
 

 

 

 

Doctoral thesis approved in fulfillment of the requirements  

for the degree of Doctor rerum naturalium (Dr. rer. nat.)  

at the  

Department of Material and Earth Sciences,  

Technische Universität Darmstadt 

 

 

 

 

 

 

 

Submitted by  

Leandra Maren Weydt, M.Sc.  

born on 14. August, 1990 in Oberhausen, Germany  

 

 

 

 

 

 

 

 

 

Supervisor: Prof. Dr. Ingo Sass  

Co-supervisor: Prof. Dr. Domenico Liotta 

 

Darmstadt 2022 

  

 Reservoir characterization of super-hot  

unconventional geothermal systems, Mexico 
  

  
 Dissertation 

 
 



 

 

 

 

Weydt, Leandra Maren: Reservoir characterization of super-hot unconventional geothermal systems, 
Mexico 
Darmstadt, Technische Universität Darmstadt 
Year thesis published in TUprints: 2023 
URN: urn:nbn:de:tuda-tuprints-230768 
Date of viva voce: 18.11.2022 
Published under CC BY-SA 4.0 International 
https://creativecommons.org/licenses/ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

Submitted on: 31.08.2022 

Date of viva voce: 18.11.2022 

 

 

Board of examiners 

Head:    Prof. Dr. Andreas Henk 

First assessor:  Prof. Dr. Ingo Sass 

Second assessor:  Prof. Dr. Domenico Liotta 

Examiner:   Prof. Dr. David Bruhn 

Examiner:   Prof. Dr. Moritz Bigalke 

   

 

 

 

 

Technical University of Darmstadt 

Institute of Applied Geosciences 

Schnittspahnstraße 9 

64287 Darmstadt 

Germany 

 

  



 

 

Declaration 

 

I hereby declare that this presented dissertation is based on original research, and is the result of my 

own work. I certify that this dissertation contains no material which has been accepted for the award of 

any other degree in my name, at any university or other tertiary institution and, to the best of my 

knowledge and belief, contains no material previously published or written by another person, except 

where due reference has been made in the text.  

 

 

 

 

 

Name 
 

Location and Date 

 

 

  



 

 

Abstract 

 

Super-hot unconventional geothermal systems (> 350 °C) possess enormous potential for geothermal 

power and heat generation that could be harnessed in the future. Due to their high temperature fluids, 

they could provide significantly more energy per well than existing conventional wells. However, the 

development of such systems is challenging and their controlling factors are not fully understood yet. 

The high temperatures and often aggressive reservoir fluids have led to numerous drilling problems 

and eventual abandonments of wells in the past. Overcoming these challenges requires a deeper un-

derstanding of these reservoirs and the development of innovative exploration and drilling technologies.  

As part of the GEMex H2020 project, this thesis focuses on the reservoir characterization of super-hot 

unconventional geothermal systems linked to volcanic settings in Mexico. Two caldera complexes lo-

cated in the northeastern Trans-Mexican Volcanic Belt, the Acoculco and Los Humeros caldera, were 

selected as demonstration sites. Sound knowledge of the reservoir units, their rock properties, and 

spatial heterogeneities in the subsurface is crucial for the interpretation of geophysical data as well as 

the parametrization of numerical models, and thus, forms the basis for an economic reservoir assess-

ment and management. To improve the geological understanding of the caldera complexes, identify 

potential reservoirs, and obtain information on the physiochemical and mechanical characteristics of 

the reservoir rocks, a comprehensive outcrop analogue and wellbore core study was performed.  

An innovative multi-method approach was used to create a comprehensive rock property database with 

more than 31000 data entries on 34 petrophysical and mechanical rock parameters, facilitating the 

application of the data for different disciplines and modeling approaches at different scales (local to 

super-regional). All relevant key units from the basement to the cap rock of the geothermal fields were 

characterized and distinct parameter ranges were defined for each unit. The results highlight the geo-

logical complexity of volcanic systems, which leads to high variability in rock properties that must be 

individually considered for each parameter and unit in a 3D reservoir model. Using the Los Humeros 

caldera as an example, a step-by-step guide for the parametrization of a 3D geothermal model was 

proposed. Subsequently, processes that affect the rock parameters were investigated. Fluid flow and 

fluid-rock interactions of the Los Humeros geothermal field are predominantly fracture-controlled and 

have significantly altered the physiochemical rock properties and their relationships. The investigation 

of alteration facies indicates that the reservoir rocks were affected by multiple hydrothermal events over 

time and that the geothermal reservoir is most likely fed by multiple heat sources. A new chemical 

discrimination approach was proposed for Los Humeros, which helped to relate the subsurface units to 

the corresponding formations in the outcrops. Based on the new findings, recommendations for the 

update of the static 3D geological model were defined.  

