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Abstract IV 

Abstract 

Artificial intelligence (AI) has become increasingly prevalent in consumer and business 

applications, equally affecting individuals and organizations. The emergence of AI-enabled 

systems, i.e., systems harnessing AI capabilities that are powered by machine learning (ML), 

is primarily driven by three technological trends and innovations: increased use of cloud 

computing allowing large-scale data collection, the development of specialized hardware, and 

the availability of software tools for developing AI-enabled systems. However, recent research 

has mainly focused on technological innovations, largely neglecting the interaction between 

humans and AI-enabled systems. Compared to previous technologies, AI-enabled systems 

possess some unique characteristics that make the design of human-AI interaction (HAI) 

particularly challenging. Examples of such challenges include the probabilistic nature of AI-

enabled systems due to their dependence on statistical patterns identified in data and their ability 

to take over predictive tasks previously reserved for humans. Thus, it is widely agreed that 

existing guidelines for human-computer interaction (HCI) need to be extended to maximize the 

potential of this groundbreaking technology. This thesis attempts to tackle this research gap by 

examining both individual-level and organizational-level impacts of increasing HAI. 

Regarding the impact of HAI on individuals, two widely discussed issues are how the opacity 

of complex AI-enabled systems affects the user interaction and how the increasing deployment 

of AI-enabled systems affects performance on specific tasks. Consequently, papers A and B of 

this cumulative thesis address these issues. 

Paper A addresses the lack of user-centric research in the field of explainable AI (XAI), which 

is concerned with making AI-enabled systems more transparent for end-users. It is investigated 

how individuals perceive explainability features of AI-enabled systems, i.e., features which aim 

to enhance transparency. To answer this research question, an online lab experiment with a 

subsequent survey is conducted in the context of credit scoring. The contributions of this study 

are two-fold. First, based on the experiment, it can be observed that individuals positively 

perceive explainability features and have a significant willingness to pay for them. Second, the 

theoretical model for explaining the purchase decision shows that increased perceived 
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transparency leads to increased user trust and a more positive evaluation of the AI-enabled 

system. 

Paper B aims to identify task and technology characteristics that determine the fit between an 

individual's tasks and an AI-enabled system, as this is commonly believed to be the main driver 

for system utilization and individual performance. Based on a qualitative research approach in 

the form of expert interviews, AI-specific factors for task and technology characteristics, as 

well as the task-technology fit, are developed. The resulting theoretical model enables empirical 

research to investigate the relationship between task-technology fit and individual performance 

and can also be applied by practitioners to evaluate use cases of AI-enabled system deployment. 

While the first part of this thesis discusses individual-level impacts of increasing HAI, the 

second part is concerned with organizational-level impacts. Papers C and D address how the 

increasing use of AI-enabled systems within organizations affect organizational justice, i.e., the 

fairness of decision-making processes, and organizational learning, i.e., the accumulation and 

dissemination of knowledge. 

Paper C addresses the issue of organizational justice, as AI-enabled systems are increasingly 

supporting decision-making tasks that humans previously conducted on their own. In detail, the 

study examines the effects of deploying an AI-enabled system in the candidate selection phase 

of the recruiting process. Through an online lab experiment with recruiters from multinational 

companies, it is shown that the introduction of so-called CV recommender systems, i.e., 

systems that identify suitable candidates for a given job, positively influences the procedural 

justice of the recruiting process. More specifically, the objectivity and consistency of the 

candidate selection process are strengthened, which constitute two essential components of 

procedural justice. 

Paper D examines how the increasing use of AI-enabled systems influences organizational 

learning processes. The study derives propositions from conducting a series of agent-based 

simulations. It is found that AI-enabled systems can take over explorative tasks, which enables 

organizations to counter the longstanding issue of learning myopia, i.e., the human tendency to 

favor exploitation over exploration. Moreover, it is shown that the ongoing reconfiguration of 

deployed AI-enabled systems represents an essential activity for organizations aiming to 

leverage their full potential. Finally, the results suggest that knowledge created by AI-enabled 

systems can be particularly beneficial for organizations in turbulent environments. 
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Zusammenfassung 

Künstliche Intelligenz (KI) hat sich in Verbraucher- und Geschäftsanwendungen zunehmend 

durchgesetzt und beeinflusst Einzelpersonen und Organisationen gleichermaßen. Das 

Aufkommen von KI-basierten Systemen, d. h. von Systemen, die KI-Fähigkeiten nutzen und 

auf maschinellem Lernen (ML) basieren, wird in erster Linie durch drei wichtige 

technologische Trends und Innovationen vorangetrieben: die zunehmende Nutzung von Cloud 

Computing, die eine groß angelegte Datenerfassung ermöglicht, sowie durch die Entwicklung 

von spezieller Hardware und Software-Tools für die Entwicklung von KI-basierten Systemen. 

Die jüngste Forschung hat sich jedoch hauptsächlich auf technologische Innovationen 

konzentriert und die Interaktion zwischen Menschen und KI-basierten Systemen weitgehend 

vernachlässigt. Im Vergleich zu früheren Technologien weisen KI-basierte Systeme einige 

einzigartige Merkmale auf, die die Gestaltung der Mensch-KI-Interaktion (HAI) zu einer 

besonderen Herausforderung machen. Beispiele für solche Herausforderungen sind die 

probabilistische Natur KI-basierter Systeme aufgrund ihrer Abhängigkeit von statistischen 

Mustern, die in Daten identifiziert werden, und ihre Fähigkeit, prädiktive Aufgaben zu 

übernehmen, die bisher dem Menschen vorbehalten waren. Es besteht daher weitgehend 

Einigkeit darüber, dass die bestehenden Leitlinien für die Mensch-Computer-Interaktion (HCI) 

erweitert werden müssen, um das Potenzial dieser bahnbrechenden Technologie voll 

auszuschöpfen. In dieser Arbeit wird versucht, diese Forschungslücke zu schließen, indem 

sowohl die Auswirkungen auf individueller als auch auf organisatorischer Ebene untersucht 

werden, die sich aus der Zunahme von HAI ergeben. 

Was die Auswirkungen von KI auf den Einzelnen betrifft, so werden insbesondere zwei Fragen 

häufig diskutiert: (1) Wie wirkt sich die Undurchsichtigkeit komplexer KI-basierter Systeme 

auf die Benutzerinteraktion aus und (2) wie wirkt sich der zunehmende Einsatz von KI-

basierten Systemen auf die individuelle Leistung bei der Erfüllung bestimmter Aufgaben aus? 

Daher befassen sich die Studien A und B dieser kumulativen Dissertation mit diesen Fragen. 

Studie A befasst sich mit dem Mangel an nutzerzentrierter Forschung auf dem Gebiet der 

erklärbaren KI, bei der es darum geht, KI-basierte Systeme für Endnutzer transparenter zu 

machen. Es wird untersucht, wie Individuen Erklärungsfunktionen von KI-basierten Systemen 
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wahrnehmen, d.h. Funktionen, die darauf abzielen, die Transparenz zu erhöhen. Zur 

Beantwortung dieser Forschungsfrage wird ein Online-Laborexperiment mit anschließender 

Befragung im Kontext der Kreditwürdigkeitsprüfung durchgeführt. Diese Studie leistet einen 

zweifachen Beitrag. Erstens lässt sich anhand des Experiments feststellen, dass Individuen 

Erklärungsfunktionen positiv wahrnehmen und eine signifikante Zahlungsbereitschaft dafür 

haben. Zweitens zeigt das theoretische Modell zur Erklärung der Kaufentscheidung, dass eine 

erhöhte wahrgenommene Transparenz zu einem erhöhten Vertrauen der Nutzer und einer 

positiveren Bewertung des KI-basierten Systems führt. 

Studie B zielt darauf ab, Aufgaben- und Technologiecharakteristika zu identifizieren, die die 

Passgenauigkeit zwischen den Aufgaben eines Individuums und einem KI-basierten System 

bestimmen, da dies gemeinhin als Haupttreiber für die Systemnutzung und die individuelle 

Leistung angesehen wird. Auf der Grundlage eines qualitativen Forschungsansatzes in Form 

von Experteninterviews werden KI-spezifische Faktoren für Aufgaben- und 

Technologiemerkmale sowie den Task-Technology Fit entwickelt. Das daraus resultierende 

theoretische Modell ermöglicht empirische Forschung, die den Zusammenhang zwischen Task-

Technology-Fit und individueller Leistung untersucht, und kann auch von Praktikern 

angewendet werden, um potenzielle Anwendungsfälle des Einsatzes KI-basierter Systeme zu 

evaluieren. 

Während der erste Teil dieser Arbeit die Auswirkungen der zunehmenden KI-Mensch-

Interaktion auf individueller Ebene erörtert, befasst sich der zweite Teil mit den Auswirkungen 

auf organisatorischer Ebene. Die Beiträge C und D befassen sich mit der Frage, wie sich der 

zunehmende Einsatz KI-basierter Systeme in Organisationen auf die organisatorische 

Gerechtigkeit, d.h. die Fairness von Entscheidungsprozessen, und das organisatorische Lernen, 

d.h. die Anhäufung und Verbreitung von Wissen, auswirkt. 

Studie C befasst sich mit der Problematik der organisatorischen Gerechtigkeit, die sich aus der 

Tatsache ergibt, dass KI-basierte Systeme zunehmend Aufgaben übernehmen, die früher von 

Menschen ausgeführt wurden. Im Einzelnen untersucht die Studie die Auswirkungen des 

Einsatzes eines KI-basierten Systems in der Phase der Bewerberauswahl im 

Rekrutierungsprozess. Anhand eines Online-Laborexperiments mit Personalverantwortlichen 

multinationaler Unternehmen wird gezeigt, dass die Einführung sogenannter CV-

Recommender-Systeme, d.h. Systeme, die geeignete Kandidaten für eine bestimmte Stelle 

identifizieren, die Verfahrensgerechtigkeit des Rekrutierungsprozesses positiv beeinflusst. 
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Insbesondere werden die Objektivität und die Konsistenz des Bewerberauswahlprozesses 

gestärkt, welche zwei wesentliche Komponenten der Verfahrensgerechtigkeit darstellen. 

Studie D untersucht, wie der zunehmende Einsatz von KI-basierten Systemen organisatorische 

Lernprozesse beeinflusst. Die Studie leitet Thesen aus der Durchführung einer Reihe von 

agentenbasierten Simulationen ab. Es wird festgestellt, dass KI-basierte Systeme explorative 

Aufgaben übernehmen können, was es Organisationen ermöglicht, dem seit langem 

bestehenden Problem der Lernmyopie entgegenzuwirken, d.h. der menschlichen Tendenz, die 

Ausschöpfung bestehenden Wissens dem Erkunden neuen Wissens vorzuziehen. Darüber 

hinaus wird gezeigt, dass die fortlaufende Rekonfiguration von KI-basierten Systemen eine 

wesentliche Aktivität für Unternehmen darstellt, die deren volles Potenzial ausschöpfen wollen. 

Schließlich deuten die Ergebnisse darauf hin, dass das von KI-basierten Systemen geschaffene 

Wissen für Organisationen in turbulenten Umgebungen besonders vorteilhaft sein kann. 
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1 Introduction 

1.1 Motivation 

In recent years, artificial intelligence (AI) has seen increasing use in consumer and 

organizational contexts. On the consumer side, AI finds its way into digital assistants such as 

chatbots (e.g., Maedche et al., 2019), improves real-time recommender systems in domains like 

travel (e.g., Bernardi et al., 2019) or entertainment (e.g., Wei et al., 2017), and powers modern 

navigation systems such as Google Maps (Derrow-Pinion et al., 2021). Within organizations, 

AI is set to revolutionize processes such as drug discovery (e.g., Fleming, 2018), manufacturing 

(e.g., J. Wang et al., 2018), and marketing (e.g., Huang & Rust, 2021). Because the increasing 

popularity of AI has led to it being used as a buzzword and an umbrella term for many 

technologies, it is essential to define the research subject for this thesis clearly. First of all, this 

thesis examines AI-enabled systems, i.e., systems with features harnessing AI capabilities 

directly exposed to the end-user (Amershi, Weld, et al., 2019). Here, the AI capabilities are 

realized using machine learning (ML). In its essence, ML, often touted as a "general-purpose 

technology" (Brynjolfsson & Mitchell, 2017), enables rules to be learned from data in the form 

of models using learning algorithms (e.g., neural networks, decision trees) instead of encoding 

them manually, as is traditionally done in software engineering (T. Mitchell, 1997). The 

resulting models can make predictions on new data samples, such as classifications or forecasts 

(Brynjolfsson & Mitchell, 2017). ML has become the de-facto standard for realizing AI 

capabilities, primarily due to three recent trends. First, the increasing use of cloud infrastructure 

allows large-scale data collection, allowing ML models to be trained on larger and larger 

datasets, which generally improves their performance (e.g., Brynjolfsson & Mitchell, 2017; Rai 

et al., 2019). Second, the lowered cost for computing power and development of specialized 

hardware allows organizations to train AI more efficiently (e.g., Rai et al., 2019; Raisch & 

Krakowski, 2020). Third, software for developing AI-enabled systems has become more easily 

accessible for developers, especially in the form of open-source frameworks (e.g., TensorFlow, 

PyTorch), cloud tools (e.g., Google Cloud AI, AWS SageMaker), and pre-trained ML models 

(e.g., HuggingFace, PyTorch Image Models) (Rai et al., 2019; Raisch & Krakowski, 2020). 
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Research on AI-enabled systems has so far mainly been focused on technological innovations. 

Examples of these kinds of innovations include improved neural network architectures (e.g., 

Jumper et al., 2021; Vaswani et al., 2017), regularization mechanisms (e.g., Ba et al., 2016; 

Ioffe & Szegedy, 2015), and data processing algorithms (e.g., Shorten & Khoshgoftaar, 2019; 

Sohn et al., 2020). A primarily neglected aspect in AI research is the interaction between 

humans and AI-enabled systems, referred to as human-AI interaction. Due to its unique 

characteristics, it is widely believed that existing guidelines for human-computer interaction 

(HCI) (e.g., Höök, 2000; Horvitz, 1999; L. Li & Zhang, 2005; Norman, 1994) might not apply 

to AI-enabled systems and need to be extended, as postulated in several calls for research in 

both the IS and HCI research communities (e.g., Maedche et al., 2019; Rai et al., 2019; Schuetz 

& Venkatesh, 2020; Yang et al., 2020). This thesis aims to tackle this research gap from two 

perspectives: the impact that increasing human-AI interaction will have on an individual and 

organizational level. 

Regarding the first perspective, i.e., the impact of increasing human-AI interaction on 

individuals, several unique characteristics of AI-enabled systems require a rethinking of 

traditional HCI principles. AI-enabled systems are trained by applying statistical learning 

algorithms (e.g., stochastic gradient descent) to inherently noisy datasets. Thus, the resulting 

models have a probabilistic nature that might result in unpredictable and inconsistent behavior, 

especially if the models change over time due to ongoing learning (Ågerfalk, 2020; Amershi, 

Begel, et al., 2019; Schuetz & Venkatesh, 2020; Yang et al., 2020). For example, AI-enabled 

systems are prone to making prediction errors, and end-users have to deal with potentially 

complex outputs, e.g., recommendations in the context of organizational decision-making 

(Amershi, Weld, et al., 2019; Yang et al., 2020). While a long list of potential issues arise from 

these unique characteristics, two focus points are discussed in this thesis: transparency and 

individual performance. A lack of transparency due to the complexity and probabilistic nature 

of modern ML models is one of the primarily discussed issues in human-AI interaction (e.g., 

Ågerfalk, 2020; Amershi, Weld, et al., 2019; Maedche et al., 2019). It remains largely unclear 

how users recognize and perceive the lack of transparency (Maedche et al., 2019; Schuetz & 

Venkatesh, 2020; Thiebes et al., 2021), particularly in high-stakes contexts such as medicine or 

finance (Reyes et al., 2020; Rudin, 2019). With regard to individual performance, commonly 

discussed issues include how support through AI-enabled systems affects human performance 

on a specific task (Fügener et al., 2021; Grønsund & Aanestad, 2020; Maedche et al., 2019) and 

how humans and machines should split specific tasks to maximize performance (Fügener et al., 

2021; Grønsund & Aanestad, 2020; Schuetz & Venkatesh, 2020). 
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On an organizational level, the unique characteristics of AI-enabled systems enable large-scale 

automation and augmentation of processes such as decision-making, especially the speed and 

scalability to detect valuable patterns in vast amounts of data (Grønsund & Aanestad, 2020; 

Maedche et al., 2019; Murray et al., 2021; Rai et al., 2019; Raisch & Krakowski, 2020; Schuetz 

& Venkatesh, 2020). The two focus points of this thesis regarding organizational impacts of 

increased human-AI interaction are fairness and organizational learning. Fairness is a widely 

discussed issue when deploying AI-enabled systems. Most research so far has focused on 

conceptual definitions of fairness in an organizational context (e.g., Mehrabi et al., 2021; Verma 

& Rubin, 2018). However, it remains unclear whether the use of AI-enabled systems will 

reinforce or even mitigate existing human biases in decision-making (Maedche et al., 2019; Rai 

et al., 2019; Raisch & Krakowski, 2020; Thiebes et al., 2021). Regarding organizational 

learning, researchers agree that knowledge will increasingly be transferred to machines in all 

possible collaboration modes (e.g., automation, augmentation, assemblage) (e.g., Lyytinen et 

al., 2021; Raisch & Krakowski, 2020). How this affects organizational learning is an 

understudied issue, in particular, due to the differences in learning mechanisms and speed 

between humans and machines (e.g., Lyytinen et al., 2021; Raisch & Krakowski, 2020). 

1.2 Structure of the thesis 

This thesis contains four papers that examine the impact of increasing human-AI interaction on 

organizations and individuals. All papers are listed in Table 1. The following paragraphs aim 

to summarize the content of each paper. 

Table 1: List of publications included in this thesis 

Paper A Peters, Felix; Pumplun, Luisa; Buxmann, Peter (2020): Opening the Black Box: Consumer’s 
Willingness to Pay for Transparency of Intelligent Systems. In: European Conference on 
Information Systems (ECIS), A Virtual AIS Conference. VHB-Ranking: B. 

Paper B Sturm, Timo; Peters, Felix (2020): The Impact of Artificial Intelligence on Individual 
Performance: Exploring the Fit between Task, Data, and Technology. In: European 
Conference on Information Systems (ECIS), A Virtual AIS Conference. VHB-Ranking: B. 

Paper C Eitle, Verena; Peters, Felix; Welsch, Andreas; Buxmann, Peter (2021): The Impact of CV 
Recommender Systems on Procedural Justice in Recruiting: An Experiment in Candidate 
Selection. In: European Conference on Information Systems (ECIS), A Virtual AIS Conference. 
VHB-Ranking: B. 

Paper D Sturm, Timo; Gerlach, Jin; Pumplun, Luisa; Mesbah, Neda; Peters, Felix; Tauchert, Christoph; 
Nan, Ning; Buxmann, Peter (2021): Coordinating Human and Machine Learning for 
Effective Organizational Learning. In: MIS Quarterly, 45 (3), pp. 1581-1602. VHB-Ranking: 
A+. 

 

Paper A examines the impact of increasing human-AI interaction on individuals, precisely the 

focus point transparency. On a general level, the paper addresses the lack of user-centric 
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research in the field of explainable AI, which aims to develop methods for making AI-enabled 

systems more transparent. The main research question of paper A is how individuals perceive 

features that enhance the transparency of AI-enabled systems. Using an online lab experiment 

and subsequent survey with 223 participants in the context of credit scoring, it is shown that 

individuals positively perceive such transparency features and even exhibit a significant 

willingness to pay for them. To explain the mechanisms behind the purchase decision, a 

theoretical model is developed based on the Theory of Planned Behavior (TPB) (Ajzen, 1991). 

It can be observed that increased trust due to increased perceived transparency constitutes the 

most critical factor driving the positive evaluation of transparency features. The study is among 

the first to empirically examine the effects of deploying transparency features in AI-enabled 

systems in the social sciences and simultaneously informs practitioners about the relevance of 

explainable AI. 

Paper B also addresses the impacts of increasing human-AI interactions on an individual level 

but focuses on performance. The paper addresses the widely acknowledged research gap of 

how humans should use AI-enabled systems to maximize individual performance on specific 

tasks. Following a qualitative research approach, the study aims to establish task and technology 

characteristics, as well as factors that determine the fit between task and technology with 

regards to individual performance. Based on twelve expert interviews, an extended version of 

the task-technology fit (TTF) model (Goodhue & Thompson, 1995) is developed, tailored to 

the unique characteristics of AI-enabled systems. The model can serve as a basis for future 

empirical research in this area and enables practitioners to examine the suitability of AI-enabled 

systems for specific use cases. 

While the first two papers cover individual impacts of increasing human-AI interaction, papers 

C and D are concerned with organizational-level impacts. Paper C addresses the focus point 

fairness and is placed in the context of recruiting. Here, AI-enabled systems are increasingly 

used to help recruiters cope with vast amounts of available applicant data. The study's central 

research question is what impact the use of CV recommender systems has on procedural justice 

in the selection process of candidate recruiting. Among others, procedural justice in recruiting 

comprises the dimensions of consistency and bias suppression. An online lab experiment was 

conducted with 74 recruiters from 22 multinational companies, wherein the recruiters were 

tasked to rank candidates according to their fit for two fictional job postings. The results show 

that recruiters supported by an AI-enabled CV recommender system created more consistent 

candidate rankings than unsupported recruiters. In addition, evidence is found that the rankings 
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from supported recruiters are more firmly based on relevant skills and less on personal biases. 

Thus, the study suggests that AI-enabled systems can positively impact the procedural justice 

of organizational decision-making. 

Paper D extends organizational learning theory in that it softens the assumption that humans 

are the only learning agents in an organization and thus the sole contributors to organizational 

knowledge. At its core, the study examines how human and machine learning should be 

coordinated to maximize organizational knowledge levels. Three main propositions are derived 

from a series of agent-based simulations. First, the results suggest that well-trained AI-enabled 

systems can take over explorative tasks, thus allowing humans to learn at their preferred pace. 

Second, it is found that humans should always be kept in the loop, even for highly automated 

tasks. This is mainly due to the massive importance of the ongoing reconfiguration of AI-

enabled systems. Third, AI-enabled systems can be especially beneficial for organizational 

learning in turbulent environments. The study contributes to organizational learning theory in 

that it is the first to account for the unique characteristics of AI-enabled systems. 

The papers included in this thesis employ a variety of research methodologies (see Table 2). 

Papers A, C, and D are quantitative studies; paper B follows a qualitative approach. In detail, 

papers A and C are based on online lab experiments, paper C on an agent-based simulation, and 

paper B on expert interviews. Moreover, each paper builds off of different theoretical 

backgrounds, fitting the respective focus point of the study. The theoretical framework in paper 

A is based on the theory of planned behavior (Ajzen, 1991), which aims to explain behavioral 

intention. Paper B extends the task-technology fit theory (Goodhue & Thompson, 1995) to fit 

the unique characteristics of AI-enabled systems. Paper C uses the attraction-selection-attrition 

framework (Schneider, 1987) for recruiting in organizations and the organizational justice 

literature (Greenberg & Colquitt, 2005). Finally, the simulation model in paper D builds on 

March's model (1991) to examine the effects of increasing human-AI interaction on 

organizational learning. 
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Table 2: Outline of research papers 

Research paper Study type Research methodology Theoretical background 
Paper A: Consumers’ 
Willingness to Pay for 
Transparency of 
Intelligent Systems 

Quantitative study Online lab experiment Theory of Planned Behavior 

Paper B: The Impact of 
Artificial Intelligence on 
Individual Performance 

Qualitative study Expert interviews Task-Technology Fit Theory 

Paper C: The Impact of 
CV Recommender 
Systems on Procedural 
Justice in Recruiting 

Quantitative study Online lab experiment Organizational Justice 

Paper D: Coordinating 
Human and Machine 
Learning for Effective 
Organizational Learning 

Quantitative study Agent-based simulation March’s Model of 
Organizational Learning 

 

In addition to the papers included in this thesis (see Table 1), I worked on the following papers, 

which are either peer-reviewed publications or under review at the time of publishing this 

thesis: 

• Pumplun, Luisa; Fecho, Mariska; Wahl, Nihal; Peters, Felix; Buxmann, Peter (2021): 

Adoption of Machine Learning Systems for Medical Diagnostics in Clinics: A 

Qualitative Interview Study. In: Journal of Medical Internet Research, 23(10), e29301, 

VHB-Ranking: - 

• Pumplun, Luisa; Peters, Felix; Gawlitza, Joshua; Buxmann, Peter (2021): Bringing 

Machine Learning Systems into Medical Practice: A Design Approach to Transparent 

Machine Learning-Based Clinical Decision Support Systems. Currently under review 

at Journal of the Association for Information Systems, VHB-Ranking: A 

Papers A-D are contained in Chapters 3 to 6 of this thesis.1 Chapter 2 summarizes the theoretical 

background regarding human-AI interaction in general and the focus points of this thesis. The 

theoretical and practical contributions are discussed in Chapter 7, which also concludes this 

thesis with an outlook on possible future research in this field. 

