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1 Motivation

The aim of this work is the development of a model to combine numerical simulations
based on the finite element method (FEM) with quantum mechanical phenomena, like
tunnelling. This is needed, since the importance of composites in mechanical and func-
tional applications is increasing over the last decades. Especially the electrical properties of
these materials are of interest, which are strongly influenced by tunnelling [1–13]. For a
composite with insulating matrix material and little amount of high conducting inclusions,
the effective conductance of the composite is most likely close to the conductance of the
matrix material. This behaviour does not change for a small increase of the inclusions
volume fraction, but changes drastically as soon as the amount of inclusion material comes
close to a certain fraction. For volume fractions close or higher than this threshold, perco-
lation occurs and the effective conductance jumps several orders of magnitude, close to
the inclusions conductance. These switched electric properties often have a huge influence
on the materials behaviour and might lead to a loss of applicability.
Fortunately, percolation is mainly a geometrical problem and the percolation thresholds
are well documented for a plurality of different geometric shapes of inclusions. Due
to their statistical approach of microstructure generation and simple implementation of
physical interactions, the vast majority of numerical calculations is done via Monte-Carlo
(MC) simulations [14–26]. Even though, most of the calculations are done with fully
penetrable inclusions, there is also an approach with semi-penetrable inclusions [14],
which will be used in this work. This is necessary, since in most simulations the length
scale of inclusions and the decay length of the tunnelling process are equal. This is rea-
sonable for microstructures with inclusions of a few nanometre, but is not maintainable
for microstructures with inclusions of micrometre scale (decay length ξ ≈ few nm). Such
microstructures shall be investigated by FEM models in future.
Composites of micrometre scale are used for instance as coatings of metals to prevent
corrosion and are applied in automotive industry to enable lightweight construction, but
also in fuel tanks [27–29]. For the same purpose Davidson et al. investigated exfoliated,
unfunctionalized graphite (UFG)-polyetherimid (PEI) composites, which is also the mate-
rial combination treated in this work.
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In the following, a model to implement tunnelling percolation in a finite element software,
the corresponding geometry generation and distance calculation is presented. Aim is the
validation of the model along literature values and the calculation of effective conductivi-
ties of example geometries.
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2 Basics

In the following chapter a short introduction to the quantum mechanical tunnelling effect
and its geometric properties are given. Also, an insight of percolation models is given.

2.1 Quantum mechanics

Since the establishment of quantum mechanics at the beginning of the 20th century and in
particular the dissertation of Louis de Broglie 1924, matter is accounted to be both wave
and particle [30]. This wave-particle duality replaced the view of the classical mechanics
and could explain several physical issues, like Planck’s law, the photoelectric effect or
several years later the magnetism as part of the electromagnetism. One main difference of
the quantummechanics compared to classical mechanics is the uncertainty principle, which
states that two conjugated variables of one particle can not be determined with arbitrary
precision at the same time. The most famous conjugated variables are position and
momentum. Nevertheless, Schrödinger was able to set up an equation which can describe
quantum mechanical systems (equation 2.1). This function contains wavefunctions Ψ
which can describe the time-dependent condition of a quantum mechanical state and the
Hamiltonian Ĥ.

ih̄
∂

∂t
|Ψ (r, t)⟩ = Ĥ |Ψ (r, t)⟩ (2.1)

A special case of 2.1 is the time-independent Schrödinger equation, where the wave-
functions Ψ are just functions of the position and not time. Whereas these functions are
mathematical expressions, their squared modulus is considered as the probability density
to find a non-relativistic particle on position r at the given time.
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2.1.1 Solution of the Schrödinger equation

The wave-particle duality is also valid for electrons, thus they can be described as wave-
functions Ψ. These wavefunctions can be described as superposition of plane waves. For
waves with momentum p = h̄k, wave vector k = 2π

λ and energy E = h̄ω, where ω is the
frequency and λ the wave length, the plane wave function can be written as,

Ψ (r, t) = ei(kr−ωt). (2.2)

Differentiating and transformation of Ψ yields,

∂Ψ

∂r
= i

p

h̄
Ψ

∂2Ψ

∂r2
= − p2

2me
Ψ

p2 = − h̄2

Ψ

∂2Ψ

∂r2

(2.3)

With the assumption, that the energy of the wave is the sum of its kinetic and potential
energy

(︂
E = p2

2me
+ V

)︂
, the following Schrödinger equation is determined,

ih̄
∂Ψ

∂t
= − h̄2

2me

∂2Ψ

∂r2
+ VΨ. (2.4)

If V = V (r), separation of variables (equation 2.5) is used as an approach to solve equation
2.4. The functions Ψ and Φ are called eigenfunctions. Derivating Ψ lead to equations 2.6.

Ψ (r, t) = Ψ (r)Φ (t) (2.5)

∂Ψ

∂t
= Ψ

dΦ

dt
(2.6)

∂2Ψ

∂r2
=

d2Ψ

dr2
Φ (2.7)

Afterwards, the equation can be transformed into
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ih̄Ψ
dΦ

dt
= − h̄2

2me

d2Ψ

dr2
Φ+ VΨΦ

ih̄
1

Φ

dΦ

dt
= − h̄2

2me

1

Ψ

d2Ψ

dr2
+ V.

(2.8)

There the left side is just depending on t and the right side of r, thus both of them are
constant. Introducing constant E, which is still the energy of the wave, leads to two
equations:

dΦ

dt
= − iE

h̄
Φ

EΨ = − h̄2

2me

d2Ψ

dr2
+ VΨ.

