on several technical
aspects.
To my coauthors Matthias Geihs, Tolga Arul, Johannes Buchmann and Felix Günther I am grateful for

the instructive and productive discussions we had in our joint work and the experience and knowledge
I gathered from those. Most of all I would like to thank Fabio Campos for the plethora of meetings and
conversations we had in developing our actively secure key exchange mechanism. This provided my with
some insight into hard homogeneous spaces that I would otherwise not have gotten.
I furthermore am forever grateful to Ursula Paeckel and Heike Schmitt-Spall who supported me immea-

surably throughout my studies at TU Darmstadt in taking a lot of paperwork and administratory hastle off
my hands, that I would otherwise had to have invested weeks to understand and correctly submit.
Next, Julius Hardt and Anna-Katharina Wickert must be thanked for the time they invested in our

collaboration of integrating ELSA into CogniCrypt. Julius deserves a special thanks for providing the
implementation for this undertaking, while Anna-Katharina contributed her invaluable experience with
CogniCrypt. Without them, this integration could not have succeeded.
I thank my former office mates Dominik Püllen and later on Rune Fiedler for sharing my passion in

oxygen and well-ventilated offices, much to the dismay of other colleagues. More than that, I am grateful
for the daily discussions on their and my research, thereby giving me some highly valued inspiration.
Perhaps some day you will find as much joy in coffee as I do.
And finally and most importantly, I would like to ensure Lena Ries of my eternal gratitude for putting up

with my exhaustion, moods swings, working at nightly hours and preoccupation with my research when
other priorities would have deserved more attention. Also for brewing the many first daily cups of coffee
that got me through my Ph.D. studies and many late and inspiring discussions about unsolved research
questions.

4



Contents

1 Introduction 7
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1.1 Data in Transit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1.2 Data at Rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.1.3 Computation on Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.2 Research Questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11
2.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Cryptographic Primitives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Keyed Hash Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Public Key Infrastructure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.4 Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.5 Signature Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.6 Timestamp Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.7 Vector Commitment Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.2.8 Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.9 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.2.10 Multi-party Computation Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.11 Hard Homogeneous Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.12 Key Exchange Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.13 Piecewise Verifiable Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.14 Threshold Group Action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2.2.15 Zero-Knowledge Proofs for the GAIP . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 MCELSA 31
3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.1.2 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

3.2 MCELSA: Efficient Long-Term Secure Storage Architecture for Multiple Clients . . . . . . 32
3.2.1 The Parties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.2.2 Amendments to the Secret Sharing Scheme . . . . . . . . . . . . . . . . . . . . . . 34
3.2.3 General Setup and Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.3 Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.1 Testing Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4 Information-Theoretic Security of Cryptographic Channels 47
4.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.1.1 Modeling Information-Theoretically Secure Channels . . . . . . . . . . . . . . . . . 47
4.1.2 Achieving Information-Theoretically Secure Channels . . . . . . . . . . . . . . . . 48
4.1.3 Further Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2 Security of Information-Theoretically Secure Channels . . . . . . . . . . . . . . . . . . . . 49
4.3 Composition Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.4 Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

4.4.1 Future-Secure Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.2 Unconditionally-Secure Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.3 Application in a Long-Term Storage Solution . . . . . . . . . . . . . . . . . . . . . 54

5



5 Assisted Multi-Party Computation 55
5.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.2 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.1.3 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.1 Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.2 The Helper Party Ph . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.3 Instantiations for the Helper Party . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.1 Trusted Execution Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.3.2 Unrelated External Party . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Minimal Special Purpose Hardware . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.4 SPDZ Application and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.1 Application to SPDZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.4.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6 General Access Structures for Isogeny based Cryptography 67
6.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.1.1 Our Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.1.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.2 Key Exchange Mechanism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.1 Public Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.2.2 The Adversary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.3 Communication channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.4 Key Generation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.5 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.2.6 Decapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.2.7 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.8 Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.2.9 Verifiable Secret Sharing via Decapsulation . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Actively Secure Secret Shared Signature Protocols . . . . . . . . . . . . . . . . . . . . . . 78
6.3.1 Verifiable Secret Sharing via Message Signing . . . . . . . . . . . . . . . . . . . . . 80
6.3.2 Instantiations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Generalising the Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.1 Compatibility Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.4.2 Examples of Secret Sharing Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . 81

7 Integrating ELSA into CogniCrypt 83
7.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.1.1 CogniCrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.2 Integrating ELSA into CogniCrypt . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
7.1.3 Goals of our Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.1.4 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

7.2 Terminology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.3 Integrating a Security Solution into a Code Project . . . . . . . . . . . . . . . . . . . . . . 86

7.3.1 Configuring Cryptographic Components . . . . . . . . . . . . . . . . . . . . . . . . 86
7.3.2 Automated Tree Building . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.3.3 Verifying the Correctness of the Deployment . . . . . . . . . . . . . . . . . . . . . 89
7.3.4 Generating Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.5 Distributed Security Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.6 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.4 Integrating new Security Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.5 Importing Cryptographic Components and Implementations . . . . . . . . . . . . . . . . . 93

8 Conclusions and Outlook 95

Bibliography 97

6



1 Introduction

1.1 Motivation

Privacy and data protection have always been basic human needs in any society that makes use of written
language. From simple personal correspondence over military communication to trade secrets or medical
information, confidentiality has been of utmost importance. The implications of a leak of such sensitive
information may prove devastating, as the previous examples illustrate perfectly. Furthermore reliability,
that is, integrity and authenticitiy of information, is critical with risks reaching from annoying to lethal as
can again be seen in the previous examples.
This need for data protection has carried over from the analogue to the digital age seamlessly with the

amount of data being generated, transmitted and stored increasing steadily and containing more and more
personal details. And in regard of the developments in computational technology that recent years have
seen, such as the ongoing improvements with respect to quantum computing [4] as well as cryptoanalytical
advances, the capabilities of attackers on the security of private information have never been more distinct.
Thus the need for privacy and data protection has rarely been more dire. Data protection measures typically
fall into at least one of the following categories:

Confidentiality implies that a piece of information is only accessible to parties that are authorised. In case
of message delivery, this means that only the sender and receiver can read the sent message. For
data storage, this means that only those parties can retrieve a stored document that were intended
by the owner of the data. It goes without saying that confidentiality represents an integral part of
data security.
History holds striking occasions, in which a lack of confidentiality made all the difference. One of
the most prominent examples is the battle of Midway in 1942, prior to which the US Navy was able
to partially decrypt messages exchanged between the Japanese armed forces. They subsequently
were able to run a chosen-plaintext attack against the Japanese crypto system to confirm that the
target of a planned attack was indeed Midway and hence could successfully defend their base [69].

Integrity of data says that the data cannot be altered or falsified without the tampering being detected.
This includes data in transit, i.e., messages arrive at the receiver as they were sent by the sender
as well as data at rest, that is, a piece of information can be retrieved in the same state as it was
previously stored. The example of a patient’s medical record being handed to a surgeon that is
about to perform an operation said patient perfectly demonstrates the importance of data integrity.
Incorrect information may well lead to a disastrous outcome in this case.

Authenticity verifies that a message or information originates from the source that it claims to stem from.
Both confidentiality and integrity become meaningless without authenticity if a nefarious source can
inject information, that is confidential as well as untampered yet maliciously designed. The battle of
Midway once more serves as a perfect example of this.

The areas in which data protection has to be considered and implemented are various, as we coarsely
sketched above. They can in a general sense be separated into the following categories.

1.1.1 Data in Transit

Data in transit is arguably the state in which it is most vulnerable. Messages can be eavesdropped upon,
altered or simply intersected on their way from a sender to a receiver. While in early societies data in
transit could be protected by having the messenger escorted by armed guards, the problem has been
exasterbated in the modern, i.e., the digital age.
Not only has the amount of information and data being transferred steadily increased with the introduc-

tion of computers and later on the internet, but the opportunities to interfere with communications have
thereby also seen a steep rise. Today’s communication is handled by a plethora of services spanning from
traditional email over SMS to instant messaging services such as WhatsApp, Telegram and Threema. This
has made the task of protecting data in transit all the more challenging.

7



1.1.2 Data at Rest

The second area, in which data protection is essential, is data at rest. Data at rest takes many forms. This
reaches from an analogue file cabinet over a USB stick or a hard drive at someone’s home to large scale
cloud storage. In any of these instances, the data contained must be protected from unauthorised access.
Protection for data at rest concerns two aspects: First, physical access must be restricted. That is, no

unauthorised person shall be able to unlock the file cabinet or enter a data center’s server room in which
he or she has no business being in. Second, metaphysical, i.e., digital access must be considered. This is
easier said than done, since in the modern work environment almost any document to which more than
one person needs access to is stored in a remote location or cloud storage solution, that in many cases the
data owner does not even have physical control over. This introduces a great variety of attack vectors for
an attacker aiming to access data that is not intended for his eyes. The task of protecting data at rest has
therefore become more pressing than ever in recent years.

1.1.3 Computation on Data

Protection for data in transit and data at rest can in some regards be considered "old-school" scenarios, as
those existed even before virtually any piece of data, that is gathered, was stored in a digital database. With
modern technology, a third challenge has emerged: computation on data. Guaranteeing each individual
protection requirement in either of the former scenarios is a challenging task by itself. Yet combinations
thereof prove all the more difficult.
For computation, however, the challenge is an altogether different one. When computing on sensitive

data locally, protecting that data from external attackers is relatively simple. For larger and massive
datasets this task becomes more complicated. The data need not be stored on a single machine or by a
single party. Aggregating all necessary inputs to a computation and subsequently executing it in a manner
that is confidential, preserves integrity and is authenticated poses an interesting challenge. This becomes
even harder when two or more parties come together to execute a computation on their respective private
inputs. In this case the computation should be executed in a way so that, for each party, other parties
taking part in the computation do not learn its private inputs.
In conclusion, the protection of data in a modern digital environment is a multi-faceted and not at all

simple challenge.

1.2 Research Questions

From the protection needs and scenarios in which data protection has to be deployed, we derive the
following research questions:

1. How can data at rest be protected in all three aspects (confidentiality, integrity and authenticity) so
that these three goals can simultaneously be guaranteed over extensive periods of time? This includes
granting authorised parties access to the data and only those parties. In short: how must a long-term
storage solution that serves multiple clients simultaneously be designed so that it maintains all three
protection requirements with respect to data stored in it?
Long-term storage implies several challenges. First, there is confidentiality. Traditional encryption
schemes are a tried and tested method to provide confidentiality to whatever message was encrypted.
Yet virtually any viable encryption scheme is based on a cryptographic hardness assumption, i.e.,
that a specific computational problem cannot be solved efficiently with the hardware and algorithms
available at the time of usage. In a long-term storage setting, however, it cannnot be guaranteed
that these assumptions hold true perpetually. Thus other methods to ensure confidentiality have to
be found and appplied.
A similar problem arises with respect to long-term integrity. An integrity measure cannot at the
same time be unconditionally binding and unconditionally hiding, as was proven by Brassard et al.
[23]. In a long-term storage setting we must not risk leaking any information on a stored document.
Thus an integrity measure that is unconditionally binding is out of the question, leaving integrity
measures that are binding under a cryptographic hardness assumption. This implies however that
the binding property weakens over time.
An additional challenge here is therefore: How does one achieve long-term confidentiality and how
does one achieve long-term integrity in a storage architecture?

8



2. Braun et al. [26] introduced LINCOS, the first long-term storage architecture that provides confi-
dentiality as well as integrity to a stored document. Geihs et al. [62] improved upon LINCOS with
ELSA in that they enabled storing large datasets rather than single documents while maintaining
the security guarantees of LINCOS with respect to the stored data. Both their schemes consider the
long-term storage setting, that is, they are designed with storage periods of several decades in mind.
The parties engaged in an instance of these architectures have to communicate via channels that
hold secure against adversaries, the cryptoanalytical capabilities and computational power of which
increase throughout the run-time of the storage architecture.
The question hence is: How can one establish a secure private channel with respect to an attacker
that becomes more powerful over time?

3. In the majority of cases, data collection and storage is done with the intent of analysing and processing
it. What is more, in many application scenarios, the data of not just one but several parties has to
be combined for successful processing. A party may, however, want to keep its inputs to a joint
computation private so that no other party learns information regarding its inputs.
An intuitive approach for this dilemma is to agree on an external trusted party and have that party
execute the computation, distribute the results among those who provided input and delete its
knowledge. It is however very likely that such a party does not exist or the input providers cannot
agree on an external party. It is for this reason that so-called "multi-party computation protocols"
were developed. They enable a set of parties to evaluate a function on their respective private inputs
without revealing them to the other parties. While this approach is not as efficient as employing a
trusted party for the computation, it is more secure.
In many examples, the preprocessing that is executed prior to the actual computation consumes a
significant part of the total time elapsed for the execution of the protocol. We therefore arrive at
the question: How can the preprocessing phase for secret sharing based multi-party computation
protocols be sped up at without disproportionate effort and without compromising on the security
guarantees of the protocol?

4. Multi-party computation protocols enable parties to evaluate any function, that can be represented
as an appropriate circuit, on their private inputs. While this approach provides a wide variety of use
cases, a protocol tailored to the specific application achieves higher efficiency in many scenarios.
In their recent work, De Feo and Meyer [45] discussed on such scenario, that is, a key exchange
mechanism using isogeny based cryptography with a secret key which is shared in a Shamir sharing
instance. Their scheme employs a round-robin approach to have an authorised set of shareholders
execute the decapsulation protocol in an efficient manner without reconstructing the shared secret
key. They furthermore derive a signature scheme by applying the Fiat-Shamir-transform to their key
exchange mechanism, that again enables an authorised set of shareholders to sign a message using
the shared secret key without reconstructing it. While their scheme strongly indicates at providing
the most efficient solution for the specific application they consider, it only provides passive security.
That is, a misbehaving shareholders cannot be detected and a falsified decapsulation result cannot,
either.
Hence the question emerges: How can the decapsulation protocol be made actively secure, i.e., how
do we detect misbehaving shareholders while maintaining the original security guarantees? And
can the resulting key exchange mechanism be transferred into a signature scheme?

5. With ELSA, Geihs et al. [62] presented a long-term secure storage architecture that enables securely
storing large datasets in an efficient manner. The subsequent question is how to safely deploy
this in a real world application scenario. It is for that aim that CogniCrypt [75] was introduced in
2017. It is an extension to the integrated development environment Eclipse, that is designed to
assist a developer in correctly integrating cryptographic code into his or her projects. Implementing
cryptographic primitives oneself has many pitfalls. CogniCrypt aims to eliminate those by providing
a developer with the option to have cryptographic code tailored and generated to the needs of a
specific project in a safe and correct manner. It is mostly focused on integrating primitives rather than
complex combinations of those. ELSA itself cannot be considered a cryptographic primitive, yet it
combines several classes of primitives such as signature, secret sharing and commitment schemes in
each instance. CogniCrypt furthermore provides a static code analyser that can investigate whether
a piece of generated cryptographic code is used in a project in a safe manner, so that no security
risks arise from deploying it.
The question thus arises: How can a complex solution like ELSA be integrated into CogniCrypt, so
that thereby developers are enabled to integrate it in their projects with an appropriate and secure

9



choice of primitives and parameters? The challenge is furthermore to ensure that the interaction of
the schemes with each other does not inflict unforeseen vulnerabilities.

1.3 Structure

We propose a solution to research question 1 in Section 3. It extends the preexisting ELSA and accom-
modates several clients simultaneously without compromising on the security guarantees given by ELSA.
Research question 2 is discussed in Section 4. We present a channel protocol that holds secure against
adversaries that grow in computational power and cryptoanalytical capabilities over time and become
unbounded eventually. We address research question 3 in Section 5 and provide a novel approach to speed
up the preprocessing phase of any secret sharing based multi-party computation protocol. We improve
upon the approach proposed by De Feo and Meyer in Section 6 to address research question 4. And lastly,
we discuss research question 5 in Section 7 and elaborate on how to implement ELSA in the context
of CogniCrypt to provide developers with the ability to safely deploy an instance of ELSA in a software
project.

10



2 Preliminaries

2.1 Notation

Throughout this work we will use the following notations. Let n ∈ Z be an integer number. For another
integer d, we write d|n if d is a divisor of n. In several instances we will utilise the integer torus of Z mod p,
which we will denote by Zp. The ring of polynomials over Zp will be denoted by Zp [X] and the set of
polynomials f ∈ Zp [X] with degree deg(f) = k is abbreviated by Zp [X]k, whereas the polynomials with
degree at most k we denote by Zp [X]≤k.
With respect to sets we will use the following notations: for a non-negative integer n, we denote the set
{1, 2, . . . , n} by [n]. For an indexed set X = {xi}i∈I , we denote the projection onto a subset I ′ ⊂ I of the
indexset by XI′ := {xi ∈ X : i ∈ I ′}. We use the same notational convention for indexed tuples (xi)i∈I .
The cardinality of a set X, i.e., the number of elements it contains, is denoted by #X. The length of a list
L is denoted by |L|. For a list L, we denote appending an entry m by L+ = m.
We fix the following computational notations. For an algorithm A, we denote that A outputs y upon

input x by y ← A(x) orA(x)→ y. IfA is a probabilistic algorithm we instead write y ←$ A(x),A(x) $→ y
or A(x)→r y, where r denotes the randomness used in the execution of A. A scheme A consists of one
or more protocols. For a protocol Prot provided by A, denote the result of that protocol’s execution by
A.Prot(·) for the respective inputs. If the scheme A is clear from the context we may omit it. Take for
example a commitment scheme CS (we formally introduce commitment schemes in Section 2.2.1). We
denote a call to its commit protocol Commit by CS.Commit(m), where m is the message committed to.
Let X and Y be two distributions over the same domain D. We denote by ∆(X,Y ) the statistical

distance between X and Y , that is,

∆(X,Y ) :=
1

2

∑︂
d∈D

|Pr[X = d]− Pr[Y = d]| .

Throughout this work we use a security parameter λ ∈ N. It is implicitly handed to a protocol whenever
needed, that is, protocols with computational security obtain it as an argument even if we do not explicitly
denote it. Information theoretic schemes and protocols such as secret sharing schemes used in this work
do not require a security parameter.
We will in several instances make use of a function time(), which takes no argument and returns the

time that it was called upon.

2.2 Cryptographic Primitives

We now discuss the cryptographic primitives and schemes that we will use throughout this work, the
functionalities they provide and the security guarantees and requirements they entail. The following
definitions and notions are in accordance to the works [89, 58, 90] and [31].

2.2.1 Commitment Schemes

A commitment scheme enables a party to publicly commit to a message that it may later on reveal. For
that it publishes a commitment value that can be opened with a decommitment value and the message
commited to. The aim of a commitment scheme is for the message to not be altered and for the commitment
value to leak as little information regarding the message as possible. Commitment schemes are hence often
compared to locked boxes, where the message is the content, the decommitment value the key and the
filled and locked box represents the commitment value. A commitment scheme CS = (Setup,Commit,Vf)
is thus defined as follows:

Setup() $→ pk generates a public commitment key pk.
Commit(pk,m) $→ (c, d) is a (possibly) probabilistic algorithm that takes a commitment key pk and a

message m ∈M as input, whereM is a message space, and outputs a commitment value c and a
decommitment value d.

11



Vf(pk,m, c, d)→ b takes a commitment key, a message, a commitment value and a decommitment value
as input and outputs a bit b that indicates the validity of the commitment c to the message m.

Definition 1 (Correctness)
Let CS = (Setup,Commit,Vf) be a commitment scheme. We call CS correct if we have

Pr[Vf(pk,m, c, d) = 1] = 1

for any pk←$ Setup(), any message m and any (c, d)←$ Commit(pk,m).

Two security properties are to be considered with respect to a commitment scheme: hiding and binding.
The binding property means that the committing party cannot open the commitment to a different message
than it was generated to.
Definition 2 (ε-Extractable Binding)
We call a commitment scheme ε-extractable binding if, for any t1-bounded algorithm A1, there exists a
tExt-bounded algorithm Ext such that, for any t2-bounded algorithm A2, we have

Pr

⎡⎢⎣ Vf(pk,m, c, d) = 1 ∧m∗ ̸= m

Setup() $→ pk,A1(pk)→r c,

Ext(pk, r)→ m∗,A2(pk, r)→ (m, d)

⎤⎥⎦ ≤ ε(t1, tExt, t2).
A stronger notion is that of an information-theoretically binding commitment scheme, that is, a commit-

ment scheme CS = (Setup,Commit,Vf), for which for any pk←$ Setup() and any commitment value c,
there exists just and only one message m and decommitment value d, for which

Vf(pk,m, c, d) = 1

holds.
The hiding property on the other hand implies that little to no information with respect to the message

committed to can be derived from the commitment value. For a public commitment key pk, let Cpk(m)
denote the distribution of the value c in evaluating Commit(pk,m) $→ (c, d).
Definition 3 (ε-Statistical Hiding)
We call a commitment scheme ε-statistical hiding if, for any pk ← Setup() and for any pair of messages
m1,m2, we have

∆(Cpk(m1), Cpk(m2)) ≤ ε.

An even stronger notion is that of information-theoretical hidingness for a commitment scheme.
Definition 4 (Information-Theoretical Hiding)
A commitment scheme CS is information-theoretically hiding if, for any pk ←$ CS.Setup() and any two
messages m1,m2 ∈M, we have

Cpk(m1) = Cpk(m2).

That is, no information with respect to a message committed to can be derived from its commitment value.

It was proven by Brassard et al. [23] that a commitment scheme cannot be information-theoretically
hiding and information-theoretically binding at the same time. The commitment scheme by Pedersen [93]
is information-theoretically hiding. It can thus only be computationally binding.

2.2.2 Keyed Hash Functions

A keyed hash function is defined by a tuple of algorithms (K,H). The probabilistic algorithmK is executed
to generate a key k. This key is then handed to the deterministic algorithm H along with a message
m ∈ {0, 1}∗, which outputs a hash value y ∈ {0, 1}l for some fixed l ∈ N.
Definition 5 (ε-Extractable Binding)
We call a keyed hash function is ε-extractable-binding if, for any t1-bounded algorithm A1, there exists a
tExt-bounded algorithm Ext, so that for any t2-bounded algorithm A2,

PrK $→k

[︄
y = H(k, x) = H(k, x∗) ∧ x ̸= x∗

A1(k)→r y,Ext(k, r)→ x∗,A2(k, r)→ x

]︄
≤ ε(t1, tExt, t2)

holds.

12



2.2.3 Public Key Infrastructure

Several schemes in this work take a public key as a parameter for their protocols (see for example Section
2.2.5, Section 2.2.6 or Section 2.2.2).
For the ease of notation and understanding, we assume throughout this work the existence of a public

key infrastructure (PKI) that maintains the public keys necessary for the employed primitives. This PKI is
considered as an implicit parameter for our protocols. The public key will hence be omitted as a parameter
where it is appropriate.

2.2.4 Secret Sharing Schemes

A secret sharing scheme allows a dealer D to distribute a secret s from a secret space G among a set of
shareholders S = {P1, . . . , Pn}. It is defined by the protocols (Setup, Share,Reconstruct).

Setup(S,Γ, G) takes a set of shareholders S = {P1, . . . , Pn}, an access structure Γ and a secret space
G as input and fixes the sharing parameters according to its inputs. The access structure Γ ⊂ 2S

contains all authorised sets of shareholders, i.e., sets that can reconstruct a shared secret from their
combined shares. Any set S′ ⊂ S that is not authorised (S′ ̸∈ Γ) cannot reconstruct a shared secret.
Γ is called monotonous if, for any A ∈ Γ and B ⊃ A in S, we have B ∈ Γ.

Share(s) $→ {s1, . . . , sk} is executed by a dealer D. It takes a secret s ∈ G and outputs a set of
shares {s1, . . . , sk} that are assigned to the shareholders via a surjective mapping ψ : {1, . . . , k} →
{1, . . . , n}, i.e., each shareholder Pi, i = 1, . . . , n, receives all shares sj with ψ(j) = i. The mapping
ψ is induced by the access structure Γ.

Reconstruct
(︂
{si}Pϕ(i)∈S′

)︂
→ s is executed by an authorised set of shareholders S′ ∈ Γ. It takes their

shares as input and outputs the secret that the shares were produced from. If the set S′ was not
authorised, Reconstruct fails and outputs ⊥, that is, no further information on the shared secret is
obtained.

If (Setup, Share,Reconstruct) is a proactive secret sharing scheme, it also provides the protocol Reshare(s),
that renews the shares that each shareholder holds of a secret s. The old shares are thereby rendered
obsolete.

Definition 6 (Superauthorised Sets)
For a secret sharing instance S with shareholders S and access structure Γ, we call a set S′ ⊂ S superauthorised
if, for any P ∈ S′, we have S′ \ {P} ∈ Γ. We denote the set of superauthorised sets of shareholders by Γ+

S .

Remark
In a monotone access structure, any superauthorised set is also authorised.

To an unauthorised set of shareholders the shares of a shared secret should reveal little to no information
on the secret itself.

Definition 7 (ε-Statistical Hiding)
Let S be a secret sharing instance and S∗ an unauthorised set of shareholders. Let DS∗(s) denote the
distribution of the shares received by S∗, when a secret s is shared. We call S ε-statistical hiding if, for any
two secrets s, s′ ∈ G, we have

∆
(︁
DS∗(s), DS∗

(︁
s′
)︁)︁
≤ ε.

If a secret sharing scheme is information theoretically hiding, then the distributions DS∗(s) and DS∗(s′)
are identical for any unauthorised S∗ ̸∈ Γ.

Example 8 (Shamir’s secret sharing)
An instance of Shamir’s famous secret sharing scheme consists of a set of n > 0 shareholders, a secret space
Zp, where p ∈ N is a prime larger than n, and an access structure Γ = {S′ ⊂ S : #S′ ≥ t} for a threshold
t ≤ n. A secret s ∈ Zp is shared by sampling a polynomial f ∈ Zp [X]≤t−1 with f(0) = s and handing each
shareholder Pi the interpolation point f(i). Reconstruction is achieved via Lagrange interpolation, that is,

s =
∑︂

Pi∈S′

Li,S′si =
∑︂

Pi∈S′

∏︂
Pj∈S′

j ̸=i

j

j − i f(i)

13



ExpEUF-CMA
Sig (A)

(pk, sk)← Setup()

Q = {}

(m∗, σ∗)← AOSign(·)(pk)

if (m∗ ∈ Q)

return 0

else

return Vf(m∗, σ∗)

fi

OSign(m)

Q+ = m

σ ← Sign(sk,m)

return σ

Figure 2.1: Experiment ExpEUF-CMA
Sig (A)

for some authorised S′ ∈ Γ and Lagrange interpolation coefficients

Li,S′ =
∏︂

Pj∈S′

j ̸=i

j

j − i .

The superauthorised sets of shareholders are

Γ+ =
{︁
S′ ⊂ S : #S′ > t

}︁
.

2.2.5 Signature Schemes

A signature scheme is a cryptographic public key primitive defined by a triple (Setup,Sign,Vf). It enables
an owner of a secret key to generate a signature σ on a message m ∈M, whereM denotes a message
space, so that any party that knows the signer’s public key can verify the correctness of the signature with
respect to the message. More concretely, a signature scheme Sig is defined by the protocols:

Setup
(︁
1λ
)︁
$→ (pk, sk) takes the security parameter as input and outputs and appropriately sampled

public and secret key pair from a key space K.

Sign(sk,m) $→ σ is a probabilistic algorithm that takes a secret key sk and a message m from a message
spaceM and outputs a signature σ.

Vf(pk,m, σ)→ b takes the public key pk, a messagem and a signature σ as inputs and outputs a decision
bit b, indicating the validity of the signature σ with respect to m.

Definition 9 (Correctness)
We call a signature scheme correct if

Pr[Vf(pk,m, σ) = 1] = 1

holds for all (pk, sk)←$ Setup() and any m ∈M, where σ ←$ Sign(sk,m).

A party without knowledge of the secret key should not be able to provide a signature on a message that
was not originally signed with the secret key. We capture this in Experiment ExpEUF-CMA

Sig (A) (Figure 2.1).

Definition 10 (ε-Existential Unforgeability)
We say that a signature scheme Sig is ε-existentially unforgeable under chosen message attack (ε −
EUF-CMA) or ε-secure if, for any t-bounded algorithm A, we have

AdvEUF-CMA
Sig (A) := Pr

[︂
ExpEUF-CMA

Sig (A) = 1
]︂
≤ ε(t).

2.2.6 Timestamp Schemes

A timestamp scheme is a cryptographic primitive defined by a triple (Setup, Stamp,Vf) that provides a
party with the means of generating a timestamp on a message that can later on be utilised to prove the
existence of said message at the point in time the timestamp was generated.

14



ExpEUF-CMA
TS (A)

Setup()

Q = {}

(m∗, s∗, t∗)← AOStamp(·)

if ((m∗, t∗) ∈ Q)

return 0

else

return TS.Vf(m∗, (s∗, t∗))

fi

OStamp(m)

(s, t)← TS.Stamp(m)

Q+ = (m, t)

return (s, t)

Figure 2.2: Experiment ExpEUF-CMA
TS (A)

Setup() is executed by the timestamp service to initialise itself. Depending on the concrete instantiation
this may return a key or key pair to be utilised by Stamp and Vf.

Stamp(m) $→ (s, t) is executed to produce a timestamp on a message m. It outputs (s, t), where s is a
timestamp and t the time that Stamp was called upon.

Vf(m, (s, t))→ b takes a message m, a timestamp s and a time t. It outputs a decision bit b indicating
whether the timestamp was correct.

Definition 11 (Correctness)
We call a timestamp scheme TS correct if, for any message m and for any (s, t)←$ Stamp(m), we have

Pr[Vf(m, (s, t))] = 1

after TS.Setup() has been executed.

An attacker should not be able to provide a timestamp (s, t) for a message m that was not previously
stamped by the timestamp service at time t. We capture this in Experiment ExpEUF-CMA

TS (A) (Figure 2.2).
In this security game, an adversary A is given access to a stamping oracle OStamp, that upon being queried
with a messagem returns a timestamp (s, t). A eventually returns a messagem∗ and a timestamp (s∗, t∗).
If the timestamp is successfully validated with respect to m∗ and OStamp was not previously queried with
m∗, A wins Experiment ExpEUF-CMA

TS (A).

Definition 12 (ε-Existential Unforgeability)
We call a timestamp scheme ε-existentially unforgeable under chosen message attack if, for any t-bounded
adversary A, we have

AdvEUF-CMA
TS (A) := Pr

[︂
ExpEUF-CMA

TS (A) = 1
]︂
≤ ε(t).

Several methods of instantiation for a timestamp scheme have been developed over the years, one of
which is via a signature scheme such as the signature scheme derived from Schnorr’s identification scheme
[99] via the Fiat-Shamir transform [56]. We give a sketch of a timestamp scheme instantiated using a
signature scheme Sig in Figure 2.3. For that the timestamp service executes Sig.Setup() $→ (pk, sk) to
establish a key pair. To timestamp a message m, the message along with the current time t← time() is
signed via s = σ ←$ Sig.Sign(sk,m||t). The correctness of a timestamp is trivially checked by executing
Sig.Vf(pk,m||t, s).

TS.Setup()

(sk, pk)←$ Sig.Setup()
TS.Stamp(m)

t← time()

s←$ Sig.Sign(sk,m||t)
return (s, t)

TS.Vf(m, (s, t))

b← Sig.Vf(pk,m, (s, t))

return b

Figure 2.3: A timestamp service instantiation using a signature scheme

It is obvious that a timestamp scheme initialised with a signature scheme in this manner is ε−EUF-CMA
if the signature scheme is ε− EUF-CMA.

15



2.2.7 Vector Commitment Schemes

A vector commitment scheme enables a prover to commit to a vector of messages (m1, . . . ,mn) ∈ Mn

from a message spaceM and n ≤ L for some fixed L ∈ N rather than to a single message in a traditional
commitment scheme (see Section 2.2.1). A vector commitment scheme VC = (Setup,Commit,Open,Vf)
is defined by four protocols:
Setup() $→ pk generates a public commitment key pk similar to a traditional commitment scheme.
Commit(pk, (m1, . . . ,mn)) $→ (c,D) is a probabilistic algorithm that takes a commitment key pk and a

list of messages (m1, . . . ,mn) as input and outputs a pair of commitment and vector decommitment
(c,D).

Open(pk, D, i)→ d takes a commitment key pk, a vector decommitment D and an index i. It outputs a
decommitment value d for the i-th message that was used in generating D.

Vf(pk,m, c, d, i)→ b takes a commitment key pk, message m, commitment and decommitment value c
and d along with an index i and outputs a decision bit b to indicate whether d is valid decommitment
value with regards to m and c.

Definition 13 (Correctness)
We call a vector commitment schemeVC correct if, for any pk←$ VC.Setup() and for any (m1, . . . ,mn) ∈Mn

with n ≤ L, we have
Pr[VC.Vf(pk,mi, c, d, i) = 1] = 1,

where (c,D)←$ VC.Commit(pk, (m1, . . . ,mn)) and d← VC.Open(pk, D, i) for all i = 1, . . . , n.

An adversary that has knowledge of a commitment value c and a subset of decommitment values DI

should not be able to derive information with regards to those messages, for which he did not obtain the
decommitment values.
Definition 14 (ε-Statistically Hiding)
Let VC be a vector commitment scheme. We call VC ε-statistically hiding (under selective opening) if, for
any pk←$ Setup(), any n ∈ [L], any I ⊂ [n] and anyM1,M2 ∈Mn with (M1)I = (M2)I , we have

∆(CDk(M1, I),CDk(M2, I)) ≤ ε,

where, for amessage vectorM ∈Mn, a commitment (c,D)←$ VC.Commit(pk,M) andD′ =
⋃︁

i∈[n] VC.Open(pk, D, i),
CDk(M, I) denotes the random variable (c,D′

I).

The definition of ε-extractable bindingness carries over from standard commitment schemes.
Definition 15 (ε-Extractable Bindingness)
We call a vector commitment scheme VC ε-extractable binding if, for all t1-bounded algorithms A1, there
exists tExt-bounded algorithm Ext, so that, for all t2-bounded algorithms A2,

Pr

⎡⎢⎣ Vf(pk,m, c, d, i) = 1 ∧mi ̸= m :

pk←$ Setup(),A1(pk)→r c,

Ext(pk, r)→ (m1, . . . ,mn) ∈Mn,A2(pk, r)→ (m, c, d, i)

⎤⎥⎦ ≤ ε(t1, tExt, t2)
holds, where n ∈ [L].

We now present a vector commitment scheme, that can be instantiated in a ε-statistically hiding and
ε-extractable binding fashion for any fixed ε > 0. We construct the vector commitment scheme in two
steps: first, we give a set of protocols based on a keyed hash function, which is ε-extractable binding if
the hash function is. Second, we combine this extractable binding vector commitment scheme with an
ε-statistically hiding commitment scheme to obtain a vector commitment scheme that is both extractable
binding as well as statistically hiding.
Let (K,H) denote a keyed hash function. We employ H in our ε-extractable binding vector commitment

scheme to construct a Merkle tree [85]. We give the vector commitment scheme in Figure 2.4.
We combine the ε-extractable binding vector commitment scheme VC given in Figure 2.4 with an ε-

statistically hiding commitment CS to arrive at a vector commitment scheme VC′ that is both, ε-extractable
binding and ε-statistically hiding. For that we first commit to each message via the ε-statistically hiding
commitment scheme and then commit to the collection of the commitment values via the ε-extractable
binding vector commitment scheme. The resulting scheme is given in Figure 2.5.
We refer to Geihs et al.’s ELSA [62] for the precise security anaylsis of the resulting vector commitment

scheme and give their results below.

16



Setup()

k←$K()

return k

VC.Commit(k, (m1, . . . ,mn))

l← ⌈log2 n⌉
for j = 0, . . . , n− 1

hl, j ← H(k,mj+1)

endfor

for j = n, . . . , 2l − 1

hl, j ← ⊥
endfor

for i = l − 1, . . . , 0

for j = 0, . . . , 2i − 1

hi,j ← H(k, (hi+1,2j , hi+1,2j+1))

endfor

endfor

c← H(k, (l, h0,0))

D ← (hi,j)i=0,...,l;j=0,...,2i−1

return (c,D)

VC.Open(k, D, i∗)

(hi,j)i=0,...,l;j=0,...,2i−1 ← D

al ← i∗

for i′ = l, . . . , 1

gi′ ← hi′,ai′+2(ai′+1 mod 2)−1

ai′−1 ←
⌊︂ai′

2

⌋︂
endfor

d← (g1, . . . , gl)

return d

VC.Vf(k,m, c, d, i∗)

(g1, . . . , gl)← d

al ← i∗

hl ← H(k,m)

for i = l, . . . , 1

if ai mod 2 = 0

bi ← (hi, gi)

else

bi ← (gi, hi)

fi

hi−1 ← H(k, bi)

ai−1 ←
⌊︂ai
2

⌋︂
endfor

c′ ← H(k, (l, h0))

return (c == c′)

Figure 2.4: An ε-extractable binding vector commitment scheme

VC′.Setup()

k1 ←$ CS.Setup()
k2 ←$ VC.Setup()
k← (k1, k2)

return k

VC′.Commit(k, (m1, . . . ,mn))

(k1, k2)← k

for i = 1, . . . , n

(ci, di)←$ CS.Commit(k1,mi)

endfor(︁
c,D′)︁←$ VC.Commit(k2, (c1, . . . , cn))

D ←
(︁
((c1, d1) , . . . , (cn, dn)) , D

′)︁
return (c,D)

VC′.Open(k, D, i)

(k1, k2)← k(︁
((c1, d1) , . . . , (cn, dn)) , D

′)︁← D

d′ ← VC.Open
(︁
k2, D

′, i
)︁

d←
(︁
ci, di, d

′)︁
return d

VC′.Vf(k,m, c, d, i)

(k1, k2)← k(︁
ci, di, d

′)︁← d

b1 ← CS.Vf(k1,m, ci, di)

b2 ← VC.Vf
(︁
k2, ci, c, d

′, i
)︁

return (b1 ∧ b2)

Figure 2.5: An ε-extractable binding and ε-statistically hiding vector commitment scheme

17



Lemma 16
The vector commitment scheme detailed in Figure 2.4 is correct.