 

 

 

 
1 Slight adaptations were conducted to each paper to ensure a consistent paper layout for this thesis. All papers are written in 

the first-person plural because multiple researchers co-authored them. 
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2 Theoretical Background 

This chapter aims to provide the required theoretical background for the papers included in this 

thesis. The first section serves as an introduction to AI in general and human-AI interaction in 

specific. The remaining sections cover the theoretical background for each of this thesis’ focus 

points, namely transparency, individual performance, fairness, and organizational learning. 

2.1 Artificial Intelligence 

To understand the unique challenges of human-AI interaction, it is necessary to provide some 

theoretical background regarding modern AI-enabled systems. Therefore, the following two 

subsections will provide information about modern AI, including its advantages and limitations, 

and the lifecycle of AI-enabled systems. The remaining subsections will introduce the unique 

characteristics of AI-enabled systems and state-of-the-art of research in human-AI interaction. 

2.1.1 Artificial intelligence and AI-enabled systems 

Traditionally, AI research has aimed to create machines that perform cognitive functions 

usually associated with humans, e.g., "perceiving, reasoning, learning, interacting with the 

environment, problem-solving, decision-making, and even demonstrating creativity" (Rai et al., 

2019, p. iii). Early work on AI was based on rule-based approaches which aimed to mimic 

human decision-making (Russell & Norvig, 2016). However, this suffered from human's 

inability to describe their own decision rules, known as Polanyi's paradox (Brynjolfsson & 

Mitchell, 2017; Fügener et al., 2021). In contrast, modern AI research primarily focuses on 

statistical machine learning approaches. Here, the machine learns models from data by 

detecting patterns. The resulting model can then make predictions on new data (Brynjolfsson 

& Mitchell, 2017). Especially the advent of deep learning, i.e., the training of deep neural 

networks, has enabled machines to perform tasks at or even above human-level performance. 

Examples of these tasks include image recognition (e.g., He et al., 2016; Krizhevsky et al., 

2012), language modeling (e.g., Howard & Ruder, 2018; Vaswani et al., 2017), playing board 

and online games (e.g., Berner et al., 2019; Silver et al., 2018), and most recently predicting the 

three-dimensional structure of proteins (Jumper et al., 2021). 

Based on the recent progress, AI-enabled systems have gained more and more traction in 

organizations of all industries. Due to the high cost of training machine learning models, 

researchers and practitioners have aimed to develop guidelines for when to rely on AI-enabled 

systems. In its essence, machine learning enables machines to make predictions based on 
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previously detected patterns in data (Agrawal et al., 2019). Thus, organizations can leverage 

the speed and scalability of computers for performing tasks that rely on these predictions (Rai 

et al., 2019). However, tasks need to be clearly defined, meaning that clear metrics exist for 

providing feedback on task performance and that the input data contains relevant information 

for performing the task (Brynjolfsson & Mitchell, 2017). In addition, tasks performed by an 

AI-enabled system should rely on statistical patterns, not on in-depth reasoning (Brynjolfsson 

& Mitchell, 2017). Modern AI-enabled system's limitations include the inability to perform 

complex reasoning and logic, the lack of explainability of model predictions, and learning from 

small datasets (Brynjolfsson & Mitchell, 2017; Rudin, 2019). 

2.1.2 Lifecycle of AI-enabled systems 

Like most software systems, AI-enabled systems follow an iterative development process. 

Various process models exist, which commonly include the following phases (e.g., Amershi, 

Begel, et al., 2019; Sturm, Gerlach, et al., 2021). Initially, the system requirements need to be 

defined, especially the tasks performed by AI. Data for training the required ML models need 

to be collected, preprocessed, and labeled (in the case of supervised learning). Based on the 

created datasets, models can be trained and evaluated before the AI-enabled system can be 

deployed into a production setting. The deployed models need to be monitored regarding 

performance (e.g., accuracy) and operational metrics (e.g., latency, throughput, memory usage). 

As mentioned above, these phases are not followed in a sequential but iterative manner. For 

example, model evaluation or monitoring might uncover new data requirements (Amershi, 

Begel, et al., 2019). Apart from being the potential users of AI-enabled systems, humans are 

involved in all stages of the development process. While domain experts are required for 

defining the prediction tasks, developers (e.g., data scientists, ML engineers) prepare the data 

for model training, select and tune the learning algorithms, and evaluate model performance 

(Amershi, Begel, et al., 2019; Grønsund & Aanestad, 2020; Raisch & Krakowski, 2020). It is 

also on humans to continually monitor the system and decide on reconfiguration efforts such 

as retraining models based on new data or improving the data quality (Baylor et al., 2017; 

Sculley et al., 2015; Sturm, Gerlach, et al., 2021). 

2.1.3 Unique characteristics of AI-enabled systems 

Given this understanding of AI-enabled systems, two unique characteristics of these systems 

can be identified, distinguishing them from traditional IT systems. 
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First, due to their dependence on data and statistical machine learning algorithms, AI-enabled 

systems are inherently probabilistic (Ågerfalk, 2020; Schuetz & Venkatesh, 2020; Yang et al., 

2020). Consequently, these systems are prone to making prediction errors, especially in cases 

not sufficiently represented in the training data (Amershi, Weld, et al., 2019; Yang et al., 2020). 

For example, an AI-enabled system tasked with detecting fraud in credit card transactions (i.e., 

a binary classification problem) can make two types of errors: (1) predicting a fraudulent 

transaction as valid (false negative), and (2) predicting a valid transaction as fraudulent (false 

positive). Another consequence of the probabilistic nature of AI-enabled systems is potential 

inconsistency in system behavior (Amershi, Weld, et al., 2019; Schuetz & Venkatesh, 2020). 

As mentioned in the previous subsection, AI-enabled systems need to be continually 

reconfigured, for example, in the form of retraining on new data. However, this can lead to 

changes in predictions over time. For the example presented above, reconfiguration could 

include adding new features to the dataset used to train the fraud detection system. If this feature 

is highly predictive of fraudulent transactions, several transactions previously classified as valid 

might now be classified as fraudulent. 

Second, the prediction capabilities of AI-enabled systems allow organizations to automate and 

augment tasks previously reserved for humans (Maedche et al., 2019; Rai et al., 2019; Raisch 

& Krakowski, 2020). As a result, it is widely agreed that new collaboration modes have to be 

identified to maximize the potential of AI-enabled systems by combining the strengths of 

humans and machines (Lyytinen et al., 2021; Raisch & Krakowski, 2020). Moreover, arising 

issues from the increasing automation of decision-making revolve around the governance of 

these systems (Rai et al., 2019). For example, it remains unclear whether AI-enabled systems 

will reinforce or mitigate cognitive biases in human decision-making (Maedche et al., 2019; 

Rai et al., 2019; Raisch & Krakowski, 2020; Thiebes et al., 2021). 

2.1.4 State-of-the-art in human-AI interaction research 

The unique characteristics of AI-enabled systems challenge existing guidelines in the field of 

human-computer interaction (HCI) (e.g., Höök, 2000; Horvitz, 1999; L. Li & Zhang, 2005; 

Norman, 1994), which have led to calls for more targeted research on human-AI interaction 

(e.g., Maedche et al., 2019; Rai et al., 2019; Schuetz & Venkatesh, 2020; Yang et al., 2020). 

Recent research on human-AI interaction is presented in this subsection, divided into 

conceptual and empirical work, and listed in chronological order. 
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Regarding conceptual research, the following studies are relevant to the topics discussed in this 

thesis. Rzepka and Berger (2018) conduct a systematic review of IS literature on human-AI 

interaction and create a research framework, adopting the framework of Li and Zhang (2005). 

The main limitation of this study is the sole focus on the IS discipline, neglecting the 

interdisciplinary nature of this research area. Amershi et al. (2019) propose high-level design 

guidelines for human-AI interaction based on a literature review, user studies, and expert 

interviews. However, the guidelines are not empirically validated, e.g., by measuring desired 

outputs such as trust. Thus, the relevance of single guidelines and potential trade-offs between 

them remain unclear. Yang et al. (2020) draw on the experience of designers and UX experts 

to identify the two key challenges of designing UI for AI-enabled systems: capability 

uncertainty (i.e., functionality, performance, kinds of produced errors) and output complexity 

(from simple binary classification to complex recommendations). Furthermore, they derive a 

framework for addressing these issues in design processes. Lyytinen et al. (2021) assemble a 

research agenda for meta-human systems, i.e., systems in which both humans and machines 

learn (including, but not limited to, AI-enabled systems, as discussed in this thesis). They 

propose research questions related to the organizational functions of delegating, monitoring, 

cultivating, and reflecting. 

Additionally, empirical studies have studied contexts in which humans and AI-enabled systems 

interact in various ways. For example, Yang et al. (2019) develop a clinical decision support 

system (CDSS) for artificial heart implementation, including prognostic prediction from an AI-

enabled system. In experimental studies with physicians, they investigate how the predictions 

should be presented to achieve user acceptance and trust. They find that the correct level of 

remarkableness needs to be identified to not distract physicians from the task at hand by solely 

focusing on the characteristics of the AI-enabled system. Grønsund & Aanestad (2020) examine 

how human-in-the-loop configurations can be designed when introducing AI-enabled systems. 

Based on a qualitative case study in a financial services and brokering firm involved in global 

maritime trade, they describe how workflows in this specific organization were reconfigured to 

maximize performance. They propose an emergent human-in-the-loop configuration for 

algorithmic decision-making involving multiple feedback cycles between humans and the AI-

enabled system. Also, in the context of financial decision-making, Sturm et al. (2021) study 

how humans and AI-enabled systems should interact when trading securities. They find that the 

best trading performance is achieved when humans and machines learn from each other. Thus, 

they stress the importance of including feedback cycles to combine the strengths of humans and 

AI-enabled systems. Fügener et al. (2021) examine whether delegation between humans and 
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AI outperforms humans or AI working alone and which factors limit human delegation. Using 

experimental studies within the context of image recognition, they find that the best 

performance is achieved when humans and AI collaborate, primarily when the AI handles most 

of the decisions and delegates cases to the human, where the AI is uncertain. 

2.2 Transparency and Explainable AI 

Transparency research has been a theme in IS research for a while. Early work on this topic 

focused on Knowledge-Based Systems, which were usually not based on statistical but logical 

ML approaches (e.g., Dhaliwal & Benbasat, 1996; Gregor & Benbasat, 1999; Ye & Johnson, 

1995). For the modern AI-enabled systems discussed in this thesis, transparency research 

primarily takes place under the umbrella term explainable AI (XAI). XAI is a research field at 

the intersection of computer science (CS), HCI, and social sciences. It is concerned with the 

development of AI-enabled systems which are understandable by humans (Barredo Arrieta et 

al., 2020). The primary interface between AI-enabled systems and humans is explanations, 

which are incorporated with the primary goal of increasing system transparency (T. Miller, 

2019). In the following, goals and influencing factors for designing explanations are presented, 

along with different explanation types. 

Three main goals are commonly pursued by incorporating explanations into AI-enabled 

systems. First, developers such as data scientists or ML engineers can better understand ML 

model behavior, offering them the opportunity of detecting errors and improving performance 

(U. Bhatt et al., 2020; Doshi-Velez & Kim, 2017; Lipton, 2016). Second, explanations can be 

deployed for compliance and regulatory reasons (U. Bhatt et al., 2020; Cheng et al., 2019; 

Reyes et al., 2020). For instance, the EU’s General Data Protection Regulation (GDPR) 

includes a “right to explanation” for outputs of AI-enabled systems which concern the personal 

attributes of consumers (Goodman & Flaxman, 2017). In organizational contexts, explanations 

might be used to pass internal or external audits of AI-enabled systems (U. Bhatt et al., 2020; 

Reyes et al., 2020). Third, explanations can be used to enhance the interaction between an AI-

enabled system and the end-user (Hohman et al., 2019; Liao et al., 2020; D. Wang et al., 2019). 

However, there is not enough research yet that empirically supports this relationship. 

Prior XAI research has also identified influencing factors for designing explanations in specific 

application scenarios. These include the ML model and data type used to train the AI-enabled 

system, user characteristics, and the decision context (Liao et al., 2020; Reyes et al., 2020). 

Regarding the ML model type, the main distinction is between black-box and white-box 
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models. White-box models have built-in explanations (e.g., rules extracted from a decision 

tree), whereas black-box models (e.g., deep neural networks) require additional techniques to 

explain model behavior. The type of training data also influences explanation design. For 

example, simple if-then rules can be used as explanations for AI-enabled systems dealing with 

structured (i.e., tabular) data. Presentation formats need to vary for AI-enabled systems that 

operate on unstructured data such as images or texts. User characteristics that influence the 

explanation design include AI and domain knowledge and the user’s general attitude towards 

AI-enabled systems. Regarding the decision context, outcome criticality (i.e., high-stakes vs. 

low-stakes decisions), time sensitivity, or decision complexity are commonly named essential 

factors (Liao et al., 2020; Reyes et al., 2020). 

The possible content of explanations can broadly be grouped into model explanations, global 

explanations, and local explanations. Model explanations comprise general information about 

the AI-enabled system (e.g., version, intended use, limitations, included ML models), 

conducted validation procedures (e.g., regulatory approvals, certificates, scientific 

publications), metadata about the utilized datasets for training the ML models (e.g., data 

scheme, collection, statistics, labeling procedure, preprocessing), and performance evaluation 

(e.g., metrics on unseen test data, performance trade-offs) (e.g., Diakopoulos, 2016; Gebru et 

al., 2021; M. Mitchell et al., 2019). Global explanations describe how the AI-enabled system 

works on a general level. Possible explanations include average feature importance scores, the 

importance of other human-defined criteria, or visualizations of internal parameter spaces (e.g., 

Ghorbani et al., 2019; Goldstein et al., 2015; Kim et al., 2018; Olah et al., 2018). In contrast to 

that, local explanations provide the rationale for single predictions. Concrete forms of 

explanation type include feature attributions (e.g., Lundberg & Lee, 2017; Ribeiro et al., 2016; 

Sundararajan et al., 2017), counterfactual explanations (e.g., Fernandez & Provost, 2019; 

Mothilal et al., 2020; Wachter et al., 2017), uncertainty estimates (e.g., Gal & Ghahramani, 

2016; Guo et al., 2017; Maddox et al., 2019), sensitivity analysis (e.g., Koh & Liang, 2017; 

Kwon et al., 2019; Ribeiro et al., 2018), and example-based explanations (e.g., Biggio & Roli, 

2018; Goodfellow et al., 2014; Kim et al., 2016). 

Despite the growing literature on XAI, technical limitations still exist explaining the behavior 

of complex AI-enabled systems (U. Bhatt et al., 2020; Liao et al., 2020). In particular, 

explanations for AI-enabled systems are typically based on statistical algorithms, meaning they 

can become very complex or unintuitive to humans and even contain errors (e.g., T. Miller, 

2019; Rudin, 2019). While researchers and practitioners agree on the overarching goals of 
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deploying XAI, it remains largely unclear how to design explanations in practice and how end-

users will perceive explanations. Technical XAI studies primarily focus on developing 

particular explanations, neglecting the interaction between end-users and ML systems. 

2.3 Individual Performance and Task-Technology Fit 

The task-technology fit (TTF) theory is the most widely used theoretical model for studying 

performance impacts on an individual level due to technology use. The TTF theory was first 

proposed by Goodhue and Thompson (1995) and is based on the premise that technology must 

match the task it is supposed to support to be utilized. The authors further claim that utilization 

is the primary driver of performance impacts. In summary, the TTF theory comprises five 

primary constructs (see Figure 1): task characteristics, technology characteristics, task-

technology fit, utilization, and performance impacts. In the seminal paper, the task-technology 

fit construct is operationalized with eight factors (quality, locatability, authorization, 

compatibility, ease of use, production timeliness, systems reliability, relationship with users). 

Utilization can be measured by examining usage frequency, and performance impacts can be 

observed as (perceived) increases in effectiveness, efficiency, or quality when performing a 

specific task. The original theory has since been extended and applied in various contexts. The 

following paragraph summarizes IS research related to the TTF theory. 

 

Figure 1: Task-technology fit (TTF) theory 

A large body of research transferred the TTF theory to the team level, examining the effects of 

deploying group support systems (GSS). The first such study was conducted by Zigurs and 

Buckland (1998). They developed TTF-based models to explain group performance for five 

different task types (simple, problem, decision, judgment, and fuzzy tasks). In further research, 

TTF was found to positively impact group-level performance metrics such as decision quality, 

satisfaction, team commitment, and group cohesion (Dennis et al., 2001; Maruping & Agarwal, 

2004). Another stream of research examines how TTF relates to appropriation effects, i.e., how 

teams adapt technology to their needs over time. Fuller and Dennis (2009) showed that TTF is 
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the main predictor for team performance in the short term. However, appropriation effects are 

a better predictor in the long term as they reflect a team's ability to adapt a given technology 

for the task at hand. 

On an individual level, the TTF theory was applied in various contexts. When examining 

performance impacts of mobile IS (e.g., digital assistants, mobile e-commerce), the theory was 

extended with a context construct to account for the unique characteristics of mobile IS, 

operationalized by factors such as degree of distraction, connection quality, and user mobility 

(Gebauer et al., 2010; Gebauer & Ginsburg, 2009). Additionally, TTF was used to study 

outcomes of deploying systems with similar capabilities compared to AI-enabled systems, e.g., 

data analytics systems and decision support systems (DSS). For example, Wongpuninwatana 

et al. (2000) built a theoretical model based on the TTF theory to study individual performance 

for an auditing task supported by an expert system, i.e., a form of DSS. The TTF theory was 

also combined with the Technology Acceptance Model (TAM) to examine the intention to use 

intelligent agents in tasks related to web-based auction processes, e.g., price negotiation and 

item acquisition (Chang, 2008). Here, the TTF construct was shown to be a predictor for some 

of the primary TAM constructs (e.g., perceived usefulness, perceived ease of use). In the field 

of data analytics, the TTF theory was used to study user satisfaction with data in general (Karimi 

et al., 2004), the relationship between the use of data analytics systems and organizational 

agility (Ghasemaghaei et al., 2017), and DSS support for specific tasks such as insolvency 

legislation (Parkes, 2013). 

Although a large body of research exists examining the influence of technology on individual 

performance, the findings cannot simply be transferred to modern AI-enabled systems due to 

their unique characteristics. In contrast to deterministic traditional IT systems, AI-enabled 

systems are based on statistical patterns found in data, potentially leading to error-prone or 

inconsistent behavior. The reliance on data is not accounted for in the classical TTF theory 

constructs. Thus, the theory needs to be extended to explain the performance impacts of 

deploying AI-enabled systems. 

2.4 Fairness and Organizational Justice 

As AI-enabled systems are increasingly deployed to support organizational tasks, a growing 

body of literature has evolved around the notion of algorithmic fairness. Here, fairness is 

defined as the "absence of any prejudice or favoritism toward an individual or group based on 

their inherent or acquired characteristics" (Mehrabi et al., 2021, p. 1). In the following 
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paragraphs, the notions of fairness and justice are introduced first from a technical and then 

from an organizational perspective. 

The technical literature on fairness is primarily concerned with formal definitions for measuring 

fairness, sources of bias in AI-enabled systems, and mitigation strategies to overcome these 

biases. Definitions of fairness can be grouped into three different categories (Mehrabi et al., 

2021; Verma & Rubin, 2018). First, definitions focusing on individual fairness ensure that AI-

enabled systems drive similar predictions to similar individuals. Second, group fairness 

definitions aim to treat different population groups equally, for example, measured by 

performance metrics such as accuracy. Third, definitions related to subgroup fairness combine 

the previous two approaches, aiming to receive similar performance levels and predictions for 

a large variety of subpopulations. In practice, it is typically not possible to satisfy all three 

criteria at once (Kleinberg et al., 2017). Biases can occur in all major components of the 

lifecycle of AI-enabled systems, especially the training data, learning algorithm, and user 

interactions. However, the most common source of biases in the training data (Mehrabi et al., 

2021; Olteanu et al., 2019; Suresh & Guttag, 2019). While a complete list of potential data 

biases is beyond the scope of this thesis, examples include measurement biases (e.g., choosing 

inaccurate proxy variables as labels) or sampling biases (e.g., underrepresentation of specific 

subpopulations). Aiming to overcome these biases and create fair AI-enabled systems, 

mitigation strategies can be classified into pre-, in-, and post-processing techniques 

(d’Alessandro et al., 2017; Mehrabi et al., 2021). Pre-processing techniques try to remove the 

biases from the training data before applying the learning algorithm to it. In-processing 

techniques typically target the learning algorithm, for example, by modifying the objective 

function. Finally, post-processing techniques alter the predictions from an AI-enabled system 

to satisfy selected fairness metrics. 

From an organizational perspective, examining fairness in decision-making processes requires 

understanding the literature on organizational justice. This body of research is primarily 

concerned with employees' reactions to unfairness and inequity in an organizational context, 

commonly distinguishing between distributive and procedural justice (Colquitt, 2001; 

Greenberg & Colquitt, 2005; Leventhal, 1980). Here, distributive justice refers to how 

employees perceive the distribution of outcomes (e.g., salaries, rewards) as fair. The notion of 

distributive fairness thus comprises concepts such as equity theory (Adams, 1965; Cohen, 1987) 

and equality (Deutsch, 1975). While distributive justice is more concerned with the distribution 

of outcomes, procedural justice focuses on the perceived fairness of the decision-making 
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processes which lead to these outcomes (Greenberg & Colquitt, 2005). Leventhal (1980) 

described six factors that influence procedural justice: consistency (i.e., applying a consistent 

process over time and persons), bias suppression (i.e., neutral and unbiased decision-makers), 

information accuracy (i.e., no inaccurate information is relied on), correctability (i.e., bad 

outcomes can be appealed), representativeness (i.e., all affected subgroups are included in the 

process), and ethicality (i.e., applying general standards of ethics and morality). 

All in all, the role of AI-enabled systems regarding fairness in decision-making processes 

remains largely unclear. On the one hand, AI-enabled systems could help to mitigate social 

biases, primarily when humans and AI systems work together (Rai et al., 2019; Raisch & 

Krakowski, 2020); on the other hand, organizations need to ensure that existing stereotypes are 

not reinforced by including biases in training data and algorithms (Amershi, Weld, et al., 2019; 

Maedche et al., 2019; Rai et al., 2019; Raisch & Krakowski, 2020). Recent literature in the 

context of recruiting illustrates this duality. While qualitative studies found that both applicants 

and recruiters expect the deployment of AI-enabled systems to have a positive impact on 

procedural justice in the recruiting process (Ochmann & Laumer, 2019; Thielsch et al., 2012), 

Amazon had to pull an AI-enabled system for prioritizing applications because the system 

systematically preferred male candidates due to an overrepresentation of these in the training 

data (Logg, 2019). In summary, more research on the impact of increasing human-AI 

interaction on fairness in organizational decision-making processes is needed, as postulated in 

several calls for research (Maedche et al., 2019; Rai et al., 2019; Raisch & Krakowski, 2020). 