(2.9)

Here, the second one is the time-independent Schrödinger equation and the factor
− h̄2

2me

d2

dr2
+ V = Ĥ is also known as Hamiltonian. The solution of the first equation

is

Φ(t) = e−iE
h̄
t, (2.10)

thus the solution of the Schrödinger equation looks like

Ψ (r, t) = Ψ (r) e−iE
h̄
t. (2.11)

An important fact is the time-dependence of Ψ, while the probability density has just a
dependence on position r (equation 2.12).

|Ψ (r, t) |2 = Ψ∗Ψ = Ψ∗ei
Et
h̄ ·Ψe−iEt

h̄ = |Ψ(r) |2 (2.12)

2.1.2 Wave in infinite potential well

Next step is the solution of the Schrödinger equation in a one dimensional potential well
with infinitely high walls at a distance of a (see figure 2.1). Therefore the function is
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examined step-by-step. Outside the walls the potential V is infinite, so the Ψ(x) is zero.
Inside the well V is zero, hence the time-independent part of equation 2.9 can be written
as

− h̄2

2me

d2Ψ

dx2
= EΨ

d2Ψ

dx2
= −

√
2meE

h̄2
Ψ = −k2Ψ.

(2.13)

This is the equation of the harmonic oscillator and its solution has the structure

Ψ(x) = Aeikx +Be−ikx, (2.14)

Where A and B are constants which satisfy the boundary constraints 2.15. The terms of
equation 2.14 represent two harmonic waves, which spread in opposite directions.

Ψ(x)has to be continuos → Ψ(0) = Ψ (a) = 0 (2.15)

Hence, the first constraint delivers B = −A and A
(︁
eika − e−ika

)︁
= 0. Afterwards the

solution of the second constraint gives two results. The trivial solution, where A = 0 and
the general solution, where ka = 0,±π,±2π,±3π, .... Since eika − e−ika = 2i sin (ika)
and sin (ika) is zero for kn = nπ

a , with n ∈ N. Thus kn is defined, which also gives the
values for E, which are shown in equation 2.16.

En =
h̄2k2n
eme

=
π2h̄2

2mea2
n2 (2.16)

2.1.3 Wave towards finite potential wall

Below, the case of a finite potential wall with height V = V0 is considered. Therefore a
wave is incoming towards the left side of a potenial wall (see figure 2.2). If the energy of
the wave E is larger than the potential V0, there is no distinct solution of equation 2.5
and interferences will be everywhere. In contrast, for E < V0, the incoming wave has
different momentums, for x < 0 it counts p1 = h̄k1 and for x > 0 p2 is presumed to be
h̄k2. The kinetic energy K is also different. While K = p2

2me
= E is presumed for x < 0,

K = p2

2me
= E − V0 is valid for x > 0. Thus,
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Figure 2.1: A one dimensional potential well with infinite high walls is shown.

k1 =

√︃
2meE

h̄2

k2 =

√︃
2me (E − V0)

h̄2
.

(2.17)

As in chapter 2.1.2 Ψ has to be continuous. In addition, also ∂Ψ
∂x has to be continuous,

hence, Ψ(0) = ∂Ψ(0)
∂x . The eigenfunction Ψ for x < 0 consists of two waves, one spreading

wave towards the positive direction of the x-axis and one towards the negative direction
and is considered as reflected wave. Their amplitudes are A1 and A

′
1 and both have the

same momentum p1. However, there is only one transmitted wave in the area x > 0 with
Amplitude A2 and momentum p2. While k1 is always a real number, k2 is imaginary for
V0 > E. Thus the probability density decreases exponentially in this case.
To evaluate the transmission of the system, equation 2.14 is solved with regards to its
constraints. The first constraint delivers ik2A2 = ik1

(︂
A1 −A

′
1

)︂
, while the second one

gives the correlation A2 = A1 + A
′
1. Introducing the reflexion coefficient R and the

transmission coefficient T , transforming the previous relations yield,
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A
′
1

A1
=

k1 − k2
k1 + k2

(2.18)

A2

A1
=

2k1
k1 + k2

(2.19)

R = |A
′
1

A1
|2 (2.20)

T =
k2 + k∗2
2k1

|A2

A1
|2. (2.21)

For R and T the relation R+ T = 1 must be valid.

Figure 2.2: A one dimensional potential wall with finite height V0 is shown.

2.1.4 Electron tunnelling in 1d

After the treatment of finite potential walls, a further expansion of the model to thin
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potential walls is done. The potential wall of chapter 2.1.3 is reduced to a thickness a (see
figure 2.3). Like in the previous chapter Ψ and ∂Ψ

∂x have to be continuous. Eigenfunction
Ψ is defined in sections as,

Ψ1 (x) = A1e
ik1x +A

′
1e

−ik1x for x < 0

Ψ2 (x) = A2e
ik2x +A

′
2e

−ik2x for 0 ≤ x ≤ a

Ψ3 (x) = A3e
ik3x +A

′
3e

−ik3x for x > a.

(2.22)

Since, V (x < 0) = V (x > a) = 0 the wave numbers in section 1 and 3 have to be equal
(k1 = k3). Also, the continuous constraints

Ψ1 (0) = Ψ2 (0)

∂Ψ1 (0)

∂x
=

∂Ψ2 (0)

∂x
Ψ2 (a) = Ψ3 (a)

∂Ψ2 (a)

∂x
=

∂Ψ3 (a)

∂x

(2.23)

have to be satisfied. For an incoming wave from the left side, A1 is arbitrary, while A′
3 = 0

since there is no incoming wave from the right side. These assumptions yield the equations
for the wave vectors

k1 = k3 =

√︃
2meE

h̄2
for x < 0 ∨ x > a

k2 =

√︃
2me (E − V0)

h̄2
for 0 ≤ x ≤ a.

(2.24)

After several transformation with the assumption of E < V0, the reflection coefficient R
and the transmission coefficient T can be calculated with the equations 2.25.

