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— Johann Sebastian Bach

„ Jede Idee entsteht im Dialog.“

— Nikolaus Harnoncourt





KURZFAS SUNG

Diese Dissertation befasst sich mit der stochastischen Modellierung schaltender biologischer
Systeme und der Entwicklung entsprechender Inferenzalgorithmen. Ausgehend von der großen
Vielfalt der Mess- und Simulationsmethoden, die zur Analyse solcher Systeme zur Anwendung
kommen, werden sowohl zeitkontinuierliche als auch zeitdiskrete Modellierungsansätze verfolgt.
Weiterhin werden einerseits hybride, kontinuierlich-diskrete, andererseits rein diskrete latente Zu-
standsräume betrachtet. Für die Zeitdynamik der betrachteten Systeme sowie für ihre Parameter
werden Bayes’sche Inferenzmethoden entwickelt: Ausgehend von der exakten Modellformulie-
rung werden jeweils Approximationen abgeleitet, die zu rechnerisch handhabbaren Algorithmen
führen. Diese Approximationen basieren entweder auf Sampling- oder auf Variationsprinzipien.
Die so formulierten Algorithmen werden dann sowohl unter der jeweiligen Modellannahme
getestet wie auch nachfolgend auf bekannte Benchmarkprobleme und experimentalbiologische
Daten angewandt. Die Arbeit gliedert sich dabei in drei wissenschaftliche Beiträge:

Erstens wird eine Markov chain Monte Carlo-Methode für zeitkontinuierliche Prozesse mit
hybridem Zustandsraum vorstellt. Diese Hybridprozesse werden als Markov-schaltende stochas-
tische Differentialgleichungen formuliert, für die eine exakte Evolutionsgleichung hergeleitet
werden kann. Um daraus eine rechnerisch handhabbare Inferenzmethode zu entwickeln, wird
ein Gibbs sampling-Ansatz verwendet, der es erlaubt, sowohl die Zustandsdynamik wie auch die
Systemparameter abzuschätzen. Dieser Ansatz wird dann unter der Modellannahme validiert
und auf biologische Echtdaten eines genetischen Schaltexperimentes angewendet.

Zweitens wird ein Variationsansatz für das gleiche Problem hergeleitet, um die für die Inferenz
nötigen Rechenlaufzeiten zu verkürzen. Dazu wird zunächst die Kullback-Leibler-Divergenz
zwischen zwei echten schaltenden stochastischen Differentialgleichungen hergeleitet. Das Va-
riationsmaß wird dann als Mischverteilung von Gaußprozessen formuliert, die eine schaltende
stochastische Differentialgleichung approximiert, und es wird gezeigt, in welchem Regime diese
Näherung Gültigkeit hat. Schließlich wird der Variationsansatz auf den gleichen synthetischen
Daten wie die Samplingmethode getestet und auf Modellsysteme aus der rechnergestützten
Strukturbiologie angewandt.

Drittens wird ein nichtparametrischer Inferenzalgorithmus für den Konformationswechsel von
Molekülen vorgestellt. Hier wird ein rein diskretwertiger latenter Zustandsraum zugrunde gelegt,
wobei jeder latente Zustand einer Molekülstruktur entspricht. Unter der erneuten Verwendung
von Variationsprinzipien wird eine Approximation vorgestellt, um die Anzahl latenter Kon-
formationen aus Daten zu schätzen. Diese Methode verallgemeinert den Ansatz des Markov
state modeling, der seit geraumer Zeit in der rechnergestützten Strukturbiologie etabliert ist.
Dazu wird ein Observationsmodell eingeführt, das für strukturelle Moleküldaten besonders
gut geeignet ist. Um den Inferenzalgorithmus praktisch berechenbar zu machen, wird an dieser
Stelle eine zweite Approximation vorgenommen. Schließlich wird auch dieser Ansatz sowohl
unter der Modellannahme validiert als auch für bekannte Probleme aus der Strukturbiologie
verwendet.
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ABSTRACT

This thesis is concerned with the stochastic modeling of and inference for switching biologi-
cal systems. Motivated by the great variety of data obtainable from such systems by wet-lab
experiments or computer simulations, continuous-time as well as discrete-time frameworks are
devised. Similarly, different latent state-space configurations - both hybrid continuous-discrete
and purely discrete state spaces - are considered. These models enable Bayesian inferences about
the temporal system dynamics as well as the respective parameters. Starting with the exact model
formulations, principled approximations are derived using sampling and variational techniques,
enabling computationally tractable algorithms. The resulting frameworks are evaluated under
the modeling assumption and subsequently applied to common benchmark problems and
real-world biological data. These developments are divided into three scientific contributions:

First, a Markov chain Monte Carlo method for continuous-time and continuous-discrete
state-space hybrid processes is derived. These hybrid processes are formulated as Markov-
switching stochastic differential equations, for which the exact evolution equation is also pre-
sented. A Gibbs sampling scheme is then derived which enables tractable inference both for the
system dynamics and the system parameters. This approach is validated under the modeling
assumption as well as applied to data from a wet-lab gene-switching experiment.

Second, a variational approach to the same problem is taken to speed up the inference procedure.
To this end, a mixture of Gaussian processes serves as the variational measure. The method is
derived starting from the Kullback-Leibler divergence between two true switching stochastic
differential equations, and it is shown in which regime the Gaussian mixture approximation is
valid. It is then benchmarked on the same ground-truth data as the Gibbs sampler and applied
to model systems from computational structural biology.

Third, a nonparametric inference framework is laid out for conformational molecule switching.
Here, a purely discrete latent state space is assumed, where each latent state corresponds to one
molecular structure. Utilizing variational techniques again, a method is presented to identify
the number of conformations present in the data. This method generalizes the framework of
Markov state models, which is well-established in the field of computational structural biology.
An observation likelihood model tailored to structural molecule data is introduced, along with
an suitable approximation enabling tractable inference. This framework, too, is first evaluated
on data generated under the model assumption and then applied to common problems in the
field.

vii





PUBL ICAT IONS

The following manuscripts were published during the period of the doctoral candidacy:

[1] L. Köhs, B. Alt, and H. Koeppl, “Markov chain Monte Carlo for continuous-time switch-
ing dynamical systems”, Proceedings of the 39th International Conference on Machine
Learning, vol. 162, pp. 11 430–11 454, 2022

[2] L. Köhs, B. Alt, and H. Koeppl, “Variational inference for continuous-time switching
dynamical systems”, Advances in Neural Information Processing Systems, vol. 34, 2021

[3] L. Köhs, K. Kukovetz, O. Rauh, and H. Koeppl, “Nonparametric Bayesian inference for
meta-stable conformational dynamics”, Physical Biology, vol. 19, no. 5, p. 056 006, 2022

ix





ACKNOWLEDGMENTS

I am sincerely grateful to my advisor Professor Heinz Koeppl for providing me with the op-
portunity to work in the intriguing research field that is emerging at the intersection between
mathematics, biology and engineering. It is at this intersection that his Self-Organizing Systems
lab is placed, and I want to express my deep appreciation for his tireless efforts to make it a
unique place where theory and experiment are brought together in a joint research effort. In this
stimulating environment, he let me pursue my research interests freely and provided me with
continuous support throughout my doctoral studies.

I am also deeply indebted to my colleague, collaborator and mentor of sorts Bastian Alt. His great
enthusiasm, oversight and communicative skills have helped me to overcome the unavoidable
hardships during a PhD endeavour and stay on course. His support and that of the other
colleagues of my “generation”, Dominik Linzner, Christian Wildner and Tim Prangemeier
as well as Adrian Šošić, have been invaluable. Much (meshin) learn, such pleasure, very fun -
BCSlers doin’ me a heckin amaze! WOW!

I further thank the remaining current and former members of the Koeppl lab that I had the
pleasure of working with: Ahmed Elshamanhory, Alina Kuzembayeva, Derya Altıntan, Felix
Reinhardt, François Lehr, Gamze Dogali, Yannick Eich, Christian Fabian, Sascha Hauck, Arsen
Korpetayev, Gizem Ekinci, Hongfei Liu, Jascha Diemer, Kai Cui, Kilian Heck, Klaus-Dieter
Voss, Leo Bronstein, Matthias Schultheis, Anam Tahir, Wasiur KhudaBukhsh, Maik Molder-
ings, Maleen Hanst, Mark Sinzger, Markus Röder, Megan Bailey, Melanie Mikosch-Wersching,
Mengguang Li, Michael Schmidt, Miloš Lješković, Nicolai Engelmann, Nikita Kruk, Özdemir
Cetin, Philipp Fröhlich, Rogier Schoeman, Sikun Yang, Sofia Startceva, Stanislav Stepaniuk and
Yujie Zhong.

I also want to gratefully acknowledge that the (too often neglected) issues of organization and
infrastructure are taken seriously in the Koeppl lab. A vast amount of work hours and stress
is saved for everyone in the group by system administrator Markus Baier, whose commitment
and enthusiasm for all things IT cannot be appreciated enough. The same holds with respect to
administrative issues for Christine Cramer and Christiane Hübner. Thank you all very much!

Finally, I would like to thank my friends and family for their constant support, their loving,
patient kindness and the music. Grazie, Ada, per tutto - in particolare per aver sopportato con e
per me. Alla fine, tutto wa behne.

Darmstadt, October 17, 2022

xi





CONTENTS

1 Introduction 1
1.1 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 Background 5
2.1 Stochastic modeling of biological systems . . . . . . . . . . . . . . . . . . . 7
2.2 Bayesian inference for biological systems . . . . . . . . . . . . . . . . . . . . 16

3 Markov Chain Monte Carlo for Hybrid Systems 25
3.1 Markov-switching stochastic differential equations . . . . . . . . . . . . . . 27
3.2 Exact inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Inference via Markov chain Monte Carlo . . . . . . . . . . . . . . . . . . . 33
3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 Variational Inference for Hybrid Systems 51
4.1 The variational problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.2 The Kullback-Leibler divergence between hybrid processes . . . . . . . . . . 52
4.3 Structured mean-field variational inference . . . . . . . . . . . . . . . . . . 56
4.4 Optimizing the variational distributions . . . . . . . . . . . . . . . . . . . . 60
4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5 Nonparametric Inference for Conformational Switching 71
5.1 Markov state models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.2 Nonparametric Bayesian Markov state models . . . . . . . . . . . . . . . . 74
5.3 Observation models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
5.4 Variational inference of conformational states . . . . . . . . . . . . . . . . . 79
5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

6 Conclusions 93
6.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

Appendices 97

Appendix a Background 99
a.1 Probability theory and notation . . . . . . . . . . . . . . . . . . . . . . . . 99
a.2 Derivation of the Fokker-Planck equation . . . . . . . . . . . . . . . . . . . 101
a.3 Derivation of the Kolmogorov backward equation . . . . . . . . . . . . . . 102

Appendix b Markov Chain Monte Carlo for Hybrid Systems 103
b.1 The hybrid master equation . . . . . . . . . . . . . . . . . . . . . . . . . . 103
b.2 Sampling the conditional diffusion process . . . . . . . . . . . . . . . . . . 112
b.3 Sampling the conditional switching process . . . . . . . . . . . . . . . . . . 119
b.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

xiii



xiv contents

Appendix c Variational Inference for Hybrid Systems 129
c.1 Alternative derivation of the hybrid process KL divergence . . . . . . . . . . 129
c.2 Optimizing the variational parameters . . . . . . . . . . . . . . . . . . . . . 131
c.3 Optimizing the prior parameters . . . . . . . . . . . . . . . . . . . . . . . 133
c.4 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendix d Nonparametric Inference for Conformational Switching 139
d.1 Variational message passing . . . . . . . . . . . . . . . . . . . . . . . . . . 139
d.2 Estimation of the top-level stick-breaking measure . . . . . . . . . . . . . . 141
d.3 Experimental details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

Notation 145

Acronyms 147

Bibliography 149

Erklärung laut Promotionsordnung 163



L I ST OF F IGURES

Figure 1.1 Sketch of ion channel gating . . . . . . . . . . . . . . . . . . . . . 1
Figure 1.2 Sketch of genetic switching . . . . . . . . . . . . . . . . . . . . . 2
Figure 1.3 Methodological scope of the thesis . . . . . . . . . . . . . . . . . . 3
Figure 2.1 SLDS graphical model . . . . . . . . . . . . . . . . . . . . . . . . 10
Figure 2.2 Sketch of an MJP path . . . . . . . . . . . . . . . . . . . . . . . . 12
Figure 2.3 Sketch of the filtering and smoothing problems . . . . . . . . . . . 17
Figure 2.4 Sketch of the stick-breaking process . . . . . . . . . . . . . . . . . 22
Figure 3.1 Sketch of a hybrid process . . . . . . . . . . . . . . . . . . . . . . 27
Figure 3.2 Sketch of the latent state sampling scheme . . . . . . . . . . . . . . 40
Figure 3.3 MCMC algorithm for hybrid processes . . . . . . . . . . . . . . . 45
Figure 3.4 MCMC validation on 1D ground-truth data . . . . . . . . . . . . 46
Figure 3.5 MCMC validation on 2D ground-truth data . . . . . . . . . . . . 47
Figure 3.6 MCMC inference of promoter states . . . . . . . . . . . . . . . . 49
Figure 4.1 VI algorithm for hybrid processes . . . . . . . . . . . . . . . . . . 63
Figure 4.2 VI validation on 1D ground-truth data . . . . . . . . . . . . . . . 64
Figure 4.3 Inaccuracies of the VI approach in transition regions . . . . . . . . 65
Figure 4.4 Performance of VI under higher ambiguity . . . . . . . . . . . . . 65
Figure 4.5 Sampling from a Q-parameterized hybrid process . . . . . . . . . . 66
Figure 4.6 Comparison of structured and classic mean-field approximations . . 67
Figure 4.7 VI validation on 2D ground-truth data . . . . . . . . . . . . . . . 68
Figure 4.8 VI validation on multi-well diffusion data . . . . . . . . . . . . . . 69
Figure 5.1 Sketch of the classic MSM workflow . . . . . . . . . . . . . . . . . 73
Figure 5.2 Graphical model of the HDP-HMM . . . . . . . . . . . . . . . . 77
Figure 5.3 HDP-HMM validation on 2D HMM data . . . . . . . . . . . . . 84
Figure 5.4 HDP-HMM inferred transition probabilities for 2D HMM data . . 86
Figure 5.5 HDP-HMM validation on multi-well diffusion data . . . . . . . . 87
Figure 5.6 Toy example: 1D approximate von Mises model posterior . . . . . . 88
Figure 5.7 HDP-HMM validation on 2D vM-HMM data . . . . . . . . . . . 89
Figure 5.8 Raw MD data excerpt . . . . . . . . . . . . . . . . . . . . . . . . 89
Figure 5.9 HDP-HMM inference of metastable states of alanine dipeptide . . . 90
Figure 5.10 Raw experimental ion channel data . . . . . . . . . . . . . . . . . 91
Figure 5.11 HDP-HMM inference of metastable states of a viral potassium channel 91

L I ST OF TABLE S

Table 5.1 Parameters learned from 2D HMM data . . . . . . . . . . . . . . . 85
Table 5.2 Parameters learned from three-well diffusion data . . . . . . . . . . 86
Table 5.3 Parameters learned from 2D von Mises data . . . . . . . . . . . . . 88

xv



xvi contents

Table 5.4 Parameters learned from switching ion channel data . . . . . . . . . 91
Table C.1 Parameters learned from 1D, four-well SDE data . . . . . . . . . . . 136
Table C.2 Parameters learned from 2D, three-well SDE data . . . . . . . . . . 137







1
INTRODUCT ION

1.1 Outline and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

The study of intra- and intercellular biological processes is a formidable challenge. This is in large
part because such processes function under high densities of a vast array of functionally distinct
and interacting components, such as deoxyribonucleic acid (DNA), ribonucleic acid (RNA) and
proteins. Each of these components is subject to a multitude of nuisance influences, such as
thermal fluctuations, read-off errors from the DNA, misfolding or spontaneous alteration by,
e.g., radiation. In addition, their interaction is dependent on tight spatio-temporal coordination
which itself is potentially hampered by such nuisances. This shows that in cellular biological
systems (as well as biological systems more generally), one usually cannot cleanly isolate the
phenomenon of interest and precisely control the boundary conditions of a given experiment.
In addition, we are currently only beginning to be able to observe biological processes on the
intra- and intercellular level in the wet lab in full detail, as the above conditions make direct and
comprehensive observations very challenging.

This yields a setup where experimental observations appear to exhibit a high level of stochasticity.
Hence, when analyzing biological experiments, (i) large data sets need to be collected, and
(ii) mathematical methods are needed to be able to draw meaningful inferences about underlying
systemic effects from these noisy and often sparse data. This thesis deals with such mathematical
methods for inference and learning.

The models under study are regime-switching systems: such systems exhibit two or more modes
of operation (viz., regimes) that are characterized by qualitatively distinct features. As a first
illustrative example, consider a cellular ion channel: ion channels are proteins that are embedded
within the cellular membrane and can change their spatial conformation, that is, the relative
arrangement of their constituent (sub-)molecules. In one conformation, the channel constitutes

K+

K+

K+

K+

K+

K+

membranemembrane membrane membrane

K+

K+

K+ K+

K+

K+

figure 1.1: Conformational switching of ion channels. Left: a potassium channel in the “open” state,
allowing a flux of K+ ions. Right: channel in the “closed” state.
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2 1 introduction

a permeable pore in the membrane through which particular ions can move, see Fig. 1.1. In the
other conformation, this pore is closed, such that no ions can pass - it can hence be thought of as
an ion gate narrowing and widening depending on the conformation. If the ion current is large
enough, this gives rise to an effectively continuous quantity (the current) which depends on the
discrete state (“open” vs. “closed”) of the channel.

GFP

transcription factor
binding site

promoter terminator

GFPTF

figure 1.2: Illustration of genetic switching. Shown is a strand of DNA with a promoter, gene and
terminator. The promoter here is preceded by a transcription factor binding site, which controls the
activity of the promoter: only in the presence of a respective transcription factor can the promoter be
employed to read off the GFP-coding gene.

The different regimes and the transition between them are often determined by the spatio-
temporal context of the system: consider as another example the transcription (TX)-translation
(TL) cascade through which proteins are generated from the genetic information stored in the
DNA. In the TX phase, an RNA polymerase (RNAP) enzyme binds to a specific portion of the
DNA, termed the promoter, which sits upstream of the gene of interest (here: green fluorescent
protein (GFP), see Fig. 1.2). The RNAP the copies the downstream DNA into a messenger RNA
molecule until it reaches a termination signal (the terminator). In the second (TL-)phase, the
messenger RNAs can be translated into functional proteins by specialized macromolecular ma-
chinery. Importantly, in the example shown in Fig. 1.2, the accessibility of the promoter depends
on the presence of specific gating molecules: the promoter can only be employed by an RNAP if a
transcription factor is bound to the DNA. We are thus dealing with a context-dependent hybrid
system structure: the state of the transcription factor binding site (occupied vs. non-occupied)
determines the accessibility of the promoter, which - given the presence of RNAPs - modulates
the amount of green fluorescent protein (GFP) being generated. As in the ion channel example,
this gives rise to a continuous quantity (the GFP fluorescence signal) depending on the discrete
occupation state of the transcription factor binding site.

Apart from such hybrid state-space configurations, of course, bio-statistical models can generally
also be purely discrete or purely continuous. Additionally, they can be formulated both in
discrete and continuous time, depending on the experimental setup to be modeled. The possible
combinations of space and time structures yield a quite intricate landscape of possible model
settings. Relevant to the study of regime switching processes is furthermore the distinction of
parametric and nonparametric methods: while the former require an upfront specification of the
number of different regimes, the latter enable learning of this number from data. Nonparametric
models thus allow more flexibility, but at the cost of increased complexity. Concerning all of these
model setups, see Fig. 1.3, an ample literature exists in mathematical statistics, probability theory,
and machine learning. The present work fits into this landscape as follows: it is concerned (i) with
continuous-time, hybrid state-space switching stochastic differential equation (SSDE) models,
and (ii) with discrete-time, discrete state-space hierarchical Dirichlet process hidden Markov
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DTMC
HDP-HMM

DS SDS

CTMC SDE SSDE

Discrete

Continuous

Discrete Continuous Hybrid
State
Time

figure 1.3: Illustration of the methodological scope of this thesis within the existing literature. All
model classes - discrete-time Markov chains (DTMCs), dynamical systems (DS), stochastic dynamical
systems (SDS), continuous-time Markov chains (CTMCs), stochastic differential equations (SDEs), and
switching stochastic differential equations (SSDEs) - are discussed in detail in Chapter 2. In the continuous-
time domain, Chapters 3 and 4 build on SSDEs with Markovian switching. In the discrete-time domain,
hierarchical Dirichlet process hidden Markov models (HDP-HMMs) - which are a nonparametric extension
of DTMCs with noisy observations - are utilized in Chapter 5.

models (HDP-HMMs), where in both cases, the underlying biological processes are assumed to be
not observable directly. The utilized process models hence describe latent processes, of which
only noisy and potentially sparse observations are generated.

In the first setting, the number of distinct regimes is assumed to be known, but the available
observational data are sparse and not equidistant in time. Conceptually, this requires the use of
continuous-time methods.

In the second setting, the number of qualitatively distinct regimes is unknown. This is often the
case when considering conformational dynamics of molecules, e.g. in the analysis of molecular
dynamics (MD) simulations or for electrophysiological recordings of ion channel gating. In
such settings, data are typically obtained at high frequency and equally spaced in time (as they
are either simulated or sampled with high and constant frequency). In this case, we utilize a
discrete-time Bayesian nonparametric approach to identify the latent regimes.

1.1 outline and contributions

The outline of this work is as follows:

chapter 2 provides the mathematical background for the subsequent chapters. It is divided
into two parts: first, the (forward) modeling tools will be presented, and second, the (inverse)
inference problems of filtering, smoothing and parameter learning will be discussed.

chapter 3 is based on work published in

[1] L. Köhs, B. Alt, and H. Koeppl, “Markov chain Monte Carlo for continuous-time switch-
ing dynamical systems”, Proceedings of the 39th International Conference on Machine
Learning, vol. 162, pp. 11 430–11 454, 2022.



4 1 introduction

A continuous-time, hybrid state-space model is presented for regime-switching biological sys-
tems. Concretely, the forward model is formulated via Markov-switching stochastic differential
equations. It is shown how to compute the exact posteriors in a Bayesian inference setting. The
resulting expressions turn out to be computationally very demanding; to address this challenge,
a Gibbs-sampling approximation scheme is then devised. Specifically, all required conditional
measures are derived mathematically and it is shown how to draw samples from them. Using
synthetic as well as real-world data from an in-house controlled gene switching experiment, the
method is shown to perform well both in latent state and parameter inference.

chapter 4 subsequently draws on the results presented in

[2] L. Köhs, B. Alt, and H. Koeppl, “Variational inference for continuous-time switching
dynamical systems”, Advances in Neural Information Processing Systems, vol. 34, 2021.

The sampling-based inference scheme presented in the previous chapter still proves to be compu-
tationally expensive. In an effort to decrease the computational burden, we propose a variational
approximation to the true posterior. This approximation consists of a set of linear stochas-
tic differential equations between which an underlying Markov jump process switches; this is
equivalent to a mixture of Gaussian processes. We argue that this approximation is particularly
suited for the analysis of metastable systems, which are of special interest in systems biology
and computational biology settings. It is shown that this approach yields accurate state and
parameter estimates when the criterion of metastability is fulfilled; the limits of the method are
explored by violating metastability. The runtime is found to be drastically improved over the
Gibbs sampler.

chapter 5 follows the study

[3] L. Köhs, K. Kukovetz, O. Rauh, and H. Koeppl, “Nonparametric Bayesian inference for
meta-stable conformational dynamics”, Physical Biology, vol. 19, no. 5, p. 056 006, 2022

In this chapter, we focus on a computational structural biology problem, namely the folding
of molecules. Here, often only the discrete latent component - corresponding to a set of con-
formational states - is of interest. Additionally, data are often available on a dense, regular time
grid, particularly those stemming from molecular dynamics simulations. These observations are
typically real-valued; we utilize a discrete-time, discrete state-space model to approximate this
discrete-time, continuous state-space data. A central challenge is the inference of the transition
dynamics between conformational states as well as their number, which is typically unknown a
priori. This challenge is addressed utilizing a Bayesian nonparametric model, which generalizes
the framework of Markov state models (MSMs), an established tool in the field. As the available
data sets are typically large, we again pursue a variational inference approach for enhanced scala-
bility compared to existing sampling approaches. This framework yields accurate results both
on synthetic as well as real-world benchmark and wet-lab experimental data.

chapter 6 finally provides a summary of the results obtained in this thesis and an outlook
sketching potential avenues for further inquiry.
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The problems dealt with in quantitative modeling typically belong to one of two categories:
forward and inverse problems. Forward problems are concerned with predictions of the state of
a system given a model f of its dynamics and its associated parameters.

Giving a concrete example building on the process of gene expression (see Fig. 1.2), let y ∈ R≥0
denote the concentration of some protein of interest, e.g., green fluorescent protein (GFP). These
proteins are generated at some effective rate α ∈ R>0 via the processes of transcription and

5
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translation as discussed in Chapter 1; at the same time, they are broken down at some other rate
β ∈ R>0. This system could be described by an ordinary differential equation (ODE)

d

dt
y(t) = α− βy(t).

By solving this differential equation, one can compute the temporal evolution of the protein
concentration and hence answer questions such as “At what time will the GFP level have increased
by a factor of more than 100?” or “What will the GFP level be 8 hours after the start of the
experiment?”.

Knowing the model parameters α, β is however a rare occasion. On the contrary, it is often of
interest to establish them from experiments. This is an inverse problem: given a modelf and some
measurements of the system state {y1, . . . , yN} obtained at time points t1, . . . , tN , determine
its parameters. In realistic settings, the measurements will not correspond to the true state
values, but they will be corrupted by some form of measurement error, {x1(y1), . . . xN(yN)}.
In the above example, a typical question to be answered could be “What are the production and
degradation rates α and β of the studied gene expression system?”.

Biological processes such as the production of proteins are hard to study in isolation. It is
impossible from a practical perspective to let multiple experiments on the same system start
at the same initial conditions. This incomplete knowledge of the initial conditions translates
to inherently “noisy” measurements, independent of the accuracy of the used measurement
technique: multiple repetitions of the same experiment will yield different results. A statistical
mathematical treatment of inference problems is required upfront due to this inevitable uncer-
tainty. Additionally, deterministic models of the unobserved system dynamics (such as the above
toy system) are themselves often inadequate to describe many biological phenomena. The above
ODE model may describe the average dynamics for high concentrations at best; it is clear that for
very low concentrations, a different model would be required to capture the discrete nature of
the problem. It also fails to account for the possibility of the population dying out in finite time.
When utilizing a discrete model, on the other hand, the production of a particular molecule has
to be treated as inherently stochastic, as it is impossible to predict, e.g., when an RNAP will bind
to the promoter of interest and produce the respective messenger RNA. Therefore, in this as in
many systems alike, stochastic models are required to accurately describe the biological processes
themselves.

As laid out in the introduction, this thesis is concerned with the modeling of stochastic switching
biological systems, which are ubiquituously found in biology [4]. Consider as an example again
the above gene expression model: the effective production rate α was assumed to be a constant
which summarizes all subprocesses necessary to create a functional protein from a stretch of DNA
- describing, accordingly, a constant production of proteins. At any given point in time, however,
the promoter is either accessible for transcription (if a transcription factor is bound, cf. Fig. 1.2),
or it is not, in which case the no messenger RNA can be produced. The above ODE expression
model can be extended to reflect these two different states by assuming two different production
rates α1 and α2, where α1 represents the “open” state - in which the promoter is accessible to
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RNAPs - and α2 the “closed” one, in which the promoter is blocked: hence, α1 > α2.1 With this,
we can write

d

dt
y(t) = αs(t) − βy(t),

with the switching variable s ∈ {1, 2}, for which then a respective evolution model has to
be defined; the joint system {y(t), s(t)} constitutes a continuous-discrete state-space hybrid
process. As already argued in Chapter 1, it is often of conceptual interest to identify such separate
regimes in which a continous quantity evolves qualitatively different.

Note that additionally, this approach aids computational efficiency: while in principle, RNAPs
and proteins are discrete units, their precise number is often secondary. Modeling its detailed
evolution via a discrete state-space process would however be computationally very demanding;
this computational load can be significantly reduced without loss of important information by
approximating the number process by a continuous process representing the stochastic evolution
of a concentration value. On the other hand, it is of central interest to know which regime the
system is currently in. A hybrid modeling approach hence allows one to make adequate trade-offs
between computational tractability and (conceptual) accuracy.

The present chapter provides the background for the subsequent analysis of switching systems.
It focuses on some specific classes of linear models, which will be discussed in Section 2.1. The
corresponding concepts and methods to address the inverse problem will be laid out in detail in
Section 2.2. The purpose of the present chapter is also to serve as a resource and starting point for
potential successors. To this end, it tries to strike a balance between rigorosity and accessability.
Of course, excellent resources exist on all of the following topics; a wide range of references will
be given throughout the chapter.

2.1 stochastic modeling of biological systems

As discussed in the introduction, two central aspects to the mathematical description of stochas-
tic processes are the structure of time and space. For completeness, we first reiterate the definition
of a stochastic process [5, 6]: a stochastic process is a set of random variables {X(t) : t ∈ I}with
some index set I . If I ⊆ N, it is termed a discrete-time process; if I ⊆ R, it is a continuous-time
process. The data one typically obtains from biological experiments are (noisy) observations at
discrete time points. As biological processes evolve continuously in time, they are naturally rep-
resented in a continuous-time framework. Depending on the temporal structure of the available
measurements and the question to be answered, it might however be sufficient to describe the
system under study at these discrete time points. Typically, continuous-time descriptions are
mathematically more involved, resulting in a trade-off between complexity and expressiveness
of the model. Similarly, as stated previously, the state space may be continuous, discrete, or a
mixture of both.

This thesis focuses on both discrete- and continuous-time Markov processes, that is, processes
whose temporal evolution from some time point onwards depends only on the state at that time
point, not on its prior history. It discusses both purely discrete state-space systems as well as

1 Note that of course, more than two different regimes may be introduced, but we deliberately keep this example
simple for illustrative purposes.
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hybrid processes whose state spaces exhibit discrete and continuous components. This will be
formalized for both the discrete-time and the continuous-time case individually: in the following,
all necessary background will first be provided for discrete-time models and subsequently for
their continuous-time counterparts (cf. Fig. 1.3). For a brief review of the basic concepts of
probability theory and the notation used throughout the thesis, please see Appendix A.1.

2.1.1 Discrete-time Markov models

First, we consider processes evolving on a fixed time grid t ∈ I ⊆ N>0. Notice that throughout,
we let discrete-time processes start at t = 1 to adhere to conventional notation. A discrete-time
processX on some state spaceX ,X(t) ∈ X , is a Markov process if

p(x, t | x(t− 1), t− 1, . . . , x(1), 1) = p(x, t | x(t− 1), t− 1), (2.1.1)

where p denotes the (transition) probability density function (PDF) at time point t, see Ap-
pendix A.1 for details. Important results for such models will be discussed below for different
state-space configurations.

2.1.1.1 Discrete-time Markov chains

A discrete-time Markov chain (DTMC) is a stochastic process Z := {Z(t) : t ∈ I ⊆ N> 0}
evolving on a discrete-valued state space,Z(t) ∈ Z ⊆ N, exhibiting the Markov property (2.1.1).
Denoting with π : Z ×Z ×N≥0 → [0, 1] the transition probabilities between all pairs of states
z, z′ ∈ Z for all time points t,

π(z, z′, t) := P(Z(t+ 1) = z′ | Z(t) = z), (2.1.2)

the joint density of a full trajectoryZ[1,T ] := {Z(t) : t = 1, . . . , T} factorizes into a product
of such transitions:

p(z[1,T ]) = p(z(1))
T∏
t=2

π(zt−1, zt, t). (2.1.3)

A DTMC is hence unambiguously defined via (i) an initial distribution p(z(1)), and (ii) the
transition function π. The latter can be equivalently expressed as a transition matrix,

πzz′(t) = π(z, z′, t). (2.1.4)

This matrix fulfils
∑

z′∈Z πzz′(t) = 1 for every time point t. If the transition probabilities are
constant over time, πzz′(t) = πzz′ , the DTMC is said to be time-homogeneous. As the dynamics
ofZ are encoded in π, these dynamics can be studied by analyzing its spectral properties. For an
accessible and detailed introduction to DTMCs, see, e.g., [7].
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2.1.1.2 Dynamical systems

LetY ⊆ Rn and y(t) ∈ Y . A (non-stochastic) dynamical system (DS) is given as

y(t+ 1) = f(y(t), t) (2.1.5)

with f : Y × I → Y and some initial value y(1) [8]. We will focus on linear dynamical
systems (LDS), where

y(t+ 1) = Ay(t) (2.1.6)

with A ∈ Rn×n. As A is constant, Eq. (2.1.6) is a called a time-invariant system, the solution
of which can be given explicitly (in the above case simply y(t) = Aty(1)). As for DTMCs, the
spectral properties of A encode important information about the process; in particular, the
eigenvalues ofA determine its stability. If the absolute values of all eigenvaluesλi ofA are smaller
than 1, |λi| < 1∀i, the system converges to a stable state. In the general, time-variant case, this is
qualitatively similar, but more involved in the details [8].

A stochastic extension to this LDS is the Gaussian linear dynamical system (GLDS) [9], which is a
process Y := {Y (t) : t ∈ I ⊆ N>0} on the space Y (t) ∈ Y :

Y (t+ 1) = AY (t) +BV (t),

V (t) ∼ N (0,Σ),
(2.1.7)

with B ∈ Rn×m, Σ ∈ Rm×m, 0 ∈ Rm, and some initial state Y (1) = y(1). Notice that of
course, other distributions may be chosen for V , but for the present illustrative purposes, we
stick to the simple Gaussian case. In analogy to the non-stochastic case, this system will reach
a steady state (in the sense of distributions) if the absolute values of all eigenvalues are smaller
than 1 [10].

The joint density of a full trajectory Y[1,T ] := {Y (t) : t ∈ {1, . . . , T}} of a GLDS can be for-
mulated explicitly as

p(y[1,T ]) = p(y(1))
T∏
t=2

N (y(t) | Ay(t− 1), BΣB⊤).

Due to the properties of Gaussian distributions, the marginal distribution p(y, t) is also Gaussian
at all time points t [9].

2.1.1.3 Switching dynamical systems

Combining the above two models for discrete and continuous state spaces, one obtains a stochas-
tic dynamical system (SDS):

Z(t+ 1) ∼ P(Z(t+ 1) | Z(t)),
Y (t+ 1) = f(Y (t), Z(t+ 1), t) +B(t+ 1)V (t),

(2.1.8)
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Z(t− 1) Z(t) Z(t+ 1) · · ·· · ·

Y (t− 1) Y (t) Y (t+ 1) · · ·· · ·

X(t− 1) X(t) X(t+ 1)

figure 2.1: Graphical model of an switching linear dynamical system (SLDS).

with f : Y ×Z ×R≥0 → Y and V distributed according to some probability measure. Again,
we focus on the linear-Gaussian case, that is, switching linear dynamical systems (SLDS) [10,
11]:

Z(t+ 1) ∼ P(Z(t+ 1) | Z(t)),
Y (t+ 1) = A(Z(t+ 1))Y (t) +B(Z(t+ 1))V (t),

V (t)
i.i.d.∼ N (0,Σ),

(2.1.9)

with some initial values Y (1) = y(1), Z(1) = z(1) and Σ, A,B are matrices of appropriate
dimensionality; see also Fig. 2.1 The SLDS can be used to model situations in which the system
under study has different modes of operation; a globally non-linear behavior can in that way be
split into or approximated by locally linear regimes. Due to the switching, the spectral properties
ofA do not any more alone determine the stability of the system: locally, the linear dynamics
may be unstable, but due to frequent switching, the system may still not diverge [12].

The joint density of both trajectories reads

p(y[1,T ], z[1,T ]) = p (y(1)) p (z(1))

·
T∏
t=2

N (y(t) | A(z(t))y(t− 1), B(z(t))ΣB(z(t))⊤)p(z(t) | z(t− 1)),

showing that the marginal over y[1,T ] is not Gaussian anymore, but a complex mixture of Gaus-
sians.

2.1.2 Continuous-time Markov models

All of the above discrete-time models have continuous-time analogs. Many of the tools and
results from the discrete-time regime transfer to the continuous-time case via a limiting operation
on the time grid size; the underlying mathematical concepts however become somewhat more
involved.

Consider as in the previous section a general, stochastic process X on some state space X ,
X(t) ∈ X , but now let t ∈ I ⊆ R≥0. Again, we aim to conform to conventional notation and
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let continuous-time stochastic processes start at t = 0, different from the discrete-time case. The
processX is a Markov process if

p(x, t+ τ | x[0,t]) = p(x, t+ τ | x(t), t). (2.1.10)

This Markov property gives rise to the Chapman-Kolmogorov equation relating the conditional
densities at different time points of the process as

p(y1, t1 | y0, t0) =
∫
p(y1, t1 | y′, t′)p(y′, t′ | y0, t0)dy′. (2.1.11)

The set of all conditional densities hence encodes all information about the process dynamics.
Associated with this integral is a differential expression:

Ltf(x) := lim
h→0

E[f(X(t+ h)) | X(t) = x]− f(x)
h

(2.1.12)

defines the generator Lt of the Markov process, which equivalently characterizes the full process.
As an aside, note that Markov processes that can be characterized via such an infinitesimal
generator are called Feller processes. All processes considered in the context of this thesis fulfil
this property. For more background, consult, e.g., [5, 6, 13–15].

2.1.2.1 Continuous-time Markov chains

The continuous time analogue to DTMCs are continuous-time Markov chains (CTMCs), which
are synonymously called Markov jump processes (MJPs). An MJPZ , withZ(t) ∈ Z ⊆ N, is fully
characterized by (i) an initial probability distribution p(z(0)) := P(Z(0) = z(0)) ∀z(0) ∈ Z ,
and (ii) the transition rate function defined for z′ ∈ Z \ z as

Λ(z, z′, t) := lim
h↘0

P(Z(t+ h) = z′ | Z(t) = z)

h
. (2.1.13)

The exit rate Λ(z, t) := Λ(z, z, t) = −
∑

z′∈Z\z Λ(z, z
′, t), which follows from the fact that

P is a probability measure. This generally ensures that
∑

z′∈Z Λ(z, z
′, t) = 0. In analogy to the

discrete-time transition matrix π, the rate function will be abbreviated as Λzz′(t) := Λ(z, z′, t)
in the following, thus aiding concision.

An MJP defines a measure over piece-wise constant paths, cf. Fig. 2.2: concretely, a trajectoryZ[0,T ]

is fully characterized via (i) its state sequence {Zk : k = 0, . . . , K} and (ii) the corresponding
sojourn times {Sk : k = 0, . . . , K} for which the process resides in these states. The latter also
define the jump times of the trajectory via

Jk+1 =
k∑

l=0

Sl, k ∈ {0, . . . , K} (2.1.14)

and J0 := 0, We denote with J[0,T ] := {J0, J1, . . . } the set of all jump times occurring in the
time interval [0, T ]. The value of the trajectory at some time point t, Z(t), follows from this
via

Z(t) = Zk∗ , k∗ = max
k
{k : t ≥ Jk} .
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figure 2.2: Sketch of an MJP path. Circles indicate the jumps; the full circles belong to the trajectory
and the empty ones do not.

These trajectories are continue à droite, limite à gauche (càdlàg), that is, the value of the trajectory
at a jump time t,Z(t), equals the state value after the jump occurring at this time.

On the distribution level, the dynamics of this process can be described utilizing the Chapman-
Kolmogorov equation (2.1.11). Starting at some initial value z(s) = z evolving towards z(t) = z′,
s < t, Eq. (2.1.11) - with t′ = t− h and taking the limit h→ 0 - yields the Kolmogorov forward
equation (KFE),

d

dt
p(z′, t | z, s) =

∑
z′′∈Z

Λ(z′′, z′, t)p(z′′, t | z, s), (2.1.15)

which for MJPs is called the master equation. By inverting this procedure and starting at a terminal
value z(t), the corresponding Kolmogorov backward equation (KBE) is derived as

d

ds
p(z′, t | z, s) = −

∑
z′′∈Z

Λ(z, z′′, t)p(z′, t | z′′, s), (2.1.16)

which, analogously, is sometimes called the backward master equation.