2.5 Organizational Learning 

As one of the critical predictors for firm performance, organizational learning research has a 

long history (Hatch & Dyer, 2004; Levinthal & March, 1993; March, 1991). Organizational 

learning can be defined as drawing lessons from historical events and incorporating them into 

organizational routines which aim to guide behavior by organizational members (Levitt & 

March, 1988). As a result, knowledge is stored in some form of organizational memory, such 

as rules, procedures, or technology (e.g., Feldman & Pentland, 2003; Levitt & March, 1988). 

From a macro perspective, organizational learning needs to be managed by coordinating the 

activities and interactions between organizational members to achieve optimal learning 

effectiveness (e.g., Dodgson et al., 2013; Fang et al., 2010; March, 1991; K. D. Miller et al., 

2006). 
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Because the knowledge in an organization results from aggregating the beliefs of individual 

members of the organization, belief diversity is a crucial predictor for organizational learning 

effectiveness (March, 1991). How to effectively manage belief diversity has been a theme of 

organizational learning research, as it is by no means a trivial problem (Lavie et al., 2010; 

March, 1991). For example, organizations that disseminate apparently correct beliefs quickly 

reduce belief diversity. This might lead to undesired consequences such as adapting inferior 

routines (Denrell & March, 2001; Levinthal & March, 1993; March, 1991). Therefore, 

organizations need to maintain a healthy level of belief diversity to experiment with different 

ideas before converging to the optimal set of beliefs. Consequently, managing the learning 

speed of organizational members is one of the primary mechanisms for coordinating 

organizational learning. Here, organizations need to manage the so-called exploration-

exploitation trade-off (e.g., Lavie et al., 2010; March, 1991). While exploration mechanisms 

are approaches for maintaining the belief diversity among organizational members by 

experimenting with new ideas and uncertain outcomes, exploitation mechanisms converge 

beliefs to a de-facto status quo reaping certain, immediate benefits. Managing this trade-off 

resembles the key activity of coordinating organizational learning. An overemphasis on 

exploitation to gain short-term benefits can lead to a stagnant organization unable to explore 

new and promising directions. In contrast, leaning too strongly towards exploration might 

threaten firm survival in competitive environments, as there is no shared understanding of the 

organization's key competencies (e.g., Lavie et al., 2010; March, 1991; Raisch et al., 2009). 

Previous organizational learning research has examined the effects of IT systems on 

organizational learning. However, two issues arise when examining how increased human-AI 

interaction might impact organizational learning effectiveness. First, there is no consensus on 

whether IT actually facilitates or hinders the creation and dissemination of knowledge in 

organizations (e.g., Alavi & Leidner, 2001; Robey et al., 2000; Schultze & Leidner, 2002). On 

the one hand, it might be argued that IT simplifies communication between organizational 

members, leading to simplified dissemination of knowledge. On the other hand, IT aiming at 

automating processes might erase knowledge from the organizational memory because it is no 

longer needed (e.g., Iyengar et al., 2015; Robey et al., 2000; Schultze & Leidner, 2002). Second, 

most studies assume that IT systems' sole purpose is to support humans (e.g., Iyengar et al., 

2015; Kane & Alavi, 2007; Robey et al., 2000). This stands in contrast to the assumption that 

AI-enabled systems might possess agency, learning and contributing knowledge through 

autonomous learning (e.g., Ransbotham et al., 2020; Seidel et al., 2019). Existing studies that 

acknowledge AI-enabled systems' self-learning capabilities are on a conceptual level or limited 
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to specific use cases within organizations (e.g., G. D. Bhatt & Zaveri, 2002; Elofson & 

Konsynski, 1993; Zhu et al., 1997). Thus, how the increasing interaction between humans and 

AI-enabled systems impacts organizational learning processes remains largely an open 

question. 
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3.1 Introduction 

The field of artificial intelligence (AI) has seen a lot of technological breakthroughs in recent 

years: AI was able to defeat their human counterparts in strategic board (Silver et al., 2017) and 

online games (Vinyals et al., 2019) and has surpassed human-level performance on tasks like 

image recognition (He et al., 2016). Moreover, AI is increasingly being used for making 

predictions in high-stakes situations, e.g., medical diagnosis (Kourou et al., 2015) or credit 

scoring (Burrell, 2015; Zhou, 2017). Modern AI mainly uses machine learning (ML) to enable 

information systems to do tasks that we used to think were reserved for humans (Andrews et 

al., 2018; Brynjolfsson & Mitchell, 2017; Elliot & Andrews, 2017; Rai et al., 2019). These 

intelligent systems can be distinguished from conventional systems since they are able to learn 

based on incoming data, adapt their behavior over time without having to be explicitly 

reprogrammed, derive their results statistically, and thus will make mistakes (Andrews et al., 

2018; Brynjolfsson & Mitchell, 2017). High complexity of datasets and ML algorithms leads 

to what is commonly referred to as black box behavior: the lack of transparency in decision-

making processes of intelligent systems. In this context, decisions which are inaccurate or not 

aligned with ethical standards due to biased incoming data could stay undetected (Kruse et al., 

2019; Rudin, 2019). Therefore, demands to open the black box of intelligent systems applied 

to high-stakes decisions (e.g., credit scoring) are increasingly claimed in research and practice 

(Burrell, 2015; Chen et al., 2018; Google, 2019; Rudin, 2019; Shook et al., 2018; The 

Economist, 2018). These requests coincide with the declared aim of the United Nations to 

support fairness, accountability and transparency of intelligent systems (ITU, 2018). 

The transparency issue regarding intelligent systems can be exemplified in the credit scoring 

context. So far, credit applicants could be sure that decisions about their creditworthiness were 

based on the evaluation of their credit history and the credit documents submitted. Furthermore, 

simple linear modeling approaches comprising a restricted number of well-known variables 

have been employed by financial institutions to guarantee the comprehensibility of the credit 

scoring process. This way, financial institutions are able to provide specific reasons to the credit 

applicant why one’s credit was granted or denied (Martens et al., 2007). However, an increasing 

number of financial institutions additionally start to rely on tech companies such as Kreditech, 

Branch, or FICO to determine the creditworthiness of their applicants (Burrell, 2015). These 

companies automatically collect applicant’s personal data from online sources (e.g., corporate 

websites) and use complex non-linear models based on ML (F.-C. Li et al., 2009; Zhou, 2017). 

While these companies help consumers with limited financial history or past financial 

difficulties (e.g., in developing countries) getting access to credits (e.g., FICO, 2019b), 
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decisions about creditworthiness become less transparent than they were before. While the 

applicant has previously been granted the opportunity of clear reasoning, intelligent systems 

are limited in their comprehensibility and can hardly be validated to see if they discriminate 

applicants, e.g., due to gender, religion, or national origin (Shook et al., 2018). 

To counteract this problem, a vast amount of research has been conducted over the past few 

years concerning the technical realization of transparency features for ML algorithms, e.g., 

neural networks (e.g., Diakopoulos, 2016; Doshi-Velez & Kim, 2017; Kim et al., 2018). In this 

context, more and more providers of intelligent systems for credit scoring are also striving to 

make their products more transparent (FICO, 2019a). In contrast, information systems (IS) 

research has only recently begun to analyze the added value derived by transparency features 

and its effect on user’s behavior in order to contribute to a responsible design of intelligent 

systems. In this context, Rzepka and Berger (2018) claim that a transparent system appearance 

with appropriate explanations shows positive impact on user’s adoption decision. However, it 

is not yet known how consumers from the general public, who will increasingly depend on 

decisions from intelligent systems, assess enhanced transparency of intelligent systems since 

IS research on this topic is still in its infancy. In order to contribute to a more holistic picture 

of consumer’s assessment of transparency features for intelligent systems, we examine not only 

their attitude towards these features but also go a step further and investigate their willingness 

to pay (WTP). This approach aims to demonstrate the interest of an emancipated consumer in 

more transparency while at the same time creating an incentive for companies to invest 

resources in improving the explainability of intelligent systems and offer them to customers. 

Thus, we pose the following research questions: 

(RQ1) To what extent are consumers willing to pay for transparency features in the context of 

intelligent systems? 

(RQ2) What are the underlying mechanisms of the purchase decision for transparency features 

of intelligent systems? 

Aiming for an understanding of the value consumers assign to enhanced transparency, this 

study is the first to explore WTP for transparency features of intelligent systems. Therefore, we 

run an experiment in the credit scoring context, analyzing whether and why consumers would 

be willing to pay for features that explain rationale about how their creditworthiness was 

predicted by an intelligent system. Furthermore, the underlying effects of purchasing behavior 

are examined by conducting a subsequent survey with the 195 experiment participants. The 

credit scoring context is chosen because it has been used to stress the importance of 
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transparency of intelligent systems repeatedly in prior research (Burrell, 2015; Kruse et al., 

2019; Shook et al., 2018). We show that users exhibit a significant WTP for transparency 

features and that an increase in trust towards the intelligent credit scoring system is the main 

reason why consumers positively evaluate such features. As a result, we find a profound interest 

of consumers for fair and transparent AI, which is not only reflected in their attitude towards 

transparency features but is actually characterized by a significant WTP. In this regard, the 

positive evaluation of transparency features enables practitioners to assess their economical 

relevance for intelligent systems. 

Thus, the remainder of this paper is structured as follows: In the beginning, an overview of 

related work concerning intelligent systems and possible transparency features is provided in 

order to mark out the research area. Here, we consider prior work from both information 

systems and computer science. Subsequently, an initial research model is derived and the 

quantitative research approach, including the experiment as well as the survey design, is 

presented. After introducing our sample, the results of the study are analyzed. In our discussion, 

we shed further light onto our contributions, limitations and opportunities for future research. 

Finally, we conclude our paper by summarizing the investigated problem, our research 

approach and findings. 

3.2 Related Work 

3.2.1 Intelligent Systems 

AI as a research area covers aspects of mathematics, economics, computer engineering, 

cybernetics and linguistics, and is concerned with the development and understanding of 

intelligent systems (Russell & Norvig, 2016). Intelligent systems such as speech-based 

assistants, search engines or credit scoring systems are already used by private persons in 

everyday life (Burrell, 2015; von Krogh, 2018). Not only consumers but also organizations are 

increasingly interested in intelligent systems, for example to recommend financial products, 

process transactions or schedule complex logistics (Bamberger, 2018). Intelligent systems are 

generally classified into weak or strong AI, depending on the scope of their task. While the 

research area of strong AI aims to create a general human-like intelligence, weak AI refers to 

the solving of a specific problem (Kurzweil, 2005). So far, all intelligent systems can be 

assigned to weak AI. Here, ML is increasingly used as the underlying technology, frequently 

combined with more classical approaches such as searching or planning algorithms (Russell & 

Norvig, 2016; Silver et al., 2017). Intelligent systems based on ML are software programs that 
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increase their performance with respect to a particular task by gaining more experience (T. 

Mitchell, 1997). In this context, experience corresponds to the data (e.g., images, numbers, 

texts) that is used for training (Crowston & Bolici, 2019; von Krogh, 2018). Intelligent systems 

thus differ from conventional systems as they do not rely on prespecified instructions of 

developers, but develop internal representations based on patterns observed in the training data 

that are used for making predictions (Burrell, 2015). As a result, intelligent systems have the 

ability to learn from user’s behavior, deduce autonomously and react to their environment; 

characteristics that are usually reserved to humans (Rai et al., 2019). Interacting with intelligent 

systems can therefore lead users to perceive humaneness and be threatened by the system 

(Rzepka & Berger, 2018). Furthermore, by learning progressively to provide users with 

predictions, intelligent systems can exhibit black box behavior, especially when relying on 

complex statistical ML methods (Adadi & Berrada, 2018). Therefore, the attitude of users 

towards intelligent systems is significantly determined by the transparency of their underlying 

process for making predictions. In the following, we provide an overview of both computer 

science and information systems perspectives on transparency. 

3.2.2 Computer Science Perspective on Transparency 

In computer science (CS) literature, transparency research can be grouped under the larger 

research stream of intelligent systems alignment. Research in this area aims to ensure alignment 

between intelligent systems and human interests, mainly by developing mechanisms to 

facilitate algorithmic accountability (Chakraborti et al., 2019; Diakopoulos, 2016). In general, 

alignment approaches can be categorized into cooperative and adversarial approaches. 

Cooperative approaches intend to facilitate alignment through understanding system behavior, 

in contrast to adversarial approaches that are more focused on avoiding misalignment, e.g., by 

introducing safety measures (Chakraborti et al., 2019). Transparency mechanisms are 

commonly categorized as a cooperative approach to create intelligent system alignment. 

Moreover, it is widely assumed that demand for transparency arises from a mismatch between 

the formal objectives of intelligent systems and the real-world costs occurring in a deployment 

setting (Doshi-Velez & Kim, 2017; Lipton, 2016). Studies in CS literature often presume that 

transparency serves as a proxy for adoption drivers such as perceived trust, fairness and user 

satisfaction (Diakopoulos, 2016; Doshi-Velez & Kim, 2017). However, these relationships are 

typically not empirically confirmed. Other theoretical work in technical literature also covers 

limitations of the transparency ideal in intelligent systems. According to these studies, technical 

limitations especially occur in systems whose inherent complexity is naturally hard to grasp for 
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humans (e.g., deep learning systems). Moreover, system predictions are commonly state- and 

thus time-dependent, requiring transparency features to store previous versions of the intelligent 

system in order to explain predictions at an earlier point in time (Ananny & Crawford, 2018). 

Furthermore, some authors argue that system transparency might (1) inhibit user privacy and 

(2) enable gaming of the system (Ananny & Crawford, 2018; Veale et al., 2018). 

Further work in CS literature aims to establish guidelines about which parts of intelligent 

systems should be transparent and how the corresponding features should be designed. 

Diakopoulos (2016) names the following categories that might be disclosed: (1) human 

involvement (e.g., purpose of deploying system, responsibility inside organization), (2) utilized 

data (e.g., quality measures such as completeness and timeliness, conducted pre-processing 

steps, accessibility, privacy implications), (3) model characteristics (e.g., statistical 

assumptions, input features, weights), (4) inferencing (e.g., performance measures, confidence 

in predictions). Regarding the design of transparency features, current research in computer 

science mainly aims to develop explanation facilities for statistical ML algorithms. 

Transparency features typically serve one of two purposes: (1) visualizing the inner workings 

of learned ML models (e.g., intermediate representations), and/or (2) providing intuitions about 

the rationale behind individual predictions (local interpretability) or model workings (global 

interpretability) (Guidotti et al., 2019). Recent studies concerning model visualization mainly 

aim to develop transparency facilities for deep neural networks which have achieved state-of-

art performance on tasks such as image recognition or language modeling and are naturally 

hard to understand for humans because of their inherent complexity (often containing millions 

of learnable parameters). Common approaches intend to visualize the learned representations 

in hidden layers of neural networks, e.g., they provide intuitions about which specific objects 

are detected by kernels in a convolutional neural network (Carter et al., 2019). In natural 

language processing, similar techniques are applied to visualize how recurrent neural networks 

memorize characteristics of long input sequences for making predictions, e.g., about the next 

word in a sentence (Madsen, 2019). Regarding the explanation of single predictions and model 

workings, most approaches use attribution techniques, which allow to measure the relative 

importance of input features as well as features detected in intermediate representations with 

regard to the model output (Olah et al., 2018). Techniques like LIME and SHAP explain 

predictions by quantifying the influence of each input feature and are well established in 

practice, especially for models working on tabular data (Lundberg & Lee, 2017; Ribeiro et al., 

2016). Both techniques work for any supervised ML algorithm and are thus called 

modelagnostic approaches. Early stage research aims to provide similar mechanisms for other 
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data types and more complex neural networks, e.g., by relating human-understandable concepts 

to features learned in opaque systems and quantifying their importance for predictions (Kim et 

al., 2018). 

3.2.3 Information Systems Perspective on Transparency 

Transparency of intelligent systems has also been a theme of information systems (IS) 

literature. Early work on transparency mechanisms dealt with Knowledge-Based Systems 

(KBS). Although these systems oftentimes do not rely on statistical ML methods and thus do 

not contain self-learning mechanisms, we include prior studies from this research area as some 

theoretical insights derived from transparency research in KBS should be relatable to modern 

ML-based systems. In KBS, transparency is mainly achieved via different types of 

explanations, e.g., rule traces or justifications (Ye & Johnson, 1995). Implementation of these 

explanation facilities is based on established decision-making theory, e.g., Cognitive Effort 

Perspective and Toulmin’s Model of Argumentation (Dhaliwal & Benbasat, 1996; Gregor & 

Benbasat, 1999). Furthermore, Dhaliwal and Benbasat (1996) develop a theoretical framework 

for empirical evaluation of user interaction with explanation facilities, incorporating user 

perceptions, learning effects and performance measures for judgmental decision-making. 

Subsequent studies rely on this framework and show that use of explanations improves 

performance on specific tasks in a cooperative problem solving setting (Gregor, 2001). 

Moreover, differences between requirements of expert and novice users are established. 

Whereas novice users more often use explanation facilities for learning, expert users mainly 

employ these mechanisms in order to verify conclusions (Mao & Benbasat, 2000). More recent 

IS research examines explanations in recommender systems which more often utilize modern 

statistical ML models. For recommender systems, integration of explanation facilities is shown 

to increase decision efficiency and effectiveness, perceived transparency and user satisfaction 

(Gedikli et al., 2014). The authors also examine differences between multiple transparency 

mechanisms, varying degree of personalization and integration of content data. They find that 

non-personalized content-based explanations most positively influence decision effectiveness, 

whereas more efficient interfaces (e.g., average ratings) result in increased decision efficiency. 

Another study shows that perceived transparency of recommendation agents positively 

influences perceived usefulness and enjoyment, mainly through positive effects on affect- and 

cognition-based dimensions of trust (W. Wang et al., 2016). A positive relationship between 

perceived transparency and trusting beliefs is confirmed by Wang and Benbasat (2016). They 

find that perceived transparency positively influences trust in competence, benevolence and 
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integrity of recommendation agents. Although these findings are valuable for our research 

context, transparency research on intelligent systems is rare so far. Recently, Sidorova and 

Rafiee (2019) name lack of algorithmic transparency as an inhibitor of AI adoption. They 

explicitly list undefined data sources and the opaque, complex nature of modern algorithms as 

problematic aspects regarding this specific technology. Only a few studies explicitly address 

how transparency features for intelligent systems should be designed (Chai & Li, 2019; 

Fernandez & Provost, 2019; Martens & Provost, 2014). 

3.3 Theoretical Framework 

Our study can be divided into two parts, as we aim to find evidence for (1) consumer’s overall 

WTP for transparency features of intelligent systems (RQ1) and the underlying mechanism to 

establish their purchase intention (RQ2). Therefore, in the first subsection we discuss why we 

expect consumers to exhibit WTP for transparency features for intelligent systems. The second 

subsection then introduces our research model for explaining the mechanisms behind the 

purchase decision. 

3.3.1 Willingness to Pay for Transparency Features 

As mentioned in the introduction, consumers are oftentimes left in the dark regarding how 

predictions about personal characteristics (e.g., creditworthiness) are made by intelligent 

systems. In most cases, the utilized data and details about the applied algorithms are not 

disclosed to the consumer, thus creating an information gap between the consumer and the 

provider of the intelligent system (Burrell, 2015; Martens & Provost, 2014; T. Miller, 2019). 

We argue that transparency features would constitute an added value for consumers because 

they provide a way to close this information gap. In detail, transparency features could include 

information about the intelligent system provider (e.g., certifications), utilized data (e.g., 

sources, pre-processing steps), model characteristics (e.g., applied algorithm, input features, 

feature weights) and inferencing (e.g., performance, confidence in predictions) (Diakopoulos, 

2016). Having established the interest consumers should have in transparency features, the 

question remains why they would also be willing to pay for them. Here, we build on findings 

from privacy research, where examining how consumers value their personal data has been a 

theme for many years. Multiple studies show that consumers put meaningful monetary value 

on their personal information (Grossklags & Acquisti, 2007; Krasnova et al., 2009; Schreiner 

& Hess, 2015; Wagner et al., 2018). To the best of our knowledge there are no studies 

examining WTP in the context of intelligent systems. However, as intelligent systems 
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frequently process personal information and their predictions are oftentimes related to personal 

characteristics, we assume that consumers will exemplify comparable behavior as in privacy 

contexts. Based on these observations, we expect that consumers are willing to purchase 

transparency features for an intelligent system that judges their personal characteristics. 

3.3.2 Mechanisms behind Purchase Decision 

Our study aims to explain whether and why consumers are willing to pay for transparency 

features in a finance context. In order to account for consumer’s actual intention to purchase 

these features, we draw inspiration from Theory of Planned Behavior (TPB). TPB postulates 

that the behavior of individuals is induced by behavioral intentions, provided that the intention 

itself results from the individual’s attitude towards the behavior as well as from subjective 

norms and perceived behavioral control regarding the according behavior (Ajzen, 1991). We 

mainly use TPB as a starting point because this theoretical framework can be flexibly adapted 

and offers the possibility to add new variables (Venkatesh et al., 2003). With the goal of keeping 

our theoretical model concise we focus on relevant constructs from the TPB framework. To the 

best of our knowledge, this study is the first relating TPB to consumer’s intention to purchase 

transparency features in intelligent systems. However, TPB has previously been used in WTP 

and purchasing contexts, making it suitable for our study as well (George, 2004; Hansen et al., 

2004; Schreiner & Hess, 2015). Because of our focus on explaining purchase behavior, 

traditional theoretical models with a focus on adoption, e.g., the Technology Acceptance Model 

(TAM) or Unified Theory of Acceptance and Use of Technology (UTAUT), are not suitable 

for this study (Davis et al., 1989; Venkatesh et al., 2003). 

 

Figure 2: Research model for mechanisms behind purchase decision 

Figure 2 shows our research model, including all relevant model constructs and control 

variables. In accordance with previous work on transparency in similar contexts, we define 
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perceived transparency of intelligent system (PT) as the consumer’s capability to understand 

the inner workings of an intelligent system, including assumptions and characteristics that 

determine its outputs (W. Wang & Benbasat, 2016). Moreover, we examine influences of trust 

in the intelligent system (TS) onto attitude towards transparency features (AT), which we define 

as the degree to which a consumer favorably or unfavorably assesses transparency features. 

Also adopted from TPB, we use intention to purchase transparency features (IN) as our main 

predicted variable. Finally, we include the two remaining TPB constructs as control variables: 

subjective norm (SN) resembles perceived social pressure to purchase transparency features 

and perceived behavioral control (PBC) is defined as perceived ease or difficulty of purchasing 

transparency features. 

In order to examine the mechanisms that underlie this behavior, we rely on TPB and establish 

antecedents for consumer’s attitude towards the transparency features. Increased perceived 

transparency in the form of additional insights about inner workings of a system constitute the 

main benefit for consumers when evaluating whether to buy transparency feature packages. 

Hence, we hypothesize that perceived transparency will have a positive influence on 

consumer’s attitude toward transparency features. Furthermore, we expect this effect to be 

mediated by trust into the intelligent system as a whole. The more information consumers 

receive about how a system works, the more they trust outputs of the respective system. This 

assumption can be justified by previous studies in transparency research for related contexts 

(W. Wang et al., 2016; W. Wang & Benbasat, 2016), and comparable work regarding the 

evaluation of privacy-enhancing features (Schreiner & Hess, 2015). An increase in trust into 

the intelligent system should then lead to a more positive evaluation of the transparency 

features, as assessed by studies examining different contexts (George, 2004; Schreiner & Hess, 

2015; Suh & Han, 2002; Wu & Liu, 2007). All in all, we postulate the following hypotheses: 

H1. PT will positively affect consumer’s AT.  

H2. PT will positively affect consumer’s TS. 

H3. TS will positively affect consumer’s AT. 

H4. PT will positively affect consumer’s AT because of increased TS. 

Following the TPB framework, we expect that a positive attitude towards transparency features 

constitutes the main predictor for their intention to purchase these features. Previous studies 

that apply TPB to the related context of internet purchases confirm this assumption (George, 

2004; Hansen et al., 2004). Furthermore, we control for subjective norm and perceived 
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behavioral control, which are additional predictors for consumer’s intentions according to the 

theory (Ajzen, 1991). Therefore, we assume that: 

H5. AT will positively affect consumer’s IN. 

