
Green functions and arithmetic
generating series on

Hilbert modular surfaces

Vom Fachbereich Mathematik
der Technischen Universität Darmstadt

zur Erlangung des Grades eines
Doktors der Naturwissenschaften

(doctor rerum naturalium)

genehmigte Dissertation

Erstgutachter: Prof. Dr. Jan Hendrik Bruinier
Zweitgutachter: Prof. Dr. Ulf Kühn
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Zusammenfassung

In dieser Doktorarbeit definieren und untersuchen wir zwei Typen von Greenfunktionen
auf zu reell-quadratischen Zahlkörpern assoziierten Hilbertschen Modulflächen mit loga-
rithmischen Singularitäten entlang von Hirzebruch-Zagier-Divisoren. Dies sind zum einen
die automorphen Greenfunktionen, ursprünglich eingeführt von Bruinier, und zum ande-
ren die Kudla-Greenfunktionen, die auf Kudla zurückgehen. Wir berechnen zugehörige
Fourierentwicklungen, untersuchen das Wachstum am Rand, erhalten Integrierbarkeitsaus-
sagen und bestimmen zugehörige Integrale. Speziell für die automorphen Greenfunktionen
finden wir eine wertvolle Zerlegung in glatte Funktionen mit vielerlei Anwendungen, aus
denen sich erst in Summe die logarithmischen Singularitäten bilden.

Bei der Untersuchung der Kudla-Greenfunktionen stellen wir fest, dass diese nicht
in die von Burgos Gil, Kramer und Kühn verallgemeinerte arithmetische Schnitttheorie
passen, was an deren zu starkem Wachstum an den Spitzen liegt. Daraufhin stellen wir
eine Modifikation vor, die das störende Wachstum mithilfe einer Teilung der Eins am
Rand in einer solch eleganten Weise abzieht, dass die resultierenden Funktionen zum
einen tatsächlich Greenfunktionen im Sinne von Burgos Gil, Kramer und Kühn sind,
und zum anderen die erzeugende Reihe über die abgezogenen Störterme modular ist.
Dies benutzen wir, um unser Hauptresultat, nämlich die Modularität der erzeugenden
Reihe der arithmetischen Hirzebruch-Zagier-Divisoren versehen mit den modifizierten
Kudla-Greenfunktionen, zu beweisen. Dazu führen wir diese Modularität auf die bereits
von Bruinier, Burgos Gil und Kühn gezeigte Modularität der erzeugenden Reihe der arith-
metischen Hirzebruch-Zagier-Divisoren versehen mit den automorphen Greenfunktionen
zurück.
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Summary

In this thesis we define and investigate two types of Green functions on Hilbert modular
surfaces associated to real quadratic number fields. Both types possess logarithmic
singularities along Hirzebruch–Zagier divisors. On the one hand, we consider the au-
tomorphic Green functions, originally introduced by Bruinier, and on the other hand
Kudla’s Green functions, which go back to Kudla. We calculate associated Fourier
expansions, investigate their growth at the boundary, obtain integrability statements and
determine associated integrals. Especially for the automorphic Green functions we find a
valuable decomposition into smooth functions with many applications.

When examining Kudla’s Green functions, we find that they do not fit into the
arithmetic intersection theory generalized by Burgos Gil, Kramer and Kühn, which is
due to their strong growth at the cusps. We then present a modification that subtracts
the undesired growth at the boundary using a partition of unity. This is done in such
an elegant way that the resulting functions are not only actual Green functions in the
sense of Burgos Gil, Kramer, and Kühn, but the generating series of the subtracted error
terms is modular. We use this to prove our main result, the modularity of the generating
series of the arithmetic Hirzebruch–Zagier divisors equipped with the modified Green
functions. In the proof, we trace its modularity back to the modularity of the generating
series of the arithmetic Hirzebruch–Zagier divisors equipped with the automorphic Green
functions whose modularity was already shown by Bruinier, Burgos Gil and Kühn.
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Chapter 1

Introduction

In 1976, Hirzebruch and Zagier showed that the intersection numbers of certain special
divisors, nowadays called Hirzebruch–Zagier divisors, on Hilbert modular surfaces can be
interpreted as the Fourier coefficients of holomorphic elliptic modular forms of weight 2
(cf. [HZ76]). More precisely, a slight generalization of this result states that the generating
series

A(τ) = c1(M−1/2(C)) +
∞∑
m=1

Z(m)qm ∈ Q[[q]] ⊗Q CH1(X)Q

is a holomorphic modular form of weight 2, level D and nebentypus χD with values
in CH1(X)Q. Here, by D we denote the discriminant of the underlying real quadratic
number field K, by c1(Mk(C)) the first Chern class of the line bundle of modular forms
of weight k, by X the Hirzebruch compactification of the Hilbert modular surface X
associated to K and by Z(m) certain extensions of the Hirzebruch–Zagier divisors T (m)
of discriminant m on X to the Hirzebruch compactification X (precise definitions are
provided in Section 2.5 and Section 2.8). The meaning of A(τ) being a modular form
with values in CH1(X)Q is that for any linear map λ : CH1(X)Q → Q the generating
series

λ(c1(M−1/2(C))) +
∞∑
m=1

λ(Z(m))qm

is a modular form of weight 2, level D and nebentypus χD. In particular, the Hirzebruch–
Zagier divisors Z(m) generate in CH1(X)Q a subspace whose dimension is bounded by
the dimension of the space of modular forms of weight 2, level D and nebentypus χD.

Kudla and Millson aimed at a generalization of the result from Hirzebruch and Zagier
and studied special cycles for the orthogonal group O(p, q) and the unitary group U(p, q) in
great generality by means of the Weil representation (cf. [KM90]). In the Kudla program
one is interested in having arithmetic analogues to the Hirzebruch–Zagier theorem (cf.
[Kud02] and [Kud04]). More precisely, instead of proving the modularity of generating
series like A(τ) with coefficients in classical Chow groups, one is interested in proving
the modularity of generating series with coefficients in arithmetic Chow groups. The
elements of arithmetic Chow groups are arithmetic divisors (or more general arithmetic
cycles) up to rational equivalence. An arithmetic divisor in turn is a pair (Z, g), where Z
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CHAPTER 1. INTRODUCTION

is a classical divisor (on an integral model of X) and g is a Green current corresponding
to Z (cf. Section 2.9 for details).

Particular cases to study the Kudla program are smooth compactifications of Hilbert
modular surfaces. In this thesis we associate to each fractional ideal a of a real quadratic
number field K a Hilbert modular surface X(a) (cf. Section 2.5) and its Hirzebruch
compactification X(a), a smooth compactification of X(a) (cf. Section 2.7).

Naturally, one wishes to extend the Hirzebruch–Zagier divisors T (a,m) living on X(a)
to divisors Z(a,m) living on the compactification X(a) = X(a) ∪ E(a). In Section 3.5
we investigate local Borcherds products Ψ(a,m, z) to find the right multiplicities of
the components of the so-called exceptional divisor E(a). This results in the correct
definitions of the divisors Z(a,m) which can already be found in Subsection 2.8.5.

In addition to the Hirzebruch–Zagier divisors on X(a), one needs to find appropriate
Green functions completing the divisors Z(a,m) to arithmetic divisors. In this context it
is worth mentioning that a further generalization of the arithmetic intersection theory
of Gillet and Soulé (cf. [GS90]), which already generalizes the work of Arakelov to
arithmetic varieties, was developed by Burgos Gil, Kramer and Kühn in [BGKK07] and
[BGKK05]. This theory allows the Green functions to have so-called pre-log-log growth at
the exceptional divisor E(a) (cf. Subsection 2.9.2 for the growth definitions) in addition
to the logarithmic singularities along the divisors Z(a,m), which is what Gillet and Soulé
expect from a Green function.

Within that theory from Burgos Gil, Kramer and Kühn there are different natural
choices for appropriate Green functions. In this thesis we discuss two of them. Firstly,
there are the almost harmonic automorphic Green functions Φ(a,m, z) introduced by
Bruinier in [Bru99]. They are constructed by a regularization of functions Φ(a,m, s, z)
with an additional complex parameter s. We discuss the construction and many properties
of the automorphic Green functions in Chapter 3. Secondly, in Chapter 4 we discuss
Green functions Ξ(a,m, v, z) constructed by Kudla (cf. [Kud97]) which are connected to
the Kudla–Millson theory.

The arithmetic Hirzebruch–Zagier theorem for automorphic Green functions stating
that

∞∑
m=0

(Z(a,m), G(a,m, z))qm (1.1)

is a holomorphic modular form of weight 2, level D and nebentypus χD with values in
ĈH1(X(a),Dpre)C (cf. Definition 5.5.1) was already proven in [BBGK07] by Bruinier,
Burgos Gil and Kühn in the case that D is prime and a = OK (cf. Section 3.11 where we
give more details). Here, the term G(a,m, z) denotes a normalized version of Φ(a,m, z)
(cf. Section 3.9). However, Bruinier, Burgos Gil and Kühn used in their work an arbitrary
smooth compactification of the Hilbert modular surface whose existence is guaranteed by
Hironaka in [Hir64]. The extensions of the divisors T (OK ,m) to the divisors Z(OK ,m)
are abstractly defined by pullback from the singular Baily–Borel compactification X(OK)∗.
To this end, the authors proved that the divisors T (OK ,m) are Q-Cartier divisors near
the cusps without the need of computing any multiplicities for the new components

10



CHAPTER 1. INTRODUCTION

at the cusps. By determining the divisors Z(a,m) for the Hirzebruch compactification
X(a) and proving that G(a,m, z) are actually Green functions with respect to Z(a,m)
in Theorem 3.6.5 we make this result more explicit.

However, the main goal of this thesis is to prove an arithmetic Hirzebruch–Zagier
theorem for Kudla’s Green functions. To that end, we have to overcome a few technical
difficulties. Namely, Kudla’s Green functions Ξ(a,m, v, z) turn out not to be Green
functions in the sense of Burgos Gil, Kramer and Kühn which we show in Chapter 4 (cf.
Remark 4.3.6) after a detailed analysis of their growth behavior near the exceptional
divisor E(a). During this process we isolate the part of Ξ(a,m, v, z) which is growing too
strongly and call it Ξ̌(a,m, v, z). Unfortunately, the function Ξ̌(a,m, v, z) is only well-
defined near the cusp ∞ but not on the whole Hilbert modular surface X(a). Therefore,
we use a partition of unity ρ to subtract Ξ̌(a,m, v, z) near the cusp ∞ where Ξ̌(a,m, v, z)
is well-defined. This modification is carried out simultaneously for all cusps in Section 4.5
where we come up with the definition of Ξ̃ρ(a,m, v, z), which is a Green function in the
sense of Burgos Gil, Kramer and Kühn by Theorem 4.5.2. The idea of this modification
is due to Berndt and Kühn who investigated the degenerate case D = 1 in the article
[BK12] (here, instead of a number field one deals with K = Q ⊕ Q and the analogue of
the Hilbert modular group is SL2(Z)2). This article also served as inspiration for other
ideas concerning Kudla’s Green functions. The modification of Ξ(a,m, v, z) allows us to
consider the generating series∑

m∈Z
(Z(a,m), Ξ̃ρ(a,m, v, z))qm (1.2)

with values in the arithmetic Chow group ĈH1(X(a),Dpre)C and to eventually prove the
main result of this thesis:

Theorem 1.0.1 (cf. Theorem 5.5.7). Let D be prime and a = OK . Then the generating
series (1.2) is a non-holomorphic modular form of weight 2, level D and nebentypus χD.

It is a priori not clear how to generalize the notion of being a holomorphic modular form
with values in ĈH1(X(a),Dpre)C to the notion of being a non-holomorphic modular form
with values in ĈH1(X(a),Dpre)C. We explain our notion of the latter in Definition 5.5.2.
The proof of the theorem transfers the modularity of the series (1.1) to the series (1.2)
by investigating the difference of the two series:

Theorem 1.0.2 (cf. Theorem 5.5.6). Let D be prime. Then∑
m∈Z

(0, Ξ̃ρ(OK ,m, v, z) −G(OK ,m, z))qm

is a non-holomorphic modular form of weight 2, level D and nebentypus χD.

Because of that approach which depends on the modularity of (1.1), Theorem 1.0.1
is only proven in the case where D is prime and a = OK like the arithmetic Hirzebruch–
Zagier theorem for the series (1.1). However, apart from this, all intermediate results of
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this thesis are proven for all real quadratic number fields (hence, no restriction on D)
and all fractional ideals a ∈ IK .

In order to prove the modularity of the difference series, deep investigations of the
automorphic Green functions Φ(a,m, z) and Kudla’s Green functions Ξ(a,m, v, z) are
necessary. Those investigations provide a lot of new insights into the Green functions
Φ(a,m, z) and Ξ(a,m, v, z) which are of interest on their own. We will name some of the
results we develop along the way for both types of Green functions and state where they
can be found within this thesis.

We start by listing a few results for the automorphic Green functions: We obtain
the Fourier expansion of the unregularized automorphic Green functions Φ(a,m, s, z)
(cf. Theorem 3.2.6) and the regularized automorphic Green functions Φ(a,m, z) (cf.
Theorem 3.4.1) for arbitrary a ∈ IK (whereas in [Bru99] only the case a = OK is
considered). In Section 3.5 we define and investigate local Borcherds products Ψ(a,m, z)
for all fractional ideals a ∈ IK . Proposition 3.5.6 determines its vanishing orders along
the components of the exceptional divisor E∞(a) explicitly. Another noteworthy result
is presented in Section 3.7 where we come up with a decomposition

Φ(a,m, s, z) =
∞∑
n=0

Φn(a,m, s, z) (1.3)

of Φ(a,m, s, z) into smooth Γa invariant functions Φn(a,m, s, z) without any singularities
on X(a). We partially compute the Fourier coefficients of the functions Φn(a,m, s, z)
which yields new formulae for the already known coefficients of Φ(a,m, s, z) and reveals
new identities (cf. Subsection 3.7.2 and Subsection 3.7.3). Using the decomposition (1.3),
we obtain integrability results of Φ(a,m, z) in Section 3.8 and compute the integrals
given in the next theorem. For integration we use the volume form ω2 with ω being the
Kähler form on X(a) (cf. equation (2.14)).
Theorem 1.0.3 (cf. Theorem 3.8.3 and Theorem 3.8.11). For m ∈ N and ℜ(s) > 1 we
have ∫

X(a)
Φ(a,m, s, z)ω2 = 2 vol(T (a,m))

s(s− 1)
and ∫

X(a)
Φ(a,m, z)ω2 = −2 vol(T (a,m)).

Further estimates based on the decomposition (1.3) allow us to prove the following
convergence theorem in Section 3.10.
Theorem 1.0.4 (cf. Theorem 3.10.1). Let q ∈ C with |q| < 1 be fixed. The series

∞∑
m=0

Φ(a,m, z)qm and
∞∑
m=0

G(a,m, z)qm

converge absolutely for almost all z ∈ H2. Furthermore, the series
∞∑
m=0

|Φ(a,m, z)qm| and
∞∑
m=0

|G(a,m, z)qm|

12



CHAPTER 1. INTRODUCTION

are integrable over X(a).

Lastly, in Theorem 5.4.1 we show that in case of D being prime and a = OK the
integrals of the Φ(a,m, z) are the coefficients of a modular form.

Let us now continue with a few results about Kudla’s Green functions. Here, we
compute Fourier expansions (cf. Section 4.2 and Section 4.4) as well. In addition, we
compute the following integrals which prove their integrability (in this case nothing more
has to be done because Kudla’s Green functions do not attain negative values).

Theorem 1.0.5 (cf. Theorem 4.6.2 and Theorem 4.7.2). For m > 0 we have∫
Γa\H2

Ξ(a,m, v, z)ω2 = vol(T (a,m))
2πvm .

For m < 0 we have if N(ε0) = −1 (for the general case see Remark 4.6.3)∫
Γa\H2

Ξ(a,m, v, z)ω2 = 2Γ(−1, 4πv|m|) vol(T (a, |m|)).

For m = 0 we have ∫
Γa\H2

Ξ∗(a,m, v, z)ω2 = hK log(ε0)
24πv

√
D
.

Here, ε0 is the fundamental unit of the ring of integers of K and hK is the class
number of K. A consequence of the asymptotic growth for large m of the integrals is the
next theorem.

Theorem 1.0.6 (cf. Theorem 4.8.2). Let τ ∈ H be fixed. The series∑
m∈Z

Ξ(a,m, v, z)qm

converges absolutely for almost all z ∈ H2. Furthermore, the series∑
m∈Z

|Ξ(a,m, v, z)qm|

is integrable over X(a).

Lastly, in Section 5.1 we prove the convergence and modularity of the generating
series ∑

m∈Z
Ξ̌(a,m, v, z)qm (1.4)

viewed as a function. Recall that the functions Ξ̌(a,m, v, z) are the error terms we have to
subtract near the cusps from Kudla’s Green functions in order to make them fit into the
theory of Burgos Gil, Kramer and Kühn. The modularity of the generating series (1.4) is
a crucial ingredient to the proof of our main theorem.
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CHAPTER 1. INTRODUCTION

To finish the introduction we briefly recap the structure of this thesis. In Chapter 2
we discuss all the preliminaries needed to discuss the automorphic Green functions in
Chapter 3 and Kudla’s Green functions in Chapter 4. In the last chapter, Chapter 5, we
then combine the results and prove a variety of modularity related theorems. To keep
track of expressions we suggest to use the list of functions and symbols at the end of the
thesis.

14



Chapter 2

Preliminaries

2.1 Quadratic spaces and lattices

In this thesis we encounter rational and real quadratic spaces and lattices. The aim of
this section is to discuss the underlying definitions and fundamental properties. Every
rational quadratic space V can be embedded into a real quadratic space VR := V ⊗Z R.
We give definitions to real quadratic spaces only in this section. The same definitions
apply to rational quadratic spaces by passing over to VR first.

Let V be a finite dimensional vector space over R with a quadratic form q : V → R.
Then

(·, ·) : V × V → R, (x, y) := q(x+ y) − q(x) − q(y)
defines a symmetric bilinear form on V . Vice versa, if V is endowed with a symmetric
bilinear form (·, ·), this induces a quadratic form

q : V → R, q(x) := (x, x)/2.

These mappings are inverse to each other. Therefore, we do not need to distinguish
between vector spaces equipped with quadratic forms and vector spaces equipped with
symmetric bilinear forms and call the pair (V, q) a real quadratic space. If the quadratic
form is understood from the context, we may omit q in the notation. The automorphisms
of (V, q), i.e., linear maps φ : V → V which are bijective and preserve q, form the group
O(V ) called the orthogonal group of V .

A real quadratic space V is called non-degenerate if the kernel of the map

V → V ∗, x 7→ (y 7→ (x, y))

is trivial (and otherwise degenerate). Hence, for non-degenerate real quadratic spaces
V we have a canonical isomorphism V → V ∗ and we can identify elements of V ∗ with
elements of V .

Non-zero vectors x ∈ V with q(x) = 0 are called isotropic, whereas vectors x ∈ V
with q(x) ̸= 0 are called anisotropic. We have the disjoint decomposition

V = V + ∪̇ V − ∪̇ Iso(V ) ∪̇ {0} .

15
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Here, we denote by V + the set of vectors with positive quadratic form, by V − the set
of vectors with negative quadratic form and by Iso(V ) the set of isotropic vectors. If
V \ {0} = V +, we call V positive definite, if V \ {0} = V −, we call V negative definite
and if V is positive or negative definite we call V definite. A real quadratic space (V, q)
is definite if and only if Iso(V ) = ∅. Definite real quadratic spaces are non-degenerate
but the converse is not true.

Each real quadratic space (V, q) possesses an orthogonal basis b1, . . . , bn, i.e., (bi, bj) =
0 for i ̸= j. Let b+, b−, b0 be the number of basis elements with q(bi) > 0, q(bi) < 0,
q(bi) = 0, respectively. Then (b+, b−, b0) does not depend on the choice of the basis and
is called the signature of (V, q). The space is non-degenerate if and only if b0 = 0. In this
case we also call (b+, b−) the signature of (V, q).

For each non-degenerate real quadratic space we fix as our measure its Haar measure
normalized in such a way that a cube spanned by an orthogonal basis b1, . . . , bn with
|(bi, bi)| = 1 (or |q(bi)| = 1/2 equivalently) has volume 1. By this normalization we give
the Rn with the Euclidean scalar product its Lebesgue measure.

A free discrete Z module L ⊂ V of rank dim(V ) is called a lattice of V . It is called
non-degenerate if V is non-degenerate. In this case

L∨ := {w ∈ V ∗ : w(L) ⊂ Z} = {x ∈ V : (x, y) ∈ Z for all y ∈ Z}

is called the dual lattice. If b1, . . . , bn is a basis of L, the dual basis b∗
1, . . . , b

∗
n with respect

to the canonical isomorphism V → V ∗ is a basis of L∨.
For a basis b1, . . . , bn of a non-degenerate lattice L, the determinant

det(L) := det((bi, bj)i,j)

does not depend on the choice of the basis and is called determinant of L. Its sign is
given by (−1)b− and its square root

vol(L) :=
√

| det(L)| (2.1)

is called the volume of the lattice L. Both are non-zero and we actually have

vol(L) = µ(V/L)

with µ being the measure of V from above. We have the identity det(L∨) = det(L)−1

and accordingly vol(L∨) = vol(L)−1. If L′ ⊂ L is a sublattice, the quotient L/L′ is
well-defined and a finite abelian group of order vol(L′)/ vol(L).

Non-degenerate lattices L with L ⊂ L∨ (which is equivalent to (x, y) ∈ Z for all
x, y ∈ L) are called integral. From the above it follows that for integral lattices the group
L∨/L has cardinality | det(L)|. We call non-degenerate lattices L with q(L) ∈ Z even.
They are integral and the quadratic form on V descends to a Q/Z valued quadratic form
on L∨/L. This group together with its quadratic form is called the discriminant group
of L.

An element x ∈ L is called primitive if ny = x with (n, y) ∈ Z × L implies n ∈ {±1}.
Equivalently, an element x ∈ L is called primitive if it is part of a basis of L. We denote
the primitive elements of L by L0. Later, we will need especially those primitive elements
which are isotropic, and denote them by Iso(L0).
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2.2 Real quadratic number fields

Recall that every real quadratic number field K is of the form K = Q(
√
d) for a unique

squarefree integer d > 1. It is a Q vector space of dimension 2, a possible basis is given
by (1,

√
d). We view K as subfield of R with

√
d > 0. Its discriminant is given by

D =
{
d, d ≡ 1 (mod 4),
4d, d ≡ 2, 3 (mod 4).

The field K possesses one non-trivial automorphism, the so-called conjugation which
sends

√
d to −

√
d and is denoted by x 7→ x′. This allows us to introduce the norm and

the trace functions

N : K → Q, N(x) := xx′, (2.2)
tr : K → Q, tr(x) := x+ x′. (2.3)

The trace is a Q linear map and the norm is a non-degenerate quadratic form turning
K into a rational quadratic space of signature (1, 1). Another non-degenerate quadratic
form is induced by the Q bilinear trace form (x, y) 7→ tr(xy). The latter is positive
definite, i.e., of signature (2, 0). The ring of integers of K is given by

OK = Z + D+
√
D

2 Z =
{
Z +

√
dZ, D ≡ 0 (mod 4),

Z + 1+
√
d

2 Z, D ≡ 1 (mod 4).

By Dirichlet’s unit theorem, there exists a unique ε0 > 1 such that

O×
K =

{
±εk0 : k ∈ Z

}
.

Analogously, there exists a unique ε1 > 1 such that

O+
K := O×

K ∩K+ =
{
εk1 : k ∈ Z

}
with K+ := {x ∈ K : x ≫ 0} .

Here x ≫ 0 being totally positive means x > 0 and x′ > 0. If N(ε0) = 1, we have ε1 = ε0
and otherwise ε1 = ε2

0. For prime discriminants D we always have N(ε0) = −1.

2.2.1 Prime ideals in OK and the Dirichlet character χD

We start with a short disclaimer. With OK being a subring of a field the trivial ideal (0)
is prime. However, for the whole thesis when we talk about prime ideals we mean prime
ideals different from (0).

The ring OK is a Dedekind domain. Hence, every non-zero ideal factors into prime
ideals. Therefore, it is useful to study the prime ideals (the atoms) of OK . In our
situation where K is a quadratic number field, they are very well understood. There are
three kinds of prime ideals whose characterization can be done via the Dirichlet character
χD which is defined by

χD : Z → {1,−1, 0} , χD(n) :=
(
D

n

)
, (2.4)

17
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where the latter is the Kronecker symbol. The character is periodic with period D, hence
it factors through Z/DZ. Each prime ideal p ⊂ OK belongs to a prime number p ∈ N
via p ∩ Z = pZ. On the other hand, for each prime number p ∈ N there are one or two
prime ideals in OK that belong to p. Looking at the prime factorisation in OK of the
principal ideal (p) = pOK , the following three cases can occur.

(i) We say p ramifies (completely):

(p) = p2 ⇔ χD(p) = 0 ⇔ p | D.

(ii) We say p is inert:

(p) = p ⇔ χD(p) = −1 ⇔ (p) is prime in OK .

(iii) We say p splits completely:

(p) = pp′ with p ̸= p′ ⇔ χD(p) = 1.

The first case happens only for finitely many primes p, the prime divisors of D. The two
other cases occur infinitely often by Dirichlet’s theorem on arithmetic progressions. They
appear equally often because half of the units u in Z/DZ satisfy χD(u) = 1, while the
others satisfy χD(u) = −1.

This classifies all prime ideals in OK and relates them to prime numbers.

2.2.2 Fractional ideals and the ideal class group

The finitely generated non-zero OK modules in K are called fractional ideals. They are
of the form xb with x ∈ K× and b ⊂ OK being an (integral) non-trivial ideal of OK .
Each fractional ideal a ⊂ K has a unique decomposition into prime ideals

a =
∏

p⊂OK
p prime

pνp(a)

with νp(a) ∈ Z and νp(a) = 0 for almost all p. The ideal a is integral if and only if νp ≥ 0
for all p. The fractional ideals form a group denoted by IK . Hence, IK is a free abelian
group whose basis consists of all prime ideals p ⊂ OK . The conjugation on K induces a
non-trivial group automorphism on IK , again called conjugation, sending the generators
p to p′ (here p ≠ p′ if and only if the underlying prime p splits completely which occurs
for infinitely many primes as we have seen in the previous subsection). For non-zero
integral ideals b ⊂ OK the map N(b) := [OK : b] defines a totally multiplicative function
which we call the ideal norm. There is a unique multiplicative extension to IK turning it
into the group homomorphism

N : IK → Q+, N(a) :=
∏

p⊂OK
p prime

N(p)νp(a).

18
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For each principal ideal a = (x) with x ∈ K× we have N(a) = |N(x)|, hence in particular
we get N((x)) = x2 for x ∈ Q×. The ideal norm and conjugation on IK interact nicely
via

aa′ = (N(a)) and therefore a−1 = a′

N(a) (2.5)

for all a ∈ IK . An important theorem which more generally holds in all Dedekind
domains is the theorem of finite approximation.

Theorem 2.2.1 (Theorem of finite approximation). Let a ∈ IK and p1, . . . , pn be finitely
many prime ideals of OK . Then there exists an α ∈ a with

νpi(a) = νpi(α) for all 1 ≤ i ≤ n.

Corollary 2.2.2. For a ∈ IK and 0 ̸= α ∈ a there exists β ∈ a with αOK + βOK = a.
In particular, every fractional ideal is generated by two elements.

Proof. There are only finitely many prime ideals p with νp(a) ̸= νp(α). We take them in
Theorem 2.2.1 to get β.

2.2.3 The ideal class group and the class number formula

The principal ideals form a subgroup of IK which we denote by PK . The quotient group
ClK := IK/PK is a finite abelian group called the ideal class group of K. The conjugation
on IK fixes PK because of (x)′ = (x′) for x ∈ K×, so it descends to a (possibly trivial)
automorphism of ClK . The cardinality of ClK is called the class number of K and
denoted by hK . It is strongly related to the Dirichlet L-function

L(s, χD) :=
∞∑
n=1

χD(n)n−s by hK =
√
D

2 log(ε0)L(1, χD), (2.6)

the so-called class number formula. The special value L(1, χD) of the Dirichlet L-function
can be interpreted as the residue of the Dedekind zeta function

ζK(s) :=
∑

a⊂OK

N(a)−s

at s = 1 since ζK(s) = ζ(s)L(s, χD).

2.2.4 Fractional ideals as lattices

Each fractional ideal a ∈ IK is a free Z module of rank 2. Equipped with the norm form
or the trace form it is a lattice. The two forms are very related so that they can be
treated simultaneously. An important ideal is the different. It is denoted by d and given
by d = (

√
D) =

√
DOK . Using the different, we can express the duals of a:

a∨N = (ad)′−1 and a∨tr = (ad)−1. (2.7)
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Since d′ = d, we see that they coincide if and only if a′ = a which is the case if and only if
νp(a) = νp′(a) for all prime ideals p ⊂ OK . The volume of a is given by vol(a) = N(a)

√
D

with respect to both forms. The determinants differ only in the sign, i.e.,

detN (a) = −N(a)2D and dettr(a) = N(a)2D.

An important additional quadratic form on K defined for each a ∈ IK individually
turns a into an even lattice, namely the normalized norm form:

qa : K → Q, qa(x) := N(x)
N(a) . (2.8)

We have detqa(a) = −D and a∨qa = ad−1, hence the discriminant group contains D
elements and is given by ad−1/a.

2.3 Hilbert modular groups and their cusps

The symmetry groups which give rise to Hilbert modular surfaces are the so-called Hilbert
modular groups. In this section we define those groups, prove important properties and
analyze their cusps. We start by defining a group action of GL2(K) on P1(K) by(

a b
c d

)
(α : β) := (aα+ bβ : cα+ dβ).

For subgroups Γ ⊂ SL2(K) we call the orbits of the group action restricted to Γ the
cusps of Γ. Sometimes we call the elements of P1(K) cusps as well. It will be clear from
the context what we mean.

Lemma 2.3.1. The group SL2(K) has one cusp, i.e., the group action of SL2(K) on
P1(K) is transitive.

Proof. Let (α : β) ∈ P1(K) and a := αOK + βOK ∈ IK . Then we have

1 ∈ OK = aa−1 = αa−1 + βa−1.

Hence, there exist α∗, β∗ ∈ a−1 with αβ∗ − βα∗ = 1. It follows

M(1 : 0) = (α : β) with M :=
(
α α∗

β β∗

)
∈ SL2(K).

Remark 2.3.2. Let Γ ⊂ SL2(K) be a subgroup and M ∈ GL2(K). Then the map

f : P1(K) → P1(K), (α : β) 7→ M−1(α : β)

induces a bijection between the cusps of Γ and M−1ΓM .
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Definition 2.3.3. For a ∈ IK the Hilbert modular group associated to a is defined by

Γa := SL(OK ⊕ a) :=
(

OK a−1

a OK

)
∩ SL2(K).

We prove in Corollary 2.3.5 that Γa is actually a group. In order to do so (and also
for many more applications) we shall define for a, b ∈ IK

M(a, b) :=
(
a (ab)−1

ab a−1

)
∩ SL2(K). (2.9)

Then we have Γa = M(OK , a). Using the theorem of finite approximation (Theorem 2.2.1),
it can be shown that the sets M(a, b) are non-empty. Furthermore, for a1, a2, b1, b2 ∈ IK
we have

M(a1, b1) = M(a2, b2) ⇔ a1 = a2 and b1 = b2.

Lemma 2.3.4. Let a1, a2, a, b ∈ IK . Then we have

(i) M(a, b)−1 = M(a−1, a2b) and

(ii) M(a1, b)M(a2, a
2
1b) = M(a1a2, b).

Proof. The first equation follows from(
a b
c d

)−1

=
(
d −b

−c a

)

for matrices of determinant 1. To prove the second equation we compute(
a1 (a1b)−1

a1b a−1
1

)(
a2 (a2a

2
1b)−1

a2a
2
1b a−1

2

)
⊂
(
a1a2 (a1a2b)−1

a1a2b (a1a2)−1

)

which gives us the inclusion

M(a1, b)M(a2, a
2
1b) ⊂ M(a1a2, b).

The other inclusion follows from an application of what we have already seen:

M(a1, b)−1M(a1a2, b) = M(a−1
1 , a2

1b)M(a1a2, b) ⊂ M(a2, a
2
1b).

Corollary 2.3.5. The set Γa = SL(OK ⊕ a) is a subgroup of SL2(K).

Proof. By Lemma 2.3.4 the set Γa = M(OK , a) is closed under inversion and multiplica-
tion.

Corollary 2.3.6. Let a, b ∈ IK and M ∈ M(a, b). Then we have

M−1 SL(OK ⊕ b)M = SL(OK ⊕ a2b).
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Proof. This again follows directly from Lemma 2.3.4. On one hand we have

M−1 SL(OK ⊕ b)M ⊂ M(a, b)−1M(OK , b)M(a, b)
= M(a−1, a2b)M(OK , b)M(a, b)
= M(a−1, a2b)M(a, b)
= SL(OK ⊕ a2b).

On the other hand, we have

M SL(OK ⊕ a2b)M−1 ⊂ M(a, b)M(OK , a
2b)M(a, b)−1

= M(a, b)M(a−1, a2b)
= M(OK , b).

Lemma 2.3.7. Let a, b ∈ IK and
(
α α∗
β β∗

)
∈ M(a, b). Then αOK + βb−1 = a. Fur-

thermore, the Hilbert modular group SL(OK ⊕ b) acts transitively on M(a, b) by left
multiplication.

Proof. The equation αOK + βb−1 = a is equivalent to

αa−1 + β(ab)−1 = OK .

From α ∈ a and β ∈ ab we get one inclusion. On the other hand

1 = αβ∗ − βα∗ ∈ αa−1 + β(ab)−1.

Statement (ii) in Lemma 2.3.4 shows

SL(OK ⊕ b)M(a, b) = M(a, b)

which makes the stated operation well-defined. The transitivity follows from

M(a, b)M(a, b)−1 = M(a, b)M(a−1, a2b) = SL(OK ⊕ b).

Lemma 2.3.8. Let b ∈ IK and (α, β) ∈ K2 with (α : β) ∈ P1(K). We set a :=
αOK + βb−1. Then there exist α∗, β∗ ∈ K with(

α α∗

β β∗

)
∈ M(a, b).

Proof. We define
O := αa−1 + β(ab)−1
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and show that O = OK by verifying νp(O) = 0 for all prime ideals p ⊂ OK . This implies
1 ∈ O, hence the desired matrix exists. By definition of O we have

νp(O) = min(νp(α) − νp(a), νp(β) − νp(a) − νp(b))

and by definition of a we have

νp(a) = min(νp(α), νp(β) − νp(b)).

In case νp(a) = νp(α) we have νp(β) − νp(b) ≥ νp(α) and

νp(O) = min(νp(α) − νp(α), νp(β) − νp(α) − νp(b)) = 0.

In case νp(a) = νp(β) − νp(b) we have νp(β) − νp(b) ≤ νp(α) and

νp(O) = min(νp(α) − (νp(β) − νp(b)), νp(β) − (νp(β) − νp(b)) − νp(b)) = 0.

Proposition 2.3.9. Let b ∈ IK . The map

ψb : P1(K) → ClK , (α : β) 7→ [αOK + βb−1]

induces a bijection between the cusps of the Hilbert modular group SL(OK ⊕ b) and the
ideal class group of K. In particular, SL(OK ⊕ b) has hK cusps.

Proof. The well-definedness of ψb is clear since a scaling of (α : β) translates into a
scaling of αOK + βb−1. The surjectivity is a direct consequence of Lemma 2.3.7.

Now let (α : β) and (γ : δ) be representatives of the same cusp. Hence, after
appropriate scaling we find a matrix A ∈ SL(OK ⊕ b) with

A

(
α
β

)
=
(
γ
δ

)
.

Let a := αOK + βb−1. Then by Lemma 2.3.8 there exist α∗, β∗ ∈ K with(
α α∗

β β∗

)
∈ M(a, b).

We define γ∗, δ∗ ∈ K by the equation(
γ γ∗

δ δ∗

)
:= A

(
α α∗

β β∗

)
.

Because of the operation mentioned in Lemma 2.3.7, we get(
γ γ∗

δ δ∗

)
∈ M(a, b).
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In particular a = γOK + δb−1 and hence ψb(α : β) = [a] = ψb(γ : δ). Now it is left
to show that (α : β), (γ : δ) ∈ P1(K) with ψb(α : β) = ψb(γ : δ) belong to the same
cusp. After appropriate scaling we may assume a := αOK + βb−1 = γOK + δb−1. By
Lemma 2.3.7 we get matrices(

α α∗

β β∗

)
,

(
γ γ∗

δ δ∗

)
∈ M(a, b).

Now by the transitivity of the action under SL(OK ⊕ b) they belong to the same orbit,
hence (α : β) and (γ : δ) belong to the same orbit (also known as cusp) as well.

2.3.1 The cusp infinity and its stabilizer

In this subsection we have a closer look at the cusp (1 : 0) whose relevance becomes clear
by the following remark.

Remark 2.3.10. The cusp (1 : 0) ∈ P1(K) is called the cusp ∞. By Proposition 2.3.9 it
corresponds in a natural way to the neutral element of ClK , the principal ideals. Hence,
it is the most natural cusp to look at. In order to understand all cusps of SL(OK ⊕ b)
for a fixed b ∈ IK Remark 2.3.2, Lemma 2.3.7, Corollary 2.3.6 and Proposition 2.3.9
show that it is equivalent to understand the cusp ∞ of the groups SL(OK ⊕ a2b) for all
a ∈ IK .

The stabilizer of the cusp ∞ is given by

SL2(K)∞ =
{(

a b
c d

)
∈ SL2(K) : c = 0

}
=
{(

x y
0 x−1

)
: x ∈ K×, y ∈ K

}
.

Hence, we have

Γa,∞ =
{(

ε µ
0 ε−1

)
: ε ∈ O×

K , µ ∈ a−1
}
.

The image Γa,∞ := Γa,∞/ {±1} of Γa,∞ in PSL2(K) can be described as a semidirect
product

Γa,∞ ∼= a−1 ⋊ (O×
K)2

with respect to the homomorphism

(O×
K)2 → Aut(a−1), ε2 7→ (µ 7→ ε2µ).

The isomorphism is given by

Γa,∞ → a−1 ⋊ (O×
K)2, ±

(
ε µ
0 ε−1

)
7→ (εµ, ε2)

with the inverse

a−1 ⋊ (O×
K)2 → Γa,∞, (µ, ε2) 7→ ±

(
ε ε−1µ
0 ε−1

)
.

24



CHAPTER 2. PRELIMINARIES

2.4 Quadratic space and lattices associated to K

Hilbert modular forms can be realized as orthogonal modular forms with respect to a
quadratic space of signature (2, 2). In this section we introduce this quadratic space and
call it V . Furthermore, we define lattices in V which are important for the definition of
Hirzebruch–Zagier divisors on the Hilbert modular surface. Next, we investigate relations
between those lattices which resemble the relations between the different Hilbert modular
groups of the previous section. At the end of the section, we study the isotropic lines of
V and their relation to cusps in a separate subsection.

Let us start with the definition of the vector space

V :=
{(

a λ′

λ b

)
∈ K2×2 : a, b ∈ Q, λ ∈ K

}
=
{
A ∈ K2×2 : A⊤ = A′

}
(2.10)

equipped with the quadratic form det(A) = ab−N(λ). The associated bilinear form is
given by (A,B) = tr(AB∗) with(

a b
c d

)∗

:=
(
d −b

−c a

)

denoting the adjoint. In terms of entries this unfolds to((
a1 λ′

1
λ1 b1

)
,

(
a2 λ′

2
λ2 b2

))
= a1b2 + a2b1 − (λ1λ

′
2 + λ′

1λ2).

This bilinear form turns V into a quadratic space of signature (2, 2). The map

GL2(K) × V → V, (M,A) 7→ M.A := MA(M ′)⊤

defines a linear group action on V which respects the quadratic structure of V in the
sense

(M.A,M.B) = N(det(M))(A,B)
and det(M.A) = N(det(M)) det(A). (2.11)

Hence, restricted to SL2(K), the group action is orthogonal. The kernel of the group
homomorphism

SL2(K) → O(V ), M 7→ (A 7→ M.A)

is given by ±1. Thus, we can view PSL2(K) := SL2(K)/ {±1} as subgroup of O(V ). For
lattices L ⊂ V and M ∈ GL2(K) equation (2.11) implies

(M.L)∨ = M.L∨

N(det(M)) .

In particular, we have (M.L)∨ = M.L∨ for M ∈ SL2(K).
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Definition 2.4.1. Let a ∈ IK . We define

L(a) :=
{(

a λ′

λ b

)
∈ V : a ∈ Z, b ∈ N(a)Z, λ ∈ a

}
.

It is immediate to see that the quadratic form evaluated on elements of L(a) takes
values in N(a)Z. Using the knowledge about duals of ideals from Subsection 2.2.4, we
obtain

L(a)∨ =
{

1
N(a)

(
a λ′

λ b

)
∈ V : a ∈ Z, b ∈ N(a)Z, λ ∈ ad−1

}
. (2.12)

In the dual lattice the quadratic form takes values in Z/(N(a)D).

Proposition 2.4.2. Let a, b ∈ IK and M ∈ M(a, b). Then it holds

M.L(a2b) = N(a)L(b).

In particular, we have
M(a, b).L(a2b) = N(a)L(b).

The dual statement is

M.L(a2b)∨ = L(b)∨

N(a) and M(a, b).L(a2b)∨ = L(b)∨

N(a) .

Proof. We first show that it is enough to prove the inclusion

M.L(a2b) ⊂ N(a)L(b).

We have

N(a)L(b) ⊂ M.L(a2b) ⇔ M−1.L(b) ⊂ N(a−1)L(a2b)
⇔ M̃.L(ã2b̃) ⊂ N(ã)L(b̃)

with ã := a−1, b̃ := a2b and M̃ := M−1. Using Lemma 2.3.4 (i), we see M̃ ∈
M(a−1, a2b) = M(ã, b̃). Therefore, the last inclusion is of the form of the inclusion
from above.

Since the group action on V is linear, it is enough to show the inclusion for a set
of vectors in L(b) which generate L(b) as Z module. Let M =

(
α α∗
β β∗

)
. Recall that

M ∈ M(a, b) means

α ∈ a, β ∈ ab, α∗ ∈ (ab)−1, β∗ ∈ a−1.
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Then we have

M.

(
1 0
0 0

)
=
(
N(α) αβ′

α′β N(β)

)
∈
(
N(a)Z N(a)b′

N(a)b N(a)N(b)Z

)

= N(a)
(
Z b′

b N(b)Z

)
,

M.

(
0 0
0 N(a2b)

)
= N(a2b)

(
N(α∗) α∗β∗′

α∗′β∗ N(β∗)

)

∈ N(a2b)
(
N((ab)−1)Z N(a−1)b−1

N(a−1)b′−1 N(a−1)Z

)

= N(a)
(
Z b′

b N(b)Z

)
.

Finally, for λ ∈ a2b we have

M.

(
0 λ′

λ 0

)
=
(

tr(αα∗′λ′) α∗β′λ+ αβ∗′λ′

α∗′βλ′ + α′β∗λ tr(ββ∗′λ′)

)
.

Let us look at the entries of this matrix using (2.5) (the upper right and lower left are
conjugate, therefore one of them is enough):

tr(αα∗′λ′) ∈ tr(a(ab)′−1
a′2b′) = tr

(
a2

N(a)
b

N(b)a
′2b′

)
= tr(N(a)OK) ⊂ N(a)Z,

tr(ββ∗′λ′) ∈ tr(aba′−1
a′2b′) = tr

(
ab

a

N(a)a
′2b′

)
= tr (N(a)N(b)OK) ⊂ N(ab)Z,

α∗′βλ′ + α′β∗λ ∈ (ab)′−1
ab(a2b)′ + a′a−1a2b

= a

N(a)
b

N(b)aba
′2b′ +N(a)b = N(a)b.

Hence, here as well we get

M.

(
0 λ′

λ 0

)
∈ N(a)

(
Z b′

b N(b)Z

)
which finishes the proof of the inclusion. All together we have shown the equality

M.L(a2b) = N(a)L(b)

and therefore
M(a, b).L(a2b) = N(a)L(b).

The dual statement follows directly from (M.L)∨ = M.L∨ for M ∈ SL2(K) together
with the fact that scaling a lattice with a constant factor translates into dividing by that
factor when passing over to the dual.
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Corollary 2.4.3. The lattices L(a) and L(a)∨ are invariant under Γa.

Lemma 2.4.4. The lower right entry of A ∈ V is invariant (up to the sign if N(ε0) = −1)
under the operation of Γa,∞ for a ∈ IK .

Proof. Let A =
(
a λ′
λ b

)
and M =

( ε µ
0 ε−1

)
∈ Γa,∞. Then we have

M.A =
(
ε µ
0 ε−1

)(
a λ′

λ b

)(
ε′ 0
µ′ (ε−1)′

)

=
(
εa+ µλ ελ′ + bµ
λε−1 bε−1

)(
ε′ 0
µ′ (ε−1)′

)
=
(

∗ ∗
∗ N(ε)b

)
.

2.4.1 Isotropic lines

In Section 2.3 we have seen that SL2(K) acts transitively on P1(K) and that its orbits,
when restricted to subgroups Γ ⊂ SL2(K), are the cusps of Γ. In this subsection we
discuss the connection between this action and the action of SL2(K) on isotropic lines of
V and its consequences for lattices in V .

Lemma 2.4.5. The map

ψ1 : P1(K) → P1(Iso(V )), (α : β) 7→
[(
N(α) αβ′

α′β N(β)

)]

is bijective and compatible with the action of SL2(K). Its inverse is given by

ψ2 : P1(Iso(V )) → P1(K),
[(
a λ′

λ b

)]
7→
{

(a : λ), (a, λ) ̸= (0, 0),
(λ′ : b), (b, λ) ̸= (0, 0).

Proof. It is easy to check that the two maps are well-defined and inverse to each other.
To prove the compatibility it is enough to verify

ψ1(M(1 : 0)) = M.ψ1((1 : 0))

for M ∈ SL2(K) because of the transitive action of SL2(K) on P1(K) by Lemma 2.3.1.
Hence, let

M =
(
α α∗

β β∗

)
∈ SL2(K).

Then we have
ψ1(M(1 : 0)) = ψ1((α : β)) =

[(
N(α) αβ′

α′β N(β)

)]
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and

M.ψ1((1 : 0)) = M.

[(
1 0
0 0

)]
=
[(
α α∗

β β∗

)(
1 0
0 0

)(
α′ β′

α∗′ β∗′

)]

=
[(
α α∗

β β∗

)(
α′ β′

0 0

)]
=
[(
N(α) αβ′

α′β N(β)

)]
.

Remark 2.4.6. Note that for a lattice L ⊂ V we have a natural bijection

Iso(L0)/ {±1} → P1(Iso(V )), ±A 7→ [A].