Any trajectoryZ[0,T ] consists of an (uncountably) infinite set of points, rendering it impossible to
characterize via a product of transition densities akin to Eq. (2.1.3). We can however still explicitly
write down a path density, which we formulate for time-homogeneous MJPs for simplicity,
Λ(z, z′, t) = Λ(z, z′). The definitions of the state sequence and sojourn times provided above
allow to explicate

p(z[0,T ]) =
K∏
k=0

{
Λzke

−Λzk
sk
}1(zk=z)

·
{
Λzkzk+1

Λzk

}
1(zk=z∧zk+1=z′)

{e−ΛzK
sK}1(zK=z). (2.1.17)

While this likelihood cannot be represented via a product or integral over time, it is possible
to provide such an expression for the equivalent of the ratio of likelihoods between two MJP
measures. Consider an MJP with rate function Λ inducing a measure P and another MJP with
rate function Λ̃ inducing Q. Then,

P(Z[0,T ] ∈ dz[0,T ]) =
dP

dQ

(
z[0,T ]

)
Q(Z[0,T ] ∈ dz[0,T ]) (2.1.18)
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with the Radon-Nikodym derivative between both measures,

dP

dQ

(
Z[0,T ]

)
= exp

{
−
∫ T

0

Λ(Z(s), s)− Λ̃(Z(s), s)ds

+
∑

s∈j[0,T ]

ln

(
Λ(Z(s), s)p(Z(s), s | Z(s−))
Λ̃(Z(s), s)q(Z(s), s | Z(s−))

) , (2.1.19)

see, e.g., [16]. In statistics, this is frequently expressed via expectations over the different measures
P and Q, making clear that the Radon-Nikodym itself is a stochastic process [13]:

EP

[
φ
(
Z[0,T ]

)]
= EQ

[
φ
(
Z[0,T ]

) dP
dQ

(
Z[0,T ]

)]
=

∫
φ
(
z[0,T ]

) dP
dQ

(
z[0,T ]

)
P (Z[0,T ] ∈ dz[0,T ])

with some test function φ of the stochastic processZ[0,T ].

To simulate a time-homogeneous MJP, one can utilize the Doob-Gillespie algorithm [17, 18]:
given a current state z,

1. simulate the sojourn time in this state as S ∼ Exp (Λ(z)), and

2. simulate the next state z′ viaZ ′ ∼ Cat
(

Λ(z,1)
Λ(z)

, . . . Λ(z,z
′−1)

Λ(z)
, 0, Λ(z,z

′+1)
Λ(z)

, . . .
)

.

An extension to time-inhomogeneous MJPs is available with the thinning algorithm, which works
similarly to the Doob-Gillespie algorithm, but with an additional step to account for changes in
the rate function Λ(z, z′, t) between jumps [19].

2.1.2.2 Stochastic differential equations

While discrete-time, non-stochastic linear dynamical systems readily transfer to the continuous-
time case by substituting iterative maps such as Eq. (2.1.6) with differential equations, we need
to make use of stochastic calculus to define an analog to the stochastic system (2.1.7). For an
accessible introduction, see, e.g., [20], for more detailed treatments [5, 6, 15]. The stochastic Itô
integral over some functionQ : Y × R≥0 → Rn×n is defined as∫ t

0

Q(Y (t), t)dW (t) := lim
N→∞

N∑
k=0

Q(Y (tk), tk) (W (tk+1)−W (tk)) (2.1.20)

on a time grid {tk : k = 1, . . . , N}, t0 = 0, tN = t, with the n-dimensional Brownian
motion W (t) ∈ Rn. (For completeness, some details on Brownian motion are provided in
Appendix A.1.) This allows to define a continuous-time analog to Eq. (2.1.7) as

Y (t) = Y (0) +

∫ t

0

f(Y (t), t)dt+

∫ t

0

Q(Y (t), t)dW (t) (2.1.21)
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with the drift function f : Y ×R≥0 → Y and the invertible dispersionQ : Y ×R≥0 → Rn×n;
this is conventionally abbreviated as a stochastic differential equation (SDE)

dY (t) = f(Y (t), t)dt+Q(Y (t), t)dW (t). (2.1.22)

A particularly important result that applies for SDEs is Itô’s lemma [13]: For a twice differentiable
function φ : Y × R→ Y ,

dφ(Y (t), t) = (∂t + Lt) (Y (t), t)dt+ dM(t) (2.1.23)

with the generator of Y ,

Lt =
n∑

i=1

fi(Y (t), t)∂yi +
1

2

n∑
i,j=1

Dij(y, t)∂yi∂yj , D(y, t) = Q(y, t)Q(y, t)⊤,

and the martingale

dM(t) =
n∑

i,j=1

∂yiφ(Y (t), t)Dij(Y (t), t)dWj(t).

Martingales are stochastic processes for which the conditional expectation given the history of
the process is equal to the present value:

E
[
M(t′)

∣∣M[0,t]

]
=M(t)

for t′ > t. In the context of this thesis, only standard Brownian motion martingales occur, the
conditional expectations of which by definition equate to zero. Note, however, that martingales
are a richly-structured, extensive field of research; for an introduction, see, e.g., [6]. Itô’s lemma
applies not only to SDEs, but more generally to semimartingales, which are martingales that can
be decomposed into a martingale and a càdlàg process [5, 6]; in particular, it also holds for MJPs
[13].

From Itô’s lemma, the KBE and KFE for SDEs can be derived; this derivation is provided in
Appendix A.1. The KBE prescribes the evolution of the conditional density at some time point
s < twith y(s) = y, y(t) = y′ and is obtained as

∂sp(y
′, t | y, s) =

n∑
i=1

fi(y, t)∂yip(y
′, t | y, s)

+
1

2

n∑
i=1

n∑
j=1

Dij(y
′, t)∂yi∂yjp(y

′, t | y, s) = −Ltp(y
′, t | y, s). (2.1.24)

The Kolmogorov forward equation for SDEs is also known as Fokker-Planck equation (FPE) and
is obtained as the adjoint

∂tp(y
′, t | y, s) = −

n∑
i=1

∂y′ifi(y
′, t)p(y′, t | y, s)

+
1

2

n∑
i=1

n∑
j=1

∂y′i∂y′jDij(y
′, t)p(y′, t | y, s) = L†tp(y′, t | y, s). (2.1.25)
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Notice the conceptual similarity to the MJP case, cf. Eqs. (2.1.15) and (2.1.16); this is unsurprising,
as both MJPs and SDEs are examples of Feller processes as mentioned above.

For linear functions f and fixed Y (0) = y(0), the FPE yields time-dependent Gaussians as
conditional marginals [21]; it is however not possible - as it still was for the MJP - to write down
a density function over trajectories y[0,T ]. Intuitively, this would need to be something like an
“infinite product of Gaussians” (cf. [20]), which cannot be rigorously defined. It is, however,
still possible to compute the Radon-Nikodym derivative between two measures induced by
SDEs, akin to Eq. (2.1.19): consider two SDEs driven by different Brownian motionsWP andWQ,
inducing different measures P and Q:

dY (t) = f(Y (t), t)dt+Q(Y (t), t)dWP(t) ←→ P(Y[0,T ] ∈ dy[0,T ]),

dỸ (t) = g(Ỹ (t), t)dt+Q(Ỹ (t), t)dWQ(t) ←→ Q(Ỹ[0,T ] ∈ dy[0,T ]).

The Radon-Nikodym derivative between both measures can be computed as [22, 23]

dQ

dP

(
Y[0,T ]

)
= exp

{∫ T

0

(f(Y (t), t)− g(Y (t), t))⊤D(Y (t), t)−1dWP(t)

−1

2

∫ T

0

(f(Y (t), t)− g(Y (t), t))⊤D(Y (t), t)−1 (f(Y (t), t)− g(Y (t), t)) dt

}
(2.1.26)

withD as before; see the also discussion regarding Eq. (2.1.19). As an aside, note that this can
even be generalized to differing dispersion matrices [24]. Defining the difference process

ξ(t) := Q(Y (t), t)−1f(Y (t), t)− g(Y (t), t),

both measures are related via Girsanov’s theorem [15], which tells us that

WQ(t) = WP(t)− ξ(t) (2.1.27)

is a Brownian motion under Q, meaning that EQ [WQ] = 0, cf. the above remarks about
martingales.

To simulate SDEs, serveral numerical schemes are available [25]. The most straightforward
approach is the Euler-Maruyama approximation: here, the time domain is discretized with some
step size h, {0 = t0, t1 = t0 + h, . . . tN = T}, and the process approximation is given via

Y (tk) = Y (tk−1) + f (Y (tk−1), tk−1)h+Q (Y (tk−1), tk−1)∆W (tk−1). (2.1.28)

The random variables
∆W (tk−1) := W (tk)−W (tk−1)

are normally distributed with mean zero and variance h, as prescribed by the definition of
Brownian motion.
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2.1.2.3 Switching stochastic differential equations

Analogous to SLDS, cf. Fig. 2.1, we can combine MJPs and SDEs to a discrete-continuous hybrid
systems. The MJP-switching stochastic differential equation (SSDE) is composed as follows: the
switching processZ at the top of the hierarchy is given as an MJP. The subordinated diffusion
process Y is a continuous-valued process, Y (t) ∈ Y ⊆ Rn, depending on the freely evolving
MJPZ . It is defined as an SDE conditional on the state of the MJPZ , yielding an SSDE [26]:

dY (t) = f(Y (t), Z(t), t) dt+Q(Y (t), Z(t), t) dW (t), (2.1.29)

with the drift function f : Y × Z × R≥0 → Y and the invertible dispersion Q : Y ×
Z × R≥0 → Rn×n determining the noise covariance as D(y, z, t) := Q(y, z, t)Q⊤(y, z, t).
Given a realization of the MJP, the SSDE in Eq. (2.1.29) can hence be equivalently interpreted as a
concatenation of individual SDEs determined by the MJP. Note that throughout this thesis, the
terms “hybrid process” and “hybrid system” will refer to MJP-SSDEs unless stated otherwise.

2.2 bayesian inference for biological systems

Having defined a model for the system of interest, we want to utilize it for inference: statistical
inference refers to the process of drawing conclusions about properties θ of a statistical model
based on some given data set of observations x. The centerpiece of Bayesian inference is Bayes’
theorem,

p(θ | x) = p(x | θ)
p(x)

p(θ), (2.2.30)

which yields a posterior distribution over the desired quantity θ in light of the observed data. The
term p(x | θ) denotes the likelihood function, p(x) the (model) evidence and p(θ) the prior
distribution. It is sometimes (in the machine learning literature in particular) differentiated
between inference and learning, where inference refers to the estimation of latent state variables
and learning to the estimation of parameters. In fully Bayesian settings, this distinction is not as
meaningful, since both the latent processes and the system parameters are treated as random
variables and Eq. (2.2.30) applies similarly to either one. For clarity, however, we will keep with
this distinction.

The observed data which are used for inference are typically recorded at discrete time points, in
particular in biological experiments (but also in engineering contexts, see, e.g., [27]). If we model
the latent processes in continuous time, this defines a continuous-discrete inference problem:
we aim to draw inferences about a latent continuous-time process from only a finite set of
observations. This problem class has a long history in the filtering community [20, 28, 29].

In the following, we keep with the notational conventions laid out in the previous section:
discrete-time processes start at t = 1, continuous-time processes at t = 0. A discrete-time
observation trajectory in the time interval [1, T ] ⊂ N is correspondingly denoted as x[1,T ] :=
{x(1), . . . , x(T )}.2 In the continuous-discrete setting, the observational data obtained in the

2 Notice that this plausibilizes the different starting time points in the discrete- and continuous-time settings: if one
had chosen t = 0 as a starting point in the discrete regime, the set x[0,T ] would contain T + 1 observations, which
is somewhat unwieldy. In the continuous-time case, on the other hand, the interval [0, T ] is of length T , as one
would expect.
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figure 2.3: Illustration of the filtering and the smoothing problems for a discrete-time HMM. The
filtering problem consists in determining the marginal probability p(z, t | x[1,t]) of the latent state at
some time point t given observations up to and including time t (green circle); the smoothing problem
consists in finding p(z, t | x[1,T ]) given also “future” observations at times T > t (blue circle).

interval [0, T ] ⊂ R is denoted as x[0,T ] := {x(t1) = x1, . . . , x(tN) = xN}with observation
time points 0 ≤ t1, . . . , tN ≤ T .

2.2.1 Filtering and smoothing problems

In inference problems, one is typically interested in the best estimate of (a function of) the
latent state at a given point in time. This gives rise to the filtering problem and the smoothing
problem. Their general structure is illustrated with the classic hidden Markov model (HMM),
see Fig. 2.3: an HMM is defined via a latent DTMC Z = {Z(t) : t ∈ {1, . . . , T}} as described
in Section 2.1.1.1, giving rise to observations {X(t) : t ∈ {1, . . . , T}}. An observation at time
point t,X(t), depends only on the state of the latent process at the same time t. This dependency
is given by the observation density

p(x(t) | z(t), {θ1, . . . , θ|Z|}) = p(x(t) | θz(t)), (2.2.31)

where {θi : i = 1, . . . , |Z|} represents a set of generic distribution parameters for each state i.
The filtering problem consists in finding the marginal distribution of the latent process at some
time t given the observational data up to and including time point t:

P(Z(t) = z | X(1) = x(1), . . . , X(t) = x(t)).

Formulated more generally to incude the continuous-time case, we are interested in

E
[
φ(Z(t)) | x[0,ti]

]
(2.2.32)

for some function φ of the latent state, and ti := max {t′ : t′ ∈ {t1, . . . , tN}, t′ ≤ t}.

The smoothing problem consists in finding the marginal distribution of the latent process given
also observations from future time points:

P(Z(t) = z | X(1) = x(1), . . . , X(T ) = x(T )).

More generally, we aim to compute

E
[
φ(Z(t)) | x[0,T ]

]
. (2.2.33)

The smoothing problem hence incorporates more observed information into the estimate, typ-
ically resulting in “smoother” estimates of the latent state - hence the name. In the following,
we will be concerned with this latter problem. For more in-depth information about stochastic
filtering and smoothing, see, e.g., [30] and [31].
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2.2.1.1 Discrete time

To efficiently compute the time point-wise smoothing marginals of discrete-time processes,
Bayes’ rule can be employed. For the latent processZ of the above-defined HMM, this allows to
straightforwardly derive a forward-backward message-passing algorithm [9]: the desired posterior
marginal density at time point t can be written as

p(z, t | x[1,T ]) ∝ α(z, t)β(z, t) (2.2.34)

with the forward-messages

α(z, t) := p(z, t | x(1), ..., x(t))

and the backward-messages

β(z, t) := p(x(t+ 1), ..., x(T ) | z, t).

By applying the law of total probability and the conditional independence relations encoded in
the graphical model (see Fig. 2.3), one can by straightforward marginalization derive recursions
for both α and β as

α(z, t) = p(x(t) | z)
∑
z′ ∈S

α(z′, t− 1)πz′z,

β(z, t) =
∑
z′ ∈S

β(z′, t+ 1)p(x(t+ 1) | z′)πzz′ .
(2.2.35)

A similar algorithm known as the Rauch-Tung-Striebel (RTS) smoother (which builds on the
famous Kalman filter [21]) exists for LDS.

2.2.1.2 Continuous time

In the continuous-time case, one has to differentiate between continuous-discrete models in
which observations are obtained only at individual time points (see the discussion in the begin-
ning of Section 2.2) and fully continuous models, where complete trajectories are observed. For
continuous-discrete models, it is possible (similar to the discrete-time case) to apply Bayes’ rule,
as the number of observations is finite: for the continuous-time HMM, for instance, this yields

p(z, t | x[0,T ]) ∝ α(z, t)β(z, t), (2.2.36)

with, in analogy to the discrete-time case, the (forward) filtering density

α(z, t) := p(z, t | x[0,tk])

and the (backward) function

β(z, t) := p(x[tk+1,T ] | z, t),

where tk := max {t′ ∈ {t1, . . . , tN} : t′ ≤ t}. Instead of a recursive map akin to Eq. (2.2.35),
one can derive forward and backward ODEs describing the dynamics of these quantities [32].
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If, on the other hand, x[0,T ] := {x(t) : t ∈ [0, T ] ⊂ R≥0}, i.e., the observations consist of a
full continuous trajectory, one cannot directly replicate these results, as it is not possible to apply
the conventional Bayes rule. There is however a continuous-time analog called the Kallianpur-
Striebel formula [13]:

P(Z[0,T ] ∈ dz[0,T ] | x[0,T ]) =
G(x[0,T ], z[0,T ])P(Z[0,T ] ∈ dz[0,T ])∫
G(x[0,T ], z

′
[0,T ])P(Z[0,T ] ∈ dz′[0,T ])

, (2.2.37)

where we define
G(x[0,T ], z[0,T ]) :=

P(X[0,T ] ∈ dx[0,T ] | z[0,T ])

P(X[0,T ] ∈ dx[0,T ])

as a shortcut for the Radon-Nikodym derivative between measures. This allows to derive (stochas-
tic) partial differential equations (PDEs) describing the forward and backward dynamics of the
posterior process. A particularly well-known result is the Wonham filter, which is obtained for
a latent MJP with an SDE observation process. Notice that similar results are also obtained for
different combinations of latent and observed process classes, see, e.g., [31].

2.2.2 Conjugate priors

The prior distribution p(θ) characteristic for Bayesian inference has to be chosen by hand. It
may, for instance, be set based on knowledge from previous experiments. With respect to the
computational tractability of the inference problem it is beneficial to choose priors that are
conjugate to the respective likelihoods: a prior probability density parameterized by γ, p(θ | γ),
is said to be conjugate to a likelihood density p(x | θ) if the resulting Bayesian posterior is of the
same functional form as the prior,

p(x | θ)p(θ | γ) ∝ p(θ | γ′). (2.2.38)

The updated parameter γ′ is a function of the prior parameter and the data, γ′ = γ′(γ, x). This
property greatly simplifies inference because the computation of a posterior distributions then
reduces to computing the parameter update γ → γ′. As an aside, note that this can also be
generalized to distributions that do not admit probability densities [33].

The parameter updates become particularly simple if exponential family priors are utilized: let
θ ∈ A, γ ∈ B. The class of distributions that admit a density of the form

p(θ | γ) = h(θ) exp {⟨η(γ), T (θ)⟩ − ln g(η)} (2.2.39)

is called the exponential family. The function h : A → R≥0 is called the base measure, η : B →
H the natural parameter and T : A → H the sufficient statistic, whereH is equipped with an
inner product ⟨·, ·⟩:H×H → R. The function g : H → R>0 ensures normalization. For the
purposes of this thesis, it is sufficient to considerA,B ⊆ Rn. It can be shown that for every
exponential family distribution, a conjugate prior exists [9], which can be written as

p(η | χ, ν) = f(χ, ν) exp {ν⟨η, χ⟩+ ν ln g(η)} . (2.2.40)

with g as above, χ ∈ H, ν ∈ R and a normalizing function f : H× R→ R.
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example: dirichlet-multinomial conjugacy As a concrete example with
distributions that will be used in Chapter 5, consider the multinomial distribution

Mult(n | π) = Γ (
∑

i ni + 1)∏
i Γ(ni + 1)

K∏
i=1

πni
i , (2.2.41)

with π := {π1, ..., πK} ∈ ∆K denoting the success probabilities of the K categories, n :=
{n1, ..., nK} ∈ NK andni ∈ N denoting the number of occurrences of category i. The number
of total events

∑
i ni =: N . This distribution is a member of the exponential family, as can be

seen by identifying

η(π) = (ln π1, ..., lnπK)
⊤, T (n) = (n1, ..., nK)

⊤,

h(n) =
N !∏
i ni!

=
Γ (
∑

i ni + 1)∏
i Γ(ni + 1)

, g(π) = 1.

The conjugate prior to the multinomial is the Dirichlet distribution

Dir(π | α) = Γ(
∑

i αi)∏
i Γ(αi)

∏
i

παi−1
i (2.2.42)

with α := {α1, ..., αK}, αi ∈ R>0; compare this to Eq. (2.2.40) with the identities

ν = 1,

χ = (α1 − 1, ..., αK − 1)⊤ ,

f(χ, ν) =
Γ (
∑

i αi)∏
i Γ(αi)

.

Straightforward multiplication of the likelihood Eq. (2.2.39) with the prior Eq. (2.2.40) yields
the generic update rule γ′(γ, x):

ν ′ = ν + 1, χ′ = χ+ T (θ).

For the Dirichlet-multinomial conjugacy between Eqs. (2.2.41) and (2.2.42), this translates to

α′i = αi + ni.

For a comprehensive overview over distributions and conjugate priors, see, e.g., [34].

2.2.3 Nonparametric models

A particular challenge regarding the specification of a suitable prior distribution that will arise
in Chapter 5 is the specification of a prior over countably infinite states. This is enabled by
the Dirichlet process (DP): a DP is a stochastic process taking values in the space of (discrete)
probability measures [35]. Let γ ∈ R>0 and P0 be a probability measure on some measurable
space (S,F). The stochastic process DP(γ,P0) is called a Dirichlet process if for any finite
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partitionA := A1, ..., AK ofS , i.e.,
⋃

iAi = S andAi∩Aj = ∅ ∀ i ̸= j, the random variable
P1 ∼ DP(γ,P0) is Dirichlet distributed on this partition, [36]

P1 ∼ DP(γ,P0)⇐⇒ (P1(A1), ...,P1(AK)) ∼ Dir (γ P0(A1), ..., γ P0(AK)) . (2.2.43)

P1 hence is a random measure on (S,F);
∫
dP1 = 1 almost surely. The parameter γ prescribes

the concentration of the process: in the limit γ → 0, all realizations of the process would
be bound to one single point. The base measure P0 determines the expected value of the DP:
E[P1] = P0.

Importantly, the conjugacy between the multinomial and the Dirichlet distribution discussed in
the previous section carries over to the countably infinite case: given a set of samples from the
measure P1, θi ∼ P1 for i = 1, ..., N , the posterior distribution of P1 given these data is again
DP-distributed [36]:

P1 | {θi : i = 1, ..., N} ∼ DP

(
γ +N,

γ

γ +N
P0+

1

γ +N

N∑
i=1

δθi

)
. (2.2.44)

Due to this result, the definition Eq. (2.2.43) is helpful in inference, as will be seen in Chapter 5.
It is however non-constructive, i.e., it provides no method to actually draw samples from a DP,
which would be required for the construction of a generative model.

An equivalent, constructive definition of the DP can be formulated as follows [37]. To generate a
DP-distributed probability measure P1 ∼ DP(γ,P0), it takes i.i.d. random variables distributed
according to the base measure,

Θk
i.i.d.∼ P0 for k = 1, 2, .... (2.2.45)

To each Θk then a probability massBk is assigned via the so-called stick-breaking process:

ϵk
i.i.d.∼ Beta(1, γ) for k = 1, 2, ...,

Bk = ϵk

k−1∏
j=1

(1− ϵj).
(2.2.46)

Eq. (2.2.46) is compactly written as B ∼ GEM(γ) (as an acronym for the names Griffiths,
Engen and McCloskey) [38]. For a visual representation of this process for a realizationB = β,
see Fig. 2.4. By construction,

∑
k Bk = 1 almost surely. The random measure P1 ∼ DP(γ,P0)

then reads

P1 =
∞∑
k=1

BkδΘk
. (2.2.47)

Note that the stick-breaking measureB encourages sparsity by allocating decreasing amounts of
probability mass to higher state indices k.

2.2.4 Approximation methods

The desired posterior distributions (or expectations, more generally) typically are complicated
objects that do not allow analytical solutions. As detailed above, in some cases, exact solutions of
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figure 2.4: Sketch of the stick-breaking process Eq. (2.2.46). A “stick” of length 1 is successively broken
into pieces: first, a piece of length ϵ1 ∼ Beta(1, γ) is taken off the stick and ϵ1 =: β1. The remainder of
the stick accordingly has length (1− ϵ1). Of this remainder, again a portion ϵ2 ∼ Beta(1, γ) is taken
off; this then has length β2 := ϵ2(1− ϵ1). This procedure repeats indefinitely and is guaranteed to sum
up to one,

∑
i βi = 1. In the DP, the stick lengths βi serve as respective probability masses of the atoms

θi drawn from the base measure P0.

the respective dynamics (message passing algorithms, ODEs or PDEs) can be found [39] - this is
not generally the case, however, and even if it is, one then is often confronted with the problem of
computational tractability, e.g., by the curse of dimensionality. Consequentially, a great wealth
of approximation techniques has been developed, which can be employed to devise tractable
algorithms [40–43]. In the following, two main approaches for approximate inference will
be presented that are relevant to the present thesis, namely, Markov chain Monte Carlo and
variational inference.

2.2.4.1 Markov chain Monte Carlo

Markov chain Monte Carlo (MCMC) methods constitute a powerful class of algorithms allowing
one to efficiently sample from complex probability distributions. This is achieved by defining
a Markov chain which can be tractably propagated and which has the desired distribution as
its stationary distribution. MCMC methods have been subject to intense study for decades;
accordingly, a wide array of methods exist [44–46]. Of particular interest to this thesis are
Gibbs-type sampling schemes, which enable sampling from a complex joint distribution by only
knowing the full conditionals: let x ∈ Rn and xik denote the k-th component of the i-th sample.
Choose some initial x1 and then sample successively from

X i
k ∼ p(xik | xi1, . . . , xik−1, xi−1k+1, . . . , x

i−1
n ) (2.2.48)

over all componentsk and as many iterations I as desired. Provided that the distribution is strictly
positive, p(x) > 0, this generates I samples from the joint distribution p(x1, . . . , xn). Note
that without the positivity condition, the latter is not true, as then the set of full conditionals
does not necessarily amount to a valid probability distribution; see, e.g., [47] and [48]. While
MCMC approaches are very flexible as they allow also complex, high-dimensional distributions to
be sampled, they produce correlated samples which depend on the initialization of the algorithm.
Consequently, one needs to discard many samples throughout in order to reduce correlations (in
an effort to obtain i.i.d. samples; thinning) and additionally some samples from the beginning (to
reduce dependency on the initialization, burn-in). For Monte Carlo approaches to discrete-time
as well as continuous-time systems, see, e.g., [40, 41, 49].
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2.2.4.2 Variational inference

The main problem with MCMC methods is the associated computational cost in the face of
large data sets or complex models. An alternative approach that addresses this issue is variational
inference (VI), which casts the inference task as an optimization problem [50]. VI methods
are widely used, see, e.g., [51–54]; their goal is to identify the best approxmation to the exact
(intractable) posterior measure over the process of interestZ , Px := P(Z[0,T ] ∈ dz[0,T ] | x[0,T ])
by an auxiliary measure Q := Q(Z[0,T ] ∈ dz[0,T ]),

Q∗ := argmin
Q

DKL[Q || Px]. (2.2.49)

The cost function is given as the Kullback-Leibler (KL) divergence

DKL[Q || Px] = E

[
ln

dQ

dPx

]
, (2.2.50)

where the expectation is taken with respect to Q. Considering the KL divergence between the
Q-measure and the prior measure P := P(Z[0,T ] ∈ dz[0,T ]), notice that [23]

DKL[Q || P] = E

[
ln

dQ

dPx

+ ln
dPx

dP

]
.

Observing that

P(Z[0,T ] ∈ dz[0,T ] | x[0,T ]) ∝ P(X[0,T ] ∈ dx[0,T ] | z[0,T ])P(Z[0,T ] ∈ dz[0,T ])

and utilizing the Kallianpur-Striebel formula (2.2.37), we find

dPx

dP
=

∏N
i=1 p(x(ti) | z(ti))

p(x[0,T ])
, (2.2.51)

which we can write in terms of densities assuming that the observation processX | Z admits such
a density. This allows to reformulate the KL divergence (2.2.50) for general continuous-discrete
processes as

DKL[Q || Px] = DKL[Q || P]−
N∑
i=1

E[ln p(x(ti) | z(ti))] + ln p(x[0,T ]). (2.2.52)

This result holds analogously for discrete-time processes. Notice that a similar decomposition
can be obtained also more generally for continuously observed processes, see, e.g., [23, 55]. For
more details on the KL divergence between stochastic processes, see [56, 57]. As the KL divergence
is bounded by zero, DKL[Q || P] ≥ 0, the minimum is attained at zero for the exact (and
intractable) posterior Q = Px. This is reflected also in the KL decomposition, as the right-hand
side contains the marginal likelihood p(x[0,T ]), which is the problematic part with respect to
computability. Due to the boundedness, the above can, however, be reformulated as an inequality
reading [58]

ln p(x[0,T ]) ≥
N∑
i=1

E[p(x(ti) | z(ti))]− DKL[Q || P] =: L.
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The so-defined quantity L is the evidence lower-bound (ELBO); as ln p(x[0,T ]) does not depend
on Q, minimization of the KL (2.2.50) is equivalent to maximization of the ELBO:

argmin
Q

DKL[Q || Px]⇐⇒ argmax
Q

L. (2.2.53)

To be able to optimize the ELBO efficiently, further assumptions typically have to be made
regarding Q, such as the classic mean-field assumption:

Q
(
(Z[0,T ],Θ) ∈ d(z[0,T ],Θ)

)
= Q(Z[0,T ] ∈ dz[0,T ])Q(Θ ∈ dθ).

In the discrete-time case with conjugate model priors and likelihoods, this yields the coordinate-
ascent variational inference (CAVI) algorithm, enabling one to efficiently update one mean-field
component at a time, see, e.g., [9, 50] and Chapter 5. If further constraints are placed on Q,
such as a positive semi-definiteness constraint on Gaussian covariances, the now constrained
optimization problem can be converted into an unconstrained problem by means of Lagrangian
multipliers [9]. In the continuous-time case, this holds similarly with Lagrange multiplier
functions. For a thorough introduction to optimization and control theory, see [59].
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As laid out previously, a wide range of mathematical tools exists to model the dynamics of
biological systems. The framework of choice naturally is prescribed by the system under study
and the scientific question to be answered. For instance, when modeling the conformational
gating behavior of an ion channel (see the example given in Chapter 1), one is typically interested
in the succession of “open” and “closed” states, permitting or preventing ions from flowing
through; as the random thermal motion of the constituent atoms of the channel molecule
around the current conformational state does not provide relevant information, these can be
safely abstracted away by modeling the switching via a DTMC or MJP on a purely discrete state
spaceZ ⊆ N.

In many systems, however, both discrete and continuous components are of interest, meaning
that neither can be neglected upfront; two respective examples were already discussed in Chapter 1.
Going beyond these examples, systems with a hybrid state-space structure are found over a wide
range of natural and engineering sciences: in neuroscience, for instance, the brain is commonly
assumed to adopt different states depending, e.g., on the environment or own actions, such as
“eyes opened” versus “eyes closed”, eliciting qualitatively distinct continuous electrophysiological
dynamics [60]. These different states and the transition dynamics between them may influence,
e.g., decision-making and cognitive performance [61]. Different dynamical regimes are indeed
found on multiple time and lengths scales using a variety of experimental techniques [62]. In
addition to aiding understanding, probabilistic switching models open up the possibility of

25
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identifying appropriate external control stimuli that trigger transitions between states, e.g., from
sleep to wakefulness [63].

A similarly wide array of examples may also be found in cellular biology: for instance, the
- discrete - states of genetic toggle switches drive continuous measurable quantities such as
protein concentrations [64]. As discussed in Chapter 1, one may not only be interested in the
conformational state of an ion channel, but also in the current passing through [65], requiring
hybrid models for its gating behavior. Hybrid system frameworks are also used to model DNA
replication [66, 67] and phenotype differentiation in systems biology [68].

Examples from branches of engineering sciences include safety modeling of air traffic [69] or
electrical power systems [70] under potential system failures; more generally, hybrid systems
are - somewhat akin to the neuroscience examples - used in electrical engineering to control and
optimize the power distribution in an electrical grid in different connectivity modes [71]. Modern
energy grids (more contemporarily termed smart grids) represent one instance of cyber-physical
systems (which are systems intertwining physical and software machine components) which
also more generally are often described via hybrid models [72, 73].

As a last example, use cases for hybrid approaches are also amply found in finance and econo-
metrics: exchange rates or stock returns depending on market states can be modeled in this
way [74], allowing, e.g., for systematic analyses of regime-switching volatility dynamics [75] and
corresponding risk assessment [76, 77].

The study of mathematical hybrid state-space frameworks has a long history in control theory,
statistics and machine learning [78–83]. Correspondingly, a great diversity of different model
types exists (see, e.g., [80]). The following chapter focuses on MJP-SSDEs as described in Sec-
tion 2.1.2.3. For MJPs as well as SDEs, the problem of inference has been treated extensively. Exact
expressions for the posterior paths given some set of observations can be obtained in each process
class, see the discussion in Section 2.2.1.2: classic results include the well-known Kalman and
Wonham filters [30], as well as the respective smoothing extensions such as the RTS smoother [21,
55]. However, for diffusion processes in particular, these expressions quickly become intractable
as they entail solving multi-dimensional PDEs. This is aggravated if the diffusion is coupled to an
underlying jump process, because both processes then have to be solved jointly. Consequentially,
a rich variety of approximation methods exists: Monte Carlo approaches (cf. Section 2.2) have
been devised for both SDEs, for instance based on particle smoothing [49, 84], and MJPs, e.g., via
direct approximations to the jump process [85] or, similarly, particle methods [40, 41, 86]. Simi-
larly, variational methods have been employed both for inference in diffusion processes (utilizing,
e.g., Gaussian processes (GPs) [87, 88], moment approximations [43] and general exponential
family distributions [23]) and in MJPs [42, 89]. In addition, approximate inference methods also
exist for discrete-time SLDS - due to the computational intractability of the full posteriors [11]
- such as the Gaussian sum filter [90] or the switching Kalman filter [91]. In the discrete-time
domain, SLDS methods currently receive considerable attention [92–94]. Similarly, frameworks
utilizing both sampling from the exact posteriors [95, 96] as well as variational approaches [97]
have been put forward. In recent years, first inference frameworks for continuous-time hybrid
systems have also been put forward, see, e.g., [98–100].

In this chapter, a Gibbs sampling scheme is presented which allows to sample from the exact
posterior MJP-SSDE process. To this end, the problem is first analyzed mathematically, yielding
an evolution equation for the prior process. A similar equation is then derived for the posterior
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Time Time
0 t1 t2 t3 T 0 t1 t2 t3 T

X(t1) X(t2) X(t3)

Y (0) Y (t1) Y (t2) Y (t3) Y (T )

Z(0) Z(t1) Z(t2) Z(t3) Z(T )

figure 3.1: Sketch of an SSDE hybrid process. Left: graphical model adapted to the continuous-time
setting. Right: sketch of a corresponding realization. A switching process Z (top; here, this will be an
MJP governed by a transition function Λ throughout), freely evolving in the interval t ∈ [0, T ] controls
the dynamics of the SSDE Y | Z (middle) via a Z-dependent drift function f and dispersion matrix
Q. These latent continuous dynamics generate sparse and noisy observations (bottom, red crosses) at
irregularly-spaced time points t1, t2, . . . , which are the data available for inference. Vertical dashed arrows
indicate the Z-transitions.

process, which is however hard to compute in general. It will be shown that this posterior
enables MCMC sampling via a backward-forward/forward-backward-sweeping algorithm. This
is combined with a Bayesian treatment of the model parameters, for which full posterior dis-
tributions are obtained. The resulting algorithm is first benchmarked on ground-truth data
and compared to the exact posterior solution, and then applied to wet-lab fluorescence data
on controlled gene-switching. An implementation of the framework is publicly available at
https://git.rwth-aachen.de/bcs/projects/lk/mcmc-ct-sds.git.

3.1 markov-switching stochastic differential equations

The stochastic dynamical systems considered here consist of MJP-SSDE hybrid processes as defined
in Section 2.1.2.3 with discrete observations. In other words, the full model is composed of three
joint stochastic processes, cf. Fig. 3.1:

1. a (continuous-time) MJPZ := {Z(t) : t ∈ R≥0},

Z ∼ MJP(Λ(z, z′, t)),

withZ(t) ∈ Z ⊆ N,

2. a (continuous-time) subordinated diffusion process, viz., an SSDE, Y := {Y (t) : t ∈
R≥0},

dY (t) = f(Y (t), Z(t), t) dt+Q(Y (t), Z(t), t) dW (t),

where Y (t) ∈ Y ⊆ Rn, and

3. an observation process X := {Xi : i ∈ N} at discrete time points {ti : i ∈ N},
Xi := X(ti) ∈ X ⊆ Rn.

To avoid ambiguity, in the following the discrete value Z(t) is denoted as the mode and the
continuous value Y (t) as the state of the system.
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characterizing the induced distribution For any time interval [0, T ] ⊂
R≥0, the MJP-SSDE process induces a measure P on the space ΩT of all possible paths ωT :=(
y[0,T ], z[0,T ]

)
, where y[0,T ] := {y(t) : t ∈ [0, T ]}, z[0,T ] := {z(t) : t ∈ [0, T ]} [101]; that is,

for any eventA in the Borel σ-algebra of paths, we can formally find its associated probability by
integration,

P
((
Y[0,T ], Z[0,T ]

)
∈ A

)
=

∫
A
P
((
Y[0,T ], Z[0,T ]

)
∈ dωT

)
=:

∫
A
dP(ωT ). (3.1.1)

Time point-wise, this quantity admits a probability density p(y, z, t):

E [φ(Y (t), Z(t), t)] =

∫
Ω

φ(y(t), z(t), t)dP(ωT ) =
∑
z∈Z

∫
Y
φ(y, z, t)p(y, z, t) dy, (3.1.2)

where φ : Y × Z × R≥0 → R is an arbitrary test function. Starting with the Chapman-
Kolmogorov equation (2.1.11)

p(y, z, t+ h) =
∑
z′

∫
Y
p(y, z, t+ h | y′, z′, t)p(y′, z′, t) dy′,

an evolution equation for this density can be derived by analyzing the properties of the transition
density p(y, z, t+ h | y′, z′, t) and taking the limit h→ 0 as

∂tp(y, z, t) = L†tp(y, z, t), (3.1.3)

with some initial distribution p(y, z, 0) andL† the adjoint of the generator of the hybrid process,
cf. Section 2.1.2. Equation (3.1.3) is called the hybrid master equation (HME). It holds that
L†t = T

†
t + F †t , where

T †t φ(y, z, t) :=
∑
z′∈Z

Λ(z′, z, t)φ(y, z′, t),

F †t φ(y, z, t) := −
n∑

i=1

∂yi {fi(y, z, t)φ(y, z, t)}+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{Dij(y, z, t)φ(y, z, t)},

with φ as above and D(y, z, t) := Q(y, z, t)Q⊤(y, z, t). The full derivation is provided in
Appendix B.1.1, but see also [102].

The same quantity can be obtained as the solution to a PDE going backwards in time, starting at
an end point condition p(y, z, T ): this backward HME reads

∂tp(y, z, t) = −Ltp(y, z, t) (3.1.4)

whereLt = Tt + Ft consists of (with again φ as above)

Ttφ(y, z, t) =
∑
z′∈Z

Λ(z, z′, t)φ(y, z′, t),

Ftφ(y, z, t) =
n∑

i=1

fi(y, z, t)∂yiφ(y, z, t) +
1

2

n∑
i=1

n∑
j=1

Dij(y, z, t)∂yi∂yjφ(y, z, t).
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Inspection of the HME shows that it generalizes - as one would expect - both the density evolution
equations for MJPs as well as for SDEs: asZ is independent of Y , marginalizing Eq. (3.1.3) over Y
recovers the master equation for MJPs, Eq. (2.1.15),

d

dt
p(z, t) =

∑
z′∈Z

Λ(z′, z, t)p(z, t), (3.1.5)

with some p(z, 0). Likewise, if |Z| = 1, i.e. in the absence of a switching process, the HME
reduces to the conventional FPE,

∂tp(y, t) = −
n∑

i=1

∂yi {fi(y, t)p(y, t)}+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{Dij(y, z, t)p(y, t)} (3.1.6)

with an initial density p(y, 0).