3.4 Research Design and Data Collection 

3.4.1 Study A: Measuring Willingness to Pay 

Following the recommendations of Karahanna et al. (2018), we conducted an online lab 

experiment since transparency of intelligent systems has not been monetarized yet and new 

insights into the evaluation of this technology feature are still necessary. By using this method, 

we ensured the highest degree of internal validity possible as the boundary conditions of an 

experiment can be determined precisely (Karahanna et al., 2018). In the beginning, the 

respondent was briefed that she/he needs to apply for credit of 50,000 € (corresponds to mean 

credit amount in Germany). Furthermore, respondents were told that their financial institution 

employs an intelligent system, i.e., AI which collects and evaluates online data from sources 

like corporate websites, civil registers and credit agencies. This approach is in line with real 

rating providers such as Branch, Kreditech or FICO, that use ML algorithms to specify credit 

scores (Branch, 2019; FICO, 2019b; Kreditech, 2018). All respondents received an initial credit 

score of 65 points (scale 1-100, 100 = highest creditworthiness). This score was based on a pre-

study and ensured that participants were not certain about the final decision of their financial 

institution, i.e., credit commitment or rejection (see Table 3). 

Once the initial score had been provided, participants were offered to purchase additional 

transparency features. In order to create a realistic setting, the participants received a mock-up 

containing an example output of the transparency features. The features were designed 

according to established practices from CS literature (Diakopoulos, 2016; Lundberg & Lee, 

2017; Ribeiro et al., 2016) and findings from social sciences about human perception of 

explanations (Gedikli et al., 2014; Gregor & Benbasat, 1999; T. Miller, 2019). In detail, the 

transparency features contained information about collected features based on online data from 

various sources (e.g., job status based on data from corporate website and professional 

networks) as well as the relative importance of each feature for the final prediction on 

creditworthiness (e.g., 29%). All participants received a fictional budget of 50 €, which was 

determined based on a second pre-study (see Table 3). We simulated a real-world purchase 

decision, i.e., respondents had to evaluate costs compared to the personal value they attach to 

the transparency package. In order to precisely approximate consumer’s real WTP, we 
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employed the Name-Your-Own-Price (NYOP) method with multiple bidding rounds, which is 

an established method for measuring WTP (Breidert et al., 2006) and has been applied in 

various contexts (e.g., Chernev, 2003; Hann & Terwiesch, 2003; Spann et al., 2004). Therefore, 

the applicability in our credit scoring setting could be assumed. According to the method, 

respondents had to bid for the additional package against an unknown, but fixed threshold price 

of 15€ (see Table 3) by submitting bids between 0€ and 50€. Moreover, respondents of the 

study were informed about a total of three bidding rounds that were interrupted as soon as the 

threshold was surpassed (experiment process is summarized in Figure 3). By including a 

repeated bidding option, participants were able to adjust to the situation and feel more 

comfortable as they could include feedback in their bidding behavior and thus overcome the 

lack of experience concerning the monetization of transparency features (Liu et al., 2016). As 

NYOP is not an incentive-compatible method on its own, we created an incentive for the 

respondents by promising them a variable pay-out based on their choices during the experiment 

(Breidert et al., 2006). 

 

Figure 3: Experiment procedure 

In order to set all experiment parameters in the first place, two pre-studies were performed (see 

Table 3). The first pre-study was conducted to determine a credit score, where it is not obvious 

whether a credit is granted or not. Therefore, respondents were asked to indicate two values 

between 0 and 100 points, for which they feel (1) confident that they will be granted a credit 

and (2) confident that they will be rejected for a credit. This procedure was intended to prevent 

possible distortions within the experiment that could arise from participant’s knowledge about 

credit acceptance or rejection. In the second prestudy, we employed a direct survey to determine 

the fictitious budget communicated to the experiment participants as well as the unknown and 

fixed threshold to bid against. In this regard, we asked respondents of the pre-study to directly 

report their WTP for a transparency package within a credit scoring scenario. As described 
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above, we assume that the participants of pre-study 2 did not reveal their true WTP (e.g., due 

to prestige effects). Therefore, the results provide a first guidance to parameter settings but 

should be critically examined by conducting the experiment and employing the NYOP method. 

Table 3: Overview of pre-studies and experiment parameters 

 N Parameter Name Measure Parameter Value 
Pre-study 1 56 Initial credit score  Median of stated uncertainty range 65 points 
Pre-study 2 60 Threshold price Median of stated WTP 15 € 

Budget 90th percentile of stated WTP 50 € 

3.4.2 Study B: Explaining Purchase Decision 

After the WTP had been measured by the experiment described above, participants were tasked 

with completing a survey. Here, we assessed constructs related to our presented research model 

regarding the purchase decision. Only adapted standard scales were used that are known from 

and validated in extant TPB literature or that could be derived from the literature concerning 

system transparency. Suitability of the applied constructs was positively evaluated using a 

subset of items in the second pre-study conducted with 60 students. In the resulting survey, 

reflective latent measures were used, operationalized on a seven-point Likert scale: IN, PBC, 

PT, SN and TS ranged from 1 (strongly disagree) to 7 (strongly agree), while AT was 

implemented as a semantic differential evaluated from 1 (bad, foolish, unpleasant, dislike) to 7 

(good, wise, pleasant, like). Table 4 shows exemplary items of our survey constructs. 

Table 4: Examples of construction operationalization 

Construct No of 
Items Example of Items Source 

PT 6 With the additional transparency features it gets readily 
apparent to me how the algorithm generates its prediction. 

W. Wang & Benbasat, 
2016 

TS 5 The intelligent system keeps my best interests in mind. Koufaris and Hampton-
Sosa, 2004 

AT 4 Purchasing the additional transparency features is a bad/ 
good idea.  

Taylor and Todd, 1995 

IN 3 I intent to purchase the additional transparency features. Venkatesh et al., 2003 

PBC 3 I would be able to purchase the additional transparency 
features. 

Taylor and Todd, 1995 

SN 2 People who influence my behavior would think that I 
should purchase the additional transparency features. 

Taylor and Todd, 1995 
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3.4.3 Sample 

The previously described studies were conducted within Germany in March 2019 in 

cooperation with a market research institute. A total of 223 participants completed the 

experiment and the survey, resulting in an overall response rate of 76.9%. While selecting the 

participants, quotas were taken into account in order to reflect the age and gender distribution 

of consumers using online applications (Eurostat, 2018). The sample consisted of 46.2% female 

and 53.8% male participants and included a wide range of age groups (18-68 years) resulting 

in a mean of 38.8 years (SD: 12.6). The majority of respondents were salaried employees 

(58.5%) and had experience in applying for a credit (64.1%). 79.5% of participants indicated 

that they use the internet very frequently. Therefore, an appropriate demographic distribution 

was achieved concerning the setting of both experiment and survey. Hence, our sample allows 

us to draw inferences concerning our hypotheses for consumers from the general public, at least 

for the country under study. From this sample, we had to filter 28 participants that failed to pass 

two included attention checks or showed unengaged behaviour, resulting in a final sample of 

195 cases for our analyses. 

3.5 Data Analysis and Results 

3.5.1 Results of Study A 

In order to answer RQ1, i.e., to what extent consumers exhibit WTP for transparency features 

for intelligent systems, we examined the experiment outcomes. We determined WTP for each 

respondent by extracting her/his maximum bid out of all three rounds (descriptive statistics are 

listed in Table 5). We observed a mean WTP value of 21.57€, with a standard deviation of 

16.11. Out of 195 respondents, 142 crossed the threshold price of 15€ (72.8%). Thereof, 95 

participants surpassed the threshold price in round 1 (48.7%), 38 in round 2 (19.5%) and 9 in 

round 3 (4.6%). Only 43 participants (22.1%) exhibited bids of 0€ in all three rounds, thus not 

demonstrating WTP for the transparency feature package. 

Table 5: Descriptive statistics regarding measured WTP 

 N Mean Std. Dev. 25% Median 75% Skewness Kurtosis 
WTP 195 21.57 16.11 10.00 20.00 30.00 .31 (.17) -.80 (.35) 
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3.5.2 Results of Study B 

Having established that WTP exists for transparency features, we aimed to examine 

mechanisms in consumer’s purchase decisions using our previously hypothesized research 

model. 

Table 6: Factor loadings and reliability 

Construct Items Factor Loadings Cronbach’s Alpha 

PT 

PT1 .797 

.942 
PT2 .791 
PT3 .910 
PT4 .920 
PT5 .925 

TS 

TS1 .885 

.961 
TS2 .774 
TS3 .809 
TS4 .853 
TS5 .911 

AT 

AT1 .931 

.936 
AT2 .923 
AT3 .744 
AT4 .754 

IN 
IN1 .966 

.971 IN2 .842 
IN3 .875 

PBC 
PBC1 .931 

.809 PBC2 .631 
PBC3 .644 

SN 
SN1 1.036 

.894 
SN2 .558 

 

Table 7: Factor correlations, reliability and validity measures 

 CR AVE PT TS AT IN PBC SN 
PT .943 .767 .876      
TS .962 .834 .621 .913     
AT .937 .787 .512 .794 .887    
IN .972 .919 .514 .746 .785 .959   
PBC .817 .603 .670 .443 .343 .426 .777  
SN .900 .818 .442 .683 .737 .750 .323 .905 

 

Measurement Model. In order to establish that our measurement model was suitable for causal 

analyses, we performed exploratory factor analysis (EFA) in SPSS 26 and confirmatory factor 

analysis (CFA) using AMOS 25. During EFA, we dropped item PT6 due to weak factor 
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loadings, all other items were retained. We assessed reliability and validity of constructs by 

examining factor loadings, Cronbach’s alphas, composite reliability (CR) and average 

variances extracted (AVE) (see Table 6 and Table 7). All model constructs showed highly 

positive loadings, cross-loadings were smaller than .30 (omitted here for the sake of brevity). 

Reliability was given, as Cronbach’s alphas and CR were above .7 for all constructs, and 

convergent validity was ensured by AVE greater than .5. Discriminant validity was assured, as 

square roots of AVE were greater than factor correlations and cross-loadings were smaller than 

factor loadings. Model fit for the measurement model was also above accepted thresholds, CFI 

= .98 (> .95), SRMR = .03 (< .08), RMSEA = .05 (< .06). All thresholds are taken from Hu and 

Bentler (1999). 

We tested for common method bias using collinearity diagnostics and Harman’s single factor 

test. Regarding collinearity statistics, we looked at variable inflation factors (VIFs) for each 

examined relationship in our structural model. No method bias was found, as all VIFs were 

below the threshold of 3.3 (Hair et al., 2010). In addition, we ran Harman’s single factor test 

and observed that no single factor accounted for more than 50% of total variance. This further 

indicated that occurrence of common method bias was very unlikely in this study (C. M. Fuller 

et al., 2016; Podsakoff et al., 2003). Finally, we imputed factor scores for subsequent path 

analysis using AMOS. 

 

Figure 4: SEM results 

Structural Model. Following our evaluation of the measurement model, we tested our 

hypotheses by examining path coefficients and their significance (see Figure 4) using AMOS 

25. In order to ensure our model’s predictive relevance, we again assessed model fit. Model fit 

was found to be adequate, according to widely accepted thresholds, CFI = .99, SRMR = .05, 

RMSEA = .06 (Hu & Bentler, 1999). Furthermore, we were able to account for 64 to 75% of 



3 Paper A: Consumer’s Willingness to Pay for Transparency of Intelligent Systems 35 

the variance in the endogenous constructs TS, AT and IN. Regarding path coefficients, we 

found no support for H1 as there was no observed direct effect between PT and AT. However, 

we found that PT significantly influenced TS, with TS significantly affecting AT (supporting 

H2 and H3). Moreover, H4 is supported, as an indirect effect of PT on AT was confirmed via 

mediation analysis using bootstrapping (5000 samples), resulting in an statistically significant 

indirect-only effect over TS, 𝛽 = .21, p < .001 (Hayes, 2009; Zhao et al., 2010). We could 

further establish a significant effect of AT on IN, as proposed by TPB (Ajzen, 1991). 

Consequently, we can also support H5. Figure 4 also displays statistically significant paths 

related to our control variables. As expected, PBC and SN positively affected IN (Ajzen, 1991). 

SN also influenced both TS and AT in a statistically significant way. Furthermore, we found a 

statistically significant effect of gender on TS. Table 8 sums up our analysis of study B. 

Table 8: Overview of tested hypotheses 

Hypothesis Relationship Support 
H1 PT (+) ® AT No, p = .89 
H2 PT (+) ® TS Yes, p < .001 
H3 TS (+) ® AT Yes, p < .001 
H4 PT ® TS ® AT (Mediation) Yes, p < .001 
H5 AT (+) ® IN Yes, p < .001 

3.6 Discussion 

This study examined to what extent consumers would be willing to pay for transparency 

features in the context of intelligent systems (RQ1), and what the mechanisms behind the 

purchase decision looks like (RQ2). We conducted an online lab experiment with a subsequent 

survey in order to examine both research questions adequately and increase robustness of 

results. To the best of our knowledge, we were the first to study WTP for transparency features 

in intelligent systems. In addition, we developed a research model for the mechanisms regarding 

the purchase prediction, drawing inspiration from TPB and prior work in related areas like 

knowledge-based and recommender systems. For the experiment, we developed a real-world 

scenario in which respondents had to choose whether to purchase an additional feature package 

that offers insights into algorithmic predictions about their creditworthiness. WTP was 

measured using the established Name-Your-Own-Price procedure with a total of three bidding 

rounds and a hidden threshold price of 15€. All experiment parameters for the study were 

rigorously determined, based on results of two conducted pre-studies. Our experiment unveiled 

that a large majority of participants exhibited meaningful WTP (median 20€) for the presented 
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transparency feature package. Moreover, our research model for explaining the purchase 

decision was shown to have high measurement quality and explanation capabilities. 

Our study offers significant theoretical contributions regarding research into consumer 

interactions with intelligent systems. First and foremost, we established that significant WTP 

among consumers exists for transparency features in intelligent systems through an experiment 

that simulated actual purchase behavior. Furthermore, we are the first to transfer transparency 

research to a context different from knowledge-based and recommender systems. Our findings 

indicate that increasing perceived transparency leads to a positive attitude towards feature 

packages with this purpose. We showed that an increase in trust towards the intelligent system 

is the main driver behind this effect, which confirms prior research in the area of recommender 

systems (W. Wang et al., 2016; W. Wang & Benbasat, 2016). This finding also counters the 

possible fear that consumers might use the derived insights from transparency features to game 

the intelligent system. In accordance with TPB, a more positive evaluation of transparency 

features positively affected the actual intention to purchase these. Additional factors influencing 

purchase intentions were subjective norms, i.e., social pressure, and perceived behavioral 

control, in accordance with TPB (Ajzen, 1991). Moreover, transparency could be important to 

consumers not only in the context of intelligent systems, but for a variety of digital customer 

experiences. Thus, further transparency research should be conducted in related digital 

contexts. 

Our results also have significant implications for practitioners. First of all, we have shown that 

WTP for transparency features exists for the real-world scenario of credit scoring. This 

constitutes a valuable insight for providers of intelligent systems and services when evaluating 

whether to offer comparable features related to algorithmic transparency. Our findings reveal 

that inclusion of transparency features might have two main benefits. First, they can be 

monetized separately from the intelligent service and thus constitute an additional revenue 

stream in the form of a premium service. Here, results from this study could serve as an entry 

point for price determination. We found that respondents were willing to spend on average 20€ 

for such a package which constitutes meaningful WTP. Although these findings are limited to 

the context of credit scoring, they can still be meaningful anchor points for decisionmakers, 

e.g., product managers. Second, we showed that increasing perceived transparency has 

significant positive effects on trust into the intelligent system. This insight can be meaningful 

to practitioners, because trust has been shown to positively influence important business metrics 

such as customer retention (e.g., Chiu et al., 2012; Gounaris, 2005; Han & Hyun, 2015). Beyond 
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WTP, our results point towards the relevance of “fair AI” for consumers. This finding is in line 

with previous research, as well as company and governmental reports that all name 

transparency as a key driver for establishing fairness in intelligent systems (Doshi-Velez & 

Kim, 2017; Google, 2019; ITU, 2018). As algorithmic transparency is seen as particularly 

important in the public sector (Diakopoulos, 2016), results from this study can also be used for 

intelligent systems that are employed by public institutions. 

Our study is subject to some limitations. First, we focused on examining WTP in the financial 

context of credit scoring. Although we expect our results to be transferable to related contexts 

involving intelligent systems (esp., for high-stakes decisions concerning personal 

characteristics), these contexts might have different outcomes associated with increasing 

perceived transparency. For example, WTP in these contexts might vary from what we found 

in this study. Second, we conducted our study within one country. Thus, we are not taking 

potential cultural differences regarding transparency and WTP into account but would not 

expect large deviations from our findings. Third, we were not able to establish a direct effect 

between perceived transparency and attitude towards transparency features. This is probably 

due to the fully mediated effect of perceived transparency on attitude over trust. Fourth, data 

for our structural equation model was obtained through a single method of data collection for 

both independent and dependent variables. Thus, a common method bias could reduce our 

contributions. Although we conducted statistical tests, namely Harmon’s single factor test and 

collinearity diagnostics, that did not point towards the occurrence of common method bias, we 

cannot completely rule out its existence. 

Based on the results from this study, we see the following opportunities for future research. 

First, our findings have to be examined in other contexts. Here, we expect transparency of 

intelligent systems to have similar importance across both B2C and B2B scenarios. In a B2B 

context we believe algorithmic transparency to have comparable relevance, especially in 

regulated industries such as banking. Second, further research into transparency approaches for 

intelligent systems is needed. From a technical perspective, it is important to investigate how 

complex ML models (e.g., deep neural networks) can be queried for human-understandable 

explanations. Future research should also draw from previous work in the area of knowledge-

based and recommender systems in order to establish best practices for the design of interfaces 

for transparency features (e.g., Gedikli et al., 2014; Ye & Johnson, 1995). Additionally, 

consumer behavior regarding transparency of intelligent systems should be observed in relation 

to other service attributes, e.g., predictive performance. Conjoint analysis could be a suitable 
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research methodology for this, as it still allows to integrate WTP. Privacy research has involved 

similar studies which future transparency studies could draw inspiration from (Krasnova et al., 

2009). Case studies with credit scoring providers, potentially in conjunction with field 

experiments, would be a further alternative to strengthen external control of our study. 

3.7 Conclusion 

Advances in AI technology have led to widespread use of intelligent systems for a variety of 

use cases. Oftentimes, these systems rely on modern ML models, e.g., deep neural networks, 

making them effectively black boxes. Thus, system characteristics like data sources, input 

features, statistical models and feature importance for predictions are not revealed to consumers 

of the system. Consequently, public and private institutions have called for transparency and 

fairness standards regarding intelligent systems (Google, 2019; ITU, 2018; The Economist, 

2018). However, how transparency features can be designed and are perceived by consumers 

remains largely an open question in both research and practice. 

In this study, we investigated whether and why consumers would be willing to pay for 

transparency features of intelligent systems. Therefore, we conducted an online lab experiment 

and a subsequent survey with 195 participants in a European country, placed in the context of 

credit scoring. This allowed us to (1) measure WTP experimentally and (2) develop a research 

model examining mechanisms of the purchase decision with respect to a real-world scenario. 

We found that consumers exhibited meaningful WTP (median 20€) for the offered transparency 

feature package. Furthermore, we observed that perceived transparency of the intelligent system 

positively influenced the trust consumers have into it, which led to a more positive evaluation 

of the offered transparency feature package. Our results have significant implications for 

research and practice. To the best of our knowledge, we are the first to study WTP for 

transparency features with regard to intelligent systems. Since our theoretical framework shows 

high explanation capabilities, it can inform further transparency research in various B2B or 

B2C contexts. Moreover, practitioners can use our results as they offer a new perspective on 

how intelligent systems providers can monetize their services. On the consumer side, our 

findings also indicate the relevance of transparency in the context of digital services. 
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4.1 Introduction 

In recent years, artificial intelligence (AI) has beaten the world's best human Go player (Silver 

et al., 2017), managed to recognize objects better than the average human (He et al., 2016), and 

just defeated the world's best professional players in a complex strategic online game (Vinyals 

et al., 2019). Whereas these examples highlight most advanced technological accomplishments, 

comparable AI is not only subject to exceptional research projects anymore; AI already 

influences our lives crucially by helping us to diagnose diseases (Kourou et al., 2015) and 

control natural disasters (Pourghasemi et al., 2020). Due to its widely recognized transformative 

potential, organizations have already started to adopt AI in a wide variety of their business 

functions to increase their efficiency and effectiveness (e.g., Bean, 2019; Forbes Insights, 

2018). However, high uncertainty remains on how to manage this new technology to leverage 

its full disruptive potential (Rai et al., 2019; Rzepka & Berger, 2018). With machine learning 

(ML) being the major driver of modern AI-based information systems (ISs), the uncertainty of 

managing AI is further spurred: ML marks an alternative programming paradigm that allows to 

derive IS functionality from data instead of having humans explicitly translating their solutions 

into code (Samuel, 1959). AIs that make use of data and ML algorithms – by us referred to as 

ML-based AI – perform intelligent behavior by deriving patterns from data which are then 

applied to new data to perform actions (Bishop, 2006). The resulting handover of solution 

design to data-driven algorithms and arising technological particularities (which we will 

discuss) make it necessary to revisit our existing knowledge on how to manage IS successfully. 

Especially with AI being frequently praised as a universal panacea for increasing organizations’ 

performance (e.g., Schmelzer, 2019), the actual impact of ML-based AI on organizations’ 

success must be fundamentally questioned and extensively examined. 

With today’s individuals relying more and more on IS to perform their organizations’ tasks, the 

linkage between ISs and individual performance remains a key concern in IS research (Gebauer 

et al., 2010; Goodhue & Thompson, 1995). In 1995, Goodhue and Thompson argued that, in 

conjunction with utilization, information technology (IT) must be a good fit with the tasks it 

supports to positively impact individual performance. They proposed a theoretical model that 

solidifies this core idea and allows to empirically explore the impact of IS on individual 

performance (Goodhue & Thompson, 1995). To date, this model is widely known as “task-

technology-fit” (TTF) theory. Their results have prompted a dwell of research demonstrating 

that it is vital for organizations to focus on promoting TTF when managing technology use 

(e.g., Dennis et al., 2001; Gebauer et al., 2010; Zigurs & Buckland, 1998). Otherwise, 

organizations may even hinder their individuals’ performance, potentially contributing to the 
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organizations’ degradation in the long run. In the ML-based AI context, managing this task-

technology interplay becomes relevant when individuals place their tasks on AI-produced 

groundwork: if physicians base their patients’ treatments on AIs’ medical diagnoses (de Fauw 

et al., 2018; McKinney et al., 2020) or bankers manage credits based on AIs’ credit assignments 

(Ala’raj & Abbod, 2016; Kruppa et al., 2013), their performance depends on ML-based AIs 

that augment their work, potentially causing expensive or even deadly consequences if the AIs 

fail to fit individuals’ task requirements. However, can organizations evaluate potential AI-

related performance impacts based on traditional TTF constructs given ML-based AI’s data-

driven design? Or is it required to incorporate resulting ML-based AI particularities (e.g., 

system transparency or data bias) when deciding on system design to increase individual 

performance? To the best of our knowledge, it remains unclear to which extent existing 

knowledge on TTF also applies to ML-based AI or whether new insights are required. 

With individual performance being the most fundamental and direct level on which 

technology’s impact on organizations’ performance can be explored, it renders suitable to 

derive a foundation for analyzing ML-based AI’s impact on organizations’ performance. With 

this study, we therefore seek to understand the impact of managerial decisions regarding ML-

based AI adoption on individual performance. Only recently, researchers have started to 

investigate the impact of AI diffusion in organizations (Brynjolfsson & Mitchell, 2017; Rzepka 

& Berger, 2018). Due to this contexts’ scarce literature, this study explores factors through a 

qualitative interview approach with 24 experts that are frequently involved in AI initiatives. 

