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Abstract: This study compares the predictive performance of different classes of adaptive neuro-fuzzy
inference systems (ANFIS) in predicting the permeability of carbon dioxide (CO2) in mixed matrix
membrane (MMM) containing the SAPO-34 zeolite. The hybrid neuro-fuzzy technique uses the
MMM chemistry, pressure, and temperature to estimate CO2 permeability. Indeed, grid partitioning
(GP), fuzzy C-means (FCM), and subtractive clustering (SC) strategies are used to divide the input
space of ANFIS. Statistical analyses compare the performance of these strategies, and the spider
graph technique selects the best one. As a result of the prediction of more than 100 experimental
samples, the ANFIS with the subtractive clustering method shows better accuracy than the other
classes. The hybrid optimization algorithm and cluster radius = 0.55 are the best hyperparameters
of this ANFIS model. This neuro-fuzzy model predicts the experimental database with an absolute
average relative deviation (AARD) of less than 3% and a correlation of determination higher than
0.995. Such an intelligent model is not only straightforward but also helps to find the best MMM
chemistry and operating conditions to maximize CO2 separation.

Keywords: mixed matrix membrane; SAPO-34 zeolite; carbon dioxide separation; theoretical analysis;
adaptive neuro-fuzzy inference system (ANFIS)

1. Introduction

Environmental pollution [1], global warming [2], and climate change [3], are likely
the most interconnected problematic issues in recent decades. Carbon dioxide (CO2) as
a greenhouse gas is undeniably a key factor in creating these undesirable environmental
phenomena [4]. Therefore, separating and recycling CO2 from the gaseous streams released
to the atmosphere seems essential. In addition, separating the CO2 impurity of the natural
gas is significant to improve the heating value and avoid corrosion in transmission pipelines
and processing equipment. Absorption [5], adsorption [6,7], cryogenic process [8,9], and
membrane-based [10] operations are conventionally applied to separate CO2 molecules
from either waste or raw gaseous stream. In addition, the recovered carbon dioxide can be
then used for the separation of heavy metal pollutants [11].

The membrane-based technologies, which are low cost, highly flexible, easy to operate,
energy saving, and environmentally friendly [12], have seen a growing interest in the field
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of CO2 capture. Due to their suitable mechanical characteristics, the polymeric membranes
work better in high-pressure and temperature situations. Researchers have continuously
attempted to fabricate materials that fulfill the trade-off between gas selectivity and per-
meability and overcome the “Robeson upper bond” curve in polymeric membranes. To
do so, attention has been concentrated on the inclusion of inorganic solid materials in the
polymer membrane structure [13].

The mixed matrix membranes (MMM), which combine a polymer as the continuous
phase and inorganic filler as the dispersed phase, have been suggested to resolve these
limitations [14]. This special class of membranes shows better gas separation performance
than both polymer and inorganic fillers [15]. Activated carbon [16], nano-fibers [17],
nanoparticles [18], metal-[19] and [20] covalent organic frameworks, and zeolites [21], have
been successfully dispersed in polymers’ structure to fabricate MMMs.

Due to high pore volume, uniform pore size distribution, and appropriate chemi-
cal/thermal stability, zeolites [22] and their inclusion in a matrix [23] are often used for the
CO2 separation. The SAPO-34 zeolite, with excellent CO2 adsorption affinity, has achieved
great popularity in synthesizing mixed matrix membranes [23]. These investigations have
mainly measured the CO2 permeability in mixed matrix membranes experimentally. The
permeability measurements have been considered as a function of polymer type, SAPO-34
dosage, pressure, and temperature.