A general, analytic solution to the HME does not exist. One valid approach is to solve this PDE
numerically via methods such as finite elements [103]. Solving PDEs is a delicate venture, however,
requiring to adapt solvers to the problem at hand and dealing with issues such as the curse of
dimensionality and step-size adaptation. On the other hand, sampling trajectories from {Y, Z}
is straightforward, (cf. Section 2.1.2): a realization z[0,T ] of the discrete processZ can be simulated
via the Doob-Gillespie algorithm. Given this trajectory, the diffusion Y can be simulated as
conventional SDEs using, e.g., an Euler-Maruyama or stochastic Runge-Kutta method.

modeling assumptions Up to this point, the presented results are general to any
MJP-SSDE process. For the remainder of this chapter, the prior MJP is assumed to be time-
homogeneous with rate function Λ(z, z′, t) = Λ(z, z′). The diffusion components are taken
to be mode-dependent, linear and time-invariant, i.e.,

f(y, z, t) = f(y, z) = A(z)y + b(z), (3.1.7)

withA(z) ∈ Rn×n and b(z) ∈ Rn. Defining the shorthandsΓ(z) := [A(z), b(z)] ∈ Rn×(n+1)

and ȳ :=
[
y⊤, 1⊤n

]⊤ ∈ Rn+1, where 1n is the n-dimensional all-ones vector, this may be written
as

f(y, z) = Γ(z)ȳ. (3.1.8)

Furthermore, the dispersion is assumed to be time-homogeneous and state-independent, i.e.,
Q(y, z, t) = Q(z). Note that extensions to the time-dependent [24] and state-dependent [23]
cases are possible, see also Eq. (2.1.26).

As to the initial distributions, we assume p(y(0)z(0)) = p(y(0))p(z(0)) and impose a cate-
gorical prior for Z , p(z(0)) = Cat(z(0) | π0), with π0 a vector of individual entries πi

0 ∈
[0, 1],

∑
i π

i
0 = 1. For Y , we assume a Gaussian initial distribution, which we parameterize as

p(y(0)) = N (y(0) | µ0,Σ0).

Finally, we assume a linear observation model for the data as

Xi = X(ti) = Y (ti) + ζ,

ζ ∼ N (0,Σx)
(3.1.9)

with observation covariance Σx ∈ Rn×n.
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3.2 exact inference

Consider now a set x[0,T ] := {x(ti) : i = 1, . . . , N} of observations generated via Eq. (3.1.9) at
time points 0 ≤ t1, ..., tN ≤ T . The full inference problem consists in finding the path-wise
posterior distribution over the latent hybrid process {Y, Z} on the interval [0, T ] and all of its
parameters Θ given the observed data,

Px

((
Y[0,T ], Z[0,T ],Θ

)
∈ d(y[0,T ], z[0,T ], θ) | x[0,T ]

)
. (3.2.10)

We utilize the subscript x to indicate the posterior measure conditioned on the data x[0,T ].

In the smoothing problem, we are (as laid out in Section 2.2.1.1) only interested in the best
posterior estimate at a given time point t,∫

Ω

φ(Y (t), Z(t), t)dPx =
∑
z∈Z

∫
Y
φ(y, z, t)p(y, z, t | x[0,T ])dy,

reducing the problem to computing the smoothing density p(y, z, t | x[0,T ]). By appropriate
use of the laws of probability and the model’s Markov property, this density can be expressed as
the product of two factors with an inherent time-direction: let k = max {k′ ∈ N : tk′ ≤ t}
for some t ∈ [0, T ], and decompose

p(y, z, t | x[0,T ]) = p(y, z, t, x[0,tk])
1

p(x[0,T ])
p(x[tk+1,T ] | y, z, t, x[0,tk])

=
p(x[0,tk])

p(x[0,T ])
p(y, z, t | x[0,tk])p(x[tk+1,T ] | y, z, t, x[0,tk])

= C−1(t)α(y, z, t)β(y, z, t).

(3.2.11)

The individual components of this expression are the filtering density α(y, z, t), the backward
function β(y, z, t), and the normalizerC(t):

α(y, z, t) = p(y, z, t | x[0,tk]),
β(y, z, t) = p(x[tk+1,T ] | y, z, t),

C(t) =
∑
z

∫
α(y, z, t)β(y, z, t) dy.

(3.2.12)

The (forward) filtering density is indeed a proper probability density, which is specificed at some
- with respect to the given data - “future” time point t ≥ tk. On the other hand, the backward
function - as the name suggests - is not a density with respect to y, z. Relative to the given data
x[tk+1,T ], it provides information about a “past” time point t ≤ tk+1. These functions are similar
to the ones obtained for the continuous-discrete HMM, see Section 2.2.1. In the following, it will
be shown how the exact inference problem can be solved via Eq. (3.2.11).

First, notice that the normalizer C(t) is constant with probability 1 [23, 104]; between obser-
vations, it is given via the fixed ratio C(t)−1 = p(x[0,tk])/p(x[0,T ]) for tk ≤ t < tk+1. The
dynamics of Eq. (3.2.11) are thus prescribed by the dynamics of the forward and backward
densities:

∂tp(y, z, t | x[0,T ]) = C−1(t)
(
α(y, z, t)∂tβ(y, z, t) + β(y, z, t)∂tα(y, z, t)

)
. (3.2.13)
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It is only at the observation times that the normalizer changes instantaneously upon “incorpo-
ration” of the next observed datum. As is typical for continuous-discrete problems [20], these
quantities hence (i) follow the prior dynamics between and (ii) are subject to jump conditions at
the observation time points.

dynamics between observations The smoothing dynamics between observation
time points are straightforwardly derived via the system’s Markov property. Consider a time
interval [t, t+ h], h > 0 in which no observation occurs. With the index k defined as above (cf.
Eq. (3.2.11)), we have by the law of total probability

α(y, z, t+ h) =
∑
z′∈Z

∫
p(y, z, t+ h | y′, z′, t, x[0,tk])p(y

′, z′, t | x[0,tk]) dy
′,

and the Markov property ensures

p(y, z, t+ h | y′, z′, t, x[0,tk]) = p(y, z, t+ h | y′, z′, t).

Thus,
α(y, z, t+ h) =

∑
z′∈Z

∫
p(y, z, t+ h | y′, z′, t)α(y′, z′, t) dy′,

which is the usual Chapman-Kolmogorov equation for the filtering process αwith transition
distribution p(y, z, t+ h | y′, z′, t). As this is the transition distribution of the prior dynamics
(3.1.3), the filtering distribution follows the same HME between observations,

∂tα(y, z, t) = L†tα(y, z, t), (3.2.14)

with some initial condition α(y, z, 0).

Similarly, for the backward function β(y, z, t), consider an interval without observations [t−
h, t], h > 0. In analogy to the above,

β(y, z, t− h) =
∑
z′∈Z

∫
p(y′, z′, t | y, z, t− h)p(x[tk+1,T ] | y′, z′, t, y, z, t− h) dy′

and
p(x[tk+1,T ] | y′, z′, t, y, z, t− h) = p(x[tk+1,T ] | y′, z′, t),

which yields

β(y, z, t− h) =
∑
z′∈Z

∫
p(y′, z′, t | y, z, t− h)β(y′, z′, t) dy′.

This is the Chapman-Kolmogorov equation for {xk+1, . . . , xN | Y (t), Z(t), t ≤ tk+1} - i.e.
the backward process - with the transition distribution p(y′, z′, t | y, z, t− h) corresponding
to the backward prior dynamics. Accordingly, the backward function β(y, z, t) follows the
backward HME

∂tβ(y, z, t) = −Ltβ(y, z, t), (3.2.15)

in between observations with the end point condition β(y, z, T ) = 1.
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jump conditions The behavior at an observation time point tk is found by separating
the contributions of the filtering distribution conditioned on all previous observations and the
observation likelihood of xk = x(tk):

α(y, z, tk) = p(y, z, tk | x[0,tk])

=
p(y, z, tk, x[0,tk])

p(x[0,tk])

=
p(xk | y, z, tk, x[0,tk−1])p(y, z, tk, x[0,tk−1])

p(x[0,tk])

=
p(xk | y, z, tk, x[0,tk−1])p(y, z, tk | x[0,tk−1])p(x[0,tk−1])

p(x[0,tk])

=
p(xk | y, tk)α(y, z, t−k )

Ck

(3.2.16)

withCk :=
p(x[0,tk])

p(x[0,tk−1]
)
=
∑

z∈Z
∫
p(xk | y)α(y, z, t−k ) dy and

α(y, z, t−k ) = lim
h↘0

α(y, z, tk − h), (3.2.17)

the value of the filter right before the jump, that is, the value of the solution of Eq. (3.2.14) at tk.

Analogously, one computes

β(y, z, tk) = p(x[tk,T ] | y, z, tk)

=
p(x[tk,T ], y, z, tk)

p(y, z, tk)

=
p(xk | x[tk+1,T ], y, z, tk)p(x[tk+1,T ], y, z, tk)

p(y, z, tk)

= p(xk | y, tk)β(y, z, t+k )

(3.2.18)

where
β(y, z, t+k ) = lim

h↘0
β(y, z, tk + h). (3.2.19)

The PDEs (3.2.14) and (3.2.15), together with the respective jump conditions (3.2.16) and (3.2.18),
constitute a set of impulsive differential equations [105–107]. To solve these equations, one
proceeds as the jump conditions suggest: first, given some initial (or terminal) conditions, solve
Eq. (3.2.14) (or Eq. (3.2.15)) until the next observation time point; second, apply the jump
conditions Eq. (3.2.16) (or Eq. (3.2.18)), and third, repeat this process - with the value after
applying the jump condition as the new initial (terminal) value - until all observations are
incorporated.

By inserting the dynamics ofα(y, z, t) andβ(y, z, t) into Eq. (3.2.11), it can readily be shown that
the smoothing distribution itself follows a HME. The calculations are provided in Appendix B.1.2,
resulting in

∂tp(y, z, t | x[0,T ]) = L̃†tp(y, z, t | x[0,T ]), (3.2.20)
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with initial condition p(y, z, 0 | x[0,T ]) ∝ α(y, z, 0)β(y, z, 0) and L̃†t = T̃
†
t + F̃ †t ,

T̃ †t φ(y, z, t) :=
∑
z′∈Z

Λ̃(y, z′, z, t)φ(y, z′, t)

F̃ †t φ(y, z, t) := −
n∑

i=1

∂yi

{
f̃i(y, z, t)φ(y, z, t)

}
+

1

2

n∑
i=1

n∑
j=1

∂yi∂yj{D̃ij(y, z, t)φ(y, z, t)},

where the posterior drift, dispersion and rate function

f̃i(y, z, t) = fi(y, z, t) +
n∑

j=1

Dij(y, z, t)∂yj{ln β(y, z, t)}, (3.2.21)

D̃(y, z, t) = D(y, z, t), (3.2.22)

Λ̃(y, z′, z, t) = Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
, (3.2.23)

and φ an arbitrary test function as above. The posterior density can hence in principle be
evaluated by first solving the backward dynamics of β, Eq. (3.2.15) starting at t = T , and
subsequently computing the smoothing HME (3.2.20) from t = 0.

3.3 inference via markov chain monte carlo

As the exact smoothing problem accordingly requires the solution of two coupled PDEs with
discrete and continuous components, its computation can be challenging. Yet, their solution
only provides the time point-wise posterior density. In this section, a blocked Gibbs sampler
is presented that avoids this need to compute two PDEs and yields full path-space information,
allowing one, e.g., to compute correlations over time. The switching processZ[0,T ], the diffu-
sion process Y[0,T ] and the parameters Θ are sampled in turn from the complete conditional
measures

Y[0,T ] ∼ P(Y[0,T ] ∈ dy[0,T ] | z[0,T ], x[0,T ], θ), (3.3.24)
Z[0,T ] ∼ P(Z[0,T ] ∈ dz[0,T ] | y[0,T ], x[0,T ], θ), (3.3.25)

Θ ∼ P(Θ ∈ dθ | y[0,T ], z[0,T ], x[0,T ]). (3.3.26)

Hence, this scheme yields samples from the full posterior path measure (3.2.10), cf. Section 2.2.4.1.

The measures (3.3.24) and (3.3.25) can be shown to each describe conditional Markov processes.
Drawing on results from filtering and smoothing theory, we now derive respective evolution
equations on the process level, allowing for the generation of the desired samples. By using
conjugate prior distributions, Eq. (3.3.26) yields closed-form distributions for all parameters;
notably, for the dispersionQ, we do not obtain the posterior directly, but utilize a Metropolis-
adapted Langevin scheme, ensuring numerical stability [108]. The conditional measures are
derived in order in the following.
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3.3.1 Sampling the conditional diffusion process

To generate samples from the full conditional diffusion measure

Y[0,T ] ∼ P(Y[0,T ] ∈ dy[0,T ] | z[0,T ], x[0,T ], θ),

first acknowledge that by conditioning on the trajectory z[0,T ], the SSDE model can be interpreted
as a temporal sequence of conventional SDEs, or, equivalently - as all drift functions Eq. (3.1.7)
are assumed to be linear - as one SDE with time-dependent parameters. More concretely, we
re-interpret

f : Y × Z → Rn,

f(y, z) = A(z)y + b(z),

as

f : Y × [0, T ]→ Rn,

f(y, t) = A(z(t))y(t) + b(z(t)),

and analogously for the dispersion.

The path measure Eq. (3.3.24) can hence be obtained as the posterior of an SDE process. For a
conventional (i.e., non-switching) SDE

dY (t) = f(Y (t), t)dt+Q(t)dW (t),

it is well-known that the posterior process conditioned on some data x[0,T ] can in turn be
expressed as an SDE [106],

dY (t) = f̃(Y (t), t)dt+Q(t)dW (t), (3.3.27)

with the posterior drift function f̃(y, t):

f̃(y, t) = f(y, t) +D(t)∂y ln β(y, t), (3.3.28)

where β(y, t) = p(x[tk+1,T ] | y, t) and k = max{k′ ∈ N : tk′ ≤ t} similar to the above.

Notice how this also follows readily from the posterior HME derived in Section 3.2 by setting
|Z| = 1. The backward PDE (3.2.15) in this case reduces to the KBE (see Section 2.1.2) starting at
the end-point t = T with β(y, T ) = 1:

∂tβ(y, t) = −
n∑

i=1

fi(y, t)∂yiβ(y, t)−
1

2

n∑
i=1

n∑
j=1

Dij(t)∂yi∂yjβ(y, t). (3.3.29)

Under the given modeling assumptions, this KBE can be evaluated in closed form; this yields
a Kalman-type backward filter which has also been derived in the context of smoothing for
nonlinear diffusions in [109]. This allows us to employ a backward-filtering, forward-sampling
approach: first, solve Eq. (3.3.29) backwards starting at t = T . Second, given this solution,
sample a trajectory of the posterior SDE (3.3.27) forward in time.
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The full derivation of the solution of Eq. (3.3.29) is provided in Appendix B.2.1: utilizing the
method of characteristics [110] on the Fourier transform of β(y, t) we find

β(y, t) = N
(
x[tk,T ] | F (t)y +m(t),Σ(t)

)
, t < tk, (3.3.30)

where F (t) ∈ R(N−k)n×n,m(t) ∈ R(N−k)n, and Σ(t) ∈ R(N−k)n×(N−k)n are determined by
a set of ODEs:

d

dt
F (t) = −F (t)A(t) with F (T ) = F,

d

dt
m(t) = −F (t)b(t) with m(T ) = 0,

d

dt
Σ(t) = −F (t)D(t)F (t)⊤ with Σ(T ) = Σ.

(3.3.31)

These ODEs are subject to the jump conditions (3.2.18), yielding

F (tk−1) =

(
1n×n
F (t+k−1)

)
∈ R(N−(k−1))n×n,

m(tN−1) =

(
0

m(t+N−1)

)
∈ R(N−(k−1))n,

Σ(tN−1) =

(
Σx 0
0 Σ(t+N−1)

)
∈ R(N−(k−1))n×(N−(k−1))n,

(3.3.32)

where 1n×n is the n-dimensional identity matrix and F (t+k−1),m(t+N−1) and Σ(t+N−1) are de-
fined as Eq. (3.2.19).

The support of this distribution increases with each incorporated observation, which is com-
putationally inconvenient. This issue can be solved by interpreting the Gaussian (3.3.30) as a
distribution over y rather than x: by completing the square, we find

ln β(y, t) = −c(t)− 1

2
y⊤I(t)y + a(t)⊤y, (3.3.33)

with

a(t) := F (t)⊤Σ−1(t)(x(t)−m(t)),

I(t) := F (t)⊤Σ−1(t)F (t),
(3.3.34)

and c(t) is a normalizer. As the posterior drift (3.3.27) only depends on the gradient of Eq. (3.3.33),

∂y ln β(y, t) = −I(t)y + a(t), (3.3.35)

this normalizer is irrelevant for sampling from the posterior.

Under this reparameterization, the KBE solution (3.3.31) yields a continuous-time analogue to
the discrete-time information filter [111]:

d

dt
I(t) = −A(t)⊤I(t)− I(t)A(t) + I(t)D(t)I(t),

d

dt
a(t) = −A(t)⊤a(t) + I(t)D(t)a(t) + I(t)b(t).

(3.3.36)
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Importantly, these parameters are fixed in size: I(t) ∈ Rn×n and a(t) ∈ Rn. The jump
conditions follow readily by comparing Eq. (3.3.32) and Eq. (3.3.34) as

I(ti) = Σ−1x + I(t+i ),

a(ti) = Σ−1x xi + a(t+i ).
(3.3.37)

We solve these ODEs by utilizing standard numerical adaptive step-size solvers [25, 112].

Having computed ∂y ln β(y, t) backwards from t = T to t = 0, we can now straightforwardly
simulate the SDE (3.3.24) forward in time, yielding samples from the full conditional distribution
in Eq. (3.2.10). To initialize the sample trajectory, notice that the posterior of the initial value
y(0), p(y(0) | x[0,T ]), is readily found as

p(y(0) | x[0,T ],−) ∝ β(y(0), 0)p(y(0) | µ0,Σ0)

∝ exp

{
−1

2
y(0)⊤I(0)y(0) + a(0)⊤y(0)

}
N (y(0) | µ0,Σ0)

∝ N
(
y(0) | µ̄, Σ̄

) (3.3.38)

with
µ̄ = Σ̄(Σ−10 µ0 + a(0)), Σ̄ =

(
Σ−10 + I(0)

)−1
. (3.3.39)

3.3.2 Sampling the conditional switching process

Given the simulated SSDE path y[0,T ], we want to sample from the full conditional switching
path measure,

Z[0,T ] ∼ P(Z[0,T ] ∈ dz[0,T ] | y[0,T ], x[0,T ], θ),

which due to the Markovian structure described in Section 3.1 reduces to

Z[0,T ] ∼ P(Z[0,T ] ∈ dz[0,T ] | y[0,T ], θ). (3.3.40)

This setting is qualitatively different from the continuous-discrete smoothing problem in the
previous section: the observations now consist of a full path instead of a finite set of points. Still,
as the classic continuous-discrete MJP smoothing problem can be solved in the same way as the
just described SSDE-diffusion [32], one would expect that sampling the conditional switching
process should analogously be possible by backward-filtering and forward-sampling. It will be
shown that this is indeed the case, but the resulting expressions are no longer ODEs with jump
conditions.

First, notice that conditioning on some path y[0,T ] does not alter the Markovian structure of the
model; that is, Eq. (3.3.40) is given via an MJP [113]. To be able to simulate z[0,T ], we hence desire
to know the dynamics of the smoothing marginal

ps(z, t) :=E
[
1(Z(t) = z) | y[0,T ]

]
=

∫
1(z(t) = z)P(Z[0,T ] ∈ dz[0,T ] | y[0,T ]). (3.3.41)
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As detailed in Section 2.2.1, we need to resort to the Kallianpur-Striebel formula (which is the
equivalent of Bayes’ rule for continuous stochastic processes) to obtain the posterior measure
P(Z[0,T ] ∈ dz[0,T ] | y[0,T ]). First, we know (cf. Section 2.2.1) that the conditional measure
P(Y[0,T ] ∈ dy[0,T ] | z[0,T ]) and the measure P(W[0,T ] ∈ dy[0,T ]) of standard Brownian motion
relate via the Radon-Nikodym derivative

G(y[0,T ], z[0,T ]) :=
P(Y[0,T ] ∈ dy[0,T ] | z[0,T ])

P(W[0,T ] ∈ dy[0,T ])
(3.3.42)

=exp

{∫ T

0

f(y(s), z(s))⊤D−1(z(s))dy(s)

−1

2

∫ T

0

f(y(s), z(s))⊤D−1(z(s))f(y(s), z(s))ds

}
.

This allows to replace the conditional measure with standard Brownian motion as

P(Z[0,T ] ∈ dz[0,T ] | y[0,T ]) ∝ P(Y[0,T ] ∈ dy[0,T ] | z[0,T ])P(Z[0,T ] ∈ dz[0,T ])

∝ G(y[0,T ], z[0,T ])P(W[0,T ] ∈ dy[0,T ])P(Z[0,T ] ∈ dz[0,T ]),

yielding the desired Kallianpur-Striebel equation as

P(Z[0,T ] ∈ dz[0,T ] | y[0,T ]) =
G(y[0,T ], z[0,T ])P(Z[0,T ] ∈ dz[0,T ])∫
G(y[0,T ], z

′
[0,T ])P(Z[0,T ] ∈ dz′[0,T ])

. (3.3.43)

Starting with Eq. (3.3.41), the general idea is - akin to the preceding section - to compute the time
point-wise marginal, and then separate the resulting expression into a forward and a backward
component for which individual evolution expressions can be derived. To that end, first note
that

G(y[0,T ], z[0,T ]) = G(y[0,t], z[0,t])G(y[t,T ], z[t,T ]). (3.3.44)

With this, Eqs. (3.3.41) and (3.3.43) yield (for the unnormalized version p̃s of the smoothing
density)

p̃s(z, t)

= E
[
1(Z(t) = z)G(Y[0,t], Z[0,t])G(Y[t,T ], Z[t,T ])

∣∣ y[0,T ]

]
= E

[
1(Z(t) = z)G(Y[0,t], Z[0,t])E[G(Y[t,T ], Z[t,T ]) | Z(t), Y[t,T ] = y[t,T ]]

∣∣ y[0,T ]

]
= E

[
1(Z(t) = z)G(Y[0,t], Z[0,t]) | y[0,t]

]
E[G(Y[t,T ], Z[t,T ]) | y[t,T ], Z(t) = z], (3.3.45)

where the expectations are taken with respect to the prior measure and y[0,T ] is the given, simu-
lated diffusion path. Inspecting both expectations individually, we find

E
[
1(Z(t) = z)G(Y[0,t], Z[0,t]) | y[0,t]

]
=

∫
1(z(t) = z)G(y[0,t], z[0,t])P(Z[0,t] ∈ dz[0,t])

∝
∫
1(z(t) = z)P(Z[0,t] ∈ dz[0,t] | y[0,t]) =: p̃f (z, t), (3.3.46)
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the (accordingly unnormalized) filtering density, and we notice that

E[G(Y[t,T ], Z[t,T ]) | y[t,T ], Z(t) = z] =: v(z, t), (3.3.47)

is the continuous analogue to the backward function β Eq. (3.2.12): we have

p̃s(z, t) = p̃f (z, t)v(z, t).

To obtain the dynamics of p̃s (and ultimately ps), we need to compute the derivative of this
expression. The stochastic integral obeys a generalized version of the conventional integration
by parts [13],

dp̃s(z, t) = v(z, t)dp̃f (z, t) + p̃f (z, t)dv(z, t) + dp̃f (z, t)dv(z, t). (3.3.48)

Recall that, as discussed in Chapter 2, Itô’s lemma also applies for jump processes; hence, we can
proceed to express the dynamics of p̃s(z, t) via the individual dynamics of p̃f (z, t) and v(z, t).
Both will be stated in the following without a detailed derivation, which can however be found
in Appendix B.3.

backward dynamics Via Itô calculus, we find

dv(z, t) = −v(z, t)f(y, z, t)⊤D−1(t)dy(t)−
∑
z′

v(z′, t)Λ(z, z′, t)dt

+ f(y, z, t)⊤D−1(t)f(y, z, t)v(z, t)dt. (3.3.49)

Notice that we write dy(t) instead of dY (t), as we are conditioning on the previously drawn
sample path y[0,T ].

forward dynamics Similarly, we obtain for the unnormalized filtering dynamics the
Zakai equation

dp̃f (z, t) =
∑
z′∈Z

Λ(z′, z, t)p̃f (z
′, t)dt+ p̃f (z, t)f(y(t), z(t))

⊤D−1(z, t)dy(t). (3.3.50)

The corresponding normalized filtering dynamics are obtained from the Zakai equation as the
Kushner-Stratonovich equation [13]

dpf (z, t) =
∑
z′∈Z

Λ(z′, z, t)pf (z
′, t)dt

+ pf (z, t)(f(y, z)− f̄(y, t))⊤D−1(z, t)(dy(t)− f̄(y, t)dt) (3.3.51)

with f̄(y, t) =
∑

z′∈Z f(z
′, y)pf (z

′, t). Note that for f(y, z) = f(z), this recovers the classic
Wonham filter [114].

Inserting both above results into Eq. (3.3.45), one obtains

dp̃s(z, t) = v(z, t)
∑
z′

Λz′z(t)p̃f (z
′, t)dt−

∑
z′

v(z′, t)Λzz′(t)p̃f (z, t)dt

=
p̃s(z, t)

p̃f (z, t)

∑
z′

Λz′z(t)p̃f (z
′, t)dt−

∑
z′

p̃s(z
′, t)

p̃f (z′, t)
Λzz′(t)p̃f (z, t)dt, (3.3.52)
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where Eq. (3.3.45) is used to replace v(z, t). As the filtering densities p̃f only occur as ratios, it is
permissible to readily replace p̃f → pf . Summation over z shows∑

z

dp̃s(z, t) = 0,

implying that ps has a time-independent normalizer. Consequently,

dps(z, t) =
ps(z, t)

pf (z, t)

∑
z′

Λz′z(t)pf (z
′, t)dt−

∑
z′

ps(z
′, t)

pf (z′, t)
Λzz′(t)pf (z, t)dt. (3.3.53)

It can be seen by defining the posterior rate function

Λ̃(z′, z, t) =
pf (z, t)

pf (z′, t)
Λ(z, z′), z′ ̸= z,

Λ̃(z, z, t) := −
∑
z′ ̸=z

Λ̃(z, z′, t),
(3.3.54)

that this has the form of a backward master equation (cf. Section 2.1.2.1):

d

dt
ps(z, t) = −

∑
z′∈Z

Λ̃(z′, z, t)ps(z
′, t). (3.3.55)

This finally allows to backward-sample a new path z[0,T ] with the end-point conditionps(z, T ) =
pf (z, T ) after forward-filtering via Eq. (3.3.51). This temporal order is computationally advanta-
geous: it allows us to simultaneously solve all occurring stochastic integrals of the joint problem
{Y, Z | x[0,T ]} in the same time direction. In other words, the path y[0,T ] and the filtering
distribution p̃f can be computed simultaneously - this saves one full pass through the trajectory
compared to an approach where y[0,T ] and z[0,T ] would be computed successively by a backward-
forward scheme; see also the illustration in Fig. 3.2. To simulate the conditional switching process
Z with time-dependent rates Eq. (3.3.54), the thinning algorithm is utilized, cf. Section 2.1.2.1.

Note that it is possible in principle to reverse this procedure and backward-filter/forward-sample
as for the diffusion component y[0,T ]. This however includes defining a reverse diffusion process
←
Y (t) which evolves from t = T to t = 0 and accounts for the asymmetry of the Itô integral; for
more details on this, the interested reader is referred to, e.g. [31, 115].

The above formulation of the backward and forward dynamics consists of expressions based on
stochastic integrals with respect to Y[0,T ]. In practice, these can only be solved approximately (e.g.
via the Euler-Maruyama scheme). Mathematically, this raises questions, for example with respect
to the continuity of solutions under variations of the model parameters. These questions can in
principle be more appropriately dealt with via so-called robust solutions that are not expressed as
stochastic integrals, but as proper functions of the path realizations y[0,T ]. Appropriate theoreti-
cal results exist for pure SDE systems with state-independent drift [55, 104]; see in particular the
latter reference for a thorough discussion. It is, however, unclear whether such a robust solution
can exist at all for hybrid models. To provide some intuition about this issue, a short digression
follows that may point the interested reader to potential topics of further inquiry. Readers
wanting to continue with the next (and last) sampling step concerning the system parameters Θ
may want to fast-forward to p. 41.
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Time
0 t1 t2 t3 T

X(t1) X(t2) X(t3)

Y (0) Y (t1) Y (t2) Y (t3) Y (T )

1. Compute β(y, t)

2.1 Sample y[0,T ]

2.2 Compute pf (z, t)

3. Sample z[0,T ]

Z(0) Z(t1) Z(t2) Z(t3) Z(T )

figure 3.2: Sketch of the backward-forward/forward-backward sampling scheme. First, the backward
function β(y, t) is computed from t = T to t = 0 with the information filter Eq. (3.3.36). Second, the
new posterior path y[0,T ] is sampled forward in time via Eq. (3.3.27); this can be done simultaneously with
the computation of the forward filtering density pf (z, t) (or, equivalently, its unnormalized counterpart)
via the Kushner-Stratonovich Eq. (3.3.51) (or the Zakai equation (3.3.50)). Lastly, the new posterior path
z[0,T ] can be sampled backwards from t = T to t = 0 via Eq. (3.3.55).

digression: robust filtering To gain some intuition about this approach as well
as the problems arising in the present context, consider the conventional 1D filtering setting as
described in [116] (but see also [13, 31, 55]) with a latent jump process and a dependent observed
diffusion process,

Z ∼ MJP(Λ(z, z′)),

dY (t) = h(Z(t))dt+ dW (t),

with Z(t) ∈ Z ⊆ N, h : Z → R and W a one-dimensional Brownian motion. The
unnormalized filtering density is described as above by the Zakai equation, which reads

dp̃f (z, t) =
∑
z′∈Z

Λ(z′, z)p̃f (z
′, t)dt+ h(z)p̃f (z, t)dY (t).

Converting the Itô-type to a Stratonovich-type stochastic integral [20], we have

dp̃f (z, t) =

(∑
z′∈Z

Λ(z′, z) +
1

2
h(z)2

)
p̃f (z

′, t) + h(z)p̃f (z, t) ◦ dY (t), (3.3.56)

for which (in contrast to Itô integrals) the differentiation rules of conventional calculus apply.
It can thereby be easily verified that the solution to this equation given some observation path
y[0,T ] is found via the ansatz

p̃f (z, t) = r(t) exp {h(z)y(t)} , (3.3.57)

resulting in Eq. (3.3.56) being fulfilled if

d

dt
r(t) = exp {−h(z)y(t)}

(
Λ(z′, z)− 1

2
h(z)2

)
exp {h(z′)y(t)} r(z′, t).
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This is a “robust” solution because it is given as an ODE parameterized by the full observed
path; specifically, it is not given as an expectation hinging on stochastic integrals. If however
h = h(z, y), this does not work any more: computing the time derivative of Eq. (3.3.57) shows
that additional terms in d

dt
y(t) emerge that do not cancel out in Eq. (3.3.56) and hence do not

yield a resulting ODE with a smooth dependence on the full path. This issue falls into the realm
of rough path theory, which finds that already for multivariate, but state-independent observation
functions h(z), robust formulations may not exist [116, 117]. For the present, even more general
case, the additional state-dependence of the SSDE drift function hence does not seem to admit a
robust ODE formulation of the backward function v.

3.3.3 Sampling the parameters

The presented inference framework is naturally complemented with Bayesian parameter estima-
tion. To this end, conjugate prior distributions are specified over the model parameters. In the
following, the resulting full conditionals are derived.

initial distributions On the initial MJP state distribution parameter π0, a Dirichlet
prior with hyperparameter απ0 ∈ R|Z|>0 is imposed,

p(π0) = Dir(π0 | απ0), (3.3.58)

yielding

p(π0 | z[0,T ],−) = Cat(z(0) | π0)Dir(π0 | απ0)

= Dir(π0 | απ0 + δz(0)) (3.3.59)

with the point mass on z(0), δz(0). Note that all variables in the conditioning set that π0 is
conditionally independent of are suppressed. This convention is followed in all update equations
for conciseness.

On the SSDE initial distribution parameters µ0,Σ0, a Normal-inverse-Wishart (NIW) prior is
placed:

µ0,Σ0 ∼ NIW(η, ρ,Ψ, ν) ⇔

{
µ0 ∼ N (η,Σ0/ρ) ,

Σ0 ∼ IW(Ψ, ν),
(3.3.60)

where the inverse-Wishart (IW) distribution is characterized by the density function

IW(Σ | Ψ, ν) = |Ψ|
ν/2|Σ|−(ν+n+1)/2

2nν/2Γn(
ν
2
)

exp

{
−1

2
tr
(
ΨΣ−1

)}
(3.3.61)

with the degrees of freedom ν > n − 1, the positive definite scale matrix Ψ ∈ Rn×n and the
multivariate gamma function Γn. Recalling that

p(y(0) | µ0,Σ0) = N (y(0) | µ0,Σ0) ,
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the posterior is found as

p(µ0,Σ0 | y(0), x[0,T ],−) ∝ p(y(0) | µ0,Σ0)p(µ0,Σ0)

∝ NIW
(
µ0,Σ0

∣∣∣ η̃, λ̃, Ψ̃, κ̃) (3.3.62)

with

η̃ =
λη + y(0)

λ+ 1
, λ̃ = λ+ 1, κ̃ = κ+ 1,

Ψ̃ =
(
Ψ−1 + λλ̃−1(y(0)− η)(y(0)− η)⊤

)−1
.

(3.3.63)

mjp rates The prior rates are given by a Gamma distribution:

Λzz′
i.i.d.∼ Gam(s, r) ∀z, z′ ∈ Z, z′ ̸= z, (3.3.64)

with the shape s ∈ R>0 and the rate parameter r ∈ R>0. The set of all rates is denoted as
{Λzz′}. As detailed in Section 2.1.2.1, the trajectory z[0,T ] can be unambiguously expressed in
terms of its state sequence {zk} and the corresponding sojourn times {sk}, k = 0, . . . , K . The
likelihood function

p(z[0,T ] | {Λzz′}) =
∏

z∈{zk}

e−Λztz
∏

z′∈Z\z

Λ
nzz′
zz′ (3.3.65)

with the number of transitions nzz′ =
∑

k 1(zk = z ∧ zk+1 = z′) and the cumulative sojourn
times tz =

∑
k 1(zk = z)sk, see Eq. (2.1.17).

As an aside, note that there is a catch for the smoothing case (as opposed to the plain forward
simulation of an MJP): in the smoothing setting, one has by definition an upper time limit T .
Forward simulation yields tuples of states and sojourn times {(zk, sk) : k = 0, . . . , K} until
jK < T < jK+1 with the jump times jk, cf. Section 2.1.2.1. It is only by the properties of the
exponential sojourn time distribution that the “remainder” after the last state switch within
[0, T ] at jK , i.e. ∆sK := T − jK , is also exponentially distributed. For notational convenience,
we write in an abuse of notation sK ← ∆sK , that is, we interpret the time between the last
jump and the end of the interval as the last sojourn time.

By multiplication with the prior (3.3.64) it is readily checked that this yields a Gamma distribution
as the rate posterior:

p(Λzz′ | z[0,T ]) ∝ p(z[0,T ],− | Λzz′)p(Λzz′)

∝ Gam(Λzz′ | s+ nzz′ , r + tz).
(3.3.66)

sde drift parameters In the following, we utilize (cf. Eq. (3.1.8)) the shorthand
Γz = [A(z), b(z)]. The SSDE parameters Γz are specified via a Matrix-Normal (MN) prior

p(Γz) = MN(Γz |Mz, Dz, Kz)

=
|Dz|−

n
2 |Kz|−

n+1
2

(2π)
n(n+1)

2

exp

{
−1

2
tr
(
(Γz −Mz)

⊤D−1z (Γz −Mz)K
−1
z

)}
, (3.3.67)
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where Dz = D(z) is the SSDE covariance, Mz ∈ Rn×(n+1) the location matrix and Kz ∈
R(n+1)×(n+1) the scale matrix. Expressing the conditional Y -posterior via the Radon-Nikodym
derivative G(y[0,T ], z[0,T ]), c.f. Eq. (3.3.42), one can interpret G as the likelihood of the drift
parameters,G(y[0,T ], z[0,T ]) = G(y[0,T ], z[0,T ] | {Γz}),

p(Γz |y[0,T ], z[0,T ]) ∝ G(y[0,T ], z[0,T ] |{Γz})p(Γz). (3.3.68)

This “likelihood term” can be evaluated approximately by inserting the simulated paths, that is,
via the Euler-Maruyama approximation of the SSDE. For the mode z, only those subintervals of
z[0,T ] contribute in which z(t) = z. Accordingly,

p(Γz | y[0,T ], z[0,T ],−) = exp

 ∑
k : z(jk)=z

∫ jk+1

jk

f(y(s), z)⊤D(z)−1dy(s)

−1

2

∫ jk+1

jk

f(y(s), z)⊤D(z)−1f(y(s), z)ds

}
p(Γz).

with the jump times {jk}, see above and Section 2.1.2.1. Omitting the sum over intervals for
readability, we find (for any interval [jk, jk+1)) upon inserting the simulated SSDE-path y[0,T ]

exp

{∫ jk+1

jk

f(y(s), z)⊤D(z)−1dy(s)− 1

2

∫ t1

t0

f(y(s), z)⊤D(z)−1f(y(s), z)ds

}
≈ exp

{
L∑
l=1

f⊤(yl, z)D(z)−1∆yl −
1

2

L∑
l=1

f⊤(yl, z)D(z)−1f(yl, z)h

}
,

whereh is time simulation time-step, sl = sl−1+h, the interval boundaries s1 = jk, sL = jk+1,
and ∆yl := y(sl)− y(sl−1) the difference of two successive points of the trajectory. Inserting
the drift f(yl, z) = Γzȳl, where ȳl =

[
y⊤l , 1

⊤
n

]⊤ yields

exp

{
L∑
l=1

f(yl, z)
⊤D(z)−1∆yl −

1

2

L∑
l=1

f(yl, z)
⊤D(z)−1f(yl, z)h

}

= exp

{
−1

2

L∑
l=1

(
∆yl√
h
− Γzȳl

√
h

)⊤
D(z)−1

(
∆yl√
h
− Γzȳl

√
h

)

+
1

2

L∑
l=1

∆y⊤l D(z)−1∆yl
1

h

}
.

(3.3.69)

The last term on the right-hand side may be omitted, as it is independent of Γz ; the above is
hence equivalent to approximating the Radon-Nikodym derivativeG(y[0,T ], z[0,T ]) via a product
of Gaussian transition distributions. Making use of the trace function and defining the joint
observation vectors

∆y :=

[
∆y1√
h
, · · · , ∆yL√

h

]
∈ Rn×L,

ȳ :=
[
ȳ1
√
h, · · · , ȳ1

√
h
]
∈ Rn+1×L,
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this can be re-formulated as

exp

{
−1

2

L∑
l=1

(
∆yl√
h
− Γzȳl

√
h

)⊤
D(z)−1

(
∆yl√
h
− Γzȳl

√
h

)}

= exp

{
−1

2
tr
(
(∆y − Γzȳ)

⊤D(z)−1 (∆y − Γzȳ)1L×L

)}
.

Comparison with Eq. (3.3.67) reveals that this expression corresponds to an (un-normalized)
MN distribution. Accordingly, we find

p(Γz | y[0,T ], z[0,T ],−) ∝ MN(∆y | Γzȳ, Dz,1L×L)p(Γz) (3.3.70)

As it is known that the MN distribution is itself a conjugate prior to the MN likelihood in the
above form [96], the sought-after posterior is again MN,

p(Γz | y[0,T ], z[0,T ],−) = MN(Γz | M̃z, Dz, K̃z) (3.3.71)

with posterior hyperparameters

K̃z = ȳȳ⊤ +Kz, M̃z = (∆yȳ⊤ +MzKz)K̃
−1
z . (3.3.72)

Summation over all intervals with z(jk) = z is straightforward. This derivation also holds for
adaptive step-sizes, sl = sl−1 + hl−1.