This is because every line in V (and in particular every isotropic line) contains up to the
sign one primitive element in L. Hence, for a subgroup Γ ⊂ SL2(K) which acts on Iso(L0)
the bijection of Lemma 2.4.5 induces a Γ compatible bijection between Iso(L0)/ {±1}
and P1(K).

Corollary 2.4.7. Let a ∈ IK . The primitive isotropic elements up to sign of the lattices
L(a) and L(a)∨ decompose into hK orbits which correspond naturally to the cusps of Γa

under the action of Γa.

Proof. This is a direct consequence of Remark 2.4.6 together with Proposition 2.3.9 and
Corollary 2.4.3.

Lemma 2.4.8. Let b ∈ IK and (α : β) ∈ P1(K) with fixed representatives α, β ∈ K. We
set a := αOK + βb−1 and

M =
(
α α∗

β β∗

)
∈ M(a, b).

Then the map

F : Γa2b/Γa2b,∞ → Iso(L(b)0)/ {±1} , γ 7→ ±1
N(a)(Mγ).

(
1 0
0 0

)

is injective. Its image is the orbit corresponding to (α : β) under the operation of Γb on
Iso(L(b)0)/ {±1}.

Proof. First of all, Lemma 2.3.8 ensures the existence of the matrix M . We have

M(1 : 0) = (α : β)

which implies that F (E) (E being the identity matrix) belongs to the line ψ1((α : β)).
We want to show that F (E) ∈ L(b)0. Looking at Definition 2.4.1, we see that

E0 :=
(

1 0
0 0

)
(2.13)
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is a primitive vector of the lattice L(a2b) and therefore E0/N(a) is a primitive vector of
the lattice L(a2b)/N(a). With the action of M being an element of O(V ) we know that
M.(E0/N(a)) is a primitive vector of the lattice

M.

(
L(a2b)
N(a)

)
= M.L(a2b)

N(a) = N(a)L(b)
N(a) = L(b).

This shows F (E) ∈ L(b)0. Now, we want to show that the image of F is actually the
full Γb orbit. Hence, let A ∈ Γb. We want to find a preimage of A.F (E). It is given by
B := M−1AM because of

F (B) = (MB).(E0/N(a)) = (MM−1AM).(E0/N(a))
= (AM).(E0/N(a)) = A.(M.(E0/N(a))) = A.F (E).

We actually have B ∈ Γa2b because of Corollary 2.3.6. Injectivity and well-definedness of
F are left to the reader.

Lemma 2.4.9. For b ∈ IK we have

Iso(L(b)) = Iso(N(b)L(b)∨).

Proof. By equation (2.12) we have

N(b)L(b)∨ =
{(

a λ′

λ b

)
∈ V : a ∈ Z, b ∈ N(b)Z, λ ∈ bd−1

}
.

This looks very similar to the definition of L(b) (cf. Definition 2.4.1). The difference is
that there we have λ ∈ b instead of λ ∈ bd−1. This difference matters, hence N(b)L(b)∨ is
a proper subset of L(b). However, the isotropic elements of the two lattices coincide: Take
λ ∈ bd−1 belonging to an isotropic element. Then we have N(λ) ∈ N(b)Z because the
corresponding determinant vanishes. This implies N(λb−1) ∈ Z which implies λb−1 ∈ OK

because every prime over a prime ideal p | d does not split. We obtain λ ∈ b.

Lemma 2.4.10. Let b ∈ IK and (α : β) ∈ P1(K) with fixed representatives α, β ∈ K.
We set a := αOK + βb−1 and

M =
(
α α∗

β β∗

)
∈ M(a, b).

Then the map

F : Γa2b/Γa2b,∞ → Iso((L(b)∨)0)/ {±1} , γ 7→ ±1
N(ab)(Mγ).E0

is injective. Its image is the orbit corresponding to (α : β) under the operation of Γb on
Iso((L(b)∨)0)/ {±1}.

Proof. This Lemma is simply the analogue of Lemma 2.4.8 for the dual of L(b). Since
by Lemma 2.4.9 the isotropic elements of L(b)∨ are the isotropic elements of L(b) scaled
by N(b)−1, there is nothing more to show.
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2.5 Hilbert modular surfaces

The mathematical content of this section is based on the part Hilbert Modular Forms
and Their Applications in [BvdGHZ08].

2.5.1 Notation

Before we come to the mathematical content, let us fix some notation. For elements
z ∈ C2 we write z1 and z2 for their two components. Each component zj has real part xj
and imaginary part yj , i.e., we have z1 = x1 + iy1 and z2 = x2 + iy2 with x1, x2, y1, y2 ∈ R.
We abbreviate x := (x1, x2) ∈ R2 and y := (y1, y2) ∈ R2. By N(z) := z1z2 we denote
the product of the two components, by ℑ(z) := y1y2 we denote the product of the two
imaginary parts and by tr(z) := z1 + z2 we denote the sum of the two components.
Addition and multiplication of an element λ ∈ K with z ∈ C2 (R2, respectively) is defined
as

λ+ z := (λ+ z1, λ
′ + z2) and λz := (λz1, λ

′z2).
Hence, tr(λz) = λz1 + λ′z2. Note that this behaves well with the definition of the norm
and trace for λ ∈ K from Section 2.2. By

H := {z ∈ C : ℑ(z) > 0}

we address the upper half plane and by H2 the Cartesian product of H with itself.

2.5.2 Definition, invariant measure and topology

The transitive action of GL+
2 (R) on the upper half plane by linear fractional transforma-

tions (
a b
c d

)
z := az + b

cz + d

induces a transitive action of GL+
2 (R)2 := GL+

2 (R) × GL+
2 (R) on H2 by

(γ1, γ2)z := (γ1z1, γ2z2).

There is a symmetric GL+
2 (R)2 invariant Kähler metric on H2 whose corresponding

(1, 1)-form is given by

ω := η1 + η2 with ηj := 1
4π

dxjdyj
y2
j

. (2.14)

With the definitions d := ∂ + ∂ and dc := (4πi)−1(∂ − ∂) it is immediate to see

ω = −ddc log(y1y2). (2.15)

In this thesis, we use the induced GL+
2 (R)2 invariant top degree form

ω2 = 1
8π2

dx1dy1
y2

1

dx2dy2
y2

2
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inducing an GL+
2 (R)2 invariant measure on H2 to integrate over Hilbert modular surfaces.

By the natural embedding

GL+
2 (K) → GL+

2 (R)2, γ 7→ (γ, γ′)

we obtain an action of GL+
2 (K) on H2 (where GL+

2 (K) is the subgroup of matrices in
GL2(K) with totally positive determinant). With γ =

(
a b
c d

)
∈ GL+

2 (K) we get

ℑ(γz) = ℑ(z)N(det(γ))
|N(cz + d)|2 . (2.16)

In most cases we are only interested in this action for subgroups of SL2(K), namely the
Hilbert modular groups Γa for a ∈ IK . In this case the action is properly discontinuous.
This means that the set

{γ ∈ Γa : γW ∩W ̸= ∅}

is finite for compact W ⊂ H2. In particular, for any a ∈ H2 the stabilizer Γa,a :=
{γ ∈ Γa : γa = a} is a finite subgroup. Let Γa,a be the image of Γa,a in

PSL2(K) := SL2(K)/ {±1} .

If |Γa,a| > 1, then a is called elliptic fixed point for Γa. Its order is defined by |Γa,a|. There
are only finitely many Γa orbits of elliptic fixed points. The quotient X(a) := Γa\H2

is a normal complex space and is called Hilbert modular surface. Its singularities are
given by the elliptic fixed points. Hence, X(a)ns, i.e., X(a) without its singular points,
is a complex manifold of dimension 2. Because of the SL2(K) invariance of ω2, the top
degree form is also well-defined on the quotient X(a). It has finite volume which is given
by a special value of the Dedekind zeta function. Namely, we have

vol(X(a)) :=
∫
X(a)

ω2 = ζK(−1) = L(−1, χD)ζ(−1) = −L(−1, χD)
12 . (2.17)

The surface X(a) is not compact. An important compactification is the so-called Baily–
Borel compactification. As a set, this is defined to be

X(a)∗ := X(a) ∪ Γa\P1(K). (2.18)

Hence, we add the cusps of Γa to X(a) (whose finite number is given by the class number
of K by Proposition 2.3.9). To describe the topology of X(a)∗, we extend the topology
of H2 to a topology of (H2)∗ := H2 ∪ P1(K) by the following lemma.

Lemma 2.5.1. On (H2)∗ there is a unique topology with the following properties.

(i) The induced topology on H2 is the usual one.

(ii) The subspace H2 is open and dense in (H2)∗.
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(iii) The sets UC ∪ {∞} with

UC :=
{
z ∈ H2 : ℑ(z) > C

}
for C ≥ 0 form a base of open neighborhoods of the point ∞.

(iv) If κ ∈ P1(K) and ρ ∈ SL2(K) with ρ∞ = κ, then the sets

ρ(UC ∪ {∞}) (C ≥ 0)

form a base of open neighborhoods of the point κ.

Using this topology on (H2)∗, the quotient X(a)∗ = Γa\(H2)∗ is a compact Hausdorff
space. We want to view X(a)∗ again as normal complex space. For that purpose, we have
to describe how the sheaf of functions looks like: Let V ⊂ X(a)∗ be open and U ⊂ (H2)∗

be the preimage of V under the canonical projection. We define OX(a)∗(V ) to be the ring
of continuous functions f : V → C such that the pullback f̃ : U → C restricted to U ∩H2

is holomorphic. Then the pair (X(a)∗,OX(a)∗) is a normal complex space. In addition to
the elliptic points the cusps are singularities.

2.5.3 The Hilbert modular surface at infinity

While it is complicated to give an explicit description of a fundamental domain of X(a)∗

in H2, it is much easier to describe X(a)∗ near a cusp.

Proposition 2.5.2. For C ≥ N(a−1) the canonical map

Γa,∞\UC ∪ {∞} → X(a)∗

is an open embedding.

Proof. The proposition follows from the following two statements:

(i) For all C ≥ 0 the group Γa,∞ acts on UC .

(ii) For C ≥ N(a−1) we have that z ∈ UC and γz ∈ UC with γ ∈ Γa implies γ ∈ Γa,∞.

For γ =
( ε µ

0 ε−1
)

∈ Γa,∞ we compute

ℑ(γz) = ℑ(z)
|N(0 · z + ε−1)|2 = ℑ(z)

|N(ε−1)|2 = ℑ(z).

Hence, the operation of Γa,∞ lets ℑ(z) invariant which proves the first statement. Now
let γ =

(
a b
c d

)
∈ Γa \ Γa,∞ and z, γz ∈ UC . Without loss of generality, we can assume

C > 0 since min(ℑ(z),ℑ(γz)) > 0. We have

|N(cz + d)|2 =
(
(cx1 + d)2 + (cy1)2

) (
(c′x2 + d′)2 + (c′y2)2

)
≥ N(c)2ℑ(z)2.
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Hence, since c ̸= 0

C < ℑ(γz) = ℑ(z)
|N(cz + d)|2 ≤ ℑ(z)

N(c)2ℑ(z)2 <
1

CN(c)2 .

So we have C|N(c)| < 1. Remembering that 0 ̸= c ∈ a we get

C|N(c)| < 1 ⇒ CN(a) < 1 ⇔ C < N(a−1)

which finishes the proof of the second statement.

For the quotient Γa,∞\UC it is possible to give an explicit description of a fundamental
domain. We want to elaborate this in the following. Since the group action of SL2(K)
factors through PSL2(K), the groups Γa,∞ and Γa,∞ share the same fundamental domain.
As seen in Subsection 2.3.1, Γa,∞ can be viewed as semidirect product a−1 ⋊ (O×

K)2. The
induced operation of a−1 ⋊ (O×

K)2 on H2 is given by

(µ, ε2).z = ε2z + µ = (ε2z1 + µ, ε−2z2 + µ′). (2.19)

This shows that two elements z, z̃ ∈ H2 with the same imaginary parts y = ỹ are in the
same Γa,∞ orbit if and only if their real parts are in the same a−1 orbit, i.e., there exists
a µ ∈ a−1 with x+ µ = x̃. On the other hand, in order to decide if the imaginary part
of an element z ∈ H2 coincides with the imaginary part of an element of the Γa,∞ orbit
of another element z̃ ∈ H2, it is only necessary to monitor the (O×

K)2 action of z̃. Since
(O×

K)2 is cyclic with generator ε2
0, we need to check if there exists an n ∈ Z with

ε2n
0 y = ỹ ⇔ (ε2n

0 y1 = ỹ1 ∧ ε−2n
0 y2 = ỹ2)

⇔
(

ℑ(z) = ℑ(z̃) ∧ ε2n
0 = ỹ1

y1

)
⇔

(
ℑ(z) = ℑ(z̃) ∧ ε2n

0 = y2
ỹ2

)
.

Bringing those two aspects together we have proven the following proposition.

Proposition 2.5.3. Let F be a fundamental domain for R2/a−1. Then a fundamental
domain of Γa,∞\UC is given by{

z ∈ H2 : y1 ∈ [1, ε2
0), y2 > C, x ∈ F

}
.

Remark 2.5.4. Since a−1 ⊂ R2 is a lattice in R2, a fundamental domain of R2/a−1 can
be explicitly given by a Z basis of a−1. However, in this thesis an explicit construction is
not needed. We are rather interested in the volume of the fundamental domain which is
given by vol(a−1) = N(a−1)

√
D (cf. Subsection 2.2.4).

Lemma 2.5.5. The volume of Γa,∞\UC with respect to ω2 is finite if and only if C > 0.
In that case it holds

vol(Γa,∞\UC) = (1 − ε−2
0 )

√
D

8π2CN(a) .
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In particular, we get

vol(X(a)) ≥ (1 − ε−2
0 )

√
D

8π2 .

Proof. Together with Proposition 2.5.3 and Remark 2.5.4 we have

vol(Γa,∞\UC) =
∫

Γa,∞\UC

ω2 = 1
8π2

∫ ε2
0

1

dy1
y2

1

∫ ∞

C

dy2
y2

2

∫
R2/a−1

dx1dx2

= 1
8π2 (1 − ε−2

0 )C−1N(a−1)
√
D

= (1 − ε−2
0 )

√
D

8π2CN(a) .

For the additional statement we use C = N(a−1) and Proposition 2.5.2.

2.5.4 Siegel domains

As already pointed out in the previous subsection it is quite complicated and technical
to make fundamental domains of Γa explicit. For our puposes, it is in most cases enough
to have an easily described subset F ⊂ H2 of finite volume and containing a fundamental
domain instead. Such subsets can be constructed with the help of so-called Siegel domains.

Definition 2.5.6. For t > 0 we define the Siegel domain

St :=
{
z ∈ H2 : |xj | < t and |yj | > t−1 for j = 1, 2

}
.

We have

vol(St) = 1
8π2

(∫ ∞

t−1

dy

y2

)2 (∫ t

−t
dx

)2
= t4

2π2 . (2.20)

It is easy to show that there are only finitely many γ ∈ Γa with γSt ∩ St ̸= ∅ (the ideas
of the proof appear already in the proof of Proposition 2.5.2). On the other hand, for
fixed C > 0 and large enough t the Siegel domain St contains a fundamental domain for
Γa,∞\UC and hence a neighborhood of the cusp ∞ (cf. again Proposition 2.5.2). In total,
this can be put together (with some additional work introducing a distance of points
z ∈ H2 to cusps κ ∈ P1(K)) to show the following theorem.

Theorem 2.5.7. Let κ1, . . . , κhK
∈ P1(K) be a set of representatives for the cusps of Γa

and let ρ1, . . . , ρhK
∈ SL2(K) be such that ρj∞ = κj. Then there exists a t > 0 such that

S :=
hK⋃
j=1

ρjSt

contains a fundamental domain for Γa.
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2.6 Decomposition and majorant associated to points in H2

Each z ∈ H2 gives rise to an orthogonal decomposition Wz ⊕ W̃z of VR := V ⊗Z R with
respect to the determinant such that the determinant restricted to Wz is negative definite
and the determinant restricted to W̃z is positive definite. To make that precise we define

Xz :=
(
x1x2 − y1y2 x1

x2 1

)
, Yz :=

(
x1y2 + x2y1 y1

y2 0

)

and
X̃z :=

(
x1x2 + y1y2 x1

x2 1

)
, Ỹz :=

(
x1y2 − x2y1 −y1

y2 0

)
.

It is easy to check that Xz, Yz, X̃z, Ỹz form an orthogonal basis of VR. We define Wz to
be the plane spanned by Xz and Yz, and W̃z to be the plane spanned by X̃z and Ỹz. It
is natural to decompose the quadratic form det = qWz + qW̃z

by

qWz (A) := det(πWz (A)) and qW̃z
(A) := det(πW̃z

(A))

with
πWz : VR → Wz and πW̃z

: VR → W̃z

being the corresponding orthogonal projections. This decomposition gives rise to the
definition of the majorant

qz(A) := −qWz (A) + qW̃z
(A).

The majorant of the determinant with respect to z is by definition a positive definite
quadratic form on VR. The component related to the plane Wz of the decomposition of
the determinant is of special interest for later purposes, for example when we come to
define Green functions on X(a). Therefore, we give it a special name h(A, z) := −qWz (A).
Let us summarize the relations. We have

det(A) = qW̃z
(A) − h(A, z), qz(A) = qW̃z

(A) + h(A, z) = det(A) + 2h(A, z). (2.21)

For elements A =
(
a λ′
λ b

)
∈ V we want to express h(A, z) in terms of a, b, λ and λ′. For

that purpose we express A in terms of the basis Xz, Yz, X̃z, Ỹz:

A = − b(x1x2 − y1y2) − λx1 − λ′x2 + a

2y1y2
Xz

− b(x1y2 + x2y1) − λy1 − λ′y2
2y1y2

Yz

+ b(x1x2 + y1y2) − λx1 − λ′x2 + a

2y1y2
X̃z

+ b(x1y2 − x2y1) + λy1 − λ′y2
2y1y2

Ỹz.
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Now we have

h(ηXz + µYz + η̃X̃z + µ̃Ỹz, z) = −qWz (ηXz + µYz + η̃X̃z + µ̃Ỹz)
= − det(ηXz + µYz) = (η2 + µ2)y1y2.

Hence,

h(A, z) =
(
b(x1x2 − y1y2) − λx1 − λ′x2 + a

2y1y2

)2
y1y2

+
(
b(x1y2 + x2y1) − λy1 − λ′y2

2y1y2

)2
y1y2

= |bz1z2 − λz1 − λ′z2 + a|2

4y1y2
. (2.22)

Analogously, we obtain

qW̃z
(A) =

(
b(x1x2 + y1y2) − λx1 − λ′x2 + a

2y1y2

)2
y1y2

+
(
b(x1y2 − x2y1) + λy1 − λ′y2

2y1y2

)2
y1y2

= |bz1z2 − λz1 − λ′z2 + a|2

4y1y2
. (2.23)

From the first equation of (2.21) we can now infer

|bz1z2 − λz1 − λ′z2 + a|2 − |bz1z2 − λz1 − λ′z2 + a|2 = 4y1y2 det(A).

It is an important property of the function h(A, z) to behave well with the operation
of GL+

2 (K) on H2.

Proposition 2.6.1. We have

N(det(M))h(A, z) = h(M.A,Mz)

for M ∈ GL+
2 (K), A ∈ V and z ∈ H2. In particular

h(A, z) = h(M.A,Mz)

for M ∈ SL2(K).

Proof. Let us first fix some notation:

A =
(
a λ′

λ b

)
, M =

(
α β
γ δ

)
, S :=

(
0 −1
1 0

)
.

Note that we have

bz1z2 − λz1 − λ′z2 + a =
(
z1 1

)( b −λ
−λ′ a

)(
z2
1

)
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as matrix product. Further, it holds

S.A =
(

b −λ
−λ′ a

)
.

Hence, we have found a different formula for h(A, z):

h(A, z) =

∣∣∣∣(z1 1
)

(S.A)
(
z2 1

)⊤
∣∣∣∣2

4ℑ(z) .

It is straightforward to check

(
Mz1

1

)
=
M
(
z1 1

)⊤

γz1 + δ
and S−1M⊤S = det(M)M−1.

Prepared with those two identities, we finish the proof with the computation

h(A,Mz) =

∣∣∣∣(Mz1 1
)

(S.A)
(
M ′z2 1

)⊤
∣∣∣∣2

4ℑ(Mz)

=

∣∣∣∣∣∣∣
(
z1 1

)
M⊤

γz1+δ (S.A)
M ′
(
z2 1

)⊤

γ′z2+δ′

∣∣∣∣∣∣∣
2

4ℑ(z)N(det(M))
|N(γz+δ)|2

= 1
N(det(M))

∣∣∣∣(z1 1
)

((M⊤S).A)
(
z2 1

)⊤
∣∣∣∣2

4ℑ(z)

= 1
N(det(M))

∣∣∣∣(z1 1
)

((S det(M)M−1).A)
(
z2 1

)⊤
∣∣∣∣2

4ℑ(z)

= h((det(M)M−1).A, z)
N(det(M)) = h(N(det(M))(M−1.A), z)

N(det(M))

= N(det(M))2h(M−1.A, z)
N(det(M)) = N(det(M))h(M−1.A, z).

For anisotropic A =
(
a λ′
λ b

)
∈ V the normalized function

g(A, z) := h(A, z)
det(A) = |bz1z2 − λz1 − λ′z2 + a|2

4y1y2 det(A) (2.24)

comes in handy from time to time. Proposition 2.6.1 implies the following corollary.

38



CHAPTER 2. PRELIMINARIES

Corollary 2.6.2. For anisotropic A ∈ V and M ∈ GL+
2 (K) we have

g(A, z) = g(M.A,Mz).

Proof. We simply apply Proposition 2.6.1

g(M.A,Mz) = h(M.A,Mz)
det(M.A) = N(det(M))h(A, z)

N(det(M)) det(A) = g(A, z).

Remark 2.6.3. As a quadratic form, h(A, z) is well-defined for A ∈ V/ {±1}. The
function g(A, z) behaves even better because of the division by the determinant. Namely,
it is well-defined for A ∈ V +/R× = P(V +) and A ∈ V −/R× = P(V −).
Lemma 2.6.4. Let L ⊂ VR be a lattice, m ∈ R, C > 0 and M ⊂ H2 be compact. Then
the set

HC := {A ∈ L : ∃z ∈ M, h(A, z) ≤ C, det(A) = m}
is finite. The same holds for

GC := {A ∈ L : ∃z ∈ M, g(A, z) ≤ C, det(A) = m}

if m > 0.

Proof. If m > 0, we have by definition of g(A, z)

GC = HmC .

Therefore, it is enough to prove the finiteness of HC . Let A ∈ HC . Then we find a z ∈ M
with h(A, z) ≤ C. This implies

qz(A) = det(A) + 2h(A, z) ≤ m+ 2C.

Recall that qz is a positive definite quadratic form on V . Now let q be any (independent
of z) positive definite quadratic form on V . Since all norms on a finite dimensional vector
space are equivalent, we find an αz > 0 such that

q(x) ≤ αzqz(x)

for all x ∈ V . Because the map z 7→ qz is continuous, we can choose the constants αz > 0
in a continuous way, i.e., we may assume that

H2 → R+, z 7→ αz

is continuous. In particular, because M is compact, we find an α > 0 such that αz ≤ α
for all z ∈ M . This implies that we have for all A ∈ HC

q(A) ≤ α(m+ 2C).

We obtain
HC ⊂ q−1([0, α(m+ 2C)])

with the latter set being compact. Each compact set contains only finitely many lattice
points. Therefore, HC is finite.
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There is a remarkable relation between the hyperbolic distance and g(A, z) that we
want to point out at this place.

Definition 2.6.5 (Hyperbolic distance). The function

d : (C \ R)2 → R, d(z1, z2) := |z1 − z2|2

y1y2

is called the hyperbolic distance. For γ ∈ GL2(R) we have

d(z1, z2) = d(γz1, γz2).

In other sources the hyperbolic distance is often only defined for arguments taken
from the upper half plane. In that case one needs to restrict γ to GL+

2 (R). We, however,
need to have it defined for elements of the lower half plane as well.

Lemma 2.6.6. Let A ∈ V be anisotropic. Then we have with S :=
( 0 −1

1 0
)

g(A, z) = d(z1, ASz2)
4 = |z1 −ASz2|2

4ℑ(z1)ℑ(SAz2) .

Proof. With

A =
(
a λ′

λ b

)
we have AS =

(
λ′ −a
b −λ

)
.

Hence, we get

z1 −ASz2 = z1 − λ′z2 − a

bz2 − λ
= bz1z2 − λz1 − λ′z2 + a

bz2 − λ
.

Now, the claim follows by the definition (2.24) of g(A, z) with

ℑ(ASz2) = det(AS)y2
|bz2 − λ|2

= det(A)y2
|bz2 − λ|2

. (2.25)

Another useful relation involving h(A, z) is presented in the next lemma.

Lemma 2.6.7. With

E0 :=
(

1 0
0 0

)
we have h(E0, z) = 1

4ℑ(z) .

Proof. The equality follows directly from equation (2.22).
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2.7 Hirzebruch compactification

The aim of this section is to describe a different compactification of X(a) in which the
cusps are not singular anymore, i.e., we resolve the cusp singularities of X(a)∗. This
resolution was discovered by Hirzebruch in 1971. See [vdG88, Chapter II] for a detailed
discussion which is our main reference for this section.

Let b ∈ IK and κ = (α : β) ∈ P1(K). Then there exists a matrix M ∈ M(a, b) with
a := αOK + βb−1 and M∞ = κ by Lemma 2.3.8. Now the map

(H2)∗ → (H2)∗, z 7→ M−1z

induces an isomorphism X(b)∗ ∼−→ X(a2b)∗ mapping the cusp κ of X(b)∗ to the cusp ∞
of X(a2b)∗. Hence, the diagram

(H2)∗ (H2)∗

X(b)∗ X(a2b)∗

z 7→M−1z

z 7→Γbz z 7→Γa2bz

Γbz 7→M−1Γbz=Γa2bM
−1z

commutes and the horizontal maps are isomorphisms. Therefore, it is enough to describe
the procedure of desingularizing a cusp for the cusp ∞.

By Proposition 2.5.2 the neighborhoods of ∞ look like the quotients Γa,∞\UC . We
have already seen that we can replace Γa,∞ by the semidirect product a−1 ⋊ (O×

K)2. Let
us focus on the factor a−1 first.

2.7.1 Dividing by the ideal

For shorter notation let b := a−1. Hence, we consider the quotient

UC/b ⊂ H2/b ⊂ C2/b.

The latter quotient C2/b is isomorphic to (C×)2 := C× × C×, but there is no canonical
isomorphism. Each basis (α, β) of the Z module b gives rise to an isomorphism C2/b ∼−→
(C×)2. Namely, consider the linear map

φα,β : C2 → C2,

(
z1
z2

)
7→ 2πi

(
α β
α′ β′

)−1(
z1
z2

)
. (2.26)

The image under φα,β of b is 2πiZ × 2πiZ. More precisely, we have(
α
α′

)
7→
(

2πi
0

)
and

(
β
β′

)
7→
(

0
2πi

)
.
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Hence, exp ◦φα,β : C2 → (C×)2 is a group homomorphism with kernel b. Therefore, it
factors through the quotient C2/b and induces an isomorphism φ̃α,β : C2/b → (C×)2.
Computing the inverse of

(
α β
α′ β′

)
, it is given by

φ̃α,β : C2/b → (C×)2,

(
z1
z2

)
7→

e (β′z1−βz2
αβ′−α′β

)
e
(
αz2−α′z1
αβ′−α′β

) . (2.27)

Let us summarize this in the commutative diagram

C2 C2

C2/b (C×)2.

φα,β

π exp

φ̃α,β

The inverse φ̃−1
α,β : (C×)2 → C2/b is given by(

u
v

)
7→ 1

2πi

(
α β
α′ β′

)(
log u
log v

)
.

Here choosing a different branch of the logarithm results in a different representative of
C2/b. If the branch of the logarithm is chosen independently in each row, every element
in the coset can be obtained.

2.7.2 Expressing functions in local coordinates

In this subsection we interrupt the construction of the Hirzebruch compactification in
order to apply what we discussed in the previous subsection. We want to express a few b
invariant exponential functions of interest in local coordinates, i.e., for a given b invariant
function f : C2 → C we make the function f̃ : (C×)2 → C induced by

C2 C

C2/b (C×)2

f

π

φ̃α,β

f̃

explicit. Later in this thesis, we will abbreviate this procedure simply by expressing
functions in local coordinates.

Let ν ∈ ad−1, then the function z 7→ e(tr(νz)) is b = a−1 invariant. Namely, for µ ∈ b
we have

e(tr(ν(z + µ)) = e(tr(νz))e(tr(νµ)) = e(tr(νz))
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because ad−1 is the trace dual of b (cf. equation (2.7)). Now let us fix an element z ∈ C2.
By fixing a respective branch of log(u) and a possibly different branch of log(v) we get(

2πiz1
2πiz2

)
=
(
α β
α′ β′

)(
log u
log v

)
. (2.28)

Hence, we have

e(tr(νz)) = exp(ν(α log(u) + β log(v))) exp(ν ′(α′ log(u) + β′ log(v)))
= exp((να+ ν ′α′) log(u)) exp((νβ + ν ′β′) log(v)) = utr(να)vtr(νβ).

Since α, β ∈ b we see that tr(να), tr(νβ) ∈ Z. Therefore, the final result is independent
of the chosen branches of log(u) and log(v). Using the same approach, one proves the
following lemma.

Lemma 2.7.1. Let ν ∈ ad−1. Then the following functions are a−1 invariant and can
be expressed in local coordinates (u, v) with respect to (α, β):

e(tr(νz)) = e(νz1)e(ν ′z2) = utr(αν)vtr(βν),

e(tr(νz)) = e(νz1)e(ν ′z2) = u− tr(αν)v− tr(βν),

e(νz1)e(ν ′z2) = uανu−α′ν′
vβνv−β′ν′

,

e(νz1)e(ν ′z2) = uα
′ν′
u−ανvβ

′ν′
v−βν .

The evaluation of the third and fourth line is independent of the chosen branch of the
logarithm log(u) as long as the branch of log(u) is chosen accordingly, i.e., log(u) :=
log(u). The same holds for log(v) and log(v), respectively.

Another important and simple b invariant function is z 7→ y. The b invariance is
immediate because b acts only on the real part. In Subsection 2.7.7 we explain how to
express y in local coordinates (cf. equation (2.30)).

2.7.3 Gluing

We now continue the construction of the Hirzebruch compactification. Consider a sequence
(zn)n∈N ⊂ C2/b with limn→∞ ℑ(zn) = ∞. Looking at the inclusion (C×)2 ⊂ C2, the
sequence φ̃α,β(zn) might converge to a point in

(C× × C×)c = ({0} × C) ∪ (C × {0}) ⊂ C2.

On the other hand, for each point in (C× × C×)c we find a sequence (zn)n∈N ⊂ C2/b
with limn→∞ ℑ(zn) = ∞ such that φ̃α,β(zn) converges to that point. Therefore, it seems
natural to consider (C× × C×)c as part of the desingularization of the cusp ∞. However,
there are sequences (zn)n∈N ⊂ C2/b with limn→∞ ℑ(zn) = ∞ such that φ̃α,β(zn) does
not converge in C2 for one basis (α, β) but φ̃α̃,β̃(zn) converges in C2 for another basis
(α̃, β̃). Hence, instead of considering only one basis (α, β) we have to consider a family of
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bases simultaneously and glue the resulting spaces C2 together appropriately. For that
purpose the next base change lemma tells us how the induced isomorphsim of (C×)2

looks like when the base is changed.

Lemma 2.7.2 (Base change). Let (α1, β1) and (α2, β2) be two bases of b and A =(
a b
c d

)
∈ GL2(Z) the base change matrix, i.e.,(

α1 β1
)

=
(
α2 β2

)
A.

Then the maps ψα1,β1
α2,β2

and ψ̃α1,β1
α2,β2

in the commutative diagram

C2 C2 (C×)2

C2 C2 (C×)2

φα1,β1

id

exp

ψ
α1,β1
α2,β2 ψ̃

α1,β1
α2,β2

φα2,β2 exp

are given by

ψα1,β1
α2,β2

: C2 → C2,

(
z1
z2

)
7→ A

(
z1
z2

)
,

ψ̃α1,β1
α2,β2

: (C×)2 → (C×)2,

(
u
v

)
7→
(
uavb

ucvd

)
.

Note that in dependence of the coefficient matrix A the map ψ̃α1,β1
α2,β2

can be holomor-
phically extended to u = 0 or to v = 0. We call this extension ψ̂α1,β1

α2,β2
. It is defined for

u = 0 if a, c ≥ 0 and for v = 0 if b, d ≥ 0.
Now let (αi, βi)i∈I be a family of bases of b. We build a complex manifold by starting

with |I| copies of C2, namely
YI :=

⋃̇
i∈I

(C2)i.

Let us introduce the equivalence relation

(ui, vi) ∼I (uj , vj) :⇔ ψ̂αi,βi
αj ,βj

(ui, vi) = (uj , vj).

The quotient ỸI := YI/ ∼I is a 2 dimensional complex manifold.

2.7.4 Convex hull

We apply this procedure now to a special family of bases of b. Namely, consider the
embedding

b+ → R2, x 7→ (x, x′).

By b+ we refer to the totally positive elements of b. Now take the convex hull in R2

of the image of b+ and denote by (Ak)k∈Z the elements of b+ which are mapped to the
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boundary of the convex hull. We can arrange them in such a way that for k < k′ we have
Ak > Ak′ and hence A′

k < A′
k′ .

It is easy to see that for all k ∈ Z the pair (Ak, Ak+1) is a basis of b. Further, for all
k ∈ Z there exists a bk ∈ N with Ak−1 +Ak+1 = bkAk and bk ≥ 2.

Now we apply the above procedure to the so constructed family of bases. Hence, our
index set is Z and the basis correspoding to (C2)k shall be (Ak−1, Ak). We have

(
Ak−1 Ak

)
=
(
Ak Ak+1

)( bk 1
−1 0

)
.

Hence, the base change yields

(C2)k ∋ (uk, vk) ∼Z (ubk
k vk, 1/uk) = (uk+1, vk+1) ∈ (C2)k+1

in ỸZ. We define the curve Sk to be

Sk := {vk = 0} ∪ {uk+1 = 0} ∼= P1(C).

Let pk := (0, 0)k be the origin. Then we have Sk ∩ Sk−1 = {pk}. If |k − l| > 1, then the
curves Sk and Sl do not intersect. Since Sk and Sk−1 intersect transversally in one point
we have Sk · Sk−1 = 1. The self-intersection number S2

k can be computed to be −bk.

2.7.5 Dividing by the units

So far we have desingularized the cusp ∞ in the quotient H2/b. However, our goal is to
desingularize it in Γa,∞\UC with Γa,∞ ∼= b⋊ (O×

K)2. Hence, we still have to factor out
(O×

K)2 = ⟨ε2
0⟩. First, let

YC := Φ(UC/b) ∪
⋃
k∈Z

Sk

with Φ : C2/b → ỸZ be the natural embedding defined by φ̃Ak−1,Ak

C2/b → (C× × C×)k ↪→ YZ

for any k ∈ Z. Now (O×
K)2 acts on UC/b. On the other hand, (O×

K)2 acts as well on

A := {Ak : k ∈ Z}

by multiplication. Since a multiplication with a totally positive unit (for instance ε2
0)

also preserves the order of A, there exists an r ∈ N such that

Ak = ε2
0Ak+r and bk = bk+r

for all k ∈ Z. This motivates to define an action of (O×
K)2 on ỸZ by

ε2n
0 .(u, v)k := (u, v)k−nr.
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On the other hand, from(
α β
α′ β′

)−1

=
(
ε2

0α ε2
0β

ε−2
0 α′ ε−2

0 β′

)−1(
ε2

0 0
0 ε−2

0

)

it follows φα,β(z) = φε2
0α,ε

2
0β

(ε2
0z) (cf. definition (2.26)). This shows that the action of

(O×
K)2 on ỸZ resembles the action of (O×

K)2 on UC/b under the embedding Φ. Hence, the
quotient YC/(O×

K)2 is well-defined and this is what we finally call the desingularization
of ∞. Therefore, the curves S1, . . . , Sr correspond to the original cusp ∞. Taking their
sum

E∞(a) :=
r∑

k=1
Sk (2.29)

we obtain the so-called exceptional divisor at the cusp ∞. The index k in Sk ⊂ YC/(O×
K)2

has to be read as an element of Z/rZ. The intersection behaviour of Sk and Sk−1 is the
same for r > 2 as in ỸZ. For r = 2 we have only the two curves S1 and S2 corresponding
to the cusp ∞. Hence, they touch each other twice, i.e., S1 · S2 = 2. But still for r ≥ 2
we have S2

k = −bk as in ỸZ. The curve S1 is singular if and only if r = 1. In this case we
have S2

1 = 2 − b1.

2.7.6 Summary

In the previous subsection we have constructed the desingularization of ∞ for X(a)∗. The
cusp is replaced by the exceptional divisor E∞(a) consisting of finitely many Sk ∼= P1(C)
glued together like a pearl necklet. As explained in the introduction of this section, this
can be done for every other cusp κ as well by finding an isomorphism between X(a)∗ and
a Hilbert modular surface corresponding to a different ideal bringing the cusp κ ∈ X(a)∗

to its cusp ∞. By this procedure we obtain an exceptional divisor Eκ(a) for each cusp
κ ∈ P1(K). The sum of all exceptional divisors at all cusps

E(a) :=
∑

κ∈Γa\P1(K)
Eκ(a)

is again called exceptional divisor. The resulting object X(a) together with the exceptional
divisor E(a) is called the Hirzebruch compactification of X(a), denoted by X(a), a compact
complex space whose singularities are given by the elliptic fixed points, which are the
singularities of X(a). Being finite quotient singularities, they are mild. Therefore, X(a)
and X(a) are complex orbifolds. The following commutative diagram relates the three
complex spaces X(a), X(a)∗ and X(a).

X(a) X(a)

X(a)∗

π
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When we talk about the open Hilbert modular surface we refer to X(a) because it is open
in both compactifications. Its closure is X(a)∗ or X(a) depending on which space one
takes the closure in.

2.7.7 Three coordinate systems for the imaginary part

For a given z ∈ H2 the imaginary part y = (y1, y2) has two further useful coordinate
systems which we want to introduce in this subsection. The first one is quite simple and
uses the diffeomorphism

R2
+ → R2

+, (y1, y2) 7→ (t, r) =
(√

y1y2,
√
y1/y2

)
.

Its inverse is given by
(t, r) 7→ (tr, t/r) = (y1, y2).

We denote by t and r without further mentioning those other coordinates of y. We
have already seen that some definitions depend only on t (and not on r). For example
ℑ(z) = t2 and

UC =
{
z ∈ H2 : t2 > C

}
.

In this thesis we face definitions which only depend on r as well. That justifies to switch
from time to time to the coordinates (t, r). The action of Γa,∞ ∼= a−1 ⋊ (O×

K)2 (cf.
equation (2.19)) on H2 induces the action

(µ, ε2).(t, r) = (t, ε2r)

on the coordinates t and r.
The other useful coordinate system for y = (y1, y2) which we want to explain here is

the expression of y using the local coordinates (u, v) of the cusp ∞ with respect to a basis
(α, β) described in the antecedent subsections. Interestingly, we only need the absolute
values |u| and |v| of u and v to express y. Namely, equation (2.28) directly implies(

y1
y2

)
= − 1

2π

(
α β
α′ β′

)(
log |u|
log |v|

)

= − 1
2π

(
α log(|u|) + β log(|v|)
α′ log(|u|) + β′ log(|v|)

)
= − 1

2π

(
log(|u|α|v|β)
log(|u|α′ |v|β′)

)
.

(2.30)

On the other hand, it is possible to express |u| and |v| by y:(
|u|
|v|

)
= exp

−2π
(
α β
α′ β′

)−1(
y1
y2

) .
Hence, we have (cf. mapping (2.27))

|u| = exp
(2π(βy2 − β′y1)

αβ′ − α′β

)
and |v| = exp

(2π(α′y1 − αy2)
αβ′ − α′β

)
.
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Taking the derivatives with respect to u and v of equation (2.30), we obtain

∂y1
∂u

= − α

4πu,
∂y1
∂v

= − β

4πv ,
∂y2
∂u

= − α′

4πu and ∂y2
∂v

= − β′

4πv . (2.31)

Using equation (2.30), we can express t and r in terms of u and v by

t =
√

(α log(|u|) + β log(|v|))(α′ log(|u|) + β′ log(|v|))
2π

and

r =
√
α log(|u|) + β log(|v|)
α′ log(|u|) + β′ log(|v|) .

It follows

lim
u→0

t

log(|u|) = −
√
N(α)
2π and lim

u→0
r =

√
α/α′. (2.32)

In particular, the limit process u → 0 translates in (t, r) coordinates into t → ∞ and
r →

√
α/α′. Taking the derivative of t and r with respect to u, we obtain

∂t

∂u
= α/r + α′r

8πu and ∂r

∂u
= α− α′r2

8πut . (2.33)

2.8 Hirzebruch–Zagier divisors

In this section we introduce a special family of algebraic divisors on X(a) (on X(a)∗ and
X(a) accordingly), the so-called Hirzebruch–Zagier divisors. They can be interpreted as
Heegner divisors.

2.8.1 Hirzebruch–Zagier divisors on X(a)
There are different approaches how to introduce the Hirzebruch–Zagier divisors. One of
them is to introduce them as the zeros of the component h(A, z) of the decomposition of
the quadratic form

det(A) = qW̃z
(A) − h(A, z) (2.34)

on V (cf. Section 2.6). For non-zero A =
(
a λ′
λ b

)
∈ V we define

TA :=
{
z ∈ H2 : h(A, z) = 0

}
. (2.35)

There are equivalent expressions for TA following directly from the definition of h(A, z),
for instance

TA =
{
z ∈ H2 : bz1z2 − λz1 − λ′z2 + a = 0

}
=
{
z ∈ H2 : A ∈ W̃z

}
=
{
z ∈ H2 : A ∈ W⊥

z

}
.
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The above decomposition (2.34) of det(A) shows that TA is empty for A ∈ V −. If
A ∈ Iso(V ) with b ̸= 0, the polynomial

bz1z2 − λz1 − λ′z2 + a = b

(
z1 − λ′

b

)(
z2 − λ

b

)
decomposes into linear factors. The roots are real, therefore TA is empty as well.
Considered over C2 however, the curve TA would be reducible in this case. If A ∈ Iso(V )
with b = 0, the divisor TA is empty even over C2. For A ∈ V + the curve TA is non-empty
and irreducible. Therefore, we are mainly interested in that case. If A ∈ V +, there is a
further way to express TA, namely

TA = {(ASz, z) : z ∈ H} . (2.36)

This follows directly from Lemma 2.6.6. It is easy to see that we have TA = TB for
A,B ∈ V + if and only if A and B are linearly dependent.

Lemma 2.8.1. Let A =
(
a λ′
λ b

)
∈ V +. Then we have

sup {ℑ(z) : z ∈ TA} =
{

det(A)/b2, b ̸= 0,
∞, b = 0.

Proof. We use the description of TA in equation (2.36). With equation (2.25) we obtain

ℑ((ASz2, z2)) = y2
2 det(AS)
|bz2 − λ|2

.

For b = 0 the statement is clear now. For b ̸= 0 we continue

ℑ((ASz2, z2)) = y2
2 det(A)

b2((x2 − λ/b)2 + y2
2) ≤ det(A)

b2 .

Equality holds for x2 = λ/b.

Lemma 2.8.1 shows that TA runs into the cusp ∞ if and only if b = 0.

Lemma 2.8.2. Let 0 ̸= A ∈ V and M ∈ GL+
2 (K). Then we have MTA = TM.A.

Proof. We have by definition and Proposition 2.6.1

TM.A = {z : h(M.A, z) = 0} = {Mz : h(M.A,Mz) = 0}
= {Mz : N(det(M))h(A, z) = 0} = MTA.
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Now we define for a ∈ IK and m ∈ Z

T∗(a,m) :=
∑′

A∈L(a)∨/{±1}
det(A)=m/(N(a)D)

TA (2.37)

and T (a,m) := T∗(a,m) if m ̸= 0. The tick at the sum indicates that for m = 0 we do not
take A = 0 since T0 is undefined. We divide out {±1} in order to get every irreducible
component with multiplicity 1. The scaling m/(N(a)D) of the quadratic form is adjusted
in such a way that we run through all elements of L(a)∨ while running with m through
Z (cf. equation (2.12)).

Note that by this definition T∗(a,m) = 0 for all m ≤ 0. For some m ∈ N we might
have T∗(a,m) = 0 as well, namely if and only if L(a)∨ has no elements of the desired
determinant.

We do not define T (a, 0) at this place since this definition is a little bit more involved.
For the definition of T (a, 0) we have to make good for the missing matrix A = 0. We do
this at the end of the current chapter in Definition 2.9.21.

Proposition 2.8.3. Let m ∈ N, a, b ∈ IK and M ∈ M(a, b). Then we have

MT (a2b,m) = T (b,m).

In particular, T (a,m) is invariant under Γa.

Proof. For 0 ̸= A ∈ V we have by Lemma 2.8.2

M.TA = TM.A = TN(a)M.A.

By Proposition 2.4.2 we have that

N(a)(M.L(a2b)∨) = L(b)∨

and for A ∈ L(a2b)∨ with det(A) = m/(N(a2b)D) the matrix M.A has the same
determinant. Hence, N(a)(M.A) has determinant m/(N(b)D) which finishes the proof.

The Γa invariance of T (a,m) justifies to see T (a,m) as divisor on X(a). It is called
Hirzebruch–Zagier divisor of discrimiant m on X(a). Regarding the notation, we make
no distinction between T (a,m) on H2 and the Hirzebruch–Zagier divisor on X(a). By

T (a,m) =
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

TA (2.38)

we can define T (a,m) directly as finite sum of its irreducible components on the Hilbert
modular surface X(a) if we view TA as its image under the projection.

Taking the closure of T (a,m) in X(a)∗ allows us to define Hirzebruch–Zagier divisors
on X(a)∗. We denote them by T (a,m) as well. In order to describe the Hirzebruch–Zagier
divisors of X(a), however, we need to work a bit more subtle. This is carried out in
Subsection 2.8.5.
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2.8.2 The volume

The aim of this subsection is to express the volume of the Hirzebruch–Zagier divisors
T (a,m) by the volume of certain discrete quotients of H. By equation (2.38) we see that
the volume of T (a,m) is given by the sum of the volumes of its finitely many components

vol(T (a,m)) =
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

vol(TA). (2.39)

Fix a representative A ∈ L(a)∨ and consider the map

φA : H → H2, z 7→ (ASz, z).

The image of φA is TA (understood as subset of H2) by equation (2.36). Here, we are
interested in a fundamental domain FA ⊂ H of the equivalence relation

z ∼ z̃ :⇔ π(φA(z)) = π(φA(z̃)) ⇔ ∃M ∈ Γa : MφA(z) = φA(z̃)

on H where π : H2 → X(a) is the canonical projection. Then

vol(TA) = vol(FA) =
∫

FA

η with η := 1
4π

dxdy

y2 .