R =
4E (V0 − E)

4E (E − V0)− V 2
0 sinh2

(︂√︁
2me (V0 − E)ah̄

)︂ + 1

T =
4E (E − V0)

4E (E − V0)− V 2
0 sinh2

(︂√︁
2me (V0 − E)ah̄

)︂
T ∼ 16E (V0 − E)

V 2
0

e−2
√︁

2me(V0−E)a
h̄

(2.25)
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Due to clarity issues an example calculation of T is done with the parameters E = 1eV ,
a = 100pm and V0 = 2eV . An electron in this setup has a finite transmission probability
of 0.64. Hence, electrons can pass potential barriers, even if their energy is smaller than
the potential walls energy. Also, for small electron energies, their transmission probability
is decent, if the potential barrier is thin enough [25, 31–34].

Figure 2.3: A one dimensional potential wall with finite heightV0 and thickness a is shown.

2.2 Quantum-mechanical tunnelling effect

2.2.1 Geometrical considerations

After the theoretical discussion of the tunnelling effect, the focus is shifted to its geometrical
properties. As shown in chapter 2.1.4, it is possible for electrons to pass a potential barrier
with higher energy than its own. Since the Schrödinger equation is radially symmetric,
tunnelling is non-directional from a theoretical point of view. This simplifies the geometric
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modelling, since only the shortest distances between inclusions have to be considered.
As shown in the following chapter 2.3, the percolation models predict the same, due to
the expectation, that the conduction between nearest neighbours will be the dominant
contribution to the local conductivity of the composite.
Another important factor on the tunnelling possibility is the potential barrier height, which
depends on the shape of the potential well along the tunnelling junction. External electric
fields change this shape since they decrease the potential barrier in potential direction
and and increase it in the opposite direction. In figure 2.4 the change of the Coulomb
potential well due to a strong external field is shown schematically. There, the potential
energy V0 is named as Eb and the tunnelling distance L is the difference between position
X2 and X1 [35]. The change is directly influenced by the potential difference. This effect
is utilised at the excitation of matter with LASERS [36, 37] or in the field emission gun
in scanning electron microscopes [38–40]. Nevertheless, it is neglected in percolation
models, since the spatial dependence is considered to be the dominant factor (see also
??).

Figure 2.4: Schematic diagram of bending a Coulomb potential well by a strong external
field [35].

15



2.2.2 Tunnelling at metal-semiconductor interfaces - Schottky contact

In the following chapter, the shape of the potential wall in the present microstructure
is discussed. Therefore the band diagrams of metals and n-doped semiconductors are
investigated (see figure 2.5). As shown there, the band structure of metals is quite simply.
Their conduction and valance band overlap, hence the Fermi energy EF,M is equal to
the highest occupied state at a temperature of 0 K. To ionize the metal, the energy of
an electron has to be increased up to the vacuum energy Evac. Also, the work function
φ, ionisation energy IP ] and electron affinity χ are equal. In contrast, the conduction
and valance band of a semiconductor do not overlap. Therefore there are no possible
states in a distinct energy region. This energy region reaches from the highest occupied
state in the valance band (HOMO) with energy EV B, to the lowest unoccupied state
in the conduction band (LUMO) with energy ECB. The energy difference of HOMO
and LUMO is also known as bandgap Eg = ECB −EV B. On the right side of figure 2.5
an n-doped semiconductor is shown. N-doped semiconductor are doped with donators,
which increase the number of valence electrons. For a silicon semiconductor, phosphor
can be used as a donator, because this element has five valence electrons instead of the
four silicon valence electrons. But also dangling bonds, surface states (due to breaking
the crystal symmetry or absorbed species), adsorbed species and coatings lead to a local
change of a semiconductors bandstructure. Like doping, it influences the position of the
semiconductors Fermi energy EF,SC . In case of an undoped semiconductor EF,SC is in
the middle of the bandgap, thus EF,SC = EV B +

Eg

2 . This is also valid for a n-doped
semiconductor at T = 0 K. For increasing temperatures EF,SC shifts to higher energies,
depending on the donator concentration ND. Furthermore, φ, χ and IP are not equal.
Nevertheless, they can be calculated with the equations 2.26. [41]

φ = Evac − EF,SC (2.26)
χ = Evac − ECB (2.27)
IP = Evac − EV B (2.28)

The connection of metal with an n-doped semiconductor occurs in four steps. Before
contact, their energies have their material-dependent values. If the metal is connected to
the semiconductor, as first step their Fermi energies are adapted, which means there is an
electron exchange. This leads to a difference of the vacuum energies, which has the value
eVd,n and is shown on the top right of figure 2.6. Afterwards, the vacuum energies Evac

are aligned, which leads to a difference in the Fermi energies, which is called ΦB,n. From
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(a) metal (b) n-doped semiconductor

Figure 2.5: The figure shows typical band diagrams of a metal and a n-doped semicon-
ductor.

now on Evac of the semiconductor and the energies ECB and EV B have defined values
at the interface. As the last step, the Fermi energies are adjusted by electron exchange
between the materials. This leads to band bending in the semiconductor. The depleted
area in the semiconductor, with thickness W , is called space charge layer (see figures 2.5
and 2.6). [41]
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(a) before contact (b) adjustment of EF

(c) adjustment of Evac (d) contact

Figure 2.6: The adjustment of energies while the connection of a n-doped semiconductor
with a metal is shown.
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2.3 Percolation model for continuum

According to Aharony et al. and Johner et al.[14, 42] the electric properties of an disordered
conductor-insulator composite switch from insulating to conducting, as soon as at least one
macroscopic path of charge carriers spans the whole sample. This percolation paths can be
arranged as direct or indirect connections. Whereat overlap of inclusions is considered as
direct and quantum mechanical tunnelling connections as indirect contact. For inclusions
of the same size, the percolation threshold ηc, so the critical density of inclusions at
which 50% of comparable microstructures have at least one percolation path, decreases
heavily, if tunnelling occurs. As an example, for a microstructure with almost every particle
connected via tunnelling ηc is around 0.34. Whereas for microstructures with only direct
connections ηc rises to 0.45 [14].