As a caveat, note that this prior does not guarantee stability of the individual modes: it does not
impose any constraints on the eigenvalue spectra of the sub-matricesA(z), which determine
the asymptotic properties of the diffusion, cf. Section 2.1.2.2. It is known, however, that for
switching systems, global stability of the system does not require strict intra-mode stability [118].
Additionally, from a practical perspective, the posterior will be likely peaked around stable
matrices if conditioned on data from a stable mode - which we expect to observe, as we are
interested in locally stable systems in the first place. This is a common assumption also for
discrete-time SLDS [119].

sde dispersion The dispersion Q(z) has a special role among the model parameters,
as (i) together with the used time step-size, it determines the accuracy of the SDE solver, and
(ii) two SDEs with different dispersions are singular with respect to each other [120]. Hence,
while a posterior dispersion can be derived along the same lines as the drift parameters (3.3.68),
the resulting posteriors may cause instabilities in the solver ifQ becomes too large (because of
(i)), or it may exhibit poor mixing properties (due to (ii)). Potential solutions to the latter exist,
but they are themselves quite involved [84, 120]. As this might be considered a rather exotic
issue (sifting through the literature, the reader will find that, quite frequently, the dispersion is
assumed to be fixed), we accept this potential drawback for the present purposes.

To still ensure numerical stability, we employ a Metropolis-adapted Langevin algorithm [121]. As
the name suggests, this sampling scheme proceeds in two steps:

1. a new state is proposed via Langevin dynamics, utilizing the gradient of the target PDF,

2. the proposed state is accepted (or rejected) via the Metropolis-Hastings algorithm [9].
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We simulate an SDE in the space of dispersion matrices via the Euler-Maruyama approximation
with step-size 0 < ξ ≪ 1, [121]

Q∗z = Qz + ξ∂Qz log p(Qz | {yhl}) +
√

2ξε, ε ∼ N (0,1n×n), (3.3.73)

where p(Qz | {yhl}) is the approximation of p(Qz | y[0,T ]) ∝ G(y[0,T ], z[0,T ])p(Qz) on the
SDE simulation time grid. As shown above, the approximate density p(Qz | {yhl}) is equivalent
to a product of Gaussian transition distributionsN (yl | yl−1, Dzh), allowing the gradient to
be evaluated. The proposed dispersionQ∗z is then accepted with probability

A(Q,Q∗) =
p(Q∗z | y[0,T ])q(Q | Q∗)
p(Qz | y[0,T ])q(Q∗ | Q)

, (3.3.74)

where q denotes the (Gaussian) proposal density induced by Eq. (3.3.73).

observation covariance Lastly, an IW prior is imposed on the observation covariance
Σx,

p(Σx) = IW(Σx | Ψx, λx). (3.3.75)
With the Gaussian observationsXi ∼ N (yi,Σx), the standard result is

p(Σx | x[0,T ]) = IW(Σx | Ψ̃x, λ̃x) (3.3.76)

where

Ψ̃x =
N∑
i=1

xix
⊤
i +Ψx, λ̃x = N + λ. (3.3.77)

The full Gibbs sampling algorithm is provided in Fig. 3.3.

input : observation data {ti, xi}i=1,...,N

Initialize z0[0,T ], y
0
[0,T ], θ

0

for i = 0, . . . ,NumSamples do
Given zi[0,T ], compute ∂y ln β using Eq. (3.3.36)
Given zi[0,T ], sample yi+1

[0,T ] according to Eq. (3.3.27)
Given yi+1

[0,T ], compute pf using Eq. (3.3.51) (equivalently p̃f using Eq. (3.3.50))
Given yi+1

[0,T ], sample zi+1
[0,T ] according to Eq. (3.3.55)

Given zi+1
[0,T ], y

i+1
[0,T ], sample model parameters θi+1

end

figure 3.3: Gibbs sampler for MJP-switching stochastic differential equations

3.4 results

The presented Gibbs sampler is first verified on data generated under the modeling assumption.
Subsequently, we apply it to fluorescence data from an inducible gene expression system to
infer its latent expression states. Details on the simulations and initializations are provided in
Appendix B.4.
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figure 3.4: Model validation on 1D ground-truth data. A: system trajectories. Top: ground-truth
switching trajectory z[0,T ]. Middle: empirical posteriors p(z, t | x[0,T ]) and p(y, t | x[0,T ]). Brighter
colors indicate higher probability density. Black solid line: ground-truth latent trajectory y[0,T ]. White
crosses: observations. Nsamples = 10000. Bottom: respective marginals of the solution of the exact PDE
(3.2.20) with the ground-truth parameters. B: parameter estimates of the drift parameters A(z), b(z), cf.
Eq. (3.1.7), the MJP rates Λ(z, z′), the SDE covariance D(z) and the observation covariance Σx. Red lines:
ground-truth values. Blue and orange shading indicates the two modes z = 1, 2 where applicable.

3.4.1 Verification on ground-truth data

1d system First, the method is tested on ground-truth data from a one-dimensional two-
mode switching system. The mode dynamics are - as specified above - given by time-independent
linear drift functions

f(y, z, t) = A(z)y + b(z). (3.4.78)

We chooseA(z) < 0 for both z, which makes the individual mode dynamics instances of the
well-known Ornstein-Uhlenbeck process [20].

It can be seen in Fig. 3.4 A that the MCMC backward-forward/forward-backward scheme is able
to faithfully recover the ground-truth latent trajectories: both z[0,T ] and y[0,T ] are reproduced
with high fidelity. Comparison to the solution of the exact PDE (3.2.20) with ground-truth
parameters shows also very good agreement of the time point marginals. Corresponding to the
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high agreement in the latent sequences, we furthermore obtain accurate Bayesian parameter
estimates, see Fig. 3.4 B. All posteriors except the diffusion covarianceDz cover the ground-truth
very well. This phenomenon is ascribed to the slow mixing of the Gibbs sampler with respect to
Q(z) that was discussed above.

2d system To demonstrate the ability of the framework to faithfully reconstruct more
complex continuous dynamics, we apply it to a 2D problem in which the continuous component
is driven by two counter-rotating vector fieldsA(z), see Fig. 3.5. Here, we fix the observation
covariance Σx and the dispersion to the ground-truth value.
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figure 3.5: Model validation on 2D ground-truth data. A: flow Eq. (3.4.78) of both modes (red and
blue arrows) revolving around (−1, 0)⊤ and (1, 0)⊤ . Black solid line: ground-truth trajectory y[0,T ].
Crosses: observed data points; only 20% of all observations are shown to avoid clutter. Star: initial value.
B: phase space representation of one posterior sample path y[0,T ]. Arrows represent flows computed
with A(z), b(z) averaged over N = 1000 samples. C: Top: ground-truth trajectory z[0,T ] (blue) and
empirical posterior p(z, t | x[0,T ]) (green). Middle and Bottom: components of p(y, t | x[0,T ]). Black
solid lines as above. D: parameter histograms. From top to bottom: exit rates−Λ(z) for both modes;
individual components b1(z), b2(z); individual components A(z)11, A(z)12, A(z)21, A(z)22. Lines:
ground-truth values. Coloring represents the two separate modes z.
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Both the discrete and the continuous dynamics are faithfully recovered as in the 1D example above.
We notice, however, that the oscillatory behavior of y[0,T ] is reflected in the Z-posterior (Fig. 3.5
C, top). This is plausibilized when plotting the empirical posteriors ofA(z) and b(z), Fig. 3.5 B,
where we see that the mean vector field of one mode does not complete one “revolution” around
the set-point (1, 0)⊤. The oscillatory behavior is also reflected in the rate distributions, which
strongly overestimate the ground truth. Examined in more detail, the individual histograms over
samples ofA, b (shown in Fig. 3.5 D) do not cover the ground-truth values well. In particular,
we notice that the sign structure of the matrices is not the same as that of the ground-truth. This
shows, first, that the MN prior is potentially too unstructured for more complex problems, as it
is not straightforward to encode constraints on the eigenspectrum ofA. Secondly, comparing
the positions of the posterior histograms to the ground-truth values shows that the altered sign
structure encompassesA and b; this makes sense as these parameters are jointly described by the
MN prior. Hence, the posterior distributions also intermingle information aboutA and b. This
shows that while the MN prior on the parametersA, b is sufficient to “get by”, it is advisable for
more complex systems to employ more richly-structured prior distributions, if possible informed
by expert knowledge. The Bayesian parameter updates used here provide a proof of principle,
but leave room for improvement. Note also that the runtime may become prohibitive for large
systems: for this 2D example, the algorithm ran about two weeks on an Intel Xeon machine.

3.4.2 Inference of gene-switching dynamics

To demonstrate the applicability of the Gibbs sampler to real-world problems, we now use
the framework to infer the switching dynamics of an inducible gene system. This system was
measured in-house in the wet-lab of the Koeppl group: an inducible green fluorescent protein
(GFP) was expressed in the eukaryotic model organism Saccharomyces cerevisiae. Utilizing a
microfluidic platform, gene expression can be induced by a chemical control signal (here: β-
estradiol) at arbitrary time points [122]. Expression of the GFP-encoding gene is initiated upon
induction. As laid out in the introduction, gene expression generally proceeds in a two-step
fashion: first, in the transcription (TX) stage, the gene of interest is read off the DNA and copied
into a single-stranded messenger RNA. Second, in the translation (TL) stage, this RNA (coding
for a series of amino acids) is utilized to produce the respective protein encoded by the gene.
The level of GFP fluorescence is then measured over time through fluorescence microscopy. The
TX and TL dynamics are commonly modeled by switching SDEs, the rate parameters of which
depend on the stochastic promoter state (“on” vs. “off”) of the gene [123]. Here, we infer this
latent stochastic promoter state and the GFP level as well as the rate parameters from the data set
consisting of noisy microscopy measurements.

While a ground-truth is not available, we can rationalize the inferred promoter activity (see
Fig. 3.6 A, top) in the context of the available inducer control signal. Molecular diffusion incurs
a certain delay until the promoter gets activated after addition of β-estradiol to the medium.
Similarly, upon removal of the inducer, promoter deactivation is governed by diffusive export
from the cell. Furthermore, the discussed elementary processes of RNA transcription and protein
translation also contribute to a delayed activation and deactivation on the protein level with
respect to the promoter state. Given these constraints, the inferred expression state as well as
GFP level shown in Fig. 3.6 is a plausible reconstruction from a biological point of view.
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figure 3.6: Inference of promoter states for an inducible gene expression system. A: Top: empirical
posterior p(z, t | x[0,T ]) (blue) and chemical control (orange; “off”, state 1, and “on”, state 2). Note
that this does not directly correspond to the promoter-“on” and promoter-“off” state, as a the inducer
has to diffuse in and out of the cell and its nucleus. Bottom: empirical posterior p(y, t | x[0,T ]). White
crosses: observed data. Nsamples = 1000. B: corresponding empirical parameter estimates for the drift
parameters A(z) and b(z) as well as the switching rates Λ(z, z′).

3.5 summary

We have presented, to the best of our knowledge, the first tractable sampling-based path-space
inference scheme for discretely observed continuous-time MJP-SSDEs. The inference algorithm is
based on a blocked Gibbs sampler, where we generate sample paths from the exact full condi-
tionals of the switching and diffusion components. To derive these full conditionals, tools from
continuous-discrete and fully continuous filtering and smoothing theory are utilized. In contrast
to pure latent discrete models, the laid-out framework is also able to reconstruct complex latent
continuous dynamics. We furthermore include parameter learning: by the use of conjugate prior
distributions, we are able to efficiently sample from the respective posteriors.

The obtained results demonstrate the practical utility of the method: both in the 1D and 2D
ground-truth settings, the framework yields accurate results. In the 2D case in particular, it could
however also be seen that the parameter learning procedure can be hampered by the structure
of the chosen prior distributions. The application to a genetic switching system highlights the
potential of the method in the field; it enables the user to learn and utilize an effective model for
a transcription-translation system without having to define reaction equations on the molecular
level. For an outlook on potential future research, please see Chapter 6.
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As seen in the last chapter, MCMC sampling from the exact posterior conditional measures of
hybrid systems yields accurate results both for the latent trajectories as well as for the parameters.
The approach is still computationally expensive, however, resulting in long algorithm runtimes.
To address this issue, a variational inference framework is worked out in the following, which
only requires passing through the data until convergence instead of one pass per sample.

For inference and parameter learning in pure diffusion processes, continuous-time VI frameworks
have been developed utilizing, e.g., GPs [87, 88], and general exponential family distributions
[23]. Similar methods have also been devised for inference in MJPs [42, 89]. The presented
VI framework for MJP-SSDE hybrid systems draws on this previous work and recovers existing
diffusion and MJP approximations as special cases.

The approximation is proposed with a specific focus on metastable systems, which remain in
distinct, qualitatively different regimes over extended periods of time [124]: a hallmark of such
systems is a separation of time scales between the intra- and inter-regime dynamics. Metastable
systems are of particular interest for instance in computational structural biology when modeling
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the conformational switching of complex biomolecules. An extended discussion of metastability
in this context will be provided in Chapter 5.

In the following, first the variational problem is stated. Subsequently, the KL divergence between
two proper MJP-SSDE processes is derived, based on which the variational approximation is
introduced and discussed. After detailing how the optimization problem is solved in practice,
the method is evaluated both on ground-truth data and computational biology benchmarks.
An implementation of the proposed method is publicly available at https://git.rwth-
aachen.de/bcs/projects/lk/vi-ct-shs.git.

4.1 the variational problem

The MCMC sampling scheme presented in Chapter 3 is based on the characterization of the
true posterior - which is determined by the HME (3.2.20) - via a set of ODEs and stochastic PDEs.
These equations have to be computed for every sample, rendering this approach computationally
expensive. To address this challenge, this chapter takes a VI approach to the same problem: as
detailed in Section 2.2.4.2, we aim to find an approximate path measure

Q∗ := Q∗
(
(Y[0,T ], Z[0,T ]) ∈ d(y[0,T ], z[0,T ])

)
that is computationally tractable and minimizes the path-wise KL divergence to the exact posterior
measure Px := P

(
(Y[0,T ], Z[0,T ]) ∈ d(y[0,T ], z[0,T ]) | x[0,T ]

)
:

Q∗ := argmin
Q

DKL[Q || Px] = argmin
Q

E

[
ln

dQ

dPx

]
, (4.1.1)

where the expectation is taken over Q. The subscript notation is used to discern between the
posterior measure (conditioned on the observed data x[0,T ]) and the prior measure, which will
be abbreviated in the following as P = P

(
(Y[0,T ], Z[0,T ]) ∈ d(y[0,T ], z[0,T ])

)
.

As shown in Section 2.2.4.2, the KL divergence in Eq. (4.1.1) can generally be decomposed as

DKL[Q || Px] = DKL[Q || P]− E[ln p(x[0,T ] | Y[0,T ])] + ln p(x[0,T ]), (4.1.2)

with the expected log-likelihood E[ln p(x[0,T ] | Y[0,T ])] =
∑N

i=1 E[ln p(x(ti) | Y (ti))], allow-
ing to recast the minimization problem Eq. (4.1.1) as a maximization problem over the ELBO

L = E[ln p(x[0,T ] | Y[0,T ])]− DKL[Q || P]. (4.1.3)

This expression does not include the marginal log-likelihood ln p(x[0,T ]), which is computation-
ally intractable, and can hence be evaluated if the path-wise KL divergence between the variational
and the prior measure DKL[Q || P] is known.

4.2 the kullback-leibler divergence between hybrid processes

For two hybrid processes of the same class obeying the HME (3.1.3) and inducing measures Q and
P, this KL divergence can be derived using Girsanov’s theorem, cf. Section 2.1.2.2. Note that the
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dispersionQ is assumed to be equal in both processes; this is a common assumption (see, e.g.,
[88]) which is made due to the mutual singularity of two measures with different dispersions, cf.
the discussion of the dispersion sampling algorithm in Chapter 3. It is generally possible to relax
this assumption [24], but for the present purposes, we stick with the simpler case and (as before)
assumeQ = Q(z). To obtain the KL divergence, first note that we can decompose

P
((
Y[0,T ], Z[0,T ]

)
∈ d(y[0,T ], z[0,T ])

)
= PY |Z(Y[0,T ] ∈ dy[0,T ] | z[0,T ])PZ(Z[0,T ] ∈ dz[0,T ]),

and analogously for Q, where we introduce subscripts for concision in the following. We can
therefore write the expectation as

E

[
ln

dQ

dP

]
= E

[
ln

dQZ

dPZ

+ ln
dQY |Z

dPY |Z

]
. (4.2.4)

The first term on the right-hand side is the contribution of the MJP components. The second
term is the SSDE contribution: recalling the argument given in Section 3.3.1 that the conditional
measure PY |Z(Y[0,T ] ∈ dy[0,T ] | z[0,T ]) can be understood as a succession of conventional,
differently parameterized SDEs, it is readily understood that this term is an expectation over a
sum of SDE-contributions.

mjp contribution Utilizing the Radon-Nikodym derivative provided in Chapter 3, cf.
Eq. (2.1.19), we find

E

[
ln

dQZ

dPZ

]
= E

[∫ T

0

Λ(Z(s), s)− Λ̃(Z(s), s)ds

+
∑

s∈j[0,T ]

ln

(
Λ̃(Z(s))q(Z(s), s | Z(s−))
Λ(Z(s))p(Z(s), s | Z(s−))

)+ E

[
ln

dQZ(0)

dPZ(0)

]
,

where the last term represents the contribution of the initial distributions,

E

[
ln

dQZ(0)

dPZ(0)

]
=: DKL[Q

0
Z || P0

Z ].

We aim to replace the unwieldy sum over jumps with an expectation. To that end, recall that

q(Z(s) = z′, s | Z(s−) = z) =
Λ̃(z, z′, s)

Λ̃(z, s)
,

and similarly for p, see Section 2.1.2.1.

Now we discretize, tk ∈ {0, h, 2h, . . . ,K · h = T}, allowing us to write

E

 ∑
s∈j[0,T ]

ln

(
Λ̃(Z(s), Z(s−), s)

Λ(Z(s), Z(s−), s)

) =

∑
k

E

E
 ∑

s∈j[tk,tk+h]

ln

(
Λ̃(Z(s), Z(s−), s)

Λ(Z(s), Z(s−), s)

)∣∣∣∣∣∣Z(tk)
 .
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By definition, we have

q(Z(t+ h) = z′, Z(t) = z, t) = δzz′ + Λ̃(z, z′, t)h+ o(h)

and analogously for p; as we will let h→ 0, we can confine the (generally infinite) sum to only
one transition and neglect higher order terms:

E

 ∑
s∈j[tk,tk+h]

ln

(
Λ̃(Z(s), Z(s−), s)

Λ(Z(s), Z(s−), s)

)∣∣∣∣∣∣Z(tk)


=
∑

z′∈Z\Z(tk)

Λ̃(Z(tk), z
′, tk) ln

(
Λ̃(Z(tk), z

′, tk)

Λ(Z(tk), z′, tk)

)
h+ o(h).

Consequentially, we can replace the outer sum with an integral and obtain

E

[
ln

dQZ(0)

dPZ(0)

]
= E

[∫ T

0

Λ(Z(t), t)− Λ̃(Z(t), t)dt

]
+

∫ T

0

∑
z∈Z

q(z, t)
∑

z′∈Z\z

Λ̃(z, z′, t) ln

(
Λ̃(z, z′, t)

Λ(z, z′, t)

)
dt+ DKL

[
Q0

Z || P0
Z

]
=

∫ T

0

∑
z∈Z

q(z, t)
(
Λ(z, t)− Λ̃(z, t)

+
∑

z′∈Z\z

Λ̃(z, z′, t) ln

(
Λ̃(z, z′, t)

Λ(z, z′, t)

) dt+ DKL

[
Q0

Z || P0
Z

]
. (4.2.5)

ssde contribution This contribution is straightforwardly derived by inserting the
Radon-Nikodym derivative between two SDEs, cf. Eq. (2.1.26):

E

[
ln

dQY |Z

dPY |Z

]
= E

[∫ T

0

(f(Y (t), Z(t), t)− g(Y (t), Z(t), t))⊤D−1(Z(t))dWP(t)

−1

2

∫ T

0

∥g(Y (t), Z(t), t)− f(Y (t), Z(t), t)∥2D−1dt

]
+ E

[
ln

dQY (0)|Z

dPY (0)|Z

]
,

with, as above, the last term representing the KL divergence of the initial distributions,

E

[
ln

dQY (0)|Z

dPY (0)|Z

]
=: DKL

[
Q0

Y |Z || P0
Y |Z
]
,

and the shorthand ∥f∥2D−1 := f⊤D−1f . Due to Girsanov’s theorem Eq. (2.1.27), we have

dWP(t) = dWQ(t) + (f(Y (t), Z(t), t)− g(Y (t), Z(t), t))dt,
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which allows us to rewrite∫ T

0

(f(Y (t), Z(t), t)− g(Y (t), Z(t), t))⊤D−1(Z(t))dWP(t)

=

∫ T

0

(f(Y (t), Z(t), t)− g(Y (t), Z(t), t))⊤D−1(Z(t))dWQ(t)

+

∫ T

0

∥f(Y (t), z(t), t)− g(Y (t), z(t), t)∥2D−1dt.

The Q-Brownian motion vanishes under the expectation (cf. Section 2.1.2.2), and we are left
with

E

[
ln

dQY |Z

dPY |Z

]
=

∫ T

0

1

2

∑
z∈Z

q(z, t)E
[
∥g(Y (t), z, t)− f(Y (t), z, t)∥2D−1

∣∣z] dt (4.2.6)

The full KL divergence Eq. (4.2.4) with Eqs. (4.2.5) and (4.2.6) finally reads

DKL[Q || P] = DKL[Q
0 || P0] +

∫ T

0

1

2
E
[
∥f(Y (t), Z(t), t)− g(Y (t), Z(t), t)∥2D−1

]
+
∑
z∈Z

q(z, t)

(Λ(z, t)− Λ̃(z, t)) +
∑

z′∈Z\z

Λ̃(z, z′, t) ln

(
Λ̃(z, z′, t)

Λ(z, z′, t)

) dt, (4.2.7)

where the two individual initial contributions are summarized as DKL[Q
0 || P0]. As an aside,

note that the same result can be obtained by discretizing the measuresQ andP upfront and using
a limiting procedure, as done, e.g., in [42]. This alternate derivation is provided in Appendix C.1,
which also demonstrates clearly why the KL between two processes with different dispersionsQ
would diverge without further assumptions. Notably, in the absence of any coupling between
Z(t) and Y (t), i.e., f(y, z, t) = f(y, t), Eq. (4.2.7) reduces to the sum of the known individual
path-wise KL divergences for diffusion processes and MJPs [42, 87].

With Eq. (4.2.7), we can write the full ELBO as an integral expression:

L = −DKL[Q
0 || P0]

+

∫ T

0

E
[ N∑

i=1

ln p(xi | Y (ti))−
1

2
∥g(Y (t), Z(t), t)− f(Y (t), Z(t), t)∥2D−1

]

−
∑
z∈Z

q(z, t)

(Λ(z, t)− Λ̃(z, t)) +
∑

z′∈Z\z

Λ̃(z, z′, t) ln

(
Λ̃(z, z′, t)

Λ(z, z′, t)

) dt. (4.2.8)

As in the following, we will make frequent use of the integrand of L, we define

L =:

∫ T

0

ℓLdt. (4.2.9)
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4.3 structured mean-field variational inference

The unconstrained optimization problem Eq. (4.1.1) is solved by the true, but computationally
intractable posterior distribution Px, cf. Section 2.2.4.2. To arrive at tractable expressions, we
further need to restrict the class of admissible variational processes.

The conventional mean-field approach to this would read

Q
(
(Y[0,T ], Z[0,T ]) ∈ d(y[0,T ], z[0,T ])

)
= Q(Y[0,T ] ∈ dy[0,T ])Q(Z[0,T ] ∈ dz[0,T ]).

In the following, we will depart from this standard assumption and instead retain a dependency
between the Y - andZ-processes,

Q
(
(Y[0,T ], Z[0,T ]) ∈ d(y[0,T ], z[0,T ])

)
= QY (Y[0,T ] ∈ dy[0,T ] | z[0,T ])QZ(Z[0,T ] ∈ dz[0,T ]),

where we again have introduced subscripts to avoid ambiguity between the different measures -
the same will also be done for P, as above. To maintain tractability, we will impose additional
structure on the conditional measure QY (Y[0,T ] ∈ dy[0,T ] | z[0,T ]). We do so by choosing a
variational process that consists of a set of SDEs:

Z ∼ MJP
(
Λ̃(z, z′, t)

)
=: QZ ,

Y z(t) ∼ SDE (g(y, z, t), Q(y, z, t)) =: Qz
Y for z ∈ Z , where

dY z(t) = g(Y (t), z, t)dt+Q(Y (t), z, t)dW (t),

(4.3.10)

where each SDE Y z induces a measure Qz
Y . Therefore, this constitutes a mixture of SDEs rather

than a proper SSDE and corresponds to a structured mean-field factorization of the conditional
measure,

QY (Y[0,T ] ∈ dy[0,T ] | z[0,T ])

=
∏
z∈Z

∏
k∈j[0,T ]

(
Qz

Y

(
Y z
[jk,jk+1)

∈ dy[jk,jk+1)

))
1(z[jk,jk+1)

=z)

(4.3.11)

with the product over all jumps occurring in z[0,T ] (with respective jump times jk, cf. Sec-
tion 2.1.2.1) and all possible components z: in analogy to discrete-time mixture models [9],
the piece-wise constant z[jk,jk+1) = z selects the mixture component Y z. With this, the full
structured mean-field ansatz reads

Q(Y[0,T ], Z[0,T ] ∈ d(y[0,T ], z[0,T ]))

= QZ(Z[0,T ] ∈ dz[0,T ])
∏
z∈Z

∏
k∈j[0,T ]

(
Qz

Y

(
Y z
[0,T ] ∈ dy[0,T ]

))
1(z[jk,jk+1)

=z)
. (4.3.12)

We choose g to be linear for all z; thus, Eq. (4.3.10) corresponds to a set of GPs,

Y z
[0,T ] ∼ GP (mz, Cz) ∀z ∈ Z.

The proposed approximation can accordingly be understood as a mixture of GPs. Note that
for the present case, the mean functions mz and covariance function Cz could be computed
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explicitly, but this is of no interest here; see [20, 125] for an in-depth review of GPs and their
relation to SDEs.

The KL divergence between the induced measure Q and the true MJP-SSDE measure P can then
be decomposed as follows:

E

[
ln

dQ

dP

]
= E

[
ln

dQZ

dPZ

]

+ E

E
 ∑
k∈j[0,T ]

∑
z∈Z

1(Z[jk,jk+1) = z) ln
dQz

Y z
[jk,jk+1)

dPY[jk,jk+1)
|Z[jk,jk+1]

∣∣∣∣∣∣Z[0,T ]


where

Qz
Y z
[jk,jk+1)

= Qz
Y

(
Y z
[jk,jk+1)

∈ dy[jk,jk+1)

)
,

PY[jk,jk+1)
|Z[jk,jk+1)

= PY

(
Y[jk,jk+1) ∈ dy[jk,jk+1) | z[jk,jk+1)

)
.

The first term is just the KL divergence between two MJPs that was already provided above, see
Eq. (4.2.5). The second term is more involved. To render it tractable via a time point-wise
expectation, note that each summand can be expressed via Eq. (4.2.6)

E

[
1(z[jk,jk+1) = z) ln

dQz
Y z
[jk,jk+1)

dPY[jk,jk+1)
|Z[jk,jk+1]

∣∣∣∣∣ Z[0,T ] = z[0,T ]

]

=
1

2

∫ jk1

jk

1(z(t) = z)E
[
∥f(Y (t), z, t)− g(Y (t), z, t)∥2D−1

∣∣ z]dt
+ E

[
1(z[jk,jk+1) = z) ln

Qz,jk
Y

Pjk
Y

]
.

Crucially, each of these summands comprises an initial KL, DKL

[
Qz,jk

Y || Pjk
Y

]
, which is not

computable without knowing the true measureP - the evaluation of which we are trying to avoid
with the variational approach. Concatenating all inter-jump intervals in the inner expectation,
we can write

E

[
ln

dQ

dP

]
= E

[
ln

dQZ

dPZ

]
+ E

[
E

[∑
z∈Z

1

2

∫ T

0

1(Z(t) = z)E
[
∥f(Y (t), z, t)− g(Y (t), z, t)∥2D−1

∣∣ z]dt ∣∣∣∣∣ Z[0,T ]

]]

+ E

 ∑
z∈j[0,T ]

1(z[jk,jk+1) = z)E

[
ln

Qz,jk
Y

Pjk
Y

∣∣∣∣∣ Z[0,T ]

].
We now approximate this by omitting the intractable initial KL contributions:

E

[
ln

dQ

dP

]
≈ E

[
ln

dQZ

dPZ

]
+

1

2

∫ T

0

E
[
∥f(Y (t), Z(t), t)− g(Y (t), Z(t), t)∥2D−1

]
dt. (4.3.13)
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This approximation is applicable in a certain regime, namely, under a separation of time scales:
the relaxation of the diffusion Y needs to be much faster than the switching of theZ-process.
The relative contributions of the “initial” distributions at jump times decrease as this separation
of time scales increases; the fewer the expected jumps in a fixed time interval, the smaller the
omitted contribution, and the initial mismatch in the diffusive part of the KL between the
true and approximate processes decays as the true process reaches the local steady state. Hence,
Eq. (4.3.13) is applicable to metastable systems, which, by definition, transition between different
regimes and exhibit a separation of time scales between the intra-mode diffusive dynamics and
the inter-mode transitions. Notice that the approximation abolishes the lower-bound property
of the so-defined ELBO; a similar approach has been taken e.g. in [97]. While this is certainly
undesirable on a conceptual level, it still provides a valuable tool from an engineering perspective,
which needs however to be applied with the conditions described above in mind.

The structure of Q, Eq. (4.3.10), entails separate constraints on the dynamics of the processes
corresponding to QZ and Qz

Y . These constraints will be formulated on the density level: denote,
as in the previous chapter, with p(y, z, t | x[0,T ]) the joint posterior density at time point t,
and with qZ(z, t), qzY (y, t) the corresponding variational densities. Note that the structured
mean-field ansatz Eq. (4.3.13) can of course also be expressed on the density level: we can write

p(y, z, t | x[0,T ]) = p(z, t | x[0,T ]) · p(y, t | z, t, x[0,T ])

≈ qZ(z, t) · qzY (y, t) =: q(y, z, t).
(4.3.14)

The exact conditional p(y, t | z, t, x[0,T ]) - which does not generally have a simple parametric
form - is approximated by one distribution per mode, qzY (y, t). In the time point-wise mixture
distribution q(y, z, t), the densities qzY (y, t) constitute the mixture components and qZ(z, t)
the mixture weights. It is also from this representation immediately clear that omitting the
Z-dependency qzY (y, t) = qY (y, t) recovers the standard mean-field ansatz [98].

As QZ is assumed to be an MJP, the marginal qZ(z, t) obeys a master equation:

d

dt
qZ(z, t) =

∑
z′∈Z\z

Λ̃(z′, z, t)qZ(z
′, t)− Λ̃(z, t)qZ(z, t), ∀z ∈ Z. (4.3.15)

Furthermore, the variational factors qzY (y, t) each follow a FPE with linear variational drift
g(y, z, t) = Aq(z, t)y + bq(z, t) for every mode z individually:

∂tq
z
Y (y, t) = −

n∑
i=1

∂yi {gi(y, z, t)qzY (y, t)}+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{Dijq
z
Y (y, t)}. (4.3.16)

For linear SDEs, this is solved by a time-dependent Gaussian distribution [20]

qzY (y, t) = N (y | µ(z, t),Σ(z, t)),

where the dynamics of the parameters are described by two ODEs for all z ∈ Z :

d

dt
µ(z, t) = Aq(z, t)µ(z, t) + bq(z, t),

d

dt
Σ(z, t) = Aq(z, t)Σ(z, t) + Σ(z, t)A⊤q (z, t) +D.

(4.3.17)
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The constraints (4.3.15) and (4.3.17) are included into the objective Eq. (4.1.3) via Lagrange
multiplier functions, cf. Section 2.2.4.2. Defining the multipliers λ(z, t), Ψ(z, t), ν(z, t) for
the variational mean µ(z, t), covariance Σ(z, t) and variational rates Λ̃(z, z′, t) respectively, the
constrained optimization problem is converted into an unconstrained one:

argmaxµ,Σ,Λ̃ L[µ,Σ, Λ̃]

s.t. Eqs. (4.3.15) and (4.3.17)

}
−→ argmax

µ,Σ,Λ̃

L [µ,Σ, Λ̃, λ,Ψ, ν],

where the full Lagrangian L reads

L = L+

∫ T

0

∑
z∈Z

[
λ⊤(z, t)

(
d

dt
µ(z, t)− (A(z, t)µ(z, t) + b(z, t))

)
(4.3.18)

+ tr

{
Ψ⊤(z, t)

(
d

dt
Σ(z, t)−

(
A(z, t)Σ(z, t) + Σ(z, t)A⊤(z, t) +D

))}
+ ν(z, t)

(
d

dt
qZ(z, t)−

∑
z′∈Z

Λ̃z′z(t)qZ(z
′, t)

)]
dt =:

∫ T

0

ℓL(t) + ℓc(t)dt,

where we defined the integrand of the constraint contributions, ℓc(t).

modeling assumptions The same modeling assumptions apply as for the Gibbs sam-
pler in Chapter 3; in particular, the prior drift function f is assumed to be linear and time-
invariant,

f(y, z, t) = A(z)y + b(z).

As defined above, the variational diffusion is also assumed to be linear, but not necessarily
time-invariant,

g(y, z, t) = Aq(z, t)y + bq(z, t).

The observations are again given as

Xi = X(ti) = Y (ti) + ζ,

ζ ∼ N (0,Σx).
(4.3.19)

Notice that with both drift functions being linear, we can explicitly evaluate the expectation
within the ELBO: defining Ā(z, t) := Aq(z, t)− A(z) and b̄ analogously, we find

E
[
∥f(Y (t), Z(t), t)− g(Y (t), Z(t), t)∥2D−1

]
= E

[
(Ā(Z(t), t)Y (t) + b̄(Z(t), t))⊤D−1(Z(t))(Ā(Z(t), t)Y (t) + b̄(Z(t), t))

]
=
∑
z∈Z

qZ(z, t)
{
tr{Ā(z, t)⊤D−1(z)Ā(z, t)Σ(z, t)}

+ (Ā(z, t)µ(z, t) + b̄(z, t))⊤D−1(z)(Ā(z, t)µ(z, t) + b̄(z, t))
}
.
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4.4 optimizing the variational distributions

The structured mean-field assumption allows us to maximize Eq. (4.3.18) individually with
respect to qZ(z, t) and qzY (y, t) [10]. With the introduced parameterization, the optimization
problem translates to finding the optimal variational factors

q∗Z := argmax
qZ

L , µ∗ := argmax
µ

L , Σ∗ := argmax
Σ

L ,

and analogously the parametersA∗q, b∗q, Λ̃∗, ϕ∗, where ϕ summarizes the variational initial con-
ditions. Pontryagin’s maximum principle [126] requires each optimal variational factor φ ∈
{qZ , µ,Σ} to fulfil (i) the respective constraint equations (4.3.15) and (4.3.17) as well as (ii) the
Euler-Lagrange (EL) equation

d

dt
∂φ̇ℓ = ∂φℓ,

with ℓ(t) = ℓL(t) + ℓc(t) the integrand of the Lagrangian L , cf. Eq. (4.3.18). This translates to
an ODE for each Lagrange multiplier function.

4.4.1 Optimizing the variational switching process

Firstly, the EL equation with respect to qZ(z, t) reads

d

dt
ν(z, t) = ∂qZ(z,t)ℓL(t)−

∑
z′∈Z\z

Λ̃(z, z′, t)ν(z′, t) + Λ̃(z, t)ν(z, t), (4.4.20)

where it is straightforwardly derived that

∂qZ(z,t)ℓL(t) =−
∑

z′∈Z\z

[
Λ̃zz′(t)

(
ln

Λ̃zz′(t)

Λzz′
− 1 + ν(z′, t)− ν(z, t)

)
+ Λzz′

]
− E

[
∥f(Y (t), z, t)− g(Y (t), z, t)∥2D−1

∣∣z]
+

N∑
i

E [ln p(x(ti) | Y (ti)) | z] δ(t− ti).

In an abuse of notation, the delta function was used outside the integral for compactness. Due to
these delta-contributions, the evolution equation for the Lagrange multiplier ν(z, t) Eq. (4.4.20)
is an impulsive differential equation [105] which can - similar to exact posterior inference, see
Section 3.2 - be solved piece-wise by integrating the ODE backwards between the discontinuities
(starting at ν(z, T ) = 0) and applying reset conditions at the integration boundaries:

ν(z, ti) = E [ln p(x(ti) | Y (ti))| z] + ν(z, t−i ), (4.4.21)

with ν(z, t−i ) := limh↘0 ν(z, ti − h). For Gaussian observation noise, we have

E[ln p(x(ti) | Y (ti))|z] = −
1

2
{n ln(2π) + ln |Σx|

+(x(ti)− µ(z, ti))⊤Σ−1x (x(ti)− µ(z, ti)) + tr{Σ−1x Σ(z, ti)}
}
. (4.4.22)
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With the expectation over the drift functions already evaluated above, we have

∂qZ(z,t)ℓL(t) = − tr{Ā(z, t)⊤D−1Ā(z, t)Σ(z, t)}
− (Ā(z, t)µ(z, t) + b̄(z, t))⊤D−1(Ā(z, t)µ(z, t) + b̄(z, t))

−
∑

z′∈Z\z

[
Λ̃zz′(t)

(
ln

Λ̃zz′(t)

Λzz′
− 1 + ν(z′, t)− ν(z, t)

)
+ Λzz′

]

+
N∑
i=1

E [ln p(x(ti) | Y (ti))| z] δ(t− ti).

4.4.2 Optimizing the variational diffusion processes

Secondly, the EL equation has to hold separately for both Gaussian parameters µ(z, t) and
Σ(z, t). This yields

d

dt
λ(z, t) = ∂µ(z,t)ℓL(t)− A⊤q (z, t)λ(z, t),

d

dt
Ψ(z, t) = ∂Σ(z,t)ℓL(t)− A⊤q (z, t)Ψ(z, t)−Ψ(z, t)Aq(z, t).

(4.4.23)

We find the gradients as

∂µ(z,t)ℓL(t) = −qZ(z, t)
(
Ā(z, t)⊤D−1Ā(z, t)µ(z, t) + Ā(z, t)⊤D−1b̄(z, t)

)
+

N∑
i=1

qZ(z, ti)Σ
−1
x (x(ti)− µ(z, ti))δ(t− ti),

∂Σ(z,t)ℓL(t) = −
1

2
qZ(z, t)Ā

⊤(z, t)D−1Ā(z, t)−
N∑
i=1

qZ(z, ti)
1

2
Σ−1x δ(t− ti).

The solutions to these impulsive differential equations are found as as above, where the jump
conditions read

λ(z, ti) = qZ(z, ti)Σ
−1
x (x(ti)− µ(z, ti)) + λ(z, t−i )

Ψ(z, ti) = −qZ(z, ti)
1

2
Σ−1x +Ψ(z, t−i ).

To solve all derived ODEs, we employ established numerical solvers with adaptive step-size [25,
112].

4.4.3 Optimizing the variational parameters

Thirdly, the variational parameters can be optimized iteratively via gradient methods, as is
standard for optimal control problems [111]. Here, a simple gradient ascent scheme is used: for
each u(z, t) ∈ {Aq(z, t), bq(z, t), Λ̃(z, z

′, t)}, update

unew(z, t) = u(z, t) + κ(z, t) · ∂u(z,t)ℓ(t). (4.4.24)
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To determine the step size κ(z, t), we utilize a heuristic back-tracking line-search algorithm [127]:
first, we set

κ(z, t) = κiqZ(z, t),

that is, we regularize the step size with the respective mode marginal probability. We then choose
κi = γi with some γ ∈ (0, 1)1. If L[unew] ≥ L[u], we accept the update u(t) ← unew(t).
Otherwise, we iterate and re-compute using the new step size κi+1.

The full optimization problem Eq. (4.3.18) requires the Lagrange multiplier ODEs (4.4.20)
and (4.4.23) and the constraint Eqs. (4.3.15) and (4.3.17) to be solved jointly as a boundary-value
problem with terminal conditions on the multiplier functions ν(·, T ), λ(·, T ),Ψ(·, T ) = 0
and initial conditions on the distribution parameters; the variational parameters have to be
optimized simultaneously [126]. Boundary-value problems of this type are non-trivial to solve, as
both initial and terminal conditions have to be met jointly. A standard approach to this problem
is a forward-backward sweeping algorithm, where the solution is again found iteratively [111, 128]:
the initial value ODEs for qZ , µ,Σ and the terminal value ODEs for ν, λ,Ψ are solved alternately
until stationarity in the solutions - and that is, stationarity of the ELBO - is reached.