Theorem 17
If the commitment scheme CS is correct and the vector commitment scheme VC in Figure 2.5 is correct, then
VC′ is correct.

Theorem 18
If the commitment scheme CS in Figure 2.5 is ε-statistically hiding, then the vector commitment scheme VC′

is L · ε′-statistically hiding, where L is the the maximum number of messages that can be committed to.

Lemma 19
If the keyed hash function (K,H) in Figure 2.4 is ε-extractable binding, then VC is ε′-extractable binding,
where

ε′(t1, tExt, t2) = 2L · ε
(︃
t1 +

tExt
L
,
tExt
L
, t2

)︃
.

Theorem 20
If CS and VC in Figure 2.5 are ε-extractable binding, then VC′ is ε′-extractable binding, where

ε′(t1, tExt, t2) = L · ε
(︃
t1 +

tExt
L
,
tExt
L
, t2

)︃
.

2.2.8 Channels

A channel is defined by four protocols Init, OTKey, Send and Recv. Init is executed as an intialisation step
in which some shared key material KI is generated, usually for authentication purposes, and the sender’s
and receiver’s states are initialised. The OTKey protocol lets the sender and receiver generate fresh key
material, for example through authenticated quantum key distribution (QKD), to be used only once and in
a pre-determined sequence (e.g., the order they are established in QKD). We do not specify in our abstract
model how the generation of fresh key material is accomplished. Finally, the Send and Recv protocols
allow to process data for the communication.
More formally, a channel Ch = (Init,OTKey,Send,Recv) with associated sending and receiving state

space SS , respectively SR, message spaceM ⊆ {0, 1}≤M for some maximum message length M ∈ N,
initialisation key spaceKinit = {0, 1}Ninit and per-message key spaceKmsg = {0, 1}N for some key lengths
Ninit, N ∈ N, error space E with E ∩ {0, 1}∗ = ∅, consists of four efficient protocols defined as follows.

Init() $→ (KI , stS , stR) outputs an initial keyKI ∈ Kinit and initial sending and receiving states stS ∈ SS ,
respectively stR ∈ SR.

OTKey() $→ K ∈ {0, 1}N generates the next per-message key K for both parties, to be used only once.

Send(stS ,KI ,K,m) $→ (stS , c) takes a sending state stS ∈ SS , an initial key KI ∈ Kinit, a per-message
keyK ∈ Kmsg and a messagem ∈M as input and probabilisticly outputs an updated state stS ∈ SS
and a ciphertext (or error symbol) c ∈ {0, 1}∗ ∪ E .

Recv(stR,KI ,K, c)→ (stR,m) takes a receiving state stR ∈ SR, an initial keyKI ∈ Kinit, a per-message
key K ∈ Kmsg and a ciphertext c ∈ {0, 1}∗ and outputs an updated state stR ∈ SR and a message
(or error symbol) m ∈M∪ E .

Definition 21 (Correctness)
We call a channel Ch = (Init,OTKey, Send,Recv) correct if, for any i ∈ N, any (KI , stS,0, stR,0)←$ Init(),
any (K1, . . . ,Ki) ∈ (Kmsg)

i with Kj ←$ OTKey() in sequence for j = 1 to j = i, any (m1, . . . ,mi) ∈Mi,
any sequence (stS,1, c1) ←$ Send(stS,0,KI ,K1,m1), . . . , (stS,i, ci) ←$ Send(stS,i−1,KI ,Ki,mi), and
(stR,1,m

′
1)← Recv(stR,0,KI ,K1, c1), . . . , (stR,i,m

′
i)← Recv(stR,i−1,KI ,Ki, ci), it holds that

(m1, . . . ,mi) = (m′
1, . . . ,m

′
i).

The messages obtained by the receiver should coincide with those sent by the sender, that is, they
should not be altered in transmission without detection. We capture this first security notion in Experiment
ExpINT-SFCTXT

Ch (I), which can be found in Figure 2.6.

18



ExpINT-SFCTXT
Ch (I)

(KI , stS , stR)←$ Init()
K1,K2,K3, . . .←$ OTKey()

out-of-sync← false

int-broken← false

i, j ← 0

IOSend(stS ,KI ,·),ORecv(stR,KI ,·)

return int-broken

OSend (stS ,KI ,m)

i← i+ 1

(Ci, stS)← Send (stS ,KI ,Ki,m)

return Ci

ORecv (stR,KI , C)

j ← j + 1

(m, stR)← Recv (stR,KI ,Kj , C)

if (j > i or C ̸= Cj) then

out-of-sync← true

endif

if (m ̸= ⊥ and out-of-sync)
int-broken← true

endif

return ⊥

Figure 2.6: Experiment ExpINT-SFCTXT
Ch (I)

ExpIND-CPA
Ch (A)

c←$ {0, 1}
(KI , stS , stR)←$ Init()
K1,K2,K3, . . .←$ OTKey()

i← 0

c′ ← AOSend(stS ,KI ,·,·)

return c == c′

OSend (stS ,KI ,Ki,m0,m1)

assert |m0| = |m1|
i← i+ 1

(Ci, stS)← Send (stS ,KI ,Ki,mc)

return Ci

Figure 2.7: Experiment ExpIND-CPA
Ch (B)

In this game, a channel is initialised and a series of per-message keys is generated. The adversary is
then given access to a sending and a receiving oracle. The sending oracle OSend takes a sending state stS ,
an initialisation key KI and message m as input, increments the number of received queries i, updates
the sending state stS and outputs a ciphertext Ci. The receiving oracle ORecv on the other hand takes a
receiving state stR, an initialisation key KI and a ciphertext c as input. If the adversary I queries ORecv so
that c successfully decrypts and the query was put out of the order of queries to the OSend, then I wins the
game.
Definition 22 (Ciphertext Integrity)
For an adversary I, we define the advantage in Experiment ExpINT-SFCTXT

Ch (I) (Figure 2.6) as:

Advint-sfctxtCh (I) = Pr
[︂
ExpINT-SFCTXTCh (I) == true

]︂
.

The second central security notion for channels in this work is that of indistinguishability under chosen-
plaintext attacks. We capture this notion in the security game Experiment ExpIND-CPA

Ch (B) in Figure 2.7. In
this game, a challenge bit b is sampled and the channel is initiated via Init. Key material is then generated
and the adversary is given access to a sending oracle OSend. This oracle takes a sending state stS , a key KI

and messages m1 and m2 of identical length and returns a ciphertext Ci, where i denotes the number of
queries that have been handed to OSend. The adversary eventually outputs a bit b′; he wins the game if the
challenge bit b and b′ coincide.
Definition 23 (Chosen-Plaintext Security)
For a channel protocol Ch = (Init,OTKey,Send,Recv) and for an adversary A, we define the advantage

AdvIND-CPA
Ch (A) =

⃓⃓⃓⃓
Pr
[︂
ExpIND-CPA

Ch (B) == true
]︂
− 1

2

⃓⃓⃓⃓
in Experiment ExpIND-CPA

Ch (B) (Figure 2.7).
A channel protocol Ch) is called secure under chosen-plaintext attack (IND-CPA-secure) if, for any

adversary A,
AdvIND-CPA

Ch (A) = negl(λ),

i.e., the advantage of A is negligible in the implicit security parameter λ.

19



ExpIND-SFCCACh (A)
b←$ {0, 1}
(KI , stS , stR)←$ Init()
K1,K2,K3, . . .←$ OTKey()

out-of-sync← false

i, j ← 0

b′ ← AOSend(stS ,KI ,·,·),ORecv(stS ,KI ,·)()

return b == b′

OSend (stS ,KI ,m0,m1)

assert |m0| = |m1|
i← i+ 1

(Ci, stS)← Send (stS ,KI ,Ki,mb)

return Ci

ORecv (stR,KI , C)

j ← j + 1

(m, stR)← Recv (stR,KI ,Kj , C)

if (j > i or C ̸= Cj) then

out-of-sync← true

endif

if (out-of-sync and b == 0) then

return m

endif

return ⊥

Figure 2.8: Experiment ExpIND-SFCCA
Ch (A)

The CPA indistinguishability game is identical to the CCA game but does not give the adversary access
to the receiver oracle ORecv, merging the two-stage adversary into a single one. The integrity experiment
allows the adversary to see ciphertexts of chosen messages via oracle OSend, and merely checks if the
adversary manages to send a new or out-of-order ciphertext which decrypts correctly. We thus arrive at
the following result.

Proposition 24
Let Ch = (Init,OTKey, Send,Recv) be a channel protocol. If Ch is secure under chosen-ciphertext attack,
then it is also secure under chosen-plaintext attack.

The third security notion for channels, that we will discuss in this work, follows the common ones for
channels (or stateful authenticated encryption) by Bellare, Kohno and Namprempre [11]. It combines
confidentiality and integrity in a single game, following what is sometimes referred to as CCA3 security
[104]. The adversary A can repeatedly ask the sender (oracle) to encrypt one of two messages. The choice
of which message to encrypt is based on a secret bit b which the adversary tries to predict eventually. On
the receiver’s side the adversary may submit arbitrary ciphertexts C in order to learn something about the
bit b. Indeed, if the adversary manages to forge a ciphertext (decrypting to a non-error) on the receiver’s
side, either by creating a fresh valid ciphertext or by changing the order of the sender’s ciphertexts, then
we give the adversary enough information to predict b. The latter is achieved for a ciphertext forgery by
returning the encapsulated message m if b = 0, and ⊥ otherwise.
In more detail, the corresponding security game Experiment ExpIND-SFCCA

Ch (A) works as follows: The
adversary can call the sending oracle OSend about two equal-length messages m0,m1, then the sender
encapsulates mb (and updates its state stS) and returns the ciphertext. We keep track of the order of
ciphertexts by a counter i. The receiver’s oracle ORecv is more involved. When called with a ciphertext C it
first increments its counter j and then decapsulates the message and updates its state stR. There are now
various cases to distinguish, relating to the question whether the ciphertext C is a forgery or not:

• If j > i or C ̸= Cj , i.e., if this is a new ciphertext or one which has not been produced by the sender
as the i-th ciphertext before, then we say that the ciphertext sequences are not in-sync anymore.
This is captured by a flag out-of-sync.

• If we have reached an out-of-sync situation, either in this call to ORecv or an earlier one, then we
provide the adversary with the received message in case b = 0. This enforces that, for a scheme to
be secure, whenever the received ciphertext sequences goes out of sync, the output of Recv must
be ⊥, as otherwise it would be easily distinguishable from the case b = 1 always outputting ⊥.

The overall goal of the adversary is to predict b, either by distinguishing the messages encapsulated by the
sender, or by breaking integrity and learning about b through a receiver’s reply.

Definition 25
For a channel protocol Ch = (Init,OTKey, Send,Recv) and for an adversary A, define its advantage in

20



ExpSUF-CMA
M (F)

KMAC ←$MKGen()

Q← ∅

(m∗, t∗)←$ FOMAC(KMAC,·)

if Verify(KMAC,m
∗, t∗) == true

and (m∗, t∗) /∈ Q then

return 1

else

return 0

OMAC (KMAC,m)

t←$MAC (KMAC,m)

Q← Q ∪ {(m, t)}
return t

Figure 2.9: Experiment ExpSUF-CMA
M (F)

Experiment ExpIND-SFCCA
Ch (A) (Figure 2.8) as

Advind-sfccaCh (A) =
⃓⃓⃓⃓
Pr
[︂
ExpIND-SFCCACh (A) == true

]︂
− 1

2

⃓⃓⃓⃓
.

As was the case for a channel that is secure under chosen-plaintext attack, we expect the advantage for
an adversary to be negligible in the implied security parameter λ.
Definition 26 (Stateful Chosen-Ciphertext Security)
We call the channel Ch secure under chosen-ciphertext attack (IND-CCA-secure) if, for any adversary A,
the following holds.

Advind-sfccaCh (A) = negl(λ)

That is, the advantage of A is negligible in the security parameter λ.

2.2.9 Message Authentication Codes

We define message authentication codes (MAC) and their security. A MAC M = (MKGen,MAC,Verify)
with associated message spaceM consists of three algorithms.
MKGen() $→ KMAC outputs a key KMAC.
MAC(KMAC,m) $→ t probabilisticly maps a key KMAC and a message m ∈M to a tag t.
Verify(KMAC,m, t)→ b takes a key KMAC, a messagem, and a tag t as input, and outputs a decision bit b

indicating the validity of the tag t with respect to the message m.
Definition 27 (Correctness)
We call a message authentication code correct if, for any KMAC ←$ MKGen(), any m ∈ M and any
t←$MAC(KMAC,m), we have

Pr[Verify(KMAC,m, t)→ 1] = 1.

A MAC is typically used to verify that a tagged message has not been altered. It should hence on the one
hand be infeasible to find a valid tag for a previously untagged message, and on the other hand difficult to
find a different valid tag for a previously tagged message. We model this as strong unforgeability, which
follows for example for unforgeable MACs where authentication is deterministic and verification is done by
recomputing the tag and checking the result against the given tag [10].
Definition 28 (Strong Unforgeability)
For an adversary F define the advantage in Experiment ExpSUF-CMA

M (F) (Figure 2.9) as:

AdvSUF-CMA
M (F) = Pr

[︂
ExpSUF-CMA

M (F) == 1
]︂
. (2.2.1)

We say that F is q-query bounded if |Q| ≤ q in the experiment.

Note that here the adversary F may be bounded or unbounded in computation time. For unbounded F
we usually assume that the adversary can only make a single query to oracle during the attack OMAC and is
thus 1-query bounded.
Two possible instantiations which are relevant for us in this work are the HMAC algorithm which provides

strong unforgeability under reasonable assumptions about the compression function in the underlying hash
function [9, 8], and Carter-Wegman MACs which are unconditionally secure for 1-bounded adversaries
[113] and also follow the verification-through-recomputation paradigm.

21



Expdist
Sim

(︂
{xi,yi}Pi∈C

)︂
,{viewi}Pi∈C

(A)
b←$ {0, 1}
t0 ← {viewi}Pi∈C

t1 ← Sim
(︂
{xi, yi}Pi∈C

)︂
b′ ← A(tb)
return b == b′

Figure 2.10: Experiment Expdist
Sim

(︂
{xi,yi}Pi∈C

)︂
,{viewi}Pi∈C

(A)

2.2.10 Multi-party Computation Protocols

A multi-party computation (MPC) protocol is an algorithm, which enables two or more parties P1, . . . , Pn

to jointly evaluate a prescribed function on their respective inputs. In this work, we focus on secret sharing
based MPC protocols. That is, we consider protocols that evaluate arithmetic circuits Cf representing a
function

f : Fn → Fn; (x1, . . . , xn) ↦→ (y1, . . . , yn)

for a field F, where xi is a party Pi’s input and yi its output for Pi ∈ {P1, . . . , Pn}.
The execution of a secret sharing based MPC protocol is handled in two phases: the offline or prepro-

cessing phase and the online phase. In the offline phase the parties generate and share the auxiliary data
necessary for the evaluation of the circuit Cf . This includes but is not limited to the randomness used
throughout the online phase and additional shared data for the evaluation of individual gates such as
Beaver triples. The data generated in the offline phase is independent of the inputs that the parties provide
in the online phase. Therefore significant time can elapse between the execution of the offline phase and
the online phase. In the online phase, the circuit Cf is evaluated with the parties’ inputs utilising the data
generated during the offline phase. Each player receives his output according to the prespecified output
gates.
A multi-party computation protocol has two main aims: correctness and privacy. Correctness implies

that, for any input (x1, . . . , xn), the MPC protocol outputs (y1, . . . , yn) = f(x1, . . . , xn) to the engaged
parties in the online phase. Privacy means that the protocol must avoid divulging more information to a
party Pj with respect to the other parties’ inputs than Pj could otherwise derive from its input xj and the
output yj . For that, we define the view of a party Pi as its input, the randomness used in the online phase
and the messages it received, i.e.,

viewi :=
{︂
xi, (ri)j , (mi)j

}︂
.

Since the view of a party Pi contains the randomness (ri)j that Pi uses in the online phase and the
messages that it receives from the other parties, viewi is a random variable.
If a view of an unauthorised set of parties, that is indistinguishable from a real view, can be produced

from that parties’ inputs and outputs, we have perfect privacy, since no information can be derived from
the knowledge gained during the online phase.

Definition 29 (Simulatability)
We call an MPC protocol simulatable if there exists an efficient algorithm Sim that, for any unauthorised set
C ⊂ {P1, . . . , Pn}, upon input {xi, yi}Pi∈C produces an output that is perfectly indistinguishable from the
real view of C, i.e., for any adversary A, we have

Advdist
Sim

(︂
{xi,yi}Pi∈C

)︂
,{viewi}Pi∈C

(A) :=
⃓⃓⃓⃓
Pr

[︃
Expdist

Sim
(︂
{xi,yi}Pi∈C

)︂
,{viewi}Pi∈C

(A) = 1

]︃
− 1

2

⃓⃓⃓⃓
= 0.

2.2.11 Hard Homogeneous Spaces

A hard homogeneous space (HHS) is a tuple (E ,G) that consists of a set E and a group (G,⊙) equipped
with a transitive action ∗ : G × E → E . It was first discussed by Couveignes [37] in 2006. The action has
the following properties:

• Compatibility: For any g, g′ ∈ G and any E ∈ E , we have g ∗ (g′ ∗ E) = (g ⊙ g′) ∗ E.

• Identity: For any E ∈ E , i ∗ E = E holds if and only if i ∈ G is the identity element.

22



ExpGAIP(E,G)(A)
E ←$ E
g ←$ G
E′ ← g ∗ E
g′ ← A

(︁
E,E′)︁

if g == g′

return 1

else

return 0

fi

(a) Experiment ExpGAIP
(E,G)(A)

ExpPP(E,G)(A)
E ←$ E
F ←$ E
g ←$ G
E′ ← g ∗ E
F ′ ← A

(︁
E,E′, F

)︁
if F ′ == g ∗ F

return 1

else

return 0

fi

(b) Experiment ExpPP
(E,G)(A)

Figure 2.11: Experiments ExpGAIP
(E,G)(A) and ExpPP

(E,G)(A)

• Transitivity: For any E,E′ ∈ E , there exists exactly one g ∈ G such that g ∗ E = E′.
Remark (Notation)
For a HHS (E ,G) with a fixed g ∈ G, let p|#G be a fixed prime.We denote

[s]E := gs ∗ E

for all s ∈ Zp and all E ∈ E .

The following operations are assumed to be efficiently computable in a HHS (E ,G), i.e., there exist
polynomial-time algorithms to solve them:
• Group operations on G (membership, inverting elements, evaluating ⊙).
• Sampling elements of E and G.
• Testing the membership of E .
• Computing the transitive action ∗. That is, given g ∈ G and E ∈ E as input, compute g ∗ E.

Whereas the subsequent problems are assumed to be hard in a HHS (E ,G).
Problem 30 (Group Action Inverse Problem (GAIP))
Given two elements E,E′ ∈ E as input, the challenge is to provide g ∈ G with E′ = g ∗ E. We model this in
the security game Experiment ExpGAIP(E,G)(A) in Figure 2.11a. In a hard homogeneous space, the probability of
any adversary A winning Experiment ExpGAIP(E,G)(A) is assumed to be negligible in the security parameter, that
is,

Advgaip(E,G)(A) := Pr
[︂
ExpGAIP(E,G)(A) = 1

]︂
= negl(λ).

Problem 31 (Parallelisation Problem)
An instance of the Parallelisation Problem is defined by a triple (E,E′, F ) ∈ E3 with E′ = g ∗ E. The
challenge is to provide F ′ with F ′ = g ∗ F . We model this in the security game Experiment ExpPP(E,G)(A) in
Figure 2.11b. The advantage of an adversary A winning this game is assumed to be negligible in the implicit
security parameter λ, i.e.,

Advpp(E,G)(A) := Pr
[︂
ExpPP(E,G)(A) = 1

]︂
= negl(λ).

The parallelisation problem has an intuitive decisional continuation.
Problem 32 (Decisional Parallelisation Problem)
An instance of the Decisional Parallelisation Problem is defined by a base element E ∈ E and a triple
(Ea∗ , Eb∗ , Ec∗) with Ea∗ = [a∗]E, Eb∗ = [b∗]E and Ec∗ = [c∗]E. The challenge is to distinguish whether
c∗ = a∗ + b∗ mod p or c∗ ←$ Zp was randomly sampled.
The advantage of an adversary A in Experiment ExpDPP(E,G)(A) is assumed to be negligible in the implicit

security parameter λ, i.e.,

Advdpp(E,G)(A) :=
⃓⃓⃓⃓
Pr
[︂
ExpDPP(E,G)(A) = 1

]︂
− 1

2

⃓⃓⃓⃓
= negl(λ).

23



ExpDPP(E,G)(A)
b←$ {0, 1}
E ←$ E
a∗ ←$ Zp; b

∗ ←$ Zp

Ea∗ ← [a∗]E;Eb∗ ← [b∗]E

if b == 0

c∗ ← a∗ + b∗ mod p

else

c∗ ←$ Zp

fi

Ec∗ ← [c∗]E

b′ ← A(E,Ea∗ , Eb∗ , Ec∗ )

return b == b′

Figure 2.12: Experiment ExpDPP
(E,G)(A)

Remark
It is obvious that the decisional parallelisation problem reduces to the parallelisation problem, which in turn
reduces to the group action inverse problem.

2.2.12 Key Exchange Mechanisms

A key exchange mechanism is a cryptographic public key primitive defined by a triple of algorithms
(KGen,Encaps,Decaps). Its purpose is to enable two parties to establish a shared symmetric key between
them.

KGen() $→ (sk, pk) outputs a secret/ public key pair.

Encaps(pk) $→ (k, c) is a probabilistic algorithm that takes a public key as input and outputs a key k from
a key space K and a ciphertext c.

Decaps(sk, c)→ k′ takes a secret key sk and a ciphertext c as input. It outputs a key k′ or an error symbol
⊥ ̸∈ K.

Definition 33 (Correctness)
We call a key exchange mechanism K correct if, for any (sk, pk) ←$ KGen() and any (k, c) ← Encaps(pk),
we have

Pr[Decaps(sk, c) = k] = 1.

An attacker should not be able to distinguish, which key has been encapsulated, if he obtains a previously
generated ciphertext. This is captured in Experiment ExpIND-CPA

K (A).

Definition 34 (Indistinguishability under chosen-plaintext attack)
LetK = (KGen,Encaps,Decaps) be a key exchange mechanism with key spaceK. We callK IND-CPA-secure
if, for any adversary A, the advantage in Experiment ExpIND-CPA

K (A) is negligible in the security parameter
λ, i.e., we have

AdvIND-CPA
K (A) :=

⃓⃓⃓⃓
Pr
[︂
ExpIND-CPA

K (A) = 1
]︂
− 1

2

⃓⃓⃓⃓
= negl(λ).

2.2.13 Piecewise Verifiable Proofs

A piecewise verifiable proof (PVP) is a cryptographic primitive in the context of hard homogeneous spaces
and was first introduced by Beullens et al. [14]. It is defined by a tuple (Pv,Vf) and forms a compact
non-interactive zero-knowledge proof of knowledge of a witness f ∈ Zq [X] for a statement

x = ((E0, E1) , s1, . . . , sn) (2.2.2)
with statement pieces si = f(i) for i = 0, . . . , n and E1 = [s0]E0 ∈ E . A piecewise verifiable proof thus
proves knowledge of a sharing polynomial f for a secret s0 that connects E0 and E1.

24



ExpIND-CPA
K (A)

(sk, pk)←$ KGen()
(k∗0, c

∗)←$ Encaps(pk)
k∗1 ←$K
b←$ {0, 1}
b′ ← A(pk, c∗, k∗b )
return b == b′

Figure 2.13: Experiment ExpIND-CPA
K (A)

Pv(x, f) $→
(︂
π, {πi}i=1,...,n

)︂
is a probabilistic algorithm. It takes a statement x of the form (2.2.2)

and a witness f for x and outputs a proof
(︂
π, {πi}i=0,...,n

)︂
, where (π, πi) is a proof piece for the

statement piece si for 0 ≤ i ≤ n.

Vf(i, si, (π, πi))→ b takes an index i, a statement piece si and a proof piece (π, πi) as input and outputs
a decision bit b indicating the validity of the proof piece with respect to the statement piece.

LetR = {(x, f)} denote the set of all pairs (x, f), where f is a witness for the statement x. The projection
RI for some I ⊂ {0, . . . , n} denotes (xI , f).
We give the proving and verifying protocols presented by Beullens et al. [14] in Figure 2.14 and

Figure 2.15, where H denotes a hash function mapping to bits string of length λ and CS is a commitment
scheme. The verifying protocol follows the verification-through-recomputation paradigm.

Definition 35 (Completeness)
We call a PVP complete if, for any (x, f) ∈ R and(︂

π, {πi}i=0,...,n

)︂
← PVP.Pv (x, f) ,

the verification succeeds, that is,

∀j ∈ {0, . . . , n} : Pr[PVP.Vf (j, xj , (π, πj)) = true] = 1.

Definition 36 (Soundness)
A PVP is called sound if, for any adversary A, any I ⊂ {0, . . . , n} and any x, for which there exists no f with
(xI , f) ∈ RI ,

Pr[PVP.Vf(j, xj , (π, πj)) = true]

is negligible in the security parameter λ for all j ∈ I, where
(︁
π, {πi}i∈I

)︁
← A

(︁
1λ
)︁
.

Definition 37 (Zero-Knowledge)
A piecewise verifiable proof PVP is zero-knowledge if, for any I ⊂ {1, . . . , n} and any (x, f) ∈ R, there
exists a simulator Sim such that for any polynomial-time distinguisher A the advantage⃓⃓⃓

Pr
[︂
ASim(xI )

(︂
1λ
)︂
= 1
]︂
− Pr

[︂
AP (x,f)

(︂
1λ
)︂
= 1
]︂⃓⃓⃓

is negligible in the security parameter λ, where P is an oracle that upon input (x, f) returns
(︂
π, {πj}j∈I

)︂
with

(︂
π, {πj}j=0,...,n

)︂
← PVP.Pv(x, f).

We refer to [14] for the security analysis of the proving and verifying protocols given in Figure 2.14 and
Figure 2.15, respectively. In combination they state a complete, sound and zero-knowledge non-interactive
PVP. A prover can hence show knowledge of a sharing polynomial f to a secret s0 = f(0) with shares
si = f(i).

2.2.14 Threshold Group Action

Let (E ,G) be a hard homogeneous space with a fixed g ∈ G of order p. Consider furthermore a Shamir
sharing instance with secret space Zp for a prime p with shareholders P1, . . . , Pn. Let s ∈ Zp be a shared
secret, that is, each Pi holds a share si = f(i) of a sharing polynomial f with f(0) = s, i = 1, . . . , n.

25



PVP.Pv(((E0, E1) , s1, . . . , sn) , f)

for i = 1, . . . , λ

bi ←$ Zp [X]≤k−1

Êj ← [bi(0)]E0

endfor

y0, y
′
0 ←$ {0, 1}λ

C0 ← CS.Commit
(︂
Ê1|| . . . ||Êλ, y0

)︂
C′

0 ← CS.Commit
(︁
E0||E1, y

′
0

)︁
for i = 1, . . . , n

yi, y
′
i ←$ {0, 1}λ

Ci ← CS.Commit(b1(i)|| . . . ||bλ(i), yi)
C′

i ← CS.Commit
(︁
si, y

′
i

)︁
endfor

C ← (C0, . . . , Cn)

C′ ←
(︁
C′

0, . . . , C
′
n

)︁
c← (c1, . . . , cλ) = H

(︁
C,C′)︁

for i = 1, . . . , λ

rj ← bj − cjf ∈ Zp [X]≤k−1

endfor

r = (r1, . . . , rλ)

for i = 0, . . . , n

πi ← yi

endfor

π ←
(︁
C,C′, r

)︁
return

(︂
π, {πi}i=0,...,n

)︂
Figure 2.14: The protocol PVP.Pv

26



PVP.Vf(i, si, (π, πi))(︁
C,C′, r

)︁
← π

(r1, . . . , rλ)← r(︁
yi, y

′
i

)︁
← πi

if C′
i ̸= CS.Commit

(︁
si, y

′
i

)︁
return 0

fi

(c1, . . . , cλ)← H
(︁
C,C′)︁

if i == 0

(E0, E1)← si

else

xi ← si ∈ ZN

fi

if i == 0

for i = 1, . . . , λ

Ẽj ← [rj(0)]Ecj

endfor

return C0 == CS.Commit
(︂
Ẽ1|| . . . ||Ẽλ, y0

)︂
else

return Ci == CS.Commit(r1(i) + c1xi|| . . . ||rλ(i) + cλxi, yi)

fi

Figure 2.15: The protocol PVP.Pv

TGA(E,S′)

E0 ← E

k ← 0

for Pi ∈ S′

if Ek ̸∈ E
Pi outputs ⊥ and aborts.

else

k ← k + 1

Ek ←
[︁
Li,S′ · si

]︁
Ek−1fi

endfor

return Ek

Figure 2.16: The protocol TGA

27



ZK.Pv
(︂
s, (Ei, E

′
i)i=1,...,m

)︂
for j = 1, . . . , λ

bj ←$ Zp

for i = 1, . . . ,m

Êij ← [bj ]Ei

endfor

endfor

(c1, . . . , cλ)← H
(︂
E1, E

′
1, . . . , Em, E′

m, Ê1,1, . . . , Êm,λ

)︂
for j = 1, . . . ,m

rj ← bj − cjs

endfor

π ← (c1, . . . , cλ, r1, . . . , rλ)

return π

Figure 2.17: The protocol ZK.Pv

The threshold group action presented in Figure 2.16 enables an authorised set to compute E′ = [s]E =
gs ∗ E for an arbitrary but fixed E ∈ E without reconstructing s. If it is executed successfully, we have by
the compatibility property of ∗ in (E ,G) and the repeated application of Ek ← [Li,S′si]E

k−1 the result

E#S′
=

⎡⎣ ∑︂
Pi∈S′

Li,S′si

⎤⎦E = [s]E.

2.2.15 Zero-Knowledge Proofs for the GAIP

In Section 2.2.11, we gave the definition of the group action inverse problem in a hard homogeneous
space (E ,G). We now present a non-interactive zero-knowledge proof protocol for an element s ∈ Zp

with respect to the group action inverse problem. For that, let g ∈ G with #g = p. A prover shows the
knowledge of s so that

E′
i = [s]Ei

for Ei, E
′
i ∈ E and i = 1, . . . ,m simultaneously without revealing s. To that end, the prover samples

bj ∈ Zp and computes
Êi,j ← [bj ]Ei

for i = 1, . . . ,m and j = 1, . . . , λ. He then derives challenge bits

(c1, . . . , cλ)← H
(︂
E1, E

′
1, . . . , Em, E

′
m, Ê1,1 . . . , Êm,λ

)︂
via a hash function H : E(2+λ)m → {0, 1}λ and prepares the answers rj ← bj − cjs, j = 1, . . . , λ, to the
challenge (c1, . . . , cλ). The proof π = (c1, . . . , cλ, r1, . . . , rλ) is eventually published. The proving protocol
is given in a succinct manner in Figure 2.17.
The verification protocol is straight forward: given a statement (Ei, E

′
i)i=1,...,m and a proof π =

(c1, . . . , cλ, r1, . . . , rλ), the verifier computes Ẽi,j ← [rj ]Ei if cj = 0 and Ẽi,j ← [rj ]E
′
i otherwise, for

i = 1, . . . ,m and j = 1, . . . , λ. He then generates verification bits

(c̃1, . . . c̃λ)← H
(︂
E1, E

′
1, . . . , Em, E

′
m, Ẽ1,1 . . . , Ẽm,λ

)︂
.

He accepts the proof iff (c1, . . . , cλ) = (c̃1, . . . , c̃λ). The precise verifying protocol is given in Figure 2.18.
We do not restate the proofs of completeness, soundness and zero-knowledge with respect to the security
parameter λ here, but refer to [15].

28



ZK.Vf
(︂
π, (Ei, E

′
i)i=1,...,m

)︂
(c1, . . . , cλ, r1, . . . , rλ)← π

for i = 1, . . . ,m

for j = 1, . . . , λ

if cj == 0

Ẽi,j ← [rj ]Ei

else

Ẽi,j ← [rj ]E
′
i

fi

endfor

endfor(︁
c′1, . . . , c

′
λ

)︁
← H

(︂
E1, E

′
1, . . . , Em, E′

m, Ẽ1,1, . . . , Ẽm,λ

)︂
return (c1, . . . , cλ) ==

(︁
c′1, . . . , c

′
λ

)︁
Figure 2.18: The protocol ZK.Vf

29





3 MCELSA

This chapter is based on the work [89].

3.1 Motivation

In Section 1.2, we put forward research question 1 on how to achieve long-term archiving in an efficient
and secure manner so that multiple clients can be served simultaneously.
It is self-evident that sensitive data, that is stored over extended periods of time, has a particular need

for protection. The challenge of data protection is threefold: most importantly, confidentiality for stored
data has to be guaranteed. A long-term storage solution is of little use if the stored data is not correctly
stored, thus integrity has to be ensured. And lastly, in the case of multiple clients, authenticity is essential
to verify the identity of a document’s author.
Confidentiality of a stored date means that it cannot be accessed by an unauthorised party. Traditionally

this is any party beside the data owner. Integrity with respect to stored data fundamentally means that a
stored data item cannot be altered without it being detected. Authenticity of a stored document guarantees
that the document was generated and stored by the party that it claims to be. The three aspects of data
protection must hold with respect to every individual data item, that is stored, independently of each other.
That is, if one data item becomes corrupted, it must not affect other data stored in the storage solution.
Confidentiality is most commonly achieved via encryption with schemes like RSA [98] or AES [1]. Most

encryption schemes rely on certain cryptographic assumptions to hold true, many of which will not hold
once quantum computers are available [103]. From the setting of long-term storage thus arises a new
challenge: if an attacker on the confidentiality of a long-term storage solution obtains the ciphertexts of
data items stored in the storage solution, he can store them and wait for weaknesses in the encryption
scheme to emerge or for his computing power to increase sufficiently so that the encryption can be broken.
Thus an approach that does not rely on cryptographic assumptions has to be chosen in a long-term storage
setting to ensure confidentiality throughout the time of storage, i.e., a scheme that provides information-
theoretic rather than computational confidentiality. The most prevalent method to achieve this are secret
sharing schemes. Famous examples of this are Shamir’s work of 1979 [101] and Tassa’s elaborate extension
[107] of Shamir’s scheme. There exist several long-term storage solutions that provide confidentiality
protection, an overview was given by Braun et al. [25].
Integrity on the other hand is commonly ensured using commitment schemes like Pedersen’s approach

[93] or digital signatures like [85]. For MCELSA, we choose a commitment scheme to guarantee the
integrity of a stored document. The security of these schemes holds under certain cryptographic hardness
assumptions, e.g., Pedersen’s scheme relies on the hardness of computing a discrete logarithm in a finite
group. Most integrity measures therefore must be considered insecure once quantum computers become
available or in the face of cryptoanalytical breakthroughs. An almost folkloristic result by Brassard et al.
[23] provides another challenge: a commitment scheme cannot be information-theoretically hiding as well
as information-theoretically binding. In a long-term storage setting we must prevent any integrity measure
to divulge any knowledge about the data item, the integrity of which it ensures. Thus an information-
theoretically hiding but only computationally binding commitment scheme has to be employed. This
results in the binding property of the commitment weakening over time. Any commitment to stored data
items hence has to be renewed periodically. Approaches that provide long-term integrity protection also
exist in many shapes, Vigil et al. [112] gave an overview of existing solutions.
Authenticity is typically provided by having a party sign a document upon storing it. Since virtually all

existing signature schemes are based on cryptographic assumptions, the authenticity of a document can
only be guaranteed at the time of storing. We shall, counterintuitively, apply this method in our long-term,
multi-client storage architecture MCELSA. Not only will we store documents in a fashion that maintains
long-term integrity, but also the accompanying signatures. We hence ensure that a signature cannot be
altered throughout the lifetime of a stored document. It can thus be assumed that, at any point in time, an
accompanying signature coincides with the state that it was in, when the document was stored. Thus it
ascertains the authenticity of the document, it is attached to, even after it would otherwise have to be
considered expired. This approach has previously been taken by Bayer et al. [5], who used timestamps to
effectively prolong the lifespan of digital signatures.

