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ABSTRACT 

For the assessment of existing masonry structures, a safety concept is required that takes into 

account the differences compared to the design of new masonry structures, such as the possi-

bility of material testing, high variability of material properties, and a potentially reduced tar-

get reliability level. Therefore, a method for determining characteristic values, structure-

specific partial factors, and assessment values for the compressive strength of existing mason-

ry is developed. 

For this purpose, the influence of spatially variable material properties within a masonry wall 

is investigated first: Based on experiments on clay brick masonry, a finite element model is 

developed and then used in Monte Carlo simulations for quantifying the effect of spatial ma-

terial variability on the probability distribution of the load-bearing capacity of masonry walls 

under compression. The statistical uncertainty resulting from small sample sizes in material 

testing is considered through Bayesian statistical procedures. Prior distributions for unit, mor-

tar, and masonry compressive strength are modelled utilising a test database for existing solid 

clay brick masonry. Finally, the findings are implemented in a practice-oriented method for 

determining assessment values of masonry compressive strength, which is validated through 

reliability analyses. 

 

ZUSAMMENFASSUNG 

Für die Nachrechnung bestehenden Mauerwerks ist ein Sicherheitskonzept erforderlich, wel-

ches die Unterschiede zur Bemessung von Neubauten aus Mauerwerk, wie die Möglichkeit 

der Materialprüfung, hohe Streuungen der Materialeigenschaften und ein gegebenenfalls re-

duziertes Zielzuverlässigkeitsniveau, berücksichtigt. Es wird daher eine Methode zur Ermitt-

lung charakteristischer Werte, bauwerksspezifischer Teilsicherheitsbeiwerte und Nachrech-

nungswerte für die Druckfestigkeit von Bestandsmauerwerk entwickelt. 

Hierzu wird zunächst der Einfluss einer räumlichen Streuung der Materialeigenschaften in-

nerhalb einer Mauerwerkswand untersucht: Aufbauend auf experimentellen Untersuchungen 

an Ziegelmauerwerk wird ein Finite-Elemente-Modell entwickelt, das für Monte-Carlo-

Simulationen zur Quantifizierung der Auswirkung räumlicher Materialstreuungen auf die 

Wahrscheinlichkeitsverteilung der Tragfähigkeit von Mauerwerkswänden unter Druckbean-

spruchung verwendet wird. Die aus kleinen Stichprobenumfängen bei der Materialprüfung 

resultierende statistische Unsicherheit wird mittels Verfahren der bayesschen Statistik berück-

sichtigt. A-priori-Verteilungen für die Stein-, Mörtel- und Mauerwerksdruckfestigkeit werden 

hierzu auf Grundlage einer Prüfdatenbank für bestehendes Vollziegelmauerwerk ermittelt. 

Die Erkenntnisse münden schließlich in eine praxisgerechte Methode zur Bestimmung von 

Nachrechnungswerten der Mauerwerksdruckfestigkeit, welche durch Zuverlässigkeitsanaly-

sen validiert wird. 
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NOTATIONS AND ABBREVIATIONS 

The most important symbols, notations, and abbreviations are defined below. Symbols that 

are not listed here are explained in the text. 

Frequent Indices 

1a Reference period of one year 

50a Reference period of 50 years 

a Assessment value 

b Unit (brick) 

d Design value 

j Mortar (joint) 

k Characteristic value 

ln Parameter related to the natural logarithms of the single values of a 

sample or the natural logarithm of a random variable 

m Mean value 

ma Masonry 

spat Parameter related to spatial variability (= unit-to-unit variability) 

wall Parameter related to wall-to-wall variability 

Notations for Probability Distributions 

Inv-χ2
 (ν, s2) Scaled inverse-χ2 distribution with ν degrees of freedom and scale s2 

LN (μY, σY
2) Log-normal distribution with parameters μY and σY

2 

N (μ, σ2) Normal distribution with mean μ and variance σ2 

tν t-distribution with ν degrees of freedom 

W (k, λ) Weibull distribution with shape parameter k and scale parameter λ 

χν
2 χ2-distribution with ν degrees of freedom 

Latin Characters 

A Cross-sectional area 
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VI 

a, b, c Parameters in approximate equations for the influence of spatially 

variable material properties on the resistance of a masonry wall 

Cov (X,Y) Covariance of random variables X and Y 

E Load effect 

E (X) Expected value of random variable X 

Ema Modulus of elasticity of masonry 

F (x) Cumulative distribution function of random variable X 

F –1(p) Inverse cumulative distribution function 

f (x) Probability density function of random variable X 

fb Unit compressive strength 

fbt Unit tensile strength 

fj Mortar compressive strength 

fma Masonry compressive strength 

ft Tensile strength of mortar joint 

G Permanent load effect 

g (X) Limit state function of the random variables X 

h Height 

K Parameter of the power equation for masonry compressive strength 

k Stress-strain parameter (total to elastic strain at peak stress) 

L (θ|x) Likelihood of the parameters θ given the outcome x 

l Length 

m Arithmetic mean 

m′ Prior hyperparameter (one of two parameters for the distribution of 

the expectation of a normal random variable for a given variance, 

equivalent to the arithmetic mean of a hypothetical prior test series) 

m″ Posterior hyperparameter resulting from an update of m′ 

mln,b Arithmetic mean of the logarithms of unit compressive strength 

mln,j Arithmetic mean of the logarithms of mortar compressive strength 

n Sample size, number of particular items 
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VII 

n′ Prior hyperparameter (one of two parameters for the distribution of 

the expectation of a normal random variable for a given variance, 

equivalent to the sample size of a hypothetical prior test series) 

n″ Posterior hyperparameter resulting from an update of n′ 

P (A) Probability of event A 

Pf Probability of failure 

p Level of significance, probability for specifying a p fractile 

Q Variable load effect 

R Resistance 

Ra,hom Assessment value of the resistance assuming homogeneity 

Rdet Resistance obtained deterministically with mean material properties 

rx,y Sample correlation coefficient of realisations of X and Y 

s′2 Prior hyperparameter (one of two parameters for the distribution of 

the variance of a normal random variable, equivalent to the sample 

variance of a hypothetical prior test series) 

s″2 Posterior hyperparameter resulting from an update of s′2 

s Sample standard deviation 

s2 Sample variance 

sln,b
2
 Sample variance of the logarithms of unit compressive strength 

sln,j
2
 Sample variance of the logarithms of mortar compressive strength 

sln,ma
2
 Sample variance of the logarithms of masonry compressive strength 

t Thickness 

V Sample coefficient of variation 

Var (X) Variance of X 

Vb Sample coefficient of variation of unit compressive strength 

Vj Sample coefficient of variation of mortar compressive strength 

Vma Sample coefficient of variation of masonry compressive strength 

X Random variable 

X Random vector 

x Realisation of the random variable X 
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VIII 

x Realisation of the random vector X 

x̅ Arithmetic mean of realisations of X 

Greek Characters 

α Parameter of the power equation for masonry compressive strength 

αX Sensitivity factor of the random variable X 

β Parameter of the power equation for masonry compressive strength 

β Reliability index 

βt   Target reliability index 

Γ (∙) Gamma function 

γEd, γEa Partial factor for the uncertainty of the load effect model 

γG Partial factor for permanent actions 

γQ Partial factor for variable actions 

γM Partial factor for the resistance of masonry 

γm Partial factor for the resistance of masonry without consideration of 

resistance model uncertainty 

γRd, γRa Partial factor for the uncertainty of the resistance model 

ε Strain 

εf Compressive strain at reaching compressive strength 

ζ Factor for considering effects of sustained loading on masonry com-

pressive strength 

θ Parameter of a probability distribution 

θ̂  Estimate of parameter θ 

*θ̂  Bootstrap estimate of parameter θ 

θE Uncertainty factor of load effect model 

θf Uncertainty factor of strength model 

θR Uncertainty factor of resistance model 

λ Material-related slenderness 

μb Expected value of unit compressive strength 

μj Expected value of mortar compressive strength 
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μln,b Expected value of the logarithm of unit compressive strength 

μln,j Expected value of the logarithm of mortar compressive strength 

μln,ma Expected value of the logarithm of masonry compressive strength 

μma Expected value of masonry compressive strength 

μX Expected value of random variable X 

ν Degrees of freedom 

ν′ Prior hyperparameter (one of two parameters for the distribution of 

the variance of a normal random variable, equivalent to the degrees 

of freedom in calculating the sample variance of a hypothetical prior 

test series) 

ν″ Posterior hyperparameter resulting from an update of ν′ 

ρspat Spatial coefficient of correlation 

ρX,Y Correlation coefficient of the random variables X and Y 

σ Stress 

σln,b
2
 Variance of the natural logarithm of unit compressive strength 

σln,j
2
 Variance of the natural logarithm of mortar compressive strength 

σln,ma
2
 Variance of the natural logarithm of masonry compressive strength 

σX Standard deviation of random variable X 

σX 
2 Variance of random variable X 

υb Coefficient of variation of unit compressive strength 

υE Coefficient of variation of the elastic modulus of masonry 

υj Coefficient of variation of mortar compressive strength 

υma Coefficient of variation of masonry compressive strength 

υt Coefficient of variation of the tensile strength of the mortar joint 

υX Coefficient of variation of random variable X 

Φ (z) Standard normal cumulative distribution function of Z 

Φ–1
 (p)  Inverse standard normal cumulative distribution function 

Φred Capacity reduction factor for masonry walls addressing slenderness 
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φ (z) Standard normal probability density function of Z 
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Other Abbreviations 

APFM Adjusted partial factor method 

CC Consequence class 

CoV Coefficient of variation 

CDF Cumulative distribution function 

DVM Design value method 

FORM First-order reliability method 

LHS Latin hypercube sampling 

LVDT Linear variable displacement transducer 

MCS Monte Carlo simulations 

MLE Maximum likelihood estimation 

NA National Annex 

PDF Probability density function 

SCBM Solid clay brick masonry 
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1 INTRODUCTION 

1.1 Motivation 

The refurbishment, conversion, and extension of existing buildings are steadily gaining im-

portance. Almost 70 % of the revenue in housing construction in Germany is currently at-

tributable to activities on existing buildings (BBSR 2020). To save resources and avoid 

CO2 emissions in the production of building materials, increasing the service life of existing 

buildings is necessary. If the conversion or extension of a building increases the load effects 

on existing structural members, structural safety must be re-evaluated. Current standards 

for verifying structural safety, most notably the Eurocodes, primarily address the design of 

new structures. Consequently, many issues concerning the assessment of existing structures 

are not standardised, which leads to a lack of practical guidance and potentially poor deci-

sion-making. Therefore, closing these regulatory gaps through standards or guidelines that 

explicitly target the assessment of existing structures is a matter of great urgency. 

Among other issues, the reliability concept underlying the assessment of existing structures 

is an important aspect. In some cases, the partial factors calibrated for the design of new 

structures are inappropriate for existing structures. In the assessment of existing structures, 

the actual material properties, including their variability, can be measured, allowing for the 

consideration of additional information to determine structure-specific partial factors for 

material properties or member resistances. Furthermore, the appropriate target reliability 

level for the assessment of existing structures may be lower than for the design of new 

structures, which tends to lead to a reduction of suitable partial factors (Diamantidis 2001; 

DBV-Heft 24 2013; Steenbergen et al. 2015). The application of partial factors calibrated 

for the design of new structures can lead to inappropriate decisions concerning existing 

structures: If, on the one hand, the partial factors are too low due to a high material varia-

bility in a particular existing structure, safety deficits may not be identified; on the other 

hand, if the partial factors calibrated for new structures are too high, the assessment may 

wrongly indicate the need for expensive upgrading measures, which can lead to the decision 

to demolish existing structures and build new ones instead. 

For existing concrete structures, concepts for determining modified partial factors have al-

ready been developed; see, for example, DBV-Merkblatt “Modifizierte Teilsicherheitsbei-

werte für Stahlbetonbauteile” (2013) and fib bulletin 80 (2016). However, a large share of 

existing buildings, especially residential buildings, are made of masonry. In 2019, masonry 

was the predominant building material for over 70 % of completed residential buildings in 

Germany (Destatis 2020). Concerning the entire existing building stock in Germany, the 

exterior walls of almost 90 % of residential buildings are made of masonry (Cischinsky and 
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Diefenbach 2018, data from 2016). A method is hence required for modifying partial fac-

tors addressing the special features of masonry construction. 

One such feature of masonry is its composition of masonry units (i.e. bricks or blocks) and 

mortar, which leads to the speciality that the material properties of masonry can be tested 

either on the composite material masonry or on the two components separately. Another 

speciality is the old age of many masonry buildings: 12 % of the existing residential build-

ings in Germany were built until 1918, and another 12 % between 1919 and 1948 (Cis-

chinsky and Diefenbach 2018). Many of the existing masonry buildings were thus built 

before the introduction of the first German brick standard DIN 105 (1922) or the first Ger-

man structural design standard for masonry DIN 1053 (1937). Among artificial units for 

masonry construction, solid clay bricks dominated until about 1950 (Loga et al. 2015). With 

the manufacturing techniques that were common until the beginning of the 20th century, it 

was not possible to precisely achieve specified strengths of clay bricks, which resulted in a 

high variability of their strength (Franke and Goretzky 2004; Neumann 2017). 

The high variability from brick to brick, as well as between mortar joints, leads to an inho-

mogeneity of masonry, that is, spatial variability of material properties within existing ma-

sonry walls. This raises the question of how spatial variability affects the resulting load-

bearing capacity. Goretzky (2000) demonstrated that the variability of material properties 

within a masonry wall leads to a reduction of the mean load-bearing capacity (i.e. a lower 

load-bearing capacity than obtained by a deterministic calculation based on mean material 

properties as input values). Regarding the reliability of existing masonry walls and suitable 

partial factors, lower quantiles of the load-bearing capacity are relevant. Hence, to deter-

mine suitable partial factors γM for the resistance of existing masonry, the relationship be-

tween the probability distribution of the spatially variable material properties and the re-

sulting probability distribution of the load-bearing capacity must be known. 

Another challenge in the assessment of existing masonry structures are small sample sizes 

in the testing of the material properties. For economic and structural reasons and, in some 

cases, to preserve cultural heritage, the number of specimens taken from an existing struc-

ture is usually kept to a minimum, which leads to statistical uncertainty regarding the tested 

material properties. Statistical uncertainty must thus be addressed when characteristic val-

ues of material properties and structure-specific partial factors are determined based on test 

results. The statistical uncertainty in the assessment of a particular structure can be reduced 

by considering information from the previous assessment of similar structures. Mathemat-

ically, this can be achieved by modelling prior distributions for the stochastic parameters 

of material properties. By applying Bayesian statistical methods, these prior distributions 

can be incorporated into the assessment procedure, as described in Diamantidis (2001), 

Caspeele and Taerwe (2012), and ISO 2394 (2015), for example. 
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For the verification of existing masonry structures under compression loading, assessment 

values of masonry compressive strength are needed. These values are equivalent to design 

values as defined in EN 1990 (2010) for the verification of new structures. In principle, 

assessment values are hence obtained by dividing characteristic values by respective partial 

factors. The term “assessment value” emphasises that the assessment of existing structures 

differs from the design of new structures. It is used in the draft standard prEN 1990-2 (2021) 

for the assessment of existing structures, and it is also adopted in this thesis. 

1.2 Research Objective 

The goal of the following investigations is the development of a method to determine suit-

able assessment values of masonry compressive strength based on available test results. 

The method to be developed includes the determination of both characteristic values for 

masonry compressive strength and structure-specific partial factors for the resistance of 

masonry under predominant compression loading. 

As the method will consider both the influence of the spatial variability of material proper-

ties and the statistical uncertainty from limited sample sizes, two questions must be an-

swered: 

1. What is the influence of the spatial variability of material properties on the probability 

distribution of the load-bearing capacity of masonry walls under compression? 

2. How can statistical uncertainty be considered in the assessment of existing masonry 

structures, and what are suitable prior distributions for reducing statistical uncertainty 

in the estimation of stochastic parameters for masonry compressive strength? 

The focus of these investigations is on unreinforced, solid clay brick masonry. 

The final method will enable practising engineers to obtain assessment values of masonry 

compressive strength depending on a specified target reliability level as well as the type, 

number, and results of conducted compression tests. 

1.3 Thesis Organisation 

Chapter 2 presents the basics of statistics and structural reliability as well as selected topics 

regarding the reliability assessment of existing structures. Chapter 3 then provides relevant 

background knowledge concerning masonry construction in general, the load-bearing be-

haviour of masonry under compression, related testing procedures, and the design and as-

sessment of masonry structures. 
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Chapter 4 illustrates the procedure and results of experimental investigations on the stress 

redistribution capability of solid clay brick masonry walls with local weaknesses. The ex-

perimental results serve as a basis for validating a finite element model, which is described 

in Chapter 5. 

Thereafter, in Chapter 6, the validated finite element model is utilised to perform Monte 

Carlo simulations of masonry walls under compression loading considering spatially vari-

able material properties. In various parameter studies, the relationship between the proba-

bility distribution of the material properties and the resulting distribution of the wall re-

sistance is quantified. 

Chapter 7 first presents a Bayesian framework for statistically evaluating the results of 

compression tests on specimens extracted from existing masonry. This framework allows 

for the inclusion of prior information on the typical variability of unit, mortar, and masonry 

compressive strength. For modelling corresponding prior distributions, a database with re-

sults of compression tests on unit and mortar specimens extracted from existing masonry 

buildings is set up. After a description of the database, suitable hyperparameters of the prior 

distributions are determined. 

In Chapter 8, the method for determining characteristic values, partial factors, and assess-

ment values for masonry compressive strength is finally developed. First, the fundamental 

approach of the method, the underlying assumptions and the application conditions are de-

scribed. Then, the model uncertainties to be taken into account are examined. The different 

types of present uncertainties (i.e. spatial material variability, statistical uncertainty, and 

model uncertainty) are combined through stochastic simulations. Based on the simulation 

results, simplifications are made to attain a practice-oriented method. The chapter closes 

with a validation of the developed method by means of reliability analyses. 

Chapter 9 presents the developed method in its final, practice-oriented form. In addition to 

a summary that provides the equations required to determine characteristic values, partial 

factors, and assessment values for masonry compressive strength in engineering practice, 

diagrams are presented that allow for a graphical application of the proposed method. Fur-

thermore, typical characteristic-to-mean ratios and partial factors resulting from the pro-

posed method are displayed, and suggestions for alternative assessment procedures in the 

absence of test results are made. 

Finally, a summary of the thesis and an outlook on further research needs are provided in 

Chapter 10. 
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2 BASICS OF STATISTICS AND STRUCTURAL RELIABILITY 

2.1 Introduction 

This chapter introduces selected topics of statistics, structural reliability theory, and the 

reliability assessment of existing structures. The illustration is limited to concepts that are 

essential in the further course of this thesis. For more information, the reader is referred to 

the standard literature covering the broad topic of structural reliability, such as Spaethe 

(1992), Melchers and Beck (2018), and Nowak and Collins (2013), as well as textbooks for 

the related background in probability and statistics, for example Hedderich and Sachs 

(2020), Wasserman (2011), and Gelman et al. (2013). 

Section 2.2 introduces the two main types of uncertainty. Then, Section 2.3 presents the 

essential concepts in the stochastic modelling of random variables, including information 

about the stochastic moments of random variables, probability distribution types, the mod-

elling of spatially variable properties, parameter estimation methods, goodness-of-fit test-

ing, and the choice of populations for statistical evaluation. In Section 2.4, the basic con-

cepts of Bayesian statistics and the Bayesian updating of probability distribution parameters 

are presented. Section 2.5 addresses the topic of structural reliability, covering the general 

concept, methods of reliability analysis, the calibration of partial factors for structural de-

sign standards and system reliability. Finally, Section 2.6 presents some of the specialities 

related to the reliability of existing structures. In addition to illustrating the general differ-

ences between the design of new structures and the assessment of existing ones, the topic 

of appropriate target reliability levels for existing structures, concepts for modified partial 

factors, and approaches for considering statistical uncertainty are treated. 

2.2 Aleatory and Epistemic Uncertainty 

Uncertainties are the reason for having to deal with the probability of structural failure. 

Uncertainties are present both in the design phase of new structures and in the assessment 

of existing structures, and they can be categorised into two types: aleatory and epistemic 

uncertainty (Faber 2005; Der Kiureghian and Ditlevsen 2009). The term “aleatory” comes 

from the Latin word “alea”, meaning die (plural: dice). Aleatory uncertainties are inherent 

in a physical process and cannot be reduced by the modeller of the engineering problem. 

The situation is equivalent to rolling the dice, where the person rolling the dice cannot 

increase the odds of obtaining a six. The physical process can be the construction of a 

building, including the production of the construction materials, for example. In this case, 

the structural engineer cannot reduce the variability of material properties. Aleatory uncer-

tainties in the design of structures include the variability of material properties, geometrical 

dimensions, imposed loads, and climatic actions. 
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In contrast, the word “epistemic” has its origin in the ancient Greek word “ἐπιστήμη”, which 

means knowledge or understanding. Epistemic uncertainties are caused by a lack of 

knowledge and can be reduced by extending this knowledge. In engineering, epistemic un-

certainties arise due to limited data, leading to statistical uncertainty; the scattering of test-

ing methods, causing testing uncertainty; and the use of models that are, by definition, a 

simplification of reality and thus introduce model uncertainty. The engineer can reduce 

these epistemic uncertainties by gaining more data, using more accurate testing methods, 

and applying more refined models. 

Both types of uncertainty can be described by random variables, as explained in Section 

2.3. In the case of aleatory uncertainties, these random variables usually represent actual 

physical properties. In contrast, auxiliary, non-physical variables are typically introduced 

to model epistemic uncertainties (Der Kiureghian and Ditlevsen 2009). Such a non-physical 

variable can be a model uncertainty factor θ, for example, representing the ratio of experi-

mental results to model predictions. Statistical uncertainty can be treated by Bayesian meth-

ods, in which probability distribution parameters are modelled as random variables (see 

Section 2.4). 

The differentiation between aleatory and epistemic uncertainty helps to point out one of the 

fundamental differences between the design of new structures and the assessment of exist-

ing structures: Since an existing structure has already been built, random properties of the 

structure, such as material strengths or geometrical dimensions, have been realised. In other 

words: The dice have been rolled. Therefore, these uncertainties shift from aleatory to ep-

istemic with the realisation of the building. In quantitative terms, the uncertainty after the 

realisation is initially still the same as before. However, the uncertainty now exists only due 

to a lack of knowledge, which can be reduced by measuring geometrical dimensions or 

testing material properties, for example. Hence, the uncertainties associated with the exist-

ing structural properties depend on the available information. If, in addition to the 

knowledge from the design phase, information from measurements is obtained, then the 

uncertainty is smaller than in the design phase. However, design and construction docu-

ments might not be available in the assessment phase. In this case, the epistemic uncertainty 

associated with the structural properties can be much higher than the respective aleatory 

uncertainty during structural design. 

2.3 Stochastic Modelling of Random Variables 

2.3.1 General Definitions and Stochastic Moments 

All processes and phenomena in nature and technology are subject to randomness. There-

fore, quantities in nature and technology are random variables, which are variables whose 

values depend on the outcome of a random experiment. More formally, a random variable 
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is a function assigning a real number to each outcome (Wasserman 2011). Random varia-

bles are hereafter denoted by the capital letter X. A possible realisation of the random var-

iable (i.e. a random value of X) is denoted by the small letter x. If the possible realisations 

are countable, the random variable is a discrete random variable. Each possible realisation 

x of a discrete random variable possesses a certain probability P (X = x) of occurrence. In 

contrast, a continuous random variable can take values from an uncountable set: Any value 

within a defined interval can be the realisation x. Thus, the probability P (X = x) of observ-

ing a particular value x is zero; non-zero probabilities can only be given for intervals. 

All random variables can be described by their cumulative distribution function (CDF) 

FX (x), which gives the probability P that X takes a value smaller than or equal to a value x: 

   XF x P X x   Eq. 2-1 

The probability that a continuous random variable X takes a value x in the interval (a, b) is 

defined by its probability density function (PDF) fX (x): 

   
b

X

a

P a X b f x dx     Eq. 2-2 

Due to the above definition, integrating a PDF over its whole domain yields one. Probability 

density functions are usually chosen according to certain probability distribution types, 

some of which are introduced in Section 2.3.4. The CDF of a continuous random variable 

can be received through the integration of its PDF:  

   
x

X XF x f t dt


   Eq. 2-3 

The inverse FX
 −1 (p) of the CDF is also called the “quantile function” as it allows for cal-

culating p fractiles of the respective random variable (i.e. values xp that are not exceeded 

with probability p). In the course of this thesis, for brevity, the CDF and PDF are usually 

denoted as F and f, respectively, instead of FX and fX. 

Random variables can be characterised by their stochastic moments. The i-th moment of a 

random variable is defined as 

   
i

i Xμ x c f x dx





   Eq. 2-4 

If stochastic moments are not further specified, c equals zero. For the i-th central moment, 

c is equal to the mean. The mean, which is also called the expectation or expected value 

and is denoted by E (X) or μX, is the first moment and is hence defined as 
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   E X XX μ x f x dx





    Eq. 2-5 

The mean is a measure of the central tendency of X (Melchers and Beck 2018). Other cen-

tral tendency measures are the median, which is the 50 % fractile, and the mode, which is 

the location of the maximum of the PDF. 

A measure for the spread of a random variable is given by its variance, denoted Var (X) or 

σX
2. The variance is the second central moment (i.e. the second moment about the mean): 

     
22Var X X XX σ x μ f x dx





    Eq. 2-6 

The square root of the variance is the standard deviation σX. If the standard deviation is 

related to the mean, the coefficient of variation (CoV) υX is received, which is a dimension-

less measure of the spread: 

X
X

X

σ
υ

μ
  Eq. 2-7 

The skewness γ1 is a measure of the asymmetry of a probability distribution. It is defined 

as the third central moment, standardised through division by σX
3: 

   
3

1 3

X X

X

x μ f x dx

γ
σ










 
Eq. 2-8 

If the skewness γ1 is positive, the distribution is right-tailed (i.e. the right tail of the distri-

bution is longer). For γ1 < 0, the opposite is true. The skewness of symmetrical distributions 

equals zero. The standardised fourth central moment is the kurtosis. Instead of the kurtosis 

itself, the excess kurtosis γ2 is often given. The excess kurtosis is defined as the kurtosis of 

the considered probability distribution minus the kurtosis of a normal distribution, which 

equals three: 

   
4

2 4
3

X X

X

x μ f x dx

γ
σ







 


 
Eq. 2-9 

The kurtosis can be interpreted as the tail extremity of a probability distribution (Westfall 

2014). If γ2 > 0, then outliers (i.e. extreme values strongly deviating from the mean) are 

more likely than for a normally distributed random variable with equal variance. 
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2.3.2 Multivariate Distributions 

In many cases, the joint probability distribution (or multivariate distribution) of n random 

variables X1, X2,…, Xn is of interest. The vector X containing all the random variables Xi is 

a random vector (or multivariate random variable). If the random variables Xi are continu-

ous, X can be described by the joint PDF fX (x1, x2,…, xn). The probability that the random 

outcomes xi fall within particular intervals (ai, bi) is given by 

   
2 1

2 1

1 1 1 1 2 1 2... ... , ,..., ...
n

n

b b b

n n n n n

a a a

P a X b a X b f x x x dx dx dx          X
 Eq. 2-10 

By definition, integrating fX (x1, x2,…, xn) over the entire domain of all variables Xi yields 

one. If only two continuous random variables X and Y are of interest, their bivariate distri-

bution can be described by the joint PDF fX,Y (x, y). The corresponding marginal densities 

fX and fY, which are the PDFs of the single random variables, are obtained by 

   , ,( ) , and ( ) ,X X Y Y X Yf x f x y dy f y f x y dx

 

 

    Eq. 2-11 

For general multivariate distributions, marginal densities can be computed accordingly. 

The random variables X and Y are independent, if and only if 

 , , ( ) ( ) for all  and X Y X Yf x y f x f x x y  Eq. 2-12 

If Y = y is observed, the conditional distribution of X given Y = y is obtained as 

 , ,
( )

( )

X Y

X Y

Y

f x y
f x y

f y
  Eq. 2-13 

The covariance is a measure of how strong the linear relationship between two random 

variables X and Y is. It is defined as 

         Cov , E ,X Y X YX Y X μ Y μ x μ y μ f x y dxdy

 

 

           Eq. 2-14 

The covariance Cov (X, X) of a random variable with itself is the variance of X. If the co-

variance is standardised with regard to the standard deviations σX and σY, the correlation 

coefficient ρ is received: 

 
,

Cov ,
X Y

X Y

X Y
ρ

σ σ
  Eq. 2-15 

If a perfect linear relationship between X and Y exists, given by Y = a X + b, then ρ = 1 for 

a > 0 and ρ = −1 for a < 0. If X and Y are independent, the covariance and the correlation 
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coefficient are zero. However, a correlation coefficient of zero does not automatically imply 

that two variables are independent. 

2.3.3 Functions of Random Variables 

A random variable Y is often a function of other random variables. The probability distri-

bution of this function Y (X1, X2,…, Xn) might not be easy to determine, and the distribution 

of Y is not necessarily of a specific probability distribution type in general cases. Exceptions 

for the latter (i.e. cases where the probability distribution type of the function Y is known) 

are pointed out in Section 2.3.4. However, in many cases, the mean and variance of Y can 

be determined analytically (Melchers and Beck 2018). 

If Y is a linear function of random variables Xi defined by 

0

1

n

i i

i

Y a a X


   Eq. 2-16 

then the mean and variance of Y can be obtained as 

 2 2 2

0

1 1 1

and Cov ,
i i

n n n n

Y i X Y i X i j i j

i i j i i

μ a a μ σ a σ a a X X
   

       Eq. 2-17 

If Y is the product of two independent random variables X1 and X2, which means 

1 21 2 ,and 0X XY X X ρ   Eq. 2-18 

then the mean μY and CoV υY are 

1 2 1 2 1 2

2 2 2 2 2andY X X Y X X X Xμ μ μ υ υ υ υ υ     Eq. 2-19 

For small CoVs, the term υX1

2 υX2

2 is negligible. 

Suppose that Y is a more complex function for that an analytical solution for the mean and 

variance is difficult or impossible to obtain. In that case, approximate solutions can be 

found utilising the respective first-order Taylor polynomial about the means of the random 

variables Xi (Melchers and Beck 2018): 

 
1 2
, ,...,

nY X X Xμ Y μ μ μ  Eq. 2-20 

 2 2 2

1 1

Cov ,
i

n n n

Y i X i j i j

i j i i

σ c σ c c X X
  

    Eq. 2-21 

1 2
, ,...,

where

X X Xn

i

i μ μ μ

Y
c

X





 Eq. 2-22 
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Due to the first-order Taylor approximation, the equations are identical to those for a linear 

combination, except for the constants ai being replaced by the factors ci, which are the 

partial derivatives of Y with respect to the corresponding Xi evaluated at the point given by 

the means. 

2.3.4 Selected Probability Distribution Types 

In this thesis, various types of probability distribution functions are used to model random 

variables. These distribution types are briefly introduced regarding definitions of their 

PDFs, corresponding distribution parameters, and typical applications. 

Normal (Gaussian) distribution 

The importance of the normal distribution results from the central limit theorem, which 

states that the distribution of a sum of n independent and identically distributed random 

variables X1, X2,…, Xn converges towards a normal distribution for n → ∞. The random 

variables Xi can have any distribution as long as their mean μ and variance σ2 exist (Was-

serman 2011). Since many phenomena in nature result from random effects adding up, they 

are approximately normally distributed. The PDF of a normal distribution is 

 
2

2

1 1
exp ,

22

x μ
f x

σπσ

  
   

   

x ∈ ℝ Eq. 2-23 

where x can take any real number. The two parameters of the normal distribution are the 

mean μ and the variance σ2, where μ ∈ ℝ and σ > 0. The PDF of a normal distribution is 

symmetric. Consequently, the skewness γ1 is zero. 

The normal distribution with μ = 0 and σ = 1 is called standard normal distribution. Stand-

ard normal random variables are usually denoted by Z, and their PDF and CDF are denoted 

by φ (z) and Φ (z), respectively. There is no closed-form solution for the CDF of a normal 

distribution. Since values of Φ (z) are commonly given in tables in probability and statistics 

literature, the CDF is often expressed via the standard normal CDF: 

  Φ ,
x μ

F x
σ

 
  

 
x ∈ ℝ Eq. 2-24 

Due to the central limit theorem, the linear combination of normal random variables is also 

normally distributed. 

Log-normal distribution 

Normally distributed random variables can take negative values x, which can be a disad-

vantage when negative values do not make physical sense. In such cases, a log-normal 
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distribution can be used instead. If X is log-normally distributed, denoted as X ~ LN, then 

Y = ln X is normally distributed, written as Y ~ N. Therefore, the PDF is given by 

 
2

2

ln1 1
exp , 0

22

Y

YY

x μ
f x x

σπσ

  
    
   

 Eq. 2-25 

The two parameters of the log-normal distribution are the mean μY and the variance σY
2 of 

the related normal random variable Y. If the mean μX and the variance σX
2 of the random 

variable X are known, μY and σY
2 can be calculated by 

2ln 0.5Y X Xμ μ σ   Eq. 2-26 

 
2

2 2

2
ln 1 ln 1X

Y X

X

σ
σ υ

μ

 
    

 
 Eq. 2-27 

For υX < 0.2, σY is approximately equal to υX. Due to the central limit theorem as well as the 

relationship between the log-normal and the normal distribution, the product of n positive, 

independent, and identically distributed random variables converges towards a log-normal 

distribution for n → ∞. Hence, phenomena resulting from a product of random effects can 

be well described by a log-normal distribution, and the product of log-normal variables is 

also log-normally distributed. Further analogies between normal and log-normal distribu-

tions are described in Limpert et al. (2001). In contrast to the symmetric PDF of the normal 

distribution, the log-normal PDF has a positive skewness γ1 (i.e. it is right-skewed; see Fig. 

2-1). 

 

Fig. 2-1 Comparison of normal and log-normal distribution (left: probability density 

function, right: cumulative distribution function) 

Gumbel distribution (extreme value distribution type I) 

The maximum (and minimum) of n random variables Xi converges towards a Gumbel dis-

tribution for n → ∞ if the distribution of Xi has an exponentially decreasing tail in the di-

rection of the extreme (Gumbel 1958; Ang and Tang 1984). The normal distribution, among 
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others, fulfils this condition. As a result, the Gumbel distribution is well suited for model-

ling random variables that are the maximum of several random variables. A typical example 

in structural engineering is the maximum load over a specific time period. For the distribu-

tion of maxima, the PDF and CDF are 

      exp exp ,f x a a x u a x u        x ∈ ℝ Eq. 2-28 

    exp exp ,F x a x u      x ∈ ℝ Eq. 2-29 

where the location parameter u ∈ ℝ is the mode of the distribution, and the parameter a > 0 

is a measure of the spread of the distribution. The mean μ and variance σ2 of a Gumbel 

distribution can be calculated from the distribution parameters by 

2
2

2
and

6

γ π
μ u σ

a a
    Eq. 2-30 

where γ ≈ 0.5772 is the Euler-Mascheroni constant. The skewness and excess kurtosis of a 

Gumbel distribution are γ1 ≈ 1.14 and γ2 = 2.4, irrespective of the selected parameters a and 

u. The quantile function of a Gumbel distribution is given by 

     1 1
ln ln 0.45 0.78 ln lnF p u p μ σ p

a

           Eq. 2-31 

with p being the probability that X takes a value smaller than the calculated quantile. 

The maximum of n Gumbel-distributed random variables is also Gumbel distributed, which 

is convenient if a random variable represents the maximum load for a particular reference 

period t0. If the reference period is changed to tref, the resulting random variable is Gumbel 

distributed with unchanged parameter a and thus unchanged standard deviation σ. The lo-

cation parameter uref and mean μref for the reference period tref can be obtained from the 

original parameter u0 and mean μ0 by 

ref ref
ref 0 ref 0

0 0

1
ln 0.78 ln

t t
u u μ μ σ

a t t
      Eq. 2-32 

Hence, as illustrated in Fig. 2-2, the PDF of the maximum of n Gumbel-distributed varia-

bles is obtained by shifting the PDF of the original Gumbel distribution. 

Weibull distribution (extreme value distribution type III) 

As with the Gumbel distribution, the extreme value distribution type III (EVD III) is also 

an asymptotic distribution of the maximum or minimum of many independent and identi-

cally distributed random variables Xi. The exact conditions for the random variables Xi 

leading to convergence to the EVD III are given in Gumbel (1958). In contrast to the Gum-

bel distribution, the EVD III has a limiting value in the direction of the extreme value (i.e. 
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an upper bound for maxima and a lower bound for minima). The EVD III distribution for 

the minimum of random variables is known as the Weibull distribution. In its most common 

form, it is defined with a lower limit of zero, leading to the following PDF and CDF: 

 
1

exp , 0

k k
k x x

f x x
λ λ λ

     
      

     

 Eq. 2-33 

  1 exp , 0

k
x

F x x
λ

  
     

   

 Eq. 2-34 

where λ > 0 is the scale parameter, and k > 0 is the shape parameter. Due to its background, 

the Weibull distribution is particularly suited for modelling materials or structural members 

whose failure is determined by their weakest link (Weibull 1939). The minimum of n 

Weibull-distributed random variables is also Weibull distributed. The corresponding PDF 

equals a scaled version of the original PDF (see Fig. 2-2). 

 

Fig. 2-2 Left: Probability density of the maximum of n Gumbel-distributed variables 

 Right: Probability density of the minimum of n Weibull-distributed variables 

Student’s t-distribution 

Student’s t-distribution (short: t-distribution) arises when the mean of a normal distribution 

is estimated, and the variance is unknown (see Section 2.3.6). In Bayesian statistics, the 

predictive distribution of a normal random variable with uncertain variance is a t-distribu-

tion (see Section 2.4.2). If X is t-distributed, written as X ~ tν, then the PDF is 

 
 

1
2 2

1
Γ

2
1 ,

Γ 2

νν

x
f x

νπν ν




 
      

 
x ∈ ℝ Eq. 2-35 

where Γ (∙) is the gamma function and the parameter ν > 0 is the number of degrees of 

freedom. For ν → ∞, the t-distribution is identical to the standard normal distribution. With 

decreasing ν, both the variance and the excess kurtosis γ2 increase. Hence, there is more 

weight in the tails compared to a normal distribution (see Fig. 2-3). 
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Fig. 2-3 Comparison of Student’s t and standard normal distribution (left: probability 

density function, right: cumulative distribution function) 

Chi-squared distribution 

The chi-squared distribution (or χ²-distribution) arises in the estimation of the variance of 

a normal distribution (see Section 2.3.6). If X is the sum of the squares of ν independent 

standard normal random variables, then X is χ²-distributed, written as X ~ χν
2. The PDF is 

 
 

2 1

2

1
exp , 0

2 Γ 2 2

ν

ν

x
f x x x

ν

  
   

 
 Eq. 2-36 

where the parameter ν > 0 is the number of degrees of freedom. 

Scaled inverse chi-squared distribution 

In Bayesian statistics, the scaled inverse χ²-distribution is of importance, as it is the conju-

gate prior for the variance of a normal distribution (see Section 2.4.2). If X is scaled inverse 

χ²-distributed with ν > 0 degrees of freedom and scale parameter s2 > 0, written as 

X ~ Inv-χ² (ν, s2), then the PDF of X is 

 
 

 

2

2
2

2 1

exp
2 2

, 0
Γ 2

ν

ν

νs

s ν x
f x x

ν x 

 
 
 

   
Eq. 2-37 

2.3.5 Modelling Spatial Variability 

Single random variables cannot adequately describe the material properties within struc-

tural members since this would falsely assume homogeneity (i.e. perfect correlation of these 

properties at different points). Instead, material properties vary spatially within a structural 

member. This random variation in space must be modelled if it influences the investigated 

problem. Two main approaches of modelling spatial variability are illustrated next. 
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Random fields 

A random field X (t) can be viewed as a collection of random variables (Sudret and Der 

Kiureghian 2000). At each point given by the vector t ∈ ℝn, which defines the coordinates 

of the point in n-dimensional space, X (t) is a random variable. The realisation of a random 

field, denoted by x (t), is a deterministic function assigning a specific value x to each loca-

tion t. The correlation between two random variables X (t1) and X (t2) at locations t1 and t2 

is given by the autocorrelation function ρ (t1, t2) of the random field. If a random field is 

homogeneous and isotropic, the autocorrelation function only depends on the distance be-

tween t1 and t2; that is, the correlation function is given by ρ (||t1 − t2||); see Vanmarcke 

(1983). Such a random field can be suitable for modelling the compressive strength of con-

crete within a structural member, for example. 

For many computational applications (e.g. for generating random realisations), random 

fields need to be discretised. In this context, discretisation means that the random field is 

approximated by a finite set of random variables (Sudret and Der Kiureghian 2000). If ran-

dom fields are utilised in combination with finite element simulations, an obvious approach 

is to discretise the random field according to the spatial discretisation given by the finite 

element mesh. However, other approaches can be more efficient in terms of the required 

number of random variables; see Sudret and Der Kiureghian (2000) for a comprehensive 

description of discretisation methods. If the random field is discretised at the midpoints t1, 

t2,…, tn of each of the n finite elements, the random field reduces to a random vector X 

consisting of n random variables Xi with n x n correlation matrix RXX. If the random field 

is homogeneous and isotropic, RXX can be written as 

     

   

 

1 2 1 3 1

2 3 2

3

1

1

1

symmetric 1

n

n

XX n

ρ ρ ρ

ρ ρ

ρ

   
 

  
   
 
 
 
 

t t t t t t

t t t t

R t t  Eq. 2-38 

If X (t) is a Gaussian random field (i.e. the variables at a location t are normal random 

variables), a realisation x of the random vector X can be created by first generating realisa-

tions yi of independent normal random variables Yi, which are then transformed utilising 

the matrix containing the eigenvectors of the correlation matrix RXX (Tran et al. 2015). 

Component-to-component variability 

The spatial discretisation of a structural member is sometimes naturally given, which is the 

case if the structural member itself consists of several components. Examples are a cable 

consisting of multiple wires, a truss girder composed of several members, or a masonry 

wall made of many units. In these cases, the spatial variability of material properties can 
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predominantly consist of variability from component to component. If the components are 

placed in the member without a known pattern, it is unreasonable to assume that the corre-

lation between the material properties Xi and Xj within the i-th and j-th component depends 

on their relative location to each other. However, modelling a particular material property 

within one component as independent of the same material property within another com-

ponent might also be inappropriate since the material properties of different components 

can be influenced by effects from a common source (Song and Kang 2009). If, for example, 

the components within one member are from the same production batch, the material prop-

erties of different components are correlated due to common production conditions. 

If the spatial variability between components is dominating, it can be reasonable to neglect 

spatial variability within the component and assume perfect correlation at this lower level. 

In such cases, a specific material property can be modelled by a random vector X, where 

all random variables Xi contained by the vector are mutually correlated with the same cor-

relation coefficient ρspat. For instance, Xi and Xj could be the compressive strength within 

the i-th and j-th component, respectively. The correlation matrix is given by 

spat spat spat

spat spat

spat

1

1

1

symmetric 1

XX

ρ ρ ρ

ρ ρ

ρ

 
 
 
 
 
 
 
 

R  Eq. 2-39 

Such a correlation structure can be modelled utilising a common parent variable for all Xi 

(see Song and Kang 2009; Schneider et al. 2015; Vereecken et al. 2020). This parent vari-

able represents the effects of a common source and is included in the formulation of the 

respective component properties: If X is a normal random vector with equal mean μX and 

σX for all Xi, the equi-correlated random variables Xi can be expressed as  

    2 2

spat spatwith 0, and 0, 1i i X X i XX M C μ M N ρ σ C N ρ σ     Eq. 2-40 

where M is the parent variable shared by all components within the member, and Ci is a 

variable considering the additional variability of the i-th component arising from an indi-

vidual source. The variance of the parent variable M represents the variability from member 

to member. It is equal to the covariance of two random variables Xi and Xj, describing the 

same material property within different components. In contrast, the variance of Ci repre-

sents the component-to-component variability (i.e. the spatial variability of this material 

property within the structural member). A similar approach with parent variables is usually 

employed to model the spatial correlation of imposed loads (i.e. live loads) in a building 

(see Rackwitz 1997; JCSS 2001b; Tran et al. 2017). 
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2.3.6 Parameter Estimation 

In the real world, the parameters of probability distributions are never given or known but 

must be estimated from data. Parameter estimation belongs to the field of statistical infer-

ence. The term “statistical inference” describes the process of analysing data to draw con-

clusions about the properties of the underlying probability distribution. In the following, a 

parameter is denoted by θ, and the corresponding estimator and estimate by θ̂ . The esti-

mator is the rule (usually a function) leading to a particular estimate for θ. First, some basic 

principles of parameter estimation are explained based on the parameters μ and σ2 of a 

normal distribution. In this special case, the parameters are equal to the mean and variance 

of the random variable. The mean and variance of random variables are usually estimated 

by the arithmetic mean x̅ and the sample variance s2: 

1

1 n

i

i

x x
n 

   Eq. 2-41 

 
22

1

1

1

n

i

i

s x x
n 

 

  Eq. 2-42 

The arithmetic mean of a sample is also denoted by m in this thesis. The sample coefficient 

of variation Vx (sample CoV) is then defined as 

x

s
V

x
  Eq. 2-43 

The arithmetic mean x̅, the sample variance s2, and the sample CoV Vx are statistics; that 

is, they are functions of the data x1, x2,…, xn. Since the random values xi are random out-

comes of the random variables Xi, the statistics x̅ and s² are also random outcomes. Hence, 

the estimators μ̂  = X̅ and σ̂  = S2 are random variables with a particular distribution. In the 

case of a normal distribution with given parameters μ and σ, X̅ is t-distributed and S2 is χ²-

distributed with ν = n − 1 degrees of freedom if standardised as follows: 

1n

X μ
t

S n



 Eq. 2-44 

 
2

2

12
1 n

S
n χ

σ
  Eq. 2-45 

An estimator is unbiased if its mean is equal to the true value θ; that is, E ( θ̂ ) = θ. The 

arithmetic mean and the sample variance as defined in Eq. 2-41 and Eq. 2-42 are unbiased 

estimators for the mean μ and the variance σ2. In contrast, the sample standard deviation s 

(i.e. the square root of the sample variance s2) is a biased estimator of the standard deviation 

σ. The same applies to estimating the CoV υX of a probability distribution by the sample 
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CoV Vx. Another example of an unbiased estimator is the sample covariance sx,y with re-

spect to estimating the covariance of two random variables X and Y: 

  ,

1

1

1

n

x y i i

i

s x x y y
n 

  

  Eq. 2-46 

In contrast, the corresponding sample correlation coefficient rx,y is a biased estimator of the 

true correlation coefficient ρX,Y. It is defined as 

,

,

x y

x y

x y

s
r

s s
  Eq. 2-47 

More important than being unbiased is that an estimator is consistent, which means that it 

converges to the true parameter if the sample size n is increased (Wasserman 2011). All of 

the estimators introduced above are consistent. 

The most common parameter estimation methods are the method of moments and the max-

imum likelihood method, which are briefly explained next. Both methods are frequentist 

statistical methods. Parameters can also be estimated by Bayesian procedures, as described 

in Section 2.4, including a differentiation between the two approaches. 

Method of moments 

The method of moments is the easiest and perhaps most apparent approach for estimating 

probability distribution parameters. First, the stochastic moments μj of the distribution are 

estimated by the sample moments ˆ
jμ . The j-th sample moment is defined as 

1

1
ˆ

n
j

j i

i

μ x
n 

   Eq. 2-48 

If the distribution function has k parameters, the first k stochastic moments are estimated 

by the sample moments. Since the stochastic moments can also be expressed as a function 

of the k unknown parameters of the probability distribution, k equations can be set up. Solv-

ing for the k parameters yields the parameter estimates. Most of the probability distributions 

presented in Section 2.3.4 are two-parameter distributions. In this case, the mean and the 

variance are usually estimated first. Since the mean and variance of a probability distribu-

tion can be calculated based on its parameters, the parameter estimates are given by the 

values that lead to the estimated mean and variance. 

Maximum likelihood estimation 

Although the method of moments is appealing due to its simplicity, maximum likelihood 

estimation (MLE) is more commonly used because the related estimators have more fa-

vourable properties. Since a discussion of these properties is beyond the scope of this brief 
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introduction, refer to Wasserman (2011) for more information. According to MLE, the dis-

tribution parameters are estimated by the values that maximise the likelihood. The likeli-

hood is equal to the joint probability density of the observed values xi; however, it is viewed 

as a function of the parameters θi since the data is given. The likelihood L is hence defined 

as 

   
1

n

i

i

L f x


θ x θ  Eq. 2-49 

where x is a vector containing the data x1, x2,…, xn, and the vector θ contains the parameters 

θi to be estimated. In some cases, the maximum of the likelihood function can be found 

analytically. If the analytical approach fails, the maximum of the likelihood function and 

thus the estimates for the parameters θi can be found numerically. 

Confidence intervals 

The use of confidence intervals can be helpful if the uncertainty involved in parameter 

estimation is to be quantified. Instead of giving only a point estimate (i.e. a single value for 

the parameter), an interval with a certain confidence level 1 − α is constructed. If the con-

fidence level is, for example, 95 %, the interval is called a “95 % confidence interval”. The 

confidence intervals for the mean and variance of a normal distribution are defined as fol-

lows if both mean and variance are unknown: 

Mean:  1 1, 2 1,1 2,,α n α n α

s s
C x t x t

n n
   

 
   
 

 Eq. 2-50 

Variance: 
   2 2

1 2 2

1,1 2 1, 2

1 1
,α

n α n α

n s n s
C

χ χ


  

  
  
 
 

 Eq. 2-51 

where x̅ and s2 are the arithmetic mean and the sample variance calculated from the data, 

and tν,p and χ2
ν,p are the p fractiles of the t- and χ2-distribution, respectively, with ν degrees 

of freedom. The confidence intervals as presented above directly follow from the distribu-

tion of the arithmetic mean and the sample variance as given by Eq. 2-44 and Eq. 2-45. 

The confidence level should not be misunderstood as the probability that the true value of 

the parameter lies in a constructed confidence interval. Such a statement is not possible 

since the parameter itself is not viewed as a random variable in frequentist (i.e. classical) 

statistics, and no probability statements can thus be made about it. However, a different 

interpretation is possible: In 95 % of the cases, where a 95 % confidence interval is con-

structed, the interval contains the true parameter (Wasserman 2011). 
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Bootstrap confidence intervals 

If the distribution type of a random variable is unknown or the analytical derivation of a 

confidence interval is too complex or even impossible, the bootstrap (Efron 1979) is a help-

ful method for quantifying the uncertainty in parameter estimation and constructing confi-

dence intervals. A comprehensive description of bootstrap procedures can be found in 

Efron and Tibshirani (1993). 

Suppose that a sample x1, x2,…, xn of size n is observed and a particular distribution param-

eter θ is estimated by θ̂ . The parameter could be, for example, the mean μ, which would 

make the arithmetic mean x̅ the statistic for estimating the parameter. For constructing con-

fidence intervals, the probability distribution of x̅ given μ, f (x̅ | μ), is required. Therefore, 

in the general case, the probability distribution f ( θ̂ | θ) is needed. The bootstrap method 

approximates this probability distribution by utilising the following procedure. 

From the data x1, x2,…, xn, values x1
*
, x2

*,…, xn
* are randomly drawn with replacement. As 

a result of drawing with replacement, a particular value xi can appear multiple times in the 

resampled data. Based on the resampled data x1
*, x2

*,…, xn
*, which is called a bootstrap 

sample, a bootstrap estimate *θ̂  is calculated using the same function as for θ̂ . The 

resampling is repeated m times, resulting in m bootstrap samples of size n. Thus, m boot-

strap estimates *θ̂  can be calculated from the respective bootstrap samples. The bootstrap 

principle states that the probability distribution of θ̂  given θ can be approximated by the 

probability distribution of *θ̂  given the data x1, x2,…, xn. If the probability distribution type 

of X is known or assumed, the resampling can also be performed based on the correspond-

ing probability function with the unknown parameter θ being set to θ̂ , which is called par-

ametric bootstrap (Efron and Tibshirani 1993). 

Since a bootstrap estimate *θ̂ can be generated any number of times, the standard deviation 

and percentiles of *θ̂ can be determined with any desired accuracy. The standard deviation 

of *θ̂ is the bootstrap standard error, which approximates the standard deviation of θ̂  

given θ (i.e. the actual standard error in estimating θ). Furthermore, bootstrap confidence 

intervals can be constructed based on the simulated bootstrap distribution of *θ̂  following 

different procedures. Mathematical justifications and a discussion of the advantages and 

disadvantages of the procedures for setting up bootstrap confidence intervals can be found 

in Efron (1987) and Hesterberg (2015). In the course of this thesis, bootstrap percentile 

intervals are utilised, which are shortly described next. 

The bootstrap percentile interval with confidence level 1 − α is given by 

 * *

1 /2 1 /2
ˆ ˆ,α α αC θ θ   Eq. 2-52 
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where 
*

/2
ˆ
αθ  and 

*

1 /2
ˆ

αθ   are the α / 2 and 1 − α / 2 fractiles of the simulated bootstrap esti-

mates *θ̂ . Compared to other bootstrap confidence intervals, percentile intervals have the 

property of being transformation-respecting (Efron and Tibshirani 1993), which means that 

percentile intervals obtained for a particular parametrisation are equal to those that are first 

determined for a different parametrisation and subsequently transformed by applying the 

transformation function to the endpoints of the interval. Furthermore, percentile intervals 

are range-preserving; that is, they do not fall outside the range that the parameter θ can take. 

If, for example, θ is the expectation μ of a log-normal random variable, only positive values 

of μ are allowed. The accuracy of the bootstrap percentile interval can be improved by a 

bias correction (Efron and Tibshirani 1986). The bias-corrected percentile interval is de-

fined as 

 
1 2

* *ˆ ˆ,α αC θ θ  Eq. 2-53 

where the values α1 and α2 that define the fractiles can be determined by 
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

      
          

      

  
 

 Eq. 2-54 

If the median of *θ̂ is equal to θ̂ , then z0 = 0 is obtained, and the bias-corrected percentile 

interval is equal to the percentile interval as defined by Eq. 2-52. 

2.3.7 Goodness-of-Fit Testing 

The purpose of goodness-of-fit testing is to check whether observed data is the outcome of 

a specific probability distribution function. The hypothesis that the sample originates from 

a particular distribution is called the “null hypothesis”. It is rejected if the occurrence of the 

observed discrepancy between the data and the tested probability distribution is very im-

probable under the null hypothesis. “Very improbable” is defined quantitatively by select-

ing a significance level p. Various methods exist for testing the goodness of fit of a proba-

bility distribution for a given data set. Common methods include the chi-squared test (Pear-

son 1900) and the Kolmogorov-Smirnov test (Smirnov 1948). In the following investiga-

tions, the Anderson-Darling test (Anderson and Darling 1952) is employed, which is more 

sensitive to data in the tails of the probability distribution. This tail-sensitivity makes the 

test particularly suited for application in the context of structural reliability. 

As with the Kolmogorov-Smirnov test, the Anderson-Darling test is based on the discrep-

ancy between the empirical distribution function (EDF) of the observed data and the distri-

bution function that is tested. For a random sample of size n with realisations x1 < x2 < … 

< xn, the EDF is defined as follows (Stephens 1986): 
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 
number of observations  

n

x
F x

n


  Eq. 2-55 

The difference between the EDF Fn (x) and the tested distribution function F (x) can be 

measured by, for example, a quadratic statistic: 

     
2

( )nQ n F x F x ψ x dF x





     Eq. 2-56 

where ψ (x) is a weighting function. The Anderson-Darling statistic A2 is obtained if the 

weighting function is chosen as ψ(x) = [F(x) (1 − F(x))]−1, which assigns more weight to 

both tails of the distribution. The statistic A2 can be obtained by 

      2

1

1

1
2 1 ln ln 1

n

i n i

i

A n i F x F x
n

 



         Eq. 2-57 

The null hypothesis is rejected if A2 exceeds a critical value that depends on the chosen 

significance level p. Critical values for a modified test statistic A*2 are tabulated in Stephens 

(1974) for F (x) being a normal distribution and in Stephens (1977) for F (x) being a Gumbel 

distribution. The critical values are based on the assumption that the unknown parameters 

μ and σ² of a normal distribution are estimated by the arithmetic mean x̅ and the unbiased 

sample variance s². In the case of a Gumbel distribution, it is assumed that the correspond-

ing parameters are obtained by MLE. If both the mean and the variance of the distribution 

are unknown, the modified statistic A*2 is obtained by 

Normal distribution:   *2 2

2

4 25
1A A

n n

 
   

 
 Eq. 2-58 

Gumbel distribution:   
*2 2 0.2

1A A
n

 
  

 
 Eq. 2-59 

Instead of comparing the modified test statistic A*2 to a critical value belonging to a chosen 

significance level p, the actual significance level p corresponding to the observed statistic 

A*2 can be computed. Suitable functions for determining the observed significance level p 

are given in MIL-HDBK-17-1F (2002): 

Normal distribution:   
*2 *2

1

1 exp( 0.48 0.78ln 4.58 )
p

A A


   
 Eq. 2-60 

Gumbel distribution:   
*2 *2

1

1 exp( 0.1 1.24ln 4.48 )
p

A A


   
 Eq. 2-61 

Anderson-Darling tests for log-normal distribution functions can be performed analogously 

to the procedure for a normal distribution if, instead of the observations xi, the logarithms 
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ln xi of the observed values are used. The equations for the Gumbel distribution can also be 

used if the test is to be performed for a two-parameter Weibull distribution (Stephens 1986). 

This is possible due to the relationship between the Gumbel and the two-parameter Weibull 

distribution: If X is Weibull distributed, then Y = − ln X is Gumbel distributed. 

2.3.8 Definition of Populations 

Before applying statistical methods of inference, the population for that the inference is 

performed must be clearly defined. A statistical population can be understood as a set of 

similar objects, and the properties of these objects can be described by probability distribu-

tions related to this particular population. Suppose that statistical inference is made about 

the properties of clay bricks, for example. In this case, it must be specified whether the 

considered population consists of all the bricks in a particular masonry wall, all the bricks 

in a building, all bricks belonging to the same production batch, or all clay bricks that were 

produced in a specific country and year, to name a few possibilities. Each of these defini-

tions can lead to a different probability distribution for the properties of the bricks. Popu-

lations can be defined based on the physical phenomena influencing the considered random 

variables. Hence, the nature and origin of a random quantity, as well as spatial and temporal 

conditions, can be characterising criteria for a population (ISO 2394 2015). Dividing a pop-

ulation into sub-populations is often helpful, as it enables the estimation of variability 

within and between these sub-populations (JCSS 2001a). The selection of populations de-

pends on the goal of the statistical evaluation and is therefore up to the modellers who want 

to draw conclusions. In the brick example above, the choice would be up to the engineers, 

who must make decisions based on the evaluation results, and their engineering judgement 

regarding the origin of uncertainties. 

Statistical tests can sometimes help in defining populations. A two-sample t-test can be 

used to test whether two populations, each with a sample with size n, arithmetic mean x̅, 

and variance s2, have the same mean μ1 = μ2. If the hypothesis of equal means is rejected, 

this indicates that the two populations should not be merged into one population. The two-

sample t-test assumes that both populations have the same variance σ1
2 = σ2

2. Furthermore, 

either the underlying random variables must be normally distributed, or the sample sizes 

must be large enough that the arithmetic means are approximately normally distributed ac-

cording to the central limit theorem. The test statistic is defined as (Hedderich and Sachs 

2020) 

   

1 2

2 2

1 1 2 21 2

1 2 1 2

1 1

2

x x
t

n s n sn n

n n n n




  

 

 
Eq. 2-62 
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The hypothesis of equal means μ1 = μ2 is rejected with significance level p if t is larger than 

the 1 − p / 2 fractile of the t-distribution with n1 + n2 − 2 degrees of freedom. 

2.4 Bayesian Statistics 

2.4.1 General and Bayesian Interpretation of Probability 

Within statistics, two branches with differing philosophies and methods have evolved: fre-

quentist and Bayesian statistics. The term “Bayesian” refers to the fundamental role of 

Bayes’ theorem in Bayesian statistics. However, although Bayes’ theorem dates back to 

1763 (Bayes 1763), the adjective “Bayesian” for describing a particular category of statis-

tical methods was uncommon until the 1950s (Fienberg 2006). 

The main difference between Bayesian and frequentist statistics lies in their interpretation 

of probability. According to frequentist interpretation, probabilities are the limits of relative 

frequencies: If a random experiment is repeated many times, the relative frequency of the 

occurrence of an event A converges to the probability P (A). In contrast, a probability rep-

resents a degree of belief in the Bayesian view. As a result, Bayesian probability statements 

can also be made about singular events, which are not subject to random variation (any-

more) and cannot be described by a limiting relative frequency. The following is an exam-

ple given by Wasserman (2011): “The probability that Albert Einstein drank a cup of tea 

on August 1, 1948, is .35.” Such a probability is the expression of a person’s degree of 

belief that this statement is true. It is conditional on the person’s knowledge regarding this 

proposition and is updated if the person gains new information.  

Although the Bayesian interpretation of probability causes controversy because it is some-

times perceived as too subjective, Bayesian methods offer some essential advantages over 

frequentist methods. The JCSS Probabilistic Model Code (JCSS 2001a) and ISO 2394 

(2015) explicitly state that, with respect to structural reliability and the corresponding sto-

chastic modelling of uncertainties, probabilities should be interpreted in a Bayesian way. 

Particularly for assessing existing structures, the Bayesian interpretation of probability and 

the resulting methods can be beneficial, as illustrated next. 

Bayesian statistics offers a consistent framework for deriving answers to questions that 

frequentist methods cannot capture due to their different interpretation of probability. By 

definition, questions such as “What is the probability that the average compressive strength 

in this particular existing concrete column is below 20 N/mm²?” cannot be answered by 

frequentist inference. In contrast, Bayesian inference allows for the mathematical deriva-

tion of probability statements regarding singular events mostly subjected to epistemic un-

certainty. 
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Using Bayesian methods requires the definition of prior probability distributions (short: 

priors) that reflect the prior information available before any data for answering a specific 

question is received. The need for prior distributions is sometimes stated as a main critique 

of Bayesian statistics since different inferential results from the same data can be obtained 

if two persons use different priors. There are also approaches for defining non-informative 

priors, which are priors that have minimal influence on the obtained results and, hence, aim 

at letting “the data speak for themselves” (Gelman et al. 2013). However, the possible in-

corporation of prior information can also be viewed as one of the main advantages of Bayes-

ian methods. If an existing structure is assessed, the prior can be based on previous experi-

ence with similar structures. Thereby, the uncertainty can be strongly reduced. 

According to the Bayesian philosophy, probability distributions are updated whenever new 

data is received. This consequent updating of prior experience in the light of new infor-

mation reflects the process of assessing an existing structure well, regardless of whether 

Bayesian methods are explicitly used. Bayesian updating is, in principle, based on Bayes’ 

theorem, which is usually given in the following form: 

 
   

 

   

       

P B A P A P B A P A
P A B

P B P B A P A P B A P A
 


 Eq. 2-63 

In the context of Bayesian updating, the probability P (A) is the prior probability of event 

A, which is updated to obtain the posterior probability P (A | B), that is, the probability of A 

given the observance of B. For this update, the prior is multiplied by the likelihood P (B | A) 

that B is observed if A is true and divided by P (B), which ensures that the posterior proba-

bility P (A | B) and the probability P (A̅ | B) of the complementary event A̅ add up to P = 1. 

2.4.2 Bayesian Updating of Distribution Parameters 

In contrast to frequentist methods, the Bayesian interpretation allows modelling distribution 

parameters θ as random variables. The parameters themselves can hence be described by 

probability distributions. If a stochastic model for the distribution of a random variable X 

is selected via a PDF f (x|θ) with parameter θ, and a prior distribution f (θ) for this parameter 

is chosen, the distribution of θ can be updated using Bayes’ theorem in its continuous form: 

 
   

   
   

f θ f θ
f θ L θ f θ

f θ f θ dθ
 



x
x x

x
 Eq. 2-64 

where f (θ|x) is the posterior distribution, x is the data, and L (θ|x) = f (θ|x) is the likelihood 

(see Section 2.3.6). The sign “ “ denotes that the expressions are equal except for multi-

plication by a constant. Here, this constant is given by the term in the denominator, which 

is only needed for scaling the posterior PDF along the vertical axis such that it integrates to 

one. 
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If the probability distribution assigned to the parameter θ has parameters itself, these are 

called “hyperparameters”. In many cases, the prior PDF can be chosen such that the result-

ing posterior PDF is of the same distribution type; then, the prior is a conjugate prior (Raiffa 

and Schlaifer 1961). The choice of conjugate priors is beneficial, as it reduces an update of 

the prior distribution to an update of the hyperparameters. For example, in the case of a 

normal distribution of X with parameters μ and σ2, the joint conjugate prior is a normal-

inverse-χ2 distribution with prior hyperparameters n′, m′, ν′, and s′2. This means that the 

variance is scaled inverse-χ2 distributed with ν′ degrees of freedom and scale s′2, and for a 

given variance σ2, μ is normally distributed with mean m′ and variance σ2 / n′: 

 2 2 2Inv- ,σ χ ν s   Eq. 2-65 

 2 2N ,μ σ m σ n   Eq. 2-66 

As a result, the marginal (i.e. unconditional) prior distribution of μ is as follows: 

2
ν

μ m
t

s n




 
 Eq. 2-67 

Since the normal-inverse-χ2 distributed prior is conjugate, it can be shown that applying 

Eq. 2-64 leads to a joint posterior of μ and σ2 that is also normal-inverse-χ² distributed. If 

data with sample size n, arithmetic mean m, and sample variance s2 is acquired, the posterior 

hyperparameters n″, m″, ν″, and s″2 can be determined as (Gelman et al. 2013) 

n n n    Eq. 2-68 

n n
m m m

n n


  

 
 Eq. 2-69 

ν ν n    Eq. 2-70 

   
22 2 21

1
n n

s ν s n s m m
ν n

 
          

 Eq. 2-71 

From these equations, it follows that the hyperparameters n′ and ν′ can be interpreted as the 

number and degrees of freedom, respectively, of two hypothetical prior samples, one for 

estimating the mean and one for estimating the variance, where m′ is the arithmetic mean, 

and s′2 is the sample variance of the corresponding prior samples (ISO 2394 2015). The 

process of updating the normal distribution parameters is illustrated by Fig. 2-4 with spe-

cific values of the prior hyperparameters and sample results that serve as an example. 

If no reasonable informative prior can be set up, a non-informative prior can be used in-

stead. For normally distributed data x, the following non-informative prior is usually cho-

sen (Gelman et al. 2013): 
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 2

2

1
,f μ σ

σ
 with μ ∈ ℝ and σ2 > 0 Eq. 2-72 

The non-informative prior distribution defined by Eq. 2-72 is an improper prior, as inte-

grating over the domains of μ and σ2 does not yield one but infinity (Wasserman 2011). 

However, the update according to Eq. 2-64 leads to a posterior distribution that is normal-

inverse-χ2 as in the case of a conjugate prior and thus proper. When applying the non-

informative prior, the resulting posterior hyperparameters are n″ = n, m″ = m, ν″ = n − 1, 

and s″2 = s2. Therefore, the posterior hyperparameters only depend on the data. 