The full algorithm to determine the optimal variational distributions finally is as follows: first
solve the Lagrange multiplier ODEs Eqs. (4.4.20) and (4.4.23) backward in time, starting from
the terminal conditions ν, λ,Ψ = 0. Next, update the variational parameters acting on the
constraints,Aq, bq, Λ̃, ϕ. Then, solve the constraint equations (4.3.15) and (4.3.17) forward in
time, starting from initial conditions ϕ = {qZ(z, 0) = q0Z(z), µ(z, 0) = µ0(z),Σ(z, 0) =
Σ0(z)}. Finally, repeat until convergence.

4.4.4 Learning the model parameters

To learn the parameters of the original model - the prior transition rate matrixΛ, the dispersionD,
the prior initial conditions, the parameters of the drift functionf(y, z, t) as well as the parameters
of the observation likelihood - we employ a variational expectation maximization (VEM) scheme,
interleaving the variational optimization described above with the optimization of point estimates
for these parameters [10].

After converging onto variational distributions qZ(z, t) and qzY (y, t), we perform gradient
ascent with respect to the model parameters on the ELBO L. The explicit gradients are provided
in Appendix C.3. For an in-depth discussion on parameter optimization and more advanced
options, see, e.g., [129]. The complete optimization scheme is summarized in Fig. 4.1.

4.5 results

In the following, the method is evaluated on ground-truth and molecular dynamics (MD) bench-
mark data. For experimental details such as initializations and hyperparameter settings, see
Appendix C.4. Notice that for all shown examples, we empirically observed fast convergence in
fewer than 100 iterations of the variational algorithm Fig. 4.1.

1 Here, γ = 0.5 is used.
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input :observation data {ti, xi}i=1,...,N

Initialize qZ , µ, Σ,A, b, Λ̃, Θ
while L not converged do

while L not converged do
Compute multiplier functions λ, Ψ, ν via Eqs. (4.4.20) and (4.4.23)
Update variational parametersAq, bq, Λ̃ via Eq. (4.4.24)
Compute variational factors µ, Σ, qZ via Eqs. (4.3.15) and (4.3.17)
Update lower bound L

end
Update prior parameters via gradient ascent
Update lower bound L

end

figure 4.1: VI algorithm for MJP-switching stochastic differential equations

4.5.1 Model validation on ground-truth data

To gauge the accuracy and the limits of the proposed approximation, it will in the following be
extensively evaluated against the ground-truth PDE solution as well as against the results obtained
using the previously presented Gibbs sampling approach. To that end, it is applied to synthetic
data similar to that of Section 3.4.1.

4.5.1.1 1D system

We generate synthetic data as in Section 3.4.1: we choose linear, time-homogeneous drift functions
f(y, z, t) = A(z)y(t) + b(z) as well as time-homogeneous rates Λ(z, z′, t) = Λ(z, z′).

As shown in Fig. 4.2, the inferred posterior distributions qY (y, t) =
∑

z∈Z qZ(z, t)q
z
Y (y, t) and

qZ(z, t) both faithfully reconstruct the respective latent ground-truth trajectories. Accordingly,
the obtained parameter estimates exhibit a high accuracy. The MCMC posterior histograms
cover the ground-truth still better, which is not surprising as, in that approach, no additional
approximation on the process level is made. Notably, the runtime for the VI method was of
the order of an hour compared to roughly 24 hours to generateN = 100000 samples with the
MCMC method.

limitations of the approximation Importantly, Fig. 4.2 also demonstrates the
impact of the proposed approximation on reconstruction quality: in regions around mode
transitions, one can observe artifacts from the variational approximation as a mixture of GPs. It
is apparent that the mixture of GPs results in jumps in the marginal qY (y, t) (arrow 1 in Fig. 4.2),
while the SSDE is guaranteed to yield continuous paths y[0,T ]. While at this time point, the
approximation still correctly recovers theZ-switch, arrow 2 in Fig. 4.2 indicates a point where
the variational posterior qZ(z, t) misses the transition (caused by three observations that are
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figure 4.2: Model validation of the VI method on 1D synthetic data. Top: ground-truth switching
trajectory z[0,T ]. Following three rows: results for both the discrete and continuous components obtained
via the VI approximation (first row), the MCMC framework of Chapter 3 (second row), as well as the
exact solution given by the posterior HME (3.2.20) (third row). White arrows mark positions where the
approximation yields artifacts, see main text. Bottom: obtained parameters. Vertical red lines mark the
ground-truth values; histograms show the MCMC posterior samples; and dashed lines correspond to the
point estimates obtained from the VI method (color coding indicates the mode z where applicable).

mis-classified). These inaccuracies are confined to transition regions; since the relaxation onto
the mode fixed points is fast compared to the mode remain times, the transition regions are short,
yielding a high overall approximation quality. These two transition periods illustrate what was
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figure 4.3: Inaccuracies of the VI approach in transition regions. Left: VI results. Right: MCMC results.
Top row: ground-truth switching trajectory. Middle row: reconstructions of the switching trajectory.
Bottom row: Y -space marginals.

discussed above: the variational approximation will be accurate when the system under study has
reached a local steady state and it will be inaccurate in the transition periods between individual
stable modes. It hence is particularly suited for metastable systems.

To emphasize this point, we repeat the same experiment with slower relaxation constants:A(z) =
−0.5∀z (instead of A(z) = −1 in the preceding example). As can be seen in Fig. 4.3, the
discussed issues become more apparent in the transition regions. Note further that the qZ -
reconstruction appears to be “greedy”: the transitions between individual modes are not as
smooth as both in the MCMC and the exact PDE solutions. Rather, the method tends to select
one of the available modes at each time point.
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figure 4.4: Performance of the VI approach under higher ambiguity. Left: VI results. Right: MCMC
results. White arrow: transition region with high uncertainty.

However, in cases with higher ambiguity, the method is also able to capture the uncertainty in
the switching process: we repeat again the experiment with larger ground-truth dispersion and
observation covariance. We hence now face a situation with increased ambiguity. The method
succeeds in capturing this ambiguity: the reconstruction of the switching sequence z[0,T ] is
accurate, while showing gradual transitions in regions where no observations are present. In
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figure 4.5: Sampling from the variational measure. Left: sampling from the fit variational measure as
defined in Eq. (4.3.10). Right: sampling from a true SSDE parameterized via the fit variational measure.

particular, note here the long transition period starting at t = 12.5 (indicated by the white arrow
in Fig. 4.4), where the variational approximation gradually shifts from one GP to the other.

Q-parameterized mjp-ssde sampling An interesting result is obtained by re-
interpreting the variational model. Pursuing a generative modeling approach, we can sample
full trajectories from the variational posterior; this would recover the marginal density shown in
Fig. 4.2 empirically. Specifically, this would entail the discontinuities atZ-transitions. To get rid
of these discontinuities, we can - after having fit the model - revert back to an SSDE model for Q
instead of the mixture of GPs: we can sample from an SSDE which is piece-wise parameterized
as the fit variational model. This yields continuous trajectories y[0,T ] that tightly follow the
ground-truth, as shown in Fig. 4.5.

structured mean-field vs. mean-field We now compare the presented struc-
tured mean-field with the classic mean-field approach. To this end, we repeat the experiment
shown in Fig. 4.2 three times for each approach with a different number of parameters kept
fixed: in one setting, we fix both the mode dynamicsA and the observation covariance Σx to the
true values; in another, we fix only Σx; and in the third, we learn all parameters. On one end of
the spectrum, the classic mean-field approach returns the most accurate results when bothA
and Σx are fixed. This is unsurprising, as the true latent diffusion, conditioned on the switching
processZ , corresponds to a single GP, as does the variational path measure. On the other end of
the spectrum, however, the structured mean-field approach yields more accurate reconstructions
if all parameters are learned. This, too, is unsurprising, as the proposed approach provides more
structure by definition, which can make up for some uncertainty in the parameters.

4.5.1.2 2D system

Lastly, we apply the method to the same 2D swirl data as presented in Section 3.4.1. Because
the problem itself is more complex, we fix the observation covariance Σx to the ground-truth
value. As shown in Fig. 4.7, the mode and state reconstructions accurately recover the true
paths. Accordingly, also the underlying mode dynamics are correctly learned, exhibiting the
counter-rotating behavior of the ground-truth model. Despite the fixed observation covariance,
the classic mean-field approach fails to recover the latent switching behavior and accordingly
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figure 4.7: Model validation of the VI method on 2D synthetic data. Top left: ground-truth switching
trajectory (top), structured mean-field (middle) and classic mean-field (bottom) reconstructions. Bottom
left: true state trajectory y[0,T ], observations (crosses) and true mode dynamics f(y, z) (arrows) in the
phase plane. Note that only 20% of observations are shown to reduce clutter. Top right: structured
mean-field reconstructed maximum a posteriori (MAP) path yMAP

[0,T ] (coloring according to zMAP
[0,T ] ) and

reconstructed mode dynamics (arrows). Bottom right: classic mean-field reconstruction (coloring accord-
ing to zMAP

[0,T ] ).

is not able to discern the qualitatively different dynamics of the two modes. To adequately
reproduce the latent dynamics, the time-dependent parameters of the single approximate GP
would need to qualitatively change rapidly at a transition (e.g., the sign structure ofA), which
cannot be achieved at least with a simple gradient learning scheme. Importantly, the runtime
advantage of VI increases in higher dimensions: while the MCMC method required around two
weeks to compute, the VI approach took less than one day.

4.5.2 Diffusions in multi-well potentials

In many real-world scenarios, ground-truth discrete modes may not exist, but the continuous
dynamics still exhibit “switching” behavior, transitioning between clearly discernible, qualita-
tively different regimes. In this case, explicit probabilistic modeling of a set of underlying discrete
modes can greatly aid interpretability and enable targeted interventions on the system. The
phenomenon of metastability enabling the structured mean-field approximation is often met in
biological systems, e.g., in the folding dynamics of complex biomolecules [130]. The folding of
proteins or RNA is a continuous process evolving in highly complex potential landscapes. Each
local minimum in such a landscape corresponds to a different 3D conformation of the respective
molecule, where different conformations can differ qualitatively in their functionality. The
relaxation time scales within a local minimum are typically much shorter than between separate
minima. To demonstrate the proposed method’s capacity to yield sensible representations of
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figure 4.8: VI model validation on multi-well diffusion data. A: Diffusion in a 1D, four-well potential.
Top: inferred marginals qZ(z, t). Bottom: ground-truth trajectory y[0,T ] (black line) and observations
(crosses) with the inferred qY (y, t) and learned steady states A−1(z)b(z) (arrows). Right: 1D potential
landscape. B: Diffusion in a 2D, three-well potential. B.1: Potential landscape with the inferred steady
states (diamonds) and dispersions D(z) (ellipses, 3σ-region) with observations (crosses); colors according
to zMAP(ti) for each observation x(ti). Darker colors indicate lower potential values. B.2: Top: inferred
marginals qZ(z, t). Bottom: components of yMAP(t) (thick lines), ground-truth path (thin lines) and
observations (crosses). Shaded region: transition region with high ambiguity.

distinct dynamic regimes, we apply it to data generated from latent diffusion processes driven by
1D and 2D benchmark potentials widely used in computational biology [131–136].

The one-dimensional potential, y ∈ R, exhibits four minima and is given as

V (y) = 4
(
y8 + 3 exp

{
−80y2

}
+ 2.5 exp

{
−80(y − 0.5)2

}
+2.5 exp

{
−80(y + 0.5)2

})
. (4.5.25)

The two-dimensional example, y ∈ R2, exhibits three minima and reads

V (y) = 3 exp

{
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In both cases, we fix the observation covariance. Synthetic data are generated from these poten-
tials via the Euler-Maruyama approximation to the SDE

dY (t) = −∂Y V (Y (t)) +QdW (t).

We assume a mode-dependent dispersion,D = D(z) = Q(z)Q(z)⊤.

In both cases, the reconstructed discrete trajectories accurately capture the global transitions
between distinct potential minima, see Fig. 4.8. Especially the true (continuous) trajectory in the
one-dimensional example, cf. Fig. 4.8 A, exhibits a very clear separation of time scales between
the inter- and intra-well dynamics, which is aptly reflected in sharp transitions in the mode
reconstruction. In the 2D case, on the other hand, the transition periods are longer between the
distinct regions, see Fig. 4.8 B.2. In these transition regimes, it is not possible to unambiguously
assign the state at a given time t to one of the three minima. The posterior marginals qZ(z, t)
capture this uncertainty, which is also reflected in a high-quality mode-assignment of the observed
data pointsx[0,T ] as shown in Fig. 4.8 B.1. All learned parameters are provided in Appendix C.4.

4.6 summary

In this chapter, a structured mean-field variational inference framework for MJP-SSDE processes
was proposed. The approach was derived starting from the true KL divergence between hybrid
processes; it resulted in a straightforward, easily interpretable mixture of GPs by neglecting a
term in the KL divergence stemming from the switching component.

The framework was evaluated extensively both on ground-truth and benchmark data. It was
shown that a tradeoff exists between faster runtimes (compared to the Gibbs sampler presented in
Chapter 3) and (in particular) parameter accuracy: while the variational method is able to learn the
system parameters fast and sufficiently well to recover the latent dynamics, the MCMC parameter
estimates were somewhat more accurate - which is not surprising, since in this case, no further
approximations need to be made. The method also performed well on standard benchmark
problems, highlighting that the approximation is applicable to metastable systems, which exhibit
a separation of time scales between the continuous and discrete relaxation dynamics. This is a
criterion met by many biological systems. An outlook and potential avenues for further work
are discussed in Chapter 6.
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In the previous chapters we analyzed systems in which the latent continuous component was
of interest. There are settings, however, in which the continuous dynamics do not matter to
analysis. Consider the folding problem of molecules, such as RNA or proteins, already alluded to
previously: biological cells operate via the production, specialized utilization and degradation
of a vast array of such complex molecules. Importantly, the proper production of any given
molecule alone does not guarantee its functionality. Whether or not an RNA can be translated
into a protein, or a protein can be put to use by the cell, is determined by the relative spatial
arrangement of its constituent sub-molecules, that is, its folding structure or conformation. Due
to the crucial impact of the conformational arrangement, computational structure prediction is a
prime goal of molecular biology. In recent years in particular, novel frameworks were proposed for
RNA [137] and protein [138] structure prediction that yield unprecedented prediction accuracies;
the focus of these structure prediction algorithms however lies on static structures. Different
conformations can be thought of as minima in a high-dimensional complex energy landscape
through which the molecule evolves over time, for instance upon receiving an external input signal
such as a binding ligand or by thermodynamic fluctuations [139]. Importantly, the particular
dynamics within a given minimum do not matter to conformational analysis, but the transitions
between different minima are of central interest as they may change the molecule’s functionality.

71
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The challenge is then (i) to identify the energy minima (in particular, their number), and (ii) to
model the dynamics between them.

Conformational dynamics may be studied both experimentally and computationally. A prime
example of experimental approaches is the analysis of ion channel gating behavior via electro-
physiological techniques, such as voltage clamping or lipid bilayer measurements [140–142].
Further techniques include fluorescence quenching [143] or fluorescence resonance energy trans-
fer (FRET) measurements [144]. The dominating tools for computational analyses, on the other
hand, are molecular dynamics (MD) simulations [145]. The MD framework aims at the mechanis-
tic simulation of the interaction of all particles constituting the molecule under study, where
“particles” may refer to atoms (in classic MD) or to atomic or even molecular clusters in coarse-
grained MD [146]. Simulation techniques of this kind are ubiquituously used in molecular
biology to investigate protein and RNA folding [147–149], with conformational switching of ion
channels being an example of the former [150].

As both electrophysiological data and MD simulation data are typically obtained on a regular time
grid with a very small time step ∆t, the following chapter adopts a discrete-time approach. A
popular discrete-time framework to address the above two challenges are MSMs, which yield a de-
scription of the continuous system dynamics (e.g., 3D atom coordinates) in terms of comparatively
long-lived, metastable discrete states corresponding to distinct, stable structural conformations
[131, 132, 135, 151]. As will be discussed in detail in Section 5.1, this framework however suffers
from two important drawbacks, namely, (i) the need to manually preprocess the data, and (ii) the
need to manually identify the number of metastable states.

In this chapter, these two drawbacks are addressed utilizing nonparametric Bayesian hidden
Markov models (HMMs): we model the conformational switching between distinct molecular
structures via an HMM by defining a latent discrete-time Markov chain (DTMC) on a countably
infinite set of states of which noisy, continuous-valued observations are obtained. Nonparametric
Bayesian approaches have gained attention in recent years both in experimental settings such as
analyses of ion channel switching [152, 153] or single-particle tracking [154] as well as in MD studies
[155]. In all of these cases, inference of the metastable trajectories and the system parameters is
carried out using sampling techniques (such as MCMC), which - as discussed in the previous
chapters - are known to face scaling issues [156, 157]. Even for the relatively simple problem of
one-dimensional ion channel voltage trajectories, they become computationally intractable for
longer sequences. To achieve scalability to large data sets, we combine the nonparametric model
with a variational inference approach as done, e.g., in [158].

We specify observation models that are appropriate for the use cases laid out above: in the
described experimental and computational settings, observations typically are real-valued vectors,
x ∈ Rn, or rotation angles, x ∈ [0, 2π)n. For the angular case, we furthermore propose an
approximation enabling computational tractability.

In the following, a coarse overview over MSMs will be given in Section 5.1 to provide more intuition
about the problem of conformational switching, along with the shortcomings of the method
that we aim to address. Then, the general nonparametric modeling framework will be defined
in Section 5.2, followed by a discussion of the specific observation models. The details on the
variational inference scheme are subsequently laid out in Section 5.4. Finally, the method will be
applied to synthetic ground-truth data as well as benchmark and experimental data.
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Lump

figure 5.1: Sketch of the workflow for classic MSMs. Given some data (e.g. from MD simulations), one
chooses a set of suitable features that allow to compactly parameterize the data. Note that for illustrative
purposes, only a single trajectory is shown, where in typical applications, many trajectories are analyzed
jointly. The state space thus defined is then discretized. This can for instance be done via k-means. In that
way, the data is projected onto a discrete trajectory, from which via straightforward counting an empirical
transition matrix between the discrete states can be obtained. The resulting “fine-grained” DTMC is then
lumped into a “coarse-grained” one consisting of only a few macrostates; the lumping is typically done via
spectral methods such as Perron-cluster cluster analysis (PCCA). Finally, this DTMC constitutes the MSM
on a discrete state space of only a few, macroscopically relevant and interpretable states.

5.1 markov state models

The classic MSM approach approximates the continuous molecule dynamics directly by pro-
jecting them to a discretized space with only a handful of states, the dynamics of which are
described as a DTMC (cf. Section 2.1.1.1). This achieves two central goals: first, it yields a readily
interpretable, parsimonious system description, enabling the (principled) handling of very large
MD data sets. Second, it can help to drastically reduce the required computation time for MD
simulations: MSM analysis can be applied to heavily parallelized data. Rather than using one
single very long MD trajectory, one may hence start many MD simulations in parallel with differ-
ent initializations and analyze these trajectories jointly. In this way, a conformational transition
model can be obtained much faster.

While conceptually straightforward, the process of MSM construction is a multi-step procedure;
see Fig. 5.1 for a sketch of the basic workflow. One issue in this process is the direct binning
of continuous data into discrete states, which introduces correlations and makes the resulting
discrete, projected-data process generally non-Markovian. Raw MD data, on the other hand,
are inherently Markovian, as they originate from the integration of SDEs, cf. Section 2.1.2.2. To
render the discrete dynamics amenable to MSM analysis - that is, to ensure that the projected-
data process can be appropriately modeled by a Markov process - the correlations need to be
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reduced via temporal thinning by some lag time constant τ [131, 159]. Concretely, to construct
the fine-grained transition matrix of Fig. 5.1, one does not count transitions between neighboring
time points but between time points separated by τ time steps. The selection of this parameter
is acknowledged to be a major challenge in practice [160].

The lag time, together with the state-space discretization, determines the reconstruction error
between the true system dynamics and their MSM approximation. It is possible to explicitly
derive an upper bound to this error, showing that it can be made arbitrarily small by either
choosing a finer state-space discretization or increasing the lag time [131]. Accordingly, this
however generates a trade-off problem: one has to balance between (i) sufficient sampling of the
discrete state space, and (ii) a sufficiently long lag time to render the resulting process Markovian.
To gauge the appropriateness of a given τ , tools such as the Chapman-Kolmogorov test have
been introduced [131]. However, this test only considers the appropriateness of the lag time,
which still allows for a considerable reconstruction error - resulting in an MSM not accurately
reproducing the long-time dynamics as detailed in [161].

The other issue of the MSM workflow is the identification of metastable states itself, which
is carried out as the last step. Typically, this lumping of a DTMC on a large state space to a
DTMC on a much smaller state space is done via spectral methods such as Perron-cluster cluster
analysis (PCCA) [162] or PCCA+ [163] (note, however, that other approaches exist, see, e.g., [164,
165]). Generally, the chosen lag time as well as the state-space discretization will affect the lumping
results.

Fueled by the successes of MSM modeling in a wide array of use cases [166–173], extensive method-
ological research has been carried out in recent years [131, 135, 136, 174–176]. The most recent
advances also include deep learning extensions [132, 177]. Nevertheless, they share the two concep-
tual drawbacks detailed above; both problems can however be addressed utilizing nonparametric
HMM frameworks, as will be discussed in the following.

5.2 nonparametric bayesian markov state models

We model the conformational molecule dynamics by utilizing an HMM consisting of two joint
stochastic processes {Z(t), X(t) : t = 1, . . . , T}. The distinct metastable states are represented
by the latent Markov states Z(t) ∈ Z ⊆ N, the observed data (e.g., experimentally obtained
channel voltages or simulated atom positions) byX(t) ∈ X ⊆ Rn. The system dynamics are
described by the transition matrix of the DTMC, see Section 2.1.1.1. The observation at time point
t,X(t) = x, depends only on the latent state at the same time,Z(t) = z, via some observation
density p(x | θz).

To obtain a fully Bayesian HMM, the transition matrix as well as the observation parameters are
treated as random variables: we define

Πz ∼ Dir(ηz,1, . . . , ηz,|Z|),

Θz
i.i.d.∼ P0,

(5.2.1)
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for all z = 1, ..., |Z|with ηz,z′ > 0. A realization Πz = πz can hence be interpreted as the z-th
row of the transition matrix, with the entry z′ denoting the probability to transition from state
z to state z′:

πzz′ = P(Z(t+ 1) = z′ | Z(t) = z).

We furthermore assume that P0 admits a probability density p(θ). In the following, we denote
with {

xi
}
:=
{
xi[1,T ] : i = 1, . . . , I

}
,

{
zi
}
:=
{
zi[1,T ] : i = 1, . . . , I

}
the set of all I observed and latent trajectories

xi[1,T ] :=
{
xi(t) : t = 1, . . . , T

}
, zi[1,T ] :=

{
zi(t) : t = 1, . . . , T

}
.

Analogously, {πz} := {θz : z = 1, . . . , |Z|} and {θz} := {θz : z = 1, . . . , |Z|}. With these
definitions, the joint model density reads

p
({
xi
}
,
{
zi
}
, {θz} , {πz}

)
=

I∏
i=1

p(zi1)p(x
i
1 | θzi1)

T∏
t=2

p(zit | πzit−1
)

· p(xit | θzit)
|Z|∏
z=1

p(πz)p(θz), (5.2.2)

where we abbreviate zi(t) = zit for conciseness (and analogously for x).

It is acknowledged that HMMs can be interpreted as a generalization of MSMs [136], abolishing
the need to introduce an artificial lag time. This is due to the fact that marginalization over Z
generates global dependencies between the observations; hence, the observed marginal process
X does not need to be Markovian.

HMMs however still retain the drawback with respect to the analysis of conformational switching
that the number of molecule conformations |Z| needs to be specified upfront, while this number
is typically unknown. On the contrary, it is a key quantity of interest that is to be determined
from the data. This issue may be addressed by taking a nonparametric modeling approach, which
allows for specification of processes on countably infinite state spaces and computation of the
respective posteriors. For any finite data set, the posterior state-space size |Z|will still be finite
and can be learned from the observations. In other words, we specify a model for a potentially
infinite number of distinct molecular conformations, only a finite number of which will be
adopted in any given observed trajectory from simulations or experiments. This model addresses
both of the key drawbacks of conventional MSMs: introducing a latent process obviates the need
to manually pre-process the data with some artificial lag time, while the nonparametric nature
allows one to directly learn the number of conformational states from the data directly rather
than having to resort to manual post-hoc analysis.

In order to set up a nonparametric HMM, we accordingly need to construct prior distributions
for transition matrices on countably infinite state spaces and for countably infinite observation
parameters; put differently, the distributions occurring in Eq. (5.2.1) need to be generalized to
|Z| → ∞. This is achieved by the hierarchical Dirichlet process (HDP) [38]. An HDP-HMM is
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constructed in two steps utilizing Dirichlet processs (DPs) (see Section 2.2.3): first, we specify a
DP via the stick-breaking construction Eq. (2.2.46),

P1 ∼ DP(γ,P0) →


P1(Θ = θ) =

∑∞
z=1BzδΘz(θ), (5.2.3)

B ∼ GEM(γ), (5.2.4)

Θz
i.i.d.∼ P0, (5.2.5)

where it is assumed (as above) thatP0 admits a probability density p(θ). This measure determines
a prior over conformations: each z represents a distinct structure, withBz its probability and
Θz its associated parameterization.

Second, the stick-breaking measureB serves in turn as the base measure of another, subordinate
DP: consider independent random variables

Πz ∼ DP

(
κ+ ξ,

κB + ξδΘz

κ+ ξ

)
, (5.2.6)

with the stickiness parameter ξ ≥ 0 on which will be elaborated in the next paragraph. As before,
this measure can be expressed through

Hz ∼ GEM(κ+ ξ),

Φzz′
i.i.d.∼ κB + ξδz

κ+ ξ
,

with the point measure at index z, δz . This allows us to write

Πz(Z = z′) =
∞∑
j=1

HzjδΦzj ,z′ .

with the (discrete) Kronecker delta instead of the (continuous) Dirac delta function. This
measure defines a process on the index set,Z ∈ Z . Note, however, that by combination with
the support of P1, it can be re-expressed as a process on the parameter space via

Πz(Θ = θ) =
∞∑
j=1

HzjδΘΦzj
(θ),

making clear that all these processes have shared support via the atoms {Θ1,Θ2, ...} of P1;
Πz(Z = z′) refers to the same state z′ parameterized by Θz′ for all z. Each Πz can hence be
understood as a distribution over a row of a “countably infinite transition matrix”: each atom
Θz corresponds to one latent state z - that is, one molecular conformation - and parameterizes
the respective observation distribution, p(x | Z = z, {Θ1 = θ1,Θ2 = θ2, ...}) = p(x | θz).
In other words, the two-step HDP-HMM construction (i) defines the molecular conformations
via the measure P1, and (ii) determines their transition dynamics via all Πz .

The parameter ξ introduces a self-transition bias: it extends the sojourn times within each state,
which is why it is commonly denoted as “stickiness”. For ξ = 0, the conventional HDP-HMM is
recovered [38]. The sticky HDP-HMM has been shown to counter-balance the strong sensitivity
of the conventional HDP-HMM to within-state variability, resulting in a tendency to introduce
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figure 5.2: Probabilistic graphical model of the HDP-HMM. We study I observed trajectories {x(t)i :
t = 1, ..., T ; i = 1, ..., I} (shaded circles) which we assume to be generated by latent trajectories {z(t)i}
(unshaded circles); we abbreviate z(t) = zt, x(t) = xt. The HDP-HMM defines countably infinite states
parametrized by Θk, the transitions between which are described via the transition probabilities Πk.
These transition probabilities are drawn from a DP with the base measure B.

redundant states pertaining to the same ground-truth state, see, e.g., [156]. The sticky HDP-HMM
consequently matches the setting of interest in the present chapter, as we aim specifically for the
analysis of metastable states which may potentially exhibit a high level of intra-state variability
in the respective observational data. Note as an aside that with respect to classic MSMs, the
stickiness parameter can be interpreted as a bias towards longer time scales that is to be set by the
experimenter. Importantly, the present approach does not discard any information, but retains
all available data.

In summary, the sticky HDP-HMM is defined as follows, see Fig. 5.2: let γ > 0, κ > 0, ξ ≥ 0
and P0 a probability measure. The tuple ({X(t), Z(t) : t = 1, . . . T} , {Θz} , {Πz} , B) is
distributed according to a sticky HDP-HMM,

{X(t), Z(t) : t = 1, . . . , T} , {Θz} , {Πz} , B ∼ HDP-HMM (γ, κ, ξ,P0) , (5.2.7)

ifB, {Θz} and {Πz} are distributed according to Eqs. (5.2.4), (5.2.5) and (5.2.6) and

Z(t) | Z(t− 1) = z,Πz = πz ∼ Cat(πz),

X(t) | Z(t) = z,Θz = θz ∼ p( · | θz).

Note that to avoid clutter, this definition is formulated only for a single sequence. It is the
nonparametric analogue to the finite Bayesian HMM; importantly, while we can conceptually
formulate a joint model density similar to Eq. (5.2.2), we cannot evaluate it due to the occurring
infinite products such as

∏∞
z=1 p(θz). It will be seen in Section 5.4 that utilizing a VI approach,

this does not hinder our ability to draw inferences about the posterior process.

5.3 observation models

To complete the specification of the HDP-HMM, it remains to set up appropriate observation
distributions p(x | θz) as well as the corresponding priors p(θz).
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real-valued data A versatile model for coordinate dataX ⊆ Rn as often obtained via
MD - such as 3D atom positions - as well as in electrophysiological experiments is the multivariate
Gaussian used also in the previous chapters,

X(t) | Z(t) = z ∼ N (µz,Σz), (5.3.8)

with mean µz ∈ Rn and covariance matrix Σz ∈ Rn×n for all z. Both MD simulation data as
well as experimental voltage trajectory data can be covered with this conventional choice [152, 153,
155].

As discussed in Chapter 3, the respective conjugate prior is the NIW distribution

µ,Σ ∼ NIW(µ0, ρ,Ψ, ν) ⇔

{
µ ∼ N (µ0,Σ/ρ) ,

Σ ∼ IW(Ψ, ν).
(5.3.9)

We combine the likelihood Eq. (5.3.8) with the conjugate prior Eq. (5.3.9) to specify the HDP-HMM
for real-valued data.

angular data Another way of specifying the spatial arrangement of complex molecules
- which is widely used, particularly in MD - are the dihedral angles between adjacent atom
or molecule planes [145]. The data are then constrained to the unit circle, X ⊆ [0, 2π)n.
Appropriate observation models for these spaces are von Mises-type distributions [178, 179]. As
it is common to characterize amino acid chains such as proteins by sets of pairs of angles (ϕi, ψi),
we will focus on the two-dimensional case and note that the theory readily extends to longer
chains. Here, the cosine-variant of the bivariate von Mises (BvM) distribution is utilized; this is
an established choice in the context of protein modeling [180]. For x = (ϕ, ψ) ∈ [0, 2π)2,

X(t) | Z(t) = z ∼ BvM(ζz, νz, λz,1, λz,2, λz,3)

⇔ p(ϕ, ψ | ζz, νz, λz,1, λz,2, λz,3) = c(λz,1, λz,2, λz,3) exp {λz,1 cos(ϕ− ζz)
+λz,2 cos(ψ − νz)− λz,3 cos(ϕ− ζz − ψ + νz)} ,

(5.3.10)

where

c(λ1, λ2, λ3) =
1

(2π)2

[
I0(λ1)I0(λ2)I0(λ3) + 2

∞∑
k=1

Ik(λ1)Ik(λ2)Ik(λ3)

]−1
(5.3.11)

and Ii is the modified Bessel function of the first kind and order i. The location parameters ζ
and ν control the position of the modes of the distribution, as can be seen from the trigono-
metric terms in Eq. (5.3.10); the parameters λ1, λ2, λ3 specify the spatial correlations. Note that
marginalizing over ϕ and setting λ1 = λ2 = 0 recovers the conventional one-dimensional von
Mises (vM) distribution,

p(ψ | ν, λ2) =
exp{λ2 cos(ψ − ν)}

2πI0(λ2)
. (5.3.12)

Analytical expressions for a conjugate prior do exist for the bivariate von Mises distribution
[178]. However, the (infinite) sum of Bessel functions in Eq. (5.3.10) renders the normalizer c
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intractable in a Bayesian setting, as one needs to compute expectations with respect to the λ-
parameters. Also, this distribution does not need to be unimodal: there exist intricate conditions
on the relation of the concentration parameters λ1, λ2, λ3 to achieve unimodality [179]. It is
however known that for high concentration values in specific regimes, the bivariate von Mises
distribution is well approximated by a bivariate normal distribution [178]. This is unsurprising
because von Mises-type distributions and Gaussian distributions are tightly linked. In fact, the
former can be constructed from the latter [181]. Focusing on systems exhibiting distinct, separable
metastable states, we expect peaked, highly concentrated angular distributions, agreeing with
the requirements of this approximation. To ensure tractability and interpretability, we hence
make use of this and approximate

BvM(ζ, ν, λ1, λ2, λ3) ≈ N (µ,Σ). (5.3.13)

The mode position of the BvM roughly corresponds to the mean vector µ and the covariance
depends on the λ-parameters. The precise analytical expressions for these dependencies are
involved and not relevant to our approximation - for an in-depth analysis, the interested reader is
referred to [178, 179].

Utilizing Eq. (5.3.13), we can employ the same conjugate prior as before, NIW(µ0, ρ,Ψ, ν). We
then deal with the periodicity by projecting the data into an interval [−π,+π] around the mean
µ0:

x← x− 2π · sgn(x− µ0). (5.3.14)

Note that this necessarily leads to an underestimation of the covariance because the data is treated
as if it were produced by a normal distribution whereas in reality, it is generated by a von Mises
distribution: data outside of [0, 2π) do not occur. For two reasons, this is acceptable in the
present setting: first, as detailed above, we assume the data to be peaked for the approximation to
hold. If this assumption is valid, the probability mass outside the interval [−π,+π] is negligible.
An illustration of this will be presented in the next section, see Fig. 5.6. Second, as we pursue
an approximate approach to inference, the obtained results in any case have to be interpreted
and judged for accuracy. The gained tractability may greatly increase the practical utility of
the framework, as it is otherwise also customary to resort to 3D real-valued coordinates to
avoid mathematical complexity, disregarding crucial structural information about the biological
problem [155]. In the following, we refer to Eq. (5.3.13) as the approximate von Mises model.

5.4 variational inference of conformational states

Taking a Bayesian approach, we are interested in the posterior distribution{
Zi
}
, {Θz} , {Πz} , B |

{
xi
}
. (5.4.15)

This distribution cannot be evaluated analytically in closed form. In principle, the conjugacy
property of the DP (see Section 2.2.3) allows for the utilization of sampling techniques to obtain
the posterior empirically [156, 157]. However, the typically large data sets from simulations or long-
duration experiments (see, e.g., the discussion in [152]) render this approach computationally
infeasible, as every draw from the posterior requires one full pass through the data.
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To alleviate these computational issues, we utilize a mean-field variational inference approach,
cf. Section 2.2.4.2 and Chapter 4. Since the HDP-HMM specifies distributions with countably
infinite support, VI in this case requires an additional variational parameter to be able to actually
instantiate the variational distributions. Proceeding as in the previous section, the VI problem is
first formulated for the finite Bayesian HMM and then generalized to the infinite case.

variational inference for the finite hmm We aim to identify the variational
measure Q minimizing the KL divergence to the true posterior measure Px,

argmin
Q

DKL[Q || Px], (5.4.16)

where Px clearly admits for a density p ({zi} , {θ} , {π} | {xi}) as can be seen from Eq. (5.2.2).
Specifying Q similarly via

q
({
zi
}
, {θz} , {πz}

)
(5.4.17)

allows to express the VI problem via p and q directly,

argmin
q

DKL[q || p], (5.4.18)

or, equivalently (see Section 2.2.4.2), as

argmax
q

L = argmax
q

{
E

[
ln
p ({xi} , {zi} , {θz} , {πz})
q ({zi} , {θz} , {πz})

]}
(5.4.19)

with the ELBOL, sparing one to having to evaluate the computationally intractable log-evidence.

Employing a mean-field assumption,

q
({
zi
}
, {θz} , {πz}

)
=

I∏
i=1

q
(
zi
) |Z|∏
z=1

q (θz) q (πz) , (5.4.20)

enables an iterative coordinate-wise ascent optimization procedure (cf. Section 2.2.4.2). One
variational factor of Eq. (5.4.20) is optimized at a time while keeping all others fixed, yielding the
generic distribution update for any variational factor α ∈ {{zi} , {πz} , {θz}}:

q(α) ∝ exp
{
Eq\α

[
ln p

({
xi
}
,
{
zi
}
, {πz} , {θz}

)]}
, (5.4.21)

where Eq\α denotes the expectation with respect to all variational distributions except q(α).
Note that the ELBO is not convex with respect to all variational distributions jointly [50], while
it is convex with respect to any factor individually [9]. This coordinate-wise ascent algorithm
hence converges to a local optimum.

variational inference for the infinite HMM To generalize the above to
countably infinite state spaces, conceptually only the stick-breaking measure B ∼ GEM(γ)
needs to be added. It is however clear by inspection of Eq. (5.4.20) that it is necessary to truncate
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the number of variational states to some maximum K in order to be able to instantiate the
analogous mean-field variational ansatz

q
({
zi
}
, {θ} , {π} , β

)
=

I∏
i=1

q
(
zi
) K∏
z=1

q (θz) q (πz) q(β). (5.4.22)

In principle, this truncation level could be set to the number of data points; in practice, it is
convenient for computational reasons to choose some number which is large compared to the
expected number of HMM states [156, 182]. This only affects the variational distributions while
the original model Eq. (5.2.7) remains unchanged [183]. Due to the defining property of the
DP, it however allows to also evaluate the original model density. Constraining the variational
posterior to a maximum ofK states induces a partition on the base measure space ofP0: recalling
the defining property of the DP, Eq. (2.2.43), one can hence write the prior measures Eq. (5.2.6)
as finite Dirichlet distributions withK+1 dimensions, corresponding toK states and the “rest”
of the state space (where no transitions are observed):

Πz | B = β ∼ Dir(κβ1 + δz,1, ..., κβK+1 + δz,K+1). (5.4.23)

The full model can be formally expressed as

p
(
{xi}, {zi}, {πz}, {θz}, β

)
=

I∏
i=1

p(z1i )p(x
i
1 | θzi1)

T∏
t=2

p(zit | πzit−1
)p(xit | θzit)

∞∏
z=1

p(πz | β)p(θz)p(β). (5.4.24)

This expression contains an infinite product, preventing us from explicit evaluation. Combined
with the truncation, this does no harm, however; we choose the direct assignment truncation
method, setting q(z, t) = 0 for any z > K [182]. With this assumption in place, the variational
problem Eq. (5.4.19) is still well defined, as any parameters θz, πz for z > K do not contribute:
all expectations within the KL divergence evaluate to zero.

While other truncation schemes also exist [53, 184], direct assignment is particularly appealing
due to its simplicity. The thus-defined variational model can, but does not need to, utilize all
clusters up toK [184]. Importantly, this allows for straightforward debugging, as it is directly
apparent whether all K states are occupied: if q(z, t) > 0 for all states z, one might incur a
non-negligible truncation error, as - intuitively speaking - more states might be needed to explain
the data, and a double-check with increasedK is necessary. If, on the other hand, q(z, t) = 0 for
some states, the variational approximation is expressive enough and will not result in a significant
truncation error. Note furthermore that the direct assignment truncation can be utilized for
automated search algorithms over the truncation depths [185]. In the following, the resulting
updates (5.4.21) will be presented.

latent state sequence The marginal probabilities of metastable states, q(z, t), can
be computed by a forward-backward message-passing algorithm similar to the forward-backward
algorithm for exact HMM inference presented in Section 2.2.1.1 [186]. To reduce clutter, the
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sequence index i is omitted in the following. The forward messages α(z, t) and the backward
messages β(z, t) are computed as

α(z, t) = exp {E[ln p(x(t) | Θz)]}
∑
z′

α(z′, t− 1) exp {E[ln p(z | z′, {Π})]} ,

β(z, t) =
∑
z′

exp {E[ln p(x(t+ 1) | θz′)]} β(z′, t+ 1) exp {E[ln p(z′ | z, {Π})]} ,

with the initial conditions α(z, 1) = exp{E[ln p(z, 1) + ln p(x(1) | Θz)]} and β(z, T ) =
1∀ z. These recursions are straightforwardly obtained by successive marginalization of Eq. (5.4.21)
over z(1), z(2), ..., z(t−1) (yieldingα(z, t)) and z(T ), z(T−1), ..., z(t+1) (yieldingβ(z, t)).
The explicit derivations are provided in Appendix D.1 for completeness. These derivations also
show that, in complete analogy to Section 2.2.1.1, the forward and backward messages yield the
variational marginals via q(z, t) ∝ α(z, t)β(z, t). The occurring expectations can be evaluated
in closed form because of conjugacy between the variational distributions q(πz) and q(θz) and
the corresponding likelihoods, see below.