31



Yet long-term storage solutions that combine all three aspects of security, i.e., confidentiality, integrity
and authenticity, are scarce. Braun et al. [26] proposed LINCOS, the first long-term storage architecture
that provides long-term confidentiality and long-term integrity protection. Their main caveat is that by
design it can only protect a single data item. LINCOS can be extended so that multiple data items may
be stored, but the resource demand then equals that of an individual instance of LINCOS per document.
Furthermore, the storage demand in LINCOS increases linear in time.
Geihs et al. [62] proposed ELSA. It improves upon LINCOS in that it is capable of storing large sets of

individual data items, whose integrity is protected independently of each other. It further more optimises
the storage demand so that it is linear in time but constant in the number of stored data items. ELSA also
can only accommodate a single client, thus it cannot be used as a shared data storage for multiple clients.

3.1.1 Related Work

We base our work on Geihs et al.’s ELSA [62]. They propose a long-term secure storage architecture for
large datasets. Yet an instance of ELSA can only serve a single client. It therefore does not provide access
management for the stored documents. ELSA in turn was based on Braun et al.’s LINCOS [26], which
could only store one document at a time. Yet it was the first storage solution to simultaneously provide
long-term confidentiality and integrity. Geihs et al. further improved upon LINCOS when proposing
PROPYLA [63], a storage architecture that presents the same functionality as LINCOS to a client, yet it
hides the document access pattern from the system iself. The access pattern hiding property introduces
additional overhead of computation and communication.

LINCOS and all architectures based on it have a proactive secret sharing scheme at their core. Since
we are constructing a long-term storage solution, it is vital to employ an information-theoretic secret
sharing scheme, that is, the confidentiality of shared secret does not depend on any computational
hardness assumption. The most prevalent examples of those are Shamir’s and Blakley’s works [101] and
[18], respectively. Any secret sharing scheme employed in MCELSA has to be proactive, i.e., enable the
shareholders to update their shares of the secrets without interacting with the dealer. Both, Shamir’s
and Blakleys’ approach, can be extended to form proactive secret sharing schemes. Depending on the
instantiation, it may be suitable to employ a secret sharing scheme with a more elaborate access structure.
Several schemes have been proposed that are proactive and feature a hierarchical access structure [111,
54, 107].
We continue to apply the vector commitment scheme of [62], which is similar to that of Catalano et al.

[33], yet implements the extractable binding property established by Buldas et al. [29].

3.1.2 Our Contribution

We presentMCELSA, an evolution of ELSA. We improve upon previous works [62] in the following points.
We enhance ELSA, so that a single instance becomes capable of serving multiple clients simultaneously.
These clients can share their documents and data stored in the instance of MCELSA with each other and
dynamically grant and withdraw several levels of access privileges regarding their documents. We also
rework the protocols of ELSA to optimise the performance in terms of storage demand, so that we achieve
significantly lower demand in comparison to the corresponding number of instances of ELSA that would
be necessary to serve the same number of clients. Where many protocols of ELSA were error-prone to the
detriment of many functionalities, we correct those protocols to ensure that a client in MCELSA has the
full intended functionality at his or her disposal. We provide a refreshed benchmark implementation of
MCELSA, where each party engaged in an instance of MCELSA runs on a separate machine. This way we
ensure a more realistic testing scenario compared to ELSA’s performance measurements. As expected,
MCELSA improves on the performance of ELSA considerably.

3.2 MCELSA: Efficient Long-Term Secure Storage Architecture for Multiple Clients

We present MCELSA, our extension to ELSA, that serves multiple clients simultaneously. We illustrate
MCELSA in light of the parties engaged in an instance of it and the protocols it provides.

Notation

Let us first clarify some notational conventions that we will use throughout this chapter. We denote a
document that is to be stored in MCELSA by file. It comprises itself of a handle file.name and its content

32



Nurse

Clients

Evidence ServiceComm
itment

values

PoI’s Timestamp Service

Request timestamps

Shareholders

Shares of documentsand decommitment values

Verify tim
estamps

Figure 3.1: Interaction of parties in MCELSA

file.dat. MCELSA makes use of several cryptographic schemes. We will denote signature schemes by Sig,
vector commitment schemes by VC and timestamp schemes by TS.

MCELSA is defined by a set of protocols that are to be executed by the parties engaged in an instance of
it, that is clients, shareholders, evidence service and timestamp service. We denote each protocol by P.Prot,
where P is the party executing it and Prot is the protocols name. P falls into either of these categories:
P = MCELSA, if the protocol is executed by a client or more than one kind of party is involved in its
execution. P = ES, if the evidence service runs the protocol. And P = S if the shareholders execute it. For
an execution of a protocol Prot, we denote the set of messages sent and received throughout the execution
by view(Prot). If the protocol is evident from the context, we simply write view. Let S be a set of parties
involved in the execution of Prot. We denote their view by viewS(Prot) or viewS . This is in line with the
notation of the view of parties in a multi-party computation protocol as detailed in Section 2.2.10.

3.2.1 The Parties

There are three types of party that are engaged in an instance of MCELSA.

The Clients

An instance ofMCELSA includes a set of one or more clients, that are served simultaneously. A client’s role
entails several tasks: storing documents, retrieving stored documents, updating the access permissions
with respect to the documents said client has stored and partaking in the maintenance tasks thatMCELSA
necessitates. A client can also verify the integrity of a retrieved document utilising the integrity measures
that are applied to each document stored in MCELSA.

The Evidence Service

The task of the evidence service ES is to maintain a proof of integrity for each document, that is stored
within an instance of MCELSA. It contains the publicly available parts of the integrity measures, i.e., the
vector commitment and timestamps, that are used in MCELSA. We denote the set of all partial proofs of
integrity maintained by ES by evidence. The proof for a specific document with handle name is accessed
by evidence [name].
All three integrity measures employed byMCELSA, that is signature, timestamp and vector commitment

schemes, are public key protocols. The security of such a scheme deteriorates over time, it hence has to be
renewed in regular intervals. It is the responsibility of the evidence service to update the timestamps that
are put on the proofs of integrity and to alert the other parties engaged in an instance of MCELSA to the
expiry of a vector commitment or a signature, so that they can renew those. For that, the evidence service
maintains an initially empty list of proofs of integrity, that over time have to be renewed. We denote this
list by renewLists.

33



Should a client wish to verify the integrity of a document, then ES is to transmit the proof of integrity
to that client as part of the process.

The Shareholders

Storing the documents in a confidential manner is the main task fulfilled by the shareholders. They
furthermore keep the individual decommitment values and the signature attributed to each document,
that a client deposits in MCELSA.

MCELSA implements distributed access management. That is, access to a document is not determined
by one central entity, but several. More concretely, we have the shareholders attach an access permission
description to each share they hold. If a client requests access to a document, a shareholder only transmits
his share to the client, if the access permission is successfully verified.
The third task, that we endow the shareholders with, is the coordination of the commitment renewal

procedure. For a client to renew a commitment to a stored document, he has to retrieve it. Thus
a combination of clients has to determined, that is permitted to retrieve each document, to which a
commitment has to be renewed. For that, the shareholders maintain a list lu for each client u, that contains
all documents, that the client shall provide a renewed commitment for.

Communication

The communication between the parties in an instance of MCELSA falls into either of two categories:
confidential and non-confidential. The messages that a client exchanges with the evidence service do
not contain any knowledge of the stored document, this communication can therefore be realised with
a public channel. The evidence service and the shareholders only communicate in one direction, that is
when the evidence service informs the shareholders about commitments that are to be renewed. This
communication does not contain any confidential information, either. It can therefore also be executed
over a public channel. The communication between a client and the shareholders on the other hand must
be confidential, since it contains the shares of the documents that are being stored inMCELSA. We discuss
how such a secure private channel can be achieved in Section 4.

3.2.2 Amendments to the Secret Sharing Scheme

For MCELSA, we adapt the protocols provided by the secret sharing scheme, so that they accommodate
multiple dealers or clients simultaneously and the respective access permissions attributed to the stored
secrets and documents. We also introduce a new protocol UpdatePerm, that allows clients to amend the
access permissions with respect to individual stored documents.
A secret sharing scheme as detailed in Section 2.2.4 is defined by the protocols Setup, Share and

Reconstruct. If it is proactive, it also provides the protocol Reshare. For an instance S, we have a set of
shareholders S, an access structure Γ and a secret space G. In MCELSA, we task the shareholders with
access control to the stored documents. That is, we attach a list of access permissions to each document,
or each share respectively, that indicates whether a client is authorised to access a document according to
the query he issued. Queries inMCELSA typically entail storing a document, retrieving a stored document
or changing the access permissions with respect to one or more stored documents. We thus introduce the
following new protocols for interacting with the secret sharing scheme in MCELSA:

Setup∗(S,Γ, G) establishes the secret sharing parameters as Setup(S,Γ, G) does. Yet it additionally fixes
the layout, in which the permissions for each document are to be denoted and initialises an empty
list lu for each shareholder. Subsequent data access queries must adhere to these parameters.

Store(’spec’, h, dat, p) takes an enumerator ’spec’, that is either ’data’ or ’decom’, a handle h, a piece of
data dat to be shared and permission list p adhering to the layout specified by Setup∗ as input. If
’spec’ = ’data’, the handle h is a simple document identifier name. In the case of ’spec’ = ’decom’,
the handle is a tuple (name, i) identifying the document and the index of the decommitment to be
stored. The protocol shares dat via S .Share(dat) and sends the resulting shares to the shareholders
along with ’spec’, h and p.

Retrieve(’spec’, h) is issued by a client and takes an enumerator ’spec’ and a handle h as input. If
’spec’ = ’data’, the handle is a document identifier name. Should otherwise ’spec’ = ’decom’, then
the handle is a tuple (name, i) identifying a document name and the index i of the decommitment
value to be retrieved. Each shareholder is requested to send his share of the document name to the

34



file

MCELSA.Store
Sig.Sign

VC.Commit

S .Share

Dat
a

Sto
rag
e

MCELSA.RenewCom
S .Retrieve
VC.Commit

Maintenance

MCELSA.Retrieve
S .Retrieve

Ret
riev
al

MCELSA.Vf
S .Retrieve
Sig.Vf

VC.Vf

Integrity
Verification

Figure 3.2: The life cycle of a document file in MCELSA

issuing client. If the client is indeed authorised to access name according to the access permissions
attached to the share, the shareholder transmits his share. Otherwise the request is ignored. If the
client obtains a sufficient set of shares, he can reconstruct name via S.Reconstruct.

Reshare∗() is similar to the protocol S.Reshare in that it has the shareholders derive new, uncorrelated
shares of the stored documents. Yet we point out, that the attached permissions for each share must
remain unchanged. For MCELSA we assume the utilised secret sharing scheme to be proactive in
order to maintain the long-term confidentiality of the stored documents.

UpdatePerm
(︂
(namei, pi)i∈[n]

)︂
is a novel protocol by which we extend the secret sharing scheme to enable

the clients to change the permissions with respect to a document without having to retrieve and
share it anew. When a client issues UpdatePerm with a list of document identifiers and permissions
as input, the shareholders verify whether that client is sufficiently authorised for his query. If he
is, they replace the existing permissions attached to their shares of namei for pi, i = 1, . . . , n, and
the respective data stored with ’spec’ = ’decom’ under the handle (namei, j). The permissions are
thereby updated without retrieving and storing the documents again.

We also let the shareholders maintain an initially empty list of document identifiers for each client. This
list will be denoted by lu, where u goes over all clients. The purpose of the list will be detailed in Section
3.2.3.

3.2.3 General Setup and Protocols

We previously elaborated on the general role each party plays in an instantiation of MCELSA. We will
now discuss the concrete protocols that MCELSA is defined by.

Initialisation

To initialise an instance of MCELSA, the clients agree on a secret sharing scheme and its sharing pa-
rameters (S,Γ, G), i.e., the set of shareholders, the access structure and the secret space. Further-
more a neutral external party is determined for the role of the evidence service ES. The protocol

35



MCELSA.Setup((S,Γ, G) , esURL)

S .Setup((S,Γ, G))

ES.Setup(esURL)

Figure 3.3: The protocol MCELSA.Setup

ES.Setup(esURL)

renewLists← []

evidence← []

Figure 3.4: The protocol ES.Setup

MCELSA.Setup((S,Γ, G) , esURL) (Figure 3.3) initialises the secret sharing scheme and sets up the evi-
dence service, that is ES.renewLists and ES.evidence are set as empty lists.
We assume, that all signature, vector commitment and timestamp schemes utilised in an instance of

MCELSA, have been initialised upfront. That is, the Setup protocol for each cryptographic primitive has
been executed before usage inMCELSA and the resulting public keys have been made available in a public
key infrastructure.

Storing Documents

A client executes MCELSA.Store
(︂
(filei)i∈[n] , (pi)i∈[n] , Sig,VC,TS

)︂
(Figure 3.5) to store a list of doc-

uments (filei)i∈[n]. To do so, he first initiates an empty list filenames. He then signs a document’s
content filei.dat with his secret key via the signature scheme Sig, thereby obtaining a signature σi ←
Sig.Sign(filei.dat). The data, handle of the signature scheme and the signature are then shared among the
shareholders via S .Store(’data’, filei.name, (filei.dat, Sig, σi) , pi). The handle is added to the list of stored
documents filenames+ = filei.name. This process is repeated for all documents filei, i = 1, . . . , n.
The client then commits to the data, signature scheme handle and signatures via (c,D)← VC.Commit((filei.dat,Sig, σi)).

He then opens di ← VC.Open(D, i). This initial decommitment value is again shared viaS .Store(’decom’, (filei.name, 0) , (di, i) , pi).
Again, this process is repeated for all documents filei, i = 1, . . . , n.
As a final step, the file handles, description of the vector commitment, commitment value and handle of

the timestamp scheme are appended to evidence and the maintenance list renewLists at the evidence
service’s site via ES.AddCom(filenames,VC, c,TS) (Figure 3.6).
Upon being queried with ES.AddCom(filenames,VC, c,TS), the evidence service generates a timestamp

(s, t)← TS.Stamp(VC, c) on the description of the vector commitment scheme VC and the commitment
value c. It defines an evidence entry l = (VC, c,⊥,TS, (s, t)) and appends to the proof of integrity of each

MCELSA.Store
(︂
(filei)i∈[n] , (pi)i∈[n] , Sig,VC,TS

)︂
filenames← {}
for i = 1, . . . , n

σi ← Sig.Sign(filei.dat)

S .Store(’data’, filei.name, (filei.dat, Sig, σi) , pi)

filenames+ = filei.name

endfor

(c,D)← VC.Commit
(︂
(filei.dat, Sig, σi)i∈[n]

)︂
for i = 1, . . . , n

di ← VC.Open(D, i)

S .Store(’decom’, (filei.name, 0) , (di, i) , pi)

endfor

ES.AddCom(filenames,VC, c,TS)

Figure 3.5: The protocol MCELSA.Store

36



ES.AddCom(filenames,VC, c,TS)

(s, t)← TS.Stamp(VC, c)

l← (VC, c,⊥,TS, (s, t))
for name ∈ filenames

evidence [name] + = l

endfor

renewLists+ = l

Figure 3.6: The protocol ES.AddCom

ES.RenewTS(renewLists,VC,TS)

(c,D)← VC.Commit(renewLists)

(s, t)← TS.Stamp((VC, c))

for i ∈ [|renewLists|]
di ← VC.Open(D, i)

for name ∈ evidence

if evidence [name]|evidence[name]| .TS = renewListsi.TS

evidence [name] + = (VC, c, (di, i) ,TS, (s, t))

fi

endfor

endfor

renewLists← []

renewLists+ =
(︁
VC, c′,⊥,TS, (s, t)

)︁
Figure 3.7: The protocol ES.RenewTS

document handle name contained in filenames. And finally l is added to the list of evidence entries to be
maintained.

Timestamp Renewal

Any timestamp generated in MCELSA has to be renewed periodically. This process is carried out by the
evidence service self-sufficiently, so it does not involve any interaction between the parties. To renew the
timestamps, the evidence service decides on a vector commitment scheme VC and a timestamp scheme
TS and executes ES.RenewTS(renewLists,VC,TS). For that, ES commits to renewLists via (c,D) ←
VC.Commit(renewLists). The resulting commitment is then timestamped by (s, t)← TS.Stamp((VC, c)).
The decommitment value D is opened for each entry of renewLists, that is the evidence service computes
di ← VC.Open(D, i) and appends (VC, c, (di, i) ,TS, (s, t)) to each proof of integrity that is affected
by the expiring timestamp. To finalise the timestamp renewal procedure, renewLists is emptied and
(VC, c,⊥,TS, (s, t)) is appended.

Commitment Renewal

The commitment scheme used in the construction of the vector commitment scheme in Section 2.2.7
must – in a long-term storage setting – be chosen to be statistically hiding, else information on the stored
documents may be leaked over time. The vector commitment scheme is only computationally binding. The
binding property thus weakens over time, so that the commitments placed on the stored documents need
to be renewed periodically as the timestamps do, too. This task cannot be carried out by the evidence
service, since it does not have access to the stored documents nor to the decommitment values, that are
stored in the secret sharing instance. Since all documents have to be retrieved and recommitted to, this
task can in a majority of scenarios not be executed by one client alone. If necessary, we shall thus employ
a set of clients to renew the commitments on the stored documents. This we achieve in three steps:

1. Assume that a vector commitment (c,D) generated by a client is expiring. The evidence service
ES, having knowledge of all commitment values in MCELSA, executes MCELSA.detRecom(c) (Fig-

37



ES.detRecom(c)

L← []

for name ∈ evidence

e← evidence [name]

i← |e|
repeat

if ei.c = c ∧ ei.d = ⊥
L+ = name

fi

i← i− 1

until i = 0 ∨ ei.d = ⊥
endfor

return L

Figure 3.8: The protocol ES.detRecom

ure 3.8) to compile a list L of documents, that are affected by (c,D)’s expiry. ES then hands L to
the shareholders.

2. The shareholders have knowledge of the access permissions with respect to the stored documents.
They assign the documents in L to clients in such a manner, that the smallest set of clients is assigned
the documents, that are to be committed to, while respecting the access permissions. This also
minimises the number of commitments to maintain.
To do so, the shareholders execute MCELSA.distRecom(L) (Figure 3.9). For that, they iteratively
select the client u, that is permitted to retrieve the largest number of documents in L. They assign
permu ∩L to the client u by merging it with lu and remove permu ∩L from L, where permu denotes
the set of all documents that u may retrieve. This process is repeated until we have L = [], that is all
documents have been assigned.
Thus, for each client u, the list lu contains the identifiers of the documents, that have been assigned
to u for commitment renewal. We point out, that since MCELSA is a long-term storage solution, a
client u may exist, for which lu is not empty when MCELSA.distRecom is initiated. In Figure 3.9,
we denote the set of all clients by U .

3. Whenever a client u issues a query to the shareholders, he is first handed the list of documents lu
to which he is to recommit to and executes MCELSA.ClientRenewCom(lu,VC,TS) (Figure 3.10),
where VC and TS denote a vector commitment scheme and a timestamp scheme, respectively. For
that, he retrieves all documents in lu (by design he is permitted access to each name ∈ lu) and
their respective complete proof of integrity. These consists of the partial proofs stored at ES and the
decommitments values deposited in the secret sharing scheme. Afterwards, the client u generates a
vector commitment (c,D) on the list of gathered documents and their respective proofs of integrity.
The resulting decommitment values are then stored in S appropriately, whereas the commitment
value c is handed to ES via ES.AddCom (lu,VC, c,TS) to be appended to the proofs of integrity
associated with the documents in lu. After the client u has successfully renewed the commitments
on the documents in lu, the shareholders set lu ← [].

For the protocol in Figure 3.8 and Figure 3.10 to be executed successfully, we make the following
assumptions:

• The access permissions, that are attached to the files in L at the shareholders site, coincide. If this
were not the case, constellations can be constructed quite easily in which two shareholders arrive at
two distinct document distributions after the execution of MCELSA.distRecom.

• The clients connect to MCELSA within sufficiently short time frames to recommit to the documents
in lu before the expiry of the affected vector commitments.

• For each document stored in MCELSA, there exists a client with the permission to retrieve it.

38



MCELSA.distRecom(L)

Determine u0 ∈ U :

#
(︂
permu0

∩ L
)︂
= max

u∈U
#(permu ∩ L)

lu0+ =
(︂
permu0

∩ L
)︂

L← L \ permu0

n← 1

while L ̸= [] ∧ {u0, . . . , un−1} ̸= U

Determine un ∈ U \ {ui}n−1
i=0 :

#
(︁
permun

∩ L
)︁
= max

u∈U\{ui}
n−1
i=0

#(permu ∩ L)

lun+ = permun
∩ L

L← L \ permun

n← n+ 1

endwhile

Figure 3.9: The protocol MCELSA.distRecom

MCELSA.ClientRenewCom(lu,VC,TS)

DocIndices← {}
comCount← {}
L← []

for name ∈ lu

(dat, Sig, σ)← S .Retrieve(’data’, name)

e← ES.evidence [name]

for i ∈ [|e|]
if ei.d = ⊥
ei.d← S .Retrieve(’decom’, (name, i))

fi

endfor

L+ = (dat,Sig, σ, e)

DocIndices [name]← |L|
comCount [name]← |e|

endfor

(c,D)← VC.Commit(L)

for name ∈ lu

dname ← VC.Open(D, DocIndices [name])

index← DocIndices [name]

S .Store(’decom’, (name, index) , (dname, index) , Lindex.p)

endfor

ES.AddCom(lu,VC, c,TS)

Figure 3.10: The protocol MCELSA.ClientRenewCom

39



MCELSA.RenewShares()

S .Reshare∗()

Figure 3.11: The protocol MCELSA.RenewShares

MCELSA.Retrieve(name)

e← ES.evidence [name]

(dat, Sig, σ)← S .Retrieve(’data’, name)

for i = 1, . . . , |e|
if ei.d = ⊥

ei.d← S .Retrieve(’decom’, (name, i))

fi

endfor

E ← (Sig, σ, e)

return (dat, E)

Figure 3.12: The protocol MCELSA.Retrieve

Secret Share Renewal

In order to maintain the long-term confidentiality of the documents stored in MCELSA, the protocol
MCELSA.RenewShares (Figure 3.11) is executed periodically by the shareholders. The shares of each
stored document as well as the decommitment values attached to them are replaced with new, independent
shares. Old shares are hence rendered useless. An attacker that manages to obtain a number of shares over
time thus has to start over after the execution ofMCELSA.RenewShares. This protocol does not necessitate
the interaction with the clients nor the evidence service.

Data Retrieval

A client issues MCELSA.Retrieve(name) (Figure 3.12) to the shareholders and evidence service to retrieve
a document name and the respective proof of integrity, that has been stored in MCELSA.
First, the proof of integrity is retrieved from the evidence service. If the client is authorised, the document

along with the decommitment values stored in the secret sharing instance is also retrieved. The proof of
integrity is then completed with the decommitment values that are stored in the secret sharing instance.
The client thereby obtains the requested document and the completed proof of integrity if he is authorised
to do so.

Verification of Retrieved Documents

The long-term multi-client storage solution MCELSA not only provides confidentiality for the stored docu-
ments but also integrity. By executing MCELSA.Vf(name, tstore) (Figure 3.13), a client that is authorised
to retrieve a document name and its attached proof of integrity can verify that name in its current state
coincides with that at the time of storage, where tstore denotes the point in time when name has been
stored in MCELSA.
For that, the client first retrieves the document and its completed proof of integrity. The initial entry of

the proof of integrity is then verified against the retrieved document, that is, the client executes Sig.Vf,
VC.Vf and TS.Vf with the appropriate parameters to validate the first entry. He then goes over the
proof of integrity recursively and ensures that the vector commitment and timestamp of each entry are
correct. Should any of the checks not pass, then the document has been altered and MCELSA.Vf returns
0. Otherwise 1 is returned, since all checks passed successfully.

Lemma 38
The integrity verification protocolMCELSA.Vf returns 1, i.e., indicates successful verification iff the subprotocol
MCELSA.Vf′ returns 1.

We do not prove Lemma 38 here, since the proof is obvious and does not provide further insight.

40



MCELSA.Vf(name, tstore)
e← ES.evidence [name]

e′ ← e

for i = 0, . . . ,
⃓⃓
e′
⃓⃓
− 1

if e′i.d = ⊥
e′i.d← (d, j)← S .Retrieve(’decom’, (name, i))

fi

endfor

(dat, Sig, σ)← S .Retrieve(’data’, name)

return MCELSA.Vf′
(︁
(dat, Sig, σ, ) , tstore,

(︁
e, e′

)︁)︁

MCELSA.Vf′((dat,Sig, σ) , tstore, (e, e′))
(VC, c, (d, j) ,TS, (s, t))← e′0

t′ ← tstore

b← Sig.Vf(dat, σ) ∧ VC.Vf((dat, Sig, σ) , c, d, j) ∧ TS.Vf
(︁
(VC, c) ,

(︁
s, t′

)︁)︁
for i = 1, . . . , |e| − 1

(VC, c, (d, j) ,TS, (s, t))← e′i
if ei.d = ⊥

b = b ∧ VC.Vf(
(︂
dat,Sig, σ, e′[i−1]

)︂
, c, d, j) ∧ TS.Vf((VC, c) , (s, t))

else

b = b ∧ VC.Vf(e[i−1], c, d, j) ∧ TS.Vf((VC, c) , (s, t))

fi

endfor

return b

Figure 3.13: The protocol MCELSA.Vf

41



ExpForgeS (A)
SetupExperiment()(︁
(dat,Sig, σ) , tstore,

(︁
e, e′

)︁)︁
← AOClock,OSig,OTS,OBreak

b← MCELSA.Vf′
(︁
(dat,Sig, σ) , tstore,

(︁
e, e′

)︁)︁
∧ dat ̸∈ Qtstore

return b

SetupExperiment()

time← 0

for i = 0, . . . , |S|
Si.Setup()

endfor

OClock(t)

if t > time

time← t

fi

OTS(i,m)

assert Si.type = Timestamp

(s, t)← Si.Stamp(m)

return (s, t)

OSig(i,m)

assert Si.type = Signature

Q [time] + = m;

σ ← Si.sign(ski,m)

return σ

OBreak(i)

if time > tiBreak
return ski

else

return ⊥
fi

Figure 3.14: Experiment ExpForge
S (A)

3.2.4 Security

The main aim for ELSA [62] was to provide prolonged computational integrity and long-term statistical
confidentiality for the documents that are stored within an instance of it. We maintain this goal for
MCELSA. To that end, we restate the attacker model that was applied in ELSA. The attacker model as
well as the security proofs given in [62] transfer directly to the setting of MCELSA servicing multiple
clients simultaneously. We restate them here, too, for the sake of completeness.

Attacker Model

In the long-term storage setting, we have to consider an attacker that increases his computational capabilities
throughout the running time of an instance of MCELSA. As was the case in ELSA [62], we apply the
attacker model of Buldas et al. [29] to capture this notion. To this end, letMt denote the set of computing
machines available at a time t ∈ N0. This set monotonically increases over time, that is,Mt ⊂Mt′ for all
t ≤ t′. We collect all setsMt inM := (Mt)t∈N0

. We model an adversary against MCELSA as a series
of computing machines A = (A0,A1,A2, . . .), where At ∈ Mt for all t. The attacker A – and thereby
each At – is given access to a global clock Clock. When AClock is started, then AClock

0 is started. Any AClock
t

may advance Clock to a time t′ > t, but cannot revert the clock to an earlier point in time. When Clock is
advanced to t′, the current attacker AClock

t stops and AClock
t′ is started with the internal state of AClock

t as
input.
We say the attacker AClock is ρ-bounded if AClock

t makes at most ρ(t) computing steps for a fixed function
ρ : N→ N.

Integrity

For an attacker to successfully break the integrity measures, thatMCELSA puts in place for the documents
stored in it, he has to provide a document dat, a signature σ and a proof of integrity (e, e′) for said
document as well as a time of storage tstore, so that these successfully verify. That is, we have

MCELSA.Vf′
(︁
(dat,Sig, σ) , tstore,

(︁
e, e′

)︁)︁
= 1

yet dat has not been stored inMCELSA at the time tstore. We capture this notion in Experiment ExpForgeS (A)
(Figure 3.14). MCELSA uses several cryptographic schemes to achieve its functionality. We represent this
in Experiment ExpForgeS (A) by denoting a list S of schemes that are used in MCELSA.

Definition 39 (Integrity)
We say MCELSA is (M, ε)-unforgeable for schemes S if, for any p-bounded machine A ∈M,

Pr
[︂
ExpForgeS (A) = 1

]︂
≤ ε(p).

The adversaryA can access all signature and timestamp schemes via the respective oraclesOSig andOTS.
We attribute each scheme Si with a break time tBreak, after which it is considered insecure. If a scheme
is indeed assumed insecure, that adversary can obtain the respective secret keys via the oracle OBreak.

42



ExpDistS,L(A, F0, F1, I)

b←$ {0, 1}
SetupExperiment()

b′ ← AOClock,OMCELSA

return b == b′

SetupExperiment()

time← 0

N ← 0

MCELSA.Setup((S,Γ, G) , esURL)}

OClock(t)

if t > time

time← t

fi

OMCELSA(op, param)

if N < L

N ← N + 1

if op == Store(︂
(pi)i∈[|Fb|] ,Sig,VC,TS, T

)︂
if param ̸∈ ΓS

view← view (MCELSA.Store(︂
Fb, (pi)i∈[|F |b]

, Sig,VC,TS
)︂)︂

fi

elseif op == Retrieve

(name, T )← param

if name ∈ I ∧ T ̸∈ ΓS

view← view(MCELSA.Retrieve(name))

fi

elseif op == RenewTS

(VC,TS, T )← param

view← view(ES.RenewTS(VC,TS))

elseif op == RenewCom

(VC,TS, l, T )← param

view← view(MCELSA.ClientRenewCom(l,VC,TS))

elseif op == RenewShares

T ← param

view← view(MCELSA.RenewShares())

fi

return view{ES,T }

fi

Figure 3.15: Experiment ExpDist
S,L(A, F0, F1, I)

To advance the clock, an individual adversary At queries the oracle OClock. The adversary A wins the
security game if he can produce a triple ((dat, Sig, σ) , tstore, (e, e′)), so that MCELSA.Vf′ returns 1 upon
being handed the triple as input. We restate the security result given in [62], adapted to the notational
conventions we use in MCELSA.
Theorem 40
Let M = (Mt)t specify the computational technology available at time t ∈ N0 and let S be a set of
cryptographic schemes, where each scheme Si ∈ S is associated with a breakage time tiBreak and is εi-secure
against adversaries using computational technologyMti

Break
. In particular, we require unforgeability-security

for signature schemes and extractable-binding-security for commitment schemes. Let pE be any computational
bound and L be an upper bound on the maximum vector length of the commitment schemes in S. Then,
MCELSA is (M, ε)-unforgeable for S with

ε(p) =

⎛⎝∑︂
i∈Sig

εi
(︂
p
(︂
tiBreak

)︂
pE
(︂
tiBreak

)︂
L2
)︂⎞⎠+

(︄∑︂
i∈CS

εi
(︂
p
(︂
tiBreak

)︂
, pE

(︂
tiBreak

)︂
, p
(︂
tiBreak

)︂)︂)︄
.

Confidentiality

The documents in MCELSA are stored in an ε-statistically hiding secret sharing scheme. Yet for each
document, additional data with relation to its contents like commitments and signatures is generated and
also stored inMCELSA. An attacker with access to one document should not be able to derive information
with respect to another document to which he does not have access. We model this in Experiment
ExpDistS,L(A, F0, F1, I) (Figure 3.15).
The task of an adversary A in Experiment ExpDistS,L(A, F0, F1, I) is to distinguish between two instances

of MCELSA that store either of the data sets F0 or F1, which coincide on an index set I. The adversary

43



A has access to the oracles OClock and OMCELSA. The former enables A to advance the global clock to a
later point in time. The latter provides the adversary A with the means to interact with the instance of
MCELSA. That is, he can have MCELSA store a predefined set of documents F0 or F1 (depending on the
choice bit), retrieve documents, that are contained in I, and haveMCELSA perform the maintenance tasks
RenewTS, RenewCom and RenewShares. He will obtain the view of the evidence service ES and a fixed
unauthorised set of shareholders T after the execution of each of MCELSA’s protocols.
We thus define the advantage of an adversary A in Experiment ExpDistS,L(A, F0, F1, I) as follows.

Definition 41 (Confidentiality)
We say MCELSA is ε-statistically-hiding for a set of schemes S if, for all machines A, index sets I, sets of files
F0, F1 with (F0)I = (F1)I and for all L ∈ N, we have⃓⃓⃓⃓

Pr
[︂
ExpDist

S,L(A, F0, F1, I) = 1
]︂
− 1

2

⃓⃓⃓⃓
≤ ε(L).

Theorem 42
Let S be a set of schemes, where S.S is an ε-statistically-hiding secret sharing scheme and every commitment
scheme in S is ε-statistically-hiding. Then, MCELSA is ε′-statistically-hiding for S with ε′(L) = 2Lε.

For the proofs of Theorem 40 and Theorem 42 we refer to [62]. Their proofs in the context of ELSA
transfer directly toMCELSA, which can be regarded as an improved and updated multi-client extension of
ELSA.

3.3 Performance Evaluation

To evaluate the performance of our secure long-term storage solution MCELSA, we test its performance in
terms of resource demand for the evidence service and the secret sharing instance. We will also measure
the time elapsed for integrity verification of individual stored documents. The results that our long-term
storage solution achieves are then compared to the results of ELSA, the predecessor of MCELSA.

3.3.1 Testing Parameters

We simulate a continued runtime of 80 years for MCELSA, i.e., approximately one human lifetime, since
storage of medical data is an intuitive application of a solution such asMCELSA. During that period we let
each client store one document each month for the duration of the experiment.
We assume the following renewal schedule for protecting the evidence against the weakening of crypto-

graphic primitives. For the timestamps, we use a signature scheme based approach as discussed in Section
2.2.6. The typical lifetime of a public key certificate is two years. Hence we choose this as the timespan
after which the timestamps are renewed. While signature scheme instances can only be secure as long as
the corresponding private signing key is not leaked to an adversary, commitment scheme instances do
not involve the usage of any secret parameters. Therefore, their security is not threatened by key leakage
and we assume that they only need to be renewed every 10 years in order to adjust the cryptographic
parameter sizes or to choose a new and more secure scheme.
As the vector commitment scheme we use the construction given in Figure 2.5 with the statistically

hiding commitment scheme by Halevi and Micali [66], the security of which is based on the security of
the used hash function which we instantiate with members of the SHA-2 hash function family [91]. If
we model hash functions as random oracles, the extractable binding property required by Theorem 40
is provided. This vector commitment scheme construction also provides the statistical hiding property
as required by Theorem 42. We adjust the signature and commitment scheme parameters over time as
proposed by Lenstra and Verheul [79, 78].
Concerning the document storage, i.e., the secret sharing scheme, we instantiate it as a standard Shamir

secret sharing [101] with four shareholders and a reconstruction threshold of three, that is, any set of
three or more shareholders is considered authorised.
The layout of the access permissions strongly influences the resulting distribution of the maintenance

tasks among the clients, we hence distinguish the three following cases.

Single client: We form a baseline for our performance evaluation by testing MCELSA with a single client.
We compare these results with those of ELSA, the predecessor of our solution and up until now the
best performing storage architecture that provides long-term integrity and confidentiality.

44



Figure 3.16: Storage need at the evidence service

Scenario Storage S Storage ES Verificaton time per file
Single Client 53.26 MiB 13.115 MiB 1.41s
Isolated Clients 670.44 MiB 121.305 MiB 1.18s
Super Clients 439.30 MiB 131.198 MiB 0.94s

Figure 3.17: Evaluation of the three tested scenarios

Isolated clients: Ten clients are being simulated for this test, where each client is permitted to access only
his own documents. The provided functionality is equal to running ten parallel instances of ELSA,
yet in using MCELSA, only one instance S of the secret sharing scheme and one instance ES of the
evidence service is needed.

Privileged clients: In this case, we simulate a small doctor’s office. Again, we consider ten clients, eight of
which represent patients and two of which doctors. Each patient may of course only access his own
health record, whereas the doctors can access those of all their patients.

After the 80th year has passed, the client(s) verify the integrity of the stored documents and we measure
the time that is needed for the integrity verification.
Our implementation was done using the programming language Java. In order to have consistent

environment parameters, the experiments were performed in a virtual Linux machine with a two-core
processor running at 2.8 GHz, 16 GB of storage space and 8 GB of RAM. Each party was run in an
independent context of each other.