The last equivalence can be unfolded using the next lemma.

Lemma 2.8.4. Let M ∈ GL+
2 (K) and A ∈ V +. Then we have

MφA(z) = φM.A(M ′z).

Proof. We have to show

(MASz,M ′z) = ((M.A)SM ′z,M ′z) ⇔ MASz = MA(M ′)⊤SM ′z

⇔ Sz = (M ′)⊤SM ′z

⇔ z = S(M ′)⊤SM ′z.

Computing the matrix product shows that for arbitrary 2 × 2 matrices M over any
commutative ring we have

SM⊤SM = − det(M)E2

which proves the statement.

Hence, we have

z ∼ z̃ ⇔ ∃M ∈ Γa : φA(z̃) = φM.A(M ′z).

Regarding the second component, this implies z̃ = M ′z. Now looking at the first
component, we obtain ASz̃ = (M.A)Sz̃. Neglecting those z̃ which are elliptic fixed points
with respect to ΓaS, this implies M.A = A or M.A = −A. We can neglect the fixed
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points because there are only countably many due to Γa being countable. Hence, they
are of measure zero. In total it turns out that

Γ′
a,±A :=

{
M ′ : M ∈ Γa and M.A ∈ {±A}

}
is the subgroup of Γa sending z ∈ H to equivalent z̃ ∈ H. Therefore, we have

vol(TA) = vol(Γ′
a,±A\H) =

∫
Γ′
a,±A\H

η (2.40)

and
vol(T (a,m)) =

∑
A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

vol(Γ′
a,±A\H).

To actually compute those volumes, one could explicitly compute fundamental domains
FA for Γ′

a,±A\H in sepcial cases. For our purposes, however, it is enough to obtain the
proven identity.

Remark 2.8.5. Form ∈ −N we have T (a,m) = 0 by definition and thus vol(T (a,m)) = 0.
However, ∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

vol(Γ′
a,±A\H)

is still meaningful and in general it is different from 0. In case N(ε0) = −1 there is an
easy bijection between {

A ∈ L(a)∨ : det(A) = m/(N(a)D)
}

and {
A ∈ L(a)∨ : det(A) = −m/(N(a)D)

}
given by

A 7→ E0.A with E0 :=
(
ε0 0
0 1

)
. (2.41)

We have
Γa,±E0.A = E0Γa,±AE

−1
0 .

Because of E0 ∈ Γa, two elements A,B ∈ L(a)∨ are in the same Γa orbit if and only if
E0.A and E0.B are. We conclude∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

vol(Γ′
a,±A\H) = vol(T (a, |m|)).
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2.8.3 Hirzebruch–Zagier divisors at infinity

In this subsection we have a closer look at the Hirzebruch–Zagier divisors near the cusp ∞.
This leads in Subsection 2.8.5 to the definition of Z(a,m), the Hirzebruch–Zagier divisor
on X(a). Since in X(a) the cusp ∞ is replaced by the exceptional divisor E∞(a), we
have to clarify if the components of E∞(a) contribute to the Hirzebruch–Zagier divisor
Z(a,m) and if yes, with which multiplicities. Recall from the end of Subsection 2.8.1
that we have defined the Hirzebruch–Zagier divisor of discriminant m in the Baily–Borel
compactification X(a)∗ simply to be the closure of T (a,m). Because of this simple
definition we do not distinguish in the notation, i.e., T (a,m) denotes both the Hirzebruch–
Zagier divisor of discriminant m on X(a) and on X(a)∗. On X(a), however, we give the
Hirzebruch–Zagier divisor of discriminant m the new name Z(a,m) because it contains
new components.

We define

Λ(a,m) :=
{
λ ∈ ad−1 : N(λ) = −mN(a)

D

}
, (2.42)

Λ+(a,m) := {λ ∈ Λ(a,m) : λ > 0} , (2.43)
Λ−(a,m) := {λ ∈ Λ(a,m) : λ < 0} = −Λ+(a,m).

This definition makes sense for m ∈ Z even though in this subsection we are only
interested in the case m ∈ N because T∗(a,m) = 0 otherwise. In Chapter 4, however,
when we talk about Kudla’s Green functions, we use these definitions for m ∈ Z.

In order to undestand T (a,m) near the cusp ∞, only the components running into
the cusp ∞ are of concern. We have already concluded from Lemma 2.8.1 that TA with
A =

(
a λ′
λ b

)
∈ V + runs into the cusp ∞ if and only if b = 0. That leads to the definition

T∞(a,m) :=
∑

A=
(
a λ′
λ 0

)
∈L(a)∨/{±1}

det(A)=m/(N(a)D)

TA =
∑

λ∈Λ+(a,m)

∑
a∈Z

{
z ∈ H2 : tr(λz) = a

}
. (2.44)

We conclude that T (a,m) considered on X(a)∗ contains the cusp ∞ if and only if
Λ+(a,m) ̸= ∅ (for other cusps we have to consider the sets Λ+(ab2,m) with b ∈ IK
chosen accordingly). Only in that case Z(a,m) contains components of E∞(a). Therefore,
we assume Λ+(a,m) ̸= ∅ and m ∈ N for the rest of the section.

Neglecting the real part in the definition of T∞(a,m), we make the further definition

S(a,m) :=
⋃

λ∈Λ+(a,m)
Sλ with Sλ :=

{
z ∈ H2 : tr(λy) = 0

}
. (2.45)

Note that the connected components of S(a,m) are given by (Sλ)λ∈Λ+(a,m). An equivalent
definition of Sλ is given by

Sλ :=
{
z ∈ H2 : tr(λz) ∈ R

}
.

Hence, Sλ summarizes all components of T∞(a,m) belonging to λ and interpolates
between them by allowing tr(λz) to be real instead of integral. The components of
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T∞(a,m) are 2 dimensional over R, whereas the components of S(a,m) are 3 dimensional
over R.

The group (O×
K)2 acts on Λ+(a,m) by multiplication (or division). This action can

be recovered in some sense by the action of Γa on T (a,m) as we are going to explain
now: The action of Γa on T (a,m) induces an action of Γa,∞ on T∞(a,m). As we have
seen, this action factors through Γa,∞ and can be decomposed using Γa,∞ ∼= a−1 ⋊ (O×

K)2

into an action of a−1 and an action of (O×
K)2. Looking at the definition of the action of

a−1 ⋊ (O×
K)2 (cf. equation (2.19)), it is clear that Γa,∞ acts on S(a,m) as well. Since

for fixed γ ∈ Γa,∞ the map z 7→ γz is continuous, an action of Γa,∞ on the connected
components of S(a,m) is induced. Each component Sλ is stabilized by a−1. Hence, the
action of Γa,∞ on the connected components of S(a,m) factors through (O×

K)2. The
action of (O×

K)2 on Λ+(a,m) is now recovered by

ε2Sλ =
{
ε2z : tr(λy) = 0

}
=
{
z : tr(λ(ε−2y)) = 0

}
=
{
z : tr(ε−2λy) = 0

}
= Sε−2λ

for all ε2 ∈ (O×
K)2 and λ ∈ Λ+(a,m). The number of (O×

K)2 orbits of Λ+(a,m) is finite.
For later use we need to understand the growth behavior of the number of orbits for
large m. The next lemma provides an estimate.
Lemma 2.8.6. Let α > 0 and a ∈ IK be fixed. Then we have∣∣∣Λ(a,m)/(O×

K)2
∣∣∣ = O(mα).

Proof. Let na ∈ N with naa ⊂ OK . Then we can define a map

Λ(a,m)/(O×
K)2 →

{
b ⊂ OK : N(b) = mn2

aN(a)
}

by
λ(O×

K)2 7→ (naλ
√
D).

This map is four-to-one because of [O×
K : (O×

K)2] = 4. The number of integral ideals of a
given norm k ∈ N is bounded by d(k). Therefore, we have∣∣∣Λ(a,m)/(O×

K)2
∣∣∣ ≤ 4d(mn2

aN(a)).

The claim follows now with d(k) = O(kα).

Using the coordinates t and r for y introduced in Subsection 2.7.7, there is another
natural description of the components Sλ. With the convention

Rma :=

√
mN(a)
D

(2.46)

we have

Sλ =
{
z ∈ H2 : r = Rma

λ

}
or equivalently Sλ =

{
z ∈ H2 : r = −λ′

Rma

}
for all λ ∈ Λ+(a,m).

54



CHAPTER 2. PRELIMINARIES

2.8.4 Weyl chambers and vectors

The set Λ+(a,m) considered as subset of R+ is totally ordered and discrete. Hence, it is
isomorphic to Z (as total order). For fixed w ∈ (R+)2 the map

Λ+(a,m) → R, λ 7→ tr(λw)

is strictly increasing. Its image is discrete in R and neither bounded from above nor from
below.

We call λ ∈ Λ+(a,m) reduced with respect to w if λ is minimal with tr(λw) ≥ 0 in
its (O×

K)2 orbit. The set of all reduced λ ∈ Λ+(a,m) with respect to w is denoted by
R(a,m,w). The setR(a,m,w) is finite and it is a set of representatives of Λ+(a,m)/(O×

K)2.
An easy way to check if a λ ∈ Λ+(a,m) is reduced with respect to w is

λ ∈ R(a,m,w) ⇔ tr(λw) ≥ 0 and tr(ε−2
0 λw) < 0.

We define

ρ(a,m,w) :=
∑

λ∈R(a,m,w)

λ

ε2
0 − 1 (2.47)

and call it Weyl vector with respect to w. Note that this also defines R(a,m, ν) and
ρ(a,m, ν) for ν ∈ K with ν ≫ 0. With ε2w := (ε2w1, ε

−2w2) for ε2 ∈ (O×
K)2 one sees

R(a,m, ε2w) = ε−2R(a,m,w) and accordingly ρ(a,m, ε2w) = ε−2ρ(a,m,w).

Lemma 2.8.7. The Weyl vector ρ(a,m,w) is totally positive.

Proof. We prove that each summand
λ

ε2
0 − 1

is totally positive. In order to do so we do not need that λ is reduced. It is enough
to know λ ∈ Λ+(a,m). That makes the numerator positive and because of ε0 > 1 the
denominator is positive as well. The conjugate is given by(

λ

ε2
0 − 1

)′
= λ′

ε−2
0 − 1

= −λ′

1 − ε−2
0
.

Now again numerator and denominator are positive.

Taking the predecessor λ̃ ∈ Λ+(a,m) to a λ ∈ Λ+(a,m), the set

Wλ :=
{
z ∈ H2 : Rma

λ
< r <

Rma
λ̃

}
(2.48)

is a connected component of H2 \ S(a,m). Each connected component of H2 \ S(a,m) is
of such shape. Those components are called Weyl chambers of index m. We denote the
set of all those Weyl chambers by

W (a,m) :=
{
Wλ : λ ∈ Λ+(a,m)

}
. (2.49)
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From the discussion of the previous subsection it is immediate that (O×
K)2 acts on

W (a,m). Again this action can be viewed in two different ways: Either we look at
the action of (O×

K)2 on the defining λ ∈ Λ+(a,m) or we regard the Weyl chambers
as subset of H2 and obtain an induced action of (O×

K)2 by considering the action of
Γa,∞ ∼= a−1 ⋊ (O×

K)2 on H2. We have

ε2Wλ = Wε−2λ

for all ε2 ∈ (O×
K)2 and λ ∈ Λ+(a,m).

For λ ∈ Λ(a,m) and W ∈ W (a,m) we write

(λ,W ) > 0 if tr(λy) > 0 ∀z ∈ W.

If λ ∈ Λ+(a,m), this is equivalent to

r >
Rma
λ

∀z ∈ W.

Moreover, λ ∈ Λ+(a,m) is called reduced with respect to W if

(λ,W ) > 0 and (ε−2
0 λ,W ) < 0.

Note that being reduced with respect to W is equivalent to being reduced with respect
to y with z ∈ W . One way using the coordinate r to write down this condition is

W ⊂
{
z ∈ H2 : Rma

λ
< r < ε2

0
Rma
λ

}
.

By our definition each λ ∈ Λ+(a,m) is reduced with respect to the Weyl chamber Wλ.
On the other hand, for each W ∈ W (a,m) and λ ∈ Λ+(a,m) we find exactly one reduced
λ̃ in the (O×

K)2 orbit {
ε2λ : ε2 ∈ (O×

K)2
}

of λ. We denote by R(a,m,W ) the set of all λ ∈ Λ+(a,m) which are reduced with respect
to W . Note that we have

R(a,m,W ) = R(a,m, y)
with z ∈ W . For Wλ with λ ∈ Λ+(a,m) we can make the set precise by

R(a,m,Wλ) =
{
λ̃ ∈ Λ+(a,m) : λ ≤ λ̃ < ε2

0λ
}
.

It follows directly R(a,m, ε2W ) = ε−2R(a,m,W ) for all ε2 ∈ (O×
K)2. Analogously to

above we define the so-called Weyl vector

ρ(a,m,W ) :=
∑

λ∈R(a,m,W )

λ

ε2
0 − 1 . (2.50)

Hence, ρ(a,m,W ) = ρ(a,m, y) with z ∈ W . We have ρ(a,m, ε2W ) = ε−2ρ(a,m,W ) for
all ε2 ∈ (O×

K)2.
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2.8.5 Hirzebruch–Zagier divisors on X(a)
In the previous subsection we developed the correct notions to be now able to define the
Hirzebruch–Zagier divisors on X(a). To distinguish them from the Hirzebruch–Zagier
divisors T (a,m) on X(a), we use a different notation and call them Z(a,m). We define

Z(a,m) := T (a,m) +
∑

κ∈Γa\P1(K)
Zκ(a,m)

where κ runs through all cusps of Γa and Z∞(a,m) is defined by

Z∞(a,m) :=
r∑

k=1
tr(ρ(a,m,Ak)Ak)Sk. (2.51)

Recall that r ∈ N is defined to fulfill

Ak = ε2
0Ak+r and bk = bk+r

and the index k in Sk has to be understood as element of Z/rZ (cf. Subsection 2.7.5).
For other cusps than ∞, the divisor Zκ(a,m) is given by the image of Z∞(ab2,m) under
the isomorphism X(ab2) ∼−→ X(a) (here b ∈ IK has to be chosen appropriately, cf. the
introduction of Section 2.7).

2.9 Green functions

There are several definitions of Green functions serving different purposes. In this section
we introduce our definition of a Green function, namely the pre-log-log Green function,
developed by Burgos Gil, Kramer and Kühn, which is the central object of this thesis. For
that purpose we explain the classical Green currents, their differential equation, growth
conditions and logarithmic singularities.

2.9.1 Classical Green currents

The classical Green currents and their intersection theory were developed by Gillet and
Soulé in 1990 (cf. [GS90]). In this subsection we briefly introduce the notion of a classical
Green current which is discussed in more detail in [Sou92, Chapter II: Green currents].

For a compact complex manifold X of dimension d (more generally we allow complex
orbifolds to comprise Hilbert modular surfaces with their elliptic fixed points) we denote
by Ap,q(X) the space of smooth C valued differential forms of type (p, q). We consider
the inclusion

Ap,q(X) → Dp,q(X), ω 7→ [ω].

Here, Dp,q(X) is the topological dual to the space of differential forms Ad−p,d−q(X) (cf.
[Sou92] for the topology). The functional [ω] is defined by

[ω](α) :=
∫
X
ω ∧ α for any α ∈ Ad−p,d−q(X).
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The elements of Dp,q(X) are called currents. By applying differential operators ∂, ∂,
d := ∂ + ∂ and dc := (4πi)−1(∂ − ∂) to the argument we obtain those operators for the
space Dp,q(X) as well. To make the respective diagrams

Ap,q(X) Dp,q(X)

Ap+1,q(X) Dp+1,q(X)

∂ ∂

commutative, one has to multiply the operators by (−1)p+q+1. For example in the case
of ∂ we have

(∂g)(α) := g((−1)p+q+1∂α) for g ∈ Dp,q(X) and α ∈ Ad−p−1,d−q(X).

Now, for every divisor T on X we define the Dirac current δT ∈ D1,1(X) by

δT (α) :=
∫
T
α for all α ∈ Ad−1,d−1(X). (2.52)

Definition 2.9.1 (Green current). A Green current for a divisor T is a current
g ∈ D0,0(X) such that

ddcg + δT = [ω]
for some form ω ∈ A1,1(X). The pair (T, g) is called arithmetic divisor.

2.9.2 Differential forms with growth conditions

For our purpose the definition of a classical Green current is too strict. In our case of
Hilbert modular surfaces we want to allow mild singularities of ω at the cusps. A precise
theory of such generalized Green currents was developed by Burgos Gil, Kramer and
Kühn in [BGKK07] and [BGKK05]. They allow ω to be a pre-log-log growth form. We
make that notion precise in this subsection and recommend [BBGK07, Section 1.1] for
details.

Definition 2.9.2 (Log-log growth, log-log growth form and pre-log-log growth forms).
A function f defined in a neighborhood of D on X \D has log-log growth along D if we
have

|f(z1, . . . , zd)| ≤ C
k∏
i=1

log(log(1/|zi|))M

in local coordinates in which D is given by z1 · · · zk = 0 for a constant C > 0 and some
positive integer M . Differential forms generated by those functions together with the
differentials

dzi
zi log(1/|zi|)

,
dzi

zi log(1/|zi|)
, for i = 1, . . . , k,

dzi, dzi, for i = k + 1, . . . , d,
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are called log-log growth forms. A log-log growth form ω such that ∂ω, ∂ω and ∂∂ω are
log-log growth forms as well is called a pre-log-log growth form.

Remark 2.9.3. A function f is a pre-log-log growth form if and only if

f, w1 log(|w1|) ∂f
∂w1

, w1w2 log(|w1|) log(|w2|) ∂2f

∂w1∂w2

have log-log growth for w1, w2 ∈ {z1, . . . , zk, z1, . . . , zk} and w1 ̸= w2. In most cases
where we have to prove a function f to be a pre-log-log growth form we will see that the
given terms even go to 0 for small zi (1 ≤ i ≤ k).

Lemma 2.9.4. The function

f(z1, . . . , zd) =
k∏
i=1

log(log(1/|zi|))M

from Definition 2.9.2 is a pre-log-log growth form.

Proof. Clearly, by definition f is of log-log growth. Hence, it is left to verify that ∂f , ∂f
and ∂∂f are log-log growth forms as well. One computes

∂

∂z
log(log(1/|z|))M = M log(log(1/|z|))M−1

2z log(|z|)

and the conjugate for ∂/∂z. Hence, ∂f and ∂f grow accordingly. We further compute

∂

∂z

∂

∂z
log(log(1/|z|))M

=M log(log(1/|z|))M−2

4zz log(|z|)2 (M − 1 − log(log(1/|z|)))

which shows the desired growth of ∂∂f .

Definition 2.9.5 (Log growth, log growth form and pre-log growth forms). Analogously
to Definition 2.9.2, a function f defined in a neighborhood of D on X \D has log growth
along D if we have

|f(z1, . . . , zd)| ≤ C
k∏
i=1

log(1/|zi|)M

in local coordinates in which D is given by z1 · · · zk = 0 for a constant C > 0 and some
positive integer M . Differential forms generated by those functions together with the
differentials

dzi
zi
,
dzi
zi
, for i = 1, . . . , k,

dzi, dzi, for i = k + 1, . . . , d,

are called log growth forms. A log growth form ω such that ∂ω, ∂ω and ∂∂ω are log
growth forms as well is called a pre-log growth form.
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Definition 2.9.6 (Mixed growth form and mixed form). Let D1 and D2 be normal
crossing divisors. A differential form with log growth along D1 and log-log growth along
D2 is called mixed growth form along (D1, D2). A mixed growth form ω such that ∂ω,
∂ω and ∂∂ω are also mixed growth forms is called a mixed form.

2.9.3 Pre-log-log Green functions

In this subsection we first want to give the definition of pre-log-log Green functions and
then apply them to our situation with Hilbert modular surfaces and Hirzebruch–Zagier
divisors.

Definition 2.9.7 (Pre-log-log Green functions). A pre-log-log Green function for divisors
(D1, D2) is a mixed 0-form f along (D1, D2) such that g := [f ] satisfies

ddcg + δD1 = [ω]

for some pre-log-log growth (1, 1)-form ω along D2. In this context the arithmetic divisor
(D1, f) defines a class in the first arithmetic Chow group ĈH1(X,Dpre).

Remark 2.9.8. Note that the multiplicities of the components of D2 do not play any
role in Definition 2.9.7 since D2 is only needed for the growth behavior. The multiplicities
of the divisor D1, however, are important because they influence the Dirac current δD1 .

Now we want to apply the definition to our situation. We have X = X(a) and
hence dimension d = 2. The divisor D1 is the Hirzebruch–Zagier divisor Z(a,m) with
m ∈ Z fixed where D2 is the exceptional divisor E(a). The (1, 1)-form ω is given by ddcf .
Therefore, the demanded current equation looks like

ddc[f ] + δD1 = [ddcf ].

Let η ∈ A1,1(X) be a test form. Then we have

(ddc[f ])(η) = (dc[f ])(dη) = [f ](−dcdη) = [f ](ddcη) =
∫
X
f ∧ ddcη.

Hence, we obtain for the demanded current equation expressed using integrals∫
X
f ∧ ddcη +

∫
D1
η =

∫
X
ddcf ∧ η. (2.53)

We call this equation Green’s differential equation or Green equation for short. The
equation is also known as the ddc equation.

Remark 2.9.9. In the remainder of this thesis we will consider different Green functions
f for the Hirzebruch–Zagier divisors Z(a,m) and want to prove that they are actually
pre-log-log Green functions for the divisors (Z(a,m), E(a)) according to Definition 2.9.7
(later we often only mention Z(a,m) since the exceptional divisor E(a) is independent
of m and we never regard any other divisor for the pre-log-log growth). To do so it is
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enough to show that f can be decomposed into f = f1 + f2 such that f1 has logarithmic
singularities along −Z(a,m) (the exact meaning of that is made precise in the next
subsection) and f2 is a pre-log-log growth form along E(a). Namely, the upcoming
Lemma 2.9.15 and Corollary 2.9.18 imply that f then satisfies the Green equation.
Further, Remark 2.9.11 ensures that f has the correct growth behavior.

2.9.4 Logarithmic singularities and the Green equation

In this subsection we give a precise meaning to the expression having logarithmic singu-
larities along divisors and investigate the Green equations of functions with logarithmic
singularities and the Green equation of functions which are pre-log-log growth forms.

Definition 2.9.10 (Logarithmic singularity). (i) Let Y ⊂ X be an irreducible ana-
lytic subvariety of X of codimension 1. We say a function f : X \ Y → C has a
logarithmic singularity along Y if for each p ∈ X there exists an open neighborhood
Up ⊂ X of p such that

f(z) = g(z) + log(|h(z)|2)
with g ∈ C2(Up) and h : Up → C holomorphic with divisor Up ∩ Y (hence, h has a
simple zero at Up ∩ Y ).

(ii) Let D ⊂ X be a divisor of X. We can write D as a finite sum

D =
∑
i∈I

λiYi

with Yi being irreducible analytic subvarieties of X of codimension 1. We say
f : X \D → C has a logarithmic singularity along D if we can decompose f into

f(z) =
∑
i∈I

λifi(z)

with fi having a logarithmic singularity along Yi for all i ∈ I.

Remark 2.9.11. It is important to notice that a function f : X \ D → C with a
logarithmic singularity along D is a pre-log growth form with respect to the divisor D.

Lemma 2.9.12. Let h : X → C be a non-zero meromorphic function. Then

f(z) := log(|h(z)|2)

has a logarithmic singularity along div(h). Furthermore, ddcf = 0.

Proof. The first part follows directly from Definition 2.9.10. The second part is a
consequence of

f(z) = log(h(z)) + log(h(z))
which holds locally outside of div(h) by choosing appropriate branches of the natural
logaritm. Hence, f is locally the sum of a holomorphic and an antiholomorphic function.
Therefore, it is in the kernel of ddc.
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Lemma 2.9.13. Let f ∈ C2(C2) and η ∈ A1,1
c (C2). Then we have∫

C2
f ∧ ddcη =

∫
C2
ddcf ∧ η.

Proof. Let σ be a compactly supported 3-form on C2. Then we have by Stokes’ theorem∫
C2
dσ = 0.

We apply this twice in the following computation:∫
C2
f ∧ ddcη =

∫
C2
d(f ∧ dcη) −

∫
C2
df ∧ dcη

=
∫
C2
dcf ∧ dη

= −
∫
C2
d(dcf ∧ η) +

∫
C2
ddcf ∧ η

=
∫
C2
ddcf ∧ η.

Lemma 2.9.14. Let η ∈ A1,1
c (C2). Then we have∫

(u,v)∈C2
log(|v|2) ∧ ddcη =

∫
u∈C,v=0

η.

Proof. The left integral looks quite similar to the integral in the previous lemma. However,
our function f(u, v) := log(|v|) has a logarithmic singularity along v = 0. Hence, we
cannot apply the previous lemma. Instead we use∫

C2
log(|v|2) ∧ ddcη = lim

ε→0

∫
|v|≥ε

log(|v|2) ∧ ddcη.

Here we can apply Stokes’ theorem again but in contrast to the previous lemma, our
domain has a boundary, namely |v| = ε. Therefore, we have by Stokes’ theorem∫

|v|≥ε
dσ = −

∫
|v|=ε

σ.

We compute∫
|v|≥ε

log(|v|2) ∧ ddcη =
∫

|v|≥ε
d(log(|v|2) ∧ dcη) −

∫
|v|≥ε

d log(|v|2) ∧ dcη

= −
∫

|v|=ε
log(|v|2) ∧ dcη +

∫
|v|≥ε

dc log(|v|2) ∧ dη.
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The first summand goes to zero for small ε because we have∣∣∣∣∣−
∫

|v|=ε
log(|v|2) ∧ dcη

∣∣∣∣∣ ≤ 2| log(ε)|
∣∣∣∣∣
∫

|v|=ε
dcη

∣∣∣∣∣
≤ 4πε| log(ε)|C

with C > 0 appropriate. Since ddc log(|v|2) = 0 by Lemma 2.9.12, for the second
summand we get∫

|v|≥ε
dc log(|v|2) ∧ dη = −

∫
|v|≥ε

d(dc log(|v|2) ∧ η) +
∫

|v|≥ε
ddc log(|v|2) ∧ η

=
∫

|v|=ε
dc log(|v|2) ∧ η.

We now write v = εeiθ and express dv and dv by dθ and dε:

dv = εieiθdθ + eiθdε and dv = −εie−iθdθ + e−iθdε.

Recall dc := (4πi)−1(∂ − ∂) to see

dc log(|v|2) = 1
4πi

(
dv

v
− dv

v

)
= 1

4πi

(
εieiθdθ + eiθdε

εeiθ
− −εie−iθdθ + e−iθdε

εe−iθ

)
= dθ

2π .

Hence, we finally get

lim
ε→0

∫
|v|=ε

dc log(|v|2) ∧ η = lim
ε→0

∫
u∈C,θ∈[0,2π),v=εeiθ

dθ

2π ∧ η =
∫
u∈C,v=0

η.

Lemma 2.9.15. Let X be two dimensional over C and f : X \D → C have a logarithmic
singularity along a divisor −D ⊂ X and η ∈ A1,1

c (X). Then we have∫
X
f ∧ ddcη +

∫
D
η =

∫
X
ddcf ∧ η

or equivalently ∫
X
f ∧ ddcη =

∫
X
ddcf ∧ η +

∫
−D

η.

Proof. Let us consider first the case with D being an irreducible analytic subvariety Y .
Let p ∈ X. In case p /∈ Y we find an open neighborhood Up of p with Up ⊂ X \ Y . In
case p ∈ Y we find an open neighborhood Up of p and a chart φ : Up → C2 with

φ(p) = (0, 0) and φ(Y ∩ Up) =
{

(u, v) ∈ C2 : v = 0
}

∩ φ(Up).
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In addition, this neighborhood shall have the local decomposition of f according to
Definition 2.9.10. Let η̃ ∈ A1,1

c (Up). Then in the first case where p /∈ Y we have∫
X
f ∧ ddcη̃ +

∫
D
η̃ =

∫
X
ddcf ∧ η̃

by Lemma 2.9.13 because
∫
D η̃ vanishes. In the second case where p ∈ Y we can express

f(z) as
f(z) = g(z) − log(|h(z)|2)

for all z ∈ Up with g ∈ C2(Up,R) and h : Up → C holomorphic with a simple zero at
Y ∩Up. The function h can be expressed in local coordinates with respect to the chart φ
as h = v · h̃ with a holomorphic, nowhere vanishing function h̃ : Up → C×. Hence, we
locally have

f = g − log(|v · h̃|2) = g − log(|h̃|2) − log(|v|2).
Here g̃ := g − log(|h̃|2) is C2. By Lemma 2.9.12 we get

ddcf = ddcg = ddcg̃.

Therefore, we get ∫
X
f ∧ ddcη̃ =

∫
X

(g̃ − log(|v|2)) ∧ ddcη̃

=
∫
X
g̃ ∧ ddcη̃ −

∫
X

log(|v|2) ∧ ddcη̃

=
∫
X
ddcg̃ ∧ η̃ −

∫
D
η̃

=
∫
X
ddcf ∧ η̃ −

∫
D
η̃

by Lemma 2.9.13 and Lemma 2.9.14 or equivalently∫
X
f ∧ ddcη̃ +

∫
D
η̃ =

∫
X
ddcf ∧ η̃.

Now using that η has compact support and the theory of smooth partitions of unity,
there exists a finite subset P ⊂ X and ηp ∈ A1,1

c (Up) for all p ∈ P such that∑
p∈P

ηp = η.

Hence, by linearity of the integral we get∫
X
f ∧ ddcη +

∫
D
η =

∫
X
ddcf ∧ η.

This proves the simplified version where D is irreducible. Let us now consider the more
general case where D is a linear combination of irreducible analytic subvarieties. We
write D as finite sum

D =
∑
i∈I

λiYi
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with Yi being irreducible analytic subvarieties of X of codimension 1 and

f(z) =
∑
i∈I

λifi(z),

respectively, such that fi has logarithmic singularities along −Yi. Using this decomposition
of f the result follows again by using the linearity of the integral.

Lemma 2.9.16. Let U ⊂ C2 be open and let f : U \ {v = 0} → C be two times
continuously differentiable and locally integrable on U . Further, let

lim
v→0

v
∂f

∂v
= lim

v→0
v
∂f

∂u
= lim

v→0
v
∂f

∂v
= lim

v→0
v
∂f

∂u
= 0.

Then we have for all η ∈ A1,1
c (U)∫

U
f ∧ ddcη =

∫
U
ddcf ∧ η.

Proof. We reuse the idea of Lemma 2.9.14:∫
U
f ∧ ddcη = lim

ε→0

∫
|v|≥ε

f ∧ ddcη.

The first integral (and hence the limit of the second integral) exists because of the local
integrability of f and the compact support of η. We compute∫

|v|≥ε
f ∧ ddcη =

∫
|v|≥ε

d(f ∧ dcη) −
∫

|v|≥ε
df ∧ dcη

= −
∫

|v|=ε
f ∧ dcη +

∫
|v|≥ε

dcf ∧ dη.

As in the proof of Lemma 2.9.14, the first summand goes to 0 for small ε. Hence, we are
left with ∫

|v|≥ε
dcf ∧ dη = −

∫
|v|≥ε

d(dcf ∧ η) +
∫

|v|≥ε
ddcf ∧ η

=
∫

|v|=ε
dcf ∧ η +

∫
|v|≥ε

ddcf ∧ η.

Clearly,
lim
ε→0

∫
|v|≥ε

ddcf ∧ η =
∫
U
ddcf ∧ η.

Therefore, we have to show that

lim
ε→0

∫
|v|=ε

dcf ∧ η = 0.

We will compute now dcf ∧ η in detail. First, we have

4πi(dcf) = ∂f − ∂f = ∂f

∂u
du+ ∂f

∂v
dv − ∂f

∂u
du− ∂f

∂v
dv.
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Now we decompose η into

η = η1du ∧ du+ η2du ∧ dv + η3dv ∧ du+ η4dv ∧ dv

and get

4πi(dcf ∧ η)

=∂f

∂u
du ∧ (η3dv ∧ du+ η4dv ∧ dv) + ∂f

∂v
dv ∧ (η1du ∧ du+ η2du ∧ dv)

−∂f

∂u
du ∧ (η2du ∧ dv + η4dv ∧ dv) − ∂f

∂v
dv ∧ (η1du ∧ du+ η3dv ∧ du)

=
(
∂f

∂u
η3 − ∂f

∂v
η1

)
du ∧ dv ∧ du+

(
∂f

∂u
η4 − ∂f

∂v
η2

)
du ∧ dv ∧ dv

+
(
∂f

∂u
η2 − ∂f

∂v
η1

)
du ∧ du ∧ dv +

(
∂f

∂u
η4 − ∂f

∂v
η3

)
dv ∧ du ∧ dv.

To compute the integral, we write v = εeiθ like in the proof of Lemma 2.9.14 and express
dv and dv by dθ and dε:

dv = εieiθdθ + eiθdε and dv = −εie−iθdθ + e−iθdε.

Because we integrate over a domain in which ε is fixed, the dε part of dv and dv is
irrelevant. Hence, in the integrand we may replace dv by ivdθ and dv by −ivdθ. Therefore,
we lose the two terms with dv ∧ dv and our integrand looks like(

v
∂f

∂v
η1 − v

∂f

∂u
η3 + v

∂f

∂v
η1 − v

∂f

∂u
η2

)
idθ ∧ du ∧ du.

Because of our assumption and because of the boundedness of η, this expression goes to
zero for ε → 0. Hence, we have shown

lim
ε→0

∫
|v|=ε

dcf ∧ η = 0.

Corollary 2.9.17. Let U ⊂ C2 be open and let f : U \ {uv = 0} → C be two times
continuously differentiable and locally integrable on U . Further, let

lim
u→0

u
∂f

∂u
= lim

u→0
u
∂f

∂v
= lim

u→0
u
∂f

∂u
= lim

u→0
u
∂f

∂v
= 0

and
lim
v→0

v
∂f

∂u
= lim

v→0
v
∂f

∂v
= lim

v→0
v
∂f

∂u
= lim

v→0
v
∂f

∂v
= 0.

Then we have for all η ∈ A1,1
c (U)∫

U
f ∧ ddcη =

∫
U
ddcf ∧ η.
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Corollary 2.9.18. Let U ⊂ C2 be open and let f : U \ {uv = 0} → C be a pre-log-log
growth form along uv = 0. Then we have for all η ∈ A1,1

c (U)∫
U
f ∧ ddcη =

∫
U
ddcf ∧ η.

Proof. We simply have to verify the conditions of Corollary 2.9.17. Because f itself is of
log-log growth, it is locally integrable on U . Now Remark 2.9.3 together with the facts

lim
x→∞

log(log(x))M
log(1/x) = 0 and lim

x→∞
log(log(x))M

x
= 0

implies that the limit conditions of Corollary 2.9.17 are satisfied.

2.9.5 Hilbert modular forms induce Green functions

Definition 2.9.19 (Hilbert modular form). A meromorphic function f : H2 → C is
called a meromorphic Hilbert modular form of weight k ∈ Z for Γa if it satisfies

f(γz) = N(cz + d)kf(z)

for all γ =
(
a b
c d

)
∈ Γa. If f is holomorphic on H2, then it is called a holomorphic Hilbert

modular form.

If k ≠ 0 and f ̸= 0 the function f is not invariant under Γa and therefore it does not
define a function Γa → C. But since N(cz+ d)k is nowhere vanishing on H2, the function
f defines a divisor on X(a).

Remark 2.9.20. A shorter notation for the transformation law uses the Petersson slash
operator |k which is defined by

(f |k γ)(z) := N(cz + d)−kf(γz)

for all γ =
(
a b
c d

)
∈ SL2(R)2 and functions f : H2 → C. The Petersson slash operator

defines a right group action on the set of all functions f : H2 → C, i.e., we have

(f |k γ1) |k γ2 = (f |k γ1γ2)

for all γ1, γ2 ∈ SL2(R)2. By using the Petersson slash operator, the transformation law
of Definition 2.9.19 breaks down to f |k γ = f for all γ ∈ Γa.

Let f be a Hilbert modular form. The transformation law implies, independent of
the weight, an invariance of f under the translation by elements of b := a−1. Hence, if f
is holomorphic, it has a normally convergent Fourier expansion

f(z) =
∑
ν∈b∨

aνe(tr(νz)).
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The Fourier coefficients are given by

aν = 1
vol(b)

∫
R2/b

f(z)e(− tr(νz))dx1dx2.

By the Götzky–Koecher principle holomorphic Hilbert modular forms are automatically
holomorphic at the cusps. For the cusp ∞, this means aν ̸= 0 implies ν = 0 or ν ≫ 0.

Because of the b invariance, we can express f in local coordinates (u, v) with respect
to a totally positive basis (α, β) of b. From Lemma 2.7.1 we get

f(z) =
∑
ν∈b∨

aνu
tr(αν)vtr(βν).

We see that f extends to a holomorphic function on the Sk. Therefore, f defines not only
a divisor on X(a) but a divisor on X(a) as well. Meromorphic Hilbert modular forms f
define a divisor on X(a) as well but naturally they might have poles at cusps.

Definition 2.9.21. For this thesis we fix a weight k ∈ N and for each a ∈ IK we fix a
non-zero (meromorphic) Hilbert modular form F (a, z) for Γa of weight k such that they
are compatible with each other under conjugation, i.e., we have

F (a2b, z) = (F (b, ·) |k M)(z) (2.54)

for a, b ∈ IK and M ∈ M(a, b) (cf. Corollary 2.3.6). We define

T (a, 0) := −div(F (a, ·))
2k and Z(a, 0) := −div(F (a, ·))

2k

where in the definition of T (a, 0) we consider F (a, ·) on X(a) and in the definition of
Z(a, 0) we consider F (a, ·) on X(a).

Note once again that even though F (a, z) does neither define a function on X(a) nor
on X(a), the divisor of Definition 2.9.21 is well-defined.

The divisors T (a, 0) and Z(a, 0) depend on the choice of the Hilbert modular form
F (a, z). However, different choices lead to divisors which are rational equivalent since the
quotient defines a meromorphic Hilbert modular form of weight 0, i.e., a meromorphic
function on X(a).

Definition 2.9.22 (Petersson norm). For a meromorphic Hilbert modular form f we
define

||f(z)|| := (16π2y1y2)k/2|f(z)|,

the so-called Petersson norm of f .

Remark 2.9.23. The factor (y1y2)k/2 makes ||f(z)|| invariant under Γa. Therefore,
||f(z)|| is well-defined on X(a).
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Proposition 2.9.24. The function

G(a, 0, z) := log
(
||F (a, z)||1/k

)
has logarithmic singularities along the divisor −Z(a, 0) and is a pre-log-log Green function
on X(a) with respect to the divisor Z(a, 0). Further, we have

ddcG(a, 0, z) = −ω

2

and
G(b, 0,Mz) = G(a2b, 0, z)

for a, b ∈ IK and M ∈ M(a, b). Here ω denotes the Kähler form (cf. equation (2.14)).

Proof. By Remark 2.9.23 G(a, 0, z) is well-defined on X(a). We have

G(a, 0, z) = log
(
4π(y1y2)1/2|F (a, z)|1/k

)
= log(4π) + log(y1y2)

2 + log(|F (a, z)|2)
2k . (2.55)

This proves
ddcG(a, 0, z) = −ω

2
together with equation (2.15) and Lemma 2.9.12. It also proves that G(a, 0, z) has a
logarithmic singularity along the divisor

div(F (a, ·))
2k = −Z(a, 0).

Since there is no other growth apart from the logarithmic singularity, we conclude that
G(a, 0, z) is a pre-log-log Green function with respect to the divisor Z(a, 0).

We come to the proof of the transformation law. By equation (2.54) we have

F (b,Mz) = N(cz + d)kF (a2b, z).

Hence, we obtain with equation (2.55) and equation (2.16)

G(b, 0,Mz) = log(4π) + log(ℑ(Mz))
2 + log(|F (b,Mz)|2)

2k

= log(4π) + log(ℑ(z)/|N(cz + d)|2)
2 +

log(
∣∣∣N(cz + d)kF (a2b, z)

∣∣∣2)
2k

= log(4π) + log(ℑ(z))
2 + log(|F (a2b, z)|2)

2k = G(a2b, 0, z).
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Definition 2.9.25. We define

L(a, 0) := 1
2 −

∫
X(a)

G(a, 0, z)
vol(X(a))ω

2 and Φ(a, 0, z) := G(a, 0, z) + L(a, 0).

At this point the definitions of Φ(a, 0, z), L(a, 0) and G(a, 0, z) appear unmotivated.
In the next chapter we will define Φ(a,m, z), L(a,m) and G(a,m, z) for m ∈ N and see
their relation in equation (3.9) which is true for m = 0 as well by Definition 2.9.25. While
the purpose of the definition of G(a, 0, z) becomes clear in Section 3.11 where we talk
about the arithmetic Hirzebruch–Zagier theorem for the automorphic Green functions,
the choice of the constant L(a, 0) will not be justified before Theorem 5.4.1.
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Chapter 3

Automorphic Green functions

The definition of automorphic Green functions on Hilbert modular surfaces associated
to real quadratic number fields goes back to Bruinier in the late 90s who defined and
investigated them in [Bru99] and later publications. In this chapter we generalize his
definition by defining them for Hilbert modular surfaces X(a) for arbitary ideals a,
compute the Fourier expansion, investigate its growth behavior near the cusps, show that
it is a pre-log-log Green function, present a valuable decomposition into smooth functions,
work a lot with this decomposition, compute associated integrals, and eventually present
the arithmetic Hirzebruch–Zagier theorem which is made more explicit around the cusps
by our work.

3.1 Motivation, definition, convergence and invariance of
the unregularized Green function

In the upcoming sections we elaborate on [Bru99, Section 3]. We generalize the definition
of the automorphic Green functions to arbitrary ideals and formulate the respective
results. In particular, we develop the Fourier expansions of the generalized automorphic
Green functions.

The naive idea for the definition of the Green function Φ(a,m, z) associated to the
Hirzebruch–Zagier divisor T (a,m) on X(a) for m ∈ N is to set

Φ(a,m, z) :=
∑

A=
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)

log
∣∣∣∣bz1z2 − λz1 − λ′z2 + a

bz1z2 − λz1 − λ′z2 + a

∣∣∣∣ . (3.1)

Green functions associated to a divisor shall have logarithmic singularities along the
negative of its divisor and shall be smooth elsewhere. The denominator of (3.1) is the
polynomial which is used for the definition of the Hirzebruch–Zagier divisor T (a,m)
(cf. Subsection 2.8.1). Hence, we expect logarithmic singularities along −T (a,m). The
numerator in (3.1) is then used to make the sum formally invariant under Γa. Namely,
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we have

log
∣∣∣∣bz1z2 − λz1 − λ′z2 + a

bz1z2 − λz1 − λ′z2 + a

∣∣∣∣ = 1
2 log

(det(A) + h(A, z)
h(A, z)

)
= 1

2 log
(
g(A, z) + 1
g(A, z)

)
for A =

(
a λ′
λ b

)
using the equations (2.21), (2.22) and (2.23). Now, the GL+

2 (K) invariance
of g(A, z) (cf. Corollary 2.6.2) together with the Γa invariance of L(a)∨ implies the formal
invariance of Φ(a,m, z) under Γa. However, this is a formal invariance only, since the
above series defining Φ(a,m, z) does not converge if T (a,m) ̸= 0. In case T (a,m) = 0 we
have Φ(a,m, z) = 0 since the defining sum is empty. Therefore, from now onwards we
assume m ∈ N to be such that T (a,m) ̸= 0 when we talk about divergence and simple
poles.

The divergence of (3.1) causes the actual definition of Φ(a,m, z) to be more compli-
cated. It involves a regularization process. For that purpose we introduce a new complex
variable s.

Definition 3.1.1. For a ∈ IK , m ∈ N, s ∈ C with ℜ(s) > 1 and z ∈ H2 \ T (a,m) we
define

Φ(a,m, s, z) :=
∑

A∈L(a)∨

det(A)=m/(N(a)D)

Qs−1 (1 + 2g(A, z)) .

Here, Qs−1(z) is the Legendre function of the second kind (cf. [OLBC10, 14.12.6]),
defined by

Qs−1(x) :=
∫ ∞

0

(
x+

√
x2 − 1 cosh t

)−s
dt

for x > 1 and ℜ(s) > 0.

By the argument from above the Γa invariance of Φ(a,m, s, z) is clear as long as
the series converges absolutely. To prove this absolute convergence and a more general
transformation law than the Γa invariance we introduce two lemmata first.

Lemma 3.1.2. Let m ∈ N, α > 1 and f : R+ → C be a continuous function which
satisfies f(x) = O(x−α) for large x. Then the series∑

A∈L(a)∨

det(A)=m/(N(a)D)

f (g(A, z))

converges normally for z ∈ H2 \T (a,m). If f extends continuously to x = 0, the statement
holds for all z ∈ H2.

Proof. First of all, by definition of T (a,m) we have

z ∈ T (a,m) ⇔ ∃A ∈ L(a)∨ with det(A) = m

N(a)D and g(A, z) = 0.
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This explains why we have to exclude z ∈ T (a,m) if f(0) is not properly defined. Now,
let B ⊂ H2 be a compact subset. Then by Lemma 2.6.4 the set{

A ∈ L(a)∨ : det(A) = m

N(a)D with g(A, z) ≤ C for a z ∈ B

}
is finite for any C > 0. Hence, we are done by showing normal convergence of∑

A∈L(a)∨

det(A)=m/(N(a)D)
g(A,z)>C,∀z∈B

f (g(A, z)) (3.2)

for C > 0 chosen large. We define f̃(x) := f(x− 1). Then of course f̃(x) = O(x−α) as
well. Hence, for A =

(
a λ′
λ b

)
∈ L(a)∨ with det(A) = m/(N(a)D) we obtain by the first

equation in (2.21) and equation (2.23)

f (g(A, z)) = f̃ (1 + g(A, z)) = f̃

(det(A) + h(A, z)
det(A)

)
= f̃

(
qW̃z

(A)N(a)D
m

)
= f̃

(
|bz1z2 − λz1 − λ′z2 + a|2

4y1y2

N(a)D
m

)
.

Within the compact set B the factor

N(a)D
4y1y2m

is bounded from below. Therefore, the normal convergence of (3.2) follows from the
normal convergence of

∑
A
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)

1
|bz1z2 − λz1 − λ′z2 + a|2α

for α > 1 which is well known (cf. [Zag75]).

Lemma 3.1.3. Let m > 0 and f : R+
0 → C ∪ {∞} be a function. We define for a ∈ IK

and z ∈ H2

F (a, z) :=
∑

A∈L(a)∨

det(A)=m/(N(a)D)

f (g(A, z)) .

