
����������
�������

Citation: Jardin, P.; Moisidis, I.;

Kartal, K.; Rinderknecht, S. Adaptive

Driving Style Classification through

Transfer Learning with Synthetic

Oversampling. Vehicles 2022, 4,

1314–1331. https://doi.org/

10.3390/vehicles4040069

Academic Editors: Chen Lv, Liting

Sun, Jian Wu, J-M Wang and Yahui

Liu

Received: 27 July 2022

Accepted: 10 November 2022

Published: 15 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

Adaptive Driving Style Classification through Transfer
Learning with Synthetic Oversampling
Philippe Jardin 1,* , Ioannis Moisidis 2, Kürsat Kartal 2 and Stephan Rinderknecht 1

1 Institute for Mechatronic Systems in Mechanical Engineering, Technical University Darmstadt,
64287 Darmstadt, Germany

2 Mercedes-Benz AG, 71063 Sindelfingen, Germany
* Correspondence: jardin@ims.tu-darmstadt.de

Abstract: Driving style classification does not only depend on objective measures such as vehicle
speed or acceleration, but is also highly subjective as drivers come with their own definition. From our
perspective, the successful implementation of driving style classification in real-world applications
requires an adaptive approach that is tuned to each driver individually. Within this work, we propose
a transfer learning framework for driving style classification in which we use a previously developed
rule-based algorithm for the initialization of the neural network weights and train on limited data.
Therefore, we applied various state-of-the-art machine learning methods to ensure robust training.
First, we performed heuristic-based feature engineering to enhance generalized feature building
in the first layer. We then calibrated our network to be able to use its output as a probabilistic
metric and to only give predictions above a predefined neural network confidence. To increase the
robustness of the transfer learning in early increments, we used a synthetic oversampling technique.
We then performed a holistic hyperparameter optimization in the form of a random grid search,
which incorporated the entire learning framework from pretraining to incremental adaption. The
final algorithm was then evaluated based on the data of predefined synthetic drivers. Our results
showed that, by integrating these various methods, high system-level performance and robustness
were met with as little as three new training and validation data samples in each increment.

Keywords: driving style classification; transfer learning; oversampling; feature engineering; individ-
ual adaption

1. Introduction

The understanding of a driver’s mood, intention, awareness, or other factors through
the analysis of various driving data from different sensors plays a major role in improving
both the safety and user experience of modern vehicles. For example, with the help of such
information, the human–machine interface can be adopted to better match the driver’s
expectations and to relieve the driver from the driving task. In this context, information
about the current driving style may be used to select the appropriate drive program, which
changes the behavior of major human–machine interfaces such as the visual dashboard, the
steering system, and the powertrain. However, different drivers perceive driving situations
and classify their driving style differently. Thus, a general and objective definition cannot
be given for this application. Rather, we need a subjective approach that considers each
driver and adapts individually, forming a customized driving style classification.

Within this work, we used a pretrained neural network, which was based on a heuristic
rule-based driving style classification algorithm, as a baseline. We then applied transfer
learning to different (synthetic) drivers to tackle the challenge of limited data. This is
because we aimed at improving the individual classification with the minimum data
possible, which are sparse in real-world applications. To achieve successful training,
we performed feature engineering based on domain knowledge, calibrated the neural

Vehicles 2022, 4, 1314–1331. https://doi.org/10.3390/vehicles4040069 https://www.mdpi.com/journal/vehicles

https://doi.org/10.3390/vehicles4040069
https://doi.org/10.3390/vehicles4040069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com
https://orcid.org/0000-0001-6003-231X
https://orcid.org/0000-0001-5568-1649
https://doi.org/10.3390/vehicles4040069
https://www.mdpi.com/journal/vehicles
https://www.mdpi.com/article/10.3390/vehicles4040069?type=check_update&version=1

Vehicles 2022, 4 1315

network using temperature scaling, and use a synthetic oversampling approach to stabilize
the training.

In Section 3, we design the neural network, perform comprehensive feature engineer-
ing, and optimize hyperparameters. We then describe the data generation for synthetic
drivers and the synthetic oversampling technique in Section 4. After that, we develop,
train, and validate our incremental transfer learning framework in Section 5.

1.1. Related Work

Adaptive Advanced Driver Assistance Systems (ADASs) themselves are part of vari-
ous research. In [1], the parameters of a driver model were adapted based on individual
driving data. The result was used to implement an adaptive longitudinal driving assistance
system, which anticipates the driver’s behavior. In [2], the authors developed an adaptive
cruise control system based on feedforward neural networks. It was shown that, by online
training the neural network with driving data, human-like behavior of the cruise control
system can be reached. In [3], the authors proposed an adaptive reaction time prediction
algorithm. They used diverse sensors such as Electroencephalography (EEG) and trained
different models to predict the individual driver’s reaction time. They showed that, through
the personal models, the prediction can be improved.

As pointed out in [4], various algorithms for driving style classification have been
described. Most of them are either data-based machine learning or knowledge-based
decision rules. In the machine learning domain, we differentiate between supervised and
unsupervised learning. Our approach to driving style classification is to initialize a neural
network with the help of a rule-based approach and then to use online transfer learning to
further improve the accuracy for different drivers.

To obtain the labels for supervised machine learning algorithms, different other ap-
proaches have been described. In [5], the driving data were labeled by experts after the
data were recorded from different drivers. This approach led to a consistent and objective
classification result because all data were treated equally. However, individual drivers
might label their data differently due to their own perception. Thus, for applications where
it is important that the classified driving style matches the drivers perception of their style,
this approach is not suitable.

Generally, the classification through supervised machine learning requires a large
dataset with high variance of the driving situations. Labeling such datasets is time consum-
ing and expensive. One solution to overcome this problem is to use less data combined with
data augmentation. In [6], the authors used the Synthetic Minority Oversampling TEch-
nique (SMOTE) to generate synthetic training data in order to enlarge their dataset and to
improve the performance on minority classes. By doing so, they were able to improve their
classification result by 4% on the test data. An approach for generating synthetic driving
data based on Markov chains was introduced in [7]. The authors used aggregated real-life
driving data to generate arbitrary large stochastic time series, which always corresponded
to the states and transitions given in the original data. Within this work, we adopt this
approach to increase the amount of training data by performing oversampling.

As a baseline, we use the rule-based driving style classification algorithm described
in [8]. The approach is statistically motivated and based on two-dimensional acceleration
data profiles. These profiles are computed from real driving data, and they serve as a
reference acceleration probability distribution. For the classification, the actual probability
distribution of a certain time series sample is compared to the reference. The classifier
distinguishes between three different classes and reached an accuracy of 68 % on real-world
driving data.

The aim of transfer learning is to use the knowledge of a source domain and transfer it
to a target domain [9]. It is divided into homogeneous and heterogeneous transfer learning.
In homogeneous transfer learning, the source and target domain feature spaces are the
same. Often, only the sample selection bias or covariate shift is corrected in the learning
task [10]. In the case of heterogeneous transfer learning, the knowledge is transferred into

Vehicles 2022, 4 1316

a different feature space [10]. Generally, this differentiation is not sharp because, whilst
a learning task may have strong homogeneous tendencies, the feature spaces between
the source and target domains could still differ slightly. Within this work, we perform
homogeneous transfer learning, where we assume that the learned features from the rule-
based classification algorithm (source domain) are generalized and, thus, also give a good
representation for the individual driving style classification (target domain).

If the prerequisites of transfer learning are not met, negative transfer learning may
occur [11,12]. These prerequisites are basic assumptions that should be satisfied. Firstly,
the learning tasks should be within a similar domain. Secondly, the source and target
domain data distributions should not be too different. Thirdly, a suitable model needs to be
applicable to both domains [12]. In the case of our application, the label distributions of
the target domain might significantly drift (e.g., dynamic driver). Therefore, we develop a
synthetic oversampling algorithm, which stabilizes that drift.