2.3.1 Transport exponents

As investigated in several publications [14, 43–45], the macroscopic conductance G of a
direct-contact composite follows the power-law behaviour

G = G0 (x− xc)
t (2.29)

with G0 as proportionality constant, x as the concentration of the conducting phase, xc as
the volume concentration at the percolation threshold and transport critical exponent t
[14]. For concentrations near the critical concentration, so x− xc∥|1, t is almost universal,
with t = t0 ∼ 2.0. As shown in [45] this universal value hold true for real systems,
where t varies in the range of 1.5 up to 11. There were several approaches to explain this
behaviour and also consider it in numerical simulations [14, 42, 46–49]. The publications
agree that nonuniversality stems mainly from inclusion distribution differences. They
establish particle and conductivity distribution functions P (r) and h (σ) (see eq. 2.30),
where r is the distance between the inclusion midpoints. In equation 2.30 the mean
distance between particles a and the tunnelling decay factor ξ are used to calculate the
proportionality factor α (eq. 2.31).

P (r) ∼ exp
(︂
−r

a

)︂
h (σ) ∼ σ−α

(2.30)
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α = 1− ξ

2a
(2.31)

As shown by Kogut et al. [46] via effective medium approximation and later by Stenull et
al. [48], the explicit form of the transport exponent looks like:

t =

⎧⎨⎩
t0 for ν + 1

1−α ≤ t0 (2.32)

ν +
1

1− α
for ν + 1

1−α > t0, (2.33)

with ν ∼ 0.88 as correlation length exponent [14, 42]. Johner et al. also verified the
governance for both overlapping and nonoverlapping spheres, as both kind of systems show
universal behaviour close to the percolation threshold and a concentration dependant
transport exponent t (x) for concentrations away from the percolation threshold xc.

2.3.2 Applied percolation model

As indicated several times the percolation model applied in this work is based on the
model presented by Johner et al. [14]. Microstructures in the present work consist of an
insulating matrix material and high-conducting spherical inclusions. The spheres are semi-
penetrable, which means they have an impenetrable core and a penetrable concentric shell.
Φ is defined as core diameter, while the shell thickness is given by R

2 , where R represents
the cut-off radius. R is introduced to reduce the considered tunnelling connections of
the microstructure, since the transmission probability T decreases rapidly with increasing
distance between the spheres. Thus, spheres are only connected via tunnelling, if their
shells overlap (see figure 2.7). The interparticle conduction σ (r) is given by equation
2.34. Where σ0 represents the contact conductance and ξ the characteristic tunnelling
distance (also tunnelling decay length).

σ (r) = σ0 · e−
2(r−Φ)

ξ (2.34)

ξ =
h̄√

2me∆E
(2.35)

Especially in older percolation models, the energy dependence of tunnelling is completely
neglected and σ0 and ξ are only used as fitting parameters (see [14, 26, 44, 49]). In
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Figure 2.7: A two-dimensional visualization of semi-penetrable spheres is shown, where
the solid lines visualize the impenetrable core and the dash lines the penetrable
shell. If two shells overlap, tunnelling is applied.

contrast Li et al. [15] and furthermore Hu et al., Bao et al. and Kale et al. improved the
accuracy of equation 2.34 by deriving both parameters from quantum mechanics (see
2.1.4) [22, 25, 32]. Nevertheless, only the expression for the characteristic tunnelling
length ξ is used in the present work (eq. 2.35, with electron mass me and potential
barrier height ∆E). The reason for this is difficult approximation for σ0. Since for the
transformation of the contact resistance Rcontact into a conductivity a minimum length
between two particles is necessary. The approximation of this length is difficult since there
are no known investigations about the inclusion materials behaviour in the used matrix
material. For instance passivation layers or electrostatic interactions between the particles
will have a huge influence on the minimal distance. Therefore σ0 is a fixed value in the
following calculations.
It is worth emphasising the importance of the cut-off radius R, which directly influences
the appearance of a tunnelling flux between two particles (see eq. 2.37).

σ (r) =

⎧⎨⎩σ0exp

(︃
−2 (r − Φ)

ξ

)︃
for (r − Φ) ≤ R (2.36)

0 for (r − Φ) > R (2.37)
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For the analysis of different microstructures an already mentioned parameter, called
density η is introduced. η is a dimensionless quantity, which describes the volume fraction
of the inclusion material and its shells. Therefore the number density ρ = N

V , with particle
number N and composite volume V is used to calculate η (eq. 2.38). Since the tunnelling
conduction is ruled by the overlap of the penetrable shells, obviously the volume of both
parts of the inclusions have to be considered.