Despite a relatively extensive experimental analysis of CO2 permeability in MMMs,
there is no systematic strategy to predict this key variable. Therefore, the current research
uses a hybrid neuro-fuzzy modeling approach to predict CO2 permeability in MMMs con-
taining SAPO-34 as a function of polymer type, SAPO-34 dosage, pressure, and temperature.
A hybrid optimization algorithm and sensitivity analysis determine this model’s adjustable
coefficient and its hyperparameters, respectively. The proposed model in this study can
help construct the MMM-based CO2 removal facility by providing accurate predictions for
CO2 permeability as a function of MMM chemistry and operating conditions.

2. Literature Data

Different MMMs have already been fabricated by combining SAPO-34 zeolite and
Matrimid-5218 [24], Pebax-1657 [25], polyethersulfone [26,27], polyurethane [28], polysul-
fone [29], and Pebax-1074 [30] polymers for the purpose of CO2 removal. The literature
measured the CO2 permeability in these MMMs as a function of SAPO-34 dosage, tem-
perature, and pressure. Table 1 presents numerical values of the statistical information
(minimum, maximum, average, and standard deviation) of these experimental measure-
ments, and Figure 1 illustrates their graphical version using the box plot. It can be seen that
the collected experimental databank covers SAPO-34 dosage, temperature, and pressure
ranges of 0–50 wt.%, 267–394 K, and 0.1–3 MPa. In this condition, the CO2 permeability
varies from 0.2–337 barrer.

Table 1. Statistical information of the collected experimental databank [24–30].

Variable Min Max Average Standard Deviation

SAPO-34 dosage (wt%) 0 50 13.70 11.75

Temperature (K) 267 394 303.75 16.57

Pressure (MPa) 0.1 3 0.985 0.614

CO2 perm (barrer) 0.20 337 107.88 83.64

In addition to these statistical and graphical presentations of the experimental mea-
surements, the Supplementary Material reports all their information.



Membranes 2022, 12, 1147 3 of 15Membranes 2022, 12, x FOR PEER REVIEW 3 of 17 
 

 

  

 
Figure 1. Box plot presentation of statistical information of the collected experimental databank. 

In addition to these statistical and graphical presentations of the experimental meas-
urements, the supplementary material reports all their information. 

3. ANFIS Description 
3.1. ANFIS Structure 

The function approximation [31] and classification [32] are the problems that can be 
easily handled by the machine learning tools. Therefore, this study aims to efficiently tune 
the adaptive neuro-fuzzy inference system topology to enhance the prediction accuracy 
of CO2 permeability in different MMMs in a broad range of operating conditions. Conse-
quently, it seems necessary to briefly describe the working procedure of this intelligent 
estimation machine. 

The ANFIS is a powerful modeling tool that simultaneously utilizes the inference 
property of fuzzy logic and the learning capabilities of artificial neural networks. Consider 
a multiple-input and single-output (MISO) regression problem, such as F (X, Y). A Tak-
agi–Sugeno system with five interconnected successive layers (i.e., fuzzification, interfer-
ence, normalization, interpolation, and target computation) and the following fuzzy if–
then rules, namely Equations (1) and (2) [33], can be constructed to model this problem. 

Rule 1: If X is A1 and Y is B1, then F1 = C1 × X + D1 × Y + E1 (1)

Rule 2: If X is A2 and Y is B2, then F2 = C2 × X + D2 × Y + E2 (2)

Here, A1, A2, B1, and B2 are the premise parameters. On the other hand, the adjustable 
consequence parameters are shown by C1, C2, D1, D2, E1, and E2. 

The first layer assigns a membership function (η ) to each node j and calculates the 
output signals ( 1

jO ) based on Equations (3) and (4) [34]. 

0

5

10

15

20

25

30

35

40

45

50

SA
PO

-3
4 

do
sa

ge
 (w

t.%
)

250

270

290

310

330

350

370

390

410

Te
m

pe
ra

tu
re

 (K
)

0

0.5

1

1.5

2

2.5

3

Pr
es

su
re

 (M
Pa

)

0

50

100

150

200

250

300

350

C
O

2
pe

rm
ea

bi
lit

y 
(b

ar
re

r)

Figure 1. Box plot presentation of statistical information of the collected experimental databank.

