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Preface

Taming non-smoothness has been a major theme in the analysis of partial
differential equations and other branches of analysis in the last decades. Mo-
mentarily, we will review some aspects of this journey and describe the contri-
butions of this thesis to the field. We will keep the focus on the general picture;
for a more thorough orientation concerning a particular topic in this thesis,
the reader is advised to consult the introduction to the respective chapter.

Rough geometry
Let us begin with a glance at non-smooth geometry. A first fundamental
question is the following: How could one measure the smoothness of an open
set? Certainly, there is no single answer to this question. For instance, one
may take into consideration the regularity of its boundary, either considered
as being locally the graph of a function or as the boundary of a manifold
with boundary [51]. Also, there are purely measure-theoretic concepts: For
the set itself, a common condition is the interior thickness condition, which
is tightly connected to the study of Sobolev spaces on an open set [55], but
there are also conditions for the boundary itself, for instance the notion of
Ahlfors–David regularity. Besides that, there are involved metric conditions
like the ε-cigar condition of Jones [65], corkscrew conditions and many more.
As was just mentioned, there is a deep connection between concepts in

rough geometry and the theory of Sobolev spaces. In the smooth case, many
properties and constructions can be performed by “flattening the boundary”
and working in the regular configuration of a halfspace, where simple reflection
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Preface

arguments are feasible. In the non-smooth case, a considerably more involved
usage of the geometry is needed. Examples of this can be found in the works
of Calderón [27] and Jones [65] on extension operators. The work of Jones
already allows one to treat very irregular configurations like the von Koch
snowflake [94]. But there are limits, for instance an open set has at least to
be interior thick to allow for the construction of an extension operator for
Sobolev spaces [55].
To establish further results in non-smooth geometry and in the theory of

Sobolev spaces, it is often handy to have notions of (fractal) dimension at
hand. In fact, there is a whole zoo of such dimensions, including that of
Aikawa, Assouad, Hausdorff, and many more [43]. They are of different na-
ture, for instance the Aikawa dimension is Euclidean and the Assouad di-
mension is purely metric. Furthermore, there are different purely metric di-
mensions which emphasize different aspects, and hence might not coincide for
certain sets. But there are also prominent examples where different notions
do coincide [71]. Often, these bridges lead to deep insights! And even if dif-
ferent notions are not equivalent, they occasionally obey interesting relations,
for example the relation between the concept of porosity and the dimension of
Assouad [73]: A set is porous if and only if its Assouad codimension is strictly
positive.
Fractional dimensions are also tied to the study of Hardy’s inequality [40,

54, 70] and fractional variations thereof [34, 38], the study of characteristic
functions as pointwise multipliers [44,88] and their regularity as functions [89],
or the existence of traces of almost everywhere defined functions [2, 66].

Boundary conditions
All of the three mentioned tools – Hardy’s inequality, characteristic functions
as pointwise multipliers, and trace operators – can be used to introduce homo-
geneous Dirichlet boundary conditions, which is to say that a function vanishes
“in some sense” on the boundary, and we will give more details concerning
this point in a moment. Observe that for the existence of a trace operator,
some regularity of the function and the boundary are a priori needed, whereas
it is always possible to write down a Hardy’s term and ask for its finiteness.
This already highlights that different concepts for the treatment of boundary
conditions might not even be comparable, yet coincide in general, and each
of them has advantages and disadvantages.
In fact, all three methods will be used in the interpolation of Sobolev spaces
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Preface

with boundary conditions in Chapter 2. The boundary conditions of the
spaces under consideration there are always formulated using a trace opera-
tor. We will see that this allows one to apply simple functorial arguments in
the treatment of these spaces. The usage of characteristic functions yields the
definition of so-called bullet spaces in Section 2.4.2. They are a powerful tool
in the theory of function spaces with boundary condition, and the interpola-
tion behavior of Sobolev spaces with pure Dirichlet boundary conditions in
a rough setting follows almost immediately from properties of these spaces.
Finally, Hardy’s inequality is a handy way to encode a vanishing trace condi-
tion in a manner that is accessible to direct computations. This is exploited
in Section 2.6, where a very general result concerning real interpolation of
Sobolev spaces with boundary condition is shown. Another example is the
“special” Calderón-Zygmund decomposition shown and used in Chapter 6. In
Chapter 4, a fractional Hardy term is even turned into the definition of a
“vanishing trace” for functions with a fractional order of Sobolev regularity,
and a very general extension result without usage of localization techniques
is established.
Besides homogeneous Dirichlet boundary conditions, there are other bound-

ary conditions that one could impose. For example, one could demand that
a function does not vanish at the boundary, but attains a prescribed function
defined on the boundary, which corresponds to non-homogeneous Dirichlet
boundary conditions. One could also require that the gradient of the function
satisfies some condition on the boundary. As with the trace operator, it is
again a non-trivial question how such a condition even has to be understood.
In the further course of this thesis, questions of this kind will not be addressed.
Instead, a third type of boundary condition is in the spotlight: We speak of
mixed boundary conditions if a homogeneous Dirichlet boundary condition is
imposed on a portion of the boundary and natural boundary conditions are
imposed on the rest of the boundary, which just means that we do not pre-
scribe any boundary behavior on this complementary part of the boundary.
In fact, mixed boundary conditions are the driving motive of this work and
play a role in every chapter of this thesis.
A very useful geometric framework for the treatment of mixed boundary

conditions was introduced by Gröger in [52]. In there, Gröger investigated the
existence of weak solutions to an elliptic problem subject to mixed boundary
conditions in Lp for the situation p 6= 2. Later, complex interpolation was
shown in this setting [49]. With these tools available, this geometric con-
stellation was used very successfully for the analysis of physically relevant
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models [32,60,79]. The case of real interpolation is much easier to treat [38],
although the authors there have only treated the case p = 2. Much later, a
different framework based on Jones’ ideas was proposed by Brewster, Mitrea,
Mitrea, and Mitrea in [26]. It includes a rich theory of extensions and traces
and applications to the mixed problem in this setting.
We have already started to discuss Chapter 2 above, which is all about the

interpolation of Sobolev spaces with mixed boundary conditions. In there,
we suggest two geometric constellations. One is an extension of the result
concerning real interpolation in [38]. In Section 2.6, we extend this result
to unbounded and unconnected sets and to the case p 6= 2. However, the
heart of this chapter is an extension of Gröger’s result. Gröger regular sets
are based on charts in which the interface between the two boundary parts is
a Lipschitz submanifold of the boundary. The result in Section 2.4 is much
more flexible. For instance, charts in any sense are only assumed to exist
around the Neumann part, which is to say, the boundary part on which natural
boundary conditions are imposed. Another advantage is that the interface is
only supposed to satisfy a porosity condition. We have already mentioned this
concept before: The interface is porous if and only if it is not full dimensional
in the sense of Assouad. The upshot is that one can work again with bullet
spaces inside the (flattened) boundary. Albeit this complex interpolation
result is not employed in other chapters of this thesis, the success of Gröger
regular sets suggests that also this result will prove useful in many real-world
applications for it is much easier to check.
If we leave interpolation aside, the framework of Brewster, Mitrea, Mitrea,

and Mitrea [26] could be considered to be the state of the art in the treat-
ment of mixed boundary conditions. They use the (ε, δ)-domains introduced
by Jones in a clever way as “charts” around the Neumann part to localize
the mixed boundary constellation. This way, they can, for example, craft an
extension operator for their geometric framework. In Chapter 3, we also use
Jones’ ideas to build an extension operator in the case of mixed boundary
conditions. However, this operator is not based on localization but modifies
the original construction of Jones. To get good estimates for his extension
operator, Jones uses connecting chains of cubes between so-called interior
cubes. In our construction, there are interior cubes which are not connected
to other interior cubes, but “escape” the underlying set through the Dirichlet
boundary part. The whole construction is highly technical, but it allows to
consider constellations which are irregular arbitrarily close to the interface be-
tween Dirichlet and Neumann part, and hence are not feasible by localization
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methods.
The geometric setting of Chapter 3 is implied by the geometric setting of

Brewster, Mitrea, Mitrea, and Mitrea. We also introduce another geometric
framework in Chapter 5 which is intermediate between these two: This ge-
ometry also incorporates a “security area” around the Neumann part as is
the case in [26], but it nevertheless does not involve the usage of charts in
any sense, which is in accordance with the geometry from Chapter 3. We will
come back to this configuration later.

Differential operators with non-smooth coefficients and the
Kato problem
We leave the geometric aspects for a moment to have a look at differential
operators with rough coefficients. In a series of articles [67, 68], Kato more-
or-less asked the question when for an (at least maximal accretive) operator
L on a Hilbert space one has the identity D(

√
L) = D(

√
L∗). After a series

of examples and, in particular, counterexamples [72, 74], the question was
refined to only consider the case where L is a second-order elliptic operator
in divergence form with bounded, measurable, complex coefficients – in the
first place as an operator on Rd. In this case, L should be defined using a
sesquilinear form a : V × V → C, in which case the question can be refor-
mulated as whether or not the identity D(

√
L) = V holds. This identity is

called the Kato square root property. In the case of smooth coefficients, the
operator L itself has optimal elliptic regularity and the square root property
is an easy application of complex interpolation. Also, if the operator is self-
adjoint, the square root property follows readily from Kato’s so-called second
representation theorem [69]. In the rough and non-selfadjoint situation, the
square root property means that at least

√
L has optimal elliptic regularity,

even though this might not be the case for L itself. It turned out that the
fractional exponent 1/2 is the critical exponent for optimal elliptic regularity:
For exponents strictly below 1/2, optimal elliptic regularity follows from ab-
stract arguments and was already known to Kato [67]. On the other hand, it
is easy to construct counterexamples against optimal regularity for exponents
above 1/2 in dimension one [4].
Kato’s motivation for this question came from applications to elliptic and

hyperbolic equations, see [75] for more information. These ideas are nowadays
successfully used in what is called the first-order approach [6, 7]. This under-
lines the relevance of Kato’s question, and in particular the deviation from
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his original question, which was ruled out by the counterexample of Lions and
McIntosh.
From the viewpoint of harmonic analysis, Kato’s square root problem asks

to bound certain singular integrals. Besides the square root problem, there
were other challenging problems of the same kind, like the boundedness of
the Cauchy operator on Lipschitz curves, which were summarized under the
name Calderón program [16, p. 463]. Armed with many very novel techniques,
Kato’s square root problem was eventually solved in 2002 by Auscher, Hof-
mann, Lacey, McIntosh, and Tchamitchian in their seminal paper [13]. For
more information we refer the reader to the excellent surveys of McIntosh
in [77,78] and to the introduction of [13].
To close the loop to rough geometry and mixed boundary conditions, we

take a look at a quote by Lions taken from a remark in [72], where he says
the following.

[...] par exemple, pour un opérateur elliptique A du 2ème ordre,
non auto-adjoint, avec condition aux limites de Dirichlet sur une
partie de la frontière et condition aux limites de Neumann sur le
reste de la frontière, on ignore siD(A1/2) = D(A∗1/2). Même chose
d’ailleurs avec le problème de Dirichlet et une frontière irrégulière.1

Phrased differently, Lions suggests to combine the challenges in rough geom-
etry and mixed boundary conditions with those in harmonic analysis coming
from rough coefficients of a differential operator.
The seminal work by Axelsson, Keith, and McIntosh [16] opened the door

to this problem. In that article, the authors provide quadratic estimates for
perturbed Dirac operators. This framework allows to solve several problems
from the Calderón program at once, including the Kato square root problem.
Thereby, it is flexible enough to also treat systems of equations, and it could
be adapted by the same authors to give a first answer [15] to the problem
posed by Lions. However, the class of admissible geometries in there is not
easily accessible.
This is why Egert, Haller-Dintelmann, and Tolksdorf refined the ideas

from [16]. They observed that it is possible to prove quadratic estimates
1for example, if A is a second-order elliptic operator that is not self-adjoint and that

is subject to Dirichlet boundary conditions on a part of the boundary and Neumann
boundary conditions on the rest, then it is unknown if the identity D(A1/2) = D(A∗1/2)
holds. The same is true if the operator is subject to pure Dirichlet boundary conditions,
but the boundary is irregular.

x



Preface

in a way that decouples harmonic analysis from geometry [39]. In a second
paper, they used their modified framework to prove a very general result con-
cerning Lions’ problem [38]. Compared to the application to Kato’s problem
in [16], the application here is far more involved: It requires hard work to
check the assumptions for the perturbed Dirac operator framework, including
interpolation theory for Sobolev spaces incorporating boundary conditions,
extrapolated optimal regularity for the Laplacian, or the construction of ex-
tension operators for Sobolev spaces with boundary conditions.
Extending the result of Egert, Haller-Dintelmann, and Tolksdorf is proba-

bly the deepest contribution of this thesis to the field. Their result is already
fairly general, but there is some margin for improvement. For instance, they
only treat bounded domains which satisfy the interior thickness condition.
Moreover, they assume that the whole boundary and not only the Dirichlet
boundary part are Ahlfors–David regular. In their setup, the latter is no
restriction because they require Lipschitz charts around the Neumann bound-
ary part, which in turn implies that the whole boundary is regular. Our
improvement in Chapter 5 is as follows: We allow the underlying set to be
disconnected and unbounded. Only the Dirichlet boundary part is supposed
to be Ahlfors–David regular, and regularity around the Neumann boundary
part is given by a local (ε, δ)-condition, which does not involve the usage of
charts in any sense. This is the intermediate geometry that we already men-
tioned when comparing the setup from Brewster, Mitrea, Mitrea, and Mitrea
with our setup from Chapter 3.
In our discussion concerning Chapter 3 we already mentioned that this

condition must be satisfied in a neighborhood of the Neumann boundary part.
This is used to show porosity of the full boundary, which is our substitute for
Ahlfors–David regularity for the full boundary in [39]. Besides Ahlfors–David
regularity, Lipschitz charts around the Neumann part were needed for the
existence of a Sobolev extension operator in their setting. This is not an issue
for us since we can rely on the results from Chapter 3. The connectedness
assumption was in fact not needed in [39] and could hence be easily eliminated.
The most severe challenge is to eliminate the interior thickness condition.