η = ρ
π

6
(Φ +R)3 (2.38)

Also, the volume concentration x is calculated with ρ and core radius Φ (eq. 2.39). This
leads to a relation between η and x, where a penetrability coefficient λ is introduced (eq.
2.40). [14]

x =
ρπΦ3

6
(2.39)

x = λ3η (2.40)

λ =
Φ

Φ+R
(2.41)

Furthermore, the spanning probability is introduced, which represents the probability
that a percolation path occurs for an arbitrary number of likewise microstructures. Since
they are used later, a fitting function for spanning probability-η graphs (eq. 2.42) with
two fitting parameters ηc (L) and ∆(L) is established, where L is the length of the system.
For the critical density of a finite system ηc (L) and the width of the percolation threshold
∆(L) the scaling relations 2.43 are valid, where ηc is the critical density for an infinite
system and ν the correlation length exponent. [14, 42, 50]

1

2

(︃
1 + tanh

[︃
η − ηc (L)

∆ (L)

]︃)︃
(2.42)

ηc (L)− ηc ∝ L− 1
ν (2.43)

∆(L) ∝ L− 1
ν (2.44)
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2.3.3 Further percolation models

In addition to the previously presented models, there are several other approaches in
literature, which won’t be discussed here. Nevertheless, the author want to point out
another common approach, which is based on Kirchhoff’s current law. This model is
often used in microstructures with inclusions with high aspect ratios, for example carbon
nanotubes. Further insight give the publications of Hu et al. [32] and Kogut et al. [46].
Also the temperature dependence of the tunnelling process are investigated in [51–54],
but will be neglected in this work, since the temperature for the examines microstructures
is constant.
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3 Documentation of the implemented model

In this chapter an overview of the written code and thus the implemented model is given.
Several programs were used. First of all a Python code is used for automatic geometry-
and input-file generation. The geometry-file is written for execution with the open sourece
software GMSH, which is used to generate a mesh-file [55]. The finite element analysis is
done with the open source software Multiphysics Object-Orientated Simulation Environ-
ment, short MOOSE [56, 57]. In the following, a description of the geometry and mesh
generation, as well as a description of the MOOSE user element is given. Also, an insight
on the applied homogenization method and a description of the spanning probability
calculation is given.

3.1 Geometry and mesh generation

At first, the microstructure has to be generated this is done by using the software GMSH.
Also, the mesh generation is done with GMSH. To get to this point a ”.geo” file has to be
written. This is done with a Python script to automate the microstructure generation and
obtain flexibility for distinct parameters like the number of particles or their radius. In
the following, the algorithm for the microstructure generation is elucidated and also the
mesh generation within GMSH is clarified.

3.1.1 Geometry generation

As explained in the previous paragraph, the microstructure generation is done by executing
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a Python script. In this section, its structure and the used functions are explained. To
improve the clarity of the algorithm, the code is shown in as a flow chart in figure 3.1.
The microstructure itself shall be a composite with randomly and uniformly distributed
spherical inclusions. Unfortunately, the microstructure generation with thin cuboids as
inclusions, does not work fully. Since there is still an overlap between some particles, the
geometry can not be meshed with GMSH. Even though, the microstructures would still
represent real physical systems.

Due to the parametrised functions used in the script “generation_geo_input.py”, some
global defined parameters have to be introduced. At first, the geometrical parameters
are defined. Starting with the relation between radius and bounding box length rPhiL
and number of particles number, it has to be decided which kind of inclusions should be
implemented. As mentioned before the options are “spheres” or “flakes”, for the latter
one, thin cuboids will be implemented. Afterwards, the radius of the “spheres” and length,
width and height of the “flakes” have to be given. Notice, if the influence of the particle
shape should be investigated, the radius of the sphere should be dependent on the cuboids
geometrical parameters to ensure a better comparability. It is recommended the fit the
radius in such a way, that both inclusions have the same volume. Furthermore cut-off
radius (dependent on desired λ value), tunnelling decay length (material-dependent),
radius of the tunnelling surfaces (will be explained in section ??), potential direction and
the material conductivities have to be defined.
The actual calculations start with the generation of a microstructure with number of
inclusions (see 3.1). Here, the overlap with other inclusions is not allowed, so if the core
of one particle intersect with the core of another one, new coordinates are generated. For
coordinate generation in each direction, the “numpy.random.uniform()” function of the
Python fundamental package NumPy is used. As soon as the positions of all inclusions are
calculated, the GMSH command instructions for the generation of the bounding box and
the inclusions are saved. In the next step the distance between each particle combination
and also between top and bottom surface (for potential in z-direction) are calculated and
evaluated, if tunnelling can occur. Therefore the distance is evaluated with the help of
the cut-off radius. This geometrical evaluation follows the constraints of equation 2.37.
In the next step, the positions of tunnelling surfaces are calculated. This is necessary,
since MOOSE does not provide a connection mechanism for nodes, which are not nearest
neighbours of each other. Such an mechanism only exists for surfaces. It is called Ther-
malContact. Ss mentioned before, GMSH does not allow and overlap between surfaces,
thus the tunnelling surfaces have to be shifted towards the midpoint of the corresponding
inclusion. Therefore, the distance between actual tunnelling point and midpoint is scaled
with an factor of 0.90. This ensures both, the ability to mesh the geometry and maintaining
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physical reasonability, since the potential is almost constant inside a particle, due to its
large conductivity. Before the tunnelling surface and volume command instructions for
GMSH can be saved, the tunnelling surfaces have to be embedded in the corresponding
inclusions, to ensure connection between them, also inside the mesh. Otherwise, MOOSE
might not find them. These steps are followed by the determination of so called physical
entities, this is an option of GMSH to assign different parts of the geometry distinct enti-
ties, which will also be saved in the mesh. This enables the possibility to assign distinct
geometrical features, like surfaces or volumes, different properties. As last steps, the
characteristic lengths, which are important for meshing the geometry, are defined and
the gap conductivities for each tunnelling junction are calculated, before the “.geo”- and
“tunnellingList.txt”-file are written.
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Figure 3.1: The flow chart of the geometry generation is shown.
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3.1.2 Mesh generation

After the visualisation of the geometry in GMSH, a three-dimensional mesh is generated.
In GMSH the maximum element sizes are defined via the vertices of a geometrical object.
For the examine geometries, the vertices can be classified into three groups: vertices of
the bounding box, vertices of inclusions and vertices of tunnelling surfaces. To handle
the compromise between an as fine mesh as possible and reasonable computation times,
each group of vertices get their own maximum element size. These maximum element
sizes are globally defined in the ‘.geo”-file, after they were calculated with the Python
script. The element sizes are parametrized and depend either on the bounding box length
L, the inclusions radius or the radius of the tunnelling surfaces. The mesh is saved as a
“.msh”-file, which will be used for the finite element calculation.