 

Fig. 2-4 Illustration of updating the parameters of a normally distributed random var-

iable 

In many cases, the probability distribution of the parameters μ and σ2 is not of primary 

interest but the probability distribution of a future observation x of X, which is the predictive 

distribution. The data x can represent the outcome of compressive strength tests on bricks 

extracted from an existing masonry wall, for example. Then, the probability distribution for 

the compressive strength of the remaining bricks is of interest. The posterior predictive 

distribution is received by first formulating the joint distribution of X, μ, and σ2 and then 

integrating out the unknown parameters μ and σ2: 

       2 2 2

0 0

, , , ,f x f x μ σ dσdμ f x μ σ f μ σ dσdμ

   

 

    x x x  Eq. 2-73 
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The predictive distribution for the variable X thereby combines both material (aleatory) and 

statistical (epistemic) uncertainty in one probability distribution (see also Fig. 2-4). If 

shifted by m″ and scaled by s″ (1 + 1 / n″)0.5, the posterior predictive distribution of X is a 

t-distribution with ν″ degrees of freedom: 

1 1
ν

X m
t

s n




 
 Eq. 2-74 

2.5 Structural Reliability 

2.5.1 General 

Structural reliability can be defined as the probability that a structure satisfies a specified 

requirement over a defined period of time (Schneider 1996; EN 1990 2010). Since the com-

plementary event of satisfying the requirement is failure, reliability can also be defined as 

1 − Pf, where Pf is the probability of failure. According to this definition, the term “failure” 

does not necessarily refer to a structural collapse but can also relate to not meeting service-

ability requirements. Determining the probability of failure is termed “reliability analysis”. 

 

Fig. 2-5 Illustration of the joint probability density of R and E, the corresponding mar-

ginal distributions, the limit state function and the failure region 

The transition between satisfying and not satisfying a specific requirement is called “limit 

state” and can be defined by a limit state function g (X). Here, the vector X represents the 

basic variables X1, X2,…, Xn, which are the random variables that influence the satisfaction 

or violation of the limit state. Violation of the limit state is usually defined by g (x) ≤ 0 

(Melchers and Beck 2018). Hence, the limit state (hyper-)surface g (x) = 0 divides the n-

dimensional domain of the basic variables into a safe and a failure region, as illustrated in 

Fig. 2-5. The probability of failure is defined as the integral of the joint PDF fX (x) over the 

failure region (e.g. Spaethe 1992; Melchers and Beck 2018): 

fE (e)

fR (r)

fR,E (r,e)

g (r,e) = r – e = 0

failure 

region

safe 

region

e

r

0
0

1
2

3
4

1

2

3

4

0.00

0.25

0.50

0.75

1.00



 

2  Basics of Statistics and Structural Reliability 

 

 

32 

   f 1 2 1 2
( ) 0

0 ... , ,..., ...n n
g

P P g f x x x dx dx dx


        X
x

X  Eq. 2-75 

If the limit state function can be defined as g (R, E) = R − E, where the two random variables 

R and E are independent and represent the resistance of a structural member and the corre-

sponding load effect, respectively, Eq. 2-75 simplifies to 

     f 0

e

R EP P R E f r f e dr de



 

       Eq. 2-76 

The failure probability according to Eq. 2-76 can be interpreted as the volume under the 

joint PDF in the failure region (see Fig. 2-5). 

Typical values of Pf for the ultimate limit state (i.e. for the collapse) of a structure are in 

the range of 10−7 to 10−3. Due to these small values, the probability of failure is not a con-

venient measure for reliability. Therefore, structural reliability is typically expressed via 

the reliability index β, which is defined as 

   1

f fΦ 1 Φβ P P β      Eq. 2-77 

For the reliability index, standards for structural design and assessment often define target 

values βt, which are considered an optimum compromise between the costs for achieving a 

particular reliability and the potential consequences of failure. For example, Table 2-1 lists 

the target reliability levels specified by EN 1990 (2010) for ultimate limit states and differ-

ent consequence classes CC 1 to CC 3. The target reliability levels are defined for a refer-

ence period of both one and 50 years. 

Table 2-1  Target reliability indices βt in EN 1990 (2010)  

Consequence class 
Target reliability index βt for a reference period of 

1 year 50 years 

CC 1 (low failure consequences) 4.2 (Pf = 1.3 ∙ 10−5) 3.3 (Pf = 4.8 ∙ 10−4) 

CC 2 (medium failure consequences)  4.7 (Pf = 1.3 ∙ 10−6) 3.8 (Pf = 7.2 ∙ 10−5) 

CC 3 (high failure consequences) 5.2 (Pf = 1.0 ∙ 10−7) 4.3 (Pf = 8.5 ∙ 10−6) 

Assuming that the uncertainty of the outcome of the limit state function is dominated by 

time-variant load effects with independent maxima in subsequent years, the reliability in-

dex βn for any reference period of n years can be determined by (EN 1990 2010) 

   1aΦ Φ
n

nβ β     Eq. 2-78 

Based on Eq. 2-78, the target reliability indices βt,1a = 4.7 and βt,50a = 3.8 specified for CC 2 

can be converted into each other. If, however, the uncertainty also originates from perma-

nent load effects and time-invariant resistance parameters, the reliability indices related to 

one and 50 years are closer to each other than given by Eq. 2-78. In the theoretical case that 
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the limit state function only includes time-invariant variables, the reliability indices for the 

reference periods of one and 50 years are equal (i.e. β1a = β50a). 

If the target reliability index βt,50a = 3.8 for 50 years is viewed as the reference target relia-

bility level, βt,1a = 4.7 only gives an upper boundary for the suitable target reliability index 

for one year. In JCSS (2001a) and ISO 2394 (2015), the target reliability index for a refer-

ence period of one year, medium failure consequences, and medium relative costs of safety 

measures is specified as βt,1a = 4.2. Investigations by Meinen and Steenbergen (2018) sug-

gest that structural design according to the current Eurocodes leads to an average reliability 

of structural members close to βt,50a = 3.8 for a reference period of 50 years and close to 

βt,1a = 4.2 for a reference period of one year. These findings indicate that βt,1a = 4.2 can be 

viewed as a suitable target reliability index for one year that corresponds to βt,50a = 3.8. The 

theoretical background of target values βt is illustrated in Section 2.6.2, where differences 

between appropriate target reliability levels for the design of new and the assessment of 

existing structures are discussed. 

Table 2-2  Levels of probabilistic methods for structural design and assessment 

Level 
Calculation  

methods 

Limit state 

function 

Uncertainty  

modelling 

Verifica-

tion  

format 

Typical  

application 

I 
semi-proba-

bilistic 
according to code - 

fixed partial  

factors 
Ed ≤ Rd 

standard design 

and assessment  

situations 

II− 

approxi-

mate proba-

bilistic  

methods 

as above but  

with adjusted  

partial factors 

fixed sensi-

tivity factors 

any random  

variables 
Ed ≤ Rd 

calibration of  

partial factors,  

special design  

and assessment  

situations 

 

II 

first-order  

second-moment 

method (FOSM) 

approximated 

as linear 

mean and vari-

ance considered 
βapprox ≥ βt 

first- or second- 

order reliability 

method 

(FORM/SORM) 

approximated 

as linear or 

quadratic 

random variables 

approximated as 

normal 

βapprox ≥ βt 

III 

exact 

probabilis-

tic methods 

analytical or  

numerical integra-

tion, Monte Carlo 

simulation 

any 
any random  

variables 
β ≥ βt 

IV 
risk- 

informed 

decision-theoretic 

methods 

see level  

II or III 

see level II or III 

plus modelling  

of risks 

minimum 

costs 

derivation of tar-

get reliability, 

exceptional de-

sign and assess-

ment  

situations 

References: Melchers and Beck (2018), Glowienka (2007), ISO 2394 (2015), König and Hosser (1982),  

EN 1990 (2010), prEN 1990 (2020) 
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Structural design could theoretically be performed based on the general expression for the 

probability of failure as given in Eq. 2-75 by varying structural properties, such as cross-

sectional areas or nominal material strengths, until the probability of failure complies with 

the target reliability index. Accordingly, the assessment of existing structures could be per-

formed by determining the probability of failure with Eq. 2-75 and comparing the result to 

an appropriate target value. However, this is often not feasible for the following two rea-

sons: First, calculating the probability of failure requires modelling all basic variables sto-

chastically, which is too complex for everyday engineering practice; second, solving the 

integral in Eq. 2-75 analytically can be complicated or even impossible, depending on the 

limit state function and the joint PDF of the basic variables. Therefore, it is essential to 

differentiate between the various levels of probabilistic methods, each being justified in 

different situations (see Table 2-2). Most of these methods are illustrated in more depth in 

the following sections. 

2.5.2 First-Order Reliability Method 

The first-order reliability method (FORM) is an approximate method for calculating the 

failure probability Pf if the solution of the integral in Eq. 2-75 is too complex. The term 

“first-order” refers to a first-order Taylor series expansion of the limit state function, which 

is the main approximation of FORM. The development of FORM lead to the definition of 

key concepts in reliability theory, such as the design point and sensitivity factors. In this 

section, the main principles of FORM are presented in three chronological steps, which 

lead to the methodology currently understood as FORM. 

The development of FORM began with so-called “second-moment” concepts, which only 

considered the first two stochastic moments of the basic variables, that is, their means and 

(co)variances (Melchers and Beck 2018). Within those concepts, the limit state function 

g (X) is usually represented by a random variable Z with mean μZ and standard deviation 

σZ. If g (X) is linear, μZ and σZ can be computed easily (see Section 2.3.3). Otherwise, μZ 

and σZ can be determined based on the first-order Taylor polynomial about the mean value. 

If, regardless of their actual probability distribution, all basic variables are viewed as nor-

mally distributed random variables and g (X) is approximated as linear, then Z is also nor-

mally distributed, and the approximate probability of failure is 

 f

0
0 Φ Z Z

Z Z

μ μ
P P Z β

σ σ

 
     

 
 Eq. 2-79 

where the relationship for β results from the definition in Eq. 2-77. If the limit state function 

can be represented by Z = R − E, where R and E are independent, the reliability index is 

obtained as 
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2 2

R E

R E

μ μ
β

σ σ





 Eq. 2-80 

In the case of actually linear limit state functions and normally distributed basic variables 

Xi, the failure probability according to Eq. 2-79 is mathematically exact. 

One main disadvantage of the early second-moment concepts is their lack of invariance 

regarding the formulation of the limit state function: The resulting probability of failure 

depends on the formulation of g (X) if g (X) is nonlinear. This disadvantage was overcome 

by the developments of Hasofer and Lind (1974), which resulted in the Hasofer-Lind 

method, sometimes also referred to as the first-order second-moment method (FOSM; see 

e.g. Melchers and Beck 2018). Hasofer and Lind (1974) suggested transforming the basic 

variables Xi, which are assumed to be normally distributed with mean μXi and standard de-

viation σXi, into standard normal variables Yi: 

i

i

i X

i

X

X μ
Y

σ


  Eq. 2-81 

If the basic variables Xi are correlated, then they must first be transformed into independent 

variables. The transformation to standard normal variables leads to the transformed limit 

state function h (Y). In Fig. 2-6, a reliability problem with two basic variables and corre-

sponding limit state lines g (x1, x2) = 0 and h (y1, y2) = 0 is depicted in original space (left) 

and in transformed standard normal space (right), respectively. In standard normal space, 

all points with equal distance from the origin have equal probability density. According to 

Hasofer and Lind (1974), the reliability index β corresponds to the shortest distance from 

the origin to the limit state surface h (y) = 0 in transformed space, which can be expressed 

as 

 
1 2

2

1

min 0
n

i

i

β y h


   
   

   
 y  Eq. 2-82 

The point on the limit state surface with the highest joint probability density (i.e. the point 

closest to the origin in standard normal space) is the design point y*. Its coordinates yi
* are 

the design values of the basic variables, which are given by 

*

i iy α β   Eq. 2-83 

where the sensitivity factors αi are the direction cosines of the vector y* (see also Fig. 2-6). 

The sensitivity factors are a measure of the stochastic importance of the respective basic 

variables concerning the exceedance of the limit state condition g (X) = 0. By definition, 

the sum of the squared sensitivity factors αi
2 equals one. 
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If the limit state function is nonlinear, the reliability index β as defined by Hasofer and Lind 

(1974) can be found through an iterative procedure. The approximate failure probability Pf 

can then be determined via the relationship Pf = Φ
−1 (β). This approximation of the failure 

probability is based on the first-order Taylor approximation of g (y) about the design point 

y* (see Fig. 2-6). In contrast to earlier second-moment methods, which are based on a Tay-

lor expansion about the means of the basic variables, the expansion about the design point 

leads to the invariance of the resulting β with respect to the formulation of the limit state. 

 

Fig. 2-6 Illustration of transformation into standard normal space, design point, relia-

bility index β, and sensitivity factors αi (two-dimensional case) 

One disadvantage of the Hasofer-Lind method is that the probability distribution types of 

the basic variables are not considered. As an improvement, Rackwitz and Fießler (1976) 

suggested taking into account the actual distributions of the basic variables within the iter-

ation procedure for finding the reliability index β. While the original distributions are still 

approximated by normal distributions, the corresponding means μXi,N and variances σXi,N
2 

are now chosen such that, in the design point x*, both the PDFs and the CDFs of the normal 

distributions take the same values as the original distributions: 
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 Eq. 2-84 

This type of approximation is also known as “normal tail transformation”. If included in 

the iteration procedures, it results in the Rackwitz-Fiessler algorithm. Due to the consider-

ation of the actual probability distributions, the Rackwitz-Fiessler algorithm is no longer a 

second-moment method but belongs to the methods nowadays known as FORM. 
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For independent basic variables Xi, the algorithm for finding the design point x*, the relia-

bility index β, and the sensitivity factors αi can be formulated as follows (see Melchers and 

Beck 2018): 

(1) Choose an initial design point x* = x(1). An initial point can be x(1) = μX. 

(2) Calculate the means and standard deviations of the normal distributions that approxi-

mate the original distributions at x(m), which is the current estimate of the design point:  

   
        1

,N ,N Φ
i i

m m m m

X i X iμ x σ F x   
 

 Eq. 2-85 
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i

F x
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f x

 
    Eq. 2-86 

(3) Calculate the sensitivity factors αi based on the partial derivatives of the limit state 

function at the current estimate x(m) of the design point: 

   
 
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Eq. 2-87 

(4) Calculate the current estimate of the reliability index β: 

    
   

 

 ,N
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i

i
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σ


   Eq. 2-88 

(5) Determine a new estimate for the design point. In standard normal space, this new 

design point is given by the shortest connection from the origin to the current first-

order Taylor approximation of the limit state hypersurface g (y) = 0. 

   
     

  
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,N ,Ni i

m
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i X X i
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

 
   
 
 

x
 Eq. 2-89 

Steps (2) to (5) are repeated until the differences between two successive estimates for x* 

and β are lower than a predefined threshold. 

FORM can be extended to the second-order reliability method (SORM) if, in addition to 

the linear terms of the Taylor expansion, the curvature of the limit state function is consid-

ered. For highly nonlinear limit state functions, SORM can be helpful to increase the accu-

racy in estimating the failure probability (Breitung 1984).  
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2.5.3 Monte Carlo Simulation 

The Monte Carlo method belongs to the mathematically exact level III approaches for de-

termining the failure probability. Performing reliability analyses by means of Monte Carlo 

simulations (MCS) is, at least in its simplest form, straightforward: In each of many sto-

chastic simulation runs, random values for the basic variables are generated according to 

their probability distributions. A check is then performed to determine whether these ran-

dom values lead to failure, given by g (x) ≤ 0. An unbiased estimate P̂f of the probability of 

failure is given by the number of simulation runs nfail that lead to failure divided by the total 

number of simulation runs nsim: 

fail
f

sim

ˆ n
P

n
  Eq. 2-90 

The variance and CoV of the estimator P̂f are as follows (Lemaire 2009): 

 
 

f

f f f
ˆf

sim sim sim f

1 1ˆVar
P

P P P
P υ

n n n P


     Eq. 2-91 

Hence, for n → ∞, the estimate converges to the true failure probability Pf. However, this 

“crude” version of the Monte Carlo method requires a large number of simulation runs. For 

example, for Pf = 10−6, the number of simulation runs must be higher than 108 to reach a 

CoV below 10 %. If the limit state function g (X) is given in analytical form, such a number 

of simulation runs is feasible for modern computers. However, if the limit state function is 

given only implicitly, for example through a finite element model, and each evaluation of 

g (x) thus requires a finite element simulation, reliability analysis via the crude Monte Carlo 

method becomes practically impossible. Therefore, many variance reduction techniques 

have been developed to minimise the required number of either simulation runs or direct 

evaluations of the limit state function. Such techniques include adaptive importance sam-

pling (Bucher 1988), the response surface method (Bucher and Bourgund 1990), and subset 

simulation (Au and Beck 2001), among others. For further information on variance reduc-

tion techniques, see Lemaire (2009) and Rubinstein and Kroese (2017). 

The generation of random values in each simulation run is typically based on pseudoran-

dom numbers. The term “pseudorandom” denotes that these numbers are obtained via a 

deterministic code that produces a sequence of numbers that only appear to be random. If 

produced by a good pseudorandom number generator, the most important statistical prop-

erties of such sequences are equivalent to those of actual random sequences (Rubinstein 

and Kroese 2017). The deterministic code starts with a particular seed, which is an arbitrary 

number specified by the user. Pseudorandom numbers can hence be reproduced by select-

ing the same seed again. Random number generators usually produce samples of random 
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variables Ui that are uniformly distributed between 0 and 1. Therefore, random samples of 

a specific random variable Xi can be generated by applying the inverse CDF: 

 1

i ix F u  Eq. 2-92 

In addition to the Monte Carlo method being utilised for estimating the failure probability 

Pf, a more general application is drawing random samples from a function Y (X) of several 

random variables to determine the distribution of Y. This approach can be helpful if the 

function Y (X) is only given by a finite element model, for example, and, thus, neither the 

function itself nor its probability distribution can be described analytically. Then, the sto-

chastic moments of Y can be estimated based on the random sample generated by Monte 

Carlo simulation. In such a case, Latin hypercube sampling (LHS) can be a helpful variance 

reduction technique (see e.g. Olsson and Sandberg 2002). 

If LHS is applied, the number nsim of performed simulation runs must be chosen before-

hand. Then, the range of each of k random variables Xi is divided into nsim equally probable 

intervals. The interval (0, 1) of the possible outcomes of the uniform random variables Ui 

is hence divided into nsim intervals of equal length. For each of these intervals, a random 

value is generated, thereby ensuring that the whole range of possible values of the random 

variables is well covered. These nsim random values for each of the k random variables are 

then randomly permuted to receive nsim combinations with one random value for each ran-

dom variable. As an example, a sampling plan for k = 2 random variables and nsim = 5 sim-

ulation runs is illustrated in Fig. 2-7. Each of the five sample points represents one combi-

nation of u1 and u2. By definition, each row and line must contain exactly one point. LHS 

can be further improved by ensuring that the sample points do not form clusters but cover 

the whole k-dimensional sampling space more uniformly (Olsson and Sandberg 2002). 

 

Fig. 2-7 Latin hypercube sampling plan (two random variables, five simulation runs) 

and subsequent transformation of u2 to values x2 of the desired distribution 

2.5.4 Calibration of Partial Factors 

Probabilistic approaches of level II and III are too complex for ordinary structural engi-

neering projects. Therefore, semi-probabilistic approaches have been developed, in which 
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the basic variables are no longer represented by random variables but by characteristic val-

ues and corresponding partial factors. The partial factors reflect the uncertainty associated 

with the random variable and the importance of the basic variable regarding the considered 

limit state. The reliability-based verification format β ≥ βt is replaced by the verification 

format Ed ≤ Rd, where Ed and Rd are the design values of the load effect and the resistance, 

respectively. In principle, those design values reflect the FORM design point. 

In EN 1990 (2010), the general definition of Ed and Rd for the verification of ultimate limit 

states is as follows: 

 d Ed g, k, q,1 k,1 q, 0, k,

k,

d d

Rd m,

; ; 1; 1

1
; 1

j j i i i

i

i

i

E γ E γ G γ Q γ ψ Q j i

X
R R η a i

γ γ

  

  
  

  

 Eq. 2-93 

where E{∙} and R{∙} represent the load effect and resistance, respectively, which are func-

tions of the enclosed variables; γRd and γEd are partial factors addressing model uncertainty; 

Gk,j, Qk,i and Xk,i are the characteristic values of permanent loads, variable loads, and mate-

rial properties, respectively; and γg,j, γq,i, and γm,i are the corresponding partial factors. The 

combination factor ψ0,i is applied to non-dominant variable loads and considers the unlike-

liness of the simultaneous occurrence of the variable load maxima. The factor ηi addresses 

a potentially required conversion of a material property to represent the actual material 

behaviour in the structure, and ad denotes the design values of geometrical properties. In 

typical cases, however, geometrical properties are applied as their nominal values anom, and 

the corresponding variability is covered by the partial factors addressing model uncertainty. 

Furthermore, γRd and γEd are usually merged with γm, γg, and γq by multiplication. Instead 

of separately considering γRd and γm, for example, a partial factor γM = γm γRd is applied, 

which covers both model uncertainty and material variability. 

The characteristic values denoted by the index “k” are defined as specified fractiles of the 

corresponding basic variables. By applying the partial factors and, if applicable, the com-

bination factor ψ0 and the conversion factor η, the design values Xd, Gd and Qd are obtained. 

The fundamental problem of calibrating partial factors is that they are defined as a set of 

fixed values, although they are applied to different design situations in which different sen-

sitivity factors αi for the basic variables occur. Since the design value of a basic variable is 

defined by its probability distribution and its sensitivity factor according to FORM, the 

design values obtained by fixed partial factors can never exactly lead to the FORM design 

values in all cases. As a result, fixed partial factors can never lead to a constant reliability 

level equal to the target βt. In NABau (1981), for example, a minimum reliability index of 

βmin = βt − 0.5 is accepted when sets of fixed partial factors are derived. 
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There are two main ways to derive fixed sets of partial factors (ISO 2394 2015). The first 

approach is the design value method (DVM), which is based on fixed sensitivity factors 

that are meant to cover a wide range of typical design situations. The second option is 

reliability-based code optimisation, which aims at setting up partial factors such that the 

deviation of the resulting reliability level from the target reliability index is minimised for 

the most typical design situations. 

Due to the choice of fixed sensitivity factors, the concept behind the DVM is also referred 

to as the simplified level II method or level II− method (König and Hosser 1982). One of 

the first appearances of the DVM was in NABau (1981), and the DVM is also given as a 

method for deriving partial factors in EN 1990 (2010). If load effect E and resistance R are 

each represented by a single random variable, and the sensitivity factors αE and aR as well 

as the target reliability index βt are given, the corresponding design values can be obtained 

as follows: 

     

     
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d t d t
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



      

       

 Eq. 2-94 

In EN 1990 (2010), fixed sensitivity factors αE = − 0.7 and aR = 0.8 are proposed for typical 

design situations. Usually, E and R are functions of several random variables. In this more 

general case, the design value Yd of a particular random variable Y can be obtained as 

 1

d tΦY YY F α β     Eq. 2-95 

In this general case, αY = αR = 0.8 can be applied for dominant resistance variables and 

αY = αE = − 0.7 for dominant load variables. For non-dominant variables, 0.4 αE = − 0.28 

and 0.4 αR = 0.32 are applicable (ISO 2394 2015). Partial factors can then be determined as 

the ratio of characteristic value to design value for resistance variables and the ratio of 

design value to characteristic value for load variables. 

The background of fixed sensitivity factors is illustrated in König and Hosser (1982) and 

König et al. (1982). Here, fixed values for αR and αE are derived based on normal distribu-

tions for E and R and an accepted minimum reliability index of βmin = βt − 0.5, leading to 

βmin / βt = 0.89 for βt = 4.7. If a typical range for the ratio σE / σR of the standard deviations 

of E and R is defined, fixed sensitivity factors αE and αR can be determined according to 
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For βmin / βt = 0.89, the established sensitivity factors αE = − 0.7 and aR = 0.8 can be ob-

tained based on an application range of 0.15 ≤ σE / σR ≤ 3.48 (König and Hosser 1982). At 

the limits of this application range, the actual sensitivity factors would be αE = − 0.148 and 

αR = 0.989 as well as αE = − 0.961 and αR = 0.276. Hence, the fixed sensitivity factors are 

applicable to a wide range of actual sensitivity factors. The relationship between the ac-

cepted minimum reliability index, the application range concerning the ratio σE / σR and the 

resulting fixed sensitivity factors are illustrated in Fig. 2-8. It is evident that in the middle 

of the accepted range of σE / σR, the values αE = − 0.7 and aR = 0.8 lead to a reliability index 

β that is larger than the target value βt since the sum of the squared sensitivity factors is 

greater than one. The maximum reliability index is βmax = 1.063 βt. 

 

Fig. 2-8 Illustration of the boundaries for the fixed sensitivity factors αR = 0.8 and 

αE = − 0.7 according to König and Hosser (1982) 

In contrast to the range for σE / σR defined in König and Hosser (1982), EN 1990 (2010) 

defines the application limits for the fixed sensitivity factors αE = − 0.7 and aR = 0.8 as 

0.16 ≤ σE / σR ≤ 7.6. Based on these limits, 0.9 βt and 0.8 βt can be computed as implicitly 

accepted minimum reliability indices at the lower and upper limit of the application range, 

respectively. EN 1990 (2010) specifies that, outside of the application range, αi = ± 1.0 

should be used for the variable with the larger standard deviation and αi = ± 0.4 for the 

variable with the smaller standard deviation. 

The fixed sensitivity factors αE = − 0.7 and aR = 0.8 are usually applied in combination with 

the target reliability index βt,50a for a reference period of 50 years; see, for example, Annex 

D.7.3 of EN 1990 (2010) and fib bulletin 80 (2016). Therefore, for CC 2 with βt,50a = 3.8, 

the design value of a dominant resistance variable approximately corresponds to the 0.1 % 

fractile of this variable: 
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     d t,50aΦ Φ 0.8 3.8 0.12%RP R R α β        Eq. 2-98 

There are two main reasons why different fixed sensitivity factors should be applied when 

the reference period for the target reliability index is changed from 50 years to one year. 

First, the actual FORM sensitivity factors αR for the resistance are, on average, lower if the 

reliability analysis is performed for a reference period of one instead of 50 years (Meinen 

and Steenbergen 2018). Second, changing the sensitivity factors is needed for compatibil-

ity. If the fixed sensitivity factors were independent of the reference period, applying 

βt,50a = 3.8 and βt,1a = 3.8 would lead to the same design resistance, although βt,1a = 3.8 ac-

tually represents a lower target reliability level. Meinen and Steenbergen (2018) determined 

the suitable fixed sensitivity factor αR,1a for a one-year reference period based on the re-

quirement that the design resistances obtained by the simplified level II approach should 

be equal for both reference periods. Assuming that βt,50a = 3.8 corresponds to βt,1a = 4.2 (see 

Section 2.5.1), αR,1a is obtained as follows: 

t,50a

,1a t,1a t,50a ,1a

t,1a

3.8
0.8 0.7

4.2
R R R R

β
α β α β α α

β
      Eq. 2-99 

If αR = 0.8 is changed to αR,1a = 0.7, then the sensitivity factor αE must also be adjusted (see 

e.g. Sykora and Diamantidis 2021). Instead of αE = − 0.7, αE,1a = − 0.8 should be applied to 

keep the sum of the squared sensitivity factors constant. 

One advantage of the simplified level II approach is that no reliability analyses are needed 

to derive partial factors, thus making its application straightforward as soon as stochastic 

models for the random variables are available. The simplified level II approach can hence 

be convenient when deriving partial factors for existing structures based on newly acquired 

statistical information about the respective random variables (see Section 2.6.3). However, 

the set of partial factors derived through the DVM is not optimal concerning the resulting 

reliability level. Therefore, reliability-based optimisation can be viewed as the preferred 

method for calibrating the whole set of partial factors γ (and all other safety elements) 

within structural design codes. 

The steps of the reliability-based optimisation procedure are, for example, described in ISO 

2394 (2015) and prEN 1990 (2020) and are as follows: 

(1) Define a set of representative structures and corresponding design situations. 

(2) Select the target reliability index βt. 

(3) Specify the general verification format, including the type and number of safety ele-

ments and rules for load combinations. 

(4) Formulate limit state equations for the relevant failure modes, and select stochastic 

models for the involved basic variables. 
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(5) Calibrate the partial factors γ iteratively such that the following expression is mini-

mised: 

    
2

t

1

n

i i

i

w β β


   γ  Eq. 2-100 

where wi is a weighting factor addressing the relative frequency or importance of the 

i-th design situation, and βi (γ) is the reliability index for the i-th design situation given 

the current set of partial factors γ. 

Hence, reliability-based code optimisation leads to a minimum deviation from the target 

reliability index for a predefined verification format and a given number of safety elements. 

Eq. 2-100 can also be extended by assigning more weight to reliability indices smaller than 

the target or by defining a lower limit of resulting reliability indices. The more safety ele-

ments included in the code, the smaller the deviations from βt can become. 

2.5.5 Reliability of Structural Systems 

Structures usually consist of several members, which form a structural system with various 

possible failure mechanisms. Depending on the type of system and its inherent redundancy, 

the failure of one member does not necessarily lead to the failure of the whole system. The 

failure probability of a structural system can consequently be higher or lower than the fail-

ure probabilities of its single members. In general, system reliability analysis is complex 

due to many possible failure modes, each represented by a corresponding limit state func-

tion, possible correlations between load effects and between member resistances, and an 

influence of the loading sequence, to name a few challenges (Melchers and Beck 2018). 

Given this complexity, the reliability requirements as currently specified by EN 1990 

(2010) are related to structural members instead of structural systems. However, the behav-

iour of structural systems is essential with regard to possible failure consequences. Ideali-

sations of structural systems can be beneficial to understanding the general influence of 

system effects on structural reliability. Furthermore, the upper and lower bounds of system 

reliability can be defined based on suitable system idealisations. Since structural members 

that consist of several components, for example members with component-to-component 

variability of material properties (see Section 2.3.5), can be viewed as structural systems 

themselves, the explanations in this section also apply at this lower level. 

Two categories of idealised systems can be defined: series systems and parallel systems. 

Series systems are also called “weakest link systems” since the failure of a single element 

leads to the failure of the whole system. If a series system is equivalent to a chain consisting 

of several links (i.e. all elements are subjected to the same load effect E), and the resistances 

Ri of the single elements are independent and identically distributed (see Fig. 2-9), the CDF 

of the system resistance Rsys is 
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In contrast, parallel systems only fail if every single element fails. For parallel structural 

systems, the material behaviour of the elements must be further specified. A lower and 

upper bound of the element behaviour after reaching the element resistance Ri is given by 

the perfectly brittle and the perfectly ductile behaviour (Nowak and Collins 2013). In Fig. 

2-9, both cases are illustrated in combination with linear elastic behaviour before reaching 

the element resistance. The following considerations correspond to idealised parallel sys-

tems subjected to a single load that leads to equal strain ε in all elements (see Fig. 2-9). 

 

Fig. 2-9 Idealised systems and elements 

In the case of perfectly ductile elements, the system resistance is given by the sum of the 

element resistances. For independent and identically distributed element resistances with 

mean μ and variance σ2, the system resistance Rsys and its mean and variance are  

2 2 2

sys sys sys
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i i i

R R μ μ n μ σ σ n σ
  

         Eq. 2-102 

The mean and variance of the system resistance directly follow from the relationships for 

functions of random variables given in Section 2.3.3. 

If an element behaves in a perfectly brittle manner, its contribution to the system resistance 

reduces to zero as soon as the element resistance is reached. After each element failure, the 

system load can only be further increased if the load that acted on the failed element can be 

redistributed to the remaining intact elements. If each element has the same stiffness, this 

type of system is also referred to as a “Daniels system” (see Daniels 1945). Its resistance is 

given by (Hohenbichler and Rackwitz 1983) 

    sys 1 2 3 1 2max , 1 , 2 ,..., with ...n nR nR n R n R R R R R       Eq. 2-103 
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The behaviour of real structural elements lies between the two idealised cases of perfectly 

ductile and perfectly brittle behaviour. Furthermore, real systems are usually a combination 

of parallel and series systems. Such a combination could be a parallel system, for example, 

in which the elements themselves are series systems (see Fig. 2-9). 

In Fig. 2-10, the effect of the system configuration on the PDF of the system resistance Rsys 

is illustrated for the previously mentioned idealisations. The PDFs are obtained by MCS 

for n = 10 independent elements, each having a log-normally distributed resistance with a 

CoV of υ = 0.2. The PDF is normalised by the mean element resistance μel and the number 

npar of parallel elements. It is noted that the PDF of the element resistance is equivalent to 

the PDF of the normalised resistance of a system with perfectly correlated elements. 

 

Fig. 2-10 Probability density (left) and design values (right) for the resistance of differ-

ent idealised systems 

Compared to the PDF of the element resistance, two main effects on the system resistance 

are evident. First, the CoVs of the system resistances are lower than the CoV of the element 

resistance. Second, except for the parallel system with perfectly ductile elements, the mean 

of the normalised system resistance is lower than the mean of the element resistance. Since 

the area under the left tail of the PDF is essential with respect to structural reliability, the 

two effects have an opposite influence on system reliability. 

The comparison of lower quantiles of the system resistance to lower quantiles of the ele-

ment resistance illustrates whether the configurations in Fig. 2-9 have a positive or negative 

effect on the system reliability. For this purpose, level II− design values of the system re-

sistance are presented in Fig. 2-10 (right) based on a target reliability of βt = 3.8 and a 

sensitivity factor αR = 0.8. The resulting design resistances Rsys,d thus approximately equal 

the 0.1 % fractiles of the system resistance (see Eq. 2-98). They are displayed in relation to 

the design resistance Rel,d of a single element. An increase in Rsys,d with an increasing num-

ber of elements in the system indicates a positive influence of system effects on the relia-

bility and vice versa. An upper and lower bound are given, one the one hand, by the parallel 
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system with ductile elements, which shows the most positive influence, and, on the other 

hand, by the series system, for which the most negative influence is found. It appears that 

for some intermediate cases, the influence of system effects on the design value is negligi-

ble, which indicates that system and element reliability are approximately equal. 

2.6 Reliability of Existing Structures 

2.6.1 General 

The assessment of an existing structure might become necessary for one of the following 

reasons (Ellingwood 1996; ISO 13822 2010): 

 Planned change of use, modification of the structure, or extension of design service life 

 Discovery of design or construction errors 

 Complaints by tenants regarding serviceability 

 Appearance of structural damage (e.g. after extreme environmental events) 

 Observed structural deterioration due to time-dependent actions 

 Reliability check required by authorities, insurance companies, or owners 

Regardless of whether reliability-based or semi-probabilistic verification formats are ap-

plied, the assessment of existing structures is fundamentally different from the design of 

new structures. The main differences are summarised in Table 2-3 and described next. 

Table 2-3  Differences between designing new and assessing existing structures 

Differences regarding Design of new structures Assessment of existing structures 

Material properties 
choice of nominal values;  

assumption of mean and variance 
mean and variance measurable 

Geometrical dimensions choice of nominal values measurable 

Design and construction 

documents 
under preparation available or unavailable 

Type of uncertainty mostly aleatory mostly epistemic 

Structural verification 
according to current  

standards 

according to former standards, current 

standards, or more advanced methods 

Partial factors 
partial factors  

according to standards 
adjusted partial factors possible 

Design service life 
design service life  

according to standards 

remaining service life possibly  

shorter than the usual design service life 

Proof-loading – 
proof-loading possible; increased  

reliability of service-proven structures 

Relative costs of measures 

for increasing reliability 
low to medium high 
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In the design of new structures, materials with specified nominal material properties can be 

chosen, whereas in the assessment of existing structures, the materials are already present, 

and their properties can be tested. The same applies to geometrical dimensions. If design 

or construction documents no longer exist, the assessment of an existing structure must rely 

exclusively on the inspection and measurements of geometrical dimensions and material 

properties, which can be difficult if structural members are not easily accessible. As a result, 

epistemic uncertainties can be the dominant type of uncertainty in assessing existing struc-

tures (see Section 2.2). Therefore, statistical uncertainty related to a limited number of 

measurements must be considered. Corresponding approaches are presented in Section 

2.6.4. 

New structures are to be designed according to currently valid standards. In most cases, 

these standards did not exist when the structure under assessment was constructed, and 

existing structures might hence not comply with current standards, even if they are free of 

structural damages and deterioration. In the context of an extension of an existing structure 

or a change of use leading to higher loads, this can lead to obstacles if compliance with the 

current standard is required. In these cases, the German building authority allows un-

changed parts of the existing structure to be verified according to former standards that 

were in force at the time of construction (ARGEBAU 2008). If verification according to 

both former and current standards is not possible, more advanced methods can help to avoid 

costly retrofitting works or demolition. Such methods can be more advanced in terms of 

the probabilistic level (see Table 2-2) or the methods of structural analysis (e.g. physically 

nonlinear finite element simulations; see BMVBS 2011). Concerning the level of probabil-

istic methods, the first logical step is to apply adjusted partial factors instead of those de-

fined in standards for the design of new structures. Concepts for adjusted partial factors are 

described in Section 2.6.3. 

In addition to the previously mentioned methods, proof load testing of existing structures 

can be beneficial for verifying sufficient reliability (see e.g. Moses et al. 1994; Ellingwood 

1996). In principle, proof-loading an existing structure (or structural member) demonstrates 

that its resistance is at least as high as the applied load. The higher the proof load (i.e. the 

higher the probability of failure due to proof-loading itself), the higher the gain in structural 

reliability if the structure survives the proof-loading. The satisfactory past performance of 

a structure for a long time (i.e. its survival under all the loads having occurred since it was 

erected) has a similar effect on structural reliability (Hall 1988; Val and Stewart 2002). 

Such a structure is sometimes referred to as “service-proven”. However, the actual loads 

that have occurred in the past service life are uncertain, and the gain in reliability for a 

service-proven structure is hence usually much lower than in the case of proof load testing 

(Melchers and Beck 2018). The effect of satisfactory past performance and proof-loading 

strongly depends on the present uncertainties: The most positive effect on reliability occurs 
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if the present uncertainty mainly originates from the resistance and if the ratio of variable 

load to permanent load is low. Satisfactory past performance also indicates that gross hu-

man errors (e.g. due to oversight or ignorance) are less likely to have been made during 

construction or design (Hall 1988). Human errors are usually not explicitly included in the 

derivation of reliability requirements and corresponding uncertainty modelling, as stated in 

prEN 1990 (2020), for example. However, in reality, they influence observed failure rates 

and thus the actual failure probability of a structure. Therefore, the “actual” probability of 

failure might be more strongly reduced by satisfactory past performance than the “nominal” 

probability of failure without considering human error. 

A further difference between the design of new and the assessment of existing structures 

lies in the costs of measures for increasing reliability: In the design of new structures, reli-

ability can easily be increased by, for example, choosing larger cross-sections or materials 

with higher strengths. If an existing structure needs to be upgraded, the relative costs for 

increasing the reliability are usually much higher. This directly influences the optimum 

reliability for existing structures, which is further discussed in Section 2.6.2. 

2.6.2 Target Reliability for Existing Structures 

The target reliability indices specified in EN 1990 (2010) – see Table 2-1 – were primarily 

derived for the design of new structures. Appropriate target reliability indices for existing 

structures can differ from these recommended values, as illustrated next. The considera-

tions mainly focus on target reliability levels for ultimate limit states. 

In general, optimal reliability levels can be found by economic optimisation. For new struc-

tures, this corresponds to finding the maximum of the following objective function (Rack-

witz 2000): 

       conZ d B d C d F d    Eq. 2-104 

where B (d) is the expected benefit from the existence of the structure, Ccon (d) are the ex-

pected costs for design and construction, and the expected failure costs F (d) address the 

risk of structural failure. F (d) can be expressed as the product of the probability of failure 

Pf (d) and the expected costs Cf given failure. The costs Cf must account for the replacement 

of the structure, expected economic losses due to non-availability of the structure, environ-

mental and psychological effects, and expected fatalities and injuries in the case of a failure 

(Steenbergen et al. 2015). To express the risk of fatalities in monetary units, the so-called 

“societal willingness to pay” (SWTP) can be used, which is the amount of money a society 

is willing to spend to save an additional anonymous life (Fischer et al. 2019). The SWTP 

can be derived from social indicators such as the life quality index (Lind 2002; Rackwitz 

2002). Since all potential failure costs occur in the future, they must be discounted to their 

worth at the time of construction, which is neglected in the following expressions for the 
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sake of simplicity. The parameter d is the decision parameter, which can represent physical 

parameters, such as the cross-section of a structural member. However, the parameter d can 

also be the reliability index β that results from selecting particular physical parameters. The 

benefit B (d) is usually almost independent of d; therefore, the optimisation is equivalent to 

minimising the total costs Ctot,new. If the reliability index β is the decision parameter, the 

following expression is received for new structural members: 

     tot,new con f fC β C β P β C   Eq. 2-105 

The optimum reliability index βopt,new, which minimises Ctot,new, depends on two parameters: 

First, the magnitude of possible failure consequences Cf, and, second, the marginal costs of 

measures for increasing the reliability, that is, the steepness of the curve Ccon (β); see Fig. 

2-11. 

 

Fig. 2-11 Optimisation of reliability index for new and existing structures 

For an existing structural member, the decision-making regarding the optimum reliability 

consists of two steps. First, based on the reliability index β0 of the structural member in its 

current condition, a decision must be made on whether the structural member should be 

kept in this condition or upgraded to a reliability index βup. Second, in the case of an up-

grade, a decision concerning the optimum reliability index βup must be made. The total 

costs Ctot,exist to be minimised can be expressed as (Steenbergen et al. 2015) 

 
   

 

0 1 up f up f
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f 0 f

in case of an upgrade

in case of no upgrade

C C β P β C
C β

P β C

  
 


 Eq. 2-106 

Here, C0 represents upgrade costs independent of the decision parameter βup (e.g. costs 

related to surveys, design, administration, and economic losses due to business interrup-

tions). The upgrade costs that depend on βup are represented by C1 (βup). The optimum reli-

ability level βt,up in case of an upgrade does not depend on C0 but only on the steepness of 

C1 (βup). The initial costs C0, however, influence whether the upgrade is beneficial: If the 

initial reliability index β0 is close to βt,up, then the initial investment C0 cannot be compen-

sated by the subsequent decrease in the expected failure costs Pf Cf (see Fig. 2-11). 
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If Ctot,exist is minimised for a set of typical existing structures, two generalised target values 

can be derived: A reliability index βt,0, below which the upgrade of the structure is usually 

beneficial, and a target reliability βt,up for the upgrade. For general application, Steenbergen 

et al. (2015) propose the selection of βt,0 and βt,up by reducing the target reliability indices 

in EN 1990 (2010) by Δβ = 1.5 and Δβ = 0.5, respectively (see Table 2-4). The values βt,0 

and βt,up are valid for a reference period equal to the remaining service life of the existing 

structure and are also proposed in fib bulletin 80 (2016). 

Table 2-4  Target reliability indices (remaining service life) for existing structures based 

on economic optimisation (Steenbergen et al. 2015) 

Consequence class βt,new,50a (EN 1990) βt,up βt,0 

CC 1 3.3 3.3 − 0.5 = 2.8 3.3 − 1.5 = 1.8 

CC 2 3.8 3.8 − 0.5 = 3.3 3.8 − 1.5 = 2.3 

CC 3 4.3 4.3 − 0.5 = 3.8 4.3 − 1.5 = 2.8 

In the current draft of fib Model Code 2020 (2020), the recommended target reliability 

levels for the design of new and the assessment of existing structures are aligned with the 

target reliability levels given by ISO 2394 (2015), which are specified for a one-year refer-

ence period and are equal to those in the JCSS Probabilistic Model Code (2001a). Apart 

from a differentiation between different consequence classes, the target reliability indices 

in ISO 2394 (2015) also depend on the relative costs of safety measures (see Table 2-5). 

For the assessment of existing structures, fib Model Code 2020 (2020) recommends apply-

ing the reliability indices for large relative costs of safety measures. Hence, for moderate 

failure consequences, which corresponds to CC 2 in EN 1990 (2010), βt,0 = 3.3 is specified 

for the assessment of existing structures. Compared to βt,new = 4.2, which is specified for 

the design of new structures, the target reliability for the assessment of existing structures 

is thus reduced by Δβ = 0.9. If the reliability index β0 of the existing structural member is 

smaller than βt,0 = 3.3, fib Model Code 2020 (2020) recommends upgrading towards the 

same target reliability as for the design of new structures (i.e. βt,up = βt,new = 4.2). 

Table 2-5  Target reliability indices βt,1a (one-year reference period) based on economic 

optimisation (JCSS 2001a; ISO 2394 2015) 

Relative costs of 

safety measures 

Minor consequences  

of failure 

Moderate consequences  

of failure 

Large consequences  

of failure 

Large 3.1 3.3 3.7 

Medium 3.7 4.2 4.4 

Small 4.2 4.4 4.7 

It is important to note that the target reliability indices specified in Table 2-5 are based on 

economic optimisation. In some cases, higher reliability is required due to human safety 

criteria, which set a lower limit to the target reliability index. One such criterion is the 

requirement that, for occupants of buildings, the individual risk from the possibility of a 
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structural collapse should be lower than the risk of other daily-life activities (fib bulletin 80 

2016). According to ISO 2394 (1998), the overall lethal accident rate is approximately 10−4 

per year. Steenbergen and Vrouwenvelder (2010) suggested setting the maximum accepta-

ble probability of being killed by structural collapse to 10−5 per year (i.e. one order of mag-

nitude lower), which is also specified by the Swiss standard SIA 269 (2011). If the condi-

tional probability of a casualty given failure is estimated, upper bounds for the target failure 

probability per year can be calculated (Steenbergen et al. 2015). Furthermore, if structural 

failure can lead to the collapse of large areas, an additional check of group risk criteria can 

be required to avoid high probabilities of failure events with a large number of fatalities. 

For more information about group risk criteria, refer to Tanner and Hingorani (2015), 

Steenbergen et al. (2015), and fib bulletin 80 (2016). 

When assessment values are determined in the course of this thesis, a target reliability level 

of βt,1a = 3.3 is applied in most cases. As illustrated above, this value corresponds to the 

target reliability specified by ISO 2394 (2015) for high relative costs of safety measures 

and medium failure consequences based on economic optimisation. 

2.6.3 Concepts for Modified Partial Factors 

Suitable partial factors for the assessment of existing structures can differ from those for 

the design of new structures for two reasons: First, reduced target reliability indices βt for 

existing structures should also lead to a reduction in the partial factors. Second, the stochas-

tic models for the basic variables might differ from those considered in the partial factors 

for new structures. For example, information about the actual variability of material prop-

erties can be obtained by measurements, which can justify an increase or a reduction of 

partial factors compared to those for new structures. Three available approaches for deter-

mining modified partial factors for existing structures are briefly presented next. All of 

them were mainly developed for existing concrete structures. 

Design value method (DVM) 

The DVM, as defined by EN 1990 (2010), can also be used to derive partial factors for 

existing concrete structures, which is described in Caspeele et al. (2013) and fib bulletin 80 

(2016). As explained in Section 2.5.4, the DVM is based on the simplified level II approach 

proposed by König and Hosser (1982). Therefore, fixed sensitivity factors αR and αE are 

applied to enable a simplified determination of partial factors based on a specified target 

reliability level βt and stochastic models for the relevant basic variables. The DVM is also 

included in the draft standard prEN 1990-2 (2021), where design values are referred to as 

“assessment values” with index “a” instead of “d”. When using the design/assessment value 

method, determining partial factors is not necessarily required, as assessment values can be 
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directly evaluated as specific fractiles of the basic variables. The assessment value method 

for existing structures is, in principle, identical to the DVM for new structures. 

Adjusted partial factor method (APFM) 

The adjusted partial factor method (APFM) is proposed as an alternative to the DVM in fib 

bulletin 80 (2016) and Caspeele et al. (2013). The APFM is also based on the simplified 

level II approach; however, in contrast to the DVM, it only specifies adjustment factors ωγ 

for the partial factors defined in the Eurocodes, thereby guaranteeing consistency with the 

Eurocode regulations for new structures. Adjusted partial factors for material properties 

(index X), permanent loads (G), and variable loads (Q) are obtained by multiplying the 

partial factors for new structures by adjustment factors: 

, ,new , ,new , ,newX γ X X G γ G G Q γ Q Qγ ω γ γ ω γ γ ω γ    Eq. 2-107 

The adjustment factors ωγ address differences between parameters for existing structures 

(marked by ″) and reference parameters for new structures (marked by ′) that are relevant 

concerning suitable partial factors. These differences include a different target reliability 

level βt″ for the considered existing structure compared to the target reliability index βt′ for 

new structures, and different CoVs υ″ of the basic variables compared to the CoVs υ′ im-

plicitly included in the partial factors for new structures. For variable loads, a reference 

period tref deviating from the standard design working life of 50 years can also be consid-

ered. The adjustment factors ωγ for material properties (log-normal distribution), permanent 

loads (normal), and variable loads (Gumbel) can be calculated by 
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 

 Eq. 2-110 

The target reliability level βt′ is to be chosen according to EN 1990 (2010) for a reference 

period of 50 years (i.e. as βt′ = 3.8), and the sensitivity factors should be selected as 

αE = − 0.7 and αR = 0.8. The specified reference CoVs are υX′ = υc′ = 0.15 for concrete 

strength, υX′ = υs′ = 0.05 for the yield strength of reinforcement steel, υG′ = 0.1 for perma-

nent loads, and υQ,50a′ = 0.25 for imposed loads. For information about other variable loads, 

see fib bulletin 80 (2016). Calculating the adjustment factor for variable loads according to 

Eq. 2-110 implies that the reference period is either 50 years or considered by adjusting the 



 

2  Basics of Statistics and Structural Reliability 

 

 

54 

characteristic value. The partial factors for considering model uncertainties, γRd and γEd, are 

to be calculated by 

   Rd t Ed t t

t

1
1 0.4

1 0.4
E θ

R θ

γ β γ β α β υ
α β υ

  


 Eq. 2-111 

where υθG = 0.065 and υθQ = 0.11 are suggested in fib bulletin 80 (2016) for permanent and 

variable loads, respectively. The partial factor for resistance model uncertainty γRd is ob-

tained as the product of γRd1 for the actual model uncertainty and γRd2 for geometrical un-

certainty. Both partial factors can be calculated with Eq. 2-111 using υθ,Rd1,c = υθ,Rd2,c 

= 0.075 for concrete compressive strength, as well as υθ,Rd1,s = 0.02 and υθ,Rd2,s = 0.04 for 

the yield strength of reinforcement steel. Eq. 2-111 is based on a normal distribution of 

model uncertainty. Concerning the resulting partial factors γRd and γEd, the difference to a 

log-normal distribution is negligible due to the small CoVs υθ. 

One advantage of the APFM is that the ratio υ″ / υ′ can be set to one if no additional infor-

mation regarding the CoVs of the basic variables is available for the existing structure. In 

doing so, the isolated influence of an adjusted target reliability level βt″ on partial factors 

can be considered, as displayed in Fig. 2-12 for the partial factors for permanent and im-

posed loads according to EN 1990 (2010), and for concrete and reinforcement strength 

according to EN 1992-1-1 (2010). 

 

Fig. 2-12 Influence of target reliability βt on adjustment factors (left) and partial factors 

(right) obtained by the adjusted partial factor method 

Modified partial factors according to DBV-Merkblatt 

In the DBV-Merkblatt (2013), titled “Modifizierte Teilsicherheitsbeiwerte für Stahlbet-

onbauteile” (Modified partial factors for reinforced concrete members), partial factors for 

concrete and reinforcement steel strength are specified depending on the respective CoVs. 

Since modified partial factors are only given in a table (see Table 2-6), the modification 

method is less transparent than the DVM and APFM. Related background information is 
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given in DBV-Heft 24 (2013). The partial factors are based on a target reliability level of 

βt, 50a = 3.2. The reduction of the normative target reliability of βt,50a = 3.8 for CC 2 is jus-

tified by arguments related to satisfactory past performance: If the structure has been in use 

for at least five years without showing any damage, then the assumption is that the proba-

bility of gross human errors, which might have been made during design and construction 

and could lead to structural failure, is significantly reduced. Therefore, the authors argue 

that the nominal target reliability level βt, which does not consider human error, can be 

reduced without leading to a higher actual failure probability compared to new structures. 

In contrast to the DVM and the APFM, modified partial factors are only given for the re-

sistance parameters: concrete (γC,mod) and reinforcement strength (γS,mod). The potential re-

duction of the partial factors for actions, which originates from the reduced target reliability 

level of βt,50 = 3.2, is addressed by further reducing the modified partial factors γC,mod and 

γS,mod. Consequently, the modified partial factors may not be used if favourable load effects 

are involved in the verification. According to DBV-Heft 24 (2013), the partial factor 

γC = 1.50 includes a factor of 1.15 for considering that, due to insufficient compaction and 

other influences during construction, the concrete strength in the structural member might 

be lower than that obtained from normative test specimens. Therefore, another reason for 

reducing the normative partial factor γC is seen in neglecting this conversion factor if con-

crete strength is obtained from tests on drill cores. The modified partial factors are based 

on a reference period and a remaining working life of 50 years. For the detailed application 

conditions of the modified partial factors in Table 2-6, refer to DBV-Merkblatt (2013). 

Table 2-6  Modified partial factors for reinforced concrete members according to DBV-

Merkblatt (2013) 

Concrete (persistent and transient design situations) 

υR,C
1 ≤ 0.2 0.25 0.30 0.35 0.40 

γC,mod
2 1.2 1.25 1.304 1.403 1.503 

Reinforcement steel (persistent and transient design situations) 

υR,S
1 0.06 0.08 0.10 

γS,mod
2 1.05 1.10 1.104 

Intermediate values may be interpolated. 
1 The coefficients of variation υR,C and υR,S must include material, model, and geometrical uncertainty. 
2 Not to be applied for verification of vertical members of the bracing system 
3 To be increased by 20 % for verification of VRd,max (compressive strut resistance for shear transfer) 
4 Assumption for preliminary/conceptual design without material testing 

2.6.4 Concepts for Considering Statistical Uncertainty 

If the material properties of an existing structure are obtained by material testing, the sta-

tistical uncertainty resulting from the limited sample size must be considered. A general 

method for determining the characteristic values and design values of material properties 

based on limited test data is given in Annex D of EN 1990 (2010). The method is based on 
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a Bayesian approach with non-informative prior distribution. The characteristic value Xk 

and the design value Xd are determined based on the posterior predictive distribution: Xk is 

obtained as the 5 % fractile, and the p fractile that corresponds to Xd is defined by the sim-

plified level II approach. Assessment values Xa for existing structures can be determined 

accordingly (see prEN 1990-2 2021). Based on a log-normal distribution and an unknown 

CoV, Xk and Xd can be obtained as 

 k 1,5%exp with 1 1y n y n nX m k s k t n      Eq. 2-112 

   d d, d, 1, texp with 1 1 , Φy n y n n p RX m k s k t n p α β        Eq. 2-113 

where my and sy are the arithmetic mean and standard deviation of the natural logarithms of 

the test results, respectively, n is the sample size, and tn−1,p is the p fractile of the t-distribu-

tion with n − 1 degrees of freedom. In EN 1990 (2010), the factors kn and kd,n are given in 

tables instead of by equations. 

The method described in Annex D of EN 1990 (2010) is applicable for all material types. 

Therefore, material-specific standards and guidelines for determining the characteristic ma-

terial properties of existing structures are often based on this method; see, for example, EN 

13791 (2019) for existing concrete and WTA 7-4 (2021) for existing masonry structures. 

The characteristic values derived by applying the Bayesian approach with non-informative 

prior distribution can be quite low for small sample sizes. Less conservative results can be 

obtained if informative prior distributions are used in the assessment, as demonstrated in 

Caspeele and Taerwe (2012) for the characteristic concrete compressive strength. 

The DVM and the APFM, as presented in fib bulletin 80 (2016), as well as the modification 

of partial factors according to DBV-Merkblatt (2013) do not consider the number of con-

ducted material tests in the derivation of partial factors. However, in both documents, it is 

emphasised that statistical uncertainty should be considered when characteristic values for 

the material properties are determined, and Annex D of EN 1990 (2010) is referred to for 

this purpose. In contrast, Val and Stewart (2002) present a Bayesian method for determin-

ing partial factors of resistance parameters that depend on the number of conducted tests. 

The method follows the simplified level II approach and is, in principle, similar to the 

DVM. However, the partial factors are derived from the posterior predictive distribution of 

the considered material property. In this way, information from material testing and, if 

available, prior information are considered, including the corresponding statistical uncer-

tainty. Val and Stewart (2002) show that too conservative partial factors for small sample 

sizes can be avoided by considering prior information.  
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3 STRUCTURAL BEHAVIOUR AND ASSESSMENT OF 

MASONRY 

3.1 Introduction 

General knowledge regarding the structural behaviour and assessment of masonry is pre-

sented in this chapter. Due to the scope of this thesis, the focus is on existing masonry under 

compression loading. Masonry is designed according to Eurocode 6 in most European 

countries: General design rules are specified in EN 1996-1-1 (2012), and simplified calcu-

lation methods are included in EN 1996-3 (2009). The National Annexes (NAs) DIN EN 

1996-1-1/NA (2019) and DIN EN 1996-3/NA (2019) additionally apply in Germany. The 

current generation of Eurocode 6 primarily aims at the design of new masonry structures 

and is therefore not fully applicable to the assessment of existing masonry structures. How-

ever, reference is made to Eurocode 6 and its German NAs throughout this chapter, as no 

comprehensive European standard for assessing existing masonry is available at present. 

In the assessment of existing masonry structures, basic knowledge about the history of ma-

sonry construction, including the evolution of masonry unit and mortar types and respective 

construction techniques, is beneficial. Hence, a short overview of the history of masonry 

construction, emphasising clay brick masonry construction in Germany, is provided in Sec-

tion 3.2. The overview also includes information on the typology of masonry. In Section 

3.3, the behaviour of the composite material masonry under compression and the structural 

behaviour of masonry walls are illustrated. The section briefly discusses not only general 

information but also influences on masonry strength that become important in the assess-

ment of existing masonry structures, such as inhomogeneity, defects, and deterioration. 

If no documents with reliable information regarding material strength are available for a 

masonry structure under assessment, the compressive strength of masonry is usually deter-

mined experimentally. Section 3.4 deals with the different methods for testing masonry 

compressive strength. If unit and mortar properties are tested separately, the compressive 

strength of masonry must subsequently be predicted by applying appropriate models, which 

are described in Section 3.5. Finally, different approaches for the finite element modelling 

of masonry are presented in Section 3.6, and the safety format for the design of masonry 

structures according to Eurocode 6 is discussed in Section 3.7. 

3.2 Overview of the History of Masonry Construction 

Masonry construction has a history of more than 10,000 years, as evidence was found of 

stone masonry buildings built in the Levant and Mesopotamia in the ninth millennium BC 

(Kurapkat 2017). Around the same time, construction with hand-moulded and air-dried clay 
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bricks began in the early civilisations in western Asia. Although the firing of clay for pro-

ducing ceramic products had been common in those civilisations since the seventh millen-

nium BC, the use of fired clay bricks did not gain dominance over the use of unfired bricks 

due to the shortage of firewood and thus the high price of fired clay bricks. Therefore, fired 

clay bricks were only used for the parts of structures that required resistance to wet condi-

tions (Sievertsen 2017). 

One of the first civilisations to use fired clay bricks to a larger extent was the Indus Valley 

Culture, where fired bricks were a common building material between 2600 to 1600 BC 

(Khan and Lemmen 2014). The dimensions of Indus Valley bricks had the proportions 

4 : 2 : 1 (length : width : height), which are still typical today. Well-known written evi-

dence of the early manufacturing of fired clay bricks is the story of the Tower of Babel in 

the Hebrew and Christian Bible: “And they said to one another, ‘Come, let us make bricks, 

and burn them thoroughly.’ And they had brick for stone, and bitumen for mortar.” (Genesis 

11,3, English Standard Version). The historical inspiration for this story might have been 

the Etemenanki, a Babylonian temple structure built around 600 BC, which presumably 

had a height of around 90 m (Streck 2006). While in ancient Egypt and Greece, the use of 

fired clay bricks was still limited to structural members that needed resistance to moisture, 

fired clay bricks became a common building material in the Roman Empire, which enabled 

their spread over large parts of Europe (Osthues 2017). 

The general techniques for manufacturing fired clay bricks did not substantially change 

until the end of the 18th century (Egermann and Mayer 1989). The clay was first watered, 

kneaded, and, depending on its consistency, mixed with sand before being pushed into 

wooden moulds. The excess material was then wiped off. After being air-dried, the bricks 

were stacked on top of one another with fuel, such as wood, turf, or straw, in between to 

form a brick clamp. The bricks were then fired for several days or weeks, ideally reaching 

temperatures between 800 and 1,000 °C during the burning process. Due to the different 

positions of the fired bricks in the kiln and hence different maximum temperatures, this 

firing technique led to high variability of the brick properties. Bricks that were only weakly 

fired (< 573 °C) or that melted (> 1,200 °C) were usually sorted out. Based on their visual 

appearance, the bricks were sometimes further separated into bricks of higher and lower 

quality (i.e. higher and lower strength and water resistance) to be used at the outer surface 

or interior of a masonry wall, respectively (Neumann 2017). 

During the 19th century, several inventions changed the procedure of clay brick production. 

Concerning the shaping of bricks, a significant invention was the screw extrusion press by 

Carl Schlickeysen in 1854, which allowed for the extrusion of a continuous strand of clay 

that was then cut into single bricks. One characteristic of extruded clay bricks, which are 

still state of the art today, is their anisotropy: The extrusion causes an alignment of the clay 
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minerals, leading to a higher compressive strength of bricks parallel to the extrusion direc-

tion, which is usually the vertical direction in the completed masonry wall (Egermann and 

Mayer 1989). 

With regard to the firing, the invention of the ring-shaped kiln by Hoffmann and Licht, 

patented in 1858 (Rupp and Friedrich 1993), brought clay brick production a further step 

forward. The so-called “Hoffmann kiln” allowed all stages of the process (i.e. heating-up, 

firing, and cooling down) to be executed simultaneously in several interconnected cham-

bers, thereby enabling the kiln to be operated in a never-ending, much more efficient pro-

cess and leading to less variability of brick strength compared to the firing in a brick clamp. 

The last significant step concerning the production techniques for clay bricks was the im-

plementation of tunnel kilns. Although initially invented in the middle of the 19th century, 

tunnel kilns did not become common in Germany until around 1950 and are – in further 

developed forms – still state of the art today (Rupp and Friedrich 1993). In a tunnel kiln, 

the bricks are placed on a wagon moving through the kiln sections, each with different 

temperatures. In addition to a more efficient production compared to previous kiln types, 

all the bricks moving through the tunnel kiln are subjected to approximately the same tem-

perature, leading to a further reduction in strength variability. 

Historical mortars for masonry construction include mortars with lime, gypsum, clay, and 

bitumen as binding material. Lime mortars have been used for construction since the ninth 

millennium BC. Hence, the technology of first burning limestone (calcium carbonate) and 

then slaking the burnt lime (calcium oxide) to receive calcium hydroxide had already been 

applied on a larger scale before the firing of clay to produce ceramics became common 

(Kurapkat 2017). Concerning lime mortars, a distinction must be made between hydraulic 

and non-hydraulic lime. While non-hydraulic lime (air lime) hardens by carbonation if ex-

posed to carbon dioxide, hydraulic lime contains additional components, such as clay min-

erals or pozzolans, leading to hardening by hydration and thus higher mortar strengths. 

From around 1870, the use of the historical mortar types began to decline in Germany, 

being gradually replaced by cement-lime and cement mortars (Ahnert and Krause 2009). 

The application of Portland cement as a binder allowed for much higher mortar strengths. 

An important step regarding the standardisation of masonry construction in Germany was 

the introduction of the Reichsformat in Prussia in 1872, specifying the brick dimensions of 

25 x 12 x 6.5 cm³ (length x width x height) as mandatory for public buildings (Bender 

2004). Soon, this format spread throughout the whole German Reich. Up to this time, many 

different regional brick formats had been used; however, they did not substantially differ 

from the Reichsformat, as these small brick dimensions enabled good handling of bricks 

without further technical support. In contrast to larger masonry units commonly used in 

Germany nowadays, these small-sized bricks resulted in walls with a thickness of more 
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than one brick width. While single wythe masonry, which is masonry with a thickness of 

one unit, is commonly constructed in a stretcher bond, the bricks in bonded masonry can 

be placed as stretchers (longer side parallel to the wall face) or headers (longer side perpen-

dicular to the wall), as depicted in Fig. 3-1. A wide variety of different masonry bonds is 

hence possible, with the English bond (German: Blockverband) and the cross bond (Ger-

man: Kreuzverband) having been the most common types for bonded masonry in Germany 

since the 16th century (Maier 2012). 

 

Fig. 3-1 Common masonry bond types in Germany 

The first German brick standard, DIN 105 “Mauerziegel (Backsteine)”, was introduced in 

1922. According to this standard, second-class clay bricks had to achieve a compressive 

strength of at least 10 N/mm² and first-class clay bricks of at least 15 N/mm² on average. 

The first German standard for the structural design of masonry, DIN 1053, was then pub-

lished in 1937. Later, in 1951, a new set of standard construction dimensions was intro-

duced by DIN 4172, according to which building dimensions should be multiples of 25/3 

or 25/4 cm. This rule led to new standardised unit dimensions: the Normalformat (NF) of 

24 x 11.5 x 7.1 cm³ (length x width x height) and the Dünnformat (DF) of 

24 x 11.5 x 5.2 cm³; see DIN 105 (1952) for clay bricks and DIN 106 (1952) for calcium 

silicate bricks. The difference between the specified dimensions and a multiple of 25/3 or 

25/4 results from a nominal perpend joint thickness of 10 mm and bed joint thicknesses of 

1.23 cm and 1.05 cm, respectively. In the past decades, typical units for masonry construc-

tion in Germany have gained in size. However, the dimensions are still based on the same 

system, with unit dimensions being named by multiples of the dimensions DF or NF ac-

cording to the volume of the units including one of the neighbouring mortar joint thick-

nesses in each direction. 

Table 3-1 provides an overview of the most common masonry types in the existing resi-

dential building stock in Germany based on a typology by Loga et al. (2015), who catego-

rised the existing buildings by particular age classes. Masonry buildings and half-timbered 

buildings were the most common construction types until 1859. Since then, masonry has 

Cross bond English bond

perpend joint

bed joint

header
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been the dominating material for vertical structural members in German residential build-

ings. With regard to horizontal load-bearing members, the standard construction type 

shifted from timber joist floors to reinforced concrete slabs between 1919 and 1957. Apart 

from the common construction types, the share of the number of buildings belonging to the 

respective building age classes is presented as given in Cischinsky and Diefenbach (2018). 

Natural stone masonry and fired solid clay brick masonry dominated masonry construction 

in Germany until around 1950 (Loga et al. 2015). Then, other masonry types started to gain 

in importance (see Table 3-1). In the 1950s, many buildings were constructed using con-

crete blocks, with the aggregate consisting of recycled rubble from buildings destroyed in 

World War II. Due to their better insulating properties compared to solid bricks, perforated 

bricks became more popular in the 1960s. By the end of that decade, calcium silicate bricks, 

made of sand and burnt lime under increased temperature and pressurised steam in auto-

claves and first patented in 1880 (Bundesverband Kalksandsteinindustrie e.V. 2018), had 

become one of the most common units for masonry construction in Germany. Since around 

1980, autoclaved aerated concrete blocks have been among the three most popular masonry 

unit types in Germany aside from perforated clay and calcium silicate bricks. 