Building on TTF as conceptual framework, we aim to answer: 

Regarding individual performance, (1) which central characteristics render tasks favorable to 

be supported with ML-based AI, (2) which central technology characteristics determine ML-

based AI use, and (3) which central factors determine the degree of fit between individuals’ 

tasks and ML-based AI? 

The remainder of this paper is organized as follows: first, we define ML-based AI, present the 

TTF theory, and discuss related work. Next, we present our research method, covering our study 

design and sample. Then, we derive empirical results which we integrate into the TTF theory. 

To provide a first step towards a theory on the impact of ML-based AI on individual 

performance, we propose an extended, contextualized theoretical model based on the TTF 

theory that comprises key characteristics of involved constructs. We conclude by discussing 

and integrating our key findings into existent research to provide scholars a foundation for 
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future research possibilities and managers essential guidance on how to design ML-based AI 

initiatives to effectively promote AI diffusion within organizations. 

4.2 Theoretical Background 

In the following, we first define ML-based AI as a form of AI-based IS and present related 

work on AI diffusion in organizations. Second, we present the task-technology fit theory and 

highlight related extensions and applications. Third, we combine both research streams to form 

our study’s objective. 

4.2.1 Artificial Intelligence, Intelligent Agents, and Machine Learning 

One of the most widely accepted conceptualizations of intelligent behavior in AI research is the 

one of the “intelligent agent” (David et al., 1998; Legg & Hutter, 2007; Nilsson, 1998; Russell 

& Norvig, 2016), which is “anything that can be viewed as perceiving its environment through 

sensors and acting upon that environment through actuators” (Russell & Norvig, 2016, p. 34). 

It defines intelligent behavior as an agent function that selects executable actions based on 

current context information (Russell & Norvig, 2016). This function can be realized with 

various approaches, e.g., manually defined rules or statistics (Russell & Norvig, 2016). The 

approach that enabled recent AI advances (e.g., He et al., 2016; Heess et al., 2017; Silver et al., 

2017) is ML, the concept of learning from experience through algorithms: ML algorithms are 

trained on data to create models capturing contained patterns. Trained models are then applied 

to new data to perform a task (Bishop, 2006; T. Mitchell, 1997). Without ML, solutions are 

codified entirely by humans, e.g., humans designing rules to define robots’ routines (Russell & 

Norvig, 2016). With ML, solutions result from statistical correlations derived from data, e.g., 

algorithms that learn how to detect credit card fraud from business transactions (Ala’raj & 

Abbod, 2016; Kruppa et al., 2013). Thus, ML renders manual programming unnecessary 

(Samuel, 1959). In our study, we focus on AI as intelligent agents that rely on ML, i.e., ML-

based AI. 

Although calls for more research on collaboration between humans and ML-based AI exist 

(e.g., Rai et al., 2019), work concerning its impact on individual performance is rare so far. 

Most existing research approaches the topic from a very practice-oriented perspective, covers 

aspects such as AI’s impact on decision-making (Agrawal et al., 2019), identification of 

business cases (Fedyk, 2016), or success factors for implementing AI projects (Satell, 2018). 

Only a few papers contribute to this area on a more abstract and theoretical level. Rzepka and 

Berger (2018) determine factors that influence user interaction with AI-enabled systems. They 
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mention two fit types that affect human-machine relationships: fit between user and system and 

fit between technology and task. Brynjolfsson and Mitchell (2017) examine labor implications 

caused by ML-based AI’s diffusion. The authors name criteria for tasks that make them 

favorable for ML application, e.g., the existence of well-defined inputs and outputs and the 

acceptance of systems’ potential black box behavior. Then, labor implications are discussed by 

examining effects on established economic factors (e.g., substitution, price elasticity). 

4.2.2 Task-Technology Fit 

In 1995, Goodhue and Thompson proposed the technology-to-performance chain – today 

primarily known as TTF theory – as a theoretical model to better understand the linkage 

between IT and individual performance. They argued that, to positively impact individual 

performance, IT must match the tasks well that it supports when being utilized. They further 

argue that TTF combined with utilization can thus be applied as appropriate surrogate to predict 

individual performance (Goodhue & Thompson, 1995). Figure 5 shows the TTF theory which 

comprises five main constructs: (i) characteristics of tasks that are performed by individuals to 

turn some inputs into outputs; (ii) characteristics of technologies that support individuals in 

performing their tasks; (iii) task-technology fit as degree of how well a technology can support 

an individual’s tasks; (iv) utilization as individual’s usage behavior of the technology to 

perform tasks (measurable with, e.g., usage frequency); (v) performance impacts as 

accomplishment of the individual’s tasks with higher performance implying some combination 

of improved efficiency, effectiveness, and/or quality (Goodhue & Thompson, 1995). According 

to the theory, task and technology characteristics affect the perceived task-technology fit. This 

fit then positively impacts performance directly and indirectly via the mediating utilization 

construct. This theory has been extended and utilized in various contexts. Hereafter, we 

summarize work related to TTF. 

 

Figure 5: The TTF theory as conceptual base (Goodhue and Thompson, 1995) 
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Previous TTF research focused on numerous technologies and performance measures. The first 

technology that TTF was applied to are group support systems (GSSs). Zigurs and Buckland 

(1998) developed a TTF-based theory to explain GSS effectiveness. In this context, the authors 

used group performance as target variable and developed different models for five task types: 

simple, problem, decision, judgment, and fuzzy tasks. For each task, specific GSS 

functionalities were included as technology characteristics (e.g., communication support, 

information processing). In later work, TTF was used as one of two factors explaining group 

performance, the other factor being appropriation effects (Dennis et al., 2001). For this 

integrated model, TTF was shown to positively influence outcome effectiveness (e.g., decision 

quality). Further work in the area of GSSs built on TTF to identify an effect of fit between ICT 

functionality and communication requirements on team performance (Maruping & Agarwal, 

2004). This study’s target variable was short-term team viability, as measured by satisfaction, 

team commitment, and group cohesion. In further research, Fuller and Dennis (2009) found that 

short-term TTF effects on team performance did not sustain in the long term, as poor-fit teams 

appropriate technology over time, resulting in improved perceived fit and performance. 

Another context that is widely studied using TTF is the one of mobile IS (Gebauer et al., 2010; 

Gebauer & Ginsburg, 2009; Junglas et al., 2008; Lee et al., 2007). Here, researchers mainly 

aimed to develop models based on TTF to examine performance variables such as managerial 

task performance. To account for the specific particularities of mobile IS, developed models 

oftentimes included a context construct in addition to the established TTF model components 

(Gebauer et al., 2010; Gebauer & Ginsburg, 2009). In their research, Gebauer et al. (Gebauer 

et al., 2010) measured this construct by three variables: degree of distraction, connection 

quality, and mobility of the user. 

TTF has been applied to areas similar to ML-based AI, namely non-ML-based AI, data 

analytics, and decision support systems (DSS). Here, we refer to non-ML-based AI as AI that 

is not based on ML but has different underlying technologies (e.g., expert systems). Within this 

context, previous research aimed to examine individual task performance and intention to use 

IT. Regarding the first target variable, Wongpinunwatana et al. (2000) developed a model for 

the impact of fit between an auditing task and an expert system on two variables related to 

individual performance, namely user’s performance on problem solving and user’s uncertainty 

of the correctness of their solutions. Another study integrated TTF and the Technology 

Acceptance Model (TAM) in order to examine intention to use intelligent agents in web-based 

auction processes (Chang, 2008). The authors found TTF to be a suitable predecessor to the 

TAM constructs (e.g., perceived usefulness, perceived ease of use) for the specific tasks of price 
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negotiation and item acquisition. TTF was also used to examine effects regarding use of data 

in general, and data analytics in particular. It was shown that the TTF model can be used to 

explain user satisfaction with data (Karimi et al., 2004). Moreover, TTF was established as one 

of three factors that positively moderate the relationship between data analytics use and firm 

agility (Ghasemaghaei et al., 2017). Finally, Parkes (2013) developed a model that 

demonstrated a positive effect of TTF on individual performance in the context of a DSS 

applied for insolvency legislation. 

4.2.3 Summary of Literature Review 

The theory of TTF has been used in many different contexts and for a diverse set of 

technologies. This underlines the suitability of the theory for examining the relationship 

between technology use and performance impacts on an individual, team, or organizational 

level. Although TTF has been applied for technologies that have some resemblance to ML-

based AI (e.g., expert systems, DSS), findings from these contexts cannot simply be transferred. 

This is mainly due to two unique characteristics of ML-based AI: First, ML-based AI has to be 

differentiated from non-ML-based AI approaches, such as expert systems, and other automation 

technologies as it does not rely on human-defined rules but statistical patterns in data. Second, 

its focus on providing intelligent behavior rather than aiming for manual extraction of insights 

distinguishes ML-based AI from approaches like data mining or analytics. Hence, existing 

research on TTF is not sufficient for the context of ML-based AI. Since there is not enough 

evidence available regarding ML-specific factors that influence the TTF, we employ an 

explorative focus for this study. Here, our goal is to identify the most important TTF factors to 

enable empirical research in this area. In the following section, we will describe the applied 

methodology. 

4.3 Qualitative Research Methodology 

With this study, we aim to provide initial evidence regarding general factors affecting the 

impact of ML-based AI on individual performance mediated by TTF. To achieve this, we 

questioned experts from operational and managerial levels of different organizations. As 

justified above, we chose to pursue an explorative approach using interviews to study 

particularities associated with the use of ML-based AI in this particular context (Flick, 2004). 

Following Weber (1990), content analysis can be used to evaluate collected qualitative data, 

making it suitable to assess open-ended questions. We thus apply content analysis by following 

the steps proposed by Hsieh and Shannon (2005): First, we chose to use the TTF theory as a 
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conceptual basis for our investigations. We made this decision as the TTF theory represents a 

widely accepted theory which has been empirically proven in many different contexts and 

focuses on performance impacts of the interplay between tasks and technologies in which we 

are interested in. We extracted its main constructs as initial categories for potential factors. 

Second, we conducted and recorded the interviews. Third, we transcribed, coded, and analyzed 

the interviews considering studies related to ML-based AI’s particularities through 

triangulation (Hsieh and Shannon, 2005), including the rather practical-oriented studies which 

we presented as related work above. Thus, we combine directed and conventional analysis, 

where the directed approach aims to draw on codes extracted from existent theory (i.e., the TTF 

theory) and the conventional analysis aims to derive information directly from gathered data, 

since we focus initial evidence regarding factors associated with ML-based AI in the context 

of TTF (Hsieh and Shannon, 2005). 

4.3.1 Research Design 

We conducted semi-structured interviews with experts of different organizations and varying 

experience in using ML-based AI within organizational contexts and used these interviews as 

our key information source. While doing so, we used the principles proposed by Sarker et al. 

(2013) to guide our interview preparation and execution. Prior to each interview, we discussed 

our definition of ML-based AI and a set of related example applications with each expert to 

ensure a shared understanding. During the interviews, we used open questions to enable experts 

to freely share experiences and views related to our research objective. We designed the 

interview questions along the TTF theory by varying the questions’ focus on the different TTF 

constructs to explore relevant task, technology, and fit characteristics and related dependencies 

both in isolation and in combination with one another. In addition, we used the above 

highlighted TTF and ML-based AI literature to further shape the questions’ focus. As a result, 

our interview guide covers five sections. The first section targets general information about the 

experts’ position, responsibilities, and past experiences with applying ML-based AI in 

organizational contexts. While this section was primarily designed to familiarize the experts 

with the interview situation, many statements already provided useful insights as some experts 

began to mention value and challenges of conducted AI initiatives. The second section focuses 

on exploring characteristics that are special to ML-based AIs. To achieve this, we primarily ask 

to describe problems that are suited to be solved with ML-based AI and to differentiate them 

from manually programmed solutions. The third section aims at organizational requirements as 

well as organizational and technical challenges related to data and algorithms for creating ML-
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based AIs. The fourth section focuses on how organizations identify usage scenarios for 

applying ML-based AIs in their organizational processes. Finally, the fifth section explores 

achieved and pursued benefits as well as potential risks and negative consequences related to 

the adoption of ML-based AI in organizational processes. Resulting from the pursued semi-

structured approach, initially defined questions were gradually adjusted to meet each expert’s 

individual expertise and to develop the focus during the interview process. 

4.3.2 Data Collection and Coding Concept 

We based the selection of the experts on a key informant approach. To comply with the rules 

of data triangulation, we included both provider and user firms (Flick, 2004). We conducted 23 

interviews with 24 experts within Europe and Northern America, including fifteen experts from 

provider and nine experts from user firms (i.e., firms that mainly purchase AI products). One 

interview included two experts. During the last five interviews, we noticed that additional data 

discontinued to add new insights which implied that we had reached theoretical saturation 

(Flick, 2004) and therefore decided to stop interviewing. The interviews were held face-to-face 

or by telephone and lasted 56 mins on average. They were conducted from December 2018 to 

April 2019. With our interviews, we aimed to capture experiences related to both technical and 

organizational topics to avoid an elite bias (Miles et al., 1994) and to enable a combination of 

both viewpoints which is essential to the TTF theory. All experts work or have worked as data 

scientist and thus have basic to advanced knowledge in data analysis. Our sample includes data 

scientists, managers, technical consultants, presales consultants, and developers that are 

frequently involved in AI initiatives. Each expert regularly deals with the implementation of 

prototypical or productive systems in different organizational contexts, being especially 

involved in conducting data exploration and management, algorithmic design and evaluation, 

and use case identification and definition. The experts’ experiences with AI initiatives comprise 

19 industries with special focus on the finance (48%), manufacturing (48%), health care (29%), 

railway (29%), and automotive (24%) industries. Each expert has three to twelve (mean: six) 

years of experience in one to ten (mean: three) different industries. Table 9 provides detailed 

information on the involved experts. 
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Table 9: Experts who participated in the study 

ID Age Gender AI Experience Profession Firm ID Age Gender AI Experience Profession Firm 

i1 51 Male 6 yrs. in 2 ind. DS P i13 32 Male 7.5 yrs. in 1 ind. DS U 

i2 39 Male 6 yrs. in 2 ind. DS P i14 32 Male 10 yrs. in 4 ind. TC P 

i3 33 Male 7 yrs. in 5 ind. M P i15 52 Female 4 yrs. in 3 ind. DS P 

i4 31 Female 7 yrs. in 5 ind. PC P i16 32 Male 10 yrs. in 7 ind. M P 

i5 44 Male 3 yrs. in 1 ind. D U i17 30 Male 5 yrs. in 6 ind. PC P 

i6 28 Male 3 yrs. in 6 ind. PC P i18 37 Male 5 yrs. in 3 ind. DS P 

i7 30 Female 3.5 yrs. in 4 ind. TC P i19 36 Male 8 yrs. in 1 ind. M U 

i8 33 Male 6 yrs. in 10 ind. M P i20 35 Male 12 yrs. in 2 ind. DS P 

i9 35 Male 5 yrs. in 3 ind. TC P i21 37 Male 7.5 yrs. in 3 ind. DS P 

i10 32 Male 9 yrs. in 4 ind. DS U 
i22 

41 Male 3 yrs. in 1 ind. D U 

i11 25 Female 3 yrs. in 1 ind. M U 39 Male 3 yrs. in 1 ind. D U 

i12 34 Male 6 yrs. in 3 ind. DS U i23 35 Male 6 yrs. in 4 ind. TC U 

D: developer / DS: data scientist / M: manager / PC: presales consultant / TC: technical consultant / P: provider firm / U: user firm 

 

All interviews were recorded and transcribed in agreement with the interviewees. Following 

the recommendations in Saldaña (2009), we conducted two coding cycles using the NVivo 12 

software to evaluate the transcripts. In the first cycle, we employed attribute coding, hypothesis 

coding, and descriptive coding. Attribute coding was used to extract information about the 

collected data, e.g., participant and organization characteristics. Subsequently, hypothesis 

coding was conducted with the aim of identifying relevant dimensions for the original TTF 

constructs, i.e., assigning codes to task, technology, and task-technology-fit characteristics. The 

first coding cycle was concluded by applying descriptive coding to identify additional 

constructs and construct dimensions that might extend the base theory (here, TTF). The second 

coding cycle consisted of pattern coding, which was used to condense the identified codes into 

a smaller number of mutually exclusive and collectively exhaustive constructs and dimensions. 

The coding process was validated in discussion between five IS researchers and student 

assistants. Furthermore, we incorporated additional data sources, i.e., articles on ML-based AI 

use (Fedyk, 2016; Brynjolfsson and Mitchell, 2017; Satell, 2018; Agrawal et al., 2019), to 

compare our findings with existent knowledge (see section 4), eliminating any ungrounded 

discrepancies. Thus, research rigor was ensured by performing both data and investigator 

triangulation (Flick, 2004). 

4.4 Results 

With our study, we found first evidence for key characteristics of tasks, data, ML-based AIs, 

and related fits that likely affect utilization and individual performance. We solidified our 
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findings based on the TTF theory and propose an extended, contextualized theoretical model 

which is illustrated in Figure 6. 

 

Figure 6: Extended and contextualized theoretical model of TTF in the context of ML-based AI 

As utilization can be well measured in empirical studies with actual AI users (e.g., through 

actual usage frequency), we chose to not investigate utilization because experts’ assessments 

of utilization may be of less value. Instead, we focused on exploring the impact on individual 

performance that results directly from the fit between tasks and ML-based AIs which is rather 

difficult to measure. However, following the original TTF theory, it is likely that an impact of 

task-AI-fit on utilization exists. We thus leave it to future studies to explore the impact on 

utilization in more detail while we abstract this effect hereinafter. Due to ML-based AIs’ strong 

dependence on data, the experts clearly stressed the importance of the availability of high-

quality data for implementing ML-based AIs. As ML-based AIs that support individuals’ tasks 

must act on data collected through or related to the tasks’ executions, the experts frequently 

highlighted that organizations must understand how well their data can actually describe their 

tasks before they plan to support them with ML-based AIs. Only as a next step, it makes sense 

to assess whether an ML-based AI of sufficient quality can be derived from organizations’ data. 

We therefore added data characteristics as an additional construct to reflect different data 

properties’ impact on the interplay between organizations’ data and the tasks it aims to describe. 

Moreover, to characterize this interplay and to include related effects, we introduced task-data 

fit as a further construct. Throughout our interviews, task and technology characteristics 

emerged that appeared to be central to the use of ML-based AIs. We therefore contextualized 

the task and technology characteristic constructs to hold such related characteristics. To indicate 

the specialized focus, we refined “technology characteristics” with “AI characteristics”. Due to 
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the mentioned importance of data, we found taskdata fit to impact task-AI fit besides task and 

AI characteristics. Lastly, we contextualized “tasktechnology fit” as “task-AI fit” and assigned 

characteristics that emerged to mainly determine task-AI fit and its impact on individual 

performance. Below, we will discuss each construct in more detail. 

4.4.1 Data Characteristics 

Availability. Data availability was viewed as a major concern in nearly all interviews and 

literature as it limits the useable data basis to describe task executions (Fedyk, 2016; Satell, 

2018; Agrawal et al., 2019). According to the experts, organizations face two major issues that 

comprise availability. First, organizations must understand which data they already capture and 

which they could further collect: 

“ML-based AI is hungry for data. If you're planning something like this, you need to think 

about where I'm staying regarding data collection and digitalizing my processes. Even if 

it's a paper that moves around or somebody clicking somewhere – is there a digital system 

that captures it in form of data?” (i9) 

Second, organizations must comprehend which captured and capturable data is actually 

accessible as data ownership of internal and external parties emerged as major obstacle for data 

access. Especially data privacy restrictions (e.g., of EU’s GDPR) often render individuals’ data 

inaccessible if it captures sensitive information. If organizations hold data owned by other 

organizations, its access is likely legally restricted to clearly defined purposes while 

organizations’ internal parties (e.g., teams or departments) may further restrict the use of data 

managed by them: 

“How sensitive is the data? Often, we simply didn’t get the data. All our concepts were 

great, but in the end, we could not use the data due to privacy restrictions.” (i5) 

“When they ask the other team, they say: ‘No, we have our own system. Don't touch that!’. 

So, this data cannot be accessed.” (i12) 

Quality. Both the reviewed literature and our experts frequently highlight that even if 

organizations hold much available data related to task executions, its quality determines its 

actual informativeness (Clarke, 2016; Ghasemaghaei et al., 2018; Agrawal et al., 2019). 

However, organizations’ data is often incorrect, imprecise, incomplete, or hard to combine, 

which reduces the truthfulness and coverage of captured information. Furthermore, 

organizations’ data is often stored in different forms, granularity, and split across multiple 
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sources which often leads to coarse and non-combinable data, potentially reducing the extent 

to which organizations’ data can capture elements involved in task executions: 

“As of data quality, you basically want to ensure that each data point captures something 

that actually happened, there are no duplicates, no missing data, and the data is truthful 

and doesn't get mixed up somehow due to processing errors. If it is encrypted or 

compressed, it can result in some loss of information.” (i10) 

Hence, we posit: 

Proposition 1: In the context of ML-based AI, data availability and quality likely are the central 

data characteristics that impact task-data fit. 

4.4.2 Task Characteristics 

Repetitiveness. We found that ML-based AIs are generally used to support individuals’ tasks 

by doing task-related groundwork in an automated manner, i.e., by carrying out subtasks to 

provide interim results of individuals’ tasks (Brynjolfsson and Mitchell, 2017; Traumer et al., 

2017; Agrawal et al., 2019). This allows individuals to base subsequent subtasks on the AI’s 

output to complete their tasks. Literature and experts agree on ML-based AI being a tool for 

automation used by organizations to reduce workload in their individuals’ tasks (Brynjolfsson 

and Mitchell, 2017; Satell, 2018). Thus, we found that the more repetitive supported tasks are, 

the greater AIs’ potential impact on individuals’ workload may become. High-level 

repetitiveness therefore likely amplifies the effect on individuals’ performance that results from 

the actual fit between individuals’ tasks and supporting ML-based AIs: 

“We assess the task’s frequency: Where does an expert lose a lot of his time due to a 

repetitive task? That’s where we have a big automation potential for which I may use ML. 

It has less impact in very diverse, very versatile, very specialized task contexts.” (i18) 

“High value is where AIs can take care of a lot of repeated things most of the time, so that 

you only need to address the last 20% of situations that are somewhat difficult [for the 

AI].” (i8) 

Clarity. According to our experts and reviewed literature, ML-based AIs are most suitable to 

support tasks which comprise some uncertainty on how to transform given input into potential 

output, i.e., non-trivial tasks in which the actual connection between input and output remains 

largely unclear (Brynjolfsson and Mitchell, 2017; Agrawal et al., 2019). It further became 

apparent that this uncertainty generally results when tasks allow a great number of potential 
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input-output connections from which the most optimal one must be chosen. The experts view 

them as non-trivial, as comparing all possibilities is at least very tedious or even impossible 

while the best option remains non-obvious. It got apparent that individuals more strongly rely 

on gathered experience and instinct when executing such higher complexity tasks. The experts 

further agree that using ML-based AI to support tasks for which humans can articulate a 

sufficient solution by defining a clear set of rules may lead to a worse fit with the supported 

task as ML-based AIs introduce characteristics resulting from giving up control over systems’ 

operating principles (see TTF characteristics). The experts even view it as second-choice tool 

if it is possible to create a rule-based IS that produces comparable results to retain better system 

control: 

“It should be problems where the functional relationship is widely unknown, so that I 

cannot program it directly. They must be so complex that one cannot recognize a correct 

solution without more ado. [...] If possible, I would always prefer to use the known rules 

because then I know that the things will happen that I would like to see and do not have to 

hope that the algorithm learns what it should learn instead.” (i1) 

Therefore, we propose: 

Proposition 2: In the context of ML-based AI, repetitiveness and clarity likely are the central 

task characteristics that impact task-data and task-AI fit. 

4.4.3 Task-Data Fit 

Representativity. In our interviews and literature review, it became clear that organizations’ 

available data must be as representative as possible for some task’s execution, i.e., reflect as 

much relevant aspects as possible that determine a task’s real-world execution (Traumer et al., 

2017). If it misses or falsifies relevant aspects or describes aspects that are irrelevant for the 

task’s execution, contained correlations may miss to reflect or may even imply wrong relations 

in the task’s execution. It therefore became apparent that the representativity of data does not 

only depend on organizations’ capability of collecting data but also on the nature of the task. 