3.2 Input-file generation and MOOSE user element

In this section the input-file generation is shown. Like the geometry-file, the input-file
is written with a Python algorithm. Therefore general MOOSE options have to be given
in the master Python script and as a second source the file “tunnellingList.txt” needs to
be imported. “tunnellingList.txt” contains all information about physical entities in the
mesh and gap conductivities of each tunnelling junction. As shown in figure 3.2, these
information are used to write all mandatory blocks of the input-file for MOOSE. This
means the blocks “Mesh”, “Variables”, “Kernels”, boundary conditions “BCs”, “Materials”,
“Executioner” and “Outputs” are written. While most of the blocks are self-explanatory, the
block “Kernels” might not. In this block “pieces” of the regarded physics are implemented,
which means operators or terms in the weak forms of partial differential equations [56]. In
the input files generated with this algorithm simple “HeatConduction” is implemented as
diffusion equation. Also Dirichlet boundary conditions are chosen for the top and bottom
surface (z-direction) of the examined microstructures. An unit potential is applied, which
means the “Variable” pot = 1 at the top and 0 at the bottom surface. Also, only steady-
state simulations are done. After the mandatory blocks, the optional blocks are written, if
they are selected. Blocks which are not necessary to execute the input-file, but might be
needed to investigate a physical phenomena completely, are “AuxVariables”, “AuxKernels”,

28



“ThermalContact”, “Preconditioner” and “Postprocessor”. Here, the first two blocks are
used to calculate the current density inside the material, while “ThermalContact” is used
to enable electric conduction between two tunnelling surfaces. Therefore, MOOSE applies
a flux between the two boundaries. In terms of tunnelling, the given gap conductivity is
used to calculate the flux. As long as the emissivity parameters are 0 there are no losses.
Also, a “Postprocessor” is applied to calculate the effective conductivity (see 3.3) and a
“Preconditioner” to improve the convergence behaviour of the calculations. Afterwards,
the Python script writes an input-file, which can be executed by MOOSE.
An important note is the fact, that the calculations for microstructure with η < ηc do not
converge, regardless of which executioner and preconditioner is used. This problem could
not be solved, but reduced to its origin, in time. It seems, that the conductivity difference
of matrix and inclusion material (magnitude ∼ 1021) is to large for microstructures, where
the effective conductivity of the composite is dominated by the insulating behaviour of the
matrix material. As soon as tunnelling is the dominant conduction process or the conduc-
tivity difference is reduced, the calculations for the exact same microstructures converge.
A solution for future calculations with this algorithm might be the implementation of a
hand-coded Jacobian matrix.

3.3 Homogenization

In this section a short insight to the homogenization method for the effective conductivity
σeff calculation is given. It should be mentioned, that in this work only the effective
conductivity in potential direction (z-direction) is considered, since only the conductivity
between the contact surfaces matters.
The homogenization is implemented via “Postprocessor” in the input-file. Therefore the
already implemented “HomogenizedThermalConductivity” postprocessor of MOOSE was
adjusted by the supervisor of this work Mr. Binbin Lin. The given homogenization method
is based on the “asymptotic expansion homogenization” model of Hales et al.. They ho-
mogenize a material quantity ue, whose material behaviour follows the partial differential
equation 3.1, by homogenizing the material property aij via an asymptotic expansion of
quantity ue (see eq. 3.2). Where x represent macroscale and y mesoscale information.
The homogenized material property aHij can then be calculated with equation 3.3. [58]
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Figure 3.2: The flow chart of the input file generation is shown.

∂

∂xej

(︄
aij

∂

∂xej

)︄
ue = f (3.1)

ue = u(0) (x, y) + ϵu(1) (x, y) + ϵ2u(2) (x, y) + ... (3.2)

aHij =
1

|Y |

∫︂
Y

(︃
aij + aij

∂χk

∂yi

)︃
dy (3.3)

Mr. Binbin Lin transformed this approach into a direct homogenization approach by
eliminating the additional consideration of aij in equation 3.3, which leads to following
equation, whose used in the present work,
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aHij =
1

|Y |

∫︂
Y

(︃
aij

∂χk

∂yi

)︃
dy. (3.4)

For the diffusion case aHij equates the effective current density Jeff . And, as shown in
Awarke et al. σeff can be calculated by considering the microstructure length L and the
potential difference ∆V , which is 1 in the present work. This leads to equation 3.5. [51]

σeff = Jeff
L

∆V
(3.5)

3.4 Calculation spanning probability

Below a description of the Python code for the spanning probability calculation is given.
As it is shown in figure 3.3, several parameters have to be given, before the script can be
executed. Similar to the geometry generation, the geometric dimensions of the microstruc-
ture, the cut-off radius and the number of inclusions have to be given. Until now, only
the spanning probability of microstructures with spherical inclusions can be calculated.
Depending on how precise the calculation should be, the number of iterations has to be
given. Since it is a statistical approach, the higher the number of iterations, the higher
the precision of the calculated value. Important to mention, that the calculation of η is
dependent on λ, so the corresponding calculation, has to be edited, if λ ̸= 1