Table 3-1  Construction types in the existing German residential building stock (Loga et 

al. 2015; Cischinsky and Diefenbach 2018) 

Building age 

class 

Share of buildings 

(data of 2016) 
Most common masonry unit types 

Most common  

floor types 

Until 1859 
12 % 

natural stones, solid clay bricks 
timber joists 

1860 – 1918 solid clay bricks,  

natural stones 1919 – 1948 12 % timber joists,  

reinforced concrete 

slabs 
1949 – 1957 9 % 

solid clay bricks,  

hollow rubble concrete blocks 

1958 – 1968 12 % 
hollow concrete blocks,  

perforated clay bricks 

reinforced  

concrete slabs 

1969 – 1978 14 % 
perforated clay bricks,  

perforated calcium silicate bricks 

1979 – 1983 8 % 

perforated clay bricks,  

perforated calcium silicate bricks,  

autoclaved aerated concrete blocks 

1984 – 1994 13 % 
perforated clay bricks,  

solid calcium silicate bricks,  

autoclaved aerated concrete blocks 

1995 – 2001 10 % 

2001 – 2009 7 % 

Since 2010 4 % 

In the following course of this thesis, the term “historical masonry” refers to masonry from 

a past period, in which typical masonry types and production techniques substantially dif-

fered from today. Based on the previously presented development steps in masonry con-

struction in Germany, the term can be viewed as applicable to masonry from the time before 

about 1950. 
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3.3 Structural Behaviour of Masonry under Compression 

3.3.1 General Failure Mechanism of Masonry under Compression 

Since masonry is a composite material consisting of units and mortar, the compressive 

strength fma of masonry results from the properties of its components. For typical unit-mor-

tar combinations, the uniaxial compressive strength of mortar is smaller than the compres-

sive strength of the units. Furthermore, if unit and mortar were separately subjected to the 

same uniaxial compressive stress, the mortar would show higher transverse strains, as the 

elastic modulus E divided by Poisson’s ratio ν is usually smaller for the mortar. If the com-

posite material masonry is loaded perpendicular to the bed joints (i.e. vertically in the case 

of regular walls), the mutual constraint of the transverse strains thus leads to a triaxial com-

pression state within the mortar joint and transverse (i.e. horizontal) tensile stresses in the 

units (see Fig. 3-2). 

 

Fig. 3-2 Stresses within unit and mortar joint of masonry under uniaxial compression 

Due to the triaxial compression state, the mortar joint can resist compressive stresses higher 

than the uniaxial (i.e. unconfined) mortar compressive strength. For the units, the opposite 

is the case: The horizontal tensile stresses reduce the resistible vertical stress of the units, 

thereby initiating the failure, which is accompanied by vertical cracks. Throughout the past 

decades, several researchers have investigated the details of this failure mechanism (see 

e.g. Hilsdorf 1969; Khoo 1972; Probst 1981; Goretzky 2000). More details are presented 

in Section 3.5, which deals with the prediction of masonry compressive strength based on 

the properties of unit and mortar. 

3.3.2 Stress-Strain Relationship of Masonry under Compression 

The uniaxial stress-strain relationship of masonry depends on the particular combination of 

unit and mortar. According to EN 1996-1-1 (2012), the stress-strain curve of masonry under 

compression is generally nonlinear. For structural design, it may be approximated as linear, 

parabolic, parabolic rectangular, or rectangular. However, different stress-strain curves for 
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different types of masonry are not explicitly specified in EN 1996-1-1 (2012). To describe 

the actual shape of the stress-strain relationship, it is convenient to introduce the stress-

strain parameter k: 

ma,0

ma

fE ε
k

f
  Eq. 3-1 

where Ema,0 is the modulus of elasticity, defined as the tangential modulus in the origin, and 

εf is the compressive strain at reaching the compressive strength fma. The stress-strain pa-

rameter k can thus be viewed as the normalised tangential modulus of elasticity in the 

origin. Furthermore, it describes the ratio between the total strain εf and elastic strain εf,el at 

reaching the compressive strength fma. In this context, the elastic strain εf,el equals the com-

pressive strength fma divided by the elastic modulus Ema,0. According to EN 1996-1-1 

(2012), the elastic modulus of masonry Ema is defined as the secant modulus Ema,0-33 at one-

third of the compressive strength. Depending on the mathematical formulation of the stress-

strain curve, the tangential modulus Ema,0 can be slightly larger or equal to the secant mod-

ulus Ema,0-33. For k = 1, the stress-strain curve is perfectly linear, whereas for k → ∞, the 

curve converges to a rigid-plastic behaviour. In the case of k = 2, the curve is similar to a 

quadratic parabola. For an arbitrary parameter k, the stress-strain curve can be formulated 

according to the formulation given in EN 1992-1-1 (2010), for example (Glock 2004; 

Förster 2018): 

 

2

c c
u

ma

for 0 with
1 2 f

σ εk η η
η η η

f k η ε


   

 
 Eq. 3-2 

where σc is the compressive stress, and η = εc / εf is the normalised compressive strain. The 

maximum compressive strain is usually limited by the ultimate compressive strain εu or, in 

normalised form, by ηu. Fig. 3-3 illustrates the introduced terms taking the stress-strain 

relationship according to Eq. 3-2 as an example. 

 

Fig. 3-3 Stress-strain curve of masonry under compression according to Glock (2004) 

 (left: original, right: normalised) 
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Depending on the masonry type, Meyer and Schubert (1992) proposed modelling the stress-

strain behaviour either as linear or as parabolic rectangular: For masonry made of perfo-

rated clay bricks, autoclaved aerated concrete blocks, or lightweight concrete blocks, a lin-

ear stress-strain curve is proposed, whereas, for calcium silicate bricks, a parabolic rectan-

gular stress-strain curve is recommended. In Schubert (2010), the nonlinearity of the stress-

strain relationship for different masonry types is specified by the parameter α0, which is 

defined as the integral of the normalised stress-strain curve for 0 ≤ η ≤ 1. Assuming a stress-

strain curve according to Eq. 3-2, the stress-strain parameter k can be calculated from α0. 

The parameter k = 1 follows from α0 = 0.5, for example, and k = 2 corresponds to α0 = 2/3. 

Parameters k for different masonry types are displayed in Table 3-2. 

Table 3-2  Nonlinearity of the stress-strain relationship of masonry under compression 

for different unit types according to Schubert (2010) 

Stress-strain 

parameter 

Perforated clay 

bricks 

Calcium sili-

cate bricks 

Lightweight 

concrete 

blocks 

Concrete 

blocks 

Autoclaved 

aerated con-

crete blocks 

α0 0.55 0.65 0.60 0.65 0.55 

k 1.15 1.80 1.40 1.80 1.15 

Since solid clay brick masonry (SCBM) no longer plays a significant role in contemporary 

masonry construction in Germany, no specifications regarding the stress-strain curve of 

SCBM are given in Meyer and Schubert (1992) and Schubert (2010). However, for the 

assessment of existing masonry structures, knowledge about SCBM is essential. Investiga-

tions by Kaushik et al. (2007), Lumantarna et al. (2014), and Thamboo and Dhanasekar 

(2019) indicate that a quadratic parabola until reaching the compressive strength (i.e. k = 2) 

is suited to represent the stress-strain curve of SCBM. 

In addition to a mathematical formulation for the shape of the stress-strain curve, a value 

for the elastic modulus of masonry Ema is needed to define the stress-strain relationship. If 

no experimental results are available, EN 1996-1-1 (2012) allows for the determination of 

Ema by multiplying the characteristic compressive strength fma,k of masonry by a factor KE: 

ma ma,kEE K f  Eq. 3-3 

A value of KE = 1,000 is recommended regardless of the specific masonry type in EN 1996-

1-1 (2012). In the corresponding German National Annex DIN EN 1996-1-1/NA (2019), 

different values KE are given for different masonry types to calculate deformations and 

internal forces (see Table 3-3). However, for the verification of masonry walls against 

buckling failure, KE = 700 is specified for all masonry types. A comparison between the 

normative ratio Ema / fma,k = 1,100 for clay brick masonry and typical ratios for SCBM from 

the literature indicates that the normative ratio is only suited for contemporary perforated 

clay brick masonry. For existing SCBM, the typical ratio Ema / fma is much lower because 

of the solid geometry of the bricks, the higher ratio of joint thickness to unit height in the 
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case of small-sized bricks, and the softness of historical mortars (Neuwald-Burg and Bohne 

1999; Pech et al. 2018). For this reason, the Danish NA, DS/EN 1996-1-1 DK NA (2013), 

explicitly specifies different factors KE for lime and cement mortars used in combination 

with calcium silicate or clay units: 

lime mortar:   
j,m150EK f  

mortars with other binders:  j,m b,mmin 400 ; 20 ;1,000EK f f   
Eq. 3-4 

where fb,m and fj,m are the mean unit and mortar compressive strength in N/mm², respec-

tively. With this differentiation, the low modulus of elasticity of masonry with historical 

lime mortars having a compressive strength of around 1 N/mm² – see, for example, Neu-

wald-Burg and Bohne (1999) in Table 3-3 – are covered much better than by factors KE 

that are specified independently of the mortar type. 

Table 3-3  Ratio of modulus of elasticity to masonry compressive strength for different 

masonry types 

Reference Unit type 
Ema / fma 

proposed range 

EN 1996-1-1 (2012) all types 1,0001 - 

DIN EN 1996-1-1/NA (2019) 

clay bricks 1,1001,2 950 – 1,250 

calcium silicate bricks 9501,2 800 – 1,250 

lightweight concrete blocks 9501,2 800 – 1,100 

concrete blocks 2,4001,2 2050 – 2,700 

autoclaved aerated concrete blocks 5501,2 500 – 650 

all types 7001,3 - 

Kaushik et al. (2007) 

solid clay bricks 

550 250 – 1,100 

Lumantarna et al. (2014) 2944 89 – 433 

Neuwald-Burg and Bohne (1999) - 80 – 260 

Pech et al. (2018) 3001 - 
1 Ratio of Ema to characteristic masonry compressive strength fma,k 
2 For calculation of internal forces 
3 For verification against buckling 
4 Chord modulus between 0.05 and 0.7 fma

 

As indicated by the large range of ratios Ema / fma, the use of a constant factor KE might not 

be suited for the assessment of existing SCBM. Therefore, if the elastic modulus Ema is 

essential for the verification of the structure, suitable values for Ema should be chosen care-

fully. If the elastic modulus of masonry cannot be tested directly, which is usually the case, 

the ratio Ema / fma can be conservatively selected based on the literature. Alternatively, the 

elastic modulus of masonry can be estimated based on the elastic moduli of unit and mortar 

utilising a simple spring model, where the unit and the mortar joint are viewed as two 

springs with stiffness Eb / hb and Ej / hj, respectively, that are arranged in series: 



 

3  Structural Behaviour and Assessment of Masonry 

 

 

66 

b j j b jb
ma

ma b j b b j j

h h h h hh
E

E E E h E h E

 
   


 Eq. 3-5 

where Eb and Ej are the elastic moduli of unit and mortar, respectively, hb is the unit height, 

and hj is the mortar joint thickness. The spring model according to Eq. 3-5 can be found in 

the German guideline for the assessment of existing road bridges (“Nachrechnungsricht-

line”, BMVBS 2011), for example. Pelà et al. (2016) and Segura et al. (2018) present an 

extension of the spring model that considers the influence of vertical mortar joints. Further-

more, they compare the model with experimental results and thereby demonstrate that the 

spring model is well suited to predict the modulus of elasticity of masonry. 

3.3.3 Slender Masonry Walls under Eccentric Compression 

To consider the influence of the load eccentricity e and the wall slenderness λ on the vertical 

resistance R of a masonry wall under compression, EN 1996-1-1 (2012) introduces the re-

duction factor Φred: 

red ma red

ma

R
R Φ A f Φ

A f
    Eq. 3-6 

where A is the cross-sectional area of the masonry wall, and fma is the compressive strength 

of masonry. The reduction factor Φred can therefore be viewed as a normalised vertical 

resistance. Following EN 1996-1-1 (2012), a masonry wall must be verified at its top, bot-

tom, and mid-height. In the usual case with horizontal supports at the top and bottom of the 

wall, second-order effects and thus the slenderness are only relevant for the verification at 

mid-height. According to EN 1996-1-1 (2012), the effect of the eccentricity on the cross-

sectional resistance may be determined by assuming a rectangular stress block with stress 

fma (i.e. rigid-plastic behaviour without tensile strength). Hence, the reduction factor 

Φred,cs,EC6 for the cross-sectional capacity corresponds to a theoretical upper bound for Φred: 

red,cs,EC6 1 2
e

Φ
t

   Eq. 3-7 

where e is the eccentricity of the compression loading (here: perpendicular to wall length), 

and t is the thickness of the wall. 

Concerning the failure mode of a masonry wall under compression, a distinction must be 

made between material failure at the critical cross-section and stability failure due to buck-

ling. The difference is illustrated in Fig. 3-4. When the acting compression force N is in-

creased, the first-order moment MI at a particular cross-section rises proportionally. The 

lateral displacement ΔeII causes an additional second-order moment ΔMII. In the case of 

material failure, the load N can be increased until the combination of N and MII at the critical 

cross-section reaches the respective cross-sectional capacity. If the compressive strength is 



 

 3.3  Structural Behaviour of Masonry under Compression 

 

  

67 

homogeneously distributed within the wall and both the cross-section and the normal force 

are constant over the wall height, the critical cross-section is the cross-section with the 

largest moment MII, which is the cross-section at mid-height for the structural system in 

Fig. 3-4. In the case of stability failure, the wall fails before the cross-sectional capacity is 

reached at any section of the wall. Due to the nonlinear material behaviour under compres-

sion and potential cracking at the tension side of the wall, the overall flexural stiffness of 

the wall reduces with increasing compression loading. Stability failure occurs as soon as 

the marginal flexural stiffness of the wall is no longer large enough to enable an equilibrium 

for a further increase of the compression loading. At this point, the N-M curve describing 

the normal force and second-order moment acting at the critical cross-section becomes hor-

izontal before reaching the envelope representing the cross-sectional capacity (see Fig. 

3-4). 

 

Fig. 3-4 Idealised system of a masonry wall and differentiation between material and 

stability failure 

EN 1996-1-1 (2012), DIN EN 1996-1-1/NA (2019), and EN 1996-3 (2009) define different 

reduction factors Φred accounting for eccentricity and slenderness, each representing diffe-

rent degrees of approximation. While the reduction factors for considering slenderness ac-

cording to DIN EN 1996-1-1/NA (2019) and EN 1996-3 (2009) do not allow for the explicit 

consideration of a specific elastic modulus Ema, the reduction factor according to Annex G 

of EN 1996-1-1 (2012) is a function of Ema. 

If the vertical resistance of an unreinforced masonry wall shall be determined precisely to 

obtain results close to the exact solution of the differential equation defining the stability 

problem, the closed-form expression derived by Glock (2004) can be used. Fig. 3-5 displays 

the reduction factor Φred according to Glock (2004) for varying slenderness λ and different 

load eccentricities eI. The material-related slenderness λ is defined as 
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ma,0ef ef

ma

f

Eh h
λ ε k

t t f
   Eq. 3-8 

where hef is the buckling length of the wall. 

The model proposed by Glock (2004) allows for the consideration of different stress-strain 

parameters k. After reaching the peak stress fma at strain εf, a horizontal stress-strain curve 

until reaching the ultimate strain εu = ηu εf is assumed. In Fig. 3-5, the reduction factors are 

displayed for k = 2 combined with ηu = 1.75 and for k = 1 with ηu = 1. For a given value of 

εf, a higher nonlinearity of the stress-strain curve, represented by a higher value k, leads to 

a higher load-bearing capacity. Employing the model by Glock (2004), the flexural tensile 

strength of masonry can also be considered. The respective stress-strain behaviour is taken 

as linear until reaching the tensile strength ft, followed by a sudden drop to zero. The re-

duction factors in Fig. 3-5 are given with and without considering the tensile strength ft.  

As evident from Fig. 3-5, ft is only influential for high slenderness combined with a large 

eccentricity of the load. For a theoretical slenderness λ = 0, the resistance R is proportional 

to the compressive strength fma and independent of Ema. In the case of stability failure, k = 1, 

and ft = 0, the resistance is directly proportional to Ema and independent of fma. 

 

Fig. 3-5 Normalised load-bearing capacity for varying slenderness, eccentricity, and 

nonlinearity of the stress-strain relationship according to Glock (2004) 

Another closed-form expression for the vertical load-bearing capacity of slender unrein-

forced masonry walls was developed by Bakeer (2015). In contrast to the model by Glock 

(2004), however, the closed-form expression by Bakeer (2015) does not allow for the con-

sideration of the post-peak behaviour of the stress-strain curve nor for the consideration of 

the tensile strength (i.e. it is valid for the special case of ηu = 1 and ft / fma = 0). In Bakeer 

(2016a), a simplified version of the expression is proposed that, for h / t → 0, converges to 
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the cross-sectional capacity given rigid-plastic behaviour (see Eq. 3-7). Thereby, con-

sistency with the cross-sectional capacity as defined in EN 1996-1-1 (2012) is obtained. In 

slightly altered form, the proposal by Bakeer (2016a) is also included in the current draft 

standard FprEN 1996-1-1 (2020). 

3.3.4 Influence of Inhomogeneity 

One main objective of this thesis is to investigate the influence of spatially varying unit and 

mortar properties and thus inhomogeneity on the load-bearing capacity of masonry under 

compression. Stochastic finite element simulations have already been performed to study 

the influence of spatially variable material properties on the out-of-plane flexural resistance 

and the in-plane shear resistance of masonry walls (Li et al. 2014; Gooch et al. 2021; Isfeld 

et al. 2021). The results of these investigations have in common that the consideration of 

spatially variable material properties leads to a reduction in the mean resistance compared 

to a non-spatial analysis, in which unit and mortar properties are modelled as homogeneous 

within a masonry wall. Furthermore, the coefficient of variation (CoV) of the resistances 

obtained by the spatial analysis is much lower than the input CoVs of the influential mate-

rial properties. Concerning masonry under compression loading, two existing studies re-

garding the influence of inhomogeneity are briefly described next. 

Kirtschig and Meyer (1990) performed compression tests on walls made of calcium silicate 

bricks, which contained specific percentages of bricks with either a higher or a lower unit 

compressive strength. The experiments were conducted for several unit dimensions, vary-

ing wall lengths, and different percentages of weaker bricks within the wall. The main goal 

of the investigations was to find an experimental justification for the higher global safety 

factor of γ = 2.5 for masonry pillars (cross-section A < 0.1 m² or < 2 units per course) com-

pared to γ = 2.0 for masonry walls (A ≥ 0.1 m² and ≥ 2 units per course) as introduced by 

DIN 1053-2 (1984) based on theoretical considerations. The investigations did not reveal a 

significant difference between the mean resistances of pillars and walls. Higher variability 

of the resistance of pillars, which would also justify the higher safety factor, is not evident 

from the results, due to the small number of tests (only two) per wall configuration. Nev-

ertheless, the experimental series revealed one main issue regarding the influence of inho-

mogeneity: The inhomogeneous walls and pillars consisting of specific shares of stronger 

and weaker units showed a lower load-bearing capacity than obtained by linear interpola-

tion between the capacities of the two homogeneous reference walls. Hence, if spatial var-

iability is present, the strength of the masonry wall is lower than the average masonry com-

pressive strength within the wall, which is due to an imperfect capability of stress redistri-

bution. 

Goretzky (2000) performed Monte Carlo simulations (MCS) of masonry walls under com-

pression loading to investigate the influence of the spatial variability of unit and mortar 
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properties within historical masonry, which is typically higher than in modern masonry. To 

reduce the computational effort compared to using a finite element model, a simplified 

model was developed that displays masonry as a set of vertical prisms. Each prism consists 

of several unit-mortar elements, whose number is equal to the number of courses. The de-

formation and cracking of the unit-mortar elements are determined based on the properties 

of unit and mortar. A prism fails if, after the appearance of the first crack, the stress is 

further increased up to a critical stress value, which depends on the lengths of the existing 

vertical cracks. If the remaining prisms can additionally resist the load of the failed prism, 

the load acting on the masonry wall can be further increased. Based on the results of the 

MCS, reduction factors for the mean and the 5 % fractile of the wall resistance are proposed 

for historical masonry with a high CoV υb of unit compressive strength. The factors repre-

sent the relative reduction compared to the mean and 5 % fractile of the wall resistance for 

modern masonry, for which a reference CoV of υb = 10 % is assumed. The reduction factor 

fI for the mean is given by 

I b1.1f υ   Eq. 3-9 

and the reduction factor ξI for the 5 % fractile is given by 

 I b1 0.33 0.1ξ υ    Eq. 3-10 

The investigations by Goretzky (2000) can be viewed as a significant step towards under-

standing the influence of spatially varying material properties on the vertical load-bearing 

capacity of masonry walls. However, the simulations were only performed for a masonry 

wall with concentric compression loading and a height of only seven courses, with six units 

per course. Second-order effects were not considered. For a deeper understanding, investi-

gations with varying wall length, slenderness, and load eccentricity are thus needed (see 

Chapter 6 of this thesis). Furthermore, for the reliability of masonry walls, neither the mean 

nor the 5 % fractile of the resistance is decisive. Instead, lower fractile values, namely de-

sign/assessment values, are essential, which were not evaluated by Goretzky (2000). 

3.3.5 Further Influences on the Resistance of Masonry 

Some other influences on the resistance of masonry under compression, namely high sus-

tained loading, physicochemical deterioration, incompletely filled mortar joints, and in-

creased moisture content, are briefly described next. The importance of considering their 

respective effects on masonry strength is not limited to the assessment of existing structures 

but is also given for the design of new structures. However, some of the following influ-

ences result from structural defects due to poor workmanship or mechanisms overlooked 

during design; therefore, the need to consider these influences becomes more apparent in 

the assessment of existing masonry. 
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Sustained loading 

Due to the creep-related development of micro-cracks, high sustained compressive stress 

levels can lead to a failure of masonry, even if the stress level is below the masonry com-

pressive strength as determined in short-term testing. For concrete, this phenomenon is also 

known as the “Rüsch effect”, as it was made known through investigations by Rüsch 

(1960). The same effect has also been identified for masonry structures (Hierl et al. 1973; 

Binda 2008; Verstrynge 2010). To consider the influence of high sustained stress levels, 

DIN EN 1996-1-1/NA (2019) specifies a reduction factor of ζ = 0.85 that is to be applied 

to the short-term strength. 

Deterioration 

The term “deterioration” refers to processes leading to an irreversible and gradual change 

in one or more of the structural properties, thereby reducing the ability of the structure to 

perform according to a defined standard (Maes et al. 1999). Detailed descriptions of ma-

sonry-related deterioration mechanisms can be found in Franke and Schumann (1998), 

Larbi (2004), Maier (2012), and Ghiassi and Lourenço (2019). A categorisation of common 

deterioration mechanisms is listed in Table 3-4, focusing on mechanisms that lead to a re-

duction of the resistance, which is usually due to a reduced effective cross-section. As evi-

dent, deterioration is mostly caused by insufficient protection against water penetration. If 

deterioration mechanisms are identified in the assessment of an existing structure, the pro-

cesses should be either stopped by suitable measures or considered via time-dependent de-

terioration models to evaluate structural reliability within the remaining service life (Maes 

et al. 1999). 

Table 3-4  Typical deterioration mechanisms for masonry structures (Franke and Schu-

mann 1998; Maes et al. 1999; Larbi 2004; Ghiassi and Lourenço 2019) 

Type Cause Possible consequences 

Freeze-thaw cycles 
Increased moisture content and  

temperature changes  

Spalling of unit parts, disintegration 

of mortar joints, loss of adhesion  

between unit and mortar, cracking 

Salt crystallisation 
Intrusion of moisture-transported 

salts, crystallisation 

Spalling or powdering of units,  

sanding of mortar, cracking 

Attacks by chemicals 

Intrusion of chemicals (e.g. sulphates, 

acids) dissolved in water, chemical 

reaction 

Disintegration of mortar joints due to 

volume increase, leaching of  

constituents of unit and mortar 

Biological mechanisms 
Growth of biological agents (e.g. 

plants, fungi, micro-organisms) 

Disintegration of mortar joints,  

cracking 

Erosion Particles transported by wind Abrasion of unit and mortar 
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Incompletely filled mortar joints 

In the assessment of existing structures, bed joints that are imperfectly filled with mortar 

are frequently found. They can be the result of either poor workmanship or deterioration 

processes. In the structural assessment, the incomplete filling of bed joints must be consid-

ered, as it results in a reduced masonry compressive strength if related to the complete 

cross-section of the wall. Investigations by Kirtschig and Meyer (1989) show that the re-

duced masonry strength is approximately proportional to the ratio of the filled area to the 

total area of the bed joints, which can be applied as a helpful rule of thumb in practical 

assessment situations. The same approach is also recommended in the Swiss standard SIA 

269/6-2 (2014) for the assessment of existing masonry structures. 

Increased moisture content 

The compressive strength of masonry is moisture-dependent (Witzany et al. 2010; Franzoni 

et al. 2015). Compared to air-dry masonry (i.e. masonry under standard environmental con-

ditions), masonry compressive strength reduces with increased moisture content. For prac-

tical applications, WTA 7-4 (2021) recommends reducing the compressive strength of ma-

sonry by up to 20 %, depending on the degree of saturation. A similar approach is proposed 

by the Czech standard ČSN 73 0038 (2019), according to which the masonry compressive 

strength obtained for standard environmental conditions is to be divided by a reduction 

factor, which is determined by linear interpolation between 1.0 and 1.25 for a mass-related 

moisture content between 4 % and 20 %. 

3.4 Methods for Testing the Compressive Strength of Masonry 

3.4.1 General 

For the assessment of existing structures, not all of the standardised testing methods for the 

compressive strength of masonry and its components (i.e. unit and mortar) are feasible, as 

illustrated in this section. Selecting the most suitable testing procedure for existing masonry 

(and the corresponding sample size) involves finding the best compromise between the ac-

curacy of the procedure on the one hand and the effort and damage to the structure on the 

other (see Fig. 3-6). Concerning experimental procedures for determining the compressive 

strength of masonry, a distinction must be made between direct and indirect testing as well 

as destructive and non-destructive testing (Henkel 2016).  

In direct tests, the compressive strength of masonry is directly obtained by performing tests 

on masonry specimens (i.e. composite specimens consisting of unit and mortar), as de-

scribed in Section 3.4.4. If indirect testing is performed, unit and mortar compressive 

strength are tested separately (see Sections 3.4.2 and 3.4.3), and the compressive strength 
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of masonry is subsequently predicted based on the results of the separate component tests 

(see Section 3.5). 

Destructive testing usually involves extracting specimens from existing masonry that are 

then tested in the laboratory. Non-destructive testing procedures are mainly available for 

the separate testing of unit and mortar. With regard to the masonry units, rebound hammer 

tests or ultrasonic pulse velocity tests can be applied, for example (Vasanelli et al. 2016; 

Sýkora et al. 2018; Noor-E-Khuda and Albermani 2019). Since non-destructive tests do not 

measure the compressive strength itself but only yield a substituting quantity (e.g. a re-

bound value or a pulse velocity), complementary destructive testing should usually be per-

formed to find suitable structure-specific relationships between the results of non-destruc-

tive tests and the actual unit compressive strength (Sykora et al. 2022). Concerning mortar, 

the most common non-destructive testing procedures are different versions of penetration 

tests, where the penetration depths of indenters with defined impact speed are measured to 

draw conclusions about mortar compressive strength (Henkel 2016; Sýkora et al. 2018). A 

direct testing procedure that is only moderately destructive – and is thus sometimes also 

categorised as non-destructive – is flat-jack testing (Gregorczyk and Lourenço 2000). Flat-

jacks are thin envelopes that, after removing the mortar, are placed within the joints of 

existing masonry and then filled with pressurised oil. If two flat-jacks are placed in the wall, 

and the masonry strain in between is measured for increasing oil pressure, the elastic mod-

ulus can be determined, and, by extrapolating the stress-strain curve, the compressive 

strength can be estimated. 

 

Fig. 3-6 Uncertainty and level of intervention associated with different procedures for 

testing masonry compressive strength (see Gigla 2020) 

Non-destructive testing is connected with much more uncertainty than destructive testing, 

which is one reason why destructive testing is currently much more common in Germany 

(see Gigla 2020). Therefore, the rest of this section and this thesis in general focus on de-

structive tests. Concerning destructive tests, indirect testing currently represents the default 
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method for assessing existing masonry in Germany, which, at least to some degree, is be-

cause standards covering feasible testing procedures are better developed for this case. In 

Sections 3.4.2 to 3.4.4, the common destructive testing methods for unit compressive 

strength, mortar compressive strength, and masonry compressive strength are described. 

3.4.2 Unit Compressive Strength 

In Europe, unit compressive strength is usually tested according to EN 772-1 (2011), which 

is equally suited for new masonry units and units removed from existing masonry. The 

prepared specimens, which can be either whole units or parts thereof, are tested by applying 

a uniformly distributed load that is increased until failure. For details regarding the condi-

tioning and capping or grinding of the test specimens, see EN 772-1 (2011). Due to the 

influence of the specimen geometry on the obtained results, the obtained strength must be 

converted into a normalised unit compressive strength fb by applying suitable shape factors. 

EN 772-1 (2011) defines these shape factors as a function of the height and width of the 

test specimens, where the normalised strength corresponds to a test specimen with a height 

of 100 mm and a width of 100 mm. According to DIN EN 1996-1-1/NA (2019), the con-

verted mean unit compressive strength fst is to be used for all further applications instead of 

the normalised unit compressive strength fb. The main difference between fst and fb consists 

of different shape factors that are to be applied. For clay bricks, the shape factors for ob-

taining fst are specified in DIN 20000-401 (2017). In the following, the symbol fb is used 

for the normalised unit strength, irrespective of the applied shape factor. 

3.4.3 Mortar Compressive Strength 

EN 1996-1-1 (2012) specifies that mortar compressive strength must be tested on mortar 

prisms according to EN 1015-11 (2019). The prisms are made in metal moulds with interior 

dimensions 160 x 40 x 40 mm³. First, a three-point flexural tensile strength test is usually 

performed, by which the prisms are broken into two parts. Each half is then loaded via 

40 mm long and 40 mm wide platens. The standard mortar compressive strength is then 

defined as the maximum load divided by the loading plate area. Further details (e.g. on 

curing conditions) are defined in EN 1015-11 (2019). 

Standard mortar testing cannot be performed on mortar specimens extracted from existing 

masonry since ordinary mortar joint thicknesses are much lower than 40 mm. Therefore, 

different procedures for the destructive testing of mortar extracted from masonry were de-

veloped, three of which are included in the German standard DIN 18555-9 (2019). The 

three procedures differ regarding the geometry of the specimens and loading platens. Pro-

cedure III, presented in its first version by Henzel and Karl (1987), is the most suitable 

approach for determining the mortar compressive strength of existing masonry (DIN 

18555-9 2019; WTA 7-4 2021). Following procedure III, specimens with a width and 

length (or diameter) of approximately 50 mm and a height equal to the joint thickness are 
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extracted from masonry. The load is then applied by platens with a diameter of 20 mm (see 

Fig. 3-7). The advantage of not loading the entire area is that the specimen dimensions may 

slightly deviate from the specified dimensions, and defective spots at the edges are not 

influential. This is a significant benefit, as specimens of weak mortar cannot be prepared 

with high geometrical accuracy (Henzel and Karl 1987). The testing procedure is also 

named the “double punch test” in the international literature (Sassoni et al. 2015; Marastoni 

et al. 2016). 

 

Fig. 3-7 Double punch testing on mortar specimens extracted from existing masonry 

according to procedure III of DIN 18555-9 (2019) 

Compared to standard mortar testing on moulded prisms, the mortar strength obtained by 

double punch tests on specimens extracted from masonry might differ for two reasons: 

First, the different geometry of specimens and loading platens and, second, the different 

curing conditions can lead to different strengths. However, the standard prism strength is 

typically needed to determine masonry compressive strength based on unit and mortar com-

pressive strength (see Section 3.5). Reliable research results are still lacking concerning 

generally valid approaches for converting double punch strengths into standard prism 

strengths (WTA 7-4 2021). Regarding the influence of the geometry, a shape factor of 1.0 

can approximately be applied to convert double punch strengths into standard prism 

strengths (Riechers et al. 1998). The influence of the curing conditions, however, depends 

on the particular type of unit and mortar. According to Schubert (1995), the different curing 

conditions, particularly the influence of water absorption by the units, lead to a conversion 

factor of about 0.5 to 1.5. Hence, due to the curing conditions in the joint, the mortar com-

pressive strength is 0.7 to two times the strength that develops in moulded prisms. For a 

conservative conversion, Schubert (1995) recommends a factor of 0.5. Investigations by 

Henzel and Karl (1987) also indicate that a factor of about 0.5 is suited. 

3.4.4 Masonry Compressive Strength 

EN 1052-1 (1998) specifies the experimental determination of masonry compressive 

strength and the modulus of elasticity of masonry, which is defined as the secant modulus 

at one-third of the maximum stress. The corresponding test specimens have a height of at 

h
j

20 mm

mortar

specimen felt pad

loading

platen

≈
 5
0
 m
m

≈ 50 mm

2
0

 m
m

loaded

area



 

3  Structural Behaviour and Assessment of Masonry 

 

 

76 

least five and a length of at least two units in the case of small-sized units. For distinction 

from wall-high specimens and stack-bonded masonry specimens with a cross-section of 

one unit and no vertical joints, these specimens are usually referred to as “RILEM speci-

mens” (see RILEM 1994). More detailed requirements on the specimen dimensions are 

defined in EN 1052-1 (1998). The requirements usually lead to a slenderness of roughly 

h / t = 5. EN 1052-1 (1998) requires at least n = 3 tests. For n < 5, the characteristic ma-

sonry compressive strength fma,k is given by the average strength divided by 1.2 or the min-

imum strength, whichever is smaller: 

ma,k ma, ma, ,min

1

1
min 1.2,

n

i i

i

f f f
n 

 
  

 
  Eq. 3-11 

For n ≥ 5 tests, the characteristic compressive strength is to be determined as the 5 % frac-

tile with a confidence level of 95 %. The obtained characteristic compressive strength fma,k 

may then be used as an input parameter for structural verification according to EN 1996-1-

1 (2012), which defines the characteristic strength as the 5 % fractile of masonry compres-

sive strength for the theoretical slenderness of h / t = 0. It is noted that the factor 1.2 defined 

for determining the 5 % fractile in EN 1052-1 (1998) – see Eq. 3-11 – is only suited if the 

CoV of strength is small and hence not for the general case of assessing an existing masonry 

structure. Up to the slenderness of h / t = 5, the difference between the obtained strength 

and the strength corresponding to h / t = 0 is small and can conservatively be neglected 

(Jäger and Pflücke 2006; Graubner et al. 2020). If specimens with higher slenderness, for 

example wall-high specimens, are tested, then a conversion to h / t = 5 is usually conducted 

as proposed by Mann (1983); see also Graubohm and Brameshuber (2016): 

2

ma, / 5 ma,test 0.966 0.00136h t

h
f f

t


  
   

   

 Eq. 3-12 

Some international standards, for example ASTM C1314 (2018), define tests on stack-

bonded masonry prisms for determining masonry compressive strength. Due to the missing 

influence of vertical mortar joints on the obtained strength, it is reasonable to assume that 

this strength should be reduced to attain a strength representative of the actual masonry 

bond. In Thamboo and Dhanasekar (2019), estimating the RILEM specimen strength as 

0.75 times the stack-bonded prism strength is recommended. In contrast, investigations by 

Mann and Betzler (1996) indicate that the difference between the strength obtained on ei-

ther RILEM specimens or stack-bonded prisms is negligible. It can thus be concluded that 

the influence of vertical mortar joints strongly depends on the particular combination of 

unit and mortar. 
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In the assessment of existing masonry, the extraction of RILEM specimens is usually not 

feasible, as this would result in significant damage to the existing structure. Therefore, al-

ternative testing methods have been developed that allow for the direct determination of 

masonry compressive strength on smaller composite specimens (see WTA 7-4 2021). 

Berger (1987) discovered that the ratio fma,spl / fb,spl between the splitting tensile strengths 

of a masonry core with a centred mortar bed joint and a brick core is approximately equal 

to the ratio fma / fb between the compressive strengths of masonry and brick (see Fig. 3-8). 

Masonry compressive strength fma can hence be evaluated if the three other material prop-

erties are obtained: 

 j jc jma,spl

ma b

b,spl j b

1 3.24
with

1 3.24

h d hf
f k f k

f h h

 
 


 Eq. 3-13 

where k is a correction factor considering the specific joint thickness hj and unit height hb 

(Wenzel et al. 2000). The drilled masonry cores should have a diameter of djc = 10 cm and 

a length of 10 cm (WTA 7-4 2021). Although three different material properties must be 

tested before calculating masonry compressive strength, the method by Berger can still be 

beneficial since the required specimens are much smaller than RILEM specimens. Despite 

the testing of composite specimens, the method is not a direct testing procedure in a strict 

sense, as material properties other than masonry compressive strength itself are tested. 

Since masonry compressive strength must be calculated based on the model given by Eq. 

3-13, the method is connected with non-negligible model uncertainty (see Fig. 3-6). 

 

Fig. 3-8 Alternative procedures for testing masonry compressive strength on composite 

specimens extracted from existing masonry 

Helmerich and Heidel developed a direct testing procedure, which requires the horizontal 

extraction of masonry drill cores with a diameter of 15 cm, a length equal to one unit length, 

and an arrangement of joints as displayed in Fig. 3-8 (Heidel 1989). With a slightly different 

recommended joint arrangement, the procedure can also be found in the guideline IRS 

70778-3 (2017). The compression tests are then performed in the same direction as the load 

x

Berger (1987)
Helmerich/Heidel

Heidel (1989)    IRS 70778-3 (2017)
Gunkler (1993)
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acts in the existing masonry wall. For this purpose, curved loading platens are used to apply 

the load to the lateral surface of the specimens over a width of 7.5 cm (WTA 7-4 2021). 

The compressive strength of masonry can then be determined as 

max
ma RILEM s

mid

F
f k k

A
  Eq. 3-14 

where the factor ks = 1.3 considers the non-uniformity of the stress distribution within the 

cylindrical specimen, Fmax is the failure load, and Amid is the cross-sectional area in the 

middle of the cylinder (i.e. diameter times length). The factor kRILEM for converting the 

results to a strength equivalent to the RILEM specimen strength is given in Heidel (1989) 

as kRILEM = 0.8 for solid clay bricks with fb ≤ 25 N/mm² and 0.7 for solid clay bricks with 

fb ≥ 35 N/mm². Due to its high practicality, the direct testing of masonry compressive 

strength on drilled cores has recently gained research attention again (Sassoni et al. 2014; 

Pelà et al. 2016; Segura et al. 2019; Henkel and Neuwald‐Burg 2021). Most investigations 

aim at finding suitable relationships between the obtained strength and the standardised 

masonry compressive strength for different unit-mortar combinations and test setups. 

Gunkler (1993) developed direct tests on small rectangular prisms containing one mortar 

bed joint in the middle. The height of the prism should equate to two unit heights plus the 

joint thickness, and the width and length should approximately equal the unit width. In the 

case of the brick format investigated by Gunkler (1993), this leads to dimensions of 12.5 x 

12.5 x 15 mm³ (length x width x height). Conversion factors to RILEM strength, which are 

limited to the solid clay brick format and strength (25 ≤ fb ≤ 28 N/mm²) used in the corre-

sponding investigations, are given as a function of mortar compressive strength in Gunkler 

(1993). 

In conclusion, the presented direct test methods provide a significant advantage over indi-

rect testing, as the model uncertainty in calculating masonry compressive strength based on 

unit and mortar properties is avoided. However, the above summary of procedures for direct 

tests on alternative composite specimens suggests that, concerning the current state of re-

search, converting the obtained results to the standard RILEM strength is still associated 

with considerable uncertainty if the particular unit-mortar combination deviates from that 

in the respective research projects. 
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3.5 Prediction of Masonry Compressive Strength based on Component Properties 

3.5.1 General 

Since the start of research on masonry structures, predicting masonry compressive strength 

based on the properties of unit and mortar has been a steady research topic. Models for 

masonry strength prediction can be categorised into models based on a mechanical descrip-

tion of the interaction of unit and mortar within masonry (see Section 3.5.2) and empirical 

models derived from test databases, most notably the power equation (see Section 3.5.3). 

In Section 3.5.4, the power equation is further analysed and compared with a model with a 

mechanical background to evaluate its suitability for stochastic applications. Most empiri-

cal models do not take the unit dimensions and the mortar thickness into account; therefore, 

the influence of mortar thickness is briefly discussed in Section 3.5.5. 

3.5.2 Models Based on Mechanical Principles 

The model by Hilsdorf (1965; 1969) is one of the earliest models with a mechanical back-

ground for predicting masonry compressive strength. Since many models that were devel-

oped later are based on the general ideas of Hilsdorf’s model, it is illustrated in more detail 

here, serving as an example. 

As explained in Section 3.3.1, the mortar joints are subjected to lateral compressive 

stresses, whereas the units receive lateral tensile stresses if masonry is loaded perpendicular 

to the bed joints (i.e. vertically in typical cases). Hilsdorf (1969) assumes that the horizontal 

stresses acting in the two different lateral directions are equal; that is, σh1 = σh2. For the 

failure criterion of the unit, Hilsdorf applies a linear relationship, according to which the 

maximum vertical stress σv,max in the units is given by 

h,b

v,max b

bt

1
σ

σ f
f

 
  

 
 Eq. 3-15 

where fb is the uniaxial unit compressive strength, σh,b is the biaxial lateral tensile stress in 

the unit, and fbt is the tensile strength of the unit. With increasing vertical load, the horizon-

tal tensile stresses in the brick increase (see Fig. 3-9). When the unit failure criterion is 

reached, a local crack appears, resulting in a reduction of the horizontal tensile stresses σh,b 

in the unit, which are in equilibrium with the horizontal compressive stresses σh,j in the 

mortar joint. For simplicity, Hilsdorf (1969) assumes a uniform distribution of the lateral 

stresses over unit height and mortar joint thickness, resulting in the following condition: 

h,j j h,b bσ h σ h  Eq. 3-16 

where hj is the bed joint thickness, and hb is the unit height. If the vertical stress is higher 

than the uniaxial mortar compressive strength, lateral confining stresses are needed in the 
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mortar joint to enable the resistance against the vertical stress. Hence, due to the equilib-

rium, the tensile stresses in the unit cannot fall below a minimum lateral stress without 

leading to failure of the mortar. Hilsdorf (1969) approximates the maximum vertical stress 

σv,max for confined mortar with the following relationship initially derived for confined con-

crete: 

v,max j h,j4.1σ f σ   Eq. 3-17 

As illustrated in Fig. 3-9, further cracks appear with increasing load, each followed by a 

reduction of the lateral stresses until the failure of masonry is reached at the intersection of 

the two failure curves for unit and mortar. According to Hilsdorf (1969), the vertical 

stresses are distributed non-uniformly over the cross-section. An empirical non-uniformity 

factor U was thus introduced by Hilsdorf, ranging from 1.35 to 2.18 for the tests presented 

in Hilsdorf (1969). From Eq. 3-15 to Eq. 3-17, it follows that 

bt j jv,max b
ma

bt b b

with
4.1

f a f hσ f
f a

U U f a f h


   


 Eq. 3-18 

If the unit tensile strength fbt is unknown, as only the compressive strength fb of the units is 

tested, Eq. 3-18 can still be applied by estimating fbt based on fb using typical relationships 

for the particular unit type. 

 

Fig. 3-9 Compressive strength of masonry according to Hilsdorf (1969) 

Several other models with a mechanical background for predicting masonry compressive 

strength have been developed, for example the models by Khoo (1972), Ohler (1986), and 

Sabha (Wenzel et al. 2000; WTA 7-4 2021). Most of these models are based on similar 

principles as the model by Hilsdorf (1969) but include more refined failure curves for unit 

and mortar and more complex descriptions of the stress distribution. Despite these research 
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efforts, models with a mechanical background are only rarely used in engineering practice. 

Empirical models, as covered in Section 3.5.3, are much more common. 

3.5.3 Empirical Power Equation 

Empirical models for predicting masonry compressive strength based on the properties of 

unit and mortar are most commonly formulated through a power equation, which was pro-

posed by Mann (1983). In EN 1996-1-1 (2012), the power equation is given in the following 

form: 

ma,k b,m j,m

α βf K f f  Eq. 3-19 

where fb,m and fj,m are the mean values of unit and mortar compressive strength, and fma,k is 

the characteristic masonry compressive strength. Suitable values for the parameters K, α, 

and β can be evaluated via a regression analysis based on data from compression tests on 

masonry and accompanying compression tests on unit and mortar specimens, which has 

been conducted by numerous researchers. Since the model is purely empirical and lacks 

any mechanical background, the accuracy of the model highly depends on whether the 

combination of unit and mortar types included in the respective database is representative 

of the unit-mortar combinations to which the model is applied. Therefore, derived values 

for K, α, and β are only applicable for a particular range of boundary conditions. For 

α + β ≠ 1, the dimensional correctness of the power equation is violated, and the dimensions 

of the material strengths must thus be explicitly specified. 

Since the mean values of unit and mortar compressive strength are the input values accord-

ing to the formulation in EN 1996-1-1 (2012), whereas the resulting compressive strength 

of masonry is a characteristic value, the power equation contains a conversion from the 

mean values to a 5 % fractile value. According to Brameshuber et al. (2012), the conversion 

factor is implicitly included in the parameter K and equals 0.8, which approximately 

matches 1 / 1.2 = 0.83 as included in the testing standard EN 1052-1 (1998). Due to this 

fixed conversion from mean to characteristic values, the power equation as defined by EN 

1996-1-1 (2012) is not suited for existing masonry with high material variability without 

further modification. EN 1996-1-1 (2012) explicitly states that the power equation may 

only be used if the CoV of unit compressive strength is below υb = 25 %. 

For masonry made with general purpose mortar, EN 1996-1-1 (2012) specifies α = 0.7 and 

β = 0.3, whereas the parameter K depends on the unit type. For solid clay bricks, K = 0.55 

is defined. According to the German NA DIN EN 1996-1-1/NA (2019), all of the parame-

ters K, α, and β depend on the type of unit and mortar. K = 0.95, α = 0.585, and β = 0.162 

are given for solid clay brick masonry with general purpose mortar. Since α + β ≠ 1, the 

parameters are only valid for the specified dimension of strength, which is N/mm². Further-
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more, both sets of parameter values are related to single wythe masonry. For bonded ma-

sonry (i.e. masonry with vertical mortar joints parallel to the face of the wall), K must be 

multiplied by 0.8. 

Fig. 3-10 displays the masonry compressive strength fma,k resulting from Eq. 3-19 as a func-

tion of fb,m and fj,m. The displayed contour lines for fma,k are valid for solid clay brick ma-

sonry arranged in a single wythe. Due to the included factor of 0.8 for converting the mean 

to the characteristic compressive strength, which is equal to the factor of 0.8 for the con-

version from single wythe to bonded masonry, the displayed values can also be understood 

as mean values fma,m for bonded masonry. The values according to EN 1996-1-1 (2012) are 

displayed on the left, while the right diagram shows the values according to DIN EN 1996-

1-1/NA (2019). Both EN 1996-1-1 (2012) and the German NA define boundaries regarding 

applicable input values for fb,m and fj,m. Combinations outside the boundaries are high-

lighted in grey in Fig. 3-10. The boundary conditions for the German NA are shown as 

specified in DIN EN 1996-1-1/NA/A1 (2014). The red line in both diagrams marks the 

combination of fb,m and fj,m, for which the compressive strengths according to both sets of 

parameters are equal. The masonry strength fma,k according to the German NA is more con-

servative if unit or mortar compressive strength is high. In contrast, for low unit or mortar 

strengths, which largely lie outside the application range, the parameters according to the 

German NA yield higher characteristic compressive strengths of masonry. 

 

Fig. 3-10 Characteristic compressive strength of masonry according to the power equa-

tion (single wythe masonry, solid clay bricks) 

3.5.4 Analysis of the Power Equation Concerning Stochastic Extension 

In this section, the power equation is further analysed to check its suitability for a stochastic 

extension. If the suitability is given, the power equation can also be used to determine the 

probability distribution of masonry compressive strength based on the distribution of the 

input parameters. Since empirical models often do not include all relevant influencing pa-

rameters, the variance contributed by these parameters might be neglected. The starting 
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point of the analysis is a model with a mechanical background, namely the model by 

Hilsdorf (1969), as illustrated in Section 3.5.2, which is then transformed into the structure 

of the power equation. As demonstrated next, this transformation also allows for determin-

ing the parameters K, α, and β analytically. The same procedure is applicable to other mod-

els with a mechanical background as well. 

The general structure of the power equation is convenient for probabilistic applications: 

Assuming a log-normal distribution for unit and mortar compressive strength, masonry 

compressive strength is also log-normally distributed. This is because the power equation 

(Eq. 3-19) can be transformed into a linear relationship for the logarithms of strengths, 

which, given the log-normal distribution of strength, are normally distributed: 

ma prob b jln ln ln lnf K α f β f    Eq. 3-20 

As the original parameter K according to EN 1996-1-1 (2012) relates mean unit and mortar 

strength and characteristic masonry compressive strength, Kprob is introduced for probabil-

istic purposes to define the relationship between the random variables fma, fb, and fj. 

Since Eq. 3-20 is a linear function, Hilsdorf’s model can be converted to the same structure 

by a first-order Taylor approximation, which is equivalent to a linearisation. As described 

in Section 2.3.3, the linearisation of functions is a common approach if approximate sto-

chastic moments for arbitrary functions are needed and no analytical solutions are available. 

The linearisation hence leads to a first-order approximation of the exact stochastic exten-

sion. Since the linear function is expressed in terms of the logarithms of strength, Hilsdorf’s 

model is first written in logarithmic form: 

   jbt bt b
lnln ln ln

ma bln ln ln ln ln
ff f f

f f U e a e e a e       Eq. 3-21 

where a = hj / (4.1 hb). In addition to fb and fj, unit tensile strength fbt and the ratio of joint 

thickness to unit height hj / hb also influence the compressive strength of masonry, which 

is not explicitly considered in the original power equation. The additional influence of 

hj / hb is discussed in Section 3.5.5 and neglected here. To include the influence of unit 

tensile strength, the structure of the linear function to be obtained by the first-order Taylor 

approximation is as follows: 

prob

*

ma 1 b 2 bt jln ln ln ln lnf K α f α f β f     Eq. 3-22 

where α1, α2 and β are obtained as the partial derivatives of Eq. 3-21 at a reference point 

(with coordinates fbt,ref, fb,ref and fj,ref) that is selected for the first-order Taylor approxima-

tion: 
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bt,refma
1

b bt,ref b,ref

ln

ln

ff
α

f f a f


 
 

 Eq. 3-23 

bt,ref bt,refma
2

bt bt,ref j,ref bt,ref b,ref

ln

ln

f ff
α

f f a f f a f


  
  

 Eq. 3-24 

j,refma

j bt,ref j,ref

ln

ln

a ff
β

f f a f


 
 

 Eq. 3-25 

The parameter Kprob
* is determined by equating Hilsdorf’s model and the desired power 

equation at the reference point: 

 1 2bt,ref j,refb,ref*

prob b,ref bt,ref j,ref

bt,ref b,ref

α α β
f a ff

K f f f
U f a f

 
    

 Eq. 3-26 

Expressed as a power equation, Eq. 3-22 becomes 

1 2*

ma prob b bt j

α α βf K f f f  Eq. 3-27 

With the exception of the term for fbt, Eq. 3-27 is similar to the original power equation. 

Eq. 3-23 to Eq. 3-25 demonstrate that deriving the power equation based on a model with 

a mechanical background leads to exponents for the strength variables that sum up to one: 

1 2 1α α β    Eq. 3-28 

Tensile tests on the units are usually not conducted within the assessment of existing ma-

sonry. Next, unit tensile strength fbt is thus expressed as unit compressive strength multi-

plied by a deterministic factor (i.e. as c ∙ fb; see Schubert 2010) which includes two approx-

imations. First, a perfect correlation between the tensile strength and compressive strength 

of the units is assumed, which increases the resulting variance of masonry compressive 

strength and is therefore a conservative assumption. Second, the CoV of unit tensile 

strength is assumed to be equal to the CoV of unit compressive strength, which matches 

experimental results by Egermann (1992) for splitting tensile and compressive strength 

tests on historical solid clay bricks. It follows that 

   21 2 1 2* *

ma prob b b j prob b j prob b j

αα α α αβ β α βf K f c f f K c f f K f f


    Eq. 3-29 

Hilsdorf’s model is thereby completely transformed to the same structure as the empirical 

power equation. The parameters Kprob, α, and β of the power equation can be determined 

analytically if a typical ratio for unit tensile strength to unit compressive strength c is se-

lected, and reference ratios hj,ref / hb,ref and fj,ref / fb,ref are chosen for the Taylor approxima-

tion. The reference ratios should represent typical values for the application range. With 

c = 0.04 (Schubert 2010), hb,ref = 71 mm and hj,ref = 12 mm (standard unit format NF), and 
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a ratio fj,ref / fb,ref = 0.3, which is assumed to be in the middle of the general application range 

of the power equation, the following parameters are obtained: 

 1 2

j,ref b,ref

0.76
c

α α α
c a f f

   


 Eq. 3-30 

 
 

j,ref b,ref

j,ref b,ref

0.24
a f f

β
c a f f

 


 Eq. 3-31 

 

   
2

j,ref b,ref*

prob prob

j,ref b,ref

0.57α

β

c a f f
K K c

U a c f f


  


 Eq. 3-32 

The obtained parameters are quite close to those defined by EN 1996-1-1 (2012). Concern-

ing a comparison, however, it should be noted that the power equation with parameters 

according to Eq. 3-30 to Eq. 3-32 directly connects the random variables of strength, 

whereas the normative power equation connects mean component strengths with a charac-

teristic masonry strength. One benefit of the presented analytical equations is that they offer 

an explanation for the differences between the empirical parameters derived for different 

boundary conditions. Furthermore, since the power equation can be viewed as a first-order 

Taylor polynomial of the model by Hilsdorf (1969) – or similar models with a mechanical 

background – for a particular reference point, the power equation can be considered suitable 

for probabilistic applications. As obtained in the analysis above, the recommendation is to 

choose the exponents α and β such that they fulfil α + β =1. The same recommendation is 

made by Ferretti (2020) in the context of dimensional analysis. For α + β < 1, the resulting 

variance might be underestimated. 

For probabilistic purposes, the power equation should be further extended by a model un-

certainty factor θf: 

ma prob b j ma prob b jln ln ln ln lnα β

f ff θ K f f f θ K α f β f       Eq. 3-33 

The variance σln,ma
2 of the logarithm of fma is thus obtained as 

2 2 2 2 2 2

ln,ma ln ln,b ln,jθfσ σ α σ β σ    Eq. 3-34 

It is noted that the expectation of the power equation (i.e. the mean masonry compressive 

strength fma,m) is slightly overestimated if it is calculated by evaluating the power equation 

at the means of unit and mortar compressive strength: 

 prob b,m j,m ma,m prob b j= E for 1and 1α β α β

θf fμ K f f f θ K f f α β    Eq. 3-35 
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If the expectation μθf of the model uncertainty factor is one, the relationship between the 

mean value of masonry compressive fma,m and the mean values of the component strengths 

fb,m and fj,m can be expressed via a parameter Km as follows: 

ma,m m b,m j,m

α βf K f f  Eq. 3-36 

    2 2 2 2

m prob ln,b ln,jexp 0.5K K σ α α σ β β     
 

 Eq. 3-37 

Eq. 3-37 is derived from the relationship between the parameters and stochastic moments 

of a log-normal distribution (see Section 2.3.4), and the relations for the stochastic moments 

of a linear function (see Section 2.3.3). If the CoVs of fb and fj are υb = υj = 35 %, which is 

typical for historical masonry (see Section 7.3), and if the exponents are selected as α = 0.7 

and β = 0.3 according to EN 1991-1-1 (2009), Km is only 2 % lower than Kprob. Hence, the 

difference is negligible. Since the normative parameter K includes a factor of approximately 

0.8 for the conversion from mean to characteristic masonry compressive strength 

(Graubohm and Brameshuber 2016), the following relationship can be applied if the nor-

mative parameters are used for probabilistic purposes: 

prob m 1.25K K K   Eq. 3-38 

3.5.5 Influence of Mortar Joint Thickness 

The empirical power equation for predicting masonry compressive strength as specified in 

EN 1996-1-1 (2012) does not allow for the consideration of mortar joint thicknesses that 

deviate from the normatively specified dimensions, for example from a bed joint thickness 

of 12 mm as specified in DIN EN 1996-1-1/NA (2019) for general purpose mortar. In the 

assessment of existing masonry, however, higher mortar joint thicknesses are often found. 

According to experimental results (Francis et al. 1971; Kirtschig and Meyer 1989) and 

models with a mechanical background, masonry compressive strength reduces if the bed 

joint thickness is increased. Kirtschig and Meyer (1989) proposed the following modifica-

tion factor η to take into account the bed joint thickness hj: 

j

2

1 12mm
η

h



 Eq. 3-39 

where 12 mm is the reference bed joint thickness. 

According to the mechanical principles of the model by Hilsdorf (1969), it is not the bed 

joint thickness hj itself that is decisive but the ratio of hj to unit height hb. In principle, the 

empirical power equation can be extended by a corresponding correction term: 
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 
j b

ma prob b j

j b ref

γ

α β

f

h h
f θ K f f

h h

 
 
 
 

 Eq. 3-40 

The determination of suitable values for the parameter γ could be included in the general 

regression analysis for deriving the power equation. However, the corresponding test data-

bases usually do not contain a wide variety of bed joint thicknesses. The exponent γ can 

also be determined by a first-order Taylor approximation of the model by Hilsdorf (1969), 

as demonstrated in the previous section: 

ma

j b,ref b,ref b,ref

j,ref j,ref j,refb

ln 1 1

1 4.1 1 4.1ln

f
γ

h h f h
c c

h f hh


  

 

 
Eq. 3-41 

The higher the difference between unit and mortar compressive strength, the larger the in-

fluence of the ratio hj / hb. With c = 0.04, hb,ref = 71 mm, and hj,ref = 12 mm as in the previ-

ous section, γ = − 0.27 is obtained for fj,ref / fb,ref = 0.3, and γ = − 0.41 for fj,ref / fb,ref = 0.1. A 

bed joint thickness twice as high as the reference thickness consequently leads to a decrease 

in fma of 17 % and 25 %, respectively. According to Eq. 3-40, the reduction would be 33 %. 

An average mortar bed joint thickness that is considerably larger than the standardised di-

mensions should thus be considered in the assessment. 

Grimm (1988) analysed the bed joint thickness variation within brick masonry walls. For 

24 investigated buildings constructed in Austin, Texas, between 1894 and 1985, he found 

a median CoV of the bed joint thickness of 13.6 %. Moreover, Mojsilović and Stewart 

(2015) evaluated the bed joint thickness variation of four masonry buildings constructed in 

2012 in Switzerland and found CoVs of the bed joint thickness of 19.2 % to 35.5 % within 

one building. If the variability of hj / hb is considered in determining the variability of ma-

sonry compressive strength, Eq. 3-34 can be extended accordingly: 

 j b

2 2 2 2 2 2 2 2

ln,ma ln ln,b ln,j ln /θf h h
σ σ α σ β σ γ σ     Eq. 3-42 

The CoV of masonry compressive strength is obtained as υma = 26.3 % if, in a first step, the 

model uncertainty and the variance of hj / hb are neglected, α and β are set to 0.7 and 0.3, 

respectively, and the CoVs of log-normally distributed unit and mortar compressive 

strength are assumed as υb = υj = 35 %, which is typical for the component strengths of 

solid clay brick masonry within historical masonry buildings (see Section 7.3). The con-

version between the variance of the logarithm σln
2 and the CoV υ is done through Eq. 2-27.  

The units can usually be produced with reasonable geometrical precision, whereas the mor-

tar joint thickness strongly depends on the workmanship on site. Hence, the variability of 

hj / hb for a particular type of masonry is mainly influenced by the variability of the bed 



 

3  Structural Behaviour and Assessment of Masonry 

 

 

88 

joint thickness hj (see Mojsilović and Stewart 2015). Even if the variability of hj / hb is 

additionally considered through a log-normal variable with a CoV of 25 % – a value much 

higher than the median CoV for hj in the investigations by Grimm (1988) – and the expo-

nent is conservatively selected as γ = − 0.41, the CoV of masonry compressive strength 

increases only slightly, namely, to υma = 28.3 %. It can hence be concluded that the influ-

ence of the variability of the bed joint thickness on the variability of masonry compressive 

strength for a particular masonry type within one building is almost negligible compared to 

the influence of the variability of unit and mortar compressive strength. 

3.6 Finite Element Modelling Strategies for Masonry Structures 

For modelling masonry structures by means of the finite element method, various strategies 

are available, which differ regarding their level of detail (see Fig. 3-11). Selecting the best 

modelling strategy for a particular application involves finding the right balance between 

the accuracy and the level of detail of the results on the one hand and the modelling and 

computational efforts on the other (Lourenço 1996; Schlegel 2004). 

 

Fig. 3-11 Modelling strategies for masonry structures according to Lourenço (1996) 

In a detailed micro-model, both the units and the mortar joints are modelled separately 

according to their original dimensions using continuum elements that represent the actual 

material behaviour of unit and mortar. Interface elements are placed between the units and 

mortar joints to model the corresponding bond behaviour. If all material properties are cho-

sen adequately, the detailed micro-modelling enables the display and prediction of the ac-

tual failure mechanisms of masonry in detail, for example the interaction of unit and mortar 

that determines the compressive strength of masonry. 

According to the macro-modelling approach, no distinction is made between the units and 

the mortar joints in the masonry member. Instead, masonry is represented by only one type 

of continuum elements, to which the properties of the composite material masonry (e.g. the 

compressive strength of masonry) are assigned. The actual local failure mechanisms are 
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thus not displayed in detail, but the behaviour on a larger scale (i.e. at the structural member 

or system level) is reflected with sufficient precision. 

The simplified micro-modelling approach is a compromise between the two former ap-

proaches. The model consists of expanded “units”, whose dimensions equal the original 

unit dimensions plus one half of the adjacent mortar joint thicknesses, and “joints” repre-

sented by interface elements with zero thickness. The separation into “units” and “joints” 

allows for the modelling of discrete failure mechanisms, such as the discrete cracking in 

the mortar joints under flexural tension. However, the actual failure mechanism of masonry 

under compression, which results from the interaction between unit and mortar, is not dis-

played by the simplified micro-model. Instead, the nonlinear compression behaviour of the 

composite material masonry, including masonry compressive strength, is assigned to either 

the “joints” (i.e. the interface elements) or the “units” consisting of continuum elements. 

3.7 Safety Format in Eurocode 6 

For unreinforced masonry walls mainly subjected to vertical compression loading, the ver-

ification format according to EN 1996-1-1 (2012) is as follows: 

d d red ma,d red ma,k k

M M

1 1
E R Φ A f Φ A f R

γ γ
     Eq. 3-43 

where Ed is the design value of the normal force acting on the wall, determined according 

to EN 1990 (2010) and EN 1991-1-1 (2009); Rd is the design value of the vertical resistance 

of the wall; Φred is the reduction factor for the influence of slenderness and load eccentricity; 

and A is the cross-sectional area. The design value fma,d of masonry compressive strength is 

obtained by dividing the characteristic compressive strength fma,k by the partial factor γM. If 

A is smaller than 0.1 m², the design value fma,d is to be additionally reduced by 

20.7 3 1 with in mA A   Eq. 3-44 

which accounts for the smaller stress redistribution capability of walls with a small cross-

sectional area. 

The reduction factor Φred is (at least implicitly) a function of the ratio between elastic mod-

ulus Ema and masonry compressive strength fma if second-order effects are considered (see 

Section 3.3.3). Since the variability of the elastic modulus Ema is not accounted for within 

Φred, it must also be covered by the partial factor γM. Therefore, although applied to the 

characteristic masonry compressive strength fma,k, the partial factor γM actually serves as a 

global safety factor for the characteristic resistance Rk, as demonstrated by Eq. 3-43 and 

also described in Bakeer (2016b). 
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In EN 1996-1-1 (2012), recommendations for the partial factor γM are given for different 

unit categories (I or II depending on statistical quality assurance), different types of mortar 

(designed or prescribed mortar), and five execution classes that may be specified by the 

NAs. The respective values for the partial factor range from γM = 1.5 to 3.0. Based on these 

recommendations, the NAs to EN 1996-1-1 specify very different values for the partial 

factors γM, as illustrated for the NAs of 11 countries in Fig. 3-12, based on a review by 

Graubner and Koob (2015). The specified partial factors are valid for unreinforced masonry 

walls subjected to mainly compression loading with units of category I. Furthermore, they 

correspond to consequence class 2. Where a range is given, the partial factor γM depends 

on the execution class and/or the choice of designed or prescribed mortar. Concerning the 

relatively low value γM = 1.5 for Germany (DE), it is noted that only the German NA spec-

ifies a reduction factor for considering the effect of sustained loads, namely ζ = 0.85, which 

increases the ratio of characteristic to design compressive strength to approximately 1.76. 

The significant differences between the nationally defined values for γM can be attributed 

to national traditions and the high diversity of typical masonry types in the different coun-

tries. 

 

Fig. 3-12 Partial factors γM for the compressive strength of unreinforced masonry spec-

ified by National Annexes to EN 1996-1-1 for unit category I and consequence 

class 2 (see Graubner and Koob 2015) 

The large variation of partial factors γM between the NAs indicates that further research into 

the reliability of masonry walls is needed. It should be noted that the partial factors γM as 

given in EN 1996-1-1 (2012) and its NAs are intended for the design of new masonry struc-

tures. For assessing existing masonry, suitable partial factors γM might differ due to a lack 

of knowledge (i.e. epistemic uncertainty) about the masonry properties within the existing 

structure, higher variability of the material properties than assumed for new masonry, and 

a lower target reliability level compared to that for structural design. 
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4 EXPERIMENTAL INVESTIGATIONS ON CLAY BRICK 

MASONRY 

4.1 Introduction 

The main objective of the conducted experiments, which are presented in this chapter, is to 

investigate the behaviour of clay brick masonry walls with local weaknesses. As a result, a 

basis is established for validating the finite element model in Chapter 5. The main experi-

ments consisted of 24 compression tests conducted on clay brick masonry walls, which 

were either constructed as single wythe masonry or arranged in cross bond. In addition to 

tests on reference walls without weaknesses, walls with local weaknesses were also con-

structed and tested. The first type of weakness was realised by means of a missing brick in 

the masonry bond. The second type of weakness was introduced by placing a specific per-

centage of perforated clay bricks in the wall, which had a significantly lower compressive 

strength than the reference solid clay bricks in the rest of the wall. Apart from the main 

tests on masonry walls, complementary compression tests on bricks, mortar, and masonry 

specimens were carried out. With respect to mortar compressive strength, the experimental 

program included standard testing of the mortar on prisms and double punch tests. Thereby, 

the influence of the testing method on the obtained mortar strength was investigated. 

Section 4.2 describes the types of bricks and mortar for the experimental investigations and 

the results of corresponding compressive strength tests. In Section 4.3, the tests on masonry 

specimens are illustrated. Finally, the main tests on masonry walls and their results are 

presented and analysed in Section 4.4. 

4.2 Testing of the Components 

4.2.1 Clay Bricks 

As presented in Section 3.2, masonry made of small-sized solid clay bricks was the most 

common type of masonry in Germany before 1950 and therefore represents a large share 

of the masonry to be dealt with in the assessment of existing buildings. For this reason, 

small-sized solid clay bricks were chosen for the experimental investigations. The solid 

clay bricks had nominal dimensions of 240 x 115 x 71 mm³ corresponding to the German 

standard format NF according to DIN 20000-401 (2017). The bricks were newly produced 

by extrusion and firing in a tunnel kiln. The variability of brick properties is hence much 

lower than that of bricks in historical masonry buildings, which is beneficial for the accu-

racy of the experimental results. As weaknesses in several of the investigated walls, perfo-

rated bricks were used. Perforated bricks were favoured over solid bricks with lower 

strength, as this choice ensured that the difference between the compressive strengths of 

the two brick types was significantly larger than the material variability within each brick 
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type. The perforated bricks used in the experiments can be assigned to group 2 units ac-

cording to EN 1996-1-1 (2012) and unit type HLzA according to DIN 20000-401 (2017). 