Now let a, b ∈ IK and M ∈ M(a, b). Then for any z ∈ H2 the series F (b,Mz) converges
absolutely if and only if the series F (a2b, z) converges absolutely. In that case we have

F (b,Mz) = F (a2b, z).
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Proof. We show that the two series sum up the same values. We have

F (a2b, z) =
∑

A∈L(a2b)∨

det(A)=m/(N(a2b)D)

f (g(A, z))

(i)=
∑

A∈L(a2b)∨

det(A)=m/(N(a)2N(b)D)

f (g(M.A,Mz))

(ii)=
∑

A∈L(b)∨/N(a)
det(A)=m/(N(a)2N(b)D)

f (g(A,Mz))

=
∑

A∈L(b)∨

det(A/N(a))=m/(N(a)2N(b)D)

f (g(A/N(a),Mz))

(iii)=
∑

A∈L(b)∨

det(A)=m/(N(b)D)

f (g(A,Mz))

= F (b,Mz).

In step (i) we used Corollary 2.6.2. In step (ii) we used

M.L(a2b)∨ = L(b)∨

N(a)
from Proposition 2.4.2. In step (iii) we used Remark 2.6.3.

Proposition 3.1.4. The series defining Φ(a,m, s, z) converges normally for ℜ(s) > 1
and z ∈ H2 \ T (a,m) to a function which is Γa invariant and holomorphic in s. Further,
we have for a, b ∈ IK and M ∈ M(a, b)

Φ(b,m, s,Mz) = Φ(a2b,m, s, z).

Proof. By [OLBC10, 14.8.15] we have

Qs−1(x) ∼ Γ(s)
Γ
(
s+ 1

2

) √
π

(2x)s

for large x which implies Qs−1(x) = O(x−ℜ(s)). Therefore, we can apply Lemma 3.1.2 to
get the convergence statement for all z ∈ H2 \ T (a,m). Because for each compact subset

B ⊂ {s ∈ C : ℜ(s) > 1}

there exists an α > 1 with ℜ(s) > α for all s ∈ B, we obtain normal convergence in
s as well. This implies the holomorphicity in s. The transformation law follows from
Lemma 3.1.3. The Γa invariance is a special instance of this more general transformation
law using

M ∈ M(OK , a) = Γa.
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By [OLBC10, 14.5.9] we have

Q0(x) = 1
2 log

(
x+ 1
x− 1

)
.

Applied to the argument 1 + 2g(A, z) of Qs−1 in the definition of Φ(a,m, s, z), we get

Q0 (1 + 2g(A, z)) = 1
2 log

((1 + 2g(A, z)) + 1
(1 + 2g(A, z)) − 1

)
= 1

2 log
(
g(A, z) + 1
g(A, z)

)
.

Therefore, Φ(a,m, 1, z) formally gives us the naive non-converging definition of Φ(a,m, z)
in equation (3.1) back.

It can be shown that the first two termwise derivatives of the series defining Φ(a,m, s, z)
converge normally as well. Hence, Φ(a,m, s, z) is two times continuously differentiable
and using the differential equation of Qs−1(x), one can deduce that Φ(a,m, s, z) is an
eigenfunction with respect to the hyperbolic Laplace operators

∆1 := y2
1

(
∂2

∂x2
1

+ ∂2

∂y2
1

)
and ∆2 := y2

2

(
∂2

∂x2
2

+ ∂2

∂y2
2

)
.

Namely, we have for j ∈ {1, 2}

∆jΦ(a,m, s, z) = s(s− 1)Φ(a,m, s, z). (3.3)

3.2 Fourier expansion of the unregularized Green function

We write Φ(a,m, s, z) in the form

Φ(a,m, s, z) =
∑
b∈Z

Φb(a,m, s, z)

with
Φb(a,m, s, z) :=

∑
A=
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)

Qs−1 (1 + 2g(A, z)) .

Note that the lower right entry of the elements of L(a)∨ is actually integral by equa-
tion (2.12). Hence, it makes sense to sum over b ∈ Z. By Remark 2.6.3 we have
Φb(a,m, s, z) = Φ−b(a,m, s, z). Therefore, we can assume b ∈ N0. Individually, the
functions Φb(a,m, s, z) converge normally for ℜ(s) > 1/2. In particular, for s = 1 they
are well-defined. They are in general not invariant under the full group Γa anymore,
however Lemma 2.4.4 and Remark 2.6.3 imply that they are still invariant under Γa,∞.
Hence, they are also defined in a neighborhood of the cusp ∞ of X(a). The invariance
under Γa,∞ implies in particular an a−1 periodicity. Therefore, they might be expressible
as Fourier series.

Lemma 2.8.1 implies that for b ∈ N the function Φb(a,m, s, z) has no singularity for
arguments z ∈ H2 with ℑ(z) > m/(N(a)Db2). Together with the normal convergence this
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implies that Φb(a,m, s, z) is continuous in this region and possesses an almost everywhere
converging Fouier series. Later we will see that Φb(a,m, s, z) is actually smooth, hence
the Fourier series converges everywhere on ℑ(z) > m/(N(a)Db2).

We treat the cases b = 0 and b ∈ N separately and start with the latter. Let us fix
b ∈ N and abbreviate B := m/(N(a)Db2). Then we get

Φb(a,m, s, z) =
∑

a∈Z/N(a), λ∈ad−1/N(a)
ab−N(λ)=m/(N(a)D)

Qs−1

(
1 + |bz1z2 − λz1 − λ′z2 + a|2

2y1y2m/(N(a)D)

)

=
∑

a∈Z/N(a), λ∈ad−1/N(a)
ab−N(λ)=m/(N(a)D)

Qs−1

(
1 + |(z1 − λ′/b)(z2 − λ/b) +B|2

2y1y2B

)
.

The possible λ occurring in the sum index have a nice periodicity revealed by the next
lemma.

Lemma 3.2.1. For fixed b ∈ N we have{
λ ∈ ad−1/N(a) : ∃a ∈ Z/N(a), ab−N(λ) = m/(N(a)D)

}
=
{
λ+ bµ

N(a) : µ ∈ a, λ ∈ ad−1,
N(

√
Dλ)

N(a) ≡ m (mod bD)
}
.

Proof. Let λ be in the first set with a ∈ Z/N(a) given. Then λN(a) ∈ ad−1. Taking
µ = 0, it is only left to show the congruence relation for proving the first inclusion:

N(
√
DλN(a))
N(a) = −DN(a)N(λ) = DN(a)(m/(N(a)D) − ab)

= m−DN(a)ab ≡ m (mod bD).

For the other inclusion we have to show that λ+bµ
N(a) given from the second set satisfies

N

(
λ+ bµ

N(a)

)
∈ − m

N(a)D + b

N(a)Z.

Let c ∈ Z with
N(

√
Dλ)

N(a) = m+ cbD ⇔ N(λ) = −N(a)m
D

−N(a)cb.

Now we compute

N

(
λ+ bµ

N(a)

)
= 1
N(a)2

(
N(λ) + b tr(λ′µ) + b2N(µ)

)
= 1
N(a)2

(
−N(a)m

D
−N(a)cb+ b tr(λ′µ) + b2N(µ)

)
= − m

N(a)D + b

N(a)

(
−c+ tr

(
λ′

N(a)µ
)

+ b
N(µ)
N(a)

)
.
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We are left to show that the latter bracket is integral. With µ ∈ a we get N(µ) ∈ N(a)Z.
Further, by equation (2.7) we have

λ′

N(a) ∈ a′d−1

N(a) = (ad)−1 = a∨tr

which completes the proof.

Let Rb(a,m) be a set of representatives of{
λ ∈ ad−1/ba : N(

√
Dλ)

N(a) ≡ m (mod bD)
}
.

Then we have

Φb(a,m, s, z) =
∑

a∈Z/N(a), λ∈ad−1/N(a)
ab−N(λ)=m/(N(a)D)

Qs−1

(
1 + |(z1 − λ′/b)(z2 − λ/b) +B|2

2y1y2B

)

=
∑

λ∈Rb(a,m)

∑
µ∈a

Qs−1

1 +

∣∣∣(z1 − λ′+bµ′

N(a)b

) (
z2 − λ+bµ

N(a)b

)
+B

∣∣∣2
2y1y2B


=

∑
λ∈Rb(a,m)

∑
µ∈a−1

Qs−1

1 +

∣∣∣(z1 + µ+ λ′

N(a)b

) (
z2 + µ′ + λ

N(a)b

)
+B

∣∣∣2
2y1y2B

 .
Hence, the problem is deduced to computing the Fourier expansion of the a−1 periodic
function HB

s (a−1, z) with

HB
s (b, z) :=

∑
µ∈b

Qs−1

(
1 + |(z1 + µ)(z2 + µ′) +B|2

2y1y2B

)
. (3.4)

Namely, let
HB
s (b, z) =

∑
ν∈(bd)−1

bBs (b, ν, y)e(tr(νx))

be the Fourier expansion of HB
s (b, z). Then we have

Φb(a,m, s, z) =
∑

λ∈Rb(a,m)

∑
ν∈ad−1

bBs (a−1, ν, y)e
(
tr
(
ν
(
x+ λ′

N(a)b

)))

=
∑

ν∈ad−1

 ∑
λ∈Rb(a,m)

e
(
tr
(

νλ′

N(a)b

)) bBs (a−1, ν, y)e(tr(νx))

=
∑

ν∈ad−1

Gb(a,m, ν)bBs (a−1, ν, y)e(tr(νx))
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with the finite exponential sum

Gb(a,m, ν) :=
∑

λ∈ad−1/ba
N(λ)
N(a) ≡− m

D
(bZ)

e
(
tr
(

νλ′

N(a)b

))
. (3.5)

Remark 3.2.2. For fixed a ∈ IK the exponential sum Gb(a,m, ν) is defined for ν ∈ ad−1.
The relation

Gb(a,m, ν) = Gb(µa,m, µν)
for all µ ∈ K× is directly apparent from the definition. This implies that the sum is
essentially defined for ideal classes [a] ∈ ClK .
Definition 3.2.3. For shorter notation we define for ν ∈ K×

Iνκ(z) :=
{
Iκ(z), N(ν) > 0,
Jκ(z), N(ν) < 0.

Here, Iκ(z) and Jκ(z) denote the respective Bessel functions, i.e., Iκ(z) is the modified
Bessel function of the first kind (cf. [OLBC10, 10.25.2]) and Jκ(z) is the Bessel function
of the first kind (cf. [OLBC10, 10.2.2]). By Kκ(z) we denote the modified Bessel function
of the second kind (cf. [OLBC10, 10.25.3]).
Lemma 3.2.4. Let b ∈ IK and B > 0. The function HB

s (b, z) defined by equation (3.4)
converges normally for ℜ(s) > 1/2 and for those z ∈ H2 at which no term in the series
has a singularity, i.e., the arguments of all Qs−1 are greater than 1. For y1y2 > B this is
the case and the series has the Fourier expansion

HB
s (b, z) =

∑
ν∈(bd)−1

bBs (b, ν, y)e(tr(νx))

with

bBs (b, 0, y) = πΓ(s− 1/2)2

2
√
DN(b)Γ(2s)

(4B)s(y1y2)1−s,

bBs (b, ν, y) = 4π
N(b)

√
By1y2
D

Iν2s−1

(
4π
√
B|N(ν)|

)
Ks−1/2(2π|ν|y1)

×Ks−1/2(2π|ν ′|y2), if ν ̸= 0.

Proof. An easy computation shows that for fixed µ ∈ K and fixed y1, y2 > 0 the equation

(z1 + µ)(z2 + µ′) +B = 0

has a solution in terms of x1, x2 ∈ R if and only if y1y2 ≤ B. This shows that in case
y1y2 > B all terms of the series are well-defined. Using [Bru99, Lemma 2] it is only left
to note that by Poisson summation we have

bBs (b, ν, y) = 1
vol(b)

∫
R2
Qs−1

(
1 + |z1z2 +B|2

2y1y2B

)
e(− tr(νx))dx1dx2
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with vol(b) = N(b)
√
D. Hence, the integral is solved up to the factor N(b) in the cited

source.

We are left with the analysis of Φ0(a,m, s, z). We have

Φ0(a,m, s, z) =
∑

A=
(
a λ′
λ 0

)
∈L(a)∨

det(A)=m/(N(a)D)

Qs−1 (1 + 2g(A, z))

=
∑

a∈Z/N(a), λ∈ad−1/N(a)
−N(λ)=m/(N(a)D)

Qs−1

(
1 + | − λz1 − λ′z2 + a|2

2y1y2m/(N(a)D)

)

= 2
∑

λ∈Λ+(a,m)

∑
a∈Z

Qs−1

(
1 + |λz1 + λ′z2 + a|2

2y1y2mN(a)/D

)
.

Let us define for r1, r2 ∈ R

α(r1, r2) := max(|r1|, |r2|) and β(r1, r2) := min(|r1|, |r2|). (3.6)

Lemma 3.2.5. The series

Φ0(a,m, s, z) = 2
∑

λ∈Λ+(a,m)

∑
a∈Z

Qs−1

(
1 + |λz1 + λ′z2 + a|2

2y1y2mN(a)/D

)

converges normally for z ∈ H2 \ T∞(a,m) and ℜ(s) > 1/2. Moreover, on H2 \ S(a,m)
one has the Fourier expansion

Φ0(a,m, s, z) = 4π
2s− 1

∑
λ∈Λ+(a,m)

α(λy1, λ
′y2)1−sβ(λy1, λ

′y2)s

+ 4π
∑

λ∈Λ+(a,m)

∞∑
n=1

√
|λλ′y1y2|Is−1/2(2πnβ(λy1, λ

′y2))

× Ks−1/2(2πnα(λy1, λ
′y2)) (e(n tr(λx)) + e(−n tr(λx))) .

Proof. Clearly z ∈ T∞(a,m) is equivalent to having one term in the series undefined
(cf. representation (2.44) of T∞(a,m)). If all terms in the series are well-defined, the
convergence statement can be easily verified. Let λ ∈ Λ+(a,m) be fixed. Then we have

∑
a∈Z

Qs−1

(
1 + |λz1 + λ′z2 + a|2

2y1y2mN(a)/D

)

=
∑
a∈Z

Qs−1

(
1 + (λx1 + λ′x2 + a)2 + (λy1 + λ′y2)2

2y1y2|λλ′|

)

=
∑
a∈Z

Qs−1

(
(λx1 + λ′x2 + a)2 + λ2y2

1 + λ′2y2
2

2y1y2|λλ′|

)
=hα(λy1,λ′y2),β(λy1,λ′y2)(s, tr(λx))
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with
hα,β(s, x) :=

∑
a∈Z

Qs−1

(
(x+ a)2 + α2 + β2

2αβ

)
.

By [Bru99, proof of Lemma 1] the Z periodic function hα,β(s, x) has for α > β > 0 and
ℜ(s) > 1/2 the Fourier expansion

hα,β(s, x) =
∑
n∈Z

aα,β(s, n)e(nx)

with

aα,β(s, n) =
{ 2π

2s−1α
1−sβs, n = 0,

2π
√
αβKs−1/2(2π|n|α)Is−1/2(2π|n|β), n ̸= 0.

This finishes the proof. Note that α(λy1, λ
′y2) > β(λy1, λ

′y2) is equivalent to z ∈ H2 not
being in the component Sλ of S(a,m).

We summarize the results of this section in the following theorem.

Theorem 3.2.6. The Fourier expansion of Φ(a,m, s, z) is given by∑
ν∈ad−1

uν(a,m, s, y)e(tr(νx))

with

u0(a,m, s, y) = 4π
2s− 1

∑
λ∈Λ+(a,m)

α(λy1, λ
′y2)1−sβ(λy1, λ

′y2)s

+ πΓ(s− 1/2)2
√
DΓ(2s)

(4m/D)s (N(a)y1y2)1−s
∞∑
b=1

Gb(a,m, 0)b−2s

and

uν(a,m, s, y) =ũν(a,m, s, y) + δ− N(ν)D
N(a)m

=□
4π
√
mN(a)y1y2/D

× Is−1/2(2πβ(νy1, ν
′y2))Ks−1/2(2πα(νy1, ν

′y2))

with

ũν(a,m, s, y) :=8π
D

√
mN(a)y1y2Ks−1/2(2π|ν|y1)Ks−1/2(2π|ν ′|y2)

×
∞∑
b=1

Gb(a,m, ν)
b

Iν2s−1

(
4π
b

√
m|N(ν)|
N(a)D

)

for ν ≠ 0. Note that uν(a,m, s, y) = ũν(a,m, s, y) if and only if −N(ν)D
N(a)m is not a square

number which is only possible for N(ν) < 0. The Fourier series converges to Φ(a,m, s, z)
for ℜ(s) > 1, z ∈ H2 \ S(a,m) and y1y2 > m/(N(a)D).
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3.3 Regularization

In this section we regularize Φ(a,m, s, z) at s = 1 and compute the Fourier expansion of
the regularization.

In the previous section we have decomposed Φ(a,m, s, z) into

Φ(a,m, s, z) = Φ0(a,m, s, z) + 2
∞∑
b=1

Φb(a,m, s, z)

and computed the Fourier expansion for each Φb(a,m, s, z). We saw that they are
convergent and well-defined for ℜ(s) > 1/2, hence in particular for s = 1. Therefore, the
convergence issue of Φ(a,m, s, z) at s = 1 is not related to a particular Φb(a,m, s, z) but
arises solely from their infinite sum. The Fourier expansions of the Φb(a,m, s, z) contain
finite exponential sums Gb(a,m, ν) (cf. equation (3.5) for their definition). In order to
understand which parts of the Fourier expansion are mild and which cause the divergence
at s = 1 we need to understand the growth behaviour of Gb(a,m, ν) for growing b ∈ N. It
turns out that we have to distinguish between ν ∈ ad−1 \ {0} and ν = 0. By generalizing
the results of Zagier in [Zag75, §4 Proposition] to arbitrary a ∈ IK , we can infer the
following two lemmata as presented in [Bru99, p. 65–66] which answer the two cases
respectively.

Lemma 3.3.1. For each a ∈ IK there exists a constant C > 0 such that

|Gb(a,m, ν)| ≤ Cd(b)
√
b|N(ν)|

for all m ∈ Z, ν ∈ ad−1 \ {0} and b ∈ N.

Lemma 3.3.2. The series ∞∑
b=1

Gb(a,m, 0)b−2s

converges for ℜ(s) > 1 and has a meromorphic continuation to ℜ(s) > 3/4 with a simple
pole at s = 1.

Proposition 3.3.3. Let b0 ∈ N. Then the series∑
ν∈ad−1
ν ̸=0

ũb0
ν (a,m, s, y)e(tr(νx))

with

ũb0
ν (a,m, s, y) :=8π

D

√
mN(a)y1y2Ks−1/2(2π|ν|y1)Ks−1/2(2π|ν ′|y2)

×
∞∑
b=b0

Gb(a,m, ν)
b

Iν2s−1

(
4π
b

√
m|N(ν)|
N(a)D

)

converges for ℑ(z) > m/(DN(a)b2
0) and ℜ(s) > 3/4 normally to a smooth function in z

and a holomorphic function in s.
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Proof. We first show that ũb0
ν (a,m, s, y) is well-defined for ℜ(s) > 3/4 by showing that

∞∑
b=b0

Gb(a,m, ν)
b

Iν2s−1

(
4π
b

√
m|N(ν)|
N(a)D

)

converges for fixed ν ̸= 0. For large b the argument of the Bessel function approaches 0.
By [OLBC10, 10.30.1 and 10.7.3] we have

Iνκ ∼ (z/2)κ
Γ(κ+ 1)

for κ /∈ −N and z → 0. Hence, the Bessel factor behaves like

1
Γ(2s)

(
2π
b

√
m|N(ν)|
N(a)D

)2s−1

for large b. With Lemma 3.3.1 there exists a C > 0 with∣∣∣∣∣Gb(a,m, ν)
b

∣∣∣∣∣ ≤ Cd(b)
√

|N(ν)|/b.

Therefore, in total it is enough to investigate the convergence of

∞∑
b=b0

Cd(b)
√

|N(ν)|/b 1
Γ(2s)

(
2π
b

√
m|N(ν)|
N(a)D

)2s−1

=C(2π)2s−1

Γ(2s)

(
m

N(a)D

)s−1/2
|N(ν)|s

∞∑
b=1

d(b)b1/2−2s.

Clearly, the series ∑∞
b=b0 d(b)b1/2−2s converges if and only if ℜ(s) > 3/4 because d(b)

grows slower than bε for all ε > 0.
The above argument showed that ũb0

ν (a,m, s, y) converges for fixed ν. Now we have
to show that ũb0

ν (a,m, s, y) decays faster than any polynomial for growing (ν, ν ′). This
implies by Fourier theory the convergence and smoothness of the above series in x. The
smoothness in y follows since our next argument also holds for all derivatives in y. The
normal convergence in s implies the holomorphicity.

By [OLBC10, 10.25.3] we have

Kκ(z) ∼
√
π

2z exp(−z)

for z → ∞. Hence, for large (ν, ν ′) we have

Ks−1/2(2π|ν|y1)Ks−1/2(2π|ν ′|y2) ∼ exp(−2π tr(|ν|y))
4
√

|N(ν)y1y2|
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which gives us an exponential decay in (ν, ν ′). However, the estimate we did above for

∞∑
b=b0

Gb(a,m, ν)
b

I2s−1

(
4π
b

√
m|N(ν)|
N(a)D

)

cannot be applied in this situation since we fixed ν above and we were only interested in
convergence (so we could ignore the magnitude of finitely many terms with a relatively
small b). However, if the argument of the Iκ Bessel function is large, it has exponential
growth

Iκ(z) ∼ exp(z)√
2πz

for z → ∞ (cf. [OLBC10, 10.30.4]). The magnitude of the whole sum over b is hence
determined by the first term. We neglect the factors decorating the exponentials since
the latter themselves dictate the growth or decay behavior. Therefore, we consider

exp(−2π tr(|ν|y)) exp
(

4π
b0

√
m|N(ν)|
N(a)D

)
.

Now let
c :=

√
m

DN(a)b2
0y1y2

.

Then we have

exp
(

−2π tr(|ν|y) + 4π
b0

√
m|N(ν)|
N(a)D

)

= exp
(

−2π
(

|ν|y1 + |ν ′|y2 − 2c
√

|N(ν)|y1y2

))
= exp(−2π(1 − c) tr(|ν|y)) exp

(
−2πc

(√
|ν|y1 −

√
|ν ′|y2

)2
)

≤ exp(−2π(1 − c) tr(|ν|y)).

In case c < 1, which is equivalent to the condition ℑ(z) > m/(DN(a)b2
0) in the statement

of the proposition, this gives us the exponential decay in (ν, ν ′) we aimed for.
The respective treatment of the Jκ Bessel function in case N(ν) < 0 is no problem

since the Jκ Bessel function is bounded.

Theorem 3.3.4. The function Φ(a,m, s, z) has a meromorphic continuation in s to
{s ∈ C : ℜ(s) > 3/4} for all z ∈ H2 \ T (a,m). Up to a simple pole at s = 1 it is
holomorphic in this domain.

Proof. First of all, let b ∈ N0. Recall that Φb(a,m, s, z) is holomorphic in s for ℜ(s) > 1/2
for z ∈ H2 outside the singularities along TA with A ∈ L(a)∨ and det(A) = m/(N(a)D)
and ±b being the lower right entry of A. Therefore, we do not have to care about
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finitely many Φb(a,m, s, z). Let z ∈ H2 \ T (a,m) be fixed. Then we find b0 ∈ N with
ℑ(z) > m/(DN(ab2

0)). Proposition 3.3.3 implies that the underlying Fourier series of
∞∑
b=b0

Φb(a,m, s, z)

converges normally for ℜ(s) > 3/4 to a holomorphic function in s when the constant
Fourier coefficients are neglected. Hence, we are left with the analysis of the series of the
constant Fourier coefficients

πΓ(s− 1/2)2
√
DΓ(2s)

(4m/D)s (N(a)y1y2)1−s
∞∑
b=b0

Gb(a,m, 0)b−2s.

The factors in front of the Gb series are nicely holomorphic in s and the Gb series itself is
treated in Lemma 3.3.2 which finishes the proof.

Theorem 3.3.4 allows us now to define the regularized automorphic Green function
Φ(a,m, z).

Definition 3.3.5. We define

Φ(a,m, z) := Cs=1 [Φ(a,m, s, z)]

to be the constant term in the Laurent expansion of Φ(a,m, s, z) at s = 1.

By construction Φ(a,m, z) is Γa invariant and we expect logarithmic singularities
along −T (a,m). A formal proof of the latter is given in Proposition 3.6.1.

3.4 Fourier expansion of the regularized Green function

In this section we state the Fourier expansion of the regularized Green function Φ(a,m, z).
This follows straightforward from Theorem 3.2.6. Subsequently, we do some refactoring
of the parts essential for the growth behavior at the cusp ∞.

Theorem 3.4.1. The residue of Φ(a,m, s, z) at s = 1 is independent of z. Hence, we
have

Φ(a,m, z) = lim
s→1

(
Φ(a,m, s, z) − q(a,m)

s− 1

)
with

q(a,m) := ress=1 (Φ(a,m, s, z)) .
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Furthermore, there exists a constant L(a,m) such that the Fourier expansion of Φ(a,m, z)
is given for z ∈ H2 \ S(a,m) with ℑ(z) > m/(DN(a)) by

Φ(a,m, z) = L(a,m) − q(a,m) log(16π2y1y2)
+ 4π

∑
λ∈Λ+(a,m)

β(λy1, λ
′y2)

+
∑

λ∈Λ+(a,m)

∞∑
n=1

e−2πn| tr(λy)| − e−2πn(λy1−λ′y2)

n
(e(n tr(λx)) + e(−n tr(λx)))

+
∑

ν∈ad−1
ν ̸=0

2π
D

√
mN(a)
|N(ν)| exp(−2π tr(|ν|y))

×
∞∑
b=1

Gb(a,m, ν)
b

Iν1

(
4π
b

√
m|N(ν)|
N(a)D

)
e(tr(νx)).

Remark 3.4.2. The residue q(a,m) of Φ(a,m, s, z) at s = 1 can be made explicit in
terms of a generalized divisor sum. This is carried out in the special case of a prime
discriminant D with a = OK in [BBGK07, Section 2.3]. We discuss the results of that
special case in Section 3.9. It follows q(a,m) = O(m2). Respectively, the constant
L(a,m) can be expressed using a generalized divisor sum and its derivative. It follows
L(a,m) = O(m2 log(m)). Later, in Theorem 3.8.11 we show that q(a,m) is proportional
to the volume of T (a,m) which then gives explicit formulae for vol(T (a,m)). This again
implies that q(a,m) grows polynomially in m because the volumes can be interpreted as
coefficents of vector valued Eisenstein series of weight 2 by [Kud03, Theorem I].

Proof of Theorem 3.4.1. The theorem follows from Theorem 3.2.6 by plugging in s = 1 for
those terms which converge and determining the constant term of the Laurent expansion
for the diverging part. We do this now step by step and start with the diverging series

πΓ(s− 1/2)2
√
DΓ(2s)

(4m/D)s (N(a)y1y2)1−s
∞∑
b=1

Gb(a,m, 0)b−2s. (3.7)

This expression can be written by f(s)(y1y2)1−s with a meromorphic function f(s)
independent of z having a simple pole at s = 1 (cf. Lemma 3.3.2). Therefore, we have

q(a,m) = ress=1 (Φ(a,m, s, z)) = ress=1
(
f(s)(y1y2)1−s

)
= ress=1 (f(s)) .

Now, the constant term of f(s)(y1y2)1−s computes to

Cs=1[f(s)]
[
(y1y2)1−s

]
s=1

+ ress=1[f(s)]
[
− log(y1y2)(y1y2)1−s

]
s=1

= Cs=1[f(s)] − q(a,m) log(y1y2)
= Cs=1[f(s)] + q(a,m) log(16π2)︸ ︷︷ ︸

=:L(a,m)

−q(a,m) log(16π2y1y2).
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This explains the part L(a,m)− q(a,m) log(16π2y1y2). The sum over β(λy1, λ
′y2) follows

directly from the left over part of u0(a,m, s, y).
The next term has its origin from the non-constant Fourier coefficients of Φ0(a,m, 1, z).

For general s they are computed in Lemma 3.2.5. By [OLBC10, 10.39.1 and 10.39.2] we
have

I1/2(z) =
√

2
πz

sinh(z) = ez − e−z
√

2πz
and K1/2(z) =

√
π

2z exp(−z).

Let λ ∈ Λ+(a,m) and n ∈ N be fixed. We abbreviate α(λy1, λ
′y2) with α and β(λy1, λ

′y2)
with β and compute for s = 1

Is−1/2(2πnβ(λy1, λ
′y2))Ks−1/2(2πnα(λy1, λ

′y2))

=exp(2πnβ) − exp(−2πnβ)√
4π2nβ

· exp(−2πnα)√
4nα

=exp(−2πn(α− β)) − exp(−2πn(α+ β)
4πn

√
αβ

.

Note that

αβ = |λλ′y1y2|, α+ β = λy1 − λ′y2, α− β = |λy1 + λ′y2| = | tr(λy)|.

Therefore, we have

4π
∑

λ∈Λ+(a,m)

∞∑
n=1

√
|λλ′y1y2|Is−1/2(2πnβ(λy1, λ

′y2))

× Ks−1/2(2πnα(λy1, λ
′y2)) (e(n tr(λx)) + e(−n tr(λx)))

=
∑

λ∈Λ+(a,m)

∞∑
n=1

e−2πn| tr(λy)| − e−2πn(λy1−λ′y2)

n
(e(n tr(λx)) + e(−n tr(λx))) .

What is left over are the contributions of the non-constant Fourier coefficients for
Φb(a,m, 1, z) with b ∈ N. We use the above identity of K1/2(z) one more time and see

K1/2(2π|ν|y1)K1/2(2π|ν ′|y2) = exp(−2π tr(|ν|y))
4
√

|N(ν)|y1y2
.

Therefore, we have

ũν(a,m, 1, y) =2π
D

√
mN(a)
|N(ν)| exp(−2π tr(|ν|y))

×
∞∑
b=1

Gb(a,m, ν)
b

Iν1

(
4π
b

√
m|N(ν)|
N(a)D

)

which finishes the proof.
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Lemma 3.4.3. We have for z ∈ H2 \ S(a,m)

∑
λ∈Λ+(a,m)

∞∑
n=1

e−2πn| tr(λy)| − e−2πn(λy1−λ′y2)

n
(e(n tr(λx)) + e(−n tr(λx)))

= −4π
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2) + 2 log
∏

λ∈Λ+(a,m)

∣∣∣∣∣1 − e(|λ|z1)e(|λ′|z2)
e(|λ|z1) − e(|λ′|z2)

∣∣∣∣∣ .
Proof. We compute the inner sum on the left hand side for fixed λ ∈ Λ+(a,m). Because
the fraction is real and e(n tr(λx)) = e(−n tr(λx)), the value of the whole sum is twice
the real part of half of the sum (considering only one factor of the two conjugate factors).
Recall the power series of the logarithm

∞∑
n=1

qn

n
= − log(1 − q)

for |q| < 1. Let us assume tr(λy) > 0 first (we can exclude tr(λy) = 0 because that is
equivalent to z ∈ Sλ ⊂ S(a,m)). Then we have

∞∑
n=1

e−2πn| tr(λy)|

n
e(n tr(λx)) =

∞∑
n=1

e(n tr(λz))
n

= − log(1 − e(tr(λz))).

Note that log(|e(z̃)|) = −2πỹ for z̃ ∈ C. Twice the real part is hence

−2ℜ(log(1 − e(tr(λz)))) = −2 log(|1 − e(λz1)e(λ′z2)|)
= −2 log(|e(λ′z2)| · |e(−λ′z2) − e(λz1)|)
= 4πλ′y2 − 2 log(|e(|λ|z1) − e(|λ′|z2)|).

Now let us consider tr(λy) < 0. Then we have
∞∑
n=1

e−2πn| tr(λy)|

n
e(−n tr(λx)) =

∞∑
n=1

e(−n tr(λz))
n

= − log(1 − e(− tr(λz))).

Twice the real part is now

−2 log(|1 − e(− tr(λz))|) = −2 log(|e(−λz1)| · |e(λz1) − e(−λ′z2)|)
= −4πλy1 − 2 log(|e(|λ|z1) − e(|λ′|z2)|).

In total we have seen
∞∑
n=1

e−2πn| tr(λy)|

n
(e(n tr(λx)) + e(−n tr(λx)))

= −4πβ(λy1, λ
′y2) − 2 log(|e(|λ|z1) − e(|λ′|z2)|).
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Let us now consider the missing part
∞∑
n=1

−e−2πn(λy1−λ′y2)

n
(e(n tr(λx)) + e(−n tr(λx))) .

We have
∞∑
n=1

−e−2πn(λy1−λ′y2)

n
e(n tr(λx)) =

∞∑
n=1

−e(nλz1)e(nλ′z2)
n

= log(1 − e(λz1)e(λ′z2))
= log(1 − e(λz1)e(−λ′z2)).

Twice the real part is now

2 log(|1 − e(|λ|z1)e(|λ′|z2)|).

The statement of the lemma follows now from the functional equation of the logarithm.

Lemma 3.4.3 gives rise to the following simplification of Theorem 3.4.1.

Theorem 3.4.4. The Green function Φ(a,m, z) is given for z ∈ H2 \ S(a,m) with ℑ(z) >
m/(DN(a)) by

Φ(a,m, z) = L(a,m) − q(a,m) log(16π2y1y2)

+ 2 log
∏

λ∈Λ+(a,m)

∣∣∣∣∣1 − e(|λ|z1)e(|λ′|z2)
e(|λ|z1) − e(|λ′|z2)

∣∣∣∣∣
+

∑
ν∈ad−1
ν≫0

2π
D

√
mN(a)
|N(ν)|

∞∑
b=1

Gb(a,m, ν)
b

I1

(
4π
b

√
m|N(ν)|
N(a)D

)

×
(
e(tr(νz)) + e(tr(νz))

)
+

∑
ν∈ad−1

ν>0, ν′<0

2π
D

√
mN(a)
|N(ν)|

∞∑
b=1

Gb(a,m, ν)
b

J1

(
4π
b

√
m|N(ν)|
N(a)D

)

×
(
e(νz1)e(−ν ′z2) + e(νz1)e(−ν ′z2)

)
.

Proof. Starting from Theorem 3.4.1, the main work was done in Lemma 3.4.3. For the
different notation of the exponentials in the last lines verify for ν ∈ K×

e(tr(νx))e(i tr(|ν|y)) =


e(tr(νz)), ν ≫ 0,
e(− tr(νz)), ν ≪ 0,
e(νz1)e(−ν ′z2), ν > 0, ν ′ < 0,
e(−νz1)e(ν ′z2), ν < 0, ν ′ > 0.
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Finally, by definition (3.5) of the exponential sum Gb(a,m, ν) we have

Gb(a,m, ν) = Gb(a,m,−ν)

since the index set of the sum is invariant under multiplication with −1.

Proposition 3.4.5. The regularized Green function Φ(a,m, z) is real analytic and
satisfies for j ∈ {1, 2}

∆jΦ(a,m, z) = q(a,m).

Proof. We want to give two independent arguments for the Laplace equation. The first
one considers equation (3.3)

∆jΦ(a,m, s, z) = s(s− 1)Φ(a,m, s, z)

which holds a priori for ℜ(s) > 1. However, the right hand side is defined for ℜ(s) > 3/4
as well by analytic continuation and is even holomorphic there. Therefore,

∆jΦ(a,m, z) = [s(s− 1)Φ(a,m, s, z)]s=1 = ress=1 (Φ(a,m, s, z)) = q(a,m).

The other argument is based on the representation of Φ(a,m, z) in Theorem 3.4.4. We
see that all terms except for −q(a,m) log(16π2y1y2) are the real part of a holomorphic
function (in z1 or z2, respectively). This proves that Φ(a,m, z) is real analytic and the
Laplace equation follows with

∆j log(16π2y1y2) = ∆j log(yj) = −1.

3.5 Local Borcherds product

In this section, we define for each ideal a ∈ IK the local Borcherds product Ψ(a,m, z) at
infinity in X(a), obtain interesting representations and express it in local coordinates to
determine its vanishing orders along the components of the exceptional divisor E∞(a).
The motivation is that the logarithmic singularities of Φ(a,m, z) at and near infinity match
up to a factor the logarithm of |Ψ(a,m, z)|. The latter is analyzed in Corollary 3.5.7.

Definition 3.5.1. Let
σ : Λ+(a,m) → {±1}

be a sign function with

lim
λ→0

σ(λ) = +1 and lim
λ→∞

σ(λ) = −1.

We define for z ∈ H2

Ψσ(a,m, z) :=
∏

λ∈Λ+(a,m)
σ(λ)ψλ(z) with ψλ(z) := e(|λ|z1) − e(|λ′|z2).
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Remark 3.5.2. The function σ in the definition of Ψσ(a,m, z) is there for technical
reasons only to make the product convergent. Namely, for fixed z ∈ H2 we have

lim
λ→0

ψλ(z) = +1 and lim
λ→∞

ψλ(z) = −1.

By the equivalence relation

σ1 ∼ σ2 :⇔
∏

λ∈Λ+(a,m)
σ1(λ)σ2(λ) = 1

we partition the set of all admissible sign functions σ into two classes. Note that the
product defining the equivalence relation is well-defined since almost all factors are equal
to 1. We have

Ψσ1(a,m, z) = Ψσ2(a,m, z) ⇔ σ1 ∼ σ2

and
Ψσ1(a,m, z) = −Ψσ2(a,m, z) ⇔ σ1 ̸∼ σ2.

There is no canonical choice for the sign function σ, that is why we have to include it
in the definition of Ψσ(a,m, z). Later we are mostly interested in |Ψ(a,m, z)| where the
original sign of the product does not matter anymore. Whenever the sign is unimportant
we simply write Ψ(a,m, z).

Proposition 3.5.3. The product Ψσ(a,m, z) is a holomorphic function on H2 with
simple roots at T∞(a,m). Let n ∈ 2N with

n

1 − ε2
0

∈ OK .

Then Ψ(a,m, z)n is invariant under Γa,∞.

Proof. Clearly, each ψλ(z) for λ ∈ Λ+(a,m) is holomorphic. Consider

ψλ(z) = 0 ⇔ e(λz1) = e(−λ′z2)
⇔ e(tr(λz)) = 1
⇔ tr(λz) ∈ Z

to see that ψλ(z) vanishes if and only if z lies in the components of T∞(a,m) belonging
to λ (cf. representation (2.44) of T∞(a,m)). Further, from e(z) having a non-vanishing
derivative it follows that all zeros of ψλ(z) are simple. Hence, the normal convergence of
the product proves that Ψ(a,m, z) is a holomorphic function on H2 with simple roots at
T∞(a,m).

To prove the Γa,∞ invariance we make use of the decomposition

Γa,∞ ∼= a−1 ⋊ (O×
K)2

and show the invariance for both factors individually. For ε2 ∈ (O×
K)2 it is immediate by

the definition of ψλ(z) that we have

ψλ(ε2z) = ψε2λ(z).
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Because n is even we do not have to bother about the sign. Hence, the factors are only
permuted by the action of (O×

K)2. However, for µ ∈ a−1 we have

ψλ(z + µ) = e(λ(z1 + µ)) − e(−λ′(z2 + µ′))
= e(λz1)e(λµ) − e(−λ′z2)e(−λ′µ′)
= e(λµ)

(
e(λz1) − e(−λ′z2)e(−λµ)e(−λ′µ′)

)
= e(λµ)ψλ(z).

Here we used tr(λµ) ∈ Z which is true because ad−1 is the trace dual of a−1. Analogously,
we can factor e(−λ′µ′) out to obtain

ψλ(z + µ) = e(−λ′µ′)ψλ(z).

In particular, we have e(λµ) = e(−λ′µ′) which can also be seen directly using tr(λµ) ∈ Z.
The set Λ+(a,m) decomposes into finitely many (O×

K)2 orbits. For each orbit we have∏
k∈Z

ψε2k
0 λ(z + µ)n =

∏
k∈Z

ψε2k
0 λ(z)n ·

∏
k∈Z

e(λε2k
0 µ)n.

To compute the later product we use
∏
k∈Z

e(λε2k
0 µ) =

∞∏
k=1

e(λε−2k
0 µ) ·

∞∏
k=0

e(−λ′ε−2k
0 µ′).

Using the functional equation, this boils down to computing the sum
∞∑
k=1

λε−2k
0 µ−

∞∑
k=0

λ′ε−2k
0 µ′ = λµ

ε−2
0

1 − ε−2
0

− λ′µ′ 1
1 − ε−2

0

= λµ
1

ε2
0 − 1 − λ′µ′

( 1
1 − ε2

0

)′
= tr

(
λµ

ε2
0 − 1

)
.

Hence, we have proven ∏
k∈Z

e(λε2k
0 µ)n = e

(
tr
(
nλµ

ε2
0 − 1

))
.

By the choice of n we have
nλ

ε2
0 − 1 ∈ ad−1

which proves
tr
(
nλµ

ε2
0 − 1

)
∈ Z.

Hence, the infinite product ∏
k∈Z

ψε2k
0 λ(z)n

is invariant under translation by a−1 and therefore invariant under Γa,∞. The same holds
for Ψ(a,m, z)n which is a finite product of such factors.
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An easy way to come up with an admissible sign function σ is to partition the set
Λ+(a,m) into a lower and an upper part with respect to a fixed w ∈ (R+)2 using the
trace by

σw : Λ+(a,m) → {±1} , σw(λ) :=
{

+1, tr(λw) < 0,
−1, tr(λw) ≥ 0.

The next proposition states a useful representation of Ψσw .
Proposition 3.5.4. Let w ∈ (R+)2 and let

Λw :=
{
λ ∈ Λ+(a,m) : tr(λw) ≥ 0

}
∪
{
λ ∈ Λ−(a,m) : tr(λw) > 0

}
.

Then we have

Ψσw(a,m, z) = e (tr (ρ(a,m,w)z))
∏
λ∈Λw

(1 − e(tr(λz))) .

Proof. Note that Λw is a set of representatives of Λ(a,m)/ {±1}. Let λ ∈ Λ+(a,m) ∩ Λw.
Then we have σw(λ) = −1 and

σw(λ)ψλ(z) = e(−λ′z2) − e(λz1) = e(−λ′z2)(1 − e(tr(λz))).

On the other hand, for λ ∈ Λ−(a,m) ∩ Λw we have −λ ∈ Λ+(a,m), σw(−λ) = 1 and

σw(−λ)ψ−λ(z) = e(−λz1) − e(λ′z2) = e(−λz1)(1 − e(tr(λz))).

Hence, this proves

Ψσw(a,m, z) =
∏
λ∈Λw

(1 − e(tr(λz))) ×
{
e(−λ′z2), λ > 0,
e(−λz1), λ < 0.

(3.8)

Using R(a,m,w), the set of reduced λ ∈ Λ+(a,m) with respect to w, we can express all
elements of Λw by ⋃

λ∈R(a,m,w)

{
λε2k

0 : k ∈ 2N0
}

∪
{

−λε−2k
0 : k ∈ 2N

}
.

Therefore, the product of the second factors of (3.8) is given by
∏

λ∈R(a,m,w)

( ∞∏
k=0

e(−(λε2k
0 )′z2) ×

∞∏
k=1

e(−(−λε−2k
0 )z1)

)
. (3.9)

We compute both inner products for a fixed λ ∈ R(a,m,w) using the functional equation
∞∑
k=0

−λ′ε−2k
0 z2 +

∞∑
k=1

λε−2k
0 z1 = −λ′z2

1
1 − ε−2

0
+ λz1

ε−2
0

1 − ε−2
0

= λ

ε2
0 − 1z1 −

(
λ

1 − ε2
0

)′
z2

= tr
(

λ

ε2
0 − 1z

)
.
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Using the definition of the Weyl vector (cf. equation (2.47)), we obtain∑
λ∈R(a,m,w)

tr
(

λ

ε2
0 − 1z

)
= tr (ρ(a,m,w)z)

and hence
e (tr (ρ(a,m,w)z))

as the result of the product (3.9) in accordance to the statement of the proposition which
finishes the proof.

The classic approach introducing the local Borcherds product makes use of Weyl
chambers (cf. [BvdGHZ08, p. 153, eq. (3.13)]). The next corollary shows that the
resulting product is the same.

Corollary 3.5.5. Let W ∈ W (a,m) be a Weyl chamber of index m. Let us fix one
z0 ∈ W to define σ(λ) := − sgn(tr(λy0)). Then we have

Ψσ(a,m, z) = e (tr (ρ(a,m,W )z))
∏

λ∈Λ(a,m)
(λ,W )>0

(1 − e(tr(λz))) .

Proof. Using w := y0, we have σ = σw, ρ(a,m,W ) = ρ(a,m,w) and

{λ ∈ Λ(a,m) : (λ,W ) > 0} = Λw

with Λw defined as in Proposition 3.5.4. Hence, the result is nothing but a direct
application of Proposition 3.5.4.

Proposition 3.5.6. Let (α, β) be a totally positive basis of a−1 and n ∈ N with
n

1 − ε2
0

∈ OK .

Then Ψ(a,m, z)n is invariant under a−1 and possesses a holomorphic extension to u =
0 and v = 0 in local coordinates (u, v) with respect to (α, β). At u = 0 (v = 0,
respectively) the product vanishes. Its order of vanishing along u (v, respectively) is given
by n tr(ρ(a,m, α)α) (n tr(ρ(a,m, β)β), respectively).

Proof. Since α and β (and hence u and v) are interchangeable, we prove the result for v
only. By Proposition 3.5.4 the Borcherds product is expressible as

e (tr (ρ(a,m, β)z))
∏
λ∈Λβ

(1 − e(tr(λz))) .

By Lemma 2.7.1 each factor of the product is a−1 invariant and we have∏
λ∈Λβ

(1 − e(tr(λz))) =
∏
λ∈Λβ

(1 − utr(λα)vtr(λβ))

in local coordinates. We list some facts we know about the exponents of u and v:
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(i) We have tr(λα) ∈ Z and tr(λβ) ∈ N0 for all λ ∈ Λβ.

(ii) For each m ∈ Z there are at most two λ ∈ Λβ with tr(λα) = m (tr(λβ) = m
respecively).

(iii) There are only finitely many λ ∈ Λβ with tr(λα) < 0.

Those facts imply that the product converges normally to a holomorphic function in u
and v in the domain {

(u, v) ∈ C2 : 0 < |u| < 1, |v| < 1
}

and that it does not vanish at v = 0. Hence, we are left with inspecting the factor in
front of the product e(tr(ρz)) (for simplicity we abbreviate ρ := ρ(a,m, β) for the rest of
the proof). This factor might not be a−1 invariant but the n-th power is because we have
e(tr(ρz))n = e(tr(nρz)). Now by assumption on n and the definition of the Weyl vector
ρ (cf. (2.47)) we have nρ ∈ ad−1. Hence, Lemma 2.7.1 again implies the a−1 invariance
of e(tr(nρz)) and

e(tr(nρz)) = utr(nρα)vtr(nρβ).

By Lemma 2.8.7 the Weyl vector ρ is totally positive. That makes tr(ρβ) positive which
finishes the proof.