In other words, this condition means that the underlying set is a space of
homogeneous type. For this type of spaces, Christ managed to craft “dyadic
grids” [28,80], which can be used as a substitute for dyadic cubes in Rd. The
existence of such a cube structure is essential for the harmonic analysis in
the proof of quadratic estimates and cannot be circumvented. Instead, we
employ an a posteriori argument in Section 5.5. This works in two steps:
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First, we fatten the underlying set near the Dirichlet boundary part, thereby
ensuring the interior thickness condition without losing any other geometric
quality. Note that even if one starts with a connected set, this fattened set
will be disconnected, which shows that the deviation from domains opens the
road for a richer toolbox, even if one is only interested to apply the result
to domains in the end. On this auxiliary set we solve the Kato problem for
an “extension” of the elliptic operator. Second, we decompose the functional
calculus of this extended elliptic operator to transfer regularity of the square
root to the original elliptic operator. The reader is advised to also consult the
roadmap in Chapter 5 to get a better understanding of the strategy of proof.
Besides this, we also have to redo the arguments from [38] in the more

complex geometric constellation. A lot of this is already done in the chapter
on interpolation theory, but we also need some more involved potential theory
due to the lack of Ahlfors–David regularity for the full boundary.

Beyond Calderón-Zygmund theory

Another consequence of the rough nature of the coefficients is that extrapo-
lation to Lp-spaces is much harder compared to classical Calderón-Zygmund
theory. In particular, it is in general not possible to show W1,p → Lp es-
timates for

√
L for all 1 < p < ∞. Nevertheless, extrapolation to p 6= 2

is possible and was pioneered, for example, by Blunck and Kunstmann [24].
In the situation of the classical Kato problem on Rd, the Lp-extrapolation
theory is well-understood [5]. These techniques go under the name “beyond
Calderón-Zygmund theory”. Extensions to the situation of mixed boundary
conditions were first obtained in [8] in the situation of real equations and later
extended in [36] to complex systems in a natural range of p < 2 + ε.
The geometric assumptions in [8, 36] were essentially dictated by the L2-

theory in [38, 39]. Hence, it is only natural to generalize these results to the
situation from Chapter 5. This is performed in Chapter 6. Most arguments
work similarly, but the unbounded underlying set demands for some extra
care. The most innovative contribution of this chapter is the case p > 2. In
the reference works, only exponents up to 2 + ε were considered, where ε is
an abstract parameter. A quantifiable interval was only used in the work of
Auscher on Rd in [5]. Essential tools in this case are a conservation property
for the semigroup associated with the elliptic operator, and local Poincaré in-
equalities. The conservation property restricts the usage of certain lower-order
terms, which is in accordance with Auscher’s work, and forces one to work
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with pure Neumann boundary conditions. To show local Poincaré inequalites,
we rely on homogeneous estimates shown in Section 3.9 for the extension op-
erator from Chapter 3. Now the crucial point is: Homogeneous estimates hold
in general only in a strip around the underlying set. But for the arguments
in Chapter 6 we need scale-invariant local Poincaré inequalities. . . However,
there is a situation in which global homogeneous estimates, and hence scale
invariant local Poincaré inequalities, are available: When the underlying set
is unbounded. This is a strong argument that it is not only often unnecessary
to restrict oneself to bounded domains but might even bring certain results
completely out of reach!
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Zusammenfassung in deutscher Sprache

Die vorliegende Arbeit befasst sich mit Fragen der unglatten Geometrie und
den gemischten Randbedingungen, sowie der Anwendung jenes Frameworks
auf die Regularitätstheorie von elliptischen Differentialoperatoren in Diver-
genzform.
Den Start macht hierbei Kapitel 2, in dem es um die Interpolationstheorie

von Sobolevräumen auf irregulären Gebieten mit gemischten Randbedingun-
gen geht. In jenem Kapitel werden zwei Hauptresultate bewiesen: Zum einen
stellt Theorem 2.1.4 ein Interpolationsresultat für die komplexe sowie für die
reelle Interpolationsmethode zur Verfügung. Außerdem ist die Interpolation
von Sobolevräumen mit unterschiedlichen Integrabilitätsparametern möglich.
Zum Anderen wird ein Resultat zur Interpolation mit der reellen Methode
unter Ausnutzen einer Spurmethode von Grisvard gezeigt, welches andere geo-
metrische Annahmen voraus setzt, die zumindest im Fall beschränkter Gebiete
strikt schwächer sind. Dieses Resultat findet sich in Theorem 2.1.7
Der Beweis des ersten Hauptresultats basiert auf zwei Hauptzutaten: Zum

einem steht ein punktweises Multiplikatorresultat auf Bessel Potentialräumen
von Sickel im Fokus, mit dem Interpolation auf irregulären Mengen mit rei-
nen Dirichlet Randbedingungen gezeigt werden kann. Zum anderen spielt das
Konzept von porösen Mengen eine Schlüsselrolle. Die Interpolation mit ge-
mischten Randbedingungen in der Modellgeometrie des Halbraums kann nun
behandelt werden, indem man unter Ausnutzung der Porösität in Räumen
mit negativer Regularitätsordnung arbeitet.
Das zweite Hauptresultat von Kapitel 2 ist eine Verfeinerung des Beweises

aus [38], wobei hier vor allem ein verbessertes Verständnis von fraktionalen
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Zusammenfassung in deutscher Sprache

Hardyungleichungen eine wichtige Rolle spielt. Dieses Resultat ist eine wich-
tige Zutat für Kapitel 5.
Ein weiterer Meilenstein in der Theorie von Sobolev-Räumen mit gemisch-

ten Randbedingungen ist Kapitel 3. Hier wird ein semiuniverseller Fortset-
zungsoperator für solche Räume konstruiert, der nicht auf Lokalisierung ba-
siert. Die Konstruktion im Fall von natürlichen Randbedingungen geht auf
Jones zurück [65]. Es werden auch lokale und homogene Abschätzungen ge-
zeigt, die für die harmonische Analysis in Kapitel 6 essentiell sind, sowie eine
umfangreiche a priori Dichtheitstheorie.
Highlight der Dissertation ist Kapitel 5. Hier wird ein sehr allgemeines Set-

ting für elliptische Systeme in Divergenzform auf irregulären Mengen und mit
gemischten Randbedingungen präsentiert, in dem die Kato’sche Wurzeleigen-
schaft gilt. Besonders hervorzuheben ist, dass die Regularität der zugrundelie-
genden Menge ohne Verwendung jeglicher Karten formuliert wird, dass jene
unterliegende Menge nicht die interior thickness Bedingung erfüllen muss,
und dass sie unbeschränkt sein kann. Relevante Schritte im Beweis sind die
Lokalisierung und Zerlegung des Funktionalkalküls des elliptischen Systems
auf “Zusammenhangskomponenten”, sowie die Andickung einer Menge um
den Dirichletrand, um die interior thickness Bedingung sicherzustellen, ohne
dabei weitere geometrische Qualität zu verlieren.
Die Idee der Andickung einer Menge wurde in Kapitel 4 nochmals aufge-

griffen, um einen Fortsetzungsoperator für fraktionale Sobolevräume der Ord-
nung s ∈ (0, 1) zu konstruieren, der ebenfalls nicht auf Lokalisierung beruht,
sondern über eine Hilfsmenge auf den Fall von reinen Neumann Randbedin-
gungen reduziert.
Schließlich werden in Kapitel 6 noch Lp-Abschätzungen für die Wurzel von

elliptischen Systemen wie in Kapitel 5 hergeleitet. Besonders interessant ist
hier der Fall p > 2, da solche Aussagen bisher nicht für irreguläre Gebiete
gezeigt wurden. Insbesondere die lokalen und homogenen Abschätzungen für
den Fortsetzungsoperator aus Kapitel 3 sind hier essentiell.

xviii



CHAPTER 1

Preliminaries

This chapter gives a brief background on interpolation theory, function spaces
on the whole space, certain geometric concepts, and functional calculus. Some
background on these topics is certainly helpful and each part contains refer-
ences to textbooks which the reader may conduct.
We have decided to keep the preliminaries short and to put some material

that could have been presented here into the individual chapters. Certainly,
this leads to some redundancy. On the other hand, the individual chapters
become pretty much self-contained this way. Also, we would like to use the
opportunity to mention that the same symbol might be defined in different
ways in different chapters. This applies in particular to the definition of func-
tion spaces. Whenever we need to use results from another chapter, we will
comment on why definitions coincide under the current geometric situation.

1.1. Brief background on interpolation theory
In the following, all Banach spaces are over the complex numbers. Though
some familiarity with real and complex interpolation of Banach spaces might
be helpful, and we refer to the textbooks [23, 93] for further background,
understanding this thesis does not require the precise construction of interpo-
lation spaces. We shall only need the general methodology, their fundamental
properties, and standard results on interpolation of function spaces on Rd
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1. Preliminaries

measuring smoothness to be recalled further below in Section 1.2.
Let (X0, X1) be an interpolation couple, that is, a pair of Banach spaces

that are included in a common linear Hausdorff space. Then the following
Banach spaces can be defined between X0 ∩X1 and X0 +X1 with respect to
continuous inclusion: For θ ∈ [0, 1] the complex interpolation spaces [X0, X1]θ
of Calderón–Lions [23, Sec. 4.1] and for θ ∈ (0, 1) and p ∈ [1,∞) the real in-
terpolation spaces (X0, X1)θ,p obtained from Peetre’s K-method [23, Sec. 3.1].
In any of these spaces X0∩X1 is dense [23, Thm. 3.4.2 & 4.4.2]. In particular,
the endpoints [X0, X1]j, j ∈ {0, 1}, coincide with Xj only if X0 ∩X1 is dense
in Xj.
One of the most important aides in interpolation theory is the retraction-

coretraction principle. Given two Banach spaces X and Y , a bounded linear
operator R : X → Y is called retraction if it has a bounded left-inverse
E : Y → X such that RE = 1 is the identity on Y . In this case E is called
the associated coretraction. It is instructive to think of R as a restriction
and E a compatible extension operator. The following is a modification of
[93, Sec. 1.2.4].

Proposition 1.1.1 (Retraction-Coretraction Theorem). Let (X0, X1) and
(Y0, Y1) be interpolation couples and R : X0 + X1 → Y0 + Y1, E : Y0 + Y1 →
X0 +X1 be linear operators such that R : Xj → Yj is a retraction with associ-
ated coretraction E : Yj → Xj for j = 0, 1. Let 〈· , ·〉 denote either a complex
or a real interpolation bracket and put X = 〈X1, X2〉 and Y = 〈Y1, Y2〉. Then
R(X) = Y holds with equivalence of norms, where R(X) is equipped with the
quotient norm inherited from X/N(R). The implicit constants in the equiv-
alence of norms do only depend on θ in the choice of 〈· , ·〉 and the operator
norms of R and E on the interpolation couples.