The relative volume of holes was approximately 40 %, and the nominal outer dimensions 

were the same as those for the solid clay bricks. In Fig. 4-1, the solid and perforated clay 

bricks for the experimental investigations are shown.  

     

Fig. 4-1  Solid (left) and perforated (right) clay bricks for the experiments 

From each of the delivered pallets, at least six bricks were taken to determine the dimen-

sions and weight as well as to test unit compressive strength according to EN 772-1 (2011). 

The surface of the bricks was first ground to obtain parallel and plain surfaces at the top 

and bottom of the bricks. Thereafter, the bricks were stored under laboratory conditions 

(temperature ≥ 15 °C, relative humidity ≤ 65 %) for at least 14 days to reach the air-dry 

state as defined in EN 772-1 (2011). In the compression test, the load was applied with a 

rate of 0.3 and 0.15 (N/mm²)/s for the solid and perforated clay bricks, respectively. The 

results are displayed in Table 4-1. It is noted that the height includes the reduction due to 

grinding. The compressive strength is converted to the normalised compressive strength by 

applying the shape factor according to EN 772-1 (2011). 

Table 4-1  Properties of the clay bricks 

Brick type 

Dimensions 
Bulk  

density 

Compressive 

strength 
Shape  

factor 

Normalised 

compressive 

strength fb 
Length Width Height 

mm mm mm g/cm³ N/mm² N/mm² 

Solid 
243.3 

(0.003) 

117.7 

(0.004) 

70.8 

(0.01) 

2.03 

(0.01) 

29.7 

(0.08) 
0.84 

24.9 

(0.08) 

Perforated 
236.4 

(0.009) 

111.3 

(0.005) 

67.8 

(0.02) 

0.89 

(0.02) 

13.8 

(0.11) 
0.84 

11.6 

(0.11) 

Average values for n = 37 solid and n = 18 perforated bricks (CoVs in parentheses) 

4.2.2 Mortar 

The mortar used in the experimental investigations was a factory-mixed dry mortar (Histo-

cal by the producer Otterbein), which contained natural hydraulic lime NHL 5 according to 

EN 459-1 (2015), pozzolans, and sand with a maximum aggregate size of 1.2 mm. The 
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specified strength class was M 2.5, which corresponds to a minimum mean value of mortar 

compressive strength of 2.5 N/mm². This mortar type was selected to reach a mortar com-

pressive strength typical for existing masonry structures from around 1850 to 1950 (see 

also Section 7.3). 

Prism tests 

The masonry walls were constructed and tested in four test series. For the construction of 

each masonry wall, several mortar mixes of 15 litres corresponding to one bag of dry mortar 

were needed, and a sample was taken from at least one of these mortar mixes in a wall. 

Each of these samples consisted of three mortar prisms according to EN 1015-11 (2019). 

Furthermore, at least 12 prisms were taken from one mortar mix in each test series to de-

termine the development of mortar compressive strength over time. The amount of water 

added to the mortar mixes was chosen to meet the specification by the producer (i.e. 4.5 l 

water per 25 kg dry mortar). 

The preparation of the test specimens and the tests themselves were conducted as required 

by EN 1015-11 (2019). After mixing, the sampled mortar was placed in a mould in two 

layers, each compacted by 25 strokes with a compacting bar. Then, the mould was wrapped 

in foil. After two days, the prisms were unmoulded and subsequently kept at a relative 

humidity (RH) of 95 ± 5 % and a temperature of 20 ± 2 °C for five days before they were 

stored in a climate chamber with an RH of 65 ± 5 % and a temperature of 20 ± 2 °C until 

testing. Before the compression tests, the mortar prisms with dimensions of 40 x 40 x 

160 mm³ were divided into halves by conducting a flexural tensile test (see Fig. 4-2). Then, 

compression tests were conducted on the two halves with a loading rate of 100 N/s. 

      

Fig. 4-2 Testing of mortar prisms (left: flexural tensile strength, right: compressive 

strength) according to EN 1015-11 (2019)  

The results of the mortar compressive strength tests are displayed in Fig. 4-3, with each 

point corresponding to a test at one half of a prism. Most of the mortar compression tests 

were tests accompanying the main tests on the masonry walls. Hence, the mortar specimens 

were tested on the same day as the corresponding wall at an age between 32 and 43 days. 
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Additional tests were conducted after curing times of 14, 21, 28, and 56 days. In addition 

to the single test results, the average compressive strength for each testing age is given. To 

reduce the scatter between mortar mixes for pointing out the actual influence of curing time, 

the averages are given as a moving average for plus/minus one day (if applicable). As evi-

dent from Fig. 4-3, the increase in mortar compressive strength over curing time had already 

slowed down significantly after 32 days. The influence of the different curing times on the 

strength of the tested masonry walls can consequently be viewed as very small. The average 

mortar compressive strength for a curing time between 32 and 43 days was obtained as 

fj = 2.71 N/mm² for n = 226 test results, and the corresponding CoV was 17 %. 

 

Fig. 4-3 Development of mortar compressive strength over time 

Double punch tests 

In addition to the tests on mortar prisms, double punch tests according to procedure III of 

DIN 18555-9 (2019) were performed. The motivation behind these experiments was to in-

vestigate whether the strength obtained by double punch tests is comparable to the strength 

obtained on standard prisms. The double punch tests were conducted on two types of spec-

imens. The first type of specimens was extracted from masonry samples stored in the la-

boratory until testing. The strength obtained by this procedure corresponds to the realistic 

curing conditions within masonry; that is, it includes the influence of the surrounding bricks 

and related moisture conditions on mortar strength. The second type of specimen was cut 

from standard mortar prisms (see Fig. 4-4). The curing conditions were consequently iden-

tical to those of the prisms, and the isolated influence of the specimen shape and the type 

of load application on the obtained strength could be examined. 

To achieve consistent results, the mortar prisms and the masonry specimens, which were 

used for extracting mortar samples, were all made from the same mortar mix. All of the 

specimens for the double punch test were obtained by dry cutting. The specimens from 

mortar prisms were cut to a thickness of 12 mm, matching the standard bed joint thickness 
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specified by DIN EN 1996-1-1/NA (2019). The length and width were determined by the 

prism dimensions of 40 x 40 mm² and therefore slightly smaller than the dimensions of 50 

x 50 mm² defined by DIN 18555-9 (2019). Since the load was applied on a circular area 

with a diameter of only 20 mm, as specified by DIN 18555-9 (2019), the influence of the 

different specimen dimensions can be considered negligible in this case. 

 

Fig. 4-4 Mortar specimens for double punch tests cut from prisms 

The specimens of each type were subdivided into two further groups. The first group of 

specimens was tested directly after being cut, and the load was applied via a felt pad to 

compensate for the uneven surface of the specimens (see Fig. 4-5). The selected felt had a 

bulk density of 0.48 g/cm³ as required by DIN 18555-9 (2019). The specimens of the sec-

ond group were capped with a thin (1 mm thick) gypsum layer. After the capping, the spec-

imens were dried at 50° C until reaching a constant mass before they were tested. In all the 

cases, the loading rate was chosen to reach the maximum load between 30 s and 90 s. 

 

Fig. 4-5 Double punch tests (a + b: load applied via felt pad, c + d: gypsum capping) 

The results of the double punch tests are presented in Table 4-2. Since all of the test results 

in Table 4-2 were obtained from specimens made from the same mortar mix, the CoVs of 

the test results are much lower than the CoV of 17 % given in Fig. 4-3. In the case of the 

use of felt pads, the results obtained from double punch tests on specimens cut from prisms 

match well with the standard prism strengths. This confirms the findings in Riechers et al. 

(1998), where it is concluded that no shape factor is needed to convert strengths from dou-

ble punch tests to prism strengths. With gypsum capping, the obtained strengths in the dou-

ble punch tests are higher by a factor of approximately 1.5 for all types of tested specimens 

(see Fig. 4-6). However, the conversion factor of about 1.5 cannot be viewed as valid for 

a b c d
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all types of mortar. Therefore, double punch testing with felt pads and without gypsum 

capping can be recommended. 

Table 4-2  Results of double punch tests on mortar 

Mortar  

specimens from 

Number 

of tests n 

Dimensions Strength fj,dpt 

Length Width Thickness  Felt pad Gypsum capping 

mm mm mm N/mm² N/mm² 

Mortar prisms 

cut in pieces 
10 40 40 12 3.19 (0.08) 5.18 (0.03) 

Solid clay brick 

masonry 
12 50 50 11 6.50 (0.03) 10.76 (0.04) 

Perforated clay 

brick masonry 
12 50 50 12 7.44 (0.03) 10.11 (0.03) 

Average values (CoVs in parentheses), curing time: 36 d  

Corresponding standard prism strength (n = 12): 3.48 N/mm² (0.05) 

Fig. 4-6 illustrates the ratio of the strengths fj,dpt obtained by double punch tests to the 

strength fj obtained by prism tests. It is evident that the curing conditions within masonry 

have a substantial effect on the resulting mortar strength. For both brick types, the strength 

of the mortar cured within masonry (i.e. between bricks) is about two times higher than the 

strength of the mortar cured in prism shape according to EN 1015-11 (2019), which ap-

proximately aligns with the findings by Henzel and Karl (1987). 

 

Fig. 4-6 Ratio of double punch test results fj,dpt to prism compressive strength fj for spec-

imens cut from mortar prisms and specimens extracted from masonry 

Since most of the empirical formulae, for example the power equation of EN 1996-1-1 

(2012), are derived based on prism strength data, masonry compressive strength might be 

overestimated if the results of double punch tests on specimens extracted from masonry are 

used as input values without modification. Therefore, the influence of curing conditions on 

mortar strength should be considered if masonry compressive strength is predicted based 

0.92

1.87
2.14

1.49

3.09 2.90

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Mortar prisms

cut in pieces

Solid clay brick

masonry

Perforated clay brick

masonry

f j
,d

p
t
/ 

f j felt pad

gypsum capping



 

 4.3  Tests on Masonry Specimens 

 

  

97 

on empirical formulae combined with double punch tests results for mortar specimens ex-

tracted from masonry. Further research is necessary to obtain reliable conversion factors 

for all typical combinations of units and mortar. 

4.3 Tests on Masonry Specimens 

In addition to the tests on brick and mortar, tests on the composite material masonry were 

performed to obtain the reference strength and the modulus of elasticity of masonry accord-

ing to EN 1052-1 (1998). The tests were conducted for both solid and perforated clay brick 

masonry. Furthermore, stack-bonded masonry prisms with a height of three bricks were 

prepared and tested for both brick types. The masonry specimens according to EN 1052-1 

(1998) – that is, RILEM specimens – and the stack-bonded masonry specimens are dis-

played in Fig. 4-7 and Fig. 4-8. The thicknesses of bed and perpend joints were selected as 

12 mm and 10 mm, respectively, which are the standard joint thicknesses according to DIN 

EN 1996-1-1/NA (2019).  

 

Fig. 4-7 Specimens according to EN 1052-1 (1998) for testing masonry compressive 

strength (a: solid clay brick masonry, b: perforated clay brick masonry) 

 

Fig. 4-8 Stack-bonded prisms for testing masonry compressive strength 

a b
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The RILEM specimens were built on steel plates, and, before testing, the top surface of the 

specimens was capped with a thin gypsum layer. The bottom bricks of the stack-bonded 

prisms were placed on a gypsum layer. Before constructing the prisms, the top of the cor-

responding upper bricks was ground to obtain an even surface. All specimens were covered 

by polyethylene sheets for the first three days of curing and stored in the laboratory until 

testing. 

The loading in the tests according to EN 1052-1 (1998) was applied with a constant dis-

placement rate, which was selected to reach the maximum load between 15 and 30 min. 

The vertical displacement of the masonry was recorded with two linear variable displace-

ment transducers (LVDTs) on each side of the specimens, which reached over two brick 

and mortar joint heights. The stress-strain curve corresponding to the average displacement 

measured by the four LVDTs is presented in Fig. 4-9. To obtain a modulus of elasticity that 

corresponds to the approximately linear part of the stress-strain curve, EN 1052-1 (1998) 

specifies determining the modulus of elasticity as the secant modulus between 0 % and 

33 % of the maximum stress. As illustrated in Fig. 4-9, some stress-strain curves first ex-

perienced hardening before the linear part of the stress-strain curve was reached. Therefore, 

the modulus of elasticity was determined as the chord modulus between 5 % and 33 % of 

the maximum stress, which is also recommended in the standard ASTM C1314 (2018). The 

actual linear part of the stress-strain curve can be captured more accurately by following 

this procedure. 

 

Fig. 4-9 Stress-strain curves of the compression tests according to EN 1052-1 (1998) 

Since the LVDTs measure only the displacement at the surface, the strain displayed in Fig. 

4-9 might not be representative for the whole cross-section as soon as cracks parallel to the 

surface occur (i.e. when the compressive stress is close to masonry strength). For some of 

the investigated specimens, the measured displacements declined after the peak stress was 

reached, although the displacement of the testing machine was further increased. The stress-

strain curves in Fig. 4-9 are only displayed up until one of the measured displacements 
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began to decrease. For one specimen, this effect already occurred before the peak stress 

was reached, as shown in Fig. 4-9. However, since this effect is only relevant for strains 

corresponding to stresses close to masonry strength, it does not influence the obtained mod-

ulus of elasticity. 

The compression tests on stack-bonded prisms were also conducted with a loading rate such 

that the maximum load occurred between 15 and 30 min. The modulus of elasticity was not 

determined within these tests. The results of the compression tests on RILEM specimens 

according to EN 1052-1 (1998) and of the tests on stack-bonded prisms are listed for solid 

and perforated clay brick masonry in Table 4-3. In addition to the dimensions and testing 

age, values for the unit and mortar compressive strength of the corresponding pallet and 

mix, respectively, are displayed, each being the average of at least six test results. 

Table 4-3  Results of compression tests on RILEM specimens according to EN 1052-1 

(1998) and three-brick high, stack-bonded masonry prisms 

Specimen 
Age 

Dimensions 
Unit 

strength fb 

Mortar 

strength fj 

Strength 

fma 

Modulus 

of elastic-

ity Ema 

Ema / fma 
Length 

Thick-

ness 
Height 

d mm mm mm N/mm² N/mm² N/mm² N/mm² - 

RIL-sol-1 41 496 115 514 24.6 2.5 10.1 3,129 309 

RIL-sol-2 40 498 115 514 24.6 2.5 9.2 2,644 287 

RIL-sol-3 40 497 115 514 24.6 2.5 11.7 2,860 244 

RIL-sol-4 35 491 114 509 24.0 3.2 9.1 4,128 453 

RIL-sol-5 36 491 114 513 24.0 3.2 8.7 2,540 291 

RIL-sol-6 36 490 114 514 24.0 3.2 9.5 2,697 283 

RIL-per-1 42 488 111 503 12.0 2.7 4.3 1,607 371 

RIL-per-2 41 490 111 505 12.0 2.7 4.2 2,028 482 

RIL-per-3 41 489 111 503 12.0 2.7 4.7 1,449 311 

RIL-per-4 35 486 110 500 12.0 3.2 3.8 1,939 507 

RIL-per-5 35 489 110 504 12.0 3.2 3.9 1,754 448 

RIL-per-6 34 487 110 501 12.0 3.2 3.7 2,974 803 

sbp-sol-1 41 243 116 244 24.6 2.4 11.0 - - 

sbp-sol-2 41 244 116 244 24.6 2.4 10.1 - - 

sbp-sol-3 41 244 115 244 24.6 2.4 8.6 - - 

sbp-sol-4 35 241 115 241 24.0 3.5 11.0 - - 

sbp-sol-5 35 240 115 242 24.0 3.5 12.1 - - 

sbp-sol-6 36 241 115 239 24.0 3.5 11.2 - - 

sbp-per-1 42 235 110 235 12.0 3.1 4.8 - - 

sbp-per-2 42 237 110 237 12.0 3.1 4.3 - - 

sbp-per-3 42 238 110 235 12.0 3.1 5.0 - - 

sbp-per-4 35 235 112 231 12.0 3.5 5.0 - - 

sbp-per-5 35 235 112 232 12.0 3.5 5.5 - - 

sbp-per-6 35 236 112 233 12.0 3.5 5.0 - - 

RIL: RILEM specimens, sbp: stack-bonded prims, sol: solid bricks, per: perforated bricks 
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In Table 4-4, the average results for masonry compressive strength obtained from tests on 

RILEM specimens and tests on stack-bonded prisms are given together with the corre-

sponding CoV. Predictions of masonry compressive strength according to EN 1996-1-1 

(2012) and DIN EN 1996-1-1/NA (2019) are also listed in Table 4-4. The predictions are 

based on the average unit compressive strength and the average mortar compressive 

strength (standard prism strength) for all test series (see Section 4.2). The corresponding 

empirical parameters of the power equation for solid clay brick masonry are K = 0.55, 

α = 0.7, and β = 0.3 according to EN 1996-1-1, and K = 0.95, α = 0.585, and β = 0.162 ac-

cording to DIN EN 1996-1-1/NA. For perforated clay bricks, K is 0.45 for EN 1996-1-1 

(units of group 2) and 0.69 for DIN EN 1996-1-1/NA, whereas α and β are the same as for 

solid clay bricks. Since the power equations of both standards include a conversion from 

the mean to the characteristic value of masonry compressive strength, the obtained values 

are converted back to mean values via division by 0.8 (see Section 3.5). 

Table 4-4  Comparison between experimental masonry compressive strength and predic-

tions by normative equations 

Type of  

masonry 

Masonry strength fma 

Tests on RILEM 

specimens 

Tests on stack-

bonded prisms 

EN 1996-1-1  

(fma,k / 0.8) 

DIN EN 1996-1-1/NA 

(fma,k / 0.8) 

N/mm² N/mm² N/mm² N/mm² 

Solid clay brick 

masonry 
9.74 (0.11) 10.66 (0.11) 8.81 9.16 

Perforated clay 

brick masonry 
4.11 (0.09) 4.94 (0.08) 4.21 4.25 

Average results of n = 6 tests for each type of specimen and masonry (CoVs in parentheses). Predictions 

based on fb = 24.9 N/mm² (solid), fb = 11.6 N/mm² (perforated), and fj = 2.71 N/mm² (see Section 4.2).  

The experimentally obtained masonry compressive strengths displayed in Table 4-4 match 

the predictions according to both standards well. Furthermore, the results of the tests on 

RILEM specimens and the tests on stack-bonded masonry prisms are relatively close to 

each other. If all test results are converted to slenderness h / t = 5 based on Eq. 3-12, the 

ratio of average strength obtained on RILEM specimens to average strength obtained on 

stack-bonded masonry prisms is 0.91. 

4.4 Tests on Masonry Walls 

4.4.1 Testing Programme and Procedure 

Fig. 4-10 provides an overview of the masonry walls that were tested. The testing pro-

gramme consisted of reference walls made solely out of either solid (abbreviated as “sol” 

in the labelling of the experiments) or perforated (“per”) clay bricks, walls with local weak-

nesses consisting of one missing brick in the masonry bond, and walls that contained both 

solid and perforated clay bricks in specific ratios. Furthermore, all these wall types were 

tested as single wythe masonry walls (“sw”, walls with a thickness of only one brick width), 
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and as walls laid in cross bond (“cb”) with a wall thickness of one brick length (= two brick 

widths plus one vertical mortar joint). 

 

Fig. 4-10 Overview of the tested masonry walls 

The walls of both bond types had a height of 13 courses with five bricks per course. The 

nominal perpend joint thickness was selected as 10 mm, and the nominal bed joint thickness 

as 12 1/3 mm. The nominal thickness of 12 1/3 mm results from the requirement of DIN 

4172 (2015) that the height of three courses of brick and mortar should sum up to 0.25 m. 

Based on the nominal brick dimensions of 240 x 115 x 71 mm³, the nominal overall dimen-

sions were 1240 x 115 x 1083 mm³ (length x width x height) for the single wythe walls and 

615 x 240 x 1083 mm³ for those in cross bond. For the walls with missing bricks, inner 

bricks in the middle course were left out. Concerning the walls in cross bond, the options 

of a missing stretcher (“str”) and a missing header (“head”) were tested. The walls contain-

ing both solid and perforated clay bricks were erected with 25 % and 50 % perforated 

bricks. The positions of the perforated bricks in the walls are depicted in Fig. 4-10. The 

perforated bricks were arranged symmetrically on the left and right side of the wall and 

such that load paths from top to bottom running only through solid bricks were possible. 
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The walls were constructed by trained masons and erected on concrete beams to allow for 

easy transportation to the testing machine. After construction, the walls were covered by 

polyethylene sheets for three days and then stored under laboratory conditions until the day 

of testing. On the day before testing, the concrete beam with the wall was placed in the 

testing machine upon a thin mortar layer, enabling the levelling of the wall. The top of the 

wall was capped with a thin gypsum layer before testing. The load was applied via a steel 

beam, whose support allowed rotation. As an example, the test setup for the wall cb-50-1 

is depicted in Fig. 4-11.  

     

Fig. 4-11 Test setup for wall cb-50-1 

Vertical displacements were measured by four cable LVDTs (two on each side) reaching 

over 10 brick and bed joint heights (see Fig. 4-11). Additionally, one side of the wall was 

prepared to enable displacement measurement by digital image correlation (DIC). For this 

purpose, the walls were painted white, and a speckle pattern was applied. During the tests, 

two cameras took images of the prepared side of the wall at a rate of one picture per second. 

The loading was increased with a constant displacement rate, which was chosen to reach 

the maximum load after 15 to 30 min. After reaching the maximum load, the displacement 

was further increased until the load declined to less than 90 % of its maximum. 

4.4.2 Results 

An overview of the test results is presented in Table 4-5. In addition to the load-bearing 

capacity and the respective strength (maximum load per gross cross-sectional area), the 

testing age, the actual dimensions of the wall, and the unit and mortar strengths of the cor-

responding brick pallets and mortar mixes, respectively, are displayed. Based on these unit 

and mortar strengths, a modification of the capacity as specified in EN 1052-1 (1998) would 

be possible so that all modified capacities correspond to the same unit and mortar strengths. 

However, the associated unit strengths do not vary greatly. The mortar variability is slightly 
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higher but has much less influence on the resulting strength. Furthermore, not all of the 

mortar mixes in one wall were tested. Therefore, the tested mortar mixes might not be rep-

resentative of the whole wall, and a modification might not lead to better results. The orig-

inal load-bearing capacities are hence used for further evaluation. More detailed documen-

tation of the tests on masonry walls is given in Annex A. 

Table 4-5  Results of the compression tests on masonry walls 

Wall 

type 
No. 

Age 

Dimensions Unit  

strength fb 

solid / perf. 

Mortar 

strength 

fj 

Max. 

load 
Strength 

Mean 

strength Length 
Thick-

ness 
Height 

d mm mm mm N/mm² N/mm² kN N/mm² N/mm² 

Sw-sol 

1 35 1,266 115 1,122 25.7 / - 2.77 1,004 6.90 

7.42 2 36 1,265 115 1,112 25.7 / - 2.77 1,089 7.49 

3 40 1,255 115 1,115 25.7 / - 2.77 1,136 7.87 

Sw-perf 
1 34 1,234 110 1,077 - / 12.0 2.80 437 3.22 

3.14 
2 37 1,245 111 1,086  - / 11.4 2.24 423 3.06 

Sw-hole 
1 40 1,245 115 1,110 23.6 / - 2.40 814 5.68 

5.62 
2 41 1,250 115 1,112 23.6 / - 2.40 799 5.56 

Sw-25 
1 36 1,247 113 1,108 24.6 / 12.0 2.30 681 4.83 

5.02 
2 35 1,248 113 1,119 24.6 / 12.0 2.03 736 5.22 

Sw-50 
1 36 1,246 113 1,112 24.6 / 12.0 2.16 565 4.01 

4.02 
2 36 1,248 113 1,105 24.6 / 12.0 2.03 568 4.03 

Cb-sol 

1 32 620 241 1,121 25.2 / -   2.76 943 6.31 

6.35 2 39 629 241 1,091 23.1 / - 2.89 826 5.45 

3 37 625 240 1,110 24.0 / - 2.85 1,093 7.29 

Cb-perf 
1 38 622 239 1,084 - / 11.4 2.90 391 2.63 

2.64 
2 41 621 239 1,083 - / 11.4 3.11 394 2.66 

Cb-str 
1 33 623 242 1,114 25.2 / - 2.76 694 4.61 

4.47 
2 34 624 241 1,116 25.2 / - 2.76 651 4.33 

Cb-head 
1 35 617 242 1,115 25.2 / - 2.76 748 5.01 

4.94 
2 36 622 242 1,117 25.2 / - 2.76 732 4.86 

Cb-25 
1 41 624 239 1,098 24.0 / 11.4 3.13 721 4.83 

4.77 
2 42 622 240 1,101 24.0 / 11.4 2.73 703 4.71 

Cb-50 
1 42 620 239 1,093 24.0 / 11.4 3.14 501 3.38 

3.32 
2 43 622 240 1,095 24.0 / 11.4 2.90 485 3.25 

Fig. 4-12 displays the stress-strain curves of the tests on masonry walls (i.e. the load-dis-

placement curves with the load related to the cross-sectional area and the displacement 

related to the measurement lengths of the LVDTs). The stresses and strains are averages 

since the actual stresses and strains vary within the wall due to the local weaknesses. The 

effect of cracks parallel to the wall surface on the displacement measured by the LVDTs, 

described in Section 4.3 for the tests on RILEM specimens, is less problematic for tests on 
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masonry walls. Since the cracks that lead to failure randomly occur at different locations in 

the wall, the probability of large cracks at the supports of the LVDTs is much smaller. 

 

Fig. 4-12 Stress-strain curves obtained in the tests on masonry walls 

Reference walls 

First, the results of the reference tests on solid and perforated clay brick masonry walls are 

evaluated in more detail. Fig. 4-13 shows exemplary images of the most dominant cracks 

in the tested masonry walls. The pictures were taken after the completion of the experi-

ments, and the typical behaviour of masonry under compression can be recognised: Trans-

versal strain in the mortar joints causes transversal tensile stress in the bricks, leading to 

cracks, which form parallel to the surface of the wall. As a result of these cracks, slices of 

the bricks can be separated from the wall at some parts. Since the reference walls are not 

purposely weakened at specific locations, the most dominant cracks that lead to failure 

occur at random locations, where the material is the weakest. 

Based on the stress-strain curves displayed in Fig. 4-12, the parameter k, which quantifies 

the nonlinearity of the stress-strain relationship (see Section 3.3.2), can be obtained as 

ma

ma

fε E
k

f
  Eq. 4-1 

with fma and Ema being the masonry compressive strength and modulus of elasticity, respec-

tively, and εf being the strain at the maximum stress. Since the effect of initial hardening, 

which occurred for the tests on the RILEM specimens, did not occur for the tests on the 

walls, the modulus of elasticity is determined as the secant modulus Ema,0-33 between 0 % 

and 33 % of the maximum load. The secant modulus Ema,0-33 approximately equals the tan-

gential modulus in the origin Ema,0, for which Eq. 4-1 is originally defined (see Eq. 3-1). 

Equating Ema,0 and Ema,0-33 also matches the selected material model for the finite element 

simulations (see Section 5.2.3). The average parameter k was obtained as 2.31 for the solid 
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clay brick masonry arranged as single wythe walls and as 2.38 for the solid clay brick ma-

sonry walls in cross bond. For the perforated clay brick masonry walls, k was 1.69 for the 

single wythe walls and 2.04 for the walls in cross bond. 

 

Fig. 4-13 Crack formation in the tests on reference walls  

 (a: sw-sol-3, b: cb-sol-2, c: sw-perf-2, d: cb-perf-2) 

The experimentally obtained strengths for single wythe masonry, masonry arranged in cross 

bond, the RILEM specimens, and stack-bonded prisms are compared in Fig. 4-14. Note that 

all of the strengths have been converted to a slenderness ratio of h / t = 5 based on Eq. 3-12. 

The ratio of the strength of masonry walls in cross bond to the strength of the single wythe 

masonry walls is 78 % for the solid clay brick masonry and 76 % for the perforated clay 

brick masonry, which matches the factor of 80 % defined in EN 1996-1-1 (2012) well. The 

reason for the lower strength of the single wythe masonry walls compared to the RILEM 

specimens can be assumed to be a combination of the effects of small eccentricities due to 

a b

dc
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imperfections and a statistical size effect due to a higher number of possible failure loca-

tions in the walls. The strength ratio of perforated to solid clay brick masonry is 42 %, 

regardless of whether it is calculated from the results obtained on RILEM, single wythe, or 

cross bond specimens. Hence, there is a high consistency of the test results. 

 

Fig. 4-14 Comparison of masonry strength obtained from different testing specimens 

Walls with a missing brick 

Walls with a missing brick were tested to investigate how clay brick masonry behaves under 

local stress concentrations. Furthermore, the corresponding results are needed to validate 

the finite element model in the next chapter. Due to the holes in the wall, high strains and 

stresses occurred in the critical cross-section next to the missing bricks. Therefore, the com-

pressive strength of masonry was reached much earlier here than in the other parts of the 

wall, which is also evident by the cracking behaviour of the tested walls. The most domi-

nant cracks formed at the edges of the holes (see Fig. 4-15). 

 

Fig. 4-15 Crack formation in the tests on walls with a missing brick  

 (a: sw-hole-2, b: cb-str-1, c: cb-head-1) 
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In Table 4-6, the strengths of the walls with a missing brick are listed in relation to the 

strengths of the reference walls. The relative strengths of the walls with a missing brick are 

between 70 % and 78 %. Hence, they are only slightly lower than the relative area of the 

critical cross-section, which is 80 % (four instead of five bricks). 

Table 4-6  Strength of walls with missing brick compared to reference strength 

Specimen 
Reference strength Strength with hole 

Relative strength 
N/mm² N/mm² 

Single wythe masonry 7.42 5.62 75.8 % 

Cross bond 
Missing header 

6.35 
4.94 77.8 % 

Missing stretcher 4.47 70.4 % 

If the material behaviour were perfectly ductile (i.e. the stress-strain curve continued hori-

zontally after reaching its maximum), the relative strength would be equal to the relative 

area of the critical cross-section, which is illustrated in Fig. 4-16. The difference between 

this theoretical upper bound and the actual load-bearing capacity depends on the post-peak 

behaviour of the stress-strain relationship. Another influence on the actual capacity is that 

the maximum stress in the critical cross-section can be slightly higher than the uniaxial 

masonry strength (i.e. the strength of the reference walls). The reason for this lies in the 

interaction between neighbouring bricks. High vertical strains in the area with stress con-

centration also lead to high transversal strains and hence transversal compression, as these 

areas are constrained by surrounding bricks with a lower stress level. Since the vertical 

compressive strength is higher than the uniaxial strength if transversal compressive stresses 

are present, the relative capacity of a wall with a hole can be close to the relative area of 

the critical cross-section, although the stress-strain relationship is not perfectly ductile (see 

Fig. 4-16, right). These effects are also discussed during the validation of the finite element 

model in Chapter 5. 

 

Fig. 4-16 Qualitative illustration of vertical strain and stress at maximum load in the 

cross-section with a missing brick 
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Walls with varying brick strength 

Fig. 4-17 shows typical cracking patterns which occurred at the masonry walls containing 

both strong (i.e. solid) and weak (i.e. perforated) clay bricks. As expected, the first cracks 

appeared at the perforated bricks and developed from there. A further essential finding was 

that the first crack usually did not appear at a single perforated brick but at a conglomeration 

of two or more such bricks. In most cases, perforated bricks that were surrounded by solid 

bricks did not start to crack if there were other parts in the wall with two or more perforated 

bricks on top of each other (see Fig. 4-17). 

 

Fig. 4-17 Crack formation in the tests on walls with varying brick strength  

 (a: sw-25-1, b: cb-25-1, c: sw-50-2, d: cb-50-1) 

This observation indicates that, locally, the masonry strength of a combination of perforated 

brick and mortar joint in the mixed walls can be higher than the uniaxial reference strength 

of the perforated clay brick walls. Again, this effect can be explained by the interaction 

a b

dc
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between neighbouring bricks. The horizontal strain of perforated bricks that are close to 

their maximum capacity is constrained by solid bricks that are much less utilised. This 

constraint leads to a multiaxial compression state and hence a vertical compressive strength 

higher than the uniaxial reference strength. Therefore, weaker bricks are supported by ad-

jacent stronger bricks. 

If the stress redistribution capability within the masonry walls were perfect, the resulting 

load-bearing capacity would correspond to the average masonry strength in the wall. The 

load-bearing capacity could consequently be obtained by linear interpolation between the 

reference strengths according to the percentage of solid and perforated bricks in the wall. 

In Fig. 4-18, the experimental strengths are displayed over the percentage of perforated clay 

bricks in the tested walls. Moreover, a line corresponding to linear interpolation between 

the reference strengths is displayed. For further illustration, the experimental results are 

approximated by a quadratic polynomial fitted by the method of least squares. It can be 

seen that the test results significantly deviate from the linear interpolation, which also aligns 

with the findings of Kirtschig and Meyer (1990) for calcium silicate masonry walls (see 

also Section 3.3.4). Hence, the load-bearing capacity cannot be determined directly by the 

average strength in the wall but must be further reduced. This effect reduces if, instead of 

the overall percentage of weak bricks in the wall, the percentage of weak bricks and respec-

tive average strength in the weakest course is considered. However, the general effect re-

mains. 

 

Fig. 4-18 Load-bearing capacity R of walls with varying percentages of perforated 

bricks in relation to the reference capacity Rsolid of solid brick walls 
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4.5 Summary 

This chapter described the procedure and the results of experimental investigations on clay 

brick masonry walls. First, complementary tests on brick and mortar were illustrated. In 

addition to standard testing of the mortar according to EN 1015-11 (2019), the mortar com-

pressive strength was obtained by double punch tests according to procedure III of DIN 

18555-9 (2019). The geometrical boundary conditions in the double punch test were found 

to approximately lead to the same mortar strength as in a standard prism test. However, due 

to the different curing conditions of mortar within masonry compared to the curing of the 

standard prisms, the strength of samples extracted from masonry can significantly deviate 

from that of standard prisms. For the investigated natural hydraulic lime mortar, the 

strength within masonry was higher by a factor of about two. 

Section 4.3 presented the results of compressive strength tests on standard masonry speci-

mens according to EN 1052-1 (1998) and on stack-bonded masonry prisms. The strengths 

obtained from standard masonry specimens align well with the predicted strengths accord-

ing to the equations in EN 1996-1-1 (2012) and DIN EN 1996-1-1/NA (2019) based on unit 

and mortar compressive strength. The ratio of the masonry compressive strength obtained 

from standard masonry specimens (i.e. RILEM specimens) to the strength obtained from 

stack-bonded prims is 91 % if both strengths are converted to a slenderness h / t = 5. 

Finally, the results of 24 tests on masonry walls were presented. In addition to reference 

tests on solid and perforated clay brick masonry walls, walls with weaknesses were also 

tested. These weaknesses consisted of either a missing brick in the masonry bond or a cer-

tain percentage of perforated clay bricks within a solid clay brick masonry wall. The tests 

were conducted on single wythe masonry walls and masonry walls arranged in cross bond. 

The ratio of the compressive strength of masonry arranged in cross bond to single wythe 

masonry was determined as 77 %. The tests on walls with weaknesses revealed a reasonable 

stress redistribution capability of the walls. Altogether, the experimental results indicate a 

high level of consistency; therefore, they establish a reliable basis for the validation of the 

finite element model in Chapter 5. 
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5 FINITE ELEMENT MODELLING OF CLAY BRICK MASONRY 

WALLS 

5.1 Introduction 

For the Monte Carlo simulations (MCS) presented in Chapter 6, unreinforced clay brick 

masonry walls under compression loading are modelled by means of the finite element 

method. In this chapter, the finite element model is illustrated. Section 5.2 provides a de-

scription of the model, including the selected elements, the mesh, the boundary conditions, 

the iteration method, and the material models. In Section 5.3, the model is validated. First, 

the load-bearing capacities of walls with varying eccentricities of the applied load and var-

ying slenderness are compared to results obtained from the analytical model by Glock 

(2004). The second step of the validation is a comparison of the experimental results from 

Chapter 4 with the results of corresponding finite element simulations. 

5.2 Description of the Finite Element Model 

5.2.1 General and Modelling Strategy 

For the finite element simulations, the software DIANA (Version 10.3) is utilised. Simpli-

fied micro-modelling (see Section 3.6) is chosen as the modelling strategy, as this approach 

represents an appropriate compromise between detailed micro-modelling and macro-mod-

elling. Detailed micro-modelling would be computationally more expensive and would re-

quire additional mechanical input parameters that would also have to be modelled stochas-

tically. For the MCS in Chapter 6, the finite element model must be suited for displaying 

material variability from unit to unit. With macro-modelling, there is no discretisation of a 

masonry wall into single units, making this modelling strategy inapplicable for walls with 

unit-to-unit material variability.  

In the simplified micro-modelling approach described by Lourenço (1996), the expanded 

units behave elastically, and the inelastic behaviour of masonry is assigned to the interfaces. 

In contrast, the inelastic behaviour of masonry under compression is included in the ex-

panded units in the following investigations, and the interfaces only display cracking in the 

mortar joints due to tensile stresses. This choice – assigning masonry compressive strength 

to the expanded units rather than to the interfaces – recognises that the material properties 

of the units have a greater influence on masonry compressive strength than the properties 

of the mortar joints. The variability of masonry compressive strength from expanded unit 

to expanded unit is hence better suited for representing the material variability within ma-

sonry than the variability from interface to interface. 
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For the sake of readability, the expanded units are simply called “units” in the following. 

The quotation marks indicate that the geometry and, in particular, the assigned material 

properties differ from those of the actual bricks. 

5.2.2 Geometry, Mesh, and Iteration Method 

The “units” are modelled by eight-node solid elements (element type HX24L in DIANA). 

The dimensions of the “units” that represent bricks with the German standard format NF in 

single wythe masonry are 250 x 115 x 83.3 mm³ (length x width x height). These dimen-

sions result from the nominal brick dimensions plus two times half the perpend joint thick-

ness regarding the length of the “units” and two times half the bed joint thickness regarding 

their height. For the walls in cross bond, the thickness of the vertical joint parallel to the 

wall face also has to be considered, which results in total “unit” dimensions of 250 x 120 x 

83.3 mm³ for the stretchers and 240 x 125 x 83.3 mm³ for the headers. Each “unit” is dis-

cretised into 8 x 4 x 3 elements, leading to approximately cubic elements with an edge 

length of around 30 mm. At the position of the bed and perpend joints, interfaces are placed 

between the “units”. The corresponding elements are plane quadrilateral interface elements 

with four plus four nodes (type Q24IF in DIANA).  

In the finite element model of the experiments, the load is applied displacement-controlled 

at the centre point of the top of the wall. The vertical displacement of this centre point is 

tied to all points on the centre line, leading to a uniform vertical displacement over the 

whole length of the wall. This corresponds to the application of the load via a beam with 

high stiffness in the experiments. Instead of a prescribed deformation, a uniform line load 

with defined eccentricity is applied at the top of the wall in the MCS. In both types of 

simulation, the load is then distributed from this (ec-)centric line to the whole cross-section 

via a thin, rigid plate. For the MCS, a similar rigid plate is provided at the bottom, which is 

vertically supported along a line with a specific eccentricity. The support conditions allow 

free rotation around the weak longitudinal axis (x-axis) at the top and bottom. In contrast, 

the bottom plate is vertically supported over the whole area for the simulation of the exper-

iments, resulting in a restraint of rotations around the longitudinal axis at the bottom, which 

better displays the experimental boundary conditions. In both cases, the wall is supported 

against out-of-plane displacement at the top and bottom. The geometry, the element mesh, 

and an example illustration of the stress and the strain distribution are depicted in Fig. 5-1 

for the reference wall of the MCS. 

Since a uniform load instead of a uniform deformation is applied in the MCS, the wall can 

also freely tilt around the strong axis (y-axis) at the top. This is required because the random 

assignment of material properties leads to an asymmetric distribution of material strength 

and stiffness and, hence, to one side of the wall being weaker than the other. In a building, 



 

 5.2  Description of the Finite Element Model 

 

  

113 

this asymmetry can lead to a rotation around the y-axis, which is only slightly restrained by 

the adjacent floor. 

 

Fig. 5-1 Geometry, mesh, example stresses, and example strains of the finite element 

model (reference wall for the Monte Carlo simulations) 

When the finite element model is used to perform MCS, the option of automatic step sizes 

is selected in combination with arc-length control. Using arc-length control, the additional 

load in each step automatically decreases as soon as the load-displacement curve becomes 

nonlinear and approaches the peak load. The Newton-Raphson iterative method is applied. 

For a successful iteration, both energy and displacement convergence norm have to be sat-

isfied. After each simulation run, there is an automatic check whether the peak of the load-

displacement curve has been reached, that is, whether the load-displacement curve has de-

creased in the last step of the simulation run. If the iteration has failed before reaching the 

peak, the simulation is repeated with a different initial step size. This procedure ensures 

that the maximum resistance of the masonry walls is reliably obtained in all simulation 

runs. 

5.2.3 Material Modelling 

Although the material behaviour of masonry is orthotropic in general, an isotropic material 

model for the “units” is chosen. In the following investigations, an isotropic material model 

yields sufficiently accurate results since the predominant compression stresses act in the 

vertical direction. The material model has to display the hardening and softening behaviour 

of masonry under compression when the limit of the elastic stress-strain state is reached. 

Furthermore, the model has to adequately represent the behaviour of masonry under vertical 

compression in combination with compressive or tensile stresses in the horizontal direc-

tions. 
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For this purpose, the material model “crack and plasticity” in DIANA is selected for the 

“units”, which combines two material models, one for the behaviour under compression 

and one for tensile behaviour. Under compression, plasticity with a Drucker-Prager yield 

criterion and cohesion hardening/softening is selected. Under tension, the material model 

“crack and plasticity” includes a multi-directional fixed crack model (DIANA FEA 2019). 

The transition between the Drucker-Prager yield-criterion under compression and the crack 

model under tension is modelled by a linear, rather than a constant, tension cut-off. 

For the Drucker-Prager plasticity model, the definition of the friction angle φ and the dila-

tancy angle ψ is required. The dilatancy angle ψ is set to equal the friction angle φ to attain 

an associated flow-rule (see Lourenço 1996). Since the dilatancy angle is greater than zero, 

plastic deformations are associated with an increase in volume. Together with the cohesion, 

the friction angle φ defines the yield surface. The choice of the friction angle thus deter-

mines how strongly the vertical compressive strength of masonry is increased if the vertical 

stress is combined with compressive stresses in the horizontal directions. Hence, the fric-

tion angle φ is an important calibration parameter. If a weak “unit” within the wall is close 

to reaching its maximum uniaxial strength, there are large deformations in the horizontal 

direction that are partly restrained by stronger “units” at the top and bottom. This leads to 

triaxial compression in the weak “unit” and thus an increase in its vertical compressive 

strength. Simultaneously, the vertical compressive strength of the stronger “units” is re-

duced due to horizontal tension. This effect was also observed in the experiments (see Sec-

tion 4.4.2). 

The choice of a friction angle of φ = 12° yields simulation results matching well with those 

of the experiments. This friction angle also shows good agreement with experimental re-

sults for the biaxial compression strength of masonry, as shown next. The general definition 

of the Drucker-Prager yield criterion Drucker and Prager (1952) can be written as 

       
2 2 2

f 1 2 3 1 2 2 3 3 1

1

2
α σ σ σ σ σ σ σ σ σ k         

 
 Eq. 5-1 

where σ1, σ2, and σ3 are the principal stresses. Based on the cohesion c and the friction angle 

φ, αf and k can be determined as 

f

2sin

3 sin

φ
α

φ



 Eq. 5-2 

6 cos

3 sin

c φ
k

φ



 Eq. 5-3 

The cohesion c that corresponds to a particular uniaxial compressive strength fma can be 

obtained as follows (DIANA FEA 2019): 
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ma

1 sin

2cos

φ
c f

φ


  Eq. 5-4 

Based on Eq. 5-1 to Eq. 5-4, the Drucker-Prager failure criterion for a biaxial stress state 

(σ3 = 0) is displayed in Fig. 5-2. Furthermore, experimental results on the biaxial compres-

sive strength of solid clay brick masonry from Page (1981) are included in the diagram. 

Here, σ2 is the compressive stress perpendicular to the bed joints, and σ1 is the compressive 

stress parallel to the bed joints. Fig. 5-2 demonstrates that the assumption of isotropic ma-

terial behaviour is not correct if the whole range of theoretically possible biaxial stress 

states is considered. However, since the investigated walls are mainly loaded vertically (i.e. 

perpendicular to the bed joints), horizontal compressive stresses only result from constraint 

by other “units”. Therefore, only stress states with σ1 significantly smaller than σ2 are rele-

vant for the following studies. If only the range of σ1 < 1/3 σ2, which is not exceeded in the 

simulation of the experiments, is considered, excellent agreement of the Drucker-Prager 

criterion with the parameter φ = 12° and the experimental results by Page (1981) is found, 

as shown in the right diagram of Fig. 5-2. 

 

Fig. 5-2 Comparison of Drucker-Prager criterion with φ = 12° and experimental re-

sults for biaxial compressive strength by Page (1981) (left: full range, right: 

lower range of σ1) 

The hardening/softening law for the relationship between plastic strain and yield stress is 

assigned in the form proposed by Lourenço (1996). If expressed as a uniaxial relationship 

between compressive stress σc and plastic compressive strain εpl, the hardening/softening 

law can be written as 
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   
2

pl pl

c pl i p i 2

p p

2 ε ε
σ ε σ σ σ

ε ε
       for εpl ≤ εp 

   
2

pl p

c pl p m p

m p

ε ε
σ ε σ σ σ

ε ε

 
      

   for εp ≤ εpl ≤ εm 

    m p pl m

c pl r m r

m p m r

exp 2
σ σ ε ε

σ ε σ σ σ
ε ε σ σ

  
       

 for εm ≤ εpl 

Eq. 5-5 

The parameters σp and εp are equal to the uniaxial masonry compressive strength fma and 

the plastic strain at reaching this strength. For σc ≤ σi, only elastic deformations occur. With 

the parameters σm and εm, the post-peak behaviour can be controlled, and σr is a residual 

stress required for numerical reasons (see also Fig. 5-3). In Lourenço (1996), the values 

σi = 0.33 fma, σm = 0.5 fma, and σr = 0.1 fma are recommended, which are also applied in the 

following simulations. 

 

Fig. 5-3 Uniaxial stress-strain relationship for the expanded units (see Lourenço 1996) 

If the modulus of elasticity and the masonry compressive strength are given, the plastic 

strain εp at peak stress can be obtained by choosing a stress-strain relationship parameter k. 

Here, the parameter k is defined as the ratio between total strain and elastic strain at peak 

stress (see Section 3.3.2). Therefore, the plastic strain at peak stress is 

 ma
p

ma

1
1f

fk
ε ε k

k E


    Eq. 5-6 

where εf is the total strain at peak stress and Ema is the modulus of elasticity of masonry. 

For the simulation of the experiments, the values of k determined in Chapter 4 based on the 

experimental results for masonry walls are used: k = 2.31 (single wythe) and 2.38 (cross 
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bond) for the experiments on solid clay brick masonry, and k = 1.69 (single wythe) and 

2.04 (cross bond) for perforated clay brick masonry. The modulus of elasticity is chosen as 

obtained in the experiments on RILEM specimens (see Section 4.3). 

For the MCS of solid clay brick masonry, k = 2 is chosen for both bond types, which is 

slightly lower than the experimentally obtained value but more representative for solid clay 

brick masonry in general (see Section 3.3.2). The value Ema / fma = 550 is chosen as a ref-

erence for the ratio of elastic modulus to compressive strength of masonry within the MCS. 

As presented in Section 3.3.2, a wide variation for the ratio Ema / fma can be found in the 

literature. Kaushik et al. (2007) found Ema / fma = 550 as an average for solid clay brick 

masonry. In Schubert (2010), Ema,m = 5,000 N/mm² is stated for a unit and mortar combi-

nation with compressive strengths fb,m = 25 N/mm² and fj,m = 2.5 N/mm². According to DIN 

EN 1996-1-1/NA (2019), the corresponding masonry compressive strength is fma,k = 

7.2 N/mm². With fma,m = fma,k / 0.8 (see Section 3.5.3), this results in Ema,m / fma,m = 552.2 

and, hence, good agreement. It should be noted that lower ratios for Ema / fma may be present 

in the assessment of existing masonry, especially in the case of weak lime mortars (see 

Section 3.3.2). 

As the parameter εm defines the post-peak behaviour after reaching compressive strength, 

it influences the load-bearing capacity of a wall with local stress concentrations. In the 

calibration process, choosing the value as six times the plastic strain at peak stress, 

εm = 6 εp, yielded good results. The hardening/softening law as described by Eq. 5-5 cannot 

be assigned to the material model in DIANA directly. Since the hardening/softening be-

haviour is defined by cohesion hardening, the uniaxial strength must be converted to an 

equivalent cohesion c based on Eq. 5-4. Furthermore, the cohesion hardening curve is a 

function of an equivalent plastic strain variable κ (DIANA FEA 2019). Based on the plastic 

strain εpl corresponding to uniaxial stress, the equivalent plastic strain variable κ can be 

obtained by 

2

g

pl

g

1 2

1

α
κ ε

α


 


   with   

g

2sin

3 sin

ψ
α

ψ



 Eq. 5-7 

In Fig. 5-4, the uniaxial stress-strain relationship used for the MCS, the corresponding re-

lationship between uniaxial compressive stress and plastic strain, and the resulting cohesion 

hardening diagram are illustrated. 
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Fig. 5-4 Uniaxial compressive stress-strain relationship and cohesion hardening law 

for the expanded units (Ema / fma = 550, k = 2) 

The parameter κm, which is the equivalent plastic strain variable corresponding to εm (see 

Eq. 5-5), can also be determined based on the compressive fracture energy Gfc and an equiv-

alent element length h. According to Lourenço (1996), the compressive fracture energy Gfc 

corresponds to the area between the descending branch and the residual strength of the σ-κ 

diagram multiplied by the equivalent element length h. Based on this definition, κm can be 

determined as 

fc
m p

ma

75

67

G
κ κ

h f
   Eq. 5-8 

where κp is the equivalent plastic strain variable corresponding to the plastic strain εp at the 

maximum compressive stress in a uniaxial test. With an equivalent element length h = V 1/3 

(in which V is the volume of one element) and the calibrated ratio of εm / εp = 6, the ratio of 

fracture energy to masonry compressive strength can be obtained as Gfc / fma = 0.29 mm for 

Ema / fma = 550 and k = 2. This aligns well with results by Schueremans (2001), who exper-

imentally determined the compressive fracture energy on masonry walls, prisms, and cores 

and found ratios Gfc / fma of 0.45, 0.40, and 0.30 mm, respectively. 

The horizontal tensile strength fbt of the clay bricks is assigned as the tensile strength of the 

expanded units. In Schubert (2010), the horizontal unit tensile strength is provided in rela-

tion to unit compressive strength fb. For solid clay bricks, a unit tensile strength of 0.04 fb 

is specified, whereas for perforated clay bricks, 0.03 fb is stated. For the simulation of the 

experiments, the experimental unit compressive strengths fb (see Section 4.2.1) are used to 

calculate corresponding tensile strengths based on these ratios. For the MCS, all values are 

related to the masonry compressive strength. For a typical unit strength of fb = 25 N/mm² 

and a typical mortar strength of fj = 2.5 N/mm², a masonry strength of fma,m = fma,k / 0.8 = 

9.1 N/mm² is obtained according to DIN EN 1996-1-1/NA (2019). Based on fbt / fb = 0.04, 

this results in fbt / fma = 0.11. The tension softening is modelled as linear with a residual 

tensile strength of 0.1 fbt, which is chosen for numerical robustness. 

A material model displaying discrete cracking is assigned to the interfaces. As the elastic 

modulus of masonry is assigned to the “units”, the stiffness of the interface elements is 
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assigned a high value, leading to almost no relative displacements if uncracked. The pur-

pose of the interfaces is to model cracking in the mortar joints if the tensile stress perpen-

dicular to the bed joints reaches the corresponding flexural tensile strength fx1. Therefore, 

the flexural tensile strength fx1 is directly assigned as tensile strength ft of the interfaces. In 

Schmidt and Schubert (2004), a range from 0.23 to 1.10 N/mm² (with an average value of 

0.57 N/mm²) is provided for the flexural tensile strength fx1 of solid clay brick masonry. 

Here, a value of 0.4 N/mm² is chosen for flexural tensile strength fx1 since the value should 

be representative of mortars with lower strengths. The tension softening behaviour is de-

fined by a bilinear curve according to JSCE (2010) with specified fracture energy (see Fig. 

5-5). The fracture energy is chosen according to Schueremans (2001), in which the ratio of 

tensile fracture energy Gft to bond tensile strength ft is specified as 0.0148 mm based on an 

evaluation of direct tensile tests conducted by van der Pluijm (1999). 

 

Fig. 5-5 Softening behaviour of the interface elements according to JSCE (2010) 

The material properties of the finite element model are summarised in Table 5-1. The ma-

terial properties for the MCS are provided in relation to masonry compressive strength fma 

since they are normalised with regard to mean masonry compressive strength fma,m in the 

corresponding finite element simulations. Concerning the MCS, this relationship to ma-

sonry compressive strength fma should not be misunderstood as a stochastic dependence but 

as a relationship between the respective mean values of the material properties. The sto-

chastic correlation between the particular material properties is described in Section 6.2.1. 
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Table 5-1  Material properties of the finite element model 

Type of element Parameter Value Reference 

Expanded 

units 

General 

friction angle φ 12° calibration 

dilatancy angle ψ φ Lourenço (1996) 

Poisson’s ratio 0.19 Schueremans (2001) 

Solid  

clay brick  

masonry 

(experiments) 

compressive 

strength fma 

7.42 N/mm² (single wythe) 

6.35 N/mm² (cross bond) 
experimental 

modulus of  

elasticity Ema 
3,000 N/mm² experimental 

stress-strain 

parameter k 

2.31 (single wythe) 

2.38 (cross bond) 
experimental 

tensile strength fbt 0.04 fb = 1.0 N/mm² Schubert (2010) 

Perforated  

clay brick 

masonry 

(experiments) 

compressive 

strength fma 

3.14 N/mm² (single wythe) 

2.64 N/mm² (cross bond) 
experimental 

modulus of  

elasticity Ema 
1,959 N/mm² experimental 

stress-strain  

parameter k 

1.69 (single wythe) 

2.04 (cross bond) 
experimental 

tensile strength fbt 0.03 fb = 0.35 N/mm² Schubert (2010) 

Solid clay 

brick masonry 

(Monte Carlo  

simulation) 

mean modulus of  

elasticity Ema 
550 fma

1 
Kaushik et al. (2007) and 

Schubert (2010) 

stress-strain  

parameter k 
2.0 

Kaushik et al. (2007) and  

Lumantarna et al. (2014) 

mean compressive  

fracture energy Gfc 
0.29 mm ∙ fma calibration 

tensile strength fbt 0.04 fb = 0.11 fma
1 Schubert (2010) 

Interfaces 

(mean) tensile 

strength ft 
0.044 fma

1 
Schmidt and Schubert 

(2004) 

tensile fracture  

energy Gft 
0.0148 ft Schueremans (2001) 

1Relative material properties are based on fb = 25 N/mm², fj = 2.5 N/mm², and fma = 9.1 N/mm². 

5.3 Validation of the Finite Element Model 

5.3.1 Comparison with Analytical Model for the Resistance of Slender Walls 

In the first step of the validation, results obtained by finite element simulation are compared 

to results obtained via the closed-form expressions provided by Glock (2004) for the load-

bearing capacity of slender unreinforced masonry walls under eccentric compression load-

ing (see Section 3.3.3). This validates that the model is suited for determining the load-

bearing capacity of masonry walls with varying slenderness and various eccentricities of 

compression loading. Finite element simulations are conducted for three different ratios 

e / t of eccentricity to wall thickness and varying material-related slenderness λ. The corre-

sponding finite element model represents a wall in cross bond with 36 courses, which re-

sults in a height of 3 m. To vary the slenderness λ, the modulus of elasticity and, thereby, 
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the strain εf at reaching the compressive strength is adjusted. The model by Glock (2004) is 

applied based on a parabolic-rectangular stress-strain relationship with a ratio of ultimate 

strain to strain at peak compressive stress of εu / εf = 1.75. This ratio is chosen since it is 

specified in FprEN 1996-1-1 (2020) for masonry composed of solid units. Furthermore, 

due to this choice, the obtained cross-sectional capacity is approximately equal to that re-

sulting from the stress-strain relationship implemented in the finite element model. In Fig. 

5-6, the load-bearing capacity according to the model by Glock (2004) and the results ob-

tained by finite element simulation are illustrated. The comparison shows that the finite 

element model is well suited for determining the load-bearing capacity of masonry walls 

with increasing slenderness. 

 

Fig. 5-6 Load-bearing capacity of slender walls obtained by finite element simulation 

and by the model of Glock (2004) 

5.3.2 Comparison with Experimental Results 

The second step of the validation is the comparison of the experimental results with the 

corresponding finite element simulations. This demonstrates that the finite element model 

represents the behaviour of masonry walls with local weaknesses sufficiently well. For this 

purpose, the respective reductions in the resistance relative to that of the solid clay brick 

reference walls without weakening are of interest. Therefore, the masonry compressive 

strength fma and the stress-strain parameter k, which were obtained in the experiments for 

the reference walls, are also applied in the simulations. The load-displacement curves ob-

tained in the experiments and by the finite element simulations are shown in Fig. 5-6. The 

load is related to the cross-sectional area of the wall without weakening; that is, it is shown 

as average stress over the gross cross-section. The experimental displacements at the 

LVDTs are related to the corresponding measurement length, and the simulated displace-

ments at the top of the wall are related to the wall height. Both displacements are hence 
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shown as average strain along the respective measurement lengths. Fig. 5-7 demonstrates 

that the finite element model reproduces the behaviour of the experimental walls very well. 

 

 

 

Fig. 5-7 Stress-strain curves obtained in the experiments on masonry walls and corre-

sponding results of finite element simulations 
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For the MCS conducted in the next chapter, the finite element model must accurately cap-

ture the load-bearing capacity of masonry walls with local weaknesses. In Table 5-2, a 

comparison of the simulation results and the average experimental results for the load-bear-

ing capacity is shown. The simulation results for the reference walls are equal to the exper-

imental results since the experimental reference strengths are used as input parameters for 

the finite element simulations, and, without weakening, the load-bearing capacity related 

to the cross-section A matches the input compressive strength. The average ratio of exper-

imental to simulation results is 1.03, and the coefficient of variation (CoV) of the ratio is 

9.5 %. Since the experimental results themselves also show some scatter, the CoV of 9.5 % 

can be considered sufficiently low. 

Table 5-2  Comparison of results from experiments and finite element simulations 

Wall 

Load-bearing capacity R per area A 
Ratio 

Rexp / Rcal 
Experiment Rexp Simulation Rcal 

N/mm² N/mm² 

Sw-sol 7.42 - 

Sw-perf 3.14 - 

Sw-hole 5.62 5.49 1.02 

Sw-25 5.02 4.44 1.13 

Sw-50 4.02 3.66 1.10 

Cb-sol 6.35 - 

Cb-perf 2.64 - 

Cb-head 4.94 5.17 0.95 

Cb-str 4.47 5.07 0.88 

Cb-25 4.77 4.18 1.14 

Cb-50 3.32 3.38 0.98 

  Mean 1.03 

  CoV 9.5 % 

In Fig. 5-8, an example comparison of the strains measured by digital image correlation 

(DIC) with the strains and stresses obtained by finite element simulation is presented for 

the experimental wall laid in cross bond with a missing header (cb-head-2). All strains and 

stresses correspond to the state of reaching the maximum load. The stresses in the finite 

element model are normalised with respect to masonry compressive strength. Hence, a 

stress of one corresponds to reaching the uniaxial compressive strength. 

The figure illustrates the main difference between the simplified micro model and reality. 

In the experiments, the strains in the mortar joints were much higher than in the bricks, 

which is due to the lower stiffness of the mortar. In contrast, there is no differentiation 

between the compression behaviour of bricks and mortar in the finite element model since 

the compression behaviour of the composite material masonry is included in the expanded 

units. However, the overall behaviour is similar: The highest strains occur besides the open-

ing, and, from there, the region with the highest strains extends to the four corners. Under 
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low loads that do not lead to plastic strains, the stress distribution along the critical cross-

section is equal to the strain distribution. The stress is highest next to the opening in this 

state; plastic strains thus occur here first. Stresses are consequently redistributed to the outer 

regions with increasing load, and the stress distribution gets more uniform. At the maxi-

mum load, the stress next to the opening already corresponds to the descending branch of 

the stress-strain relationship. Due to the constraint from surrounding bricks with lower 

stress, the maximum vertical stress can be slightly higher than the uniaxial strength. The 

results of the finite element simulations thus confirm the considerations in Section 4.4.2. 

 

Fig. 5-8 Wall cb-head-2 and the respective finite element model at maximum load  

Left: Vertical strain in the experiment measured by digital image correlation 

Middle: Vertical strain εz in the finite element model 

Right: Vertical stress σz in the finite element model 

5.4 Summary 

In this chapter, the finite element model created for the following investigations was pre-

sented. The finite element model follows the simplified micro-modelling approach. The 

geometrical boundary conditions, the finite element mesh, and the implemented material 

models were described. The compressive behaviour of the expanded units is modelled by 

Drucker-Prager plasticity, with the corresponding parameters being selected based on the 

experiments and information in the literature. Interfaces between the expanded units dis-

play the cracking behaviour in the joints. 

In a first step of validating the finite element model, simulated load-bearing capacities of 

walls with varying slenderness and load eccentricity were compared to load-bearing capac-

ities obtained with the model by Glock (2004). The second validation step was the simula-

tion of the conducted experiments and a subsequent comparison of the simulated and ex-

perimental load-bearing capacities of clay brick masonry walls with local weaknesses. 

Based on both validation steps, the finite element model can be considered well suited for 

the following investigations.  
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6 MONTE CARLO SIMULATION OF MASONRY WALLS WITH 

SPATIALLY VARIABLE MATERIAL PROPERTIES 

6.1 Introduction 

Since existing masonry often shows a distinct spatial variability of material properties, the 

influence of spatially variable material properties on the load-bearing capacity of solid clay 

brick masonry walls under compression loading is investigated in this chapter. The inves-

tigations aim to find a relationship between the probability distribution of the material prop-

erties within a masonry wall and the probability distribution of the resulting load-bearing 

capacity. 

In Fig. 6-1, the expected effect of spatial variability on the distribution of the load-bearing 

capacity R is illustrated. The probability density function (PDF) of R is compared to the 

PDF of masonry compressive strength fma, which is the most influential material property 

for non-slender masonry walls under compression. As masonry compressive strength is 

spatially variable, the PDF for fma corresponds to the strength at a particular location in the 

wall. In the illustration, masonry compressive strength is normalised by its mean value fma,m, 

and the load-bearing capacity is additionally normalised by the cross-sectional area A. In 

this example, the compression loading is applied without eccentricity, and second-order 

effects are neglected, which means that a deterministic calculation based on the mean value 

of masonry compressive strength would lead to a normalised load-bearing capacity of one. 

Due to the normalisation, the PDF of fma equals the PDF for the load-bearing capacity Rhom 

of a homogenous wall. In a homogenous wall, there is perfect spatial correlation between 

the material properties. Consequently, the overall masonry compressive strength varies 

from wall to wall, but there is no spatial variability within a single wall. 

 

Fig. 6-1 Qualitative illustration of the effects of spatial variability on the probability 

distribution of the load-bearing capacity of a masonry wall under compression 
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Compared to the structural systems introduced in Section 2.5.5, a masonry wall under com-

pression can be viewed as a combination of series and parallel systems. In the horizontal 

direction, the stresses can be redistributed between the units within a course, which resem-

bles a parallel system. In the vertical direction, the behaviour is closer to that of a series 

system, as the wall fails as soon as the weakest course cannot bear any more load. Three 

system effects can thus be expected for a wall with spatially varying material properties 

(see Fig. 6-1). First, the mean value of the relative load-bearing capacity is smaller than 

one, which means that spatial variability leads to a reduction in the mean load-bearing ca-

pacity compared to a homogenous wall. Second, the coefficient of variation (CoV) of the 

load-bearing capacity is smaller than the CoV of masonry compressive strength. Third, the 

resulting distribution type of the load-bearing capacity differs from the distribution type of 

the input material properties. 

In the following investigations, the mean, the CoV, and the distribution type of the load-

bearing capacity of solid clay brick masonry walls with spatially varying material proper-

ties are determined by Monte Carlo simulations (MCS). Thereby, relationships are found 

that can be used in the development of a method for determining suitable assessment values 

of masonry compressive strength. In Section 6.2, the investigation procedure is described, 

including the stochastic model for spatial variability, the corresponding selection of sto-

chastic parameters, the generation of random material properties, and the approach for eval-

uating the results. Section 6.3 presents various parameter studies to investigate the proba-

bility distribution of the load-bearing capacity of walls with spatially variable material 

properties. First, a reference wall is defined and investigated. In the parameter studies, the 

CoV of the spatially varying material properties, the spatial correlation of the material prop-

erties, the wall length and slenderness, the load eccentricity, the masonry bond type, and 

the dimensions and number of units in the wall are varied. 

6.2 Investigation Procedure 

6.2.1 Stochastic Model for Spatial Variability 

In the following, spatial variability is modelled as unit-to-unit variability. The compressive 

strength fma of masonry, the modulus of elasticity Ema of masonry, and the tensile strength 

ft of the joints are modelled as random variables (see Fig. 6-2). Instead of separately con-

sidering the spatial variability of unit and mortar compressive strength, each of the ex-

panded “units” is assigned a random value for the compressive strength and modulus of 

elasticity of masonry. This is in line with the simplified micro-modelling approach, which 

is followed in the finite element modelling. Masonry compressive strength and the masonry 

modulus of elasticity within one “unit” are assumed to be correlated with a correlation co-

efficient ρf,E. To assign spatially varying tensile strengths, the interfaces, which represent 
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the mortar joints, are discretised according to the units placed on top. This is because, dur-

ing construction, the mortar is usually placed section by section for the next unit to be laid. 

The spatial correlation of the material properties within a particular wall is assumed to be 

independent of their location. For masonry compressive strength and the masonry modulus 

of elasticity, the spatial correlation between any two “units” in the wall is given by the 

spatial correlation coefficient ρspat (see Fig. 6-2). 

 

Fig. 6-2 Correlation between material properties (left: material properties within the 

wall, right: correlation matrix) 

For ρspat = 1, the material properties are equal at every “unit” in the wall: One randomly 

generated material property is assigned to all “units”. In this case, the CoV of, for example, 

masonry compressive strength specifies a homogeneous variability of the masonry strength 

of all “units” in the wall. In contrast, ρspat = 0 corresponds to full spatial variability, which 

means that the CoV of masonry strength specifies the unit-to-unit variability, and each 

“unit” receives a masonry strength that is independent of the masonry strengths of the other 

“units”. 

This spatial correlation structure is considered suitable since the compressive strength of 

masonry is dominated by the material properties of the units. The units are delivered to the 

construction site in batches, in which their material properties are correlated because of 

influences from the production process. Since one wall is usually constructed with units 

from only one batch, the unit properties within the wall are correlated, whereas other walls 

may be constructed with units from a different batch. This effect is also observed in Section 

7.4.5 in the evaluation test data from the material properties of existing masonry buildings. 