2 .
The first few steps of the spanning probability calculation are equal to the geometry
genration, where particles are added until the desired particle number is reached and non
of their cores overlap. Afterwards, the distance between the spheres is calculated and
evaluated in terms of tunnelling, the result is written to a list. This list (“interactionList”)
is evaluated in terms of the connections between the spheres and also the contact surfaces.
If there is at least one percolation path (connection of top and bottom surface), the variable
“numPaths” is increased by 1 (start value is 0). As soon as the desired number of iterations
is reached, the spanning probability is calculate with equation 3.6.

spanningprobabiliy (η, L) =
numPaths

numberofiterations
(3.6)
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Figure 3.3: The flow chart of the spanning probability calculation is shown.
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4 Results

In the following, the results of the geometry generation verification and effective conduc-
tivity calculation are presented.
At first an overview of the used parameters and its values is given in table 4.1. The
core radius Φ is randomly defined, just to verify the implemented model. The charac-
teristic tunnelling distance ξ is calculated with equation 2.35, with ∆E = 1.72 eV as it
can be determined via the electron affinity rule 4.1 [41]. Due to electron affinities of
graphite χI = 4.5 eV [59, 60] and PEI χM = 2.78 eV [61, 62]. In addition the contact
conductance σ0 is fixed at a value of 1.0 · 106, which is the order of magnitude of the
inclusion conductivity, but is most likely several orders of magnitude above its real value.
This is done, regardless the consequence that a quantitative analysis of the effective con-
ductivity is not possible anymore. However, such an analysis would have been difficult
despite the determination of σ0, since there are no literature values for this material-
particle shape combination. Davidson et al., who used the same material combination and
whose publication [63] is an origin of this work, have thin graphite flakes and graphene
nanosheets as inclusions. Since these inclusions have a complete different aspect-ratio
and different percolation behaviour, the values of Davidson et al. can not be used as
reference data. Nevertheless, a qualitative analysis is still possible. Therefore, the value
of σ0 is set as large as possible, to investigate the maximal influence of the tunnelling effect.

∆E = χI − χM (4.1)
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Table 4.1: Geometric and material parameters for calculations in the present work (t.b.d.
= to be determined).

variable meaning value
Φ spheres core radius 1.0 nm

R cut-off radius (2Φ)

ξ characteristic tunnelling distance 0.15 nm

L length of bounding box rΦL · Φ
rΦL relation core radius and box length (10, 15, 20, 30)

λ penetrability coefficient Φ
Φ+R = 1

2

η inclusion density eq. 2.38
ηc critical inclusion density of infinite system t.b.d.

ηc (L) critical inclusion density of finite system t.b.d.
x volume concentration eq. 2.39
xc critical volume concentration t.b.d.
σM matrix conductivity 1.0 · 10−15 S

m [64, 65]
σI inclusion conductivity 3.0 · 106 S

m [66]
σ0 contact conductivity 1.0 · 106 S

m

σeff effective conductivity t.b.d.

4.1 Verification of geometry generation

In order to review the geometry generation and to evaluate the generated microstructures,
the same steps as done by Johner et al. in [14] are applied to the present algorithm. Since
both generation procedures only vary by the used software, a coincidence is expected.
As shown in section 3.4, spherical particles are uniformly distributed inside a bounding
box, as long as they do not overlap. Afterwards, the distance between them is evaluated
and it is decided whether tunnelling occurs. Concluding a percolation path analysis is
done and the spanning probability is calculated. This was done for four different radius-
microstructure length relations, with rΦL = (10, 15, 20, 30). For rΦL = 10 the number of
iterations was 10000, for the other three evaluations, only 1000 iterations were done. The
resulting spanning probabilities for different particle densities η and the corresponding
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fitting curves (following equation 2.42 are shown in figure 4.1. The spanning probabilities
clearly show the expected behaviour, as the increase with increasing η. Also, the fitting
functions, with their fitting parameters listed in table 4.2, approximate the probabilities
well. However the approximation of spanning probabilities for small systems and small
densities is poor, especially for L

Φ = 10. In addition and contrast to the results of Johner et
al., the critical densities are shifted towards lower values. The functions and critical values
of L

Φ = 30 of the present work and L
Φ = 15 of Johner et al. should coincide (consider the

different meaning of Φ in [14]). However there is a shift of ηc of about 5% towards lower
values in the present work. As reason for this purpose the distribution functions of the
particles should be considered. Also, the algorithms distributes the particles uniformly in
the present work, the coordinates of a possible new particle are overwritten as soon as an
overlap occurs. This leads to a change in the distribution function. In contrast Johner et al.
apply an additional Metropolis algorithm to relax the system and ensure uniform particle
distribution. Hence, their critical density for infinite systems matches the theoretical value
of 0.342 [14, 44, 67]. ηc of the present work is determined by the analysis of the fitting
parameters along the equations 2.43.

Figure 4.1: The spanning probabilities for different Φ-L relations and their corresponding
fitting functions are shown.

As shown in figure 4.2 the length-independent critical density is fitted to 0.2572, which is
about 8% smaller than the literature value. Despite this the correlation length exponent
ν, which is the negative inverse of the gradient in figure 4.2B, coincide almost perfectly
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Table 4.2: Fitting parameters of fitting functions for the corresponding spanning proba-
bilities.

rΦL 10 15 20 30
ηc (L) 0.395 0.347 0.325 0.313
∆L 0.177 0.098 0.068 0.044

with the literature value of 0.88 [14, 50]. This leads to the result, that, even though
the uniform particle distribution might not given, the algorithm is still able to generate
microstructures with physically reasonable behaviour. The disturbed distribution has an
higher impact on microstructures with low particle densities, since percolation paths are
unlikely to occur in this density range. If the disturbance leads to an inhomogeneous
distribution and clustering, percolation paths occur. Therefore the spanning probability
for lower densities is increased, the length-dependent critical density ηc (L) is reached for
lower densities and leads to a shift in figure 4.1. In the following calculations the critical
particle density ηc is considered to be 0.2572, since this is the predicted value for present
microstructures.