Finally, the results of this work were used to create a local density model using gravity data obtained in 

the central collapse zone of the caldera complex to better characterize the shallow structures of the 

geothermal reservoir. Different parametrization approaches were tested including assumed average 

densities, weighted densities and a multimodal density distribution for each model unit, respectively. By 

using the multimodal density approach the misfit can be significantly reduced allowing for a more pre-

cise mapping of the different lithologies in the subsurface. The results highlight the importance of a 

profound rock property characterization and the correct estimation of the properties at reservoir depth 

during reservoir characterization.  

  



 

 

Preface 

 

During my time as a PhD candidate in the working group Geothermal Science and Technology at the 

Institute of Applied Geosciences, TU Darmstadt, I was involved in three international research projects: 

(1) the MalVonian project, (2) the Horizon 2020 GEMex project, and additionally, (3) the DOE EDGE 

project as part of my research stay at Oregon State University, USA. All three projects focused on 

improving the understanding of deep geothermal systems covering low-enthalpy to high-enthalpy geo-

thermal reservoirs in various geological settings. As important steps in geothermal reservoir character-

ization, my work predominantly comprised the petrophysical and mechanical characterization of reser-

voir rocks, geothermal assessment studies, and well data analyses resulting in several peer-reviewed 

articles and conference contributions (Fig. 1; for a complete list of publications see page XXIV).  

 

 
Figure 1: Overview of the projects and the resulting peer-reviewed articles and conference proceedings. 

 
The cumulative dissertation presented here focuses exclusively on my work performed within the GE-

Mex project and includes content from four peer-reviewed publications as well as conference proceed-

ings, project reports, and unpublished results. The GEMex project aims to improve the understanding 

of so-called ósuper-hotô unconventional geothermal systems and the development of new transferrable 

exploration approaches and exploitation technologies that withstand high temperatures and challenging 

reservoir conditions. For this purpose, the Acoculco and Los Humeros caldera complexes located in 

the Trans-Mexican Volcanic Belt in Mexico were selected as demonstration sites.  

The objective of this thesis is to perform an in-depth characterization of super-hot unconventional sys-

tems by applying a multi-method and multi-scale approach, which is integrated within a large-scale 

research project and links different disciplines and their results. The workflow presented here focuses 

on the physiochemical characterization of target units in the subsurface, recommendations for concep-

tual and computational 3D reservoir modeling, and their application in a local gravity model to improve 

the geological understanding of super-hot unconventional geothermal reservoirs linked to volcanic sys-

tems. 



 

 

The first chapters of this thesis introduce the reader to super-hot unconventional geothermal systems, 

the GEMex project as well as the geological setting of the study area. Content from Weydt and Bär et 

al. (2018), published in Advances in Geosciences, Weydt and Bär et al. (2021), Proceedings World 

Geothermal Congress 2020+1, and GEMex deliverables are included in chapters 1 and 2. 

Following the general introduction presented in the first chapters, chapter 3, published in Earth System 

Science Data, describes the various laboratory experiments conducted within the GEMex project to 

characterize all key lithologies of the Los Humeros and Acoculco geothermal fields. The chapter pre-

sents a comprehensive workflow starting with joint field work over sample identification using chemical 

and petrographic analyses to petrophysical and mechanical rock characterization and the creation of 

an extensive, ready-to-use relational rock property database. Unlike other databases, all data points 

are comparable with each other since each parameter was determined in the same way and all param-

eters were measured on each sample. Due to the joint approach in the field, this work can be linked to 

mineralogical, structural, and shallow geophysical investigations carried out in other work packages 

within the GEMex project. 