3. ANFIS Description
3.1. ANFIS Structure

The function approximation [31] and classification [32] are the problems that can be
easily handled by the machine learning tools. Therefore, this study aims to efficiently tune
the adaptive neuro-fuzzy inference system topology to enhance the prediction accuracy
of CO2 permeability in different MMMs in a broad range of operating conditions. Con-
sequently, it seems necessary to briefly describe the working procedure of this intelligent
estimation machine.

The ANFIS is a powerful modeling tool that simultaneously utilizes the inference
property of fuzzy logic and the learning capabilities of artificial neural networks. Consider
a multiple-input and single-output (MISO) regression problem, such as F (X, Y). A Takagi–
Sugeno system with five interconnected successive layers (i.e., fuzzification, interference,
normalization, interpolation, and target computation) and the following fuzzy if–then rules,
namely Equations (1) and (2) [33], can be constructed to model this problem.

Rule 1: If X is A1 and Y is B1, then F1 = C1 × X + D1 × Y + E1 (1)

Rule 2: If X is A2 and Y is B2, then F2 = C2 × X + D2 × Y + E2 (2)

Here, A1, A2, B1, and B2 are the premise parameters. On the other hand, the adjustable
consequence parameters are shown by C1, C2, D1, D2, E1, and E2.

The first layer assigns a membership function (η) to each node j and calculates the
output signals (O1

j ) based on Equations (3) and (4) [34].

O1
j = ηAj(X) j = 1, 2 (3)
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O1
j = ηBj−2(Y) j = 3, 4 (4)

The output of the second layer (O2
j ) is the product of all the incoming signals [35].

O2
j = ηAj(X) ηBj(Y) = ωj j = 1, 2 (5)

The outputs of the third layer (O3
j ) compute by normalizing the entry signals, as in

Equation (6) [36].
O3

j = ωj = ωj/(ω1 + ω2) j = 1, 2 (6)

Then, Equation (7) calculates the outputs of the fourth layer (O4
j ) [37].

O4
j = ωj Fj = ωj

(
Cj X + Dj Y + Ej

)
j = 1, 2 (7)

Finally, the ANFIS prediction for the target (OANFIS) can be achieved by applying
Equation (8) [38].

OANFIS = ∑2
j=1 ωj Fj (8)

3.2. Input Space Partitioning Strategies

The literature declares that the fuzzification strategy (the first layer of ANFIS) sig-
nificantly impacts the accuracy of simulating a given problem [39]. Generally, there are
three well-known methods to divide the input space, i.e., grid partitioning (GP), fuzzy
C-means (FCM), and subtractive clustering (SC). Although Yeom and Kwak comprehen-
sively described GP, FCM, and SC and highlighted their weaknesses and strengths [33], the
following subsections briefly explain these partitioning strategies.

3.2.1. Grid Partitioning

Grid partitioning is a method that breaks down input space into a non-overlapping
grid-like structure. This method is suitable for a problem with a small number of indepen-
dent variables in low-dimensional input space. For instance, 1024 unique areas and a rule
for each area (i.e., 1024 rules) have been provided by the GP method with two membership
functions for a problem with 10 independent variables [33]. Hence, the GP is a complicated
strategy to divide the input space of a high-dimensional problem (high number of the
independent variable of observations).

3.2.2. Fuzzy c-Means Clustering

The FCM separates the input space and places them in different fuzzy clusters with
a specific radius. An optimization method that minimizes the observed non-similarity
determines these properties. The user specifies the number of fuzzy rules by setting the
number of clusters.

3.2.3. Subtractive Clustering

The SC is a scenario to break down the input space into several specific clusters by
performing a multi-dimensional analysis. This strategy automatically divides the input
space into an appropriate number of clusters utilizing a user-entered value for the cluster
radius. The SC generates a high number of small-sized clusters when a small cluster radius
is entered, and vice versa.