Proof. Though the proof is not too long, we proceed in three steps to make
this fairly abstract reasoning easier to follow.
Step 1: P = ER restricts to a projection on X. Let x ∈ X0∩X1. On using

that RE = 1 on Y0∩Y1, we deduce PPx = E(RE)Rx = Px. Since X0∩X1 is
dense in X because X is an interpolation space of the couple (X0, X1), and P
and P2 are bounded on X by interpolation, the claim follows by continuity.
Step 2: The set equality P(X) = E(Y ) holds. First, let z ∈ P(X). Since

a projection acts identically on its range, z = Pz = ERz implies z ∈ E(Y )
owing to the fact that Rz ∈ R(X) ⊆ Y by interpolation. Conversely, let
z ∈ Y and note that RE = 1 extends to Y with the argument from Step 1.
Consequently, Ez = E(REz) = P(Ez) yields Ez ∈ P(X).

2



1.2. Function spaces on the whole space

Step 3: One has R(X) = Y topologically. The respective equality of sets
follows from Step 2 on applying R and using the cancellation of RE . For
the equivalence of norms pick y ∈ Y . Recall that R(X) is equipped with
the quotient norm coming from X/N(R). For the continuity of the inclusion
“⊇” we estimate, using that y = REy and that 〈· , ·〉 is an exact interpolation
method of exponent θ according to [93, Thm. 1.3.3 a) & Thm. 1.9.3 a)], that

‖y‖R(X) ≤ ‖Ey‖X ≤ ‖E‖1−θ
Y0→X0‖E‖

θ
Y1→X1‖y‖Y .

Conversely, let x ∈ X be some (arbitrary) element with y = Rx. Then

‖y‖Y = ‖Rx‖Y ≤ ‖R‖1−θ
X0→Y0‖R‖

θ
X1→Y1‖x‖X .

Taking the infimum over all admissible x yields ‖y‖Y . ‖y‖R(X) with implicit
constant as claimed.

Remark 1.1.2. Many proofs of this result appeal to the closed graph theorem
to show topological equality. Our direct calculation gives a better control on
the implicit constants.

An important special case arises when R = P is a projection and E = 1 is
the identity, compare with [93, Sec. 1.17.1].

Corollary 1.1.3. Let (X0, X1) be an interpolation couple and P a bounded
projection in X0 +X1 with range Z. Then (Z∩X0, Z∩X1) is an interpolation
couple and if 〈· , ·〉 denotes either a complex or a real interpolation bracket,
then up to equivalent norms

〈Z ∩X0, Z ∩X1〉 = Z ∩ 〈X0, X1〉.

1.2. Function spaces on the whole space
In this section, we introduce several function spaces on the whole space Rd.
All spaces will be realized within the tempered distributions S ′(Rd). With
this ambient structure, tools like Fourier transforms and derivatives are a
priori well-defined on all our function spaces, and of course we can also use
these tools when defining norms. Another benefit of this approach is that
we automatically have a universe in which pairs of function spaces can form
interpolation couples, compare for Section 1.1.
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1. Preliminaries

Convention 1.2.1 (Lebesgue spaces within the tempered distributions). Let
1 ≤ p ≤ ∞. We say that a tempered distribution ϕ ∈ S ′(Rd) belongs to
Lp(Rd) if there is a locally integrable function f which induces ϕ in the sense
of a regular distribution and satisfies f ∈ Lp(Rd). From now on, we won’t
distinguish ϕ and f .

Remark 1.2.2. Since S(Rd) is dense in Lp′(Rd), we could also have defined
Lp(Rd) within S ′(Rd) by duality with Lp′(Rd).

Definition 1.2.3. Let k ≥ 0 be an integer and 1 ≤ p ≤ ∞. The Sobolev
space Wk,p(Rd) consists of all tempered distributions such that

‖f‖Wk,p :=
(
‖f‖pLp +

d∑
j=1
‖∂kj f‖

p
Lp

)1/p

<∞,

with the usual modification if p =∞.

We could equivalently have taken all derivatives up to order k into account,
see [93, Sec. 2.3.3 Rem. 2]. This definition is complemented by introducing
the scales of Bessel potential spaces and fractional Sobolev spaces.

Definition 1.2.4. Let s ∈ R and 1 < p < ∞. The Bessel potential space
Hs,p(Rd) consists of those tempered distributions f ∈ S ′(Rd) for which the
norm

‖f‖Hs,p := ‖F−1(1 + | · |2)s/2Ff‖Lp

is finite. Here, F denotes the Fourier transform.

Remark 1.2.5. (i) With 1/p′ := 1−1/p the spaces H−s,p(Rd) and Hs,p′(Rd)
are in a sesquilinear duality extending the L2 inner product [93, Sec. 2.6.1
Thm.].

(ii) If k ≥ 0 is an integer, then Hk,p(Rd) coincides up to equivalent norms
with Wk,p(Rd), see [93, Sec. 2.3.3 Thm.]. Note that we have H0,p(Rd) =
W0,p(Rd) = Lp(Rd).

Definition 1.2.6. Let 1 < p <∞ and let s = k+σ with k ≥ 0 an integer and
σ ∈ (0, 1). The fractional Sobolev space Ws,p(Rd) consists of all f ∈ S ′(Rd)
such that the norm

‖f‖Ws,p(Rd) := ‖f‖Wk,p(Rd) +
(

d∑
j=1

∫∫
Rd×Rd

|∂kj f(x)− ∂kj f(y)|p

|x− y|d+σp dx dy
)1/p

is finite, and the space Ws,p(Rd) is equipped with that norm.
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1.2. Function spaces on the whole space

Remark 1.2.7. We could also have restricted integration to |x − y| < 1.
Indeed, fix 1 ≤ j ≤ d, using Fubini’s theorem and polar coordinates we
obtain

∫∫
Rd×Rd
|x−y|>1

|∂kj f(x)− ∂kj f(y)|p

|x− y|d+σp dx dy

.
∫
Rd

|∂kj f(x)|p
∞∫
1

r−sp
dr
r

dx+
∫
Rd

|∂kj f(y)|p
∞∫
1

r−sp
dr
r

dy = 2
sp
‖∂kj f‖

p
Lp(Rd).

Definition 1.2.8. Let s > 0 and 1 < p <∞. The space W−s,p(Rd) consists of
the conjugate-linear functionals on Ws,p′(Rd) and is equipped with the usual
norm for (anti-)dual spaces,

‖f‖W−s,p(Rd) := sup
ϕ∈Ws,p′

‖ϕ‖Ws,p′=1

|〈f, ϕ〉|,

where we have omitted to mention Rd in the supremum and p′ is the Hölder-
conjugate exponent to p.

This is in accordance with what we have seen for Bessel potential spaces.
We could have also given an equivalent intrinsic definition using the scale of
Besov spaces [93, Sec. 2.3.2/2.6.1] but the viewpoint of dual spaces is better
suited to our circumstances.
We collect all interpolation properties proved in [93, Sec. 2.4.2] that shall

be used “off-the-shelf” in the further course of this thesis. In [93] the nomen-
clature is Hs,p = Fsp,2 and Ws,p = Fsp,p for non-integer s.

Proposition 1.2.9. Let p0, p1 ∈ (1,∞), s0, s1 ∈ R, and θ ∈ (0, 1). Let X
denote either H or W. Up to equivalent norms one has

[Xs0,p0(Rd),Xs1,p1(Rd)]θ = Xs,p(Rd),(i)

(Xs0,p0(Rd),Xs1,p1(Rd))θ,p = Ws,p(Rd),(ii)

with the two exceptions that in (i) for X = W either all or none of s0, s1, s have
to be integers and that in (ii) integer s is only permitted when s0 = s1(= s).

We conclude this section with a closer look at the case p = ∞, at least in
the case when k = 1

5



1. Preliminaries

Definition 1.2.10. The Lipschitz space is denoted by Lip(Rd) and consists
of all bounded functions on Rd which satisfy

‖f‖Lip(Rd) := ‖f‖L∞(Rd) + sup
x,y∈Rd
x 6=y

∣∣∣∣∣f(x)− f(y)
x− y

∣∣∣∣∣ <∞.

We rely on the following fact from the theory of Sobolev spaces, see [58,
Thm. 6.12].

Proposition 1.2.11 (Rademacher’s theorem). The spaces W1,∞(Rd) and
Lip(Rd) coincide.

Remark 1.2.12. In [58], the notion of locally L-Lipschitz functions for some
L > 0 is used. A bounded function on a set E ⊆ Rd is locally L-Lipschitz
if for every x ∈ E there exists a ball B = B(x, r) contained in E such that
|f(x)−f(y)| ≤ L|x−y| for all y ∈ B. In the case E = Rd this condition implies
Lipschitz continuity. Indeed, cover the connecting line segment between to
arbitrary points in Rd by finitely many balls centered in that line segment.
Then the Lipschitz seminorm can be estimated by a bootstrapping argument
inside these balls. Note that this uses that the Lipschitz constant is uniform
across these balls. More generally, this correspondence holds if nearby points
can be connected by a comparably longer connecting path. Sets satisfying
this condition are called quasi-convex in the literature.

1.3. Geometry
This section is first concerned with measure theoretic thickness conditions.
These are closely related with the question of Sobolev extendability and the
existence of bounded traces. Afterwards, we will turn our focus to metric
concepts of fractional dimension, including the concept of porosity, which
characterizes sets which are not full-dimensional in a certain sense.

1.3.1. Measure theoretic thickness conditions

We start with a thickness condition for full-dimensional subsets of the Eu-
clidean space. This notion is crucial in the theory of Sobolev extendability of
functions and we will revisit it several times throughout this thesis.
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Definition 1.3.1. A measurable set E ⊆ Rd satisfies the interior thickness
condition if it fulfills

∀x ∈ E, r ∈ (0, 1] : |B(x, r) ∩ E| & |B(x, r)|.

Example 1.3.2. An open set whose boundary satisfies a Lipschitz condi-
tion is interior thick. This is of course not necessary, consider for example a
punctured disc. On the contrary, cusps do not satisfy the interior thickness
condition.

To provide a similar notion on lower dimensional subsets, let us recall the
concept of Hausdorff measures. Fix an arbitrary set E ⊆ Rd. Given s ∈ [0, d]
and ε > 0, put

Hs
ε(E) := inf

{∑
i

r(Bi)s :
⋃
i

Bi ⊇ E, r(Bi) ≤ ε
}
.

Here, (Bi)i is a family of balls centered in E. The case ε =∞ plays a central
role in potential theory and will be used in Appendix A.2, so we record it here
before coming to the Hausdorff measure.

Definition 1.3.3 (Hausdorff content). Let s ≥ 0 and E ⊆ Rd. Call the
quantity Hs

∞(E) the s-dimensional Hausdorff content of E.

Remark 1.3.4. Note that in the definition of the Hausdorff content it suffices
to consider balls up to radius diam(E), since in a covering with larger balls
we can replace these balls by concentric balls with radius diam(E), thereby
getting a smaller competing value for the infimum.

The quantity Hs
ε(E) is decreasing when ε tends to zero. This makes the

following definition well-defined, compare also for [2, Sec. 5.1].

Definition 1.3.5 (Hausdorff measure). Let s ≥ 0 and E ⊆ Rd. Call the
quantity Hs(E) := limε→0Hs

ε(E) ∈ [0,∞] the s-dimensional Hausdorff mea-
sure of E.

Example 1.3.6. Let 1 ≤ k ≤ d. Then the outer measure E 7→ Hk(E × {0})
on Rk is a translation invariant Borel measure that assigns finite measure to
the unit cube [97, §27]. Here, Hk is the k-dimensional Hausdorff measure in
Rd and 0 the null vector of matching length. Hence, Hk coincides with the
Lebesgue measure on Rk embedded into Rd up to a norming constant.

7
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Example 1.3.7. The measure H0 coincides with the counting measure. In-
deed, if E is finite then we can cover E by #E many balls of arbitrary radius.
Conversely, let ` ≥ 0 and E an infinite set, then there is ε > 0 such that
` points in E have pairwise distance of at least ε, hence H0

ε(E) ≥ ` and
H0(E) =∞ follows.

Definition 1.3.8. Let E ⊆ Rd. Call E an Ahlfors–David regular set if

∀x ∈ E, r ∈ (0, diam(E)] : Hd−1(B(x, r) ∩ E) ≈ rd−1.(1.1)

If condition (1.1) only holds with the restriction r ∈ (0, 1], call E a (d − 1)-
regular set.