From here on, the thesis predominantly focuses on the Los Humeros geothermal field. However, within 

the GEMex project, the methods and workflows presented in this thesis have been applied to both 

caldera complexes.  

Chapter 4, published in Geothermal Energy, takes a closer look at the geological units of the Los Hu-

meros caldera complex, which were sampled in outcrops during different field campaigns. This chapter 

describes all steps from outcrop investigation over petrophysical measurements to statistical evaluation 

of the results that are required for a profound and accurate petrophysical parametrization of a 3D res-

ervoir model. In addition, this work provides T/P- corrected reservoir properties modeled for all reservoir 

units of the Los Humeros geothermal field and recommendations for future stochastic or numeric mod-

eling approaches.  

Chapter 5, submitted to Geothermal Energy, includes an in-depth characterization of wellbore core 

samples retrieved from the Los Humeros geothermal field. The aim was to identify the main processes 

occurring within the reservoir and to quantify their impact on the chemical and petrophysical character-

istics of the reservoir rocks. For this purpose, alteration facies, mineralogical changes, and petrophysi-

cal and chemical properties (major, trace, and rare earth elements) were analyzed on the wellbore core 

samples and their results were compared with data from outcropping analogues. Chemical discrimina-

tion methods were identified to relate the wellbore core samples to the units in the outcrops. The inte-

grated field-based approach enabled unraveling the complexity of geothermal reservoir rocks in active 

volcanic settings and updating the conceptual geological model of the Los Humeros geothermal field. 

Chapter 6 discusses the results of the previous chapters and the observed differences between outcrop 

analogues and the respective subsurface units, applications and limitations of the generated database, 

and the predictability of reservoir properties. Furthermore, the findings from the physiochemical inves-

tigations of the different rock units are discussed in the context of other recent studies carried out within 

the GEMex project such as geophysical surveys, volcanological studies, and reservoir simulations. 

Based on the previous findings, implications for an updated conceptual model of the Los Humeros field 

and the respective reservoir properties are presented and implemented in a local gravity model of the 

central part of the Los Humeros caldera. The latter is part of a modeling approach performed by 

Cornejo-Triviño et al. (2022, in preparation) to improve the understanding of the internal architecture of 

the Los Humeros geothermal field, and to map lithological changes/alteration zones and structural feed-

ing zones. 
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1. Introduction 

 

The world energy demand is constantly increasing and it has never been more important to provide 

baseload and environmentally friendly energy to ensure economic viability, tackle climate change, and 

reduce geopolitical dependencies on fossil fuels. While renewable electricity generation in 2021 set 

new records in the fastest year-to-year growth (+ 8%), particularly for electricity generated from solar 

and wind power systems, much more effort is needed to reach Net Zero Emission targets by 2050 (IEA, 

2021). Among renewable energy sources, only geothermal energy has the potential to contribute long-

term baseload energy to the energy mix. Geothermal energy is defined as thermal energy generated 

and stored in the Earthôs crust, which is used for electricity production, and the cooling and heating of 

buildings (Huenges, 2010). Despite steady growth over the past decades (plus 200 MW in 2021), geo-

thermal energy only accounts for a fraction of the renewable energy capacity (< 0.1%), and the pace is 

falling below the required average annual capacity expansion of 3.6 GW per year to meet the target of 

330 TWh in 2030 (IEA, 2021). While countries like Turkey, Indonesia, or Kenya with abundant untapped 

conventional geothermal resources are responsible for most of the current geothermal capacity growth, 

geothermal energy could theoretically be used everywhere. So-called óunconventionalô geothermal sys-

tems such as deep high-temperature hydrothermal systems or deep hot dry rock have the largest po-

tential worldwide for deep geothermal energy utilization (Huenges, 2010). According to Lu (2018), fossil 

fuels could be replaced completely by exploiting the high energy reserves in the upper 10 km of the 

Earthôs crust (approximately 1.3 × 10Į J). The development and exploitation of such systems would 

allow harnessing geothermal energy almost everywhere, also in areas with geological conditions that 

were previously considered less favorable for geothermal energy utilization. However, the controlling 

mechanisms of these deep high-temperature resources are not understood yet and comprehensive and 

detailed exploration, as well as new drilling technologies are required to provide safe and scalable en-

ergy that is economically competitive compared to fossil fuels. 