The units from a batch are placed in the wall in an arbitrary order, which makes any as-

sumption regarding a distance-related correlation, such as a specific correlation length, very 

questionable. 

While distance-related correlation coefficients for the material properties of the units (i.e. 

for the actual bricks) are not considered suitable, the material properties of the mortar joints 

can show a distance-related correlation in reality. Usually, several mortar mixes are used 

for the construction of one wall. Since the properties of mortar joints made from the same 

mortar mix are correlated, the mortar joint properties within one course may be more 

fma,j, Ema,j

fma,i, Ema,i

fma,1, Ema,1 fma,2, Ema,2

ft,1 ft,2

ft,i

ft,j

ρ fma,i Ema,i fma,j Ema,j ft,i ft,j

fma,i 1 ρf,E ρspat ρspat ρf,E 0 0

Ema,i 1 ρspat ρf,E ρspat 0 0

fma,j 1 ρf,E 0 0

Ema,j 1 0 0

ft,i 1 0

ft,j symmetric 1
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strongly correlated. Furthermore, it may be appropriate to model the correlation of mortar 

joint properties along one course via a correlation function with a specific correlation 

length. 

Heffler et al. (2008) investigated the correlation of the flexural tensile strengths of mortar 

joints within a masonry wall by experiments in that the flexural tensile strengths were ob-

tained unit by unit through bond wrench testing. The correlation of the flexural tensile 

strengths below adjacent units was found to be low. Heffler et al. (2008) thus recommended 

considering the flexural tensile strengths as stochastically independent. In the present study, 

mortar joint tensile strength is not very influential, as masonry walls under compression are 

examined. Only for very slender walls with a high load eccentricity, flexural tensile strength 

gains influence (see Section 3.3.3). The recommendation in Heffler et al. (2008) is hence 

followed, and no spatial correlation is considered for the tensile strength of the interfaces 

in the parameter studies.  

Another influence of the correlation of mortar properties might be due to the influence of 

the compressive strength of mortar on the compressive strength of masonry. According to 

Section 3.5.4, the standard deviation of the logarithm of masonry strength σln,ma can be 

determined based on the power equation from EN 1996-1-1 (2012) as 

2 2 2 2 2 2 2

ln,ma ln,b ln,j ln,b ln,j0.49 0.09σ α σ β σ σ σ     Eq. 6-1 

where σln,b and σln,j are the standard deviations of the logarithms of unit and mortar com-

pressive strength, respectively. Eq. 6-1 demonstrates that the influence of the variability in 

mortar compressive strength is very low compared to the dominant influence of unit com-

pressive strength. Therefore, the potentially different correlation structure of mortar joint 

properties is neglected in the investigations. The correlation structure of the masonry prop-

erties, which are assigned to the expanded “units”, is completely based on the correlation 

structure for the units, that is, the actual bricks. 

Further considerations regarding the assignment of masonry properties to the “units” must 

be addressed, as the masonry strength of one “unit” is influenced by the properties of the 

actual unit and both the adjacent mortar bed joints. Therefore, the masonry compressive 

strengths of two “units” that lie on top of each other are slightly correlated, as they share 

the interjacent mortar joint properties. However, the parameter study in Section 6.3.3 shows 

that the corresponding effects can be neglected and that the direct assignment of random 

masonry properties to the expanded “units” based on the variability given by Eq. 6-1 is 

suitable. 

6.2.2 Selection of Stochastic Parameters 

Within the parameter studies, the CoVs of the material properties are varied. Therefore, 

typical ratios between the CoVs of the different material properties need to be defined rather 
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than fixed values. In Schueremans (2001), CoVs of the compressive strength of masonry, 

the modulus of elasticity of masonry, and the tensile strength of the joints are provided as 

17 %, 22 %, and 35 %, respectively. These values were determined through experiments 

on solid clay brick masonry: The CoVs of compressive strength and the modulus of elas-

ticity were obtained from masonry cores with 150 mm diameter and 300 mm height, and 

the CoV of the tensile strength of the joints was determined in direct tensile strength tests. 

The values are close to those in the JCSS Probabilistic Model Code (2011), which specifies 

a CoV of 14 % to 20 % for masonry compressive strength, 25 % for the modulus of elas-

ticity of masonry, and 30 % to 35 % for flexural tensile strength. Where a range is given, 

the value depends on the type of masonry. Solid clay brick masonry, however, is not ex-

plicitly considered. Based on the results by Schueremans (2001), typical ratios of the CoVs 

to the CoV of masonry compressive strength are defined (see Table 6-1). These relative 

CoVs are used in all the following parameter studies. When the CoV for masonry compres-

sive strength is varied, the CoVs of the masonry modulus of elasticity and the tensile 

strength of the joints are varied by the same factor. The correlation between masonry com-

pressive strength and the modulus of elasticity is set to ρf,E = 0.72, as stated in Schueremans 

(2001). 

Table 6-1  Stochastic parameters of the material properties 

Material property Distribution type Correlation 
CoV in  

Schueremans (2001) 

Relative CoV 

υ / υma 

Masonry compres-

sive strength fma 
LN 

ρf,E = 0.72 

(Schueremans 2001) 

υma = 17 % 1 

Masonry modulus 

of elasticity Ema 
LN υE = 22 % ≈ 1.3 

Tensile strength ft LN - υt = 35 % ≈ 2.0 

6.2.3 Generation of Random Material Properties 

For the generation of random material properties according to the correlation matrix in Fig. 

6-2, the following approach has been developed. Since the product of log-normally distrib-

uted random variables is also log-normally distributed, the material properties can be mod-

elled as the product of auxiliary log-normally distributed random variables. Random values 

for the compressive strength fma,i and the modulus of elasticity Ema,i of a specific “unit” i 

are thus generated by the multiplication of four independent random variables: 

ma, w u,i i if W f U f  Eq. 6-2 

ma, w u,i i iE W E U E  Eq. 6-3 

where W, Ew, fw, and Ui are parent variables for the generation of the material properties. 

Each of these variables is shared by certain pairs of the material properties fma,i and Ema,i, as 



 

6  Monte Carlo Simulation of Masonry Walls with Spatially Variable Material Properties 

 

 

130 

illustrated in Fig. 6-3. This means that the same random realisation of the parent variables 

is applied in calculating all the random material properties that share this parent variable. 

Sharing a parent variable thus results in correlation. The random variable W describes the 

shared deviation of the mean compressive strength and modulus of elasticity in the wall 

from an overall mean value. The variables fw and Ew display the additional deviation of the 

mean compressive strength in the wall and the mean modulus of elasticity in the wall, re-

spectively, from their overall mean. Ui is the shared deviation of the compressive strength 

and the modulus of elasticity of an individual “unit” i from the mean value of the wall. By 

multiplication with fu,i and Eu,i, the additional deviation of the specific material properties 

from their mean value in the wall is considered. 

 

Fig. 6-3 Illustration of the generation of random material properties 

The random variables W and Ui create a correlation between the compressive strength and 

the modulus of elasticity of a particular “unit” since the corresponding random values are 

the same for fma,i and Ema,i. Accordingly, W and fw create a correlation between the com-

pressive strengths fma of two different “units” i and j. Finally, W and Ew create a correlation 

between the moduli of elasticity Ema of different “units”.  

All random variables in Eq. 6-2 and Eq. 6-3 are log-normally distributed with a mean value 

of one, except for fu,i and Eu,i, the mean values of which are set to the actual mean values of 

masonry compressive strength fma and the modulus of elasticity Ema. To achieve the desired 

correlation coefficients (ρspat and ρf,E) and the desired overall CoV for the material proper-

ties, the CoVs for the auxiliary random variables can be determined using Eq. 6-4 to Eq. 

6-9. The equations are derived based on the well-established relationships for the correla-

tion coefficient of two random variables and for the variance of the product of random 

variables (see Annex B). 

spat , maW f E Eυ ρ ρ υ υ  Eq. 6-4 

fma,i Ema,i fma,j Ema,j

Wfw Ew

Ui Uj
“unit” i “unit” j

parent variables for 

all “units” in the wall
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Unit-to-unit variability is given by the variability of Ui, fu,i, and Eu,i alone. In contrast, the 

variability of W, Ew, and fw displays the deviation of the mean material properties of a wall 

from overall mean values. For ρspat = 1, the CoVs of Ui, fu,i, and Eu,i are zero, which means 

that no unit-to-unit variability exists. In most parameter studies, the spatial correlation co-

efficient is set to ρspat = 0. In these cases, the CoVs of the random variables W, fw, and Ew 

are zero. Therefore, only the shared parent variable Ui for the material properties of one 

“unit” remains, which is needed to create the correlation between the compressive strength 

and modulus of elasticity of masonry. 

To model the stress-strain relationship, the stress-strain parameter k is considered as a de-

terministic variable, with k = 2. Therefore, the ascending branch of the stress-strain rela-

tionship according to Eq. 5-5 is completely defined if random values for fma and Ema are 

given. Based on the relationship εm = 6 εp, which was found in the calibration process (see 

Section 5.2.3), the post-peak behaviour is also defined. The tensile strength fbt,i of the ex-

panded “units”, which represents the tensile strength of the bricks, is modelled as a depend-

ent variable. It is set to 0.11 fma,i for each of the “units” (see Table 5-1). 

Since the random material properties for the tensile strength ft of the joints are not modelled 

as correlated, they can be directly generated according to the desired mean and CoV. 

6.2.4 Evaluation Procedure 

In the parameter studies, all material properties and the results for the load-bearing capacity 

are normalised by the mean compressive strength of masonry fma,m. This procedure is equiv-

alent to performing all simulations based on a mean value of fma,m = 1. The results of the 
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parameter studies are thus independent of the absolute values of fma,m. In general, 200 sim-

ulation runs are conducted for each parameter combination. The mean Rm and the CoV υR 

of the random variable R are then estimated by the arithmetic mean and the sample CoV of 

the simulation results. Furthermore, the deterministic load-bearing capacity Rdet is deter-

mined through a simulation with mean material properties as input parameters: 

 det ma,m ma,m t,m, ,R R f E f   Eq. 6-10 

Regarding structural reliability, lower quantiles of the load-bearing capacity are essential. 

Therefore, theoretical assessment values Ra of the load-bearing capacity are calculated. A 

target reliability index of βt,1a = 3.3 and a fixed sensitivity factor of αR,1a = 0.7 are selected 

for this purpose (see Sections 2.5.4 and 2.6.2). Since the resulting probability distribution 

types of the load-bearing capacity are unknown, and the most suitable distribution type 

varies within the parameter studies, the theoretical assessment values are all determined 

assuming a log-normal distribution. However, the skewness of the resulting distribution 

function might differ from that of a log-normal distribution, and more weight might lie in 

the left tail of the distribution. Therefore, the corresponding log-normal distribution is not 

set up based on the method of moments. Instead, the distribution parameters μlnR and σlnR 

are chosen such that the mean value and the 5 % fractile of the distribution match the arith-

metic mean and the 5 % fractile of the random sample. The assessment value Ra is then 

determined as follows: 

 

 

2

a m ln ,5% t ln ,5%

2

m ln ,5% ln ,5%

exp 0.5

exp 0.5 0.7 3.3

R R R

R R

R R σ α β σ

R σ σ

  

    
 Eq. 6-11 

At this step, the assessment values Ra only serve comparative purposes. They are not suited 

for further application since they do not contain model and statistical uncertainties. 

In addition to the theoretical assessment value considering spatial variability, assessment 

values Ra,hom are calculated based on the assumption of homogeneity. This means that the 

reduction of the mean due to spatial variability (i.e. Rm / Rdet < 1) is not considered, and the 

variability of masonry compressive strength is used to determine the assessment value: 

 2

a,hom det ln,ma ln,maexp 0.5 0.7 3.3R R σ σ      Eq. 6-12 

where σln,ma is determined based on the CoV υma of masonry compressive strength (see Eq. 

2-27). 

Finally, Anderson-Darling goodness-of-fit tests are conducted for normal, log-normal, and 

Weibull distribution functions to check which probability distribution type is best suited to 

describe the results for the load-bearing capacity. These tests are performed as described in 

Section 2.3.7. 
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6.3 Parameter Studies 

6.3.1 Overview 

This section presents various parameter studies to investigate the probability distribution of 

the load-bearing capacity of masonry walls under compression in the case of spatially var-

ying material properties. The parameter studies are based on a reference wall, which is 

illustrated in Fig. 6-4 and described next. In each study, one of the parameters of the refer-

ence wall is varied. 

 

Fig. 6-4 Reference wall for the Monte Carlo simulations 

The reference wall is arranged in cross bond with a thickness of two unit widths. It contains 

36 courses with five units per course. The “unit” dimensions correspond to the German 

standard format NF, which results in dimensions 250 x 120 x 83.3 mm³ (length x width x 

height) for the expanded stretchers and 240 x 125 x 83.3 mm³ for the expanded headers. 

Hence, the overall dimensions of the reference wall are 0.625 x 0.24 x 3.0 m³. Wall height 

and unit dimensions are chosen to be typical for existing masonry structures. The arrange-

ment in cross bond is selected since single wythe masonry walls are uncommon for existing 

load-bearing masonry made from small-sized solid clay bricks. A thickness of two unit 

widths is chosen, as this thickness is more critical regarding the load redistribution capabil-

ity than a thickness of more than two units (see Section 6.3.9). The eccentricity of the com-

pression loading is selected as e / t = 0 for the reference wall. The ratio of modulus of elas-

ticity to compressive strength is set to Ema,m / fma,m = 550 (see Section 5.2.3). However, this 

ratio is only influential for slender walls. Geometrical nonlinearity is not considered in the 

reference investigation, resulting in a theoretical slenderness of zero and, therefore, mate-

rial failure without the influence of second-order effects (see Section 3.3.3). The choice of 

no eccentricity and no slenderness leads to the most critical influence of spatial variability, 

which is shown in the following parameter studies. 
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The reference CoV of masonry compressive strength is selected as υma = 30 %, which re-

sults in CoVs of the modulus of elasticity and the joint tensile strength of υE = 39 % and 

υt = 60 % (see Section 6.2.2). The CoVs are chosen higher than those in Schueremans 

(2001) and JCSS (2011) to represent typical existing solid clay brick masonry (see Section 

7.3). However, since the main results of the following investigations are provided as a func-

tion of υma, they are applicable for a broader range of CoVs. The spatial correlation of the 

material properties is set to ρspat = 0, which means that the specified CoVs of the reference 

wall correspond to the unit-to-unit variability of the material properties. 

Table 6-2 summarises the chosen values for the parameters of the reference wall and pro-

vides an overview of the parameter studies. The results for the reference wall are shown in 

Section 6.3.2, and those of the parameter studies are presented in the subsequent sections. 

In addition to the parameter studies displayed in Table 6-2, different options of considering 

mortar compressive strength in the generation of masonry compressive strength are inves-

tigated in Section 6.3.3, which aims to validate the selected approach for the parameter 

studies.  

Table 6-2  Reference values for the parameters and overview of the parameter studies  

Parameter Reference value Varied in Section 

CoV of masonry compressive strength fma υma = 30 % 6.3.4 

Spatial correlation coefficient ρspat = 0 6.3.5 

Wall length (number of units per course) 5 units 6.3.6 

Wall slenderness λ = h / t ∙ εf
0.5 λ = 0 6.3.7 

Relative eccentricity of compression loading e / t = 0 6.3.8 

Type of masonry bond cross bond 6.3.9 

Unit format NF 6.3.10 

6.3.2 Results for the Reference Wall 

Before the results of the parameter studies are presented, the results for the reference wall 

are evaluated in more detail. The normalised load-bearing capacity of the reference wall 

based on a deterministic finite element simulation with mean material properties is 

det det

ma,m ma,m

1
R R

l t f A f
   Eq. 6-13 

where l and t are the length and thickness of the wall, A is the cross-sectional area, and fma,m 

is the mean of masonry compressive strength. The normalised load-bearing capacity is ob-

tained as one, as there is no eccentricity of the load for the reference wall, and geometrical 

nonlinearity is not considered at this point. The normalised mean Rm of the results obtained 
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by the finite element simulations with spatially varying material properties is smaller than 

one, with a value of 

m

ma,m

0.745
R

A f
  Eq. 6-14 

The ratio Rm / Rdet = 0.745 demonstrates that spatial variability of the material properties 

leads to a reduction of the mean load-bearing capacity. This reduction is caused by the 

limited stress redistribution capability within a particular course and by the fact that the 

weakest of the courses within the masonry wall determines the load-bearing capacity. The 

CoV of the load-bearing capacity is obtained as υR = 5.3 %, which is significantly smaller 

than the input CoV of υma = 30 % for masonry compressive strength. 

In Fig. 6-5, the Monte Carlo simulation results are displayed regarding their relative fre-

quencies divided by bin width on the left and by their empirical distribution function (EDF) 

on the right. For comparison, the PDFs and cumulative distribution functions (CDFs) of 

different distribution types are also shown. The parameters of the normal and log-normal 

distributions are derived based on the method of moments. The parameters of the Weibull 

distribution are determined by maximum likelihood estimation. Furthermore, a second log-

normal distribution is displayed (denoted by “LN,5%”), the parameters of which are se-

lected to match the simulation results regarding their mean and 5 % fractile (see Section 

6.2.4). 

 

Fig. 6-5 Comparison of simulation results (MCS) with probability density functions and 

cumulated distribution functions of a Weibull (W), a normal (N), and log-nor-

mal (LN) distributions 

The Weibull distribution appears to be most appropriate for describing the simulation re-

sults of the reference wall. Since the CoV of the distributions is small, the normal and log-

normal distribution are very similar. Compared to the log-normal distribution with param-

eters estimated based on the method of moments, the log-normal distribution that is fitted 
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to match the mean and the 5 % fractile of the simulation results very well approximates the 

left tail of the simulated distribution. 

The goodness-of-fit of the different probability distribution types is quantified utilising the 

Anderson-Darling test (see Section 2.3.7). In Table 6-3, the results for the three different 

distribution types are listed. Low values for the test statistic A2 indicate a good fit. For low 

significance levels p, the results are unlikely to have originated from the hypothesised dis-

tribution. Hence, a high value p indicates a good fit. As indicated by the illustration in Fig. 

6-5, the Weibull distribution is the best-fitting distribution for the reference wall. This result 

is comprehensible since the Weibull distribution well describes materials or structural sys-

tems failing due to the weakest link (see Weibull 1939). For the investigated masonry wall, 

the load-bearing capacity is dominated by the strength of the weakest course. 

Table 6-3  Results of the Anderson-Darling test 

Distribution type Test statistic A² Modified statistic A2* Significance level p 

Log-normal 1.79 1.83 2.3 ∙ 10-4 

Normal 1.23 1.25 4.3 ∙ 10-3 

Weibull 0.15 0.15 0.85 

Modified test statistics A2* and significance level p according to Eq. 2-58 to Eq. 2-61 

To investigate whether the overall effect of considering spatial variability is negative (due 

to the decrease in the mean value) or positive (due to the decrease in the CoV), a theoretical 

assessment value Ra is calculated. Although the most appropriate distribution type is the 

Weibull distribution, the theoretical assessment value Ra is determined based on the log-

normal distribution that is fitted to the arithmetic mean and the 5 % fractile of the simulation 

results, which results in the parameter value σlnR,5% = 0.065 ≈ υR,5%. The CoV υR,5% of this 

log-normal distribution is slightly higher than the CoV υR of the simulation results. The log-

normal distribution is selected to determine assessment values since the Weibull distribu-

tion is not the most appropriate in all investigated cases, and choosing only one distribution 

is required for better comparability. Therefore, the theoretical assessment value Ra (see 

Section 6.2.4) is obtained as 

 

 

2a m
ln ,5% t ln ,5%

det det

exp 0.5

0.745 exp 0.5 0.065² 0.7 3.3 0.065 0.640

R R R

R R
σ α β σ

R R
  

      

 Eq. 6-15 

The theoretical assessment value under the assumption of homogeneity is calculated as 

 

 

a,hom 2

ln,ma t ln,ma

det

2

exp 0.5

exp 0.5 0.294 0.7 3.3 0.294 0.486

R

R
σ α β σ

R
  

      

 Eq. 6-16 
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where σln,ma = 0.294 is obtained from υma = 0.3 based on Eq. 2-27. The results show that the 

consideration of spatial variability leads to a much higher theoretical assessment value for 

the reference wall. 

Since the results are based on a limited number of 200 simulation runs, the arithmetic mean 

and the sample CoV contain a certain degree of statistical uncertainty. Therefore, confi-

dence intervals for the population parameters Rm and υR are determined utilising bootstrap 

percentile intervals with bias correction, as described in Section 2.3.2. Based on a confi-

dence level of 90 % and 106 non-parametric bootstrap samples, the confidence intervals for 

Rm and υR are as follows: 

m

det

0.740 0.749
R

R
   Eq. 6-17 

4.8 % 5.8 %Rυ   Eq. 6-18 

The mean value can be considered estimated with high precision since the confidence in-

terval bounds are only ± 1 % away from the arithmetic mean. The absolute value for the 

CoV of the load-bearing capacity is small and, therefore, not very influential compared to 

additional uncertainties, such as model uncertainty. Thus, the precision in estimating the 

CoV based on 200 simulation runs can also be viewed as sufficient. 

6.3.3 Investigation of Different Options for Mortar Property Assignment 

Although masonry compressive strength is a function of the properties of the unit and the 

adjacent mortar joints, random values for masonry compressive strength are generated di-

rectly and then assigned to the “units” in the reference case above. To investigate whether 

this approach is suitable for the following parameter studies, it is compared to more detailed 

procedures in this section. 

 

Fig. 6-6 Discretisation of mortar joint properties 

Fig. 6-6 illustrates the discretisation of the mortar joint properties for single wythe masonry 

as an example. As mentioned in Section 6.2.1, the illustrated unit-to-unit discretisation is 

employed to model the spatial variability of the interface tensile strength in all the param-

eter studies. Here, the same discretisation is used to create random properties for the spa-

tially variable compressive strength and elastic modulus of the mortar. These properties are 

fj,i, Ej,i

fj,j, Ej,j
fj,k, Ej,k

fb,i, Eb,i
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not directly assigned to the finite element model but are used to determine the compressive 

strength and elastic modulus of masonry, which are then assigned to the “units”. By utilis-

ing the power equation for predicting masonry strength, the compressive strength of one 

“unit” can be determined based on the compressive strength of the respective unit i as well 

as a combination of the compressive strength of the mortar joint i underneath and the mortar 

joints j and k above the considered unit (see Fig. 6-6). 

However, the question is how the different compressive strengths of the mortar joints i, j, 

and k should be considered when used as input for the power equation. Two options seem 

to be reasonable boundaries from a mechanical perspective. Option 1 corresponds to the 

assumption that masonry compressive strength is determined by the mortar strength either 

on top or below, whichever is smaller (see Eq. 6-19). In this option, the mortar strength on 

top is considered as the average of the two upper strength values. This approach of deter-

mining masonry strength via the minimum of the two mortar properties above or below the 

unit can be viewed as a lower boundary for the estimate of masonry strength. The second 

option, which provides an upper boundary, is based on the approach that unit strength com-

bined with the average of the adjacent mortar properties determines masonry strength. The 

average is weighted according to the respective contact areas with the unit (see Eq. 6-20). 

It should be noted that Eq. 6-19 and Eq. 6-20 are displayed for single wythe masonry as 

depicted in Fig. 6-6. For masonry laid in cross bond, taking the average of the adjacent 

mortar strength values is more complex since more mortar strength values, corresponding 

to different contact areas, must be considered at the top of the unit. The exponents of the 

power equation are chosen as α = 0.7 and β = 0.3 according to EN 1996-1-1 (2012). 

Option 1: 

0.3

j, j,0.7

ma, prob b, j,min ,
2

j k

i i i

f f
f K f f

 
  

 
 Eq. 6-19 

Option 2: 

0.3

j, j,

j,
0.7

ma, prob b,
2

2

j k

i

i i

f f
f

f K f

 
 

  
 

 
Eq. 6-20 

where Kprob is the parameter of the power equation suitable for probabilistic purposes (see 

Section 3.5.4). According to Options 1 and 2, the mortar strength value of one particular 

mortar joint section is considered to determine the compressive strength of the “unit” above 

and the “units” below. Thereby, a correlation is created between these “units”, which is not 

considered in the other parameter studies. The approach of directly assigning masonry 

strengths to the “units”, as followed in the reference case in Section 6.3.2 and all further 

parameter studies, is mathematically equal to a third option. In this option, only the mortar 

strength value underneath the respective unit is considered in the calculation of masonry 

compressive strength. 
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Option 3: 
0.7 0.3

ma, prob b, j,i i if K f f  Eq. 6-21 

MCS according to the three options as defined by Eq. 6-19 to Eq. 6-21 are conducted for 

the reference wall. The same values for the mean and the CoV of unit and mortar compres-

sive strength are selected in all options. The mean values for unit and mortar strength, fb,m 

and fj,m, are chosen to obtain the same mean compressive strength fma,m for Option 3 as for 

the reference case. The results are normalised by this reference mean value fma,m. Option 1 

thus leads to a lower mean value of masonry compressive strength, which is not eliminated 

by the normalisation. The CoVs for mortar and unit compressive strength are set to 

υb = υj = 0.4, which results in a CoV for masonry strength of υma = 0.3 based on the sto-

chastic extension of Eq. 6-21. 

The elastic modulus of masonry assigned to one “unit” is also determined based on the 

elastic moduli of the corresponding unit and the adjacent mortar joints. The random values 

for the elastic moduli of the unit and mortar are generated similarly to the approach de-

scribed in Section 6.2.2, that is, including a correlation coefficient ρf,E = 0.72 and a CoV of 

1.3 υb = 1.3 υj. The corresponding elastic modulus of masonry is then determined based on 

a spring model (see Section 3.3.2). In Options 1 and 2, all of the adjacent mortar joint 

properties are input values for determining the elastic modulus of masonry. In Option 3, 

only the modulus of elasticity of the mortar joint below is used. The mean values for the 

elastic modulus are chosen such that the resulting modulus of elasticity for masonry corre-

sponds to Ema,m / fma,m = 550. The ratio Eb,m / Ej,m is chosen as 2.5, which lies in a typical 

range for existing masonry (see Kaushik et al. 2007; Neuwald-Burg and Bohne 1999; Schu-

bert 2010). For masonry with units of standard format NF (height 71 mm) and with standard 

mortar joint thickness (12 mm), this leads to a CoV υE for the modulus of elasticity of ma-

sonry of approximately 1.3 υma for Option 3 and, therefore, matches the reference approach. 

Based on the chosen dimensions and the selected ratio Eb,m / Ej,m, the units and mortar joints 

are, on average, responsible for 70 % and 30 % of the total vertical displacement, respec-

tively. 

The stochastic simulations for the three options are performed with the same seed for gen-

erating the random variables; that is, the same random properties for units and mortar joints 

are used. Then, these random properties are combined differently to calculate masonry 

compressive strength values, which are assigned to the “units”. Thereby, it is avoided that 

statistical uncertainty dominates the obtained differences between the three options.  

The results for the three different options for considering the mortar properties are given in 

Fig. 6-7. Regarding the mean value Rm and the assessment value Ra, Option 3 lies between 

the results for Options 1 and 2. The CoVs υR of the resulting load-bearing capacities are 

very close to each other, which was expected due to the small influence of the CoV of 

mortar compressive strength on the CoV of masonry compressive strength. Since Options 
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1 and 2 display a lower and upper boundary from a mechanical perspective and the results 

of Option 3 lie in between, Option 3 can be considered a suitable choice that yields realistic 

results. Option 3 is mathematically equivalent to the reference case, according to which 

random values for masonry properties are generated directly. This reference approach, 

however, is more straightforward and hence used in the subsequent parameter studies. The 

slight differences between Option 3 and the reference approach are due to the small statis-

tical scatter remaining after 200 simulation runs. 

 

Fig. 6-7 Simulation results for different options of mortar property assignment 

6.3.4 Influence of Material Variability 

In this first parameter study, the influence of varying the CoV of the material properties on 

the resulting mean, CoV, and theoretical assessment value of the load-bearing capacity is 

demonstrated. Since the spatial correlation coefficient is ρspat = 0, the CoV of masonry com-

pressive strength fully corresponds to unit-to-unit variability (i.e. υma = υma,spat). The unit-

to-unit CoV for masonry compressive strength is varied between υma,spat = 0 and 

υma,spat = 0.5. The CoVs for the modulus of elasticity and the tensile strength of the inter-

faces are simultaneously varied as specified by the ratios in Table 6-1. All other parameters 

are the same as for the reference wall. The results are given in Fig. 6-8, where the results 

for the reference wall correspond to the values at υma,spat = 0.3. Fig. 6-9 displays load-dis-

placement curves of the MCS for υma,spat = 0.1, 0.3, and 0.5. For each of these cases, the 

curves of 30 simulation runs are shown. The curves are truncated at their peak points. 

The mean value Rm of the load-bearing capacity decreases with increasing unit-to-unit var-

iability of masonry compressive strength. The reason for this effect is the increasing num-

ber of “units” with very low compressive strength in the walls, combined with a limited 
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stress redistribution capability. Concerning the theoretical assessment value Ra, the reduc-

tion in the mean value is more than compensated for by the smaller CoV υR of the load-

bearing capacity compared to the input CoV υma of masonry compressive strength. There-

fore, the resulting theoretical assessment values Ra are much higher than the assessment 

values Ra,hom, which are calculated without considering spatial variability. 

 

Fig. 6-8 Simulation results for varying the coefficients of variation of the material prop-

erties 

 

Fig. 6-9 Load-displacement curves resulting from the Monte Carlo simulations 

The reduction in the mean value can be approximated by the following equation: 
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 m m,appr det ma,spatexp bR R R a υ    Eq. 6-22 

Furthermore, the CoVs υR,5% and υR can be well approximated by linear relationships: 

,5% ,5%,appr ma,spatR Rυ υ c υ   Eq. 6-23 

,appr ma,spatR Rυ υ d υ   Eq. 6-24 

Utilising the method of least squares, suitable values for the parameters a, b, c, and d are 

found as 1.62, 1.44, 0.21, and 0.17, respectively. The approximations of Rm and υR are 

displayed in Fig. 6-8, demonstrating the excellent fit. 

The previously presented results are also listed in Table 6-4 together with the resulting 

significance levels of Anderson-Darling tests for log-normal, normal, and Weibull distri-

butions. For all investigated CoVs, the Weibull distribution is most suited for describing 

the resulting load-bearing capacity. 

Table 6-4  Results for varying the coefficients of variation of the material properties 

Unit-to-unit 

CoV υma,spat 
Rm / Rdet υR υR,5% Ra / Rdet 

Significance level p 
Best fit 

Log-Normal Normal Weibull 

0.1 0.951 0.014 0.016 0.916 0.014 0.025 0.271 W 

0.2 0.854 0.034 0.043 0.774 4.0 ∙ 10−5 3.6 ∙ 10−4 0.695 W 

0.3 0.745 0.053 0.065 0.640 2.3 ∙ 10−4 4.3 ∙ 10−3 0.851 W 

0.4 0.643 0.073 0.087 0.524 3.5 ∙ 10−4 0.019 0.730 W 

0.5 0.556 0.085 0.098 0.441 1.9 ∙ 10−3 0.090 0.375 W 

6.3.5 Influence of Spatial Correlation 

Within the following parameter study, the spatial correlation coefficient ρspat is varied be-

tween 0 and 1. The overall CoV of masonry compressive strength is kept constant at 

υma = 0.3, but the unit-to-unit CoV varies due to the different spatial correlation coeffi-

cients. For ρspat = 0, the investigation corresponds to the reference case; that is, the unit-to-

unit CoV υma,spat equals the total CoV υma. In the case of ρspat = 1, there is no spatial varia-

bility since the material properties of the “units” are perfectly correlated. Hence, the varia-

bility only consists of a variability between walls, and the CoV υma is equal to a wall-to-

wall CoV υma,wall. Results for varying correlation coefficients ρspat are presented in Fig. 6-10 

and Table 6-5. The random variables W, fw, and Ew (see Section 6.2.3), which are much 

more influential than the random variables for the single “units”, are generated using Latin 

hypercube sampling (LHS; see Section 2.5.3). Due to LHS, the number of simulation runs 

is decreased from n = 200 to n = 100 for ρspat > 0. 

For ρspat = 1, the mean load-bearing capacity Rm equals the deterministically obtained load-

bearing capacity Rdet. Furthermore, the CoV of the load-bearing capacity υR is equal to the 

CoV of masonry compressive strength υma since, due to geometrical linearity, the load-

bearing capacity is proportional to masonry compressive strength, which is the only varying 
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material property with influence on the load-bearing capacity in the present case. For 

ρspat < 1, the “unit” properties are no longer perfectly correlated, and spatial variability is 

introduced. Consequently, the mean load-bearing capacity decreases due to weak spots 

within the wall and limited stress redistribution capability. The CoV of the load-bearing 

capacity also decreases since a larger share of the CoV belongs to unit-to-unit variability 

that is, to a certain extent, averaged out within the wall. Since the positive effect of the 

lower CoV dominates in the case of low spatial correlation (ρspat < 0.5), the theoretical as-

sessment value is higher than for the homogeneous case. The assessment value for a homo-

geneous wall (ρspat = 1) obtained by the simulations matches the theoretical assessment 

value Ra,hom determined by Eq. 6-12. 

 

Fig. 6-10 Simulation results for varying the spatial correlation coefficient 

The mean Rm and CoV υR of the load-bearing capacity can also be determined analytically 

based on the approximate relationships derived in Section 6.3.4 (see Eq. 6-22 and Eq. 6-24). 

For this purpose, the CoV υma of masonry compressive strength needs to be decomposed 

into a unit-to-unit CoV υma,spat and a wall-to-wall CoV υma,wall. This is achieved by the fol-

lowing two equations, which are based on Eq. 6-4 to Eq. 6-9 in Section 6.2.3. 

w w w

2 2 2 2

ma,wall ma spatW f W f W fυ υ υ υ υ υ υ ρ      Eq. 6-25 

u, u, u,

spat2 2 2 2

ma,spat ma 2

spat ma

1

1i i i i i iU f U f U f

ρ
υ υ υ υ υ υ υ

ρ υ



    


 Eq. 6-26 

The reduction in the mean load-bearing capacity (see Eq. 6-22) is caused by only the spatial 

component υma,spat of variability. In normalised form, the load-bearing capacity R can be 
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considered as a product of two random variables, where each of the random variables cor-

responds to one component of the variability (see Section 6.2.3). One random variable cor-

responds to a wall with ρspat = 0 and υma = υma,spat and the other to a wall with ρspat = 1 and 

υma = υma,wall. Hence, based on Eq. 6-24, the CoV of the load-bearing capacity is obtained 

as follows: 

2 2 2 2 2 2 2 2

,appr ma,spat ma,wall ma,spat ma,wallR Rυ υ d υ υ d υ υ    Eq. 6-27 

The CoV υR,5% can be obtained accordingly based on Eq. 6-23: 

2 2 2 2 2 2 2 2

,5% ,5%,appr ma,spat ma,wall ma,spat ma,wallR Rυ υ c υ υ c υ υ    Eq. 6-28 

For the curves in Fig. 6-10, the parameters c and d are set to c = 0.21 and d = 0.17, as 

obtained in Section 6.3.4. Based on Rm from Eq. 6-22 and υR,5% from Eq. 6-28, the theoret-

ical assessment value can be determined by Eq. 6-11. The analytically determined results 

are also displayed in Fig. 6-10 and excellently match the simulation results. As the results 

for ρspat > 0 can be obtained analytically by decomposing variability into a unit-to-unit and 

a wall-to-wall component, the following parameter studies are only conducted for ρspat = 0. 

The wall-to-wall component of the variability of strength, given by υma,wall, directly leads 

to the same amount of variability in the load-bearing capacity, as this component of the 

CoV is not reduced by stress redistribution (see Eq. 6-27). Therefore, the wall-to-wall var-

iability dominates the total variability of the resistance in the considered cases with 

ρspat > 0.25. Consequently, the best-suited distribution type corresponds to the input distri-

bution type for masonry compressive strength. These considerations are supported by the 

results of Anderson-Darling tests in Table 6-5, demonstrating that the log-normal distribu-

tion type provides the best fit for ρspat > 0.25. 

Table 6-5  Results for varying spatial correlation coefficient 

Correlation 

coefficient 

ρspat 

Rm / Rdet υR υR,5% Ra / Rdet 

Significance level p 

Best fit Log- 

Normal 
Normal Weibull 

0.00 0.745 0.053 0.065 0.640 2.3 ∙ 10−4 4.3 ∙ 10−3 0.851 W 

0.25 0.786 0.152 0.159 0.538 0.586 0.620 0.017 N 

0.50 0.841 0.209 0.217 0.501 0.617 0.382 0.010 LN 

0.75 0.907 0.258 0.268 0.477 0.759 0.192 8.2 ∙ 10−3 LN 

1.00 0.999 0.293 0.288 0.500 0.733 0.024 3.3 ∙ 10−3 LN 

Fig. 6-11 displays EDFs of the simulation results together with the CDFs for masonry com-

pressive strength. It is evident that the EDF of the simulation results for ρspat = 1 resembles 

the input CDF. The mean value Rm of the load-bearing capacity corresponds to the area 

between the vertical axis and the respective EDF. Fig. 6-11 thus also demonstrates the re-

duced mean value for the cases with spatial variability (i.e. cases with ρspat < 1). The high 
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steepness of the EDF for ρspat = 0 indicates the very low variability of the load-bearing ca-

pacity. 

 

Fig. 6-11 Empirical distribution functions of the load-bearing capacity for different spa-

tial correlation coefficients and input cumulative distribution function of ma-

sonry compressive strength 

6.3.6 Influence of Wall Length 

In this section, the influence of the wall length is investigated by altering the number of 

units per course. The investigation starts with a masonry pillar with one single, undivided 

unit per course; it continues with a pillar with two undivided units per course; then walls in 

cross bond with three, five, seven, nine, and 11 units per course are investigated (see Fig. 

6-12). The wall with five units per course corresponds to the reference wall. The results are 

displayed in Fig. 6-13. 

 

Fig. 6-12 Walls for investigating the influence of wall length 
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Fig. 6-13 Simulation results for varying wall length 

It can be observed that the resulting mean load-bearing capacity Rm is lowest for the pillar 

with only one unit per course and then increases with wall length. This effect can be at-

tributed to the higher number of units per course, which contribute to the stress redistribu-

tion when the weakest unit within the course starts to fail. For a high number of units per 

course, Rm appears to converge. As expected, the CoV υR of the load-bearing capacity de-

creases with higher wall length. Due to stress redistribution, the variability of the compres-

sive strengths of the “units” is, to a certain extent, averaged out within a course. Depending 

on the wall length, either the Weibull or the normal distribution provide the best fit for the 

walls (see Table 6-6). 

Table 6-6  Results for varying wall length 

Units per 

course 
Rm / Rdet υR υR,5% Ra / Rdet 

Significance level p 
Best fit 

Log-Normal Normal Weibull 

1 0.637 0.107 0.119 0.481 0.253 0.677 6.1 ∙ 10−3 N 

2 0.675 0.075 0.089 0.547 0.257 0.542 4.4 ∙ 10−3 N 

3 0.711 0.063 0.075 0.597 0.010 0.114 0.103 N 

5 0.745 0.053 0.065 0.640 2.3 ∙ 10−4 4.3 ∙ 10−3 0.851 W 

7 0.755 0.041 0.044 0.681 0.016 0.050 0.101 W 

9 0.767 0.038 0.042 0.696 0.056 0.172 4.7 ∙ 10−4 N 

11 0.777 0.033 0.034 0.717 0.019 0.063 5.4 ∙ 10−3 N 

The assessment value significantly increases with higher wall lengths. However, this effect 

is not captured by the assessment value Ra,hom that is determined assuming homogeneity. In 

principle, the results of the parameter study thus confirm the need for a reduction factor for 

walls with a small cross-sectional area. In EN 1996-1-1 (2012), such a reduction factor is 

given for walls with cross-section area A < 0.1 m² as 0.7 + 3 A. In Chapter 8, this normative 
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approach for strength reduction is checked for suitability for existing solid clay brick ma-

sonry walls. 

To obtain a broader basis for checking the normative reduction factor, the walls with one, 

two, three, and five units per course are also simulated with other CoVs of the material 

properties. In Fig. 6-14, the mean load-bearing capacity Rm and the resulting CoV υR of the 

load-bearing capacity are shown for varying unit-to-unit CoVs υma,spat of masonry compres-

sive strength. The results display the same effects as presented before: a stronger reduction 

of the mean load-bearing capacity Rm and a higher CoV υR if there is an increase in the unit-

to-unit CoV υma,spat or a decrease in wall length. 

 

Fig. 6-14 Simulation results for varying coefficients of variation of the material proper-

ties and different wall lengths 

Approximate equations for Rm and υR depending on υma,spat, as given by Eq. 6-22, Eq. 6-23, 

and Eq. 6-24 for a wall length of five units per course, can also be derived for shorter walls 

based on the simulation results. Suitable values for the parameters a, b, c, and d, which are 

obtained by the method of least squares, can be found in Table 6-7. The approximations are 

also displayed in Fig. 6-14, demonstrating the excellent fit of the approximations. 

Table 6-7  Parameter values for the approximate equations 

Units per course a b c d 

1 1.89 1.20 0.39 0.36 

2 1.80 1.28 0.28 0.25 

3 1.71 1.36 0.24 0.20 

5 1.62 1.44 0.21 0.17 
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6.3.7 Influence of Slenderness 

In the following parameter study, the slenderness of the investigated wall is varied and 

geometrical nonlinearity is considered. Thereby, the transition between material failure and 

stability failure is investigated. For a definition of the two failure modes, see Section 3.3.3. 

In the following, material-related slenderness λ is defined according to Glock (2004): 

ef ef ma,m

,m

ma,m

f

f
λ ε k

h

t E

h

t
   Eq. 6-29 

where εf,m is the total strain at peak stress (based on the mean of fma and Ema), k is the stress-

strain parameter (defined as the ratio between total and elastic strain at peak stress), and hef 

is the effective height (i.e. buckling length) of the wall. To avoid the influence of altered 

unit dimensions or an increased number of units when changing the height h or thickness t 

of the wall, slenderness λ is varied by modifying the ratio Ema,m / fma,m of the elastic modulus 

to the compressive strength of masonry. First, the finite element simulations are performed 

assuming geometrically linearity, which corresponds to λ = 0. Then, Ema,m / fma,m is varied 

between 10,000 and 75. It should be noted that particularly ratios in the upper range do not 

represent realistic values; in reality, low slenderness also results from high wall thickness 

or low wall height. However, to investigate the pure effect of the transition between mate-

rial and stability failure, the approach of not modifying the number or dimensions of the 

units but only the ratio Ema,m / fma,m is chosen here. The effective wall height hef is equal to 

the wall height h itself since the support at top and bottom is modelled as pinned. The 

eccentricity is selected as e = 0.1 t at top and bottom to create an initial eccentricity that is 

then increased by second-order effects at mid-height. 

Fig. 6-15 shows the results of the MCS for varying wall slenderness. In addition to the 

mean load-bearing capacity Rm, the theoretical assessment values Ra and Ra,hom, and the 

CoV of the load-bearing capacity υR, the deterministic load-bearing capacity Rdet based on 

a simulation with mean material properties is provided. In Fig. 6-16, the same results are 

displayed; however, the load-bearing capacities are related to the deterministic load-bearing 

capacity Rdet. In the MCS with spatially variable material properties, the transition between 

material and stability failure cannot be distinctly defined in terms of a particular slenderness 

λ. This is because, depending on the realisations of the random material properties in a 

simulation run, both failure modes can occur in the transitional region between material 

and stability failure. 

It can be observed that, at first, the ratio Rm / Rdet increases and υR decreases when the slen-

derness of the wall gets higher. This trend stops at λ ≈ 1, from where the curves for Rm / Rdet 

and υR continue approximately horizontally. The reason for this development of the curves 

lies in the transition between material and stability failure. At λ = 0, no second-order effects 

are present, and the load-bearing capacity is primarily influenced by compressive strength. 
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With higher slenderness, the initial first-order eccentricity eI is increased by an additional 

eccentricity ΔeII due to second-order effects. This additional eccentricity ΔeII depends on 

the bending stiffness of the wall and therefore is a function of the moduli of elasticity within 

the wall. Hence, both the compressive strength fma and the modulus of elasticity Ema influ-

ence the load-bearing capacity. If the compressive strength fma is unusually low due to ran-

domness, the effective ratio Ema / fma is higher, leading to a lower effective material-related 

slenderness λ, which partly compensates for the low compressive strength. This results in 

the observed decrease in υR and the increase in Rm / Rdet when slenderness increases. 

 

Fig. 6-15 Simulation results for varying wall slenderness 

 

Fig. 6-16 Simulation results for varying wall slenderness (load-bearing capacity re-

lated to the result of a deterministic simulation) 
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For high slenderness λ, all walls fail due to buckling. In this case, the load-bearing capacity 

Rbuckling depends on the bending stiffness of the wall and, hence, on the elastic moduli Ema 

of the “units”. Since the compressive strength fma does not influence the load-bearing ca-

pacity in the case of high slenderness, the ratio Ema,m / fma,m no longer affects the relative 

load-bearing capacity R / Rdet. As a result, the curves in Fig. 6-16 become almost horizontal 

for high slenderness. The slight deviation from a horizontal line is caused by the fact that 

the flexural tensile strength ft, which has a high CoV, gains influence for very high slender-

ness (see Section 3.3.3). 

If ft is neglected, the overall bending stiffness and, therefore, the load-bearing capacity 

Rbuckling in the case of stability failure is proportional to an effective modulus of elasticity 

Ema,eff of the wall, which is a function of the spatially variable elastic moduli of the “units”. 

In this context, Ema,eff is defined as the elastic modulus for a homogeneous wall, whose 

buckling load equals that of the wall with spatially varying material properties. Buckling is 

caused by a displacement of the wall out of its original plane. This displacement can be 

determined by double integration of the curvature over the wall height. Since the curvature 

is inversely proportional to the modulus of elasticity at the respective location, the effective 

modulus of elasticity can be approximately described by a weighted harmonic mean of the 

elastic moduli Ema,course,i of the single courses: 

buckling ma,eff

ma,course,1

1n

i

ii

R E

w
E

n






 

Eq. 6-30 

The selection of suitable weights wi, which depend on the moment distribution, is not con-

sidered here. Eq. 6-30 only serves the purpose of interpreting the results next. 

In the case of material failure, single weak “units” can lead to failure of the whole wall if 

there are no adjacent stronger “units” that enable stress redistribution. This issue causes a 

reduction of the mean load-bearing capacity Rm compared to a homogeneous wall. For walls 

failing due to buckling, this consideration is not valid since it is no longer the material 

strength but the stiffness that is relevant. However, it can be observed that the ratio Rm / Rdet 

does not converge to one. Eq. 6-30 delivers the corresponding explanation: The harmonic 

mean is always smaller than the arithmetic mean if at least one value differs from the others. 

Thus, the expectation Rm of the load-bearing capacity is smaller than the deterministic load-

bearing capacity Rdet calculated based on mean material properties. Nevertheless, the ratio 

Rm / Rdet remains higher than for the walls with material failure. 

Based on these considerations, walls failing due to either material failure or buckling can 

be compared to the idealised systems from Section 2.5.5. A wall failing due to material 

failure is closer to a series system since single weak “units” initiate the failure. In contrast, 

a wall failing due to buckling is closer to a parallel system since the load-bearing capacity 
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depends on the overall stiffness of the wall, which does not differ greatly from an average 

of the stiffnesses of the single “units” within the wall. 

The results of the parameter study are also displayed in Table 6-8. In addition to the results 

presented before, the goodness-of-fit of the log-normal, normal, and Weibull distribution 

is shown. For the investigated cases, either the Weibull or the normal distribution provides 

the best fit. 

Table 6-8  Results for varying slenderness 

Ema,m / 

fma,m 
λ Rm / Rdet υR υR,5% Ra / Rdet 

Significance level p Best 

fit Log-Normal Normal Weibull 

Geometrically linear 0.777 0.051 0.059 0.678 7.9 ∙ 10−3 0.055 0.057 W 

10,000 0.18 0.784 0.051 0.056 0.687 0.012 0.069 0.037 N 

1,500 0.46 0.823 0.046 0.052 0.730 2.8 ∙ 10−3 0.015 0.163 W 

550 0.75 0.872 0.039 0.044 0.786 3.2 ∙ 10−3 0.012 0.156 W 

300 1.02 0.904 0.034 0.037 0.829 0.468 0.639 1.6 ∙ 10−3 N 

150 1.44 0.905 0.036 0.040 0.825 0.381 0.583 3.6 ∙ 10−3 N 

75 2.04 0.888 0.037 0.039 0.811 0.278 0.475 8.3 ∙ 10−3 N 

To derive approximate functions for the relationship between Rm and υma,spat as well as be-

tween υR and υma,spat that are suitable for walls failing due to buckling, the previously inves-

tigated wall with Ema,m / fma,m = 150 is also simulated for different unit-to-unit CoVs of the 

material properties. Approximate relationships can then be formulated equivalently to those 

defined in Section 6.3.4 for the reference wall with varying CoVs (see Eq. 6-22 to Eq. 

6-24). Utilising the method of least squares, suitable parameter values are found to be 

a = 0.92, b = 1.86, c = 0.13, and d = 0.12. The resulting approximate values Rm,appr and 

υR,appr excellently match the simulation results, as demonstrated by Fig. 6-17. 

 

Fig. 6-17 Simulation results for a slender wall and varying coefficients of variation of 

the material properties 
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6.3.8 Influence of Load Eccentricity 

No eccentricity of the compression loading is considered in the investigation of the refer-

ence wall. Therefore, the following parameter study is conducted to investigate the influ-

ence of load eccentricity on the probability distribution of the load-bearing capacity. Three 

different cases are examined. In the first case, the eccentricity of the compression loading 

at the top and bottom is the same, and the simulations are conducted without considering 

geometrical nonlinearity. Hence, the resulting bending moment is constant over the wall 

height (see Fig. 6-18). The second case is equal to the first case, but the simulations are 

conducted considering geometrical nonlinearity. Finally, in a third case conducted without 

considering geometrical nonlinearity, the bottom eccentricity is contrary to the eccentricity 

at the top. Hence, the moment distribution along the wall height is not constant but linear, 

with the same absolute value at top and bottom (i.e. etop = − ebottom). This case is important 

for engineering practice, as contrary moments at the top and bottom of a wall are usually 

induced by the rotation of the adjacent slabs; see Annex C of EN 1996-1-1 (2012). 

 

Fig. 6-18 Structural systems of the three investigated cases 

The results of the parameter study are displayed in Fig. 6-19. All results for the mean load-

bearing capacity Rm and the assessment load-bearing capacity Ra are given in relation to the 

deterministic load-bearing capacity Rdet, which is obtained in a simulation with mean ma-

terial properties. In the determination of Rdet for the geometrically nonlinear case, a very 

small initial first order eccentricity of eI /t = 0.0005 is applied. This small eccentricity is 

negligible in a geometrical linear simulation but is required for the development of the 

second-order moment in the geometrically nonlinear case. 

Fig. 6-19 shows that an eccentricity of e / t = 0 leads to the lowest ratios Rm / Rdet. This 

effect can be explained by the resulting stress distribution within a cross-section. For 
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e / t = 0, the stress is uniformly distributed over the cross-section. Therefore, the compres-

sive strength of a weak “unit” is reached at all points of its cross-section simultaneously. 

As a result, the stresses acting on the whole area of this “unit” start to decline and have to 

be redistributed to other “units”. In contrast, the compressive stress increases towards the 

more compressed edge for e / t > 0. Hence, the compressive strength of a weak “unit” is 

only reached locally in this case, and the force that has to be redistributed to other “units” 

is smaller. The stress in the remaining area of the weak “unit” can still be increased. As a 

result, the relative decrease in the mean load-bearing capacity Rm caused by spatial varia-

bility is smaller for e / t > 0. In the geometrically linear case with constant eccentricity, the 

CoV υR is approximately constant for varying eccentricity. Consequently, the relative as-

sessment load-bearing capacity Ra / Rdet is higher if the load is applied with eccentricity. 

 

Fig. 6-19 Simulation results for varying load eccentricity 

Comparing the geometrically nonlinear case with the geometrically linear case shows that 

geometrical nonlinearity leads to higher ratios Rm / Rdet, lower CoVs υR, and, thus, higher 

ratios Ra / Rdet. This effect is identical to the positive effect for increasing slenderness that 

was observed in Section 6.3.7. With increasing eccentricity, the difference between the ge-

ometrically linear and nonlinear case grows. This is due to the growing influence of second-

order effects for walls with greater eccentricity, which leads to a transition between material 

and stability failure at lower slenderness λ (see Glock 2004). 

In the third case with contrary eccentricity at the top and bottom (etop = − ebottom), the ratio 

Rm / Rdet is higher than for the first case with constant eccentricity. If the moment distribu-

tion is linear over the wall height and eccentricity is increased, the parts of the wall that are 
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force is accompanied by a moment at the top and bottom (see Fig. 6-18). Therefore, only 

the strength in the upper and lower part of the wall is critical. As the probability of extraor-

dinarily weak “units” within this smaller region is lower than within the whole wall, 

Rm / Rdet is higher for a linear than for a constant moment distribution. This effect is accom-

panied by an increase in the CoV υR since a lower number of “units” is effectively involved, 

and a lower number of elements usually increases the CoV of the load-bearing capacity of 

a structural system (see Section 2.5.5). 

Comparing the relative assessment values Ra / Rdet for all three cases and varying eccen-

tricity shows that the reference case (e / t = 0, geometrically linear) is the most critical. The 

choice of geometrical linearity and no eccentricity for the reference case is hence appropri-

ate for making generally valid, conservative statements regarding the effect of spatially 

variable material properties on the load-bearing capacity of solid clay brick masonry walls. 

It is pointed out that no spatial variability of the material properties within a single unit is 

considered in the present investigations. However, spatial variability at this lower level can 

influence the probability distribution for the load-bearing capacity of walls with high ec-

centricity since only a part of the cross-section is subjected to high compressive stress in 

this case. This limitation of the stochastic model confirms that the results for walls without 

eccentricity are most appropriate for further developing a method for assessing existing 

masonry walls. 

The previously presented results and the results of Anderson-Darling tests for goodness-of-

fit are displayed in Table 6-9. Depending on the specific case, either the Weibull or the 

normal distribution is the most appropriate distribution type. 

Table 6-9  Results for varying eccentricity 

Case 

Eccen-

tricity 

e / t 

Rm / Rdet υR υR,5% Ra / Rdet 

Significance level p 

Best fit Log- 

Normal 
Normal Weibull 

1: constant 

eccentricity, 

geometrically 

linear 

0 0.745 0.053 0.065 0.640 2.3 ∙ 10−4 4.3 ∙ 10−3 0.851 W 

0.1 0.784 0.050 0.055 0.689 1.2 ∙ 10−3 9.1 ∙ 10−3 0.125 W 

0.2 0.783 0.052 0.060 0.681 0.023 0.112 0.060 N 

0.3 0.788 0.055 0.063 0.680 6.1 ∙ 10−3 0.040 0.170 W 

2: constant 

eccentricity, 

geometrically 

nonlinear 

0 0.796 0.051 0.060 0.693 1.2 ∙ 10−5 1.8 ∙ 10−4 0.199 W 

0.1 0.870 0.039 0.044 0.786 3.2 ∙ 10−3 0.012 0.156 W 

0.2 0.898 0.034 0.037 0.824 0.470 0.655 8.3 ∙ 10−3 N 

0.3 0.909 0.034 0.035 0.839 0.388 0.523 2.6 ∙ 10−4 N 

3: contrary 

eccentricity, 

geometrically 

linear 

0 0.745 0.053 0.065 0.640 2.3 ∙ 10−4 4.3 ∙ 10−3 0.851 W 

0.1 0.798 0.057 0.062 0.690 0.014 0.101 0.291 W 

0.2 0.815 0.066 0.068 0.695 0.101 0.386 0.041 N 

0.3 0.838 0.079 0.089 0.680 0.134 0.521 0.030 N 
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6.3.9 Influence of Masonry Bond 

Since mainly masonry walls arranged in cross bond are investigated in the previous param-

eter studies, simulation results for a single wythe masonry wall are compared to those for 

the cross-bonded reference wall here. Except for the bond type, the investigated single 

wythe masonry wall is identical to the reference wall: It also has 36 courses with five units 

per course and is investigated without considering geometrical nonlinearity and without 

load eccentricity. It should be noted that the comparison focuses on the influence of spatial 

variability and does not aim at making statements about the general, deterministic effect of 

the bond type on masonry strength. As before, the results for the load-bearing capacity are 

related to the corresponding mean masonry compressive strength fma,m, which, in the case 

of the wall in cross bond, already includes a reduction compared to the compressive strength 

for single wythe masonry (see Section 3.5.3). The results are displayed in Fig. 6-20. 

 

Fig. 6-20 Simulation results for cross bonded and single wythe masonry walls 

The influence of spatially variable material properties is slightly more critical for the single 

wythe masonry wall, which is mainly due to the lower mean load-bearing capacity Rm. 

Although both walls contain five units per course, the wall arranged in cross bond possesses 

a higher stress redistribution capability since the cross-section is more compact than the 

cross-section of the single wythe wall. Thus, each “unit” has more adjacent “units” to which 

stresses can be redistributed easily. For bonded masonry walls with a thickness of more 

than two unit widths, it is expected that the stress redistribution capability is further in-

creased since the cross-section is even more compact. Despite the more critical behaviour 

of single wythe walls, the wall in cross bond is a more appropriate reference case for de-

veloping an assessment procedure since existing solid clay brick masonry is very rarely 

constructed as single wythe masonry. 
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6.3.10 Influence of Unit Format 

The previous parameter studies are conducted based on unit dimensions according to the 

German standard format NF. Within this last parameter study, the unit format is varied. 

Thereby, the combined influence of the unit number and dimensions resulting from the 

selected unit format is investigated. Since units with larger dimensions are usually used for 

constructing single wythe masonry, the investigated wall in this parameter study is a single 

wythe masonry wall. No eccentricity of the compression load is considered, and the simu-

lations are conducted without considering geometrical nonlinearity. The wall height is 

equal to the reference wall (h = 3 m), the length is l = 1 m, and the thickness is determined 

by a unit width of 0.115 m. Based on these constant overall dimensions, the number of units 

within the wall is varied by changing the unit dimensions (see Fig. 6-21). The selected 

dimensions correspond to the standardised unit dimensions DF, NF, 2 DF, 4 DF, and 8 DF 

according to DIN 20000-401 (2017). The selected unit dimensions result in the following 

unit numbers (vertical x longitudinal direction): 48 x 4, 36 x 4, 24 x 4, 12 x 4, and 12 x 2. 

 

Fig. 6-21 Dimensions of the expanded units and resulting wall arrangement for investi-

gating the influence of the unit format 

The number of finite elements per “unit” with format NF is chosen as in the reference wall. 

When the “unit” dimensions are changed, the element size is kept constant, which leads to 

a constant total number of elements within the wall, but a varying number of elements per 

“unit”. Consequently, the compressive fracture energy Gfc, which results from the stress-

strain distribution and the equivalent element length (see Eq. 5-8), is not changed within 

this parameter study, as the element size is constant. 

From Fig. 6-22, it is evident that the resulting mean load-bearing capacity Rm is not very 

sensitive to the unit format. A higher number of units leads to more potential weak spots 

within the wall. However, this effect is compensated for by a better stress redistribution 

capability, as more “units” are engaged in stress redistribution. Furthermore, the positive 
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effect due to the restraint of weaker “units” by adjacent stronger “units” above and below 

and the resulting multi-axial compression state is more significant for “units” with a lower 

height. This compensates for the higher number of potential weak spots in the vertical di-

rection. As a result, there is a slight tendency for the mean load-bearing capacity to decrease 

with an increase in the unit dimensions. 

 

Fig. 6-22 Simulation results for varying unit dimensions 

Concerning the CoV υR of the load-bearing capacity, an increasing trend is evident for a 

decreasing number of units in the wall. This effect is very common for the load-bearing 

capacity of structural systems (see Section 2.5.5). As a result of the influence of the unit 

dimensions on Rm and υR, the assessment values Ra slightly decrease with increasing unit 

dimensions. Therefore, small brick dimensions, which are typical for historical solid clay 

brick masonry, are beneficial for the theoretical assessment value of masonry compressive 

strength and the resulting reliability of the masonry wall. 

Since the results are not strongly sensitive to the unit format, the conclusions for bricks 

with German standard format NF can be considered valid also for slightly different formats. 

The findings are thus considered applicable for all typical historical formats of small-sized 

solid clay bricks, such as the Reichsformat (see Section 3.2). 

6.4 Summary 

In this chapter, extensive investigations of the influence of spatially variable material prop-

erties on the load-bearing capacity of solid clay brick masonry walls under compression 

were carried out. In the investigations, the spatial variability of the compressive strength, 

modulus of elasticity, and flexural tensile strength of masonry was modelled as unit-to-unit 

variability. The developed procedure for generating random material properties enables 
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modelling correlation between the compressive strength and the modulus of elasticity and 

spatial correlation between the compressive strengths and moduli of elasticity at different 

units within the wall. Monte Carlo simulations utilising the finite element model presented 

in Chapter 5 were performed for various boundary conditions to quantify the influence of 

particular parameters on the probability distribution of the load-bearing capacity. The fol-

lowing conclusions can be drawn from the parameter studies: 

 With increasing spatial variability of the material properties within the wall, the mean 

load-bearing capacity Rm decreases. An approximate equation was found to describe 

this relationship (see Eq. 6-22). However, the CoV υR of the resulting load-bearing 

capacity is much smaller than the input CoV of the spatially variable material proper-

ties. The relationship between υR and the CoV υma,spat of spatially variable masonry 

compressive strength can be approximately described by Eq. 6-24. 

 Long walls perform better than short walls if material properties are spatially variable, 

which is reflected in a higher normalised mean load-bearing capacity Rm and a lower 

CoV υR of the load-bearing capacity. In principle, this influence confirms the need for 

a reduction factor for walls with a small cross-section as defined in EN 1996-1-1 

(2012). 

 For walls with high slenderness, the relative reduction of the mean value Rm caused by 

spatially variable material properties is smaller than for walls with low slenderness, 

which can be explained by the influence of the different failure modes. The behaviour 

of walls with material failure is closer to a weakest-link behaviour since the weakest 

spots in the wall strongly affect the load-bearing capacity. In contrast, average material 

properties are more relevant for walls failing due to buckling. 

 For walls with eccentric compression loading, the reduction of the mean load-bearing 

capacity Rm due to spatial variability is smaller than for concentrically loaded walls. 

 Single wythe masonry walls are more critical with regard to spatially variable material 

properties than bonded walls, such as the reference wall arranged in cross bond. 

 The variation of the unit dimensions demonstrated that the resulting mean load-bearing 

capacity Rm is not very sensitive to the unit format. However, if the unit-to-unit CoV 

υma,spat of masonry compressive strength is constant for different unit dimensions, the 

resulting CoV of the load-bearing capacity υR is smaller for a higher number of units 

in the wall (i.e. smaller unit dimensions). 

The results provide valuable and novel insights into the effects of spatial variability on the 

probability distribution of the load-bearing capacity of masonry walls under compression. 

Furthermore, the results provide a broad basis for developing a method for determining 

suitable assessment values of masonry compressive strength (see Chapter 8).  
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7 BAYESIAN FRAMEWORK FOR STATISTICAL UNCERTAINTY 

AND PRIOR MODELLING 

7.1 Introduction 

If the results of tests on the material properties of existing masonry are used for determining 

characteristic values or partial factors for structural assessment, the statistical uncertainty 

caused by the limited number of tests has to be considered. Neither the true mean value nor 

the true variance of a tested material property is known with certainty, and overestimating 

the mean of masonry strength or underestimating its variance can lead to a dangerous mis-

judgement concerning the reliability of a masonry structure under assessment. The issue of 

statistical uncertainty is addressed by a Bayesian approach in the method developed in this 

thesis. By utilising Bayesian statistics, prior information from previously assessed masonry 

buildings can be integrated into the assessment procedure, which reduces statistical uncer-

tainty. 

In Section 7.2, the general Bayesian framework that is utilised for the method developed in 

Chapter 8 is presented. In the framework, prior information regarding the variability of unit 

and mortar compressive strength can be considered. With the aim of modelling prior infor-

mation by prior probability distributions, data from tests on the material properties of ex-

isting masonry was collected and compiled in a database. In Section 7.3, the composition 

of the database is described in more detail and observations regarding the material proper-

ties of typical existing masonry are made. Based on the test data, prior information on the 

variability of unit and mortar compressive strength in existing solid clay brick masonry is 

modelled by prior distributions in Section 7.4. In addition, the test data is used to determine 

the correlation of unit strengths and of mortar strengths at a specific sampling location 

within a building. Furthermore, a prior for the variability of masonry compressive strength 

is obtained based on the priors of unit and mortar compressive strength. 

7.2 Bayesian Framework 

In the statistical framework, unit and mortar compressive strength are modelled by log-

normal distributions. Therefore, the logarithms of unit and mortar strength, ln fb and ln fj, 

are normally distributed, and the Bayesian procedures developed for normally distributed 

random variables can be applied. See Section 2.4 for a summary of the general principles 

of Bayesian statistics. In the following illustration of the Bayesian framework, the random 

variable X represents the logarithm of unit or mortar strength. Thus, a realisation xi is the 

logarithm of a single test result for either unit or mortar compressive strength. 

The general procedure for updating the probability distribution for mean μ and variance σ2 

of X is given by Bayes’ theorem: 
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2 2 2( , | ) ( , | ) ( , )f μ σ L μ σ f μ σ x x  Eq. 7-1 

where f ′ (μ, σ2) is the prior distribution, and f ″ (μ, σ2 | x) is the posterior distribution obtained 

by the update based on the vector x containing the observed values xi. The likelihood L 

contains the information of the acquired data used for the update and is defined as the joint 

probability density for the occurrence of the observed values xi: 
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where m and s2 are the arithmetic mean and the sample variance of the observed values, 

respectively, defined as  
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In the framework, the prior distribution is chosen to be non-informative regarding the mean 

of X but informative regarding its variance. A similar approach can be found in Caspeele 

and Taerwe (2012) for the assessment of concrete compressive strength. The approach is 

selected, as it is expected that the range of mean values for unit and mortar compressive 

strength is wide, but the corresponding coefficients of variation (CoVs) are in a narrower 

range. Due to the wide range of possible values for the mean compressive strength of unit 

and mortar, modelling the available prior information does not lead to prior distributions 

that are very informative regarding the mean value. The prior distribution for the mean 

neither substantially reduces the corresponding statistical uncertainty nor greatly influences 

the posterior probability distribution. However, it would make the methodology more com-

plicated and would limit the general applicability. In contrast, modelling the available prior 

information about the variance σ2 leads to much more informative prior distributions and, 

therefore, a more significant reduction of the corresponding statistical uncertainty. It is 

noted that the variances σln,b
2 and σln,j

2 of the logarithms of strength are entirely defined if 

the CoVs υb and υj of strength are provided since, for a given CoV of strength, the variance 

of the logarithm of strength does not depend on the absolute value of strength: 

2 2 2 2

ln,b b ln,j jln (1 ) and ln (1 )σ υ σ υ     Eq. 7-5 

Thus, prior information about the CoV of strength can be expressed by a prior distribution 

on the variance of the logarithm of strength. 
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It is decided to use a conjugate prior distribution for the variance, as this makes it possible 

to perform the Bayesian update analytically. Furthermore, no other distribution type ap-

pears to be naturally suited to modelling the prior information. By choosing a conjugate 

prior, the Bayesian update reduces to an update of the distribution parameters, which is 

shown in the following. In the general case of a normally distributed random variable with 

unknown mean μ and unknown variance σ2, the conjugate joint prior distribution of μ and 

σ2 is a normal-inverse-χ2 distribution (see Section 2.4.2). This means that the conditional 

distribution of the mean μ given σ2 is normal, and the marginal distribution of σ2 is scaled 

inverse-χ2 distributed. The joint prior distribution of μ and σ2 can be written as the product 

of the conditional distribution of mean μ given σ2 and the marginal distribution of σ2: 
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 Eq. 7-6 

where m′ and n′ are the prior hyperparameters for defining the prior distribution of the 

mean, and ν′ and s′2 are the prior hyperparameters for the variance. Choosing a prior that is 

non-informative regarding the mean is equivalent to n′ → 0, that is, no hypothetical prior 

test series for the mean (see Section 2.4). This results in an improper uniform prior: 

2( | ) constantf μ σ   Eq. 7-7 

Thus, the conjugate joint prior distribution that is non-informative regarding the mean and 

informative regarding the variance is given by only the right term of Eq. 7-6: 
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The posterior distribution is then obtained by inserting Eq. 7-2 and Eq. 7-8 into Eq. 7-1. 
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 Eq. 7-9 

The last conversion step leads to an expression equivalent to Eq. 7-6. Hence, the posterior 

distribution obtained by using the prior that is non-informative concerning the mean and 

informative concerning the variance is of the same type as the informative prior. Therefore, 
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the update can be performed by merely updating the hyperparameters. According to the last 

conversion step in Eq. 7-9, the posterior hyperparameters n″, m″, ν″, and s″2 are obtained 

as follows:  

n n   Eq. 7-10 

m m   Eq. 7-11 

1ν ν n     Eq. 7-12 
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1ν s n s

s
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
 Eq. 7-13 

Eq. 7-12 and Eq. 7-13 illustrate why the hyperparameters ν′ and s′ can be understood as the 

degrees of freedom and sample variance of a hypothetical prior test series. The n − 1 de-

grees of freedom of the actual test series are increased by the ν′ degrees of freedom of the 

hypothetical prior test series. Furthermore, the posterior hyperparameter s″2 is equivalent 

to an average of the sample variance s2 and the variance of the hypothetical prior test series 

s′2, each being weighted by the respective degrees of freedom. 