(a) A (b) B

Figure 4.2: Evaluation of ηc and correlation length exponent ν with equations 2.43, yields
values of 0.2572 and 0.89, respectively.
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4.2 Analysis of potential and current density distributions

In this section the potential and current density distributions of microstructure with differ-
ent lengths and particle densities are evaluated regarding physical plausibility. At first the
used meshes are presented in figures 4.3. As shown there, the mesh of the matrix material
is almost regular, if no inclusion is close. Is this the case the mesh is locally refined to
ensure a high quality of the results.

(a) front (b) top

Figure 4.3: Representative meshes as front and top view.

As a next step the potential distribution inside microstructures with and without perco-
lation paths are investigated. Representative microstructures are shown in figures 4.4.
While the potential in spheres without connection to the top surface, remains 0, it changes
for the other ones. If there is no percolation path the potential inside the spheres increases
up to the applied value on the top contact surface. From a physical point of view, the
electrons can move into the connected spheres, but not any further, since the matrix
material is completely insulating. Also, particles with no connection to the top surface are
isolated. If there is a percolation path, the distribution changes. The potential inside the
connected spheres changes linearly with their position inside the microstructure. This
is expected, since it coincide with the potential distribution for a physical connected,
conducting material.
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(a) without percolation path (b) with percolation path

Figure 4.4: Potential distribution in representative microstructures with no percolation
path (left) and with percolation path (right).

The most significance for the quality of the physical behaviour of the generate microstruc-
ture has the current density or flux distribution. Any non-physical behaviour would be
visible. For better visualisation of crucial behaviour easier comparison of the different
microstructures, the visualization of the current densities is limited to the range of −1 to
1. Thus, any essential fluxes in positive z-direction are marked red and essential fluxes
in negative z-direction in blue. As it is visible in the flux distribution for microstructure
without percolation path (figure 4.5 left) the flux in almost every sphere is around 0. Some
areas inside the isolated particles (see figure 4.4) show high fluxes in both directions.
These are numerical errors which can be ignored, since they cancel each other out. The
non-isolated sphere at the top shows a similar distribution. Also, this makes physically
sense, since a flux inside the sphere is applied, but no flux out of the sphere. Hence,
the simulation software tries to homogenize the potential inside the sphere and the flux
seems anisotropic, as seen here. In contrast, the flux distribution for a microstructure
with percolation path is directional. The current density inside the inclusions is directed
towards the bottom, as it is expected. Even though, there are some areas with strong fluxes
in positive z-direction, they can be explained by the relative position of the tunnelling
surfaces inside the inclusions and the relative orientation of the spheres. Since the tun-
nelling surfaces are shifted towards the spheres midpoints, there is some high conducting
material between the tunnelling and the particle surface. As the ThermalContactAction
connects only the tunnelling surfaces, electrons tunnel inside the particles and diffuse in
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the surrounding material. Therefore in areas positioned above a tunnelling surface fluxes
in positive z-direction occur.
Figures 4.6 assist this explanation, since the glyphs (direction of the flux) mainly point
towards the negative z-direction and most of the glyphs in positive direction point in a
circular way. Which indicates, that these areas are just “filled” with electrons, since there
is a potential difference between the lower tunnelling surface and the higher positioned
surround material.
Even though, the current density inside the matrix seemed equals 0, it is actually not.
Since the matrix material has a finite conductivity, also the current density is finite (see
figure 4.6 right).

(a) without percolation path (b) with percolation path

Figure 4.5: Current density distribution in representative microstructures with no percola-
tion path (left) and with percolation path (right).
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(a) flux direction inclusions (b) flux direction matrix

Figure 4.6: Current density direction in a microstructures with percolation path inside
inclusions (left) and inside the matrix material (right).

4.3 Effective conductivities

In this section the calculated effective conductivities are presented.
Since only simulations of microstructures with densities close to or higher than the perco-
lation threshold converge and GMSH is not able to mesh geometries with more than 250
tunnelling junctions (the amount of geometrical entities might be to high), the amount
of simulation data is low. Only the results of simulations for Φ-L relation of 10 and 20,
can be evaluated. In figure 4.7 the mean values of effective conductivities relative to
their particle densities are plotted. In addition the matrix and inclusion conductivities
σM and σI are shown. Starting at the critical percolation threshold ηc, the effective
conductivities increase drastically with increasing density, until they reach a saturation
value two order of magnitudes lower than σI . The same behaviour observed Ambrosetti
et al., which is another indicator that the implemented algorithm is able to investigate
composite microstructures [26].
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Figure 4.7: Themean values of effective conductivities for differentΦ-L ratios and particle
densities is shown.
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5 Conclusion

As a conclusion, the present work presented an approach to implement quantum mechan-
ical tunnelling into finite element simulation. While the functionality of the algorithm
was proven, there are still options for optimization to increase the value of this user
element. Especially, the choice of the software GMSH limited its potential, since it was
not possible to mesh and subsequently calculate larger microstructures or systems with a
large number of inclusions. Also overlapping particles can not be meshed, which prohibits
the investigation of thin, cuboidal inclusions.
As soon as the particle distribution algorithm is optimized, it should also be possible to
calculate microstructures with an exact uniform distribution. As shown, microstructures
with non-uniformly distributed particles can already be investigated and lead to physical
reasonable results, since it was shown, that the determining correlation length exponent
ν matched the literature values.
In addition, a homogenization technique to calculate effective conductivities was success-
fully implemented and lead to precise and meaningful results.
Microstructures with different particle shapes should able to investigate, since the distance
calculation algorithm, even for complex shapes already exists.
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