Accurate reservoir characterization is crucial for reservoir development, operation, and monitoring 

(Aminzadeh and Dasgupta, 2013). Commonly, reservoir characterization starts with a simple concep-

tual geological model of the reservoir and the acquisition of comprehensive datasets from different 

disciplines such as geophysical surveys, well logs, structural data, production data, or information on 

the fluid and rock properties. The incoming data is used to derive reservoir properties such as reservoir 

thickness, number of reservoir units, hydraulic and thermal properties at reservoir conditions, pressure 

and fracture distribution, and subsequently, the static model is constantly updated based on the new 

knowledge. The improved static model will then be used to create numerical reservoir models for the 

simulation of e.g., subsurface temperature distribution, heat transport, and fluid flow, which form the 

basis for advanced resource and risk assessments.  

During reservoir characterization, it is crucial to depict the geological conditions in the subsurface as 

accurately as possible. Especially for hydrothermal systems the economical success of geothermal 

projects highly depends on the correct identification of spatial heterogeneities and petrophysical aniso-

tropies that might influence the fluid flow (Linsel et al., 2020). The current state of the reservoir is the 

result of diagenetic, tectonic, hydrothermal or metamorphic processes as well as reservoir production 

that alter the reservoir rocks and their properties over time and space. Therefore, the investigation of 

the controlling processes within the reservoir and the identification of lithological units with similar phys-

iochemical characteristics that can depict the geological heterogeneity of the reservoir at different 

scales is essential for a profound reservoir assessment and the creation of reservoir models. 

Starting with comparatively shallow (< 3 km depth) and easily accessible high-temperature resources, 

this thesis focuses on the reservoir characterization of super-hot unconventional geothermal systems 

linked to volcanic settings in Mexico. For this purpose, the already well-developed Los Humeros 
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geothermal field, and the Acoculco caldera, which is currently under exploration for geothermal energy 

utilization, were selected as demonstration sites. By applying an innovative multi-scale and multi-

method approach, this work aims to improve the geological understanding of super-hot unconventional 

geothermal resources and help to accelerate their development for future use. 

 

1.1. Deep Geothermal Systems 

Deep geothermal energy resources are usually classified into conventional and unconventional sys-

tems. The term óconventional geothermal systemsô typically refers to easily accessible, naturally occur-

ring steam or hot-water-dominated hydrothermal reservoirs, which are often restricted to areas with 

active volcanism or tectonic activity (Huenges, 2010). These systems are commonly characterized by 

sufficiently permeable reservoir rocks, an impermeable cap rock that traps the heat, and a sufficiently 

large recharge area allowing for sustainable utilization of the resource and fluids with temperatures that 

can range from a few degrees above ambient temperature to greater than 375 °C. In volcanic settings, 

these systems often reveal themselves on the surface through hot springs or fumaroles. The worldwide 

largest and most well-explored geothermal reservoirs (Table 1) are hydrothermal systems located in 

the USA (Geysers), Indonesia (Darajat), Philippines (Makban), Turkey (Kizildere), Kenya (Olkaria), New 

Zealand (Wairakei), Mexico (Cerro Pietro), Italy (Larderello), Iceland (Hellisheidi), and Japan 

(Kakkonda; Huttrer, 2021). 

 

Table 1: Top 10 countries having the most installed geothermal power generation in 2020 after Huttrer (2021) 

Country MWe installed in 2020 

 1. USA 3,700 

 2. Indonesia 2,289 

 3. Philippines 1,918 

 4. Turkey 1,549 

 5. Kenya 1,193 

 6. Mexico 1,105 

 7. New Zealand 1,064 

 8. Italy 916 

 9. Iceland 755 

10. Japan 550 

 

Unconventional geothermal systems include hot dry rock or enhanced geothermal systems (EGS), su-

per-hot geothermal reservoirs, and advanced geothermal systems (Huenges, 2010; Stober and Bucher, 

2021; Malek et al., 2021). To exploit unconventional resources innovative tools and engineering tech-

nologies are required. EGS often comprise promising high temperatures but lack the necessary initial 

rock permeability or reservoir fluids to transfer sufficient heat to the surface. Thus, reservoir stimulation 

is required to enhance or connect existing fracture zones in the subsurface to enable the fluid flow. 