Corollary 3.5.7. The function

log |Ψ(a,m, z)|2

is well-defined in a neighborhood of the exceptional divisor E∞(a) ⊂ X(a) and has
logarithmic singularities along the divisor T∞(a,m) + Z∞(a,m).

Proof. Let n ∈ N be like in Proposition 3.5.3. Then Ψ(a,m, z)n is invariant under
Γa,∞. With Proposition 2.5.2 this shows that Ψ(a,m, z)n is well-defined on a punctured
neighborhood of ∞ in X(a)∗ and holomorphic there. With Proposition 3.5.6 we obtain
that Ψ(a,m, z)n is well-defined on E∞(a) as well, hence on a neighborhood of E∞(a) in
X(a), and that this extension is holomorphic. With Ψ(a,m, z)n being well-defined, of
course also

log |Ψ(a,m, z)|2 = 1
n

log |Ψ(a,m, z)n|2

is well-defined. Now, we come to prove the stated logarithmic singularities. For this
we have to show that the divisor of the holomorphic function Ψ(a,m, z)n agrees with
n(T∞(a,m) + Z∞(a,m)). By Proposition 3.5.3 the function Ψ(a,m, z)n vanishes of
order n at T∞(a,m) in X(a). By Proposition 3.5.6 the divisor nZ∞(a,m) provides the
correct multiplicities for the vanishing of Ψ(a,m, z)n along E∞(a). To see that, recall
definition (2.51) of Z∞(a,m) with (α, β) := (Ak−1, Ak) to realize that the multiplicities
of the components Sk of nZ∞(a,m) are precisely defined to match the multiplicites of
the zeros of Ψ(a,m, z)n along Sk.
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Until now we assumed m > 0 which is quite natural for the investigation of Φ(a,m, z)
since Φ(a,m, z) is the regularization of Φ(a,m, s, z) for m ∈ N. However, when we come
to Chapter 4 we will need a definition of Ψ(a,m, z) for m ∈ −N as well. Therefore, let
us discuss this case briefly.

Definition 3.5.8. For m ∈ −N we define

Ψ(a,m, z) :=
∏

λ∈Λ+(a,m)
(1 − e(tr(λz))) .

Each single factor of that product is invariant under translation by a−1. The operation
of (O×

K)2 permutes the factors. Because λ > 0 and λ′ > 0, each single factor equals 1 at
the cusp ∞. With respect to a totally positive basis (α, β) of a−1 it has the representation

Ψ(a,m, z) =
∏

λ∈Λ+(a,m)
(1 − utr(λα)vtr(λβ)).

Here tr(λα) and tr(λβ) are natural numbers. This proves the following proposition.

Proposition 3.5.9. For m ∈ −N the local Borcherds product Ψ(a,m, z) defines a
holomorphic nowhere vanishing function on H2 which is invariant under Γa,∞. It possesses
a holomorphic extension to the Hirzebruch desingularization of the cusp ∞ in the quotient
Γa,∞\H2 by being set to 1 at the cusp.

Remark 3.5.10. Note that Corollary 3.5.7 holds for m ∈ −N as well. In this case
Ψ(a,m, z) is holomorphic and different from 0 in a neighborhood of E∞(a) ⊂ X(a).
Therefore

log |Ψ(a,m, z)|2

has no singularity at all in a neighborhood of E∞(a) ⊂ X(a). This suits well since
T∞(a,m) = 0 and Z∞(a,m) = 0 by definition.

3.6 Growth analysis

In this section we prove that the automorphic Green functions Φ(a,m, z) are actual
Green functions, i.e., Φ(a,m, z) is a pre-log-log Green function (cf. Definition 2.9.7) on
X(a) with respect to the divisor Z(a,m).

Since Φ(a,m, z) has logarithmic singularities along −T (a,m) (this is formally proven
in the next proposition), it follows by the groundwork of Subsection 2.9.4 that [Φ(a,m, z)]
is a classical Green current on X(a). The part at the desingularization of the cusps
is more sophisticated since here we do not have purely logarithmic singularities but
additional pre-log-log growth. The goal of this section is to separate the logarithmic
singularities from the pre-log-log growth following Remark 2.9.9 to eventually obtain one
of the main theorems of this chapter, Theorem 3.6.5, which states that Φ(a,m, z) is a
pre-log-log Green function on X(a) with respect to the divisor Z(a,m).
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Proposition 3.6.1. The regularized automorphic Green function Φ(a,m, z) living on H2

has logarithmic singularities along −T (a,m).

Proof. Let z0 ∈ H2. If z0 /∈ T (a,m), we know that there exists a small neighborhood
U ⊂ H2 of z0 with U ∩ T (a,m) = ∅. Hence, by Proposition 3.4.5 Φ(a,m, z) is smooth on
U and nothing remains to show.

However, if z0 ∈ T (a,m), by Lemma 2.6.4 we find a small neighborhood U ⊂ H2 of
z0 such that only finitely many

A ∈ L :=
{
A ∈ L(a)∨ : det(A) = m/(N(a)D)

}
satisfy h(A, z) = 0 for any z ∈ U . Let us collect those matrices in the finite set F ⊂ L.
Then we have

Φ(a,m, z) = Cs=1

 ∑
A∈L\F

Qs−1 (1 + 2g(A, z))

+
∑
A∈F

Q0 (1 + 2g(A, z)) .

The first part is smooth in U and for the second part we have (cf. Section 3.1)∑
A∈F

Q0 (1 + 2g(A, z)) =
∑(

a λ′
λ b

)
∈F

log
∣∣∣∣bz1z2 − λz1 − λ′z2 + a

bz1z2 − λz1 − λ′z2 + a

∣∣∣∣
=

∑(
a λ′
λ b

)
∈F/{±1}

log
∣∣∣∣bz1z2 − λz1 − λ′z2 + a

bz1z2 − λz1 − λ′z2 + a

∣∣∣∣2 . (3.10)

For A =
(
a λ′
λ b

)
∈ F we have

|bz1z2 − λz1 − λ′z2 + a|2

4y1y2
= qW̃z

(A) = det(A) + h(A, z) ≥ det(A) = m

N(a)D > 0

by (2.23) and (2.21). This implies that the numerator of (3.10) never vanishes for z ∈ H2

and is therefore smooth in z. However, the denominator gives us logarithmic singularities.
The irreducible components of T (a,m) intersecting U are given by∑

A∈F/{±1}
TA =

∑(
a λ′
λ b

)
∈F/{±1}

{
bz1z2 − λz1 − λ′z2 + a = 0

}
.

Thus, the function Φ(a,m, z) satisfies the conditions of Definition 2.9.10 of logarithmic
singularities along −T (a,m).

Lemma 3.6.2. Let a1, a2, b1, b2 ∈ Z and α, β ∈ R with

α+ a1 + a2 > 0 and β + b1 + b2 > 0.

Then the function

f : (C×)2 → C, f(u, v) = ua1ua2 |u|α · vb1vb2 |v|β

is a pre-log-log growth form along uv = 0.
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Proof. We work with Remark 2.9.3. The function f has a continuous extension to uv = 0
with f(u, v) = 0. This is due to the positivity condition on the exponents. The continuity
of f implies that f itself is of log-log growth. Now, one computes

∂f

∂u
=
(
a1 + α

2

)
ua1−1ua2 |u|α · vb1vb2 |v|β,

∂f

∂v
=
(
b1 + β

2

)
ua1ua2 |u|α · vb1−1vb2 |v|β,

∂f

∂u
=
(
a2 + α

2

)
ua1ua2−1|u|α · vb1vb2 |v|β,

∂f

∂v
=
(
b2 + β

2

)
ua1ua2 |u|α · vb1vb2−1|v|β.

The derivatives multiplied with the respective prefactors from Remark 2.9.3 vanish at
uv = 0 (again due to the positivity condition on the exponents and the fact that the
logarithm grows slower than powers with positive exponents). The same holds for the
second order derivatives.

Lemma 3.6.3. Let a1, a2, b1, b2 ∈ Z and α, β ∈ R with

α+ a1 + a2 > 0 and β + b1 + b2 > 0.

Then the function

f : (C×)2 → C, f(u, v) = log
∣∣∣1 − ua1ua2 |u|α · vb1vb2 |v|β

∣∣∣2
is a pre-log-log growth form along uv = 0.

Proof. The proof is analogue to the proof of Lemma 3.6.2. Again, f has a continuous
extension to uv = 0 with f(u, v) = 0. Using

∂

∂z
log(|g(z)|2) =

∂g
∂z

g
+

∂g
∂z

g
,

we see
∂f

∂u
= 2a1 + α

2
−ua1−1ua2 |u|αvb1vb2 |v|β

1 − ua1ua2 |u|αvb1vb2 |v|β
+ 2a2 + α

2
−ua2−1ua1 |u|αvb2vb1 |v|β

1 − ua2ua1 |u|αvb2vb1 |v|β
,

∂f

∂v
= 2b1 + β

2
−ua1ua2 |u|αvb1−1vb2 |v|β

1 − ua1ua2 |u|αvb1vb2 |v|β
+ 2b2 + β

2
−ua2ua1 |u|αvb2−1vb1 |v|β

1 − ua2ua1 |u|αvb2vb1 |v|β
.

Respectively for ∂f/∂u and ∂f/∂v. For u → 0 or v → 0 the denominator goes to 1 and
the numerator to 0 after being multiplied with the respective factor (cf. Remark 2.9.3).
The same holds for the second order derivatives.

Lemma 3.6.4. Let (α, β) be a totally positive basis of a−1. The a invariant function

f : H2 → C, f(z) := log(y1y2)

expressed in local coordinates (u, v) with respect to (α, β) is a pre-log-log growth form
along uv = 0.
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Proof. By equation (2.30) we have

y1 = − log(|u|α|v|β)
2π and y2 = − log(|u|α′ |v|β′)

2π .

It follows

log(y1y2) = − log(4π2) + log (α log(1/|u|) + β log(1/|v|))
+ log

(
α′ log(1/|u|) + β′ log(1/|v|)

)
.

Analogously to Lemma 2.9.4 this is a pre-log-log growth form.

Theorem 3.6.5. The function Φ(a,m, z) is a pre-log-log Green function on X(a) with
respect to the divisor Z(a,m).

Proof. We proceed as suggested in Remark 2.9.9. First of all, Proposition 3.6.1 ensures
that we do not have to care about X(a) anymore. Therefore, the focus of this proof lies
on the cusps and by the often repeated argument it is enough to consider the cusp ∞.
We write

Φ(a,m, z) = f1(z) + f2(z) + f3(z) + f4(z) + f5(z) + f6(z)

near the cusp ∞ as sum of six parts according to Theorem 3.4.4. Following Remark 2.9.9,
we show that the functions fj with j ∈ {1, 2, 3, 4, 5} are pre-log-log growth forms along
E∞(a) and that f6 has logarithmic singularities along the divisor −(T∞(a,m)+Z∞(a,m)).
Note that the divisor T∞(a,m) +Z∞(a,m) is the part of Z(a,m) in small neighborhoods
of E∞(a). For proving the pre-log-log growth we express fj in local coordinates (u, v)
with respect to a totally positive basis (α, β) of a−1. Let us make our decomposition of
Φ(a,m, z) precise:

f1(z) := L(a,m),
f2(z) := −q(a,m) log(16π2y1y2),

f3(z) :=
∑

ν∈ad−1
ν≫0

2π
D

√
mN(a)
|N(ν)|

∞∑
b=1

Gb(a,m, ν)
b

I1

(
4π
b

√
m|N(ν)|
N(a)D

)

×
(
e(tr(νz)) + e(tr(νz))

)
,

f4(z) :=
∑

ν∈ad−1

ν>0, ν′<0

2π
D

√
mN(a)
|N(ν)|

∞∑
b=1

Gb(a,m, ν)
b

J1

(
4π
b

√
m|N(ν)|
N(a)D

)

×
(
e(νz1)e(−ν ′z2) + e(νz1)e(−ν ′z2)

)
,

f5(z) := log
∏

λ∈Λ+(a,m)

∣∣∣1 − e(|λ|z1)e(|λ′|z2)
∣∣∣2 =

∑
λ∈Λ+(a,m)

log
∣∣∣1 − e(λz1)e(−λ′z2)

∣∣∣2 ,
f6(z) := − log

∏
λ∈Λ+(a,m)

∣∣e(|λ|z1) − e(|λ′|z2)
∣∣2 = − log |Ψ(a,m, z)|2 .
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The function f1 is constant, hence it is a pre-log-log growth form. The function f2 was
considered (up to constants) in Lemma 3.6.4. The function f3 is real analytic even at
uv = 0 because of

e(tr(νz)) = utr(αν)vtr(βν) and e(tr(νz)) = utr(αν)vtr(βν)

by Lemma 2.7.1. Note that tr(αν), tr(βν) ∈ N. Hence, it is a pre-log-log growth form.
Unfortunately, the function f4 is not even differentiable at uv = 0 but at least continuous.
We have by Lemma 2.7.1

e(νz1)e(−ν ′z2) = uανu−α′ν′
vβνv−β′ν′

= utr(αν)|u|−2α′ν′
vtr(βν)|v|−2β′ν′

and
e(νz1)e(−ν ′z2) = utr(αν)|u|−2α′ν′

vtr(βν)|v|−2β′ν′
.

The advantage of having integer powers on u, u, v and v is that it is well-defined without
specifying a branch of the logarithm. Since ν > 0 and ν ′ < 0, we have

tr(αν) − 2α′ν ′ = αν − α′ν ′ > 0 and tr(βν) − 2β′ν ′ = βν − βν ′ > 0.

Hence, the claim for f4 follows by Lemma 3.6.2. Considering f5, we see that we can write
each summand in local coordinates using the same identity and get

log
∣∣∣1 − e(λz1)e(−λ′z2)

∣∣∣2 = log
∣∣∣1 − utr(αλ)|u|−2α′λ′

vtr(βλ)|v|−2β′λ′
∣∣∣2 .

Because of λ > 0 and λ′ < 0 we can apply Lemma 3.6.3 to achieve the claim for f5. Now,
we are left with

f6(z) = − log |Ψ(a,m, z)|2

for which we have proven the claim already in Corollary 3.5.7.

3.7 A valuable representation using the hypergeometric
function

In this section we follow the idea (for example present in [BEY21]) to express Φ(a,m, s, z)
using the hypergeometric function 2F1(a, b; c; z). This yields a valuable decomposition

Φ(a,m, s, z) =
∞∑
n=0

Φn(a,m, s, z)

into smooth, Γa invariant functions Φn(a,m, s, z). Using this decomposition, a lot of
already known results about Φ(a,m, s, z) and Φ(a,m, z) can be reproven. Some of those
proofs reveal new perspectives on the old results. For example, computing the Fourier
expansions of the functions Φn(a,m, s, z) yields new formulae for the Fourier coefficients
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of Φ(a,m, s, z). However, the motivation for the author to look at this decomposition
was to prove the integrability of Φ(a,m, z) and understand the growth behavior of∫

X(a)
|Φ(a,m, z)|ω2

for large m which is essential for the main result of this thesis. Those two results can be
found in Theorem 3.8.10 and Theorem 3.8.13 in Section 3.8. The main work towards
these theorems is done in the current section.

Let us first explain the differences between Φ(a,m, s, z) and Φn(a,m, s, z). The
function Φ(a,m, s, z) has logarithmic singularities along −T (a,m). That is why our
Fourier expansion does not converge on all of H2 but only for those z ∈ H2 with
ℑ(z) > m/(DN(a)) because that is the region where only the T (a,m) components of
T∞(a,m) live in. To exclude T∞(a,m), we consider only z ∈ H2 with z /∈ S(a,m). In
contrast, the functions Φn(a,m, s, z) are smooth on all of H2. Therefore, they have an
everywhere converging Fourier series. Unfortunately, it is more complicated to compute
the Fourier coefficients explicitly. The logarithmic singularities along −T∞(a,m) occur
not in a single Φn(a,m, s, z) but in the sum over all of them. Adding the Fourier
coefficients of Φn(a,m, s, z) gives us back the Fourier coefficients of Φ(a,m, s, z).

3.7.1 The decomposition

The main ingredient in Definition 3.1.1 of Φ(a,m, s, z) is Qs−1(x), the Legendre function
of the second kind. This however has the nice representation

Qs−1(x) = Γ(s)2

2Γ(2s)

( 2
1 + x

)s
2F1

(
s, s; 2s; 2

1 + x

)
(3.11)

using the hypergeometric function 2F1(a, b; c; z) which follows from [OLBC10, 14.3.7 and
15.8.13] together with the Legendre duplication formula. The hypergeometric function
again is defined by its power series

2F1(a, b; c; z) :=
∞∑
n=0

(a)n(b)n
(c)n

zn

n! = Γ(c)
Γ(a) Γ(b)

∞∑
n=0

Γ(a+ n)Γ(b+ n)
Γ(c+ n)

zn

n! (3.12)

which implies

Qs−1(x) = 1
2

∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
1
n!

( 2
1 + x

)n+s
.

Plugged into Definition 3.1.1 we get

Φ(a,m, s, z) = 1
2

∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
1
n!

∑
A∈L(a)∨

det(A)=m/(N(a)D)

(1 + g(A, z))−(n+s) .

Defining

Ψ(a,m, s, z) :=
∑

A∈L(a)∨

det(A)=m/(N(a)D)

(1 + g(A, z))−s , (3.13)
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we get

Φ(a,m, s, z) =
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
Ψ(a,m, s+ n, z)

2n!︸ ︷︷ ︸
=:Φn(a,m,s,z)

.

The convergence of Ψ(a,m, s, z) for ℜ(s) > 1 follows directly from the convergence
of Φ(a,m, s, z) but can also be seen as a further application of Lemma 3.1.2. Here,
Ψ(a,m, s, z) is even well-defined for z ∈ T (a,m) and smooth in z since (1 + x)−s has no
singularity at x = 0. Furthermore, Ψ(a,m, s, z) is holomorphic in s.

It follows that the functions Φn(a,m, s, z) are holomorphic in s, Γa invariant and
smooth in z on H2 for ℜ(s) > 1 − n. Inductively, one can show that for all N ∈ N0

∞∑
n=N

Φn(a,m, s, z)

converges for ℜ(s) > 1 − N to a Γa invariant and smooth function on H2 \ T (a,m)
which is holomorphic in s (in particular N = 1 implies convergence for ℜ(s) > 0). By
Theorem 3.3.4 we know that Φ(a,m, s, z) has a meromorphic extension to ℜ(s) > 3/4 for
z ∈ H2 \T (a,m) with simple pole at s = 1 of residue q(a,m). It follows that Φ0(a,m, s, z)
has a meromorphic extension to ℜ(s) > 3/4 with simple pole at s = 1 of residue q(a,m).
We define

Φ0(a,m, z) := Cs=1 [Φ0(a,m, s, z)]

and get

Φ(a,m, z) = Φ0(a,m, z) +
∞∑
n=1

Φn(a,m, 1, z).

3.7.2 Fourier expansion of Ψ(a, m, s, z)
We proceed analogously to Section 3.2 and write

Ψ(a,m, s, z) = Ψ0(a,m, s, z) + 2
∞∑
b=1

Ψb(a,m, s, z)

with
Ψb(a,m, s, z) :=

∑
A=
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)

(1 + g(A, z))−s .

The functions Ψb(a,m, s, z) are invariant under Γa,∞ as Φb(a,m, s, z) in Section 3.2.
Hence, they are a−1 periodic and possess a Fourier expansion. Again, we treat the cases
b = 0 and b ∈ N separately and start with b ∈ N. We have with B := m/(N(a)Db2) and
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Rb(a,m) defined as in Section 3.2

Ψb(a,m, s, z) =
∑

a∈Z/N(a), λ∈ad−1/N(a)
ab−N(λ)=m/(N(a)D)

(
1 + |bz1z2 − λz1 − λ′z2 + a|2

4y1y2m/(N(a)D)

)−s

=
∑

a∈Z/N(a), λ∈ad−1/N(a)
ab−N(λ)=m/(N(a)D)

(
1 + |(z1 − λ′/b)(z2 − λ/b) +B|2

4y1y2B

)−s

=
∑

λ∈Rb(a,m)

∑
µ∈a−1

1 +

∣∣∣(z1 + µ+ λ′

N(a)b

) (
z2 + µ′ + λ

N(a)b

)
+B

∣∣∣2
4y1y2B


−s

.

Hence, the problem is reduced to computing the Fourier expansion of the a−1 periodic
function H̃B

s (a−1, z) with

H̃B
s (b, z) :=

∑
µ∈b

(
1 + |(z1 + µ)(z2 + µ′) +B|2

4y1y2B

)−s

.

Namely, let
H̃B
s (b, z) =

∑
ν∈(bd)−1

b̃Bs (b, ν, y)e(tr(νx))

be the Fourier expansion of H̃B
s (b, z). Then we have

Ψb(a,m, s, z) =
∑

λ∈Rb(a,m)

∑
ν∈ad−1

b̃Bs (a−1, ν, y)e
(
tr
(
ν
(
x+ λ′

N(a)b

)))

=
∑

ν∈ad−1

 ∑
λ∈Rb(a,m)

e
(
tr
(

νλ′

N(a)b

)) b̃Bs (a−1, ν, y)e(tr(νx))

=
∑

ν∈ad−1

Gb(a,m, ν)b̃Bs (a−1, ν, y)e(tr(νx))

with Gb(a,m, ν) defined as in equation (3.5). By Poisson summation the Fourier coeffi-
cients are then given by

b̃Bs (b, ν, y) = 1
vol(b)

∫
R2

(
1 + |z1z2 +B|2

4y1y2B

)−s

e(− tr(νx))dx1dx2. (3.14)

For ν ̸= 0, the double integral is too complicated to be solved explicitly. Only one of
the integrals can be solved explicitly, for the second one the author did not come up
with an explicit solution. However, for our purpose it is enough to estimate |b̃B1 (b, ν, y)|.
Nevertheless, for ν = 0 an estimate of b̃B1 (b, 0, y) is not enough because the series

∞∑
b=1

Gb(a,m, 0)b̃m/(N(a)Db2)
s (a−1, 0, y) (3.15)
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diverges at s = 1. Rather, we have to determine b̃Bs (b, 0, y) explicitly to compute the
meromorphic continuation at s = 1 of (3.15) and extract (or estimate) the constant term.

Lemma 3.7.1. Let B > 0, b ∈ IK and ν ∈ (bd)−1. Then we have (cf. equation (3.6)
for the definition of α(·, ·))∣∣∣b̃B1 (b, ν, y)

∣∣∣ ≤ 4Bπ2

vol(b) exp(−2πα(νy1, ν
′y2)).

Proof. We have to estimate the integral given by equation (3.14) at s = 1:

b̃B1 (b, ν, y) = 1
vol(b)

∫
R2

(
1 + |z1z2 +B|2

4y1y2B

)−1

e(− tr(νx))dx1dx2

=4y1y2B

vol(b)

∫
R2

(
4y1y2B + |z1z2 +B|2

)−1
e(− tr(νx))dx1dx2.

Now, using the identity

4y1y2B + |z1z2 +B|2 = |z2|2
((

x1 + Bx2
|z2|2

)2
+
(
y1 + By2

|z2|2
)2
)

the double integral is given by∫
R

|z2|−2
∫
R

((
x1 + Bx2

|z2|2
)2

+
(
y1 + By2

|z2|2
)2
)−1

e(− tr(νx))dx1dx2

=
∫
R

|z2|−2
(∫

R

(
x2

1 + a(y1, z2)2
)−1

e(−νx1)dx1

)
e

(
νBx2
|z2|2

− νx2

)
dx2

with a(y1, z2) =: y1 + By2
|z2|2 . Using [EMOT54, p. 8, eq. (11)] (which holds for ν = 0 as

well, even though this case is omitted in the reference), we get for the inner integral∫
R

(
x2

1 + a(y1, z2)2
)−1

e(−νx1)dx1

= 2
∫ ∞

0

(
x2

1 + a(y1, z2)2
)−1

cos(2π|ν|x1)dx1

= π
exp(−2π|ν|a(y1, z2))

a(y1, z2) .

Coming back to our double integral, we estimate∣∣∣∣∫
R

|z2|−2
(
π

exp(−2π|ν|a(y1, z2))
a(y1, z2)

)
e

(
νBx2
|z2|2

− νx2

)
dx2

∣∣∣∣
≤ π

∫
R

exp(−2π|ν|a(y1, z2))
a(y1, z2)|z2|2

dx2

≤ π exp(−2π|ν|y1)
y1

∫
R

1
x2

2 + y2
2
dx2 = π2 exp(−2π|ν|y1)

y1y2
.
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Hence, in total we have shown∣∣∣b̃B1 (b, ν, y)
∣∣∣ ≤ 4Bπ2

vol(b) exp(−2π|ν|y1).

For symmetry reasons we have∣∣∣b̃B1 (b, ν, y)
∣∣∣ ≤ 4Bπ2

vol(b) exp(−2π|ν ′|y2)

as well which proves the claim.

In order to compute b̃Bs (b, 0, y) explicitly, we use the following two lemmata.

Lemma 3.7.2. Let a > 0 and s ∈ C with ℜ(s) > 1/2. Then we have∫
R

(x2 + a2)−sdx = a1−2s B(1
2 , s− 1

2).

Here, by B(x, y) we denote the beta function

B(x, y) := Γ(x) Γ(y)
Γ(x+ y) . (3.16)

Proof. We obtain by the substitution x 7→ ax∫
R

(x2 + a2)−sdx =
∫
R

((ax)2 + a2)−sadx = a1−2s
∫
R

(x2 + 1)−sdx.

Now we use of the integral representation (cf. [OLBC10, 5.12.3])

B(x, y) =
∫ ∞

0

tx−1

(1 + t)x+y dt (3.17)

which holds for ℜ(x),ℜ(y) > 0:

B(1
2 , s− 1

2) =
∫ ∞

0

t1/2−1

(1 + t)sdt =
∫ ∞

0

(t2)−1/2

(1 + t2)s 2tdt = 2
∫ ∞

0
(1 + t2)−sdt.

Lemma 3.7.3. Let ℜ(s) > 1/2 and b > 0. Then we have∫
R

(x2 + b2)1−2s

(x2 + 1)1−s dx = B
(

1
2 , s− 1

2

)
2F1

(
2s− 1, s− 1

2 ; s; 1 − b2
)
.

Proof. This integral was solved with Maple and Mathematica independently. However,
the result Mathematica gave to the integral was of a much more complex shape but could
be reduced to the Maple result by a cumbersome computation using functional equations
of the hypergeometric, the gamma and the beta function (all stated in [OLBC10]).
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Lemma 3.7.4. For B > 0, b ∈ IK and ℜ(s) > 1/2 the constant Fourier coefficient of
H̃B
s (b, z) is given by

b̃Bs (b, 0, y) =
(4B)s(y1y2)1−s B(1

2 , s− 1
2)2

vol(b) 2F1(2s− 1, s− 1
2 ; s; −B/(y1y2)).

Remark 3.7.5. Note that we get with B(1
2 ,

1
2) = π and equation (3.19)

b̃B1 (b, 0, y) = 4Bπ2

vol(b)2F1
(
1, 1

2 ; 1; −B/(y1y2)
)

= 4Bπ2

vol(b)
1√

1 +B/(y1y2)

in accordance with the upper bound by Lemma 3.7.1. If we take the limit

lim
ℑ(z)→∞

b̃B1 (b, 0, y) = 4Bπ2

vol(b) ,

we actually reach the upper bound.

Proof of Lemma 3.7.4. We can copy the proof of Lemma 3.7.1 until the point of the
substitution in the inner integral of the double integral. By that we get

b̃Bs (b, 0, y) = (4y1y2B)s
vol(b)

∫
R

|z2|−2s
∫
R

(
x2

1 + a(y1, z2)2
)−s

dx1dx2.

Now using Lemma 3.7.2, the inner integral computes to

a(y1, z2)1−2s B(1
2 , s− 1

2).

The integrand of the outer integral is then, up to the beta function factor, given by

|z2|−2sa(y1, z2)1−2s = 1
|z2|2s

(
y1|z2|2 +By2

|z2|2

)1−2s

= (y1|z2|2 +By2)1−2s

|z2|2s|z2|2−4s

= (y1(x2
2 + y2

2) +By2)1−2s

(x2
2 + y2

2)1−s

= y1−2s
1

(x2
2 + y2

2 +By2/y1)1−2s

(x2
2 + y2

2)1−s .
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It follows ∫
R

|z2|−2sa(y1, z2)1−2sdx2

= y1−2s
1

∫
R

(x2
2 + y2

2 +By2/y1)1−2s

(x2
2 + y2

2)1−s dx2

= y1−2s
1

∫
R

((x2y2)2 + y2
2 +By2/y1)1−2s

((x2y2)2 + y2
2)1−s y2dx2

= y1−2s
1 y

2(1−2s)−2(1−s)+1
2

∫
R

(x2
2 + 1 +B/(y1y2))1−2s

(x2
2 + 1)1−s dx2

= (y1y2)1−2s
∫
R

(x2 + b(y)2)1−2s

(x2 + 1)1−s dx

with b(y)2 = 1 +B/(y1y2). The last integral is given using Lemma 3.7.3 by

B(1
2 , s− 1

2)2F1(2s− 1, s− 1
2 ; s; −B/(y1y2)).

Collecting the omitted prefactors, we get the stated result.

Now we come to the case b = 0. Hence, we determine the Fourier expansion of
Ψ0(a,m, s, z). We have

Ψ0(a,m, s, z) =
∑

a∈Z/N(a), λ∈ad−1/N(a)
−N(λ)=m/(N(a)D)

(
1 + | − λz1 − λ′z2 + a|2

4y1y2m/(N(a)D)

)−s

= 2
∑

λ∈Λ+(a,m)

∑
a∈Z

(
1 + |λz1 + λ′z2 + a|2

4y1y2mN(a)/D

)−s

.

Lemma 3.7.6. The series

Ψ0(a,m, s, z) = 2
∑

λ∈Λ+(a,m)

∑
a∈Z

(
1 + |λz1 + λ′z2 + a|2

4y1y2mN(a)/D

)−s

converges normally for z ∈ H2 and ℜ(s) > 1/2 and has the Fourier expansion

Ψ0(a,m, s, z) = 2
(4y1y2mN(a)

D

)s
B(1

2 , s− 1
2)

∑
λ∈Λ+(a,m)

(λy1 − λ′y2)1−2s

+ 4πs
Γ(s)

(4y1y2mN(a)
D

)s ∑
λ∈Λ+(a,m)

∞∑
n=1

(
n

λy1 − λ′y2

)s−1/2

×Ks−1/2(2πn(λy1 − λ′y2)) (e(n tr(λx)) + e(−n tr(λx))) .
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Proof. As in Lemma 3.2.5, we investigate the series over a for each λ ∈ Λ+(a,m) individ-
ually:

∑
a∈Z

(
1 + |λz1 + λ′z2 + a|2

4y1y2mN(a)/D

)−s

=
∑
a∈Z

(
1 + (tr(λx) + a)2 + tr(λy)2

−4y1y2λλ′

)−s

=
(4y1y2mN(a)

D

)s∑
a∈Z

(
(tr(λx) + a)2 + (λy1 − λ′y2)2

)−s
.

Hence, we are interested in the Fourier expansion of the Z periodic function

hγ(s, x) :=
∑
a∈Z

(
(x+ a)2 + γ2

)−s

with γ > 0 (note that actually always γ := |λy1 − λ′y2| > 0 since λy1 ̸= λ′y2 due to
N(λ) < 0). It is straightforward to see that hγ(s, x) converges if and only if ℜ(s) > 1/2.
We have

hγ(s, x) =
∑
n∈Z

aγ(s, n)e(nx)

with
aγ(s, n) =

∫
R

(x2 + γ2)−se(−nx)dx.

Lemma 3.7.2 yields
aγ(s, 0) = B(1

2 , s− 1
2)γ1−2s.

For n ̸= 0 we use [EMOT54, p. 11, eq. (7)] (valid for ℜ(s) > 0)

aγ(s, n) = 2
∫ ∞

0
(x2 + γ2)−s cos(2π|n|x)dx

= 2
(
π|n|
γ

)s−1/2 √
πΓ(s)−1Ks−1/2(2πα|n|)

= 2πs
Γ(s)

( |n|
γ

)s−1/2
Ks−1/2(2πγ|n|).

We obtain∑
a∈Z

(
1 + |λz1 + λ′z2 + a|2

4y1y2mN(a)/D

)−s

=
(4y1y2mN(a)

D

)s
h|λy1−λ′y2|(s, tr(λx))

=
(4y1y2mN(a)

D

)s
B(1

2 , s− 1
2)|λy1 − λ′y2|1−2s

+ 2πs
Γ(s)

(4y1y2mN(a)
D

)s ∑′

n∈Z

∣∣∣∣ n

λy1 − λ′y2

∣∣∣∣s−1/2
Ks−1/2(2π|n||λy1 − λ′y2|)e(tr(λnx))

which proves the lemma. Here, the tick at the sum indicates that we do not sum over
n = 0.
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Corollary 3.7.7. The function Ψ0(a,m, 1, z) has the Fourier expansion

8πy1y2mN(a)
D

∑
λ∈Λ+(a,m)

∑
n∈Z

exp(−2π|n|(λy1 − λ′y2))
λy1 − λ′y2

e(n tr(λx)).

Proof. Plugging in s = 1 into Lemma 3.7.6 with the identity

K1/2(x) =
√
π

2x exp(−x)

yields the Fourier expansion.

3.7.3 New identities for the Fourier coefficients of Φ(a, m, s, z)
In the previous subsection we determined most of the Fourier coefficients of Ψb(a,m, s, z)
explicitly. Using the decomposition

Φb(a,m, s, z) =
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
Ψb(a,m, s+ n, z)

2n! , (3.18)

we get new formulae for the Fourier coefficients of Φb(a,m, s, z) (and therefore also for the
Fourier coefficients of Φ(a,m, s, z)). Recall that we determined the Fourier coefficients of
Φb(a,m, s, z) already in Section 3.2. Hence, we now have two different formulae for most
of the Fourier coefficients of Φb(a,m, s, z) which give rise to new identities. The author
proved most of the new identities for verification and curiosity reasons for the Fourier
coefficents of Ψb(a,m, s, z) already directly. We invite the inclined reader to do the same
and omit those proofs in this thesis.

We start by comparing the Fourier coefficients of Φ0(a,m, s, z). By Lemma 3.2.5 the
constant Fourier coefficient is given by

4π
2s− 1

∑
λ∈Λ+(a,m)

α(λy1, λ
′y2)1−sβ(λy1, λ

′y2)s.

Lemma 3.7.6 together with the decomposition (3.18) yields the representation
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)n!

(4y1y2mN(a)
D

)s+n
B
(

1
2 , s+ n− 1

2

)
×

∑
λ∈Λ+(a,m)

(λy1 − λ′y2)1−2(s+n)

for the same coefficient. In both cases we have a sum over all λ ∈ Λ+(a,m) and the
equality actually holds termwise for all s ∈ C with ℜ(s) > 1/2:

4π
2s− 1α(λy1, λ

′y2)1−sβ(λy1, λ
′y2)s

=
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)n!

(4y1y2mN(a)
D

)s+n
B
(

1
2 , s+ n− 1

2

)
(λy1 − λ′y2)1−2(s+n).
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Lemma 3.2.5 also tells us that the Fourier coefficient of Φ0(a,m, s, z) of index kλ
with λ ∈ Λ+(a,m) and k ∈ N is given by

4π
√

|λλ′y1y2|Is−1/2(2πkβ(λy1, λ
′y2))Ks−1/2(2πkα(λy1, λ

′y2)).

By Lemma 3.7.6 together with the decomposition (3.18) we obtain

2
∞∑
n=0

Γ(s+ n)
Γ(2s+ n)n!

(4πy1y2mN(a)
D

)s+n ( k

λy1 − λ′y2

)s+n−1/2

×Ks+n−1/2(2πk(λy1 − λ′y2)).

The two identities we obtained with that comparison involve number theoretic magnitudes
like λ ∈ Λ+(a,m) and the norm of the ideal a. We can get rid of them and obtain two
purely analytic identities:

Proposition 3.7.8. Let α ≥ β > 0 and ℜ(s) > 1/2. Then we have
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
(4αβ)s+n

n! B(1
2 , s+ n− 1

2)(α+ β)1−2(s+n) = 4πα1−sβs

2s− 1

and
∞∑
n=0

Γ(s+ n)(4παβ)s+n
Γ(2s+ n)n!(α+ β)s+n−1/2Ks+n−1/2(2π(α+ β))

= 2π
√
αβIs−1/2(2πβ)Ks−1/2(2πα).

A last identity we can obtain comes from the constant Fourier coefficient of Φb(a,m, s, z)
for b ∈ N. Recall that we did not compute but only estimated the non-constant coefficients
of Ψb(a,m, s, z). That is why we do not get an identity involving those. By Lemma 3.2.4
together with the preceding work the constant Fourier coefficient of Φb(a,m, s, z) is given
by

πN(a)Γ(s− 1
2)2

2
√
DΓ(2s)

( 4m
N(a)Db2

)s
(y1y2)1−sGb(a,m, 0).

Using Lemma 3.7.4 and decomposition (3.18), we obtain
∞∑
n=0

Γ(s+ n)2

2Γ(2s+ n)n!

( 4m
N(a)Db2

)s+n (y1y2)1−(s+n)N(a) B(1
2 , s+ n− 1

2)2
√
D

× 2F1
(
2(s+ n) − 1, s+ n− 1

2 ; s+ n; − m
N(a)Db2y1y2

)
Gb(a,m, 0)

instead. By canceling identical factors and resolving the beta function we obtain the
following identity.

Proposition 3.7.9. For all x > 0 and s ∈ C with ℜ(s) > 1/2 we have

Γ(s− 1
2)2

Γ(2s) =
∞∑
n=0

Γ(s+ n− 1
2)2

Γ(2s+ n)n! (4x)n 2F1
(
2(s+ n) − 1, s+ n− 1

2 ; s+ n; −x
)
.
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3.7.4 Fourier coefficients of Φ0(a, m, z)
In this subsection we mostly put together the work of the previous subsection to obtain
the Fourier coefficients (or good enough estimates) of Φ0(a,m, z), the regularization of
Φ0(a,m, s, z) at s = 1.

Lemma 3.7.10. For ℜ(s) > 0 the series

∞∑
b=1

Gb(a,m, 0)b−2s
(

1 − 2F1

(
2s− 1, s− 1

2 ; s; − m

N(a)Db2y1y2

))

converges normally and is hence holomorphic in s. At s = 1 the value of the series is
bounded by

mπ2

6N(a)y1y2
.

Proof. Let y be fixed. Then the function

f(s, x) := 1 − 2F1

(
2s− 1, s− 1

2 ; s; − mx

N(a)Dy1y2

)
is analytic in x at x = 0. Therefore, we have the power series representation

f(s, x) =
∞∑
n=1

an(s)xn

with coefficients an(s) continuous in s. Hence, for fixed s ∈ C there exist constants
Cs > 0 and xs > 0 such that for all |x| ≤ xs we have

|f(s, x)| ≤ Cs|x|.

Let b0 ∈ N be large enough such that for all |x| ≤ 1/b2
0 the above estimate holds. Then

we have ∣∣∣∣∣∣
∞∑
b=b0

Gb(a,m, 0)b−2s
(

1 − 2F1

(
2s− 1, s− 1

2 ; s; − m

N(a)Db2y1y2

))∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
b=b0

Gb(a,m, 0)b−2sf(s, 1/b2)

∣∣∣∣∣∣ ≤ Cs

∞∑
b=b0

Gb(a,m, 0)b−2(ℜ(s)+1).

If ℜ(s) > 0, this series converges by Lemma 3.3.2. The constants Cs and xs can be
chosen continuously in s which implies normal convergence for the series in consideration.

For s = 1 we use the identity

2F1
(
1, 1

2 ; 1; −x
)

= 1√
x+ 1

. (3.19)
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Note that for x ≥ 0 we have

0 ≤ 1 −
√

1
1 + x

≤ x.

Therefore, we get

0 ≤
∞∑
b=1

Gb(a,m, 0)b−2
(

1 − 2F1

(
1, 1

2 ; 1; − m

N(a)Db2y1y2

))

≤
∞∑
b=1

Gb(a,m, 0)b−2 m

N(a)Db2y1y2

= m

N(a)Dy1y2

∞∑
b=1

Gb(a,m, 0)b−4

≤ m

N(a)Dy1y2

∞∑
b=1

Db−2 = mπ2

6N(a)y1y2
.

Theorem 3.7.11. The function Φ0(a,m, z) has a Fourier expansion of the form

Φ0(a,m, z) = Ψ0(a,m, 1, z)
2 +

∑
ν∈ad−1

uν(a,m, y)e(tr(νx)).

The Fourier expansion of Ψ0(a,m, 1, z) is given by Corollary 3.7.7. The Fourier coeffi-
cients uν(a,m, y) satisfy

|u0(a,m, y)| ≤ |L(a,m) − q(a,m) log(16π2y1y2)| + 2m2π4

3D3/2N(a)y1y2

and
|uν(a,m, y)| ≤ Cm

√
|N(ν)| exp(−2πα(νy1, ν

′y2))

for ν ̸= 0. Here, C > 0 is a constant only dependent on the ideal a (and in particular
independent of m).

Proof. Recall that we have

Φ0(a,m, z) = Cs=1 [Φ0(a,m, s, z)]

= Cs=1

[
Γ(s)2

2Γ(2s)

(
Ψ0(a,m, s, z) + 2

∞∑
b=1

Ψb(a,m, s, z)
)]

.

The individual Ψb(a,m, s, z) are well-defined and holomorphic for ℜ(s) > 1/2. Thus, we
obtain

Φ0(a,m, z) = Ψ0(a,m, 1, z)
2 + Cs=1

[
Γ(s)2

Γ(2s)

∞∑
b=1

Ψb(a,m, s, z)
]
.
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This explains the Ψ0(a,m, 1, z) part in the Fourier expansion discussed in Corollary 3.7.7.
Accordingly, ∑

ν∈ad−1

uν(a,m, y)e(tr(νx))

is the Fourier expansion of

Cs=1

[
Γ(s)2

Γ(2s)

∞∑
b=1

Ψb(a,m, s, z)
]

=Cs=1

Γ(s)2

Γ(2s)
∑

ν∈ad−1

( ∞∑
b=1

Gb(a,m, ν)b̃m/(N(a)Db2)
s (a−1, ν, y)

)
e(tr(νx))

 .
As in the proof of Theorem 3.4.1, the coefficients uν(a,m, y) for ν ̸= 0 possess a holomor-
phic extension to ℜ(s) > 3/4 and we can simply plug in s = 1 and obtain

uν(a,m, y) =
∞∑
b=1

Gb(a,m, ν)b̃m/(N(a)Db2)
1 (a−1, ν, y).

To get the estimates of uν(a,m, y) for ν ̸= 0 of the statement, we use Lemma 3.7.1 and
obtain ∣∣∣b̃m/(N(a)Db2)

1 (a−1, ν, y)
∣∣∣ ≤ 4π2m

b2D3/2 exp(−2πα(νy1, ν
′y2)).

Using Lemma 3.3.1 to estimate |Gb(a,m, ν)|, we get

|uν(a,m, y)| ≤
∞∑
b=1

∣∣∣Gb(a,m, ν)b̃m/(N(a)Db2)
1 (a−1, ν, y)

∣∣∣
≤ 4π2mC

D3/2

√
|N(ν)| exp(−2πα(νy1, ν

′y2))
∞∑
b=1

d(b)b−3/2

= 4π2mC

D3/2 ζ(3/2)2
√

|N(ν)| exp(−2πα(νy1, ν
′y2))

with a constant C > 0 only depending on a by Lemma 3.3.1.
Now we are left with proving the stated estimate of

u0(a,m, y) = Cs=1

[
Γ(s)2

Γ(2s)

∞∑
b=1

Gb(a,m, 0)b̃m/(N(a)Db2)
s (a−1, 0, y)

]
.

Using Lemma 3.7.4, we can rewrite this series to
Γ(s)2

Γ(2s)

∞∑
b=1

Gb(a,m, 0)
(4m/(N(a)Db2))s(y1y2)1−s B(1

2 , s− 1
2)2

vol(a−1)

× 2F1
(
2s− 1, s− 1

2 ; s; −(m/(N(a)Db2))/(y1y2)
)

=
πΓ(s− 1

2)2
√
DΓ(2s)

(4m/D)s (N(a)y1y2)1−s
∞∑
b=1

Gb(a,m, 0)b−2s

× 2F1

(
2s− 1, s− 1

2 ; s; − m

N(a)Db2y1y2

)
.
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This looks surprisingly similar to the meromorphic part (3.7) of Φ(a,m, s, z). The only
difference is the additional hypergeometric factor at the end. In the proof of Theorem 3.4.1
we have seen that (3.7) has a meromorphic continuation to ℜ(s) > 3/4 with simple pole
at s = 1 of residue q(a,m). We make use of this computation and consider the difference
of the two series. The pole should cancel out and we expect a holomorphic function
for ℜ(s) > 3/4. The truth is even better, Lemma 3.7.10 shows that the difference has
a holomorphic continuation to ℜ(s) > 0. Now u0(a,m, y) is given by that holomorphic
difference evaluated at s = 1 plus the constant term in the Laurent expansion of (3.7)
which we computed in Theorem 3.4.1 to be L(a,m) − q(a,m) log(16π2y1y2). Hence, we
get with the estimate of Lemma 3.7.10

|u0(a,m, y)| ≤ |L(a,m) − q(a,m) log(16π2y1y2)| + 2m2π4

3D3/2N(a)y1y2
.

3.8 Integrability and integrals

In this section we compute the integral of Φ(a,m, z). In order to do so, we compute the
integrals of Ψ(a,m, s, z) and Φ(a,m, s, z) as well. Our method of computing Φ(a,m, z)
requires the integrability of Φ(a,m, z) first which is much more demanding to show than
computing the actual integral afterwards. In the process we prove that the growth of∫

X(a)
|Φ(a,m, z)|ω2

is polynomial in m which is an important ingredient for the main theorem of this thesis.
We start with computing the integral of Ψ(a,m, s, z) for which we need the following

lemma.

Lemma 3.8.1. Let ℜ(s) > 1. Then we have∫
H

(
1 + |z − i|2

4y

)−s
dxdy

y2 = 4π
s− 1 .

Proof. We have by Lemma 3.7.2∫
H

(
1 + |z − i|2

4y

)−s
dxdy

y2 = 4s
∫
H

(
4y + (x2 + (y − 1)2)

)−s dxdy

y2−s

= 4s
∫ ∞

0

∫ ∞

−∞

(
x2 + (y + 1)2

)−s
dx ys−2dy

= 4s
∫ ∞

0
B(1

2 , s− 1
2)(y + 1)1−2sys−2dy

= 4sB(1
2 , s− 1

2)
∫ ∞

0

ys−2

(y + 1)2s−1dy

= 4sB(1
2 , s− 1

2)B(s− 1, s).
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The last identity is due to equation (3.17) where we need ℜ(s) > 1. Now we make use of
the Legendre duplication formula and the functional equation of the gamma function:

4sB(1
2 , s− 1

2)B(s− 1, s) = 4s
Γ(1

2)Γ(s− 1
2)Γ(s− 1)Γ(s)

Γ(s)Γ(2s− 1)

= 4s
√
π

Γ(s− 1
2)Γ(s− 1)

Γ(2s− 1)

= 22s√π
√
π21−2(s−1)Γ(2s− 2)

Γ(2s− 1)

= 8π
2s− 2 = 4π

s− 1 .