A different approach to address data distribution or concept drift was described in [13].
The authors introduced an online transfer learning framework, which solves the concept
drift problem by an ensemble learning approach where they trained individual models on
the source and target domain and combined them effectively.

The proposed approach is an integration of various state-of-the-art methods from
the domains of driving style classification, adaptive ADASs, and machine learning, as
described above. Today, driving style classification is regularly applied to eco-assistants or
similar domains [4]. For such applications, the individual perception of driving style is less
relevant as objective measures are required. To achieve the personalization for the targeted
application, we use the concepts of adaptive ADASs and apply transfer learning for their
implementation. By doing so, we create an adaptive driving style classification algorithm
that is able to learn from user feedback and adapt itself through transfer learning.

1.2. Motivation

The key behind successful driving style classification in real-world scenarios is a good
accuracy for different drivers. For instance, the classification must give good results for a
young inexperienced driver, as well as a middle-aged experienced driver. Meeting these
criteria is essential for later user acceptance in the field [14].

State-of-the-art approaches use rule-based or machine learning algorithms, which
are often developed and evaluated based on prerecorded or simulated experimental data
(offline) [4]. These approaches may give good results for the underlying data, but are not
capable of adapting to their environment and, thus, do not consider different types of
drivers, which may perceive the driving style individually. Within this work, we close this
gap by using the results of our previously developed rule-based algorithm [8] and evolve
them into an online transfer learning driving style classification algorithm based on a neural
network. By doing so, we achieve a robust driving style classification for different drivers
in practical applications under varying operation environments of production vehicles.

1.3. Driving Style

Within this work, we use the following definition of the term “driving style”, which has
high accordance with the literature [4] and has been used by us in a previous publication [8].

“[. . .] Driver driving style is understood as the way the driver operates the vehicle
controls in the context of the driving scene and external conditions, [. . .] between other
factors.” [4]

From that definition, we learned that the driving style highly depends on the driver
(operation of the vehicle controls), the driving scene, and external conditions (e.g., type
of vehicle). Whilst a static classification algorithm may yield good results for a standard
driver and the average external conditions (see [8]), we expect that an adaptive algorithm
will result in better accuracy for each individual driver. That is because this algorithm may
be adapted specifically for its operation environment and may consider the individual
perception of the driving style, which differs from driver to driver.

Vehicles 2022, 4 1317

Besides this abstract definition of driving style, we need a qualitative measure for the
classification. In accordance with the literature [4] and our previous work [8], we classified
the driving style into three discrete categories: calm, moderate, and dynamic. Generally, the
calm driving style is characterized by low combined lateral and longitudinal acceleration,
whilst dynamic driving is characterized by sporty driving with high acceleration values.
However, through our adaptive approach, an individual driver may alter this idea through
her/his own definition (see [15]) and may for example label sporty driving as moderate.

2. Methodology

We propose a comprehensive individual driving style classification framework, which
is composed as shown in Figure 1. The reference is a rule-based classification, which has
been previously described by the authors.

Incremental transfer-learning

Adaption to individual drivers

• Learn in increments with very

limited data

• High performance and robustness

• Definition of KPI

Rule-based driving style

classification

Reference depicting average driver

hyperparameter

optimization

Feature engineering

• Domain knowledge

• Specific heuristic

based features

Neural network

Multi-layer-perceptron

• ReLu-Activation

• SGD Training

Synthetic data

• Oversampling

• Data augmentation

Synthetic drivers

• Driver definition

(dynamic, calm, …)

• Data generation

Individual driving

style classification

Design and Pretraining

Offline

Individual adaption

Online

Figure 1. Architecture of the individual driving style classification framework.

First, the neural network design and pretraining for transfer learning have to be
carried out. To improve the correlation between the input data and output labels, we
engineered the neural network input features based on domain knowledge and experience.
Therefore, instead of using raw time series data as an the input, we can provide specific
heuristic-based features, which contain the necessary information for classification in a
compressed way.

Then, we designed a neural network architecture that comes with a relatively low
amount of parameters, whilst being able to achieve high performance on the classification
task. That is important for robust transfer learning on limited data and was achieved
through an hyperparameter optimization, which incorporated the entire individual classifi-
cation framework. The selected network architecture was trained with stochastic gradient
descent to act as an initial parametrization for online transfer learning.

The individual adaption through transfer learning was carried out in an online setting,
where new labeled data were provided in increments. These labels were the result of a

Vehicles 2022, 4 1318

driver–vehicle interaction and may be acquired as secondary information from a vehicle
function. Within our work and instead of human drivers, we define synthetic drivers,
which represent dynamic, calm, or average driving style perceptions. By doing so, we were
able to achieve consistent and reproducible results and were able to show the algorithm’s
ability to improve for individual drivers. We also define drivers who give non-causal
feedback and show that our algorithm does not diverge in the case of such input data. As a
drawback, we were not able to account for exogenous influencing factors on the driving
style perception of human drivers. For example, a human driver may perceive a dynamic
driving style in the morning differently than in the afternoon. Such influencing factors
shall be addressed for future practical application in wide-spread field studies.

By performing transfer learning on small amounts of data and by considering different
synthetic drivers, concept drift is introduced. First, the probability distribution of the
training data labels varies over time. Whilst we expect the driving style to be equally
distributed in the case of the reference driver, for drivers who perceive the driving style in
a more dynamic way, we expect a different distribution. Second, due to the low sample size
of the training data, concept drift is introduced stochastically due to the randomness of the
sample selection. If transfer learning is carried out solely on the small target domain sample,
a high variance of the training metrics is expected due to these considerations. Therefore,
we performed data augmentation with an oversampling algorithm, which uses synthetic
driving data to improve the overall robustness for the described transfer learning setting.

3. Neural Network Design

In the following section, first, the feature engineering process is described. Then, we
design a multi-layer perceptron with regard to the specific requirements of the transfer
learning task. Finally, we perform a hyperparameter optimization using the Lichtenberg
high-performance computer of the TU Darmstadt, which incorporates the entire individual
driving style classification framework.

3.1. Feature Engineering

Neural networks with a sufficient size are theoretically able to map arbitrary functions [16].
However, when training these networks, problems such as vanishing gradients or convergence
to local minima might inhibit good results depending on the underlying problem formulation
and available data. For that reason, it is important to design a neural network with regard to
the specific requirements of the learning task. Here, a key step is to create strong features with
dense information and high correlation to the respective labels. This process is also known as
feature engineering [17] and is covered in the following section.

For this, we used domain knowledge in the form of the results of our previous work,
where we developed a heuristic rule-based driving style classification algorithm. There,
we aggregated longitudinal and lateral acceleration data over time and used these two-
dimensional profiles as the base for the classification rule. Through this process, the time
series data were compressed whilst the results showed that the information about the
driving style was still preserved [8].

From these findings, we derived the specific and heuristic-based features for the
proposed neural network. Figure 2 shows aggregated acceleration profiles for dynamic,
moderate, and calm driving. For the aggregation, a fixed number of time series elements
(here: 180, which correspond to 90 s at ∆t = 0.5 s) were sampled and sorted into the nearest
acceleration bins. The bins have to be selected such that their number is reduced to a
minimum whilst preserving important driving style information. That was accomplished
by neglecting high combined acceleration values, which rarely occur (dark gray region).
Values that lie within this region are sorted into the nearest bins inside the white region. The
bin centers are defined as a result of the parameter optimization (here: −3 m/s2 − 3 m/s2

in lateral ax and longitudinal acceleration ay with ∆a = 1 m/s2 between bin centers). These
parameters were chosen for vivid visualization and were different for the actual application.

Vehicles 2022, 4 1319

Figure 2. The figure shows examples for the engineered acceleration features in all three driving style
categories.