Super-hot geothermal systems contain temperatures above 350°C, which would provide more energy 

per well than common geothermal installations (AltaRock, 2022), but also require specific drilling tech-

nologies and materials that can withstand the harsh reservoir conditions and corrosion caused by ag-

gressive reservoir fluids (Stober and Bucher, 2021). In contrast, advanced geothermal systems use a 
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closed-loop system to circulate fluids in sealed pipes and boreholes completely relying on conductive 

heat transport in the deep subsurface (Malek et al., 2021). This approach requires precise lateral drilling 

to connect a horizontally arrayed series of lateral wells for the creation of the closed loop system. 

Since conventional geothermal systems are restricted to a few sites worldwide, these energy resources 

are limited and not scalable. Unconventional systems have the worldwide largest potential for deep 

geothermal energy utilization (Huenges, 2010; AltaRock, 2022) and the development of advanced ex-

ploration, drilling, and exploitation technologies is required to make deep geothermal resources acces-

sible on a large scale and economically competitive compared to existing energy resources such as 

coal and fossil fuels. 

 

1.2. Super-Hot Unconventional Geothermal Systems 

In this thesis, the term ósuper-hot geothermal systemsô (SHGS) refers to geothermal systems with high 

reservoir temperatures above 350 °C as defined in the GEMex project.  

In the past, the terms ósuper-hotô or ósuper-heatedô were often used synonymously with ósupercriticalô 

and a clear temperature/pressure definition does not exist so far (Dobson et al., 2017; Kruszewski and 

Wittig, 2018; HeŚmansk§ et al., 2019). Supercritical fluids are often defined as single-phase fluids ex-

ceeding the critical temperature and pressure. Beyond the critical point, the differences between the 

thermodynamic properties of the liquid and the vapor phase disappear (Suárez-Arriaga, 2019; Fig. 2). 

Considerable disagreement exists in the scientific community about whether the term ósupercriticalô 

applies only to fluids with both temperature and pressure above the critical point of the fluids or also 

includes fluids exceeding the critical temperature but not the critical pressure (HeŚmansk§ et al., 2019). 

For pure water, the critical properties are obtained at temperatures of > 374 °C and pressures of > 221 

bar, which corresponds to a drilling depth of approximately 3500 m (Kruszewski and Wittig, 2018). 

However, the critical temperature and pressure of fluids increase with salinity. For seawater with 3.5% 

NaCl this point is reached at 405 °C and 302 bar, which corresponds to a drilling depth of about 5300 m. 

According to Elders et al. (2014), these conditions can already be reached for saline fluids between 

2300 m and 3000 m depth in low-permeable systems (a sealing horizon that allows the pressure to 

exceed hydrostatic conditions is required; Dobson et al., 2017).  

In contrast to subcritical fluids, supercritical fluids are characterized by a significant increase in fluid 

enthalpy, but reduced fluid density, fluid viscosity, and fluid thermal conductivity (Suárez-Arriaga, 2019; 

Fig. 2). Due to the high fluid enthalpies and reduced fluid viscosities, geothermal wells would have much 

higher productivity and higher mass transport (higher ratio of buoyancy forces relative to viscous forces; 

Elders et al., 2014), which make drilling into supercritical conditions very attractive. Assuming that a 

conventional high-temperature geothermal well (200 °C) produces about 3ï5 MWe, recent studies claim 

that the extraction of supercritical fluids increases the productivity by a factor of ten compared to con-

ventional wells due to five times the energy content of the fluid and two times the conversion efficiency 

of the thermal heat to electricity (Cladouhos et al., 2018; Friðleifsson et al., 2014a, 2014b). According 

to Cladouhos et al. (2018) three very deep wells that reach supercritical conditions (~ 400 °C) could 

replace 42 EGS wells (200 °C) and reduce the costs of deep geothermal projects dramatically.  