3.3.2 Results

Our performance test yields the following results. Figure 3.16 shows the storage demand at the evidence
service’s site over the course of eighty years. The storage consumption at the shareholders’ site is plotted
in Figure 3.18. In Figure 3.17, we summarize our evaluation results. We point out that the length of a
document’s proof of integrity increases linearly with the storage duration. It is hence to be expected that
the time needed for integrity verification does so, too.
We observe that increasing the number of client scales reasonably well in MCELSA. More than that,

MCELSA performs about 5% better than ELSA; this can be seen by comparing with ELSA’s performance
results in [62]. We attribute this increased performance to the optimisations, that we applied to the
maintenance protocols, and to some improvements in the simulation implementation.

45



Figure 3.18: Storage need at the secret sharing service

In conclusion, we see that the storage demand in the scenario of several isolated clients is approximately
the same as that of a single client multiplied with the number of engaged isolated clients. Yet it must be
pointed out that the overhead of maintaining a secret sharing instance has to be mustered but once in
MCELSA compared to several parallel instances in ELSA.
We furthermore observe that the used resources have been considerably decreased by employing two

clients, which were able to retrieve all documents in the super client scenario.

46



4 Information-Theoretic Security of Cryptographic Channels

This chapter is based on the work [58].

4.1 Motivation

In the previous chapter, we discussed MCELSA, a long-term storage solution that provides prolonged
computational integrity and unconditional confidentiality to the documents stored within an instance of it.
It is set up to serve multiple clients simultaneously and enables distributed and dynamic management for
the access permissions with respect to the stored data. For the communication between the clients and
the shareholders engaged in a instance of MCELSA, the existence of secure private channels is assumed.
We raised the question, how such a channel can be instantiated facing an adversary the cryptoanalytical
capabilities and compuational power of which increase over time, in research question 2. In this chapter,
we will elaborate on how to establish such channels in the context of a shared source for symmetric key
material available to a pair of parties communicating with each other.
The need for secure private channels does of course not only apply to a long-term storage architecture

such asMCELSA, but is prevalent in all modern communication, digital or analogue. Striking examples are
digital tax data or electronic medical records which need to be kept for years or even decades according to
legal stipulations, requiring also to uphold the involved individuals’ right to privacy for extended periods
of time. In some cases the protection time span is quasi indefinite if one considers for example genetic
data which descendants (partially) inherit from their ancestors.
The cryptographic challenge here is that the long-term protection schemes must be able to withstand

unexpected cryptanalytic advances, but also predictable advances in computational power. An adversary
may store digital data and aim to break the underlying cryptographic scheme later with new methods or
by pure advances in technology. Remarkably, this does not only hold for data at rest but also for data in
transmission: An adversary may record encrypted communication today and try to break confidentiality
tomorrow. If we talk about transmissions over unreliable networks then the adversary may also use
additional means to attack schemes, such as omission, injection or modification of transmitted ciphertexts.
The above challenge is the starting point of our work. We consider the security of cryptographic channels

against potentially unbounded adversaries, denoted as information-theoretically secure channels.1 A
subsequent question arises: What security guarantee for such a channel can be provided in a setting of
unbounded adversaries, and how can we accomplish this?

4.1.1 Modeling Information-Theoretically Secure Channels

For a channel protocol to achieve guaranteed security against adversaries while the channel is open and
against future cryptoanalytic advances, only unconditionally security is admissible. Thus by Shannon’s
famous result [102], the length of the key material used in sending messages over said channel has to
agree with the total length of the messages sent. Several models have been developed, that enable two
parties to securely obtain a sufficient amount of keying material, e.g., the bounded storage model [65, 49]
and quantum key distribution (QKD) [61] to name the most prolific examples. These methods are rather
costly compared to traditional methods of key exchange, that are in use in our everyday life. Yet we argue
that in transmitting highly sensitive data, the security of which must be ensured under all circumstances,
the high pricetag can be considered acceptable. For our work we hence assume that the sender and the
receiver have access to a shared source of keying material, the amount required will be quantified by our
channel notion.
As we consider an adversary that is active while the channel is being used and continues to compute on

the knowledge gained after the channel has been closed, we use a two-stage adversary. The first stage is
active while the channel is, too. The second takes over from the first once the channel is closed, obtaining
all knowledge that the first stage was able to gather. This notion has been introduced by Bindel et al. [17]
and continued in subsequent works like [16].
1Our notion of (cryptographic) channels should not be confused with other concepts like Wyner’s wire-tap channels [114] or other
measures to generate information-theoretically secure keys from physical assumptions. We are interested in how to transmit data
securely once the sender and the receiver already share a key.

47



Alice Bob

QKD

Channel Ch

Ke
yin
g

Ma
ter
ial

Keying

Material

Figure 4.1: Two parties sharing a source of symmetric keying material

We distinguish between two types of adversaries, depending on whether the adversary is bounded or
unbounded in its first stage, i.e., during the execution of the channel protocol. The second stage is always
considered unbounded, independent of the the first stage.

• For future-secure channels, the first-stage adversary is bounded in computational resources when
the channel protocol is running, but may store the data gathered from the communcation over the
channel and later try to decrypt when having more computational power or more time.

• For unconditionally-secure channels, the first-stage adversary already has extreme computational
power when the channel protocol is executed, such that we need to protect against unbounded
adversaries immediately.

The adversary’s capabilities are assumed as follows: it can see and tamper with all network communication.
Our channel hence has to be secure against replay and re-ordering attacks – among others. This in particular
distinguishes our setting from prior works concerned with the unconditional security of individualmessages
(but without ordering requirements), e.g., aiming at everlasting privacy in e-voting [86].

4.1.2 Achieving Information-Theoretically Secure Channels

We next show how one can build future-secure and unconditionally-secure channel protocols. We follow
the common paradigm to encrypt and authenticate the data in transmission. For encryption we need
unconditional security for both channel types, because any break of confidentiality, during the protocol
execution or afterwards, violates long-term secrecy of the data. This suggests to use the one-time pad
encryption.
Authenticity, on the other hand, is a property which has to hold only during the channel’s life time, in

order to decide if a transmission comes from the expected sender. This is also remarked in [87] where
the authors combine quantum key distribution with short-term authentication methods. In our channel
instantiation aiming at future security we can thus use computationally-secure authentication methods like
HMAC [9]. For unconditionally-secure channels we need information-theoretically secure authentication
schemes like Carter-Wegman MACs [113].
Before diving into the construction we first carefully adapt the classic composition theorem of Bellare and

Namprempre [12] to the setting of information-theoretically secure channels: we show that an IND-CPA
secure protocol which additionally provides INT-CTXT integrity of ciphertexts is also IND-CCA secure.
As we will see, in our setting IND-CPA (even against unbounded adversaries) holds based on using one-
time pad encryption; the composition result hence elegantly allows us to focus on establishing INT-CTXT
(computationally or unconditionally) via appropriate authentication methods. This way, we obtain IND-CCA
future-secure channels if we use computational authentication, and even IND-CCA unconditionally-secure
channels if we use information-theoretically secure authentication.
We then give two concrete channel protocols, combining one-time pad encryption with computationally-

secure MACs like HMAC, resp. with information-theoretically secure schemes like Carter-Wegman MACs.
For the future-secure channel we use a counter to prevent repetition and out-of-order attacks, and show

48



that the channel is IND-CPA secure and (computationally) INT-CTXT secure. Our general composition
theorem therefore shows that the channel is IND-CCA future-secure. For the unconditional case it turns out
that we do not need counters since we use a one-time key in each authentication step. We show, applying
once more the composition theorem, that we achieve unconditional security of the channel if we apply
Carter-Wegman MACs to the (plain) one-time pad encryption. Due to unforgeability of Carter-Wegman
MACs linearly degrading with the number of transmitted messages, our results exhibit a noteworthy
trade-off between the future- and unconditionally-secure constructions.

4.1.3 Further Related Work

Alternative approaches to unconditionally-secure encryption include limiting the adversary’s memory
capacity in the bounded-storage model [84, 30]. As such restrictions may regularly not apply in practice
for small-bandwidth, but highly-critical communication data, we in contrast consider fully-unbounded
adversaries (and hence have to resort to the one-time pad for confidentiality).
Künzler et al. [77] consider which functions are securely computable in the long-term scenario when

one assumes short-term authenticated channels, i.e., channels which are only computationally secure
during the computation. In a similar vein, Müller-Quade and Unruh [88] define a statistical version of the
universal composition framework, enabling long-term security considerations. The work shows how to
build commitments and zero-knowledge protocols in this setting, again assuming that secure channels are
available.

4.2 Security of Information-Theoretically Secure Channels

The traditional security notions as presented in Section 2.2.8 do not capture the setting of a two-stage
adversary that is bounded or unbounded while the channel is active and becomes unbounded after the
channel was finalised. We therefore rephrase the notions of stateful indistinguishability under chosen-
ciphertext attack and the respective security game Experiment ExpIND-SFCCA

Ch (A) .
To capture unconditionally-secure and future-secure channels, respectively, in a single game we represent

the two-stage adversary A in two phases, A1 and A2. In the first phase the adversary has access to both
the sender and receiver oracle. In this first stage the adversary may still be bounded in running time (for
future-secure channels), respectively already be unbounded (for unconditionally-secure channels). In the
second stage the adversary is in both cases unbounded but can no longer access the receiver oracle. This
allows us to model future-secure channels where A1 is restricted and the authentication only needs to be
temporarily secure, and in the second phase of the unbounded A2 past and future sender messages remain
confidential (but computational authentication may now be broken). For unconditionally-secure channels
we allow already A1 to be unbounded such that A2 acts merely as a dummy. We give the resulting security
game Experiment ExpIND-SFCCA

Ch (A) in Figure 4.2. The definition of an adversary’s advantage in this setting
carries over from those given in Section 2.2.8 with respect to Experiment ExpIND-SFCCA

Ch (A) .
We stress, however, that we do not formalise the notion of being bounded or unbounded in our concrete

security analysis. Instead, we give reductions to underlying problems, e.g., if A1 breaks integrity of the
channel then we break some underlying primitive with (roughly) the same running time. By this we get a
reasonable security guarantee from computationally secure authentication schemes such as HMAC, as well
as from unconditionally secure ones such as Carter-Wegman MACs.

4.3 Composition Theorem

We now show that for any channel protocol Ch chosen-ciphertext security follows from chosen-plaintext
security and integrity, similar to the composition result for classical channels [11]. The security reduction
shows that the derived attackers B against IND-CPA and I against INT-SFCTXT have roughly the same
running time characteristics as the adversary against IND-SFCCA. In particular, if the first-stage adversary
A1 against IND-SFCCA is bounded (or unbounded), then so is the adversary B against IND-CPA and also
I.
Theorem 43 (IND-CPA ∧ INT-SFCTXT⇒ IND-SFCCA)
For any channel protocol Ch and any IND-SFCCA adversaryA = (A1,A2), we can construct an INT-SFCTXT
adversary I and an IND-CPA adversary adversary B such that

Advind-sfccaCh (A) ≤ Advint-sfctxtCh (I) + AdvIND-CPA
Ch (B) . (4.3.1)

Here, B and I use approximately the same resources as A1.

49



ExpIND-SFCCACh (A)
b←$ {0, 1}
(KI , stS , stR)←$ Init()
K1,K2,K3, . . .←$ OTKey()

out-of-sync← false

i, j ← 0

stA ←$ A
OSend(stS ,KI ,·,·),ORecv(stS ,KI ,·)
1 ()

b′ ←$ AOSend(stS ,KI ,·,·)
2 (stA)

return b == b′

OSend (stS ,KI ,m0,m1)

assert |m0| = |m1|
i← i+ 1

(Ci, stS)← Send (stS ,KI ,Ki,mb)

return Ci

ORecv (stR,KI , C)

j ← j + 1

(m, stR)← Recv (stR,KI ,Kj , C)

if (j > i or C ̸= Cj) then

out-of-sync← true

endif

if (out-of-sync and b == 0) then

return m

endif

return ⊥

Figure 4.2: Experiment ExpIND-SFCCA
Ch (A)

ExpIND-SFCCACh (A)
b←$ {0, 1}
(KI , stS , stR)←$ Init()
K1,K2,K3, . . .←$ OTKey()

out-of-sync← false

i, j ← 0

stA ←$ A
OSend(stS ,KI ,·,·),ORecv(stS ,KI ,·)
1 ()

b′ ←$ AOSend(stS ,KI ,·,·)
2 (stA)

return b == b′

OSend (stS ,KI ,m0,m1)

assert |m0| = |m1|
i← i+ 1

(Ci, stS)← Send (stS ,KI ,Ki,mb)

return Ci

ORecv (stR,KI , C)

j ← j + 1

(m, stR)← Recv (stR,KI ,Kj , C)

if (j > i or C ̸= Cj) then

out-of-sync← true

endif

if (out-of-sync and b == 0) then

return ⊥ // instead ofm
endif

return ⊥

Figure 4.3: Modified receiver oracle experiment ExpIND-SFCCA
Ch (A) for GAME1 in the proof of Theorem 43.

Proof. The proof follows the common game-hopping technique, where Game0 denotes A’s attack in
Experiment ExpIND-SFCCA

Ch (A). In Game1 we modify the receiver oracle ORecv by letting it return ⊥ instead
of m for an out-of-sync query (for which in addition b == 0). This is depicted in Figure 4.3. The other
steps of the experiment remain unchanged.
We argue that the difference of A’s advantage between the two games lies in a potential first-stage

query of A1 to the receiver oracle which returns a message m ̸= ⊥ in Game0 but not in Game1. We show
that the probability of this happening is bounded by the integrity guarantees of the channel. To this end
we build a reduction I mounting an attack according to Experiment ExpINT-SFCTXT

Ch (I). This algorithm I
runs a black-box simulation of A1 (in Game0). Any oracle call ORecv of A1 is forwarded directly to the
corresponding oracles of I. Algorithm I initially also picks a random bit b ←$ {0, 1} and whenever A1

makes an oracle call m0,m1 to OSend, then I first checks that |m0| = |m1| and returns ⊥ if not; else it
forwardsmb to its own oracle OSend to receive a ciphertext Ci. Algorithm I returns Ci in the simulation of
A1. Algorithm I stops if A1 stops.
Note that the only difference between the two games from A’s perspective is that Game0, in case b = 0,

returns an actual message m in a call to ORecv if (a) m ̸= ⊥, and (b) out-of-sync has been set to true (in
this call or a previous call). This, however, means that all prerequisites in the ORecv oracle of the integrity
experiment are satisfied, causing int-broken to become true and to make I win the game. Hence, any

50



difference between the games can be bounded by the advantage against integrity.
A careful inspection of the modified ORecv oracle now shows that this oracle always returns ⊥ and only

changes the state of the out-of-sync variable. The latter only affects the ORecv oracle itself. It follows that
we can simulate this oracle by returning ⊥ immediately for any query to ORecv. Formally, this is a black-box
simulation B of A, where B relays all communication of A1 and A2 with oracle OSend without modification,
but returns ⊥ to A1 for any call of A1 to ORecv. Hence, in the next game hop we can eliminate the ORecv
oracle altogether, obtaining the CPA-game Game2. For this game we can bound the advantage by the
CPA-security of the channel.

4.4 Instantiations

In this section we discuss that instantiations combining the one-time pad encryption scheme with a
computationally-secure MAC like HMAC, and with an unconditionally-secure one like Carter-Wegman
MACs, provide future security, respectively unconditional security for the channel protocol. This of course
requires additional steps to prevent replay attacks or protection against omission of ciphertexts. For the
computational case we choose here for the sake of concreteness a sequence number on the sender’s and
receiver’s side. For the unconditional MAC we can omit the sequence number because we use a fresh key
portion with each message anyway.
In both cases we use our composition result from Theorem 43 to argue security. IND-CPA security of

the encryption scheme follows by the perfect secrecy of the one-time pad encryption and the fact that we
use a fresh key for each ciphertext. This holds even against unbounded adversaries. It hence suffices to
argue INT-SFCTXT security to conclude IND-SFCCA security of the channel protocol. For this we need
the strong unforgeability of the authentication algorithm as layed out in Section 2.2.9.

4.4.1 Future-Secure Channels

For a future-secure channel we define the sender and receiver algorithms as follows. We initialise counters
for the sender and the receiver, respectively, both as zero. Algorithm Send first generates a ciphertext
c via one-time pad encryption OTP.Enc (K,m) = m ⊕K under the fresh per-message key K. It then
authenticates the ciphertext c, prepended with a fixed-length encoding of the counter value in stS , under
a computationally-secure MAC, using the steady key KI .2 The sender then increments its counter to be
stored in the updated state stS , and outputs the full ciphertext consisting of the OTP ciphertext and MAC
tag.
The receiver algorithm Recv, when receiving a ciphertext C = (c, t), first checks if the state stR indicates

a previous failed decryption or if the MAC is invalid. If so, Recv returns the error symbol ⊥ and keeps
this information in its state. Otherwise Recv decrypts the ciphertext part c with the per-message key,
OTP.Dec (K, c) = c⊕K, increments the counter, and stores the updated value in its state stR.

Construction 44 (Future-Secure Channel)
Define the channel protocol FSCh = (Init,OTKey, Send,Recv) for message spaceM = {0, 1}≤M and key
space K = {0, 1}M by the algorithms in Figure 4.4.

We next argue INT-SFCTXT security of the channel protocol, assuming that the underlying MAC scheme
M is strongly unforgeable:

Lemma 45
For any INT-SFCTXT adversary I there exists an adversary F such that

Advint-sfctxtFSCh (I) ≤ AdvSUF-CMA
M (F) . (4.4.1)

Furthermore, F uses approximately the same resources as I.

Proof. We show that if I at some point during the integrity experiment sets int-broken to true, then
we can break (strong) unforgeability of the MAC scheme. To this end we let a forger F run a black-box
simulation of I, simulating the other steps of the channel protocol FSCh like encryption locally, and only
using the oracle access to OMAC(KI , ·) to compute MACs when required. For the simulated receiver oracle
F always answers ⊥. Algorithm F also keeps track of sent and received ciphertexts in the simulation,
including the values i and j. When I sends the first ciphertext C∗ = (c∗, t∗) to the receiver oracle such
2Technically, the encoded counter restricts the number of messages that can be sent. If there are n bits reserved for the counter value
then one can transmit at most 2n messages. In practice this is not an issue and deployed channel protocools today commonly have
such restrictions as well (e.g., TLS 1.3 [96] uses an n = 64 bit sequence number).

51



Init()

KI ←$MKGen()

stS ← 0

stR ← (⊤, 0)
return (KI , stS , stR)

OTKey()

1 : K ←$ K
2 : return K

Send (stS ,KI ,K,m)

c← OTP.Enc (K,m)

t← MAC (KI , stS ||c)
C ← (c, t)

stS ← stS + 1

return (C, stS)

Recv (stR,KI ,K,C)

parse stR = (b, j) and C = (c, t)

d← Verify(KI , c, t)

if b == ⊥ or d == false then

m← ⊥
stR ← (⊥, 0)

else

m← OTP.Dec (K, c)

stR ← (⊤, j + 1)

fi

return (m, stR)

Figure 4.4: Future-secure channel protocol FSCh

that C∗ has not been the next ciphertext prepared by the sender (i.e., C∗ is entirely new or a modification
of the j-th sent ciphertext Cj = (cj , tj)), then F outputs (j||c∗, t∗) as its forgery attempt.
Note that the simulation is perfect, as the receiver oracle always returns ⊥. Furthermore, F outputs

a forgery as soon as int-broken is set to true. This can only happen if out-of-sync has become true
(according to the model) but the MAC verification has returned true (according to the protocol). The
former implies that the ciphertext C∗ must have been new or reordered (j > i or C∗ ̸= Cj). And since
the channel starts returning error symbols ⊥ whenever it has encountered an invalid MAC, it must be the
first such out-of-sync ciphertext C∗ which, too, carries a valid MAC, to get some output m ̸= ⊥ from the
receiver oracle.
Assume that j > i for the first valid out-of-sync ciphertext C∗ = (c∗, t∗). In this case, since the receiver

in the protocol holds the same counter value j in stR up to this point, the receiver verifies t∗ with regard to
j||c∗. Since j > i, the sender oracle (and thus the MAC oracle in the simulation) has not issued any MAC
for this counter value yet, such that the “message” j||c∗ for valid tag t∗ in F ’s output constitutes a fresh
forgery. Analogously, if j ≤ i and C∗ = (c∗, t∗) is different from Cj = (cj , tj), then the pair (j||cj , tj) is a
successful strong forgery for F because the sender oracle (and thus MAC oracle) has only issued one tag
for value j, with a different result (j||cj , tj) ̸= (j||c∗, t∗).
It follows that whenever I breaks integrity of the channel protocol we have a forgery for the underlying

MAC scheme. For efficient I the resulting forger F is also efficient.

We can now apply the composition theorem (Theorem 43), noting that the one-time-pad encryption
ensures perfect IND-CPA security (such that, independently of the adversarial resources, the advantage
is always 0), and using that integrity is bounded by the security of the strong unforgeability of the MAC
scheme:

Theorem 46 (Future-Secure Channel)
For the channel protocol FSCh in Construction 44 and any IND-SFCCA adversary A = (A1,A2), we can
construct and SUF-CMA adversary F such that

Advind-sfccaFSCh (A) ≤ AdvSUF-CMA
M (F) . (4.4.2)

Here, F uses approximately the same resources as A1.

For an unbounded A1 – and hence an unbounded I in the proof – however, equation (4.4.2) may
become void, since I may win Experiment ExpSUF-CMA

M (F) with significant probability.

4.4.2 Unconditionally-Secure Channels

For an unconditionally-secure channel we assume that both adversarial stages A1 and A2 in Experiment
ExpIND-SFCCA

Ch (A) are unbounded, that is, we consider an unbounded adversary throughout the entire
Experiment ExpIND-SFCCA

Ch (A). Our construction therefore asks for a fresh authentication key (part) with
each send operation: we first split the per-message key K into two parts, K1 and K2. The former, K1,
is used for encryption via OTP. The latter, K2, is used for authentication via an unconditionally-secure
Carter-Wegman-MAC. For messages of lengthM bits we typically needM bits for the one-time pad and
2M bits for the Carter-Wegman MAC. More abstractly we consider a 1-query bounded MAC M in the
construction below:

52



Init()

KI ← ⊥
stS ← ⊤
stR ← ⊤
return (KI , stS , stR)

OTKey()

1 : K1 ←$ {0, 1}M

2 : K2 ←$MKGen()

3 : return K1||K2

Send (stS ,KI ,K,m)

// letK = K1||K2

c← OTP.Enc (K1,m)

t← MAC (K2, c)

C ← (c, t)

return (C, stS)

Recv (stR,KI ,K,C)

// letK = K1||K2

d← Verify(K2, c, t)

if stR == ⊥ or d == false then

m← ⊥
stR ← ⊥

else

m← OTP.Dec (K1, c)

fi

return (m, stR)

Figure 4.5: Unconditionally-secure channel protocol USCh

Construction 47 (Unconditionally-Secure Channel)
Define the channel protocol USCh = (Init,OTKey,Send,Recv) for message spaceM = {0, 1}≤M by the
algorithms in Figure 4.5.

Once more we first argue INT-SFCTXT security of the channel protocol, assuming that the underlying
MAC scheme M is strongly unforgeable against unbounded adversaries. The noteworthy fact here is that
we lose a factor of qSend + 1 of sender queries in the security bound:

Lemma 48
For any INT-SFCTXT adversary I making at most qSend sender oracle queries there exists a 1-query bounded
adversary F such that

Advint-sfctxtUSCh (I) ≤ (qSend + 1) · AdvSUF-CMA
M (F) . (4.4.3)

Furthermore, F uses the same resources as I.

Note that a Carter-Wegman MAC satisfies AdvSUF-CMA
M (F) ≤ 2−M if we authenticate messages of at

mostM bits with 2M key bits [113]. This means that, as long as the number qSend of sent ciphertexts is
limited, the bound in the lemma is still reasonably small. Interestingly, for small message sizesM though
and with a focus on “only” future-secure protection, an HMAC-based instantiation of Construction 44 can
provide better concrete security.

Proof. The proof follows the one for the computational case closely. Only this time F guesses in advance,
with probability 1

qSend+1
, the number i of the sender query for which I sends the first modified ciphertext

C∗ ̸= Ci to the receiver oracle, where we account for the possibility that j > i with the additional choice
i = qSend + 1. Algorithm F simulates an execution of I by doing all steps locally, and answering each
receiver request with ⊥. Only in the i-th sender oracle query, F uses the external MAC oracle to compute
the tag (still using a self-chosen, independent key part K1 to encrypt the message before). When the
integrity adversary I outputs the first modified ciphertext C∗ = (c∗, t∗) to the receiver oracle, then F
returns the pair (c∗, t∗) as its forgery attempt.
Given that the guess i is correct it follows as in the computational case that F wins the 1-query bounded

unforgeability game if I wins the integrity game. Here we use that F at most makes a single external
MAC query – or none if i = qSend + 1 – and creates a (strong) forgery against the MAC scheme, because
the pair (c∗, t∗) must be distinct from the MAC query (for i ≤ qSend) or even new (for i = qSend + 1).

It follows – as in the computational case – that Theorem 43 yields overall security of the unconditionally-
secure channel protocol.

Theorem 49 (Unconditionally-Secure Channel)
For the channel protocol USCh in Construction 47 and any IND-SFCCA adversary A = (A1,A2) where A1

makes at most qSend sender oracle queries, we can construct an INT-SFCTXT adversary F such that

Advind-sfccaFSCh (A) ≤ (qSend + 1) · AdvSUF-CMA
M (F) . (4.4.4)

Here, F uses the same resources as A1 and is 1-query bounded.

53



4.4.3 Application in a Long-Term Storage Solution

In Section 3, we discussed that to instantiate a long-term storage solution such as ELSA or MCELSA,
secure communication between the parties has to be guaranteed. As we showed in this Section 4, this
can be achieved by providing any pair of parties in need of a secure, private channel, e.g., a client and
a shareholder in an instance of MCELSA, with a source of symmetric, confidential keying material such
as quantum key distribution. The parties can thereby deploy a future-secure or unconditionally-secure
channel, respectively, so that throughout the run-time of the storage solution their communication cannot
be intercepted or manipulated. We concede that current QKD implementations come with a significant
price tag, yet in a scenario in which information security is indispensable as for example storage of personal
medical data, such an investment is justifiable.

54



5 Assisted Multi-Party Computation

This chapter is based on the work [90].

5.1 Motivation

In Section 3, we have introduced MCELSA, a storage architecture that provides long-term confidentiality
and indefinitely prolongable integrity as well as authenticity for stored documents. The existence of private
channels between the shareholders, that are engaged in an instance of it, and the clients, that send the
shares of the documents and decommitment values attached to them to the shareholders, is vital for the
security of an instance of MCELSA.
We discussed how to establish such a channel between two parties, that have access to a shared source

of secret symmetric keying material, in a manner that is future-secure or unconditionally-secure in Section
4. That is, the communication exchanged over such a channel is confidential, authentic and has integrity
with regards to an attacker who has control over the channel and grows in computational power and
cryptoanalytic capabilities over time.
In this chapter, we go one step further and discuss, how to perform computations on data that has been

stored in a secret sharing instance, as is the case in LINCOS, ELSA or MCELSA. More specifically, we
address research question 3 and investigate how to improve the efficiency of the preprocessing step of
multi-party computation (MPC) protocols, that are based on secret sharing schemes.
The most intuitive approach for computing on secret shared data is to reconstruct the shared secret(s) and

execute the computation on the results of the reconstruction. While this approach is a rather efficient one,
it harbours the danger of reconstructing the secret in the clear at the machine executing the computation,
thereby posing a chance of exposing it, as discussed in [28]. A less intuitive yet all the more secure
approach is to employ an MPC protocol, a concept that was introduced in the 1980s with works like [64].
An MPC protocol enables a set of parties to jointly evaluate an agreed upon function represented as a
circuit so that each party provides a private input, the parties jointly execute the computation and a result
is obtained while each party learns only the result and what can be derived from it concerning the other
parties’ inputs. find Thomas’ paper
Garbled circuits and secret sharing based protocols are two of the most important categories of MPC. The

most prominent example of the former category is Yao’s garbled circuit [115]. The latter category contains
protocols in which inputs to a circuit are distributed among the parties via a secret sharing scheme. The
circuit is evaluated layer by layer in communication rounds and the result is jointly opened by publishing
the shares of the result. In this Section 5 we focus on secret sharing based MPC protocols.
Secret sharing based MPC protocols comprise themselves of an offline or preprocessing phase and

an online phase. In the offline phase, the engaged parties jointly generate and share the auxiliary data
necessary for the evaluation of the circuit. For example, many secret sharing based MPC protocols utilise
random "Beaver triples" [7] for performing multiplications, which are pre-computed in the offline phase.
The offline phase is executed independently of the parties’ inputs, it solely depends on the structure of
the circuit. In the online phase, the actual evaluation of the circuit takes place. The parties provide their
respective private inputs and jointly compute the output of each gate to arrive at the final result.
In recent years, the focus of most research aiming to improve the efficiency of MPC protocols has been

on optimising the online phase, and remarkable achievements have been made. Yet in most cases, these
improvements to the online phase entail performance penalties in the offline phase. While preprocessing
can be executed far in advance to the online phase and is independent of the parties’ inputs, it can however
not be skipped. An example, that illustrates the performance disparity between offline and online phase,
is the minimum euclidean distance computation for 1000 values of 128 bits in the framework ABY [48]
between two parties with a network delay of 50ms. The time for the online phase amounts to 4442ms,
whereas the offline phase takes 16506ms, i.e., close to 80 percent of the protocol’s duration was spent on
preprocessing. While this disparity was addressed in [97], we think that further performance improvements
may be possible.

55



5.1.1 Our Contribution

We propose an approach to significantly improve the performance of the offline phase for secret sharing
based MPC protocols. We achieve this by introducing an independent helper party that assists in executing
the offline phase and sharing the resulting data among the original parties. The helper party will not take
part in the online phase, it can hence not obtain any knowledge with respect to the parties’ inputs or the
execution of the online phase. Indeed, we show that the introduction of the helper party does not affect
the security guarantees provided by the original MPC protocols. We furthermore demonstrate the practical
applicability of our approach by giving an implementation of the helper party for the SPDZ offline phase.
We empirically test the efficiency of our implementation in two scenarios. The first is the rate of Beaver
triples generated and shared per second among two to five parties. The second is the preprocessing for a
Vickrey auction with one hundred bids. Our tests show a performance improvement of up to a factor of
69 in comparison to previous works like SPDZ [43] and evolutions thereof. We discuss three real world
instantiations of our approach. We elaborate on their respective limitations and advantages regarding
performance. We thereby demonstrate that our approach is not of a purely theoretical nature, but can in
fact be applied in real executions of secret sharing based MPC protocols. Our approach is applicable to any
MPC protocol based on secret sharing.

5.1.2 Structure

First, we present our approach to improve the efficiency of the offline phase in Section 5.2, that is, an
additional helper party Ph that takes on executing the offline phase and distributing the resulting shares
to the original parties of the MPC protocol. Second, we prove that if the original protocol was simulatable,
the resulting protocol with Ph executing the offline phase is simulatable as well. Third, we discuss
how our approach can be applied to SPDZ [43] in Section 5.4.1. Fourth, we give benchmark results for
our implementation of the helper party in the context of SPDZ in Section 5.4.2, that show a significant
performance benefit from our approach in comparison to the unmodified protocols. Finally we discuss
feasible real world implementations of our model in Section 5.3.

5.1.3 Related Work

Secret sharing schemes were first introduced independently in the 1970s by Shamir [101] and Blakley
[18]. Both proposed threshold secret sharing schemes with perfect secrecy over the ring Zp for a prime p
larger than the number of shareholders. Verifiable secret sharing was developed as an additional feature in
works like [93] and [60]. Fitzi et al. [59] presented a different approach to verifiable secret sharing, that
provided a storage efficient scheme in three rounds to share a secret. Tassa [108] introduced an extension
of Shamir’s scheme, that enables a multi-level threshold access structures, so that for reconstruction the
threshold of each hierarchy level has to be fulfilled. Traverso et al. [111] further improved the capabilities
of hierarchical secret sharing by proposing a scheme that was also dynamic and verifiable. Our approach is
applicable to any secret sharing based MPC protocol, independent of the underlying secret sharing scheme.
A scheme enabling integer secrets outside Zp was later presented by Damgard and Thorbek [44] along

with a protocol for distributed exponentiation on the shared secret. Its caveat is that the security was only
computational. Rabin and Ben-Or [95] combined verifiable secret sharing with general computation on
shared secrets, thus a more general approach, yet less performant.
The field of secure multi-party computation holds a wide choice of schemes that have been established

over the years, most prominent of which are Goldreich et al.’s GMW [64] and Damgard et al.’s SPDZ [43].
Both schemes rely on computational assumptions with respect to security, whereas Bogdanov et al. [19]
provide an entirely information-theoretically secure approach with Sharemind at the cost of performance.
Cramer et al. [40] transposed SPDZ to a setting where computation is not over finite fields Fpk but over the
more practical binary field F2k , providing the same security guarantees. We will show that our proposition
maintains the security guarantees of the MPC protocol it is being applied to while giving a significant
performance boost to the offline phase.
A secure two-party computation protocol employing a third party for the circuit evaluation was discussed

by Feige et al. [55]. We continue this direction of research by employing the additional party exclusively for
preprocessing, thereby strengthening the security properties of their approach, since we neither introduce
nor rely on further computational hardness assumptions.
The model of secure outsourced computation was addressed in Loftus and Smart’s work [82], in which

they propose a protocol, that has a set of input parties I outsource the computation to a set P and a
set R obtain the results, where P is disjoint from I and R. Outsourcing the offline phase of the SPDZ
protocol to a smaller set of parties – either disjoint or a subset of the original set of parties – was discussed

56



previously by Scholl et al. [100]. TaaS by Smart and Tanguy [105] extended the previous work in that
they enable a flexible set of servers to be used in the outsourcing of the preprocessing of SPDZ-style MPC
protocols. They only require an honest majority in the set of servers, yet in their approach the servers are
not allowed to communicate after the preprocessing is triggered. Damgard et al. [42] further investigated
the approach of outsourced preprocessing in their protocol for two-party computation, where a set of
servers provides correlated randomness to the two parties of the online phase. They allow for at most t
corrupted servers and one corrupted party in the online phase. Chaudhari et al. [34] proposed ASTRA,
a protocol for three parties, one of which is to execute the offline phase and supply the other two with
the necessary preprocessing, who then execute the online phase without the first party. In contrast to
our approach, all three parties may contribute an input to the online phase, whereas we strictly exclude
the helper party from the online phase. With Tetrad, Koti et al. [74] proposed a four-party computation
protocol in which one party is designated to provide the preprocessing for the other three parties. Koti et
al. [73] focused on improving the efficiency of the online phase their MPC protocol. For that they split the
parties in their protocol into two groups, i.e., a set of helpers D and a set of evaluators E , one of which
takes the distinguished role of Pking. This party takes a central position in the reconstruction of shared
secrets in the protocol.
Our approach distinguishes itself from those above in that they propose concrete MPC protocols that

utilise one or more parties to execute the preprocessing, whereas our approach for concentrates on speeding
up the preprocessing in any secret sharing based MPC protocol.
A different direction was taken in Keller et al.’s MASCOT [70], where the offline phase was improved

by employing oblivious transfer protocols (OT). In Overdrive, Keller et al. [71] proposed that SPDZ with
improvements to its original design provides an offline phase that is similar to the improvements achieved
by MASCOT. With Overdrive2k, Orsini et al. [92] transferred the improvements of Overdrive to the setting
of computation over F2k . Their works engage all parties of the online phase in the offline phase, whereas
we have the helper party Ph execute the offline phase. We test the performance of our approach on the
offline phase of SPDZ.

5.2 Model

Let us first specify the adversary that we consider with regards to our approach.

5.2.1 Adversary

We consider a static and active attacker. That is, the attacker corrupts an unauthorised set of shareholders
C ⊂ {P1, . . . , Pn} upon the initialisation of the protocol. Throughout the execution of the MPC protocol,
this set cannot be changed. The adversary obtains all knowledge that the corrupted shareholders have. This
includes their inputs {xi}Pi∈C , the randomness used by the shareholders {(ri)j}Pi∈C and the messages
they receive from the other parties in the protocol {(mi)j}Pi∈C . The adversary controls all outputs of the
corrupted parties and the messages, that they send to other parties.