Example 1.3.9. If the boundary of some open set satisfies the Lipschitz
condition then it is (d−1)-regular. If the boundary is given by only one chart
then it is moreover Ahlfors–David regular.
To stress the difference between Ahlfors–David regularity and (d − 1)-

regularity, consider logarithmically distributed line segments in the plane,
that is to say, consider the set E := ⋃

j≥0((2j, 0) + S) for some finite line seg-
ment S. This set is 1-regular because each line segment is, but a ball around
the origin with radius 2` hits only ` line segments, so H1(B(x, 2`) ∩ E) ≈ `.

The notions of interior thickness condition, Ahlfors–David regularity and
(d− 1)-regularity are unified in the following definition. We decided to start
out with these special cases since they are the most important for this thesis
and their distinguished nomenclature is commonly used in the literature.

Definition 1.3.10. A set E ⊆ Rd is called `-Ahlfors regular or simply `-
regular for 0 < ` ≤ d, if there is comparability

H`(B ∩ E) ≈ r(B)`

uniformly for all open balls B of radius r(B) ≤ 1 centered in E. If compara-
bility holds for r(B) ≤ diam(E), then E is called uniformly `-regular.

Remark 1.3.11. Our `-regular sets are precisely the `-sets in the sense of
Jonsson–Wallin [66, Thm. II. 1]. Uniformly `-regular sets are `-regular and
the converse holds for bounded sets, see Lemma A.1.4. Many authors consider
only closed (uniformly) regular sets, but most considerations adapt verbatim
since in the situation of Definition 1.3.10 the closure E is still (uniformly)
`-regular and E \ E is an H` null set [66, Prop. VIII.1]. We shall frequently
use this result without further reference.
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1.3. Geometry

Lemma 1.3.12. Let 0 < ` ≤ d and E1, E2 ⊆ Rd be `-regular. Then E :=
E1 ∪ E2 is also `-regular. That is to say, the class of `-sets is closed under
finite unions.

Proof. Let B = B(x, r) be a ball centered in E of radius at most 1. Without
loss of generality we may assume that x ∈ E1. The lower bound for E is
for free by monotonicity. For the upper bound, first consider the case that
B does not intersect E2. Then the upper bound follows from `-regularity of
E1. Otherwise, let z ∈ B ∩ E2. Then B ⊆ B(z, 2r) and we conclude by the
calculation

H`(B ∩ E) ≤ H`(B ∩ E1) +H`(B(z, 2r) ∩ E2) . r`,

which uses that E1 and E2 are `-regular in the final step.

1.3.2. Dimensions and porosity
We investigate the notions of Assouad and Hausdorff dimension and explore
their relation with the concept of porosity. Whenever necessary, the reader can
refer to Appendix A.1 for further background on porous sets. It is instructive
to think of porous sets as lower dimensional compared to the ambient space.
This is made precise in Proposition A.1.9.
There is no ambiguity with uniformly `-regular sets since their dimension

is ` for any of these concepts, see Proposition A.1.6.
Definition 1.3.13. Let E ⊆ Rd and let AS(E) denote the set of λ > 0 for
which there exists C ≥ 0 such that, if 0 < r < R < 2 diam(E) and x ∈ E,
then at most C(R/r)λ balls of radius r centered in E are needed to cover
E ∩ B(x,R). The number dimAS(E) := infAS(E) is called upper Assouad
dimension of E. The corresponding lower Assouad dimension is defined as
dimAS(E) := supAS(E) with AS(E) the set of λ > 0 for which there exists
C ≥ 0 such that in the former situation at least C(R/r)λ balls are needed. In
the case where dimAS(E) = dimAS(E), we put dimAS(E) := dimAS(E) and
call it simply the Assouad dimension.
Example 1.3.14. Let E ⊆ Rd. Then dimAS(E) ≤ d. Indeed, let B be a
ball of radius R centered in E and consider the covering {B(x, r/5)}x∈B∩E
of B ∩ E. Using Vitali’s covering lemma (which the reader can recall in the
Appendix, see Lemma A.1.2), we find a disjoint subfamily {Bi}i∈I such that
B ∩ E ⊆ ∪i∈I5Bi. We denote by #i the cardinality of I and calculate

#icd(r/5)d = | ∪i∈I Bi| ≤ |2B| = cd2dRd,

9
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where cd is the measure of the unit ball. This shows #i ≤ 10d(R/r)d and
consequently dimAS(E) ≤ d.

Example 1.3.15. Let E ⊆ Rd be open. Then dimAS(E) ≥ d. To see this,
note first that we can replace balls by dyadic cubes (not necessarily centered
in E) in the definition of the (lower) Assouad dimension. Let Q be a dyadic
cube. Then dimAS(Q) ≥ d can be derived from the grid structure of dyadic
subcubes. Finally, since E is open, there is some dyadic cube Q such that
Q ∩ E = Q, which allows us to conclude using that special case.

Lemma 1.3.16. Let E ⊆ Rd, then dimAS(E) ≤ dimAS(E).

Proof. Given λ ∈ AS(E) and µ ∈ AS(E) we have (R/r)λ . (R/r)µ for all
0 < r < R < diam(E) and hence λ ≤ µ.

Corollary 1.3.17. Let E ⊆ Rd be open, then dimAS(E) = dimAS(E) = d.

We continue with the Hausdorff dimension. The Hausdorff measure and
related concepts were recalled in Section 1.3.1.

Definition 1.3.18. Let E ⊆ Rd. Call the number

dimH(E) := inf{s > 0: Hs(E) = 0}

the Hausdorff dimension of E.

The following example shows that the Hausdorff dimension is not stable
under taking closures, in contrast to the Assouad dimension or the notion of
being `-regular (see Remark 1.3.11).

Example 1.3.19. Consider E := [0, 1] ∩ Q. Then Hs(E) = 0 for any s > 0
by countability of E, hence dimH(E) = 0. However, E = [0, 1] and hence
dimH(E) = 1.

Lemma 1.3.20. Let E ⊆ Rd, then dimH(E) ≤ dimAS(E).

Proof. Let t > dimAS(E) and let B be some ball centered in E with r(B) = 1.
Then we can pick a constant C ≥ 1 such that for any 0 < r < 1 we find a
covering (Bi)i of E ∩B consisting of at most Cr−t balls of radius r. Now let
` ∈ (t, d), we estimate

H`
r(E ∩B) ≤

∑
i

r(Bi)` = #i r
` ≤ Cr`−t.

Taking the limit as r → 0, we arrive at H`(E ∩ B) = 0. Finally, a count-
able covering of E by such balls yields H`(E) = 0, so by definition we have
dimH(E) ≤ t. Finally, letting t→ dimAS(E) gives the claim.

10



1.4. Functional calculus for (bi)sectorial operators

Consequently, Example 1.3.14 yields also the following upper bound for the
Hausdorff dimension of sets in Euclidean space.
Corollary 1.3.21. Let E ⊆ Rd, then dimH(E) ∈ [0, d].
This makes the definition of the Hausdorff co-dimension meaningful.

Definition 1.3.22. Let E ⊆ Rd. Call codimH(E) := d − dimH(E) ∈ [0, d]
the Hausdorff co-dimension of E.
We recall with slight modification the notion of porous sets introduced by

Vaisälä [95].
Definition 1.3.23. Let E ⊆ F ⊆ Rd. Then E is porous in F if there exists
a constant κ ∈ (0, 1] with the following property:

∀x ∈ E, r ≤ 1 ∃y ∈ B(x, r) ∩ F : B(y, κr) ∩ E = ∅.(1.2)

If this holds for all r ≤ diam(E), then E is called uniformly porous in F . If
F = Rd, then E is simply called (uniformly) porous.
Remark 1.3.24. If E is uniformly porous with constant κ, then it is porous
with constant min{κ, κ diam(E)}. Condition (1.2) implies the seemingly
stronger statement

∀x ∈ F, r ≤ 1 ∃y ∈ B(x, r) ∩ F : B(y, κr/4) ⊆ B(x, r) \ E.

This is seen by distinguishing whether or not B(x, r/2) intersects E. An
analogous remark applies to uniformly porous sets.
Example 1.3.25. If E ⊆ Rd is Ahlfors-David regular, then due to Propo-
sitions A.1.6 we have that dimAS(E) = d − 1. Consequently, by Proposi-
tion A.1.9, it follows that E is uniformly porous.

1.4. Functional calculus for (bi)sectorial operators
We provide the essentials on functional calculi for (bi)sectorial operators in
Hilbert spaces that are needed for understanding this thesis. Functional cal-
culus theory is heavily and freely used in Chapters 5 and 6. The reader who
is not familiar with this theory can consult [53, 76] and also [35, 62] for the
bisectorial case for further guidance.
For ω ∈ (0, π) let S+

ω := {z ∈ C\{0} : | arg z| < ω} be the sector of opening
angle 2ω symmetric about the positive real axis. It will be convenient to
set S+

0 := (0,∞). The bisector of angle ω ∈ [0, π/2) is defined by Sω :=
S+
ω ∪ (−S+

ω ).

11
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Definition 1.4.1. A linear operator T in a Hilbert space H is sectorial of
angle ω ∈ [0, π) if its spectrum σ(T ) is contained in S+

ω and if

C \ S+
ϕ → L(H), z 7→ z(z − T )−1

is uniformly bounded for every ϕ ∈ (ω, π). Abbreviate the bound for ϕ ∈
(ω, π) by

M(T, ϕ) := sup
{
‖z(z − T )−1‖H→H : z ∈ C \ S+

ϕ

}
.

Bisectorial operators of angle ω ∈ [0, π/2) are defined similarly upon replacing
sectors by bisectors.

Remark 1.4.2. In this thesis, bisectorial operators do only appear in the
Dirac operator framework described in Section 5.4. This part could also be
used as a blackbox, but we give a brief exposition to make things more trans-
parent to the reader. Therefore, we have decided to exclude the bisectorial
case in the sequel whenever the corresponding statements are not needed and
the notation becomes easier this way.

Sectorial and bisectorial operators are automatically closed and densely
defined [53, Prop. 2.1.1].

Example 1.4.3. Self-adjoint operators are bisectorial of angle 0, see [53,
Prop. C.4.2]. An operator T is called maximal accretive if its resolvent exists
on the right half-plane along with the bound ‖(z + T )−1‖ ≤ (Re z)−1 for all
z ∈ C with Re z > 0. This implies sectoriality of angle π/2.

Throughout, we denote byM(U) and H∞(U) the meromorphic and bounded
holomorphic functions on an open set U ⊆ C, respectively.
Let T be sectorial of angle ω and let ϕ ∈ (ω, π). The construction of

its functional calculus starts from the subalgebra H∞0 (S+
ϕ ) of functions f ∈

H∞(S+
ϕ ) satisfying |f(z)| ≤ C min(|z|α, |z|−α) for some C, α > 0 and all z ∈

S+
ϕ . In this case fix ν ∈ (ω, ϕ) and define

f(T ) := 1
2πi

∫
γ
f(z)(z − T )−1 dz,

where γ is a positively oriented parametrization of ∂S+
ν . The definition is

consistent in all admissible ν due to Cauchy’s theorem. If the contour is clear
we will occasionally just write

∫
〈 instead of

∫
γ. The mapping f 7→ f(T ) yields

an algebra homomorphism H∞0 (S+
ϕ )→ L(H). The canonical extension to the

subalgebra

E(S+
ϕ ) := H∞0 (S+

ϕ )⊕ 〈(1 + z)−1〉 ⊕ 〈1〉

12



1.4. Functional calculus for (bi)sectorial operators

of M(S+
ϕ ) is well-defined and again an algebra homomorphism. Here, the

bracket 〈 · 〉 denotes the linear hull. By regularization this algebra homomor-
phism extends to an unbounded functional calculus withinM(S+

ϕ ) as follows.
Introduce the algebra

M(S+
ϕ )T :=

{
f ∈M(S+

ϕ ) : there exists e ∈ E(S+
ϕ ) such that

e(T ) is injective and ef ∈ E(S+
ϕ )
}

and define the closed operator f(T ) for f ∈M(S+
ϕ )T by f(T ) := e(T )−1(ef)(T ).

This definition does not depend on the choice of the regularizer e. The reason-
able generalization of the notion of algebra homomorphisms in this context is
to have f(T ) + g(T ) ⊆ (f + g)(T ) and f(T )g(T ) ⊆ (fg)(T ) with equality if
f(T ) is bounded. Indeed, this is the case for our construction [53, Thm. 1.3.2].

Example 1.4.4. The fractional powers Tα for Reα > 0 are defined via the
regularizer (1 + z)−n, where n is an integer larger than Reα. They satisfy
the law of exponents TαT β = Tα+β and if T is invertible, then so is Tα.
See [53, Prop. 3.1.1] for these properties.