Especially, if individuals use general knowledge or subjective judgment to make decisions 

involved in a task, related data likely insufficiently represents the task’s execution when the 

task itself does not allow to collect data that grasps such elements. Thus, the experts highlight 

that a lack of representativity of organizations’ available data for tasks’ execution may mislead 

resultant ML-based AIs in executing subtasks to support individuals: 
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“In machine learning, the data you have is really at the core of the problem of how to 

define it and, more importantly, how to solve it. I think any solution can only be as good 

as how representative the data is of the problem that you're trying to solve. If you're trying 

to build an AI for predicting customer churn, but you don't have any data about customer 

complaints, then you might not be so successful.” (i10) 

“In the best case, an AI may extract many or all possible information from the data that 

describes a task execution. However, this also depends on the nature of the task. For 

example, if you do not have the right sensors, the AI may not be able to derive important 

information. If there are important occurrences that are not represented in the data, then 

the AI will have no chance to determine these based on the data.” (i2) 

Generalizability. Both literature and experts frequently state that even if organizations are able 

to capture tasks with representative data, the task’s nature itself may render it non-generalizable 

(Fedyk, 2016; Brynjolfsson and Mitchell, 2017; Satell, 2018). This is the case, if aspects related 

to task execution change significantly over time. This temporal change may render available 

historic data insufficient to describe today’s task execution when derivable relations do not hold 

true anymore and thus cannot be used to generalize task execution: 

“But in the AI world, there is the extra level of complexity: the data is always funny and 

you never know whether or not the distributions of data are going to change over time or 

if the AI problem itself is going to change over time both from my data but also from my 

business point of view.” (i8) 

Besides, if involved decisions are rather driven by individuals’ instincts instead of knowledge 

or gathered experience, their task execution may follow no consistent logic, rendering the task 

nongeneralizable due to the lack of derivable reoccurring structures of the task’s execution: 

“Of course, you have to expect a fitting pattern in the data. If you expect no connection to 

be existent at all, if everything is random, you cannot hope that ML will find any patterns. 

So, you have to expect that patterns exist, and they have to be so complicated that you 

cannot manually recognize them easily.” (i1) 

We thus posit: 

Proposition 3: In the context of ML-based AI, representativity and generalizability likely are 

the central task-data fit characteristics that impact task-AI fit. 



4 Paper B: The Impact of Artificial Intelligence on Individual Performance 54 

4.4.4 AI Characteristics 

Data-driven functionality. The functionality of ML-based AIs bases on derived data patterns 

instead of having humans manually specifying a rule set that defines the IS’s functionality 

(Samuel, 1959; Bishop, 2006). The experts highlight that this alternative programming 

approach changes the possible customization of the resulting IS’s system behavior. While rule-

based ISs allow to manually adapt their system behavior by adding, modifying, or removing 

rules, ML-based AIs’ behavior can only be manually adapted by adding human-defined rules 

that act on the AI’s input and output. Both experts and literature stress that most ML algorithms 

do not allow a manual adaptation of the core of an ML-based AI’s behavior, i.e., its pattern-

based agent function that connects the AI’s inputs and outputs (Brynjolfsson and Mitchell, 

2017). Instead, a new AI has to be created that bases on other data, algorithm, or parameters of 

the algorithm to modify its behavior. Therefore, the customization can only be performed 

indirectly by organizations. However, this likely changes the AI’s overall operating principles 

instead of adapting targeted functionality in isolation: 

“If you have certain cases that the AI treats in a wrong way, then it may be an incredible 

effort to change the AI’s behavior in such a way that it treats them correctly without 

changing its treatment of other cases too. Without ML, I could simply add some if-else rule 

to adapt the system’s behavior. With ML, I cannot simply treat certain cases in isolation, 

but actually have to solve the entire problem from the beginning again.” (i17) 

Due to this, the experts further state that an ML-based AI’s functionality gets shaped by the 

characteristics of the ML algorithm utilized to create it. This includes the algorithm’s 

transparency, capturable complexity, capabilities of handling data bias, and latency that 

appeared to form the ML-based AI’s reliability, fairness, comprehensibility, and production 

timeliness (i.e., task-AI fit characteristics). 

Level of automation. ML-based AIs support individuals by automating parts of their tasks. We 

found that this support can be realized in different forms depending on the ML-based AI’s level 

of automation (Traumer et al., 2017; Agrawal et al., 2019). Throughout our interviews, the 

experts frequently discussed two main forms. As of a rather low level of automation, ML-based 

AIs may support individuals by offering a list of recommendations ordered along the AI’s 

estimated likeliness of being an accurate output for the subtask. The number of included 

recommendations varies with the minimum of offering a single recommendation. At a rather 

high level of automation, ML-based AIs may also support individuals by autonomously acting 

upon their own derived subtask-related output. With a higher level of automation, the 
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individuals appear to become more dependent on ML-based AIs. As little automated ML-based 

AIs allow individuals to explore their recommendations before basing their entire tasks on the 

AI’s output, highly automated ML-based AIs rather force individuals to exploit the AI’s output 

for their resulting task execution. Thus, with little automated ML-based AI, individuals have a 

better chance to evaluate the fit between the ML-based AIs’ output and the individuals’ task 

execution (e.g., evaluate the ML-based AIs’ output correctness). One expert exemplified this 

as follows: 

“In the context of predictive maintenance: If my AI has identified a failure, it may say: ‘In 

the next two weeks, your pump will be leaking. Do something!’. Instead, it could also 

recommend: ‘Someone has to go there.’ or it could even send someone directly.” (i3) 

Thereby, we propose: 

Proposition 4: In the context of ML-based AI, data-driven functionality and level of automation 

likely are the central AI characteristics that impact task-AI fit. 

4.4.5 Task-AI Fit 

Reliability. As ML-based AIs act on generalized patterns that cannot handle every possibility, 

they will certainly produce errors at some point (e.g., Bishop, 2006; Brynjolfsson and Mitchell, 

2017). Therefore, when organizations consider to supporting tasks with ML-based AIs, they 

must understand which consequences of potential errors may arise for individuals as they likely 

perform tasks wrongly if they base them on AIs’ erroneous behavior (Agrawal et al., 2019). 

The experts stress that, to evaluate fit, organizations must therefore understand consequences 

of AIs’ error rate in the task context: 

“Can I make one error out of hundreds? Sounds very reasonable, but it depends. If I am 

predicting a cancer patient, I cannot make a false prediction. But if I'm trying to predict 

whether a customer is going to convert, nobody is going to lose his life. So, there you can 

actually make more than 20% error.” (i12) 

A high AI error rate may reduce the quality of individuals’ task outcomes if the errors transfer 

to the individuals and thus may negatively affect their effectiveness. Individuals’ efficiency 

may also be reduced when they must evaluate the correctness of AIs’ outputs and adjust errors, 

creating additional effort. Besides different error rates, the experts stress that different error 

types may impact individual performance differently. Organizations should therefore assess the 

different error types’ consequences to understand which error types are more severe in the task 

context. As ML-based AIs can be designed to favor different types of errors while sacrificing 
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others, the experts highlight that their designed balance of error types should be considered to 

match the task best, as exemplified in the following quote: 

“The classic example is the AIDS test. Of course, you'd much rather have a false positive 

than a false negative, and then you'd say, ‘I do it in such a way that I weight a mistake in 

one direction a hundred thousand times more relevant than the other.’ And that's just how 

it is in the business case. It always depends on the consequences of my decision and you 

have to balance them in such a way that you achieve the result that you want. Of course, 

you cannot judge every wrong decision equally. This usually makes no sense from a 

business point of view.” (i20) 

Therefore, the experts suggest that organizations should compare potentially ML-based AI-

related saved efforts with possible additional efforts resulting from ML-based AIs’ erroneous 

behavior in the task context, e.g., by measuring the variance of error rates with and without 

ML-based AI: 

“If my alternative solution, that was based on humans, had 60% of success and the AI 

solution is 95%, then it is better than my alternative solution and I'm definitely going for 

that. [...] You basically compare it to the baseline that you have to identify whether it is 

the right solution or not.” (i9) 

Fairness. If ethnical or social groups are underrepresented or human preferences and prejudices 

are captured in data, an ML-based AI that is trained on it may discriminate against certain 

entities due to contained data bias (e.g., Angwin et al., 2016; Chouldechova, 2017). Therefore, 

experts frequently highlight that organizations must assess whether ML-based AIs may 

promote discrimination in supported tasks and have to understand which injustices likely result 

in specific task contexts, as demonstrated in the following quote: 

“Minorities always come of badly or are not considered at all in an ML model as they are 

statistically less relevant. That is a big problem and you have to be aware of it to weight 

minorities correctly in these algorithms. For example, a Portuguese minority in some 

country may be much more affine for loans which also always reliably repays, but by being 

a minority, they are less well rated [by the AI]. This means that they will get a bad credit, 

even though they are actually very good credit customers.” (i14) 

However, the experts further emphasize that ML-based AI may also remove existing individual 

injustice when standardizing the execution of some existing task: 
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“It may be the case that certain data reflects prejudices. I also find it interesting that you 

can use AI to show which prejudices you had to deal with so far.” (i4) 

Thus, organizations must reflect on possible injustice involved in their individuals’ tasks to 

evaluate whether an ML-based AI likely improves or harms its individuals’ fairness. As with 

erroneous behavior, a misfit between the ML-based AIs’ fairness and the task context may 

negatively impact individuals’ effectiveness and efficiency when task outcomes reflect injustice 

and thus require individuals to actively assess and restore justice, while a good fit may 

positively impact an organization’s fairness. 

Comprehensibility. Depending on the ML algorithms used to create AIs, their working 

principles may remain unknown to their users as it is the case with, e.g., neural networks, and 

thus constitute “black box” behavior (Brynjolfsson and Mitchell, 2017; Guidotti et al., 2018; 

Miller, 2019). Individuals therefore can have difficulty in assessing ML-based AIs’ output and 

behavior. The experts frequently stress that organizations must therefore understand which 

degree of comprehensibility must be offered by ML-based AIs to provide individuals with 

sufficient information to support their tasks. However, they further highlight that this degree 

fundamentally depends on the supported tasks: 

“If you want your car’s camera to recognize traffic signs, the model's comprehensibility 

doesn't really matter as you don't have time to understand it anyway while driving. But if 

you have a model that tells you whether a customer is likely to churn or not, then you want 

to know why. If the customer is likely to churn, is it because the customer pays too much 

or because the customer got some bad support? What kind of activities can you take to 

keep the customer from churning? Then it's all about comprehensibility.” (i18) 

Hence, experts state that organizations must understand how much information ML-based AIs 

must provide about how they produced their output to equip individuals with sufficient 

information to support their tasks. If ML-based AIs cannot provide required information, their 

support likely becomes useless as it is the case in the above quote’s example. In the worst case, 

ML-based AIs may even prevent individuals from conducting their tasks if the ML-based AIs 

hinder them from accessing required information. A bad fit between ML-based AIs’ 

comprehensibility and tasks’ required information may thus harm individuals’ effectiveness. 

They further highlight that an ML-based AI’s comprehensibility does not only include to render 

their working principles appropriately transparent, but further comprises the interpretability of 

its output’s content and quality. If individuals fail to comprehend ML-based AIs’ output 

correctly, they likely base their tasks on wrong assumptions, leading to individuals using output 
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in the wrong way as part of their task execution. Moreover, if individuals fail to interpret ML-

based AIs’ quality measures correctly because they are presented in a format that is not 

understandable to them, their ability to evaluate an ML-based AIs’ trustworthiness may become 

limited, potentially preventing them from recognizing ML-based AIs’ erroneous or unfair 

behavior: 

“An AI may tell the user: ‘This is now a 90% probability’. But how does the user know 

what that means? In the end, there may have to be a traffic light or something like that – 

but that always makes users believe that there is a certain level of reliability, which may 

not even be there.” (i16) 

Thus, the experts warn that wrong interpretations of both AIs’ output and quality measures may 

lead to individuals adopting AIs’ wrong or unfair behavior in their task execution. 

Production timeliness. Goodhue and Thompson (1995) already proposed production 

timeliness as a fit characteristic in their original TTF paper. In our interviews, it got apparent 

that it also constitutes a key characteristic for ML-based AI which can have a significant impact 

on the other fit factors (as we will discuss in the next paragraph). Depending on the input data’s 

volume that has to be processed and the data volume and algorithm(s) used to create an ML-

based AI, its latency when being used can vary significantly (Cheng et al., 2016). The experts 

therefore highlight that the timeliness of ML-based AIs’ support has to be aligned with the 

required latency of the supported tasks. Slow AIs may slow down individuals’ task execution 

when individuals have to wait for the AIs’ responses to base their tasks on their outputs. 

Moreover, if AIs fail to act within time frames required by their supported tasks, their produced 

outputs may become useless for the individuals, as demonstrated by the following quote: 

“What’s always a major issue: When is an AI’s latency really helpful? This strongly 

depends on the use case. One may say ‘I have offshore wind turbines. This means that I 

need to know about any damages three months in advance to be there in time.’, while 

another says ‘I’m in the production hall and can react within ten seconds. Thus, it would 

be enough if the AI predicts any damage within twenty seconds.’” (i3) 

As highlighted by the experts, organizations must therefore understand the required production 

timeliness of individuals’ tasks to align AIs accordingly. Otherwise, their individuals may not 

benefit from the AIs’ support which may even harm the individuals’ efficiency and may even 

hinder task execution. 
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Cross-characteristic dependencies. Lastly, the experts strongly stress that interrelations 

between the different characteristics have to be considered when assessing task-AI fit. They 

highlight that, to adjust single task-AI fit characteristics, it is usually necessary to alter used 

algorithms or data. As a result, organizations often have to face resulting trade-offs between 

different task-AI characteristics. For example, literature and experts stress that, while both 

fairness and reliability can be controlled by letting the AI focus more on specific aspects, related 

adjustments may create a dilemma as changes to reduce certain errors may create unfair 

behavior in other aspects or even decrease predictive performance (Corbett-Davies and Goel, 

2018). Production timeliness may render overly complex and slow AIs insufficient and may 

require organizations to trade faster reacting AIs against more reliable, fair, and comprehensible 

ones if faster algorithms support these issues less well (Russell and Norvig, 2016). While 

complex algorithms may result in higher predictive performance (Kaplan et al., 2020), their 

complex operating principles may reduce their comprehensibility (Miller, 2019), potentially 

forcing organizations to sacrifice comprehensibility for less erroneous and unfair behavior of 

ML-based AIs: 

“Maybe this approach is five percent less reliable than neural networks, but it at least 

allows you to comprehend why something happens. If it is less relevant that a human can 

comprehend what happens, then I can go with neural networks and trade high 

comprehensibility with higher reliability. But then, I give up that certain things can be 

understood.” (i6) 

Thus, we posit: 

Proposition 5: In the context of ML-based AI, reliability, fairness, comprehensibility, and 

production timeliness likely are the central task-AI fit characteristics that impact individual 

performance.  

Proposition 6: In the context of ML-based AI, cross-characteristic dependencies likely cause 

tradeoffs between task-AI fit characteristics that impact individual performance. 

4.5 Discussion 

In this study, we examined the relationship between ML-based AI use and individual 

performance. We developed a theoretical model for this linkage, which has not yet been studied 

on an abstract level in IS research. Due to our study’s explorative nature, we followed a 

qualitative research approach. We used data from 24 expert interviews and AI literature to 

deduct a theoretical model that can be used for empirical research. Building on the widely used 
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TTF model, we developed dimensions for the TTF constructs before expanding it with new 

components to fit the AI context. In detail, we added the data characteristics and task-data fit 

constructs as data availability and quality largely determine AI technology’s suitability for 

given tasks according to literature and our experts. Task-data fit and AI characteristics then 

determine task-AI fit, i.e., the match between AI particularities and given tasks. According to 

our analysis, task-AI fit should be the main predictor for utilization and individual performance. 

Our study makes several theoretical contributions. Besides implementations for specific use 

cases (e.g., Kumar et al., 2018; Liebman et al., 2019), IS research on ML-based AI has so far 

mostly focused on user interaction with AI systems (Rzepka and Berger, 2018) and ethical 

considerations, such as transparency (e.g., Chai and Li, 2019; Fernandez and Provost, 2019) or 

fairness (e.g., Haas, 2019; van den Broek, 2019). To the best of our knowledge, we are among 

the first to study the linkage between ML-based AI use and performance impacts, thus 

answering a call for research regarding human-AI hybrid systems (Rai et al., 2019). We propose 

a theoretical model based on a rigorously conducted qualitative research approach that explains 

performance gains through AI use as a function of task, data, and technology characteristics. In 

addition, we conceptualize the main theoretical constructs using data from our expert interviews 

by identifying the most relevant subdimensions for each construct. Thus, we enable empirical 

testing of our model in various contexts where ML-based AI might be applied to support 

humans. Although we focused on individual performance, the proposed model should be 

transferable to group- or even organizational-level analyses of TTF-related performance 

impacts. Our results also confirm the TTF model’s flexibility, which has already been applied 

in a variety of contexts ranging from GSS (e.g., Zigurs and Buckland, 1998) to mobile IS (e.g., 

Gebauer et al., 2010). Our study’s findings also comprise significant contributions for 

practitioners. The reasoning behind our model can be used to validate possible initiatives to 

introduce ML-based AI for specific use cases. In detail, decision-makers can examine 

characteristics of tasks, data, and available AI technology to estimate fit and subsequently 

performance impacts for given use cases. Going back to the examples from the introduction, 

physicians could, e.g., identify data availability as the main challenge for applying AI for 

medical diagnostics successfully (e.g., due to privacy concerns) and bankers could assess 

comprehensibility to be the central issue in the credit scoring context (e.g., due to regulatory 

requirements). As the model is built on diverse experience of experts from practice, we can 

assume its applicability for a variety of industries. 
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Of course, our study is subject to some limitations. First, we did not perform empirical testing 

of the proposed model. Here, future studies should focus on the perspective of affected 

individuals to allow evaluating the impact on individuals directly. This is also needed to verify 

whether the corresponding user perspective is sufficiently represented, as our model is mostly 

based on a managerial and IT professional perspective due to the interviewees’ background. 

Second, although we aimed to cover many industries and use cases when selecting interviewees, 

we cannot eliminate potential data biases towards specific industries completely. Again, 

quantitative studies in varying contexts should help to uncover such biases to validate the 

model’s applicability. 
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5.1 Introduction 

Advancements in information systems and social developments have significantly influenced 

the way of working in the field of human resource management (HRM). In recent years, 

organizations have shifted their priorities towards HRM as they perceive their workforce as one 

of their most important assets. The increasing demand for qualified talents might also result in 

a war for talents as the shortage of talents is considered one of the most worrying concerns 

among CIOs and IT executives in 2019 (Kappelman et al., 2020). To attract, select, and retain 

these talents, recruiting has become a strategic priority in organizations. Black and van Esch 

(2020) argue that digitization has made a major contribution to further developments in 

recruiting and emphasize the following eras of e-recruitment. Digital Recruiting 1.0 and 2.0 

enable organizations to post job openings on digital job boards on the internet and social 

network platforms such as LinkedIn. Organizations have the opportunity to narrow down their 

target group of potential candidates and to contact them directly with concrete job postings 

(Black & van Esch, 2020). By searching through many digital job postings with a few simple 

clicks, potential candidates are able to submit multiple applications with less effort. As a result, 

the increase of incoming applications has made the manual recruiting process more difficult for 

organizations as recruiters have to manually process digitally available applicant information. 

While coping with this large amount of applications, recruiters also need to ensure fairness in 

the selection process as their decision has a major impact on the applicants future (Arvey & 

Renz, 1992; Gilliland, 1993). However, procedural justice along the decision-making process 

in the selection phase is often impeded by recruiters’ previous work experiences, own beliefs 

or personal biases (Åslund & Skans, 2012; Eckhardt et al., 2014). 

To cope with the increasing amount of data and to ensure fairness, different types of artificial 

intelligence (AI) technologies have been integrated into the recruiting process (Strohmeier & 

Piazza, 2015; van Esch et al., 2019) which Black and van Esch (2020) describe as Digital 

Recruiting 3.0. In particular, the development of Curriculum Vitae (CV) recommender systems 

is an essential research area in the selection phase of recruiting. These systems are typically 

applied in the selection phase of the recruiting process (Schneider, 1987) to estimate the person-

job (P-J) fit (Caldwell & O’Reilly, 1990; Edwards, 1991; Kristof-Brown, 2000; Wilk & Sackett, 

1996). By computing the similarity between the details of a candidate’s profile and the given 

job requirements, CV recommender systems can support recruiters in identifying the most 

suitable candidates. While the performance level is constantly increasing due to technical 

improvements (e.g., Bansal et al., 2017; Lu et al., 2013; Malinowski et al., 2006), little is known 

about the socio-technical context of the interaction between human recruiters and CV 
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recommender systems (Green & Chen, 2019). Since the final decision in candidate selection 

still remains in the power of recruiters, further insights about the human-algorithm interactions 

are essential in order to investigate the effect on procedural justice. Therefore, our study aims 

to examine what impact the use of a CV recommender system has on procedural justice in the 

selection process. As a research design, we have chosen an experimental set-up in which 74 

recruiters from 22 large multinational companies were given the instruction to create top-10 

rankings of candidates for two fictional job postings. By randomly assigning the participants to 

either the control group which represents the non-CV recommender system supported settings 

or to the treatment group in which recruiters received a matching score generated by a CV 

recommender system, we were able to investigate our research question. Our study contributes 

to research and practice in the field of recruiting by providing quantitative findings that CV 

recommender systems tend to ensure procedural justice as recruiters are able to rank candidates 

in a more consistent manner and are more likely to assess a candidate’s knowledge, skills, and 

abilities when relying on the CV recommender system. 

The rest of this paper is structured as follows: Section 2 outlines the theoretical background of 

recommender system in recruiting with a focus on CV recommender systems and elaborates on 

procedural justice in candidate selection. After describing the research design in the form of an 

experimental set-up in section 3, we present the results of the quantitative study in section 4. 

The discussion, the contributions to research and practice as well as the limitations and 

opportunities for future research are outlined in section 5, followed by the conclusion in section 

6. 

5.2 Theoretical Background 

5.2.1 Overview of Recommender Systems 

Over the last couple of years, the overload of information with which people need to cope on a 

daily basis has resulted in complex decision-making environments. The fact that humans have 

difficulties making decisions due to their limited cognitive resources and time constraints in 

evaluating and processing available information was coined by Simon (1955) as the 

phenomenon of bounded rationality. In order to help people deal with the overwhelming 

amount of data and to support them in the intelligence, design, choice, and implementation 

phase of complex decision-making processes (Simon, 1960), recommender systems have been 

developed. By generating personalized suggestions, recommender systems offer only a small 

number of selection options and eliminate irrelevant and excessive information (Adomavicius 
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& Tuzhilin, 2005; Burke, 2002). To be more precise, the primary use of recommender systems 

is to predict elements that a user is likely to evaluate as positively according to his or her 

underlying preferences (Ricci et al., 2011). In general, recommender systems can be classified 

into the following categories: Content-based, collaborative filtering, and knowledge-based 

recommender systems (Aggarwal, 2016; Burke, 2002; Ricci et al., 2011). Content-based 

recommender systems recommend items to users that are similar to those that they have 

historically favored or expressed interest in. In order to retrieve a user’s preferences, tastes, and 

desires, the recommender system uses long-term user profiles with user attributes that have 

been accumulated over time. By matching these user attributes to item attributes, new items 

will be recommended to the user (Adomavicius & Tuzhilin, 2005; Aggarwal, 2016; Pazzani & 

Billsus, n.d.). Since contentknowledge is mainly derived from unstructured or semi-structured 

data, item descriptions are composed of a set of textual features that can be acquired by various 

information retrieval or information extraction methods with the help of statistical, machine 

learning, or natural language processing techniques (Lops et al., 2011). In contrast, 

collaborative filtering recommender systems generate item recommendations based on the 

similarity towards other users’ preferences (Adomavicius & Tuzhilin, 2005; Aggarwal, 2016; 

Schafer et al., n.d.). This type of recommender system has to cope with a so-called cold-start 

issue as a new user has to first rate several items or a new item has to receive a couple of ratings 

before a user similarity can be determined (Bobadilla et al., 2013; Ramezani et al., 2008). 