3.3. Training Algorithm

Traditionally the backpropagation or hybrid training algorithm is applied to determine
adjustable parameters of membership functions during the training step of the ANFIS. The
backpropagation method continuously updates the adjustable parameters of the ANFIS
to minimize the deviation between actual and predicted values of a dependent variable.
Indeed, the observed deviation propagates backward through the ANFIS structure, and its
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parameters adjust by several iterations. On the other hand, the hybrid method combines
the least-squares and backpropagation algorithms to tune ANFIS parameters efficiently.
To enhance the performance of the training phase, as well as to avoid errors related to the
different ranges of variables, the experimental data are needed to normalize between 0 and
1 [40,41].

4. Results and Discussion

The most appropriate structural features for three well-known ANFIS types have
been determined in this section. Four statistical uncertainty criteria, i.e., absolute average
relative deviation (AARD%), mean squared error (MSE), root mean squared error (RMSE),
and correlation of determination (R), are often applied to perform such comparison [42,43].
Equations (9)–(12) express that these uncertainty criteria quantize the compatibility between
laboratory-measured CO2 permeability in MMMs (λlab

CO2
) and its counterpart simulation by

the ANFIS models (λsim
CO2

).

R =

√
1 −

{
∑n

i=1

(
λlab

CO2
− λsim

CO2

)2

i
/∑n

i=1

(
λlab

CO2
− λlab

CO2

)2

i

}
(9)

AARD% = (100/n) × ∑n
i=1

(∣∣∣λlab
CO2

− λsim
CO2

∣∣∣/λlab
CO2

)
i

(10)

MSE = (1/n) × ∑n
i=1

(
λlab

CO2
− λsim

CO2

)2

i
(11)

RMSE =

√
(1/n) × ∑n

i=1

(
λlab

CO2
− λsim

CO2

)2

i
(12)

Then, the most accurate neuro-fuzzy model is identified by the spider plot analysis.
Different graphical analyses then deeply assess the performance of the selected ANFIS
model. Finally, the effect of filler dosage, pressure, and temperature on the CO2 permeability
in the MMM is investigated.

4.1. Developing ANFIS Models

As noted, GP, FCM, and SC strategies have been used to divide the input space of
ANFIS. Therefore, it is possible to develop and compare three ANFIS types, i.e., ANFIS-GP,
ANFIS-FCM, and ANFIS-SC. Table 2 reports the investigated ranges of structural features
for each ANFIS type and the selected one by statistical analyses. This table states that the
ANFIS-GP and ANFIS-FCM should construct with two and eleven clusters, respectively,
while the cluster radius of the ANFIS-SC model should fix at 0.55. The hybrid algorithm is
better at performing the training step of all three ANFIS types than the backpropagation.

Table 2. The checked and selected structural features of different ANFIS types.

Model Checked Features The Best Features

ANFIS-GP
Cluster number: 2:1:5

Optimization algorithm:
backpropagation and hybrid

Two clusters
Hybrid

ANFIS-FCM
Cluster number: 2:1:12

Optimization algorithm:
backpropagation and hybrid

Eleven clusters
Hybrid

ANFIS-SC
Cluster radius: 0.1:0.05:1
Optimization algorithm:

backpropagation and hybrid

Cluster radius = 0.55
Hybrid

Table 3 utilizes AARD%, MSE, RMSE, and R-value to measure/compare the accuracy
of the selected ANFIS models. The accuracy has been separately monitored for the training,
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testing, and overall databank. Although all these accuracies are valuable from the modeling
point of view, the performance of the ANFIS-FCM and ANFIS-SC is far better than the
ANFIS-GP. The next sections apply the spider plot to select the most suitable ANFIS type
to estimate CO2 permeability in the mixed matrix membranes containing SAPO-34 zeolite.

Table 3. Performance analysis of the selected ANFIS models by four statistical indexes.