5.2.2 The Helper Party Ph

In the offline phase of an MPC protocol, the parties P1, . . . , Pn jointly generate data, that is used in the
online phase to evaluate Cf . This data is independent of the inputs that P1, . . . , Pn provide in the online
phase. The structure of the data is determined by the gates contained in Cf . For an arbitrary but fixed
circuit Cf , let {t1, . . . , tm} therefore be the set of all types of gate contained in Cf . In an arithmetic
circuit, t1 may for example denote input gates, t2 multiplication gates, t3 addition gates and t4 output
gates. We denote the set of all gates in Cf by G =

{︂
g1, . . . , g|Cf |

}︂
. Furthermore, we define a function

ϕ : G → {t1, . . . , tm}, that maps a gate to its type. In the offline phase, the parties P1, . . . , Pn jointly
sample a data set D =

{︂
d1, . . . , d|Cf |

}︂
, where di contains the data necessary for the evaluation of the

gate gi for i = 1, . . . , |Cf |. Let D1, . . . , Dm be a partition of D faithful to the gates’ type, that is,
m⋃︂
i=1

Di = D (5.2.1)

holds, while Di ∩Dj = ∅ for all 1 ≤ i < j ≤ m, as well as

∀i = 1, . . . ,m : ∀d, d′ ∈ Di : ϕ(d) = ϕ
(︁
d′
)︁
.

57



Helper
party Ph

P1

P2

P3

P4
Nurse

P5

Figure 5.1: The Helper Party Ph’s Interaction with the Original Parties P1, . . . , P5

For each Di, 1 ≤ i ≤ m, there exists an underlying distribution Xi from which Di is sampled.
We introduce a new party to the MPC protocol. This party we call the "helper party" Ph. Its purpose

is to execute the offline phase in place of the parties P1, . . . , Pn in order to give a significant speed up
compared to the traditional execution. The parties P1, . . . , Pn give a description of the circuit Cf and
a probability pf > 0, that indicates the trust they have in Ph, as input to Ph. We further elaborate on
pf later on. From the descrciption of Cf , Ph derives the set of data D according to (5.2.1), that is to be
produced in the offline phase. Ph generates and shares a data set corresponding to the distribution of D,
thereby executing the offline phase in place of P1, . . . , Pn. After providing P1, . . . , Pn with the auxiliary
data necessary for the evaluation of Cf , Ph resets itself if it will be employed in future executions of the
MPC protocol. Otherwise it shuts down. Ph does not take part in the online phase, it especially neither
provides input nor receives output with respect to the evaluation of Cf .
Our approach implies that the helper party Ph sends the generated shares to each party Pi, i = 1, . . . , n,

privately. Communication between pairs Pi and Pj , 1 ≤ i < j ≤ n, is not intended. This contrasts
traditional approaches, in which the offline phase requires communication among all parties. We therefore
reduce the number of necessary secure private channels from n(n− 1) between each pair of parties to n
channels between Ph and each Pi, i = 1, . . . , n. This further improves the efficiency of the offline phase.
We point out that this does not have any impact on the online phase, which is explicitly left unmodified in
any MPC protocol our approach is applied to.
Depending on the concrete instantiation of Ph, the parties P1, . . . , Pn must assume that Ph does not

collude with any other party. We give examples for the non-collusion of Ph being a necessary assumption
as well as is not being necessary in Section 5.3.
While Ph has neither input nor output in the online phase, malformed preprocessing data can falsify the

output or even reveal a party’s input. We thus present Ph in two flavours, depending on whether Ph is
trusted by P1, . . . , Pn, which is indicated by the probability pf .

• If Ph is regarded as a trusted party by P1, . . . , Pn, we have pf = 1. Ph produces a data set D′

corresponding to the distribution of the set D. That is, for each Di, i = 1, . . . ,m, Ph samples a
set D′

i of size #Di from Xi. Ph shares each d ∈ D′
i among P1, . . . , Pn via S.Share(d), where S is

the secret sharing scheme underlying the MPC protocol. The parties P1, . . . , Pn utilise the shares
received from Ph in place of the output of the offline phase and evaluate Cf accordingly. The online
phase hence remains unchanged.

• An untrusted helper party is indicated by pf < 1. The parties P1, . . . , Pn agreed on a probability pf ,
that they accept as a chance of undetected dishonest behaviour on Ph’s side. For each Di in (5.2.1),

58



Expind-prepCf
(A)

c←$ {0, 1}

S′ ←$ 2S \ Γ
p←$ [0, 1]
prep0 ← Oreal prep

(︁
Cf , p, S

′)︁
prep∗1 ← Ph

(︁
Cf , p

)︁
prep1 ← prep∗1|S′

c′ ← A(prepc)
return c == c′

(a) Experiment Expind-prep
Cf

(A)

Expind-transCf
(A)

c←$ {0, 1}

S′ ←$ 2S \ Γ
for Pi ∈ S′

xi ←$X
yi ←$ Y

endfor

t0 ← SimP
(︂
(xi, yi)Pi∈S′

)︂
t1 ← SimP′

(︂
(xi, yi)Pi∈S′

)︂
c′ ← A(tc)
return c == c′

(b) Experiment Expind-trans
Cf

(A)

Figure 5.2: Experiments Expind-prep
Cf

(A) and Expind-trans
Cf

(A)

Ph generates

ki =

⌈︃
(1− pf )
pf

#Di

⌉︃
additional items according to the distribution of Di for each i ∈ {1, . . . ,m}. We denote the resulting
set by D′

i, where #D′
i = #Di + ki.

Prior to evaluating Cf in the online phase, P1, . . . , Pn apply a cut-and-choose approach to the
shares they received from Ph in that they randomly choose a portion of ki elements of each set D′

i,
i = 1, . . . ,m, and publicly reconstruct them. If a malformed data item is opened this way, Ph will be
considered dishonest and the received data is discarded. Otherwise the data received from Ph is
deemed correct and the evaluation of Cf is continued with the remaining unopened data being used
as the result of the preprocessing step. Since we have #D′

i = #Di + ki items for each i = 1, . . . ,m,
a sufficient number of unopened data items remains. We show in Theorem 50 that pf bounds the
probability with which Ph can successfully provide malformed data items without being detected.

Remark
The scenario of a trusted helper party can be regarded as a special case of the untrusted helper party, where we
have pf = 1.

Theorem 50 (Cheating probability of Ph)
The probability that Ph generates a malformed data set without detection is upper bounded by pf .

Proof. Fix an arbitrary subset D′
i, where 1 ≤ i ≤ m. Let a denote the number of malformed items in

D′
i. If a > #Di, then the computing parties necessarily selects a malformed data item for opening, since

#D′
i = #Di + k. The probability of successful cheating for Ph is thus 0. We hence assume a ≤ #Di. Let

us first consider the case of single malformed data item in Di, i.e., a = 1. The probability of P1, . . . , Pn

not selecting the malformed item is therefore
(︁
#D′

i−1
k

)︁(︁
1
0

)︁(︁#D′
i

k

)︁ =

(︁
#Di+k−1

k

)︁(︁
1
0

)︁(︁
#Di+k

k

)︁ =

(#Di+k−1)!
k!(#Di−1)!

(#Di+k)!
k!#Di!

=
#Di

#Di + k
≤ #Di

#Di +
1−pf
pf

#Di

= pf .

The statement therefore holds for a = 1. For a > 1, that is, more than one malformed data item, the
probability of malformed items not being selected and opened in the cut-and-choose paradigm is clearly
upper bounded by the probability in the case of a = 1. Therefore, Ph can only successfully cheat with a
probability at most pf .

59



5.2.3 Security

We now prove that the introduction of the helper party does not weaken the security of the MPC protocol.
To this end, we show that a simulatable MPC protocol remains simulatable after the introduction of Ph.
We model the indistinguishability of the output of a real preprocessing from the output of Ph in

Experiment Expind-prepCf
(A) given in Figure 5.2a. In this game, we denote by Oreal prep(·) an oracle, that upon

being handed the circuit description Cf , the failure probability p and an unauthorised set S′ internally
executes a preprocessing phase according to Cf and p and outputs the shares of the parties in S′.

Definition 51
For a circuit Cf , let A be an arbitrary algorithm. The advantage of A in Experiment Expind-prepCf

(A) is defined
as

Advind-prepCf
(A) =

⃓⃓⃓⃓
1

2
− Pr

[︂
Expind-prepCf

(A) = true
]︂⃓⃓⃓⃓
.

Lemma 52
For any unauthorised subset of shareholders S′ ⊂ {P1, . . . , Pn}, the data produced in the preprocessing phase
is perfectly indistinguishable from the data provided by Ph. That is, for any adversary A and any circuit Cf

and any failure probability pf , we have
Advind-prepCf

(A) = 0.

Proof. Each data item produced in a real preprocessing phase is information-theoretically hidden from
S′. This holds for each data item that was generated and shared among the computing parties by Ph.
Since each data item is sampled independently from each other, the data sets received are perfectly
indistinguishable.

We now prove that the MPC protocol, that arises from introducing the helper party to a simulatable
MPC protocol, is simulatable itself. We capture this notion in Expind-trans· (·).

Definition 53
The advantage of an adversary A in Experiment Expind-transCf

(A) is defined as

Advind-transCf
(A) = 2

⃓⃓⃓⃓
1

2
− Pr

[︂
Expind-transCf

(A) = true
]︂⃓⃓⃓⃓
.

An MPC protocol is simulatable if, for any circuit Cf and any adversary A, we have

Advind-transCf
(A) = 0.

Theorem 54
Let P be a simulatable, secret sharing based MPC protocol. And let P ′ be an identical protocol, yet with the
modification detailed above applied to it, that is, the offline phase is executed by a helper party Ph. Then P ′ is
simulatable.

Proof. We prove Theorem 54 in three steps: first, we give a simulator for any unauthorised subset of
{P1, . . . , Pn} in the protocol P ′. Second, we prove the indistinguishability of said simulator from that of
the original protocol P, which gives us the simulatibility of P ′ in a third step.
We denote byCf the circuit, thatP and henceP ′ are to evaluate. Let S′ ̸∈ Γ be an arbitrary unauthorised

subset of {P1, . . . , Pn} and let SimP denote the simulator of P. Thus upon receiving{︂
(xi, yi)Pi∈S′

}︂
as input, SimP outputs a transcript that is indistinguishable from {viewi}Pi∈S′ .
We give a simulator SimP′ for P ′. The simulator SimP′ uses SimP in the following manner. Let{︂
(x′i, y

′
i)Pi∈S′

}︂
denote the input of SimP′ . SimP′ runs SimP

(︂
(x′i, y

′
i)Pi∈S′

)︂
and returns whatever SimP

outputs.
It remains to prove that the output of SimP′ indistinguishable from that of SimP . We capture this

in Experiment Expind-transCf
(A) in Figure 5.2b. We give a reduction of the preprocessing distinguishing

problem to the simulator distinguishing problem to show the hardness of the former. Hence let D be an
adversary in Expind-transCf

(·) with positive advantage. We construct a polynomial-time adversary D′ against
Expind-prepCf

(·) that uses D to gain the same advantage. The input to an adversary D′ in Expind-prepCf
(D′) is a

60



set of preprocessing shares {prep∗i }Pi∈S′ for an unauthorised set S′. To simulate Expind−trans
Cf

(·) to D, D′

samples (xi)Pi∈S′ and (yi)Pi∈S′ from their respective distributions. D′ then hands

tc = SimP

(︂
(xi, yi)Pi∈S′

)︂
to D. D′ then outputs whatever decision bit D outputs. It remains to argue that D′ has the same ad-
vantage in Expind-prepCf

(D′) as D has in Expind-transCf
(D). The output of a simulator Sim

(︂
(xi, yi)Pi∈S′

)︂
=

(xi, (ri)j , (mi)j)Pi∈S′ looks identically distributed to an unauthorised set of parties S′ ̸∈ Γ. The random-
ness (ri)j is either shared among all parties or locally sampled for each party Pi in a secret sharing based
MPC protocol. Thus, for any {(ri)j}Pi∈S′ , we have

SimP

(︂
(xi, yi)Pi∈S′

)︂
=(xi, (ri)j , (mi)j)Pi∈S′

perf
=(︁

xi, (r
′
i)j , (mi)j

)︁
Pi∈S′ = Sim′

P

(︂(︁
(xi, yi) , (r

′
i)j
)︁
Pi∈S′

)︂
,

where Sim′
P outputs the same as SimP , but replaces the randomness (ri)j with (r′i)j . This gives us

SimP

(︂
(xi, yi)Pi∈S′

)︂
perf
= SimP′

(︂
(xi, yi)Pi∈S′

)︂
and thus

Advind-prepD′ (Cf ) = Advind-transD (Cf ) .

With Lemma 52, this gives us Advind-transD′ (Cf ) = 0, thus the output of Sim′
S′ is thus indistinguishable

from that of SimS′ , which in turn is indistinguishable from the real view viewS′ . The MPC protocol P ′ is
therefore simulatable.

5.3 Instantiations for the Helper Party

In Section 5.2, we introduced the helper party Ph and proved that the security of an MPC protocol it is
applied to is not impacted. We now discuss feasible real world instantiations for Ph and their advantages
and shortcomings as well as the necessary assumptions. Since the data shared by the helper party is known
in plaintext to Ph, the role of Ph cannot be assumed by a computing party Pi, 1 ≤ i ≤ n, itself.

5.3.1 Trusted Execution Environment

The computing parties P1, . . . , Pn delegate the offline phase to an agreed upon trusted execution en-
vironment (TEE) such as ARM’s TrustZone [80] or AMD’s Secure Processor [83]; these are just a few
examples, other implementations are available. A TEE provides the capability to have an (almost) arbitrary
computation executed by an external party in a secure and trusted way. This is achieved by having the
TEE prove that the program executed coincides with the program that was given as input via a remote
attestation protocol. Thus the parties ascertain that the TEE executes the protocol for the helper party and
only that. A TEE is to be found in virtually any main stream CPU sold today, thus it is widely available.
To ensure safe communication with the TEE, each party Pi, i = 1, . . . , n, establishes a secure and private

channel with the TEE by appropriate means. This channel is then used to transmit the shares, that the
TEE generates in executing the helper party’s task.
Utilising a TEE to implement Ph allows for a entirely counter-intuitive approach: a party Pj ∈
{P1, . . . , Pn} that has a TEE at its disposal may provide the other parties access to it and have the
helper party’s protocol executed in it. With the parties Pi, i ̸= j, establishing private channels to the TEE,
Pj cannot obtain knowledge on the shares received by Pi, less it breaks the TEE or the channel protocol.
It is reasonable to propose that the parties forgo the MPC protocol by sending the TEE their private inputs

and having it evaluate the circuit Cf . Yet modern applications making use of library components such the
GNU C library (glibc) or the C mathematical library (libm) require substantial amounts of memory for their
execution due to the size of said libraries. In many cases, these exceed the hardware limitations inherent
to the TEE implementation. The direct evaluation of large circuits such as privacy preserving machine
learning [35, 41] in a typical TEE hence can therefore only be achieved with significant engineering effort
[24, 6]. Executing the offline phase is nevertheless entirely actionable with the amount of data to be
persistently held in memory being almost negligible.

61



Having a TEE implement the helper party allows P1, . . . , Pn to assume Ph as trusted. The protocol of
Ph can therefore be instantiated in its most efficient configuration.
Overall we claim that a TEE represents a feasible instantiation of Ph, since its widespread availability

and the helper party protocol being in its most efficient configuration outweigh the limitations inherent to
this approach.

5.3.2 Unrelated External Party

The parties P1, . . . , Pn may alternatively employ an unrelated external party for the task of Ph. This
approach distinguishes itself from the former in that Ph is considered untrusted outright, that is, the shares
received from it are not assumed correct. The parties hence agree on a probability pf < 1 as detailed
in Section 5.2 and apply the cut-and-choose paradigm to verify the correctness of the received shares.
The external party executing the task of Ph is incentivised to behave honestly by monetary reward. This
means that if the shares are considered honestly generated after P1, . . . , Pn verified them, the helper party
receives a previously agreed upon payment. With the computational effort of the protocol for the helper
party being comparatively low even for large circuits, the monetary reward for the external party is little.
As a concrete instantiation the parties may employ a minimalistic cloud instance as can readily be hired at
a wide variety of commercial providers.
A major advantage of this approach in comparison to a TEE is that the external party is not limited with

respect to the implementation of Ph. This results in an efficiently computed preprocessing phase by the
external party.
A caveat of this approach is that the parties P1, . . . , Pn must assume that Ph is not colluding with either

of the parties, as we illustrated in Section 5.2. Also, the protocol for Ph cannot be instantiated in its most
efficient fashion, i.e., a trusted helper party, since pf < 1 must hold.
In fact, the performance analysis, that we will present in Section 5.4.2, was obtained in this setting, that

is, on a commodity PC without specialised hardware. Further improved performance can be achieved with
the use of hardware specialised for parallel computations.

5.3.3 Minimal Special Purpose Hardware

The parties P1, . . . , Pn may deploy a piece of purpose-built computing hardware to execute the task of the
helper party Ph. The design for said hardware is made public in a format like VHDL so that any party can
verify that the computation carried out agrees with the protocol for Ph. As we already discussed in Section
5.3.1, even a minimalistic hardware design is sufficient for a successful execution of the preprocessing
phase. Furthermore, purpose built hardware achieves significantly higher efficiency compared to general
computing hardware such as a TEE or an external party. Since the design of the purpose-built hardware is
public, no trust assumptions have to be placed in the helper party, which enables the protocol of Ph in its
most efficient configuration, i.e., pf = 1. Possible modifications to the design during manufacturing can be
excluded by the parties inspecting the hardware prior to deployment.
Obtaining a piece of purpose-built hardware is however rather costly compared to the previously proposed

instantiations. With the preprocessing data for an MPC protocol being identical with respect to structure
and at most distinct in proportion, a piece of dedicated hardware is highly reusable in future executions of
the MPC protocol.
The advantages of employing a minimalistic piece of hardware to implement Ph are efficient computation

of the preprocessing data and an independence from a third party hosting a TEE or executing the protocol
of Ph. In our oppinion these advantages outweigh the caveat of the initial cost of deployment by far.
The real world instantiations of the helper party discussed above are of course not exhaustive. We give

three examples to illustrate that it is feasible to instantiatePh without substantial monetary or organisational
overhead while obtaining reasonable guarantees with respect to correctness and confidentiality of the
generated data.

5.4 SPDZ Application and Performance

5.4.1 Application to SPDZ

We demonstrate the practicality of our approach by applying it to the offline phase in the SPDZ multi-party
computation protocol established by Damgard et al. [43]. SPDZ enables a set of at least two parties to
evaluate arithmetic circuits in Zp for a prime p, where all gate inputs and outputs are certified with a
global key. SPDZ thus naturally integrates a correctness measure for the computation.

62



# of parties Average Beaver triples/s Interquartile range Maximum Minimum
This work
2 134324.81 3252.30 140252.45 125786.16
3 108193.12 1521.08 111982.08 103092.78
4 85519.79 1096.75 87412.59 82101.81
5 69115.70 741.08 70721.36 65876.15
SPDZ
2 4,200

MASCOT
2 4800
5 1000

Overdrive
2 (Low Gear) 15,000
2 (High Gear) 2,300

Figure 5.3: Benchmark results for 10,000 Beaver triples in Fp, ⌈log2 p⌉ = 128

The offline phase in SPDZ can be considered as a process in two steps. First, a public key pk is established
with an according secret key α. Each party Pi, 1 ≤ i ≤ n, obtains a share of α. Second, the data necessary
for the evaluation of each gate in the circuit to be evaluated in the online phase is generated. In SPDZ, we
distinguish two methods of sharing. For a value x, we denote

[x] =

(︃
(x1, . . . , xn) ,

(︂
βi, γ(x)

i
1, . . . , γ(x)

i
n

)︂
i=1,...,n

)︃
,

where ∑︁n
i=1 xi = x and ∑︁n

i=1 γ(x)
i
j = xβj for all j = 1, . . . , n. Each party Pi holds shares xi, βi,

γ(x)i1, . . ., γ(x)in. The secret key α is shared as [α]. The sharing ⟨x⟩ denotes

⟨x⟩ =
(︁
δ, (x1, . . . , xn) ,

(︁
γ(x)1, . . . , γ(x)n

)︁)︁
,

where δ is publicly known and each party Pi, 1 ≤ i ≤ n, obtains xi and γ(x)i so that
∑︁n

i=1 xi = x and∑︁n
i=1 γ(x)i = α (x+ δ) hold.
A circuit suitable for SPDZ contains four types of gate: input gate, addition gate, multiplication gate and

output gate. The preprocessing for an input gate consists of a random value r, that is shared as ⟨r⟩ as well
as [r]. To input a value x, a party Pi has the other parties open [r] to him and computes and publishes
ϵ← x− r. The parties then derive their local shares of x = ϵ+ ⟨r⟩. For an addition of two shared values
⟨x⟩ and ⟨y⟩, the parties locally add their respective shares according to the sharing described above. Thus
no preprocessing is required for addition gates. A multiplication gate requires two Beaver triples ⟨a⟩, ⟨b⟩,
⟨c⟩ and ⟨x⟩, ⟨y⟩, ⟨z⟩, where ab = c and xy = z, and a random [t]. The sharings ⟨x⟩, ⟨y⟩, ⟨z⟩ and [t] are
opened to verify the correctness of the triple ⟨a⟩, ⟨b⟩ and ⟨c⟩, which is then used for the multiplication
itself. The preprocessing for an output gate entails a simple shared random value [r].
We instantiate the helper party as an untrusted external party as detailed in Section 5.3.2. That is, we

run the implementation on off-the-shelf hardware and have it distribute the shares resulting from the
SPDZ offline phase among the shareholders, i.e., the parties of the online phase.
In assisting the offline phase of SPDZ, the helper party analyses the circuit to be evaluated for the

gates types it contains and determines the data to be generated. The helper party Ph then samples the
respective data items and shares them among P1, . . . , Pn in the appropriate format of ⟨·⟩ or [·]. We assume
the existence of secure private channels between Ph and each Pi, i = 1, . . . , n. For methods to instantiate
such a channel, we refer to Section 4.

5.4.2 Performance

We demonstrate the performance gains of our approach in the offline phase over the original SPDZ protocol
as presented in [43] and the improvements proposed in Overdrive [71] and MASCOT [70]. For that, we
implement the protocol to be executed by Ph in C++. We use the boost library in its version 1.74. This
natively enables us to generate and share data items of 128 bits so that our results are comparable to those
of [71, 70], who also used 128 bits of randomness in their implementation.

63



10k
s

# of parties

2 3 4 5

6

8

10

12

14

Figure 5.4: Generating Beaver triples for up to five parties

We evaluate the performance of our implementation on commodity PCs in a local network, where the
helper party is run on a machine with eight cores and thirty-two GB of RAM. This setup is almost identical
to that of the performance test of MASCOT [70].
Our test is executed in two scenarios: First, we measure the maximum possible rate of generating and

sharing Beaver triples ⟨a⟩, ⟨b⟩, ⟨c⟩ and ⟨x⟩, ⟨y⟩, ⟨z⟩ along with the complimenting randomness [t]. Second,
we execute the offline phase for a Vickrey auction with one hundred bids.

Output of Beaver triples for SPDZ.

We measure the time elapsed for generating the preprocessing for 10,000 multiplication gates, deriving
the throughput per second. Our test is executed for two to five parties. We give the resulting performance
numbers in Figure 5.3 with a visual representation in Figure 5.4. It can be seen, that in the setting of
two parties in the online phase, our implementation improves the results of SPDZ and MASCOT at a
factor of 30, and those of Overdrive more than nine-fold. In the setting of five parties, our implementation
outperforms MASCOT by a factor of 69.

Vickrey Auction.

In the second scenario, we simulate the preprocessing for a Vickrey auction with one hundred bids. The
winner of the auction is the highest bidder, yet the price to be paid by the winning party is the second
highest bid. The layout of this auction incentivises the parties to provide realistic bids. A modified version
of this is in fact utilised by online auction house eBay.
We simulate the preprocessing for an online phase that is carried out between two up to one hundred

parties. We test each setting one hundred times. The circuit is taken from the performance test of [71]
and uses 44571 Beaver triples. We give the performance numbers in Figure 5.6.
As can be seen in Figure 5.5, the time elapsed for the preprocessing increases linearly with the number

of parties in the online phase, which agrees with the amount of data to be generated. In MASCOT a setting
of two parties was evaluated, which we outperform by a factor of over 60. And in Overdrive the online
phase was carried out between 100 parties, which we improved on by a factor of over 20.

64



time [s]

# of parties

20 40 60 80 100

1

2

3

4

5

Figure 5.5: Vickrey auction preprocessing for up to 100 parties

65



# of parties Average time [s] Interquartile range Maximum Minimum
This work

2 0.157 0.171 0.141 0.004
10 0.449 0.511 0.483 0.009
20 0.951 0.976 0.922 0.023
30 1.405 1.464 1.366 0.023
40 1.929 1.973 1.871 0.027
50 2.342 2.386 2.29 0.026
60 2.821 2.91 2.768 0.033
70 3.315 3.423 3.235 0.034
80 3.814 3.912 3.726 0.054
90 4.305 4.403 4.237 0.055
100 4.814 5.014 4.716 0.066

MASCOT
100 1,300

Overdrive
100 (High Gear) 98

Figure 5.6: The Vickrey auction preprocessing for up to 50 parties in Fp, ⌈log2 p⌉ = 128

66



6 General Access Structures for Isogeny based Cryptography

This chapter is based on the work [31].

6.1 Motivation

The documents deposited in an instance of MCELSA are stored within a secret sharing scheme. Thus to
compute a function with one or more stored documents as input such as statistical evaluation thereof, secret
sharing based MPC protocols can be applied in a straightforward manner. Especially since reconstructing a
shared secret can be avoided, they maintain the confidentiality of the data computed on.
More general, MPC protocols enable a set of parties to evaluate any function representable as an

appropriate circuit on their respective private inputs without revealing them to the other parties. But
in this capacity, MPC protocols are oftentimes surpassed in efficiency by protocols that are specifically
tailored to the concrete function, that is to be computed.
In this Section 6, we hence address research question 4 and discuss a specific multi-party public

key computation with secret shared secret key set in a hard homogeneous space. More concretely,
a key exchange mechanism and signature scheme using isogeny based cryptography. The setting of
hard homogeneous spaces raises a further problem: most MPC protocols are not natively equipped for
computation in a HHS, which introduces further efficiency deficits. This makes the use of protocols tailored
to the specific application all the more appealing, when considering computations in hard homogeneous
spaces.
This Section 6 was inspired by De Feo and Meyer [45], who previously introduced a key exchange

mechanism using isogeny based public key cryptography in which the secret key was shared in a Shamir
threshold scheme. While their protocols present an efficient solution for the problem at hand, it suffers
from two caveats: on the one hand, their appraoch is only passively secure, in that while even an active
attacker cannot obtain information on the secret key shares of other shareholders participating in an
execution of the decapsulation or signing protocols, his deviation from the protocol cannot be detected.
And on the other hand, by utilising Shamir’s threshold secret sharing scheme they restrict themselves to
rudimentary threshold access structures.
Our task therefore is two-fold. First, we need to find a suitable method to ensure active security in a

key exchange mechanism, that has its secret key shared among a set of shareholders and is based in a
hard homogeneous space. That active security measure should furthermore enable participants in the
decapsulation protocol to identify a misbehaving party so that it can be excluded from future executions.
We furthermore discuss whether the key exchange mechanism arising from the applied security measures
can still be transferred into a signature scheme by the Fiat-Shamir-transformation without complications,
as De Feo and Meyer did with their’s. Second, we characterise the necessary properties for a secret sharing
scheme to be compatible with our key exchange mechanism. This way, we can open our key exchange
mechanism to a wider field of access structures and application scenarios. This continues the recent trend
of developing new applications for secret sharing schemes [81, 51, 50, 22].

6.1.1 Our Contribution

Our contribution hence is manifold. First, we transfer the active security measures outlined in Section
2.2.13 and Section 2.2.15 from their setting of full engagement protocols to a setting of threshold secret
sharing. We thereby enable a significantly wider range of applications for those security measures and
also improve upon their efficiency. Second, we apply the adapted active security measures to propose
an actively secure key exchange mechanism with secret shared secret key. Third, we present an actively
secure signature scheme by applying a Fiat-Shamir transform to our key exchange mechanism. And fourth,
we expand our key encapsulation mechanism and our signature scheme to a wider field of secret sharing
schemes. For that, we characterise the necessary properties for a secret sharing scheme and give examples
of compatible and incompatible schemes to show the potential and limits of our approach.
We point out that Section 6.3 was contributed by Fabio Campos, whereas the remaining Sections 6.1,

6.2 and 6.4 were contributed by the author of this work.

67



6.1.2 Related Work

Threshold secret sharing schemes were first introduced by Blakley [18] and Shamir [101] in 1979. In both
their approaches, secrets from the secret space Zp for prime p are shared by distributing interpolation
points of randomly sampled polynomials. Damgård and Thorbek [44] presented a secret sharing scheme
with secret space Z. Thorbek [109] later improved their scheme, yet their scheme is only computationally
confidential, compared to the information-theoretical confidentiality of Shamir and Blakley’s schemes.
Tassa [107] opened Shamir’s scheme to more general application scenarios by utilising the derivatives of
the sharing polynomial to construct a hierarchical access structure. These basic secret sharing schemes rely
on the dealer providing honestly generated shares to the shareholders. Verifiable secret sharing schemes
eliminate this drawback by providing the shareholders with the means to verify the correctness of the
received shares with varying overhead. Examples of these are [13, 93, 106]. With minor efficiency losses,
Herranz and Sáez [68] were able to achieve verifiable secret sharing for generalised access structures.
Traverso et al. [110] proposed an approach for evaluating arithmetic circuits on secrets shared in Tassa’s
scheme, that also enabled auditing the results. Cozzo and Smart [38] investigated the possibility of
constructing schemes with a shared secret based on the Round 2 candidate signature schemes in the NIST
standardization process1. Based on CSI-FiSh [15], De Feo and Meyer [45] introduced threshold variants
of passively secure encryption and signature schemes in the Hard Homogeneous Spaces (HHS) setting.
Cozzo and Smart [39] presented the first actively secure but not robust distributed signature scheme based
on isogeny assumptions. In [14], the authors presented CSI-RAShi, a robust and actively secure distributed
key generation protocol based on Shamir’s secret sharing in the setting of HHS, which necessitates all
shareholders to participate.

6.1.3 Outline

We present an actively secure threshold key exchange mechanism and prove our scheme’s active security
and simulatability in Section 6.2. The actively secure signature scheme resulting from applying the
Fiat-Shamir-transform to our key exchange mechanism is discussed in Section 6.3. Finally, the necessary
properties for a secret sharing scheme to be compatible with our key exchange mechanism and signature
scheme are characterised in Section 6.4 in order to enable applying a more general class of secret sharing
schemes.

6.2 Key Exchange Mechanism

We introduced the cryptographic primitive of a key exchange mechanism (KEMs) in Section 2.2.12. A KEM
is defined by three protocols: KGen, Encaps and Decaps. We present our actively secure key exchange
mechanism with a secret key that is shared among a set of shareholders. An authorised subset can execute
the protocol Decaps without reconstructing the secret key. We assume that the secret sharing scheme, in
which the secret key is shared, is information-theoretically hiding. Traditional KEMs assume that a single
party holds the secret key; this is not the case in this scenario. We therefore have to adjust the protocols,
by which a KEM is defined, to fit the secret shared setting.

6.2.1 Public Parameters

We give our key exchange mechanism in the context of Shamir’s secret sharing scheme and elaborate
possible extensions to other, more general secret sharing schemes in Section 6.4. We therefore fix the
following publicly known parameters.

• A secret sharing instance S with shareholders S = {P1, . . . , Pn}, secret space Zp and access structure
Γ.

• A hard homogeneous space (E ,G) with a fixed starting point E0 ∈ E .

• A fixed element g ∈ G with ordg = p for the mapping [·]· : Zp × E → E ; s ↦→ gsE.
1https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization

68

https://csrc.nist.gov/Projects/post-quantum-cryptography/Post-Quantum-Cryptography-Standardization


KGen(S)

sk←$ Zp

pk← [sk]E0

{s1, . . . , sn} ← S .Share(s)

for i = 1, . . . , n

fi ←$ Zp [X]≤k−1 : fi(0) = si

endfor

publish pk
for i = 1, . . . , n

send
{︂
si, fi, {fj(i)}j=1,...,n

}︂
to Pi

endfor

Figure 6.1: The protocol KGen

6.2.2 The Adversary

We consider a static and active adversary. At the beginning of a protocol execution, the adversary corrupts a
set of shareholders. The adversary is able to see their inputs and control their outputs. The set of corrupted
shareholders cannot be changed throughout the execution of the protocol.
The adversary’s aim is two-fold. On the one hand it wants to obtain information on the uncorrupted

parties’ inputs, on the other hand it wants to falsify the output of the execution of our protocol without
being detected.

6.2.3 Communication channels

Both our schemes, that is, the key exchange mechanism and the derived signature scheme, assume the
existence of a trusted dealer in the secret sharing instance. The shareholders’ communication occurs in the
execution of the decapsulation protocol of our key exchange mechanism and the signing protocol of our
signature scheme.
The communication from the dealer to a shareholder must not be eavesdropped upon or tampered with,

we hence assume secure private channels between the dealer and each shareholder. We discussed methods
how establish such a channel in Section 4. However, the communication between shareholders need not
be kept private, thus we assume a simple broadcast channel between the shareholders.

6.2.4 Key Generation

A public and secret key pair is established by a trusted dealer (even an untrusted dealer is feasible by
employing verifiable secret sharing schemes) executing KGen (see Figure 6.1) with the set of shareholders
S as input. For that, he samples a secret key sk ∈ Zp and publishes the public key pk← [sk]E0. The secret
key sk is then shared among the shareholders {P1, . . . , Pn} via S.Share(sk). The dealer shares each share
si of sk, i = 1, . . . , n, once more with a sharing polynomial fi. Each shareholder Pi ∈ S eventually receives
si, fi and fj(i), that is, his share si of sk, the polynomial fi and a share fj(i) of each other sj , j ̸= i.
This key generation protocol can be regarded as a "two-level sharing", where each share of the secret

key is itself shared again among the shareholders. While this is not necessary for De Feo and Meyer’s
passively secure protocol [45], we require the two-level sharing in ensuring the active security of our key
encapsulation mechanism.

6.2.5 Encapsulation

With a public key pk ∈ E as input, the encapsulation protocol Encaps (Figure 6.2) samples an element
b ∈ G, computes the ephemeral key k← b ∗ pk ∈ E and a ciphertext c← b ∗ E0 ∈ E . It then returns (k, c).
Our encapsulation protocol is identical to that of De Feo and Meyer’s work [45], thus we just give a

short sketch and refer to [45] for the respective proofs of security.

69



Encaps(pk)

b←$ G
k← b ∗ pk
c← b ∗ E0

return (k, c)

Figure 6.2: The protocol Encaps

s1s2

s3 s4

sk

E0 = c

E1 = [L1,S′s1]E
0

E2 = [L2,S′s2]E
1

E3 = [L3,S′s3]E
2

k = [L4,S′s4]E
3

Figure 6.3: Shareholders P1, . . . , P4 decapsulating a ciphertext c

6.2.6 Decapsulation

A traditional decapsulation protocol takes a ciphertext c and a secret key sk as input and outputs a key k. De
Feo and Meyer [45] applied the threshold group action (see Figure 2.16) so that an authorised set S′ ∈ Γ
decapsulates a ciphertext c and produces a key [s] c = [s] (b ∗ E0) = b ∗ ([s]E0). For that, the shareholders
agree on an arbitrary order of turns. With E0 := c, the kth shareholder Pi outputs Ek = [Li,S′si]E

k−1

for k = 1, . . . ,#S′. The last shareholder outputs the decapsulated ciphertext E#S′
= [s] c. We sketch

this protocol for a setting of four shareholders P1, . . . , P4 holding shares s1, . . . , s4 of the secret key sk in
Figure 6.3. Their approach is simulatable. It hence does not leak any information on the shares si, yet it is
only passively secure. We extend their approach to enable identifying misbehaving shareholders in an
execution of the decapsulation protocol. For that, we maintain the threshold group action and apply the
PVP and zero-knowledge proof for the group action inverse problem as layed out in Section 2.2.13 and
Section 2.2.15.

Amending the PVP

In the PVP protocol sketched in Section 2.2.13, a prover produces a proof of knowledge for a witness
polynomial f of the statement ((E0, E1) , s1, . . . , sn) , where E0 ←$ E , E1 = [s0]E0 and si = f(i) for
i = 0, . . . , n. He thereby proves knowledge of the sharing polynomial f of s0 = f(0).
This approach does not agree with the threshold group action detailed in Section 2.2.14, for which a

shareholder Pi’s output in the round-robin approach is Ek ← [Li,S′si]E
k−1 rather than Ek ← [si]E

k−1,
where Ek−1 denotes the previous shareholder’s output. Futhermore, authorised sets need not contain all
shareholders. Example 55 illustrates a further conflict with of the PVP with the threshold group action.
Example 55
Let sk be a secret key generated and shared by KGen. That is, each shareholder Pi holds{︂

si, fi, {fj(i)}Pj∈S

}︂
.