Note that the observation likelihood is slightly different between the models for real-valued and
angular data: as we utilizeK priors p(θz), the periodic projection Eq. (5.3.14) is done for each
state z:

xz(t)← x(t)− 2π · sgn(x(t)− µ0,z). (5.4.25)
Accordingly, for the approximate von Mises model we set

p(x(t) | θz) = p(xz(t) | θz). (5.4.26)

transition distributions As discussed above, truncation of the variational posteri-
ors toK states induces a partition on the index set. The exact prior can hence be written as a
finite Dirichlet distribution, Eq. (5.4.23), allowing to readily compute

q (πz | {ηz,j}j) = Dir(πz | ηz,1, ..., ηz,K , ηz,K+1) (5.4.27)

with the posterior concentration parameters

ηz,j = (κβz′ + δz,z′ξ) +
∑
t

q(z′, t, z, t− 1) for z′ = 1, ..., K,

ηz,K+1 = κ · (1−
K∑

z′=1

βz′j).

observation parameters As detailed in Section 5.3, we choose a NIW prior on the
observation parameters θz = (µz,Σz) to obtain conjugacy. This results in

q(µz,Σz) = NIW(µz,Σz | µ0,z, λz,Ψz, νz), (5.4.28)

with

µ0,z =
λµ0 + T x̄z
λ+Qz

, λz = λ+Qz, νz = ν +Qz,

Ψz =
λ(Qz − T )
λ+Qz

µ0µ
⊤
0 +Mz + Sz +Ψ0,

(5.4.29)
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where µ0, λ,Ψ, ν are the parameters of the NIW-prior p(µz,Σz) and

x̄z =
1

T

∑
t

x(t)q(z, t), Qz =
∑
t

q(z, t),

Mz =
λT

λ+Qz

(x̄z − µ0,z)(x̄z − µ0,z)
⊤,

Sz =
∑
t

[
q(z, t)x(t)x⊤(t)− λ+ T

λ+Qz

x̄zx̄
⊤
z

]
.

(5.4.30)

Note that the same remark as made regarding the latent state distributions applies here; in the
approximate von Mises case, the data are wrapped around each state mean µ0,z and accordingly
enter Eq. (5.4.29) differently for each z, cf. Eq. (5.4.26).

top-level stick-breaking measure Setting up the transition distributions p(πz |
β) via the defining DP-property Eq. (2.2.43) as K + 1 Dirichlet distributions results in non-
conjugacy between p(πz | β) and the stick-breaking measure B ∼ GEM(γ) [182]. Thus,
a closed-form update for β does not exist. It is customary to utilize a point estimate instead,
q(β) = δβ∗(β), rendering the expectation in Eq. (5.4.21) tractable [182]. While the optimum
still has no closed-form solution, this allows us to utilize a gradient optimization scheme and
update β∗ ← β∗ + ω∂β∗ L. The gradient is found as

∂βz L = ∂βz

{
ln p(β) +

K∑
k=0

E[ln p(Πk | β)]

}
= 2

∑
i≥z

ln
1

1−
∑

j<i βj
− (γ − 1)

∑
i≥k

ln
1

1−
∑

j≤i βj

+ κ

(
K∑
k=1

[−ψ (κβz + ξδk,z) + ψ(ηk,z)− ψ(ηk,K+1) + ψ(κβK+1)]

)
.

(5.4.31)

The derivation of the gradients is provided in Appendix D.2. To set the step size ω, a back-
tracking line-search algorithm is used as in Chapter 4: the step size is chosen as ωi = 0.5i and
the current parameter βz is updated as

βnew
z = βz + ωi∂βz L .

If L[βnew] ≥ L[β], the update is accepted. Otherwise, we iterate and re-compute using the new
step size ωi+1.

5.5 results

The framework laid out above is applied to a range of different data sets: first, it is used on
2D HMM data to assess its functionality. It is then employed on continuous-valued SDE data
generated from the standard three-well benchmark potential utilized in Chapter 4 to demonstrate
its ability to identify a discrete, readily interpretable structure from all-continuous dynamics.
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figure 5.3: Inference on synthetic data generated from an HMM with three states and 2D Gaussian
observation noise. For visualization purposes, only one of 10 simulated sequences is shown. A: Left:
ground-truth data. Coloring indicates the corresponding latent state z(t) for each data point x(t). Right:
inferred state assignments. Coloring is based on the MAP estimate of the latent state. Diamonds and
dashed ellipses indicate the ground-truth means and covariances; the latter are represented by the 1-σ
covariance ellipses. Solid crosses and ellipses indicate the inferred variational means µ0,z and expected
variational covariancesΨz/(νz−3). B: Top: ground-truth latent sequence z[1,T ]. Bottom: reconstructed
marginal probabilities. Every row z ∈ {1, 2, ..., 10} indicates the posterior probability to be in state z at
time point t, q(z, t) ∈ [0, 1]. Inset: average state occupation ⟨q(z)⟩ = (IT )−1

∑
i,t q(z

i, t) for all z.

Next, the applicability and limits of the vM approximation are studied on a 1D toy example. We
then repeat the above procedure: we first show that the approximation works well on synthetic
2D von Mises data and then employ it on a standard MD benchmark dataset from the protein
alanine dipeptide [132, 135, 187, 188]. Finally, the framework is applied to a large dataset from
voltage clamp experiments on the viral potassium channel KcvPBCV−1 [189]. Experimental
details and parameter settings are provided in Appendix D.3.

5.5.1 Synthetic HMM data

We specify a cyclic three-state HMM with transition probabilities

Π =

0.99 0.01 0
0 0.99 0.01

0.01 0 0.99

 (5.5.32)

and uniform initial distribution p(z, 1). Each observation x ∈ R2 is drawn from a normal
distribution with anisotropic covariances,X ∼ N (µz,Σz).
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Ground truth Inferred

µ1 =

(
3
−3

)
, Σ1 =

(
2 1
1 2

)
µ0,1 =

(
2.94
−3.01

)
, E[Σ1] =

(
2.47 1.12
1.12 2.24

)

µ2 =

(
−3
−3

)
, Σ2 =

(
2 −1
−1 2

)
µ0,2 =

(
−2.91
−2.95

)
, E[Σ2] =

(
2.40 −1.11
−1.11 2.18

)

µ3 =

(
0
2

)
, Σ3 =

(
5 0
0 2

)
µ0,3 =

(
−0.02
−1.49

)
, E[Σ3] =

(
4.98 −0.14
−0.14 2.56

)
table 5.1: Parameters learned from 2D, three-state HMM data with Gaussian emissions.

As shown in Fig. 5.3 B, the method accurately recovers three latent states. The state sequence
is also identified correctly, as can be seen from the inferred marginals q(z, t) of one latent state
sequence. In particular, the maximum a posteriori (MAP) assignment z(t) of each data point
x(t) defined via

zMAP(t) = argmax
z

q(z, t) (5.5.33)

precisely matches the corresponding ground truth.

Accordingly, also the inferred posterior means µ0,z and expected covariances (black crosses and
solid ellipses in Fig. 5.3)

E [Σz] =
Ψz

νz − n− 1
, (5.5.34)

with n = 2 the dimensionality of the system, faithfully resemble their ground-truth counter-
parts (diamonds and dashed ellipses in Fig. 5.3; the expected values of the inferred observation
parameters are summarized in Table 5.1 below). Notice that the inferred state labels of course do
not necessarily correspond to the ground-truth labels: this is an interpretation to be done by the
experimenter after convergence of the model. For illustrative purposes, one trajectory over allK
states is shown in Fig. 5.3.

Similarly, the transition distributions accurately recover the prior transition matrix as can be
seen by comparing the expected transition probabilities

E[Πzz′ ] =
ηz,z′∑
z′ ηz,z′

between the three mainly-occupied states (cf. Fig. 5.3) to Eq. (5.5.32), see Fig. 5.4.

5.5.2 Stochastic dynamics in a 2D potential

Next, the method is applied to data generated from the 2D benchmark potential given in
Section 4.5.2, which is a standard problem in MSM analysis [131, 136, 190]. The dynamics are given
as before via an SDE evolving in the potential landscape Eq. (4.5.26).

The potential, together with the inferred state means µ0,z and expected covariances E[Σz], is
shown in Fig. 5.5. This reconstruction captures the essential system features well. The locations
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figure 5.4: Top: Expected values of the variational transition probabilities E[Πz]. Bottom: point-
estimate of the top-level stick-breaking measure β. Note how the structure of β is reflected in E[Πz].

Ground truth µ1 =

(
0
1.5

)
, µ2 =

(
−1
0

)
, µ3 =

(
1
0

)

Inferred µ0,1 =

(
−0.07
1.09

)
, µ0,2 =

(
−0.98
−0.03

)
, µ0,3 =

(
0.96
−0.02

)
table 5.2: Parameters learned from three-well diffusion data

of the potential minima are accurately recovered; notably, the two deeper minima at x2 = 0 are
identified with higher precision than the shallow one at the top. This is not surprising, as due to
its shallowness, the systems spends a comparably short time in this region, generating only little
respective evidence.

The inferred sequence of metastable states yields accordingly plausible results, which can be seen
by comparing the components of the true continuous process to the inferred discrete switching
process.

5.5.3 Testing the approximate von Mises model: 1D toy example

To provide an intuition about the approximate von Mises model and to demonstrate the effect
of data concentration on its validity, we generate synthetic data from a 1D vM Eq. (5.3.12) and
infer the respective approximate posterior without an underlying switching process. The results
are shown in Fig. 5.6: It is immediately clear that for sufficiently high concentration values, the
approximation error (indicated by the red shaded area outside the unit circle in Fig. 5.6, left)
becomes negligible. The approximate vM hence allows for staightforward debugging: as long
as the probability assigned to the area outside the unit circle is small, the approxmation can be
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figure 5.5: Inference of metastable states of 2D SDE dynamics. A: The heatmap shows the potential
landscape used to simulate the continuous dynamics (brighter colors indicate higher values). Colored dia-
monds and ellipses indicate the inferred variational means and 1-σ ellipses of the expected variational covari-
ances Ψz/(νz−3), cf. Eq. (5.5.34). Inset: average state occupation ⟨q(z)⟩ = (IT )−1

∑
i,t q(Z

i(t) = z)
for all 3 identified metastable states. B: Left: Part of one simulated trajectory (top; X1-component in
blue, X2-component in orange) and the corresponding latent sequence reconstruction (bottom). Right:
Expected values of the variational transition probabilities E[Πk]. Label colors indicate the variational
modes.

assumed to be valid. Vice versa, it deteriorates if this probability becomes non-negligible. We
accept this error in the observation model to arrive at a tractable expression.

5.5.4 Synthetic HMM data with angular observations

We now apply the method to an angular setting analogous to that of Section 5.5.1: we generate
data from the same HMM, but employ a von Mises observation model. Two of the three latent
states generate independent 1D von Mises observations along each dimension, cf. Eq. (5.3.12).
The third state includes correlations and generates observations from the bivariate von Mises
distribution Eq. (5.3.10) following the sampling scheme of [180], which is briefly reiterated for
convenience: a sample (ϕ, ψ) is obtained by subsequently sampling ψ from the marginal p(ψ)
and ϕ from the conditional p(ϕ | ψ). By marginalizing Eq. (5.3.10) over ϕ, one obtains

p(ψ) = c(λ1, λ2, λ3)2πI0

(√
λ21 + λ23 − 2λ1λ2 cos(ψ − ν)

)
exp(λ2 cos(ψ − ν)),
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figure 5.6: Comparison of a ground-truth one-dimensional von Mises with the posterior obtained via
the approximate von Mises model. Left: inferred approximate von Mises (red dashed line) for N = 1000
data points generated from a low-concentration von Mises (cf. Eq. (5.3.12), p(· | ν, λ) with ν = 0, λ =
0.3, blue line). 10% of data points are shown above the plot. Grey shaded area: unit circle. Red shaded area:
probability mass outside the unit circle boundaries. Right: inferred approximate von Mises forN = 1000
data points generated from a high-concentration von Mises, λ = 10. No significant probability mass is
placed outside the unit circle.

from which a sample is drawn via rejection sampling with a simple one-dimensional vM as a
proposal distribution. The conditional density p(ϕ | ψ) is similarly found to be vM [191]:

p(ϕ | ψ) = pvM

(
ϕ

∣∣∣∣ arctan( −λ3 sin(ψ − ν)
λ1 − λ3 cos(ψ − ν)

)
,
√
λ21 + λ23 − 2λ1λ3 cosψ

)
.

Similar to the non-angular case, we generate a certain degree of overlap between the individual
distributions and include observations wrapping around the period boundary 2π → 0.

Ground truth Inferred

(µ1
1, λ

1
1) = (0, 20), (µ2

1, λ
2
1) = (−0.9π, 3) µ0,1 = (0,−0.9π)⊤

(µ1
2, λ

1
2) = (−0.4π, 3), (µ2

2, λ
2
2) = (−0.6π, 30) µ0,2 = (−0.4π,−0.6π)⊤

(µ1
3, µ

2
3, λ

1
3, λ

2
3, λ

3
3) = (0.98π, 0.5π, 10, 5, 2) µ0,3 = (0.97π, 0.51π)⊤

table 5.3: Parameters learned from 2D, three-state von Mises data with the approximate vM model.
Left: ground-truth tuples of positions and concentration parameters. Note that the first two states are
characterized by one 1D vM per dimension (indicated by superscripts) and the third state by one 2D vM
according to Eq. (5.3.10).

As shown in Fig. 5.7, the von Mises approximation accurately recovers the ground-truth means,
see also Section 5.5.4. Since the ground-truth data are generated by true von Mises distributions,
no ground-truth covariance matrices exist; hence, the inferred covariances cannot be directly
compared to them. However, we can assess by comparison with the plotted data that the von
Mises approximation produces accurate estimates. Our projection method Eq. (5.3.14) also
enables sensible and accurate periodic continuations across the period boundaries.
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figure 5.7: Inference on synthetic von Mises data utilizing the approximate von Mises model. For
visualization purposes, only one of 10 simulated sequences is shown. A: Left: ground-truth data. Coloring
indicates the corresponding latent state z(t) for each data point x(t). Right: inferred state assignments.
Coloring according to the MAP estimate of the latent state. Diamonds indicate the ground-truth means.
Black crosses and ellipses indicate the inferred variational means µ0,z and expected variational covariances
Ψz/(νz−3). B: Top: ground-truth latent sequence z[1,T ]. Bottom: reconstructed marginal probabilities.
Every row z ∈ {1, 2, ..., 10} indicates the posterior probability to be in state z at time point t, q(z, t).

5.5.5 MD simulation data: alanine dipeptide

After benchmarking the approximate von Mises model, we now apply it to real-world MD
simulation data. We utilize a data set of the molecule alanine dipeptide provided with the
pyemma package [159] consisting of I = 3 independent trajectories of length T = 250000 ps
with a time step of 1 ps. Alanine dipeptide is a commonly-used model system in computational
biology [192–194]. This 2D dataset describes the molecule dynamics in terms of two backbone
torsion angles (ϕ, ψ). Inspection of the raw data, Fig. 5.8, shows that the simulation exhibits
metastable dynamics, highlighting the relevance of the metastability assumption at the outset.

85000 90000 95000 100000
−π
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π

φ

85000 90000 95000 100000
Time [ps]

−π

0

π

ψ

92000 92100 92200
Time [ps]

figure 5.8: Excerpts of alanine dipeptide MD simulations. Left: excerpt of 20000 ps of one trajectory.
Roughly between 90000 and 95000 ps a switching event occurs that can be identified as a transition to
the states αL and αD (cf. Fig. 5.9). Right: close-up of the red box shown in the left plot. Note that what
looks like high-frequency transitions is simply an artifact of the wrap-around across the period boundary.
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figure 5.9: Metastable dynamics of alanine dipeptide. Left: conformational states. Coloring indicates
the MAP state assignment. The inset shows the relative proportions of all 5 states occurring in the data. State
4 (orange arrow) only occurs < 1%. As before, colored diamonds and ellipses represent the variational
means and covariances. Annotations refer to known α-helix and β-sheet conformations, see for instance
[192, 196]. Right: expected transition probabilities. Each row shows the transitions probabilities E[Πk]
from one of the five found states to all others, including the “rest” of the state space (cf. Eq. (2.1.2))
indicated by “−”. Note that the transitions α′ → αR and αR → α′ are approximately equal.

The conformational landscape of alanine dipeptide exhibits a complex fine structure. Due to its
widespread adoption in the field, a host of computational frameworks has been applied to this
dataset: typically, partitionings between three and six different states are obtained [132, 135, 187,
188, 195]. As shown in Fig. 5.9, our framework identifies five different states consistent with this
literature. By comparison to in-depth MD studies of alanine dipeptide [192, 196], these five states
can be matched to known α-helix and β-sheet conformations.

As an aside, note that the transition probabilities between the two states α′ and αR are found to
be almost symmetrical. It would hence be a valid interpretation of the model results that these
two states could be lumped together. This would similarly be in line with the literature [192,
196].

5.5.6 Electrophysiological single-molecule ion channel data

Finally, we apply our method to voltage-clamp data of the viral potassium channel KcvPBCV−1.
The wild-type channel switches between an “open” and a “closed” state; mutation of the last
amino acid to histidine, however, leads to the appearance of sublevels between “open” and
“closed” [197]. Here, we utilize our method to quantify these sublevels. The data are obtained
using the planar lipid bilayer technique as detailed in [142]: the applied voltage is 160 mV at
pH=6 and data are recorded at 5 kHz over a time span ofT = 60 s. Half of the data are discarded
due to apparent drift, see Fig. 5.10.
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figure 5.10: Raw data of the electrophysiological experiment. Top: Full trajectory. Bottom: close-up
of the red box in the top plot; this is the data the algorithm is run on. The orange box is shown with the
inferred states in Fig. 5.11.

Despite the high noise level, the inferred latent sequence in Fig. 5.11 shows a highly plausible
switching behavior. Three distinct states can be identified: the “closed” and “open” states known
from the wild-type as well as one intermediate, subconductive state; see also Table 5.4. We hence
establish that the histidine mutation yields one novel channel conformation not attained by the
wild-type.

Inferred means µc = −0.698 pA, µi = 2.33 pA, µo = 7.63 pA

Inferred covariances E[Σc] = 0.17 pA2, E[Σi] = 4.28 pA2, E[Σo] = 1.15 pA2

table 5.4: Parameters learned from switching ion channel data from viral potassium channel
KcvPBCV−1.

Note that one full optimization run only took∼ 25 s for a sequence of 1.5× 105 time points,
which is orders of magnitude faster than the sampling algorithm proposed in [152] for analysis of
such trajectories. Notably, conventional methods of trajectory segmentation [198] require both
the pre-specification of the number of conformational states as well as their conductivity values,
which the presented method does not.
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figure 5.11: Conformational states of the viral potassium channel KcvPBCV−1. For illustrative
purposes, we constrain the figure to an interval of T = 1 s rather than showing the full trajectory, cf.
Fig. 5.10. Top: Measured current I over time. Dashed lines represent the inferred posterior means, shaded
regions the expected variational standard deviation. Green: “open” state. Red: “closed” state. Orange:
intermediate state. Bottom: inferred latent sequence.
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5.6 summary

The nonparametric framework presented in this chapter offers a generative modeling approach
for Bayesian inference of metastable conformational states from experimental and simulation
data. This allows the user to leave the number of structural states unspecified a priori and
learn it from the data, which is beneficial, as this number is not known in advance in typical
experimental and computational settings. The HDP-HMM is a generalization of the widely
applied MSM framework: in contrast to the MSM method, one neither (i) needs to pre-process
the data via discretization and temporal thinning to re-establish Markovianity, nor (ii) manually
select the number of metastable states. Importantly, the proposed HDP-HMM approach does
not deteriorate the temporal resolution of the data.

As demonstrated, this model is able to reliably identify metastable states - their number has been
sensibly established in all experiments. The application to the stochastic particle dynamics data
highlights the utility of this model on purely continuous data as generated, e.g., by MD. It hence
achieves the central goal of modeling the continuous dynamics via readily interpretable discrete
conformational states.

Furthermore, in an attempt to adapt the HDP-HMM to a setting often encountered in MD, a
computationally tractable approximation to the von Mises distribution was proposed, as MD
data are frequently specified via dihedral angles; this yielded accurate results. Results obtained
on a canonical benchmark data set of alanine dipeptide are consistent with the existing literature.
We emphasize that this benchmark problem, while consisting of relatively short trajectories
compared to MD standards, requires the use of variational inference methods, as MCMC-type
sampling schemes are computationally intractable. This point was also highlighted via inference
on experimental voltage clamp data, where existing methods all resort to sampling schemes [152–
155] and hence require runtimes on much longer time scales than the presented framework. For
a discussion of possible extensions or other applications of the presented framework, the reader
is referred to Chapter 6.
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6.1 summary of contributions

In Chapter 3, an MCMC framework for MJP-SSDE processes was proposed. The framework
generates samples from the exact conditional posterior measures and yields accurate results in
particular for the latent system dynamics. Parameter estimation works well for 1D systems; in
2D, more structured prior distributions would aid performance. Algorithm runtime may be
challenging, however, as a system of several ODEs and stochastic integrals has to be solved for
each sample.

To address this computational issue, a variational approximation for the same system class was put
forward in Chapter 4. It was shown that under conditions of metastability, the approximation
produces accurate estimates of the system dynamics as well as the parameters. If the metastability
criterion is not fulfilled, however, the VI approach fails to recover the true latent dynamics.

Chapter 5 presented a Bayesian nonparametric VI approach to the problem of conformational
molecule switching. The method faithfully identifies the number of conformations in the
examined problems and addresses two shortcomings of the classic MSM framework as well as the
need for a computationally more efficient algorithm than HDP-HMM sampling approaches.

6.2 outlook

The results presented in this thesis open several potential avenues for further research. Three
main areas will be discussed in the following:

1. methodological improvement,

2. biological application, and

3. conceptual development.

93
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1 . methodological improvement An effort to improve on the presented MCMC
method could build on particle filtering and smoothing [109, 199]: the Gibbs sampler could
be used within a particle smoother framework, where the conditional posterior measures serve
as proposal distributions. As these are exact measures, the generated samples - albeit being
approximate due to discretization - should yield high likelihood weights. This could aid in
ameliorating the slow mixing properties of the Gibbs sampler [200]. The same goal could, on
the other hand, also be pursued by extending the presented approach to a Hamiltonian Monte
Carlo scheme [201]. Vice versa, if the framework is altered by employing another SSDE instead
of the simple linear one utilized in this work, a particle smoothing approach could be used to
generate respective samples of the diffusion.

Note that apart from the discussed linear-Gaussian case, closed-form solutions to the FPE also
exist, e.g., for SDEs driven more generally by the gradient of a potential fulfil certain requirements
to allow for a closed-form solution [202]. It would be interesting to explore the potential and
limitations of such an approach in applying the method to purely continuous dynamics, akin
to the one presented in Section 5.5.2. This could be complemented by and compared to an
approach utilizing neural networks to solve the FPE [203–206], which would allow for even more
flexibility.

2. biological applications An interesting application of the MJP-SSDE model would
be the “flickering” of ion channels [207]. This phenomenon occurs when an ion channel enters a
regime of rapid switching between states which is too fast to be resolved by typical measurement
devices. It results in measurements of effective currents of intermediate strength between the
levels of the two rapid-switching states. The idea is that the measurement of a rapid and large
change in current should be enough to increase the likelihood of a switch; it should not be
necessary to require the process to relax to its local steady state. This however first requires
methodological improvements (such as the ones described above) to ensure fast mixing and
increased numerical stability, due to the large changes in small time intervals on the order of
magnitude of the SDE discretization time step.

The MJP-SSDE model furthermore lends itself to optimal control problems, which have for
switching systems been intensely studied in recent years [208–211]. For instance, it could first be
attempted to gauge the parameters of a genetic switching system as the one presented in Chapter 3
accurately enough so as to be able to devise control schemes to keep its TX-TL activity and the
resulting fluorescence level in a predefined region. This could directly be compared to wet-lab
experiments, cf. Section 3.4. This setup could be further extended to allow for inter-molecule
communication, where the control signal of one cell is generated by another cell in its vicinity,
which itself is subject to some external signal.

3. conceptual development Finally, the work presented points towards a unified
framework for the modeling of stochastic hybrid systems: in principle, one would like to have a
nonparametric, recurrent hybrid process model with complex observation likelihood functions
and non-exponential sojourn times.

First, the nonparametric formulation of the problem from Chapter 5 needs to be transferred to
the continuous-time regime. Prior work that can be built upon already exists, see, e.g., [100, 212,
213].
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The term “recurrent” here refers to a generalization of the proposed MJP-SSDE where the con-
tinuous process Y feeds back to the switching process Z . This makes sense in particular for
the conformational switching of molecules, as the conformations are defined by the relative
continuous atom positions of the molecules. Changes in these positions should hence influence
the transition probability between global conformations. Analogous concepts have recently
been developed in the discrete time regime [93, 94].

For molecular switching specifically, the assumed Gaussian (or von Mises) observation likelihoods
are not expressive enough to capture complex conformational energy landscapes. To address this
issue, the latent hybrid process could be combined with recent neural network approaches to
continuous-time processes [214]. Akin to the classic variational auto-encoder, this could also
achieve an efficient encoding to lower dimensions [215]. We note that in the field of Markov state
modeling, approaches to this challenge have been proposed recently [132, 177]. None of these
proposals however builds on nonparametric formulations. Another approach from machine
learning combines conventional probabilistic models with complex likelihood functions in a
modular way - compromising, however, the lower-bound property of the ELBO [97]. While
Chapter 4 pursues a similar approach, this is potentially more problematic in the nonparametric
case, as less knowledge about the system at hand is available from the outset. This makes it harder
to justify an approximation to the ELBO that does not preserve a lower bound.

Finally, a sensible extension would be semi-Markovian models, in which the transitions be-
tween different states are still Markovian, but the sojourn times within each state may be non-
exponentially distributed: due to the exponential sojourn time distribution, fast transitions are
favored over slow ones, which may be too strong an assumption for general conformational
switching. Similar analyses have already been carried out for ion channel data and might hence
help to get a more detailed understanding of complex switching dynamics [216]. The challenge
here is to obtain computationally tractable inference schemes; see, e.g., [217]. Notice that simi-
lar ideas are also already being exploited for lumping in conventional MSM settings [164] and
alleviating the lag-time issue of MSMs [160].
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a.1 probability theory and notation

In the following, some basic probability theory will be reviewed. For extensive treatments, see,
e.g., [13, 101, 218].

probability spaces A probability space (Ω,F ,P) consists of a non-empty set Ω (the
sample space), a sigma algebraF ⊆ 2Ω and the probability measure P : F → [0, 1].

random variables, expectations and distributions A random variable Z
is a functionZ : Ω→ Z from the sample space to some measurable spaceZ . Throughout this
thesis - unless stated otherwise - random variables are denoted by roman upper case letters such
asZ and the corresponding realizations by lower case letters,Z = z.

The expectation of a random variable is defined as its integral with respect to some probability
measure,

E[Z] =

∫
Z
ZdP =

∫
Z
Z(z)P(Z ∈ dz),

where we introduced a common (differential) notation for measures as P(Z ∈ dz), see [13]. For
brevity, we will write

E[Z] =

∫
Z
z P(Z ∈ dz).

IfZ ⊆ N and the measure P is absolutely continuous with respect to the counting measure, we
can write

E[Z] =
∑
z∈Z

zp(z),

with the probability mass function (PMF)

p(z) = P(Z = z).
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If, on the other hand, Z ⊆ R and the measure is absolutely continuous with respect to the
Lebesgue measure, we have

E[Z] =

∫
z∈Z

zp(z)dz,

with the probability density function (PDF)

p(z) =
dP

dz
.

For two random variables Y andZ , we furthermore have

E[Y ] = E[E[Y | Z]]

with the conditional expectation E[Y | Z], in which the expectation is only taken over Y ; that
is, a conditional expectation is still itself a random variable. In measure notation, we write

E [E[Y | Z]] =
∫
Z

(∫
Y
y P(Y ∈ dy | Z = z)

)
P(Z ∈ dz).

For conciseness, we abbreviate the conditioning set throughout as

P(Y ∈ dy | Z = z) = P(Y ∈ dy | z).

Regarding distributions, we write “∼” for “is distributed according to”. We discern between
standard measures and their respective PDFs by overloading: “the random variableX is distributed
according to the Gaussian measure with mean µ and covariance Σ” is written as

X ∼ N (µ,Σ),

and the respective density function

p(x) = N (x | µ,Σ)

= det (2πΣ)−1/2 exp

{
−1

2
(x− µ)⊤Σ−1(x− µ)

}
.

Between two different measures P,Q on the same spaceZ , the Kullback-Leibler (KL) divergence
(also known as relative entropy) is defined as

DKL[P || Q] := E

[
ln

dP

dQ

]
=

∫
Z
p(z) ln

p(z)

q(z)
dz

where the last equality requires the measures to admit respective densities p(z), q(z).
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stochastic processes For a stochastic processZ := {Z(t) : t ∈ I}, we denote with
p(z, t) the density function of z at time point t,

P(Z(t) ∈ A) =
∫
A
p(z, t)dz,

with some setA ⊆ F . This can equivalently be expressed via a differential expression,

p(z, t) := ∂zP(Z(t) ≤ z).

This also holds for multiple time points, e.g.,

p(z, t, z′, t′) := ∂z∂z′P(Z(t) ≤ z, Z(t′) ≤ z′).r,

and for conditional densities,

p(z′, t′ | z, t) := ∂z′P(Z(t
′) ≤ z′ | Z(t) = z).

As an aside, note that in a mathematically rigorous treatment of stochastic processes, the condi-
tional expectation is at center stage. Recommendable reads on this are [82, 219].

As an example of a stochastic process, consider standard Brownian motion, which is used
frequently throughout the thesis. Brownian motionW (t) is defined by four properties:

1. W (t) = 0

2. is has independent increments

3. W (t)−W (s) ∼ N (0, t− s), 0 ≤ s ≤ t

4. it is continuous almost surely.

a.2 derivation of the fokker-planck equation

Start with the Itô formula (2.1.22) for some stochastic processX with generatorLt,

df(X(t), t) = [∂t + Lt] f(X(t), t)dt+ dM(t),

and assume a time-independent function f(x, t) = f(x). We write (in integral form)

f(X(T ))− f(X(0)) =

∫ T

0

Ltf(X(t), t)dt+M(T ) (A.2.1)

and take the expectation, yielding

E[f(X(T ))]− E[f(X(0))] = E

[∫ T

0

Ltf(X(t))dt

]
=

∫ T

0

E [Ltf(X(t))] dt

=

∫ T

0

∫
p(x, t)Ltf(x, t)dxdt

=

∫ T

0

∫
f(x, t)L†tp(x, t)dx dt. (A.2.2)
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The last equality makes use of the L2-adjointL†t of the operatorLt: with

⟨p, φ⟩ :=
∫
p(x, t)φ(x, t) dx

and an appropriate test function φ,

⟨p,Lφ⟩ = ⟨L†p, φ⟩.

The left-hand side can be interpreted as functions of t; thus,

E[f(X(T ))]− E[f(X(0))] =

∫ T

0

d

dt
E[f(X(t))]dt

=

∫ T

0

d

dt

∫
f(x)p(x, t)dxdt

=

∫ T

0

∫
f(x)∂tp(x, t)dxdt. (A.2.3)

As f is arbitrary, the KFE follows,

∂tp(x, t) = L†p(x, t). (A.2.4)

a.3 derivation of the kolmogorov backward equation

Let now specifically
f(x, t) := E[φ(X(T )) | X(t) = x] (A.3.5)

with some arbitrary function φ. In this case, we find

E[f(x, T ) | X(0) = x] = E[φ(X(T )) | X(0) = x] = φ(x)

E[f(x, 0) | X(0) = x] = φ(x).

Accordingly,

E[f(X(T ), T ) | X(0) = x]− E[f(X(0), 0) | X(0) = x] = 0

and Itôs lemma then reads

0 =

∫ T

0

E[(∂t + Lt) f(X(t), t) | X(0) = x]dt

Taking the limit on the integral and applying the mean value theorem shows that indeed the
integrand itself has to vanish:

0 = lim
T→0

1

T

∫ T

0

E[(∂t + Lt) f(X(t), t) | X(0) = x]dt (A.3.6)

⇒ ∂tf(x, t) = −Ltf(x, t). (A.3.7)

This is the Kolmogorov backward equation (KBE); the KBE for the transition density in particular
follows upon insertion of Eq. (A.3.5).
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b.1 the hybrid master equation

b.1.1 Derivation of the prior hybrid master equation

To derive the HME, we assume for simplicity that Z(t) ∈ Z ⊆ N and Y (t) ∈ Y ⊆ R. The
multivariate caseY ⊆ Rn can be derived analogously.
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Following [102], we utilize the Chapman-Kolmogorov equation (2.1.11):

p(y, z, t+ h | X ) =
∑
z′

∫
Y
p(y, z, t+ h | y′, z′, t,X )p(y′, z′, t | X ) dy′

=
∑
z′

∫
Y
p(y, t+ h | z, t+ h, y′, z′, t,X )p(z, t+ h | y′, z′, t,X )

· p(y′, z′, t | X ) dy′,

whereX = {y(0), z(0)}.

We utilize the expansion of the transition density

p(z, t+ h | y′, z′, t,X ) = δz′z + Λy′

z′z(t)h+ o(h)

with limh→0
1
h
p(z, t + h | y′, z′, t,X ) =: Λy′

z′z(t). As we will let h → 0 at the end, we omit
terms of o (h) in the following. Inserting this expansion into the above expression yields

p(y, z, t+ h | X )

=
∑
z′

∫
Y
p(y, t+ h | z, t+ h, y′, z′, t,X )

(
δz′z + Λy′

z′z(t)h
)
p(y′, z′, t | X ) dy′

=

∫
Y
p(y, t+ h | z, t+ h, y′, z, t,X )p(y′, z, t | X ) dy′

+
∑
z′

∫
Y
p(y, t+ h | z, t+ h, y′, z′, t,X )Λy′

z′z(t)p(y
′, z′, t | X )hdy′

(B.1.1)

The existence of the density permits the definition of the characteristic function of the random
variable Y (t+ h) as its Fourier transform:

ψ(ν, t+ h | y′, t,X ) := E
[
eiν(Y (t+h)−Y (t)) | Z(t+ h) = z, Y (t) = y′, Z(t) = z′,X

]
.

The density can accordingly be expressed as the Fourier transform of the characteristic function:
generally, the Fourier transform

f̂(u) = F{f(y)} :=
∫
f(y)e−iu

⊤y dy, (B.1.2)

hence

p(y, t+ h | z, t+ h, y′, z′, t,X ) = 1

2π

∫
R
e−iν(y−y

′)ψ(ν, t+ h | y′, t,X ) dν.

Within this Fourier transform, we expand the argument around ν = 0:

ψ(ν, t+ h | y′, t,X ) =
∞∑
n=0

(iν)n

n!
E[(Y (t+ h)− Y (t))n | Z(t+ h) = z, Y (t) = y′, Z(t) = z′,X ]. (B.1.3)
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This allows us to utilize the identity (holding under the integral)

∂(n)y δ(y − y′) = 1

2π
(−iν)n

∫
R
e−iν(y−y

′) dν, (B.1.4)

with ∂(0)y δ(y − y′) = δ(y − y′). Combining both expressions (B.1.3) and (B.1.4) in Eq. (B.1.1)
yields

p(y, z, t+ h | X )

=

∫
Y
p(y, t+ h | z, t+ h, y′, z, t,X )p(y′, z, t | X) dy′

+ h ·
∑
z′

∫
Y
p(y, t+ h | z, t+ h, y′, z′, t,X )Λy′

z′z(t)p(y
′, z′, t | X ) dy′

=

∫
Y

∞∑
n=0

(−1)n

n!
∂(n)y δ(y − y′)E[(Y (t+ h)− Y (t))n | Z(t+ h) = z,

Y (t) = y′, Z(t) = z,X ]p(y′, z, t | X ) dy′

+ h ·
∑
z′

∫
Y

∞∑
n=0

(−1)n

n!
∂(n)y δ(y − y′)E[(Y (t+ h)− Y (t))n | Z(t+ h) = z,

Y (t) = y′, Z(t) = z′,X ]Λy′

z′z(t)p(y
′, z′, t | X ) dy′

=
∞∑
n=0

(−1)n

n!
∂(n)y E[(Y (t+ h)− Y (t))n | Z(t+ h) = z,

Y (t) = y, Z(t) = z,X ]p(y, z, t | X )

+ h ·
∑
z′

∞∑
n=0

(−1)n

n!
∂(n)y E[(Y (t+ h)− Y (t))n | Z(t+ h) = z,

Y (t) = y, Z(t) = z′,X ]Λy
z′z(t)p(y, z

′, t | X ).

As Y is an SSDE

dY (t) = f(Y (t), Z(t), t) dt+Q(Y (t), Z(t), t) dW (t),

and the discrete process remaining constant in a small time interval, Z[t,t+h] = z, this SSDE
can be treated as a conventional,Z-independent Itô SDE. For small h, we can utilize the usual
Euler-Maruyama approximation,

Y (t+ h) |Z(t+ h) = z, Z(t) = z, Y (t) = y ∼ N (y + f(y, z, t)h,D(y, z, t)h).
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With this we notice that in the second term above, only n = 0 contributes, as all other terms are
at least of order o(h). We accordingly find

p(y, z, t+ h | X )

=
∞∑
n=0

(−1)n

n!
∂(n)y E[(Y (t+ h)− Y (t))n|Z(t+ h) = z,

Y (t) = y, Z(t) = z,X ]p(y, z, t | X ) + h ·
∑
z′

Λy
z′z(t)p(y, z

′, t | X )

= p(y, z, t | X )

+
∞∑
n=1

(−1)n

n!
∂(n)y E[(Y (t+ h)− Y (t))n|Z(t+ h) = z,

Y (t) = y, Z(t) = z,X ]p(y, z, t | X ) + h ·
∑
z′

Λy
z′z(t)p(y, z

′, t | X )

Substracting p(y, z, t | X ) from both sides, dividing by h and taking the limit h→ 0 yields

∂tp(y, z, t | X ) = lim
h→0

p(y, z, t+ h | X )− p(y, z, t | X )
h

=
∞∑
n=1

(−1)n

n!
∂(n)y {Γnyzp(y, z, t | X )}+

∑
z′

Λy
z′z(t)p(y, z

′, t | X ) (B.1.5)

with

Γnyz = lim
h→0

1

h
E[(Y (t+ h)− Y (t))n | Z(t+ h) = z, Y (t) = y, Z(t) = z,X ]

Λy
z′z = lim

h→0

1

h
p(z, t+ h | z′, y′, t,X )− δz′z.

(B.1.6)

As discussed above, when conditioned on the same mode z, Y can be treated as a conventional
SDE; we can hence evaluate the conditional moments Γnyz in closed form. We have

E[(Y (t+ h)− Y (t))n | Z(t+ h) = z, Y (t) = y, Z(t) = z,X ]

=

∫
(y′ − y)nN (z′ | y + f(y, z, t)h,D(y, z, t)h) dy′

and the first two conditional moments are the usual Gaussian moments

Γnyz =

{
f(y, z, t) if n = 1
1
2
Q(y, z, t)Q⊤(y, z, t) = 1

2
D(y, z, t) if n = 2.

As shown in [102], if Γnyz = 0 for some even n, Γnyz = 0 ∀n ≥ 0. It is straightforward to
show that, e.g., Γnyz = 0 for n = 4, so all other conditional moments vanish. Hence, the above
reduces to the HME

∂tp(y, z, t | X ) = L†tp(y, z, t | X )
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withL†t = F
†
t + T

†
t as

F †t p(y, z, t | X ) = −
n∑

i=1

∂yi {fi(y, z, t)p(y, z, t | X )}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj{Dij(y, z, t)p(y, z, t | X )},

T †t p(y, z, t | X ) =
∑

z′∈Z\z

Λ(z′, z, t)p(y, z′, t | X )− Λ(z, t)p(y, z, t | X ).