The feature generation was carried out on a moving window basis as a First In, First
Out (FIFO) buffer. At time ti and with a time window T, the data from ti−T until ti were
used. At time ti+1, the data from ti−T were removed from the buffer, whilst the data of
ti+1 were added. For the neural network inference and training, the displayed data were
reshaped into a 1D array. By doing so, we were able to design a neural network without
recurrence since the relevant temporal information was already present inside the features.
Hence, we were able to apply simple and efficient neural network architectures.

As shown from our previous work, the vehicle speed is another important feature for
driving style classification. That is because the vehicle acceleration is generally lower at
higher speeds (e.g., highway driving) and, thus, the vehicle speed needs to be considered
when evaluating the acceleration profile [15]. Thus, we provide the vehicle speed at
evaluation time ti as an additional feature.

For future work, it may be investigated if it is useful to include further measures in
the feature engineering process. These might be vehicle-specific measures such as jerk,
accelerator pedal position, or non-vehicle-specific information such as weather data or
the personal data of the driver. However, by including new inputs, the required amount
of data for performing transfer learning will increase as well. Therefore, the use of such
additional information has to be weighted against the required user data, which are sparse.

3.2. Training Data for Pretraining

Good training data are the key for successful supervised learning applications. However,
in the case of driving style classification, these labeled data are generally not available. It is
extremely expensive and time consuming to collect sufficient online labeled data for robust
training. That is why we chose a different approach. Since our objective was to develop
an adaptive driving style classification based on neural networks, we needed a good initial
guess for the network weights to perform transfer learning. Therefore, we were able to make
use of our previously described rule-based driving classification algorithm for initial training
data generation.

For that, we equipped a Volkswagen Passat GTE with a data logger and collected
about 10,000 km of unlabeled naturalistic driving data. The vehicle was used on a regular
basis by different people, which resulted in a high variance of the driving situations. Over

Vehicles 2022, 4 1320

several years, these data was recorded in Germany by drivers of different experience levels.
They include a variety of weather conditions in the different seasons, as well as day and
night driving. It should be noted that the data are not representative of an average German
driver, as they contain only official journeys and, for example, ≈50% of the kilometers were
driven on freeways. However, this is of little importance for the present application, since
the data were labeled automatically by a rule-based algorithm, which itself was based on
representative data [8]. The data were classified into the three driving style classes with an
approximately even label distribution: calm, moderate, and dynamic. The algorithm was
used to train and test the neural network, as well as the developed features. Through that,
the neural network was fit to replicate the mapping of our rule-based approach, which
provides a good initial starting point for a later adaption.

Figure 3 shows the pretraining metrics for initializing the network weights. As shown,
a minimal validation loss was reached after approximately 20 episodes at a loss of ≈0.62
and an accuracy of ≈0.72.

Version July 27, 2022 submitted to Vehicles 7

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

episode

cr
os

s-
en

tr
op

y
lo

ss

training
validation

0 10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

epoch

ac
cu

ra
cy

training
validation

Figure 3. Pretraining metrics.

Figure 3 shows the pretraining metrics for initializing the network weights. As246

shown a minimal validation loss is reached after approximately 20 episodes at a loss of247

≈0.62 and an accuracy of ≈0.72.248

2.3. Calibration through Temperature Scaling249

The neural network output is calculated through the Softmax function and the250

training data is one-hot-encoded. This results in an output vector with a sum of one and251

only positive elements. Hence, it might be tempting to interpret the neural network out-252

put directly as class probabilities. These probabilities are of high relevance for practical253

applications since they provide information on how confident the neural network is for254

certain inputs.255

However, these output values generally do not correspond to the neural network256

confidence since it might suffer miscalibration [18]. Often, the neural network is mis-257

calibrated such that it is too confident concerning its outputs which may lead to false258

interpretation.259

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

confidence

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

confidence
0 0.2 0.4 0.6 0.8 1

confidence

Figure 4. Confidence and accuracy before and after T-scaling (class 1 − 3 from left to right).

Figure 4 shows the confidence vs. accuracy for the pretrained network on the260

validation data. Here, the blue bars correspond to the network output before calibration.261

If the neural network is confident (80 − 100 %) for a certain class it can be observed that262

the actual accuracy within this confidence region is below that value. This means, that,263

the neural network overestimates its confidence.264

Figure 3. Pretraining metrics.

3.3. Calibration through Temperature Scaling

The neural network output was calculated through the Softmax function, and the
training data were one-hot-encoded. This resulted in an output vector with a sum of one
and only positive elements. Hence, it might be tempting to interpret the neural network
output directly as class probabilities. These probabilities are of high relevance for practical
applications since they provide information on how confident the neural network is about
certain inputs.

However, these output values generally do not correspond to the neural network con-
fidence since it might suffer miscalibration [18]. Often, the neural network is miscalibrated
such that it is too confident concerning its outputs, which may lead to false interpretation.

Figure 4 shows the confidence vs. accuracy for the pretrained network on the validation
data. Here, the blue bars correspond to the network output before calibration. If the neural
network is confident (80–100%) about a certain class, it can be observed that the actual
accuracy within this confidence region is below that value. This means that the neural
network overestimates its confidence.

Vehicles 2022, 4 1321

Version July 27, 2022 submitted to Vehicles 7

0 10 20 30 40 50 60
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

episode

cr
os

s-
en

tr
op

y
lo

ss

training
validation

0 10 20 30 40 50 60
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

epoch

ac
cu

ra
cy

training
validation

Figure 3. Pretraining metrics.

Figure 3 shows the pretraining metrics for initializing the network weights. As246

shown a minimal validation loss is reached after approximately 20 episodes at a loss of247

≈0.62 and an accuracy of ≈0.72.248

2.3. Calibration through Temperature Scaling249

The neural network output is calculated through the Softmax function and the250

training data is one-hot-encoded. This results in an output vector with a sum of one and251

only positive elements. Hence, it might be tempting to interpret the neural network out-252

put directly as class probabilities. These probabilities are of high relevance for practical253

applications since they provide information on how confident the neural network is for254

certain inputs.255

However, these output values generally do not correspond to the neural network256

confidence since it might suffer miscalibration [18]. Often, the neural network is mis-257

calibrated such that it is too confident concerning its outputs which may lead to false258

interpretation.259

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

confidence

ac
cu

ra
cy

0 0.2 0.4 0.6 0.8 1
0

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

confidence
0 0.2 0.4 0.6 0.8 1

confidence

Figure 4. Confidence and accuracy before and after T-scaling (class 1 − 3 from left to right).

Figure 4 shows the confidence vs. accuracy for the pretrained network on the260

validation data. Here, the blue bars correspond to the network output before calibration.261

If the neural network is confident (80 − 100 %) for a certain class it can be observed that262

the actual accuracy within this confidence region is below that value. This means, that,263

the neural network overestimates its confidence.264

Figure 4. Confidence and accuracy before and after T-scaling (Classes 1–3 from left to right).

A powerful and, yet, simple solution to this problem is Temperature scaling (T-scaling),
where the input zi to the Softmax function σSM is scaled with an optimized temperature
constant T [18]. The optimal temperature is calculated from minimizing the cross-entropy
loss function on the validation set.

q̂i = σSM(zi/T) (1)

To ensure an improved calibration, the estimated and maximum calibration errors [18]
were calculated with and without T-scaling, as shown in Table 1. From that, a significant
improvement in both errors can be observed. This improvement is further shown in
Figure 4, where the change through T-scaling is shown by the hatched surface.

Table 1. Estimated and maximum calibration error (ece and mce).

No T-Scaling T-Scaling

ece 2.68 1.41
mce 9.98 4.83

Figure 5 shows the classification confusion matrices with and without T-scaling. For that,
the classification was carried out with an emphasis on high precision, which is the number of
correctly classified elements per class divided by the total amount of elements in that output
class. To achieve high precision, the output of the Softmax function is only accepted if the
confidence is higher than 0.8. Thus, not necessarily all inputs lead to a valid classification. As
shown, through calibrating the model with T-scaling and by only accepting high confidence
elements, the classification precision was improved in all three classes.