Also, let S′ ∈ Γ be a minimally authorised set executing the threshold group action protocol given in Figure 2.16,
i.e., for any Pi ∈ S′, S′ \ {Pi} is unauthorised. Thus, for any arbitrary but fixed s′i ∈ Zp, there exists a
polynomial f ′

i ∈ Zp [X]k−1 so that f ′
i(j) = Li,S′fi(j) and R′ = [f ′

i(0)]R for any R,R′ ∈ E . Therefore, Pi

can publish
(︂
π, {πj}Pj∈S′

)︂
with(︂

π, {πj}Pj∈S

)︂
←PVP.Pv

(︂(︂(︁
R,R′)︁ , (Li,S′sij)Pj∈S

)︂
, f ′

i

)︂
,

70



TPVP.Pv
(︂
i, f, S∗,

(︂
(E0, E1) , (sij)Pj∈S∗

)︂)︂
for l = 1, . . . , λ

bl ←$ Z [X]≤k−1

Êl ← [bl(0)]E0

endfor

y0, y
′
0 ←$ {0, 1}λ

C0 ← CS
(︂
Ê1|| . . . ||Êλ, y0

)︂
C′

0 ← CS
(︁
E0||E1, y

′
0

)︁
for Pj ∈ S∗

yj , y
′
j ←$ {0, 1}λ

Cj ← CS(b1(j)|| . . . ||bλ(j), yj)
C′

j ← CS
(︁
Li,S∗ · sij , y′j

)︁
endfor

C ← (Cj)Pj∈S∗

C′ ←
(︁
C′

j

)︁
Pj∈S∗

(c1, . . . , cλ)← H
(︁
C,C′)︁

for l = 1, . . . , λ

rl ← bl − cl · Li,S∗ · f
endfor

r← (r1, . . . , rλ)(︂
π, {πj}Pj∈S∗

)︂
←

(︃(︁
C,C′r

)︁
,
{︁(︁

yj , y
′
j

)︁}︁
Pj∈S∗

)︃

Figure 6.4: The protocol TPVP.Pv

which is indistinguishable from

PVP.Pv
(︂(︂

(E0, E1) , (Li,S′sij)Pj∈S

)︂
, Li,S′fi

)︂
to S′ \ {Pi} with E0 ←$ E and E1 = [Li,S′si]E0. Thus, for a minimally authorised set S′, the soundness of
the PVP does not hold with respect to Pi ∈ S′ and fi.

We resolve the conflicts by amending [14]’s PVP protocol so that a shareholder Pi ∈ S∗ proves knowledge
of a witness polynomial Li,S∗fi for a statement(︂(︁

R,R′)︁ , (fi(j))Pj∈S∗

)︂
,

to a superauthorised set S∗, where R←$ E , R′ = [Li,S∗fi(0)]R = [Li,S∗si]R. The inputs of our amended
proving protocol are the proving shareholder’s index i, the witness polynomial fi, the superauthorised set
S∗ ∈ Γ+ and the statement

(︂
(R,R′) , (fi(j))Pj∈S∗

)︂
. The resulting threshold piecewise verifiable proving

protocol can be found in Figure 6.4, in which CS denotes a commitment scheme. The verifying protocol in
turn has the prover’s and the verifier’s indices i and j, respectively, a set S∗ ∈ Γ+, a statement piece xj
and a proof piece (π, πj) as input, where xj = (R,R′) ∈ E2 if j = 0 and xj ∈ Zp otherwise. The threshold
verifying protocol is given in Figure 6.5.
It is here, that the two-level sharing we introduced in Section 6.2.4 comes into play. We will have each

shareholder Pi, that is engaged in an execution of Decaps, provide a PVP with respect to its share si of the
secret key sk, that is then verified by each other participating shareholder with its respective share of si.
The definitions of soundness and zero-knowledge for our threshold PVP scheme carry over from the

non-threshold setting they were introduced in in Section 2.2.13 intuitively, yet we restate the completeness
definition for the threshold setting.

Definition 56 (Completeness in the threshold setting)
We call a threshold PVP scheme complete if, for anyS′ ∈ Γ, any (x, f) ∈ R, anyPi ∈ S′ and

(︂
π, {πj}Pj∈S′

)︂
←

71



TPVP.Vf(i, j, S∗, xj , (π, πj))(︁
C,C′, r

)︁
← π

(r1, . . . , rl)← r(︁
yj , y

′
j

)︁
← πj

(c1, . . . , cλ)H
(︁
C,C′)︁

if j == 0

if C′
j ̸= CS

(︁
xj , y

′
j

)︁
return false

fi

for l = 1, . . . , λ

Ẽl ← [rl(0)]Ecl

endfor

return C0 == CS
(︂
Ẽ1|| . . . ||Ẽλ, y0

)︂
else

if C′
j ̸= CS

(︁
Li,S∗xj , y

′
j

)︁
return false

fi

return Cj == CS
(︁
r1(j) + c1 · Li,S∗ · xj || . . . ||rλ(j) + cλ · Li,S∗ · xj , yj

)︁
Figure 6.5: The protocol TPVP.Vf

TPVP.Pv(i, f, S′, xS′), we have

Pr
[︁
TPVP.Vf

(︁
i, j, S′, xj , (π, πj)

)︁
= true

]︁
= 1 for all Pj ∈ S′.

The proofs for soundness, correctness and zero-knowledge for Beullens et al.’s [14] approach are easily
transferred to our amended protocols, thus we do not restate them here.

An Actively Secure Decapsulation Protocol

We arrive at our decapsulation protocol Decaps, that takes a ciphertext c and a superauthorised set of
shareholders S∗ as parameters. The shareholders in S∗ fix a turn order. A shareholder Pi’s turn consists of
the following steps.
1. If the previous shareholder’s output Ek−1 is not in E , Pi outputs⊥ and aborts. The first shareholder’s
input E0 is the protocol’s input ciphertext c.

2. Otherwise Pi samples Rk ←$ E and computes R′
k ← [Li,S∗si]Rk.

3. Pi computes and publishes(︃
πk,
{︂
πk
j

}︂
Pj∈S∗

)︃
← TPVP.Pv

(︂
i, fi, S

∗,
(︂(︁
Rk, R

′
k

)︁
, (fi(j))Pj∈S∗

)︂)︂
.

4. Pi computes Ek ← [Li,S∗si]E
k−1 and the zero-knowledge proof

zkk ← ZK.Pv
(︂(︁
Rk, R

′
k

)︁
,
(︂
Ek−1, Ek

)︂
, Li,S∗si

)︂
.

He publishes both.
5. Each shareholder Pj ∈ S∗ \ {Pi} verifies

TPVP.Vf
(︂
i, j, S∗, fi(j),

(︂
πk, πk

j

)︂)︂
∧ TPVP.Vf

(︂
i, 0, S∗,

(︁
Rk, R

′
k

)︁
,
(︂
πk, πk

0

)︂)︂
(6.2.1)

and
ZK.Vf

(︂(︁
Rk, R

′
k

)︁
,
(︂
Ek−1, Ek

)︂
, zkk

)︂
. (6.2.2)

If (6.2.1) fails, Pj issues a complaint against Pi. If Pi is convicted of cheating by more than #S∗
/2

shareholders, decapsulation is restarted with an S∗′ ∈ Γ+ so that Pi ̸∈ S∗′. If (6.2.2) fails, the
decapsulation is restarted outright with S∗′ ∈ Γ+ so that Pi ̸∈ S∗′.

72



Decaps(c, S∗)

E0 ← c

k ← 0

for Pi ∈ S∗

if Ek ̸∈ E
Pi outputs ⊥ and aborts.

fi

k ← k + 1

Rk ←$ E
R′

k ←
[︁
Li,S∗ · si

]︁
Rk(︃

πk,
{︂
πk
j

}︂
Pj∈S∗

)︃
← TPVP.Pv

(︂
i, fi, S

∗,
(︂(︁

Rk, R
′
k

)︁
, (fi(j))Pj∈S∗

)︂)︂
Pi publishes

(︁
Rk, R

′
k

)︁ and (︃
πk,

(︂
πk
j

)︂
Pj∈S∗

)︃
Ek ←

[︁
Li,S∗si

]︁
Ek−1

zkk ← ZK.Pv
(︂(︁

Rk, R
′
k

)︁
,
(︂
Ek−1, Ek

)︂
, Li,S∗si

)︂
Pi publishes

(︂
Ek, zkk

)︂
for Pj ∈ S∗ \ {Pi}

if ZK.Vf
(︂(︁

Rk, R
′
k

)︁
,
(︂
Ek−1, Ek

)︂
, zkk

)︂
= false

return Decaps
(︁
c, S∗′)︁ with S∗′ ∈ Γ+ ∧ Pi ̸∈ S∗′

fi

if TPVP.Vf
(︂
i, j, S∗, fi(j),

(︂
πk, πk

j

)︂)︂
= false ∨ TPVP.Vf

(︂
i, 0, S∗,

(︁
Rk, R

′
k

)︁
,
(︂
πk, πk

0

)︂)︂
= false

Pj publishes fi(j)
if Pi is convicted of cheating
return Decaps

(︁
c, S∗′)︁ with S∗′ ∈ Γ+ ∧ Pi ̸∈ S∗′

fi

fi

endfor

endfor

return k← Ek

Figure 6.6: The protocol Decaps

6. Otherwise, Pi outputs Ek and finalises its turn.
7. The protocol terminates with the last shareholder’s E#S∗ as output.

The combination of the threshold PVP and the zero-knowledge proof in steps 3 and 4 ensure that Pi

has knowledge of the sharing polynomial Li,S∗fi and also inputs Li,S∗fi(0) to compute Ek. We give the
precise protocol in Figure 6.6.
Definition 57 (Correctness)
A key exchange mechanism with secret shared private key is correct if, for any authorised set S′, any public
key pk and any (k, c)← Encaps(pk), we have k = k′ ← Decaps(c, S′).

The correctness of our key exchange mechanism presented in Figure 6.1, Figure 6.2 and Figure 6.6
follows from the correctness of the threshold group action (see Figure 2.16). Let sk be a secret key and
pk = [sk]E0 be the respective public key, that have been generated by executing KeyGen(S). Thus each
shareholder Pi holds a share si of sk, i = 1, . . . , n. For an authorised set S′, we therefore have

sk =
∑︂

Pi∈S′

Li,S′si.

Furthermore, let (k, c)← Encaps(pk). To show correctness, k′ = k has to hold, where k′ ← Decaps(c, S′).
Now, after executing Decaps(c, S′), we have k′ = E#S′ emerging as the result of the threshold group

73



action applied to c. This gives us

k′ =

⎡⎣ ∑︂
Pi∈S′

Li,S′si

⎤⎦ c = [sk] (b ∗ E0) = b ∗ pk = k.

The decapsulation is executed by superauthorised sets S∗ ∈ Γ+ ⊂ Γ. This shows that our key exchange
mechanism is correct.

6.2.7 Security

There are three aspects of security to consider for a key exchange mechanism with secret shared secret
key:
• Active security: A malicious shareholder cannot generate his contribution to the decapsulation
protocol dishonestly without being detected. We prove this by showing that an adversary that can
provide malformed inputs without detection can break the threshold PVP or the zero-knowledge
proof of knowledge.

• Simulatability: An adversary that corrupts an unauthorised set of shareholders cannot learn any
information about the uncorrupted shareholders’ inputs from an execution of the decapsulation
protocol. We show this by proving the simulatability of Decaps.

• Indistinguishability of encapsulated keys: An adversary, that obtains a ciphertext must not learn
anything about the key, that it was generated alongside with. We will prove that the key exchange
mechanism we presented in Figure 6.1, Figure 6.2 and Figure 6.6 is IND-CPA-secure.

Active Security

Theorem 58
Let S∗ ∈ Γ+ and let (pk, sk) ← KGen(S) be a public/secret key pair, where sk has been shared. Also let
(k, c)← Encaps(pk). Denote the transcript of Decaps(c, S∗) by(︃

Ek,
(︁
Rk, R

′
k

)︁
,

(︃
πk,
{︂
πk
j

}︂
Pj∈S∗

)︃
, zkk

)︃
k=1,...,#S∗

.

Let Pi ∈ S∗ be an arbitrary but fixed shareholder. If Decaps(c, S∗) terminated successfully and Pi′ ’s output
was generated dishonestly, then there exists an algorithm that breaks the soundness property of TPVP or ZK.

Proof. Let Pi′ be the malicious shareholder and let k′ be the index of Pi′ ’s output in the transcript. Since
Decaps(c, S∗) terminated successfully, we have

TPVP.Vf
(︂
i′, j, S∗, fi′(j),

(︂
πk′

, πk′
j

)︂)︂
=true (6.2.3)

TPVP.Vf
(︂
i′, 0, S∗,

(︁
Rk′ , R′

k′
)︁
,
(︂
πk′

, πk′
0

)︂)︂
=true (6.2.4)

ZK.Vf
(︂(︂
Ek′−1, Ek′)︂

,
(︁
Rk′ , R′

k′
)︁
, zkk

′)︂
=true (6.2.5)

for all Pj ∈ S∗ \ {Pi′}. Ek′ was generated dishonestly, thus we have

Ek′
= [α]Ek′−1, for some α ̸= Li′,S∗si′ .

We distinguish two cases: R′
k′ ̸= [α]Rk′ and R′

k′ = [α]Rk′ .
In the first case, Pi′ published a zero-knowledge proof zkk

′ so that (6.2.5) holds, where Ek′
= [α]Ek′−1

yet R′
k′ ̸= [α]Rk′ . Pi′ thus broke the soundness property of the zero-knowledge proof.

In the second case, Pi′ published
(︃
πk′

,
{︂
πk′
j

}︂
Pj∈S∗

)︃
so that (6.2.3) and (6.2.4) hold for all Pj ∈

S∗ \ {Pi′} and for j = 0. Thus Pi′ proved knowledge of a witness polynomial f ′ with

f ′(j) = Li′,S∗fi′(j) (6.2.6)

for all Pj ∈ S∗ \ {Pi′} and R′
k′ = [f ′(0)]Rk′ , that is, f ′(0) = α. Since f ′ has degree at most k − 1, it is

well-defined from (6.2.6). Thus, we have f ′ ≡ Li′,S∗fi′ , where fi′ is the polynomial with which si′ was
shared, i.e., fi′(0) = si′ . This gives us α = f ′(0) = Li′,S∗fi′(0) = Li′,S∗si′ . We arrive at a contradiction,
assuming the soundness of the threshold PVP.

74



Expdist-transcriptS,Sim (A)
b←$ {0, 1}

S∗ ←$ Γ+(︂
{si, {sij}, {sji}}Pi,Pj∈S , pk,

)︂
← KGen(S)

(k, c)← Encaps(pk)

t0 ← Sim
(︂
k, c, {si, {sij}, {sji}}Pi∈S∗,Pj∈S

)︂
E0 ← E0

k ← 0

for Pi ∈ S∗

k ← k + 1

Ek ←
[︁
Li,S∗si

]︁
Ek−1

Rk ←$ E
R′

k ←
[︁
Li,S∗si

]︁
Rk(︃

πk,
{︂
πk
j

}︂
Pj∈S∗

)︃
← PVP.Pv

(︂
i, fi, S

∗, ((Rk, R
′
k), (Li,S∗sij)Pj∈S∗ )

)︂
zkk ← ZK.Pv

(︂(︁
Rk, R

′
k

)︁
,
(︂
Ek−1, Ek

)︂
, Li,S∗si

)︂
endfor

t1 ←
(︃
Ek,

(︃
πk,

{︂
πk
j

}︂
Pj∈S∗

)︃
, zkk

)︃
k=1,...,#S∗

b′ ← A(tb)
return b == b′

Figure 6.7: Experiment Expdist-transcript
S,Sim (A)

Simulatability

We show that an adversary who corrupts an unauthorised subset of shareholders does not learn any
additional information from an execution of the decapsulation protocol.

Definition 59 (Simulatability)
We call a key exchange mechanism simulatable if, for any HHS (E ,G) with security parameter λ and any
compatible secret sharing instance S, there exists a polynomial-time algorithm Sim so that for any polynomial-
time adversary A the advantage

Advdist−transcript
(E,G),S,Sim (A) :=

⃓⃓⃓⃓
Pr
[︂
Expdist-transcriptS,Sim (A)

]︂
− 1

2

⃓⃓⃓⃓
in Figure 6.7 is negligible in λ.

Theorem 60
If the TPVP protocol and the GAIP ZK protocol employed are zero-knowledge, then the decapsulation protocol
(Algorithm 6.6) is simulatable.

Proof. We give a finite series of simulators, the first of which simulates the behaviour of the uncorrupted
parties faithfully and the last of which fulfills the secrecy requirements. This series is inspired by the
simulators, that [14] gave for the secrecy proof of their key generation algorithm, yet differs in some
significant aspects. The outputs of the respective simulators will be proven indistinguishable, hence
resulting in the indistinguishability of the first and last one. As a slight misuse of the notation, we denote
the set of corrupted shareholders by A, where A is the adversary corrupting an unauthorised set of
shareholders. This means Pi is corrupted iff Pi ∈ A.
The input for each simulator is a ciphertext c, a derived key k and the adversary’s knowledge after KGen

was successfully executed, that is, {︂
si, fi, {fj(i)}Pj∈S∗\A

}︂
Pi∈A

.

75



1. The adversary corrupted an unauthorised set A, hence each share of the secret key is uniformly
distributed from his view. Sim1 samples a polynomial f ′

i ∈ Zp [X]k−1 with

∀Pj ∈ A : f ′
i(j) = fi(j)

uniformly at random for each Pi ∈ S∗ \ A. Since A is unauthorised, f ′
i exists.

Sim1 then proceeds by honestly producing the output of each Pi ∈ S∗ \ A according to the decapsu-
lation protocol, i.e., it samples Rk ←$ E , computes R′

k ← [Li,S∗f ′
i(0)]Rk and outputs

TPVP.Pv
(︂
i, f ′

i , S
∗,
(︂(︁
Rk, R

′
k

)︁
,
(︁
f ′
i(j)

)︁
Pj∈S∗

)︂)︂
,

Ek ←
[︁
Li,S∗f ′

i(0)
]︁
Ek−1

and
ZK.Pv

(︂(︁
Rk, R

′
k

)︁
,
(︂
Ek−1, Ek

)︂
, Li,S∗f ′

i(0)
)︂
,

where k is the index of Pi’s output in the transcript. Since, for all Pi ∈ S∗ \ A, si is information-
theoretically hidden to the adversary, the resulting transcript is identically distributed to a real
transcript.

2. Let i′ denote the index of the last honest party in the execution of the decapsulation protocol
and k′ the index of its output. Sim2 behaves exactly as Sim1 with the exception that it does not
compute the threshold PVP itself but calls the simulator SimTPVP for the threshold PVP to generate
the proof

(︂
πk′

,
{︂
πk′
j

}︂)︂
for the statement

(︂
(Rk′ , R′

k′) , (fi′(j))Pj∈S∗

)︂
. Since the threshold PVP is

zero-knowledge, Sim2’s output is indistinguishable from that of Sim1.

3. Sim3 behaves identical to Sim2 apart from not generating the zero-knowledge proof for Pi′ itself, but
outsourcing it to the simulator for the zero-knowledge proof. That is, Sim3 hands tuples (Rk′ , R′

k′)

and
(︂
Ek′−1, Ek′

)︂
to SimZK and publishes its answer as the zero-knowledge proof. With ZK being

zero-knowledge, the output of Sim3 is indistinguishable from that of Sim2.

4. The final simulator, Sim4, enforces the correct decapsulation output, that is, E#S∗
= k. Since, for

Pj ∈ A, sj was provided as input and Pi′ is the last honest shareholder in the order of decapsulation
execution, Sim4 computes ∑︂

Pj∈S′

Lj,S∗sj ,

where S′ contains the shareholders, whose turn is after Pi′ ’s. To achieve the correct output of the
decapsulation E, Sim4 thus sets

Ek′
←

⎡⎣− ∑︂
Pj∈S′

Lj,S∗sj

⎤⎦E
instead of Ek′

← [Li′,S∗s′i′ ]E
k′−1. Assuming the soundness of the threshold PVP as well as of the

zero-knowledge proof, this guarantees the result to be E#S∗
= E, since

E#S∗
=

⎡⎣ ∑︂
Pj∈S′

Lj,S∗sj

⎤⎦Ek′
= E

holds. It remains to show that the output of Sim4 cannot be distinguished from that of Sim3. The
following reasoning is similar to that of [14], yet for completeness we give a reduction B′, that uses
a distinguisher A′, that distinguishes Sim3 from Sim4 to break the decisional parallelisation problem.
We highlight the necessary modifications.
Let (Ea, Eb, Ec) be an instance of the decisional parallelisation problem with base element c. B′

computes

Ek′
←

⎡⎢⎣ ∑︂
Pj∈S∗\(S′∪{Pi′})

Lj,S∗sj

⎤⎥⎦Ea.

76



With si′ looking uniformly distributed from A’s view, this choice of Ek′ is indistinguishable from
Ek′

= [Li′,S∗s′i′ ]E
k′−1. B′ furthermore does not sample Rk′ ←$ E but puts Rk′ ← Eb and

R′
k′ ← Ec. The resulting transcript is handed to A′ and B′ outputs whatever A′ outputs.
Comparing the distributions, we see that

Ek′
= [a]Ek′−1 = [a]

⎛⎜⎝
⎡⎢⎣ ∑︂

Pj∈S∗\(S′∪{Pi′})
Lj,S∗sj

⎤⎥⎦ c
⎞⎟⎠

if and only if Ea = [a]c, where sj := s′j for Pj ̸∈ A. Furthermore, R′
k′ = [a]Rk′ is equivalent to

Ec = [a]Eb. In the case of Ea = [a]c and Ec = [a]Eb, the transcript handed to A′ is identically
distributed to Sim3’s output. If, on the other hand, (Ea, Eb, Ec) is a random triple, then the transcript
follows the same distribution as Sim4’s output. B′ thus breaks the DPP with the same advantage as
A′ distinguishes Sim3 from Sim4.

Sim4 outputs a transcript of the decapsulation protocol with input c and output k that cannot be
distinguished from the output of Sim1, which is indistinguishable from a real execution protocol.

Indistinguishability of encapsulated keys

Theorem 61
Let K = (KGen,Encaps,Decaps) be a key exchange mechanism in a HHS (E ,G) with distinct element E0

and key space K as detailed in Figure 6.1, Figure 6.2 and Figure 6.6. Then K is IND-CPA-secure.

Proof. We prove Theorem 6.2.7 by giving a reduction of the decisional parallelisation problem as detailed in
Figure 2.12 to Experiment ExpIND-CPA

K (A). For that, letA′ be an adversary to the decisional parallelisation
problem, that runs an instance of the adversary A against Experiment ExpIND-CPA

K (A). A′ receives
(E,Ea∗ , Eb∗ , Ec∗) as input, where Ea∗ = [a∗]E and Eb∗ = [b∗]E. Its task is to decide whether Ec∗ =
[a∗ + b∗ mod p]E or Ec∗ = [c∗]E for some randomly selected c∗ ←$ Zp.
A′ simulates the IND-CPA-security game as stated in Figure 2.13 to an adversary A in the context of

our key exchange mechanism. For that, A′ hands (E,Eb∗ , Ec∗) to A as the challenge. A′ returns whatever
decision bit A outputs. It remains to argue that the advantage of A′ in Experiment ExpDPP(E,G)(A) is at least
that of A in Experiment ExpIND-CPA

K (A). Two cases are to be considered:

• Ec∗ was generated by c∗ = a∗ + b∗, that is, b = 0 in Experiment ExpDPP(E,G)(A), and thus Ec∗ =

[a∗]Eb∗ = [a∗ + b∗ mod p]E. This corresponds directly to the case of k∗0 = [sk] c =
[︁
sk+ logg b

]︁
pk

in Experiment ExpIND-CPA
K (A).

• In the case of b = 1 in Experiment ExpDPP(E,G)(A), we have Ec∗ = [c∗]E = gc
∗
∗ E for a randomly

chosen c∗ ←$ Zp. Due to the transitivity of the operation ∗ in (E ,G), Ec∗ is thus uniformly distributed
in E . This corresponds to k∗1 being randomly selected from K in Figure 2.13.

We thus have
Advdpp(E,G)

(︁
A′)︁ = AdvIND-CPA

K (A) = negl(λ).

6.2.8 Efficiency

Each shareholder engaged in an execution of the decapsulation protocol has one round of messages to send.
The messages of the k-th shareholder consist of the tuple (Rk, R

′
k), a threshold PVP proof

(︂
πk,
{︁
πk
j

}︁
Pj∈S∗

)︂
,

the output Ek and the zero-knowledge proof zk. Thus, the total size of a shareholder’s messages is

2x+ 2c+ λk log p+ 2λ(#S∗) + x+ λk log p+ λ

=3x+ 2c+ λ (1 + 2(#S∗) + 2k log p)

where x is the size of the bit representation of an element of E and c is the size of a commitment produced
in TPVP.Pv. Assuming x, c and the secret sharing parameters k and p to be constant, the message size is
thus linear in the security parameter λ with moderate cofactor.

77



6.2.9 Verifiable Secret Sharing via Decapsulation

It is in many occasions not practical to employ a verifiable secret sharing scheme in order to ensure that
the dealer did indeed generate the key pair (sk, pk) honestly and shared the secret key sk correctly. We
therefore propose a method of verifying the correctness of the received shares without reconstructing the
secret key. It uses the decapsulation protocol Decaps and a publicly encapsulated pair of key and ciphertext
(k, c).
Assume, that the key generation protocol KGen has been executed, pk has been published and each

shareholder Pi holds
{︂
si, fi, {fj(i)}j=1,...,n

}︂
, where si is Pi’s share of sk and each sj was shared again

using the polynomial fj . The shareholders want to verify that their shares of the secret key sk were
honestly generated and that sk is indeed the secret key that corresponds to the public key pk. For that,
the shareholders publicly execute Encaps(pk) and derive a tuple (k, c). The set of all shareholders S is
a superauthorised set, they can hence execute Decaps(c, S). If sk and the shares of it were generated
correctly, we have by the correctness of the KEM, that

k = Decaps(c, S).

If, however, pk ̸= [sk]E0, that is, pk was not derived correctly from sk, we have

Pr[k = Decaps(c, S)] =
1

|E| . (6.2.7)

This holds, because the randomly selected k and c were not known to the dealer before executing KGen,
thus he cannot have generated sk and pk fittingly. The successful termination of the execution ofDecaps can
furthermore not be assumed. Let therefore ε < 1 denote the probability of Decaps terminating successfully.
This gives us

Pr[k = Decaps(c, S)] = ε · 1

|E| <
1

|E| .

This process can be repeated by the shareholders to achieve an appropriate probability of the secret and
public key being generated dishonestly without detection.

6.3 Actively Secure Secret Shared Signature Protocols

We convert the key exchange mechanism detailed in Figure 6.1, Figure 6.2 and Figure 6.6 into an actively
secure signature scheme with secret shared signing key.
A signature scheme is defined by the protocols Setup, Sign and Vf. Since we are in a setting, where

the secret key is not held by a single party, but can be produced by any authorised set of shareholders,
we have to amend the signing protocol Sign to accommodate the secret key being contributed by a an
authorised set rather than in the clear. The unmodified key generation protocol from the key exchange
mechnism in Section 6.2.4 forms the protocol Setup. It produces a public key pk and shares the secret key
sk among the shareholders in a two-level sharing fashion. We apply the Fiat-Shamir-transformation [56]
to our decapsulation protocol Decaps (refer to Figure 6.6). The Fiat-Shamir-transformation as originally
detailed considers identification schemes rather than key exchange mechanisms. We argue that a key
exchange mechanism can be regarded as an identification scheme, in that a successful decapsulation
clearly identifies an authorised set of shareholders. The verifying protocol follows straightforward. The
protocols are given in Figure 6.8 and Figure 6.9.
We concede that applying active security measures to a signature scheme to ensure the correctness

of the resulting signature is counter-intuitive, since the correctness of a signature can easily be checked
through the verifying protocol. Yet verification returning false only shows that the signature is incorrect; a
misbehaving shareholder cannot be identified this way. An actively secure signature scheme achieves just
that. An identified cheating shareholder can hence be excluded from future runs of the signing protocol.
Similar to [15], the results from [52] on Fiat-Shamir in the QROM can be applied to our setting as

follows. First, in the case without hashing, since the sigma protocol has special soundness [15] and in our
case perfect unique responses, [52] shows that the protocol is a quantum proof of knowledge. Further, in
the case with hashing, the collapsingness property implies that the protocol has unique responses in a
quantum scenario.

78



Sig.Sign(m,S∗)(︁
E0

1 , . . . , E
0
λ

)︁
← (E0, . . . , E0)

k ← 0

for Pi ∈ S∗

k ← k + 1

for l ∈ 1, . . . , λ

bil ←$ Zq [X]≤k−1

Rk
il ←$ E;R

k
il
′ ← [bil(0)]R

k
il

Pi publishes
(︂
Rk

il, R
k
il
′)︂(︃

πi
l ,
{︂
πi
l j

}︂
Pj∈S∗

)︃
← TPVP.Pv

(︂
i, bil, S

∗,
(︂(︂

Rk
il, R

k
il
′)︂

, (bil(l))Pj∈S∗

)︂)︂
Pi publishes

(︃
πi
l ,
{︂
πi
l j

}︂
Pj∈S∗

)︃
Pi outputs Ek

l ← [bil(0)]E
k−1
l

zkkl ← ZK.Pv
(︂(︂

Rk
il, R

k
il
′)︂

,
(︂
Ek−1

l , Ek
l

)︂
, bil(0)

)︂
Pi publishes zkkl
if ZK.Vf

(︂(︂
Rk

il, R
k
il
′)︂

,
(︂
Ek−1

l , Ek
l

)︂
, zkkl

)︂
= false

return Sign
(︁
m,S∗′)︁ with S∗′ ∈ Γ+ ∧ Pi ̸∈ S∗′

fi

endfor

endfor

(c1, . . . , cλ)← H
(︂
E#S∗

1 , . . . , E#S∗

λ ,m
)︂

for Pi ∈ S∗

for l = 1, . . . , λ

Pi outputs zil = bil − clLi,S∗ · si
for Pj ∈ S∗

b′il(j)← zil(j) + clLi,S∗fi(j)

if TPVP.Vf
(︂
i, j, S∗, b′il(j), π

i
l , π

i
l j

)︂
= false

∨ TPVP.Vf
(︂
i, 0, S∗,

(︂
Rk

il, R
k
il
′)︂

, πi
l , π

i
l0

)︂
= false

Pj publishes fi(j)
if Pi is convicted of cheating

return Sign
(︁
m,S∗′)︁ with S∗′ ∈ Γ+ ∧ Pi ̸∈ S∗′

fi

fi

endfor

endfor

endfor

for l = 1, . . . , λ

zj ←
∑︂

Pi∈S∗
zij

endfor

return ((c1, . . . , cλ) , (z1, . . . , zλ))

Figure 6.8: The protocol Sig.Sign

79



Sig.Vf(m,σ, pk)

(c1, . . . , cλ, z1, . . . , zλ)← σ

for j = 1, . . . , λ

if cj == 0

E′
j ← [zj ]E0 =

⎡⎣ ∑︂
Pi∈S∗

bij

⎤⎦E0

else

E′
j ← [zj ] pk =

⎡⎣ ∑︂
Pi∈S∗

bij − Li,S∗si + s

⎤⎦E0

fi

endfor(︁
c′1, . . . , c

′
λ

)︁
← H

(︁
E′

1, . . . , E
′
λ

)︁
return (c1, . . . , cλ) ==

(︁
c′1, . . . , c

′
λ

)︁
Figure 6.9: The protocol Sig.Vf

6.3.1 Verifiable Secret Sharing via Message Signing

In Section 6.2.9, we elaborated on how the shareholders can ensure that the secret and public key pair was
generated honestly if the utilised secret sharing is not verifiable. The same process can be applied here.
That is, by signing a publicly known message and later on verifying the resulting signature an appropriate
number of times, the shareholders can check that their shares of the secret key were generated correctly
and whether the secret key and the public key form a proper key pair.

6.3.2 Instantiations

As a practical instantiation, we propose the available parameter set for CSIDH-512 HHS from [15].
Currently no other instantiation of the presented schemes seems feasible in a practical sense. Furthermore,
according to recent works [94, 21] CSIDH-512 may not reach the initially estimated security level.

6.4 Generalising the Secret Sharing Schemes

We constructed the protocols above in the context of Shamir’s secret sharing protocol [101]. The key
exchange mechanism in Section 6.2 as well as the signature scheme in Section 6.3 can be extended to
more general secret sharing schemes. In the following, we characterise the requirements that a secret
sharing scheme has to meet in order to successfully implement the key exchange mechanism and the
signature scheme.

6.4.1 Compatibility Requirements

Definition 62 (Independent Reconstruction)
We say a secret sharing instance S = (S,Γ, G) is independently reconstructible if, for any shared secret
s ∈ G, any S′ ∈ Γ and any shareholder Pi ∈ S′, Pi’s input to reconstructing s is independent of the share of
each other engaged shareholder Pj ∈ S′.

A secret sharing scheme compatible with our key exchange mechanism and signature scheme has to be
independently reconstructible, since each shareholder’s input into the threshold group action is hidden
from every other party by virtue of the GAIP.

Definition 63 (Self-contained reconstruction)
An instance S = (S,Γ, G) of a secret sharing scheme is called self-contained if, for any authorised set S′, the
input of any shareholder Pi ∈ S′ in an execution of Reconstruct is an element of G.

It is necessary that G = Zp for some prime p holds to enable the mapping · ↦→ [·]. This requirement may
be loosened by replacing · ↦→ [·] appropriately. To enable two-level sharing, it has to hold that for a share

80



si ∈ S.Share(s) of a secret s, si ∈ G holds. The secret sharing scheme also has to allow for a PVP scheme
that is compatible with a zero-knowledge proof for the GAIP.

6.4.2 Examples of Secret Sharing Schemes

The following examples of compatible and incompatible secret sharing schemes illustrate the potential and
limits of our key exchange mechanism and the signature scheme derived from it.

• It is evident that Shamir’s approach fulfills all aforementioned requirements. In fact, the two-level
sharing and the threshold PVP have been tailored to Shamir’s polynomial based secret sharing
approach.

• Tassa [107] extended Shamir’s approach of threshold secret sharing to a hierarchical access structure.
To share a secret s ∈ Zp with prime p, a polynomial f with constant term s is sampled. Shareholders
of the top level of the hierarchy are assigned interpolation points of f as in Shamir’s scheme. The
k-th level of the hierarchy receives interpolation points of the k − 1st derivative of f . The shares in
Tassa’s scheme are elements of Zp themselves. The key generation protocol (Figure 6.1) can easily
be transferred to this setting, as each shareholder receives a description of the polynomial utilised
in sharing his share. Hence all derivatives and their respective interpolation points can easily be
computed. Reconstructing a shared secret is achieved via Birkhoff interpolation, the execution of
which is independent and self-contained. The zero-knowledge proof (Figure 2.17 and Figure 2.18)
as well as the piecewise verifiable proof (Figure 6.4 and Figure 6.5) thus directly transfer to Tassa’s
approach utilising the appropriate derivatives in the verifying protocols. The decapsulation and the
signing protocols hence can be executed with adjustments only to the verifying steps.

• In 2006, Damgard and Thorbek proposed a linear integer secret sharing scheme [44] with secret
space Z. Given an access structure Γ, a matrixM is generated in which each shareholder is assigned
a column so that iff S′ ∈ Γ, the submatrixMS′ has full rank. A secret s is shared by multiplying a
random vector v with first entry s withM and sending the resulting vector entries to the respective
shareholders. Reconstruction follows intuitively. Their scheme hence further generalises Tassa’s
with respect to secret space and feasible access structures. With the secret space Z their approach
is not compatible with the mapping · ↦→ [·] and our PVP scheme. Thus, neither our key exchange
mechanism nor our signature scheme can in its current form be instantiated with Damgard’s and
Thorbek’s scheme.

• Additive secret sharing is the simplest of all secret sharing schemes. For a given secret s, each
shareholder Pi receives a share si with s =

∑︁
Pi
si, i = 1, . . . , n. Additive secret sharing has self-

contained as well as independent reconstruction. Yet it is a full threshold secret sharing scheme, that
is, Γ = {S} = {{P1, . . . , Pn}}. Thus, for any Pi ∈ S, the remaining shareholders {P1, . . . , Pn}\{Pi}
form an unauthorised set. Active security therefore cannot be provided for the threshold group
action. This renders additive secret sharing incompatible with our key exchange mechanism and
signature scheme.

81





7 Integrating ELSA into CogniCrypt

In this chapter we briefly summarise the contributions made to the integration of ELSA into CogniCrypt
during the supervision of the bachelor thesis of Julius Hardt [67].