Based on Eq. 7-9, the posterior predictive distribution (i.e. the distribution of X that includes 

the remaining statistical uncertainty after the update) can be determined by integrating out 

the uncertain parameters according to their posterior distribution (see Section 2.4.2). Solv-

ing the integral shows that the posterior predictive distribution of X is a Student’s t-distri-

bution with ν″ degrees of freedom, location m″, and scale s″ (1 + 1 / n″)0.5. Consequently, 

p fractiles xp of the logarithm of strength can be determined as follows: 

,

1
1p ν px m t s

n
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   


 Eq. 7-14 

where tν″,p is the p fractile of Student’s t-distribution with ν″ degrees of freedom. Using 

informative prior distributions for the variance causes an increase in the degrees of freedom 

of the posterior predictive distribution. Compared to an entirely non-informative approach, 

which corresponds to n′ = 0 and ν′ = 0, the degrees of freedom of the t-distribution are in-

creased by ν′ (see Eq. 7-12). Hence, the utilisation of prior information leads to a predictive 

distribution with less weight in the tails (see Section 2.3.4). 

The predictive posterior distributions for the logarithm of unit and of mortar compressive 

strength, as defined by Eq. 7-14, are used in the method developed in Chapter 8 to deter-

mine characteristic values and partial factors for the compressive strength of masonry. For 

the framework to be applied in practice, the hyperparameters ν′ and s′2 of the prior distri-

bution must be determined, which is presented in Section 7.4 based on the test database 

presented in Section 7.3. 
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7.3 Test Database for Material Properties of Existing Masonry 

To be able to model prior information about the variability of unit and mortar strength by 

prior distributions, a test database for the material properties of existing masonry was es-

tablished. The database contains the results of compressive strength tests on unit and mortar 

specimens that were extracted from existing masonry structures. The tests were not con-

ducted for the present investigation specifically but became necessary in the context of 

structural assessments. In most cases, the assessment was necessary due to a planned con-

version or extension. The tests were conducted by the Institute of Concrete and Masonry 

Structures at the Technical University of Darmstadt and five private testing labs, which are 

located throughout Germany and generously made their testing data available. 

In total, 2784 unit and 3014 mortar compressive strength test results for 171 structures (168 

buildings, two bridges, and one retaining wall) were received. Since buildings represent the 

majority of the structures, all types of structures are referred to as “buildings” in the fol-

lowing. In the first step of data preparation, the data is reduced to 140 buildings containing 

solid clay brick masonry. The large share of buildings containing solid clay brick masonry 

indicates the high importance of this masonry type in assessing existing masonry structures. 

It should be noted that the testing labs were asked to limit the data to masonry made of 

artificial units – natural stone masonry was not part of the data collection – but not to solid 

clay brick masonry. However, much less data was received for other artificial unit types, 

such as perforated clay bricks, calcium silicate bricks, or (lightweight) concrete blocks. 

These other unit types gained importance in construction practice much later than solid clay 

bricks (see Section 3.2) and appear to play a smaller role in the assessment of existing 

structures. Regarding the activities of the testing labs, this effect is increased because, for 

younger buildings, construction documents providing information regarding the strength of 

masonry exist far more often, which makes material testing unnecessary in many cases. 

The considered buildings are located throughout Germany. Due to the amount of data re-

ceived from the different testing labs, a slight emphasis lies on the regions around Berlin 

(postal code 1xxxx) and around Munich (postal code 8xxxx), each representing about one-

third of the database. The other third mainly consists of projects in Baden-Württemberg, 

Hesse, Hamburg, and the rest of Bavaria. Fig. 7-1 displays the geographical distribution of 

the 140 buildings containing solid clay brick masonry with respect to the first number of 

the postal code. Although the data is not perfectly distributed over Germany, the database 

contains test results obtained for buildings from many different regions. Therefore, conclu-

sions drawn from the database are considered representative of existing solid clay brick 

masonry in Germany in general. For about 80 % of the buildings, it was possible to add an 

estimate for the year of construction. The database can be considered representative for the 
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period between 1850 and 1950 since the construction year of more than 80 % of the build-

ings falls into this range (see Fig. 7-1). 

          

Fig. 7-1 Relative frequencies of construction time and the postal code region of all the 

buildings containing solid clay brick masonry 

In the next step, the testing data received for a particular building is split if the masonry 

members in this building belong to different masonry populations. In this context, one pop-

ulation of masonry is defined as masonry that appears to be of the same type of masonry 

regarding unit type, mortar type, and workmanship. More than one masonry population for 

a particular building is assumed if any of the following applies: 

 The building consists of different parts being built at different times. 

 The testing lab documented a change of masonry type (e.g. due to a change in brick 

dimensions). 

 The average mortar or unit compressive strength in one building significantly changes 

between floors, indicating a change in the mortar type or unit quality.  

Regarding the last criterion, the significance of the difference in average strength is checked 

by a two-sample t-test. The general procedure of the two-sample t-test is described in Sec-

tion 2.3.8. In all cases, where the test data for one building is split into two or more popu-

lations, the hypothesis of equal population means is rejected based on p < 0.05. By splitting 

the data for some of the buildings into two or more populations, 167 populations are ob-

tained for the 140 buildings that contain solid clay brick masonry. In total, the database 

contains 2364 unit compressive strength test results and 2575 mortar compressive strength 

test results for solid clay brick masonry. 

For the solid clay brick masonry populations in the database, Fig. 7-2 shows the relative 

frequencies of the number of sampling locations per masonry population and the average 
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number of tests per sampling location. In this context, a sampling location is defined as the 

locally bounded part of a masonry wall from which one or more test specimens are taken 

(WTA 7-4 2021). The number of sampling locations per population varies greatly, which 

is due to different sizes of the corresponding buildings, different expected structural utili-

sation of the assessed masonry walls, and different assessment approaches of the engineers. 

In the majority of cases, three unit specimens were taken from each sampling location. 

Concerning the number of mortar tests per sampling location, the approaches of the testing 

labs vary more strongly. Some testing labs prefer to perform fewer tests on mortar speci-

mens than on unit specimens since unit compressive strength has a stronger influence on 

the compressive strength of masonry. In some cases, it was decided to perform no mortar 

tests at all, which is illustrated by the relative frequency of zero mortar sampling locations 

in Fig. 7-2. In contrast, other labs usually test more mortar samples than unit samples since 

extracting a high number of mortar specimens is less invasive. However, in most cases, the 

number of mortar specimens per sampling location was also three. 

 

Fig. 7-2 Frequencies of the numbers of sampling locations and the tests per sampling 

location for the solid clay brick masonry populations in the database 

The unit compressive strength tests were either performed according to EN 772-1 (2011) 

on whole bricks or parts of bricks, or conducted according to DIN 105-1 (1982) on halved 

bricks, with one half laid upon the other with a thin, intermediate cement mortar layer. In 

the case of tests according to EN 772-1 (2011), the individual test results were adjusted by 

corresponding shape factors. All mortar compressive strength tests were double punch tests 

performed according to DIN 18555-9 (2019). In almost all cases, procedure III of this stand-

ard was applied. When test results for mortar compressive strength are presented in the 

following, correction factors for transforming the double punch test results into standard-

ised mortar strengths are already included. These correction factors are adopted from the 

testing labs, which mostly decided to use a correction factor of either 1 or 0.7 when testing 

according to procedure III. A correction factor of 0.7 implies that the specified standardised 

mortar strengths are smaller than the mortar strengths obtained by double punch tests on 

specimens extracted from masonry. However, the correction factor for mortar strength is 
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not relevant for modelling the prior distribution in the following, as the correction factor 

does not change the CoV of the test results for a particular masonry population. 

In Section 7.4, the prior distributions are modelled for two cases:  

1. Prior distributions that represent typical CoVs of unit and of mortar strength consider-

ing all masonry members in a building that belong to the same type of masonry (i.e. 

prior distributions that correspond to a masonry population as defined above) 

2. Prior distributions that represent typical CoVs of strength at a single sampling location 

In the second case, typical CoVs are assumed to be lower than in the first case since the 

strengths at one sampling location are expected to be correlated. To model the first case, 

only those populations are considered for which at least n = 3 test results in total for at least 

nloc = 2 sampling locations are available. As a result, the number of populations reduces to 

119 for unit compressive strength and 79 for mortar compressive strength. For modelling 

the second case, only sampling locations can be considered for which at least n = 2 test 

results were received. Concerning the number of data points, the process of data preparation 

can be summarised as follows: 

 Total number of buildings in database:   171 

 Buildings containing solid clay brick masonry:  140 

 Populations of solid clay brick masonry  

o Total number:     167 

o nloc ≥ 2 and n ≥ 3 for unit strength:  119 

o nloc ≥ 2 and n ≥ 3 for mortar strength:  79 

 Sampling locations (solid clay brick masonry) 

o n ≥ 2 for unit strength:    653 

o n ≥ 2 for mortar strength:   519 

In Annex C, the database is displayed with the sample size, the mean, and the CoV of unit 

and mortar compressive strength for the 167 populations of solid clay brick masonry. In 

addition, the first number of the postal code of the respective building location and, if pos-

sible, an estimate for the construction year are provided. 

In Fig. 7-3, arithmetic means and sample CoVs of unit and mortar compressive strength are 

displayed using scatterplots. Each point refers to the sample mean and CoV for one of the 

solid clay brick masonry populations and is based on n ≥ 3 test results for nloc ≥ 2 sampling 

locations. The four scatterplots are arranged to show possible relationships between (a) 

mean values of unit and mortar strength, (b) CoVs of unit and mortar strength, (c) mean 

and CoV of unit strength, and (d) mean and CoV of mortar strength. In each of the four 

scatterplots, linear regression lines are provided. 
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Fig. 7-3 Sample means and CoVs of unit and mortar compressive strength for different 

solid clay brick masonry populations 

Based on Fig. 7-3, the following observations and conclusions can be made: 

(a) A wide range of arithmetic means of unit and mortar compressive strength can be ob-

served. The intervals given by the respective 5 % and 95 % fractiles are (8.1 N/mm², 

37.8 N/mm²) for mean unit compressive strength and (0.9 N/mm², 18.0 N/mm²) for 

mean mortar compressive strength. The medians of the arithmetic mean are 

20.7 N/mm² and 3.9 N/mm² for unit and mortar strength, respectively. A correlation 

coefficient of r = 0.34 between the means of unit and mortar compressive strength is 

observed, indicating that bricks with high compressive strength only slightly tend to 

be combined with mortar types that also show relatively high strength. 

(b) The median sample CoV of mortar strength (38 %) is slightly higher than the median 

CoV of unit strength (34 %). Furthermore, the range of observed CoVs is also higher 
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for mortar strength. The correlation between the sample CoVs of unit and mortar 

strength for the same masonry population is quite low (r = 0.20). Therefore, this cor-

relation is considered negligible, and independent prior distributions for the variability 

of unit and of mortar compressive strength can be modelled in the following. 

(c) The CoV of unit compressive strength appears to be independent of the mean of unit 

compressive strength. This is contrary to observations for concrete compressive 

strength, in which the CoV decreases with increasing mean compressive strength 

(JCSS 2002) and, instead, the standard deviation of strength is commonly assumed to 

be independent of mean strength. In EN 1992-1-1 (2010), for example, the relationship 

between the characteristic compressive strength fck and mean compressive strength fcm 

of concrete is stated as fcm = fck + 8 N/mm², indicating the assumption of an approxi-

mately constant standard deviation of about 5 N/mm². Since the CoV of unit strength 

appears independent of its mean, modelling the prior distribution for the standard de-

viation of the logarithm of unit strength, which is equivalent to modelling a prior for 

the CoV of unit strength (see Eq. 7-5), is favoured over modelling a prior for the stand-

ard deviation of unit strength itself. 

(d) The observations and conclusions for unit compressive strength also apply to mortar 

compressive strength: The CoV of mortar compressive strength is assumed to be inde-

pendent of the corresponding mean value in the following. 

 

Fig. 7-4 Sample means and CoVs of unit and mortar compressive strength for different 

solid clay brick masonry populations arranged by year of construction 

As shown in Fig. 7-1, most of the existing buildings in the database were constructed be-

tween 1850 and 1950, making the database representative for this period. In Fig. 7-4, the 

sample means and CoVs of unit and mortar compressive strength observed for the solid 

clay brick masonry populations are displayed again. Here, the data points are arranged over 

the estimated construction year. Although common production techniques for bricks and 
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typical types of mortar have changed over time (see Section 3.2), the year of construction 

does not seem to have a notable influence on the mean values or CoVs of unit or mortar 

compressive strength in the database, which is indicated by the almost horizontal regression 

lines in Fig. 7-4. 

7.4 Modelling Prior Distributions 

7.4.1 General 

Informative prior distributions for distribution parameters can be interpreted in two ways 

(Gelman et al. 2013). On the one hand, there is the knowledge interpretation, according to 

which the knowledge about the particular parameter is limited. Therefore, the parameter is 

a random realisation of the prior distribution that represents this limitation in knowledge. 

On the other hand, there is the population interpretation. According to this second inter-

pretation, the prior distribution describes a population of parameters from which the pa-

rameter of current interest is drawn. The following approach is in line with the population 

interpretation. It is assumed that each building features a particular CoV for unit strength 

and a particular CoV for mortar strength that are specific to this building. All of the build-

ing-specific CoVs together form a population. Thus, there is one population of unit strength 

CoVs and one of mortar strength CoVs that can both be described by a corresponding prior 

distribution. The CoV of unit strength and the CoV of mortar strength for a particular build-

ing can be considered as randomly drawn from these two populations. 

Instead of formulating the prior distributions for the CoVs of unit and mortar strength di-

rectly, they are formulated in terms of the variances σln,b
2 and σln,j

2 of the logarithms of the 

respective strengths since the common Bayesian framework for updating the conjugate pri-

ors of normally distributed random variables can then be applied. The prior distributions 

for the variance are thus chosen to be scaled inverse-χ2 distributions (see Section 7.2). The 

two hyperparameters ν′ and s′, defining the prior distributions, are determined by maximum 

likelihood estimation in the following. In Section 7.4.2, the methodology for estimating the 

prior hyperparameters is described.  

As previously mentioned, the prior hyperparameters are determined for two different cases: 

1. “Building-related” prior distributions display the typical variance if all samples from 

the building belonging to one masonry type are considered collectively. As a result, 

the posterior predictive distribution represents the variability of unit or mortar com-

pressive strength for this masonry type over the whole building. 

2. “Location-related” prior distributions display the typical variance at one sampling lo-

cation. These prior distributions can be updated using the test results from one sam-

pling location. Therefore, the resulting posterior predictive distribution represents the 

variability of mortar or unit compressive strength at only this sampling location. 
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The building-related and location-related prior hyperparameters are estimated in Sections 

7.4.3 and 7.4.4, respectively. The building-related variability originates from both the var-

iability of the material properties within a sampling location and the variability between 

sampling locations. Thus, the building-related variability is usually higher than the loca-

tion-related variability; the strengths at one sampling location are correlated. In Section 

7.4.5, correlation coefficients for unit and for mortar compressive strengths at one sampling 

location are estimated. In Section 7.4.6, the precision with which the prior hyperparameters 

are estimated is quantified through bootstrap confidence intervals. Finally, in Section 7.4.7, 

a prior distribution for the variability of masonry compressive strength is modelled based 

on the prior distributions for unit and mortar strength. 

7.4.2 Procedure for Estimating the Prior Hyperparameters 

Based on the data presented in Section 7.3, the hyperparameters ν′ and s′ for the prior dis-

tributions are found by maximum likelihood estimation. The prior distributions are meant 

to describe the distribution of the true population variances σln,b
2 and σln,j

2 of the logarithms 

of unit and mortar strength. The database, however, only contains sample variances sln,b
2 

and sln,j
2, which correspond to limited sample sizes n, and, thus, cannot be considered as 

directly drawn from the prior distribution. Instead, for a given population variance σi
2, the 

observed sample variance si
2 for a particular building or sampling location is a random 

variable, which, after normalisation, is χ2-distributed (see Section 2.3.6): 

2
2

2 i

i
i ν

s
ν χ
σ

 Eq. 7-15 

where νi = ni − 1 are the degrees of freedom in determining the sample variance si
2 for the 

building or sampling location indexed by i. The indices “ln,b” and “ln,j” are omitted here 

for more brevity. 

The additional variability resulting from the limited sample size ni makes the distribution 

of the sample variances si
2 wider than the distribution of the true population variances σi

2. 

This effect must be considered by the likelihood function because, otherwise, the resulting 

prior distribution would be too wide. The likelihood function is therefore defined by the 

product of the marginal probability densities of the observed sample variances: 

2( , | , ) ( | , , )i i

i

L s ν f s ν s ν   
2

s ν  Eq. 7-16 

where s2 and ν are vectors containing the sample variances and corresponding degrees of 

freedom from the database. The marginal probability density function (PDF) of the sample 

variance si
2 can be determined by first defining the joint PDF of si

2 and σi
2, which is the 

product of the PDF of si
2 given σi

2 and the PDF of σi
2: 
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2 2 2 2 2( , | , , ) ( | , ) ( | , )i i i i i i if s σ ν ν s f s σ ν f σ ν s     Eq. 7-17 

The PDF of si
2 given σi

2 is that of a χ²-distribution with parameter νi (see Eq. 7-15) and the 

PDF of σi
2 is the prior distribution, which is a scaled inverse-χ² prior distribution with pa-

rameters s′ and ν′. The marginal distribution for si
2 is obtained by integrating the joint PDF 

of si
2 and σi

2 over σi
2 as follows: 
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Eq. 7-18 

The marginal distribution for the sample variances given by Eq. 7-18 can be inserted in Eq. 

7-16 to determine the likelihood for any pair of values for the hyperparameters ν′ of s′. The 

hyperparameters can then be estimated as those values for ν′ of s′ that maximise the likeli-

hood. The corresponding optimisation problem is solved numerically. 

A low value for ν′ corresponds to a wide probability density function, which represents a 

high variability of σln,b
2 (or σln,j

2) from building to building or from sampling location to 

sampling location. The prior hyperparameters sln,b′ and sln,j′ can be viewed as prior estimates 

for the standard deviations σln,b and σln,j. For σln,b and σln,j < 0.2, the standard deviations σln,b 

and σln,j of the logarithms of unit and mortar strength are approximately equal to the CoVs 

υb and υj. Therefore, the resulting prior PDFs are displayed as functions of the standard 

deviations σln,b and σln,j instead of the respective variances in the following since the results 

can then be understood more intuitively. 

7.4.3 Building-Related Prior Distributions 

First, the building-related data is used to determine corresponding prior hyperparameters. 

Following the previously described procedure, the parameters are obtained as νb′ = 7.7 and 

sln,b′ = 0.33 for unit compressive strength as well as νj′ = 4.2 and sln,j′ = 0.40 for mortar com-

pressive strength. In Fig. 7-5, the corresponding prior distributions of σln,b and σln,j are il-

lustrated. Due to the lower value of the parameter ν′, the probability density of the standard 

deviation σln,j for mortar strength is wider, which represents a higher building-to-building 
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variability of the CoV of mortar compressive strength. Since the consistency of mortar 

strength between separate mortar mixes depends not only on the production process but 

also on the workmanship on site, this result is comprehensible. Consequently, the prior for 

mortar is less informative than for unit strength. Furthermore, the mean variability is higher 

for mortar strength. 

 

Fig. 7-5 Building-related prior distributions for the standard deviations of the loga-

rithms of unit and mortar compressive strength 

To check the consistency of the prior distributions with the corresponding data, the single 

data points (119 for unit and 79 for mortar), each consisting of a sample standard deviation 

sln,i and a corresponding sample size ni, are illustrated in Fig. 7-6. In addition to the data 

points, fractiles of the marginal distribution of the sample standard deviation sln (Eq. 7-18) 

are provided based on the obtained prior hyperparameters for unit and mortar. The theoret-

ical lower and upper fractiles of the sample standard deviation draw closer to each other 

with an increase in sample size. The same effect can be seen for the data: Very high and, in 

particular, very low values of sln,i tend to occur only for small sample sizes. This observa-

tion demonstrates that the utilised procedure, which considers the sample sizes of the stand-

ard deviations, is indeed needed to estimate the prior hyperparameters realistically. The 

data points match the theoretical marginal distribution very well as the median line (s50%) 

approximately splits the number of data points in half. Furthermore, about 10 % of the data 

points lie outside the interval provided by the 5 % and 95 % fractiles s5% and s95%.  

For further illustration, the marginal probability density function for the sample standard 

deviation sln,b of unit compressive strength is displayed for different sample sizes in Fig. 

7-7. The curve with sample size n → ∞ corresponds to the prior distribution. For compari-

son, relative frequencies of the sample standard deviations in the database are given in the 

right part of Fig. 7-7. Grouping them by underlying sample size ni demonstrates that, in 

accordance with the theoretical marginal distribution, relatively low sample standard devi-

ations only occur for small sample sizes. 
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Fig. 7-6 Building-related sample sizes and sample standard deviations of the logarithm 

of unit (left) and mortar (right) compressive strength 

 

Fig. 7-7 Marginal distribution (left) and relative frequencies (right) of the building-re-

lated sample standard deviation of the logarithm of unit compressive strength 

7.4.4 Location-Related Prior Distributions 

In a second step, the location-related data is used to determine corresponding prior hyperpa-

rameters. Based on the same procedure as for the building-related prior, the prior hyperpa-

rameters are found to be νb′ = 3.8 and sln,b′ = 0.21 for unit compressive strength as well as 

νj′ = 6.1 and sln,j′ = 0.24 for mortar compressive strength. It is noted that this prior distribu-

tion represents the variability of σln,b and σln,j between different sampling locations of dif-

ferent buildings. The corresponding prior distributions are displayed in Fig. 7-8. 

The mean location-related variability of both unit and mortar strength is lower than the 

mean building-related variability, which is due to the correlation of compressive strengths 

at a single sampling location. Corresponding correlation coefficients are determined in Sec-

tion 7.4.5. For the location-related data, the value of the degree of freedom parameter ν′ for 

mortar compressive strength is higher than for unit strength. 
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Fig. 7-8 Location-related prior distributions for the standard deviations of the loga-

rithms of unit and mortar compressive strength 

The data points (656 for unit and 519 for mortar) from which the location-related prior 

hyperparameters are obtained are shown in Fig. 7-9. Again, fractiles of the marginal distri-

bution of the sample standard deviation based on the obtained prior hyperparameters are 

also displayed. In principle, the same effects regarding the sample size can be observed as 

for the building-related data in the previous section. 

 

Fig. 7-9 Location-related sample sizes and sample standard deviations of the logarithm 

of unit (left) and mortar (right) compressive strength 

The high number of data points with ni = 3 makes it possible to examine the data for this 

specific sample size more closely. Fig. 7-10 can be considered as a section through Fig. 7-9 

at ni = 3. It demonstrates the excellent agreement between the theoretical marginal PDFs, 

which are based on the obtained prior distributions, and the relative frequencies of the sam-

ple standard deviations. This agreement is particularly remarkable since the distribution 

type of the prior is not chosen due to a good fit but for mathematical practicality. The con-

jugate form of the prior distribution can thus be considered excellently suited also beyond 

its practicality. 
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Fig. 7-10 Marginal distributions and relative frequencies of location-related standard 

deviations for sample size n = 3 (left: unit strength, right: mortar strength) 

7.4.5 Correlation of Strength at a Sampling Location 

Details about the spatial correlation of material properties within one structural member are 

needed to incorporate the results of Chapter 6 regarding the influence of spatial variability 

in the development of a method for determining assessment values of masonry compressive 

strength. Therefore, the spatial correlation at one sampling location, represented by the cor-

relation coefficient ρloc, is determined for both unit and mortar compressive strength. 

In the following, the spatial correlation is described by a fixed (i.e. deterministic) correla-

tion coefficient. Therefore, instead of describing this parameter by a probability distribu-

tion, a specific value for ρloc is obtained. The correlation coefficient can be determined via 

the ratio of the average location-related variability to the average building-related variabil-

ity. For this purpose, the average variability is determined as the average sample variance 

of the logarithm of unit and mortar compressive strength since the sample variance is an 

unbiased estimator for the population variance (see Section 2.3.6). The averages of the var-

iances sln,b
2 and sln,j

2 of the logarithm of strength are shown in Table 7-1. The averaged 

sample variances are taken as estimates for typical population variances σln,b
2 and σln,j

2, 

which are then transformed to the corresponding CoVs υb and υj of unit and mortar com-

pressive strength based on Eq. 7-5. The correlation coefficient can subsequently be deter-

mined following the principle of Eq. 6-26, leading to the following equation for determin-

ing the correlation coefficient ρloc: 

2

location

2

building

loc 2

location

1

1

υ

υ
ρ

υ






 
Eq. 7-19 

The correlation coefficients for a sampling location are obtained as ρloc = 0.39 and 0.46 for 

unit and mortar compressive strength, respectively (see Table 7-1). 
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Table 7-1  Building- and location-related variability  

Material  

property 

Average variance sln
2

 CoV υ Correlation 

Building Location Building Location ρloc ρln,loc 

Unit compressive 

strength fb 
0.137 0.081 0.383 0.291 0.392 0.409 

Mortar compressive 

strength fj 
0.244 0.125 0.525 0.364 0.459 0.489 

Alternatively, the correlation coefficient can also be determined for the logarithms of unit 

and mortar compressive strength, which is required for some applications. Based on Eq. 

2-40, the correlation coefficient of the normally distributed logarithms of strengths at a 

particular sampling location can be determined as follows: 

2

ln,location

ln,loc 2

ln,building

1
s

ρ
s

   Eq. 7-20 

As evident from Table 7-1, the correlation coefficient ρln,loc for the logarithm of strength 

does not differ significantly from the correlation coefficient ρloc for strength. 

The value ρloc ≈ 0.4, which is found for the correlation of unit compressive strength at one 

sampling location, is interpreted as ρspat in the subsequent investigations, that is, as the spa-

tial correlation coefficient within a wall (see Section 6.2.1). There are two reasons for 

choosing the correlation coefficient ρloc of unit compressive strength instead of the value 

for mortar compressive strength. First, the spatial correlation coefficient ρspat is related to 

the spatial correlation of masonry compressive strength, which is mainly influenced by unit 

compressive strength. Second, ρspat refers to the spatial correlation within the whole ma-

sonry wall, whereas the obtained correlation coefficient ρloc of mortar compressive strength 

at a sampling location represents only a part of the masonry wall. Taking mortar samples 

from one sampling location (i.e. from a limited area within one wall) usually leads to re-

ceiving samples from a single mortar mix, whereas several mortar mixes are used for con-

structing a wall. In contrast, the correlation coefficient ρloc for unit compressive strength 

can be considered representative for the whole masonry wall since there is usually no 

change of the unit batch within a masonry wall and the units of one batch are placed in the 

wall arbitrarily. 

7.4.6 Statistical Uncertainty in the Estimation of Prior Hyperparameters 

As the size of the test database is limited, the estimation of the prior hyperparameters is 

connected with statistical uncertainty itself. Therefore, the uncertainty in the estimation of 

the prior hyperparameters is determined in this section to check whether a further increase 

of the test database might be beneficial. Utilising the bootstrap method (see Section 2.3.6), 

the standard error in estimating the prior hyperparameters and the corresponding confi-

dence intervals are obtained. 
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Concerning the application of the bootstrap, the present data features the special character-

istic that it does not only consist of the observed values (i.e. the variances si
2), but each of 

the variances belongs to a particular number of tests ni. In ordinary bootstrapping, a new 

sample is created by resampling from the observed values with replacement. Here, associ-

ated pairs of the values si
2 and ni would have to be resampled together. As a result, the 

bootstrap samples would each have a different composition regarding the relative share of 

high and low numbers ni of respective tests. However, variances si
2 belonging to a high ni 

have a larger influence on the estimated prior hyperparameters since the shape of the mar-

ginal distribution of s2 more strongly depends on the prior hyperparameters s′ and ν′ for a 

high number of tests n. In other words, if ni is high, the value si
2 carries more information 

about the prior hyperparameters. To keep the total amount of information in the bootstrap 

samples constant, a parametric bootstrap procedure is performed. Instead of directly 

resampling from the data points (i.e. from the variances si
2), random values are generated 

based on the marginal distribution of s2 according to Eq. 7-18, with the parameters ν′ and 

s′ according to their maximum likelihood estimates. The values ni are kept identical to the 

original sample and, for each of these values ni, an accompanying variance si
2* is generated 

using the marginal distribution of the variance s2 for the particular ni.  

The bootstrap sample consisting of the values ni and the resampled values si
2* is then used 

to re-estimate the prior hyperparameters ν′ and s′ following the same maximum likelihood 

method as for the original sample. In total, 100,000 bootstrap samples are generated, and, 

thus, 100,000 bootstrap estimates for ν′ and s′ are acquired (see Fig. 7-11). These estimates 

form the corresponding bootstrap distributions, and the respective standard deviations are 

the bootstrap standard errors in estimating the parameters ν′ and s′. Based on the bootstrap 

distributions for ν′ and s′, bootstrap confidence intervals are determined employing bias-

corrected percentile intervals (Efron and Tibshirani 1986; see also Section 2.3.6). In Table 

7-2, the maximum likelihood estimates for s′ and ν′, their bootstrap standard errors and their 

90 % bootstrap confidence intervals C90% are listed. 

From Table 7-2 and Fig. 7-11, it can be concluded that the prior hyperparameter s′ is esti-

mated with high precision. In contrast, the precision in estimating ν′ could still be improved 

by increasing the database. This is particularly true for the building-related prior. 

Table 7-2  Bootstrap standard errors and confidence intervals for the estimated prior hy-

perparameters 

Type of 

prior 
Component 

Degree of freedom parameter ν′ Scale parameter s′ 

MLE SE / MLE C90%
 MLE SE / MLE C90% 

Building- 

related 

Unit 7.7 26 % (5.5, 11.1) 0.33 3.6 % (0.31, 0.35) 

Mortar 4.2 24 % (3.0, 5.8) 0.40 5.3 % (0.36, 0.43) 

Location-

related 

Unit 3.8 12 % (3.2, 4.6) 0.21 3.3 % (0.20, 0.22) 

Mortar 6.1 16 % (4.9, 7.8) 0.24 2.8 % (0.23, 0.25) 

MLE = maximum likelihood estimate; SE = standard error 



 

7  Bayesian Framework for Statistical Uncertainty and Prior Modelling 

 

 

178 

 

Fig. 7-11 Bootstrap distributions of s′ and ν′ for the building-related prior distribution 

(top row: unit, bottom row: mortar) 

Theoretically, the additional statistical uncertainty in the estimation of the prior hyperpa-

rameters could be included in the assessment procedure by modifying the bootstrap method 

such that the bootstrap distributions may be interpreted as the posterior distributions of the 

prior hyperparameters (see Rubin 1981). Instead of the original prior distribution for the 

variance, a predictive prior distribution for the variance could then be used that incorporates 

the statistical uncertainty in the prior hyperparameters s′ and ν′. This predictive prior distri-

bution could be approximated by a scaled inverse-χ² distribution to maintain the benefits of 

the conjugate form of the prior distribution. 

However, the approach of additionally considering the statistical uncertainty in the hy-

perparameters is not followed here for two reasons. First, the achieved accuracy in estimat-

ing the prior hyperparameters is considered sufficient. Therefore, taking into account the 

statistical uncertainty at this level would unnecessarily over-complicate the procedure. Sec-

ond, when setting up a safety concept for structural design in engineering practice, it is 

unusual to consider the statistical uncertainty in the underlying stochastic models if these 

models are based on a reasonable amount of data. Even when statistical uncertainty in the 

stochastic parameters of a material property is considered by prior distributions – as, for 

example, in Rackwitz (1983) and JCSS (2002) regarding concrete strength –, the additional 

statistical uncertainty at the level of hyperparameters is not explicitly considered. In ISO 
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2394 (2015), where a procedure for deriving prior hyperparameters is specified, there also 

is no provision for considering the statistical uncertainty at the level of hyperparameters. 

Therefore, the approach in the following does not consider the statistical uncertainty in the 

hyperparameters s′ and ν′, which originates from the limitation of the test database in this 

chapter. It only incorporates the statistical uncertainty in the parameters μ and σ2, which is 

introduced by different conditions in each structure to be assessed and by the limited sample 

size for this particular structure. 

7.4.7 Prior Distribution for the Compressive Strength of Masonry 

The previously determined prior hyperparameters are valid for either unit or mortar com-

pressive strength. Thus, the corresponding prior distributions can be used if units and mor-

tar are tested separately. Since procedures for directly testing masonry compressive strength 

on composite specimens are currently gaining practical importance, corresponding prior 

hyperparameters are also determined. However, results of tests on composite masonry spec-

imens were received for only 11 buildings, all performed by the same testing lab (see Annex 

C). Therefore, the prior distribution for the variance of the logarithm of masonry strength 

is determined based on the previously obtained prior distributions for the variance of the 

logarithm of unit and mortar strength. For this purpose, the following relationship is used, 

which is based on the power equation for masonry compressive strength (see Section 3.5.3): 

2 2 2 2 2

ln,ma ln,b ln,jσ α σ β σ   Eq. 7-21 

where α and β are the exponents of the power equation, which, according to EN 1996-1-1 

(2012), are set to 0.7 and 0.3. The variances σln,b
2 and σln,j

2 are random variables that are 

scaled inverse-χ2 distributed with prior hyperparameters ν′ and s′ as previously obtained. 

Unfortunately, the linear combination of scaled inverse-χ2 distributed random variables 

does not result in a random variable of the same distribution type. Therefore, the prior dis-

tribution for σln,ma
2 is determined as follows. First, 10 million random values for both σln,b

2 

and σln,j
2 are drawn. Second, Eq. 7-21 is applied to each pair of random values. Third, a 

scaled inverse-χ2 distribution is fitted to the results using maximum likelihood estimation. 

In this stochastic simulation, σln,b
2 and σln,j

2 are considered independent, which is assumed 

to be appropriate according to the observations in Section 7.3. 

The prior hyperparameters for the composite material masonry are obtained as νma′ = 9.2 

and sln,ma′ = 0.28 based on the building-related prior hyperparameters for unit and mortar. 

The simulation results and the fitted prior distribution are displayed in Fig. 7-12. Although 

mathematically, the simulation results are not perfectly scaled inverse-χ² distributed, they 

can still be excellently described by the fitted scaled inverse-χ² distribution. 



 

7  Bayesian Framework for Statistical Uncertainty and Prior Modelling 

 

 

180 

 

Fig. 7-12 Left: Simulation results and probability densities for the building-related prior 

distribution of the variability of masonry compressive strength 

 Right: Building-related sample sizes and standard deviations of the logarithm 

of masonry compressive strength 

For comparison, the little available data for composite tests on masonry specimens from 11 

buildings is also used to determine prior hyperparameters. The tests were conducted on 

masonry cores according to Helmerich and Heidel (Heidel 1989; see also Section 3.4.4) 

and are also displayed in Annex C. The corresponding sample standard deviations and sam-

ple sizes are displayed in the right diagram of Fig. 7-12. Based on the composite test data, 

the prior hyperparameters are obtained as νma′ = 9.5 and sln,ma′ = 0.28. As in the previous 

sections, fractiles of the corresponding marginal distributions of the sample standard devi-

ation for different sample sizes are also displayed in Fig. 7-12 (right). The prior distribution 

corresponding to the hyperparameters obtained from the composite test data is additionally 

presented in Fig. 7-12 (left). 

The two independently obtained prior distributions for the variability of masonry compres-

sive strength agree excellently. Again, this demonstrates that the power equation for ma-

sonry compressive strength is suitable for stochastic extension (see Section 3.5.4). To some 

extent, the almost perfect agreement is a coincidence, especially concerning the parameter 

νma′, since, due to the low number of data points (only 11), the estimation of νma′ based on 

the composite test results contains much uncertainty. In contrast, the hyperparameters ob-

tained by utilising the component priors are based on a much larger dataset. Therefore, the 

corresponding estimates for the prior hyperparameters (νma′ = 9.2, sln,ma′ = 0.28) are used in 

the following. 
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7.5 Summary 

In this chapter, a Bayesian framework for considering statistical uncertainty in evaluating 

the compressive strength of existing masonry was presented. The framework is incorpo-

rated in the assessment method, which is developed in Chapter 8. For the application of the 

framework, prior hyperparameters need to be determined, which was achieved utilising an 

extensive database containing test results for unit and mortar compressive strength of ex-

isting masonry. 

First, the Bayesian framework was described in detail in Section 7.2. Unit and mortar com-

pressive strength are both modelled as log-normal random variables. Thus, the logarithms 

of these properties are normally distributed. The corresponding parameters, mean and var-

iance, are modelled by prior distributions, which can be updated if test data is available. 

For the prior distribution of the mean, a non-informative distribution is selected, whereas, 

for the variance, the prior distribution is chosen to be informative. To reduce the updating 

of the prior distribution to an update of the corresponding hyperparameters, the conjugate 

form of the prior distribution is chosen for the variance, which is a scaled inverse-χ² distri-

bution. 

In Section 7.3, the structure of the test database was described. The database contains re-

sults of about 5,800 compression tests on unit and mortar specimens, which were taken 

from 171 existing buildings. For modelling prior distributions, only samples originating 

from solid clay brick masonry were considered. The data was arranged so that prior distri-

butions for the variance of unit and mortar strength could be modelled for both building-

related variability and variability related to single sampling locations. 

The hyperparameters for the building- and the location-related prior distribution were esti-

mated in Section 7.4 using the maximum likelihood method. Furthermore, the correlation 

of compressive strengths at one sampling location was determined for both unit and mortar 

compressive strengths. The precision in estimating the prior hyperparameters was quanti-

fied by bootstrap standard errors and confidence intervals in Section 7.4.6. Finally, a prior 

distribution for the variability of masonry compressive strength was determined in Section 

7.4.7 based on the previously obtained prior distributions for the variability of unit and 

mortar compressive strength.  
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8 METHOD FOR DETERMINING ASSESSMENT VALUES OF 

MASONRY COMPRESSIVE STRENGTH 

8.1 Introduction 

Based on the previous findings, the development of the final method for determining suit-

able assessment values fma,a of masonry compressive strength is presented in this chapter. 

These assessment values are equivalent to design values fma,d for the design of new struc-

tures. The different term is chosen to emphasise the differences between the assessment of 

existing structures and the design of new structures. The developed method can also be 

used to determine characteristic values fma,k of masonry compressive strength and structure-

specific partial factors γM separately. However, this two-step procedure of first estimating 

the characteristic compressive strength fma,k and then determining adjusted partial factors 

γM is not required since the assessment values fma,a can be determined in one step. Never-

theless, results for characteristic values and partial factors γM are also presented for better 

comparability with the approaches for new structures. 

First, the general approach and assumptions underlying the method are explained in Section 

8.2. Since only material and statistical uncertainties are addressed in the preceding chapters, 

Section 8.3 deals with model uncertainties. The model uncertainty connected with the pre-

diction of masonry compressive strength based on unit and mortar compressive strength is 

quantified. Furthermore, a stochastic model for the uncertainty in the resistance model for 

clay brick masonry walls under compression loading is selected. 

In Section 8.4, model uncertainty, statistical uncertainty, and material variability, including 

the effects introduced by spatial variability, are combined via stochastic simulations to ob-

tain predictive posterior distributions for the vertical resistance of masonry walls. For the 

practice-oriented final method, approximations have to be made concerning the probability 

distribution type and the influence of spatial variability. These approximations are made 

based on a comparison with the simulated distributions. In addition, special considerations 

are made for slender masonry walls failing due to buckling as well as for masonry walls 

with a small cross-section and, thus, reduced stress redistribution capability. Although the 

focus of this chapter lies on a method that can be used in the case of indirect testing of 

masonry compressive strength (i.e. separate testing of unit and mortar), the same principles 

are also applied to direct testing.  

Finally, the developed method is validated through reliability analyses in Section 8.5. In 

addition to evaluating the obtained reliability level through Monte Carlo simulations 

(MCS), analyses by means of the first-order reliability method (FORM) are conducted to 

determine the sensitivity factors of the basic variables. 
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8.2 Approach and Assumptions 

8.2.1 General 

The method enables engineers to directly determine assessment values fma,a of masonry 

compressive strength. The assessment values are based on the posterior predictive distribu-

tion for masonry compressive strength. Using a fixed sensitivity factor αR for deriving suit-

able assessment values fma,a, the method follows the simplified level II approach as intro-

duced by König and Hosser (1982). The method is developed with a particular focus on 

solid clay brick masonry. It includes statistical prior information for this masonry type (see 

Chapter 7) and is validated based on the respective assumptions for the stress redistribution 

capability within the wall (see Chapter 6). However, there is also the option to use the 

method with a non-informative prior. Hence, it is also possible to apply the method for 

other types of masonry if the corresponding stress redistribution capability is assumed to 

be similar or higher than for solid clay brick masonry. The underlying assumptions of the 

developed method are noted in the following sections. 

8.2.2 Selection of Populations, Material Sampling, and Testing 

Following the proposed method, the assessment value fma,a of masonry compressive 

strength is obtained for a particular population of masonry from which a sample of material 

specimens is taken and tested. As defined in this thesis, a population of masonry consists 

of all masonry members in a structure that belong to the same type of masonry and for 

which the same assessment value fma,a shall be applied in the verification of the structure. 

In this context, a specific type of masonry is defined as uniform in terms of the used mate-

rials, unit dimensions, masonry bond, and quality of execution (WTA 7-4 2021). A popu-

lation of masonry can consist of one or more masonry members. If all masonry members 

in a particular structure are made of the same type of masonry, and no significant deviation 

of strength between different structural members is found, it is recommended to consider 

all masonry members of the structure as one population. This choice is convenient for struc-

tural verification and reduces statistical uncertainty, as all test results can be considered 

collectively. 

Following the recommendations in WTA 7-4 (2021), specimens from at least two sampling 

locations should be tested. However, more than two sampling locations per population may 

be beneficial to ensure that the decision of which members belong to a population is justi-

fied. This decision-making process can be assisted by non-destructive testing (see Sýkora 

et al. 2018). Ultimately, deciding how to subdivide a structure into masonry populations 

and choosing suitable sampling locations very much depends on the specific project and, 

to a large extent, on engineering judgement. 
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The standard case in the following considerations is that information on masonry compres-

sive strength is gained by destructive indirect testing. The testing uncertainty, which is the 

uncertainty introduced by the testing process itself, is not considered in this case as it is 

assumed to be negligible compared to the other uncertainties involved in the assessment. If 

whole units are tested, the observed variability directly corresponds to the unit-to-unit var-

iability as considered in Chapter 6. If only parts of units are tested, the coefficient of vari-

ation (CoV) is expected to be slightly higher due to size effects (see Wolf et al. 2008). For 

simplification, this effect is not considered, which can lead to slightly conservative results. 

The same applies to double punch mortar testing according to DIN 18555-9 (2019), in 

which the specimens are much smaller than the whole volume of a mortar joint beneath one 

unit, which is the reference volume for the investigations in Chapter 6. This simplification 

can also lead to slightly conservative results. However, since the variability of mortar 

strength is less influential, neglecting this effect is not expected to have a considerable in-

fluence. 

In the Bayesian update of the prior distribution utilising the test results, the spatial correla-

tion of the compressive strengths at one sampling location (see Section 7.4.5) is not explic-

itly considered, as this would significantly complicate the practice-oriented method. In 

principle, performing the Bayesian update with consideration of the spatial correlation 

structure is possible as demonstrated by Geyer et al. (2021). However, this would lead to 

different characteristic values and assessment values of masonry compressive strength for 

different structural members, whereas the goal of the method is to obtain one assessment 

value of masonry compressive strength for the whole population under consideration. Since 

spatial correlation is not considered in the Bayesian update, it is essential that the tested 

specimens are taken from more than one sampling location. Thereby, the actual amount of 

information obtained by testing increases, and the risk of underestimating the variance of 

masonry strength is reduced. 

8.2.3 Definition of Safety Elements 

The method for determining assessment values fma,a of masonry compressive strength is 

developed to be consistent with the safety elements as defined in EN 1990 (2010) and EN 

1996-1-1 (2012). According to EN 1996-1-1 (2012), the characteristic value fma,k of ma-

sonry compressive strength is the 5 % fractile of the corresponding probability distribution 

function Ffma: 

 
ma

1

ma,k 0.05ff F   Eq. 8-1 

The model uncertainty in predicting masonry compressive strength based on unit and mor-

tar properties increases the uncertainty connected with this material property. Therefore, 

this component of model uncertainty, represented by the model uncertainty factor θf in the 
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following, is considered in the determination of fma,k by including it in the distribution func-

tion Ffma. 

In EN 1996-1-1 (2012), the design value Rd of the vertical resistance of a masonry wall is 

defined as 

d red ma,d red ma,k

M

1
R Φ A f Φ A f

γ
   Eq. 8-2 

where Φred is a capacity reduction factor accounting for the effects of slenderness and ec-

centricity of loading, and A is the cross-sectional area. Strictly speaking, the partial factor 

γM as defined in Eq. 8-2 is not a partial factor for the compressive strength of masonry but 

for the vertical resistance of a masonry wall (see Section 3.7). Hence, the design value of 

masonry compressive strength, which is obtained as fma,k / γM, should address all effects 

related to the uncertainty of the vertical resistance of a masonry wall. The design and the 

assessment value of masonry compressive strength are thus defined as 

d
ma,d

red

,
R

f
Φ A

  a
ma,a

red

R
f

Φ A
  Eq. 8-3 

The partial factor γM is defined as the product of the partial factor γm, accounting for the 

variability of the material properties, and the partial factor γRd, considering the uncertainty 

of the resistance model: 

M m Rd ,γ γ γ   M m Raγ γ γ  Eq. 8-4 

where γRa is equivalent to γRd but follows the nomenclature for structural assessment. The 

design and assessment values of the resistance that do not consider the resistance model 

uncertainty are denoted as Rd
* and Ra

* in the following: 

*

d
d

Rd

,
R

R
γ

   
*

a
a

Ra

R
R

γ
  Eq. 8-5 

The developed method follows the simplified level II approach, as proposed by NABau 

(1981) and König and Hosser (1982) and currently included in EN 1990 (2010); see Section 

2.5.4. According to this approach, the assessment value of the resistance is defined by 

   *

a tΦ RP R R α β    Eq. 8-6 

where βt is the target reliability index, αR is the sensitivity factor for the resistance and Φ(∙) 

is the cumulative distribution function (CDF) of the standard normal distribution. Hence, 

Ra
* can be determined via the CDF FR of R: 

 * 1

a tΦR RR F α β     Eq. 8-7 
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Following the simplified level II approach, the sensitivity factor αR is fixed. EN 1990 (2010) 

defines αR = 0.8 for typical design situations regarding the uncertainties of load effects and 

resistances, which is usually applied in combination with a target reliability index βt,50a for 

a reference period of 50 years. In the following, a sensitivity factor αR,1a = 0.7 is used in 

combination with a target reliability index βt,1a for a reference period of one year (see Sec-

tion 2.5.4). Setting αR in Eq. 8-7 to αR,50a = 0.8 or αR,1a = 0.7 implies that the uncertainty of 

the resistance is not dominated by the uncertainty of the resistance model (see NABau 

1981). By utilising Eq. 8-7, the assessment value fma,a can be obtained directly. For explic-

itly determining partial factors γM, the partial factor γm can be calculated as 

 

 
ma

1

red

m 1

t

0.05

Φ

f

R R

F AΦ
γ

F α β






  

 Eq. 8-8 

Section 8.4 shows that the assessment value of the resistance can approximately be deter-

mined by utilising the probability distribution Ffma of masonry compressive strength instead 

of the probability distribution FR of the resistance as long as the cross-sectional area of a 

masonry wall is larger than 0.1 m². Furthermore, the posterior predictive distribution for 

masonry strength is approximated by a log-normal distribution. Therefore, Eq. 8-8 simpli-

fies to 

 

 
 ma

ma

1

m t ln,ma1

t

0.05
exp 1.645

Φ

f

R

f R

F
γ α β σ

F α β




      

 Eq. 8-9 

where σln,ma is the standard deviation of the logarithm of masonry compressive strength, 

which is set to a value that accounts for material variability, statistical uncertainty due to 

limited sample size, and the uncertainty in the prediction of masonry compressive strength 

(see Section 8.4). Eq. 8-7 for directly determining Ra
* can be simplified accordingly: 

 

 

*

a ln,ma t ln,ma red

2

ma,m ln,ma t ln,ma red

exp

exp 0.5

R

R

R μ α β σ Φ A

f σ α β σ Φ A

 

  
 Eq. 8-10 

Based on a log-normally distributed model uncertainty factor θR, the partial factor γRa for 

the uncertainty in the resistance model can be determined by 

 t

Ra

exp 0.4 R θR

θR

α β υ
γ

μ
  Eq. 8-11 

where the factor 0.4 considers that the model uncertainty is assumed to be a non-dominant 

basic variable (see NABau 1981). The parameters μθR and υθR are the mean and the CoV of 

the model uncertainty factor θR, which corresponds to the ratio of experimental resistance 

Rexp to the calculated resistance Rcal. A value of μθR > 1 represents a conservative bias of 

the resistance model, which leads to a reduction of the partial factor γRa. Here, the resistance 
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model is defined as the model for determining the vertical resistance based on a known 

value of masonry compressive strength. The resistance model uncertainty factor θR is as-

sumed to cover typical deviations in the overall dimensions of the wall. 

8.2.4 Consideration of Statistical Uncertainty 

In principle, the consideration of statistical uncertainty follows the approach in Annex D of 

EN 1990 (2010), according to which the characteristic value and the design value of a ma-

terial property are determined as specified fractiles of the corresponding posterior predic-

tive distribution (see also Section 2.6.4). In contrast to this approach, which is based on 

non-informative prior distributions, the use of informative prior distributions for the vari-

ance of material strength is incorporated in the presented method to reduce statistical un-

certainty. A similar approach can be found in Val and Stewart (2002), in which a general 

framework for deriving partial factors based on the posterior predictive distributions of the 

respective material properties is presented. Instead of tabulated fractile factors kn and kd,n 

as specified in EN 1990 (2010), statistical uncertainty is considered within the parameter 

σln,ma in the proposed method, which is demonstrated in more detail in Section 8.4. 

8.2.5 Target Reliability 

The target reliability index βt is an input parameter of the developed method and can be 

chosen as required by the relevant building authority, the owner, or other relevant parties. 

For high relative costs of safety measures, which is typical in the assessment of existing 

structures, and moderate consequences of failure, corresponding to consequence class CC 2 

in EN 1990 (2010), a target reliability index βt,1a = 3.3 for a one-year reference period is 

specified in JCSS (2001a) and ISO 2394 (2015) based on economic optimisation. There-

fore, βt,1a = 3.3 is applied as an example in this chapter. In particular cases, the required 

reliability level may be higher due to human safety criteria. More information on appropri-

ate target reliability levels for existing structures can be found in Section 2.6.2. 

8.2.6 Partial Factors for Actions 

The focus of the developed method is on suitable characteristic values, partial factors, and 

assessment values for the compressive strength of existing masonry. However, in typical 

assessment situations, adjusting the partial factors for actions may also be appropriate. This 

is the case if additional structure-specific information regarding the variability of the ac-

tions is acquired, or the target reliability level is different from that for the design of new 

structures (fib bulletin 80 2016). In typical assessment cases, no additional information re-

garding the variability of actions is available. However, if the target reliability level is cho-

sen to be lower than for the design of new structures, the partial factors for actions should 

also be reduced. For this purpose, it is recommended to apply the adjusted partial factor 

method (APFM; see Section 2.6.3). 
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In the APFM as illustrated in fib bulletin 80 (2016), partial factors are adjusted relative to 

a target reliability index βt′ = 3.8 for a reference period of 50 years. The target reliability 

level βt″ for existing structures is applied for a reference period corresponding to the re-

maining service life. If target reliability levels βt″ are specified on an annual basis instead, 

the APFM should be adapted as described next. It is assumed that the current set of partial 

factors defined by the Eurocodes approximately leads to an average annual reliability index 

of β1a = 4.2 (see Section 2.5.1; Meinen and Steenbergen 2018). This reliability index is 

equal to the target reliability index βt,1a in JCSS (2001a) and ISO 2394 (2015) for normal 

costs of safety measures and moderate failure consequences. Hence, βt,1a′ = 4.2 can be de-

fined as a reference value if annual target reliability levels are specified. Furthermore, the 

sensitivity factor for action variables is changed from αE = − 0.7 to αE,1a = − 0.8 to consider 

that a target reliability index for a one-year reference period is applied (see Section 2.5.4). 

Consequently, Eq. 2-109 and Eq. 2-110 for calculating the adjustment factors ωγ for per-

manent and imposed loads can be rewritten as follows: 

 
 

Ea, t,1a ,1a t,1a t,1a t,1a

,

,1a t,1aEa, t,1a

1 1 0.32 1 0.8

1 1 0.32 4.2 1 0.8 4.2

G E G θG G

γ G

E G θG GG

γ β α β υ β υ β υ
ω

α β υ υ υγ β

     
 

       
 Eq. 8-12 
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   

   
   
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,

Ea, t
,1a ,1a t,1a

,1a t,1a
t,1a

,1a

1 0.45 0.78 ln ln Φ

1 0.45 0.78 ln ln Φ

1 0.45 0.78 ln ln Φ 0.81 0.32

1 0.32 4.2 1 0.45 0.78 ln ln Φ 0.8 4.2

Q E
Q

γ Q

Q
Q E

Q
θQ

θQ Q

υ α βγ β
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γ β υ α β

υ ββ υ

υ υ

       
      

 

      
     





 Eq. 8-13 

with υG′ = 0.1, υθG = 0.065, and υθQ = 0.11 according to the suggestions in fib bulletin 80 

(2016). The suggested CoV υQ,50a′ = 0.25 of the maximum imposed load for a reference 

period of 50 years can be transformed to a CoV for a one-year reference period if, as an 

approximation, independence of the extreme values in subsequent years is assumed. Ac-

cording to the principles for Gumbel-distributed random variables, the standard deviation 

remains constant if the reference period is changed to one year, whereas the mean value 

reduces (see Eq. 2-32 in Section 2.3.4). This results in a CoV of υQ,1a′ = 1.05. If no addi-

tional information regarding the variability of the actions is available, then υQ,1a″ = υQ,1a′ 

and υG″ = υG′. For the target reliability index βt,1a″ = 3.3, the following partial factors for 

permanent and imposed load are obtained: 

 t,1a ,3.3 0.93 1.35 1.26G γ G Gγ β ω γ        Eq. 8-14 

 ,imp t,1a , ,imp3.3 0.70 1.5 1.05Q γ Q Qγ β ω γ        Eq. 8-15 
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Although the CoV of variable actions is usually higher than for permanent actions, the ad-

justed partial factors γQ for variable loads can become lower than the partial factor γG for 

permanent loads. The reason is that characteristic values Gk of permanent loads are defined 

via their mean value, whereas characteristic values Qk for variable actions are defined as 

upper fractiles of the extreme values for a specific reference period and thus already con-

taining a safety margin. 

In contrast to the approach in DBV-Heft 24 (2013), the possible reduction of the partial 

factors for actions is not implicitly considered by reducing the partial factor for the re-

sistance variables. This decision is made since actions can also have a favourable effect, 

and, therefore, the implicit consideration of reduced partial factors for actions in the partial 

factors for resistance variables is not applicable in all cases. Furthermore, this would also 

limit the application to specific ratios of the different types of actions.  

In Section 8.5, the combined use of the APFM for partial factors of actions and the proposed 

method for determining assessment values of masonry compressive strength is validated 

for typical existing masonry structures through reliability analyses. 

8.2.7 Further Influences on Masonry Compressive Strength 

The following influences on masonry compressive strength are not considered by the de-

veloped method and are, therefore, neither explicitly nor implicitly covered by the obtained 

assessment value fma,a: 

 Effects of high sustained loads 

 Joint thicknesses considerably differing from standard dimensions 

 Unusually high moisture content of masonry 

 Bed joints inadequately filled with mortar 

 Other structural defects, such as large cracks 

If applicable, these influences must be considered separately by utilising appropriate mod-

els. According to the German National Annex to Eurocode 6, DIN EN 1996-1-1/NA (2019), 

the design value of masonry compressive strength fma,d has to be reduced by a factor of 

ζ = 0.85 to consider the effect of sustained loads (self-weight, snow, and imposed load) on 

masonry compressive strength. Since the investigation of the influence of sustained loads 

on masonry compressive strength is beyond the scope of this thesis, it is recommended to 

also apply this factor to the assessment value of masonry compressive strength. 

As illustrated in Section 3.5.5, the typical variability of bed joint thicknesses does not lead 

to a significant increase in the variability of masonry strength since the influence of the 

variability of unit and mortar compressive strength clearly dominates. Therefore, the vari-

ability of bed joint thicknesses is not explicitly considered in the developed method. In-

stead, the resulting variability is covered by the model uncertainty factor θf. Although the 
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variability of mortar joint thicknesses is not explicitly addressed, an average mortar joint 

thickness that is considerably higher than normatively specified should be considered. Fur-

ther information and references for considering the influences listed above are provided in 

Sections 3.3.5 and 3.5.5. 

8.3 Model Uncertainties 

8.3.1 Uncertainty in the Resistance Model 

For the proposed method, the uncertainty in calculating the vertical resistance of a masonry 

wall must be specified. Therefore, the model uncertainty factor θR = Rexp / Rcal, which is the 

ratio of experimental to calculated resistance, is quantified by stochastic parameters, 

namely its mean μθR and its CoV υθR. In Table 8-1, values for μθR and υθR stated in the 

literature are displayed. Furthermore, corresponding partial factors γRa based on Eq. 8-11 

are given for βt,50a = 3.8 and αR = 0.8 (i.e. the current standard values for the design of new 

structures) and for βt,1a = 3.3 and αR,1a = 0.7. 

Table 8-1  Stochastic models for resistance model uncertainty in the literature  

Reference Material Model 
Mean 

μθR 

CoV 

υθR 

γRa for αR βt = 

0.8 ∙ 3.8 0.7 ∙ 3.3 

Glowienka (2007) 

Calcium silicate 

masonry 
Glock (2004) 

0.99 0.16 1.23 1.17 

Autoclaved aerated 

concrete masonry 
1.01 0.11 1.13 1.10 

Brehm (2011) 
Clay brick  

masonry 

Rigid-plastic 

stress-strain 

relationship 

1.10 0.18 1.13 1.07 

Bakeer and Salehi 

(2019) 

Masonry  

(general) 
Bakeer (2016a) 0.969 0.104 1.17 1.14 

fib bulletin 80  
(a) 

Concrete - 
1.0 0.14 1.19 1.14 

(b) 1.0 0.08 1.10 1.08 

DIN EN 1996-1-1/NA* 
Masonry 

(general) 
- 1.0 0.14 1.19 1.14 

* Implicitly included CoV of model uncertainty. 

The values from Brehm (2011) are based on a comparison between the experimental ca-

pacity of shear walls failing due to flexural compression and the theoretical resistance ob-

tained by assuming a fully plastic stress-strain relationship. The mean and CoV provided 

in Glowienka (2007) and Bakeer and Salehi (2019) are obtained by comparing the experi-

mental vertical resistance of walls with varying slenderness to the load-bearing capacity 

according to the models by Glock (2004) and Bakeer (2016a), respectively. Furthermore, 

the values for μθR and υθR specified in fib bulletin 80 (2016) for concrete structures are 

listed; these differentiate between case (a), in which the variability of geometrical proper-

ties is significant, and case (b), in which geometrical uncertainty can be neglected. 
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Furthermore, it is determined which value for υθR is implicitly included in the partial factor 

γM = 1.5 as specified by DIN EN 1996-1-1/NA (2019). For this purpose, μθR = 1 is assumed, 

and the CoV for masonry compressive strength is taken as υma = 17 % according to the 

recommendation for clay brick masonry in JCSS (2011). This leads to γm = 1.27 for βt = 3.8 

(Eq. 8-9), which results in γRd = γM / γm = 1.19 (Eq. 8-4) and, hence, υθR = 14 % (Eq. 8-11). 

Therefore, the stochastic model implicitly included in DIN EN 1996-1-1/NA (2019) is 

equivalent to the recommendation in fib bulletin 80 (2016) for case (a); see Table 8-1. 

In Fig. 8-1, the partial factors γRa resulting from the models for different values of the target 

reliability index based on Eq. 8-11 are displayed. The partial factor γRa obtained for the 

stochastic model implicitly included in DIN EN 1996-1-1/NA (2019) lies in the upper mid-

dle of the other models. Furthermore, it matches with case (a) in fib bulletin 80, and, due 

to its derivation, it is consistent with DIN EN 1996-1-1/NA (2019). Therefore, υθR = 14 % 

and μθR = 1.0 are adopted in the following. 

 

Fig. 8-1 Influence of target reliability and stochastic model on the partial factor γRa for 

resistance model uncertainty 

8.3.2 Uncertainty in Masonry Compressive Strength Prediction 

In this section, the uncertainty associated with the prediction of masonry compressive 

strength based on unit and mortar compressive strength is quantified utilising experimental 

results from the literature. The data from compressive strength tests on solid clay brick 

masonry, which was compiled for this purpose, consists of experiments from three sources. 

The first two sources are test databases by Kirtschig and Meyer (1987) and Tschötschel 

(1990). Both databases contain results of compressive strength tests on laboratory-con-

structed masonry specimens (RILEM specimens, stack-bonded prisms, single wythe walls, 

and bonded masonry walls) made of various combinations of unit and mortar. Only tests 

on solid clay brick masonry with concentric compression loading and at least n = 3 repeti-

tions for the same parameter combination are considered. From the database by Tschötschel 
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(1990), only test results are included that are not part of the test database by Kirtschig and 

Meyer (1987). This results in 14 combinations of brick and mortar (42 tests in total) from 

Kirtschig and Meyer (1987) and 11 additional combinations (54 tests) from Tschötschel 

(1990). The third source are experiments from Lumantarna et al. (2014) consisting of com-

pressive strength tests on three-brick high and one-brick long masonry specimens. These 

tests were conducted on either prisms directly extracted from existing masonry walls, in-

cluding head and bed joints, or stack-bonded prisms constructed in the laboratory using 

solid clay bricks from existing buildings. From Lumantarna et al. (2014), 22 combinations 

of brick and mortar (120 test results, 45 field-extracted and 75 laboratory-constructed spec-

imens) are added to the compiled test data. For all the tests, the corresponding unit and 

mortar compressive strength are provided in the referenced literature. In total, the test data 

for the subsequent investigations contains 216 test results corresponding to 47 combina-

tions of solid clay bricks and mortar. The experimental data is displayed in Annex D. 

Since unit, mortar, and masonry compressive strengths were obtained on test specimens 

with different geometries, the strengths need to be modified to receive standardised strength 

values. Therefore, unit compressive strength is multiplied by the shape factor according to 

EN 772-1 (2011). In the databases by Kirtschig and Meyer (1987) and Tschötschel (1990), 

most of the unit compressive strength results were obtained in tests according to the former 

German brick standard DIN 105-1 (1982), which required cutting bricks with a height of 

h ≤ 71 mm in half. The halves were then laid upon each other with a thin cement mortar 

layer in between before they were tested. According to this testing procedure, no shape 

factor was required, which is also followed here. 

In the databases by Kirtschig and Meyer (1987) and Tschötschel (1990), mortar strength 

values correspond to tests on mortar prisms as specified by EN 1015-11 (2019), whereas 

mortar strength corresponds to tests on cubes of 50 mm length in Lumantarna et al. (2014). 

The mortar strength results corresponding to both types of testing are directly used as input 

parameters for masonry compressive strength prediction here since no reliable conversion 

formula exists. All of the masonry compressive strength results are converted to a height to 

thickness ratio of h / t = 5 following the proposal by Mann (1983); see Eq. 3-12. Test results 

for bonded masonry (i.e. specimens with mortar joints parallel to the wall face) are addi-

tionally adjusted through division by 0.8, as specified in EN 1996-1-1 (2012), to obtain a 

masonry strength corresponding to single wythe masonry. Strength results obtained on 

stack-bonded masonry prisms (i.e. masonry specimens without perpend joints) are multi-

plied by a reduction factor, as the respective strength is higher due to the missing influence 

of perpend joints. This reduction factor for stack-bonded prisms is chosen as 0.91 according 

to the evaluation of experimental results in Section 4.3.  
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The model uncertainty is quantified for the empirical power models in EN 1996-1-1 (2012) 

and DIN EN 1996-1-1/NA (2019) and the model by Hilsdorf (1969). Although other mod-

els with mechanical backgrounds have been developed (see Section 3.5.2), the investigation 

is limited to Hilsdorf’s model as an example since none of the models with a mechanical 

background is commonly used in current engineering practice. In the model by Hilsdorf 

(1969), the factor Uu for describing the non-uniformity of the stress distribution is set to 1.5 

in this investigation, and unit tensile strength fbt is estimated as 0.04 fb (Schubert 2010). 

The ratio of mean experimental strength fma,exp to predicted strength fma,cal is determined for 

all of the 47 parameter combinations. These ratios can be viewed as random realisations of 

the model uncertainty factor θf, which is defined by 

ma,exp

ma,cal

f

f
θ

f
  Eq. 8-16 

For quantification of the model uncertainty, the arithmetic mean mθf and the sample CoV 

Vθf of the ratios between experimental and predicted strength are determined, which serve 

as estimates for the expected value μθf and the coefficient of variation υθf of the model un-

certainty factor. The CoV υθf quantifies the precision of the model, whereas the expected 

value μθf specifies the bias. For μθf > 1, the bias is conservative. 