Example 1.4.5. Let f ∈ H∞(S+
ϕ ). If T is injective, then z(1+z)−2 regularizes

f . In general, there is a topological splitting H = N(T )⊕R(T ) and the part of
T in R(T ) is an injective sectorial operator of the same angle [53, p. 24]. Hence,
f(T ) is always defined as a closed operator in R(T ) via f(T ) := f(T |R(T )).

The calculus for bisectorial operators is constructed in the same way upon
systematically replacing sectors by bisectors and (1 + z)−1 by (i + z)−1. It
shares the same properties except that instead of fractional powers one rather
considers (T 2)α for Reα > 0. No ambiguity can occur when writing down
such expressions. Indeed, if T is bisectorial, then T 2 is sectorial – and if
f(T 2) is defined by the sectorial calculus, then f(T 2) = [f(z2)](T ), see [35,
Thm. 3.2.20].

1.4.1. Transformed functional calculi
We investigate the behavior of functional calculi under common operations like
duality or similarity. Most of the statements are well-known in the literature,
but we include proofs for convenience of the reader.

13
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Proposition 1.4.6 (Duality). Let T be a densely defined sectorial operator
of angle ω ∈ [0, π) in a Hilbert space H. Then T ∗ is again sectorial of angle
ω in H, and if ϕ ∈ (ω, π) then

f(T )∗ = f ∗(T ∗) (f ∈ E(S+
ϕ ), )(1.3)

where f ∗ := f(z) ∈ E(S+
ϕ ).

Proof. For the sectoriality of T ∗ use that one has ρ(T ∗) = {λ : λ ∈ ρ(T )}
and that the identity

[(λ− T )−1]∗ = (λ− T ∗)−1 (λ ∈ C \ S+
ω )(1.4)

holds [53, Cor. C.2.2]. Since conjugation leaves sectors invariant, we conclude
M(T ∗, ϕ) = M(T, ϕ) for ϕ ∈ (ω, π), which shows in particular that T ∗ is again
sectorial of angle ω.
Next, let us show (1.3). By linearity it suffices to consider the function 1,

the resolvent function (1 + z)−1 and H∞0 (S+
ϕ )-functions separately. For the

function 1 the claim is immediate, whereas the case of the resolvent function
was already treated above (note here that [(1 + z)−1]∗ = (1 + z)−1).
Finally, let f ∈ H∞0 (S+

ϕ ). An expansion of f into a power series readily
reveals that f ∗ is again holomorphic and the decay is clearly preserved. Let
x, y ∈ H and compute using (1.4) and the orientation reversing transformation
w = z that∫

〈
f ∗(z)

(
(z + T ∗)−1x | y

)
dz =

∫
〈
f(z)

(
x | (z + T )−1y

)
dz

= −
∫
〈
f(w)

(
x | (w + T )−1y

)
dw =

(
x | −

∫
〈
f(w)(z + T )−1y dw

)
.

Divide this identity by 2πi to deduce (f ∗(T ∗)x | y) = (x | f(T )y). Therefore,
f(T )∗ = f ∗(T ∗) as claimed.

Proposition 1.4.7 (Scaling). Let T be a sectorial operator of angle ω ∈ [0, π)
in a Hilbert space H. For all s > 0 one has that sT is again a sectorial operator
of angle ω in H with M(sT, ϕ) = M(T, ϕ) for all ϕ ∈ (ω, π). Moreover,

fs(T ) = f(sT ) (s > 0, f ∈ E(S+
ϕ ))(1.5)

holds, where fs := f(sz) is again in E(S+
ϕ ). Also, one has the bound

sup
s>0
‖f(sT )‖H→H .f 1 (f ∈ E(S+

ϕ )).(1.6)

14



1.4. Functional calculus for (bi)sectorial operators

Proof. Let ϕ ∈ (ω, π) and λ ∈ C\S+
ϕ . From λ−sT = s(s−1λ−T ) and s−1λ 6∈

S+
ϕ follows λ ∈ ρ(sT ) with (λ− sT )−1 = s−1(s−1λ− T )−1. Multiplication by
λ yields M(sT, ϕ) = M(T, ϕ). This completes the proof of the first assertion.
Let us come to identity (1.5). Fix again ϕ ∈ (ω, π). As usual, we con-

sider constants, resolvent functions and H∞0 (S+
ϕ )-functions separately. For a

constant function c we have c = cs, which shows cs ∈ E(S+
ϕ ) and (1.5) is

then trivial. Next, let f = (λ − z)−1 with λ 6∈ S+
ϕ be a resolvent func-

tion. Then fs = (λ − sz)−1 = s−1(s−1λ − z)−1. From s−1λ ∈ S+
ϕ , follows

(s−1λ−z)−1 ∈ E(S+
ϕ ), so fs ∈ E(S+

ϕ ) as a multiple. Hence, using the resolvent
identity from above

fs(T ) = s−1
[
(s−1λ− z)−1

]
(T ) = s−1(s−1λ− T )−1 = (λ− sT )−1.

The right-hand side coincides with f(sT ) by construction of the functional
calculus, which completes this case. Finally, if f ∈ H∞0 (S+

ϕ ) with implied
constants C, t ∈ (0,∞), then

|fs(z)| ≤ C max(st, s−t) min(|z|t, |z|−t) (z ∈ S+
ϕ ),

hence fs ∈ E(S+
ϕ ). To see (1.5), calculate using the substitution w = s−1z

that

2πif(sT ) =
∫
〈
f(z)(z − sT )−1 ds =

∫
〈
f(z)s−1(s−1z − T ) dz

=
∫
〈
f(sw)(w − T )−1 dw = 2πifs(T ).

Finally, we come to the bound (1.6). As before, we consider the building
blocks of elementary functions separately. For constant functions, nothing
has so be shown. Also, the resolvent functions are clear since we have shown
at the very beginning of this proof that sT is a sectorial operator with same
resolvent bounds as T . Lastly, for f ∈ E(S+

ϕ ), the bound follows immediately
from the respective bound for resolvent functions.

The functional calculus for parts was already investigated in [53, Sec. 2.6.2].
However, the precise statement of (i) in the following Proposition seems to
be slightly stronger, and only this stronger version will allow us to perform
certain decompositions of the functional calculus later on in Section 5.5.1,
which is a central argument in this thesis.

Proposition 1.4.8 (Projections & Similarity). Let T be a (bi)sectorial oper-
ator in a Hilbert space H of angle ω ∈ [0, π).

15
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(i) Let P be an orthogonal projection in H and let P∗ : PH → H the
inclusion map. Suppose that PT ⊆ TP. Then TP∗ is a (bi)sectorial
operator in PH of angle ω and one has

f(TP∗) = f(T )P∗ and Pf(T ) ⊆ f(T )P

for every f in the functional calculus for T .

(ii) Let S : H → K be an isomorphism onto another Hilbert space. Then
S−1TS is again (bi)sectorial in K of angle ω. It has the same alge-
bra of admissible functions f as T and f(S−1TS) = S−1f(T )S with
D(f(S−1TS)) = S−1 D(f(T )) holds.

Proof. We begin with the proof of (i) and consider the sectorial case first.
Throughout, let ϕ ∈ (ω, π) be fixed.
Step 1: f = (λ−z)−1 with λ ∈ C\S+

ϕ . The assumption implies P(λ−T ) ⊆
(λ− T )P and hence P(λ− T )−1 = (λ− T )−1P . On P D(T ) we have λ− T =
λ−TP∗ and on PH we have (λ−T )−1 = (λ−T )−1P∗. With this at hand, a
direct calculation shows that (λ− T )−1P∗ is an operator on PH that acts as
a two-sided inverse for λ− TP∗, that is to say, (λ− TP∗)−1 = (λ− T )−1P∗.
In particular, TP∗ is a sectorial operator in PH of angle ω.
Step 2: f ∈ E(S+

ϕ ). As usual, we consider 1, (1 − z)−1 and g ∈ H∞0 (S+
ϕ )

separately, then the claim follows by linearity. For 1, both assertions are
trivial and (1 − z)−1 was already treated in Step 1. For g we compute using
Step 1 that

g(TP∗) = 1
2πi

∫
〈

g(z)(z − TP∗)−1 dz = 1
2πi

∫
〈

g(z)(z − T )−1P∗ dz = g(T )P∗.

The second claim follows similarly.
Step 3: f ∈ M(S+

ϕ )T . Let e be a regularizer for f . By Step 2 we have
e(TP∗) = e(T )P∗ and this operator is injective by composition of injective
maps. Then

f(TP∗) = e(TP∗)−1(ef)(TP∗) = (e(T )P∗)−1(ef)(T )P∗.

But this reduces directly to e(T )−1(ef)(T )P∗ = f(T )P∗ since e(T ) and
(ef)(T ) preserve PH. Moreover, we obtain Pf(T ) ⊆ f(T )P by the respective
inclusions for e(T )−1 and (ef)(T ) from Step 2.
In the proof of (ii) we directly have (λ − S−1TS)−1 = S−1(λ − T )S for

λ ∈ ρ(T ) and the rest of the proof follows the same pattern as above.
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1.4.2. Bounded H∞-calculus
In Example 1.4.5 we have seen the inclusion H∞(S+

ϕ ) ⊆ M(S+
ϕ )T for a secto-

rial operator T of angle ω and ϕ ∈ (ω, π). The same is true for bisectorial
operators with the usual modification. In fact, we will focus on the bisecto-
rial case in the sequel due to its importance in Section 5.4. The functional
calculus provides “only” algebraic relationships in the first place. From the
viewpoint of analysis the question of good bounds seems natural. This is what
we investigate for the functional calculus on H∞(Sϕ) in the following.

Definition 1.4.9. Let T be a bisectorial operator of angle ω in a Hilbert
space H and let ϕ ∈ (ω, π/2). If f(T ) is a bounded operator on R(T ) for
all f ∈ H∞(Sϕ) and there is a constant C > 0 such that the operator norm
estimate

‖f(T )‖R(T )→R(T ) ≤ C‖f‖∞ (f ∈ H∞(Sϕ))

holds, then T is said to have a bounded H∞-calculus of angle ϕ with bound
C on R(T ). An analogous version for sectorial operators can be obtained by
replacing bisectors with sectors.

The following fundamental theorem of McIntosh [76] characterizes this
property through quadratic estimates, see also [35, Thm. 3.4.11 & Cor. 3.4.14].

Theorem 1.4.10 (McIntosh’s theorem). Let T be a bisectorial operator of
angle ω in a Hilbert space H and let ϕ ∈ (ω, π/2). Then T has a bounded
H∞-calculus of angle ϕ if and only if∫ ∞

0
‖tT (1 + t2T 2)−1u‖2

H

dt
t
≈ ‖u‖2

H (u ∈ R(T )).(1.7)

The bound for the H∞(Sϕ)-calculus depends on ϕ, the implicit constants in
(1.7) and M(T, ϕ).

Example 1.4.11. Self-adjoint operators have a bounded H∞-calculus by the
spectral theorem. One can also check quadratic estimates in an elementary
manner [35, Ex. 3.4.15].

Bisectorial operators with a bounded H∞-calculus satisfy the following ab-
stract square root estimate [35, Prop. 3.3.15]. This essentially follows from
considering the bounded operator (z/

√
z2)(T ) and its inverse on R(T ). Hence,

the norm bounds are explicit. Note that the operator
√
T 2 is also often de-

noted by |T | in the literature.
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1. Preliminaries

Example 1.4.12. Let T be a bisectorial operator in a Hilbert space H with a
bounded H∞-calculus of angle ϕ and bound C. It follows that D(

√
T 2) = D(T )

with comparability

C−1‖Tu‖H ≤ ‖
√
T 2u‖H ≤ C‖Tu‖H (u ∈ D(T )).