Starting off the derivation with the Chapman-Kolmogorov equation in the other time direc-
tion,

p(X | y, z, t− h) =
∑
z′∈Z

∫
p(y′, z′, t | y, z, t− h)p(X | y′, z′, t) dy′,

one finds another PDE for the density p(X | y, z, t). This yields the backward equation

∂tp(X | y, z, t) = −Ltp(X | y, z, t),

with the the generatorL = F + T :

Fp(X | y, z, t) =
n∑

i=1

fi(y, z, t)∂yip(X | y, z, t)

+
1

2

n∑
i=1

n∑
j=1

Dij(y, z, t)∂yi∂yjp(X | y, z, t),

T p(X | y, z, t) =
∑

z′∈Z\z

Λ(z, z′, t)p(X | y, z, t)− Λ(z, t)p(X | y, z, t).

b.1.2 Derivation of the posterior hybrid master equation

As shown in the main text, using k = max{k′ ∈ N : tk′ ≤ t}, the (exact) smoothing density
p(y, z, t | x[0,T ]), obeys

p(y, z, t | x[0,T ]) = C−1(t)α(y, z, t)β(y, z, t), (B.1.7)

with the (forward) filtering density α(y, z, t) := p(y, z, t | x[0,tk]), the backward function
β(y, z, t) := p(x[tk+1,T ] | y, z, t), and the normalizerC(t).

With the dynamics for α and β provided in the main text, we compute now the dynamics of
Eq. (B.1.7). For brevity, define γ(y, z, t) := p(y, z, t | x[0,T ]) = C−1(t)α(y, z, t)β(y, z, t).
We have, as given in the main text,

∂tγ(y, z, t) = C−1(t)α(y, z, t)∂tβ(y, z, t) + C−1(t)β(y, z, t)∂tα(y, z, t). (B.1.8)
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The dynamics of the filtering distribution

∂tα(y, z, t) = −
n∑

i=1

∂yi {fi(y, z, t)α(y, z, t)}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj {Dij(y, z, t)α(y, z, t)}+
∑
z′∈Z

Λ(z′, z, t)α(y, z′, t).

Similarly,

∂tβ(y, z, t) = −
n∑

i=1

fi(y, z, t)∂yiβ(y, z, t)

− 1

2

n∑
i=1

∑
j=1

Dij(y, z, t)∂yi∂yjβ(y, z, t)−
∑
z′∈Z

Λ(z, z′, t)β(y, z′, t).

Inserting these dynamics into Eq. (B.1.8) and usingC−1(t)α(y, z, t) = γ(y,z,t)
β(y,z,t)

yields

∂tγ(y, z, t)

=
γ(y, z, t)

β(y, z, t)

(
−

n∑
i=1

fi(y, z, t)∂yiβ(y, z, t)−
1

2

n∑
i=1

n∑
j=1

Dij(y, z, t)∂yi∂yjβ(y, z, t)

−
∑
z′∈Z

Λ(z, z′, t)β(y, z′, t)

)

+ β(y, z, t)

(
−

n∑
i=1

∂yi

{
fi(y, z, t)

γ(y, z, t)

β(y, z, t)

}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj

{
Dij(y, z, t)

γ(y, z, t)

β(y, z, t)

}
+
∑
z′∈Z

Λ(z′, z, t)
γ(y, z′, t)

β(y, z′, t)

)
. (B.1.9)

Now, compute the occuring first and second order derivatives:

∂yi

{
fi(y, z, t)

γ(y, z, t)

β(y, z, t)

}
=
{∂yifi(y, z, t)γ(y, z, t) + fi(y, z, t)∂yiγ(y, z, t)} β(y, z, t)

β(y, z, t)2

− β(y, z, t)−2fi(y, z, t)γ(y, z, t)∂yiβ(y, z, t)
= β(y, z, t)−1 {∂yifi(y, z, t)γ(y, z, t) + fi(y, z, t)∂yiγ(y, z, t)}
− β(y, z, t)−2fi(y, z, t)γ(y, z, t)∂yiβ(y, z, t),

and

∂yi∂yj

{
Dij(y, z, t)γ(y, z, t)

β(y, z, t)

}
=∂yi

{
γ(y, z, t)β(y, z, t)−1∂yjDij(y, z, t) +Dij(y, z, t)β(y, z, t)

−1∂yjγ(y, z, t)

−Dij(y, z, t)γ(y, z, t)β(y, z, t)
−2∂yjβ(y, z, t)

}
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=
(
γ(y, z, t)∂yi∂yjDij(y, z, t) + ∂yiDij(y, z, t)∂yjγ(y, z, t)

)
β(y, z, t)−1

− γ(y, z, t)β(y, z, t)−2∂yjDij(y, z, t)∂yiβ(y, z, t)

+ ∂yjDij(y, z, t)∂yiγ(y, z, t)β(y, z, t)
−1

+Dij(y, z, t)
(
β(y, z, t)−1∂yi∂yjγ(y, z, t)− β(y, z, t)−2∂yjγ(y, z, t)∂yiβ(y, z, t)

)
− ∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)β(y, z, t)

−2

−Dij(y, z, t)
(
∂yiγ(y, z, t)∂yjβ(y, z, t)β(y, z, t)

−2

+ γ(y, z, t)[∂yi∂yjβ(y, z, t)β(y, z, t)
−2

−2∂yjβ(y, z, t)β(y, z, t)−3∂yiβ(y, z, t)]
)
.

Collecting terms in β(y, z, t)−1, β(y, z, t)−2 and β(y, z, t)−3 structures this expression:

∂yi∂yj

{
Dij(y, z, t)γ(y, z, t)

β(y, z, t)

}
=β(y, z, t)−1

{
∂yi∂yjDij(y, z, t)γ(y, z, t) + ∂yjDij(y, z, t)∂yiγ(y, z, t)

+∂yiDij(y, z, t)∂yjγ(y, z, t) +Dij(y, z, t)∂yi∂yjγ(y, z, t)
}

− β(y, z, t)−2
{
∂yjDij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)

+ ∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)

+Dij(y, z, t)∂yjγ(y, z, t)∂yiβ(y, z, t)

+Dij(y, z, t)∂yiγ(y, z, t)∂yjβ(y, z, t)

+Dij(y, z, t)γ(y, z, t)∂yi∂yjβ(y, z, t)
}

+ β(y, z, t)−3
{
2Dij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)∂yjβ(y, z, t)

}
.

Using the terms in Eq. (B.1.9), it then follows that

∂tγ(y, z, t)

=−
n∑

i=1

fi(y, z, t)γ(y, z, t)β(y, z, t)
−1∂yiβ(y, z, t)

− 1

2

n∑
i=1

n∑
j=1

Dij(y, z, t)γ(y, z, t)β(y, z, t)
−1∂yi∂yjβ(y, z, t)

−
n∑

i=1

β(y, z, t)−1 {[∂yifi(y, z, t)γ(y, z, t) + fi(y, z, t)∂yiγ(y, z, t)]β(y, z, t)

−fi(y, z, t)γ(y, z, t)∂yiβ(y, z, t)}

+
1

2

n∑
i=1

n∑
j=1

[
∂yi∂yjDij(y, z, t)γ(y, z, t) + ∂yjDij(y, z, t)∂yiγ(y, z, t)

+ ∂yiDij(y, z, t)∂yjγ(y, z, t) +Dij(y, z, t)∂yi∂yjγ(y, z, t)

− β(y, z, t)−1
{
∂yjDij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)

+ ∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)

+Dij(y, z, t)∂yjγ(y, z, t)∂yiβ(y, z, t)

+Dij(y, z, t)∂yiγ(y, z, t)∂yjβ(y, z, t)
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+Dij(y, z, t)γ(y, z, t)∂yi∂yjβ(y, z, t)
}

+ β(y, z, t)−2
{
2Dij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)∂yjβ(y, z, t)

}]
+
∑
z′∈Z

(
Λ(z′, z, t)

β(y, z, t)

β(y, z′, t)
γ(y, z′, t)− Λ(z, z′, t)

β(y, z′, t)

β(y, z, t)
γ(y, z, t)

)

=−
n∑

i=1

∂yifi(y, z, t)γ(y, z, t) + fi(y, z, t)∂yiγ(y, z, t)

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yjDij(y, z, t)γ(y, z, t) + ∂yjDij(y, z, t)∂yiγ(y, z, t)

+ ∂yiDij(y, z, t)∂yjγ(y, z, t) +Dij(y, z, t)∂yi∂yjγ(y, z, t)

− β(y, z, t)−1

2

n∑
i=1

n∑
j=1

{
∂yjDij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)

+ ∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)

+ 2Dij(y, z, t)γ(y, z, t)∂yi∂yjβ(y, z, t)

+Dij(y, z, t)∂yjγ(y, z, t)∂yiβ(y, z, t)

+Dij(y, z, t)∂yiγ(y, z, t)∂yjβ(y, z, t)
}

+ β(y, z, t)−2
n∑

i=1

n∑
j=1

Dij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)∂yjβ(y, z, t)

+
∑

z′∈Z\z

(
Λ(z′, z, t)

β(y, z, t)

β(y, z′, t)
γ(y, z′, t)− Λ(z, z′, t)

β(y, z′, t)

β(y, z, t)
γ(y, z, t)

)

=−
n∑

i=1

{∂yifi(y, z, t)γ(y, z, t) + fi(y, z, t)∂yiγ(y, z, t)

+
β(y, z, t)−1

2

n∑
j=1

[
∂yjDij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)

+ ∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)

+ 2Dij(y, z, t)γ(y, z, t)∂yi∂yjβ(y, z, t)

+Dij(y, z, t)∂yjγ(y, z, t)∂yiβ(y, z, t)

+Dij(y, z, t)∂yiγ(y, z, t)∂yjβ(y, z, t)
]

−β(y, z, t)−2
n∑

j=1

Dij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)∂yjβ(y, z, t)

}

+
1

2

n∑
i=1

n∑
j=1

∂yi
{
∂yjDij(y, z, t)γ(y, z, t) +Dij(y, z, t)∂yjγ(y, z, t)

}
+
∑
z′∈Z

Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
γ(y, z′, t)

=−
n∑

i=1

{∂yi {fi(y, z, t)γ(y, z, t)}
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+ β(y, z, t)−1
n∑

j=1

[
∂yiDij(y, z, t)γ(y, z, t)∂yjβ(y, z, t)

+Dij(y, z, t)γ(y, z, t)∂yi∂yjβ(y, z, t)

+ Dij(y, z, t)∂yiγ(y, z, t)∂yjβ(y, z, t)
]

−β(y, z, t)−2
n∑

j=1

Dij(y, z, t)γ(y, z, t)∂yiβ(y, z, t)∂yjβ(y, z, t)

}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj {Dij(y, z, t)γ(y, z, t)}+
∑
z′∈Z

Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
γ(y, z′, t).

Next, make use of the product rule to collect terms:

∂tγ(y, z, t)

= −
n∑

i=1

∂yi

{
fi(y, z, t)γ(y, z, t) +

n∑
j=1

Dij(y, z, t)∂yjβ(y, z, t)β(y, z, t)
−1γ(y, z, t)

}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj {Dij(y, z, t)γ(y, z, t)}+
∑
z′∈Z

Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
γ(y, z′, t)

= −
n∑

i=1

∂yi

{(
fi(y, z, t) +

n∑
j=1

Dij(y, z, t)∂yj ln β(y, z, t)

)
γ(y, z, t)

}

+
1

2

n∑
i=1

n∑
j=1

∂yi∂yj {Dij(y, z, t)γ(y, z, t)}+
∑
z′∈Z

Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
γ(y, z′, t).

Finally, this gives the result as

∂tp(y, z, t | x[0,T ]) =L̃†tp(y, z, t | x[0,T ])

=−
n∑

i=1

∂yi

{
f̃i(y, z, t)p(y, z, t | x[0,T ])

}
+

1

2

n∑
i=1

n∑
j=1

∂yi∂yj

{
D̃ij(y, z, t)p(y, z, t | x[0,T ])

}
+
∑
z′∈Z

Λ̃(y, z′, z, t)p(y, z′, t | x[0,T ]),

with the posterior drift

f̃i(y, z, t) = fi(y, z, t) +
n∑

j=1

Dij(y, z, t)∂yj ln β(y, z, t),

the posterior dispersion

D̃ij(y, z, t) = Dij(y, z, t),

and the posterior rate

Λ̃(y, z′, z, t) = Λ(z′, z, t)
β(y, z, t)

β(y, z′, t)
.
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b.2 sampling the conditional diffusion process

b.2.1 Derivation of the backward continuous-discrete Kalman filter

As discussed in the main text, we utilize the method of characteristics to explicitly solve the back-
ward Kalman-type filter. The idea of this method is the following [110]: we aim to reparameterize
the equation in such a way from the usual state-space and time variables y, t to some other path
parameters γ and the initial values of the problem y0, that along the curves parameterized by γ,
the PDE to be solved reduces to an ODE system.

The backward distribution p(xN | y, t) between theN -th and (N − 1)-th observation is given
by the Kolmogorov backward equation (KBE)

∂tp(xN | y, t) = −Ltp(xN | y, t), (B.2.10)

where we assume an end-point condition

p(xN | y, T ) = N (xN | Fy,Σ).

In the linear case considered here,

Lt(·) = (∂y(·))⊤ (A(t)y + b(t)) +
1

2
tr
(
D∂y∂

⊤
y (·)

)
.

Hence,

∂tp(xN | y, t) = − (∂yp(xN | y, t))⊤ (A(t)y+b(t))−
1

2
tr
(
D∂y∂

⊤
y p(xN | y, t)

)
. (B.2.11)

Component-wise, this is

∂tp(xN | y, t) = −
∑
k,l

∂ykp(xN | y, t)Akl(t)yl −
∑
k

∂ykp(xN | y, t)bk(t)

− 1

2

∑
k,l

∂yk∂ylp(xN | y, t)Dkl. (B.2.12)

We utilize again the Fourier transform Eq. (B.1.2), which obeys the following identities:

F{f(Fy)} = 1

|F |
f̂(F−⊤u),

F{∂yf(y)} = iuf̂(u),

F{y∂yf(y)} = i∂uf̂(u).

(B.2.13)
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With this, the Fourier transform ∂tp̂(xN | u, t) is obtained as

∂tp̂(xN | u, t) = −
∑
k,l

i∂ul
F{∂ykp(xN | y, t)Akl(t)} −

∑
k

iukp̂(xN | u, t)bk(t)

− 1

2

∑
k,l

ukulp̂(xN | u, t)Dkl

= −
∑
k,l

i∂ul
{iukp̂(xN | u, t)Akl(t)} −

∑
k

iukp̂(xN | u, t)bk(t)

− 1

2

∑
k,l

ukulp̂(xN | u, t)Dkl

=
∑
k,l

∂ul
ukp̂(xN | u, t)Akl(t) +

∑
k,l

uk∂ul
p̂(xN | u, t)Akl(t)

−
∑
k

iukp̂(xN | u, t)bk(t)−
1

2

∑
k,l

iukiulp̂(xN | u, t)Dkl

=
∑
k,l

1(k = l)p̂(xN | u, t)Akl(t) +
∑
k,l

uk∂ul
p̂(xN | u, t)Akl(t)

−
∑
k

iukp̂(xN | u, t)bk(t) +
1

2

∑
k,l

ukulp̂(xN | u, t)Dkl.

In vector notation, this reads

∂tp̂(xN | u, t) = tr(A(t))p̂(xN | u, t) + (∂up̂(xN | u, t))⊤A⊤(t)u

− iu⊤b(t)p̂(xN | u, t) +
1

2
u⊤Dup̂(xN | u, t). (B.2.14)

Note that while we retain aZ-dependency ofD,D = D(z), this function is constant between
switches ofZ ; as we solve the backward filter piece-wise between jumps in the given sample z[0,T ],
this dependency is irrevelant at this point. Now, we define the characteristic curve as

d

dt
u(t) = −A⊤(t)u(t), (B.2.15)

with end-point condition u(T ) = uT . The formal solution to this equation is expressible via
the transition function Φ(t, T ) [20]

u(t) = Φ⊤(t, T )uT , (B.2.16)

where Φ is defined by the relations

∂TΦ(t, T ) = −A(T )Ψ(t, T ), ∂tΨ(t, T ) = Ψ(t, T )A(t),

Ψ(t, T ) = Ψ(t′, T )Ψ(t, t′), Ψ(T, t) = Ψ(t, T )−1,

together with Ψ(t, t) = 1 .Hence, we have

uT = Φ−⊤(t, T )u(t),

d

dt
Φ(t, T ) = −Φ(t, T )A(t),

(B.2.17)
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with which the total derivative of p̂(xN | u, t) at u = u(t) is found as
d

dt
p̂(xN | u(t), t) = (∂up̂(xN | u(t), t))⊤

d

dt
u(t) + ∂tp̂(xN | u(t), t). (B.2.18)

Inserting the backward quantity ∂tp̂(xN | u(t), t) and the characteristic ODE (B.2.15), we find

d

dt
p̂(xN | u(t), t) =

(
tr(A(t))− iu⊤(t)b(t) + 1

2
u⊤(t)Du(t)

)
p̂(xN | u(t), t), (B.2.19)

yielding the solution

p̂(xN | u(t), t) = exp

{
−
∫ T

t

tr(A(s)) ds− i
(
−
∫ T

t

u⊤(s)b(s) ds

)
−1

2

∫ T

t

u⊤(s)Du(s) ds

}
p̂(xN | u(T ), T ). (B.2.20)

To obtain the end-point condition in Fourier space, p̂(xN | u(T ), T ) = p̂(xN | uT , T ), we
compute

F{p(xN | y, T )} = F{N (xN | Fy,Σ)}
= F{N (Fy | xN ,Σ)}

=
1

|F |
exp

{
−i
(
F−⊤u

)⊤
xN −

1

2

(
F−⊤u

)⊤
ΣF−⊤u

}
,

(B.2.21)

where we assume F to be quadratic and invertible. Hence,

p̂(xN | u(T ), T ) =
1

|F |
exp

{
−i
(
F−⊤uT

)⊤
xN −

1

2

(
F−⊤uT

)⊤
ΣF−⊤uT

}
, (B.2.22)

and we have

p̂(xN | u(t), t) =
1

|F |
exp

{
−
∫ T

t

tr(A(s)) ds

− i
((
F−⊤uT

)⊤
xN −

∫ T

t

u⊤(s)b(s) ds

)
−1

2

((
F−⊤uT

)⊤
ΣF−⊤uT +

∫ T

t

u⊤(s)Du(s) ds

)}
.

(B.2.23)

Inserting the formal solution Eq. (B.2.16) gives

p̂(xN | u(t), t) =
1

|F |
exp

{
−
∫ T

t

tr(A(s)) ds

− i
((
F−⊤uT

)⊤
xN − u⊤T

∫ T

t

Φ(s, T )b(s) ds

)
−1

2

((
F−⊤uT

)⊤
ΣF−⊤uT + u⊤T

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds uT

)}
=

1

|F |
exp

{
−
∫ T

t

tr(A(s)) ds− iu⊤TF−1
(
xN − F

∫ T

t

Φ(s, T )b(s) ds

)
−1

2
u⊤TF

−1
(
Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)
F−⊤uT

}
. (B.2.24)



B.2 sampling the conditional diffusion process 115

Using the transpose of Eq. (B.2.16), we find

p̂(xN | u(t), t) =
1

|F |
exp

{
−
∫ T

t

tr(A(s)) ds

− iu⊤(t)Φ−1(t, T )F−1
(
xN − F

∫ T

t

Φ(s, T )b(s) ds

)
−1

2
u⊤(t)Φ−1(t, T )F−1

(
Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)
F−⊤Φ−⊤(t, T )u(t)

}
=

1

|F |
exp

{
−
∫ T

t

tr(A(s)) ds

− i
(
(FΦ(t, T ))−⊤ u(t)

)⊤(
xN − F

∫ T

t

Φ(s, T )b(s) ds

)
− 1

2

(
(FΦ(t, T ))−⊤ u(t)

)⊤
·
(
Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)
(FΦ(t, T ))−⊤ u(t)

}
.

Inverting the Fourier transform yields

p(xN | y, t) =
|Φ(t, T )|

exp
(∫ T

t
tr(A(s)) ds

)
· N

(
FΦ(t, T )y

∣∣∣∣xN − F ∫ T

t

Φ(s, T )b(s) ds,Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)

=
|Φ(t, T )|

exp
(∫ T

t
tr(A(s)) ds

)
· N

(
xN

∣∣∣∣FΦ(t, T )y + F

∫ T

t

Φ(s, T )b(s) ds,Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)
.

(B.2.25)
With Jacobi’s formula, we have

d

dt
|Φ(t, T )| = |Φ(t, T )| tr

(
Φ−1(t, T )

d

dt
Φ(t, T )

)
= |Φ(t, T )| tr

(
Φ−1(t, T ) (−Φ(t, T )A(t))

)
= |Φ(t, T )| tr (−A(t)) ,

(B.2.26)

the solution of which reads

|Φ(t, T )| = exp

(
−
∫ T

t

tr (−A(s)) ds
)
Φ(T, T ) (B.2.27)

with Φ(T, T ) = I. Consequently,

|Φ(t, T )| = exp

(∫ T

t

tr (A(s)) ds

)
, (B.2.28)
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and

p(xN | y, t) = N
(
xN

∣∣∣∣FΦ(t, T )y + F

∫ T

t

Φ(s, T )b(s) ds,

Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤
)
. (B.2.29)

Defining

F (t) := FΦ(t, T ), (B.2.30)

m(t) := F

∫ T

t

Φ(s, T )b(s) ds =

∫ T

t

F (s)b(s) ds, (B.2.31)

Σ(t) := Σ + F

∫ T

t

Φ(s, T )DΦ⊤(s, T ) ds F⊤ = Σ+

∫ T

t

F (s)DF⊤(s) ds, (B.2.32)

we have obtained the solution of the KBE (B.2.12) along the characteristic curve parameterized via
F (t),m(t) and Σ(t). By straightforward differentiation, we obtain ODEs for these quantities,
effectively reducing the solution of the original PDE to the solution of these ODEs. We find

d

dt
F (t) = F

d

dt
Φ(t, T )

= F (−Φ(t, T )A(t))

⇐⇒ d

dt
F (t) = −F (t)A(t),

(B.2.33)

with end-point condition F (T ) = F .

Utilizing Leibniz’ integral rule, we further have

d

dt
m(t) = −F (t)b(t), (B.2.34)

with boundary conditionm(T ) = 0.

Finally,
d

dt
Σ(t) = −F (t)DF⊤(t), (B.2.35)

with boundary condition Σ(T ) = Σ.

In summary,
p(xN | y, t) = N (xN | F (t)y +m(t),Σ(t)) , (B.2.36)

with
d

dt
F (t) = −F (t)A(t) with F (T ) = F,

d

dt
m(t) = −F (t)b(t) with m(T ) = 0,

d

dt
Σ(t) = −F (t)DF⊤(t) with Σ(T ) = Σ.

(B.2.37)
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b.2.1.1 The non-invertible case

Above it was assumed that F be invertible. The solution however holds for general matrices F ,
which can be shown by plugging in the solution p(xN | y, t) = N (xN | F (t)y +m(t),Σ(t))
with some generaly, non-invertable F (t) into the KBE (B.2.12). This yields the PDE

∂tN (xN | F (t)y +m(t),Σ(t)) = −
∑
k,l

∂yk N (xN | F (t)y +m(t),Σ(t))Akl(t)yl

−
∑
k

∂yk N (xN | F (t)y +m(t),Σ(t)) bk(t) (B.2.38)

− 1

2

∑
k,l

∂yk∂yl N (xN | F (t)y +m(t),Σ(t))Dkl.

We now compute one-by-one the partial derivatives

∂tN (xN | F (t)y +m(t),Σ(t)) ,

∂yk N (xN | F (t)y +m(t),Σ(t)) ,

∂yk∂yl N (xN | F (t)y +m(t),Σ(t)) .

To this end, notice that

∂θN (x | a,A) = N (x | a,A)
(
−h⊤(∂θx) + h⊤(∂θa)

−1

2
tr(A−1∂θA) +

1

2
h⊤(∂θA)h

)
, (B.2.39)

with h = A−1(x− a). This yields

∂tN (xN | F (t)y +m(t),Σ(t)) = N (xN | F (t)y +m(t),Σ(t))

·
[
h⊤(∂tF (t)y + ∂tm(t))− 1

2
tr
(
Σ−1(t)∂tΣ(t)

)
+

1

2
h⊤∂tΣh

]
, (B.2.40)

∂yk N (xN | F (t)y +m(t),Σ(t)) = N (xN | F (t)y +m(t),Σ(t))
[
h⊤F·k(t)

]
, (B.2.41)

∂yk∂yl N (xN | F (t)y +m(t),Σ(t)) = N (xN | F (t)y +m(t),Σ(t))

·
[
h⊤F·k(t)h

⊤F·l(t)− L⊤·l (t)Σ−1(t)F·k(t)
]
, (B.2.42)

withh = Σ−1(t)(xN−F (t)y−m(t)). Inserting these equations into the KBE (B.2.38) yields

h⊤(∂tF (t)y + ∂tm(t))− 1

2
tr
(
Σ−1(t)∂tΣ(t)

)
+

1

2
h⊤∂tΣh

= −
∑
k

h⊤F·k,l(t)Akl(t)yl −
∑
k

h⊤F·k(t)bk(t)

− 1

2

∑
k,l

(
h⊤F·k(t)h

⊤F·l(t)− F⊤·l (t)Σ−1(t)F·k(t)
)
Dkl,

(B.2.43)

or, in vector notation,

h⊤ [∂tF (t)y + ∂tm(t)]− 1

2
tr
{(

Σ−1(t)− hh⊤
)
∂tΣ(t)

}
= h⊤ [−F (t)A(t)y − F (t)b(t)]− 1

2
tr
{(

Σ−1(t)− hh⊤
) [
−F⊤(t)DF (t)

]} (B.2.44)
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Comparing coefficients, we find

d

dt
F (t) = −F (t)A(t) with F (T ) = F,

d

dt
m(t) = −F (t)b(t) with m(T ) = 0,

d

dt
Σ(t) = −F (t)DF⊤(t) with Σ(T ) = Σ,

(B.2.45)

where we identify the end-point conditions via

N (xN | F (T )y +m(T ),Σ(T )) = N (xN | Fy,Σ). (B.2.46)

jump conditions Starting at the end point, consider the last observationXN−1 at time
point tN−1. As shown in the main paper,

β(y, tN−1) = β(y, t+N−1)p(xN−1 | y, tN−1), (B.2.47)

where β(y, t+N−1) := limh↘0 β(y, tN−1 + h). Assuming Gaussian observation likelihoods, we
have, due to the properties of Gaussians,

β(y, tN−1) = N
(
xN | F (t+N−1)y +m(t+N−1),Σ(t

+
N−1)

)
N (xN−1 | y,Σx) (B.2.48)

= N (xN−1, xN | F (tN−1)y +m(tN−1),Σ(tN−1)) , (B.2.49)

with

F (tN−1) =

(
1n×n

F (t+N−1)

)
∈ R2n×n, (B.2.50)

m(tN−1) =

(
0

m(t+N−1)

)
∈ R2n, (B.2.51)

M(tN−1) =

(
Σx 0
0 Σ(t+N−1)

)
∈ R2n×2n, (B.2.52)

where 0 ∈ Rn and 1n×n is the n-dimensional identity matrix.

b.2.1.2 Information filter parameterization

The derived backward filter has the property that its support increases with every incorporated
observation, which is computationally disadvantageous. The contribution of the backward filter
to the drift of the posterior SDE is however fixed in size:

dY (t) = (f(Y (t), t) +D(Z(t))∂ ln β(Y (t), t)) dt+Q(Z(t))dW (t).

From the above derivations, we know that

∂y ln β(y, t) = −
1

2
∂y(x(t)− F (t)y(t)−m(t))⊤Σ−1(t)(x(t)− F (t)y(t)−m(t))

= F (t)⊤Σ−1(t)(x(t)−m(t))− F (t)⊤Σ−1(t)F (t)y(t) (B.2.53)
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Defining

ν(t) := F (t)⊤Σ−1(t)(x(t)−m(t)),

M(t) := F (t)⊤Σ−1(t)F (t),
(B.2.54)

we can compute straightforwardly the respective time derivatives, where the notation ḟ = d
dt
f

is used for conciseness:

d

dt
M(t) = Ḟ (t)⊤Σ−1(t)F (t) + F (t)⊤Σ̇−1(t)F (t) + F (t)⊤Σ−1(t)Ḟ (t)

= −A(t)⊤M(t) + F (t)⊤Σ̇−1(t)F (t)−M(t)A(t)

= −A(t)⊤M(t)− F (t)⊤Σ−1(t)Σ̇(t)Σ−1(t)F (t)−M(t)A(t)

= −A(t)⊤M(t) + F (t)⊤Σ−1(t)F (t)DF (t)⊤Σ−1(t)F (t)−M(t)A(t)

= −A(t)⊤M(t) +M(t)DM(t)−M(t)A(t),

(B.2.55)

d

dt
ν(t) = Ḟ (t)⊤Σ−1(t)(x(t)−m(t)) + F (t)⊤Σ̇−1(t)(x(t)−m(t))

− F (t)⊤Σ−1(t)ṁ(t)

= −A(t)⊤ν(t) +M(t)Dν(t) +M(t)b(t).

(B.2.56)

The jump conditions for the information filter given in the main text follow directly by comparing
Eq. (3.3.32) and Eq. (B.2.54).

b.3 sampling the conditional switching process

The following is along the lines of the thorough treatments for the conventional smoothing
problem in [31] and [55].

b.3.1 Backward dynamics

First, starting from the Radon-Nikodym derivative Eq. (3.3.42), write

G(Y[t,T ], Z[t,T ]) = exp{ϕ(t)}, (B.3.57)

defining the stochastic process

ϕ(t) :=

∫ T

t

f(Y (s), Z(s))⊤D(Z(s), s)−1dY (s)

− 1

2

∫ T

t

f(Y (s), Z(s))⊤D(Z(s), s)−1f(Y (s), Z(s))ds. (B.3.58)

For brevity, set
G[t,T ] := G(Y[t,T ], Z[t,T ]).
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It is immediate that ϕ(T ) = 0; hence

ϕ(T )− ϕ(t) =
∫ T

t

dϕ(s)⇐⇒ ϕ(t) = −
∫ T

t

dϕ(s) (B.3.59)

and the differential

dϕ(t) = −f(Y (t), Z(t))⊤D(Z(t), t)−1dY (t)

+
1

2
f(Y (t), Z(t))⊤D(Z(t), t)−1f(Y (t), Z(t))dt. (B.3.60)

This is an Itô SDE evolving forward in time—meaning that future increments of the process y(t)
are independent of its past—with a terminal condition ϕ(T ) = 0.

Applying Itô’s lemma to Eq. (B.3.57) with respect to the stochastic process ϕ(t) results in

dG[t,T ] = −G[t,T ]f(Y (t), Z(t))⊤D−1(Z(t), t)dY (t)

+G[t,T ]f(Y (t), Z(t))D−1(Z(t), t)f(Y (t), Z(t))⊤dt (B.3.61)

as the quadratic term dY (t)dY (t)⊤ = D(Z(t), t)dt. This can be written in integral from as

G[t,T ] = 1 +

∫ T

t

G[s,T ]f(Y (s), Z(s))⊤D−1(Z(s), s)dY (s)

−
∫ T

t

G[s,T ]f(Y (s), Z(s))⊤D−1(Z(s), s)f(Y (s), Z(s))ds.

Now, recall that v(z, t) = E[G[t,T ] | Y[t,T ] = y[t,T ], Z(t) = z]. To emphasize that we are
conditioning on the full path y[t,T ] drawn in the previous Gibbs step, we write y(t) instead of
Y (t) in the following. With this, we obtain

v(z, t) = 1 +

∫ T

t

E
[
G[s,T ]f(y(s), Z(s))

⊤D−1(Z(s), s) | y[t,T ], Z(t) = z
]
dy(s)

−
∫ T

t

E
[
G[s,T ]f(y(s), Z(s))

⊤D−1(Z(s), s)f(y(s), Z(s)) | y[t,T ], Z(t) = z
]
ds

= 1 +

∫ T

t

∑
z′∈Z

E
[
G[s,T ]f(y(s), z

′)⊤D−1(z′, s) | y[s,T ], z
′] p(z′, t | z, t)dy(s)

−
∫ T

t

∑
z′∈Z

E
[
G[s,T ]f(y(s), z

′)⊤D−1(z′, s)f(y(s), z′) | y[t,T ], Z(s) = z′
]
p(z′, s | z, t)ds

= 1 +

∫ T

t

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)p(z′, s | z, t)dy(s)

−
∫ T

t

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)f(y(s), z′)p(z′, s | z, t)ds.
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To compute the differential, consider with some small h > 0

∆v(z, t) = v(z, t)− v(z, t− h) (B.3.62)

=

∫ T

t

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)p(z′, s | z, t)dy(s)

−
∫ T

t

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)f(y(s), z′)p(z′, s | z, t)ds

−
∫ T

t−h

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)p(z′, s | z, t− h)dy(s)

+

∫ T

t−h

∑
z′∈Z

v(z′, s)f(y(s), z′)⊤D−1(z′, s)f(y(s), z′)p(z′, s | z, t− h)ds.

For notational clarity, we first evaluate the difference of the occuring stochastic integrals. We
define the convenience function g(z, s) := v(z, s)f(y(s), z)⊤D−1(z, s). Also, notice that the
transition density (of the prior process, with respect to which we compute the expectation)
obeys the backward master equation Section 2.1.2.1: with s > t, we have

d

dt
p(z′, s | z, t) = −

∑
z′′∈Z

Λ(z, z′′, t)p(z′, s | z′′, t).

With this,∫ T

t

∑
z′∈Z

g(z′, s)p(z′, s | z, t)dy(s)

−
∫ T

t−h

∑
z′∈Z

g(z′, s)p(z, s | z, t− h)dy(s)

=

∫ T

t

∑
z′∈Z

g(z′, s)p(z′, s | z, t)dy(s)

−

(∫ t

t−h

∑
z′∈Z

g(z′, s)p(z′, s | z, t− h)dy(s)

+

∫ T

t

∑
z′∈Z

g(z′, s, t) (p(z, s | z, t)− ∂tp(z′, s | z, t)dt) dy(s)

)

=

(∫ T

t

∑
z′∈Z

g(z′, s)∂tp(z
′, s | z, t)dy(s)

)
dt

−
∫ t

t−h

∑
z′∈Z

g(z′, s)p(z′, s | z, t− h)dy(s)

= −

(∫ T

t

∑
z′∈Z

g(z′, s)
∑
z′′∈Z

p(z′, s | z′′, t)Λ(z, z′′, t)dy(s)

)
dt

− v(z(t), t)f(y(t), z(t))⊤D−1(z(t), t)dy(t). (B.3.63)
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In the last step, two operations were performed at once: first, we applied the definition of the Itô
integral backwards in time: as detailed in [115], every SDE can be expressed through a backward
stochastic process. For

dY (t) = f(Y (t), t)dt+Q(Y (t), t)dW (t),

a backward description is given as

d
←
Y (t) =

←
f (Y (t), t)dt+Q(Y (t), t)d

←
W (t)

with
←
f i(y, t) = fi(y, t)−

1

p(y, t)

∑
j,k

∂yj{p(y, t)Qik(y, t)Qjk(y, t)},

d
←
W i(t) = dWi(t) +

1

p(y, t)

∑
j

∂yj{p(y, t)Qjk(y, t)}dt.

As can be straightforwardly checked, a state-independent dispersionQ(Y (t), t) = Q(t) yields
equality between the forward and backward description. Hence, we can readily invert the
respective integral. Secondly, we took the limit h → 0, resulting in the usual differential
expression.

Next, consider the conventional Lebesgue integrals within Eq. (B.3.62), and again define for
convenience
h(y(s), z, s) := v(z, s)f(y(s), z)⊤D−1(z, s)f(y(s), z):∫ T

t

∑
z′∈Z

h(y(s), z′, s)p(z′ | z(t))ds

−
∫ T

t−h

∑
z′∈Z

h(y(s), z′, t− h)p(z′, s | z, t− h)ds

=

∫ T

t

∑
z′∈Z

g(y(s), z′, s)p(z′, s | z, t)ds

−

(∫ t

t−h

∑
z′∈Z

h(y(s), z′, t)p(z′, s | z, t− h)ds

+

∫ T

t

∑
z′∈Z

h(y(s), z′, t) (p(z′, s | z, t)− ∂tp(z′, s | z, t)dt) ds

)

=

(∫ T

t

∑
zs∈Z

h(y(s), z′, s)∂tp(z
′, s | z, t)ds

)
dt

−
∫ t

t−h

∑
z′∈Z

h(y(s), z′, t)p(z′, s | z, t− h)ds

= −

(∫ T

t

∑
z′∈Z

h(y(s), z′, s)
∑
z′′∈Z

p(z′, s | z′′, t)Λ(z′, z′′, t)ds

)
dt

− v(z, t)f(y(t), z)⊤D−1(z, t)f(y(t), z)dt. (B.3.64)
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Lastly, add the remaining integrals from Eq. (B.3.63) and Eq. (B.3.64):

∑
z′′∈Z

(
−
∫ T

t

[∑
z′∈Z

g(z′, s)p(z′, s | z′′, t)

]
dy(s)

+

∫ T

t

∑
z′∈Z

h(y(s), z′, s)p(z′, s | z′′, t)ds

)
Λ(z′, z′′, t)dt

=
∑
z′′∈Z

[v(z, t)− 1] Λ(z′, z′′, t)dt

=
∑
z′′∈Z

v(z, t)Λ(z′, z′′, t)dt. (B.3.65)

Inserting Eq. (B.3.63), Eq. (B.3.64) and Eq. (B.3.65) into Eq. (B.3.62), we find the differential
provided in the main text,

dv(z, t) = −v(z, t)f(y, z, t)⊤D−1(z, t)dy(t)−
∑
z′

v(z′, t)Λ(z, z′, t)dt

+ f(y, z, t)⊤D−1(z, t)f(y, z, t)v(z, t)dt. (B.3.66)

b.3.2 Forward dynamics

We want to obtain the dynamics of the unnormalized filtering density

p̃f (z, t) := E
[
1(Z(t) = z)G[0,t]

]
(B.3.67)

and its normalized counterpart pf (z, t).

In the unnormalized case, we can straightforwardly compute the differential:

dp̃f (z, t) = E
[
d
(
1(Z(t) = z)G[0,t]

)]
(B.3.68)

= E
[
d1(Z(t) = z)G[0,t] + 1(Z(t) = z)dG[0,t] + d1(Z(t) = z)dG[0,t]

]
.

The indicator derivative can be readily expressed via the MJP generator,

E[d1(Z(t) = z)] = E

[∑
z′∈Z

Λ(z, z′, t)1(Z(t) = z)dt

]
. (B.3.69)

Acknowledging furthermore that dt · dy(t) = 0, we obtain (with theG-differential evaluated
analogously to Eq. (B.3.61)) the Zakai equation:

dp̃f (z, t) = E
[
d1(Z(t) = z)G[0,t] + 1(Z(t) = z)dG[0,t]

]
=
∑
z′∈Z

Λ(z′, z, t)p̃f (z
′, t)dt+ E

[
1(Z(t) = z)f(y(t), z(t))⊤D−1(z(t), t)

]
dy(t)

=
∑
z′∈Z

Λ(z′, z, t)p̃f (z
′, t)dt+ p̃f (z, t)f(y(t), z(t))

⊤D−1(z(t), t)dy(t). (B.3.70)
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To derive the dynamics of the respective normalized quantity

pf (z, t) =
E
[
1(Z(t) = z)G(y[0,t], Z[0,t])

]
E
[
G(y[0,t], Z[0,t])

] ,

consider its denominator. Notice here that

dlnE
[
G[0,t]

]
=

dE
[
G[0,t]

]
E
[
G[0,t]

] − 1

2

tr
{
dE
[
G[0,t]

]
dE
[
G[0,t]

]⊤}
E
[
G[0,t]

]2 . (B.3.71)

The quantity dE[G] is precisely given by Eq. (B.3.70) upon replacing the indicator by a constant,
1(Z(t) = z)→ 1:

dE
[
G[0,t]

]
= E

[
G[0,t]f(y(t), z(t))

⊤D−1(z(t), t)
]
dy(t). (B.3.72)

As dy(t)dy(t)⊤ = D(z(t), t)dt, we find upon inserting this into Eq. (B.3.71)

dlnE
[
G[0,t]

]
=

E
[
G[0,t]f(y(t), z(t))

⊤D−1(z(t), t)
]

E
[
G[0,t]

] dy(t)

− 1

2

E
[
G[0,t]f(y(t), z(t))

⊤D−1(z(t), t)
]
D−1(z(t), t)E[D−1(z(t), t)f(y(t), z(t))]

E
[
G[0,t]

]2 dt.