Super-hot geothermal reservoirs are commonly associated with active volcanic systems with high-tem-

perature gradients and high heat flows due to shallow intrusions (Dobson et al., 2017). Thereby, super-

critical fluids are thought to be located at great depth near the brittle-ductile zone close to an intrusive 

body representing the deep root of the geothermal system (HeŚmansk§ et al. 2019). However, in vol-

canic settings temperatures exceeding the critical temperature can occur at comparatively shallow 

depths (< 2 km; e.g., Geysers, Los Humeros, Larderello). The worldwide largest and most efficient 

geothermal fields as described above (Table 1) are super-hot geothermal systems related to magmatic 

systems. However, supercritical conditions can theoretically be reached everywhere close to the brittle-
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ductile zone, but require much deeper wells (AltaRock, 2022). Watanabe et al. (2017) infer that even 

though permeability generally decreases with reservoir depth, sufficient permeability remains in the 

brittle-ductile zone, and potentially exploitable resources could exist at 2ï6 km depth in the granitic 

crust reaching temperatures between 375 and 400 °C. 

 

 

Figure 2: Pressure-temperature diagram for pure water (a), and fluid properties plotted against temperature (b-f) modified from 

Pioro (2014): dynamic viscosity vs. temperature (b), enthalpy vs. temperature, density vs. temperature (d), specific heat vs. tem-

perature (e), and thermal conductivity vs. temperature (f). 

 
Up to now, no geothermal power plant is producing fluids from reservoirs that exceed the respective 

critical temperature and critical pressure. However, about 25 wells have been drilled in the past that 

reached supercritical conditions (Kruszewski and Wittig, 2018), e.g., Reykjanes in Iceland, Geysers, 

Salton Sea, and Puna, Hawaii in the USA or Los Humeros in Mexico (Fig. 3). The majority of these 

wells are associated with active magmatic systems and several problems occurred during the drilling 

process such as casing failure, cementing failure, handling of loss circulation zones, risks of blow-outs 

and difficulties in cooling the well, damage to the wellhead assembly and drill string as well as heavy 

corrosion caused by acidic fluids and silica scaling (Kruszewski and Wittig, 2018). 
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Figure 3: Geothermal fields where temperatures > 374 °C were recorded (Bromley et al., 2021). 

 
To overcome these challenges and to harness these resources in the future, innovative exploration and 

drilling technologies as well as a much better understanding of super-hot geothermal systems in general 

are required. Therefore, several international research projects have been or are currently conducted: 

IDDP (Reykjanes, Iceland), DESCRAMBLE and DEEPEGS (Larderello, Italy), Japan Beyond Brittle 

Project JBBP (Kakkonda, Japan), HADES (Hotter and Deeper) and The Next Generation (Taupo vol-

canic zone, New Zealand), ENN (Longfang, China), GEMex (Acoculco and Los Humeros, Mexico), and 

Newberry Deep Drilling project (Newberry, USA). Most of these projects target super-hot geothermal 

systems related to active volcanic systems because supercritical conditions could be reached at a com-

paratively shallow depth to reduce drilling costs. However, projects such as DOE FORGE (Utah, USA) 

and Super-hot EGS (Newberry, USA, AltaRock, 2022) focus on drilling into the brittle-ductile zone of 

crystalline rocks with up to 10 km deep wells to develop technologies that could make deep geothermal 

resources independent from specific geological sites (such as active volcanoes) and scalable for world-

wide implementation.  

Although significant improvements have been made during the past years regarding new drilling mate-

rials and technologies that can withstand the harsh conditions at reservoir depth (Petty et al., 2020), 

future research needs to focus on high-temperature cement and casing, high-temperature materials for 

bits and directional control systems as well as cooling of the wellbore. The current methods rely on 

cooling the wellbore drastically during drilling, which puts enormous stress on the downhole equipment 