Version July 27, 2022 submitted to Vehicles 8

A powerful and yet simple solution to this problem is temperature scaling (T-265

scaling), where the input zi to the Softmax function σSM is scaled with an optimized266

temperature constant T [18]. The optimal temperature is calculated from minimizing the267

cross entropy loss function on the validation set.268

q̂i = σSM(zi/T) (1)

To ensure an improved calibration the estimated and maximum calibration er-269

rors [18] are calculated with and without T-scaling as shown in Table 1. From that, a270

significant improvement in both errors can be observed. This improvement is further271

shown in Figure 4 where the change through T-scaling is shown by the hatched surface.272

Table 1: Estimated and maximum calibration error (ece, mce).

no T-scaling T-scaling

ece 2.68 1.41

mce 9.98 4.83

Figure 5 shows the classification confusion matrices with and without T-scaling. For273

that, classification has been carried out with emphasis on a high precision which is the274

number of correctly classified elements per class divided by the total amount of elements275

in that output class. To achieve high precision, the output of the Softmax function is only276

accepted if the confidence is higher than 0.8. Thus, not necessarily all inputs lead to a277

valid classification. As shown, through calibrating the model with T-scaling and by only278

accepting high confidence elements, the classification precision is improved in all three279

classes.280

88.7%
76731

12.2%
2656

0.1%
119

11.0%
9537

72.8%
15879

9.8%
9938

0.3%
236

15.0%
3270

90.1%
91103

1 2 3

1

2

3

Target Class

O
ut

pu
tC

la
ss

91.7%
59874

9.9%
508

0.0%
37

8.2%
5343

77.8%
4007

7.7%
6903

0.1%
80

12.3%
633

92.2%
82540

1 2 3

1

2

3

Target Class

O
ut

pu
tC

la
ss

Figure 5. Confusion matrices without T-scaling (left) and with T-scaling (right) with precision
given in %

2.4. Neural Network Architecture281

The selection of appropriate neural network architectures highly depends on the282

individual requirements. Within this work, transfer learning on limited data is carried283

out. For that reason, we focus on neural network architectures that have a low amount284

of free parameters to achieve robust training. Since the temporal dependencies of the285

driving style are already considered through the feature engineering process, the features286

at a single time step give adequate temporal information for the classification. A simple287

multi layer perceptron (MLP) with rectified linear units (ReLu) as activations is sufficient288

for this application [16].289

Before conducting hyperparameter optimization, key parameters and properties of290

the neural network architecture are fixed and are not further evaluated. That is done291

Figure 5. Confusion matrices without T-scaling (left) and with T-scaling (right) with the precision
given in %.

Vehicles 2022, 4 1322

3.4. Neural Network Architecture

The selection of appropriate neural network architectures highly depends on the
individual requirements. Within this work, transfer learning on limited data was carried
out. For that reason, we focused on neural network architectures that have a low amount
of free parameters to achieve robust training. Since the temporal dependencies of the
driving style were already considered through the feature engineering process, the features
at a single time step give adequate temporal information for the classification. A simple
Multi-Layer Perceptron (MLP) with Rectified Linear units (ReLu) as activations is sufficient
for this application [16].

Before conducting hyperparameter optimization, the key parameters and properties
of the neural network architecture were fixed and were not further evaluated. That was
performed based on experience and preliminary work. Due to our engineered features, we
expected the neurons in the first layer to converge to generalized features (see Section 3.1).
To enhance the incremental transfer learning, we introduced a scaling factor for the learning
rate, which was unique for each layer, λscaler. By doing so, we ensured that the pretrained
generalized knowledge was preserved through training. We decided to add an additional
hidden layer to process these features, such that our network was composed of one input,
two hidden, and one output layers. Due to performing the classification task with one-hot
encoding, we set the output layer to be Softmax and the loss function to be cross-entropy [19]
(see Table 2).

Table 2. Preset neural network architecture.

Concept MLP (two hidden layers)
Input Standardized 1D array

Activation Function ReLu
Output Softmax

Loss Cross-entropy

3.5. Hyperparameter Optimization

We performed the hyperparameter optimization based on a two-step random grid
search, where we first examined the entire parameter space and then concentrated on
the found optimum. The optimization included the pretraining and the later-described
incremental transfer learning. By doing so, we ensured that the identified parameters were
not only optimal regarding the pretraining, but also regarding the incremental learning.

This approach is supported by Figure 6, which shows the Pareto front between reach-
ing low pretraining losses and, at the same time, low transfer learning losses in the first
increment. If we only optimized with regard to low pretraining losses, we would select a
suboptimal solution for the incremental transfer learning, and vice versa.

However, for selecting the optimal parameter set, we needed to introduce an additional
objective, which measures the robustness of the transfer learning. We performed this by
executing the transfer learning process N = 250 times. Due to the random sample selection
process, every execution will give different results. To measure the robustness, we compared
the loss on the reference and individual dataset in each increment and took the maximum
value of the 95% quantile. By doing so, we ensured that the training method reached acceptable
performance either on the reference data or on the individual target data in the majority
of executions.

Through evenly weighting the described objectives (pretraining loss, transfer learning
loss, robustness measure), we selected the optimal hyperparameter set as shown in Table 3
and marked in Figure 6.

Vehicles 2022, 4 1323

Version July 27, 2022 submitted to Vehicles 9

based on experience and preliminary work. Due to our engineered features, we expect292

the neurons in the first layer to converge to generalized features (see Chapter 2.1). To293

enhance the incremental transfer learning, we introduce a scaling factor for the learning294

rate which is unique for each layer λscaler. By doing so, we ensure that the pretrained295

generalized knowledge is preserved through training. We decide to add an additional296

hidden layer to process these features, such that our network is composed of one input,297

two hidden and one output layer. Since doing a classification task with one hot encoding,298

we set the output layer to be softmax and the loss function to be cross-entropy [19] (see299

Table 2).300

Table 2: Preset neural network architecture.

Concept MLP (two hidden layers)

Input Standardized 1D-array

Activation Function ReLu

Output Softmax

Loss Cross-Entropy

2.5. Hyperparameter Optimization301

We do hyperparameter optimization based on a two step random grid search,302

where we first examine the entire parameter space and then concentrate at the so found303

optimum. The optimization includes the pretraining and the later described incremental304

transfer learning. By doing so, we ensure that the identified parameters are not only305

optimal regarding the pretraining, but also regarding the incremental learning.306

This approach is supported by Figure 6 which shows the Pareto front between307

reaching low pretraining losses and at the same time low transfer learning losses in the308

first increment. If we would only optimize with regard to low pretraining losses, we309

would select a suboptimal solution for the incremental transfer learning and vice versa.310

0.775 0.8 0.825 0.85 0.875 0.9 0.925 0.95 0.975 1
0.45

0.475

0.5

0.525

0.55

0.575

0.6

0.625

0.65

0.675

0.7

first TL increment loss

pr
et

ra
in

in
g

lo
ss

Figure 6. Pareto front and the optimum (black circle) which is selected based on further objective
functions.

Figure 6. Pareto front and the optimum (black circle), which is selected based on further objective functions.

Table 3. Optimal hyperparameter random grid search.

Range Selected

aggregation horizon in s {300, 350, 400, 450, 500, 550} 500

aggregation resolution ax,y in m s−2 {[−6 : 1 : 6], [−5 : 1 : 5],
[−6 : 2 : 6], [−4 : 2 : 4]} [−6 : 2 : 6]

aggregation resolution v in m s−1 {[0 : 20 : 40], [0 : 40 : 40], [0]} [0]
number of neurons {2, 4, 8, 16, 32}2 [32, 4]

learning rate λ {0.01, 0.0375, 0.075, 0.15} 0.0375

learning rate scaling λscaler
{[0.05, 0.125, 1], [0.1, 0.25, 1],

[0.25, 0.5, 1], [1, 1, 1]} [0.05, 0.125, 1]

oversampling conv. constant covs {0, 0.05, 0.15, 0.3, 0.5, 0.75, 1} 0.3

4. Training Data for Transfer Learning

In the following sections, we discuss the generation of the data for our transfer learning
framework. First, we created a synthetic driver model, which was used to gain the data
for individualization. Then, we discuss the generation and selection of synthetic data for
oversampling.