The parameters K, α, and β of the empirical power equation (see Eq. 3-19) can be optimised 

to obtain a model with corresponding arithmetic mean mθf = 1 and a minimum CoV Vθf. As 

a result of this procedure, a fourth model is created, which is the optimum power model 

with regard to model uncertainty based on the employed test data. In the optimisation of 

the model, α + β = 1 is chosen as a boundary condition for the reasons explained in Section 

3.5.4. Furthermore, with only two independent parameters K and α, the risk of overfitting 

is also reduced. With the parameter α, the CoV of the model uncertainty factor (the preci-

sion) is controlled, whereas the parameter K determines the expected value of the model 

uncertainty factor (the bias). The optimisation results in K = 0.71, α = 0.76, and β = 0.24. 

The optimised parameter values for α and β align excellently with those obtained by the 

first-order Taylor approximation of the model by Hilsdorf (1969) in Section 3.5.4, which 

also resulted in α = 0.76 and β = 0.24. 

In Fig. 8-2 (left), the combinations of mortar and unit compressive strengths included in 

the evaluated test data are displayed. The compiled test data very well covers the range of 

mortar strengths < 15 N/mm² and unit strengths < 40 N/mm². In Fig. 8-2 (right), the mean 

experimental strengths fma,exp are compared to the predictions fma,cal by the investigated mod-

els. It should be noted that the power models from EN 1996-1-1 (2012) and DIN EN 1996-

1-1/NA (2019) aim to determine the characteristic masonry compressive strength, whereas 

the model by Hilsdorf and the power model with optimised parameters aim to determine 
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the mean value of masonry compressive strength. It is evident that the prediction of ma-

sonry compressive strength is connected with a significant model uncertainty that must be 

considered when masonry compressive strength is determined based on its component 

strengths. Furthermore, it is worth mentioning that none of the points corresponding to the 

model in DIN EN 1996-1-1/NA (2019) lies significantly below the experimental strength, 

which is due to conservatism in the formulation of the corresponding formula. 

 

Fig. 8-2  Left: Combinations of mortar and unit compressive strengths included in the 

evaluated test data 

 Right: Comparison of experimental masonry compressive strengths to the pre-

dictions of various models 

If the exponents α and β of the power equation are chosen to fulfil α + β = 1, the power 

equation can be expressed as a relationship between dimensionless variables: 

ma b

j j

α

f f
K

f f

 
   

 

 Eq. 8-17 

In logarithmic form, Eq. 8-17 can be written as 

ma b

j j

ln ln ln
f f

K α
f f

   Eq. 8-18 

Eq. 8-17 and Eq. 8-18 make it possible to display the power relationship between masonry 

compressive strength and the component strengths in planar view if the condition α + β = 1 

is met. In Fig. 8-3, the power equation for solid clay brick masonry from EN 1996-1-1 

(2012), the power equation with optimised parameters, and the experimental results are 

displayed. The illustration in logarithmic form demonstrates that the power equation is very 

well suited to describe the relationship between masonry, unit, and mortar strength, alt-

hough the choice of a power equation is not based on mechanical reasons. The parameter α 
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is the slope of the linear curve in the logarithmic representation, and the parameter K cor-

responds to the ratio fma / fj for fb / fj = 1. 

 

Fig. 8-3  Comparison of experimental masonry compressive strengths and predictions 

by power equations with α + β = 1 

Table 8-2 displays the model uncertainty statistics for the four investigated models. It can 

be seen that the CoVs of the model uncertainty are relatively close to each other, with the 

lowest CoV of 26 % obtained for the power model from DIN EN 1996-1-1/NA (2019). The 

highest CoV is obtained for the model by Hilsdorf (1969), although it has more input pa-

rameters than the power equation. It additionally includes the tensile strength of the unit, 

which, however, was not directly tested for the investigated specimens, and the ratio of 

joint thickness to unit height. This indicates that models with a mechanical background may 

only be favourable over empirical models if additional mechanical input parameters, such 

as unit tensile strength, are directly tested or uncommon geometrical boundary conditions, 

such as unusually thick mortar joints, are present. The optimisation of the power equation 

parameters does not lead to a much lower CoV compared to the existing equations. Com-

pared to the model in DIN EN 1996-1-1/NA (2019), the CoV is even higher, which is due 

to the additional condition of α + β = 1 in the optimisation.  

Table 8-2  Model uncertainty of masonry compressive strength prediction 

Model 

Parameters  

of power equation 

Ratio θf 

All data Lumantarna et. al (2014) 

K α β Mean CoV Mean CoV 

EN 1996-1-1 0.55 0.7 0.3 1.39 29.1 % 1.62 17.2 % 

DIN EN 1996-1-1/NA 0.95 0.585 0.162 1.49 25.8 % 1.63 21.6 % 

Optimised 0.71 0.76 0.24 1.00 28.6 % 1.18 16.8 % 

Hilsdorf (1969) - 1.18 30.1 % 1.42 19.0 % 
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As expected, the mean mθf of the ratio θf is higher for the two normative power equations 

compared to the two other models since these equations are formulated to determine the 

characteristic value instead of the mean value of masonry compressive strength. Based on 

the factor 0.8, which is usually stated as the conversion factor fma,k / fma,m between charac-

teristic and mean value included in the power equation (see Section 3.5.3), a mean ratio of 

1 / 0.8 = 1.25 would be expected. However, the mean ratios of mθf = 1.39 and 1.49 are 

higher. These results indicate two possibilities. First, the normative power equations may 

include a higher characteristic-to-mean reduction factor than usually stated. Second, the 

evaluated test data may contain masonry compressive strength results that are systemati-

cally higher on average than those included in the test database used for deriving the nor-

mative parameters. 

One reason for the relatively high CoVs of θf are the different types of test specimens in the 

evaluated test data, whose influence cannot be entirely captured by corresponding conver-

sion factors. Another reason is potentially different boundary conditions in the tests since 

they were conducted by various researchers. To obtain a more accurate estimate of the 

model uncertainty, only the test results by Lumantarna et al. (2014) are considered in a 

second evaluation of the model uncertainty statistics. Therefore, all tests in the evaluation 

are conducted by only one research team and, hence, according to similar testing conditions. 

Furthermore, the test results by Lumantarna et al. (2014) cover a range of unit and mortar 

strengths that is very representative of existing masonry from before 1950 (see Fig. 8-2 and 

Fig. 7-3). As evident from Table 8-2, the evaluation of only the data from Lumantarna et 

al. (2014) leads to much lower CoVs. For the model in EN 1996-1-1 (2012), for example, 

the CoV decreases from 29.1 % to 17.2 %. 

It is noted that some of the 47 combinations of unit and mortar compressive strength (see 

Fig. 8-2, left) lie outside the application range of the power equation as specified in EN 

1996-1-1 (2012) and DIN EN 1996-1-1/NA/A1 (2014). However, considering only the 

combinations within the application range (38 and 32, respectively) does not lead to a sig-

nificant reduction of the CoVs. 

The CoV of the ratio θf in Table 8-2 still includes uncertainties in the testing procedure, 

such as measurement errors and geometrical imperfections. Furthermore, unit, mortar, and 

masonry compressive strength were only tested on a limited number of specimens. Hence, 

the average test results for unit and mortar compressive strength may deviate from the av-

erage unit and mortar strength in the tested masonry specimens. According to Ellingwood 

et al. (1980), the actual CoV υθf
* of model uncertainty can be obtained by 

* 2 2 2

test specθf θfυ υ υ υ    Eq. 8-19 
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where υtest is the CoV representing testing uncertainties. The term υspec represents uncer-

tainties related to differences between the strength of the separately tested brick and mortar 

samples and the actual strength in the test specimens. It also represents deviations of the 

actual geometrical dimensions of the tested specimens from the nominal or measured geo-

metrical dimensions. 

The stochastic model for the uncertainty in masonry compressive strength prediction is 

meant to include the effect of typical geometrical deviations in the ratio of bed joint thick-

ness to unit height. Since the application of Eq. 8-19 also aims to remove these variations, 

no further reduction is made at this point. Therefore, the CoV of the model uncertainty in 

predicting masonry compressive strength is set to υθf ≈ 17 % in the following. A conserva-

tive bias, which is found for the normative equations, is not considered. This keeps the 

developed method open for new, advanced models that predict masonry strength with 

higher precision and less bias. Thus, the mean of the model uncertainty factor is set to 

μθf = 1. The model uncertainty factor θf is assumed to be log-normally distributed in the 

following. This choice is advantageous because, as a consequence, multiplying the log-

normally distributed masonry compressive strength by θf yields a product that is also log-

normally distributed. 

In the quantification of model uncertainty above, the prediction of masonry compressive 

strength is, in most cases, based on mortar compressive strengths determined by standard 

testing on prisms or cubes (i.e. tests on masonry samples that did not cure within masonry). 

The only exception are those tests by Lumantarna et al. (2014) that were performed on 

masonry samples directly taken from existing buildings. It is expected that a prediction 

based on the actual mortar strength in the joint (e.g. obtained by double punch testing) 

increases the accuracy since the curing conditions are implicitly taken into account (see 

Sections 3.4.3 and 4.2.2). However, the existing empirical models are based on standard 

mortar strengths, and too few test results are available to derive an empirical power equa-

tion based on the actual mortar strength in the joint. Therefore, the mortar compressive 

strength determined by double punch tests on samples extracted from masonry joints must 

be converted to the standard prism strength before being used as an input value for the 

power equation. By this conversion, additional uncertainty is introduced. It is assumed that 

this additional uncertainty is compensated for by the increase in accuracy through implicitly 

taking the curing conditions into account. Hence, the model uncertainty determined above 

can be considered suitable also for predictions based on mortar samples extracted from 

masonry. 
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8.4 Combination of the Different Types of Uncertainty and Approximation 

8.4.1 General 

In the previous chapters, the different types of uncertainty (spatial material variability, sta-

tistical uncertainty, and model uncertainty) were investigated separately. Next, these un-

certainties are combined to determine assessment values of masonry compressive strength 

that include all the corresponding effects. First, probability distributions of the resistance 

of masonry walls are determined by stochastic simulation. These simulations are performed 

for the case of indirect testing of masonry compressive strength and are based on 

 the relationship between the probability distribution of spatially variable masonry com-

pressive strength and the resulting distribution of the wall resistance (see Chapter 6), 

 the Bayesian framework and prior distributions for unit and mortar compressive 

strength presented in Chapter 7, and 

 the findings for model uncertainty from Section 8.3. 

Then, suitable assessment values can be determined as fractiles of the simulated posterior 

predictive distribution. Since the aim is to develop a method for engineering practice, the 

results of the stochastic simulations need to be approximated. Finding an approximation 

that is both sufficiently exact and easy to use includes answering the following questions: 

 Should the effects caused by the spatial variability of material properties be considered, 

or can they be neglected? 

 How can the predictive log-t distributions for unit and mortar compressive strength be 

combined to a predictive distribution for masonry compressive strength? 

 Is the strength reduction factor for walls with a small cross-section defined in EN 1996-

1-1 (2012) also suitable for the assessment of existing masonry walls? 

 Is it necessary to define a different procedure for slender masonry walls that fail due 

to buckling? 

8.4.2 Simulation Procedure for Combining the Different Types of Uncertainty 

The procedure of the stochastic simulation is illustrated by a flowchart in Fig. 8-4. The 

single steps are based on the findings from the previous chapters and explained in the fol-

lowing. The flowchart is based on the assumption that the resistance of the considered ma-

sonry wall is mainly dependent on masonry compressive strength. For slender walls failing 

due to buckling, a slightly altered procedure is described in Section 8.4.5. 

Several times during the procedure, the expectation μX and CoV υX of log-normal random 

variables X needs to be transformed to the expectation μlnX and variance σlnX 
2 of the loga-

rithm of the random variables (and vice versa). This conversion is always done according 

to Eq. 2-26 and Eq. 2-27 in Section 2.3.4. 
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Fig. 8-4 Flowchart for simulating assessment values of masonry compressive strength 

First, sample sizes nb and nj of unit and mortar compressive strength tests and corresponding 

standard deviations sln,b and sln,j of the test results need to be defined. The arithmetic means 

of the test results do not need to be explicitly specified, as the results are finally normalised 

by the compressive strength fma,m, which is the masonry compressive strength calculated 

based on the arithmetic means of the test results. Given the outcome of the test results, the 

posterior hyperparameters for the mean and variance of the logarithm of unit and mortar 

strength are calculated following the Bayesian framework presented in Section 7.2. 

Thereby, the posterior distributions for the means μln,b and μln,j and the variances σln,b
2 and 

σln,j
2 of the components are defined, and corresponding random values can be generated. 

Define prior hyperparameters 

νb′, sln,b′ and test statistics nb, sln,b

Define prior hyperparameters 

νj′, sln,j′ and test statistics nj, sln,j

Calculate posterior hyperparameters

νb″, sln,b″, nb″, mln,b″ (Eqs. 7-12 to 7-15)

Calculate posterior hyperparameters

νj″, sln,j″, nj″, mln,j″ (Eqs. 7-12 to 7-15)

Sample from σln,b
2 ~ Inv-χ2 (νb″, sln,b″

2), 

then from μln,b ~ N (mln,b″, σln,b
2 / nb″)

Calculate variance of ln fma

σln,ma
2 = α2 σln,b

2 + β2 σln,j
2

Sample from σln,j
2 ~ Inv-χ2 (νj″, sln,j″

2), 

then from μln,j ~ N (mln,j″, σln,j
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υθf

Calculate variance of ln R

σlnR
2 = ln (1 + υθf

2) + ln (1 + υma,wall
2)

+ ln (1 + c2 υma,spat
2)

Sample from R ~ LN (μlnR, σlnR
2)

wallCalculate expectation of R

μR = μma A Φred exp (– a υma,spat
b)

Define 

υθR

Define target 

reliability βt

Determine quantile Ra
* of sampled distribution of R

Ra
* = FR

–1 [Φ(– αR βt)]

Calculate partial factor for 

model uncertainty

γRa = exp (0.4 αR βt υθR)

Calculate relative assessment value of 

masonry compressive strength

fma,a / fma,m = Ra / Rdet

Calculate assessment value of resistance

Ra = Ra
* / γRa
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Based on the random values for the variances σln,b
2 and σln,j

2 of the logarithms of unit and 

mortar strength, the variance σln,ma
2 of the logarithm of masonry compressive strength is 

obtained by utilising the power equation with parameters α = 0.7 and β = 0.3 defined in EN 

1996-1-1 (2012).  

The CoV υma of masonry compressive strength can then be split into a component υma,spat 

accounting for spatial variability and a component υma,wall addressing wall-to-wall variabil-

ity (see Eq. 6-25 and Eq. 6-26). It is assumed that the model uncertainty factor θf corre-

sponds to an overall model uncertainty for the compressive strength of an entire wall. This 

is equivalent to perfect spatial correlation (i.e. ρspat = 1) for θf. Thus, in analogy to wall-to-

wall material variability, the model uncertainty factor θf is not subjected to effects resulting 

from spatial variability. Hence, the overall variance σlnR 
2 of the logarithm of the wall re-

sistance can be obtained as follows (see Eq. 6-28): 

     2 2 2 2 2

ln ma,wall ma,spatln 1 ln 1 ln 1R θfσ υ υ c υ       Eq. 8-20 

where c is the parameter derived in Chapter 6 for the ratio between the resulting CoV of 

the wall resistance and the CoV of spatially variable masonry strength υma,spat. The model 

uncertainty factor θf and the wall-to-wall component of the variability of strength are log-

normally distributed. In contrast, the probability distribution type of the wall resistance that 

results from spatial variability is undefined (see Fig. 6-1). For the various walls investigated 

in Chapter 6, different distribution types appeared to be most suitable for describing the 

distribution of R in the case of ρspat = 0. However, the CoV of the resistance resulting from 

the spatial component of material variability (c ∙ υma,spat) is usually much smaller than the 

CoV of model uncertainty (υθf = 17 %). For ρspat = 0.4, as determined in Section 7.4.5, 

c ∙ υma,spat is also much smaller than the component υma,wall. Therefore, the log-normally dis-

tributed components in Eq. 8-20 clearly dominate. The distribution of R can thus be mod-

elled as log-normally distributed without significant loss of accuracy. 

The expectations of masonry compressive strength and the load-bearing capacity are de-

noted as μma and μR (instead of fma,m and Rm) here to better distinguish them from the arith-

metic mean values of a sample. The expectation μma of masonry compressive strength is 

determined based on μb and μj using the power equation with α = 0.7, β = 0.3, and Km. The 

parameter Km is meant to be calibrated such that the power equation yields a mean value of 

masonry compressive strength instead of a characteristic masonry strength (see Section 

3.5.3). Due to the final normalisation, the choice of a specific value for Km does not influ-

ence the simulation results. The expectation μR of the wall resistance is then obtained as a 

function of μma and υma,spat (see Eq. 6-22): 

 ma red ma,spatexp b

Rμ μ AΦ a υ   Eq. 8-21 
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where a and b are the parameters derived in Chapter 6 for describing the influence of spatial 

variability on the mean wall resistance. For the results presented in Section 8.4.3, the pa-

rameters a, b, and c are considered as found for the reference wall investigated in Section 

6.3.4. For the considerations in Sections 8.4.4 and 8.4.5, the parameters derived for walls 

with small cross-sections and slender walls are used, respectively (see Sections 6.3.6 and 

6.3.7). 

With μlnR and σlnR 
2, the distribution of the wall resistance is defined. For each randomly 

generated pair μR and σlnR
 2, one random value for the wall resistance is generated. The 

generation of random values is repeated 107 times for each set of boundary conditions. Ra
* 

can then be determined as a specific fractile of these simulated resistances (see Eq. 8-7). Ra 

is obtained by applying the partial factor γRa, which is determined according to Eq. 8-11. 

Therefore, the actual stochastic simulation only considers the uncertainties contributing to 

γm. 

Finally, the ratio of the assessment value fma,a to the value fma,m of masonry compressive 

strength is calculated. The parameter fma,m represents the masonry compressive strength 

obtained by applying the arithmetic means fb,m and fj,m of unit and mortar compressive 

strength as input values in the prediction of masonry compressive strength. If the power 

equation is used for calculating the masonry compressive strength, fma,m is defined as 

ma,m m b,m j,m

α βf K f f  Eq. 8-22 

The ratio fma,a / fma,m is equal to Ra / Rdet, where Rdet is the deterministic load-bearing capac-

ity that is calculated based on the arithmetic means of unit and mortar compressive strength: 

det m b,m j,m red ma,m red

α βR K f f AΦ f AΦ   Eq. 8-23 

This leads to the following expression: 

ma,a red ma,aa

det ma,m red ma,m

f AΦ fR

R f AΦ f
   Eq. 8-24 

It is noted that the simulation is only required in the case of a limited sample size n. In the 

theoretical case of n → ∞, assessment values can also be determined analytically, as 

demonstrated in Section 6.3.5. The simulation procedure displayed in Fig. 8-4 makes it 

possible to determine assessment values of masonry compressive strength that can be used 

in the verification of existing masonry structures. However, such a stochastic simulation is 

not feasible in engineering practice. Therefore, an approximate procedure is derived in the 

following based on an analysis of simulation results for different boundary conditions. 
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8.4.3 Simulation Results and Approximation for the Reference Case 

In Fig. 8-5, simulation results for the ratio fma,a / fma,m are displayed as a function of the 

spatial correlation coefficient ρspat. The correlation coefficient ρspat specifies what share of 

material variability can be attributed to spatial variability within a wall and what share to 

wall-to-wall variability. For ρspat = 0, all the variability of material properties is spatial var-

iability, whereas for ρspat = 1, the material properties within each wall are homogeneous 

since material variability completely corresponds to variability between walls. The results 

are obtained for a target reliability level of βt,1a = 3.3 combined with a sensitivity factor 

αR,1a = 0.7 and sample standard deviations sln,b = sln,j = 0.35. 

First, only material uncertainty is considered. This means that the sample standard devia-

tions for unit and mortar compressive strength are considered equal to the respective pop-

ulation standard deviations, and the CoVs for model uncertainty are set to zero. In this case, 

spatial variability leads to a positive effect: The ratio fma,a / fma,m is considerably higher for 

ρspat = 0 than for ρspat = 1. This positive effect matches the results of the MCS in Chapter 6 

(see Fig. 6-10). 

Then, statistical uncertainty is introduced by defining a limited sample size nb = nj = 6 for 

tests on unit and mortar. Prior information is considered via the building-related priors from 

Section 7.4.3 with νb′ = 7.7, sln,b′ = 0.33, νj′ = 4.2, and sln,j′ = 0.40. Furthermore, model un-

certainty is included according to the stochastic model for the uncertainty in predicting 

masonry compressive strength derived in Section 8.3.2 and the partial factor γRa for re-

sistance model uncertainty (see Section 8.3.1). By additionally considering statistical and 

model uncertainty, the positive effect of spatial variability disappears: The curve for 

fma,a / fma,m becomes nearly horizontal. 

 

Fig. 8-5  Influence of spatial variability on the assessment value 

The loss of the positive effect of considering spatial variability is caused by neither model 

nor statistical uncertainty alone, as Fig. 8-5 demonstrates. The curve for fma,a / fma,m also 
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tends to become horizontal if either model or statistical uncertainty are considered sepa-

rately in addition to material uncertainty. The reason for the loss of the positive effect can 

be explained with support from Fig. 8-6. In the left diagram, the probability density func-

tions (PDFs) of the wall resistance for ρspat = 0 and 1 are given for the case, where only 

material uncertainty is considered. It is evident that the positive effect of considering spatial 

variability, which is given by a smaller area under the left tail of the PDF, is caused by the 

very low variability for ρspat = 0, which overcompensates for the reduction in the expecta-

tion μR. 

If model uncertainty is introduced, both PDFs are widened. However, the effect on the PDF 

for ρspat = 0 is much more pronounced since the initial CoV is low. It is noted that the PDF 

in the right diagram of Fig. 8-6 only includes the model uncertainty for predicting masonry 

compressive strength, as the uncertainty in the resistance model is not considered in the 

simulation directly but by applying the partial factor γRa. Introducing statistical uncertainty 

also has a more substantial effect in the case of ρspat = 0. Due to the reduction of the expec-

tation μR with higher spatial variability, statistical uncertainty in the variance σln,ma
2 also 

leads to an uncertainty in μR. Thus, the PDF is widened, and its kurtosis is also further 

increased. In total, introducing model and statistical uncertainty leads to the effect that the 

left tails of the PDFs become close (see Fig. 8-6, right). 

 

Fig. 8-6  Probability density of the wall resistance for ρspat = 0 and 1 (left: only material 

uncertainty; right: material, model, and statistical uncertainty) 

The results presented in Fig. 8-5 and Fig. 8-6 indicate that the consideration of spatial var-

iability may be negligible. Not explicitly addressing the influence of spatial variability 

would make the procedure for determining assessment values of masonry compressive 

strength much more convenient. Therefore, it is investigated whether the influence of spa-

tial variability may also be neglected for other boundary conditions. The sample size is 

varied between nb = nj = 3 and nb = nj = 30, which is considered a typical range in the as-

sessment of existing structures. The target reliability is chosen as βt,1a = 3.3, which is the 
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example value for the assessment of existing structures; as βt,1a = 4.2, which can be applied 

if the target reliability should not be reduced in comparison to the design of new structures; 

and as βt,1a = 3.7 to define an intermediate value. In ISO 2394 (2015), βt,1a = 3.7 corresponds 

to the target reliability both for high relative costs of safety measures and large failure con-

sequences and for medium relative costs of safety measures and minor failure conse-

quences. The standard deviations of the test results for the logarithms of unit and mortar 

strength are set to sln,b = sln,j = 0.2, 0.35, and 0.5, which correspond to a low, typical, and 

high variability of strength (see Section 7.3). 

These subsequent simulations are performed for two different situations. The first case, 

which is assumed to be more common, corresponds to a situation where the same assess-

ment value of masonry compressive strength is to be determined for several walls that are 

made from the same type of masonry. Therefore, tests are performed on specimens from 

more than one wall. In this case, the correlation of material properties within one wall is set 

to ρspat = 0.4 (see Section 7.4.5), and the building-related prior is used for both components. 

Then, a second situation is investigated where a single wall is assessed, meaning that the 

considered population of masonry consists of only one wall. In this case, the spatial corre-

lation coefficient is set to ρspat = 0, as the observed CoVs do not include a wall-to-wall 

variability but only the spatial variability within the wall. In this case, the location-related 

prior is used to evaluate unit compressive strength since this prior distribution is representa-

tive of the variability within one wall. For mortar compressive strength, however, the build-

ing-related prior is used since the location-related prior for mortar strength cannot be con-

sidered representative of the variability within an entire wall, which is usually made of 

several mortar mixes (see Section 7.4.5). The simulation results for assessing several walls 

are presented in Fig. 8-7, and the results for assessing a single wall are displayed in Fig. 

8-8. 

 

Fig. 8-7  Assessment values fma,a of masonry compressive strength obtained by spatial 

and non-spatial simulation (assessment of several walls, building-related 

prior) 
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Fig. 8-8  Assessment values fma,a of masonry compressive strength obtained by spatial 

and non-spatial simulation (assessment of a single wall, location-related prior 

for unit, building-related prior for mortar) 

Based on Fig. 8-7 and Fig. 8-8, the following observations can be made: 

 For both assessment situations and almost all boundary conditions, the difference be-

tween the spatial (ρspat < 1) and non-spatial (ρspat = 1) analysis is relatively low. 

 If the sample size is at least nb = nj = 6, considering spatial variability never leads to an 

assessment value that is more than 3 % lower than the assessment value obtained by 

non-spatial analysis. 

 If a single wall is investigated and the sample size is large, considering spatial varia-

bility can lead to an increase in the assessment value of more than 10 %. However, 

large sample sizes are rather uncommon if a single masonry wall is investigated. 

 Comparing the non-spatial results for the two different assessment situations (single 

wall vs several walls), which only differ in the prior distribution for unit compressive 

strength, reveals only slight differences. In most cases, an assessment based on the 

location-related prior for unit compressive strength leads to slightly higher assessment 

values since, in this case, the prior estimate s′ for the variability of unit compressive 

strength is smaller. 

It can be concluded that the influence of spatial variability can be neglected without obtain-

ing results that are either too conservative or too unsafe. Furthermore, the building-related 

prior information can conservatively be used in all assessment situations as it leads to lower 

assessment values in most cases. Choosing the location-related prior hyperparameters for 

unit strength is included in the proposed method as an additional option for assessing a 

single wall. 

In addition to neglecting spatial variability, further approximations are needed to obtain an 

analytical method for determining suitable assessment values of masonry compressive 

strength. One obstacle for the analytical solution is that the predictive distributions for unit 
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and mortar compressive strength are log-t distributed. As shown in Section 3.5.4, the power 

equation for masonry compressive strength based on unit and mortar compressive strength 

is equivalent to a linear combination of the logarithms of strength: 

ma prob b jln ln ln ln lnff θ K α f β f     Eq. 8-25 

Therefore, the random variable for the logarithm of masonry compressive strength is a lin-

ear function of three random variables (i.e. ln θf, ln fb, and ln fj), with ln fb and ln fj being t-

distributed. Unfortunately, the sum of two t-distributed random variables leads to a random 

variable with an unspecified distribution type. The predictive log-t distributions for fb and 

fj are approximated by log-normal distributions to overcome this obstacle. According to 

JCSS (2002), a predictive t-distribution can be approximated by a normal distribution if the 

corresponding standard deviation is chosen as 

1 2

n ν
σ s

n ν

 


  
 Eq. 8-26 

where s″, n″, and ν″ are the posterior hyperparameters according to the Bayesian framework 

presented in Section 7.2. In JCSS (2002), it is stated that the approximation is suitable for 

ν″ and n″ > 10. 

The example in Fig. 8-9 shows the goodness of the approximation for m = m″ = 0, 

s = s″ = 1, and n = n″ = ν″ + 1. This corresponds to a non-informative prior and a predictive 

distribution that converges to a standard normal distribution for n → ∞. In the left diagram, 

the PDF is shown, and in the right diagram, the left tail of the CDF is illustrated. It can be 

seen that the approximation improves for higher n. For low values of n, the goodness of the 

approximation is limited, as the normal distribution always has an excess kurtosis γ2 = 0, 

whereas γ2 is higher than zero for the t-distribution. Thus, the approximation slightly over-

estimates p fractiles with low p. 

 

Fig. 8-9  Approximation of posterior predictive distribution 
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Based on the approximation provided by Eq. 8-26, the variance of the logarithm of masonry 

compressive strength can be determined as 

j j2 2 2 2 2 2b b
ln,ma ln ln,b ln,j

b b j j1 2 1 2
θf

n νn ν
σ σ α s β s

n ν n ν

    
                 

 Eq. 8-27 

Thereby, the statistical uncertainty caused by the limited sample size for unit and mortar 

compressive strength is included in σln,ma
2, which can be inserted in Eq. 8-9 to obtain partial 

factors γm. Furthermore, assessment values of masonry compressive strength can be deter-

mined based on fractiles of the log-normal distribution with σln,ma
2 according to Eq. 8-27: 

 2

ma,a t ln,ma ln,ma ma,m

Ra

1
exp 0.5Rf α β σ σ f

γ
    Eq. 8-28 

The previously presented simulation results (non-spatial analysis, building-related prior) 

are compared to the analytical approximation for the assessment value fma,a of masonry 

compressive strength to check whether the approximation is sufficiently precise. Fig. 8-10 

demonstrates that the approximation leads to very accurate results for the desired applica-

tion, which is also the case for n″ < 10. The slight differences are negligible. 

 

Fig. 8-10  Comparison of assessment values for masonry compressive strength obtained 

by simulation and analytical approximation 
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should be lower for walls with fewer units per course due to reduced stress redistribution 
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area in m²) if A is smaller than 0.1 m². In the following, it is checked whether this reduction 

factor is also suitable for assessing existing masonry structures. 

The cross-sectional area of one expanded unit in the finite element simulations of Chapter 6 

is equal to 0.25 x 0.12 m² = 0.03 m². The cross-sectional areas A of the investigated walls 

with one, two, and three units per course are thus below 0.1 m². Therefore, the assessment 

values fma,a for these walls are determined by stochastic simulation as described in Section 

8.4.2. The results are then related to the reference assessment strength fma,a,ref obtained for 

walls with five units per course. 

In Fig. 8-11, the simulation results are presented and compared to the reduction factor de-

fined by EN 1996-1-1 (2012). The simulation results are obtained for different boundary 

conditions: varying sample sizes nb and nj, different sample standard deviations sln,b and 

sln,j, and different target reliability indices βt. The spatial correlation coefficient is set to 

ρspat = 0.4 because, usually, destructive material testing is not performed on specimens from 

the wall with a small cross-section itself, as this would significantly weaken the considered 

wall. Hence, the assessment situation corresponds to determining an assessment value of 

masonry compressive strength for several walls collectively. In a subsequent step, the as-

sessment values fma,a of walls with A < 0.1 m² need to be multiplied by the specified reduc-

tion factor. 

 

Fig. 8-11  Normative and theoretically required reduction of the design and assessment 

value of masonry compressive strength for walls with small cross-sections 

As illustrated by Fig. 8-11, the theoretically required reduction depends on the chosen 

boundary conditions. In most cases, the reduction factor specified by EN 1996-1-1 (2012) 

is slightly conservative. The results indicate that the required reduction increases with 

higher target reliability indices βt, higher sample standard deviations sln,b and sln,j, and lower 

0.6

0.7

0.8

0.9

1.0

1.1

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

f m
a,

a
/ 

f m
a,

a,
re

f

Cross-sectional area A in m²

1
 u

n
it 2
 u

n
it

s 3
 u

n
it

s

5 units (reference)

sln,b = sln,j nb = nj βt,1a ρspat

0.20 ∞ 3.3 0.4

0.35 ∞ 3.3 0.4

0.35 6 3.3 0.4

0.35 3 3.3 0.4

0.50 3 3.3 0.4

0.50 3 4.2 0.4

0.7 + 3 A ≤ 1   

(EN 1996-1-1) 



 

8  Method for Determining Assessment Values of Masonry Compressive Strength 

 

 

210 

sample sizes nb and nj. However, even for very low sample sizes nb = nj = 3 combined with 

high sample standard deviations sln,b = sln,j = 0.5 and a target reliability index βt,1a = 4.2, the 

normative equation is found to be well suited.  

The simulation results show a nonlinear relationship between the cross-sectional area A and 

the required reduction factor. It is noted that the reference wall does not correspond to the 

area of A = 0.1 m², below which the assessment strength must be reduced. This discrepancy 

is chosen to obtain more relevant results for the reference case, which must also cover walls 

with a much larger cross-sectional area. The normative equation can thus be viewed as a 

bilinear approximation of the actual nonlinear relationship. Consequently, the theoretical 

assessment values for walls with a cross-sectional area close to 0.1 m² can be slightly lower 

than obtained by the normative equation. However, the difference is negligible. 

In summary, it can be stated that the existing normative equation matches sufficiently well 

with the more detailed and accurate simulation results. Therefore, the approach from EN 

1996-1-1 (2012) can be adopted for the developed method without any modification. 

8.4.5 Considerations for Slender Walls 

The developed method shall also be applicable to slender masonry walls failing due to 

buckling. As mentioned in Section 3.7, the partial factor γM as defined in EN 1996-1-1 

(2012) for the vertical resistance of masonry walls must account for both the influence of 

the variability of masonry compressive strength fma and the variability of the elastic modu-

lus Ema. If a masonry wall fails due to buckling, the load-bearing capacity is not affected 

by its compressive strength but only by its stiffness, which is mainly determined by Ema, 

(see Section 3.3.3). Concerning suitable partial factors γM or assessment values fma,a for 

slender masonry walls, the following must be considered: 

 For walls that fail due to buckling, consideration of the spatial variability of material 

properties has a much more positive influence than for walls experiencing material 

failure (see Section 6.3.7). 

 However, the material variability of the elastic modulus of masonry Ema is usually 

higher than the variability of masonry compressive strength fma (see Section 6.2.2). 

 In addition to predicting masonry compressive strength fma, the modulus of elasticity 

Ema must be estimated for slender masonry walls. 

This section investigates whether the assessment value fma,a for masonry compressive 

strength that is determined based on test results for unit and mortar compressive strength 

can also be applied to slender masonry walls. For this purpose, the ratio between 

Ra,slender / Rdet,slender for a slender masonry wall and Ra,ref / Rdet,ref for the reference wall is 

determined via simulation. Due to the definition of the safety elements (see Section 8.2.3), 

this ratio is equivalent to fma,a,slender / fma,a,ref if the mean strength fma,m is equal for both walls: 
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a,slender red,slender slender ma,a,slender

det,slender red,slender slender ma,m ma,a,slender

a,ref red,ref ref ma,a,ref ma,a,ref

det,ref red,ref ref ma,m

R Φ A f

R Φ A f f

R Φ A f f

R Φ A f

   Eq. 8-29 

If the simulated assessment value fma,a,slender is greater than fma,a,ref, which is the assessment 

value for the non-slender reference wall, the general method can also be conservatively 

applied to slender masonry walls.  

In principle, the assessment value fma,a,slender of masonry compressive strength for slender 

masonry walls is determined as described in Section 8.4.2. The parameters a, b, and c for 

the influence of spatial variability are applied as derived in Section 6.3.7 for masonry walls 

failing due to buckling. Some further modifications and additional assumptions have to be 

made. In accordance with the MCS in Chapter 6, the CoV υE of the elastic modulus of 

masonry is taken as 1.3 times the CoV υma of masonry compressive strength (see Section 

6.2.2). It is further assumed that, in the homogeneous case, the resistance is proportional to 

the elastic modulus Ema (see Section 3.3.3). The deterministic reduction factor Φred for con-

sidering the influence of eccentricity and slenderness at the middle height of the wall is a 

function of the ratio Ema / fma. For the subsequent investigation, Ema / fma is supposed to be 

the ratio of the corresponding mean values, that is, Ema,m / fma,m. It is assumed that the un-

certainty in estimating the modulus of elasticity Ema is equivalent to the uncertainty in pre-

dicting the compressive strength fma. Hence, the corresponding CoV υθE of model uncer-

tainty is equal to υθf. Eq. 8-20 can thus be modified to the following expression for slender 

masonry walls: 

     2 2 2 2 2 2

ln ,slender ma,wall ma,spatln 1 ln 1 1.3 ln 1R θfσ υ υ c υ       Eq. 8-30 

Assuming that the uncertainty in predicting the elastic modulus of masonry is equivalent to 

the uncertainty in predicting masonry strength requires that the elastic modulus is estimated 

carefully. According to EN 1996-1-1 (2012), the modulus of elasticity is estimated via 

specified ratios Ema / fma. However, the ratios Ema / fma for existing solid clay brick masonry 

can greatly differ from the recommended values in EN 1996-1-1 (2012) or DIN EN 1996-

1-1/NA (2019), as described in Section 3.3.2. The prediction uncertainty could be reduced 

by defining appropriate ratios Ema / fma for further sub-types of masonry. Another option 

for improving the prediction accuracy is to utilise spring models based on the elastic moduli 

of unit and mortar (see Section 3.3.2). If neither of these options is feasible, assessing en-

gineers need to make conservative assumptions based on previous experience. 

In Fig. 8-12, the corresponding simulation results are presented. The resulting ratio 

fma,a,slender / fma,a,ref is given as a function of the spatial correlation coefficient ρspat. The sim-

ulation is performed for different boundary conditions, with nb = nj = 6, βt,1a = 3.3, and 
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sln,b = sln,j = 0.35 constituting a reference case. Starting from this reference case, the sample 

size, the sample standard deviation, and the target reliability are altered one by one. 

For ρspat = 1, the theoretical assessment value fma,a is lower for slender walls since the CoV 

of the elastic modulus is higher than the CoV of masonry compressive strength. As the 

spatial correlation coefficient ρspat is reduced, the positive effect of considering spatial var-

iability appears. For ρspat = 0, the theoretically required assessment value fma,a is signifi-

cantly higher for slender masonry walls. As discussed in Section 8.4.3, either ρspat = 0 or 

ρspat = 0.4 may be relevant in the assessment of existing masonry structures. In this range, 

fma,a,slender is higher than fma,a,ref. Hence, the developed method, originally derived for non-

slender walls with material failure, may conservatively be applied to slender masonry walls 

with stability failure. The very positive effect of considering spatial variability for slender 

walls compensates for the higher CoV of the modulus of elasticity compared to the com-

pressive strength of masonry. 

 

Fig. 8-12  Ratio of the theoretical assessment value fma,a,slender for a slender wall to the 

assessment value fma,a,ref for the non-slender reference wall 

8.4.6 Considerations for Direct Testing of Masonry Compressive Strength 

In the previous sections, the method for determining assessment values of masonry com-

pressive strength is developed for separate tests on unit and mortar specimens. Here, con-

sideration is given to how the approach can be adopted for direct compression tests on 

masonry specimens. In this context, direct testing refers to all procedures in which tests on 

composite specimens are performed, and, therefore, no application of a model for predict-

ing masonry compressive strength based on the component properties is necessary. This 

type of testing includes, among other procedures, the testing of masonry cores according to 

Helmerich/Heidel (Heidel 1989) and the testing of masonry prisms according to Gunkler 

(1993). For a description of these testing procedures, see Section 3.4.4. 
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Direct testing has the advantage that there is no model uncertainty in predicting masonry 

compressive strength based on the component properties. However, conversion factors usu-

ally have to be applied to obtain a masonry strength that corresponds to the standardised 

compressive strength obtained on RILEM specimens as defined by EN 1052-1 (1998). Suit-

able relationships for converting the strength obtained on alternative composite specimens 

into the standardised strength are still the subject of ongoing research (see Section 3.4.4). 

The uncertainty associated with these testing procedures, which mainly results from this 

conversion, can be considered significantly smaller than the uncertainty corresponding to 

indirect testing and subsequent application of the power equation (see Fig. 3-6; Gigla 2020). 

However, the corresponding testing uncertainty is not as small as in the case of tests ac-

cording to EN 1052-1 (1998), for which testing uncertainty is assumed to be negligible 

compared to material uncertainty. Since suitable models for the conversion between test 

results on different composite specimens are still subject to research and have only been 

calibrated for relatively limited boundary conditions, the corresponding testing uncertainty 

cannot be reliably quantified at present. Therefore, the uncertainty associated with direct 

testing of alternative masonry specimens is considered via a CoV of 10 %, which should 

be understood as a preliminary estimate. This estimate considers that the uncertainty lies 

between the model uncertainty connected with indirect testing (see Section 8.3.2) and the 

accuracy of compression tests according to EN 1052-1 (1998). 

Concerning statistical uncertainty, the same Bayesian framework is applicable as for indi-

rect testing. For the variance of the logarithm of masonry compressive strength, the prior 

hyperparameters derived in Section 7.4.7 can be used. In general, the procedure for direct 

testing should be in line with the procedure for indirect testing. Thus, the same approxima-

tions are made: Spatial variability is neglected, and the predictive distribution is approxi-

mated by a log-normal distribution. The variance of the logarithm of masonry compressive 

strength can therefore be obtained as 

2 2 2 ma ma
ln,ma ln ln,ma

ma ma1 2
θf

n ν
σ σ s

n ν

  
   

   
 Eq. 8-31 

where sln,ma″, nma″, and νma″ are the posterior hyperparameters for masonry compressive 

strength. The parameter σlnθf ≈ υθf = 0.1 considers testing uncertainty, as mentioned above, 

and is applied instead of the model uncertainty associated with predicting masonry com-

pressive strength.  
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8.5 Validation of the Developed Method by Reliability Analyses 

8.5.1 Procedure of the Reliability Analyses 

General procedure and limit state function 

The goal of the developed method is to obtain assessment values fma,a for masonry com-

pressive strength that lead to a reliability level β equal to the target reliability index βt cho-

sen as the input parameter. Due to the simplifications in the proposed method, such as ne-

glecting spatial variability and following the simplified level II approach with a fixed sen-

sitivity factor αR, the resulting reliability is not necessarily equal to the target reliability. 

Therefore, the proposed method is validated by means of reliability analyses to investigate 

the influence of the approximations on the resulting reliability level. 

First, reliability analyses are performed through MCS. In Section 8.5.3, additional reliabil-

ity analyses are described, utilising FORM to determine the sensitivity factors of the basic 

variables. The reliability analyses are conducted for the case of indirect testing since this is 

the most frequent approach in current engineering practice. The procedure of the reliability 

analyses through MCS is illustrated in Fig. 8-13. 

 

Fig. 8-13 Procedure for the reliability analyses through Monte Carlo simulations 
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   R Eg θ R θ G Q  X  Eq. 8-32 

where θR is the resistance model uncertainty factor, R the vertical resistance of the wall, θE 

the load effect model uncertainty factor, G the permanent load effect, and Q the imposed 

load effect. 

The reliability analyses are conducted for a reference period of both one and 50 years. Fur-

thermore, the reliability analyses are performed for different test outcomes in terms of ob-

tained sample standard deviations sln,b and sln,j and corresponding sample sizes nb and nj. 

Based on these test statistics, the posterior hyperparameters for the mean and variance of 

unit and mortar compressive strength are determined. The resistance R in Eq. 8-32 is mod-

elled according to the posterior predictive distribution of the resistance. In the case of the 

reliability analyses by MCS, random values of R are thus generated in the same way as in 

the stochastic simulation of R in Section 8.4 (see Fig. 8-4). For the FORM reliability anal-

yses, the procedure for modelling the posterior predictive distribution of R is explained in 

8.5.3. Since spatial variability can be considered in the procedure of the reliability analyses, 

the influence of neglecting spatial variability in the proposed practice-oriented method can 

be investigated by performing the reliability analyses with and without considering spatial 

variability. 

The characteristic values Gk and Qk of the load effects are set to achieve a utilisation of the 

masonry wall of 100 %. Thus, the following verification criterion is exactly met: 

ma,a k kG QA f G γ Q γ   Eq. 8-33 

where A is the cross-sectional area, fma,a the assessment value of masonry compressive 

strength, γG the partial factor for permanent loads, and γQ the partial factor for imposed 

loads. It is noted that Equation 6.10a/b in EN 1990 (2010) allows reducing either γG = 1.35 

by a reduction factor ξ = 0.85 or γQ = 1.5 by the combination factor ψ0, whichever is less 

favourable. Since the German National Annex does not permit the application of Equation 

6.10a/b, this reduction of either γG or γQ is not made here. In most of the following reliability 

analyses, the ratio Qk / Gk is set to 0.5, which is typical for masonry structures (Glowienka 

2007). Qk / Gk = 0.5 corresponds to a ratio of variable characteristic load to total character-

istic load of χ = Qk / (Gk + Qk) = 1/3. The range of 0.2 < χ < 0.5 can be viewed as relevant 

in practice. 

The assessment value fma,a for the verification criterion is obtained according to the method 

developed in this chapter (i.e. the method to be validated; see Section 9.2 for a summary of 

the proposed method, including the respective equations). Thus, the assessment value de-

pends on the chosen target reliability index βt. In the analyses, the target reliability index is 

either set to βt,1a = 3.3, which is the example target reliability index for the assessment of 
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existing masonry structures, or to βt,1a = 4.2, which should lead to a reliability level approx-

imately corresponding to βt,50a = 3.8 as specified by EN 1990 (2010) for the design of new 

structures and CC 2 (see Section 2.5.1). The partial factors γG and γQ are adjusted as de-

scribed in Section 8.2.6 to account for the different target reliability indices. Hence, 

γG =1.35 and γQ =1.5 are applied in the case of βt,1a = 4.2, and, for βt,1a = 3.3, γG =1.26 and 

γQ =1.05 are used. 

Stochastic models for the basic variables 

The probability distribution of the wall resistance R is modelled by the corresponding pos-

terior predictive distribution as described by the flowchart in Fig. 8-4. Thus, it depends on 

test results and includes statistical uncertainty, the uncertainty in masonry compressive 

strength prediction, and the influence of the spatial variability of material properties. The 

resistance model uncertainty factor θR is modelled according to the considerations in Sec-

tion 8.3.1 and is intended to also cover geometrical deviations. 

The permanent load effect is modelled as a normally distributed random variable with a 

mean equal to Gk and a CoV of υG = 10 % (fib bulletin 80 2016). In the literature, lower 

CoVs for the self-weight of masonry structures can also be found. In Glowienka (2007) and 

Brehm (2011), for example, a CoV of 6 % is specified. However, υG = 10 % is chosen since 

it can be assumed that the variability of the weight density of historical masonry is higher 

than that of contemporary masonry. Furthermore, the floors in historical masonry structures 

are often made of timber, for which υG = 10 % is more appropriate (JCSS 2001b). 

The stochastic model for imposed loads is based on information in Rackwitz (1997). Here, 

the CoV of the corresponding extreme value distribution for a reference period of 50 years 

and a reference area of 20 m² is stated as 20 % for imposed loads in office buildings and 

29 % for imposed loads in residential buildings. Therefore, a Gumbel distribution with an 

averaged CoV of υQ,50a = 25 % is chosen for a reference period of 50 years, which also 

matches the CoV υQ,50a specified for the APFM in fib bulletin 80 (2016). Based on the 

assumption of independent extreme values for successive years and following the principles 

of Gumbel-distributed random variables (see Section 2.3.4), the CoV υQ,1a of the corre-

sponding Gumbel distribution for annual extreme values can be obtained as follows: 

,50a

,1a

,50a

105%
6

1 ln 50

Q

Q

Q

υ
υ

υ
π

 



 
Eq. 8-34 

The assumption of uncorrelated extreme values of successive years is only a simplification 

since imposed loads consist of a sustained component and an intermittent component. Usu-

ally, the sustained load is approximately constant for several years, whereas intermittent 



 

 8.5  Validation of the Developed Method by Reliability Analyses 

 

  

217 

loads occur every few months for no more than a few days (JCSS 2001b). However, ac-

cording to Rackwitz (1997), the intermittent component is dominant when considering the 

mean values of the 50-year extreme value distribution for most types of use, such as office 

and residential buildings. Hence, the assumption of independence is assumed to be suffi-

ciently precise. 

In EN 1990 (2010), the average return period that corresponds to the characteristic value of 

the imposed load is not explicitly defined. In the literature, different assumptions can be 

found: Some authors state that the characteristic values for imposed loads correspond to the 

95 % fractile of the extreme value distribution for a reference period of 50 years (Grünberg 

2004; fib bulletin 80 2016; Meinen and Steenbergen 2018). Others suggest that the charac-

teristic imposed loads correspond to a 98 % fractile of the annual extreme values (Honfi 

2014; Tran et al. 2017) or the mode of the 50-year extreme value distribution (Glowienka 

2007). Based on the simplified level II approach, the partial factor γQ = 1.5 for imposed 

loads can be reproduced if it is assumed that the characteristic loads correspond to the 95 % 

fractile of the 50-year extreme values (fib bulletin 80 2016). However, the characteristic 

loads defined in EN 1991-1-1 (2009) can be more accurately reproduced by stochastic load 

simulations if the characteristic values are assumed to be 98 % quantile values of the annual 

extreme values (Honfi 2014; Tran et al. 2017). This is particularly true for the characteristic 

imposed loads defined in the German National Annex DIN EN 1991-1-1/NA (2010), 

which, on average, are slightly lower than the recommended values in EN 1991-1-1 (2009). 

Therefore, the characteristic imposed load effects are assumed to be 98 % fractiles of the 

annual extreme values here, which also leads to more conservative results than assuming 

that they are 95 % fractiles of the 50-year extreme values. Following this definition, the 

mean-to-characteristic ratios can be obtained as follows (see Eq. 2-31): 

  
,1a

k ,1a

1
0.27

1 0.45 0.78 ln ln 0.98

Q

Q

μ

Q υ
 

    

 Eq. 8-35 

  
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1
1.13

1 0.45 0.78 ln ln 0.98

Q

Q

μ

Q υ
 

   
 

 Eq. 8-36 

The model uncertainty factor θE for calculating load effects is modelled by means of a log-

normal random variable with a mean of one and a CoV of 5 %, as recommended for axial 

forces in JCSS (2002). The stochastic models selected for the basic variables are summa-

rised in Table 8-3.  
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Table 8-3  Stochastic models for the basic variables 

Random variable Symbol Distribution Mean CoV 

Resistance R 

Posterior predictive distribution including effects of  

(spatial) material variability, strength prediction uncer-

tainty, and statistical uncertainty (see Fig. 8-4) 

Resistance model uncertainty θR Log-normal 1.0 0.14 

Permanent load effect G Normal Gk 0.10 

Imposed load 

effect 

one year 
Q Gumbel 

0.27 Qk 1.05 

50 years 1.13 Qk 0.25 

Load effect model uncertainty θE Log-normal 1.0 0.05 

8.5.2 Resulting Level of Reliability 

Reliability indices β1a obtained by MCS for different sample standard deviations 

sln,b and sln,j and different input target reliability indices βt,1a are displayed in Fig. 8-14 as a 

function of the sample size nb = nj. The underlying posterior hyperparameters are calculated 

based on the building-related priors. The upper left diagram shows the reliability indices 

obtained in a reliability analysis with ρspat = 0.4 (i.e. under consideration of spatial variabil-

ity). In contrast, the upper right diagram displays reliability indices determined through a 

reliability analysis with ρspat = 1.0 (i.e. without considering spatial variability in the relia-

bility analysis). The developed method for obtaining assessment values of masonry com-

pressive strength does not consider spatial variability in either of the two cases. For further 

illustration, the partial factors γM and ratios fma,k / fma,m obtained by the proposed method for 

the investigated input values are displayed in the two lower diagrams of Fig. 8-14. 

It is evident from Fig. 8-14 that the proposed method leads to reliability levels β1a that very 

well match the corresponding input values βt,1a. Comparing the results for ρspat = 0.4 and 

ρspat = 1 shows no substantial difference in the obtained reliability level. Again, this demon-

strates that neglecting spatial variability is appropriate in assessing an existing masonry 

wall under compression. With regard to statistical uncertainty, the goal of the proposed 

method is to obtain resulting reliability indices that are approximately independent of the 

sample size. Since the curves for the resulting reliability indices plotted over nb = nj are 

almost horizontal, particularly for βt,1a = 3.3, this goal can be viewed as achieved. 

The resulting reliability level should preferably be independent of the sample standard de-

viations. The small deviations between the reliability indices β1a for sln,b = sln,j = 0.2, 0.35, 

and 0.5 can be attributed to the definition of a fixed sensitivity factor αR by the proposed 

method. In Section 8.5.3, the actual sensitivity factors αi of the basic variables are deter-

mined utilising an analysis by FORM, which explains the deviations between the results 

for different sample standard deviations. However, for all investigated scenarios, the devi-

ations from the input target reliability indices βt,1a lie within a range of ± 0.5 and can thus 
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be considered small enough to be accepted. Furthermore, the results demonstrate that the 

developed method for determining assessment values of masonry compressive strength 

works well in combination with partial factors γG and γQ that are modified for a reduced 

target reliability level using the APFM adapted from fib bulletin 80 (2016). 

 

 

Fig. 8-14 Resulting reliability indices β1a for a one-year reference period (top), corre-

sponding partial factors γM (lower left), and ratios fma,k /fma,m (lower right) 

For further comparison, reliability indices β50a for a reference period of 50 years are dis-

played in the left diagram of Fig. 8-15. The target reliability indices are still defined for one 

year (as βt,1a = 3.3 and βt,1a = 4.2), which means that the applied assessment values of ma-

sonry compressive strength and the partial factors for actions are the same as in Fig. 8-14. 

However, the time-dependent stochastic parameters for the imposed load are applied for a 

reference period of 50 years, which results in reliability indices β50 that also correspond to 

a period of 50 years. For the investigated boundary conditions in Fig. 8-15 (left), the choice 

of βt,1a = 4.2 leads to β50a = 3.8, and βt,1a = 3.3 leads to β50a = 2.8, on average. In the right 

diagram of Fig. 8-15, the ratio χ of imposed to total characteristic load is varied while the 

sample sizes are fixed at nb = nj = 6. For χ = 0, no time-dependent basic variables are pre-

sent, which leads to β1a = β50a. For increasing χ, the gap between β1a and β50a increases. In 
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the range between χ = 0.2 and 0.5, which is most relevant in practice, the resulting reliabil-

ity indices β1a are very close to the specified target values βt,1a. Therefore, the proposed 

method is well suited for achieving the required reliability level. 

  

Fig. 8-15  Left: Resulting reliability indices β50a for a reference period of 50 years 

 Right: Influence of the load effect ratio χ on the resulting reliability indices for 

reference periods of one and 50 years 

8.5.3 FORM Sensitivity Factors 

Reliability analyses are also conducted utilising FORM to determine corresponding sensi-

tivity factors. To perform a FORM analysis, a different representation of the resistance R 

in the limit state function is needed. If the spatial variability of material properties is not 

considered, R can be written as 

 ma prob b j prob b jexp ln lnα β

f fR A f Aθ K f f Aθ K α f β f     Eq. 8-37 

where A is the deterministic cross-sectional area of the wall, θf is the model uncertainty 

factor for predicting masonry compressive strength, α and β are the parameters of the power 

equation, fb is the unit compressive strength, and fj is the mortar compressive strength. Kprob 

is the parameter K of the power equation that is suitable in the case of probabilistic appli-

cation. Kprob is set to Km in the following analysis, which is a slightly conservative approx-

imation (see Section 3.5.4). Both random variables fb and fj include statistical uncertainty 

in their parameters μln and σln, which is considered in the reliability analysis. Therefore, 

ln fb is formulated as 

ln,b

b ln,b ,b b ln,b

b

ln μ

σ
f m Z Z σ

n
    Eq. 8-38 

where mln,b is the arithmetic mean of the logarithms of unit compression test results repre-

sented by a deterministic variable. The deviation of the arithmetic mean mln,b from the pop-

ulation mean μln,b is covered by the standard normal random variable Zμ,b, multiplied by 
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σln,b / nb
0.5, which is the standard deviation of the posterior distribution of μln,b given σln,b 

(see Section 2.4.2). The actual material variability (i.e. the deviation of ln fb from its mean 

μln,b) is represented by the standard normal variable Zb multiplied by σln,b. The standard 

deviation σln,b of the logarithm of unit compressive strength is a random variable with σln,b
2 

being scaled inverse-χ2 distributed according to the posterior hyperparameters νb″ and 

sln,b″
2. The logarithm of mortar strength can be formulated accordingly. Hence, the re-

sistance R can be expressed as 

ln,b

ln,b ,b b ln,b

b

m

ln,j

ln,j ,j j ln,j

j

exp

μ

f

μ

σ
α m Z Z σ

n
R A θ K

σ
β m Z Z σ

n

  
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   
  

  
    
    

 Eq. 8-39 

To take the influence of spatially variable material properties into account, a reduction of 

the mean value and the variability of the resistance compared to a homogeneous wall must 

be considered (see Chapter 6). For this purpose, a factor δ for reducing the mean and a 

factor ξ for reducing the variability are introduced: 

ln,b

ln,b ,b b ln,b

b

m

ln,j

ln,j ,j j ln,j

j

exp

μ

f

μ

σ
α m Z Z ξ σ

n
R δ A θ K

σ
β m Z Z ξ σ

n

  
   

   
  

  
    
    

 Eq. 8-40 

The factor ξ, which reduces the material variability to obtain the resulting variability of the 

resistance, can be calculated as follows: 

 
*2 2 2

ln,ma,spat ln,ma,wall *2

spat spat

ln,ma

1
c σ σ

ξ c ρ ρ
σ


     Eq. 8-41 

The factor δ addresses the reduction of the mean wall resistance μR in relation to the deter-

ministic resistance Rdet based on mean masonry compressive strength. It is obtained as 

    
*

** * 2 2 2 2

ln,ma,spat spat ln,b ln,jexp exp 1
b

bδ a σ a ρ α σ β σ
 

      
 

 Eq. 8-42 

For the final expressions in Eq. 8-41 and Eq. 8-42, the unit-to-unit component σln,ma,spat and 

the wall-to-wall component σln,ma,wall of the standard deviation are determined based on Eq. 

2-40 (see Section 2.3.5). In contrast to the previous section, the correlation coefficient ρspat 

refers to the correlation of the logarithms of strength, which, however, does not deviate 

strongly from the correlation coefficient of the strengths (see Section 7.4.5). Hence, 
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ρspat = 0.4 is also applied here. As noted before, only the unit-to-unit component σln,ma,spat of 

the standard deviation leads to a reduction of the mean resistance and is itself reduced by 

the effects of spatial variability. For ρspat = 1, the component σln,ma,spat is zero, which leads 

to ξ = 1 and δ = 1. The parameters a*, b*, and c* are equivalent to the parameters a, b, and 

c in the equations derived for approximating the influence of spatial variability in Section 

6.3.4. However, the formulae are expressed as a function of the standard deviation σln,ma 

instead of formulating it for the CoV of strength υma, which is more convenient here: 

 
**

det ln,ma,spatexp b

Rμ R a σ   Eq. 8-43 

*

ln ,spat ln,ma,spatRσ c σ  Eq. 8-44 

Based on the results of the MCS for investigating the influence of spatial variability in 

Section 6.3.4, the method of least squares yields a* = 1.85, b* = 1.51, and c* = 0.21 as suit-

able parameter values for Eq. 8-43 and Eq. 8-44.  

The expression of R according to Eq. 8-40 is finally inserted in the limit state function as 

previously defined in Eq. 8-32. Then, the reliability analyses are performed by applying the 

Rackwitz-Fiessler algorithm as described in Section 2.5.2. Except for the different formu-

lation of the resistance R, the stochastic models are equivalent to those used in the reliability 

analyses by MCS. In Fig. 8-16, the reliability indices obtained by FORM and MCS are 

compared. The results obtained by the two different methods match very well. 

 

Fig. 8-16 Comparison of reliability indices obtained via the first-order reliability 

method (FORM) and Monte Carlo simulations (MCS) 

In Fig. 8-17, the squared sensitivity factors αi
2 are illustrated for varying sample sizes 

nb = nj. The presented results are obtained for ρspat = 0.4, βt,1a = 3.3, and sln,b = sln,j = 0.35. 

The sensitivity factors for the material variability of fb and fj correspond to those for the 

basic variables Zb and Zj, respectively. The squared sensitivity factors for the statistical 

uncertainty in fb and fj are the sum of the values αi
2 for the basic variables Zμ,b and σln,b and 
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for Zμ,j and σln,j, respectively. The sum of the squared sensitivity factors for fb, fj, and θf 

yields the squared sensitivity factor αR 
2 for the resistance R. 

 

Fig. 8-17 Influence of sample size on the sensitivity factors of the basic variables 

As evident from Fig. 8-17, the sensitivity factor for the resistance R is much higher than 

those for the other basic variables G, Q, θE, and θR. The composition of the sensitivity factor 

αR depends on the sample size: For low sample sizes, the statistical uncertainty in fb is 

dominating, whereas, for larger sample sizes, the uncertainty in masonry strength predic-

tion represented by θf and the material variability of unit compressive strength fb are almost 

equally influential. Compared to unit compressive strength, the sensitivity factors related 

to mortar compressive strength are much smaller. 

In Fig. 8-18, the sensitivity factor αR is displayed for different sample standard deviations 

sln,b = sln,j, sample sizes nb = nj, and target reliability indices βt,1a. In the left diagram, the 

results for ρspat = 0.4 are shown (i.e. spatial variability is considered), whereas the right 

diagram presents the results for ρspat = 1.0 (i.e. without considering spatial variability). 

In both cases, the sensitivity factor αR decreases with a larger sample size, which is due to 

the reduction of statistical uncertainty in R. If spatial variability is considered (ρspat = 0.4), 

the sensitivity factor αR for larger sample sizes is lower than if spatial variability is not 

considered (ρspat = 1.0). The lower sensitivity factors αR for ρspat = 0.4 can be attributed to 

the reduced material-related variability of the resistance if spatial variability is taken into 

account. 

As expected, the sensitivity factors αR are higher for high sample standard deviations sln,b 

and sln,j. If the sample sizes are small, the difference between the sensitivity factors αR for 

different sample standard deviations is smaller than for large sample sizes. This can be 

explained by the fact that the posterior predictive distribution of masonry strength, which 
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is the basis for the reliability analyses, is not strongly affected by the sample standard de-

viation but by the prior distribution if the sample size is small. 

Statistical uncertainty results in a higher kurtosis of the probability distribution of R or, in 

other words, more weight in the tails of the distribution. The higher the target reliability 

index, the more important the tails of the distribution of the basic variables become. Hence, 

for small sample sizes n, the sensitivity factor αR is larger in the case of the higher target 

reliability index βt,1a = 4.2. 

 

Fig. 8-18 Influence of sample size and sample standard deviation on the sensitivity factor 

αR,1a 

In the proposed method, a fixed sensitivity factor αR is applied. The differences between 

the actual sensitivity factors αR in Fig. 8-18 are one reason for the differences in the result-

ing reliability levels for varying sample sizes and sample standard deviations as obtained 

in the previous section (see Fig. 8-14). The fixed sensitivity factor αR,1a = 0.7, which is not 

specified for existing masonry structures in particular but for structures in general, is ex-

ceeded in most investigated cases, which is due to statistical uncertainty and the high ma-

terial variability of historical masonry. However, the exceedance of the fixed sensitivity 

factor αR,1a does not automatically lead to unsafe results since the sensitivity factor αR is 

accompanied by sensitivity factors αG and αQ, which, in absolute values, are much lower 

than those that are either explicitly or implicitly considered in the derivation of the partial 

factors γG and γQ for actions. When the concept of fixed sensitivity factors was introduced 

by König and Hosser (1982), a deviation of the resulting reliability index β from the target 

reliability index βt of ± 0.5 was considered acceptable (see Section 2.5.4). As this limit is 

not exceeded (see Fig. 8-14 and Fig. 8-15), there is no need to specify fixed sensitivity 

factors particularly suited for assessing existing masonry structures. 
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8.6 Summary 

In this chapter, the final method for determining assessment values of masonry compressive 

strength was developed and validated. In Section 8.2, the general approach and underlying 

assumptions of the method were noted. The method can be applied if compression tests on 

either unit and mortar specimens or composite masonry specimens are performed. The as-

sessment values of masonry compressive strength are obtained as fractiles of the respective 

posterior predictive distribution, which is acquired through a Bayesian update. Assessment 

values of masonry compressive strength are obtained directly, which means that the deter-

mination of characteristic values and partial factors is not necessarily required. The pro-

posed method is mainly suitable for existing solid clay brick masonry. It is based on the 

influence of spatial variability as quantified for solid clay brick masonry in Chapter 6, and 

it enables the use of prior distributions obtained for this masonry type in Chapter 7. How-

ever, there is also the option to apply the method in combination with a non-informative 

prior distribution. Thereby, the application range is extended to other masonry types for 

which a stress redistribution capability at least as good as that of solid clay brick masonry 

can be assumed. 

Section 8.3 dealt with the two considered types of model uncertainty: first, the resistance 

model uncertainty associated with calculating the load-bearing capacity of a masonry wall 

and second, the uncertainty in predicting masonry compressive strength based on the com-

pressive strengths of unit and mortar. For the resistance model uncertainty, the stochastic 

model was selected based on a literature study. The uncertainty in the prediction of masonry 

strength was quantified based on compressive strength tests from the literature. 

In Section 8.4, the posterior predictive distribution of the resistance of a masonry wall under 

compression was obtained through stochastic simulations, in which, in addition to the sta-

tistical and model uncertainty, the influence of spatially variable material properties was 

considered. The simulation results showed that the assessment values differ only slightly if 

the influence of spatial variability is neglected and homogeneity (i.e. perfect spatial corre-

lation within a wall) is assumed instead. Therefore, the proposed method can be based on 

the posterior predictive distribution of masonry compressive strength instead of considering 

the distribution of the wall resistance. Furthermore, it was shown that the developed method 

leads to conservative results for slender masonry walls if the ratio between the modulus of 

elasticity and the compressive strength of masonry is accurately estimated and explicitly 

considered by the applied resistance model. It was further demonstrated that the reduction 

factor defined in EN 1996-1-1 (2012) for walls with a small cross-sectional area is also 

suitable for the assessment of existing solid clay brick masonry. 

Finally, the developed method was validated through reliability analyses in Section 8.5. It 

was shown that the resulting reliability indices differ only slightly from the target reliability 
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that is selected as the input of the method. Furthermore, the sensitivity factors of the basic 

variables were determined for a deeper understanding and to enable a comparison with the 

fixed sensitivity factor for the resistance that is applied according to the simplified level II 

approach.  
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9 PRACTICE-ORIENTED PROPOSAL FOR DETERMINING 

ASSESSMENT VALUES AND PARTIAL FACTORS 

9.1 Introduction 

In this chapter, the previously developed method for determining characteristic values fma,k, 

structure-specific partial factors γM, and assessment values fma,a for the compressive strength 

of existing masonry is presented in its final form. First, Section 9.2 summarises the pro-

posed method and provides the equations that are needed to apply the method in engineer-

ing practice. As an alternative, the proposed method can be applied via diagrams, which 

are introduced in Section 9.3. Typical results of the proposed method are illustrated in Sec-

tion 9.4. Finally, Section 9.5 provides guidance on assessing existing masonry structures in 

the absence of test results. 

9.2 General and Equations for Determining Assessment Values 

The proposed method can be applied if compression tests on specimens extracted from 

existing masonry are conducted. Masonry compressive strength can be tested either indi-

rectly (i.e. by performing separate compression tests on unit and mortar specimens) or di-

rectly (i.e. by conducting tests on composite masonry specimens). The single masonry 

members of the structure must be assigned to suitable populations. The extracted specimens 

should be representative of the population of masonry for that the assessment value fma,a of 

masonry compressive strength is evaluated. If all the masonry in a structure appears to be 

of the same type, it is advised to consider all masonry members as one population. For each 

masonry population, a minimum number of either nb ≥ 6 tests on unit and nj ≥ 6 tests on 

mortar specimens or nma ≥ 5 tests on composite masonry specimens is recommended, as 

specified by WTA 7-4 (2021). The specimens should be taken from more than one sampling 

location. If the considered population consists of more than one masonry member, these 

sampling locations should belong to several members. 