(bits, BHA), casing, connections, and particularly cement as soon as the cooling stops (several heat 

cycles due to e.g., problems during drilling or when drilling is completed), which often causes stress-

induced cracks. Thus, current research is developing e.g., non-metal materials, self-healing cement, 

new ultra-deep drilling technologies (plasma drilling, pressure-controlled drilling) using aerated water 

or nitrogen for cooling, high-temperature mud motors with liquid nitrogen cooling, CO2-based stimula-

tion methods or high-temperature logging tools (AltaRock, 2022). 
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According to Petty et al. (2020), the perhaps greatest improvements are needed in reservoir creation 

and management. The behavior of rock under high T/P conditions and the long-term fluid-rock interac-

tions under in-situ conditions are not well understood which in turn are essential to predict the behavior 

of the reservoir formations during reservoir stimulation and operation. So far, high T/P laboratory ex-

periments are scarce (Kummerow and Raab, 2015; Wanatabe et al., 2017), time-consuming, and very 

expensive. Supercritical EGS laboratories are under development in Japan and China. Furthermore, 

simulating a super-hot geothermal reservoir requires advanced modeling tools, which can incorporate 

the flow of single-phase, two-phase or supercritical fluids, fluid-rock interactions with gases and brines, 

and conductive and convective heat transport (Bromley et al., 2021). Recent efforts focused on tackling 

multiphase flow modeling and energy extraction (Feng et al., 2021), boiling and condensation above 

magmatic intrusions (Scott et al., 2017), or the reinjection into supercritical geothermal systems (Parisio 

et al., 2019). 

 

1.3. Geothermal Energy Production in Mexico 

Mexico hosts numerous subaerial and submarine hydrothermal systems (Prol-Ledesma and Morán-

Zeteno, 2019) predominantly related to active volcanic areas (Fig. 4). Heat flow ranges between 

40 mW m-² in the southern and north-eastern coast plains and > 200 mW m-² in the central part of 

Mexico within the Trans-Mexican Volcanic Belt (TMVB). Prol-Ledesma and Morán-Zeteno (2019) de-

fined eleven geothermal provinces based on the play-type concept presented in Moeck (2014). The 

majority of these provinces contain convection-dominated magmatic and plutonic heat sources and to 

a lesser extent hydrothermal systems associated with oil deposits.   

Although Mexico consists of numerous potential areas for geothermal energy production, geothermal 

energy utilization is still underdeveloped (Romo-Jones et al., 2021). Mexicoôs electricity generation re-

lies about 80% on coal, oil, and gas (IEA, 2020), while geothermal power production contributes only 

1.6% to the annual electricity generation. Direct uses of geothermal heat are predominantly limited to 

swimming facilities and recreational purposes and make up 156.1 Wth in Mexico (Romo-Jones et al., 

2021). However, recent studies also highlight the enormous potential for geothermal heat utilization. 

Iglesias et al. (2015) estimated that there are more than 900 geothermal systems in Mexico of which 

50% have a temperature between 62ï100 °C, 40% have temperatures between 100ï149 °C, and 5% 

have temperatures above 149 °C. 

Up to now, five geothermal fields with a total electrical capacity of 947.8 MWe are under operation in 

Mexico (Romo-Jones et al., 2021): Cerro Pietro (Baja California), Los Azufres (Michoacán), Los Hu-

meros (Puebla), Las Tres Vírgenes (Baja California Peninsula), and Domo de San Pedro (Nayarit). 

Thereby, the total electricity generated in Mexico was 5.375 GWh in 2018 (Romo-Jones et al., 2019; 

Table 2). Except for Domo San Pedro, all geothermal fields are owned and operated by the govern-

mental institution Comisíon Federal Electricidad (CFE).  

Numerous sites are currently under exploration for geothermal energy production in Mexico. Within the 

TMVB about 15 potential geothermal fields were identified including Acoculco and Las Derrumbadas 

(Prol-Ledesma and Morán-Zeteno, 2019). 
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Figure 4: Heat flow map of Mexico including the five geothermal fields under operation (Prol-Ledesma and Morán-Zeteno, 2019). 

 

 

Table 2: Geothermal fields in operation in Mexico in 2018 (Romo-Jones et al., 2019) 

Geothermal field Installed capacity 
(MWe) 

Effective capacity 
(MWe) 

Production 
wells 

Injection 
wells 

Year 

Cerro Prietro 570.0 570.0 142 28 1973 

Los Azufres 244.0 221.0 48 6 1982 

Los Humeros 119.8 94.8 28 3 1990 

Las Tres Vírgenes 10.0 10.0 3 1 2001 

Domo de San Pedro 35.5 25.5 4 3 2015 
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 The Los Humeros Geothermal Field 

Exploration of the Los Humeros Volcanic Complex (LHVC; at ~ 2800 m above sea level (m a.s.l.); 

Fig. 5) for geothermal utilization started already in the late ô60s to ô80s and the first well was drilled in 

1981 (Bienkowski, 2003; Pinti et al., 2017). However, geothermal energy production started in 1990 

with the first 5 MWe power plant. Up to now, 65 wells have been drilled of which 28 are still productive 

and three wells are used as injection wells. Today the geothermal field consists of three condensing 

flash units of 26.6 MWe and eight backpressure units 5 MWe each (although 5 backpressure units are 

currently out of operation; Romo-Jones et al., 2019). 