4.1. Synthetic Driver Model

As described in Section 2, we used synthetic drivers for generating training data for
the validation of our approach. The aim was to generate drivers who perceive driving
style differently. That was achieved by using the rule-based classification [8] on a reference
dataset with different parameters depending on predefined requirements.

For our studies, we define the following driver types who perceive the reference
driving situations:

• Driver 1: more dynamic (calm driver, share: [10%; 20%; 70%]);
• Driver 2: average (average driver, share: [33%; 33%; 33%]);
• Driver 3: more calm (dynamic driver, share: [70%; 20%; 10%]);
• Driver 4: not reproducible (non-causal driver, share: [33%; 33%; 33%]);

It shall be clarified that a driver who perceives the reference driving situation, for
example, as more dynamic is generally described as a calm driver. That is because he/she

Vehicles 2022, 4 1324

has a lower tolerance for high driving dynamics measures and, thus, rates the reference
more often to be dynamic.

For data generation, we used the rule-based classification and executed it on the
reference data. This resulted in an evenly distributed driving style classification in the
format of a time series. In the second stage, we processed that result in a PT1 filter
and classified the individual driving style based on driver-specific parameter sets (see
Equations (2)–(4)).

strb ∈ {1 ≡ calm; 2 ≡ average; 3 ≡ dynamic} (2)

stk+1
pt1 = stk

pt1 + cpt1∆t(stk
rb − stk

pt1) (3)

stind =

1 for stpt1 < clow

2 for stpt1 > clow ∧ stpt1 < cup

3 for stpt1 > cup

(4)

with clow and cup denoting the specific parameters for the generated drivers, which were
selected such that the desired driving style distribution was reached.

4.2. Synthetic Data for Oversampling

A key requirement of our transfer learning framework was to be able to learn with
very little individual data. As shown in the literature, a possible way to ensure robust
learning in such settings is to use data augmentation to enlarge the dataset. We performed
this by generating synthetic data to perform the oversampling with regard to the target
domain dataset.

These synthetic data were generated through a Markov chain algorithm, which was
described in [7]. We used approximately 10,000 km of real-world driving data and aggre-
gated these data in longitudinal and lateral acceleration, as well as the speed direction.
This was performed by first defining grid vectors and then sorting the time series elements
into their respective bins. Additionally, we tracked the state transitions and calculated the
transition probability matrix (tpm) to interconnect the aggregated profile. Now, we start
off at a random point in the ax, ay, v-plane and move towards the next state by randomly
sampling according to the tpm. By doing so, we can generate an arbitrary large dataset,
which is always based on states and transitions occurring in real-world driving data.

With the help of the described process, we generated approximately 106 km of syn-
thetic driving data. Within the adaptive driving style classification framework, we used
these data to perform oversampling. For that, we needed to find synthetic data segments
that were similar to the actual segments that were present in the training set. Therefore, we
needed a measure for time series similarity. Using the Euclidean distance for this task is
straightforward, but comes with a major drawback. If the compared data are slightly shifted
in the time domain and, other than that, have similar trajectories, the Euclidean distance
will give high values, whilst the similarity score should be high for our application. We
solved this problem by applying dynamic time warping (dtw), which is widely described
in the literature [20].

Figure 7 shows a two-dimensional time warping example for ax and ay. For calculating
the distance according to dtw, the raw data were warped in time by calculating a single
time warping vector, which interconnected the data for comparison. The resulting warped
sequences are shown on the top of the plot and the underlying data on the bottom. As
shown, the Euclidean distance of the warped sequences was low, thus meaning that dtw
would give a high similarity measure. The original driving data in the bottom graph are
displayed with an offset for better readability. Here, the warping pattern is indicated by
the gray lines. It is shown that, whilst the features of the compared original sequences were
similar, the raw Euclidean distance would be high due to an offset in the time domain.

Vehicles 2022, 4 1325
Version July 27, 2022 submitted to Vehicles 12

0 100 200 300

−2

0

2

index

a x
in

m
s−

2

driving data

synthetic data

0 100 200 300

−2

0

2

4

6

8

t in s

a x
in

m
s−

2

driving data (5 m s−2 offset)

synthetic data

0 100 200 300
−1

−0.5

0

0.5

1

index

a y
in

m
s−

2

driving data

synthetic data

0 100 200 300
−1

0

1

2

3

4

t in s
a y

in
m

s−
2

driving data (2 m s−2 offset)

synthetic data

Figure 7. Example time series comparison using dynamic time warping (dtw).

4. Incremental Transfer Learning382

After, introducing the boundary conditions of our adaptive driving style classifica-383

tion framework, we now focus on its design and on specific problems. A key feature of384

the proposed classification algorithm is its ability to learn with a low amount of data and385

in increments. That is, at each increment we acquire three new training (ntr = 3) and386

validation examples (nval = 3). In future increments we then train with all data available387

to this point in time. Achieving improved classification results and high robustness on388

the test dataset with limited data is then the key objective.389

4.1. Oversampling390

One problem that arises if training on such small datasets is that they are often391

highly unbalanced compared to the actual test data occurrence frequency distribution392

f . Training on these unbalanced datasets will prevent a robust classification improve-393

ment [21]. If, for example doing transfer learning in the first increment on a number of394

ntr = 3 examples and if expecting an evenly distributed test dataset, the probability for395

seeing a single label in all the three examples is as high as 0.1. In that case however, no396

successful training would be possible and the performance would decrease compared to397

the pretrained classification.398

To overcome this problem, oversampling has been proposed by various literature [6,399

22,23]. Through oversampling the training and validation data set distributions may400

be altered such that they meet the underlying test data distribution. However, in our401

application this underlying test data distribution is generally unknown. We therefore use402

an evenly distributed standard reference for this work. With the help of oversampling403

we generate a smooth transition from this reference to the actual training and validation404

distributions by using a PT1 filter.405

First, we randomly select ntr × N and nval × N samples where N denotes the406

number of training increments. We then calculate the occurence frequency distribution407

according to equation 5 for each of the N increments ni
k where k indicates the dataset.408

Figure 7. Example time series comparison using dynamic time warping (dtw).

5. Incremental Transfer Learning

After introducing the boundary conditions of our adaptive driving style classification
framework, we now focus on its design and on specific problems. A key feature of the
proposed classification algorithm is its ability to learn with a low amount of data and
in increments. That is, at each increment, we acquired three new training (ntr = 3) and
validation examples (nval = 3). In future increments, we then trained with all data available
to this point in time. Achieving improved classification results and high robustness on the
test dataset with limited data were then the key objectives.

5.1. Oversampling

One problem that arises if training on such small datasets is that they are often highly
unbalanced compared to the actual test data occurrence frequency distribution f . Training
on these unbalanced datasets will prevent a robust classification improvement [21]. If,
for example, performing transfer learning in the first increment on a number of ntr = 3
examples and if expecting an evenly distributed test dataset, the probability for seeing a
single label in all three examples is as high as 0.1. In that case, however, no successful train-
ing would be possible, and the performance would decrease compared to the pretrained
classification.

To overcome this problem, oversampling has been proposed by various literature
works [6,22,23]. Through oversampling, the training and validation dataset distributions
may be altered such that they meet the underlying test data distribution. However, in our
application, this underlying test data distribution was generally unknown. We therefore
used an evenly distributed standard reference for this work. With the help of oversampling,
we generated a smooth transition from this reference to the actual training and validation
distributions by using a PT1 filter.