18



CHAPTER 2

Interpolation Theory

The following question is the driving force of this chapter. Given an open
set O ⊆ Rd and a piece D ⊆ ∂O of its boundary, define the Sobolev space
W1,p

D (O) as the W1,p(O)-closure of smooth functions whose support stays away
from D. Under which geometric assumptions can one determine explicitly the
interpolation spaces

[Lp(O),W1,p
D (O)]s and (Lp(O),W1,p

D (O))s,p

defined through Calderón–Lions’ complex method and Peetre’s real method?
The space W1,p

D (O) should be thought of the collection of W1,p(O)-functions
with homogeneous Dirichlet boundary condition on D.
Interpolation theory related to the spaces W1,p

D (O) has recently been studied
in [8,15,26,38,49,56,86], but mostly with a focus on interpolating with respect
to integrability. Interpolation in differentiability appears only in [15, 38] for
p = 2 and in [49] for general p on certain model sets. The main difficulty
comes from the fact that taking the boundary trace on D cannot be defined
in a meaningful way on the Lebesgue space Lp(O). This forbids to treat the
question via purely functorial techniques.
We close this gap by establishing a full interpolation theory under geomet-

ric assumptions in the spirit of what has become standard for treating mixed
boundary value problems. In particular, we confirm the formula for the com-
plex interpolation spaces that was conjectured in connection with fractional
powers of divergence form operators in [8, Rem. 10.5] and listed as an open
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problem in [33, Sec. 5.3]. We also treat interpolation simultaneously in dif-
ferentiability and integrability. Some of our results appear to be new even on
much more regular domains as we do not require that the interface of D with
the complementary boundary part ∂O \D can be parametrized by coordinate
charts in any sense.

The geometric setting in a nutshell
We shall work on open sets O ⊆ Rd, not necessarily connected or bounded,
satisfying the thickness condition

c ≤ |B ∩O|
|B|

≤ C(2.1)

for some constants 0 < c ≤ C < 1 and all balls B of radius r(B) ≤ 1 centered
at the boundary ∂O. This excludes that O has interior or exterior cusps. We
assume that the Dirichlet part D ⊆ ∂O is a (d − 1)-regular, not necessarily
closed set. Only around the complementary boundary part ∂O \D we demand
Lipschitz coordinate charts with uniformly controlled bi-Lipschitz constants,
which on domains with compact boundary reduces to the usual weak Lipschitz
condition. Finally, the interface ∂D between the two boundary parts should
be a porous subset of the full boundary. This means that there should exist
some κ ∈ (0, 1) with the property that every ball B of radius r(B) ≤ 1
centered in ∂D contains a ball of radius κr centered in ∂O that avoids ∂D.
Porosity plays a fundamental role in our considerations. The necessary

background for this concept was recalled in Section 1.3.2. We often take
advantage of it in form of equivalent but less transparent conditions related
to Aikawa- and Assouad dimension. In particular, all our results hold if ∂D is
(d− 2)-regular as in Figure 1. We believe that this setting is rather common
in applications, for it includes for instance the Gröger regular sets [52]. Our
interpolation results are new even in this context since compared to earlier
work [49] we remove the requirement that the Lipschitz coordinate charts
should be measure preserving.

2.1. Main results and the precise geometric
constellation

Before we start, let us agree on a notational convention. In most interpolation
results we shall have possibly different Lebesgue exponents p0, p1 ∈ (1,∞) and
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Figure 1.: The domain O ⊆ R3 is obtained by transforming a cylinder such
that one lateral boundary part degenerates to a line segment touch-
ing the opposed side from outside. The dark-shaded boundary parts
carry the Dirichlet condition.

smoothness parameters s0, s1 ∈ R and we interpolate in both scales simulta-
neously. In order to straighten the presentation, we introduce here, given
θ ∈ (0, 1), the interpolating parameters p ∈ (1,∞) and s ∈ R through

1
p

:= 1− θ
p0

+ θ

p1
, s := (1− θ)s0 + θs1.(2.2)

In the presence of pi, si and θ as above we shall exclusively use the symbols
p and s in that very sense, sometimes without further mentioning.
To state the central result of this chapter (Theorem 2.1.4), we introduce a

set of assumptions below. The proof of this theorem is given in Section 2.4,
including an informal outline in Section 2.4.1.

Assumption 2.1.1. Let O ⊆ Rd be open and D ⊆ ∂O.

(O) The sets O and cO are d-regular,

(∂O) the boundary ∂O is (d− 1)-regular,

(D) the Dirichlet part D is (d− 1)-regular,

(∂D) the interface ∂D between D and ∂O \D is porous in ∂O,

(N) the set O satisfies a uniform Lipschitz condition around ∂O \D, that
is, for every x ∈ ∂O \D there is an open neighborhood Ux 3 x and a
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bi-Lipschitz transformation Φx : Ux → (−1, 1)d such that Φx(x) = 0 and

Φx(Ux ∩O) = (0, 1)× (−1, 1)d−1, Φx(Ux ∩ ∂O) = {0} × (−1, 1)d−1,

and there exists a number L that bounds the bi-Lipschitz constants of all
Φx, where bi-Lipschitz constant refers to the maximum of the Lipschitz
constants of Φx and Φ−1

x .

The following two examples demonstrate that Assumption 2.1.1 is a reformu-
lation of the geometric situation described in the introduction to this chapter.

Example 2.1.2. A set O ⊆ Rd satisfies the thickness condition (2.1) precisely
if O and cO are both d-regular. It suffices to check d-regularity of O and cO

for balls centered in ∂O = ∂(cO), see Lemma 4.1.2. Assume that (2.1) holds,
then the lower bound for O is clear. For cO we start with the calculation

|B ∩O| ≤ C|B| = C|B ∩O|+ C|B ∩ cO|.

The first term can be absorbed as C < 1, so we obtain (1 − C)|B ∩ O| ≤
C|B ∩ cO|. Now, d-regularity of cO can be concluded from the d-regularity of
O. Conversely, the lower bound for (2.1) is clear by d-regularity of O and the
upper bound follows from

|B ∩O| = |B| − |B ∩ cO| ≤ (1− c)|B|,

where c ∈ (0, 1] is the d-regularity constant of cO.

Example 2.1.3. If D is a (d− 1)-regular portion of the boundary of an open
set O ⊆ Rd, and O satisfies the uniform Lipschitz condition around ∂O \D,
then the full boundary ∂O is also (d−1)-regular. Indeed, since the bi-Lipschitz
constants are uniformly bounded, we can use that bi-Lipschitz images have
comparable Hd−1-measure [97, Thm. 28.10 a)] to show that ∂O \D is (d−1)-
regular. We conclude by the observation that the class of (d− 1)-regular sets
is closed under finite unions, see Lemma 1.3.12.

Theorem 2.1.4. Let O ⊆ Rd and D ⊆ ∂O satisfy Assumption 2.1.1 and let
p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0), s1 ∈ (1/p1, 1], and for θ ∈ (0, 1) define p and
s as in (2.2). If X denotes either H or W, then the complex interpolation
identity

[Xs0,p0(O),Xs1,p1
D (O)]θ =

Xs,p
D (O) (if s > 1/p)

Xs,p(O) (if s < 1/p)
(a)
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holds up to equivalent norms as well as the real interpolation identity

(Xs0,p0(O),Xs1,p1
D (O))θ,p =

Ws,p
D (O) (if s > 1/p)

Ws,p(O) (if s < 1/p)
(b)

with the exception that s0 6= 0 and s1 6= 1 are required in (a) for X = W.

Interpolation theory for the spaces Xs,p(O) without boundary conditions
becomes apparent from the extension result of Rychkov [85] presented in
Proposition 2.2.9. Abstract techniques then lead us in Section 2.3.1 to the fol-
lowing interpolation results for two function spaces with Dirichlet condition.
In contrast to Theorem 2.1.4, this only requires O and D to be regular.

Theorem 2.1.5. Let O ⊆ Rd be an open, d-regular set, and let D ⊆ O be
(d−1)-regular. Let p0, p1 ∈ (1,∞), s0 ∈ (1/p0, 1+1/p0), s1 ∈ (1/p1, 1+1/p1),
and for θ ∈ (0, 1) define p and s as in (2.2). Let X denote either H or W. Up
to equivalent norms it follows that

[Xs0,p0
D (O),Xs1,p1

D (O)]θ = Xs,p
D (O),(c)

(Xs0,p0
D (O),Xs1,p1

D (O))θ,p = Ws,p
D (O),(d)

with the two exceptions that in (c) for X = W either all or none of s0, s1, s

have to be 1 and that in (d) the value s = 1 is only permitted when s0 = s1 = 1.

As a cautionary tale, let us remark that a priori all function spaces are de-
fined by restrictions. In particular, W1,p(O) = H1,p(O) might be smaller than
the collection of Lp(O)-functions whose first-order distributional derivatives
are in Lp(O) under the assumptions of Theorem 2.1.5. Under the full set of
geometric assumptions in Theorem 2.1.4, however, there is no such ambiguity.

Extensions and generalizations
Abstract reiteration and duality theorems [23,63,93] imply numerous further
interpolation results that invoke our Theorems 2.1.4 and 2.1.5 “off-the-shelf”.
We leave the care of writing them down to the interested readers. Here, we
only present one such result that turned out useful in the W−1,p-theory of
divergence form operators and previously was available only in the restrictive
setup of [49, Lemma 3.4]. The proof of this result will be given in Section 2.5.
We write W−1,p

D (O) for the space of conjugate linear functionals on W1,p′
D (O),

where 1/p+ 1/p′ = 1.

23



2. Interpolation Theory

Theorem 2.1.6. Let O ⊆ Rd and D ⊆ ∂O satisfy Assumption 2.1.1 and let
p ∈ (1,∞). Up to equivalent norms it follows that

[W−1,p
D (O),W1,p

D (O)]1/2 = Lp(O).(e)

In Section 2.6 we present a method tailored for real interpolation of frac-
tional Sobolev spaces with the same integrability. Though the geometric
setting of Theorem 2.1.7 is only strictly weaker in the case of bounded D,
it proves to be less restrictive in certain applications and we rely on it in
Chapter 5.

Theorem 2.1.7. Let O ⊆ Rd be an open, d-regular set with porous boundary,
and let D ⊆ O be Ahlfors–David regular. Let p ∈ (1,∞), s0 ∈ [0, 1/p),
s1 ∈ (1/p, 1], and θ ∈ (0, 1). Up to equivalent norms it follows that

(Ws0,p(O),Ws1,p
D (O))θ,p =

Ws,p
D (O) (if s > 1/p)

Ws,p(O) (if s < 1/p)
,(f)

where s := (1− θ)s0 + θs1.

Our proof simplifies [38, Sec. 7], where the case p = 2 was treated on
bounded domains with a Lipschitz assumption around ∂O \D.
The results of this chapter were published in a joint paper with Moritz

Egert [20].

2.2. Function spaces with a partially vanishing
trace condition

Let us start with precise definitions for the spaces used in the formulation
of our main results. We start with spaces on Rd incorporating a vanishing
trace condition before turning to spaces defined on O. Important presented
tools include the trace theory of Jonsson–Wallin, the extension operator of
Rychkov, and the pointwise multiplier result of Sickel.

2.2.1. Function spaces on the whole space with vanishing
trace condition

With the notion of (d− 1)-regular sets E ⊆ Rd we define spaces of functions
with positive smoothness on Rd which vanish on E. All this is based on
celebrated results of Jonsson–Wallin [66].
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We need the notion of fractional Sobolev spaces on E. They are denoted
Bp,p
s (E) in [66] but to keep the analogy with Section 1.2 we shall write Ws,p(E)

instead. Having equipped E with the (d− 1)-dimensional Hausdorff measure,
we define for s ∈ (0, 1) and p ∈ (1,∞) this space as the Banach space of those
f ∈ Lp(E) for which

‖f‖Ws,p(E) :=
(∫

E
|f(x)|p Hd−1(dx)

)1/p

+
(∫∫

x,y∈E
|x−y|<1

|f(x)− f(y)|p
|x− y|d−1+sp H

d−1(dx) Hd−1(dy)
)1/p

<∞.

If E is closed and X = H, the following is proved in [66, Thm. VI.1 & VII.1].
The general case follows from the discussion in Remark 1.3.11 and real inter-
polation.

Proposition 2.2.1 (Jonsson–Wallin). Suppose E ⊆ Rd is (d−1)-regular. Let
p ∈ (1,∞), s ∈ (1/p, 1 + 1/p), and let X denote either H or W.

(i) If f ∈ Xs,p(Rd), then for Hd−1-almost every x ∈ E the limit

(REf)(x) := lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y) dy

exists. The restriction operator RE maps Xs,p(Rd) boundedly into the
trace space Ws−1/p,p(E).

(ii) Conversely, there exists an extension operator EE which is bounded from
Ws−1/p,p(E) into Xs,p(Rd) and that serves as a right inverse for RE. It
does not depend on p or s.

We often refer to RE and EE as the Jonsson–Wallin operators for E.

Definition 2.2.2. Let E ⊆ Rd be (d − 1)-regular. Given p ∈ (1,∞) and
s ∈ (1/p, 1 + 1/p), define

Xs,p
E (Rd) := {f ∈ Xs,p(Rd) : REf = 0},

where X denotes either H or W, and equip it with the norm inherited from
Xs,p(Rd).