7.1 Motivation

Implementing cryptographic code for a real world deployment can be considered one the hardest challenges
a programmer can face. The list of potential pitfalls includes implementations errors, race conditions and
side-channel attacks, to name a few examples. It is therefore generally recommended to use existing libraries
and implementations instead of writing cryptographic code oneself to avoid insecurities and potential data
loss or worse: leaks. The challenge hardens dramatically if the code, that is to be integrated into a project,
contains not just an isolated primitive but a combination of cryptographic schemes interacting with each
other. The danger of potentially catastrophic implementation errors becomes all the more imminent. If, on
top of that, the implementation is not run on a single local computing node but in a distributed system
such as ELSA or MCELSA, further complications are unavoidable.
It is for this reason, that we integrated ELSA into CogniCrypt [75].

7.1.1 CogniCrypt

CogniCrypt is an extension of the integrated development environment Eclipse, that is designed to assist a
developer in integrating cryptographic code into projects in a manner that ensures correct and therefore
safe execution (in a cryptographic sense). It does so by providing essentially two functionalities to a
developer: a code generator and a static code analyser.
A developer may utilise the code generator to select a functionality from a list of already implemented

cryptographic primitives and solutions such as block ciphers, signature schemes or message authentication
codes. For the selected functionality, he then gives a set of parameters that more concretely define the
context in which it is to be deployed. The validity of the combination of parameters, that the developer
chooses, is verified via a set of rules, the so-called "CrySL rules". These CrySL rules give predefined
boundaries, in which the parameters ought to be set in order to provide a secure instantiation of the
selected functionality. Once the parameters are successfully verified, CogniCrypt generates a piece of code,
that represents an implementation of the functionality according to the chosen parameters. This can then
be utilised by the developer in the desired project. CogniCrypt furthermore will alert the developer if the
code is used in an unsafe manner and provides corrections where possible.
The static code analyser, that CogniCrypt provides, is designed to ensure the correct and secure use of

cryptographic APIs. That is, when a developer saves a piece of code in the IDE Eclipse, the static code
analyser is triggered. It checks whether cryptographic APIs, that appear in the code, are used correctly. If
not, a warning to the developer is issued along with a suggestion how correct use can be restored.

7.1.2 Integrating ELSA into CogniCrypt

ELSA itself is not a cryptographic primitive, but a storage architecture that combines several primitives
to provide a client with the ability to store datasets, maintain their integrity measures, retrieve stored
data and verify the correctness thereof. The primitives, that an instance of ELSA employs, fall into the
following categories:

• Secret sharing schemes: The documents and decommitment values attributed to them are stored
in an information-theoretically secure secret sharing instance. The secret sharing instance may be
swapped during the runtime of an instance of ELSA to adapt to external circumstances.

• Signature schemes: Upon storing a set of documents, a client provides a digital signature for each
document. The authenticity of a retrieved document can thereby be verified upon retrieval.

83



• Vector commitment schemes: Each document stored in an instance of ELSA periodically has a vector
commitment generated on it. This is part of the recursive proof of integrity, that ELSA maintains on
any document stored in it.

• Timestamp schemes: The evidence service computes a timestamp on each commitment value to be
added to a proof of integrity so that its existence at the time of receival can be proven.

• Keyed hash functions: The vector commitment schemes employed in ELSA use keyed hash functions
that are ε-extractable binding to compute a Merkle hash tree so that the vector commitments are
ε′-statistically hiding under selective opening. Thereby the integrity of a single document can be
verified without compromising other stored documents.

• Commitment schemes form an integral part of the vector commitment schemes to ascertain the
ε′-statistical hiding property of the vector commitment schemes.

For each of those primitives, a CrySL rule can be implemented in order to ensure, that it is securely
instantiated and used. Yet for an architecture like ELSA, in which these schemes interact, this task is
considerably more complicated. This is especially true if a scheme, that in its protocols uses other primitives,
requires those primitives to have certain security properties to be considered secure itself.

Example 64
In the protocol ELSA.Store (similar to MCELSA.Store in Figure 3.5), ELSA uses a vector commitment scheme
VC′ (Figure 2.5). This vector commitment scheme is assumed to be ε′-extractable binding. The vector
commitment scheme VC′ in turn employs a vector commitment scheme VC and a commitment scheme CS. We
consult Theorem 20 and see that, for VC′ to be extractable binding, it is a sufficient condition to have VC and
CS be ε-extractable binding.

The vector commitment scheme VC in turn needs the commitment scheme CS to be ε-statistically hiding to
achieve ε-statistical hidingness itself, as Theorem 18 shows.

The relations, that we illustrate in Example 64, cannot be reflected in CogniCrypt in its current state.
This shows just one of the challenges, that we face in integrating ELSA into CogniCrypt.

7.1.3 Goals of our Integration

We want to provide a developer, that uses our extension to CogniCrypt, with the following capabilities:

1. We implement the tool ComposableCrypto. It provides the following functionalities to a developer. A
developer can select a security solution, that has been integrated into CogniCrypt, and configure it so
that it provides the intended functionalities and security properties. The code for this configuration
can then be generated and included in an existing code project so that the security solution can
be utilised in said project. The correct use of the protocols, that the solution provides, is ensured
to avoid improper execution and with that potential security risks. The security solution may be
executed on a single computing node or represent a distributed system, in which multiple computing
nodes interact with each other. Individual schemes in a security solution can dynamically be replaced
to ensure that all schemes in an instantiation adhere to the most recent recommendations in terms
of implementation and parametrisation.

2. Not only can a developer select existing security solutions to integrate them into his code projects,
but he may also introduce novel solutions to ComposableCrypto. This enables a developer to utilise
the features that CogniCrypt provides for security solutions with respect to correct execution of a
solution’s protocols and algorithms, automatic code generation and competent choice of parameters
as well as the possibility of updating individual components if necessary.

3. New cryptographic schemes can easily be introduced to the catalogue of implementations that
CogniCrypt provides. Thereby recent updates to implementations of specific schemes can easily
be integrated and altogether new schemes can be added. If a security solution, that a developer
integrated into ComposableCrypto, necessitates a scheme that is not yet provided by CogniCrypt a
developer can hence directly provide an implementation that can be used for code generation.

84



7.1.4 Challenges

From the goals stated in Section 7.1.3, the following challenges emerge.
1. Configuring an instance of a security solution and subsequently generating the code for its im-
plementation has to be executed in such a fashion, that not only a functional, but also a secure
implementation is achieved. This holds especially true for distributed systems such as ELSA, in
which more than one computing node has to operate concurrently. In CogniCrypt, the correct order
of execution for a scheme or – more generally – a set of protocols is ensured by a set of so-called
CrySL rules. These can be represented as a state machine, that indicates a wrongful application.
For the benchmark implementation of ELSA, REST APIs were used for the communication between
the individual computing nodes. This approach does not reflect any state in the query the parties
make to each other, thus the interaction between the nodes is inherently stateless. Yet CogniCrypt’s
approach for verifying a correct execution of a set of protocols is genuinely stateful. We will have to
bridge this gap in our extension ComposableCrypto.
Moreover, for a distributed system such as ELSA, the code for each computing node has to be
generated. CogniCrypt is not yet equipped for this task, we thus have to devise a method that
generates code for multiple computing nodes rather than a singular one. Again, to ensure correct
execution, a set of CrySL rules for each node has to be constructed.

2. Integrating a new security solution into ComposableCrypto has to be as efficient and as frictionless
as possible to a developer. It is therefore vital to provide a tool that enables a developer to state the
intended purpose, general layout, i.e., the computing nodes and their interaction among each other,
and the cryptographic properties, that are necessary for correct and secure instantiation of a solution
to be integrated. Providing an easy-to-use interface for the integration of new implementations
of cryptographic schemes along with their security properties and dependencies must also be
accomplished.

3. Along with the integration of new cryptographic implementations comes the task of enabling a
developer to update existing configurations in order to maintain security and functionality in the
face of cryptoanalytical developments and ever increasing computing power. This should be made
possible without rebuilding an existing instantiation in its entirety.

We will not give a detailed discussion of the inner workings of our extension ComposableCrypto of
CogniCrypt, but rather the usage by a developer, who wishes to integrate a (possibly distributed) security
solution into a code project. Where it is appropriate, we detail the challenges we faced in accomplishing
the tasks we set out to do.

7.2 Terminology

Let us first clarify the terminology that we will use in this chapter.
• An architecture such as ELSA or MCELSA employs several cryptographic schemes to provide its
functionalities to its clients. We call a set of protocols that implement a given scheme a cryptographic
component or building block. Such a cryptographic component may depend on and make use of
other components to fulfill the tasks it sets out to. We call a cryptographic component that does not
depend on other components a cryptographic primitive.
In Example 64, we illustrated the example of the vector commitment scheme employed in ELSA
and MCELSA, respectively. This component depends on a keyed hash function and a commitment
scheme. It therefore does not constitute a cryptographic primitive. A hash function like SHA3-256
[53] on the other hand is a cryptographic primitive.
The security of a cryptographic building block and its respective implementation depends on certain
security properties of its subcomponents if it is not a primitive itself as can be seen in Example 64.
We shall represent this relation in our extension of CogniCrypt.

• We represent the combination of a cryptographic component and the subcomponents, that it uses
for its implementation, in ComposableCrypto as a tree. As can be seen at the example of ELSA,
a security solution may depend on more than one initial component to achieve its functionality.
This naturally leads to more than one tree of cryptographic components, that are to be configured
separately. As is tradition in the literature, we call the collection of trees in a security solution a
forrest.

85



• The communication between computing nodes and – more general individual pieces of code – is
executed via application programming interfaces (APIs). A special subcategory of APIs are so-called
representational state transfer APIs (REST APIs). This type of API processes the communication in
distributed systems, that is, architectures, in which two or more distinct computing nodes jointly
fulfill a computational task, and adhere to a set of guidelines that ensure interoperability.
The most important characteristics, to which a REST API has to adhere, are as follows.

– REST APIs are stateless. That is, each request drawn from a REST APIs must be interpretable
and executeable without regard of previous queries, that were posed in the same session. The
statelessness makes integrating REST APIs into CogniCrypt all the more challenging, since its
code verifier is an inherently stateful tool.

– Queries in a REST API are one-directional. This means that there is always a client posing a
query and a server receiving it and if appropriate answering it.

– A REST API is agile in the sense that the functionalities it provides to a client can be amended
and extended, while the respective server is active. The system or parts of it hence do not have
to be powered down or taken offline to update a REST API.

• The REST APIs that we use for the communication between computing nodes in a distributed system
and for calling individual cryptographic components will be specified using the OpenAPI standard.
OpenAPI is a language standard that is used to specify the layout of a REST API. It includes the
addressees for individual requests, the necessary resources, what responses are to be expected as
well as the data with which a request has to be parametrised.
An OpenAPI specification itself is most commonly held in JSON or YAML. There exists a wide variety
of tools to generate server and client stubs for APIs that are specified in an OpenAPI style, in particular
for RESTful APIs.

• The correct use of a cryptographic implementation is crucial for its secure deployment in a code
project. CogniCrypt ensures that a developer does not misuse the API presented to him by setting
a set of so-called CrySL rules, that describe correct behaviour for each implementation of a crypto-
graphic component. We give an example in Figure 7.1. It illustrates the correct use of the storage
protocol Store in ELSA. A CrySL rule consists of the mandatory blocks SPECS, OBJECTS, EVENTS.
Other blocks may appear in a CrySL rule such as FORBIDDEN, ORDER, ENSURES, NEGATES,
CONSTRAINTS and REQUIRES. We discuss the mandatory blocks at the example of Figure 7.11
and omit the optional blocks. An in depth analysis of the structure of a CrySL rule can be found in
[76]. A CrySL rule specifies the the class to which it applies in SPEC. In this instance, this is the
class "ELSAStoreOperation". The objects, that are to be used as parameters or return values for the
methods of the class specified in SPEC, are listed in OBJECTS. For ELSA’s store operation, these
are an ELSAClient object client, an inputstream inputStream and a universally unique identifier uuid.
The methods, that contribute to the successful integration of a cryptographic implementation, and
their parameters are given in EVENTS. In our example these are getInstance, addFile and store.
Each method is given a label (Get, Add, Str). Multiple methods or labels thereof can be combined
into method patterns with a new label for later usage. These methods should be executed in the
correct order and number of occurence. This is specified in the block ORDER. It is written in the
style of a regular expression. The modelling for a correct execution hence is quite expressive.

7.3 Integrating a Security Solution into a Code Project

We demonstrate the usage of ComposableCrypto, our extension of CogniCrypt in the IDE Eclipse, at the
example of ELSA.

7.3.1 Configuring Cryptographic Components

The developer selects the desired security solution – in this case ELSA – from the list of solutions, that
have been integrated into ComposableCrypto. He or she is presented with a set of root cryptographic
components, that are necessary for the successful implementation of the security solution. In the case of
ELSA, these are a secret sharing scheme, a channel protocol, a signature scheme, a timestamp scheme
1This example is taken from https://github.com/juliushardt/ComposableCrypto/blob/
9a3b3f14f5dc1b7447d48d284b0c67b32a9b098b/CrySLRules/ELSAStoreOperation.crysl

86

https://github.com/juliushardt/ComposableCrypto/blob/9a3b3f14f5dc1b7447d48d284b0c67b32a9b098b/CrySLRules/ELSAStoreOperation.crysl
https://github.com/juliushardt/ComposableCrypto/blob/9a3b3f14f5dc1b7447d48d284b0c67b32a9b098b/CrySLRules/ELSAStoreOperation.crysl


SPEC de . tu_darmstadt . c r o s s i ng . composable_crypto . components . custom .
long_term_storage . ELSAStoreOperation

OBJECTS
de . tu_darmstadt . c r o s s i ng . composable_crypto . components . custom .

long_term_storage . ELSAClient c l i e n t ;
j ava . io . InputStream inputStream ;
java . u t i l . UUID uuid ;

EVENTS
Get : ge t In s t ance ( c l i e n t ) ;
Add : uuid = addFi le ( inputStream ) ;
S t r : s t o r e () ;

ORDER
Get , Add , S t r

Figure 7.1: CrySL rules for ELSA.Store

and a vector commitment scheme. For their respective application and use by the parties engaged in an
instantiation of ELSA, we refer to Section 3.
For each of these root nodes, a concrete scheme has to be selected. If a scheme, that the developer

chooses, necessitates further cryptographpic components, i.e., it is not a primitive, the respective branches
are then presented to the developer. This process recursively continues, until only cryptographic primitives
are selected as a last step. We illustrate the configuration of a non-interactive timestamp scheme as is used
in ELSA in Figure 7.22. The developer has to select a hash function and a signature scheme as children
of the timestamp scheme. In this case, SHA-256 for the hash function and an RSA signature scheme are
chosen. The RSA signature in turn also makes use of a hash function, for which in this case again SHA-256
is selected.
The components have to be selected in such a manner that the resulting implementation forms a correct

and secure instantiation of the desired security solution. We discuss, how this is ensured for the final
component selection in Section 7.3.3.

7.3.2 Automated Tree Building

A developer that uses CogniCrypt cannot necessarily be assumed to have in-depth knowledge of crypto-
graphic protocols and their respective security properties. We therefore implementedBuildCompliantSolution,
a utility that automatically generates a valid forrest of cryptographic components given that the roots have
already been defined. This is the case for any security solution integrated in ComposableCrypto.
BuildCompliantSolution takes said roots and computes the set of all possible configurations – under

consideration of certain appropriate heuristic boundaries – that arise from the root cryptographic com-
ponents received as input. The algorithm stops, as soon as a functional configuration is found. The tool
BuildCompliantSolution will also complete forrests that have been partially filled by a developer. For that,
the prefilled structure is set as fixed and the remaining components are completed accordingly. If no fitting
configuration can be found based on the given preset, an error message is shown.
If individual cryptographic components have to be exchanged or updated due to – for example – changing

cryptograhpic hardness assumptions or improved implementations thereof, BuildCompliantSolution can
adapt existing forrests so that a functional configuration can be achieved and only a minimal amount of
implementation components have to be updated. In this case, BuildCompliantSolution deconstructs the
existing forrest so that it does not contain any components that are to be exchanged and rebuilds it as in
the case of the partially configured forrest to achieve a secure implementation of the security solution.

2This graphic was generated utilising the ComposableCrypto main application to be found at https://github.com/juliushardt/
composablecrypto.

87

https://github.com/juliushardt/composablecrypto
https://github.com/juliushardt/composablecrypto


Figure 7.2: A tree of cryptographic components

88



7.3.3 Verifying the Correctness of the Deployment

The procedures as described in Section 7.3.1 and Section 7.3.2, respectively, let a developer combine
cryptographic components or respectively help the developer in configuring a combination of components
so that the resulting configuration provides the functionalities, that are necessary for the security solution
to be integrated into a code project.
This process does, however, not ensure that the security properties of the selected components form

a secure implementation. The security of the selection therefore has to be verified explicitly. Let us first
consider a singular cryptographic component.

Example 65
Consider the signature scheme we presented in Section 6.3. This scheme is secure, i.e., simulatable and
existentially unforgeable under the following assumptions:

• In the hard homogeneous space (E ,G), the group action inverse problem (Figure 2.11a) is hard.

• The instance of the secret sharing scheme, that holds the secret key, is information-theoretically hiding.

• The hash function, that is utilised in computing the challenge bits, is preimage resistant.

• The Fiat-Shamir-transform produces an existentially unforgeable signature scheme from a secure identi-
fication scheme.

We categorise the security properties of a scheme into two types: (1) dependent on exterior factors,
that is, the properties of subschemes employed by the scheme or cryptographic hardness assumptions
determine whether a given property holds or (2) fixed, that is, a property holds independent of exterior
influences and thereby holds true irrespectively of properties of subschemes or hardness assumptions. For
cryptographic primitives only hardness assumptions can influence whether a property holds as a primitive
does not make use of other schemes.
The approach for verifying that a secure selection has been made is therefore a reversal of the initial tree

building approach. That is, we go from bottom up, i.e., from the leaves to the roots for each tree in the
configured forrest and recursively verify the security properties. ComposableCrypto is initially handed a
list of cryptographic hardness assumptions, that are considered to hold. If a developer is uncertain, which
assumptions are state of the art, we provide a list of reasonable assumptions, from which a developer
can choose. These range from traditional hardness assumptions like the Diffie-Hellman-problem or the
RSA-problem to more recent developments like the group action inverse problem in hard homogeneous
spaces.
The verification for a leaf in a configuration is therefore to check the validity of the individual properties

against the hardness assumptions, that ComposableCrypto received. After all leaves have been processed,
their respective parent nodes are verified, where the properties of their children are taken into consideration.
This process is recursively continued until all roots of the forrest are verified. If the security properties, that
the security solution necessitates, are fulfilled, the configuration is considered secure. A graphic example
of this evaluation can be seen in Figure 7.2.
We point out that a cryptographic component may have security properties, that are irrelevant to the

concrete instantiation and can hence be dismissed in computing the security of the roots. Example 65
shows that the concrete access structure implemented by the secret sharing scheme, in which the secret key
is stored, does not affect the security properties of the signature scheme. Thus not all security properties
of each component have to hold in order for the configuration to yield a secure instantiation of the security
solution.

Limits to our Model

Our model verifies that each cryptographic component is instantiated in a secure fashion. Yet we concede
that this approach does not consider the different attacker models, that the security proofs for individual
components are based on.
It does especially not take practical threats such as side-channel attacks or race conditions into account.

Furthermore, even if the attacker models for the security proofs for all selected cryptographic components
coincide, it can not be guaranteed that the combination of those instantiations represents a secure solution,
since in many cases the security proofs do not include running more than one instance of the scheme in
parallel or multiple instances sequentially. It seems intuitive that, if all components can be proven secure
in the "universal composability" framework, a secure instantiation of the entire security solution can be

89



guaranteed. This, however, seems improbable, since impossibility results for particular security proofs in
several composability frameworks [72] have been found.
Thus we cannot guarantee the security of a solution consisting of several cryptographic components.

ComposableCrypto can, however, detect constructions that would obviously be insecure and alarm a
developer to that circumstance. A rigorous security proof can at this time not be generated in our model.

7.3.4 Generating Code

We now illustrate, how deployable code is generated from a forrest, that has been configured with the
help of and validated by ComposableCrypto. To accomplish this, we make use of the functionalities, that
CogniCrypt provides.
Let us assume that a security solution has been fully configured and validated. That is, the leaves in each

tree stemming from a root cryptographic component are cryptographic primitives and the configuration has
been validated by ComposableCrypto. This means that the necessary conditions for the security properties
of each cryptographic component in the configuration of the security solution are fulfilled. The code for
each computing node in a distributed system is generated in three steps:

1. We state a CrySL rule for each cryptographic component and each computing node in the security
solution. These can be derived from the concrete choice of cryptographic component and the
description of the security solution.

2. We generate the construction code for each component using the code generator that CogniCrypt
provides. Furthermore, we generate a REST API according to the OpenAPI standard for each
component by applying an API generator as can be found in [36]. These are then connected so that
the individual components can interact with each other and thereby achieve their functionalities.

3. The CrySL rules that apply to the root nodes are in a final step combined with those, that are given
for the security solution overall to ensure a safe execution of the protocols, that are provided to the
developer.

In Figure 7.3 we give a redacted example of a piece of code generated by CogniCrypt that implements a
signature scheme defined by three protocols getkey, sign and vfy. We leave out some package imports,
since they do not provide further insight.

7.3.5 Distributed Security Solutions

The security solution that the developer wishes to integrate into his project does not have to consist
of a single computing node, but may include two or more nodes interacting with each other. This is
perfectly illustrated at the example of ELSA, where a client, the evidence service and the shareholders and
– depending on the concrete instantiation – the timestamp service combined form a functioning system.
This means that the code for each individual computing node has to be generated for the system to properly
execute its task.
We solve this challenge by generating the same construction code for each node, that a security solution

includes. Yet in a second step, we configure the parameters for each node according to the specifications
given by the security solution. This enables us to tailor the instantiation of each computing node to its
specific needs.
Since we base the interaction between engaged parties on REST APIs, the stubs for these also have to be

generated and then connected to the remaining code. Again, we apply an API generator to obtain the
REST API stubs. In this step we again distinguish between the computing nodes and their tasks within the
system. That is, we only generate the necessary stubs for a node and purposefully ignore all unnecessary
stubs. This distinction can be demonstrated at the usage of the timestamp service in ELSA. The timestamp
service provides two APIs to external parties: a stamping API, that returns a timestamp on a message it is
queried on, and a verification API, that checks the validity of a timestamp with respect to a given document.
The evidence service only has access to the stamping functionality, while the client only needs the verifying
functionality to check the integrity of a stored document. We hence only generate the stamping stub for
the evidence service and the verifying stub for the client.
The developer only has to manually interfere in this last step: The REST API stubs have to be linked

to the remaining code of each node. If we take a look at the protocol ELSA.Store, we see that several
subprotocols of cryptographic components are used in its execution, these have to be connected to the
API stubs manually. It was not feasible to automate this task in a safe manner, as the interaction of the

90



/∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
Copyright ( c ) 2015−2019 TU Darmstadt , Paderborn Un i v e r s i t y
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗/

import de . cogn i c ryp t . codegenerator . c r y s l . CrySLCodeGenerator ;

pub l i c c l a s s SecureSigner {
pub l i c s t a t i c java . s e c u r i t y . KeyPair getKey () throws

NoSuchAlgorithmException {
java . s e c u r i t y . KeyPair pa i r = nu l l ;
CrySLCodeGenerator . ge t In s t ance () . i n c ludeC la s s ( " j ava

. s e c u r i t y . KeyPairGenerator " ) . addReturnObject (
pa i r ) . generate () ;

re turn pa i r ;
}

pub l i c s t a t i c java . lang . S t r i ng s ign ( java . lang . S t r i ng msg ,
java . s e c u r i t y . KeyPair keyPa i r ) throws
NoSuchAlgorithmException , Inva l idKeyExcept ion ,
S ignatureExcept ion {

byte [] msgBytes = msg . ge tBytes ( StandardCharsets .
UTF_8) ;

byte [] re s = nu l l ;
j ava . s e c u r i t y . Pr iva teKey pr ivKey = keyPa i r .

g e t P r i v a t e () ;
CrySLCodeGenerator . ge t In s t ance () . i n c ludeC la s s ( " j ava

. s e c u r i t y . S ignature " ) . addParameter ( privKey , "
p r i v " ) . addParameter (msgBytes , " inpba " ) .
addReturnObject ( re s ) . generate () ;

re turn Base64 . getEncoder () . encodeToString ( re s ) ;
}

pub l i c s t a t i c boolean vfy ( java . lang . S t r i ng msg , java .
s e c u r i t y . KeyPair keyPa i r ) throws
NoSuchAlgorithmException , Inva l idKeyExcept ion ,
S ignatureExcept ion {

boolean re s = f a l s e ;
byte [] msgBytes = Base64 . getDecoder () . decode (msg) ;
java . s e c u r i t y . Publ icKey pubKey = keyPa i r . g e tPub l i c

() ;
CrySLCodeGenerator . ge t In s t ance () . i n c ludeC la s s ( " j ava

. s e c u r i t y . S ignature " ) . addParameter (pubKey , " pub
" ) . addParameter (msgBytes , " s ign " ) .
addReturnObject ( re s ) . generate () ;

re turn re s ;
}

}

Figure 7.3: Code for a signature scheme generated by CogniCrypt

91



cryptographic root components relies entirely on the protocols that the security solution is defined by. We
shall demonstrate below, why the format in which a security solution is represented in ComposableCrypto
does not suffice for automating this task.

7.3.6 Challenges

We briefly discuss the challenges that we faced in constructing the extension ComposableCrypto of
CogniCrypt.
The main challenge in implementing the tool ComposableCrypto was unifying the stateless approach

of REST APIs with the inherently stateful approach of CogniCrypt and its application of the CrySL rules
to ensure a safe execution of the generated code. We overcame this challenge by building a set of CrySL
rules that are applied to a computing node in a bottom-up approach, finishing with the rules describing
the correct behaviour of the security solution at the top level. The resulting set of CrySL rules capture
the correct execution of the security solution as well as the correct usage of all components, that the
implementation includes. The calls to individual REST APIs are thereby incorporated and CogniCrypt can
ensure a safe state of the security solution.
Breaking the implementation of the security solution down into cryptographic components each rep-

resenting a single scheme enabled us to efficiently achieve the second challenge, that is, swapping out
individual cryptographic schemes to maintain the security of an instantiation. This approach also furthered
the capabilities of BuildCompliantSolution in that it is able to complete unfinished configurations or update
an existing configuration in which specific components have to replaced.
The last challenge was to verify the security of the selected configuration. The forrest based representation

of the configuration of an entire security solution combined with the bottom-up approach of the API
generation enables us to build an efficient verifying tool to check whether the security properties, that are
necessary for the security solution, are fulfilled. For that, we attributed each cryptographic component
with a set of properties, the validity of which is verified depending on general cryptographic hardness
assumptions, the security properties of its children in the configuration or is stated in a binary fashion
irrespective of the former. We can thus – again in a bottom-up approach – recursively verify the security
and indicate the result to the developer.

7.4 Integrating new Security Solutions

We discuss how a developer can integrate his own security solutions into ComposableCrypto, so that other
developers can integrate them in their own projects or it can be reused later on.
Consider for that the set of all primary cryptographic schemes, that are used in the protocols of a security

solution. That is, all schemes, that are explicitly called to in the execution of the protocols. These schemes
form the roots of the forrest of components to be configured. In ELSA these are:

• a signature scheme Sig to ensure the integrity and authenticity of stored documents,

• a vector commitment scheme VC to be applied to all stored documents to provide a succinct integrity
measure, that is regularly updated,

• a secret sharing scheme S to store the documents and decommitment values attributed to them in
an information-theoretically hiding fashion,

• a timestamp scheme TS to be applied by the evidence service in maintaining the proofs of integrity,

• a channel protocol Ch to provide secure communication between all engaged parties.

The principal components of a security solution are collected in a JSON file, that can be imported into
ComposableCrypto to integrate said solution.
A developer, who wants to integrate his own security solution into ComposableCrypto and thereby

CogniCrypt, has to provide a set of CrySL rules. These define an acceptable execution and order of the
protocols, that a security solution is defined by. The syntax for these rules follows that of the standard
CrySL rules, that are used to ensure the correct application of the cryptographic components. These rules
will – as we discussed in Section 7.3 – later on be combined with those, that arise from the configuration
of the cryptographic components, when the imported security solution is integrated into a code project.
The CrySL rules for the specific components should not be provided by the developer as they depend on
the concrete schemes, that are selected during the configuration step.
Integrating a security solution into ComposableCrypto is hence a fairly straightforward task.

92



7.5 Importing Cryptographic Components and Implementations

A developer may want to introduce new cryptographic components or schemes into ComposableCrypto.
This may be due to a security solution using a type of cryptographic scheme, that is not yet represented
in the implementations that CogniCrypt provides, or a new, more secure implementation of an existing
scheme becoming available.
Cryptographic components in ComposableCrypto are represented in a JSON file, that contains the type

of scheme it represents (e.g., a signature scheme or a hash function), the handle, the name with which it
is displayed, the Java class in which the implementation can be found and the security properties. For a
signature scheme this may include ε-existential unforgeability (see Section 2.2.5), or for a hash function
ε-extractable bindingness (see Section 2.2.2). If the cryptographic component is not a primitive, that is, it
uses other components to achieve its functionalities, a list of children with according type must be given.
The security properties of a cryptographic component can be stated in two flavours: (1) boolean, that is,
they are either fulfilled or not fulfilled, or (2) dependent on external conditions, that is, cryptographic
hardness assumptions or properties of its subcomponents determine whether a given security property
holds true.
Importing new or updated cryptographic components is thus an easy task for a developer, since he

has to provide the JSON file, that classifies the respective component, and the Java class, in which the
implementation is to be found.

93





8 Conclusions and Outlook

In research question 1, we raised the question on how the three aspects of data security, that is, confiden-
tiality, integrity and authenticity, can be guaranteed in a long-term storage architecture so that multiple
clients can interact with the same instance simultaneously.
In research question 2, we asked how secure, private channels between two parties, that share a

common source of symmetric bits, can be achieved against an adverary that grows in computational power
and cryptoanalytical capabilities over time. This ties into research question 1, since secure and private
communication is a central concern in long-term storage architectures.
Research question 3 raised the challenge whether the preprocessing phase of secret sharing based MPC

protocols can be expedited without disproportionate additional effort while maintaining the security
guarantees, that the MPC protocol provides. This was motivated by most performance improvements
to secret sharing based MPC protocols coming with a benefit to the online phase and neglecting the
preprocessing phase or worse shifting workload from the online to the preprocessing phase.
With research question 4 we inquired how the key exchange mechanism proposed by Meyer and De

Feo [45] can be extended so that it achieves active security. This key exchange mechanism is set in the
context of a hard homogeneous space with the secret key being shared in a Shamir sharing scheme. We
furthermore asked whether the field of applicable secret sharing schemes can be widened.
Research question 5 asked how a complex security solution such as ELSA orMCELSA can be integrated

into CogniCrypt so that developers can integrate it into a code project and that the resulting implementation
represents a secure instantiation of said security solution.
We addressed research question 1 in Section 3 and presentedMCELSA, a long-term storage architecture

that provides unconditional confidentiality and prolonged integrity as well as authenticity to documents
stored within an instance of it. MCELSA constitutes an evolution of ELSA in that an instance of MCELSA
serves multiple clients simultaneously, whereas ELSA can handle but one client.
The two main challenges in transferring ELSA to a multi-client setting were establishing a method

of distributed access management and the distribution of the maintenance tasks, that are necessary to
uphold the security of the stored documents. The first challenge was mastered by tasking the shareholders,
that store the shares of the documents and the accompanying decommitment values, with determining
individual access privileges. Thus a client must be deemed authorised for his query by an authorised
set of shareholders for his query to be successfully executed. We overcame the second challenge, that
is, distribution of maintenance tasks, by having the shareholders determine a minimal list of clients that
assist in renewing the vector commitments placed on stored documents. This keeps the number of vector
commitments to be maintained as low as possible and does not overburden individual clients.
The optimisations that we applied are reflected in the performance benchmarks, that we gave. They

show that MCELSA outperforms ELSA in terms of storage demand as well as computational effort for the
engaged parties. We tested several scenarios to demonstrate the real world applicability of MCELSA.
In Section 4, we answered research question 2 in that we adopted the two-stage adversary of [17] to

account for unbounded adversarial resources and modelled channel security following the common notions
for the computational setting like [12, 11].
We considered atomic channel protocols in which it is assumed that a transmitted ciphertext is fully

received on the other side. Depending on the network, however, ciphertexts may be fragmented. It has
been shown in attacks on actual channel protocols like SSH and IPSec [3, 47] that this fragmentation
behavior could potentially be exploited. A more formal treatment of ciphertext fragmentation can be found
in [20, 2]. One can also consider, on top, the possibility that the channel protocol itself may distribute
input messages arbitrarily over ciphertexts, leading to the notion of stream-based channels [57]. It would
be interesting to see how the requirement of unconditional security affects such models.
We followed earlier work and used a game-based definition for the security of channels, where keying

material is provided by external means. If one now uses, say, a secure QKD protocol to generate the
keys, then it remains yet to prove formally that the combined protocol is secure (albeit no attack on the
joint execution is obvious). This is called compositional security. In stronger, simulation-based notions
for key exchange and channels such as [32, 46] compositional guarantees usually follow immediately.
Compositional security for game-based notions of key exchange, as here, have been discussed in [27]. Again,
both types, simulation-based and game-based models, usually only consider computationally bounded
adversaries, leaving open the question if they still hold in the information-theoretic setting.

95



We answered research question 3 in the positive in Section 5. For that, we took an existing MPC protocol
and introduced an additional helper party Ph. The helper party takes on executing the preprocessing for
the parties in the original protocol. To do so, Ph receives a list of parties and a description of the circuit,
that is to be evaluated in the online phase. Ph then samples the auxiliary data for the online phase and
shares each item according to the secret sharing scheme, that the MPC protocol is based on, among the
original parties.
We proved that the resulting protocol with Ph executing the preprocessing phase on behalf of the parties

engaged in the original protocol, possesses the same security guarantees as the original protocol. Thus the
introduction of Ph does not impact the security of the MPC protocol.
The helper party Ph can be instantiated in one of two fashions, that is, a trusted helper party or an

untrusted one. This enables the parties to execute the online phase with the auxiliary data as it was
received from Ph or to first apply the cut-and-choose approach to verify that it was generated honestly.
To demonstrate that our proposed approach is not of a purely theoretical nature, we gave three feasible

instantiations, that can be deployed in a real world setting. We implemented an instance of Ph in the
context of the secret sharing based MPC protocol SPDZ [43] and tested the performance in two scenarios,
i.e., Beaver triples generated and shared per second and the time elapsed for preprocessing of a Vickrey
auction with up to 50 parties bidding in it. The results achieved by our implementation significantly
improved upon those of the SPDZ protocol and evolutions thereof, i.e., MASCOT [70] and Overdrive [71].
We addressed research question 4 in Section 6 and presented an actively secure key exchange mechanism

in the context of hard homogeneous spaces, in which the secret key is being secret shared among a set
of shareholders. For that, we transferred the piecewise verifiable proof and a zero-knowledge protocol
for the group action inverse problem proposed in [14] to the setting of threshold secret sharing. These
protocols we then applied to the passively secure KEM proposed by De Feo and Meyer [45]. We proved the
simulatability of the emerging protocols under the assumption of the decisional parallelisation problem.
The KEM was then extended into a signature scheme, that is also simulatable, via the Fiat-Shamir-

transformation.
We furthermore characterised the properties of a secret sharing scheme necessary to base our key

exchange mechanism on it. We gave several examples of secret sharing schemes, that are compatible with
our protocols, to demonstrate its capabilities and limits. We thereby showed that cryptographic schemes
with secret shared private key in the setting of hard homogeneous spaces can be applied to a much wider
field of secret sharing schemes than the traditional Shamir scheme.
In Section 7, we presented our integration of the long-term storage architecture ELSA into CogniCrypt

thereby addressing research question 5. More generally, we discussed how CogniCrypt can enable a
developer to integrate a complex security solution into a code project in a secure manner. For that, we
implemented the extension ComposableCrypto of CogniCrypt. Once an existing security solution has been
selected, it guides a developer through configuring the concrete parameters and cryptographic building
blocks, that are to be employed in the implementation of said security solution. ComposableCrypto then
verifies that the selected configuration fulfills the necessary requirements in terms of functionality and secu-
rity properties of the individual schemes, that were chosen. If so, CrySL rules are automatically derived and
the concrete code for the security solution is generated. We also provide the tool BuildCompliantSolution,
that automatically configures the forrest of cryptographic components for a security solution, if a valid
configuration exists.
A developer can furthermore integrate his own solution into ComposableCrypto by providing a list of

necessary root components and CrySL rules, that describe the correct behaviour of the security solutions
and valid execution patterns of its protocols.
If desired, new cryptographic components can also be introduced to our extension ComposableCrypto.

For that, a description of the new component including the name, type of scheme and location of the
implementation have to be provided. This way, implementations for schemes, that were previously not
provided by CogniCrypt, can be made available. Components, that were already integrated, can also be
updated in order to provide more secure or efficient implementations.