The target reliability index βt is to be chosen according to the requirements of the building 

authority, the owner, or other relevant parties. In the case of high relative costs of safety 

measures and moderate failure consequences, a target reliability index of βt,1a = 3.3 for a 

reference period of one year is suitable according to ISO 2394 (2015) based on economic 

optimisation (see Section 2.6.2). 

Before the proposed method can be applied, the mean value of masonry compressive 

strength fma,m must be estimated. If indirect tests are performed, the power equation can be 

utilised with the arithmetic means fb,m and fj,m of unit and mortar strength as the input pa-

rameters. If the parameters K, α, and β for the power equation are taken from EN 1996-1-1 

(2012) or DIN EN 1996-1-1/NA (2019), the parameter K should be increased by a factor 
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of 1.25 to obtain an estimate for the mean value of masonry strength (see Section 3.5.3). If 

the application limits of the empirical equations are exceeded, the utilisation of models with 

a mechanical background can be beneficial (see Section 3.5.2). If necessary, the estimation 

of masonry compressive strength fma,m should additionally account for structural defects, 

such as mortar joints that are not adequately filled, unusually high moisture content of ma-

sonry, or mortar joints significantly thicker than normatively specified (see Sections 3.3.5 

and 3.5.5). 

Then, the assessment value fma,a of masonry compressive strength is obtained as follows: 

1. Calculate the arithmetic mean m and the variance s2 of the logarithms of the test results 

for unit and mortar compressive strength (or masonry compressive strength if direct 

tests are performed): 

1

1
ln

n

i

i

m f
n 

   Eq. 9-1 

 
22

1

1
ln

1

n

i

i

s f m
n 

 

  Eq. 9-2 

where fi are the single test results converted to standardised unit, mortar, or masonry 

compressive strengths, respectively. 

2. Determine the posterior hyperparameters ν″ and s″2 for both unit and mortar compres-

sive strength (or masonry compressive strength) based on prior information and the 

variance s and number n of the test results: 

1ν ν n     Eq. 9-3 

 2 2

2
1ν s n s

s
ν

   
 


 Eq. 9-4 

Suitable prior hyperparameters ν′ and s′ for solid clay brick masonry constructed before 

1950 are defined in Table 9-1 (see Section 7.4 for the derivation of the parameters). 

For masonry types other than historical solid clay brick masonry, the procedure can be 

applied using non-informative prior distributions, which is equivalent to ν′ = 0, result-

ing in ν″ = n − 1 and s″ = s. 

Table 9-1  Prior hyperparameters 

Parameter 
Solid clay brick masonry (constructed before 1950) Other masonry types 

Unit* Mortar Masonry Unit, mortar, masonry 

ν′ 7.7 4.2 9.2 0 

s′ 0.33 0.40 0.28 - 

*If a single masonry wall is assessed and all test results are obtained on specimens from this wall, the 

prior hyperparameters for unit compressive strength may be taken as ν′ = 3.8 and s′ = 0.21. 
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3. Determine the variance σln,ma
2, which includes material variability, statistical uncer-

tainty, and model (or testing) uncertainty in determining masonry compressive 

strength. In the case of indirect testing, σln,ma
2 is obtained as 

j j2 2 2 2 2 2b b
ln,ma ln ln,b ln,j

b b j j1 2 1 2
θf

n νn ν
σ σ α s β s

n ν n ν


   

      
Eq. 9-5 

where α and β are the parameters of the power equation, which should be applied as 

α = 0.7 and β = 0.3 according to EN 1996-1-1 (2012) here. For considering model un-

certainty, σlnθf ≈ υθf = 0.17 shall be applied. The indices “b”, “j”, and “ma” indicate that 

the parameters s″, n, and ν″ correspond to unit, mortar, or masonry compressive 

strength, respectively. In the case of direct testing, σln,ma
2 is obtained as 

2 2 2 ma ma
ln,ma ln ln,ma

ma ma1 2
θf

n ν
σ σ s

n ν


 

   
Eq. 9-6 

For considering testing uncertainty, σlnθf ≈ υθf = 0.10 is recommended if the masonry 

specimens for direct testing do not fulfil the specifications of EN 1052-1 (1998). If the 

specifications are met, testing uncertainty may be neglected. 

4. Determine the assessment value of masonry compressive strength: 

 2

ma,a t ln,ma ln,ma ma,m

Ra

1
exp 0.5Rf α β σ σ f

γ
  

 
Eq. 9-7 

If a target reliability index βt,1a for a reference period of one year is applied, a sensitivity 

factor αR,1a = 0.7 should be used. If the target reliability index is specified for a refer-

ence period of 50 years, the sensitivity factor αR = 0.8, as provided in EN 1990 (2010), 

should be applied. The partial factor γRa addressing the uncertainty of the resistance 

model is obtained from 

 Ra texp 0.4 R θRγ α β υ
 

Eq. 9-8 

where the factor of 0.4 considers that model uncertainty is a non-dominant basic vari-

able. The CoV for model uncertainty should be taken as υθR = 14 %. To ensure that the 

assumption of the model uncertainty being non-dominant is fulfilled, σln,ma should not 

be taken smaller than υθR. For αR,1a = 0.7 and βt,1a = 3.3, Eq. 9-8 yields γRa = 1.14. 

5. The effect of sustained loads on masonry compressive strength is to be considered ad-

ditionally. If applicable, it is recommended to reduce the assessment value by a factor 

of ζ = 0.85 as specified by DIN EN 1996-1-1/NA (2019). 

6. For walls with a cross-sectional area of A < 0.1 m², the obtained assessment value is 

to be reduced by a factor of 
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0.7 3A
 

Eq. 9-9 

where A is the cross-sectional area A in m². 

If the characteristic value fma,k and the partial factor γM shall be determined separately, the 

following equations can be used: 

 2

ma,k ln,ma ln,ma ma,mexp 1.645 0.5f σ σ f  
 

Eq. 9-10 

M m Raγ γ γ
 

Eq. 9-11 

 m t ln,maexp 1.645Rγ α β σ   
 

Eq. 9-12 

with σln,ma according to Eq. 9-5 or Eq. 9-6, respectively. 

The same procedure may be applied for assessing slender walls, whose resistance is mainly 

influenced by the modulus of elasticity Ema. However, special care should then be taken in 

the estimation of the ratio Ema / fma, which is an input parameter for determining the capacity 

reduction factor Φred at the middle height of the wall. The ratio Ema / fma should be applied 

via the corresponding mean material properties (i.e. as Ema,m / fma,m). The mean value Ema,m 

of the modulus of elasticity of masonry is to be determined by utilising a suitable model or 

by conservative estimation based on previous experience with similar types of masonry. It 

is noted that the values for the ratio Ema / fma recommended in EN 1996-1-1 (2012) or DIN 

EN 1996-1-1/NA (2019) are, in general, not suitable for historical solid clay brick masonry. 

9.3 Diagrams for Determining Assessment Values  

As an alternative to determining the assessment value of masonry compressive strength by 

applying the equations defined in Section 9.1, the diagrams in Fig. 9-1, Fig. 9-2, and Fig. 

9-3 can be used to obtain suitable characteristic values, partial factors, and assessment val-

ues for masonry compressive strength. The diagrams are based on the target reliability level 

βt,1a = 3.3 combined with the sensitivity factor αR,1a = 0.7. 

Again, the mean value of masonry compressive strength fma,m is to be determined first. 

Then, the sample CoVs of the test results must be determined since, together with the re-

spective sample sizes n, they are the input parameters for the diagrams. In the case of indi-

rect testing, the sample CoVs Vb and Vj of unit and mortar compressive strength are needed. 

If masonry compressive strength is tested directly, the sample CoV Vma of masonry com-

pressive strength must be calculated. A conversion of the sample CoVs Vb, Vj, and Vma of 

the test results into the sample standard deviations sln,b, sln,j, and sln,ma of the logarithms of 

the test results is included in the diagrams utilising the following relationship: 

 2 2

ln ln 1s V   Eq. 9-13 
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Eq. 9-13, which is based on the respective relationship between the parameters of a log-

normal distribution (see Eq. 2-27), is only an approximation in the case of a limited sample 

size. The exact relationship between V and sln depends on the single test results. It is noted 

that sln
2 is an unbiased estimator of the variance σln

2, whereas the right part of Eq. 9-13 is 

not. This bias leads to a slight underestimation of σln
2 for small sample sizes on average, 

which can be neglected in practical applications. If Eq. 9-13 is exactly fulfilled, the appli-

cation of the diagrams leads to the same results as the equations in Section 9.2. In principle, 

it is also possible to display the diagrams with the standard deviations of the logarithms of 

the test results (sln,b, sln,j, and sln,ma) as input parameters. For practical application, however, 

a representation via the CoVs is more intuitive, which is why this type of illustration is 

chosen. 

Fig. 9-1 and Fig. 9-2 can be used in the case of indirect testing. The only difference between 

the two figures is that Fig. 9-1 utilises the previously obtained prior hyperparameters, 

whereas Fig. 9-2 is based on a non-informative prior. In the upper left and the lower right 

part of the upper diagram, the updates of the prior estimates s′ are performed for mortar and 

unit compressive strength, respectively. Furthermore, the updated variances s″2 are modi-

fied so that they can be applied as the parameters of a log-normal distribution that approx-

imates the resulting predictive log-t distribution (see Eq. 8-26): 

2 2

ln,mod ln
1 2

n ν
s s

n ν


 

 
 Eq. 9-14 

Hence, this modification leads to variances sln,mod″
2 that account for statistical uncertainty. 

These modified variances are then converted back into a CoV based on Eq. 9-13, which 

yields the CoVs υj and υb that are the results of the upper left and lower right part of the 

diagram. These CoVs are denoted identically to population CoVs since, due to the consid-

eration of statistical uncertainty, they can be applied in the same way. 

The ratio fma,a / fma,m can then be obtained from the upper right part of the upper diagram 

based on the intersection of a horizontal and a vertical line at υj and υb, respectively. The 

location of the intersection with respect to the displayed contour lines provides the required 

value fma,a / fma,m. Based on υj and υb, the ratio fma,k / fma,m and the partial factor γM are ob-

tained accordingly using the two diagrams at the bottom. However, both values are not 

necessarily required since the assessment value can be determined from fma,a / fma,m alone. 

For illustration, the diagrams are employed for two example cases. In the first case, only 

the recommended minimum number of unit and mortar specimens is tested (nb = nj = 6), 

and the sample CoVs are Vb = Vj = 55 %. This corresponds to a relatively high CoV, which, 

however, still sometimes occurs in typical assessment situations (see Fig. 7-6). In the sec-

ond case, 30 specimens of unit and mortar are tested, and the sample CoVs are 

Vb = Vj = 15 %. This CoV is relatively low for existing solid clay brick masonry constructed 
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before the year 1950. However, it is a realistic value for younger masonry. In Fig. 9-1 and 

Fig. 9-2, the determination of the required values is highlighted for the two examples. The 

corresponding results are listed in Table 9-2. 

As evident, the resulting ratios fma,k / fma,m between characteristic and mean value and the 

obtained partial factors γM are strongly dependent on the particular conditions. If the sample 

size is small and the sample CoVs are high, as in the first case, the utilisation of prior 

information leads to much higher assessment values. This is caused by two effects. First, 

the utilisation of prior information reduces the overall statistical uncertainty. Second, the 

estimates sln,b and sln,j for the standard deviations are reduced through the Bayesian update 

(sln″ < sln). If the sample CoVs are unusually low for existing solid clay brick masonry, the 

use of prior information can lead to a lower assessment value, as, for example, in the second 

case. Here, the estimates for the standard deviations are increased through the Bayesian 

update (sln″ > sln). However, the overall statistical uncertainty is still reduced, which partly 

compensates for the higher value of sln″. In summary, it can be stated that prior information 

leads to a narrower range of resulting characteristic values, partial factors, and assessment 

values for masonry compressive strength. 

Table 9-2  Example results from applying the proposed method 

Sample size 

nb = nj 

Sample CoV 

Vb = Vj 
Type of prior 

Ratio 

fma,k / fma,m 

Partial factor  

γM 

Ratio 

fma,a / fma,m 

6 55 % 

Informative 0.46 1.51 0.30 

Non-informative 0.33 1.67 0.20 

30 15 % 
Informative 0.66 1.33 0.50 

Non-informative 0.70 1.31 0.53 

In the case of direct testing, Fig. 9-3 can be employed for determining characteristic values 

fma,k, partial factors γM, and assessment values fma,a for masonry compressive strength. Since 

the number of input parameters reduces from four to two – namely, to the sample CoV Vma 

and the corresponding sample size n – applying the diagrams is more straightforward than 

in the case of indirect testing. The limiting values in Fig. 9-3 are caused by the condition 

that σln,ma must not be lower than the CoV υθR = 0.14 of resistance model uncertainty. If the 

prior hyperparameters for solid clay brick masonry are applied, this limiting value does not 

become relevant in practical cases. In the case of the non-informative prior distribution, the 

limiting value for σln,ma can become relevant for a sample CoV Vma smaller than 10 % if 

testing uncertainty is considered via υθf = 0.10 (see Fig. 9-3). The actual limiting value for 

Vma depends on the number of tests. In addition to ensuring that the assumption of model 

uncertainty being non-dominant is valid, the limiting value for the CoV is helpful as it 

prevents an overestimation of the appropriate assessment value caused by a randomly ob-

tained sample CoV that is much lower than the actual CoV. 
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Fig. 9-1  Diagrams for determining assessment values, characteristic values, and par-

tial factors for masonry compressive strength (informative prior) 
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Fig. 9-2 Diagrams for determining assessment values, characteristic values, and par-

tial factors for masonry compressive strength (non-informative prior) 

  

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U
p

d
at

ed
 a

n
d

 m
o

d
if

ie
d

 C
o

V
 o

f 

m
o

rt
ar

 c
o

m
p

re
ss

iv
e 

st
re

n
g
th

 υ
j

Updated and modified CoV of 

unit compressive strength υb

Partial factor γM

βt,1a = 3.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

U
p

d
at

ed
 a

n
d

 m
o

d
if

ie
d

 C
o

V
 o

f 

m
o

rt
ar

 c
o

m
p

re
ss

iv
e 

st
re

n
g
th

 υ
j

Updated and modified CoV of 

unit compressive strength υb

Ratio fma,k / fma,m

Ratio fma,a / fma,m

βt,1a = 3.3

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

S
am

p
le

 C
o

V
 o

f 
u
n
it

 

co
m

p
re

ss
iv

e 
st

re
n
g
th

 V
b

Updated and modified CoV of 

unit compressive strength υb

Non-

informative 

prior

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

U
p

d
at

ed
 a

n
d

 m
o

d
if

ie
d

 C
o

V
 o

f 

m
o

rt
ar

 c
o

m
p

r.
 s

tr
en

g
th

 υ
j

Sample CoV of mortar 

compressive strength Vj

Non-

informative 

prior

0.53

0.20

1.67

1.31

0.33

0.70



 

 9.3  Diagrams for Determining Assessment Values 

 

  

235 

 

Fig. 9-3 Diagrams for determining assessment values, characteristic values, and par-

tial factors for masonry compressive strength in the case of direct testing (left: 

informative prior, right: non-informative prior) 
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information can lead to lower assessment values of masonry compressive strength. Never-

theless, the use of the presented prior hyperparameters is generally recommended when 

assessing existing solid clay brick masonry constructed before 1950 since this prevents the 

application of unrealistically low CoVs in the determination of the assessment strength. 

However, if other masonry types are assessed, utilising the non-informative prior is recom-

mended if prior hyperparameters for this type of masonry are not available. 

9.4 Typical Characteristic-to-Mean Ratios and Partial Factors 

The proposed method is applied to the existing buildings in the database presented in Sec-

tion 7.3. Thereby, it can be illustrated which results are typically obtained by the proposed 

method. Concerning indirect testing, 78 masonry populations are investigated, for which at 

least three unit and three mortar specimens from at least two different masonry walls are 

tested. Hence, the populations are defined to include all masonry walls in a building that 

belong to the same masonry type. Regarding direct testing, data from 11 buildings with at 

least two test results per building are used for the investigation (see Section 7.4.7). Only 

solid clay brick masonry is considered. By using the test results from the database, both the 

typical range of material variability and a typical range for the number of conducted tests 

are covered. For determining partial factors, two cases are considered. First, the reduced 

target reliability index βt,1a = 3.3 is applied in combination with a fixed sensitivity factor 

αR,1a = 0.7. Second, the target reliability index βt,50a = 3.8 for the design of new structures 

and CC 2 according to EN 1990 (2010) is applied with αR = 0.8. 

The relative frequencies of the results are displayed in Fig. 9-4. The characteristic-to-mean 

ratios fma,k / fma,m lie between 0.37 and 0.60. The partial factors are obtained in the range 

between 1.37 to 1.61 for βt,1a = 3.3 and between 1.76 and 2.46 for βt,50a = 3.8. No significant 

differences between the results for direct and indirect testing are present. It is evident that 

selecting the appropriate ratio of characteristic to mean value has a more substantial influ-

ence on the resulting assessment value than choosing the appropriate partial factor. The 

ratio of maximum to minimum value is 1.64 for fma,k / fma,m and, thus, higher than the max-

imum-to-minimum ratio for γM, which is 1.17 for βt,1a = 3.3 and 1.40 for βt,50a = 3.8. 

In the case of βt,50a = 3.8, γM = 1.99 is obtained on average, which is much higher than the 

value γM = 1.5 defined in DIN EN 1996-1-1/NA (2019). The main reason for the higher 

partial factors is that the typical material variability of existing solid clay brick masonry 

built before 1950 is higher than that of contemporary masonry. However, if the reduced 

target reliability index βt,1a = 3.3 is chosen, most of the resulting partial factors are lower 

than γM = 1.5. In this case, an average partial factor of γM = 1.45 is obtained for both indirect 

and direct testing. 
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In the case of βt,1a = 3.3, the resulting partial factors γM should be applied in combination 

with reduced partial factors for the action variables. Instead of γG = 1.35 for permanent load 

and γQ = 1.5 for imposed load, γG = 1.26 and γQ = 1.05 can be used (see Section 8.2.6). In 

the case of a combination of unfavourable permanent load G and imposed load Q with a 

load effect ratio of Qk / Gk = 0.5, this enables more than 20 % higher utilisation of existing 

masonry walls on average if compared to applying the fixed partial factors γG = 1.35, 

γQ = 1.5, and γM = 1.5. 

 

Fig. 9-4 Frequencies of the ratios fma,k / fma,m and the partial factors γM obtained for the 

solid clay brick masonry populations in the test database 
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9.5 Alternative Assessment Procedures in the Absence of Test Results 

The proposed method for determining assessment values of masonry compressive strength, 

as presented in the previous sections, can only be applied if results of compressive strength 

tests on either unit and mortar or masonry specimens are available. However, in practice, 

there is sometimes a desire to avoid material testing for economic reasons or to preserve 

cultural heritage, for example. Therefore, some suggestions on alternative assessment pro-

cedures in the case that no tests have been conducted are made here. The remarks should 

be understood as pragmatic recommendations for engineering practice that are not based 

on the same scientific rigour as the proposed test-based method. Furthermore, a high level 

of expertise is needed in some of the following approaches.  

If no test results are available, a distinction between the following two cases must be made: 

1. The investigated population of masonry was constructed according to particular mate-

rial and design standards, and documents specifying the standardised compressive 

strength of unit and mortar (or masonry) are available. 

2. The investigated population of masonry is too old to be built according to specific 

standards, or no documents specifying the material strength are available. 

Case 1 

In the first case, the specified unit and mortar compressive strength (or masonry compres-

sive strength) can be used to verify structural safety. However, this always requires at least 

a visual check that the available construction documents – particularly the included infor-

mation about the unit and mortar types – match the existing structure in its actual condition. 

In Germany, the structural safety of existing members that must resist increased load effects 

due to an extension of the building may be verified according to the standards in force at 

the time of construction if these members themselves are kept unchanged (ARGEBAU 

2008). Nevertheless, verification according to the current standards (i.e. the Eurocodes) is 

also possible. If masonry compressive strength is only given in terms of an allowable stress 

σ0 according to the former German standard DIN 1053 (e.g. DIN 1053-1 1990), Graubner 

et al. (2020) recommend applying a characteristic value fma,k of 2.64 times σ0. 

If the verification according to former or current standards is not fulfilled, it can be helpful 

to reduce the current partial factors provided by the Eurocodes to consider a lower target 

reliability level compared to the design of new structures. Regarding the partial factors for 

actions, the adjusted partial factor method (APFM) as presented in fib bulletin 80 (2016) 

can be applied; see also Sections 2.6.3 and 8.2.6. In principle, the APFM can also be applied 

to the partial factor γM for the compressive strength of masonry to account for a reduced 

target reliability index without conducting tests. However, due to the high diversity of dif-
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ferent masonry types and the wide range of partial factors γM defined by the National An-

nexes to EN 1996-1-1 (2012), as presented in Section 3.7, a modification of the partial 

factor γM without additional information from material testing is not recommended in gen-

eral cases. It is noted that material testing is not only beneficial regarding a more precise 

modification of the partial factor but also since the in-situ compressive strength of unit and 

mortar might strongly deviate from the specified strengths in the construction documents. 

Case 2 

No information about the strength of unit, mortar, or masonry is available from construction 

documents in the second case. Therefore, reliable information about the in-situ strength can 

only be obtained by testing. After testing, the proposed method for determining assessment 

values of masonry compressive strength can be applied. 

The testing of material properties can only be avoided entirely in this second case if it is 

obvious that the compressive strength of the investigated masonry members is sufficiently 

high to provide resistance against the expected load effects (see also WTA 7-4 2021). This 

decision can only be made by experts with much experience in assessing existing masonry 

structures. In addition, the results presented in Fig. 9-5 can be helpful if solid clay brick 

masonry is investigated. 

 

Fig. 9-5 Assessment values fma,a of masonry compressive strength for the solid clay 

brick masonry populations in the test database obtained by applying the pro-

posed method and the power equation from EN 1996-1-1 (2012) 

Fig. 9-5 displays the relative frequencies of assessment values fma,a obtained by applying 

the proposed method to the masonry populations in the test database introduced in Section 

7.3. The assessment values are based on the results of indirect testing, an informative prior 

distribution, and a target reliability index of βt,1a = 3.3. Only 54 of the 78 building-related 

masonry populations lie within the application range of the power equation as specified in 

DIN EN 1996-1-1/NA (2019). Mainly populations with low mortar compressive strengths 

are excluded from the application of the respective power equation, as mortar compressive 
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strengths of fj,m < 2.5 N/mm² are not covered. Therefore, the masonry compressive 

strengths in Fig. 9-5 are based on the power equation with parameters from EN 1996-1-1 

(2012); only two populations with fj,m > 20 N/mm² are excluded from the investigation due 

to the application conditions specified in EN 1996-1-1 (2012). The values displayed in Fig. 

9-5 are valid for bonded masonry; that is, they include a reduction factor of 0.8 for masonry 

with vertical joints parallel to the face of the wall. Furthermore, they include a reduction 

factor of ζ = 0.85 to consider the influence of sustained loading. With values between 

fma,a = 0.54 N/mm² and 4.8 N/mm², the range of obtained assessment values is relatively 

large. If the required assessment value of masonry compressive strength is lower than 

fma,a = 0.5 N/mm², it can be assumed that typical solid clay brick masonry in Germany with-

out significant defects fulfils this requirement. 

In some practical cases, only the compressive strength of the units is tested (see Section 

7.3), whereas the compressive strength of mortar fj,m is estimated through expert judgement 

based on the age of the building, visual inspection, and resistance to scratching. This prag-

matic – but not very accurate – approach can be suitable since unit compressive strength 

has much more influence on masonry compressive strength than mortar compressive 

strength (see e.g. Sections 3.5.3 and 8.5.3). The method presented in Section 9.2 can then 

be adapted as follows. The informative prior distribution is used for mortar compressive 

strength, and the number of tests is set to nj = 2, which is the lowest possible value for 

applying the method. The choice of nj = 2 supposes that the expert estimation of mortar 

compressive strength is as precise as two destructive tests. Since this cannot be assumed in 

general, the estimation of mortar compressive strength fj,m needs to be conservative. As no 

information regarding the variability of mortar strength is obtained by testing, the respec-

tive posterior parameters are set equal to the prior parameters (i.e. νj″ = νj′ = 4.2 and 

sln,j″ = sln,j′ = 0.4; see Section 7.4). Concerning the parameters for unit strength, the actual 

values for nb and sln,b from testing should be used to determine νb″ and sln,b″ as described in 

Section 9.2. If the application of diagrams instead of equations is preferred to determine 

characteristic values, partial factors, and assessment values for masonry compressive 

strength, the diagrams presented in Annex E can be used. 

Stepwise approach 

It follows from the above that the most suitable procedure to avoid material tests in the 

assessment of existing masonry structures is given by a stepwise approach (see also WTA 

7-4 2021). The flowchart in Fig. 9-5 displays such a step-by-step procedure. Depending on 

the outcome of the verification attempts at the different steps, required testing is increased 

from no tests at all, to tests on units only, to tests on units and mortar. If the verification 

based on tests on unit and mortar is not fulfilled, either the number of tests on unit and 

mortar specimens can be increased, or tests on composite masonry specimens can be per-

formed. Finally, if the structural safety of an assessed masonry member cannot be verified 
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in this last step, strengthening measures must be taken, the loads must be reduced, or the 

member must be replaced. 

 

Fig. 9-6 Iterative assessment procedure for avoiding material tests 
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“value of information” and a corresponding study to optimise the number of tests is beyond 

the scope of this thesis. It is thus referred to Sykora et al. (2022), where the concept is 

described in detail, and the results of a case study dealing with a historic masonry structure 

are presented. Regarding the value of information, Sykora et al. (2022) demonstrate that 

destructive compressive strength testing is particularly beneficial concerning the value of 

information if the structural utilisation before performing destructive tests is around 100 %. 

Therefore, performing destructive tests on specimens from the investigated masonry popu-

lation is also highly recommended here if the structural utilisation of one or more members 

of this population is close to 100 %. 
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10 SUMMARY AND OUTLOOK 

The main objective of this thesis was to develop a method for determining suitable assess-

ment values of the compressive strength of existing masonry if test results for either unit 

and mortar compressive strength or masonry compressive strength are available. For this 

purpose, the influence of spatially variable material properties on the load-bearing capacity 

of masonry walls under compression had to be quantified, which was accomplished by 

experimental, numerical, and analytical investigations. To consider the statistical uncer-

tainty introduced by small sample sizes in material testing, a Bayesian framework was es-

tablished, including suitable prior distributions for the stochastic parameters of unit, mortar, 

and masonry compressive strength. Concerning the influence of spatial variability and the 

obtained prior distributions, the focus of the investigations was on solid clay brick masonry. 

Finally, a practice-oriented method was proposed, which allows for determining character-

istic values, partial factors, and assessment values for masonry compressive strength. 

Hence, the developed method is an essential and valuable tool for evaluating existing ma-

sonry structures and making appropriate decisions concerning the need for retrofitting 

measures if, for example, the respective building is extended or converted. 

In Chapter 2, the relevant background regarding statistics and structural reliability was in-

troduced. Particular emphasis was placed on Bayesian statistics, the calibration of partial 

factors, and the reliability assessment of existing structures. Appropriate target reliability 

levels for the assessment of existing structures were discussed. For the assessment of typi-

cal masonry structures with moderate consequences in case of failure, a target reliability 

index of βt,1a = 3.3 for a reference period of one year, which is specified in ISO 2394 (2015) 

based on economic optimisation for large relative costs of safety measures, can be consid-

ered appropriate. 

Chapter 3 dealt with the basics of masonry construction. After a brief illustration of the 

history of masonry construction, an overview of the state of the art regarding the load-

bearing behaviour of masonry under compression was given. Then, the different procedures 

for testing the compressive strength of masonry were discussed. A distinction must be made 

between direct testing of masonry compressive strength on composite specimens and indi-

rect testing, which is the separate testing of unit and mortar compressive strength. In the 

latter case, masonry compressive strength needs to be predicted based on the component 

strengths using a suitable model. The most common model is the empirical power equation 

specified in EN 1996-1-1 (2012), which was therefore analysed in detail. The analysis 

demonstrated that the power equation is also suited for probabilistic applications. The chap-

ter closed with a description of strategies for the finite element modelling of masonry and 

a discussion of the safety format for the design of masonry structures according to EN 1996-

1-1 (2012). 
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In Chapter 4, experimental investigations on the stress redistribution capability of masonry 

walls under compression loading were presented. The tests were conducted on solid clay 

brick masonry in which weaknesses were intentionally inserted through either a missing 

brick or a specified percentage of perforated bricks. The tests showed a reasonably good – 

but not perfect – capability of stress redistribution. In addition to the main tests on masonry 

walls, accompanying tests on unit and mortar were conducted. Regarding mortar strength, 

double punch tests according to DIN 18555-9 (2019) on mortar specimens extracted from 

masonry and standard compressive strength tests on mortar prisms according to EN 1015-

11 (2019) were performed. The results indicate that the curing conditions within solid clay 

brick masonry lead to much higher mortar strengths than the curing conditions for standard 

mortar prisms. 

Chapter 5 described the developed finite element model for masonry walls under compres-

sion loading. The model follows the simplified micro-modelling approach. The inelastic 

behaviour of masonry under compression is assigned to expanded units, whereas the dis-

crete cracking in the mortar joints under tensile stresses is modelled by interface elements 

between these expanded units. It was shown that the experimental results on masonry walls 

with weak spots from Chapter 4 can be well reproduced with the developed finite element 

model. 

In Chapter 6, Monte Carlo simulations of the load-bearing capacity of masonry walls under 

compression were presented. For these investigations, the validated finite element model 

was utilised, and the spatial variability of the compressive strength and the elastic modulus 

of masonry was modelled as unit-to-unit variability. In parameter studies, the relationship 

between the probability distribution of the material properties and the probability distribu-

tion of the wall resistance was investigated for various boundary conditions. It was ob-

served that the mean wall resistance decreases with an increase in the spatial variability of 

the material properties. However, the resulting variability of the wall resistance is signifi-

cantly smaller than the underlying spatial variability of the material properties within the 

wall. Considering only material variability, this results in a positive effect of taking spatial 

variability into account: If assessment values of masonry compressive strength are deter-

mined considering the effects of spatial variability on the distribution of the wall resistance, 

they are higher than the results of a direct calculation based on the probability distribution 

of masonry compressive strength. The parameter studies revealed that this positive effect 

is more pronounced for slender masonry walls failing due to buckling than for non-slender 

walls with cross-sectional failure. Furthermore, longer walls show a more favourable be-

haviour than short walls if subjected to spatial variability of material properties. 

Chapter 7 first defines the Bayesian framework for considering statistical uncertainty. The 

framework allows the inclusion of prior distributions for the variances of the logarithms of 

unit, mortar, and masonry compressive strength. A test database for the material properties 
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of existing masonry was compiled to enable the modelling of prior distributions. The data-

base contains test results for unit and mortar compressive strength of 140 existing buildings 

made of solid clay brick masonry. More than 2,000 test results for both unit and mortar 

compressive strength are included. Based on this data, the hyperparameters of the prior 

distributions were obtained by maximum likelihood estimation. Moreover, the hyperpa-

rameters of the prior distribution for masonry compressive strength were determined based 

on the respective prior distributions for unit and mortar via stochastic simulations utilising 

the power equation for masonry compressive strength. 

In Chapter 8, the method for determining suitable assessment values of masonry compres-

sive strength was finally developed. At first, the underlying principles, conditions, and as-

sumptions were explained in detail. The method follows the simplified level II approach, 

which means that a fixed sensitivity factor αR of the resistance is applied. The developed 

method can be used if results of either direct or indirect tests of masonry compressive 

strength for a particular masonry population are available. If the method is applied to solid 

clay brick masonry, the prior distributions determined in Chapter 7 can be used. For other 

types of masonry, the method can be employed using non-informative prior distributions. 

The target reliability index βt is an input parameter of the method and can hence be selected 

as required in a specific case. Although assessment values of masonry compressive strength 

can be determined directly, the method also allows for the separate calculation of charac-

teristic values of masonry compressive strength and partial factors for the resistance of ma-

sonry. The model uncertainties to be considered in assessing the resistance of a masonry 

wall were evaluated. This included the uncertainty of the model for calculating the load-

bearing capacity of a masonry wall for a given masonry compressive strength and the un-

certainty in predicting masonry compressive strength in the case of indirect testing. 

In the next step, the different types of uncertainty (i.e. spatial material variability, model 

uncertainty, and statistical uncertainty) were combined via stochastic simulations. Thereby, 

posterior predictive distributions for the resistance of a masonry wall were obtained, based 

on which suitable assessment values for various boundary conditions were determined. 

These investigations served the purpose of deriving suitable approximations for engineer-

ing practice. It was shown that, in typical cases, it only makes a slight difference whether 

assessment values are determined based on the distribution of the wall resistance or based 

on the distribution of masonry compressive strength. The positive effect of considering 

spatial variability, which was observed in Chapter 6, disappears almost entirely if statistical 

and model uncertainty are considered in addition to material variability. Hence, for more 

convenience, the spatial nature of the variability of material properties can be neglected. 

Additional stochastic simulations demonstrated that the proposed method is not only suit-

able for the reference case of non-slender masonry walls with cross-sectional failure but 

also for slender walls failing due to buckling. Furthermore, it was shown that the strength 
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reduction factor specified by EN 1996-1-1 (2012) for walls with small cross-sections is also 

appropriate for the assessment of existing masonry walls. Finally, reliability analyses were 

conducted to validate the proposed method. It was demonstrated that the reliability level 

that results from applying the proposed method matches well with the selected target reli-

ability index. 

In Chapter 9, the proposed method for determining characteristic values, partial factors, and 

assessment values for masonry compressive strength was presented in its final, practice-

oriented form. In addition to step-by-step instructions for applying the method via equa-

tions, diagrams for determining suitable assessment values, characteristic values, and par-

tial factors were provided. Moreover, typical results from applying the proposed method to 

solid clay brick masonry were shown in terms of resulting characteristic-to-mean ratios for 

masonry compressive strength and partial safety factors γM for the resistance of masonry 

under compression. For the buildings in the test database presented in Chapter 7, an average 

partial factor γM = 1.45 was obtained based on a target reliability index of βt,1a = 3.3. Fi-

nally, suggestions for alternative assessment procedures in the absence of test results were 

made. 

Although a wide range of aspects concerning the probabilistic assessment of existing ma-

sonry structures was addressed in this thesis, there are still many open issues. Further re-

search is needed on the following topics: 

 Although the test database presented in Chapter 7 is quite extensive, further extension 

of the database would be beneficial. Thereby, prior distributions for masonry types 

other than solid clay brick masonry could be determined precisely. In addition, further 

differentiation of the prior distributions, such as according to specific geographic re-

gions or narrower time periods, would be enabled. 

 The procedures for testing the compressive strength of existing masonry should be 

further developed. The application limits of the available procedures for directly test-

ing masonry compressive strength on relatively small composite specimens, such as 

masonry cores, should be widened. Therefore, research is needed concerning a precise 

conversion of the test results to the reference strength according to EN 1052-1 (1998). 

Regarding indirect testing, one shortcoming of the empirical power equation is its der-

ivation based on the mortar compressive strength determined on standard prims, which 

differs from the strength determined on mortar specimens extracted from masonry. An 

empirical equation formulated directly via the mortar strength of specimens extracted 

from masonry would be beneficial. However, no sufficient database is currently avail-

able for this purpose. 

 In this thesis, the focus was on the assessment of existing masonry walls under com-

pression loading. A similar method is required for assessing masonry walls under shear 
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loading, where several potential failure modes need to be considered, such as flexural 

failure, sliding shear failure, and diagonal tension failure. These failure modes differ 

regarding the influential material properties, which have to be tested or estimated, and 

in terms of the influence of the respective spatial variability. 

 Research is also needed on practice-oriented tools for decision-making regarding suit-

able populations, representative sampling locations, and optimal sample sizes when 

testing material properties of existing structures. In this context, it should be investi-

gated how destructive and non-destructive testing methods can be combined optimally.  
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Annex A – Documentation of Experiments on Masonry Walls 

In the following, the results of the experiments on masonry walls are documented by 

providing one page of information for each type of tested masonry wall, including 

 an example picture of one wall belonging to this wall type, 

 the tabulated test data, including the testing age, wall dimensions, corresponding unit 

and mortar compressive strength, maximum applied load, strength (= maximum load 

related to gross cross-section), modulus of elasticity Ema,0-33 (= secant modulus at one-

third of strength with strain determined via the average displacement of the LVDTs 

related to measurement length), and stress-strain parameter k (calculated according to 

Eq. 4-1), 

 the stress-strain curve, where the stress is the applied load related to the gross cross-

sectional area, and the strain is the average displacement of the LVDTs related to the 

measurement length, 

 the vertical strain under maximum load as obtained by digital image correlation (only 

the middle area is shown for single wythe walls since the test setup did not allow to 

capture a wider angle), 

 and one picture from each individual wall showing one or several of the most promi-

nent cracks after testing. 
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Solid clay brick reference wall, single wythe (sw-sol) 

Before testing Test data 

 

 

  1 2 3 

Age d 35 36 40 

Length mm 1,266 1,265 1,255 

Thickness mm 115 115 115 

Height mm 1,122 1,112 1,115 

Unit strength fb N/mm² 25.7 25.7 25.7 

Mortar strength fj N/mm² 2.77 2.77 2.77 

Maximum load kN 1,004 1,089 1,136 

Strength N/mm² 6.90 7.49 7.87 

Ema,0-33 N/mm² 2,561 2,786 3,311 

k  2.18 2.16 2.60 

Stress-strain curve Vert. strain at max. load (sw-sol-2) 

 
 

After testing (left: sw-sol-1, centre: sw-sol-2, right: sw-sol-3) 
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Perforated clay brick reference wall, single wythe (sw-perf) 

Before testing Test data 

 

 

  1 2 

Age d 34 37 

Length mm 1,234 1,245 

Thickness mm 110 111 

Height mm 1,077 1,086 

Unit strength fb N/mm² 12.0 11.4 

Mortar strength fj N/mm² 2.80 2.24 

Maximum load kN 437 423 

Strength N/mm² 3.22 3.06 

Ema,0-33 N/mm² 2,540 2,143 

k  1.98 1.40 

Stress-strain curve Vert. strain at max. load (sw-perf-2) 

 
 

After testing (left: sw-perf-1, right: sw-perf-2) 
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Wall with missing brick, single wythe (sw-hole) 

Before testing Test data 

 

 

  1 2 

Age d 40 41 

Length mm 1,245 1,250 

Thickness mm 115 115 

Height mm 1,110 1,112 

Unit strength fb N/mm² 23.6 23.6 

Mortar strength fj N/mm² 2.4 2.4 

Maximum load kN 814 799 

Strength N/mm² 5.68 5.56 

Stress-strain curve Vert. strain at max. load (sw-hole-1) 

 
 

After testing (left: sw-hole-1, right: sw-hole-2) 
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Wall with 25 % perforated bricks, single wythe (sw-25) 

Before testing Test data 

 

 

  1 2 

Age d 36 35 

Length mm 1,247 1,248 

Thickness mm 113 113 

Height mm 1,108 1,119 

Unit strength fb N/mm² 24.6 / 12.0 24.6 / 12.0 

Mortar strength fj N/mm² 2.30 2.03 

Maximum load kN 681 736 

Strength N/mm² 4.83 5.22 

Ema,0-33 N/mm² 2,561 2,805 

k  1.69 1.94 

Stress-strain curve Vert. strain at max. load (sw-25-1) 

 
 

After testing (left: sw-25-1, right: sw-25-2) 
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Wall with 50 % perforated bricks, single wythe (sw-50) 

Before testing Test data 

 

 

  1 2 

Age d 36 36 

Length mm 1,246 1,248 

Thickness mm 113 113 

Height mm 1,112 1,105 

Unit strength fb N/mm² 24.6 / 12.0 24.6 / 12.0 

Mortar strength fj N/mm² 2.16 2.03 

Maximum load kN 565 568 

Strength N/mm² 4.01 4.03 

Ema,0-33 N/mm² 3,023 2,430 

k  1.79 1.56 

Stress-strain curve Vert. strain at max. load (sw-50-1) 

 
 

After testing (left: sw-50-1, right: sw-50-2) 
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Solid clay brick reference wall, cross bond (cb-sol) 

Before testing Test data 

 

 

  1 2 3 

Age d 32 39 37 

Length mm 620 629 625 

Thickness mm 241 241 240 

Height mm 1,121 1,091 1,110 

Unit strength fb N/mm² 25.2 23.1 24.0 

Mortar strength fj N/mm² 2.76 2.89 2.85 

Maximum load kN 943 826 1,093 

Strength N/mm² 6.31 5.45 7.29 

Ema,0-33 N/mm² 3,014 2,958 3,309 

k  2.79 2.40 1.95 

Stress-strain curve Vert. strain at max. load (cb-sol-1) 

 
 

After testing (left: cb-sol-1, centre: cb-sol-2, right: cb-sol-3) 
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Perforated clay brick reference wall, cross bond (cb-perf) 

Before testing Test data 

 

 

  1 2 

Age d 38 41 

Length mm 622 621 

Thickness mm 239 239 

Height mm 1,084 1,083 

Unit strength fb N/mm² 11.4 11.4 

Mortar strength fj N/mm² 2.90 3.11 

Maximum load kN 391 394 

Strength N/mm² 2.63 2.66 

Ema,0-33 N/mm² 2,090 2,191 

k  2.14 1.94 

Stress-strain curve Vert. strain at max. load (cb-perf-1) 

 
 

After testing (left: cb-perf-1, right: cb-perf-2) 
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Wall with missing stretcher, cross bond (cb-str) 

Before testing Test data 

 

 

  1 2 

Age d 33 34 

Length mm 623 624 

Thickness mm 242 241 

Height mm 1,114 1,116 

Unit strength fb N/mm² 25.2 25.2 

Mortar strength fj N/mm² 2.76 2.76 

Maximum load kN 694 651 

Strength N/mm² 4.61 4.33 

Stress-strain curve Vert. strain at max. load (cb-str-2) 

 
 

After testing (left: cb-str-1, right: cb-str-2) 
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Wall with missing header, cross bond (cb-head) 

Before testing Test data 

 

 

  1 2 

Age d 35 36 

Length mm 617 622 

Thickness mm 242 242 

Height mm 1,115 1,117 

Unit strength fb N/mm² 25.2 25.2 

Mortar strength fj N/mm² 2.76 2.76 

Maximum load kN 748 732 

Strength N/mm² 5.01 4.86 

Stress-strain curve Vert. strain at max. load (cb-head-2) 

 
 

After testing (left: cb-head-1, right: cb-head-2) 
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Wall with 25 % perforated bricks, cross bond (cb-25) 

Before testing Test data 

 

 

  1 2 

Age d 41 42 

Length mm 624 622 

Thickness mm 239 240 

Height mm 1,098 1,101 

Unit strength fb N/mm² 24.0 / 11.4 24.0 / 11.4 

Mortar strength fj N/mm² 3.13 2.73 

Maximum load kN 721 703 

Strength N/mm² 4.83 4.71 

Ema,0-33 N/mm² 2,548 2,766 

k  1.67 1.91 

Stress-strain curve Vert. strain at max. load (cb-25-1) 

 
 

After testing (left: cb-25-1, right: cb-25-2) 
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Wall with 50 % perforated bricks, cross bond (cb-50) 

Before testing Test data 

 

 

  1 2 

Age d 42 43 

Length mm 620 622 

Thickness mm 239 240 

Height mm 1,093 1,095 

Unit strength fb N/mm² 24.0 / 11.4 24.0 / 11.4 

Mortar strength fj N/mm² 3.14 2.90 

Maximum load kN 501 485 

Strength N/mm² 3.38 3.25 

Ema,0-33 N/mm² 2,669 2,043 

k  2.26 1.90 

Stress-strain curve Vert. strain at max. load (cb-50-1) 

 
 

After testing (left: cb-50-1, right: cb-50-2) 
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Annex B – Derivation of Formulae for Generating Correlated Material 

Properties 

In this Annex, the derivation of Eq. 6-4 to Eq. 6-9, which yield the CoVs of the auxiliary 

variables for generating correlated log-normal material properties, is illustrated. 

At first, two random variables X and Y are considered that result from a product of two 

independent random variables, sharing the random variable Z as a common factor: 

*Z X X  Eq. B-1 

*Z Y Y  Eq. B-2 

The covariance of X and Y can be determined following the general expression of the co-

variance (see Eq. 2-14), which can then be transformed using the relationships for the sto-

chastic moments of a product (see Eq. 2-19): 

    

  
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* *

* * * *

* * * *
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

 Eq. B-3 

The relationship E (Z
2) = μZ

2 + σZ
2, which is needed for the above transformation, is pro-

vided in Melchers and Beck (2018), for example. If the covariance is converted to a corre-

lation coefficient ρX,Y (see Eq. 2-14), it follows: 

  * * * *

2 2 2 2 2

,

Cov ,
=

Z Z ZX Y X
X Y

X Y X Y X Y X Y

Y Z X Y Z

X Y X YX Y

σ μ μ υ μ μ μ υX Y
ρ

σ σ σ σ υ υ υ υ

μ μ υ

μ υ υμ μ μ
    Eq. B-4 

Hence, the correlation coefficient of two random variables that result from a product of 

independent variables is equal to the squared coefficient of variation (CoV) of the shared 

factor divided by the product of the CoVs of the random variables. This principle can be 

applied to determine the CoVs of the auxiliary random variables required for generating 

correlated random material properties (see Section 6.2.3). The equations for generating the 

material properties are Eq. 6-2 and Eq. 6-3, which are repeated here: 

ma, w u,i i if W f U f  Eq. B-5 

ma, w u,i i iE W E U E  Eq. B-6 
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The spatial correlation coefficient ρspat between the masonry compressive strength fma,i at 

“unit” i and fma,j at “unit” j results from the shared factors W and fw. Following the principle 

of Eq. B-4, ρspat can be expressed via the squared CoV of the product W fw divided by the 

squared CoV of masonry compressive strength: 

w

w

2

2

m

spat ma s at

a

p=
W f

W f

υ
υ υ

υ
ρ ρ



   Eq. B-7 

Since ρspat also represents the spatial correlation coefficient between the elastic moduli at 

different “units”, the equivalent expression follows for the elastic modulus: 

w

w

2

2spat spat=
W E

W E

E

E

υ
υ

υ
ρ υ ρ



   Eq. B-8 

If no spatial variability was considered, the random variables Ui, fu,i, and Eu,i would not be 

required. In this case, compressive strength and elastic modulus could be generated via 

fma = W fw and Ema = W Ew (if the mean values of fma and Ema were included in fw and Ew 

instead of fu,i and Eu,i). The auxiliary variable W then serves the purpose of creating the 

correlation between Ema and fma, represented by the correlation coefficient ρf,E: 

w w

w w

2

, ,= W
W W f W Ef E f E

W f W E

υ
υρ ρ υ υ

υ υ
 

 

   Eq. B-9 

Inserting Eq. B-7 and Eq. B-8 in Eq. B-9 yields the final expression for the CoV of W: 

spat , maW f E Eυ ρ ρ υ υ  Eq. B-10 

In the general case with spatial variability, the correlation between the compressive strength 

and elastic modulus at one “unit” i is created through the shared variables W and Ui: 

i
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   Eq. B-11 

Inserting Eq. B-10 in Eq. B-11 and subsequent transformation yields the final expression 

for the CoV of Ui: 
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  Eq. B-12 

For determining the CoV of the auxiliary variable fw, Eq. B-7 is first transformed as follows: 
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 Eq. B-13 
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Inserting Eq. B-10 in Eq. B-13 yields the final expression for the CoV of fw: 
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 Eq. B-14 

The final expression for the CoV for Ew can be found equivalently by first transforming Eq. 

B-8 and then inserting Eq. B-10: 
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 Eq. B-15 

The CoV of fu,i ensures that the desired overall CoV of fma is obtained. The CoV of fma is 

given by the following expression: 
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 Eq. B-16 

Solving for the CoV of fu,i yields: 
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 Eq. B-17 

The final expression for the CoV of fu,i is obtained by inserting Eq. B-10, Eq. B-12 and Eq. 

B-14 in Eq. B-17, followed by several steps of simplification: 
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 Eq. B-18 

The CoV of Eu,i ensures that the desired overall CoV of Ema is received. Thus, it is obtained 

equivalently to the approach for the CoV of fu,i. This yields: 
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Annex C – Database of Component and Composite Strengths of Existing 

Masonry 

In Table C-1, the test database for unit and mortar compressive strengths of existing ma-

sonry that is evaluated in Chapter 7 is given in a condensed form. All of the displayed data 

corresponds to solid clay brick masonry. The results of unit and mortar compressive 

strength tests are presented with regard to the number of tests, the arithmetic mean of the 

test results, and the corresponding coefficient of variation (CoV). The tests on unit speci-

mens were performed according to either EN 772-1 (2011) or DIN 105-1 (1982), whereas 

all the tests on mortar specimens were performed following DIN 18555-9 (2019). The pre-

sented unit compressive strengths already include a conversion into the normalised unit 

compressive strength via shape factors (see Section 3.4.2). Likewise, the listed mortar com-

pressive strengths contain a factor for converting the obtained strengths into standard prism 

strengths (see Section 3.4.3). Both factors are adopted as chosen by the testing labs that 

provided the respective data. The corresponding structures, in most cases buildings, are 

characterised by their type of use. Furthermore, their location is specified via the first num-

ber of the respective postal code, and, if possible, an estimate for the construction year is 

added. In the case of a construction period of several years, the middle year of the period is 

given. Where the test data for one building is split into separate populations, it is indicated 

by the letters (“a”, “b”,…) behind the number of the building. 

Table C-2 presents the direct test results for the compressive strength of existing solid clay 

brick masonry that are evaluated in Section 7.4.7. The tests were performed on drilled cores 

according to Helmerich/Heidel (see Section 3.4.4; Heidel 1989). 

Table C-1 Test data of component compressive strengths of existing masonry 

# Type of building 
Year of con-

struction 
Postal 

code area 

Unit compr. strength test results fb Mortar compr. strength test results fj 

Number Mean in N/mm² CoV Number Mean in N/mm² CoV 

1 Concert hall 1880 6 4 23.3 16 % 15 18.0 21 % 

2 Retaining wall - 6 3 17.8 41 % 24 3.2 37 % 

3 Hospital 1915 3 10 18.8 72 % 20 3.4 38 % 

4 Residential/commercial 1905 6 12 35.3 46 % 107 13.4 47 % 

5 Residential 1950 6 4 23.9 37 % 16 19.7 9 % 

6 Residential 1950 6 2 32.6 30 % 28 16.5 16 % 

7 Residential 1950 6 2 22.0 7 % 11 14.9 21 % 

8 Residential 1950 6 2 27.2 67 % 33 20.9 13 % 

9a School 1911 6 3 11.3 10 % 11 24.7 16 % 

9b School 1911 6 3 7.8 17 % 11 4.9 32 % 

10 Residential - 6 15 21.4 42 % 73 5.6 68 % 

11 Agricultural 1925 6 3 14.0 42 % 28 2.9 54 % 

12 School 1870 6 4 26.8 35 % 48 4.7 27 % 

13 Barracks 1938 6 18 35.1 30 % 105 7.3 68 % 

14a Office 1907 1 156 16.4 44 % 156 2.7 74 % 

14b Office 1903 1 141 12.8 34 % 141 3.0 117 % 

14c Office 1912 1 111 14.8 44 % 111 4.7 119 % 
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Table C-1 Test data of component compressive strengths of existing masonry (continued) 

# Type of building 
Year of con-

struction 
Postal 

code area 

Unit compr. strength test results fb Mortar compr. strength test results fj 

Number Mean in N/mm² CoV Number Mean in N/mm² CoV 

14d Office 1913 1 303 14.1 35 % 303 3.9 88 % 

15 Agricultural - 1 3 19.6 27 % - - - 

16 Residential 1900 1 12 12.2 24 % 12 1.5 22 % 

17 Residential 1900 1 18 14.8 34 % 18 2.8 88 % 

18 Residential 1900 1 6 13.0 26 % 6 0.9 20 % 

19a Train station 1935 1 6 20.6 38 % 6 2.4 37 % 

19b Train station 1955 1 12 19.7 26 % 12 2.0 29 % 

20 Agricultural 1902 1 3 28.0 18 % 3 0.7 12 % 

21 Residential 1850 1 9 9.0 15 % 9 1.2 35 % 

22 Residential 1900 1 12 4.8 22 % 12 0.8 31 % 

23 Hotel 1900 1 12 8.8 39 % 12 0.6 30 % 

24 Prison - 1 6 12.5 25 % 6 13.3 23 % 

25 Residential/commercial 1900 1 1 12.1 - 3 0.4 25 % 

26 Bridge 1880 1 3 34.1 10 % 3 37.1 6 % 

27 Residential 1900 1 6 13.3 26 % 6 3.2 73 % 

28 Agricultural 1900 1 9 5.7 41 % 5 1.1 11 % 

29 Residential 1900 1 3 16.0 18 % 3 5.8 10 % 

30 Residential 1900 1 18 11.7 36 % 18 2.1 25 % 

31a Residential 1900 2 6 10.8 24 % 6 11.7 33 % 

31b Residential 1900 2 24 16.3 51 % 21 1.2 54 % 

32 Restaurant 1900 1 6 7.4 27 % 6 1.3 44 % 

33 Residential 1890 1 9 9.3 33 % 9 14.7 69 % 

34 Industrial 1913 1 9 12.8 34 % 24 1.3 60 % 

35 Residential 1900 1 6 8.1 11 % 6 1.5 28 % 

36a Post office 1900 1 6 28.5 41 % 6 2.8 37 % 

36b Post office 1920 1 3 48.2 27 % 3 26.4 5 % 

37 Hospital 1880 1 3 33.2 44 % 3 2.0 16 % 

38 Concert hall 1820 1 18 20.7 29 % 18 11.6 44 % 

39 Residential 1900 1 12 15.3 35 % 12 2.9 65 % 

40 Residential 1900 1 6 22.4 17 % 6 1.0 27 % 

41 School 1935 1 9 21.8 41 % 9 2.5 37 % 

42a Office 1895 1 24 25.0 49 % 24 1.6 73 % 

42b Office 1895 1 3 30.4 42 % 3 11.9 13 % 

43 Residential 1900 1 9 18.4 25 % 9 1.2 34 % 

44a Post office 1960 1 3 15.1 14 % 3 4.9 14 % 

44b Post office 1960 1 6 16.8 39 % 6 0.9 25 % 

45 Industrial - 2 6 24.2 52 % 6 5.5 35 % 

46 Residential 1905 1 6 20.3 30 % 6 1.8 23 % 

47 Castle 1185 1 3 12.0 14 % 3 7.2 10 % 

48 Industrial 1888 2 4 24.0 34 % 6 19.0 28 % 

49 Bar 1900 1 3 12.0 11 % 3 1.3 23 % 

50 School 1910 2 3 17.8 44 % 3 2.9 15 % 

51 Residential 1775 1 3 7.5 5 % 3 1.9 7 % 

52 Residential 1910 1 3 14.1 8 % 3 0.8 20 % 

53 School 1874 9 18 8.0 50 % - - - 

54a Industrial 1880 1 6 13.6 68 % 6 2.6 29 % 

54b Industrial 1880 1 6 24.8 38 % 7 7.1 63 % 

54c Industrial 1880 1 6 15.1 29 % 6 4.2 64 % 

55 Residential 1880 1 60 17.3 51 % 60 4.1 97 % 

56 Residential 1900 1 31 17.3 56 % - - - 

57 Residential 1850 1 20 11.6 43 % 20 2.9 39 % 

58 University 1917 1 36 20.9 30 % 36 4.2 58 % 
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Table C-1 Test data of component compressive strengths of existing masonry (continued) 

# Type of building 
Year of  

construction 
Postal  

code area 

Unit compr. strength test results fb Mortar compr. strength test results fj 

Number Mean in N/mm² CoV Number Mean in N/mm² CoV 

59a Residential 1915 1 20 23.6 39 % 12 3.5 50 % 

59b Residential 1915 1 6 36.4 20 % 6 10.7 8 % 

60a Residential 1870 1 5 10.2 29 % 4 3.6 37 % 

60b Residential 1870 1 5 42.2 19 % 5 8.9 28 % 

60c Residential 1870 1 11 7.9 67 % 11 3.9 42 % 

61a Office 1907 2 125 32.5 66 % 250 24.2 47 % 

61b Office 1907 2 130 32.3 46 % 270 13.4 37 % 

62a Residential 1912 2 23 15.9 22 % 35 6.5 51 % 

62b Residential 1912 2 4 61.2 14 % 5 9.2 26 % 

63 - - 7 54 25.7 27 % 34 4.2 41 % 

64 - - 7 10 21.4 22 % 2 9.6 6 % 

65a Office 1925 6 5 23.0 22 % 6 14.4 35 % 

65b Office 1925 6 3 10.0 63 % 3 30.0 15 % 

65c Office 1925 6 3 6.8 19 % 3 8.7 13 % 

66 Barracks 1890 7 27 21.1 55 % 25 6.3 48 % 

67 Agricultural 1900 7 9 16.7 45 % 9 18.0 64 % 

68 Residential 1965 5 3 69.0 2 % 3 32.6 2 % 

69 Hospital 1860 6 9 32.2 34 % 9 5.6 45 % 

70a Residential - 8 18 20.4 37 % 13 11.4 35 % 

71 Granary 1900 7 15 18.1 38 % 15 18.0 46 % 

72 Residential 1953 6 9 22.7 37 % 9 11.6 19 % 

73 Barracks 1897 7 6 30.1 57 % - - - 

74 Barracks 1897 7 3 22.4 23 % - - - 

75 Barracks 1897 7 9 34.7 41 % - - - 

76 Barracks 1897 7 9 36.3 43 % - - - 

77 - - 8 3 12.3 48 % - - - 

78a Office - 8 3 27.4 16 % 1 6.8 - 

78b Office - 8 2 59.4 41 % 1 8.0 - 

79 Residential 1900 8 9 17.9 20 % - - - 

80 School 1692 8 4 10.2 31 % - - - 

81 Residential - 8 6 18.2 36 % - - - 

82 Office 1841 8 6 16.2 29 % - - - 

83 Market hall 1912 8 4 15.6 35 % - - - 

84 Bridge 1710 8 6 13.6 14 % - - - 

85a Restaurant - 8 3 42.5 26 % 2 34.2 19 % 

85b Restaurant - 8 4 38.5 33 % - - - 

86 Residential 1924 9 3 24.8 5 % - - - 

87 Restaurant - 8 3 20.1 42 % 1 13.8 - 

88 Spinning/weaving mill 1852 8 9 21.2 26 % - - - 

89a School 1863 8 1 30.6 - 1 3.2 - 

89b School 1863 8 2 53.4 58 % 2 31.8 28 % 

90 Residential - 8 9 34.4 39 % - - - 

91 Distillery 1880 8 9 32.2 26 % - - - 

92 School 1909 9 3 37.5 11 % 2 5.6 3 % 

93 Residential/commercial 1280 8 15 15.8 22 % 5 11.0 29 % 

94 Residential/commercial 1890 8 9 28.0 21 % - - - 

95 Residential - 8 3 15.6 8 % - - - 

96 Brewery 1850 9 12 16.5 16 % 5 3.4 32 % 

97 Residential - 9 2 40.0 14 % 2 1.9 18 % 

98 Workshop 1949 8 9 23.2 22 % - - - 

99 School 1914 8 6 15.0 39 % - - - 

100 Agricultural 1781 8 9 11.6 22 % - - - 
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Table C-1 Test data of component compressive strengths of existing masonry (continued) 

# Type of building 
Year of con-

struction 
Postal 

code area 

Unit compr. strength test results fb Mortar compr. strength test results fj 

Number Mean in N/mm² CoV Number Mean in N/mm² CoV 

101 Residential/commercial - 8 3 45.0 45 % 3 5.4 27 % 

102 Residential 1965 8 12 24.8 28 % 4 10.6 41 % 

103 Hotel 1907 8 4 23.2 62 % 1 12.4 - 

104 Brewery 1831 8 12 32.6 46 % - - - 

105 Residential/commercial 1886 8 6 31.5 42 % - - - 

106 Distillery 1880 8 3 53.5 51 % 1 1.3 - 

107a Industrial - 9 3 23.2 2 % 1 2.6 - 

107b Industrial - 9 6 12.8 19 % 2 4.1 9 % 

108 School 1876 8 16 19.5 42 % - - - 

109 School 1897 8 13 27.6 29 % 7 5.4 64 % 

110 Residential 1926 8 12 19.8 38 % 4 3.9 28 % 

111a Church 1875 8 6 22.1 10 % 1 3.1 - 

111b Church 1875 8 6 20.4 29 % 1 8.0 - 

112 Hospital 1928 8 6 15.3 24 % 2 2.6 17 % 

113 Military 1860 8 9 26.3 49 % - - - 

114 Residential - 8 6 37.8 29 % - - - 

115 Brewery 1911 8 6 10.1 20 % - - - 

116 Brewery 1706 8 9 36.1 37 % 3 1.5 15 % 

117 Residential - 8 6 36.6 63 % - - - 

118 School 1914 9 2 68.9 34 % 2 1.7 26 % 

119 Commercial 1860 8 26 22.8 60 % 11 9.1 53 % 

120 Agricultural 1870 8 3 23.3 7 % 3 10.8 10 % 

121 Police station 1936 9 12 27.3 23 % 4 2.5 33 % 

122 Residential - 8 3 26.3 11 % 1 1.4 - 

123 Office 1812 8 3 35.9 26 % 1 7.0 - 

124a - - 8 6 24.1 14 % - - - 

124b - - 8 3 22.8 19 % - - - 

125 School 1876 8 3 22.5 9 % - - - 

126 Residential/commercial - 8 6 26.5 38 % - - - 

127a School 1911 8 3 23.5 7 % 3 3.1 43 % 

127b School 1911 8 1 28.9 - 1 2.9 - 

128 Gymnasium - 9 6 40.4 30 % - - - 

129 Residential/commercial 1890 8 6 25.8 50 % 2 22.9 14 % 

130 Residential 1884 8 9 37.2 49 % 4 26.4 38 % 

131 Post office 1906 8 13 31.3 14 % 10 6.9 53 % 

132a Residential 1873 8 12 19.1 63 % 3 5.0 36 % 

132b Residential 1873 8 3 17.0 10 % - - - 

132c Residential 1873 8 3 17.4 15 % 1 7.2 - 

133 Monastery - 8 19 25.4 53 % 6 2.4 29 % 

134 Hospital 1903 0 34 54.7 50 % 11 2.6 44 % 

135 Office 1875 0 20 39.7 50 % 8 11.9 49 % 

136 Residential 1900 8 21 30.2 42 % - - - 

137 Commercial - 8 1 25.9 - 3 14.2 9 % 

138 Agricultural 1876 8 6 28.8 22 % - - - 

139 Residential - 8 9 20.7 18 % 3 9.9 42 % 

140 Office 1959 8 1 18.4 - - - - 
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Table C-2 Test data of the compressive strength of existing masonry 

# Type of building 
Year of con-

struction 
Postal code area 

Masonry compressive strength test results fma 

Number Mean in N/mm² CoV 

1 Industrial 1888 2 4 9.8 10 % 

2 Hotel - 2 4 5.4 22 % 

3 Residential/commercial 1900 1 3 2.0 14 % 

4 - 1900 1 2 6.6 21 % 

5 Residential/commercial 1900 1 5 4.0 27 % 

6 Brewery 1925 1 13 7.8 34 % 

7 Residential/commercial 1900 2 30 4.9 24 % 

8 Residential 1900 1 7 2.7 32 % 

9 Residential 1900 1 3 0.9 16 % 

10 School 1910 2 7 4.3 62 % 

11 Residential 1958 1 3 3.3 24 % 
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Annex D – Data for Evaluating the Uncertainty in Masonry Strength 

Prediction 

In Table D-1, the data used in Section 8.3.2 to evaluate the model uncertainty in predicting 

masonry compressive strength is presented. 

Table D-1 Data for evaluating the uncertainty in masonry strength prediction 
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Bonded 490 240 435 71 12 32.0 32.0 4.3 3 16.38 19.87 

Bonded 1250 240 2500 71 12 32.0 32.0 4.6 3 10.37 14.43 

Bonded 490 240 425 71 12 13.2 13.2 0.7 5 4.57 5.54 

Bonded 490 240 425 71 12 13.2 13.2 12.6 5 8.16 9.90 

Bonded 490 240 425 71 12 13.2 13.2 13.9 4 6.26 7.60 

Single wythe 490 115 415 71 12 14.5 14.5 10.7 16 6.85 6.74 

Single wythe 490 115 425 71 12 11.0 11.0 4.4 3 4.49 4.42 
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Single wythe 12.0 10.6 4.5 6 6.98 6.80 

Single wythe 15.7 13.8 5.5 6 10.70 10.42 

Single wythe 16.0 14.1 4.1 6 7.39 7.19 

Single wythe 16.3 14.4 8.6 6 6.59 6.42 

Single wythe 17.1 15.1 2.6 4 6.06 5.90 

Single wythe 21.1 18.6 5.9 6 12.05 11.73 

Single wythe 27.3 24.1 6.7 6 14.70 14.31 

Stack-bonded 8.5 7.5 5.0 5 6.19 5.48 

Stack-bonded 10.6 9.3 1.8 5 7.17 6.35 

Stack-bonded 10.6 9.3 12.5 5 9.35 8.28 

Stack-bonded 15.7 13.8 5.0 6 10.82 9.59 

Stack-bonded 15.7 13.8 23.2 6 16.78 14.87 

Stack-bonded 17.1 15.1 0.7 7 7.35 6.51 

Stack-bonded 17.1 15.1 2.5 6 10.63 9.42 

Stack-bonded 17.1 15.1 5.0 4 11.71 10.37 

Stack-bonded 17.1 15.1 5.9 4 11.52 10.21 

Stack-bonded 17.1 15.1 8.7 7 16.07 14.24 

Stack-bonded 17.1 15.1 23.2 5 16.68 14.78 

Stack-bonded 27.5 24.2 5.0 6 14.66 12.99 

Stack-bonded 38.2 33.7 12.5 5 30.79 27.28 

Stack-bonded 43.4 38.3 12.5 4 24.77 21.94 
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Annex E – Diagrams for Determining Assessment Values Based on Unit 

Tests Only 

In Section 9.5, alternative assessment procedures in the absence of test results were pre-

sented. This included an approach for the case that only test results for unit compressive 

strength are available, combined with conservative expert estimation of mortar compressive 

strength. For this particular case, Fig. E-1 provides diagrams for determining characteristic 

values, partial factors, and assessment values for masonry compressive strength. The dia-

grams are constructed analogously to those in Section 9.3. 

 

Fig. E-1  Diagrams for determining assessment values, characteristic values, and par-

tial factors for masonry compressive strength (unit tests only) 
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Dominik Müller 

Probabilistic Assessment  

of Existing Masonry Structures 

For the assessment of existing masonry structures, a safety concept is 

required that takes into account the differences compared to the design 

of new masonry structures, such as the possibility of material testing, 

high variability of material properties, and a potentially reduced target re-

liability level. Therefore, a method for determining characteristic values, 

structure-specific partial factors, and assessment values for the compres-

sive strength of existing masonry is developed. 

For this purpose, the influence of spatially variable material properties 

within a masonry wall is investigated first: Based on experiments on clay 

brick masonry, a finite element model is developed and then used in 

Monte Carlo simulations for quantifying the effect of spatial material vari-

ability on the probability distribution of the load-bearing capacity of ma-

sonry walls under compression. The statistical uncertainty resulting from 

small sample sizes in material testing is considered through Bayesian 

statistical procedures. Prior distributions for unit, mortar, and masonry 

compressive strength are modelled utilising a test database for existing 

solid clay brick masonry. Finally, the findings are implemented in a prac-

tice-oriented method for determining assessment values of masonry 

compressive strength, which is validated through reliability analyses. 
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