Lemma 2.2.3. Let E ⊆ Rd be (d− 1)-regular and let R and E be the corre-
sponding Jonsson–Wallin operators. Then P := 1−ER is a bounded projection
from Xs,p(Rd) onto Xs,p

E (Rd) for any p ∈ (1,∞) and s ∈ (1/p, 1 + 1/p). That
is to say, Xs,p

E (Rd) is a closed complemented subspace of Xs,p(Rd).
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2. Interpolation Theory

Proof. The operator ER is bounded on Xs,p(Rd) by Proposition 2.2.1. Since
E is a right inverse for R, we have (ER)2 = ER, that is to say, ER is a
projection with the same nullspace as R. Now, on the one hand, the nullspace
of R is Xs,p

E (Rd) and on the other hand, the nullspace of ER equals the range
of P . The conclusion follows.

Next, we turn our focus to the density of test functions in these spaces.
Using Netrusov’s theorem, far more general results can be derived, compare
with Proposition 5.3.3, but the presented density result suffices for our needs
and illustrates a neat application of the closure of first-order Sobolev spaces
under truncation.

Definition 2.2.4. Given E ⊆ Rd, define

C∞E (Rd) :=
{
f ∈ C∞0 (Rd) : d(supp(f), E) > 0

}
.

Lemma 2.2.5. Let E ⊆ Rd be (d−1)-regular. For p ∈ (1,∞) and s ∈ (1/p, 1]
the set C∞E (Rd) is dense in Xs,p

E (Rd).

Proof. We shall reduce the claim to the fact that any continuous function
f ∈ W1,p(Rd) that vanishes everywhere on a closed set F ⊆ Rd can be ap-
proximated by C∞F (Rd)-functions in W1,p(Rd)-norm. This is easily proved by
using that W1,p(Rd) is closed under truncation, see [2, Sec. 9.2].
Let P : Xs,p(Rd) → Xs,p

E (Rd) be the bounded projection provided by
Lemma 2.2.3. Since C∞0 (Rd) is dense in Xs,p(Rd), it suffices to approximate
elements in P(C∞0 (Rd)) by test functions from C∞E (Rd). Moreover, it suffices
to achieve this for the W1,p(Rd)-norm, which is stronger than the Xs,p(Rd)-
norm for we have s ≤ 1. Since the projection P in Lemma 2.2.3 is the same
for all admissible values of s and p, we have in particular

P(C∞0 (Rd)) ⊆ P((W1,d+1 ∩W1,p)(Rd)) ⊆ (W1,d+1 ∩W1,p
E )(Rd).

Sobolev embeddings yield for every function in the right-hand space a con-
tinuous representative f that vanishes Hd−1-almost everywhere on E. By
(d − 1)-regularity the intersection of E with arbitrarily small balls centered
in E still has positive Hd−1-measure. Thus every point on F := E is an accu-
mulation point of zeros of f . It follows that f vanishes everywhere on F and
the above-mentioned approximation result kicks in.
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2.2. Function spaces with a partially vanishing trace condition

2.2.2. Function spaces on open sets with and without
partially vanishing trace

Throughout, X denotes either H or W. Since for s ≥ 0 we have Xs,p(Rd) ⊆
Lp(Rd), the pointwise restriction |O of functions to O is defined on Xs,p(Rd).

Definition 2.2.6. Let O ⊆ Rd be an open set and let s ≥ 0, p ∈ (1,∞).
Define Xs,p(O) := {f |O : f ∈ Xs,p(Rd)} with quotient norm

‖f‖Xs,p(O) := inf
{
‖F‖Xs,p : F ∈ Xs,p(Rd) and F |O = f

}
.

If in addition E ⊆ O is (d−1)-regular, define Xs,p
E (O) := {f |O : f ∈ Xs,p

E (Rd)}
for s ∈ (1/p, 1 + 1/p) with quotient norm

‖f‖Xs,pE (O) := inf
{
‖F‖Xs,p : F ∈ Xs,p

E (Rd) and F |O = f
}
.

Introduce a set of test functions on O similar to Definition 2.2.4.

Definition 2.2.7. Given E ⊆ Rd and if O ⊆ Rd is any open set, define

C∞E (O) :=
{
f |O : f ∈ C∞E (Rd)

}
.

By construction |O : Xs,p
E (Rd) → Xs,p

E (O) is bounded and onto. Thus,
density of C∞E (O) in Xs,p

E (O) follows readily from Lemma 2.2.5.

Lemma 2.2.8. Let O ⊆ Rd be open and E ⊆ O be (d − 1)-regular. For
p ∈ (1,∞) and s ∈ (1/p, 1] the set C∞E (O) is dense in Xs,p

E (O).

To let Xs,p(O) inherit non-trivial properties of its whole space analogue,
a bounded linear right inverse is needed. If O is d-regular, this has been
constructed in a beautiful paper of Rychkov [85, Thm. 5.1]. Note that a
similar result was also achieved by Shvartsman [87].

Proposition 2.2.9 (Rychkov). Let O ⊆ Rd be an open set satisfying the
interior thickness condition. Let X denote either H or W. For any s > 0
and p ∈ (1,∞) there exists a bounded linear extension operator E : Xs,p(O)→
Xs,p(Rd) that serves as a right inverse for |O. Moreover, if m ≥ 1 is an
integer, then E can be taken the same for all p ∈ (1,∞) and all s ∈ (0,m).

Remark 2.2.10. Though not stated explicitly in [85], the consistency of the
extension operator becomes apparent from an inspection of the proof. We give
a guide on how to see this in that paper. In Step 1, Theorem 3.1 imports no
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2. Interpolation Theory

restrictions and since s > 0, the embedding Aspq ⊆ B0
p1 gives well-definedness

of L according to Remark 4.5, so the restriction s > m stated in [85, p.156
l.7] becomes void. In Step 2, Lemma 4.6 is used with L̃ instead of L (compare
with Step 4), so m can be set to 0 in (5.17) and so the restriction s > m

in (5.18) also becomes void. Finally, in Step 3 the L1
loc argument can be

performed with m = 0 as mentioned at the end of Step 4.

By an argument similar to that in Lemma 2.2.5, we prove the surprising
feature that Rychkov’s extension operator automatically preserves Dirichlet
conditions on (d − 1)-regular sets. Once again, this comes as a byproduct
of consistency of the extension operator and Sobolev embeddings and has
nothing to do with the particular construction.

Lemma 2.2.11. Let O ⊆ Rd be an open, d-regular set, and let E ⊆ O be
(d− 1)-regular. Suppose p ∈ (1,∞) and s ∈ (1/p, 1 + 1/p). If E : Xs,p(O)→
Xs,p(Rd) is the extension operator of Proposition 2.2.9 constructed with m ≥ 2,
then

E : Xs,p
E (O)→ Xs,p

E (Rd)

is bounded for the Xs,p(O)→ Xs,p(Rd)-norm. In particular, Xs,p
E (O) is a closed

subspace of Xs,p(O).

Proof. By definition of the quotient norm we obtain Xs,p
E (O) ⊆ Xs,p(O) with

continuous inclusion of Banach spaces from the fact that Xs,p
E (Rd) is a closed

subspace of Xs,p(Rd).
We begin with the case s ≤ 1. Since E : Xs,p(O)→ Xs,p(Rd) is bounded, it

suffices to check that E maps a dense subset of Xs,p
E (O) into Xs,p

E (Rd). Owing
to Lemma 2.2.8 we can take this subset to be C∞E (O) = C∞E (Rd)|O. So, let f ∈
C∞E (Rd). Since E acts consistently, we obtain E(f |O) ∈ (W1,d+1 ∩ Xs,p)(Rd).
Due to Sobolev embeddings E(f |O) admits a continuous representative and we
need to check that it vanishes everywhere on E. To this end, we let B ⊆ Rd be
an arbitrary open ball centered in E ⊆ O with radius r(B) < d(supp(f), E).
Since O is d-regular, B ∩O has positive Lebesgue measure but on this set we
have E(f |O) = f = 0 almost everywhere. The conclusion follows.
If s ∈ (1, 1+1/p) and f ∈ Xs,p

E (O), then we can use Proposition 2.2.9 to get
Ef ∈ Xs,p(Rd) and from the inclusion Xs,p

E (O) ⊆ X1,p
E (O) and the first part

of the proof we get Ef ∈ X1,p
E (Rd). According to Definition 2.2.2 this implies

Ef ∈ Xs,p
E (Rd).

For the final statement, given f ∈ Xs,p
E (O) we have already seen ‖f‖Xs,pE (O) ≥

‖f‖Xs,p(O) and we have just proved ‖f‖Xs,pE (O) ≤ ‖Ef‖Xs,pE (Rd) . ‖f‖Xs,p(O).
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2.3. First interpolation properties

Let us stress that Rychkov’s operator is not defined on Lp(O). But in the
low-regularity regime s < 1/p we can simply extend Xs,p(O) → Xs,p(Rd) by
zero as we shall see soon. The following definition goes back to Sickel [88] and
Jawerth–Frazier [64].

Definition 2.2.12. Let t ∈ (0, 1). An open set O ⊆ Rd belongs to the class
Dt if

sup
x∈∂O

sup
0<r≤1

rt−d
∫

B(x,r)\∂O
d(y, ∂O)−t dy <∞.

The relevant examples for us are as follows. For a proof we refer to Propo-
sition A.1.10 in the appendix.

Example 2.2.13. An open set with (d − 1)-regular boundary is of class Dt
for any t ∈ (0, 1). An open set with porous boundary is of class Dt for some
t ∈ (0, 1).

We cite the following multiplier theorem for characteristic functions [88,
Thm. 4.4].

Proposition 2.2.14 (Sickel). Let O ⊆ Rd be of class Dt for some t ∈ (0, 1).
Let p ∈ (1,∞) and 0 ≤ s < t/p. If X denotes either H or W, then pointwise
multiplication by 1O is a bounded operator on Xs,p(Rd). For t(1/p−1) < s < 0
the dual operator 1Oϕ := ϕ ◦ 1O is also bounded on Xs,p(Rd).

Corollary 2.2.15. Let O ⊆ Rd be an open set with porous boundary. Let X
denote either H or W. Then there exists t ∈ (0, 1) such that the zero extension
operator

E0 : Xs,p(O)→ Xs,p(Rd), E0f(x) :=
f(x) (if x ∈ O)

0 (if x ∈ cO)

is bounded provided p ∈ (1,∞) and s ∈ [0, t/p).

2.3. First interpolation properties
We establish first interpolation properties which follow mostly from a purely
functorial reasoning. Also, we present the technique of gluing interpolation
scales together, which is often used in the course of this chapter.
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2. Interpolation Theory

2.3.1. Symmetric interpolation results
We establish symmetric interpolation results for the spaces Xs,p(O) and Xs,p

E (O).
Symmetric means that either both or none of the spaces are with vanishing
trace on E. In particular, we prove Theorem 2.1.5.
First, we obtain a result similar to Proposition 1.2.9 for spaces on d-regular

sets. The argument is well-known, but we repeat it in detail since it will be
re-used several times.

Proposition 2.3.1. Let O ⊆ Rd be open and d-regular. Let p0, p1 ∈ (1,∞),
s0, s1 ∈ (0,∞), and θ ∈ (0, 1). Let X denote either H or W. Up to equivalent
norms it follows that

[Xs0,p0(O),Xs1,p1(O)]θ = Xs,p(O),(i)

(Xs0,p0(O),Xs1,p1(O))θ,p = Ws,p(O),(ii)

with the two exceptions that in (i) for X = W either all or none of s0, s1, s

have to be integers and in (ii) integer s is only permitted when s0 = s1(= s).

Proof. We apply Proposition 1.1.1 with Xj := Xsj ,pj(Rd), Yj := Xsj ,pj(O),
R := |O the pointwise restriction, and E Rychkov’s extension operator from
Proposition 2.2.9 constructed with an integer m > max{s0, s1}.
Let us prove (i). According to Proposition 1.2.9 we have X := [X0, X1]θ =

Xs,p(Rd). By definition we have R(X) = Xs,p(O), where R(X) carries the
quotient norm inherited from X/N(R). Hence, [Y0, Y1]θ =: Y = Xs,p(O)
with equivalent norms. The proof of (ii) follows verbatim from the identity
(X0, X1)θ,p = Ws,p(Rd) also provided by Proposition 1.2.9.