Model Database AARD% MSE RMSE R

ANFIS-GP

Training 4.03 25.54 5.05 0.9981

Testing 18.91 77.05 8.78 0.9958

Overall 6.19 33.05 5.75 0.9976

ANFIS-FCM

Training 3.02 40.09 6.33 0.9972

Testing 8.78 299.98 17.32 0.9823

Overall 3.86 77.94 8.83 0.9946

ANFIS-SC

Training 1.85 5.59 2.37 0.9996

Testing 4.38 70.70 8.41 0.9952

Overall 2.22 15.08 3.88 0.9989

4.2. Choosing the Best ANFIS Type

Before performing the model selection analysis, it is better to highlight that a model
with a low AARD%, MSE, RMSE, and close R-value to one is preferable from a modeling
point of view. The spider plot is a graphical method to compare the statistical indexes
provided by ANFIS-GP, ANFIS-FCM, and ANFIS-SC at a glance. In other words, the spider
analysis presents the reported statistical values in Table 3 in a multi-dimensional graph.

The results of comparing the performance of ANFIS-GP, ANFIS-FCM, and ANFIS-SC
in the training and testing groups and the whole database have been shown in Figure 2a–c,
respectively. These spider graphs can be easily analyzed to compare the provided AARD%,
MSE, RMSE, and R indexes by different ANFIS types.
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The spider graph analyses (Figure 2a,b) indicated that the ANFIS-SC performs better
when predicting the training and testing datasets of CO2 permeability in the MMMs.
Since the overall databank combines the training and testing groups, it is obvious that the
ANFIS-SC accuracy is also better than the two other models (Figure 2c).

4.3. Evaluating the Performance of the Selected ANFIS Model

This section comprehensively evaluates the reliability of ANFIS-SC performance in
predicting CO2 permeability in MMMs by combining statistical and visual inspections. The
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performance assessment has been separately performed for the training and testing groups
and their combination (i.e., overall databank).

4.3.1. Training Step

The correlation between experimental CO2 permeabilities in MMMs and their cor-
responding predictions by ANFIS-SC in the training step has been plotted in Figure 3a.
Since all square symbols are gathered around the diagonal line, it can be claimed that the
ANFIS-SC model accurately predicts the training datasets.
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Visually comparing the actual and predicted values of a dependent variable is a
well-known method to check the accuracy of a model [44]. Thus, numerical values of the
CO2 permeability in MMMs in the training step, as well as their associated ANFIS-SC
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predictions, have been illustrated in Figure 3b. This figure approves excellent compatibility
between laboratory-measured and ANFIS-SC predictions in the training phase.

Indeed, the ANFIS-SC predicts 88 actual CO2 permeabilities in MMMs with the
AARD = 1.85%, MSE = 5.59, RMSE = 2.37, and R = 0.9996.

4.3.2. Testing Step

This analysis correlates the experimental CO2 permeabilities in MMMs and their
related ANFIS-SC predictions in the testing step (Figure 4a). It can be seen that the model
predictions have been precisely mapped on the experimentally measured data. Indeed,
the ANFIS-SC predicts 15 actual CO2 permeabilities in MMMs with the AARD = 4.38%,
MSE = 70.70, RMSE = 8.41, and R = 0.9952.
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Figure 4b also presents the numerical values of actual and estimated CO2 permeability
in MMMs in the testing step of the ANFIS-SC. Since the model has seen none of these
samples before, its excellent performance for simulating CO2 separation by the MMM can
be observed. Indeed, the ANFIS-SC accurately predicts all unknown CO2 permeability in
MMMs at the testing stage except for one sample.

4.3.3. All Experimental Data

This section analyzes the ANFIS-SC performance in predicting the overall databank of
CO2 permeability in mixed matrix membranes. Since the overall databank is a combination
of the training and testing groups, it is expected that the ANFIS-SC model will also have an
excellent performance in this analysis.