 

 
Figure 5: Geothermal power plant inside of the Los Humeros caldera. 

 
The wells produce mainly steam (5.35 million tons in 2018) with high enthalpies of > 2400 kJ kg-1 except 

for well H1 which produces water (1500ï1700 kJ kg-1, Pinti et al., 2017). The wells produce between 6 

and 56 t of steam per hour and the extracted heat ranges between 0.5 and 41 PJ (González-García et 

al., 2021). The majority of the boreholes target deep Miocene to Pleistocene andesites at ~ 1500ï

3000 m depth where temperatures between 300 °C and 400 °C occur (Fig. 6). The most profitable areas 

are in the central collapse zone (north of Los Humeros; central to the northern sector of the geothermal 

field) and along the Los HumerosïMaztaloya faults (Gutiérrez-Negrín and Izquíerdo-Montalvo, 2010). 

Several hydrothermal manifestations like Loma Blanca can be found in this area. The most productive 

wells are H9 (northwestern sector of the central collapse zone), H12 (close to the Xalapazco crater), 

H6 (along the Maztaloya fault), and H7 (close to the Los Humeros fault; Fig. 7), which have a large 

spatial distance to each other. According to CFE, most of the wells encountered more than one feeding 

zone within the andesites (except for H9, which produces from the underlying carbonate basement; 

Fig. 7).  

Until recently, the conceptual geological models from Cedillo (2000) and Arellano et al. (2003) were 

used for reservoir management and development. These studies assume two andesitic reservoirs (up-

per reservoir = Teziutlán augite andesites, lower reservoir = Hornblende andesite), which feature dif-

ferent reservoir properties and are separated by a thick tuff aquitard (Humeros vitric tuff, Fig. 6). The 
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shallower reservoir in the Teziutlán andesites (1600ï1000 m a.s.l.) is considered liquid-dominated with 

temperatures between 300 and 330 °C and the deeper aquifer (900ï100 m a.s.l.) is considered a two-

phase reservoir with temperatures of up to 400 °C (Portugal et al., 2002). It was assumed that the 

geothermal field is fed by one large magma chamber located between 5 and 11 km depth (Verma, 

1985; Verma et al., 2011) and that fluid recharge takes place within the caldera (Cedillo, 2000). 

 

 

Figure 6: Landsat image of the caldera complex (c) and close-up view of the geothermal field (a). (b) shows the conceptual geolog-

ical model of the Los Humeros geothermal field after Arellano et al. (2003) used at the beginning of the GEMex project. 

 
The geothermal field contains low-saline NaCl to H2CO3-SO4 fluids, which are oversaturated with quartz 

and calcite and locally contain high boron, ammonia, and arsenic concentrations (Izquíerdo et al., 

2009). Furthermore, acidic fluids with low pH (2.5ï4) were identified in some deep and very hot wells 

in the central collapse zone, which led to heavy corrosion and silica scaling. Attempts to neutralize the 

acidic fluids with 47% NaOH were carried out (Flores-Armenta et al., 2010), but most of the deeper 

production zones were plugged with cement and drilling into these super-hot and acidic zones has been 

avoided since then (Gutiérrez-Negrín and Izquíerdo-Montalvo, 2010).  

Only a fraction (~ 16%) of the produced fluids is currently reinjected into the reservoir with an average 

temperature of 90 °C (González-García et al., 2021). The exploitation of fluids over the past 30 years 

caused boiling with steam condensation, production of returns from injection, interaction with deep flu-

ids, and a decrease in liquid saturation due to insufficient recharge (Arellano et al., 2015). 




































































































































































































































































































































































