Vehicles 2022, 4 1326

First, we randomly selected ntr × N and nval × N samples, where N denotes the
number of training increments. We then calculated the occurrence frequency distribution
according to Equation (5) for each of the N increments ni

k, where k indicates the dataset.

f (i)k =
i

∑
j=1

nj
k

N
(5)

Next, the target occurrence frequency distribution f (i)target was calculated by an iterative

filter according to Equation (6). Here, f (i)target denotes the target distribution for the i-th
increment and was initialized with a reference value. The actual distribution in training and
validation samples is given by f (i). The filter convergence increased with the increments
and is defined through the constant cconv ∈ [0, 1]. Here, in the case of cconv = 0, the target
distribution remained at its initial value, whilst in the case of cconv = 1, it was always set to
the actual sample distribution.

f (i)target = f (i−1)
target + min (covsi, 1)(f (i) − f (i−1)

target) (6)

We then calculated the number of examples that had to be added to the training and
validation datasets to meet the required target distribution. Based on these numbers, we
added synthetic data that were similar to the available training and validation data by
using dtw (see Section 4.2).

The oversampling convergence constant covs was part of the hyperparameter optimiza-
tion, and its conflicting influence on the robustness and transfer learning potential is shown
in Table 4. The values were the result of the hyperparameter optimization using a random
grid search. Here, the robustness was measured as defined in Section 3.5. The transfer
learning potential is the average mean of the first and last learning increment. If holding
to the initial sample distribution (covs u 0), high robustness may be reached with the cost
of low transfer learning potential. On the other hand, if no oversampling is performed
(covs u 1), the robustness measure would decrease significantly, and at the same time,
we would observe high transfer learning potential. The normalized quantities showed
the benefit of the described oversampling since, with the result of the hyperparameter
optimization, we achieved a high transfer learning potential (0.98) and, at the same time,
high robustness (0.75).

Table 4. Oversampling convergence constant.

covs
Robustness Measure Transfer Learning Potential

Normalized Raw Value Normalized Raw Value
0 1 0.79 0 0.82
0.05 0.96 0.81 0.64 0.76
0.15 0.87 0.83 0.93 0.73
0.3 0.75 0.87 0.98 0.73
0.5 0.60 0.92 0.95 0.73
0.75 0.05 1.08 0.98 0.73
1 0 1.10 1 0.72

5.2. Implementation of the Learning Algorithm

As of now, the training data acquisition, hyperparameter optimization, and over-
sampling for transfer learning have been described. Next, we develop the incremental
transfer learning algorithm. Due to the low amount of data, there was no necessity for
batch learning, and we carried out gradient descent.

Vehicles 2022, 4 1327

Due to performing homogeneous transfer learning, we assumed that the first layer’s
features learned by the neural network generalize well for the given task. From that
knowledge and as a result of our hyperparameter optimization process, we decided to
implement ascending learning rates for the neural network layers, which prevented a
“catastrophic forgetting” [24] effect, especially in the first layers. This was achieved through
a scaling factor λscaler, which was applied to the computed gradients during training.

The training was then carried out on the oversampled training data and was stopped
at a minimal validation loss. At each increment, all previous available data were taken into
account, and training was thus started with the pretrained, initialized network weights.
Since the learning task was stochastic due to the random selection of training and validation
samples, it is simulated multiple times for reliable analysis in Section 6.

6. Results

To assess the proposed method, training was carried out with regard to the four
individual drivers defined in Section 4. The results are shown in Figures 8–11. Here, the
initial pretraining metric is shown in red for Iteration 0. The training result of multiple runs
as defined by Tables 3 and 5 is shown in box plots. Here, 50% of the data points for each
increment lay within the boxes. The length of the whiskers is at a maximum 1.5-times the
height of the box, but less if no data points exist outside that range. The figures show the
performance metrics on the individual driver’s data, as well as on the reference dataset.
The accuracy was computed as described in Section 3.3 by calibrating the pretrained neural
network and only accepting samples with a high confidence.

Table 5. Main parameters in the learning process.

of training samples/increment ntr = 3
of validation samples/increment nval = 3

of simulation runs N = 250

Figure 8 shows the results for Driver 1. As shown, his median loss improved monoton-
ically from Increment 1 on. Thus, by solely training on three samples, we were already able
to improve his metrics. We also observed that the performance metrics reached a saturation
towards the end of training, which means that a further improvement after five transfer
learning increments was not to be expected. Besides the performance on the individual
data, a high robustness was desired. As previously defined, we evaluated the performance
on both datasets and ensured that the high performance metrics were reached at least in
one dataset. As shown, the reference metrics did not drop significantly from Increment 1
on; thus, the desired smooth transition from the performance on reference data towards
individual data was achieved.

Figure 9 shows the training results for the reference Driver 2. His data were also
used for pretraining; thus, we achieved high initial performance metrics. As expected, the
majority of data points for all increments lied within a small interval of the initial metrics,
and no further improvement was reached. Due to the random sample selection process,
some training runs led to decreased performance metrics, which are shown as outliers. The
number of outliers decreased with the number of increments, since the significance of the
random sample selection process decreased as well.

Vehicles 2022, 4 1328

Version July 27, 2022 submitted to Vehicles 14

forgetting” [24] effect especially in the first layers. This is done through a scaling factor440

λscaler which is applied to the computed gradients during training.441

The training is then carried out on the oversampled training data and is stopped at442

a minimal validation loss. At each increment, all previous available data is taken into ac-443

count and training is thus started with the pretrained, initialized network weights. Since,444

the learning task is stochastic due to the random selection of training and validation445

samples, it is simulated multiple times for reliable analysis in the next chapter.446

Table 5: Main parameters in the learning process.

of training samples/increment ntr = 3

of validation samples/increment nval = 3

of simulation runs N = 250

5. Results447

For assessing the proposed method, training is carried out with regard to the four448

individual drivers defined in Chapter 3. The results are shown in Figures 8-11. Here, the449

initial pretraining metric is shown in red for iteration 0. The training result of multiple450

runs as defined by Tables 3 and 5 is shown in box plots. Here, 50 % of the data points451

for each increment lay within the boxes. The length of the whiskers is at maximum452

1.5-times the height of the box but less if no data points exist outside that range. The453

figures show the performance metrics on the individual drivers data as well as on the454

reference dataset. The accuracy is computed as described in Chapter 2.3 by calibrating455

the pretrained neural network and only accepting samples with a high confidence.456

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

transfer learning increment

dr
iv

er
1

lo
ss

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9
1

transfer learning increment

dr
iv

er
1

ac
cu

ra
cy

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

transfer learning increment

re
fe

re
nc

e
lo

ss

0 1 2 3 4 5
0.4

0.5

0.6

0.7

0.8

0.9
1

transfer learning increment
re

fe
re

nc
e

ac
cu

ra
cy

Figure 8. Training results for driver 1 (calm).

Figure 8 shows the results for driver 1. As shown, his median loss improves457

monotonically from increment 1 on. Thus, by solely training on 3 samples we are already458

able to improve his metrics. We also observe, that the performance metrics reaches459

a saturation towards the end of training which means that a further improvement460

Figure 8. Training results for Driver 1 (calm).

Version July 27, 2022 submitted to Vehicles 15

after 5 transfer learning increments is not to be expected. Besides the performance on461

the individual data, a high robustness is desired. As previously defined, we evaluate462

performance on both datasets and ensure that the high performance metrics are reached463

at least in one dataset. As shown, the reference metrics do not drop significantly from464

increment one on, thus the desired smooth transition from performance on reference465

data towards individual data is achieved.466

0 1 2 3 4 5
0.4

0.6

0.8

1

transfer learning increment

dr
iv

er
2

lo
ss

0 1 2 3 4 5
0.6
0.7
0.8
0.9

1

transfer learning increment

dr
iv

er
2

ac
cu

ra
cy

Figure 9. Training results for reference driver 2 (reference).