In the next theorem we compute the integral of Ψ(a,m, s, z) over X(a). We can
do that by unfolding the integral without determining a fundamental domain for X(a)
explicitly. This approach is explained in the upcoming proof in detail. In later proofs we
will shorten the argument.

Theorem 3.8.2. For ℜ(s) > 1 we have∫
X(a)

Ψ(a,m, s, z)ω2 = 4
s− 1 vol(T (a,m)).

Proof. In this proof we will freely interchange integration and summation. Looking at
the definition

Ψ(a,m, s, z) :=
∑

A∈L(a)∨

det(A)=m/(N(a)D)

(1 + g(A, z))−s ,

we see that for s ∈ R this is justified by Tonelli’s theorem because all summands are
positive. For s ∈ C we see

|Ψ(a,m, s, z)| ≤ Ψ(a,m,ℜ(s), z)

using the triangle inequality, hence Fubini’s theorem can be applied by Lebesgue’s
dominated convergence theorem.
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We start by some rewriting of Ψ(a,m, s, z). Subsequently, we explain every step.

Ψ(a,m, s, z) (i)= 2
∑

A∈L(a)∨/{±1}
det(A)=m/(N(a)D)

(1 + g(A, z))−s

(ii)= 2
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa/Γa,±A

(1 + g(M.A, z))−s

(iii)= 2
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa/Γa,±A

(
1 + g(A,M−1z)

)−s

(iv)= 2
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa,±A\Γa

(1 + g(A,Mz))−s .

In step (i) we use the sign invariance of g(A, z) (cf. Remark 2.6.3). In step (ii) we group
up the summands. We factor out the action of Γa on L(a)∨/ {±1}. The resulting quotient
is finite and each element corresponds to one component of T (a,m) viewed as divisor of
X(a). Now for each element in the quotient we have to sum over the whole Γa orbit to
obtain all original summands back. This is what the inner sum does. We have to factor
out the stabilizer

Γa,±A := {M : M ∈ Γa and M.A ∈ {±A}}

in order to obtain every element in the orbit once. In step (iii) we use the invariance of
g(A, z) introduced in Corollary 2.6.2. In step (iv) we invert Γa/Γa,±A which turns the
left cosets into right cosets. We make good for the inversion by inverting M−1 as well.

Because the inner sum is invariant under Γa for each fixed A ∈ L(a)∨ with det(A) =
m/(N(a)D), we can compute the integral of that inner sum over X(a) = Γa\H2 first on
its own. Again, we explain the equations step by step after the computation.∫

Γa\H2

∑
M∈Γa,±A\Γa

(1 + g(A,Mz))−s ω2

(v)=
∫

Γa,±A\H2
(1 + g(A, z))−s ω2

(vi)= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

(1 + g(A, z))−s η1η2

(vii)= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

(
1 + d(z1, ASz2)

4

)−s
η1η2

(viii)= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

(
1 + d(z1, i)

4

)−s
η1η2

(ix)= 2
s− 1

∫
z2∈Γ′

a,±A\H
η2

(x)= 2
s− 1 vol(TA).
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In step (v) the actual unfolding takes place. Instead of integrating a sum of Γa,±A\Γa

shifted functions over Γa\H2 it is possible to integrate over Γa,±A\H2 in the first place
and skip the sum and shifting. In step (vi) we use the fact that up to a set of measure
zero a fundamental domain of Γa,±A\H2 is given by H × Γ′

a,±A\H. Further, we use that
ω2 = 2η1η2 (cf. equation (2.14)). Step (vii) is an application of Lemma 2.6.6. Step (viii)
is a consequence of the GL+

2 (R) invariance of η1 and the hyperbolic distance. Since we
integrate over all of H in the first argument, the reference point in the second argument
is arbitrary. Step (ix) is an application of Lemma 3.8.1 (note the scaling of η with (4π)−1

in equation (2.14)). Step (x) is based on equation (2.40).
In total we have∫

X(a)
Ψ(a,m, s, z)ω2 = 2

∑
A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

2
s− 1 vol(TA) = 4

s− 1 vol(T (a,m))

by equation (2.39).

This allows us to compute the integral of Φ(a,m, s, z).

Theorem 3.8.3. For ℜ(s) > 1 we have∫
X(a)

Φ(a,m, s, z)ω2 = 2 vol(T (a,m))
s(s− 1) .

Proof. To compute the integral we use the decomposition

Φ(a,m, s, z) =
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
Ψ(a,m, s+ n, z)

2n!

and Theorem 3.8.2. The reason why we are allowed to interchange summation and
integration is the same as in the proof of Theorem 3.8.2. We get∫

X(a)
Φ(a,m, s, z) =

∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)

4
s+n−1 vol(T (a,m))

2n!

= 2 vol(T (a,m))
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
1
n!

1
s+ n− 1 .

Now using the functional equation

Γ(s+ n) = (s+ n− 1)Γ(s+ n− 1)
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of the gamma function we get
∞∑
n=0

Γ(s+ n)2

Γ(2s+ n)
1
n!

1
s+ n− 1 =

∞∑
n=0

Γ(s+ n)Γ(s+ n− 1)
Γ(2s+ n)

1
n!

= Γ(s)Γ(s− 1)
Γ(2s) F (s, s− 1, 2s, 1)

= Γ(s)Γ(s− 1)
Γ(2s)

Γ(2s)Γ(2s− s− (s− 1))
Γ(2s− s)Γ(2s− (s− 1))

= Γ(s− 1)
Γ(s+ 1) = 1

s(s− 1)

where we used the power series expansion of the hypergeometric function (3.12) and
[OLBC10, 15.4.2] for

F (a, b, c, 1) = Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) .

Remark 3.8.4. Using the identity∫
H
Qs−1

(
1 + d(z, i)

2

)
η = 1

2s(s− 1)

for ℜ(s) > 1, Theorem 3.8.3 can be proven without the decomposition of Φ(a,m, s, z)
into the Ψ(a,m, s, z) by using the representation given in Definition 3.1.1 of Φ(a,m, s, z)
and following the proof of Theorem 3.8.2. However, one way to prove the integral identity
of Qs−1 would be to use the representation (3.11) together with the power series of the
hypergeometric function. Therefore, in the end it is the same argument.

Now we come to show the integrability of Φ(a,m, z). We need to prove a few lemmata
first.

Lemma 3.8.5. The function Ψ0(a,m, 1, z) is integrable over the Siegel domain SC for
all C > 0. For all α > 0 we have∫

SC

∣∣∣Ψ0(a,m, 1, z)
∣∣∣ω2 = O(m1+α).

for large m.
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Proof. Recall the definition of Rma in equation (2.46). By Corollary 3.7.7 we have∫
SC

∣∣∣Ψ0(a,m, 1, z)
∣∣∣ω2

≤ (2C)2

8π2

∫ ∞

C−1

∫ ∞

C−1

8πy1y2mN(a)
D

∑
λ∈Λ+(a,m)

∑
n∈Z

e−2π|n|(λy1−λ′y2)

λy1 − λ′y2

dy1dy2
y2

1y
2
2

= 4C2(Rma )2

π

∫ ∞

C−1

∫ ∞

C−1

∑
λ∈Λ+(a,m)

∑
n∈Z

e−2π|n|(λy1−λ′y2)

(λy1 − λ′y2)y1y2
dy1dy2

≤ 8C2(Rma )2

π

∫ ∞

C−1

∫ ∞

C−1

∑
λ∈Λ+(a,m)

∞∑
n=0

e−2π|n|(λy1−λ′y2)

(λy1 − λ′y2)y1y2
dy1dy2

= 8C2(Rma )2

π

∫ ∞

C−1

∫ ∞

C−1

∑
λ∈Λ+(a,m)

(
1 − e−2π(λy1−λ′y2)

)−1

(λy1 − λ′y2)y1y2
dy1dy2

≤ 8C2(Rma )2

π(1 − e−4πRm
a /C)

∫ ∞

C−1

∫ ∞

C−1

∑
λ∈Λ+(a,m)

1
(λy1 − λ′y2)y1y2

dy1dy2

= 8C3(Rma )2

π(1 − e−4πRm
a /C)

∑
λ∈Λ(a,m)

1
|λ′|

log
( |λ− λ′|

|λ|

)
.

In the last estimate we used

λy1 − λ′y2 ≥ 2
√

|λλ′|y1y2 ≥ 2Rma /C.

In the last equation we used the integral equation∫ ∞

C−1

∫ ∞

C−1

1
(ax+ by)xydxdy = C

(1
b

log
(
a+ b

a

)
+ 1
a

log
(
a+ b

b

))
which holds for a, b > 0. Because of (Rma )2 = mN(a)/D, the prefactor

8C3(Rma )2

π(1 − e−4πRm
a /C)

is in O(m) for large m. Now for any λ0 ∈ Λ(a,m) and ε ∈ O+
K one can estimate

∑
λ∈{λ0εk: k∈Z}

1
|λ′|

log
( |λ− λ′|

|λ|

)
≤ 1
ε− 1

(
ε

Rma
+ log(2) + 2 log(ε) ε

ε− 1

)

using a suitable splitting of the series, properties of the logarithm and the geometric
series. In particular, for ε := ε1 the sum is bounded in m. Totally, we get for a constant
C̃ > 0 independent of m∑

λ∈Λ(a,m)

1
|λ′|

log
( |λ− λ′|

|λ|

)
≤ C̃ |Λ(a,m)/⟨ε1⟩| = C̃

∣∣∣Λ(a,m)/(O×
K)2

∣∣∣ .
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However, the size of Λ(a,m)/(O×
K)2 depends onm. By Lemma 2.8.6 we have |Λ(a,m)/⟨ε⟩| =

O(mα) which finishes the proof.

Lemma 3.8.6. The function log(y1y2) is integrable over the Siegel domain SC for all
C > 0. We have ∫

SC

|log(y1y2)|ω2 = O(C4 log(C))

for large C.
Proof. We have ∫

SC

|log(y1y2)|ω2 = (2C)2

8π2

∫ ∞

C−1

∫ ∞

C−1
|log(y1y2)| dy1dy2

y2
1y

2
2
.

Now for C ≥ 1 we get∫ ∞

C−1

∫ ∞

C−1
| log(y1y2)|dy1dy2

y2
1y

2
2

≤
∫ ∞

C−1

∫ ∞

C−1
| log(y1)| + | log(y2)|dy1dy2

y2
1y

2
2

= 2
∫ ∞

C−1

∫ ∞

C−1
| log(y1)|dy1dy2

y2
1y

2
2

= 2C
∫ ∞

C−1
| log(y1)|dy1

y2
1

= 2C2 log(C) − 2C2 + 4C

and for 0 < C ≤ 1∫ ∞

C−1

∫ ∞

C−1
| log(y1y2)|dy1dy2

y2
1y

2
2

≤ 2
∫ ∞

1

∫ ∞

1
| log(y1)|dy1dy2

y2
1y

2
2

= 2.

The next lemma is a generalization of equation (2.20), the volume formula of SC .
Lemma 3.8.7. The function ℑ(z)−α is integrable for α > −1 over the Siegel domain
SC for all C > 0. We have ∫

SC

ℑ(z)−αω2 = C2α+4

2π2(α+ 1)2 .

Hence, the integral is in O(C2α+4) for large C.
Proof. We compute ∫

SC

ℑ(z)−αω2 = (2C)2

8π2

∫ ∞

C−1

∫ ∞

C−1

1
yα1 y

α
2

dy1dy2
y2

1y
2
2

= C2

2π2

([
y−α−1

−α− 1

]∞

C−1

)2

= C2C2(α+1)

2π2(α+ 1)2 = C2α+4

2π2(α+ 1)2 .
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Lemma 3.8.8. The function∑
ν∈ad−1

√
|N(ν)| exp(−2πα(νy1, ν

′y2))

is integrable over the Siegel domain SC for all C > 0. We have∫
SC

∑
ν∈ad−1

√
|N(ν)| exp(−2πα(νy1, ν

′y2))ω2 = O(C8)

for large C.

Proof. We have∫
SC

∑
ν∈ad−1

√
|N(ν)| exp(−2πα(νy1, ν

′y2))ω2

=(2C)2

8π2

∫ ∞

C−1

∫ ∞

C−1

∑
ν∈ad−1

√
|N(ν)| exp(−2πα(νy1, ν

′y2))dy1dy2
y2

1y
2
2

≤ C4

2π2

∑
ν∈ad−1

√
|N(ν)| exp(−2πα(ν, ν ′)/C).

The remaining series is convergent for all C > 0 and in O(C4) (without the prefactor
C4/(2π2) which itself is in O(C4)).

Proposition 3.8.9. The function Φ0(a,m, z) is integrable over the Siegel domain SC
for all C > 0. We have ∫

SC

|Φ0(a,m, z)|ω2 = O(m2 log(m))

for large m.

Proof. The proof of this proposition relies on decomposition of Φ0(a,m, z) and estimates
of the components by Theorem 3.7.11 and on the preceding lemmata. With Lemma 3.8.5
we get that the integral of ∣∣∣∣∣Ψ0(a,m, 1, z)

2

∣∣∣∣∣
is in O(m2). The integrability of

|u0(a,m, y)| ≤ |q(a,m) log(16π2y1y2)| + |L(a,m)| + 2m2π4

3D3/2N(a)y1y2

is ensured by Lemma 3.8.6 and Lemma 3.8.7. With the growth behavior of |L(a,m)| and
|q(a,m)| mentioned in Remark 3.4.2 the integral turns out to be in O(m2 log(m)). We
are left with the integral of∣∣∣∣∣∣

∑′

ν∈ad−1

uν(a,m, y)e(tr(νx))

∣∣∣∣∣∣ ≤
∑′

ν∈ad−1

|uν(a,m, y)|
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which is in O(m) by Theorem 3.7.11 and Lemma 3.8.8. The three bounds taken together
end up in the stated bound.

Theorem 3.8.10. The function Φ(a,m, z) is integrable.

Proof. We use the decomposition

Φ(a,m, z) = Φ0(a,m, z) +
∞∑
n=1

Φn(a,m, 1, z)

and prove that both parts are integrable. The series
∞∑
n=1

Φn(a,m, s, z)

is integrable for ℜ(s) > 0 and the integral is holomorphic in s by Theorem 3.8.2 and argu-
ments used in the proof of Theorem 3.8.3. To see the integrability of Φ0(a,m, z), we use
Theorem 2.5.7 which implies that it is enough to show that Φ0(a,m, z) is integrable over
every Siegel domain and their translates to other cusps. However, by Lemma 3.1.3 integrat-
ing Φ0(a,m, z) over translated Siegel domains is equivalent to integrating Φ0(ab2,m, z),
for b ∈ IK chosen appropriately, over actual Siegel domains. Therefore, it is enough to
consider original Siegel domains. We have done this in Proposition 3.8.9 which finishes
the proof.

Theorem 3.8.11. We have∫
X(a)

Φ(a,m, z)ω2 = −2 vol(T (a,m)) = −q(a,m)ζK(−1).

In particular
q(a,m) = 2 vol(T (a,m))

ζK(−1) .

Proof. By Theorem 3.8.10 we know that Φ(a,m, z) is integrable. This allows us to apply
Lebesgue’s dominated convergence theorem∫

X(a)
Φ(a,m, z)ω2 = lim

s→1

(∫
X(a)

Φ(a,m, s, z)ω2 −
∫
X(a)

q(a,m)
s− 1 ω2

)

= lim
s→1

(2 vol(T (a,m))
s(s− 1) − q(a,m)

s− 1 ζK(−1)
)
.

In the second step we used Theorem 3.8.3 and equation (2.17). Since the integral is finite
by Theorem 3.8.10 the only possibility is

2 vol(T (a,m)) = q(a,m)ζK(−1)
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which proves the stated identity about q(a,m). We get with L’Hôpital’s rule∫
X(a)

Φ(a,m, z)ω2 = lim
s→1

2 vol(T (a,m)
s− 1

(1
s

− 1
)

= 2 vol(T (a,m) lim
s→1

1
s − 1
s− 1 = −2 vol(T (a,m).

Corollary 3.8.12. We have∫
X(a)

Φ0(a,m, z)ω2 = −4 vol(T (a,m))

and ∫
X(a)

∞∑
n=1

Φn(a,m, 1, z)ω2 = 2 vol(T (a,m)).

Proof. Clearly,∫
X(a)

Φ0(a,m, z)ω2 =
∫
X(a)

(
Φ(a,m, z) −

∞∑
n=1

Φn(a,m, 1, z)
)
ω2.

As explained in the proof of Theorem 3.8.10, the series
∞∑
n=1

Φn(a,m, s, z)

is actually integrable for ℜ(s) > 0 and the integral is holomorphic in s. For ℜ(s) > 1 we
can express the integral by the difference∫

X(a)
Φ(a,m, s, z)ω2 −

∫
X(a)

Φ0(a,m, s, z)ω2

= 2 vol(T (a,m))
s(s− 1) − Γ(s)2

2Γ(2s)
4

s− 1 vol(T (a,m))

= 2 vol(T (a,m)
s− 1

(
1
s

− Γ(s)2

Γ(2s)

)
.

Using L’Hôpital’s rule we get

lim
s→1

1
s − Γ(s)2

Γ(2s)
s− 1 = 1

which implies the second identity. Therefore,∫
X(a)

Φ0(a,m, z)ω2 =
∫
X(a)

(
Φ(a,m, z) −

∞∑
n=1

Φn(a,m, 1, z)
)
ω2

= −2 vol(T (a,m)) − 2 vol(T (a,m))
= −4 vol(T (a,m)).
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Theorem 3.8.13. We have∫
X(a)

|Φ(a,m, z)|ω2 = O(m2 log(m))

for large m.

Proof. As in the proof of Theorem 3.8.10, we use the decomposition

Φ(a,m, z) = Φ0(a,m, z) +
∞∑
n=1

Φn(a,m, 1, z).

Note that ∞∑
n=1

Φn(a,m, 1, z) ≥ 0

by its definition. Hence, the integral coincides with the integral of the absolute value. By
Corollary 3.8.12 we have∫

X(a)

∞∑
n=1

Φn(a,m, 1, z)ω2 = 2 vol(T (a,m)) = q(a,m)ζK(−1) = O(m2).

We still have to argue that the integral of |Φ0(a,m, z)| over X(a) is in O(m2 log(m)).
By the arguments presented in the proof of Theorem 3.8.10 it is enough to see that for
b ∈ IK the integral of |Φ0(b,m, z)| over Siegel domains is in O(m2 log(m)) which is the
result of Proposition 3.8.9.

3.9 Normalized automorphic Green functions

To make the generating series of the arithmetic Hirzebruch–Zagier divisors equipped with
the automorphic Green functions modular, we need to normalize the automorphic Green
functions Φ(a,m, z) appropriately:

G(a,m, z) := Φ(a,m, z) − L(a,m). (3.20)

Note that we do that for m ∈ N. For m = 0 the Green function G(a,m, z) is already
defined by Proposition 2.9.24. By Definition 2.9.25 equation (3.20) is still satisfied in the
case m = 0. For m ∈ −N we define G(a,m, z) := 0 in accordance with Φ(a,m, z) = 0.
Looking at the Fourier expansion of Φ(a,m, z) (cf. Theorem 3.4.1), the subtraction of
L(a,m) in (3.20) is very natural, since it removes the constant independent of z.

Of course, Proposition 3.6.1 and Theorem 3.6.5 holds for the normalized version
of Φ(a,m, z) as well, i.e., the function G(a,m, z) has logarithmic singularities along
−T (a,m) and G(a,m, z) is a pre-log-log Green function on X(a) with respect to the
divisor Z(a,m).

Note that in [BBGK07] the function Gm(z) is 1/2 of our G(OK ,m, z). We do not
apply this scaling with 1/2, because the way we define it fits better our definition of
having logarithmic singularities.
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With Theorem 3.8.11 we obtain∫
X(a)

G(a,m, z)ω2 =
∫
X(a)

Φ(a,m, z)ω2 − vol(X(a))L(a,m)

= −2 vol(T (a,m)) − ζK(−1)L(a,m)

= −2 vol(T (a,m))
(

1 + L(a,m)
q(a,m)

)
.

In the case where the discriminant D is prime in [BBGK07, Section 2.3] the constants
L(OK ,m) and q(OK ,m) are made explicit using the generalized divisor sum

σm(s) := m(1−s)/2∑
d|m

ds(χD(d) + χD(m/d)). (3.21)

Namely, we have with

φm(s) := − Γ(s− 1/2)σm(2s− 1)
Γ(3/2 − s)L(1 − 2s, χD)

the identities

L(OK ,m) = φ′
m(1) − φm(1)(2Γ′(1) − log(16D)) and q(OK ,m) = φm(1).

It follows
L(OK ,m) = φm(1)

(
2L

′(−1, χD)
L(−1, χD) − 2σ

′
m(−1)
σm(−1) + log(D)

)
and

q(OK ,m) = − σm(−1)
L(−1, χD) . (3.22)

Note that σm(s) = σm(−s), in particular σm(1) = σm(−1). Therefore, we obtain∫
X(a)

G(OK ,m, z)ω2 = −2 vol(T (OK ,m))
(

1 + L(OK ,m)
q(OK ,m)

)
= − 2 vol(T (OK ,m))

(
1 + 2L

′(−1, χD)
L(−1, χD) − 2σ

′
m(−1)
σm(−1) + log(D)

)
.

(3.23)

Another useful relation coming from Theorem 3.8.11 and equation (3.22) is

vol(T (OK ,m)) = q(OK ,m)ζK(−1)
2 = − σm(−1)

L(−1, χD)
ζK(−1)

2

= −σm(−1)ζ(−1)
2 = σm(−1)

24 .

(3.24)

124



CHAPTER 3. AUTOMORPHIC GREEN FUNCTIONS

3.10 Generating series

For the main result of the thesis we have to deal with the generating series
∞∑
m=0

G(a,m, z)qm. (3.25)

Here, q ∈ C with |q| < 1. Later, we will introduce another variable τ ∈ H and we define
q := e(τ). Even though the single G(a,m, z) have logarithmic singularities along the
divisors −T (a,m) and the union ⋃

m∈N
T (a,m) (3.26)

lies dense in H2, the next theorem shows that we still have many values z ∈ H2 for which
the series (3.25) is absolutely convergent.

Theorem 3.10.1. Let q ∈ C with |q| < 1 be fixed. The series

∞∑
m=0

Φ(a,m, z)qm and
∞∑
m=0

G(a,m, z)qm

converge absolutely for almost all z ∈ H2. Furthermore, the series
∞∑
m=0

|Φ(a,m, z)qm| and
∞∑
m=0

|G(a,m, z)qm|

are integrable over X(a).

Proof. Using the ratio test, the series
∞∑
m=0

p(m)qm

converges absolutely with p(m) being a polynomial in m. Since Φ(a,m, z) and G(a,m, z)
differ only by a constant L(a,m) (cf. equation (3.20)) growing polynomially in m, the
generating series of Φ(a,m, z) converges for fixed z ∈ H2 if and only if the generating
series of G(a,m, z) converges. Analogously, the series of |Φ(a,m, z)qm| is integrable if
and only if the series of |G(a,m, z)qm| is integrable. By Tonelli’s theorem we have∫

X(a)

∞∑
m=0

|Φ(a,m, z)qm|ω2 =
∞∑
m=0

(∫
X(a)

|Φ(a,m, z)|ω2
)

|q|m. (3.27)

Hence, the integrability of the series of |Φ(a,m, z)qm| is equivalent to the finiteness of
the sum on the right hand side in (3.27). This sum, however, is finite by Theorem 3.8.13
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together with the remark from above about the ratio test. Because the left hand side of
(3.27) is finite, the set of all z ∈ H2 satisfying

∞∑
m=0

|Φ(a,m, z)qm| = ∞

has measure zero. This proves the absolute convergence of
∞∑
m=0

Φ(a,m, z)qm

for almost all z ∈ H2.

Even though Theorem 3.10.1 shows that the series (3.25) converges almost everywhere,
we cannot expect the series to be continuous in a single point z ∈ H2 because the
union (3.26) is a dense subset of H2.

3.11 An arithmetic Hirzebruch–Zagier theorem

At this point we want to cite the arithmetic Hirzebruch–Zagier theorem for the automor-
phic Green functions G(a,m, z). It was proven in [BBGK07] by Bruinier, Burgos Gil and
Kühn in the special case of K having a prime discriminant and a = OK , but is expected
to be true for all real quadratic number fields and all a ∈ IK . We suggest reading the
article [Bru04] for a good overview. There, the result can be found in Theorem 8.4.

Our Hilbert modular surface can be embedded into projective space. Thus, by Chow’s
lemma it can be understood as a projective algebraic variety. By the work of Rapoport,
Deligne and Pappas (cf. [Rap78] and [DP94]) the Hilbert modular surface possesses a
canonical integral model over Spec(Z). The Hirzebruch–Zagier divisors possess natural
integral models as well. By taking the base change to the complex numbers the Hilbert
modular surface together with its Hirzebruch–Zagier divisors can be recovered again. The
arithmetic Hirzebruch–Zagier theorem holds in that wider context for integral models.
Viewed over the complex numbers it states that the arithmetic generating series

∞∑
m=0

(Z(OK ,m), G(OK ,m, z))qm

is a holomorphic modular form of weight 2, level D and nebentypus χD with values
in ĈH1(X(OK),Dpre)C (cf. Definition 5.5.1). Note that in the original statement one
reads ĉ1(M−1/2) instead of (Z(OK , 0), G(OK , 0, z)). However, by our definition of
G(OK , 0, z) and Z(OK , 0) (cf. Proposition 2.9.24) they define the same element in
ĈH1(X(OK),Dpre)Q.

In this thesis X(OK) is the Hirzebruch compactification (cf. Section 2.7) and the
divisors Z(OK ,m) are explicitly defined (cf. Subsection 2.8.5). This explicit construction
of the divisors corresponding to the Green functions G(OK ,m, z) is new work.
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Bruinier, Burgos Gil and Kühn used in their work an arbitrary desingularization of
the Baily–Borel compactification X(OK)∗ whose existence is ensured by Hironaka in
[Hir64]. The extensions of the divisors T (OK ,m) to the divisors Z(OK ,m) are abstractly
defined by pullback from the Baily–Borel compactification X(OK)∗. To this end the
authors proved that the divisors T (OK ,m) are Q-Cartier divisors near the cusps but
they did not need to compute any multiplicities of the components of the exceptional
divisor E(OK) at the cusps.

The main goal of this thesis is to prove an analogue of the arithmetic Hirzebruch–
Zagier theorem for Kudla’s Green functions. Those functions are introduced and discussed
in the next chapter.
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Chapter 4

Kudla’s Green functions

In this chapter we consider a different type of Green functions for the Hirzebruch–Zagier
divisors constructed by Kudla (cf. [Kud97, p. 603 a.s.]). We call those functions Kudla’s
Green functions and denote them by Ξ(a,m, v, z). In addition to a fractional ideal a ∈ IK
and an integer m ∈ Z, they depend on a parameter v > 0. Later, when we come to
generating series involving Kudla’s Green functions, this parameter will be interpreted as
the imaginary part of a complex variable τ ∈ H but for most of this chapter, it is enough
to regard it as positive real parameter.

During the course of this chapter we investigate the growth of Ξ(a,m, v, z) at the
cusps by looking at its Fourier expansion and come to the conclusion that Ξ(a,m, v, z)
is not a pre-log-log Green function on X(a). However, in Section 4.5 we find a slight
modification involving a partition of unity ρ called Ξ̃ρ(a,m, v, z) which is pre-log-log
Green function on X(a). Near the end of this chapter we compute integrals over Kudla’s
Green functions and start discussing its generating series.

A great source of inspiration for coming up with the right ideas was the article [BK12]
from Berndt and Kühn. In that source, the authors consider the respective object in the
degenerate case D = 1, K = Q ⊕ Q and Γ = SL2(Z)2.

4.1 Definition, convergence and invariance

Recall the definition

E1(x) :=
∫ ∞

x
exp(−t)dt

t
=
∫ ∞

1
exp(−xt)dt

t
(4.1)

for x > 0 of the E1 function which is related to the exponential integral by E1(x) =
− Ei(−x). It has a logarithmic singularity at x = 0. More precisely, the function

E1(x) + log(x), x > 0

has a holomorphic extension to the whole complex plane. Its power series is given by

−γ −
∞∑
k=1

(−x)k
kk! = −γ + Ein(x) (4.2)
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where γ is the Euler-Mascheroni constant. The logarithmic singularity of E1(x) at x = 0
provides the logarithmic singularity along the Hirzebruch–Zagier divisor of Kudla’s Green
functions.

Definition 4.1.1. For a ∈ IK , m ∈ Z, v > 0 and z ∈ H2 \ T (a,m) we define

Ξ(a,m, v, z) := Ξ∗(a,m, v, z) + δm,0Ξ0(a, v, z)

with
Ξ∗(a,m, v, z) := 1

2
∑′

A∈L(a)∨

det(A)=m/(N(a)D)

E1 (4πvDN(a)h(A, z))

and
Ξ0(a, v, z) := G(a, 0, z) − log(4πvD/N(a)) + γ

2 .

Note the tick at the sum defining Ξ∗(a,m, v, z) which indicates that for m = 0 we do
not include A = 0 (recall Proposition 2.9.24 for the definition of G(a, 0, z)). We need to
exclude A = 0 because

E1 (4πvDN(a)h(0, z)) = E1(0)

is not defined. To compensate for that missing term, we add Ξ0(a, v, z) in case m = 0.
Later, we will understand in which sense this is a good compensation.

Proposition 4.1.2. The series defining Kudla’s Green function Ξ(a,m, v, z) converges
for all z ∈ H2 \T (a,m) normally to a Γa invariant function with logarithmic singularities
along −T (a,m). For ideals a, b ∈ IK and M ∈ M(a, b) Kudla’s Green functions are
related by

Ξ∗(b,m, v,Mz) = Ξ∗(a2b,m, v, z) and Ξ0(b, v,Mz) = Ξ0(a2b, v, z) − log(N(a)).

Proof. To prove the first statement, it is enough by Proposition 2.9.24 to prove the
analogue statement for Ξ∗(a,m, v, z) with respect to the divisor −T∗(a,m). By the
estimate

E1(x) =
∫ ∞

x
exp(−t)dt

t
≤ 1
x

∫ ∞

x
exp(−t)dt = exp(−x)

x
(4.3)

we see that E1(x) has exponential decay for large x (that implies E1(x) = O(x−α) for all
α ∈ R). Hence, the convergence follows in case m > 0 directly from Lemma 3.1.2. It is
legit to apply Lemma 3.1.2 here since g(A, z) and h(A, z) differ in this situation only by
the multiplicative constant det(A) = m/(N(a)D). However, Lemma 3.1.2 does not cover
the case m ≤ 0. We now present a new proof which is valid for all m ∈ Z. We have to
show the normal convergence of∑′

A∈L(a)∨

det(A)=m/(N(a)D)

E1 (4πvDN(a)h(A, z)) . (4.4)
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Let B ⊂ H2 be compact. Then by Lemma 2.6.4 only a finite number of A ∈ L(a)∨ with
det(A) = m/(N(a)D) satisfy

4πvDN(a)h(A, z) < 1

for some z ∈ B. Using
E1(x) ≤ exp(−x), for x ≥ 1,

which is a direct consequence of estimate (4.3) we get for the other A ∈ L(a)∨ with
det(A) = m/(N(a)D)

E1 (4πvDN(a)h(A, z)) exp(−2πvm) ≤ exp(−4πvDN(a)h(A, z)) exp(−2πvm)
≤ exp(−2πvDN(a)(2h(A, z) + det(A)))
= exp(−2πvDN(a)qz(A)).

Recall the last equation of (2.21) for the last step. This shows that exp(−2πvm) times
the series (4.4) can be majorized up to finitely many terms by the theta series∑

A∈L(a)∨

exp(−2πvDN(a)qz(A)).

Because qz(A) is a positive definite quadratic form this implies the normal convergence.
The Γa invariance is a consequence of the transformation law

Ξ∗(b,m, v,Mz) = Ξ∗(a2b,m, v, z),

the second statement of the proposition. This is proven for Ξ∗(a,m, v, z) analogously to
the proof of Lemma 3.1.3: If g(A, z) is replaced by h(A, z) the proof works for m ≤ 0 as
well. However, it is important to have the prefactor N(a) in front of h(A, z) to make the
rescaling of the lattice work.

For the transformation law of Ξ0 we use Proposition 2.9.24 again and see

Ξ0(a2b, v, z) = G(a2b, 0, z) − log(4πvD/N(a2b)) + γ

2

= G(b, 0,Mz) − log(4πvD/N(b)) + γ

2 + log(N(a))

= Ξ0(b, v, z) + log(N(a)).

Now, we come to the logarithmic singularities of Ξ∗(a,m, v, z). Here we only have to
consider m > 0 since T∗(a,m) = 0 otherwise. Let A ∈ L(a)∨ ∩ V + be fixed. Then locally
the matrices A and −A contribute to the divisor component TA = T−A. With A =

(
a λ′
λ b

)
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we have
1
2E1 (4πvDN(a)h(A, z)) + 1

2E1 (4πvDN(a)h(−A, z))

=E1

(
4πvDN(a) |bz1z2 − λz1 − λ′z2 + a|2

4y1y2

)

= − γ + Ein
(
πvDN(a) |bz1z2 − λz1 − λ′z2 + a|2

y1y2

)

− log
(
πvDN(a) |bz1z2 − λz1 − λ′z2 + a|2

y1y2

)

= − γ + Ein
(
πvDN(a) |bz1z2 − λz1 − λ′z2 + a|2

y1y2

)

− log
(
πvDN(a)
y1y2

)
− log

(
|bz1z2 − λz1 − λ′z2 + a|2

)
.

This shows that the terms in the definition of Ξ∗(a,m, v, z) (cf. Definition 4.1.1) indexed
by A and −A have a logarithmic singularity along −TA. Because of the good convergence
behavior, in total they sum up to logarithmic singularities along −T∗(a,m).

The logarithmic singularities along −T (a,m) promote the question whether the
analogue of Theorem 3.6.5 is true for Ξ(a,m, v, z) as well, i.e., whether Ξ(a,m, v, z) is a
pre-log-log Green function on X(a) with respect to the divisor Z(a,m). In this chapter
we show that, unfortunately, this is not the case. However, in Section 4.5 we describe a
modification Ξ̃ρ(a,m, v, z) of Ξ(a,m, v, z) which is a pre-log-log Green function. Since
Ξ(a,m, v, z) has logarithmic singularities along −T (a,m), the behavior of Ξ(a,m, v, z)
which makes it fail Theorem 3.6.5 occurs near the cusps.

Analogously as for Φ(a,m, s, z), we write Ξ∗(a,m, v, z) in the form

Ξ∗(a,m, v, z) =
∑
b∈Z

Ξb∗(a,m, v, z)

with
Ξb∗(a,m, v, z) := 1

2
∑′

A=
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)

E1 (4πvDN(a)h(A, z)) .

For b ̸= 0 or m ̸= 0 we define

Ξb(a,m, v, z) := Ξb∗(a,m, v, z).

Further, we set
Ξ0(a, 0, v, z) := Ξ0

∗(a, 0, v, z) + Ξ0(a, v, z).
Hence, we get for all m ∈ Z

Ξ(a,m, v, z) =
∑
b∈Z

Ξb(a,m, v, z).
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As for Φ(a,m, s, z) the functions Ξb∗(a,m, v, z) are invariant under translation by a−1

and admit a Fourier expansion for those y at which no singularities occur.
Analogously to the situation with the functions Φb(a,m, s, z), the imaginary part

ℑ(z) = y1y2 of the singularities of the functions Ξb(a,m, v, z) is bounded by m/(N(a)Db2)
for b ̸= 0 and m > 0. Even more, using the exponential decay of E1(x) and its derivatives
it can be shown that the series of the Ξb(a,m, v, z) with b ̸= 0 is tame at the cusp ∞:

Proposition 4.1.3. The series

∑′

b∈Z
Ξb(a,m, v, z) = 2

∞∑
b=1

Ξb(a,m, v, z) (4.5)

is well-defined in a neighborhood of the cusp ∞ and defines a pre-log-log growth form
along the exceptional divisor E∞(a).

Proof. The convergence of the series (4.5) follows from Proposition 4.1.2. Each individ-
ual Ξb(a,m, v, z) is invariant under the stabilizer of the cusp ∞ by Lemma 2.4.4 and
Remark 2.6.3. Therefore, the series (4.5) is invariant under the stabilizer of the cusp ∞
as well and is well-defined by Proposition 2.5.2 on X(a) in a neighborhood of the cusp ∞.
Furthermore, because we omit Ξ0(a,m, v, z), we do not have any singularities for all
z ∈ H2 with ℑ(z) > m/(N(a)D). Thus, we are left with controlling the growth of (4.5)
and its derivatives near the cusp ∞. We want to apply Remark 2.9.3 and suggest the
reader come back to the proof here after having read Section 4.3. There, we present
the notation including the variable switch to t and r together with the application of
Remark 2.9.3 in more detail and want to shorten the proof here a bit.

The main ingredient to the proof is the exponential decay (4.3) of E1(x) which we
have by

E′
1(x) = −exp(−x)

x
and E′′

1 (x) = exp(−x)(x+ 1)
x2 (4.6)

for its derivatives as well. Therefore, the handling of the derivatives is similar to the
handling of the original series and it is enough to consider the latter only. After a variable
switch to t and r it is sufficient to prove

lim
t→∞

∞∑
b=1

Ξb(a,m, v, z) = 0

for fixed r. We have

2
∞∑
b=1

Ξb(a,m, v, z) =
∑

A=
(
a λ′
λ b

)
∈L(a)∨

det(A)=m/(N(a)D)
b>0

E1 (4πvDN(a)h(A, z)) . (4.7)

Because of
lim
t→∞

h(A, z)
t2

= b2

4
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for A =
(
a λ′
λ b

)
∈ L(a)∨ with b ≠ 0 (cf. equation (2.22)), we infer that each single term of

the series on the right hand side of (4.7) goes to 0 for t → ∞. That being said, it is fine
to exclude finitely many terms of the series. It is easy to see that only a finite number of
A ∈ L(a)∨ with det(A) = m/(N(a)D) and b ̸= 0 satisfy

4πvDN(a)h(A, z) < 1

for large t. Therefore, we exclude those from now on and try to prove the limit of the
remaining series (4.7). We proceed like in the proof of Proposition 4.1.2 and end up with
the series ∑

A=
(
a λ′
λ b

)
∈L(a)∨

b>0

exp(−2πvDN(a)qz(A)). (4.8)

Using the fact that qz(A) is a positive definite quadratic form, one now proves that (4.8)
goes to 0 for t → ∞. We demonstrate this in the special case x1 = x2 = 0:

qz(A) = 2h(A, z) + det(A) = |bz1z2 − λz1 − λ′z2 + a|2

2y1y2
+ ab− λλ′

= (−by1y2 + a)2 + (−λy1 − λ′y2)2

2t2 + 2ab− 2λλ′

2

= (bt− a/t)2 + (λr − λ′/r)2 + 2ab− 2λλ′

2

= b2t2 + a2/t2 + λ2r2 + (λ′)2/r2

2 .

With the definition (2.12) of L(a)∨ we have∑
A=
(
a λ′
λ b

)
∈L(a)∨

b>0

exp(−2πvDN(a)qz(A))

=
( ∞∑
b=1

exp(−πvDN(a)b2t2)
)∑

a∈Z
exp

(
−πvDa2

t2N(a)

)
×

 ∞∑
λ∈ad−1

exp
(

−πvD(λ2r2 + (λ′)2/r2)
N(a)

) . (4.9)

The map
λ 7→ λ2r2 + (λ′)2/r2

is a positive definite quadratic form on K. Therefore, the series in line (4.9) converges.
The other line can be expressed as

θ(ivDN(a)t2) − 1
2 θ

(
ivD

t2N(a)

)
,
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using the theta function

θ : H → C, θ(z) :=
∑
n∈Z

eπin
2z. (4.10)

By its transformation law

θ

(
−1
z

)
=
√
z

i
θ(z) (4.11)

we obtain

θ

(
ivD

t2N(a)

)
= t

√
N(a)
vD

θ

(
it2N(a)
vD

)
.

Using the estimate

|θ(it) − 1| ≤ 2 exp(−πt), (4.12)

for large t > 0 we get

lim
t→∞

θ(ivDN(a)t2) − 1
2 θ

(
ivD

t2N(a)

)

=

 lim
t→∞

t

√
N(a)
vD

θ(ivDN(a)t2) − 1
2

( lim
t→∞

θ

(
it2N(a)
vD

))
= 0 · 1 = 0.

By Proposition 4.1.3 we are left with the investigation of Ξ0
∗(a,m, v, z). This part

has singularities if and only if m > 0 and Λ+(a,m) ̸= 0. Those singularities run into the
cusp ∞ and one would wish Ξ0(a,m, v, z) to have logarithmic singularities at the cusp ∞
along the divisor −Z∞(a,m) with possibly some additional term of pre-log-log growth.

4.2 Fourier expansion of Ξ0(a, m, v, z) for m ̸= 0
For the course of this section we assume m ∈ Z\{0}. We compute the Fourier expansion of
Ξ0(a,m, v, z) (cf. Section 4.4 for the case m = 0). Let us start by rewriting Ξ0(a,m, v, z)
in the following way:
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Ξ0(a,m, v, z) = 1
2

∑
A=
(
a λ′
λ 0

)
∈L(a)∨

det(A)=m/(N(a)D)

E1 (4πvDN(a)h(A, z))

= 1
2

∑
a∈Z/N(a), λ∈ad−1/N(a)

−N(λ)=m/(N(a)D)

E1

(
4πvDN(a)| − λz1 − λ′z2 + a|2

4y1y2

)

=
∑

λ∈Λ+(a,m)

∑
a∈Z

E1

(
πvD|λz1 + λ′z2 + a|2

N(a)y1y2

)

=
∑

λ∈Λ+(a,m)

∑
a∈Z

E1

(
πvD

N(a)y1y2

(
(tr(λx) + a)2 + tr(λy)2

))
.

Note that for negative m we have tr(λy) > 0 for all y with z ∈ H2. The rewriting of
Ξ0(a,m, v, z) shows that we need to compute the Fourier expansion of the Z periodic
function

hα,β(x) :=
∑
a∈Z

E1(α2((x+ a)2 + β2)).

To express the constant Fourier coefficient of hα,β(x), we make use of the function

β(x) := 1
16π

∫ ∞

1
u−3/2e−xudu = 1

8π
(
exp(−x) −

√
πx erfc(

√
x)
)

(4.13)

which was introduced in [HZ76, p. 91] for x ≥ 0. It is neither to be confused with the
function β(r1, r2) defined in the last chapter in equation (3.6) nor with the parameter β
in hα,β(x).

Lemma 4.2.1. Let α, β > 0. Then we have

hα,β(x) =
∑
n∈Z

aα,β(n)e(nx)

with
aα,β(0) = 16π3/2

α
β(α2β2)

and

aα,β(n) = e−2π|n|β

|n|
− e2π|n|β erfc (π|n|/α+ αβ) + e−2π|n|β (erfc (π|n|/α− αβ))

2|n|

for n ̸= 0.
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Proof. By Poisson summation we have

aα,β(n) =
∫ ∞

−∞
E1(α2(x2 + β2))e(−nx)dx

=
∫ ∞

−∞

∫ ∞

1
exp(−α2(x2 + β2)t)dt

t
e(−nx)dx

=
∫ ∞

1

∫ ∞

−∞
exp(−α2x2t)e(−nx)dx exp(−α2β2t)dt

t

= 2
∫ ∞

1

∫ ∞

0
exp(−α2x2t) cos(2πnx)dx exp(−α2β2t)dt

t
.

For solving the inner integral we use the cosine transform [EMOT54, p. 15, eq. (11)]∫ ∞

0
exp(−ax2) cos(xy)dx =

√
π

2
√
a

exp
(

−y2

4a

)
which holds for ℜ(a) > 0. In the reference it allows only y > 0, but of course this is true
for all y ∈ R. Therefore, we get

aα,β(n) = 2
∫ ∞

1

√
π

2α
√
t

exp
(

−4π2n2

4α2t

)
exp(−α2β2t)dt

t

=
√
π

α

∫ ∞

1
exp

(
−π2n2

α2t
− α2β2t

)
dt

t3/2

=
√
π

α

∫ 1

0
exp

(
−π2n2

α2 t− α2β2/t

)
dt

t1/2 .

To evaluate the integral for n = 0, we do not need the last substitution and have by
equation (4.13)

aα,β(0) =
√
π

α

∫ ∞

1
exp

(
−α2β2t

) dt

t3/2 = 16π3/2

α
β(α2β2).

For the rest of the proof let us assume n ̸= 0. Recall the definition of the error function

erf(x) := 2√
π

∫ x

0
exp(−t2)dt.

Now let us compute the derivative of

fa,b(t) :=
√
π

2a
(
e2ab erf

(
a
√
t+ b/

√
t
)

+ e−2ab erf
(
a
√
t− b/

√
t
))

for a, b > 0:

f ′
a,b(t) =

√
π

2a e
2ab 2√

π
e−(a

√
t+b/

√
t)2
(

a

2
√
t

− b

2t3/2

)
+

√
π

2a e
−2ab 2√

π
e−(a

√
t−b/

√
t)2
(

a

2
√
t

+ b

2t3/2

)
= exp

(
−a2t− b2/t

)
√
t

.
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Note that using
lim

x→−∞
erf(x) = −1 and lim

x→∞
erf(x) = 1,

the function fa,b(t) can be continuously extended to t = 0 by

fa,b(0) =
√
π

2a
(
e2ab − e−2ab

)
.

We simplify using erfc(x) := 1 − erf(x)

fa,b(1) − fa,b(0)

=
√
π

2a
(
e2ab erf (a+ b) + e−2ab erf (a− b)

)
−

√
π

2a
(
e2ab − e−2ab

)
= −

√
π

2a
(
e2ab erfc (a+ b) + e−2ab (erfc (a− b) − 2)

)
.

This helps us to solve the integral

aα,β(n) =
√
π

α

∫ 1

0
f ′
π|n|/α,αβ(t)dt

=
√
π

α

(
fπ|n|/α,αβ(1) − fπ|n|/α,αβ(0)

)
= −e2π|n|β erfc (π|n|/α+ αβ) + e−2π|n|β (erfc (π|n|/α− αβ) − 2)

2|n|
.

Theorem 4.2.2. The function Ξ0(a,m, v, z) is given for values z ∈ H2 \ S(a,m) by the
Fourier series

16π

√
N(a)y1y2

vD

∑
λ∈Λ+(a,m)

β

(
πvD tr(λy)2

N(a)y1y2

)

+
∑

λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)|

|n|
e(n tr(λx))

−
∑

λ∈Λ+(a,m)

∑′

n∈Z

e2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD +
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx))

−
∑

λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD −
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx)).