The experimental and simulated CO2 permeabilities in MMMs for training and test-
ing groups (overall databank) have been presented in Figure 5a. This figure confirms a
remarkable agreement between the laboratory-measured and simulated values. Indeed,
the ANFIS-SC predicts 103 actual CO2 permeabilities in MMMs with the AARD = 2.22%,
MSE = 15.08, RMSE = 3.88, and R = 0.9989.
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Figure 5b also presents the ANFIS-SC prediction for each experimental measurement
separately. The outstanding performance of this model in simulating CO2 separation by
the mixed matrix membranes can be justified by this figure.

4.4. Investigating the Effect of SAPO-34 Dosage, Pressure, and Temperature

The effect of filler dosage on the isothermal CO2 permeability (298 K) in Pebax-
1074/SAPO-34 MMMs at six pressure levels has been illustrated in Figure 6. This figure
displays experimental CO2 permeability profiles and their corresponding simulations by
the ANFIS-SC model. The designed model not only correctly anticipates the trend of
experimental profiles but also accurately estimates all individual data points. Actually, the
proposed neuro-fuzzy model easily identifies the effect of pressure and filler dosage on the
CO2 permeability in Pebax-1074/SAPO-34 mixed matrix membranes.
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Figure 6. Monitoring the effect of SAPO-34 dosage and pressure on the CO2 permeability in Pebax-
1074-based MMM (298 K).

This figure also shows that the CO2 permeability in the Pebax-1074/SAPO-34 is
enhanced by increasing either pressure or filler dosage. The maximum CO2 permeability
of 250 barrer is achieved at the maximum pressure and SAPO-34 dosage of 2.4 MPa and
30 wt.%, respectively.

The simulation and experimental profiles for the isobaric CO2 permeability (0.7 MPa)
in Pebax-1657/SAPO-34 MMMs as a function of temperature have been shown in Figure 7.
This figure can readily demonstrate the outstanding compatibility between the actual and
simulation profiles. This analysis also indicates that the CO2 permeability in the pure
Pebax-1657 may be increased by more than 40 barrers by adding 30 wt.% of SAPO-34
zeolite. In addition, the increasing effect of temperature on the CO2 permeability in both
pure Pebax-1657 and Pebax-1657/SAPO-34 MMM is observable in Figure 7.

4.5. Identifying Undesirable Outliers

The leverage method provides a practical ground to identify undesirable outliers
in an experimental database [45]. Figure 8 shows that a small number of experimental
data (i.e., 4 samples) are undesirable outliers. Since almost all the samples are valid, the
undesirable effect of outliers on the model prediction can be ignored.
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Figure 7. The effect of temperature on the CO2 permeability in pure Pebax-1657 and Pebax-
1657/SAPO-34 MMM (0.7 MPa).
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Figure 8. Employing the leverage method to identify undesirable outliers.

5. Conclusions

The current research combined the statistical and graphical analyses to compare
the performance of three neuro-fuzzy types (i.e., ANFIS-GP, ANFIS-FCM, and ANFIS-
SC) in predicting the CO2 separation ability of six different mixed matrix membranes
containing SAPO-34 zeolite as a filler. The ANFIS-SC trained by the hybrid algorithm
has been identified as the most reliable model for estimating the considered matter. This
model predicted 103 experimentally measured CO2 permeability values in a wide range of
membrane compositions and operating conditions with the AARD = 2.22%, MSE = 15.08,
RMSE = 3.88, and R = 0.9989. In addition, the visual inspections have also justified the
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outstanding ability of the proposed neuro-fuzzy model in simulating CO2 separation
by mixed matrix membranes. The simulation and experimental results showed that the
CO2 permeability in all investigated MMMs can be increased by increasing the SAPO-34
dosage, pressure, and temperature. The proposed intelligent model in this study can
quickly determine the membrane composition and operating conditions so that the CO2
permeability is maximized.
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