Figure 9 shows the training results for the reference driver 2. His data has also been467

used for pretraining, thus we achieve high initial performance metrics. As expected, the468

majority of data points for all increments lay within a small interval of the initial metrics469

and no further improvement is reached. Due to the random sample selection process,470

some training runs lead to decreased performance metrics which are shown as outliers.471

The number of outliers decreases with the number of increments, since the significance472

of the random sample selection process decreases as well.473

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment

dr
iv

er
3

lo
ss

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 10. Training results for driver 3 (dynamic).

Figure 10 shows the training results for driver 3. Here, a similar observation474

compared to driver 1 can be made. We also observe the desired smooth transition from475

performance on the reference data towards performance on the individual dataset.476

0 1 2 3 4 5
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

transfer learning increment

dr
iv

er
4

lo
ss

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 11. Training results for driver 4 (non-causal).

Figure 9. Training results for Driver 2 (reference).

Figure 10 shows the training results for Driver 3. Here, a similar observation compared
to Driver 1 can be made. Whilst the initial loss was at ≈1.4, it steadily decreased until
it reached a mean loss of ≈0.6. At the same time, the reference loss increased from ≈0.6
to ≈0.9. We also observed the desired smooth transition from the performance on the
reference data towards the performance on the individual dataset. Additionally, we can
observe that the increase of individual performance was significantly higher in comparison
to the decrease on the reference data.

Version July 27, 2022 submitted to Vehicles 15

after 5 transfer learning increments is not to be expected. Besides the performance on461

the individual data, a high robustness is desired. As previously defined, we evaluate462

performance on both datasets and ensure that the high performance metrics are reached463

at least in one dataset. As shown, the reference metrics do not drop significantly from464

increment one on, thus the desired smooth transition from performance on reference465

data towards individual data is achieved.466

0 1 2 3 4 5
0.4

0.6

0.8

1

transfer learning increment

dr
iv

er
2

lo
ss

0 1 2 3 4 5
0.6
0.7
0.8
0.9

1

transfer learning increment

dr
iv

er
2

ac
cu

ra
cy

Figure 9. Training results for reference driver 2 (reference).

Figure 9 shows the training results for the reference driver 2. His data has also been467

used for pretraining, thus we achieve high initial performance metrics. As expected, the468

majority of data points for all increments lay within a small interval of the initial metrics469

and no further improvement is reached. Due to the random sample selection process,470

some training runs lead to decreased performance metrics which are shown as outliers.471

The number of outliers decreases with the number of increments, since the significance472

of the random sample selection process decreases as well.473

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment

dr
iv

er
3

lo
ss

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 10. Training results for driver 3 (dynamic).

Figure 10 shows the training results for driver 3. Here, a similar observation474

compared to driver 1 can be made. We also observe the desired smooth transition from475

performance on the reference data towards performance on the individual dataset.476

0 1 2 3 4 5
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

transfer learning increment

dr
iv

er
4

lo
ss

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 11. Training results for driver 4 (non-causal).

Figure 10. Training results for Driver 3 (dynamic).

Vehicles 2022, 4 1329

Figure 11 and Table 6 show the results for the non-causal Driver 4. They have to
be analyzed differently compared to the previous drivers since, theoretically, no useful
classification can be given with an expected accuracy of 33%. We used this driver to
showcase the robustness of the described algorithm in the case of random inputs, which
might occur in practical field application. First, Figure 11 shows that the individual loss
was generally at a high level, but still decreased with the increments. That is because the
best cross-entropy loss for random labels is defined by log(3) = 1.1 and the neural network
will converge towards this value. Other than that, the reference loss increased only slightly
if compared to Drivers 1 and 3. Table 6 shows the reference accuracy and the share of valid
classifications on the test set. That is the number of samples with a confidence higher than
the previously defined value of 0.8. We observed that, whilst the accuracy on the reference
dataset remained high, the number of valid classifications decreased. This was the desired
behavior since the best output for Driver 4 would be no output at all.

Version July 27, 2022 submitted to Vehicles 15

after 5 transfer learning increments is not to be expected. Besides the performance on461

the individual data, a high robustness is desired. As previously defined, we evaluate462

performance on both datasets and ensure that the high performance metrics are reached463

at least in one dataset. As shown, the reference metrics do not drop significantly from464

increment one on, thus the desired smooth transition from performance on reference465

data towards individual data is achieved.466

0 1 2 3 4 5
0.4

0.6

0.8

1

transfer learning increment

dr
iv

er
2

lo
ss

0 1 2 3 4 5
0.6
0.7
0.8
0.9

1

transfer learning increment

dr
iv

er
2

ac
cu

ra
cy

Figure 9. Training results for reference driver 2 (reference).

Figure 9 shows the training results for the reference driver 2. His data has also been467

used for pretraining, thus we achieve high initial performance metrics. As expected, the468

majority of data points for all increments lay within a small interval of the initial metrics469

and no further improvement is reached. Due to the random sample selection process,470

some training runs lead to decreased performance metrics which are shown as outliers.471

The number of outliers decreases with the number of increments, since the significance472

of the random sample selection process decreases as well.473

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment
dr

iv
er

3
lo

ss
0 1 2 3 4 5

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 10. Training results for driver 3 (dynamic).

Figure 10 shows the training results for driver 3. Here, a similar observation474

compared to driver 1 can be made. We also observe the desired smooth transition from475

performance on the reference data towards performance on the individual dataset.476

0 1 2 3 4 5
1

1.2
1.4
1.6
1.8

2
2.2
2.4
2.6
2.8

3
3.2
3.4

transfer learning increment

dr
iv

er
4

lo
ss

0 1 2 3 4 5
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

transfer learning increment

re
fe

re
nc

e
lo

ss

Figure 11. Training results for driver 4 (non-causal).Figure 11. Training results for Driver 4 (non-causal).

Table 6. Mean reference accuracy and share of valid classifications for the non-causal Driver 4.

Iteration Mean Reference Accuracy Valid Classifications

0 0.93 33%
1 0.87 32%
2 0.86 29%
3 0.86 27%
4 0.86 24%
5 0.87 22%

7. Discussion

The main challenge in the described adaptive driving style classification framework
was the limited training data when training for individual drivers. With our results, we
showed that, from the first increment on, we were able to increase the average accuracy
for all reproducible drivers whilst achieving high robustness at the same time. Within
this contribution, we showed that, through integrating various state-of-the-art machine
learning methods, high system level performance and robustness were achieved even with
so few training data.

The hyperparameter optimization results showed that, by using synthetic data over-
sampling and by transitioning from a reference label distribution towards the individual
drivers distribution, the overall robustness increased significantly, whilst a good average
loss was still preserved. Additionally, we showed that, by performing temperature scaling
to calibrate the neural network to classify only samples with a high confidence, the overall
accuracy increased. That is especially important for non-causal drivers, since the neural
networks confidence decreased significantly if transfer learning on random data. Thus, for
such drivers, the neural network will give less-valid classifications, which is desired, as we
were theoretically not able to classify driving style in this case.

Vehicles 2022, 4 1330

We also optimized the hyperparameters with regard to the entire framework. By
doing so, we ensured that the found parameters were not solely optimal regarding the
performance on pretrained data, but also for the actual application on system level. Here,
we observed a conflict between high pretraining loss, high transfer learning potential, and
high robustness and found the optimum by weighting these objectives evenly.

The shown results from our learning framework relied on the definition of synthetic
drivers. Whilst this approach gives reproducible results for systematic validation, it lacks the
complexity of real-life driving data. Here, further exogenous factors will influence the driver’s
driving style perception and, through that, the transfer learning. Thus, for future work, the
described adaptive driving style classification framework should be deployed for various test
vehicles to perform a wide-spread study with different drivers in real-life driving scenarios.