Proof. Through the rewriting of Ξ0(a,m, v, z) in the beginning of the current section we
have seen

Ξ0(a,m, v, z) =
∑

λ∈Λ+(a,m)
h√

πvD
N(a)y1y2

,| tr(λy)|
(tr(λx)).
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The function hα,β(x) is smooth for α, β > 0 and its Fourier expansion is given in
Lemma 4.2.1. The statement of the theorem is derived by using that Fourier expansion.
For β = 0 the function hα,β(x) has singularities. They correspond to the z ∈ H2 with
tr(λy) = 0, hence z ∈ S(a,m). For negative m we have S(a,m) = ∅ and hence no
singularities.

4.3 Growth analysis of Ξ0(a, m, v, z) for m ̸= 0
In this section we use the Fourier expansion of Ξ0(a,m, v, z) stated in Theorem 4.2.2 to
investigate the growth behavior of the function near the cusp ∞, or more precisely, near
the exceptional divisor E∞(a). To do so, we fix a totally positive basis (α, β) of a−1 and
let (u, v) be the local coordinates with respect to this basis. Note that the variable v
serves as real parameter in Ξ0(a,m, v, z) as well. To reduce confusion we mostly talk
about u (v can be treated analogously). In the situations we still use v it is clear from the
context which v is meant. In addition to the local variables (u, v), we use the variables
(t, r) to express parts of Ξ0(a,m, v, z) (cf. Subsection 2.7.7) and use the relations between
(u, v) and (t, r) developed in the end of the referenced subsection.

Lemma 4.3.1. Let w > 0. Then the series

∑
λ∈Λ+(a,m)

|tr(αλ)|
∞∑
n=1

log(|u|) exp (±2πn| tr(λy)|) erfc

√πy1y2n2

w
±
√
πw tr(λy)2

y1y2


goes to 0 for u → 0. The same holds for the series without the factor |tr(αλ)|.

Proof. We translate the series into coordinates (t, r). Recall from (2.32) that the limit
process u → 0 translates in (t, r) coordinates into t → ∞ and r →

√
α/α′. Therefore,

for the rest of the proof we will regard r as constant. Furthermore, by the first limit in
(2.32) t grows like log(|u|), hence it is equivalent to replace the factor log(|u|) by t. Then
the inner series is given by

t
∞∑
n=1

exp
(
±2πnt|λr + λ′/r|

)
erfc

(
tn
√
π/w ± |λr + λ′/r|

√
πw

)
.

If the argument of erfc is positive, which is always true in case ± = +, we can use the
estimate

erfc(x) ≤ exp(−x2), x ≥ 0,

and obtain

exp
(
±2πnt|λr + λ′/r|

)
erfc

(
tn
√
π/w ± |λr + λ′/r|

√
πw

)
≤ exp

(
±2πnt|λr + λ′/r|

)
exp

(
−
(
tn
√
π/w ± |λr + λ′/r|

√
πw

)2
)

= exp
(
−t2n2π/w

)
exp

(
−πw(λr + λ′/r)2

)
.
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Therefore, we are left with ∑
λ∈Λ+(a,m)

|tr(αλ)| exp
(
−πw(λr + λ′/r)2

)(t ∞∑
n=1

exp
(
−t2n2π/w

))
.

The left series is independent of t and can be shown to converge (with and without the
factor |tr(αλ)|). The right series is clearly convergent and goes to zero for t → ∞.

Hence, we are left with the case ± = −. If we fix some λ ∈ Λ+(a,m), we still can
apply the above argument to the inner series since we can pick t big enough to make

tn
√
π/w − |λr + λ′/r|

√
πw,

the argument of erfc, positive. Unfortunately, this cannot be done uniformly in λ.
Therefore, we still have to deal with almost all λ ∈ Λ+(a,m). Note that for almost all
λ ∈ Λ+(a,m) we have

|λr + λ′/r| > C

for any fixed constant C. Therefore, for almost all λ ∈ Λ+(a,m) we have

exp
(
−2πt|λr + λ′/r|

)
≤ 1

2 .

We obtain by the simple estimate erfc(x) ≤ 2

t
∞∑
n=1

exp
(
−2πnt|λr + λ′/r|

)
erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)

≤ 2t
∞∑
n=1

exp
(
−2πnt|λr + λ′/r|

)
= 2t exp (−2πt|λr + λ′/r|)

1 − exp (−2πt|λr + λ′/r|) ≤ 4t exp
(
−2πt|λr + λ′/r|

)
.

Hence, the assertion of the lemma follows by the claim

lim
t→∞

∑
λ∈Λ+(a,m)

|λr+λ′/r|>C

t |tr(αλ)| exp
(
−2πt|λr + λ′/r|

)
= 0

for the constant C chosen appropriately. This claim is indeed true since for each of
the finitely many ⟨ε1⟩ orbits of Λ+(a,m) we have that |λr + λ′/r| grows like ε|k|

1 with
k ∈ Z.

Proposition 4.3.2. The series

∑
λ∈Λ+(a,m)

∑′

n∈Z

e2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD +
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx)) (4.14)

+
∑

λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD −
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx)) (4.15)
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converges on H2 to a smooth function with pre-log-log growth along the exceptional divisor
E∞(a).

Proof. The proof of this proposition is a bit technical and lengthy even though we
outsourced already an important estimate into Lemma 4.3.1. In order to keep the
argument clear and not to bore the reader with almost repetitive computations, we skip
some similar looking computations but try to present the expedient ideas.

For example, for the proof of smoothness we leave it to the reader to verify by
induction on the order of derivative that

e2π|n|| tr(λy)| erfc

√πN(a)y1y2n2

vD
+
√
πvD tr(λy)2

N(a)y1y2


+ e−2π|n|| tr(λy)| erfc

√πN(a)y1y2n2

vD
−
√
πvD tr(λy)2

N(a)y1y2


is smooth. Note that each line on its own is not even differentiable at z ∈ Sλ. The
smoothness is attained by considering the sum.

For the proof of the pre-log-log growth we follow Remark 2.9.3 with f being the
series of our proposition. To apply this remark we have to regard f in terms of the local
coordinates (u, v). To be not confused with the real parameter variable v coming from
Kudla’s Green functions we write w := vD/N(a) and prefer using w instead of v for that
real parameter.

In the application of Remark 2.9.3 we abbreviate a bit by considering only f and
∂f/∂u. The other derivatives of first order work analogously and even for the second
order derivatives no new ideas are needed.

The appropriate growth behavior of f follows directly from Lemma 4.3.1 because of

∑
λ∈Λ+(a,m)

∑′

n∈Z

∣∣∣∣∣∣∣∣
e±2π|n|| tr(λy)| erfc

(√
πN(a)y1y2n2

vD ±
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx))

∣∣∣∣∣∣∣∣
≤

∑
λ∈Λ+(a,m)

∞∑
n=1

exp (±2πn| tr(λy)|) erfc

√πy1y2n2

w
±
√
πw tr(λy)2

y1y2

 .
The missing factor log(|u|) (compared with Lemma 4.3.1) only accelerates the convergence
to 0 for u → 0. Therefore, we are left with ∂f/∂u. To lighten the proof, we consider
n ∈ N and ± = − only (the case we present is the more difficult one). Hence, we have to
compute the derivative of

e−2πn| tr(λy)| erfc
(√

πN(a)y1y2n2

vD −
√

πvD tr(λy)2

N(a)y1y2

)
2n e(n tr(λx))

= 1
2n erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)
e(n tr(λx) + in| tr(λy)|)
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with respect to u. In case tr(λy) ≥ 0 we have by Lemma 2.7.1

e(n tr(λx) + in| tr(λy)|) = e(n tr(λz)) = un tr(αλ)vn tr(βλ).

Otherwise, we get by the same lemma

e(n tr(λx) + in| tr(λy)|) = e(n tr(λz)) = u−n tr(αλ)v−n tr(βλ).

In the first case, using the product rule we have

∂

∂u

1
2n erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)
un tr(αλ)vn tr(βλ)

= 1
2n

(
∂

∂u
erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

))
un tr(αλ)vn tr(βλ)

+ tr(αλ)
2 erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)
un tr(αλ)−1vn tr(βλ).

Following Remark 2.9.3, we have to show that u log(|u|)∂f/∂u has at most log-log growth.
We do that for the two lines separately. For the second line we have to consider

log(|u|)
∑

λ∈Λ+(a,m)
tr(λy)≥0

∞∑
n=1

tr(αλ)
2 erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)
un tr(αλ)vn tr(βλ)

which goes to 0 for u → 0 by Lemma 4.3.1. Because of

∂

∂u
u−n tr(αλ)v−n tr(βλ) = 0

in the second case tr(λy) < 0 the second line vanishes. Therefore, we can simultaneously
consider the two cases by considering the line

1
2n

(
∂

∂u
erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

))
e−2πn| tr(λy)|e(n tr(λx)).

Using
erfc′(x) = − 2√

π
exp(−x2)

we obtain
∂

∂u
erfc

(
tn
√
π/w − |λr + λ′/r|

√
πw

)
= − 2√

π
exp

(
−
(
tn
√
π/w − |λr + λ′/r|

√
πw

)2
)(

n
√
π/w

∂t

∂u
±
(
λ− λ′/r2

)√
πw

∂r

∂u

)
= − 2√

w
exp

(
−t2n2π/w + 2πnt|λr + λ′/r| − πw|λr + λ′/r|2

)
×
(
n
∂t

∂u
±
(
λ− λ′/r2

)
w
∂r

∂u

)
.
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Again, we have to multiply everything by u log(|u|). Using (2.32) and (2.33), we obtain

lim
u→0

u
∂t

∂u
=
√
N(α)
4π and lim

u→0
u log(|u|)∂r

∂u
= 0.

Therefore, we are left with showing the log-log growth of the series of

− log(|u|)
2n

2√
w

exp
(
−t2n2π/w + 2πnt|λr + λ′/r| − πw|λr + λ′/r|2

)
×n

√
N(α)
4π e−2πn| tr(λy)|e(n tr(λx)).

Taking absolute values of this expression, we get

|log(|u|)|
√
N(α)

4π
√
w

exp
(
−t2n2π/w

)
exp

(
−πw|λr + λ′/r|2

)
.

Therefore, the log-log growth of the series follows by the convergence of∑
λ∈Λ+(a,m)

exp
(
−πw|λr + λ′/r|2

)
and the limit

lim
t→∞

t
∞∑
n=1

exp
(
−t2n2π/w

)
= 0.

Recall that because of (2.32) we can replace | log(|u|)| by t.

Lemma 4.3.3. We have∑
λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)|

|n|
e(n tr(λx))

= − 2 log |Ψ(a,m, z)| − 4πδm>0
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2).

Proof. The actual work for m > 0 was already carried out in the previous chapter in
Lemma 3.4.3 where we investigated the automorphic Green functions. In that case we
have ∑

λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)|

|n|
e(n tr(λx))

=
∑

λ∈Λ+(a,m)

∞∑
n=1

e−2πn| tr(λy)|

n
(e(n tr(λx)) + e(−n tr(λx)))

= − 4π
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2) − 2 log
∏

λ∈Λ+(a,m)

∣∣e(|λ|z1) − e(|λ′|z2)
∣∣

= − 4π
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2) − 2 log |Ψ(a,m, z)|.
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For the second equation look into the proof of Lemma 3.4.3. For m < 0, however, we
can only adopt the first equation but still the ideas of Lemma 3.4.3 apply. Because of
tr(λy) > 0 we have for m < 0

∞∑
n=1

e−2πn| tr(λy)|

n
e(n tr(λx)) = − log(1 − e(tr(λz))

and
∞∑
n=1

e−2πn| tr(λy)|

n
e(−n tr(λx)) = − log(1 − e(tr(λz)).

In total we obtain twice the real part

−2 log |1 − e(tr(λz))| .

Definition 3.5.8 of Ψ(a,m, z) for m < 0 yields the stated result.

The lemma uncovers the logarithm of the absolute value of the local Borcherds product
Ψ(a,m, z) in Ξ0(a,m, v, z) providing the logarithmic singularities along −Z∞(a,m) in a
neighborhood of E∞(a) (cf. Corollary 3.5.7). That is what we were looking for. Now we
would like to show that the remainder of Ξ0(a,m, v, z) is of pre-log-log growth at E∞(a)
to make Ξ(a,m, v, z) a pre-log-log Green function with respect to the divisor Z(a,m).
Unfortunately, this is not the case as we see in the next pages of this section. Let us
treat the remainder of the first two lines of the Fourier expansion given in Theorem 4.2.2
now and give it the name

Ξ̌(a,m, v, z) := 16π

√
N(a)y1y2

vD

∑
λ∈Λ+(a,m)

β

(
πvD tr(λy)2

N(a)y1y2

)

− 4πδm>0
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2).
(4.16)

Note that Ξ̌(a,m, v, z) depends only on y = (y1, y2) but not on the real part x =
(x1, x2) of z = (z1, z2).

Proposition 4.3.4. The function Ξ̌(a,m, v, z) can be written in (t, r) coordinates (cf.
Subsection 2.7.7) by

Ξ̌(a,m, v, z) = t
∑

λ∈Λ+(a,m)
Fλ(r)

with analytic functions Fλ : R+ → R. In particular, Ξ̌(a,m, v, z) is smooth in z.

Proof. We have

16π

√
N(a)y1y2

vD
β

(
πvD tr(λy)2

N(a)y1y2

)
= 16πt

√
N(a)
vD

β

(
πvD(λr + λ′/r)2

N(a)

)
.
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This proves the statement for m < 0 since β(x) is analytic for arguments x > 0 and
λr + λ′/r > 0 in case λ ∈ Λ+(a,m) with m < 0. The main idea for m > 0 is to write
Ξ̌(a,m, v, z) in terms of the functions

gλ(r) :=
∣∣λr + λ′/r

∣∣
for λ ∈ Λ+(a,m). The function gλ(r) itself is not differentiable but gλ(r)2 is even analytic.
Note that we have

|tr(λy)| = tgλ(r) and 2β(λy1, λ
′y2) = t(λr − λ′/r − gλ(r)).

With C :=
√
vD/N(a) and equation (4.13) we get

16π

√
N(a)y1y2

vD

∑
λ∈Λ+(a,m)

β

(
πvD tr(λy)2

N(a)y1y2

)

= 2t
∑

λ∈Λ+(a,m)
C−1

(
exp(−πC2gλ(r)2) − πCgλ(r) erfc(

√
πCgλ(r))

)
and

−4π
∑

λ∈Λ+(a,m)
β(λy1, λ

′y2) = −2t
∑

λ∈Λ+(a,m)
π(λr − λ′r − gλ(r)).

Hence, we are left with proving that

gλ(r) erfc
(√
πCgλ(r)

)
− gλ(r) = −gλ(r) erf

(√
πCgλ(r)

)
is analytic in r. However, this follows from erf(z) being analytic and odd. Namely, we
have

erf(z) = 2√
π

∞∑
n=0

(−1)nz2n+1

n!(2n+ 1) .

Therefore,

gλ(r) erf
(√
πCgλ(r)

)
=

∞∑
n=1

an(C)gλ(r)2n

consists only of even powers of gλ(r). Hence, it is the composition of two analytic
functions and therefore analytic.

Proposition 4.3.5. Let m ̸= 0. The difference

Ξ0(a,m, v, z) − Ξ̌(a,m, v, z)

is well-defined in a neighborhood of E∞(a) ⊂ X(a) and decomposes into a sum of a part
having logarithmic singularities along the divisor

−(T∞(a,m) + Z∞(a,m))

and a part being a pre-log-log growth form along the divisor E∞(a).
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Proof. The well-definedness is clear with Proposition 2.5.2 because the function is in-
variant under the stabilizer Γa,∞. By Theorem 4.2.2, Lemma 4.3.3 and the definition of
Ξ̌(a,m, v, z) we have

Ξ0(a,m, v, z) − Ξ̌(a,m, v, z) = −2 log |Ψ(a,m, z)|

−
∑

λ∈Λ+(a,m)

∑′

n∈Z

e2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD +
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx))

−
∑

λ∈Λ+(a,m)

∑′

n∈Z

e−2π|n|| tr(λy)| erfc
(√

πN(a)y1y2n2

vD −
√

πvD tr(λy)2

N(a)y1y2

)
2|n|

e(n tr(λx)).

By Corollary 3.5.7 the function

−2 log |Ψ(a,m, z)| = − log |Ψ(a,m, z)|2

has logarithmic singularities along −(T∞(a,m) + Z∞(a,m)). The remainder is smooth
on X(a) and a pre-log-log growth form along E∞(a) by Proposition 4.3.2.

Remark 4.3.6. At this place we want to point out that the subtraction of Ξ̌(a,m, v, z)
in Proposition 4.3.5 is essential in case Ξ̌(a,m, v, z) is different from the zero function
(which is equivalent to Λ(a,m) ̸= ∅): Recall

lim
u→0

t

log(|u|) = −
√
N(α)
2π

from (2.32). Hence, by Proposition 4.3.4 the function Ξ̌(a,m, v, z) has log growth but
not log-log growth at the exceptional divisor E∞(a). Therefore, Ξ0(a,m, v, z) is not of
pre-log-log growth at E∞(a). Together with Theorem 4.5.1 which we prove in Section 4.5
this implies that Ξ(a,m, v, z) is not a pre-log-log Green function on X(a) with respect to
the divisor Z(a,m).

4.4 Fourier expansion and growth analysis of Ξ0(a, 0, v, z)
We compute

Ξ0
∗(a, 0, v, z) = 1

2
∑′

A=
(
a λ′
λ 0

)
∈L(a)∨

det(A)=0

E1 (4πvDN(a)h(A, z))

= 1
2

∑′

a∈Z/N(a)
E1

(
4πvDN(a)a2

4y1y2

)
=

∞∑
a=1

E1

(
πvDa2

N(a)y1y2

)
.

Hence, we see that Ξ0
∗(a, 0, v, z) is independent of the real part x = (x1, x2) of z ∈ H2. In

particular, its Fourier expansion consists only of the constant term Ξ0
∗(a, 0, v, z) itself.

To understand the growth of Ξ0
∗(a, 0, v, z) near the cusp ∞ we need two lemmata:
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Lemma 4.4.1. For small x > 0 we have the asymptotics
∞∑
n=1

E1(n2x) ∼a

√
π

x
+ log(x)

2 + γ

2 − log(2π).

With ∼a we mean that the difference of the two sides goes to 0 for x → 0.

Proof. It holds
∞∑
n=1

E1(n2x) =
∞∑
n=1

∫ ∞

1
e−tn2xdt

t
.

For s ∈ C with ℜ(s) > 1 we have
∞∑
n=1

∫ ∞

1
e−tn2xts

dt

t
=

∞∑
n=1

∫ ∞

0
e−tn2xts

dt

t
−

∞∑
n=1

∫ 1

0
e−tn2xts

dt

t
.

The left side of the equation is holomorphic at s = 0 and it is just the expression we are
interested in. Both integrals of the right hand side, however, do not converge at s = 0
but for ℜ(s) > 1. Therefore, we compute an analytic continuation to arrive at s = 0. It
holds

∞∑
n=1

∫ ∞

0
e−tn2xts

dt

t
=

∞∑
n=1

∫ ∞

0
e−t

(
t

n2x

)s dt
t

= x−s
∞∑
n=1

n−2s
∫ ∞

0
e−tts−1dt = x−sζ(2s)Γ(s)

=
(
1 − log(x)s+O(s2)

)(
−1

2 − log(2π)s+O(s2)
)(1

s
− γ +O(s)

)
= − 1

2s +
(

1 ·
(

−1
2

)
(−γ) + 1 · (− log(2π)) · 1 + (− log(x))

(
−1

2

)
· 1
)

+O(s)

= − 1
2s +

(
γ

2 − log(2π) + log(x)
2

)
+O(s).

For the other integral we use the theta function (4.10) and its transformation law (4.11).

146



CHAPTER 4. KUDLA’S GREEN FUNCTIONS

We obtain

∞∑
n=1

∫ 1

0
e−tn2xts

dt

t
=
∫ 1

0

θ
(
txi
π

)
− 1

2 ts
dt

t

= 1
2

∫ 1

0
θ

(
txi

π

)
ts−1dt− 1

2

∫ 1

0
ts−1dt

= 1
2

∫ ∞

1
θ

(
xi

πt

)
t1−st−2dt− 1

2

[
ts

s

]1

0

= 1
2

∫ ∞

1

√
πit

xi
θ

(
πit

x

)
t−s−1dt− 1

2s

= − 1
2s + 1

2

√
π

x

∫ ∞

1
θ

(
πit

x

)
t−s−1/2dt

= − 1
2s + 1

2

√
π

x

∫ ∞

1
t−s−1/2dt+ ε(s, x)

= − 1
2s + 1

2

√
π

x

[
t−s+1/2

−s+ 1/2

]∞

1
+ ε(s, x)

= − 1
2s + 1

2s− 1

√
π

x
+ ε(s, x)

with
ε(s, x) :=

√
π

x

∫ ∞

1

∞∑
n=1

exp
(

−π2n2t

x

)
t−s−1/2dt.

We get ∫ ∞

1

∞∑
n=1

e−tn2xts
dt

t

= − 1
2s +

(
γ

2 − log(2π) + log(x)
2

)
+O(s) −

(
− 1

2s + 1
2s− 1

√
π

x
+ ε(s, x)

)
= γ

2 − log(2π) + log(x)
2 + 1

1 − 2s

√
π

x
− ε(s, x) +O(s).

At the limit s → 0 it remains√
π

x
+ log(x)

2 + γ

2 − log(2π) − ε(0, x).

Hence, to finish the proof it is left to show

lim
x→0

ε(0, x) = 0.
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We have

ε(0, x) =
√
π

x

∫ ∞

1

∞∑
n=1

exp
(

−π2n2t

x

)
t−1/2dt

≤
√
π

x

∞∑
n=1

∫ ∞

1
exp

(
−π2n2t

x

)
dt

=
√
π

x

∞∑
n=1

exp
(
−π2n2t

x

)
−π2n2

x

∞

1

=
√
π

x

x

π2

∞∑
n=1

exp
(
−π2n2

x

)
n2

≤
√
xπ

π2 exp
(

−π2

x

) ∞∑
n=1

1
n2

=
√
xπ

π2 exp
(

−π2

x

)
π2

6

=
√
xπ

6 exp
(

−π2

x

)
.

This vanishes for x → 0.

Lemma 4.4.2. For large t > 0 we have the asymptotics

2
∞∑
n=1

exp
(

−πn2

t2

)
∼a t− 1.

Proof. Similar to the previous proof we use the theta function (4.10) and its transforma-
tion law (4.11) to obtain

∑
n∈Z

exp
(

−πn2

t2

)
= θ(i/t2) = tθ(it2) ∼a t. (4.17)

The asymptotics tθ(it2) ∼a t follows from estimate (4.12). Now, the statement of the
lemma follows from (4.17) by subtracting 1.

In analogy to equation (4.16), we define, written in (t, r) coordinates (cf. Subsec-
tion 2.7.7),

Ξ̌(a, 0, v, z) := t

√
N(a)
vD

.

Remark 4.4.3. This definition of Ξ̌(a, 0, v, z) is no exception for m = 0. We just
have to rewrite equation (4.16) with Λ(a,m) instead of Λ+(a,m) and obtain because of
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β(0) = 1/(8π) and Λ(a, 0) = {0}

Ξ̌(a,m, v, z) = 8πt

√
N(a)
vD

∑
λ∈Λ(a,m)

β

(
πvD(λr + λ′/r)2

N(a)

)

− 2πt δm>0
∑

λ∈Λ(a,m)
β(λr, λ′/r)

(4.18)

for all m ∈ Z. With this reformulation Proposition 4.3.4 holds for m = 0 as well. Here,
F0(r) = Ξ̌(a,m, v, z)/t is even a constant.

Proposition 4.4.4. The difference

Ξ0
∗(a, 0, v, z) − Ξ̌(a, 0, v, z)

is a pre-log-log growth form along the divisor E∞(a).

Proof. As presented a few times already we stick to Remark 2.9.3 and discuss the two
cases f and ∂f/∂u only with f representing the difference function from the statement.
For the case f we apply Lemma 4.4.1 and obtain

Ξ0
∗(a, 0, v, z) − Ξ̌(a, 0, v, z) =

∞∑
a=1

E1

(
πvDa2

N(a)t2

)
− t

√
N(a)
vD

∼a

√
π
πvD
N(a)t2

+
log

(
πvD
N(a)t2

)
2 + γ

2 − log(2π) − t

√
N(a)
vD

= γ

2 +
log

(
vD

4πN(a)

)
2 − log(t). (4.19)

Since log(t) is of log-log growth by Lemma 3.6.4, this proves the case f . Let us now
consider the case ∂f/∂u. We have by equation (4.6)

∂

∂u

(
Ξ0

∗(a, 0, v, z) − Ξ̌(a, 0, v, z)
)

=

−
∞∑
a=1

exp
(
−πvDa2

N(a)t2
)

πvDa2

N(a)t2

−2πvDa2

N(a)t3 −

√
N(a)
vD

 ∂t

∂u

=

2
∞∑
a=1

exp
(

−πvDa2

N(a)t2

)
− t

√
N(a)
vD

 1
t

∂t

∂u
.

Now, by Lemma 4.4.2 we obtain for the inner bracket the limit

lim
t→∞

2
∞∑
a=1

exp
(

−πvDa2

N(a)t2

)
− t

√
N(a)
vD

 = lim
t→∞

t
√
N(a)
vD

− 1 − t

√
N(a)
vD

 = −1.

Further, using the equations (2.32) and (2.33), we get

lim
u→0

u log(|u|)1
t

∂t

∂u
= lim

u→0
u

log(|u|)
t

√
N(α)
4πu = − 2π√

N(α)

√
N(α)
4π = −1

2 .
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Combined we have shown

lim
u→0

u log(|u|) ∂
∂u

(
Ξ0

∗(a, 0, v, z) − Ξ̌(a, 0, v, z)
)

= 1
2

which proves the case ∂f/∂u of Remark 2.9.3.

Remark 4.4.5. It is also interesting to look at the asymptotics of

Ξ0(a, 0, v, z) − Ξ̌(a, 0, v, z)

near the cusp ∞. Using (4.19) and (2.55), we obtain

Ξ0(a, 0, v, z) − Ξ̌(a, 0, v, z)

∼a Ξ0(a, v, z) + γ

2 +
log

(
vD

4πN(a)

)
2 − log(t)

= G(a, 0, z) − log(4πvD/N(a)) + γ

2 + γ

2 +
log

(
vD

4πN(a)

)
2 − log(t)

= G(a, 0, z) − log(4π) − log(t)

= log(|F (a, z)|2)
2k .

Hence, we see that even the log-log growth log(t) cancels out. Only the logarithmic
singularities of G(a, 0, z) along the divisor −Z(a, 0) remain.

4.5 Modification at the cusps using partitions of unity

We summarize the insights of Section 4.1, Section 4.3 and Section 4.4 in the following
theorem.

Theorem 4.5.1. For all m ∈ Z the difference

Ξ(a,m, v, z) − Ξ̌(a,m, v, z) (4.20)

is well-defined in a neighborhood of E∞(a) ⊂ X(a) and decomposes into a sum of a part
having logarithmic singularities along the divisor −Z(a,m) and a part being a pre-log-log
growth form along the divisor E∞(a).

Proof. By Proposition 4.1.3 it is equivalent to consider

Ξ0(a,m, v, z) − Ξ̌(a,m, v, z)

instead. In case m ̸= 0 this was done in Proposition 4.3.5 for the divisor

−(T∞(a,m) + Z∞(a,m))
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instead of the divisor −Z(a,m). However, in a small enough neighborhood of E∞(a) ⊂
X(a) the two divisors coincide. In case m = 0 we have

Ξ0(a, 0, v, z) − Ξ̌(a, 0, v, z) = (Ξ0
∗(a, 0, v, z) − Ξ̌(a, 0, v, z)) + Ξ0(a, v, z).

For Ξ0
∗(a, 0, v, z) − Ξ̌(a, 0, v, z) the work was done in Proposition 4.4.4 and the second

component
Ξ0(a, v, z) = G(a, 0, z) − log(4πvD/N(a)) + γ

2 .

has logarithmic singularities along −Z(a, 0) according to Proposition 2.9.24.

However, we cannot simply define a Green function on X(a) by equation (4.20) for
two reasons: First, the subtraction of Ξ̌(a,m, v, z) solves the problem only for the cusp ∞
and if hK > 1 there are other cusps. Second, the function Ξ̌(a,m, v, z) (and therefore
the difference as well) is not defined on all of X(a). It is only defined in a neighborhood
of the cusp ∞. That is because Ξ̌(a,m, v, z) as a function on H2 is only invariant under
the stabilizer of ∞ but not under the whole Hilbert modular group.

We start with solving the second problem first. Since the difference (4.20) is well-
defined in small enough neighborhoods of the cusp ∞, we find two such small neighbor-
hoods U0 ⊂ U1 of the cusp ∞ with a smooth function

ρ : X(a) → [0, 1]

by the theory of partitions of unity which satisfies

ρ|U0 ≡ 1 and supp(ρ) ⊂ U1.

Because Ξ̌(a,m, v, z) is a well-defined function on U1 the relation supp(ρ) ⊂ U1 implies
that ρ(z)Ξ̌(a, 0, v, z) is well-defined on X(a). Therefore,

Ξ̃ρ(a,m, v, z) := Ξ(a,m, v, z) − ρ(z)Ξ̌(a,m, v, z)

is well-defined on X(a) and by construction Theorem 4.5.1 implies that Ξ̃ρ(a,m, v, z)
behaves as desired at the cusp ∞.

Now we come to solving the first problem. If hK ̸= 1 the process has to be done for
the other cusps as well to finally obtain a pre-log-log Green function. Let us now explain
the process for simultaneously correcting Ξ(b,m, v, z) at all cusps. We switch here in
the notation from Ξ(a,m, v, z) to Ξ(b,m, v, z) to be more consistent with the referenced
results. Let σ1, . . . , σhK

be representatives of the cusps of Γb. We find a1, . . . , ahK
∈ IK

such that the isomorphism

X(b) → X(a2
jb), z 7→ M−1

j z

with Mj ∈ M(aj , b) maps the cusp σj ∈ X(b)∗ to the cusp ∞ ∈ X(a2
jb)∗. Note that we

have
Ξ∗(b,m,Mjz) = Ξ∗(a2

jb,m, z)
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by Proposition 4.1.2. Now let U0
j ⊂ U1

j be small enough neighborhoods of the cusp σj in
X(b) and let

ρj : X(b) → [0, 1]

be smooth functions with

ρj |U0
j

≡ 1 and supp(ρj) ⊂ U1
j .

Clearly, all U1
j are disjoint and we can define

ρ : X(b) → [0, 1] by ρ(z) :=
hk∑
j=1

ρj(z). (4.21)

Finally, we define

Ξ̃ρ(b,m, v, z) := Ξ(b,m, v, z) −
hk∑
j=1

ρj(z)Ξ̌(a2
jb,m, v,M

−1
j z). (4.22)

By construction we obtain the next theorem.

Theorem 4.5.2. The function Ξ̃ρ(a,m, v, z) defined by equation (4.22) is a pre-log-log
Green function on X(a) with respect to the divisor Z(a,m).

4.6 Integrals for m ̸= 0
In this section we compute the integral∫

Γa\H2
Ξ(a,m, v, z)ω2

for m ̸= 0. We need to recall the definition

Γ(s, x) :=
∫ ∞

x
ts−1 e−t dt (4.23)

of the upper incomplete gamma function for the first lemma.

Lemma 4.6.1. Let v > 0. Then we have∫
z∈H

E1

(
πv

|z − i|2

y

)
dxdy

y2 = 1
v

and ∫
z∈H

E1

(
πv

|z + i|2

y

)
dxdy

y2 = 4πΓ(−1, 4πv).
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Proof. We have ∫
z∈H

E1

(
πv

|z ± i|2

y

)
dxdy

y2

=
∫
z∈H

∫ ∞

1
exp

(
−πvtx

2 + (y ± 1)2

y

)
dt

t

dxdy

y2

=
∫ ∞

1

∫ ∞

0

∫ ∞

−∞
exp

(
−πvtx

2

y

)
dx exp

(
−πvt(y ± 1)2

y

)
dy

y2
dt

t

=
∫ ∞

1

∫ ∞

0

√
π

πvt/y
exp

(
−πvt(y ± 1)2

y

)
dy

y2
dt

t

= 1√
v

∫ ∞

1

∫ ∞

0
exp

(
−πvt(y ± 1)2

y

)
dy

y3/2
dt

t3/2

= 1√
v

∫ ∞

1
exp(∓2πvt)

∫ ∞

0
exp

(
−πvt(y + y−1)

) dy

y3/2
dt

t3/2

(i)= 1√
v

∫ ∞

1
exp(∓2πvt) · 2K−1/2(2πvt) dt

t3/2

(ii)= 1√
v

∫ ∞

1
exp(∓2πvt) · (vt)−1/2 exp(−2πvt) dt

t3/2

=1
v

∫ ∞

1
t−2 exp(∓2πvt) exp(−2πvt)dt.

In step (i) we used ∫ ∞

0
exp

(
−a(y + y−1)

)
ys−1dy = 2Ks(2a)

by [EMOT54, p. 313, eq. (17)] which holds for a > 0. In step (ii) we used

K−1/2(z) =
√
π

2z e
−z

by [OLBC10, 10.39.2]. Now we have to distinguish the two cases. In the case ± = − we
have

1
v

∫ ∞

1
t−2 exp(+2πvt) exp(−2πvt)dt = 1

v

∫ ∞

1
t−2dt = 1

v
.

In the case ± = + we get
1
v

∫ ∞

1
t−2 exp(−2πvt) exp(−2πvt)dt = 1

v

∫ ∞

1
t−2 exp(−4πvt)dt

= 1
v

1
4πv

∫ ∞

4πv
(t/4πv)−2 exp(−t)dt

= 4π
∫ ∞

4πv
t−2 exp(−t)dt

= 4πΓ(−1, 4πv).
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Theorem 4.6.2. For m > 0 we have∫
Γa\H2

Ξ(a,m, v, z)ω2 = vol(T (a,m))
2πvm .

For m < 0 we have if N(ε0) = −1∫
Γa\H2

Ξ(a,m, v, z)ω2 = 2Γ(−1, 4πv|m|) vol(T (a, |m|)).

Remark 4.6.3. For m < 0 we get in case N(ε0) = 1 in the upcoming proof still a
solution for the integral, namely∫

Γa\H2
Ξ(a,m, v, z)ω2 =

∑
A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

2Γ(−1, 4πv|m|) vol(Γ′
a,±A\H),

but we cannot associate it to the volume of a Hirzebruch–Zagier divisor. However, it is
possible to define Hirzebruch–Zagier divisors as divisors on C2 instead of H2. In that
case the integral is independently of N(ε0) given by∫

Γa\H2
Ξ(a,m, v, z)ω2 = 2Γ(−1, 4πv|m|) vol(T (a,m))

and one has in case N(ε0) = −1

vol(T (a,m)) = vol(T (a,−m)).

This is proven by using the bijection presented in Remark 2.8.5.

Proof of Theorem 4.6.2. We proceed analogously as in Theorem 3.8.2 and skip therefore
the explanations which coincide with the explanations given there. We start by rewriting
Kudla’s Green function

Ξ(a,m, v, z) =
∑

A∈L(a)∨/{±1}
det(A)=m/(N(a)D)

E1 (4πvDN(a)h(A, z))

=
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa/Γa,±A

E1 (4πvDN(a)h(M.A, z))

=
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa/Γa,±A

E1
(
4πvDN(a)h(A,M−1z)

)

=
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

∑
M∈Γa,±A\Γa

E1 (4πvDN(a)h(A,Mz)) .
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Now we have by Tonelli’s theorem (note that the integrand is positive)∫
Γa\H2

∑
M∈Γa,±A\Γa

E1 (4πvDN(a)h(A,Mz))ω2

=
∫

Γa,±A\H2
E1 (4πvDN(a)h(A, z))ω2

= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1 (4πvDN(a)h(A, z)) η1η2

= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1 (4πvDN(a) det(A)g(A, z)) η1η2

= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1 (πvmd(z1, ASz2)) η1η2

= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1 (πvmd(z1,±i)) η1η2

= 2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1

(
πv|m| |z1 ∓ i|2

y1

)
η1η2.

Here the sign ± is given by sgn(m). In both cases this is the moment to apply Lemma 4.6.1.
We start with m > 0 and have

2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1

(
πvm

|z1 − i|2

y1

)
η1η2

= 2
∫
z2∈Γ′

a,±A\H

1
4πvmη2 =

vol(Γ′
a,±A\H)

2πvm .

Hence, in total we get∫
Γa\H2

Ξ(a,m, v, z)ω2 =
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

vol(Γ′
a,±A\H)

2πvm = vol(T (a,m))
2πvm .

In case m < 0 we have

2
∫
z2∈Γ′

a,±A\H

∫
z1∈H

E1

(
πv|m| |z1 + i|2

y1

)
η1η2

= 2
∫
z2∈Γ′

a,±A\H
Γ(−1, 4πv|m|)η2 = 2Γ(−1, 4πv|m|) vol(Γ′

a,±A\H).

Hence, in total we get by Remark 2.8.5 (and this is the only time we need N(ε0) = −1)∫
Γa\H2

Ξ(a,m, v, z)ω2 =
∑

A∈Γa\L(a)∨/{±1}
det(A)=m/(N(a)D)

2Γ(−1, 4πv|m|) vol(Γ′
a,±A\H)

= 2Γ(−1, 4πv|m|) vol(T (a, |m|)).
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4.7 Integral for m = 0
In this section we compute the integral∫

Γa\H2
Ξ∗(a, 0, v, z)ω2.

For that purpose we prove one auxiliary lemma first.

Lemma 4.7.1. Let v > 0. Then we have∫ ∞

0
E1

(
v

y

)
dy

y2 = 1
v
.

Proof. We compute∫ ∞

0
E1

(
v

y

)
dy

y2 =
∫ ∞

0

∫ ∞

1
exp

(
−vt

y

)
dt

t

dy

y2

=
∫ ∞

1

∫ ∞

0
exp

(
−vt

y

)
dy

y2
dt

t

=
∫ ∞

1

∫ 0

∞
exp

(
− vt

y−1

)(
−y−2

) dy

y−2
dt

t

=
∫ ∞

1

∫ ∞

0
exp (−vty) dydt

t

=
∫ ∞

1

1
vt

dt

t

= 1
v

∫ ∞

1

dt

t2
= 1
v
.

Theorem 4.7.2. We have∫
Γa\H2

Ξ∗(a, 0, v, z)ω2 = hK log(ε0)
24πv

√
D
.

In particular, the value of the integral is independent of a ∈ IK .

Proof. For the proof we rename the ideal a from the statement to b. This is because we
need the letter a for other ideals for the sake of consistency with referenced results.
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It holds

Ξ∗(b, 0, v, z) = 1
2

∑′

A∈L(b)∨

det(A)=0

E1 (4πvDN(b)h(A, z))

= 1
2

∑
A∈Iso(L(b)∨)

E1 (4πvDN(b)h(A, z))

= 1
2

∑
A∈Iso((L(b)∨)0)

∞∑
n=1

E1 (4πvDN(b)h(nA, z))

=
∞∑
n=1

∑
A∈Iso((L(b)∨)0)/{±1}

E1
(
4πvn2DN(b)h(A, z)

)
.

Because v > 0 is arbitrary, it is enough to solve the integral for the case n = 1. We have∑
A∈Iso((L(b)∨)0)/{±1}

E1 (4πvDN(b)h(A, z))

=
∑

A∈Γb\ Iso((L(b)∨)0)/{±1}

∑
γ∈Γb/Γb,±A

E1 (4πvDN(b)h(γ.A, z))

(i)=
∑

[a]∈ClK
Ma∈M(a,b)

∑
γ∈Γa2b/Γa2b,∞

E1

(
4πvDN(b)h

( ±1
N(ab)(Maγ).E0, z

))

=
∑

[a]∈ClK
Ma∈M(a,b)

∑
γ∈Γa2b/Γa2b,∞

E1

( 4πvD
N(a2b)h ((Maγ).E0, z)

)

(ii)=
∑

[a]∈ClK
Ma∈M(a,b)

∑
γ∈Γa2b/Γa2b,∞

E1

( 4πvD
N(a2b)h

(
γ.E0,M

−1
a z

))

(iii)=
∑

[a]∈ClK
Ma∈M(a,b)

∑
γ∈Γa2b,∞\Γa2b

E1

( 4πvD
N(a2b)h

(
E0, γM

−1
a z

))
.

In step (i) we use Lemma 2.4.10. The first sum runs over the finitely many ideal classes.
For each class [a] ∈ ClK we pick one Ma ∈ M(a, b) and do not run over all elements of
M(a, b). In step (ii) and (iii) we use Proposition 2.6.1.
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Now let us fix a class [a] ∈ ClK and compute the integral of the inner sum.∫
Γb\H2

∑
γ∈Γa2b,∞\Γa2b

E1

( 4πvD
N(a2b)h

(
E0, γM

−1
a z

))
ω2

(iv)=
∫
M−1

a ΓbMa\H2

∑
γ∈Γa2b,∞\Γa2b

E1

( 4πvD
N(a2b)h (E0, γz)

)
ω2

(v)=
∫

Γa2b\H2

∑
γ∈Γa2b,∞\Γa2b

E1

( 4πvD
N(a2b)h (E0, γz)

)
ω2

(vi)=
∫

Γa2b,∞\H2
E1

( 4πvD
N(a2b)h (E0, z)

)
ω2

(vii)=
∫

Γa2b,∞\H2
E1

(
πvD

N(a2b)ℑ(z)

)
ω2

=vol((a2b)−1)
8π2

∫ ε2
0

1

∫ ∞

0
E1

(
πvD

N(a2b)ℑ(z)

)
dy1dy2
y2

1y
2
2

(viii)= vol((a2b)−1)
8π2

∫ ε2
0

1

N(a2b)
πvDy2

dy2 = log(ε0)
4π3v

√
D
.

In step (iv) we translated the integration region with Ma in order to get rid of it in the
argument of h. In step (v) we used Corollary 2.3.6. In step (vi) we unfolded. In step
(vii) we used Lemma 2.6.7. In step (viii) we used Lemma 4.7.1.

Now the theorem follows by noting that so far we only computed the integral for one
ideal class [a] ∈ ClK instead of hK many and by accounting for the n > 1 with

∞∑
n=1

1
n2 = π2

6 .

Hence, the final result is

hK · π
2

6 · log(ε0)
4π3v

√
D

= hK log(ε0)
24πv

√
D
.

4.8 Generating series

Analogously to Section 3.10 we want to consider the generating series∑
m∈Z

Ξ(a,m, v, z)qm. (4.24)

Different from the situation there the Green function Ξ(a,m, v, z) and the variable q are
not independent. Namely, for τ = u+ iv ∈ H with u, v ∈ R we define

q := e(τ) = exp(2πiτ).
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Hence, the variable v in Ξ(a,m, v, z) is in relation with q. We have

|q| = |exp(2πiτ)| = exp(−2πv) < 1.

Before stating and proving our convergence theorem we need to provide a little lemma.

Lemma 4.8.1. Let n ∈ N, c > 0 and q ∈ C with exp(−c) < |q|. Then

∞∑
m=1

Γ(−1, cm)mnq−m

converges absolutely.

Proof. For x > 0 we have

Γ(−1, x) =
∫ ∞

x
t−2 exp(−t)dt ≤ x−2

∫ ∞

x
exp(−t)dt = x−2 exp(−x).

It follows
∞∑
m=1

Γ(−1, cm)mn|q|−m ≤
∞∑
m=1

(cm)−2 exp(−cm)mn|q|−m

= c−2
∞∑
m=1

mn−2
(exp(−c)

|q|

)m
< ∞.

Theorem 4.8.2. Let τ ∈ H be fixed. The series∑
m∈Z

Ξ(a,m, v, z)qm

converges absolutely for almost all z ∈ H2. Furthermore, the series∑
m∈Z

|Ξ(a,m, v, z)qm|

is integrable over X(a).

Proof. The integrability of the series∑
m∈Z

|Ξ(a,m, v, z)qm|

implies the statement about the convergence. By Tonelli’s theorem we obtain∫
X(a)

∑
m∈Z

|Ξ(a,m, v, z)qm|ω2 =
∑
m∈Z

(∫
X(a)

|Ξ(a,m, v, z)|ω2
)

|q|m.

159



CHAPTER 4. KUDLA’S GREEN FUNCTIONS

Therefore, it is enough to prove the finiteness of the right hand side. We split the sum up
into positive and negative m. By Definition 4.1.1 we have |Ξ(a,m, v, z)| = Ξ(a,m, v, z)
for m ̸= 0, hence by Theorem 4.6.2 we have to consider

∞∑
m=1

vol(T (a,m))
2πvm |q|m and

∞∑
m=1

2Γ(−1, 4πvm) vol(T (a,m))|q|−m. (4.25)

Technically, in the second series we should take∑
A∈Γa\L(a)∨/{±1}

det(A)=−m/(N(a)D)

vol(Γ′
a,±A\H)

instead of vol(T (a,m)) in case N(ε0) = 1, but here we only use that the volumes grow
polynomially in m which is true in both cases. This polynomial growth directly implies
the finiteness of the first series of (4.25). For the second series the convergence follows
from Lemma 4.8.1 with c = 4πv and

exp(−4πv) < exp(−2πv) = |q|.

Theorem 4.8.3. The series ∑
m∈Z

Ξ̃ρ(a,m, v, z)qm

converges absolutely for almost all z ∈ H2 and all τ ∈ H. Furthermore, the series∑
m∈Z

∣∣∣Ξ̃ρ(a,m, v, z)qm∣∣∣
is integrable over X(a).
Proof. Formally, we have by definition (4.22)

∑
m∈Z

Ξ̃ρ(b,m, v, z)qm =
∑
m∈Z

Ξ(b,m, v, z)qm −
∑
m∈Z

hk∑
j=1

ρj(z)Ξ̌(a2
jb,m, v,M

−1
j z)qm.

Therefore, by Theorem 4.8.2 it is only left to show that

ρj(z)
∑
m∈Z

Ξ̌(a2
jb,m, v,M

−1
j z)qm

converges absolutely and that

ρj(z)
∑
m∈Z

∣∣∣Ξ̌(a2
jb,m, v,M

−1
j z)qm

∣∣∣
is integrable over X(b). In Section 5.1 we investigate the generating series∑

m∈Z
Ξ̌(a,m, v, z)qm.

Theorem 5.1.3 provides the convergence and integrability results we need.
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Chapter 5

Modularity

In this last chapter of the thesis we discuss many modularity results for generating series.
In particular, we prove our main theorem, the modularity of∑

m∈Z
(Z(a,m), Ξ̃ρ(a,m, v, z))qm

for prime discriminant D and a = OK . The transformation law we have in mind when
we talk about scalar valued modularity is the one of the following definition. However,
we consider non-holomorphic modular forms as well.
Definition 5.0.1. A holomorphic function f : H → C is called a modular form of weight
k, level D and nebentypus χD if f is holomorphic at the cusps and satisfies

f(γτ) = χD(a)(cτ + d)kf(z) (5.1)

for all τ ∈ H and all

γ =
(
a b
c d

)
∈ Γ0(D) :=

{(
a b
c d

)
∈ SL2(Z) : c ≡ 0 (mod D)

}
.