(B.3.73)

Notice that the terms on the right-hand side are of the same form as the Radon-Nikodym
derivativeG, cf. Eq. (B.3.61). We can write

E[G] = exp

{∫ t

0

E
[
Gf⊤D−1

]
E[G]︸ ︷︷ ︸
=:ϖ⊤

dy(s)− 1

2

∫ t

0

E
[
Gf⊤D−1

]
D E[D−1fG]

E[G]2︸ ︷︷ ︸
ϖ⊤D−1ϖ

ds

}
, (B.3.74)

where, for clarity, we restate with arguments:

ϖ(t) =
E
[
G(y[0,t], Z[0,t])f(y(t), Z(t))

⊤D(Z(t), t)−1
]

E
[
G(y[0,t], Z[0,t])

] . (B.3.75)

Inserting this into the above normalizer expression for pf (z, t), we arrive at

pf (z, t) = E

[
1(Z(t) = z) exp

{∫ t

0

(
f⊤(y(s), Z(s))D(Z(s))−1 −ϖ

)
(dy(s)−ϖ(s))

−1

2

∫ t

0

(
f⊤(y(s), Z(s))−ϖ(s)

)
D(Z(s))−1 (f(y(s), Z(s))−ϖ(s)) ds

}]
. (B.3.76)

In the same way as in the above derivation of the Zakai equation, one can compute the differentials
for this expression, yielding the Kushner-Stratonovich equation

dpf (z, t) =
∑
z′∈Z

Λ(z′, z, t)pf (z, t)dt

+ pf (z, t)
(
f(y(t), z − f̄(y, t))

)⊤
D(z, t)−1

(
dy(t)− f̄(y, t)

)
, (B.3.77)

where f̄(y, t) :=
∑

z∈Z f(y, z(t))pf (z, t).
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b.3.3 Smoothing dynamics

To obtain the dynamics of the unnormalized smoothing distribution

dp̃s(z, t) = v(z, t)dp̃f (z, t) + p̃f (z, t)dv(z, t) + dp̃f (z, t)dv(z, t),

the only missing ingredient is the cross term, for which we find

dp̃f (z, t)dv(z, t) = −p̃f (z, t)v(z, t)f(y(t), z)⊤D−1(t)f(y(t), z)dt.

With these individual results, we finally obtain the dynamics as

p̃s(z, t) = v(z, t)dp̃f (z, t) + p̃f (z, t)dv(z, t) + dp̃f (z, t)dv(z, t)

= v(z, t)

(∑
z′∈Z

Λ(z′, z, t)p̃f (z
′, t)dt+ p̃f (z, t)f(y(t), z)

⊤D−1(z, t)dy(t)

)

+ p̃f (z, t)

(
−v(z, t)f(y, z)⊤D−1(z, t)dy(t)−

∑
z′

v(z′, t)Λ(z, z′, t)dt

+ v(z, t)f(y, z)⊤D−1(t)f(y, z)dt
)

− p̃f (z, t)v(z, t)f(y(t), z)⊤D−1(z, t)f(y(t), z)dt

= v(z, t)
∑
z′

Λ(z′, z, t)p̃f (z
′, t)dt−

∑
z′

v(z′, t)Λ(z, z′, t)p̃f (z, t)dt.

b.4 experimental details

b.4.1 Synthetic data generation

The 1D synthetic data are generated with the following parameters; note that we provide z-
dependent parameters as vectors in the 1D case, where, e.g.,A(z) = Az .

πz0 = (1, 0)⊤ A = (−0.5,−0.5)⊤

µ0 = 0 b = (1,−1)⊤

Σ0 = 0.1 D = (0.1, 0.1)⊤

Λ =

(
−0.2 0.2
0.2 −0.2

)
, Σx = 0.05

(B.4.78)

The 2D synthetic data are generated from

πz0 = (1, 0)⊤ A =

(
−0.1 1.4
−2.6 0.6

)
,

(
0.6 −1.4
2.6 0.6

)
µ0 = (1, 0)⊤, (−1, 0)⊤ b = (1, 0)⊤, (−1, 0)⊤

Σ0 =

(
0.49 0
0 0.49

)
D =

(
0.49 0
0 0.49

)
Λ =

(
0.3 0
0 0.3

)
, Σx =

(
0.05 0
0 0.05

)
(B.4.79)

The same observation model parameterization was used for both modes z.
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b.4.2 Hyperparameter settings

When performing inference, we initialize the distribution hyperparameters empirically. To this
end, we run k-means with the number of modes |Z| on the data and obtain empirical cluster
means µz and covariances Σz. While we make use of µz, we do not utilize Σz, however, as it
does not contain information about the temporal evolution about the process. Instead, we
re-compute Σz as an empirical estimate of the quadratic variation of the process:

Σz =

∑N
i=1 1(z(ti) = z)

∆x⊤
i ∆xi

∆ti∑N
i=1 1(z(ti) = z)

.

In the following, we denote by z(ti) the k-means cluster assignment of observation i at time
point ti.

initial conditions The MJP initial Dirichlet hyperparameters

αz = 1 + δz(t1).

The SDE initial NIW hyperparameters

η =

∑
z µz

|Z|
, λ = 1, Ψ = 0.1

∑
z Σz

|Z|
, κ = n+ 2.

Note that - as done, e.g., in [96] - we use a heuristic downscaling of the empirical covariances as
they contain contributions by the measurement noise, the process covariance as well as the drift.
Also, κ = n+ 2 is the smallest scaling parameter that makes the IW distribution well defined.

mjp rates In the 1D case, we compute the number of total observed transitions in the
k-means trajectory,Ntrans and set the Gamma hyperparameters as

s = Ntrans, r = 1.

As we have non-stationary dynamics in the 2D example, we here simply set

s = r = 1.

sde drift parameters In the 1D example, we compute

Âz =
N∑
i=1

1(z(ti) = z)
xi+1 − xi
xi+1 − ti

,

b̂z = −Âzµz,

(B.4.80)

where the latter is because the set point for a linear system is found via

f(y) = Ay + b = A(y + A−1b).
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Hence f(y) = 0 if y = −A−1b, and we demand

µz = −A−1z b ⇒ bz = −Azµz.

With this, the MN hyperparameters

Mz = [Âz, b̂z], Kz = 1n+1.

In the 2D example, we follow the same procedure, but set manually

Âz = −12, Kz = 0.00113,

with the 2- and 3-dimensional identity matrices.

sde dispersion In the 1D example, we setD(z) = 0.1Σz, in the 2D example (due to the
much larger variability)D(z) = 0.05Σz with a heuristic downscaling as above.

observation covariance Lastly,

Ψx = 0.5Σz λDz = n+ 2

in the 1D and
Ψx = 0.0025Σz λDz = n+ 2

in the 2D case.
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c.1 alternative derivation of the hybrid process kl divergence

To obtain DKL[Q || P] for two MJP-SSDE processes, consider discretized versions of the continu-
ous processes on a regular time grid, t ∈ {0, h, 2h, . . . ,K · h = T} for some small h, where we
aim to take the limit h→ 0 of the resulting expressions. Abbreviating Yk = Y (k · h) andZk

analogously, we have the discretized paths {Yk, Zk}k∈{0,1,...,K}. For these joint paths, one can
explicitly write down the probability density functions: we have

q(y[0,K], z[0,K]) = q(y0, z0)
K∏
k=1

q(yk, zk | yk−1, zk−1),

p(y[0,K], z[0,K]) = p(y0, z0)
K∏
k=1

p(yk, zk | yk−1, zk−1).

Insertion into the KL divergence yields

DKL[q || p] = DKL[q
0 || p0]

+
K∑
k=1

∑
z0,...,zK

∫ (
q(y0, z0)

k∏
i=1

q(yi, zi | yi−1, zi−1) ln
q(yi, zi | yi−1, zi−1)
p(yi, zi | yi−1, zi−1)

)
dy0 · · · dyk,

(C.1.1)

where
DKL[q

0 || p0] =
∑
z0

∫
q(y0, z0) ln

q(y0, z0)

p(y0, z0)
dy0 (C.1.2)

129
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denotes the KL divergence of the initial distributions.

Any of theK summands from the second term can be simplified as

∑
z0,...,zK

∫ (
q(y0, z0)

k∏
i=1

q(yk, zk | yk−1, zk−1)

)
ln
q(yk, zk | yk−1, zk−1)
p(yk, zk | yk−1, zk−1)

dy0 · · · dyK

=
∑

zk−1,zk

∫
q(yk, zk | yk−1, zk−1)q(yk−1, zk−1) ln

q(yk, zk | yk−1, zk−1)
p(yk, zk | yk−1, zk−1)

dyk−1dyk

=
∑

zk−1,zk

∫
q(yk | zk, yk−1, zk−1)q(zk | yk−1, zk−1)q(yk−1, zk−1)(
ln
q(yk | zk, yk−1, zk−1)
p(yk | zk, yk−1, zk−1)

+ ln
q(zk | yk−1, zk−1)
p(zk | yk−1, zk−1)

)
dyk−1dyk. (C.1.3)

The model structure further implies

q(zk | yk−1, zk−1) = q(zk | zk−1),

as there is no feedback from the Y - to theZ-process. All summands hence decompose into an
SSDE and an MJP contribution.

ssde-kl contribution Inspecting the first part of Eq. (C.1.3) and utilizing again the
expansion (cf. Appendix B.1.2)

q(zk | zk−1) = δzk,zk−1
+ Λ̃zk−1,zkh+ o(h),

we have∑
zk−1,zk

∫
q(yk | yk−1, zk−1)

(
δzk,zk−1

+ Λ̃zk−1,zkh+ o(h)
)

· q(yk−1, zk−1)
(
ln
q(yk | yk−1, zk−1)
p(yk | yk−1, zk−1)

)
dyk−1dyk

=
∑

zk−1,zk

∫
q(yk | yk−1, zk−1)δzk,zk−1

q(yk−1, zk−1)

(
ln
q(yk | yk−1, zk−1)
p(yk | yk−1, zk−1)

)
dyk−1dyk

+
∑

zk−1,zk

∫
q(yk | yk−1, zk−1)Λ̃zk−1,zkh

(
ln
q(yk | yk−1, zk−1)
p(yk | yk−1, zk−1)

)
dyk−1dyk + o(h).

Employing furthermore the Euler-Maruyama approximation

q(yk | zk, yk−1, zk−1) = N (yk | yk−1 + g(yk−1, zk−1, (k − 1)h)h,D(zk−1)h)

and analogously for p(yk | zk, yk−1, zk−1), we find for the log-fraction

ln
q(yk | yk−1, zk−1)
p(yk | yk−1, zk−1)

=
− 1

2h
∥yk − yk−1 − g(yk−1, zk−1, (k − 1)h) · h∥2D−1

− 1
2h
∥yk − yk−1 − f(yk−1, zk−1, (k − 1)h) · h∥2D−1

=
h

2
· ∥g(yk−1, zk−1, (k − 1)h)− f(yk−1, zk−1, (k − 1)h)∥2D−1
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with the shorthand ∥x∥2A := x⊤Ax. This ratio does not depend on the time step k, but only
k − 1; consequently, zk, yk can be marginalized out.

Note that the Gaussian normalizing prefactor (2π) k
2 |D|− 1

2 is the same for both distributions
and hence cancels; if Q and P had different dispersionsDQ andDP, this cancellation would not
occur and the KL would diverge [106]. This is a reflection of the fact that the laws of two SDEs
with different dispersions are singular with respect to each other. Taking the limit K → ∞,
h→ 0 withK · h = T yields an integral expression:∫ T

0

∑
z

∫
q(y, z, t)

1

2
∥g(y, z, t)− f(y, z, t)∥2D−1 dydt

=
1

2

∫ T

0

E
[
∥g(Y (t), Z(t), t)− f(Y (t), Z(t), t)∥2D−1

]
dt.

mjp-kl contribution As the second term of Eq. (C.1.3) does not depend on the Y -
process, it is simply the KL divergence between two MJPs. Its derivation is analogous to the one
presented above and can be found, e.g., in [42].

c.2 optimizing the variational parameters

We provide here the explicit gradients with respect to all variational parameters. We have

∂Aq(z,t)L = −1

2
∂Aq(z,t) E

[
∥g − f∥2D−1

]
− λ⊤(z, t)µ(z, t)− 2Ψ(z, t)Σ(z, t)

= −qZ(z, t)D−1
(
Ā(z, t)(µ(z, t)µ⊤(z, t) + Σ(z, t)) + b̄(z, t)µ⊤(z, t)

)
− λ⊤(z, t)µ(z, t)− 2Ψ(z, t)Σ(z, t).

(C.2.4)

Similarly, we find

∂bq(z,t)L = −∂bq(z,t)
1

2
E
[
∥g − f∥2D−1

]
− λ(z, t)

= −qZ(z, t)D−1
(
Ā(z, t)µ(z, t) + b̄(z, t)

)
− λ(z, t).

(C.2.5)

Finally,

∂Λ̃zz′ (t)
L = −∂Λ̃zz′ (t)

 ∑
z′∈Z\z

{
Λ̃(z, z′, t) ln

Λ̃(z, z′, t)

Λ(z, z′, t)

}
− (Λ̃(z, t)− Λ(z, t))


+ ν(z, t)qZ(z, t)− ν(z′, t)qZ(z, t)

= qZ(z, t)

(
− ln

Λ̃zz′(t)

Λzz′
+ ν(z, t)− ν(z′, t)

)
.
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The gradients with respect to the initial conditions result from Pontryagin’s maximum principle
[126, 127] as

∂µ(z,0)L = ∂µ(z,0)DKL

[
Q0
∥∥ P0

]
+ λ(z, 0) = 0,

∂Σ(z,0)L = ∂Σ(z,0)DKL

[
Q0
∥∥ P0

]
+Ψ(z, 0) = 0,

∂qZ(z,0)L = ∂qZ(z,0)DKL

[
Q0
∥∥ P0

]
+ ν(z, 0) = 0.

(C.2.6)

In principle, one could use these expressions to find closed-form solutions for the initial pa-
rameters. A direct reset of the parameters may however cause numerical instabilities in the
forward-backward sweeping algorithm. We hence utilize the same gradient ascent update scheme
as above.

We assume a Gaussian prior initial distribution, i.e. p(y, 0 | z) = N (y | µ0
p(z),Σ

0
p(z)), and for

the presented variational ansatz we have an initial variational distribution q(y, 0 | z) = N (y |
µ(z, 0),Σ(z, 0)), which is also Gaussian. This yields

DKL

[
Q0

Y |Z
∥∥ P0

Y |Z
]
= DKL

[
N (y | µ(z, 0),Σ(z, 0))

∥∥ N (y | µ0
p(z),Σ

0
p(z))

]
=

1

2

{
ln
|Σ0

p(z)|
|Σ(z, 0)|

+ tr
(
Σ0

p(z)
−1Σ(z, 0)

)
+
(
µ0
p(z)− µ(z, 0)

)
Σ0

p(z)
−1 (µ0

p(z)− µ(z, 0)
)⊤

+ n
}
.

We readily compute

∂µ(z,0)DKL

[
Q0

Y,Z

∥∥ P0
Y,Z

]
= qZ(z, 0)Σ

0
p(z)

−1(µ(z, 0)− µ0
p(z)),

∂qZ(z,0)DKL

[
Q0

Y,Z

∥∥ P0
Y,Z

]
= ∂qZ(z,0)

{
DKL

[
Q0

Z

∥∥ P0
Z

]}
+ DKL

[
Q0

Y |Z
∥∥ P0

Y |Z
]
.

(C.2.7)

For the covariance matrix Σ(z, 0) and the initial distribution qZ(z, 0), we require additional
constraints. The covariance Σ(z, 0) needs to be positive semi-definite, which can be enforced by
a reparameterization as Σ(z, 0) = CC⊤. We compute the gradient of

L (C) = q(z, 0)
{
DKL

[
N (y | µ(z, 0), CC⊤)

∥∥ N (y | µ0
p(z),Σ

0
p(z))

]
+tr

(
Ψ(z, 0)⊤CC⊤

)}
utilizing the PyTorch package for automatic differentiation and optimization [220].

The initial distribution qZ(z, t) needs to fulfil
∑

z qZ(z, 0) = 1, so we optimize an augmented
cost function

L (Q0
Z , ξ) = DKL

[
Q0

Z

∥∥ P0
Z

]
+
∑
z

qZ(z, 0)DKL

[
Q0

Y |Z∥P0
Y |Z
]

+
∑
z

ν(z, 0)qZ(z, 0) + ξ(1−
∑
z

qZ(z, 0)),
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where ξ(z) are Lagrange multipliers. We can again eliminate the constraints by enforcing a
reparameterization [221] as qZ(z, 0) = qz for z ∈ {1, . . . , k−1}, with k = |Z| and qZ(k, 0) =
1−

∑k−1
z=1 qz , yielding the unconstrained problem

L (q1, . . . , qk−1) =
k−1∑
z=1

qz ln
qz

p(z, 0)
+ (1−

k−1∑
z=1

qz) ln
1−

∑k−1
z=1 qz

p(k, 0)

+
k−1∑
z=1

qz DKL

[
Q0

Y |Z=z

∥∥ P0
Y |Z=z

]
+ (1−

k−1∑
z=1

qz)DKL

[
Q0

Y |Z=k

∥∥ P0
Y |Z=k

]
+

k−1∑
z=1

ν(z, 0)qz + ν(k, 0)(1−
k−1∑
z=1

qz).

We find

∂qzL = ln
qz

p(z, 0)
+ 1− ln

1−
∑k−1

z=1 qz
p(k, 0)

− 1

+ DKL

[
Q0

Y |Z=z

∥∥ P0
Y |Z=z

]
− DKL

[
Q0

Y |Z=k

∥∥ P0
Y |Z=k

]
+ ν(z, 0)− ν(k, 0)

= ln
qzp(k, 0)

(1−
∑k−1

z=1 qz)p(z, 0)
(C.2.8)

+ DKL

[
Q0

Y |Z=z

∥∥ P0
Y |Z=z

]
− DKL

[
Q0

Y |Z=k

∥∥ P0
Y |Z=k

]
+ ν(z, 0)− ν(k, 0).

c.3 optimizing the prior parameters

The parameters of the original process P can as well be learned straightforwardly by optimizing
the full Lagrangian via gradient ascent.

prior mjp transition rates With the usual shorthand Λzz′(t) = Λ(z, z′, t), we
compute the prior transition rates (which we in all cases assume to be time-homogeneous,
Λzz′(t) = Λzz′):

∂L

∂Λij

= − ∂

∂Λij

∫ T

0

∑
z

qZ(z, t)
∑

z′∈Z\z

{
Λ̃zz′(t) ln

Λ̃zz′(t)

Λzz′

}
− (Λ̃(z, t)− Λ(z))dt

=
∂

∂Λij

∫ T

0

∑
z

qZ(z, t)

 ∑
z′∈Z\z

{
Λ̃zz′(t) lnΛzz′ − Λzz′′

} dt

=
1

Λij

∫ T

0

qZ(i, t)Λ̃ij(t)dt−
∫ T

0

qZ(i, t)dt. (C.3.9)
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Setting this to zero yields

Λij =

∫ T

0
qZ(i, t)Λ̃ij(t)dt∫ T

0
qZ(i, t)dt

. (C.3.10)

observation covariance To determine the observation covariance, we compute

∂L

∂Σ−1x

= − ∂

∂Σ−1x

E

[∑
i

ln p(xi | yi)

]
(C.3.11)

= −N
2
Σx +

N∑
i=1

1

2

∑
z∈Z

qZ(z, ti)
[
(xi − µ(z, ti))(xi − µ(z, ti))⊤ + Σ(z, ti)

]
,

yielding

Σx =
1

N

N∑
i=1

∑
z∈Z

qZ(z, ti)
[
(xi − µ(z, ti))(xi − µ(z, ti))⊤ + Σ(z, ti)

]
. (C.3.12)

dispersion The gradient with respect to the dispersion

∂DL = ∂D
1

2

∫ T

0

E
[
∥g − f∥2D−1

]
dt+ ∂D

∑
z

∫ T

0

tr{Ψ⊤(z, t)D}dt

=
1

2

∫ T

0

∂D E
[
∥g − f∥2D−1

]
dt+

∫ T

0

∑
z∈Z

Ψ(z, t)dt

=
1

2
−D−⊤

(∫ T

0

∑
z∈Z

qZ(z, t)E[(Ā(z, t)y + b̄)(Ā(z, t)y + b̄)⊤|z]

)
D−⊤ (C.3.13)

+

∫ T

0

∑
z∈Z

Ψ(z, t)dt.

Note that the more general mode-dependent dispersion D(z) are found in the same way by
omitting the summation over z. The prior initial conditions µ0

p(z),Σ
0
p(z), p(z, 0) trivially

minimize their KL divergence to the variational initial conditions by equality.
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prior drift parameters The gradients with respect to the model slope and intercept
A(z) and b(z) are found as

∂A(z)L = ∂A(z)
1

2

∫ T

0

E
[
∥g − f∥2D−1

]
dt (C.3.14)

=
1

2

∫ T

0

q(z, t)∂A(z)

{
tr{Ā(z, t)⊤D−1Ā(z, t)Σ(z, t)}

= −
∫ T

0

qZ(z, t)
(
D−1Ā(z, t)

(
Σ(z, t) + µ(z, t)µ⊤(z, t)

)
+

D−1b̄(z, t)µ⊤(z, t)
)
dt,

∂b(z)L = ∂b(z)
1

2

∫ T

0

E
[
∥g − f∥2D−1

]
dt (C.3.15)

=

∫ T

0

qZ(z, t)D
−1(Ā(z, t)µ(z, t) + b̄(z, t))

c.4 experimental details

c.4.1 Synthetic data generation

Figure 4.3 is generated with the same parameter settings as the 1D example in Chapter 3. Figure 4.2
is the same except for the slopeA, which here isA(z) = (−1,−1)⊤.

Figure 4.4 is generated using slightly different parameters:

πz0 = (1, 0)⊤ A = (−1.5,−1.5)⊤

µ0 = (1,−1)⊤ b = (1.5,−1.5)⊤

Σ0 = (0.2, 0.2)⊤ D = (0.25, 0.25)⊤

Λ =

(
−0.2 0.2
0.2 −0.2

)
, Σx = 0.1

(C.4.16)

In the multi-well diffusion examples, we set Σobs = 0.0225 (in 1D), and Σobs =

(
0.2 0
0 0.2

)
in 2D.

c.4.2 Hyperparameter initialization

We again utilize k-means to initialize the inference algorithm to obtain empirical cluster means
µz . As before, we compute

Σz =

∑N
i=1 1(z(ti) = z)

∆x⊤
i ∆xi

∆ti∑N
i=1 1(z(ti) = z)

as an empirical estimate of the quadratic variation. As the VI algorithm in principle depends on
the initial conditions, we initialize the variational distributions similar to the hyperparameters of
the parameter distributions used in Chapter 3.
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Parameter Learned value
A(z) (1.11, 0.94, 0.99, 0.99)⊤

b(z) (0.88,−0.25, 0.24,−0.68)⊤

Λ


−0.69 0.14 0.48 0.07
0.07 −1.39 0.45 0.87
1.11 0.87 −2.33 0.35
0.04 1.44 0.50 −1.98


D [0.015, 0.001, 0.003, 0.01]

µp(z, 0) [0.99,−0.24, 0.25,−0.69]
Σp(z, 0) [0.002, 0.009, 0.014, 0.025]
p(z, 0) [0.92, 0, 0.007, 0.073]

table c.1: Parameters learned from 1D, four-well SDE data

initial conditions The initial variational MJP marginals are set as

qZ(z, 0) = 0 + δz(t0).

The GP counterparts
µ(z, 0) = µz, Σ(z, 0) = 0.2Σz,

which, for the first iteration, also are set to be the mean and covariance function of the full GPs.
We employ heuristic downscaling as before, cf. Appendix B.4 and [96].

mjp rates We set
Λ̃(z, z′) = |Z|−1 ∀z′ ̸= z.

sde drift parameters In 1D, we proceed as before in Appendix B.4. In 2D, we initialize
manually

Aq(z) = −1

to ensure numerical stability, as starting with non-contractive dynamics would cause the system
to diverge right at the start.

sde dispersion The dispersionD(z) is set to the GP covariance Σ(z, 0).

observation covariance Lastly, Σx = 0.5Σ(z, 0).
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Parameter Learned value

Az

(
−0.91 0.03
−0.05 −1.02

)
,
(
−1.07 −0.04
−0.09 −0.99

)
,
(
−1.01 0.04
−0.02 −1.05

)
bz

(
0.98
0.34

)
,
(
−0.83
0.10

)
,
(
−0.02
1.16

)
Λ

−0.75 0.29 0.46
0.26 −0.75 0.49
0.80 0.77 −1.57


D(z)

(
0.048 −0.003
−0.003 0.077

)
,
(

0.088 −0.035
−0.035 0.092

)
,
(

0.077 −0.004
−0.004 0.040

)
µp(z, 0)

(
1.18
0.11

)
,
(
−0.41
−0.01

)
,
(
−0.54
0.03

)
Σp(z, 0)

(
0.263 0.058
0.058 0.269

)
,
(
0.029 0.002
0.002 0.030

)
,
(
0.090 0.002
0.002 0.090

)
p(z, 0) [0.021, 0.173, 0.81]

table c.2: Parameters learned from 2D, three-well SDE data
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d.1 variational message passing

To derive the variational message passing algorithm, first recall that the full sequence distribution
reads

q(z[1,T ]) ∝ exp{E[ln p(z1) + ln p(x1 | θ, z1)

+
T∑
t=2

ln p(zt | Πzt−1) + ln p(xt | Θzt)]}. (D.1.1)

Define
α(z, 1) := exp{E[ln p(z, 1)] + E[ln p(x(1) | Θz)]}

to find

q(z2, 2) ∝
∑
z1

α(z1, 1) exp {E [ln p(z2 | Πz1) + ln p(x(2) | Θz2)]}

∑
z3,...,zT

exp

{
E

[∑
t=3

ln p(zt | Πzt−1) + ln p(x(t) | Θzt)

]}
∝ exp {E [ln p(x(2) | Θz2)]}

∑
z1

α(z1, 1) exp{ln p(z2 | Πz1)}

∑
z3,...,zT

exp

{∑
t=3

ln p(zt | Πzt−1) + ln p(x(t) | Θzt)

}
.

(D.1.2)
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Accordingly, by defining the forward-messages

α(z, t) := exp{E[ln p(x(t) | Θz)]}
∑
z′

α(z′, t− 1) exp{E[ln p(z | Πz′)]} (D.1.3)

this yields

q(z, t) ∝ α(z, t)
∑

zt+1,...,zT

exp

{∑
t=3

ln p(zt | Πzt−1) + ln p(x(t) | Θzt)

}
. (D.1.4)

Repeating this procedure from the last time step T backwards with the backward-messages

β(z, t) :=
∑
zt+1

exp{E[ln p(x(t+ 1) | Θzt+1)]}β(zt+1, t+ 1) exp{E[ln p(zt+1 | Πzt)]}

with initial value β(z, T ) = 1∀z, one can compute the marginals as q(z, t) ∝ α(z, t)β(z, t).

The involved expectations can all be evaluated in closed form. First,

E[ln p(z | Πz′)] = E[lnΠz′,z]

= ψ(κβz + ξδz′z)− ψ

(
ξ + κ

∑
k

βk

)
,

(D.1.5)

with the digamma function ψ(x) = d
dx

ln Γ(x).

The expectations with respect to Θ

E[ln p(x | Θz)] = −n ln
(√

2π
)
− 1

2
E [ln |Σz|]−

1

2
E[(x− µz)

⊤Σ−1z (x− µz)], (D.1.6)

where x ∈ Rn. Notice that for readability, we did not introduce additional symbols to denote
the random variables of which µ,Σ are realizations of; we use the same symbol for both and the
expectation is to be taken over both of these random variables.

The expectation of the log-determinant of an IW distributed quantity is known to be [34]

E[ln |Σ|] = ψn

(ν
2

)
+ n ln(2) + ln |Ψ−1|

=
n∑

i=1

ψ

(
ν − i+ 1

2

)
+ n ln(2) + ln |Ψ−1|.

(D.1.7)

Secondly, one can straightforwardly compute

E[(x− µz)
⊤Σ−1z (x− µz)] = Eµz [(x− µz)

⊤ EΣz [Σ
−1
z ](x− µz)]

= 2x⊤ EΣz [Σ
−1
z ]x− x⊤ EΣz [Σ

−1
z ]Eµz [µz]

− 2Eµz [µ
⊤
z ]EΣz [Σ

−1
z ]x+ Eµz ,Σz [µ

⊤
z Σ
−1
z µz]

(D.1.8)

The means are normally distributed, µz ∼ N (µ0,z,Σz/λz), hence Eµz [µz] = µ0,z. The
expectation with respect to Σz is the expectation of the inverse of an IW distributed random
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variable; consequently, it is just the expectation of the Wishart distributed random variable
Σ−1z ∼W(Ψ−1z , νz): EΣz [Σ

−1
z ] = νzΨ

−1
z . We get

E[(x− µz)
⊤Σ−1z (x− µz)] = νzx

⊤Ψ−1z x− νzx⊤Ψ−1z µ0,z

− νzµ⊤0,zΨ−1z x+ Eµz ,Σz [µ
⊤
z Σ
−1
z µz]

= νzx
⊤Ψ−1z x− νzx⊤Ψ−1z µ0,z

− νzµ⊤0,zΨ−1z x+

(
n

λz
+ νzµ

⊤
0,zΨ

−1
z µ0,z

) (D.1.9)

where an identity for quadratic forms was used: if x ∈ Rn is a random variable and C ∈ Rn×n

is symmetric,Cij = Cji, then x⊤Cx is called a quadratic form and

E[x⊤Cx] = tr(CΣ) + µ⊤Cµ (D.1.10)

where µ,Σ are the mean and covariance of x. Note also that due to symmetry µ⊤Ψ−1x =(
x⊤Ψ−1µ

)⊤
= x⊤Ψ−1µ. This completes the computation of the expected log-likelihood

Eq. (D.1.6) and hence, the variational forward and backward messages.

d.2 estimation of the top-level stick-breaking measure

Because of non-conjugacy between p(β) and p(π | β), one cannot readily write down a closed-
form variational posterior q(β). Is is customary to instead utilize a point estimate, which we
obtain by gradient optimization of the ELBO with respect to β. The following derivation follows
the one presented in [158] and is reiterated here for completeness. Consider

∂β L = ∂β E [ln p(β,Π)]

= ∂β

{
ln p(β) +

K∑
z=1

E[ln p(Πz | β)]

}
, (D.2.11)

where the expectation is taken with respect to the variational distributions q(πz | ηz,1, ..., ηz,K+1).
For any partition of the domain, we have - by definition of the DP -

p(πz | β) = Dir(κβ1, κβ2, . . . , κβz + ξ, . . . , κβK , κβK+1).

where βK+1 denotes the “rest” of the stick-breaking measure, βK+1 = 1−
∑K

k=1 βk. There-
fore,

E [ln p(Πz | β, κ, ξ)] = ln
Γ
(
κ
∑

z′

(
βz′ +

ξ
κ
δz,z′

))∏
z′ Γ(κβz′ + ξδz,z′)

+
K∑

z′=1

(κβz′ + ξδz,z′ − 1)E[lnΠz,z′ ],

where the latter expectation is known to be

E[ln πz,z′ ] = ψ(ηz,z′)− ψ

(∑
z′′

ηz,z′′

)
.
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Notice that

κ

(
K+1∑
z=1

βz +
ξ

κ
δz′,z

)
= κ+ ξ.

With this,

∂βk
E[ln p(Πz | β)] = ∂βk

[
ln Γ(κ+ ξ)−

K+1∑
j=1

ln Γ (κβj + ξδz,j)

+
K+1∑
j=1

(βσj + ξδz,j − 1)

(
ψ(ηz,j)− ψ

(∑
j

ηz,j

))]

= −κψ (κβk + ξδz,k) + κψ(κβK+1) + κψ(ηz,k)− κψ

(∑
j

ηz,j

)

− κ

(
ψ(ηz,K+1)− ψ

(∑
j

ηz,j

))
= κ (−ψ (κβk + ξδz,k) + ψ(κβK+1) + ψ(ηz,k)− ψ(ηz,K+1)) .

Summation yields

K∑
z=1

∂βk
E[ln p(Πz | β, κ, ξ)] = κ

(
K∑
z=1

[−ψ (κβk + ξδz,k) + ψ(ηz,k)− ψ(ηz,K+1)]

+Kψ(κβK+1)
)
. (D.2.12)

The gradient of the log-prior can be computed by back-transforming the stick-breaking measure:
given the stick-breaking variables βi = ϵi

∏
j<i(1− ϵj), we can invert this relation to arrive at

ϵi(β) =
βi

1−
∑

j<i βj
.

Applying the rule for transformation of probability densities one obtains

ln p(β) = ln pϵ(ϵ) + ln

∣∣∣∣ ∂ϵ∂β
∣∣∣∣ (D.2.13)

with

ln pϵ(ϵ) =
K+1∑
k=1

((γ − 1) ln(1− ϵk)− B(1, γ))

and the normalizer of the Beta distribution, B(1, γ) = Γ(1)Γ(γ)/Γ(1 + γ). The Jacobian
determinant can be evaluated by noting that

(
∂ϵ

∂β

)
ij

=


0 if i < j

1
1−

∑
k<i βk

if i = j
−βi

(1−
∑

k<i βk)2
if i > j

. (D.2.14)
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Hence,

∂βz ln p(β) = 2
∑
i≥z

ln
1

1−
∑

j<i βj
− (γ − 1)

∑
i≥z

ln
1

1−
∑

j≤i βj
, (D.2.15)

and Eq. (D.2.11) is given by summation of Eqs. (D.2.12) and (D.2.15).

d.3 experimental details

d.3.1 Synthetic data generation

In the synthetic HMM examples, we generate I = 10 independent latent sequences zi[1,T ] con-
sisting of T = 1000 time points each. In the three well example, we generate 10 trajectories of
length T = 10000 time points each.

d.3.2 Hyperparameter initialization

The variational marginals q(z, t) are initialized as

q(z, t)
i.i.d.∼ Uniform(0, 1)∀ z (D.3.16)

with subsequent normalization.

The parameters of the transition distributions q(πz) are set up by drawing oneK+1-dimensional
stick-breaking measure β and setting

ηz,1, ..., ηz,K+1 = κβ + ξδz

for all z. For all experiments γ = κ = 0.6. The prior P0 is initialized empirically, which is
common in the field and which can be understood as a type of Empirical Bayes initialization
[222]; specifically, we set the NIW parameters ν and λ as well as the stickiness parameters ξ to 1%
of the number of data points:

ν = λ = ξ = 0.01 · IT. (D.3.17)

This is justified by the fact that the variational updates forν andλ are on the order of magnitude of
the number of data points, see Eq. (5.4.29). This translates to the assumption that the quantities
of interest are on the order of magnitude of the observed data. This is particularly intuitive in
the case of stickiness, because this means that we are interested in processes with sojourn times
that are observable in the data. Much smaller sojourn times could not be properly resolved and
longer ones not observed at all.

The NIW scale and mean for data x ∈ Rn are initialized as

Ψ =
1

IT − 1

T∑
t=1

I∑
i=1

(xi,t − x̄)(xi,t − x̄)⊤(νk − n− 1),

µ0 = x̄ =
1

IT

∑
i,t

xi,t,

(D.3.18)
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for all z. For x ∈ [0, 2π)n, on the other hand, we set

Ψk = 0.1 · 1n×n · (νz − n− 1)

µ0,z,i ∼ Uniform(0, 2π)
(D.3.19)

where 1n×n is the n-dimensional identity matrix and µ0,k,i denotes the i-th entry of µ0,k. This
ensures a good coverage of the [0, 2π)n space with a covariance on an order of magnitude of the
observable region.

Finally, to alleviate the initialization-dependency of the gradient ascent scheme, we utilize a
multi-start approach: the random initialization of q(z, t) and B = β creates different initial
conditions in each VI instance. We hence run several instances of the inference algorithm until
convergence and then select the one with the maximal ELBO score as the overall optimum.



NOTAT ION

symbol description

N The set of natural numbers.
N>i, N≥i The set of natural numbers with elements greater (or equal) than i.
R The set of real numbers.
R>t, R≥t The set of real numbers with elements greater (or equal) than t.
∆n The n-dimensional probability simplex; i.e.,

∆n = {x ∈ Rn :
∑n

i=1 xi = 1 ∧ xj ≥ 0, ∀j ∈ {1, . . . , n}}.
1(·) The indicator function.
1n×n The n-dimensional identity matrix.
δx(·) = δ(x− ·) The Dirac delta function/point measure at x.
δx,x′ The Kronecker delta function.
f(x) A function f of a variable x.
J [f ] A functional J of a function f .
∂x(·) The gradient with respect to x.
P(·) A probability measure.
p(·) A probability density function or probability mass function.
E[·] The expectation operator.
DKL[p(x) ∥ q(x)] The Kullback-Leibler divergence between p(x) and q(x).
L[q] The evidence lower bound dependent on the distribution q.
Gam(· | α, β) Probability density function of the gamma distribution with shape pa-

rameter α and rate parameter β.
Cat(· | π) Probability mass function of the categorical distribution with probabil-

ity vector π
Exp(· | λ) Probability density function of the exponential distribution with rate

parameter λ.
Uniform(· | a, b) Probability density function of the uniform distribution with lower

bound a and upper bound b.
N (· | µ,Σ) Probability density function of the (multivariate) normal distribution

with mean µ and variance/covariance matrix Σ.
Dir(· | α) Probability density function of the Dirichlet distribution with concen-

tration parameter vector α.
Mult(· | π) Probability mass function of the multinomial distribution with proba-

bility vector π.
GEM(γ) Probability measure of the Griffiths–Engen–McCloskey process with

concentration parameter γ.
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ACRONYMS

BvM bivariate von Mises
càdlàg continue à droite, limite à gauche
CAVI coordinate-ascent variational

inference
CTMC continuous-time Markov chain
DNA deoxyribonucleic acid
DS dynamical system
DTMC discrete-time Markov chain
DP Dirichlet process
EL Euler-Lagrange
ELBO evidence lower-bound
FPE Fokker-Planck equation
FRET fluorescence resonance energy

transfer
GFP green fluorescent protein
GLDS Gaussian linear dynamical system
GP Gaussian process
HDP hierarchical Dirichlet process
HDP-HMM hierarchical Dirichlet process

hidden Markov model
HME hybrid master equation
HMM hidden Markov model
IW inverse-Wishart
KBE Kolmogorov backward equation
KFE Kolmogorov forward equation
KL Kullback-Leibler

LDS linear dynamical system
MAP maximum a posteriori
MCMC Markov chain Monte Carlo
MD molecular dynamics
MJP Markov jump process
MN Matrix-Normal
MSM Markov state model
NIW Normal-inverse-Wishart
ODE ordinary differential equation
PCCA Perron-cluster cluster analysis
PDE partial differential equation
PDF probability density function
PMF probability mass function
RNA ribonucleic acid
RNAP RNA polymerase
RTS Rauch-Tung-Striebel
SDE stochastic differential equation
SDS stochastic dynamical system
SLDS switching linear dynamical system
SSDE switching stochastic differential

equation
TL translation
TX transcription
VEM variational expectation

maximization
VI variational inference
vM von Mises
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