Recommendations generated through knowledge-based recommender systems are derived from 

specific domain knowledge which have to be acquired through interviews or other knowledge 

discovery techniques (Aggarwal, 2016). A common form of knowledge representation are 

ontologies which display relations among attributes, objects, and item features. The main 

downside of this recommender system lies in the high efforts of knowledge acquisition 

(Ramezani et al., 2008). 

5.2.2 Recommender Systems in Recruiting 

According to the attraction-selection-attrition (ASA) framework by Schneider (1983), 

organizations tend to achieve a certain degree of homogeneity among their employees by 

identifying candidates during the recruiting phases of attraction, selection, and attrition who 

have similar characteristics and behaviors as the organization. The empirical study by Judge 

and Cable (1997) revealed that in the attraction phase, potential candidates search for suitable 

job postings and organizational cultures based on their own personality, preferences, and field 

of interest. Particularly in the attraction phase, there is a tendency of organizations to achieve a 
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certain degree of homogeneity by seeking to recruit candidates with similar attributes and 

behaviors which is also described by the term "right types" (Schneider, 1983). In the selection 

phase, organizations seek to select candidates who possess specific competencies and skills 

required for the job position. By narrowing the applicant pool using pre-selection techniques 

and face-to-face interviews, companies are able to select a homogeneous group of candidates 

with specific skills (Bretz et al., 1989; Schneider, 1983). During the attrition phase, there is a 

tendency for employees who do not fit into the organization to eventually leave, while 

employees who embrace the organizational culture strive to retain their jobs and pursue their 

careers over time (Chatman, 1989; Schneider, 1983). By retaining the "right types" in the 

organization who share similar characteristics and behaviors, companies can increase the 

homogeneity among their workforce (Schneider, 1983). Since the increase in digital job and 

applicant data particularly impedes the screening and assessment activities of recruiters (Black 

& van Esch, 2020), the following sections mainly refer to the selection phase in recruiting. 

The main task in the selection phase is the matching of potential candidates and job postings, 

which is an essential subject of the person-job (P-J) fit and person-organization (P-O) fit 

literature (Adkins et al., 1994; Judge & Cable, 1997; Rynes & Gerhart, 1990; Wilk & Sackett, 

1996). The overarching research relates to the fit between a person and the environment, which 

has been a pervasive component in major research areas including personality theory, 

occupational psychology, personnel selection, and social psychology (Schneider, 2001). 

According to the person-environment fit concept (P-E), behavior is influenced by the 

congruence between personal and situational variables and not just by one of the elements 

alone. To be more precise, the compatibility between personal variables including abilities, 

needs, and values as well as environmental variables such as organizational culture, task 

demands, and job attributes leads to either positive or negative outcomes (Kristof, 1996; 

Muchinsky & Monahan, 1987; Ostroff, 1993; Schneider, 2001). Besides the P-J and P-O fit, 

the comprehensive P-E fit concept comprises further sub-categories including the person-

vocation (P-V) fit, the person-group (P-G) fit, and the person-supervisor (P-S) fit (Kristof-

Brown et al., 2005; Sekiguchi, 2004). 

In the recruiting literature, the concepts of P-J and P-O fit predominate the selection phase of 

Schneider's (1983) ASA framework since the primary objective is to match individuals and 

jobs. The operationalization of the P-J fit by Edwards (1991) refers to the demands-ability fit 

and the needs-supplies fit. To be more precise, the demands-ability fit determines the extent to 

which an employee's knowledge, skills, and abilities, the so-called KSA’s, meet the 
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requirements of a job. These KSA’s comprise, for example, work experience, technical skills, 

problem-solving skills, academic experience, and leadership skills (Kristof-Brown, 2000). The 

needs-supplies fit, on the other hand, addresses whether needs, wishes, or preferences of an 

employee are satisfied by the jobs’ characteristics and attributes (Edwards, 1991; Kristof, 1996; 

Sekiguchi, 2004). However, since candidates tend to select the vacant job positions according 

to their own needs and preferences (Judge & Cable, 1997), the primary task of recruiters is to 

identify candidates with the required KSA’s. The study by Caldwell and O’Reilly (1990) 

showed that the match between the KSA’s of a candidate and the job requirements positively 

influences an employee's job performance and ultimately job satisfaction. Furthermore, Wilk 

and Sackett (1996) reported that the match between an employee's skills and the complexity of 

the job even allows the employee to move up in the job hierarchy in the future. These empirical 

results indicate that the demands-ability fit is crucial for assessing the P-J fit (Kristof-Brown, 

2000). With regard to the operationalization of the P-O fit, Chatman (1989) argues that the 

congruence between candidates' values as well as organizational norms and values can have a 

positive impact on the selection phase since this match increases the likelihood that a candidate 

identifies himself with the organizational culture. An experiment conducted by Kristof-Brown 

(2000) revealed that recruiters explicitly distinguish between the P-J fit and the P-O fit when 

selecting applicants. When assessing the first group of applicants, recruiters tend to follow the 

P-J fit as they primarily consider the KSA’s as their main selection criteria. In the subsequent 

evaluation rounds of the recruiting process, the emphasis is on the P-O fit since the match 

between personal values and organizational values is given higher priority (Kristof-Brown, 

2000; Rynes & Gerhart, 1990). 

With the advancements of Digital Recruiting 1.0 and 2.0 (Black & van Esch, 2020), which 

allow organizations to post their job openings on digital job boards and professional and social 

networking platforms like LinkedIn, the amount of digital candidate data has increased 

significantly. Since the selection phase involves a high proportion of manual tasks, managing 

the large volume of digital applications can be time-consuming and costly for organizations 

(Eckhardt et al., 2014; Strohmeier & Piazza, 2015). While different types of artificial 

intelligence (AI) technologies can be integrated throughout the recruiting process (Strohmeier 

& Piazza, 2015; van Esch et al., 2019), the emergence of recommender systems have 

particularly simplified the manual tasks of recruiters in the selection phase. The study by 

Faerber et al. (2003) has compared the prediction performance of a content-based recommender 

system, a collaborative filtering recommender system, and a hybrid approach in the field of CV 

recommendations. According to their findings the content-based approach yields the best 
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results in matching a candidate's profile and the job requirements. Based on the P-J fit, 

Malinowksi et al. (2006) have developed a CV recommender system that follows the demands-

ability fit approach (Edwards, 1991) by recommending candidates whose CVs most closely 

match the specific job requirements. In order to address the needs-supplies fit approach 

(Edwards, 1991) by matching a candidate's preference with the job attributes, the authors 

additionally developed a job recommender system. Based on a latent aspect model both 

recommender systems are able to compute the similarity between the candidate’s profile and 

the job requirements. Since the predictive quality of the two recommender systems was the 

main subject of the study, the computer-generated recommendations were compared with the 

original list of jobs selected by the study participants and the original list of top candidates. The 

results showed that the predictions of the CV and the job recommender systems largely 

corresponded to human choices, which indicate a high prediction quality and promising system 

performance. Moreover, the contentbased recommender system proposed by Lu et al. (2013) is 

designed as a hybrid model that integrates a CV and a job recommender system in one system. 

The profile-based similarity of the candidate’s details and the job posting was computed by 

using latent semantic analysis (LSA) tools. In addition, the recommender system is capable of 

not only including a candidate's profile and the job requirements, but also processing user 

interactions. In an experiment, the participants were able to indicate their preferences through 

the interaction features "posted", "applied", "favorited", "liked", and "visited". The study by 

Almalis et al. (2015) extents the research of content-based CV recommender systems in a way 

that the match between human KSA’s and job attributes is based on different value ranges, such 

as specific values, a range with lower limit, a range with upper limit, and a range with both 

lower and upper limit. In other words, the proposed CV recommender system is able to 

differentiate between job requirements that refer to ranges of values such as “candidates must 

be at least 40 years old” or “between 18-40 years old”. The proposal of a further hybrid content-

based recommender system by Bansal (2017) facilitates the matching of candidates profiles and 

job postings from the perspective of recruiters and job seekers in an integrated system. Instead 

of using words as textual features, the researcher focused on topic features by applying the topic 

modelling algorithm Latent Dirichlet Allocation (LDA). Since this unsupervised machine 

learning technique allows to detect latent topics that are hidden in the text corpus, low-

frequency terms can become quite significant as they are linked to other high-frequency terms. 

As shown, current research in the selection phase focuses mainly on enhancing the prediction 

performance of CV recommender systems by evolving algorithms and improving technical 

features (Almalis et al., 2015; Bansal et al., 2017; Färber et al., 2003; Lu et al., 2013; 
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Malinowski et al., 2006). However, instead of optimizing computational performance, Green 

and Chen (2019) emphasize that attention in research should rather shift towards a socio-

technical context to explore how humanalgorithm interactions can be improved. According to 

their algorithm-in-the-loop framework, algorithmic aid can help to improve the decision-

making process by incorporating algorithms which inform and advise humans in their decision-

making while the final decision still remains with humans. Although the study of human-

algorithm interaction is developing slowly in areas such as web journalism (Christin, 2017), 

forecasting (Dietvorst et al., 2018), and criminal justice (Green & Chen, 2019; Grgić-Hlača et 

al., 2019), research has not yet sufficiently taken into account the socio-technical context in the 

field of recruiting (Green & Chen, 2019; Grgić-Hlača et al., 2019). 

5.2.3 Procedural Justice in Candidate Selection 

Despite the fact that key performance indicators in the recruiting process are largely 

standardized, the selection process for candidates often differs among recruiters. Previous work 

experience, individual attitudes, and personal preferences lead to a variety of different 

behaviour patterns among recruiters which can significantly influence the selection of suitable 

candidates (Eckhardt et al., 2014). Furthermore, the existence of conscious or unconscious 

cognitive bias among recruiters might also contribute to the likelihood of inconsistent decision-

making processes in the selection phase (Åslund & Skans, 2012; Black & van Esch, 2020). 

These diverse set of behaviour patterns among recruiters increase the risk of unfairness in the 

selection phase and can ultimately compromise a candidate’s chance of being selected. 

In order to examine fairness in the decision-making process during the selection phase, the 

literature on organizational justice (Greenberg & Colquitt, 2005) must be taken into account 

which primarily addresses employees' reactions regarding unfairness and inequity in an 

organizational context and distinguishes between distributive and procedural justice. 

Distributive justice describes the degree to which an employee perceives the distribution of 

outcomes such as payments and rewards as fair in the sense of equity (Adams, 1965; Cohen, 

1987) and equality (Deutsch, 1975). When considering the equity principles which determine 

the distribution of resources according to the contributions of employees, the foundation of 

distributive justice refers to Adam’s (1965) equity theory. In contrast, procedural justice refers 

to the perceived fairness in the actual decision-making process that ultimately determines the 

outcome (Greenberg & Colquitt, 2005). In order to ensure that the procedure can be assessed 

as fair, Leventhal (1980) defined the following six rules for procedural justice: consistency, 

unbiased suppression, accuracy, correctability, representativeness, and ethicality. Since fairness 
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in the candidate selection process depends on procedural justice, Gilliland (1993) and Arvey 

and Renz (1992) have defined specific procedural rules for the selection phase. In this context, 

the rule of consistency should be emphasized as Leventhal (1980) and Gilliland (1993) 

recommend a certain degree of uniformity in the selection procedure since all candidates should 

have the chance to receive the same decision-making process regardless of demographics, 

personality, or background. Arvey and Renz (1992) point out that consistency in candidate 

selection is only given when the content of the selection system, the scoring, and the 

interpretation of scores are standardized across all applicants. In addition, the rule of bias 

suppression by Leventhal (1980) is also crucial to ensure procedural justice in the selection 

phase as it determines that recruiters should not make decisions based on their own self-interest 

or be influenced by their own beliefs and opinions (Leventhal, 1980). To ensure objectivity 

rather than risking subjectivity, Arvey and Renz (1992) suggests to apply quantifiable methods 

which take certain criteria into account rather than relying on the recruiters’ instincts and 

experiences. The suppression of personal bias is also addressed in the propriety of questions as 

improper questioning and prejudicial statements impede the level of fairness in the selection 

phase (Gilliland, 1993). 

By examining procedural justice in e-recruiting tools, the findings of Thielsch et al. (2012) 

show that applicants expect a higher level of objectivity when using an e-recruiting tool 

compared to traditional manual recruiting practices. In addition, the qualitative study by 

Ochmann and Laumer (2019) proposes that the implementation of AI-based instruments could 

contribute even more to increase the level of fairness by increasing objectivity during the 

selection phase. While traditional selection methods have been perceived as unfair due to the 

risk of personal bias on part of the recruiters, the qualitative findings suggest that AI 

technologies could assist in the decision-making process by focusing solely on the candidates' 

skills and thus increasing objectivity. It should be noted, however, that the level of user reliance 

in a technology is also considered a critical factor in achieving procedural justice, as the final 

selection decision still remains in the power of recruiters. Reliance towards a technology 

depends primarily on user acceptance and the degree of influence that the user allows in their 

judgment (Arnold & Sutton, 1998; Madhavan & Wiegmann, 2007). Following the study by 

Ötting and Maier (2018) which empirically examined the impact of human and AI-based 

intelligent systems on procedural justice in a generic work-life situation, we aim to gain 

empirical insights into procedural justice in the selection process. 
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Based on the outlined literature on candidate selection (e.g., Caldwell & O’Reilly, 1990; 

Edwards, 1991; Schneider, 1987; Wilk & Sackett, 1996), CV recommender systems (e.g., 

Almalis et al., 2015; Bansal et al., 2017; Malinowski et al., 2006), and procedural justice (Arvey 

& Renz, 1992; Gilliland, 1993; Greenberg & Colquitt, 2005), we believe that incorporating a 

CV recommender system in the selection phase could increase procedural justice by helping 

recruiters to ensure consistency and objectivity in their decision-making process. Under the 

premise that recruiters rely on a CV recommender system and take the generated suggestions 

into account, we anticipate that the top-10 rankings of recruiters who incorporate a CV 

recommender system into their decision-making process will be more consistent and similar 

than the top-10 rankings of those who rely solely on their own judgement without using a CV 

recommender system. Furthermore, we would like to gain further insights into the demands-

ability approach in the context of the P-J fit (Edwards, 1991; Kristof-Brown, 2000) when 

incorporating a CV recommender system in the decision-making process of recruiters. As 

outlined above, CV recommender systems are based on the demands-ability fit as they compute 

the similarity between the applicant’s KSA’s and the respective job requirements (Almalis et 

al., 2015; Bansal et al., 2017; Färber et al., 2003; Lu et al., 2013; Malinowski et al., 2006). 

Since the suggestions generated by CV recommender systems are based on the KSA’s of 

candidates and are not exposed to subjective discrimination or personal bias by recruiters, we 

anticipate that the CVs of the top-10 ranked candidates which were selected with the help of a 

CV recommender system possess stronger KSA’s than those ranked on the basis of the 

recruiters’ sole judgment. 

5.3 Methodology 

Since the aim of our study is to examine what impact the use of a CV recommender system has 

on procedural justice in the selection process, we conduct an true experimental research with a 

posttest-only control group that enables us to determine cause-effect relationships (Campbell 

& Stanley, 1963; Gay et al., 2012). The research design of the experiment is illustrated in Figure 

7 and is described in detail in the following section. 
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Figure 7: Experimental research design 

In order to establish a realistic experimental set-up for a decision-making process in the 

selection phase, we have involved professional recruiters rather than non-professional study 

participants. Through a cooperation with a national association for employer branding, talent 

marketing, and recruiting, we were able to randomly select recruiters who were willing to 

participate in our experiment. The random selection method is recommended primarily because 

it ensures external validity by increasing the degree to which the study results can be 

generalized to other groups (Campbell & Stanley, 1963; Dean et al., 2017; Kirk, 2012). By 

following a between-subject design, we have also applied the randomization method when 

assigning participants to either the control or the treatment group. Random assignment is 

particularly needed to ensure internal validity as it reduces systematic bias between the 

treatment and the control group by distributing participants equally among these groups 

(Campbell & Stanley, 1963; Kirk, 2012; Mikolov et al., 2013). The manipulation of the 

independent variable refers to a matching score generated by a CV recommender system and 

distinguishes the groups as follows: The control group represents the non-CV recommender 

system supported setting in which the participants have received CVs without any suggestions 

generated by a CV recommender system. The treatment group represents the CV recommender 

system supported setting in which the participants have received the same CVs but to which a 

matching score generated by the applied CV recommender system has been added in the upper 

right corner. 

Following the current research on recommender systems in the field of candidate selection 

(Almalis et al., 2015; Bansal et al., 2017; Färber et al., 2003; Lu et al., 2013; Malinowski et al., 

2006), we have decided to also use a content-based CV recommender system that supports 
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recruiters in the selection phase to identify suitable candidates. As we seek to examine the effect 

of CV recommender systems on procedural justice rather than improving the performance level 

through technical advancements, we decided to use an existing CV recommender system 

developed by a global enterprise software provider with sufficient training data. The underlying 

machine learning technique refers to the word2vec algorithm by Mikolov et al. (2013) which 

represents a neural network model with a single hidden layer. In the case of the applied CV 

recommender system, data cleansing activities such as functional removal, lower case, and 

plural removal are performed on the input document in an initial step. After this prerequisite is 

fulfilled, the input document is tokenized into corresponding bigrams and trigrams. By using 

the word2vec algorithm, each token is assigned to a word embedding which ultimately 

represents a vector space. In order to remove irrelevant tokens and to generate interpretable 

token clusters, the tokens in the form of word embeddings are assigned to certain branches of 

a formerly created skill tree. As the final goal is to compare a CV and a job posting, the word 

embeddings are combined into document-level embeddings to compute the cosine similarity 

between the document vectors. The output of the selected content-based CV recommender 

system is a matching score which is expressed as a floating-point number between 0.0 and 1.0. 

The higher the value of the matching score, the closer the similarity between the CV and the 

job profile, and the higher the rank of the CV in a list of suitable candidates. 

In regard to the experimental set-up, we created two fictional job posting based on examples 

from the participating companies: one for a Junior Full Stack Developer and one for a Junior 

Online Marketing Manager. We focused on junior positions as these positions oftentimes 

receive large numbers of applications and are thus more attractive for the implementation of a 

CV recommender system. As a second step, we collected a diverse set of 30 CVs for each job 

posting from computer science, information systems, business, and marketing students of 

higher education institutions. During the experiment, the participants received the task 

description through a survey tool in which the two job postings as well as the corresponding 

CVs were available in the form of PDF documents. Based on the random assignment to either 

the control group or the treatment group, the CVs either included a matching score generated 

by the CV recommender system or not. According to the task description, the participants of 

both experiment groups were instructed to first read the job postings and the corresponding 

CVs thoroughly. Based on a careful assessment of the candidates and the requirements of the 

first job posting, the recruiters were asked to create a ranking in the survey tool based on the 

suitability of the candidates under the assumption that the top-10 ranked candidates would be 

invited for a further interview. Subsequently, the participants were encouraged to proceed with 
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the creation of the ranking list for the second job posting. Since the ranking represents the final 

outcome of the experiment and is considered in the further data analysis, our study is designed 

as posttest-only control group. This approach allows us to avoid testing effects that could have 

had an impact on the participants’ behaviour if they were exposed to any kind of information 

in advance (Gay et al., 2012). 

5.4 Results 

Regarding the participation rate, 89 professional recruiters voluntarily signed up for our 

experiment, out of which 74 completed the tasks (83% response rate). At the time of the 

experiment (January 2019), these 74 participants were employed in 22 large multinational 

companies. Among all participants, 74% were female, 83% were between 25 and 44 years old, 

and 78% had at least three years of experience in recruiting. To ensure objectivity within the 

quantitative data analysis, we manually extracted variables from all CVs in a two-stage 

procedure. First, variables were extracted independently by two of the authors. Subsequently, 

results were synchronized to reach consent and to apply consistent standards. In accordance 

with the P-J fit which determines the suitability between the KSA’s of candidates and the job 

requirements (Edwards, 1991; Kristof-Brown, 2000), we extracted the following variables from 

all CVs: study duration (in years) and relevant working experience (in years). By conducting 

statistical tests, we were able to relate these variables to the observed behaviour of the 

participating recruiters. The data was pre-processed using the Python programming language 

and subsequently analysed using SPSS. Given the nature of our study, we tested for significance 

at a 10% level to avoid discarding interesting relationships (Rosnow & Rosenthal, 1989; 

Schumm et al., 2013). In regard to the following section, we present the results as mean ± 

standard deviation, unless we state otherwise. While screening the experiment data, we detected 

three cases in which participants only completed the marketing job posting, and one case in 

which only the development task was finished. We decided to keep these partial completions 

in our dataset to account for the rather small sample size. 

To examine whether the top-10 rankings of recruiters who were supported with the matching 

score generated by the CV recommender system are more consistent and similar than those who 

rely on their own judgement, we first calculated pairwise correlations between the rankings of 

participants separately for the CV recommender system supported group and the non-CV 

recommender system supported group (in the following referred to as inner group ranking 

correlation). Here, the ranked candidates received their respective position, while candidates 

outside the top-10 were being ranked as 11th , thus creating a lot of ties in our rankings. 
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Consequently, we chose Kendall’s tau as correlation metric for this analysis, as this metric is 

more robust in the presence of ties in rankings (Kendall, 1946). We then conducted two separate 

independent-samples t-tests (i.e., one for each job posting) to examine the effects of CV 

recommender system support on the inner group ranking correlation. The results of our 

quantitative analysis are summarized in Table 10. 

Table 10: Effect of CV recommender system support on inner group ranking correlation 

 

Based on our quantitative analysis we found statistically significant differences between the 

CV recommender system supported and non-CV recommender system supported groups with 

regard to the inner group ranking correlation score. The results showed that the inner group 

ranking correlation was higher in the CV recommender system supported (development task: 

.440 ± .233; marketing task: .489 ± .274) than in the non-CV recommender system supported 

groups (development task: .144 ± .231; marketing task: .192 ± .288). In other words that means 

that the rankings from recruiters who received the matching score generated by the CV 

recommender system were more strongly correlated with each other than rankings from 

recruiters without the CV recommender system support. For both groups, the effects were 

statistically significant (development task: t = -21.989, p < .001; marketing task: t = -18.958, p 

< .001) and effect sizes were larger than one standard deviation, as measured by Cohen’s d 

(development task: 1.281; marketing task: 1.057). 

According to our results, we can strongly support our anticipation that the top-10 rankings of 

recruiters within the CV recommender system supported group are more consistent and similar 

than those who did not received any matching score from the CV recommender system. We 

can further suspect that recruiters relied on the matching score generated by the CV 

recommender system. To further examine this finding, we also calculated the average 

correlation between the recruiters’ rankings and the ranking proposed by the CV recommender 

Factor Task Levels 

Inner group 
rank. corr. 

df t Sig. Cohen’s d 
Mean Std. 

Dev. 

CV 
recommender 
system 
support 

Development 
Supported .440 .233 

1235 -
21.989 .000 1.281 

Unsupported .144 .231 

Marketing 
Supported .489 .274 

1300 -
18.958 .000 1.057 

Unsupported .192 .288 
Note: Inner group ranking correlations are calculated as pairwise correlations between rankings from 
participants of the respective group, as measured by Kendall’s tau. Results are based on independent-
samples t-tests. 
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system. We found a strong correlation for both tasks (development task: .583 ± .253; marketing 

task: .599 ± .268), which further supports our assumption. For comparison, in the unsupported 

groups the observed correlations were much lower (development task: .062 ± .231; marketing 

task: .080 ± .310). 

To examine our second anticipation that the CVs of the top-10 ranked candidates which were 

selected using a CV recommender system possess stronger KSA’s than those which were 

ranked without any CV recommender system support, we compared the ranked candidates of 

the control and the treatment group based on the extracted variables of study duration and 

relevant working experience. We calculated averages for ranked candidates on a per-recruiter 

basis and then compared between values from both groups using independent-samples t-tests. 

Once again, we considered rankings from development and marketing job postings separately. 

The quantitative results are summarized in Table 11. 