96



Bibliography

[1] Advanced Encryption Standard (AES). National Institute of Standards and Technology, NIST FIPS
PUB 197, U.S. Department of Commerce, November 2001.

[2] Martin R. Albrecht, Jean Paul Degabriele, Torben Brandt Hansen, and Kenneth G. Paterson. A surfeit
of SSH cipher suites. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel, Andrew C.
Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and Communications
Security, pages 1480–1491, Vienna, Austria, October 24–28, 2016. ACM Press.

[3] Martin R. Albrecht, Kenneth G. Paterson, and Gaven J. Watson. Plaintext recovery attacks against
SSH. In 2009 IEEE Symposium on Security and Privacy, pages 16–26, Oakland, CA, USA, May 17–20,
2009. IEEE Computer Society Press.

[4] Ryan Babbush, Jarrod Ryan McClean, Michael Newman, Craig Michael Gidney, Sergio Boixo, and
Hartmut Neven. Focus beyond quadratic speedups for error-corrected quantum advantage. PRX
Quantum, 2:010103, 2021.

[5] Dave Bayer, Stuart Haber, and W. Scott Stornetta. Improving the efficiency and reliability of digital
time-stamping. In Renato Capocelli, Alfredo De Santis, and Ugo Vaccaro, editors, Sequences II:
Methods in Communication, Security, and Computer Science, pages 329–334, New York, NY, 1993.
Springer New York.

[6] Sebastian P. Bayerl, Tommaso Frassetto, Patrick Jauernig, Korbinian Riedhammer, Ahmad-Reza
Sadeghi, Thomas Schneider, Emmanuel Stapf, and Christian Weinert. Offline model guard: Secure
and private ml on mobile devices. In 2020 Design, Automation & Test in Europe Conference &
Exhibition (DATE), pages 460–465, 2020.

[7] Donald Beaver. Efficient multiparty protocols using circuit randomization. In Joan Feigenbaum,
editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes in Computer Science, pages
420–432, Santa Barbara, CA, USA, August 11–15, 1992. Springer, Heidelberg, Germany.

[8] Mihir Bellare. New proofs for NMAC and HMAC: Security without collision resistance. Journal of
Cryptology, 28(4):844–878, October 2015.

[9] Mihir Bellare, Ran Canetti, and Hugo Krawczyk. Keying hash functions for message authentication.
In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture Notes in
Computer Science, pages 1–15, Santa Barbara, CA, USA, August 18–22, 1996. Springer, Heidelberg,
Germany.

[10] Mihir Bellare, Oded Goldreich, and Anton Mityagin. The power of verification queries in message
authentication and authenticated encryption. Cryptology ePrint Archive, Report 2004/309, 2004.
https://eprint.iacr.org/2004/309.

[11] Mihir Bellare, Tadayoshi Kohno, and Chanathip Namprempre. Breaking and provably repairing the
SSH authenticated encryption scheme: A case study of the encode-then-encrypt-and-MAC paradigm.
ACM Transactions on Information and System Security, 7(2):206–241, 2004.

[12] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among notions and
analysis of the generic composition paradigm. In Tatsuaki Okamoto, editor, Advances in Cryptology –
ASIACRYPT 2000, volume 1976 of Lecture Notes in Computer Science, pages 531–545, Kyoto, Japan,
December 3–7, 2000. Springer, Heidelberg, Germany.

[13] Thomas Beth, Hans-Joachim Knobloch, and Marcus Otten. Verifiable secret sharing for monotone
access structures. In Dorothy E. Denning, Raymond Pyle, Ravi Ganesan, Ravi S. Sandhu, and
Victoria Ashby, editors, ACM CCS 93: 1st Conference on Computer and Communications Security,
pages 189–194, Fairfax, Virginia, USA, November 3–5, 1993. ACM Press.

97

https://eprint.iacr.org/2004/309


[14] Ward Beullens, Lucas Disson, Robi Pedersen, and Frederik Vercauteren. CSI-RAShi: distributed
key generation for CSIDH. In Jung Hee Cheon and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 12th International Workshop, PQCrypto 2021, Daejeon, South Korea, July 20-22,
2021, Proceedings, volume 12841 of Lecture Notes in Computer Science, pages 257–276. Springer,
2021.

[15] Ward Beullens, Thorsten Kleinjung, and Frederik Vercauteren. CSI-FiSh: Efficient isogeny based
signatures through class group computations. In Steven D. Galbraith and Shiho Moriai, editors,
Advances in Cryptology – ASIACRYPT 2019, Part I, volume 11921 of Lecture Notes in Computer Science,
pages 227–247, Kobe, Japan, December 8–12, 2019. Springer, Heidelberg, Germany.

[16] Nina Bindel, Jacqueline Brendel, Marc Fischlin, Brian Goncalves, and Douglas Stebila. Hybrid key
encapsulation mechanisms and authenticated key exchange. In Jintai Ding and Rainer Steinwandt,
editors, Post-Quantum Cryptography - 10th International Conference, PQCrypto 2019, pages 206–226,
Chongqing, China, May 8–10, 2019. Springer, Heidelberg, Germany.

[17] Nina Bindel, Udyani Herath, Matthew McKague, and Douglas Stebila. Transitioning to a quantum-
resistant public key infrastructure. In Tanja Lange and Tsuyoshi Takagi, editors, Post-Quantum
Cryptography - 8th International Workshop, PQCrypto 2017, pages 384–405, Utrecht, The Nether-
lands, June 26–28, 2017. Springer, Heidelberg, Germany.

[18] G. R. Blakley. Safeguarding cryptographic keys. Proceedings of AFIPS 1979 National Computer
Conference, 48:313–317, 1979.

[19] Dan Bogdanov, Sven Laur, and Jan Willemson. Sharemind: A framework for fast privacy-preserving
computations. In Sushil Jajodia and Javier López, editors, ESORICS 2008: 13th European Symposium
on Research in Computer Security, volume 5283 of Lecture Notes in Computer Science, pages 192–206,
Málaga, Spain, October 6–8, 2008. Springer, Heidelberg, Germany.

[20] Alexandra Boldyreva, Jean Paul Degabriele, Kenneth G. Paterson, and Martijn Stam. Security
of symmetric encryption in the presence of ciphertext fragmentation. In David Pointcheval and
Thomas Johansson, editors, Advances in Cryptology – EUROCRYPT 2012, volume 7237 of Lecture
Notes in Computer Science, pages 682–699, Cambridge, UK, April 15–19, 2012. Springer, Heidelberg,
Germany.

[21] Xavier Bonnetain and André Schrottenloher. Quantum security analysis of CSIDH. In Anne Canteaut
and Yuval Ishai, editors, Advances in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture
Notes in Computer Science, pages 493–522, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg,
Germany.

[22] Luis T A N Brandao, Michael Davidson, and Apostol Vassilev. NIST roadmap toward criteria for
threshold schemes for cryptographic primitives, Jul 2020.

[23] Gilles Brassard, Claude Crépeau, Dominic Mayers, and Louis Salvail. A brief review on the impossi-
bility of quantum bit commitment, 1997.

[24] Ferdinand Brasser, Tommaso Frassetto, Korbinian Riedhammer, Ahmad-Reza Sadeghi, Thomas
Schneider, and Christian Weinert. VoiceGuard: Secure and Private Speech Processing. In Proc.
Interspeech 2018, pages 1303–1307, 2018.

[25] Johannes Braun, Johannes Buchmann, Ciaran Mullan, and Alex Wiesmaier. Long term confidential-
ity: a survey. Cryptology ePrint Archive, Report 2012/449, 2012. https://eprint.iacr.org/
2012/449.

[26] Johannes Braun, Johannes A. Buchmann, Denise Demirel, Matthias Geihs, Mikio Fujiwara, Shiho Mo-
riai, Masahide Sasaki, and Atsushi Waseda. LINCOS: A storage system providing long-term integrity,
authenticity, and confidentiality. In Ramesh Karri, Ozgur Sinanoglu, Ahmad-Reza Sadeghi, and
Xun Yi, editors, ASIACCS 17: 12th ACM Symposium on Information, Computer and Communications
Security, pages 461–468, Abu Dhabi, United Arab Emirates, April 2–6, 2017. ACM Press.

[27] Christina Brzuska, Marc Fischlin, Bogdan Warinschi, and Stephen C. Williams. Composability of
Bellare-Rogaway key exchange protocols. In Yan Chen, George Danezis, and Vitaly Shmatikov,
editors, ACM CCS 2011: 18th Conference on Computer and Communications Security, pages 51–62,
Chicago, Illinois, USA, October 17–21, 2011. ACM Press.

98

https://eprint.iacr.org/2012/449
https://eprint.iacr.org/2012/449


[28] Johannes Buchmann, Ghada Dessouky, Tommaso Frassetto, Ágnes Kiss, Ahmad-Reza Sadeghi,
Thomas Schneider, Giulia Traverso, and Shaza Zeitouni. SAFE: A secure and efficient long-term
distributed storage system. Cryptology ePrint Archive, Report 2020/690, 2020. https://eprint.
iacr.org/2020/690.

[29] Ahto Buldas, Matthias Geihs, and Johannes A. Buchmann. Long-term secure commitments via
extractable-binding commitments. In Josef Pieprzyk and Suriadi Suriadi, editors, ACISP 17: 22nd
Australasian Conference on Information Security and Privacy, Part I, volume 10342 of Lecture Notes
in Computer Science, pages 65–81, Auckland, New Zealand, July 3–5, 2017. Springer, Heidelberg,
Germany.

[30] Christian Cachin and Ueli M. Maurer. Unconditional security against memory-bounded adversaries.
In Burton S. Kaliski Jr., editor, Advances in Cryptology – CRYPTO’97, volume 1294 of Lecture Notes
in Computer Science, pages 292–306, Santa Barbara, CA, USA, August 17–21, 1997. Springer,
Heidelberg, Germany.

[31] Fabio Campos and Philipp Muth. On actively secure fine-grained access structures from isogeny
assumptions. In Jung Hee Cheon and Thomas Johansson, editors, Post-Quantum Cryptography
- 13th International Workshop, PQCrypto 2022, pages 375–398. Springer, Heidelberg, Germany,
September 28–30, 2022.

[32] Ran Canetti and Hugo Krawczyk. Universally composable notions of key exchange and secure
channels. In Lars R. Knudsen, editor, Advances in Cryptology – EUROCRYPT 2002, volume 2332 of
Lecture Notes in Computer Science, pages 337–351, Amsterdam, The Netherlands, April 28 – May 2,
2002. Springer, Heidelberg, Germany.

[33] Dario Catalano and Dario Fiore. Vector commitments and their applications. In Kaoru Kurosawa
and Goichiro Hanaoka, editors, PKC 2013: 16th International Conference on Theory and Practice of
Public Key Cryptography, volume 7778 of Lecture Notes in Computer Science, pages 55–72, Nara,
Japan, February 26 – March 1, 2013. Springer, Heidelberg, Germany.

[34] Harsh Chaudhari, Ashish Choudhury, Arpita Patra, and Ajith Suresh. ASTRA: High throughput 3PC
over rings with application to secure prediction. Cryptology ePrint Archive, Report 2019/429, 2019.
https://eprint.iacr.org/2019/429.

[35] Harsh Chaudhari, Rahul Rachuri, and Ajith Suresh. Trident: Efficient 4PC framework for pri-
vacy preserving machine learning. In ISOC Network and Distributed System Security Symposium –
NDSS 2020, San Diego, CA, USA, February 23–26, 2020. The Internet Society.

[36] OpenAPI Tools Contributors. Openapi generator.

[37] Jean-Marc Couveignes. Hard homogeneous spaces. Cryptology ePrint Archive, Report 2006/291,
2006. https://eprint.iacr.org/2006/291.

[38] Daniele Cozzo and Nigel P. Smart. Sharing the LUOV: Threshold post-quantum signatures. In
Martin Albrecht, editor, 17th IMA International Conference on Cryptography and Coding, volume
11929 of Lecture Notes in Computer Science, pages 128–153, Oxford, UK, December 16–18, 2019.
Springer, Heidelberg, Germany.

[39] Daniele Cozzo and Nigel P. Smart. Sashimi: Cutting up CSI-FiSh secret keys to produce an actively
secure distributed signing protocol. In Jintai Ding and Jean-Pierre Tillich, editors, Post-Quantum
Cryptography - 11th International Conference, PQCrypto 2020, pages 169–186, Paris, France, April 15–
17, 2020. Springer, Heidelberg, Germany.

[40] Ronald Cramer, Ivan Damgård, Daniel Escudero, Peter Scholl, and Chaoping Xing. SPD Z2k : Efficient
MPC mod 2k for dishonest majority. In Hovav Shacham and Alexandra Boldyreva, editors, Advances
in Cryptology – CRYPTO 2018, Part II, volume 10992 of Lecture Notes in Computer Science, pages
769–798, Santa Barbara, CA, USA, August 19–23, 2018. Springer, Heidelberg, Germany.

[41] Ivan Damgård, Daniel Escudero, Tore Kasper Frederiksen, Marcel Keller, Peter Scholl, and Nikolaj
Volgushev. New primitives for actively-secure MPC over rings with applications to private machine
learning. In 2019 IEEE Symposium on Security and Privacy, pages 1102–1120, San Francisco, CA,
USA, May 19–23, 2019. IEEE Computer Society Press.

99

https://eprint.iacr.org/2020/690
https://eprint.iacr.org/2020/690
https://eprint.iacr.org/2019/429
https://eprint.iacr.org/2006/291


[42] Ivan Damgård, Helene Haagh, Michael Nielsen, and Claudio Orlandi. Commodity-based 2PC for
arithmetic circuits. In Martin Albrecht, editor, 17th IMA International Conference on Cryptography
and Coding, volume 11929 of Lecture Notes in Computer Science, pages 154–177, Oxford, UK,
December 16–18, 2019. Springer, Heidelberg, Germany.

[43] Ivan Damgård, Valerio Pastro, Nigel P. Smart, and Sarah Zakarias. Multiparty computation from
somewhat homomorphic encryption. In Reihaneh Safavi-Naini and Ran Canetti, editors, Advances
in Cryptology – CRYPTO 2012, volume 7417 of Lecture Notes in Computer Science, pages 643–662,
Santa Barbara, CA, USA, August 19–23, 2012. Springer, Heidelberg, Germany.

[44] Ivan Damgård and Rune Thorbek. Linear integer secret sharing and distributed exponentiation. In
Moti Yung, Yevgeniy Dodis, Aggelos Kiayias, and Tal Malkin, editors, PKC 2006: 9th International
Conference on Theory and Practice of Public Key Cryptography, volume 3958 of Lecture Notes in
Computer Science, pages 75–90, New York, NY, USA, April 24–26, 2006. Springer, Heidelberg,
Germany.

[45] Luca De Feo and Michael Meyer. Threshold schemes from isogeny assumptions. In Aggelos Kiayias,
Markulf Kohlweiss, Petros Wallden, and Vassilis Zikas, editors, PKC 2020: 23rd International
Conference on Theory and Practice of Public Key Cryptography, Part II, volume 12111 of Lecture
Notes in Computer Science, pages 187–212, Edinburgh, UK, May 4–7, 2020. Springer, Heidelberg,
Germany.

[46] Jean Paul Degabriele and Marc Fischlin. Simulatable channels: Extended security that is universally
composable and easier to prove. In Thomas Peyrin and Steven Galbraith, editors, Advances in
Cryptology – ASIACRYPT 2018, Part III, volume 11274 of Lecture Notes in Computer Science, pages
519–550, Brisbane, Queensland, Australia, December 2–6, 2018. Springer, Heidelberg, Germany.

[47] Jean Paul Degabriele and Kenneth G. Paterson. On the (in)security of IPsec in MAC-then-encrypt
configurations. In Ehab Al-Shaer, Angelos D. Keromytis, and Vitaly Shmatikov, editors, ACM CCS
2010: 17th Conference on Computer and Communications Security, pages 493–504, Chicago, Illinois,
USA, October 4–8, 2010. ACM Press.

[48] Daniel Demmler, Thomas Schneider, and Michael Zohner. ABY - A framework for efficient mixed-
protocol secure two-party computation. In ISOC Network and Distributed System Security Symposium
– NDSS 2015, San Diego, CA, USA, February 8–11, 2015. The Internet Society.

[49] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, remember little: Cryptography
in the bounded storage model, revisited. Cryptology ePrint Archive, Report 2021/1270, 2021.
https://eprint.iacr.org/2021/1270.

[50] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Secure two-party threshold ECDSA
from ECDSA assumptions. In 2018 IEEE Symposium on Security and Privacy, pages 980–997, San
Francisco, CA, USA, May 21–23, 2018. IEEE Computer Society Press.

[51] Jack Doerner, Yashvanth Kondi, Eysa Lee, and abhi shelat. Threshold ECDSA from ECDSA assump-
tions: The multiparty case. In 2019 IEEE Symposium on Security and Privacy, pages 1051–1066,
San Francisco, CA, USA, May 19–23, 2019. IEEE Computer Society Press.

[52] Jelle Don, Serge Fehr, Christian Majenz, and Christian Schaffner. Security of the Fiat-Shamir trans-
formation in the quantum random-oracle model. In Alexandra Boldyreva and Daniele Micciancio,
editors, Advances in Cryptology – CRYPTO 2019, Part II, volume 11693 of Lecture Notes in Com-
puter Science, pages 356–383, Santa Barbara, CA, USA, August 18–22, 2019. Springer, Heidelberg,
Germany.

[53] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-output functions, 2015-
08-04 2015.

[54] Oriol Farràs and Carles Padró. Ideal hierarchical secret sharing schemes. In Daniele Micciancio,
editor, TCC 2010: 7th Theory of Cryptography Conference, volume 5978 of Lecture Notes in Computer
Science, pages 219–236, Zurich, Switzerland, February 9–11, 2010. Springer, Heidelberg, Germany.

[55] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended abstract).
In 26th Annual ACM Symposium on Theory of Computing, pages 554–563, Montréal, Québec, Canada,
May 23–25, 1994. ACM Press.

100

https://eprint.iacr.org/2021/1270


[56] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In Andrew M. Odlyzko, editor, Advances in Cryptology – CRYPTO’86, volume 263 of
Lecture Notes in Computer Science, pages 186–194, Santa Barbara, CA, USA, August 1987. Springer,
Heidelberg, Germany.

[57] Marc Fischlin, Felix Günther, Giorgia Azzurra Marson, and Kenneth G. Paterson. Data is a stream:
Security of stream-based channels. In Rosario Gennaro andMatthew J. B. Robshaw, editors, Advances
in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in Computer Science, pages
545–564, Santa Barbara, CA, USA, August 16–20, 2015. Springer, Heidelberg, Germany.

[58] Marc Fischlin, Felix Günther, and Philipp Muth. Information-theoretic security of cryptographic
channels. In Weizhi Meng, Dieter Gollmann, Christian Damsgaard Jensen, and Jianying Zhou,
editors, ICICS 20: 22nd International Conference on Information and Communication Security, volume
11999 of Lecture Notes in Computer Science, pages 295–311, Copenhagen, Denmark, August 24–26,
2020. Springer, Heidelberg, Germany.

[59] Matthias Fitzi, Juan A. Garay, Shyamnath Gollakota, C. Pandu Rangan, and K. Srinathan. Round-
optimal and efficient verifiable secret sharing. In Shai Halevi and Tal Rabin, editors, TCC 2006:
3rd Theory of Cryptography Conference, volume 3876 of Lecture Notes in Computer Science, pages
329–342, New York, NY, USA, March 4–7, 2006. Springer, Heidelberg, Germany.

[60] Eiichiro Fujisaki and Tatsuaki Okamoto. A practical and provably secure scheme for publicly
verifiable secret sharing and its applications. In Kaisa Nyberg, editor, Advances in Cryptology –
EUROCRYPT’98, volume 1403 of Lecture Notes in Computer Science, pages 32–46, Espoo, Finland,
May 31 – June 4, 1998. Springer, Heidelberg, Germany.

[61] M. Geihs, O. Nikiforov, D. Demirel, A. Sauer, D. Butin, F. Günther, G. Alber, T. Walther, and J. Buch-
mann. The status of quantum-key-distribution-based long-term secure internet communication.
IEEE Transactions on Sustainable Computing, 2019.

[62] Matthias Geihs and Johannes Buchmann. ELSA: Efficient long-term secure storage of large datasets.
In Kwangsu Lee, editor, ICISC 18: 21st International Conference on Information Security and Cryp-
tology, volume 11396 of Lecture Notes in Computer Science, pages 269–286, Seoul, Korea, Novem-
ber 28–30, 2019. Springer, Heidelberg, Germany.

[63] Matthias Geihs, Nikolaos Karvelas, Stefan Katzenbeisser, and Johannes Buchmann. Propyla: Privacy
preserving long-term secure storage. In Proceedings of the 6th International Workshop on Security in
Cloud Computing, SCC ’18, pages 39–48, New York, NY, USA, 2018. ACM.

[64] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In Alfred Aho, editor, 19th Annual ACM Symposium on
Theory of Computing, pages 218–229, New York City, NY, USA, May 25–27, 1987. ACM Press.

[65] Jiaxin Guan and Mark Zhandry. Simple schemes in the bounded storage model. In Yuval Ishai
and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2019, Part III, volume 11478 of
Lecture Notes in Computer Science, pages 500–524, Darmstadt, Germany, May 19–23, 2019. Springer,
Heidelberg, Germany.

[66] Shai Halevi and Silvio Micali. Practical and provably-secure commitment schemes from collision-
free hashing. In Neal Koblitz, editor, Advances in Cryptology – CRYPTO’96, volume 1109 of Lecture
Notes in Computer Science, pages 201–215, Santa Barbara, CA, USA, August 18–22, 1996. Springer,
Heidelberg, Germany.

[67] Julius Hardt. Integrating elsa into cognicrypt - steering developers towards the correct usage of
rest-based security solutions, 2021.

[68] Javier Herranz and Germán Sáez. Verifiable secret sharing for general access structures, with appli-
cation to fully distributed proxy signatures. In Rebecca Wright, editor, FC 2003: 7th International
Conference on Financial Cryptography, volume 2742 of Lecture Notes in Computer Science, pages
286–302, Guadeloupe, French West Indies, January 27–30, 2003. Springer, Heidelberg, Germany.

[69] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography, Second Edition. CRC Press,
2014.

101



[70] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: Faster malicious arithmetic secure
computation with oblivious transfer. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher Kruegel,
Andrew C. Myers, and Shai Halevi, editors, ACM CCS 2016: 23rd Conference on Computer and
Communications Security, pages 830–842, Vienna, Austria, October 24–28, 2016. ACM Press.

[71] Marcel Keller, Valerio Pastro, and Dragos Rotaru. Overdrive: Making SPDZ great again. In
Jesper Buus Nielsen and Vincent Rijmen, editors, Advances in Cryptology – EUROCRYPT 2018,
Part III, volume 10822 of Lecture Notes in Computer Science, pages 158–189, Tel Aviv, Israel,
April 29 – May 3, 2018. Springer, Heidelberg, Germany.

[72] Dafna Kidron and Yehuda Lindell. Impossibility results for universal composability in public-key
models and with fixed inputs. Journal of Cryptology, 24(3):517–544, July 2011.

[73] Nishat Koti, Shravani Patil, Arpita Patra, and Ajith Suresh. MPClan: Protocol suite for privacy-
conscious computations. Cryptology ePrint Archive, Report 2022/675, 2022. https://eprint.
iacr.org/2022/675.

[74] Nishat Koti, Arpita Patra, Rahul Rachuri, and Ajith Suresh. Tetrad: Actively secure 4PC for secure
training and inference. Cryptology ePrint Archive, Report 2021/755, 2021. https://eprint.
iacr.org/2021/755.

[75] Stefan Krüger. CogniCrypt - the secure integration of cryptographic software. PhD thesis, University
of Paderborn, Germany, 2020.

[76] Stefan Krüger, Johannes Späth, Karim Ali, Eric Bodden, and Mira Mezini. Crysl: An extensi-
ble approach to validating the correct usage of cryptographic apis. IEEE Trans. Software Eng.,
47(11):2382–2400, 2021.

[77] Robin Künzler, Jörn Müller-Quade, and Dominik Raub. Secure computability of functions in the IT
setting with dishonest majority and applications to long-term security. In Omer Reingold, editor,
TCC 2009: 6th Theory of Cryptography Conference, volume 5444 of Lecture Notes in Computer Science,
pages 238–255. Springer, Heidelberg, Germany, March 15–17, 2009.

[78] Arjen K Lenstra. The Handbook of Information Security, chapter Key lengths. Wiley, 2004.

[79] Arjen K. Lenstra and Eric R. Verheul. Selecting cryptographic key sizes. Journal of Cryptology,
14(4):255–293, September 2001.

[80] ARM Limited. Arm security technology – building a secure system using
trustzone technology. https://community.arm.com/cfs-file/__key/
telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/
PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_
whitepaper.pdf, 2009.

[81] Yehuda Lindell and Ariel Nof. Fast secure multiparty ECDSA with practical distributed key generation
and applications to cryptocurrency custody. In David Lie, Mohammad Mannan, Michael Backes,
and XiaoFeng Wang, editors, ACM CCS 2018: 25th Conference on Computer and Communications
Security, pages 1837–1854, Toronto, ON, Canada, October 15–19, 2018. ACM Press.

[82] Jake Loftus and Nigel P. Smart. Secure outsourced computation. In Abderrahmane Nitaj and David
Pointcheval, editors, AFRICACRYPT 11: 4th International Conference on Cryptology in Africa, volume
6737 of Lecture Notes in Computer Science, pages 1–20, Dakar, Senegal, July 5–7, 2011. Springer,
Heidelberg, Germany.

[83] Akash Malhotra. Amd ryzen pro 5000 series mobile processor security features. https://www.
amd.com/system/files/documents/amd-security-white-paper.pdf, 2021.

[84] Ueli M. Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher. Journal of
Cryptology, 5(1):53–66, January 1992.

[85] Ralph C. Merkle. A certified digital signature. In Gilles Brassard, editor, Advances in Cryptology –
CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages 218–238, Santa Barbara, CA,
USA, August 20–24, 1990. Springer, Heidelberg, Germany.

102

https://eprint.iacr.org/2022/675
https://eprint.iacr.org/2022/675
https://eprint.iacr.org/2021/755
https://eprint.iacr.org/2021/755
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://community.arm.com/cfs-file/__key/telligent-evolution-components-attachments/01-2671-00-00-00-00-53-99/PRD29_2D00_GENC_2D00_009492C_5F00_trustzone_5F00_security_5F00_whitepaper.pdf
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf
https://www.amd.com/system/files/documents/amd-security-white-paper.pdf


[86] Tal Moran and Moni Naor. Receipt-free universally-verifiable voting with everlasting privacy. In
Cynthia Dwork, editor, Advances in Cryptology – CRYPTO 2006, volume 4117 of Lecture Notes
in Computer Science, pages 373–392, Santa Barbara, CA, USA, August 20–24, 2006. Springer,
Heidelberg, Germany.

[87] Michele Mosca, Douglas Stebila, and Berkant Ustaoglu. Quantum key distribution in the classical
authenticated key exchange framework. In Philippe Gaborit, editor, Post-Quantum Cryptography
- 5th International Workshop, PQCrypto 2013, pages 136–154, Limoges, France, June 4–7, 2013.
Springer, Heidelberg, Germany.

[88] Jörn Müller-Quade and Dominique Unruh. Long-term security and universal composability. Journal
of Cryptology, 23(4):594–671, October 2010.

[89] Philipp Muth, Matthias Geihs, Tolga Arul, Johannes Buchmann, and Stefan Katzenbeisser. ELSA:
efficient long-term secure storage of large datasets (full version) ∗ . EURASIP J. Inf. Secur., 2020:9,
2020.

[90] Philipp Muth and Stefan Katzenbeisser. Assisted mpc. Cryptology ePrint Archive, Paper 2022/1453,
2022. https://eprint.iacr.org/2022/1453.

[91] National Institute of Standards and Technology. FIPS PUB 180-4: Secure hash standard (SHS),
2015.

[92] Emmanuela Orsini, Nigel P. Smart, and Frederik Vercauteren. Overdrive2k: Efficient secure MPC
over Z2k from somewhat homomorphic encryption. In Stanislaw Jarecki, editor, Topics in Cryptology
– CT-RSA 2020, volume 12006 of Lecture Notes in Computer Science, pages 254–283, San Francisco,
CA, USA, February 24–28, 2020. Springer, Heidelberg, Germany.

[93] Torben P. Pedersen. Non-interactive and information-theoretic secure verifiable secret sharing.
In Joan Feigenbaum, editor, Advances in Cryptology – CRYPTO’91, volume 576 of Lecture Notes
in Computer Science, pages 129–140, Santa Barbara, CA, USA, August 11–15, 1992. Springer,
Heidelberg, Germany.

[94] Chris Peikert. He gives C-sieves on the CSIDH. In Anne Canteaut and Yuval Ishai, editors, Advances
in Cryptology – EUROCRYPT 2020, Part II, volume 12106 of Lecture Notes in Computer Science, pages
463–492, Zagreb, Croatia, May 10–14, 2020. Springer, Heidelberg, Germany.

[95] Tal Rabin and Michael Ben-Or. Verifiable secret sharing and multiparty protocols with honest
majority (extended abstract). In 21st Annual ACM Symposium on Theory of Computing, pages 73–85,
Seattle, WA, USA, May 15–17, 1989. ACM Press.

[96] E. Rescorla. The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446 (Proposed
Standard), August 2018.

[97] M. Sadegh Riazi, Christian Weinert, Oleksandr Tkachenko, EbrahimM. Songhori, Thomas Schneider,
and Farinaz Koushanfar. Chameleon: A hybrid secure computation framework for machine learning
applications. In Jong Kim, Gail-Joon Ahn, Seungjoo Kim, Yongdae Kim, Javier López, and Taesoo
Kim, editors, ASIACCS 18: 13th ACM Symposium on Information, Computer and Communications
Security, pages 707–721, Incheon, Republic of Korea, April 2–6, 2018. ACM Press.

[98] Ronald L. Rivest, Adi Shamir, and Leonard M. Adleman. A method for obtaining digital signa-
tures and public-key cryptosystems. Communications of the Association for Computing Machinery,
21(2):120–126, 1978.

[99] Claus-Peter Schnorr. Efficient identification and signatures for smart cards. In Gilles Brassard,
editor, Advances in Cryptology – CRYPTO’89, volume 435 of Lecture Notes in Computer Science, pages
239–252, Santa Barbara, CA, USA, August 20–24, 1990. Springer, Heidelberg, Germany.

[100] Peter Scholl, Nigel P. Smart, and Tim Wood. When it’s all just too much: Outsourcing MPC-
preprocessing. In Máire O’Neill, editor, 16th IMA International Conference on Cryptography and
Coding, volume 10655 of Lecture Notes in Computer Science, pages 77–99, Oxford, UK, December 12–
14, 2017. Springer, Heidelberg, Germany.

[101] Adi Shamir. How to share a secret. Communications of the Association for Computing Machinery,
22(11):612–613, November 1979.

103

https://eprint.iacr.org/2022/1453


[102] Claude E. Shannon. Communication theory of secrecy systems. Bell Systems Technical Journal,
28(4):656–715, 1949.

[103] Peter W. Shor. Polynomial-time algorithms for prime factorization and discrete logarithms on a
quantum computer. SIAM J. Comput., 26(5):1484–1509, October 1997.

[104] Tom Shrimpton. A characterization of authenticated-encryption as a form of chosen-ciphertext
security. Cryptology ePrint Archive, Report 2004/272, 2004. https://eprint.iacr.org/
2004/272.

[105] Nigel P. Smart and Titouan Tanguy. TaaS: Commodity MPC via triples-as-a-service. Cryptology
ePrint Archive, Report 2019/957, 2019. https://eprint.iacr.org/2019/957.

[106] Markus Stadler. Publicly verifiable secret sharing. In Ueli M. Maurer, editor, Advances in Cryptology
– EUROCRYPT’96, volume 1070 of Lecture Notes in Computer Science, pages 190–199, Saragossa,
Spain, May 12–16, 1996. Springer, Heidelberg, Germany.

[107] Tamir Tassa. Hierarchical threshold secret sharing. In Moni Naor, editor, TCC 2004: 1st Theory
of Cryptography Conference, volume 2951 of Lecture Notes in Computer Science, pages 473–490,
Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg, Germany.

[108] Tamir Tassa. Hierarchical threshold secret sharing. Journal of Cryptology, 20(2):237–264, April
2007.

[109] Rune Thorbek. Proactive linear integer secret sharing. Cryptology ePrint Archive, Report 2009/183,
2009. https://eprint.iacr.org/2009/183.

[110] Giulia Traverso, Denise Demirel, and Johannes Buchmann. Performing computations on hierar-
chically shared secrets. In Antoine Joux, Abderrahmane Nitaj, and Tajjeeddine Rachidi, editors,
AFRICACRYPT 18: 10th International Conference on Cryptology in Africa, volume 10831 of Lec-
ture Notes in Computer Science, pages 141–161, Marrakesh, Morocco, May 7–9, 2018. Springer,
Heidelberg, Germany.

[111] Giulia Traverso, Denise Demirel, and Johannes A. Buchmann. Dynamic and verifiable hierarchical
secret sharing. In Anderson C. A. Nascimento and Paulo Barreto, editors, ICITS 16: 9th International
Conference on Information Theoretic Security, volume 10015 of Lecture Notes in Computer Science,
pages 24–43, Tacoma, WA, USA, August 9–12, 2016. Springer, Heidelberg, Germany.

[112] Martín A. Gagliotti Vigil, Johannes A. Buchmann, Daniel Cabarcas, Christian Weinert, and Alexander
Wiesmaier. Integrity, authenticity, non-repudiation, and proof of existence for long-term archiving:
A survey. Computers & Security, 50:16–32, 2015.

[113] Mark N. Wegman and Larry Carter. New hash functions and their use in authentication and set
equality. Journal of Computer and System Sciences, 22:265–279, 1981.

[114] A. D. Wyner. The wire-tap channel. The Bell System Technical Journal, 54(8):1355–1387, Oct 1975.

[115] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–5,
1982. IEEE Computer Society Press.

104

https://eprint.iacr.org/2004/272
https://eprint.iacr.org/2004/272
https://eprint.iacr.org/2019/957
https://eprint.iacr.org/2009/183

	Introduction
	Motivation
	Data in Transit
	Data at Rest
	Computation on Data

	Research Questions
	Structure

	Preliminaries
	Notation
	Cryptographic Primitives
	Commitment Schemes
	Keyed Hash Functions
	Public Key Infrastructure
	Secret Sharing Schemes
	Signature Schemes
	Timestamp Schemes
	Vector Commitment Schemes
	Channels
	Message Authentication Codes
	Multi-party Computation Protocols
	Hard Homogeneous Spaces
	Key Exchange Mechanisms
	Piecewise Verifiable Proofs
	Threshold Group Action
	Zero-Knowledge Proofs for the GAIP


	MCELSA
	Motivation
	Related Work
	Our Contribution

	MCELSA: Efficient Long-Term Secure Storage Architecture for Multiple Clients
	The Parties
	Amendments to the Secret Sharing Scheme
	General Setup and Protocols
	Security

	Performance Evaluation
	Testing Parameters
	Results


	Information-Theoretic Security of Cryptographic Channels
	Motivation
	Modeling Information-Theoretically Secure Channels
	Achieving Information-Theoretically Secure Channels
	Further Related Work

	Security of Information-Theoretically Secure Channels
	Composition Theorem
	Instantiations
	Future-Secure Channels
	Unconditionally-Secure Channels
	Application in a Long-Term Storage Solution


	Assisted Multi-Party Computation
	Motivation
	Our Contribution
	Structure
	Related Work

	Model
	Adversary
	The Helper Party Ph
	Security

	Instantiations for the Helper Party
	Trusted Execution Environment
	Unrelated External Party
	Minimal Special Purpose Hardware

	SPDZ Application and Performance
	Application to SPDZ
	Performance


	General Access Structures for Isogeny based Cryptography
	Motivation
	Our Contribution
	Related Work
	Outline

	Key Exchange Mechanism
	Public Parameters
	The Adversary
	Communication channels
	Key Generation
	Encapsulation
	Decapsulation
	Security
	Efficiency
	Verifiable Secret Sharing via Decapsulation

	Actively Secure Secret Shared Signature Protocols
	Verifiable Secret Sharing via Message Signing
	Instantiations

	Generalising the Secret Sharing Schemes
	Compatibility Requirements
	Examples of Secret Sharing Schemes


	Integrating ELSA into CogniCrypt
	Motivation
	CogniCrypt
	Integrating ELSA into CogniCrypt
	Goals of our Integration
	Challenges

	Terminology
	Integrating a Security Solution into a Code Project
	Configuring Cryptographic Components
	Automated Tree Building
	Verifying the Correctness of the Deployment
	Generating Code
	Distributed Security Solutions
	Challenges

	Integrating new Security Solutions
	Importing Cryptographic Components and Implementations

	Conclusions and Outlook
	Bibliography