The space of all modular forms of weight k, level D and nebentypus χD is denoted by
Mk(D,χD).

5.1 Modularity of the correction term

In this section we prove that ∑
m∈Z

Ξ̌(a,m, v, z)qm (5.2)

converges and is modular in τ ∈ H. Recall that q = e(τ) and v = ℑ(τ). In accordance
with [HZ76, p. 98], we define for λ, λ′ ∈ R

Uτ (λ, λ′) := 2v−1/2β(πv(λ− λ′)2)e(λλ′τ),
Vτ (λ, λ′) := 1

2δλλ′>0β(λ, λ′)e(λλ′τ),
Wτ (λ, λ′) := Uτ (λ, λ′) − Vτ (λ, λ′).
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The main ingredient of our modularity proof of the series (5.2) is the transformation
law (5) in [HZ76, p. 98, Proposition 1]. Let us start with some preliminary work.

Lemma 5.1.1. Let a > 0. Then we have

Wa2τ (λ/a, λ′/a) = Wτ (λ, λ′)/a.

Proof. We show the relations separately for U and V :

Ua2τ (λ/a, λ′/a) = 2(a2v)−1/2β(πa2v(λ/a− λ′/a)2)e(λ/a · λ′/a · a2τ)

= 2v
−1/2

a
β(πv(λ− λ′)2)e(λλ′ · τ) = Uτ (λ, λ′)/a

and
β(λ/a, λ′/a)e(λ/a · λ′/a · a2τ) = 1

a
β(λ, λ′)e(λλ′τ).

Lemma 5.1.2. We have∑
m∈Z

Ξ̌(a,m, v, z)qm = 4πt√
D

∑
λ∈a

Wτ/N(a)(λr, λ′/r).

Proof. We do not talk about convergence in this proof, this is covered in Theorem 5.1.3.
Note that

a =
⋃
m∈Z

{λ ∈ a : N(λ) = mN(a)} .

Therefore, it is enough to show for all m ∈ Z

Ξ̌(a,m, v, z)qm = 4πt√
D

∑
λ∈a

N(λ)=mN(a)

Wτ/N(a)(λr, λ′/r).

We split the right hand side up into the U and V part and consider them separately.
Note that for λ ∈ Λ(a,m) we have

qm = e(mτ) = e(−λλ′Dτ/N(a))

by equation (2.42). Using
√
DΛ(a,m) = {λ ∈ a : N(λ) = mN(a)} ,
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we obtain
4πt√
D

∑
λ∈a

N(λ)=mN(a)

Uτ/N(a)(λr, λ′/r)

= 4πt√
D

∑
λ∈Λ(a,m)

Uτ/N(a)(λ
√
Dr,−λ′√D/r)

= 4πt√
D

∑
λ∈Λ(a,m)

2(v/N(a))−1/2β(π(v/N(a))(λ
√
Dr + λ′√D/r)2)e(−λλ′Dτ/N(a))

=8πt

√
N(a)
vD

∑
λ∈Λ(a,m)

β

(
πvD(λr + λ′/r)2

N(a)

)
qm.

On the other hand, we have for m > 0

4πt√
D

∑
λ∈a

N(λ)=mN(a)

Vτ/N(a)(λr, λ′/r)

= 4πt√
D

∑
λ∈Λ(a,m)

Vτ/N(a)(λ
√
Dr,−λ′√D/r)

= 2πt√
D

∑
λ∈Λ(a,m)

β(λ
√
Dr,−λ′√D/r)e(−λλ′Dτ/N(a))

=2πt
∑

λ∈Λ(a,m)
β(λr, λ′/r)qm.

Taking the difference, we get the representation of Ξ̌(a,m, v, z) given in equation (4.18)
which finishes the proof.

Theorem 5.1.3. Let τ ∈ H be fixed. The series∑
m∈Z

Ξ̌(a,m, v, z)qm

is absolutely convergent for all z ∈ H2 and∑
m∈Z

∣∣∣Ξ̌(a,m, v, z)qm
∣∣∣

is integrable over the Siegel domain SC for arbitrary C > 0.

Proof. Since
H2 =

⋃
C>0

SC ,
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we are allowed to fix C > 0 for the whole proof and only consider z ∈ SC . We make use
of the representation from Lemma 5.1.2 which implies

∑
m∈Z

∣∣∣Ξ̌(a,m, v, z)qm
∣∣∣ ≤ 4πt√

D

∑
λ∈a

∣∣∣Uτ/N(a)(λr, λ′/r)
∣∣∣+∑

λ∈a

∣∣∣Vτ/N(a)(λr, λ′/r)
∣∣∣
 .

Now let R > max(r2, r−2) for all possible values of r in the Siegel domain SC . Since τ is
fixed, we can neglect the scaling by 1/N(a) and consider (cf. definition (4.13))∣∣Uτ (λr, λ′/r)

∣∣ = 2v−1/2β(πv(λr − λ′/r)2)
∣∣e(λλ′τ)

∣∣
≤ 2v−1/2 exp(−πv(λr − λ′/r)2)

8π exp(−2πN(λ)v)

= exp(−πv(r2λ2 + r−2(λ′)2))
4v1/2π

≤ exp(−πvR tr(λ2))
4v1/2π

.

Using the fact that the trace form is a positive definite quadratic form on K, we obtain
that ∑

λ∈a

∣∣∣Uτ/N(a)(λr, λ′/r)
∣∣∣

is bounded on the Siegel domain SC . We continue with

∣∣Vτ (λr, λ′/r)
∣∣ = 1

2β(λr, λ′/r)
∣∣e(λλ′τ)

∣∣ = 1
2β(λr, λ′/r) exp(−2πN(λ)v)

in case N(λ) > 0. Now, for each λ0 ∈ a with N(λ0) > 0 there are infinitely λ ∈ a with
N(λ) = N(λ0) because O+

K = ⟨ε1⟩ acts freely on the set of all such λ. We have, using
the geometric series, ∑

k∈Z
β((λεk1)r, (λεk1)′/r) ≤ 2

√
N(λ)

1 − ε2
1
.

By Lemma 2.8.6 we obtain that the series∑
λ∈a

∣∣∣Vτ/N(a)(λr, λ′/r)
∣∣∣

can be be estimated up to a factor by the converging series
∞∑
m=1

m exp(−cm)

for an appropriately chosen c > 0. Now, with∑
λ∈a

∣∣∣Uτ/N(a)(λr, λ′/r)
∣∣∣ and

∑
λ∈a

∣∣∣Vτ/N(a)(λr, λ′/r)
∣∣∣
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being bounded on SC , Lemma 3.8.7 provides us with α = −1/2 the integrability of

4πt√
D

∑
λ∈a

∣∣∣Uτ/N(a)(λr, λ′/r)
∣∣∣+∑

λ∈a

∣∣∣Vτ/N(a)(λr, λ′/r)
∣∣∣
 .

Since a defines an even lattice with respect to the quadratic form qa (cf. Subsec-
tion 2.2.4), we can talk about vector valued modular forms with respect to the lattice a.
These are functions

f : H → C[a∨qa/a] =
⊕

λ∈a∨qa /a

Ceλ

satisfying the respective transformation law dictated by the Weil representation. See
[Sch15, Section 2] for further details.

Theorem 5.1.4. We define for fixed r > 0 and all ν ∈ a∨qa/a

W a
ν (τ) :=

∑
λ∈a

Wτ/N(a)((λ+ ν)r, (λ′ + ν ′)/r).

Then
W a(τ) :=

∑
ν∈a∨qa /a

W a
ν (τ)eν =

∑
λ∈a∨qa

Wτ/N(a)(λr, λ′/r)eλ

is a non-holomorphic vector valued modular form for SL2(Z) of weight 2 with respect to
the Weil representation.

Proof. Recall from equation (2.8) and the subsequent discussion that qa(x) = N(x)/N(a)
and that we have a∨qa = ad−1. Since SL2(Z) is generated by T and S, it suffices to prove
the following two transformation laws:

W a
γ (τ + 1) = e(qa(γ))W a

γ (τ),
W a
γ (−1/τ) = D−1/2τ2 ∑

δ∈a∨qa /a

e(tr(δγ′)/N(a))W a
δ (τ).

We have

W a
ν (τ + 1) =

∑
λ∈a

W(τ+1)/N(a)((λ+ ν)r, (λ′ + ν ′)/r)

=
∑
λ∈a

Wτ/N(a)((λ+ ν)r, (λ′ + ν ′)/r)e(N(λ+ ν)/N(a))

=
∑
λ∈a

Wτ/N(a)((λ+ ν)r, (λ′ + ν ′)/r)e(qa(λ+ ν))

= e(qa(ν))W a
ν (τ)

which proves the first transformation law. Now we define for x ∈ R2

Xτ (x) := Wτ (x1r, x2/r).
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Therefore, we have
W a
ν (τ) =

∑
λ∈a

Xτ/N(a)(λ+ ν).

Using Poisson summation with respect to the usual trace form, we obtain

W a
ν (τ) = 1

vol(a)
∑

λ∈a∨tr

X̂τ/N(a)(λ)e(tr(λν))

with

X̂τ/N(a)(λ) =
∫
R2
Xτ/N(a)(x)e(− tr(λx))dx

=
∫
R2
Wτ/N(a)(x1r, x2/r)e(−(λ/r)(x1r) − (λ′r)(x2/r))dx

(i)=
∫
R2
Wτ/N(a)(x1, x2)e(−(λ/r)x1 − (λ′r)x2)dx

(ii)= Ŵτ/N(a)(λ/r, λ′r)
(iii)= (τ/N(a))−2W−N(a)/τ (λ/r, λ′r)
(iv)= N(a)τ−2W−1/(τN(a))(N(a)λ/r,N(a)λ′r).

Here, in step (i) we use integration by substitution with (x1, x2) 7→ (x1/r, x2r). In step
(ii) we identify the Fourier transform. In step (iii) we use [HZ76, Proposition 1, p. 98]
and in step (iv) we apply Lemma 5.1.1. Now, we obtain for W a

ν (τ)

1√
DN(a)

∑
λ∈a′d−1/N(a)

N(a)τ−2W−1/(τN(a))(N(a)λ/r,N(a)λ′r)e(tr(λν))

=D−1/2τ−2 ∑
λ∈a′d−1

W−1/(τN(a))(λ/r, λ′r)e(tr(λν/N(a)))

(v)=D−1/2τ−2 ∑
λ∈ad−1

W−1/(τN(a))(λr, λ′/r)e(tr(λ′ν/N(a)))

=D−1/2τ−2 ∑
δ∈a∨qa /a

W a
δ (−1/τ)e(tr(δν ′)/N(a)).

In step (v) we used the symmetry of Wτ in its arguments. The substitution τ 7→ −1/τ
proves the second transformation law.

In [Sch09, p. 13], Scheithauer attaches to each discriminant form D̃ a quadratic
character χD̃ by

χD̃ : Z → {1,−1, 0} , χD̃(a) :=
(
a

|D̃|

)
e
(
(a− 1) oddity(D̃)/8

)
.

Even though for fixed real quadratic field K with discriminant D the discriminant forms
a∨qa/a have the same cardinality D, they are not isomorphic as discriminant forms when

166



CHAPTER 5. MODULARITY

running over the fractional ideals a ∈ IK . However, it turns out that they all induce the
same character χa∨qa /a and it holds χD = χa∨qa /a for all a ∈ IK . This can be shown using
the generalized law of quadratic reciprocity to the Kronecker symbol and by computing
appropriate oddities and p-excesses. Here, χD is defined by equation (2.4) as throughout
the whole thesis.

Theorem 5.1.5. For every fixed z ∈ H2 the function

H → C, τ 7→
∑
m∈Z

Ξ̌(a,m, v, z)qm

is a non-holomorphic modular form of weight 2, level D and nebentypus χD.

Proof. By Lemma 5.1.2 we can prove instead that∑
λ∈a

Wτ/N(a)(λr, λ′/r)

which is the zero component of W a(τ) is a non-holomorphic modular form of weight 2,
level D and nebentypus χD (note that the prefactor 4πt/

√
D is independent of τ).

However, this follows from [Sch09, Proposition 4.5] applied to Theorem 5.1.4 together
with the above insight χD = χa∨qa /a.

5.2 Modularity of two generating series of differential forms

Definition 5.2.1. We define

ω(a,m, z) := ddcG(a,m, z) and φ(a,m, v, z) := ddcΞ(a,m, v, z).

Since G(a,m, z) and Ξ(a,m, v, z) are smooth apart from the logarithmic singularities
along the divisors −T (a,m) on X(a), we obtain with Lemma 2.9.12 that ω(a,m, ·) and
φ(a,m, v, ·) are (1, 1)-forms on all of X(a), i.e., they are elements of A1,1(X(a)).

By the work of Zagier (cf. [Zag75]) we obtain the following theorem.

Theorem 5.2.2. The generating series

Ω(a, τ, z) :=
∞∑
m=0

ω(a,m, z)qm

converges to a smooth (1, 1)-form, i.e., Ω(a, τ, ·) ∈ A1,1(X(a)). The form Ω(a, ·, z) is
a holomorphic modular form of weight 2, level D and nebentypus χD with values in
A1,1(X(a)).

A similar result holds for the generating series of the φ(a,m, v, z) by the Kudla–Millson
theory (cf. [KM90]). Namely, the respective series can be identified as the Kudla–Millson
theta series. To explain the modified zero term Ξ(a, 0, v, z) (cf. Definition 4.1.1), we need
the next lemma.
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Lemma 5.2.3. Let v > 0. Then we have

lim
A→0

ddcE1 (vh(A, z)) = −ω.

Here, ω is the Kähler form (cf. equation (2.15)).

Proof. We use the representation of E1(x) from equation (4.2) and get

E1(x) = −γ + Ein(x) − log(x).

Since h(0, z) = 0 is independent of z, it follows with A =
(
a λ′
λ b

)
lim
A→0

ddcE1 (vh(A, z)) = − lim
A→0

ddc log(vh(A, z))

= − lim
A→0

ddc log
(

|bz1z2 − λz1 − λ′z2 + a|2

4y1y2

)
= ddc log(y1y2) = −ω.

From the second to the third line we used Lemma 2.9.12.

Theorem 5.2.4. The generating series

φ(a, τ, z) :=
∑
m∈Z

φ(a,m, v, z)qm

converges to a smooth (1, 1)-form, i.e., φ(a, τ, ·) ∈ A1,1(X(a)). The form φ(a, ·, z) is a
non-holomorphic modular form of weight 2, level D and nebentypus χD with values in
A1,1(X(a)).

Proof. By Definition 4.1.1 the series φ(a, τ, z) is given by∑
m∈Z

ddcΞ(a,m, v, z)qm = ddcΞ0(a, v, z) +
∑
m∈Z

ddcΞ∗(a,m, v, z)qm.

By Proposition 2.9.24 we have

ddcΞ0(b, v, z) = −ω

2 .

Using Definition 4.1.1, we obtain∑
m∈Z

ddcΞ∗(a,m, v, z)qm = 1
2
∑′

A∈L(a)∨

ddcE1 (4πvDN(a)h(A, z)) qdet(A)DN(a).

Now, Lemma 5.2.3 suggests that we can interpret ddcΞ0(b, v, z) as the omitted term
for A = 0. Therefore, with this interpretation of the right hand side we have

φ(a, τ, z) = 1
2

∑
A∈L(a)∨

ddcE1 (4πvDN(a)h(A, z)) qdet(A)DN(a).

With this interpretation the right hand side is the Kudla–Millson theta series which is
modular by construction using the general Kudla–Millson theory. As source for the general
Kudla–Millson theory see [KM90]. In this particular case see [Kud03, p. 329–330].
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5.3 The Eisenstein series E+
2 (τ, s) and its derivative

In this section we restrict ourselves to real quadratic number fields K of prime discrimi-
nant D. This implies that ε0 has a negative norm and that Γ0(D) has two cusps, namely
0 and ∞ (not to be confused with SL2(OK) whose cusp number is hk). Therefore, there
are two non-holomorphic Eisenstein series E0

2(τ, s) and E∞
2 (τ, s) of weight 2, level D and

nebentypus χD corresponding to the cusps, respectively. A certain linear combination
gives rise to the Eisenstein series E+

2 (τ, s) satisfying the so-called plus space condition,
i.e., the m-th Fourier coefficient vanishes whenever χD(m) = −1. Details can be found in
[BY06, Section 2]. We quote now Theorem 2.2 of [BY06] for weight k = 2 which makes
the Fourier expansion of E+

2 (τ, s) explicit. Recall from equation (3.21) the definition of
the generalized divisor sum σm(s). We lighten the notation of the usual W -Whittaker
function Wν,µ(z) (cf. [OLBC10, 13.14.3]) by defining

Ws(v) := |v|−1Wsgn(v),−1/2−s(|v|) (5.3)

for s ∈ C and v ∈ R×.

Theorem 5.3.1. The Eisenstein series E+
2 (τ, s) has the Fourier expansion

E+
2 (τ, s) = c(0, s, v) +

∑′

m∈Z
C(m, s)Ws(4πmv)e(mu),

where

c(0, s, v) = (vD)s − 2−2sπD−3/2−sv−1−s Γ(2s+ 1)
Γ(s+ 2)Γ(s)

L(2s+ 1, χD)
L(2s+ 2, χD) ,

C(m, s) = 2
(
D

4π

)s cos(πs)Γ(2s+ 2)σ|m|(−1 − 2s)
Γ(s)L(−1 − 2s, χD) , if m < 0,

C(m, s) = 2
(
D

4π

)s cos(πs)Γ(2s+ 2)σm(−1 − 2s)
Γ(s+ 2)L(−1 − 2s, χD) , if m > 0.

Corollary 5.3.2. We have

E+
2 (τ, 0) = 1 + 2

L(−1, χD)

∞∑
m=1

σm(−1)qm.

Proof. The statement follows with W0(v) = e−v/2 directly from Theorem 5.3.1 by plugging
in s = 0. The terms of negative index m vanish because 1/Γ(s) has a simple zero at
s = 0.

Proposition 5.3.3. The derivative of E+
2 (τ, s) with respect to s at s = 0 is given by

d

ds
E+

2 (τ, s) |s=0=
∑
m∈Z

c̃(m, v)qm,
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where

c̃(0, v) = log(vD) + hK log(ε0)
πv

√
DL(−1, χD)

,

c̃(m, v) =
2σ|m|(−1)
L(−1, χD)Γ(−1, 4π|m|v), if m < 0,

c̃(m, v) = 2σm(−1)
L(−1, χD)

×
(

log(D/4π) + 1 − γ − 2σ
′
m(−1)
σm(−1) + 2L

′(−1, χD)
L(−1, χD) + 1

4πmv

)
, if m > 0.

Proof. We use that for holomorphic f(s) we have

lim
s→0

d

ds

f(s)
Γ(s) = f(0). (5.4)

Applied to the constant term of E+
2 (τ, s) this implies

d

ds
c(0, s, v) |s=0 = log(vD) − πD−3/2v−1L(1, χD)

L(2, χD) .

Using the functional equation of the L-function L(s, χD), we obtain

L(2, χD) = − 2π2

D3/2L(−1, χD).

By the class number formular (2.6) we have

hK =
√
D

2 log(ε0)L(1, χD).

We obtain
−πD−3/2v−1L(1, χD)

L(2, χD) = hK log(ε0)
πv

√
DL(−1, χD)

.

For m < 0 we obtain using (5.4) a further time

d

ds
C(m, s)Ws(4πmv)e(mu) |s=0= (Γ(s)C(m, s)) |s=0 W0(4πmv)e(mu). (5.5)

We have

(Γ(s)C(m, s)) |s=0= 2
(
D

4π

)0 cos(π · 0)Γ(2)σ|m|(−1)
L(−1, χD) =

2σ|m|(−1)
L(−1, χD) .

Together with W0(v) = e−v/2Γ(−1, |v|) for v < 0 (recall equation (4.23) for the definition
of the upper incomplete gamma function) we obtain

2σ|m|(−1)
L(−1, χD)Γ(−1, 4π|m|v)qm
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as result of equation (5.5).
For m > 0 we compute the logarithmic derivative of

C(m, s) = 2
(
D

4π

)s cos(πs)Γ(2s+ 2)σm(−1 − 2s)
Γ(s+ 2)L(−1 − 2s, χD)

and evaluate it directly at s = 0:

log(D/4π) + 2Γ′(2) − 2σ
′
m(−1)
σm(−1) − Γ′(2) + 2L

′(−1, χD)
L(−1, χD) .

This implies with Γ′(2) = 1 − γ

C ′(m, 0) = 2σm(−1)
L(−1, χD)

(
log(D/4π) + 1 − γ − 2σ

′
m(−1)
σm(−1) + 2L

′(−1, χD)
L(−1, χD)

)
.

Using
d

ds
Ws(v) |s=0= e−v/2

v

for v > 0, we obtain

d

ds
C(m, s)Ws(4πmv)e(mu) |s=0

= 2σm(−1)
L(−1, χD)

(
log(D/4π) + 1 − γ − 2σ

′
m(−1)
σm(−1) + 2L

′(−1, χD)
L(−1, χD) + 1

4πmv

)
qm.

5.4 Modularity of the integrals

Again, in this section we restrict ourselves to real quadratic number fields K of prime
discriminant D.

Theorem 5.4.1. We have

−L(−1, χD)
24 E+

2 (τ, 0) =
∞∑
m=0

(∫
X(OK)

Φ(OK ,m, z)ω2
)
qm

=
∫
X(OK)

( ∞∑
m=0

Φ(OK ,m, z)qm
)
ω2.

Hence, the integral of the generating series of the Φ(OK ,m, z) is a holomorphic modular
form of weight 2, level D and nebentypus χD.

Proof. The second equality holds because of Fubini–Tonelli combined with Theorem 3.10.1.
By Corollary 5.3.2 we have

−L(−1, χD)
24 E+

2 (τ, 0) = −L(−1, χD)
24 − 1

12

∞∑
m=1

σm(−1)qm.
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Theorem 3.8.11 with equation (3.24) implies∫
X(OK)

Φ(OK ,m, z)ω2 = −σm(−1)
12

for m ∈ N. For m = 0 we have by Definition 2.9.25 and equation (2.17)∫
X(OK)

Φ(OK , 0, z)ω2

=
∫
X(OK)

(L(OK , 0) +G(OK , 0, z))ω2

= vol(X(OK))L(OK , 0) +
∫
X(OK)

G(OK , 0, z)ω2

=vol(X(OK))
2 − vol(X(OK))

∫
X(OK)

G(a, 0, z)
vol(X(OK))ω

2

+
∫
X(OK)

G(OK , 0, z)ω2 = −L(−1, χD)
24

which finishes the proof.

Theorem 5.4.2. We have
L(−1, χD)

24

(
(log(4π) + γ)E+

2 (τ, 0) + d

ds
E+

2 (τ, s) |s=0

)
=
∑
m∈Z

∫
X(OK)

(Ξ(OK ,m, v, z) −G(OK ,m, z))ω2 qm

=
∫
X(OK)

∑
m∈Z

Ξ(OK ,m, v, z)qm −
∞∑
m=0

G(OK ,m, z)qm
ω2.

Hence, the integral of the differences of the two generating series is a non-holomorphic
modular form of weight 2, level D and nebentypus χD.

Proof. The second equality holds because of Fubini–Tonelli combined with Theorem 3.10.1
and Theorem 4.8.2. By Corollary 5.3.2 and Proposition 5.3.3 we have

L(−1, χD)
24

(
(log(4π) + γ)E+

2 (τ, 0) + d

ds
E+

2 (τ, s) |s=0

)
=
∑
m∈Z

ĉ(m, v)qm

with

ĉ(0, v) = L(−1, χD)
24 (log(4πvD) + γ) + hK log(ε0)

24πv
√
D
,

ĉ(m, v) =
σ|m|(−1)

12 Γ(−1, 4π|m|v), if m < 0,

ĉ(m, v) =
σ|m|(−1)

12

(
log(D) + 1 − 2σ

′
m(−1)
σm(−1) + 2L

′(−1, χD)
L(−1, χD) + 1

4πmv

)
, if m > 0.
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Using equation (3.24), we get
σ|m|(−1)

12 = 2 vol(T (OK , |m|)).

Now, equation (3.23) with Theorem 4.6.2 shows the equality for m > 0. Theorem 4.6.2
alone shows the equality for m < 0 (note that D being prime implies N(ε0) = −1). For
m = 0 we have to address the two terms in ĉ(0, v). By Definition 4.1.1 we have

Ξ(OK , 0, v, z) −G(OK , 0, z) = Ξ∗(OK , 0, v, z) − log(4πvD) + γ

2 .

Theorem 4.7.2 states that the integral of the first term coincides with
hK log(ε0)
24πv

√
D
.

Equation (2.17) implies that the integral of the second term coincides with

L(−1, χD) log(4πvD) + γ

24 .

5.5 An arithmetic Hirzebruch–Zagier theorem for Kudla’s
Green functions

This section is devoted to our main theorem which states that the generating series∑
m∈Z

(Z(OK ,m), Ξ̃ρ(OK ,m, v, z))qm (5.6)

is modular for D prime. However, we first have to define what that means. The
definition in the sense of the arithmetic Hirzebruch–Zagier theorem from Section 3.11 is
not applicable to our situation here. To explain why let us first recall that definition.
Definition 5.5.1. A generating series∑

m∈Z
Ẑ(m)qm

with Ẑ(m) ∈ ĈH1(X(a),Dpre)C is called a holomorphic modular form of weight k, level
D and nebentypus χD with values in ĈH1(X(a),Dpre)C if for every linear map

λ : ĈH1(X(OK),Dpre)C → C

we have that
∞∑
m=0

λ(Ẑm)qm (5.7)

is a holomorphic modular form of weight k, level D and nebentypus χD (cf. Defini-
tion 5.0.1).
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The series (5.6) is surely not a holomorphic modular form because it has coefficients
of negative index. Furthermore, the coefficients depend on v, the imaginary part of τ .
That is also a typical behavior of classicial non-holomorphic modular forms.

As a consequence we need to generalize Definition 5.5.1 to non-holomorphic modular
forms. Motivated by [ES18, Definition 4.11] we give the following definition.

Definition 5.5.2. The generating series∑
m∈Z

Ẑ(m, v)qm

with Ẑ(m, v) ∈ ĈH1(X(a),Dpre)C is called a non-holomorphic modular form of weight
k, level D and nebentypus χD with values in ĈH1(X(a),Dpre)C if the following four
conditions are satisfied.

(i) There exists a decomposition

Ẑ(m, v) = Ẑ1(m) + Ẑ2(m, v)

in ĈH1(X(a),Dpre)C.

(ii) The generating series ∑
m∈Z

Ẑ1(m)qm

is a holomorphic modular form of weight k, level D and nebentypus χD with values
in ĈH1(X(a),Dpre)C (cf. Definition 5.5.1).

(iii) The elements Ẑ2(m, v) can be represented by arithmetic divisors (0, g(m, v, z)).

(iv) For fixed τ ∈ H the series ∑
m∈Z

g(m, v, z)qm

converges almost everywhere to an integrable function. Therefore, it induces a
current. In addition, regarded as current, it is modular of weight k, level D and
nebentypus χD, i.e., for all smooth η ∈ A4(X(a))

∫
X(a)

∑
m∈Z

g(m, v, z)qm
 ∧ η

satisfies the transformation law (5.1) in τ .

Remark 5.5.3. Condition (iv) of Definition 5.5.2 is slightly stronger than the respective
condition in [ES18, Definition 4.11] in the sense that there they only demand the
convergence in the weak sense, namely

lim
M→∞

∑
|m|≤M

∫
X(a)

g(m, v, z)qm ∧ η.
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Proposition 5.5.4. Let a ∈ IK and τ ∈ H. There exists a smooth function

Aτ : X(a) → C

such that for almost all z ∈ X(a) we have

Aτ (z) =
∑
m∈Z

(Ξ(a,m, v, z) −G(a,m, z)) qm.

Furthermore, ddcAτ (z) is a non-holomorphic modular form of weight 2, level D and
nebentypus χD with values in A1,1(X(a)).

Proof. We define
Bτ (z) :=

∑
m∈Z

(Ξ(a,m, v, z) −G(a,m, z)) qm

wherever the series converges. In Theorem 4.8.2 and Theorem 3.10.1 we have seen that
the series ∑

m∈Z
Ξ(a,m, v, z)qm and

∑
m∈Z

G(a,m, z)qm

are absolutely convergent for almost all z ∈ X(a). Hence, Bτ (z) is well-defined for almost
all z ∈ X(a). Further, we have seen in Theorem 4.8.2 and Theorem 3.10.1 as well that
the series ∑

m∈Z
|Ξ(a,m, v, z)qm| and

∑
m∈Z

|G(a,m, z)qm|

are integrable over X(a). Therefore, Bτ (z) is integrable as well and [Bτ ] is a well-defined
current. Let η ∈ A2

c(X(a)). Then we have with the notation introduced in Section 5.2

(ddc[Bτ ])(η) =
∫
X(a)

Bτ ∧ ddcη

=
∫
X(a)

∑
m∈Z

(Ξ(a,m, v, z) −G(a,m, z)) qm
 ∧ ddcη

=
∑
m∈Z

qm
∫
X(a)

(Ξ(a,m, v, z) −G(a,m, z)) ∧ ddcη

=
∑
m∈Z

qm
∫
X(a)

ddc (Ξ(a,m, v, z) −G(a,m, z)) ∧ η

=
∑
m∈Z

qm
∫
X(a)

(φ(a,m, v, z) − ω(a,m, z)) ∧ η

=
∫
X(a)

(φ(a, τ, z) − Ω(a, τ, z)) ∧ η

= [φ(a, τ, ·) − Ω(a, τ, ·)](η).

By Fubini–Tonelli we are allowed to interchange summation and integration. Bringing
the ddc to the other side is valid in this case since

Ξ(a,m, v, z) −G(a,m, z)
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is smooth on X(a) (cf. Lemma 2.9.13), the logarithmic singularities of Ξ(a,m, v, z) and
G(a,m, z) cancel out because they belong to the same divisor −T (a,m).

This shows that the current ddc[Bτ ] is represented by [φ(a, τ, ·) − Ω(a, τ, ·)] with
φ(a, τ, ·) and Ω(a, τ, ·) being smooth differential forms by Theorem 5.2.2 and Theo-
rem 5.2.4.

Since X(a) is a Kähler manifold, the Laplace operator and the ddc operator on
functions are strongly related (cf. [Bal06, Exercise 5.51 1)]). This allows us to apply the
regularization theorem from [GH94, p. 378] for the ddc operator which is formulated in
the cited source for the Laplace operator only. Hence, there exists a smooth function
Aτ : X(a) → C such that ddcAτ (z) = φ(a, τ, z) − Ω(a, τ, z) and [Aτ ] = [Bτ ]. The first
equality proves the modularity of ddcAτ (z) (cf. Theorem 5.2.2 and Theorem 5.2.4). The
latter equality implies that the functions Aτ and Bτ agree almost everywhere which
finishes the proof of the proposition.

Lemma 5.5.5. Let f : X(a) → C be a smooth function with ddcf = 0. Then f is
constant.

Proof. The equation ddcf = 0 implies that f has a pluriharmonic real part and a
pluriharmonic imaginary part (cf. [Bru02, p. 82, Definition 3.12]). This implies by
Lemma 3.13 of the cited source that there exist holomorphic functions

h1, h2 : H2 → C

with
ℜ(f) = ℜ(h1) and ℑ(f) = ℜ(h2).

Note that in order to apply Lemma 3.13, we had to pull back f to H2. We get that the
real parts of h1 and h2 are Γa invariant and want to prove that this implies that h1 and
h2 are Γa invariant themselves. Hence, let h : H2 → C be a holomorphic function with
Γa invariant real part. We define for each γ ∈ Γa the map

gγ : H2 → C, gγ(z) = h(z) − h(γz).

Since gγ is holomorphic with vanishing real part, we infer that gγ is constant. Therefore,
we obtain a group homomorphism

φ : Γa → iR, γ 7→ gγ .

Since the group iR is abelian, the group homomorphism φ has to factor through the
abelianization of Γa. Because the abelianization of Γa is a torsion group and iR is torsion
free, we obtain ker(φ) = Γa. This proves the Γa invariance of h.

Now that we know that h1 and h2 are Γa invariant they define Hilbert modular forms
of weight 0 on X(a). Hence, they are constant. This proves that f is constant as well.

Theorem 5.5.6. Let D be prime. Then∑
m∈Z

(0, Ξ̃ρ(OK ,m, v, z) −G(OK ,m, z))qm

is a non-holomorphic modular form of weight 2, level D and nebentypus χD.
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Proof. First of all, note that Ξ̃ρ(OK ,m, v, z)−G(OK ,m, z) is smooth on X(OK) because
it is the difference of two pre-log-log Green functions for the same divisor Z(OK ,m).
Hence,

(0, Ξ̃ρ(OK ,m, v, z) −G(OK ,m, z))

actually defines an element in ĈH1(X(OK),Dpre)C.
Now, coming to the actual proof, according to Definition 5.5.2, we have to decompose

the arithmetic divisors. Since the first components of our arithmetic divisors are already 0,
we can take the zero series for the holomorphic part and (i), (ii) and (iii) of Definition 5.5.2
are trivially satisfied. Therefore, we are left with (iv) and have to deal with the series∑

m∈Z

(
Ξ̃ρ(OK ,m, v, z) −G(OK ,m, z)

)
qm (5.8)

=
∑
m∈Z

(Ξ(OK ,m, v, z) −G(OK ,m, z)) qm (5.9)

−
∑
m∈Z

hk∑
j=1

ρj(z)Ξ̌(a2
j ,m, v,M

−1
j z)qm. (5.10)

The decomposition of Ξ̃ρ(OK ,m, v, z) is due to definition (4.22) of Ξ̃ρ(OK ,m, v, z). The
almost everywhere convergence to an integrable function of (5.8) is given by Theorem 4.8.3
and Theorem 3.10.1. The splitting of (5.8) into (5.9) and (5.10) is allowed because of
Theorem 4.8.2 and Theorem 3.10.1. For each j the series

ρj(z)
∑
m∈Z

Ξ̌(a2
j ,m, v,M

−1
j z)qm

is an in z continuous non-holomorphic modular form of weight 2, level D and nebentypus
χD in τ due to Theorem 5.1.5. Note that z is fixed for that argument. Therefore, the
scaling with ρj(z) and the evaluation at M−1

j z (instead of z) is irrelevant and we can
actually apply Theorem 5.1.5. By this argument we get the modularity of (5.10) as
function. Since it is integrable, it defines a modular current. Therefore, we are left with
proving the modularity of∑

m∈Z
(Ξ(OK ,m, v, z) −G(OK ,m, z)) qm

as current. Since this series coincides with the function Aτ (z) from Proposition 5.5.4 for
almost all z ∈ X(a), the current of this series is given by [Aτ ] and it is enough to prove
the modularity of Aτ (z) as function in τ .

For this purpose we fix τ ∈ H and γ =
(
a b
c d

)
∈ Γ0(D) and define

f(z) := Aγτ (z) − χD(a)(cτ + d)2Aτ (z).
By the modularity of ddcAτ (z) from Proposition 5.5.4 we obtain

ddcf(z) = ddc
(
Aγτ (z) − χD(a)(cτ + d)2Aτ (z)

)
= ddcAγτ (z) − χD(a)(cτ + d)2ddcAτ (z)
= χD(a)(cτ + d)2ddcAτ (z) − χD(a)(cτ + d)2ddcAτ (z) = 0.
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Lemma 5.5.5 implies that f is constant. Say f = c. Then we have

c · vol(X(OK)) =
∫
X(OK)

f(z)ω2

=
∫
X(OK)

Aγτ (z)ω2 − χD(a)(cτ + d)2
∫
X(OK)

Aτ (z)ω2

= 0

because of the modularity of ∫
X(OK)

Aτ (z)ω2

by Theorem 5.4.2. Therefore, c = 0 which implies f = 0 which again implies the
modularity of Aτ (z).

Theorem 5.5.7. Let D be prime. Then∑
m∈Z

(Z(OK ,m), Ξ̃ρ(OK ,m, v, z))qm

is a non-holomorphic modular form of weight 2, level D and nebentypus χD.

Proof. Again, according to Definition 5.5.2, we have to decompose the arithmetic divisors.
We do that by

(Z(OK ,m), Ξ̃ρ(OK ,m, v, z))
=(Z(OK ,m), G(OK ,m, z)) + (0, Ξ̃ρ(OK ,m, v, z) −G(OK ,m, z)).

This already proves (i) and (iii) in Definition 5.5.2. The generating series

∑
m∈Z

(Z(OK ,m), G(OK ,m, z))qm =
∞∑
m=0

(Z(OK ,m), G(OK ,m, z))qm

is a holomorphic modular form of weight 2, level D and nebentypus χD with values
in ĈH1(X(OK),Dpre)C by the arithmetic Hirzebruch–Zagier theorem (cf. Section 3.11).
Therefore, (ii) is satisfied as well. The left over condition (iv) is treated in Theorem 5.5.6.
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[BGKK07] José Ignacio Burgos Gil, Jürg Kramer, and Ulf Kühn. Cohomological
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List of functions and symbols

• ∼a: The a stands for additive. The meaning of this symbol is that the difference of
the two sides goes to 0 for the variable in question approaching the indicated value.

• Ap,q(X): Space of smooth (p, q)-forms on X.

• Ap,qc (X): Space of smooth compactly supported (p, q)-forms on X.

• α(r1, r2): Certain maximum function (cf. equation (3.6)).

• B(x, y): Beta function (cf. equation (3.16)).

• β(x): Integral function introduced in [HZ76] (cf. equation (4.13)).

• β(r1, r2): Certain minimum function (cf. equation (3.6)).

• χD: Dirichlet character (cf. Definition 2.4).

• ĈH1(X(a),Dpre)C: First arithmetic Chow group. Elements are represented by pairs
(T, g) with g being a pre-log-log Green function with respect to the divisors T (cf.
Definition 2.9.7).

• ClK : Ideal class group of K (cf. Subsection 2.2.3).

• D: Discriminant of the real quadratic number field K (cf. Section 2.2).

• d: Ideal called the different (cf. Subsection 2.2.4).

• d(n): Number of positive divisors of n.

• δT (α): Dirac current (cf. equation (2.52)).

• div(f): Divisor associated to a meromorphic function f . The function f is holo-
morphic if and only if div(f) ≥ 0.

• E0: Context based one of two different matrices (cf. equation (2.13) and equa-
tion (2.41)).

• E1: Function related to the exponential integral Ei (cf. equation (4.1)).

• E(a): Exceptional divisor of X(a) (cf. Subsection 2.7.6).
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LIST OF FUNCTIONS AND SYMBOLS

• E∞(a): Exceptional divisor of X(a) at the cusp ∞ (cf. equation (2.29)).

• e(z) : Abbreviation for e(2πiz).

• Ein: Entire function related to the exponential integral (cf. equation (4.2)).

• ε0: Fundamental unit greater 1 of O×
K (cf. Section 2.2).

• ε1: Fundamental unit greater 1 of O+
K (cf. Section 2.2).

• ηj : (1, 1)-form occuring in the definition of the Kähler form (cf. equation (2.14)).

• 2F1(a, b; c; z): Hypergeometric function (cf. equation (3.12)).

• G(a,m, z): Normalized automorphic Green function (cf. equation (3.20)).

• Gb(a,m, ν): Finite exponential sum (cf. equation (3.5)).

• g(A, z): Normalized version of h(A, z) (cf. equation (2.24)).

• Γa: Hilbert modular group associated to a (cf. Definition 2.3.3).

• Γ(s): Gamma function.

• Γ(s, x): Upper incomplete gamma function (cf. equation (4.23)).

• H: Upper complex half plane (cf. Subsection 2.5.1).

• h(A, z): Projection of the determinant in VR with respect to z ∈ H2 (cf. Section 2.6).

• hK : Class number of number field K (cf. Subsection 2.2.3).

• ℑ(z): For z ∈ H2 we have ℑ(z) := ℑ(z1)ℑ(z2) (cf. Subsection 2.5.1).

• IK : Group of fractional ideals of K (cf. Subsection 2.2.2).

• Iνκ(z): One of the Bessel functions Iκ(z) and Jκ(z) (cf. Definition (3.2.3)).

• Iκ(z): Modified Bessel function of the first kind (cf. [OLBC10, 10.25.2]).

• Iso(V ): Isotropic elements of V (in this thesis 0 ∈ V is not isotropic).

• Jκ(z): Bessel function of the first kind (cf. [OLBC10, 10.2.2]).

• K: Real quadratic number field of discriminant D with fixed embedding into R (cf.
Section 2.2).

• K+: Elements of K which are totally positive (cf. Section 2.2).

• Kκ(z): Modified Bessel function of the second kind (cf. [OLBC10, 10.25.3]).

• L(a): Lattice in quadratic space V associated to the fractional ideal a (cf. Defini-
tion 2.4.1).
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LIST OF FUNCTIONS AND SYMBOLS

• L(a,m): Constant occurring in the Fourier expansion of Φ(a,m, z) (cf. Theo-
rem 3.4.1).

• L(s, χD): Dirichlet L-function associated to the Dirichlet character χD (cf. equa-
tion (2.6)).

• Λ(a,m): Elements in ad−1 of fixed norm −mN(a)/D (cf. equation (2.42)).

• Λ+(a,m): Positive elements in Λ(a,m) (cf. equation (2.43)).

• M(a, b): Certain subset of matrices in SL2(K) (cf. equation (2.9)).

• N : Either the norm in K (cf. equation (2.2)) or the product of the two entries for
arguments in C2 (cf. Subsection 2.5.1).

• N = {1, 2, 3, . . .}.

• N0 = {0, 1, 2, 3, . . .}.

• OK : Ring of integers of the number field K.

• O+
K = O×

K ∩K+ (cf. Section 2.2).

• ω: Kähler form (cf. equation (2.14)).

• ω(a,m, z): Differential form related to the automorphic Green function G(a,m, z)
(cf. Definition 5.2.1).

• Ω(a, τ, z): Generating series of the ω(a,m, z) (cf. Theorem 5.2.2).

• P1(K): Projective line over K.

• Φ(a,m, z): Regularized automorphic Green function (Definition 3.3.5).

• Φ(a,m, s, z): Unregularized automorphic Green function (Definition 3.1.1).

• Φn(a,m, s, z): Part of the decomposition of Φ(a,m, s, z) (cf. Section 3.7).

• φ(a, τ, z): Generating series of the φ(a,m, v, z) (cf. Theorem 5.2.4).

• φ(a,m, v, z): Differential form related to Kudla’s Green function Ξ(a,m, v, z) (cf.
Definition 5.2.1).

• PK : Group of principal ideals of K (cf. Subsection 2.2.3).

• Ψ(a,m, z): Local Borcherds product up to sign (cf. Section 3.5).

• Ψσ(a,m, z): Local Borcherds product with sign function σ (cf. Definition 3.5.1).

• Ψ(a,m, s, z): Essential building block of Φn(a,m, s, z) (cf. equation (3.13)).

• q: e(τ) for τ ∈ H.
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• qa: Certain quadratic form on V (cf. equation (2.8)).

• q(a,m): Residue of Φ(a,m, s, z) at s = 1 (cf. Theorem 3.4.1).

• Qs(x): The Legendre function of the second kind. The italic non-boldface version
in [OLBC10, 14.2(ii)].

• Rma : Positive constant defined in equation (2.46).

• R(a,m,w): Set of all reduced λ ∈ Λ+(a,m) with respect to a w ∈ (R+)2 (cf.
Subsection 2.8.4).

• R(a,m,W ): Set of all reduced λ ∈ Λ+(a,m) with respect to a Weyl chamber
W ∈ W (a,m) (cf. Subsection 2.8.4).

• ρ: Certain partition of unity living on a Hilbert modular surface (cf. equa-
tion (4.21)).

• ρ(a,m,w): Weyl vector with respect to a w ∈ (R+)2 (cf. equation (2.47)).

• ρ(a,m,W ): Weyl vector with respect to a Weyl chamber W ∈ W (a,m) (cf. equa-
tion (2.50)).

• S =
( 0 −1

1 0
)
.

• S(a,m): Complement of Weyl chambers (cf. equation (2.45)).

• Sλ: Component of S(a,m) (cf. equation (2.45)).

• SL(OK ⊕ a): Hilbert modular group associated to a (cf. Definition 2.3.3).

• ∑′: The tick at the sum sign indicates that we omit to sum over 0 (whenever we
use the tick at the sum sign the index set we sum over is a group).

• TA: Divisor component (cf. equation (2.35)).

• T (a,m): Hirzebruch–Zagier divisor (cf. equation (2.37) for m ̸= 0 and Defini-
tion 2.9.21 for m = 0).

• T∗(a,m): Hirzebruch–Zagier divisor without special treatment of m = 0 (cf. equa-
tion (2.37)).

• tr: Either the trace in K (cf. equation (2.3)) or the sum of the two entries for
arguments in C2 (cf. Subsection 2.5.1).

• V : In most cases the real quadratic space defined in (2.10).

• V +: The elements in V with positive quadratic form (cf. Section 2.1).
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LIST OF FUNCTIONS AND SYMBOLS

• v: Has two meanings within this thesis: One is the imaginary part of τ ∈ H (for
example when we consider Ξ(a,m, v, z)) and the other one is the second coordinate
of the local complex coordinates (u, v) of the cusp ∞.

• vol(L): Volume of a non-degenerate lattice L (cf. equation (2.1)).

• W (a,m): Weyl chambers of index m (cf. equation (2.49)).

• Wλ: Weyl chamber (cf. equation (2.48)).

• Ws(v): A lightened notation for the usual W -Whittaker function Wν,µ(z) (cf.
equation (5.3)).

• X(a): Open (uncompactified) Hilbert modular surface (cf. Subsection 2.5.2).

• X(a)∗: Baily–Borel compactification of X(a) (cf. equation (2.18)).

• X(a): Hirzebruch compactification of X(a) (cf. Subsection 2.7.6).

• Ξ(a,m, v, z): Kudla’s Green function (cf. Definition 4.1.1).

• Ξ∗(a,m, v, z): Principal part of Kudla’s Green function (cf. Definition 4.1.1).

• Ξ0(a, v, z): Non-principal part of Kudla’s Green function Ξ(a, 0, v, z) (cf. Defini-
tion 4.1.1).

• Ξ̌(a,m, v, z): Error term of Ξ(a,m, v, z) (cf. equation (4.18)).

• Ξ̃ρ(a,m, v, z): Modified version of Ξ(a,m, v, z) with the correct growth behavior at
the cusps (cf. Section 4.5).

• Z(a,m): Hirzebruch–Zagier divisor on X(a) (cf. Subsection 2.8.5).

• Z∞(a,m): Components of Z(a,m) at E∞(a).
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