Table 11: Effects of CV recommender system support on KSA levels of ranked candidates 

 

By conducting our quantitative analysis we found that top-10 ranked candidates in CV 

recommender system supported settings displayed statistically significant stronger levels of 

KSA’s than top-10 ranked candidates in non-CV recommender system supported settings in 

two out of four observed cases (development – working experience: t = -2.277, p = .026; 

marketing – study duration: t = -2.537, p = .013). For both cases we observed medium effect 

sizes (larger than .5), as measured by Cohen’s d (development – working experience: .540, 

marketing – study duration: .604). In addition, we found a small effect size (larger than .2) for 

study duration in the development task, that was not statistically significant (t = -1.532, p = 

.130, d = .365). Considering these findings, we can partially support our anticipation that 

candidates of the top-10 rankings possess stronger KSA’s in the cases when recruiters have 

Task Variable Group Mean Std. 
Dev. df t Sig. Cohen’s d 

Development 
Study duration 

Supported 4.909 .324 
69 -1.532 .130 .365 

Unsupported 4.792 .311 
Working 
experience 

Supported 3.500 .505 
69 -2.277 .026 .540 

Unsupported 3.194 .622 

Marketing 
Study duration 

Supported 5.063 .264 
71 -2.537 .013 .604 

Unsupported 4.924 .190 
Working 
experience 

Supported 2.054 .308 
71 -.670 .505 .154 

Unsupported 1.993 .470 
Note: Study duration and working experience are measured in years and were extracted from the submitted 
resumes. Results are based on independent-samples t-tests. 
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been supported by the CV recommender system compared to the cases were recruiters have not 

received a matching score generated by the CV recommender system. 

5.5 Discussion 

To cope with the increasing amount of digital applicant data (Strohmeier & Piazza, 2015; van 

Esch et al., 2019) and to ensure fairness in the candidate selection phase (Gilliland, 1993; 

Ochmann & Laumer, 2019; Thielsch et al., 2012), research has increasingly focused on the 

development of CV recommender systems. These systems serve to identify the most suitable 

candidates for a given job by calculating the similarities between candidate profiles and job 

requirements. Thus, CV recommender systems are typically applied in the selection phase of 

the recruiting process (Schneider, 1983) with the purpose of estimating the P-J fit (Adkins et 

al., 1994; Judge & Cable, 1997; Rynes & Gerhart, 1990; Wilk & Sackett, 1996). While prior 

research on CV recommender systems has mainly focused on improving the performance of 

CV recommender systems on a technical level (e.g., Bansal et al., 2017; Lu et al., 2013; 

Malinowski et al., 2006), our study addresses the socio-technical context by concentrating on 

the interaction between the human recruiter and the algorithm (Green & Chen, 2019; Grgić-

Hlača et al., 2019). In detail, we examine what impact the use of a CV recommender system 

has on procedural justice in the selection process. Therefore, we conduct an experiment with 

74 professional recruiters from 22 multinational companies, where the task is to create top-10 

rankings of candidates for two fictional job postings. According to our quantitative data 

analysis, we found statistically significant differences between the control and the treatment 

group with regard to the inner group ranking correlation score. We derive two main findings 

from our quantitative analysis. First, the analysis of our experiment indicates that the rankings 

correlated more strongly with each other when recruiters received the matching score generated 

by the CV recommender system than in the non-CV recommender system supported group. 

Since this stronger correlation is an indicator that the top-10 ranking list is more consistent and 

similar among the recruiters of the CV recommender system supported group, we can assume 

that the level of procedural justice increases through the assistance of the CV recommender 

system. Second, our quantitative results indicate that the CVs of the top-10 ranked candidates 

of the CV recommender system supported group contain stronger KSA’s in regard to working 

experience for the development job posting as well as in regard to study duration for the 

marketing job posting compared to the non-CV recommender system supported group. Due to 

the presence of these stronger KSA’s in the top-10 rankings, our results indicate that KSA’s are 

given more attention when creating the top-10 rankings with the support of a CV recommender 
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system than if recruiters would make the decision on their own. In other words, CV 

recommender systems can help recruiters to base their decision-making on the pure set of 

KSA’s, rather than being influenced by their own judgment or personal biases. Thus, if 

candidates possess KSA’s required for a particular job posting and a CV recommender system 

is incorporated in the selection phase, the likelihood of these candidates being selected in the 

top-10 rankings tends to increase. To summarize, we show that incorporating CV recommender 

systems increases procedural justice in the selection phase as recruiters are more likely to 

adhere to the rule of consistency (Arvey & Renz, 1992; Gilliland, 1993; Leventhal, 1980) by 

ranking candidates in a more consistent and uniform manner. Moreover, we find that the 

candidates selected by CV recommender system supported recruiters typically possess stronger 

KSA’s than the candidates selected by non-CV recommender system supported recruiters 

which can be considered as an indicator of ensuring the procedural rule of bias suppression 

(Arvey & Renz, 1992; Leventhal, 1980). 

Our study offers significant theoretical contributions regarding research in the area of human-

algorithm interaction. To the best of our knowledge, we are among the first to study the effects 

of CV recommender system application on procedural justice in the selection phase of the 

recruiting process. Our study showed that the decision-making process of professional 

recruiters can be influenced by a CV recommender system by creating more consistent and 

uniform rankings in which the selected candidates possess stronger KSA’s. Thus, we provide 

quantitative evidence for findings of Thielsch et al. (2012) and Ochmann and Laumer (2019), 

i.e., that higher levels of objectivity and consistency can be achieved in the candidate selection 

phase when using an algorithmic aid instead of solely relying on human judgment. 

Consequently, we show that procedural justice in the selection phase of recruiting can be 

strengthened by deploying a CV recommender system. We propose that content-based CV 

recommender systems help recruiters to ensure the procedural rule of consistency (Arvey & 

Renz, 1992; Gilliland, 1993; Leventhal, 1980) by providing more consistent and uniform 

rankings. Moreover, relying on these types of systems might mitigate human biases in the 

recruiting process, such as subjective selection criteria by enabling accurate measurement of 

candidate’s KSA’s as proposed by the P-J fit (Caldwell & O’Reilly, 1990; Edwards, 1991; 

Kristof-Brown, 2000; Wilk & Sackett, 1996). 

Our findings also have significant implications for practitioners. We show that organizations 

should consider deploying CV recommender systems in the selection phase of the recruiting 

process. Here, the application of such systems might serve several purposes. First, using 
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content-based CV recommender systems increases the likelihood that applicants with higher 

levels of KSA’s will be included in candidate rankings. This way, organizations can ensure that 

they more strongly consider candidates with a high P-J fit. As a result, more suitable candidates 

might be identified more efficiently, preventing costly hiring mistakes in the process. Moreover, 

content-based recommender systems could be used to partly automate the selection process, 

which would allow to direct further resources towards cognitively more challenging tasks, e.g., 

estimating the P-O fit via in-person interviews. Second, the deployment of CV recommender 

systems might reduce existing biases in the recruiting process by making sure that candidate 

rankings are more consistent across different recruiters. 

While our study adds value for both research and practice, it is affected by some limitations 

that offer opportunities for further research. Despite the fact that we designed our experiment 

according to realistic recruiting standards and practices by involving professional recruiters, 

providing real CVs, and using a content-based CV recommender system, we are aware that the 

experimental set-up has some shortcomings regarding the recruiting process in practice. With 

regard to the selection phase, our study differs from procedures used in practice to evaluate 

applicants where CVs are usually reviewed as they are received rather than consecutively in 

batches. In addition, recruiters would usually receive more information on required skills and 

context from the hiring manager instead of just referring to the available requirements of the 

job posting. Furthermore, the choice of a junior job posting could have an impact on the 

matching score generated by the CV recommender system as the submitted CVs might contain 

fewer keywords and details than for a professional job posting. Lastly, as we used only one 

commercially available content-based CV recommender system, we are well aware that the 

results might differ for alternative solutions. 

To increase realism, future research could improve the experimental set-up by providing a 

centralized CV upload that allows recruiters to review CVs at the time of upload. Therefore, 

the timeframe of the experiment should also be extended from one to three months in order to 

make the decision-making process of candidate selection more realistic. In addition, the 

between-subject design could also be varied by adding another treatment group of recruiters 

who receive additional information on the key features that influence the generated matching 

score. Thereby, the effect of increased transparency for recruiters compared to recruiting 

settings with less information could be studied further. By expanding the research scope with a 

focus on transparency, additional insights could be gained as to whether recruiters would 

integrate the suggestions of CV recommender systems even more strongly into their decision-
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making process as the key features become more transparent. This future research would 

contribute significantly to the study of human-algorithm interactions in the field of recruiting. 

5.6 Conclusion 

In recent years, recruiting qualified and skilled talents has gained considerable importance as 

organizations consider their workforce as strategic assets. While digitization has contributed to 

the emergence of job portals, recruiters face the challenge of dealing with large amounts of 

digital applications (Black & van Esch, 2020). In order to cope with this amount of data, CV 

recommender systems have been developed to support recruiters in the selection phase. By 

computing the similarity of the candidates KSA’s and the job requirements, CV recommender 

systems are able to identify the most suitable candidates as requested by the demands-ability 

approach of the P-J fit (Edwards, 1991; Kristof-Brown, 2000). However, relatively little is 

known about the socio-technical context in which such systems are deployed (Green & Chen, 

2019; Grgić-Hlača et al., 2019). Our study aimed to examine the impact of a CV recommender 

system on procedural justice in the selection phase of the recruiting process. Therefore, we 

conducted an experiment with 74 recruiters from 22 large multinational companies. Using a 

between-subject design, we compare top-10 rankings of potential candidates for two fictional 

job postings between recruiters who are supported by a content-based CV recommender system 

and unsupported recruiters. Two main observations can be drawn from our quantitative 

analysis. First, candidate rankings from the CV recommender system supported group exhibit 

higher levels of similarity than rankings from the non-CV recommender system supported 

group. Second, candidates selected by recruiters who received the matching score generated by 

the CV recommender system contain stronger KSA’s than candidates selected by recruiters 

who relied solely on their own judgment. Thus, we find quantitative evidence that the 

deployment of CV recommender systems can increase consistency and reduce personal bias in 

the selection phase of the recruiting process, which might improve procedural justice in this 

process. 
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Table 12: Summary of results regarding organizational learning effectiveness 

Research Questions Findings and Propositions Implications 
RQ1: The Role of Human 
Exploration in the Presence of ML 
Systems 

ML systems with a high initial 
learning capability reduce the need 
for human exploration (see P1). 

• ML systems’ ability to take 
over explorative tasks 
counters learning myopia, 
allowing humans to learn at 
their preferred pace. 

• Organizations should consider 
the reallocation of R&D 
resources to the initial setup 
of ML systems. 

RQ2: Reconfiguration of ML 
Systems by Humans 

Humans’ learning behavior 
moderates the nonlinear effect of 
reconfiguration intensity on 
organizational learning 
effectiveness. For ML systems 
with a: 
• Low initial learning 

capability: If humans engage 
in exploitation (exploration), 
this effect is positive and 
decreases (increases) in 
strength with increasing 
reconfiguration intensity (see 
P2a). 

• High initial learning 
capability: If humans engage 
in exploitation, this effect 
decreases in strength with 
increasing reconfiguration 
intensity. If humans engage in 
exploration, the 
reconfiguration intensity has 
an inverted U-shaped effect 
(see P2b). 

• Acquiring high levels of 
organizational knowledge 
requires at least a moderate 
amount of reconfiguration 
effort. 

• Humans should never be 
completely taken “out of the 
loop,” even if tasks are largely 
automated. 

• As the deep problem 
understanding of domain 
experts is required for 
reconfiguration efforts, 
leaving reconfiguration of ML 
systems to the IT department 
alone is not sufficient. 

RQ3: Coordinating Human 
Learning and ML Systems in 
Turbulent Environments 

In turbulent environments, 
effective organizational learning 
with ML systems requires human 
exploration and a rapid 
codification of knowledgeable 
humans’ beliefs. The more 
turbulent the environment, the 
more beneficial the rapid 
codification of beliefs offered by 
ML systems with a high initial 
learning capability will be (see 
P3). 

• Reliance on knowledge 
created by ML systems can be 
beneficial for organizations in 
turbulent environments, 
reducing the need for more 
radical measures (e.g., forced 
personnel turnovers). 

• Significant investments in the 
initial setup of ML systems 
and appropriate coordination 
of humans and ML systems 
are required to materialize 
these beneficial effects. 
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7 Thesis Contributions and Conclusion 

The overarching goal of this thesis was to improve the understanding of human-AI interaction. 

While research on AI-enabled systems has mainly focused on technical innovations in recent 

years (e.g., Ba et al., 2016; Sohn et al., 2020; Vaswani et al., 2017), the interaction between 

humans and AI-enabled systems has mostly been neglected so far. It is widely agreed among 

both IS and HCI researchers that the unique characteristics of AI-enabled systems, e.g., their 

probabilistic nature and predictive capabilities, require rethinking of existing guidelines for 

human-computer interaction (e.g., Maedche et al., 2019; Rai et al., 2019; Schuetz & Venkatesh, 

2020; Yang et al., 2020). The four papers in this thesis aim to tackle this research gap from two 

perspectives: the impact of increasing human-AI interaction on an individual and organizational 

level. This section first provides a summary of the contributions of these papers from a 

theoretical and practical perspective. This thesis concludes with a vision of what human-AI 

interaction could look like further down the road and necessary research to achieve this vision. 

7.1 Theoretical Contributions 

The first part of this thesis (i.e., papers A and B) investigates the impact of increasing human-

AI interaction on individuals. Paper A contributes to the growing literature on explainable AI 

and transparency of AI-enabled systems. While technical literature has come up with techniques 

for explaining the behavior of AI-enabled systems (e.g., Diakopoulos, 2016; Lundberg & Lee, 

2017; Olah et al., 2018), it remains unclear mainly how end-users will perceive explanations in 

practice. Paper A provides two main contributions to XAI literature by (1) examining whether 

consumers exhibit a meaningful willingness-to-pay towards explainability features for AI-

enabled systems and (2) developing a theoretical model for explaining the mechanisms behind 

the purchase decision. By conducting an online experiment in the context of credit applications, 

it is found that the majority of study participants would be willing to pay a median amount of 

20€ for the explainability features offered by the fictional credit scoring provider. While the 

exact amount will differ between contexts, it can be expected that the general finding is 

transferable to other contexts where predictions from AI-enabled systems support assessing the 

personal attributes of individuals (e.g., their suitability for a given job or attributes influencing 

insurance premiums). Our theoretical model, based on the Theory of Planned Behavior (Ajzen, 

1991), shows that increased user trust due to increased perceived transparency is the main driver 

for a positive evaluation of the AI-enabled system.  
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Paper B transfers the large body of research regarding the influence of technology on individual 

performance to the context of AI-enabled systems. The main theoretical contribution of this 

paper is a theoretical model based on the task-technology fit (TTF) theory (Goodhue & 

Thompson, 1995). The model is proposed based on the findings from expert interviews and 

considers the unique characteristics of AI-enabled systems, especially their reliance on 

statistical patterns identified in data to perform predictive tasks. In detail, the two constructs 

data characteristics and task-data fit are added to the classical TTF constructs to account for 

this dependence. Moreover, AI-specific dimensions are added to all theory constructs, including 

the classical TTF constructs technology characteristics and task-technology fit, to enable 

applications of the model in empirical research. While the focus was on explaining impacts on 

individual performance, the model is expected to be applicable for the group- or even 

organizational-level analyses of performance impacts related to deployments of AI-enabled 

systems. 

The second part of this thesis (i.e., papers C and D) focuses on the organizational-level impact 

of increasing human-AI interaction. Paper C extends the fairness and organizational justice 

literature in that it examines the effects of deploying an AI-enabled system for recruiting 

purposes. While a lot of technical literature exists regarding how to ensure the fairness of AI-

enabled systems (e.g., d’Alessandro et al., 2017; Mehrabi et al., 2021; Olteanu et al., 2019), it 

remains unclear whether AI-enabled will mitigate or reinforce existing biases in organizational 

decision-making (e.g., Maedche et al., 2019; Rai et al., 2019; Raisch & Krakowski, 2020). The 

study is based on an online experiment in which the candidate rankings of recruiters supported 

by a CV recommender system and unsupported recruiters are compared. It is shown that the 

introduction of the CV recommender system leads to a more consistent candidate selection 

which tends to include candidates with a higher level of objectively measurable skills (e.g., 

relevant working experience). Since objectivity and consistency are two primary components 

of procedural justice (e.g., Gilliland, 1993; Leventhal, 1980), the study proposes that AI-

enabled systems can help ensure procedural justice in organizational decision-making.  

Paper D examines the effects of AI-enabled systems on organizational learning. Previous 

studies have not reached a consensus on whether IT systems facilitate or hinder organizational 

learning, especially the creation and dissemination of knowledge (e.g., Alavi & Leidner, 2001; 

Robey et al., 2000; Schultze & Leidner, 2002). Moreover, these studies neglect the unique 

characteristics of AI-enabled systems, especially their ability to learn and contribute knowledge 

(e.g., Ransbotham et al., 2020; Seidel et al., 2019). Based on the results of a series of agent-
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based simulations, the primary theoretical contributions of paper D are derived in the form of 

three propositions. First, it is proposed that AI-enabled systems can take over explorative tasks, 

which reduces the need for human exploration and thus counters learning myopia (i.e., human's 

tendency to favor exploitation over exploration). Second, it is proposed that the reconfiguration 

of AI-enabled systems constitutes an essential activity for organizations. Third, it is suggested 

that the knowledge created by AI-enabled systems is beneficial for organizations in turbulent 

environments, reducing the need for alternative measures to deal with turbulence such as forced 

personnel turnover. 

7.2 Practical Contributions 

Apart from these theoretical contributions, the results derived from papers contained in this 

thesis also have significant implications for practitioners. The first part of this thesis (i.e., papers 

A and B) informs practitioners about how to improve the interaction between individuals and 

AI-enabled systems. Paper A shows that a significant willingness to pay exists for explainability 

features of AI-enabled systems. The findings can serve as a starting point for providers of these 

systems (e.g., credit scoring providers) to evaluate whether to deploy explainability features. 

Here, the study reveals two potential benefits of including these features. First, the experiment 

results suggest that the features can constitute an additional revenue stream, e.g., in the form of 

premium features. Moreover, the willingness to pay identified in the study can serve as an 

anchor for price determination of these features by decision-makers such as product managers. 

Second, the study provides evidence that an increase in perceived transparency leads to 

increased user trust and a more favorable attitude towards the AI-enabled system. Thus, 

deploying explainability features might positively influence essential business metrics such as 

user retention and engagement, as suggested by multiple studies (e.g., Chiu et al., 2012; 

Gounaris, 2005; Han & Hyun, 2015). 

Paper B proposes a theoretical model for determining the task-technology fit as the primary 

determinant for utilization and performance impacts. While the model's primary purpose is to 

enable empirical research studies, practitioners can also apply it to evaluate possible use cases 

for deploying AI-enabled systems. One way of applying the model could be to evaluate use 

cases concerning the identified dimensions of each model construct to identify potential 

roadblocks. For example, developers of an AI-enabled system for supporting medical 

diagnostics might find ensuring the representability of collected datasets, particularly 

challenging. At the same time, comprehensibility might be an essential requirement for use 

cases that underlie strict regulatory requirements (e.g., finance). In addition, quantifying the 
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dimensions with some scale enables practitioners to compare potential use cases for AI-enabled 

systems. All in all, our model can be valuable in the early stages of project management, which 

usually comprise feasibility evaluation and return-on-investment estimation (e.g., Amershi, 

Begel, et al., 2019; Bernardi et al., 2019). 

In the second part of this thesis (i.e., papers C and D), the organizational-level impacts of 

increasing human-AI interaction are examined. From the results of these studies, practitioners 

can draw insights about how best to deploy AI-enabled systems to achieve organizational-level 

goals. Paper C suggests that organizations should consider deploying CV recommender systems 

for selecting candidates in their recruiting processes. The experimental results show that using 

these systems might serve three purposes. First, the objectivity of the candidate selection 

process might be increased, leading to a selection of applicants with higher levels of relevant 

skills (e.g., working experience). This way, organizations can prevent hiring the wrong 

candidates due to biases in the selection process, reducing costs for the organization. Second, 

candidate selection might become more consistent across different recruiters, reducing 

commonly occurring biases in the selection process (e.g., gender biases). Third, through partial 

automation of early phases in the selection process, recruiters might be enabled to focus on 

more cognitively challenging tasks such as in-person interviews. This would also reduce the 

burden on organizations challenged by the increasing amount of available applicant data (e.g., 

Black & van Esch, 2020; van Esch et al., 2019). While the online experiment in paper C is 

limited to the context of candidate selection, the results can be expected to be transferable to 

similar use cases in human resource management, e.g., the identification of candidates for 

promotions. 

Paper D conducted several agent-based simulations to determine the optimal course for 

organizations to facilitate human-AI interaction concerning the critical activity of accumulating 

knowledge (i.e., organizational learning). From these simulations, two main insights can be 

drawn for practitioners. First, it was shown that AI-enabled systems could take over explorative 

learning tasks. This finding suggests that organizations should reconsider their resource 

allocations towards R&D projects. Shifting explorative responsibilities towards AI-enabled 

systems (e.g., discovering potential drug candidates) requires that organizations invest more 

heavily in developing these systems (e.g., by acquiring vast amounts of high-quality data and 

ML expertise). Second, it was found that the reconfiguration of deployed AI-enabled systems 

represents a key challenge for organizations. For organizations, this entails that both developers 

and domain experts should always be kept "in the loop" to improve the performance of AI-
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enabled systems continually. Example activities conducted by humans include identifying new 

data requirements, tuning the learning algorithms, and monitoring model performance in 

production (Amershi, Begel, et al., 2019). 

7.3 Conclusion 

Artificial intelligence is becoming increasingly prevalent in our private and professional lives. 

Technological innovations have enabled AI-enabled systems to take over tasks previously 

reserved for humans. However, how the interaction between humans and AI-enabled systems 

should be designed remains an understudied issue. This thesis, consisting of four qualitative 

and quantitative studies, aims to address this research gap by examining the impact of 

increasing human-AI interaction on an individual and organizational level. Thus, it constitutes 

an essential contribution to human-AI interaction research, which sits at the intersection of 

disciplines such as information systems, human-computer interaction, and computer science. 

Future research can build on this thesis' results. While some future research suggestions are 

offered in each of the included papers, the following paragraphs introduce some further ideas 

for upcoming research, both conceptual and empirical. 

On a conceptual level, more research is needed to understand which aspects most strongly 

influence the interaction between humans and AI-enabled systems. This thesis addressed two 

focus points each regarding the individual-level (transparency and performance) and 

organizational-level (organizational justice and organizational learning) impacts of increasing 

human-AI interaction. However, it remains unclear how these aspects can be integrated into a 

holistic theory of human-AI interaction and which other aspects need to be investigated in 

future research. While some early work exists to describe human-AI interaction (e.g., Amershi, 

Weld, et al., 2019; Rzepka & Berger, 2018; Yang et al., 2020), the proposed frameworks and 

guidelines are not yet empirically validated and do not include perspectives from all relevant 

research fields. Multidisciplinary research will be essential to identify potential drivers and 

outcomes of human-AI interaction. 

While conceptual research will be the key to deriving a holistic picture of what drivers and 

outcomes human-AI interaction encompasses, empirical research will be needed to derive 

principles and theories for how to best design human-AI interaction in practice. Here, the design 

science research methodology will play an essential role in coming up with design principles 

for different aspects of human-AI interaction. The developed design principles can be validated 

in different contexts in close collaboration with practitioners, primarily via field and lab 
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experiments (Karahanna et al., 2018). These research efforts should be primarily conducted in 

high-stakes contexts such as healthcare and finance, which can hugely benefit from deploying 

AI-enabled systems and come with the highest risk. Early empirical research on human-AI 

interaction exists (e.g., Fügener et al., 2021; Grønsund & Aanestad, 2020; Sturm, Koppe, et al., 

2021; Yang et al., 2019), but more will be needed to maximize the potential of this 

groundbreaking technology.
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