Author Contributions: Conceptualization, P.J.; methodology, P.J.; software, P.J.; validation, P.J.;
writing—review and editing, P.J., I.M., K.K. and S.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Wang, J.; Zhang, L.; Zhang, D.; Li, K. An Adaptive Longitudinal Driving Assistance System Based on Driver Characteristics.

IEEE Trans. Intell. Transp. Syst. 2013, 14, 1–12. [CrossRef]
2. Simonelli, F.; Bifulco, G.N.; Martinis, V.; Punzo, V. Human-Like Adaptive Cruise Control Systems through a Learning Machine

Approach. In Applications of Soft Computing; Avineri, E., Ed.; Springer: Berlin, Germany, 2009; Volume 52, pp. 240–249. [CrossRef]
3. Govindarajan, V.; Driggs-Campbell, K.; Bajcsy, R. Affective Driver State Monitoring for Personalized, Adaptive ADAS. In

Proceedings of the 2018 IEEE Intelligent Transportation Systems Conference, Maui, HI, USA, 4–7 November 2018; pp. 1017–1022.
[CrossRef]

4. Marina Martinez, C.; Heucke, M.; Wang, F.Y.; Gao, B.; Cao, D. Driving Style Recognition for Intelligent Vehicle Control and
Advanced Driver Assistance: A Survey. IEEE Trans. Intell. Transport. Syst. 2018, 19, 666–676. [CrossRef]

5. Silva, I.; Eugenio Naranjo, J. A Systematic Methodology to Evaluate Prediction Models for Driving Style Classification. Sensors
2020, 20, 1692. [CrossRef] [PubMed]

6. Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell.
Res. 2002, 16, 321–357. [CrossRef]

7. Esser, A.; Kohnhaeuser, F.; Ostern, N.; Engleson, K.; Rinderknecht, S. Enabling a Privacy-Preserving Synthesis of Representative
Driving Cycles from Fleet Data using Data Aggregation. In Proceedings of the 2018 21st International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 9 December 2018; pp. 1384–1389.

8. Jardin, P.; Moisidis, I.; Zetina, S.S.; Rinderknecht, S. Rule-Based Driving Style Classification Using Acceleration Data Profiles.
In Proceedings of the 2020 IEEE 23rd International Conference on Intelligent Transportation Systems (ITSC), Rhodes, Greece,
20–23 September 2020; pp. 1–6. [CrossRef]

9. Pan, S.J.; Yang, Q. A Survey on Transfer Learning. IEEE Trans. Knowl. Data Eng. 2010, 22, 1345–1359. [CrossRef]
10. Zhuang, F.; Qi, Z.; Duan, K.; Xi, D.; Zhu, Y.; Zhu, H.; Xiong, H.; He, Q. A Comprehensive Survey on Transfer Learning. Proc.

IEEE 2021, 109, 43–76. [CrossRef]
11. Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A survey of transfer learning. J. Big Data 2016, 3, 9. [CrossRef]
12. Zhang, W.; Deng, L.; Zhang, L.; Wu, D. A Survey on Negative Transfer. arXiv 2021, arXiv:2009.00909.
13. Zhao, P.; Hoi, S.C.; Wang, J.; Li, B. Online Transfer Learning. Artif. Intell. 2014, 216, 76–102. [CrossRef]
14. Biassoni, F.; Ruscio, D.; Ciceri, R. Limitations and automation. The role of information about device-specific features in ADAS

acceptability. Saf. Sci. 2016, 85, 179–186. [CrossRef]
15. Reymond, G.; Kemeny, A.; Droulez, J.; Berthoz, A. Role of lateral acceleration in curve driving: Driver model and experiments on

a real vehicle and a driving simulator. Hum. Factors 2001, 43, 483–495. [CrossRef] [PubMed]
16. Svozil, D.; Kvasnicka, V.; Pospichal, J. Introduction to multi-layer feed-forward neural networks. Chemom. Intell. Lab. Syst. 1997,

39, 43–62. [CrossRef]
17. Nanni, L.; Ghidoni, S.; Brahnam, S. Handcrafted vs. non-handcrafted features for computer vision classification. Pattern Recognit.

2017, 71, 158–172. [CrossRef]
18. Guo, C.; Pleiss, G.; Sun, Y.; Weinberger, K.Q. On Calibration of Modern Neural Networks. In Proceedings of the 34th International

Conference on Machine Learning, Sydney, Australia, 6–11 August 2017; Precup, D., Teh, Y.W., Eds.; Volume 70, pp. 1321–1330.

http://doi.org/10.1109/TITS.2012.2205143
http://dx.doi.org/10.1007/978-3-540-88079-0_24
http://dx.doi.org/10.1109/ITSC.2018.8569585
http://dx.doi.org/10.1109/TITS.2017.2706978
http://dx.doi.org/10.3390/s20061692
http://www.ncbi.nlm.nih.gov/pubmed/32197384
http://dx.doi.org/10.1613/jair.953
http://dx.doi.org/10.1109/ITSC45102.2020.9294611
http://dx.doi.org/10.1109/TKDE.2009.191
http://dx.doi.org/10.1109/JPROC.2020.3004555
http://dx.doi.org/10.1186/s40537-016-0043-6
http://dx.doi.org/10.1016/j.artint.2014.06.003
http://dx.doi.org/10.1016/j.ssci.2016.01.017
http://dx.doi.org/10.1518/001872001775898188
http://www.ncbi.nlm.nih.gov/pubmed/11866202
http://dx.doi.org/10.1016/S0169-7439(97)00061-0
http://dx.doi.org/10.1016/j.patcog.2017.05.025

Vehicles 2022, 4 1331

19. Murphy, K. Machine Learning—A Probabilistic Perspective; Adaptive Computation and Machine Learning; MIT Press: Cambridge,
UK, 2014.

20. Berndt, D.J.; Clifford, J. Using dynamic time warping to find patterns in time series. In Proceedings of the 3rd International
Conference on Knowledge Discovery and Data Mining, Seattle, WA, USA, 31 July 1994; Volume 10, pp. 359–370.

21. Weiss, G.M.; Provost, F. The Effect of Class Distribution on Classifier Learning: An Empirical Study; Rutgers University: Piscataway,
NJ, USA, 2001. [CrossRef]

22. Jeatrakul, P.; Wong, K.W.; Fung, C.C. Classification of Imbalanced Data by Combining the Complementary Neural Network and SMOTE
Algorithm; Springer: Berlin/Heidelberg, Germany, 2010; pp. 152–159. [CrossRef]

23. Barua, S.; Islam, M.M.; Murase, K. A Novel Synthetic Minority Oversampling Technique for Imbalanced Data Set Learning; Springer:
Berlin/Heidelberg, Germany, 2011; pp. 735–744. [CrossRef]

24. Kirkpatrick, J.; Pascanu, R.; Rabinowitz, N.; Veness, J.; Desjardins, G.; Rusu, A.A.; Milan, K.; Quan, J.; Ramalho, T.; Grabska-
Barwinska, A.; et al. Overcoming catastrophic forgetting in neural networks. Proc. Natl. Acad. Sci. USA 2017, 114, 3521–3526.
[CrossRef] [PubMed]

http://dx.doi.org/10.7282/T3-VPFW-SF95
http://dx.doi.org/10.1007/978-3-642-17534-3_19
http://dx.doi.org/10.1007/978-3-642-24958-7_85
http://dx.doi.org/10.1073/pnas.1611835114
http://www.ncbi.nlm.nih.gov/pubmed/28292907

	Introduction
	Related Work
	Motivation
	Driving Style

	Methodology
	Neural Network Design
	Feature Engineering
	Training Data for Pretraining
	Calibration through Temperature Scaling
	Neural Network Architecture
	Hyperparameter Optimization

	Training Data for Transfer Learning
	Synthetic Driver Model
	Synthetic Data for Oversampling

	Incremental Transfer Learning
	Oversampling
	Implementation of the Learning Algorithm

	Results
	Discussion
	References