Remark 2.3.2. Suppose that in addition O has a porous boundary. In the
proof above we could then replace Rychkov’s extension operator E with the
zero extension operator E0 discussed in Corollary 2.2.15. Consequently, Propo-
sition 2.3.1 remains valid for parameters sj ∈ [0, t/pj), which includes the case
of Lebesgue spaces.

The same technique yields the

Proof of Theorem 2.1.5. First, we assume O = Rd. Proposition 1.2.9 provides
the identities analogous to (c) and (d) for the spaces without Dirichlet condi-
tions. Hence, the claim follows from Corollary 1.1.3 applied to the projection
P provided by Lemma 2.2.3.
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2.3. First interpolation properties

Having established the interpolation identities on Rd, we can now, as in
the proof of Proposition 2.3.1, pass to the spaces on O via Proposition 1.1.1.
Indeed, if we take Xj := Xsj ,pj

E (Rd), Yj := Xsj ,pj
E (O) = (Xj)|O, R := |O, and

E as Rychkov’s extension operator, then the only property that needs to be
checked is that E maps Yj boundedly into Xj. But the latter is precisely the
statement of Lemma 2.2.11.

2.3.2. Gluing interpolation scales
We recall a general interpolation technique due to Wolff [96]. Here, we cite
(with adapted notation) the refined version proved in [63, Thm. 1&2]. The
statement is visualized in Figure 2 for complex interpolation.

Proposition 2.3.3 (Wolff). Let X0, Xθ, Xη, X1 be Banach spaces included in
a common linear Hausdorff space. Suppose θ, η, λ, µ ∈ (0, 1) satisfy θ = λη

and η = (1− µ)θ + µ, and let pθ, pη ∈ [1,∞].

(i) If Xθ = [X0, Xη]λ and Xη = [Xθ, X1]µ, then also Xθ = [X0, X1]θ and
Xη = [X0, X1]η.

(ii) If Xθ = (X0, Xη)λ,pθ and Xη = (Xθ, X1)µ,pη , then also Xθ = (X0, X1)θ,pθ
and Xη = (X0, X1)η,pη .

All equalities above are in the sense of equal sets with equivalent norms.

X0 Xθ Xη X1

[X0, Xη]λ

[Xθ, X1]µ

Figure 2.: Assuming the interpolation identities indicated by dashed lines,
Wolff’s result recovers Xθ and Xη as interpolation spaces associ-
ated with the couple (X0, X1) for the correct convex combination
parameters θ and η, respectively.

For further reference we demonstrate once in detail how the results of Propo-
sition 2.3.1 and Remark 2.3.2 can be patched together using Wolff’s result.

Proposition 2.3.4. If in the setting of Proposition 2.3.1 the boundary ∂O is
porous, then the conclusion remains valid for s0, s1 ∈ [0,∞).
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2. Interpolation Theory

Proof. In view of Proposition 2.3.1, Remark 2.3.2, and symmetry of the
assumption, we only have to treat the case s0 = 0 and s1 > 0. For any
η ∈ (0, 1) we abbreviate the relevant convex combinations by sη := ηs1 and
1/pη := (1− η)/p0 + η/p1.
We begin with (i). Since s0 is an integer, we are only claiming something

new in the case X = H. We have to prove for all η ∈ (0, 1) the equality

[Hs0,p0(O),Hs1,p1(O)]η = Hsη ,pη(O).(2.3)

Throughout, the reader should keep in mind Figure 2. Let us first suppose
sη < t/pη so that Hsη ,pη(Rd) belongs to the regime covered by Remark 2.3.2.
We pick θ ∈ (0, η) and λ, µ ∈ (0, 1) such that θ = λη and η = (1 − µ)θ + µ.
The quadruple of spaces (Xi)i := (Hsi,pi(O))i satisfies the assumption in part
(i) of Wolff’s result owing to Remark 2.3.2 and Proposition 2.3.1. Hence, we
obtain (2.3). Now, suppose sη ≥ t/pη. Due to s0 = 0 we can pick θ ∈ (0, η)
to arrange sθ < 1/pθ. The first part of the proof with sη in place of s1 and
η replaced by λ yields [X0, Xη]λ = Xθ. Consequently, we can apply Wolff’s
result with the same numerology as before to obtain (2.3).
As for (ii), the claim for W-spaces follows verbatim on using part (ii) of

Wolff’s result with pθ, pη corresponding to θ, η as above and systematically
replacing H by W.
Real interpolation of H-spaces requires a different argument since the result

will be a W-space. We rely on the one-sided reiteration theorem in Propo-
sition 2.3.5 below. Indeed, given θ ∈ (0, 1) we pick η ∈ (0, θ) and write
θ = (1 − λ)η + λ with λ ∈ (0, 1). Then we use in succession one-sided
reiteration, complex interpolation of H-spaces established above, and Propo-
sition 2.3.1, to give(

Hs0,p0(O),Hs1,p1(O)
)
θ,pθ

=
(
[Hs0,p0(O),Hs1,p1(O)]η,Hs1,p1(O)

)
λ,pθ

=
(
Hsη ,pη(O),Hs1,p1(O)

)
λ,pθ

= Wsθ,pθ(O).

Concerning the last line we remark that (1−λ)sη +λs1 = sθ and (1−λ)/pη +
λ/p1 = 1/pθ hold by construction.

The reiteration result that we have invoked above is as follows. We refer
to [93, Sec. 1.10.3, Thm. 2] for real interpolation and to [30] for complex
interpolation, noting that in the latter case the density of X0 ∩ X1 in X1
guarantees [X0, X1]1 = X1. In our application above, density is provided by
Lemma 2.2.8.
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Proposition 2.3.5. Let (X0, X1) be an interpolation couple. Let η, λ ∈ (0, 1)
and put θ = (1− λ)η + λ. The interpolation identity

〈[X0, X1]η, X1〉λ = 〈X0, X1〉θ

holds up to equivalent norms in the following cases. If 〈· , ·〉 is a (· , p)-real in-
terpolation bracket with p ∈ [1,∞] fixed or if 〈· , ·〉 is the complex interpolation
bracket and X0 ∩X1 is dense in X1.

2.3.3. Non-symmetric interpolation: The easy inclusion
The main difficulty in Theorem 2.1.4 lies in proving the inclusion “⊇”. Indeed,
here we can already prove

Proposition 2.3.6. Let O ⊆ Rd be an open, d-regular set with porous bound-
ary, and let E ⊆ O be (d − 1)-regular. Let p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0),
s1 ∈ (1/p1, 1], and θ ∈ (0, 1). Define p and s as in (2.2). Then there are
continuous inclusions

[Xs0,p0(O),Xs1,p1
E (O)]θ ⊆

Xs,p
E (O) (if s > 1/p)

Xs,p(O) (if s < 1/p)
(i)

and

(Xs0,p0(O),Xs1,p1
E (O))θ,p ⊆

Ws,p
E (O) (if s > 1/p)

Ws,p(O) (if s < 1/p)
(ii)

with the exception that s0 6= 0 and s1 6= 1 are required in (i) for X = W. If
p0 = p1, then the result remains true for all s1 ∈ (1/p1, 1 + 1/p1) with the
additional exception that only in (i) for X = H the value s = 1 is permitted.

Proof. First, we check that Proposition 2.3.5 applies in its real and its com-
plex version to the couple (Xs0,p0(O),Xs1,p1(O)). If s1 ≤ 1 then Xs0,p0(O) ∩
Xs1,p1
E (O) ⊇ C∞E (O) is dense in Xs1,p1

E (O) by Lemma 2.2.8 and if p0 = p1 then
Xs0,p0(O)∩Xs1,p1

E (O) = Xs1,p1
E (O) for all s1 ∈ (1/p1, 1+1/p1). This being said,

we denote by 〈· , ·〉 either the (· , p)-real or the complex interpolation bracket
and treat all assertions simultaneously.
By definition we have Xs1,p1

E (O) ⊆ Xs1,p1(O) and hence we get

〈Xs0,p0(O),Xs1,p1
E (O)〉θ ⊆ 〈Xs0,p0(O),Xs1,p1(O)〉θ
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with continuous inclusion. The interpolation space on the right has been
determined in Proposition 2.3.4. It coincides (up to equivalent norms) with
Ws,p(O) in case of real interpolation and with Xs,p(O) in case of complex
interpolation. In the case s < 1/p this already is the desired conclusion.
Let now s > 1/p. We fix η ∈ (0, θ) sufficiently close to θ, so to arrange

1/pη := (1 − η)/p0 + η/p1 and sη := (1 − η)s0 + ηs1 satisfying sη > 1/pη.
We write θ = (1 − λ)η + λ with λ ∈ (0, 1). From Proposition 2.3.5 and the
reasoning in the first case we obtain

〈Xs0,p0(O),Xs1,p1
E (O)〉θ = 〈[Xs0,p0(O),Xs1,p1

E (O)]η,Xs1,p1
E (O)〉λ

⊆ 〈Xsη ,pη(O),Xs1,p1
E (O)〉λ

with continuous inclusion. Let E be Rychkov’s extension operator for O. From
Lemma 2.2.11 and the above we can infer by interpolation that

E : 〈Xs0,p0(O),Xs1,p1
E (O)〉θ → 〈Xsη ,pη(Rd),Xs1,p1

E (Rd)〉λ =: Y(2.4)

is bounded. As before, we see that Y is continuously included into Ws,p(Rd)
in case of real interpolation and into Xs,p(Rd) in case of complex interpolation.
Consider the Jonsson–Wallin restriction operator to E, see Proposition 2.2.1.

It maps Xsη ,pη(Rd) boundedly into Wsη−1/pη ,pη(E) since we have sη > 1/pη
and it maps Xs1,p1

E (Rd) into {0} by definition. By interpolation it maps Y
into 〈Wsη−1/pη ,pη(E), {0}〉λ. This interpolation space equals {0} since it con-
tains {0} as a dense subspace. Hence, we have continuous inclusion of Y into
Ws,p

E (Rd) in case of real interpolation and into Xs,p
E (Rd) in case of complex

interpolation. By (2.4) every function in 〈Xs0,p0(O),Xs1,p1
E (O)〉θ has an exten-

sion in Y in virtue of a bounded extension operator. The required continuous
inclusion follows.

2.4. Proof of Theorem 2.1.4
Throughout the whole section let X denote either H or W. We are given
p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0), s1 ∈ (1/p1, 1], and θ ∈ (0, 1). When concerned
with complex interpolation for X = W, we implictly restrict ourselves to
s0 6= 0 and s1 6= 1. Our goal is to establish set inclusions

[Xs0,p0(O),Xs1,p1
D (O)]θ ⊇

Xs,p
D (O) (if s > 1/p)

Xs,p(O) (if s < 1/p)
(2.5)
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2.4. Proof of Theorem 2.1.4

and

(Xs0,p0(O),Xs1,p1
D (O))θ,p ⊇

Ws,p
D (O) (if s > 1/p)

Ws,p(O) (if s < 1/p)
.(2.6)

This will complete the proof of Theorem 2.1.4 since under Assumption 2.1.1
the converse inclusions are continuous due to Proposition 2.3.6 and hence be-
come equalities with equivalent norms thanks to the bounded inverse theorem.

2.4.1. Road map to the proof
We give the outline for complex interpolation. The real case will be treated
in the same way up to replacing the complex interpolation bracket with the
(· , p)-real interpolation bracket and keeping in mind that real interpolation
spaces of X-spaces are always W-spaces.
First, we show in Section 2.4.3 that (2.5) and (2.6) hold in the case D = ∂O

of pure Dirichlet boundary condition. Then the inclusion with general D and
s ∈ (0, 1/p) follows readily:

Xs,p(O) ⊆
[
Xs0,p0(O),Xs1,p1

∂O (O)
]
θ
⊆
[
Xs0,p0(O),Xs1,p1

D (O)
]
θ
.

In the case s ∈ (1/p, 1) we localize in order to reduce the problem to pure
Dirichlet interpolation and interpolation with mixed boundary conditions, but
for a simpler geometry. Precisely, we will have O = Rd

+ the upper half-space
and Ei a transformed version of a portion of D with a security area for good
measure that is still (d− 1)-regular and has porous boundary in ∂Rd

+
∼= Rd−1.

Then we have to show that

Xs,p
Ei

(Rd
+) ⊆

[
Xs0,p0(Rd

+),Xs1,p1
Ei

(Rd
+)
]
θ
.(2.7)

The details of this localization procedure are presented in Section 2.4.4.
The heart of the matter lies in showing (2.7) in Section 2.4.6. To do so, we

decompose f ∈ Xs,p
Ei

(Rd
+) as f = (f −ERf) +ERf , where R is the restriction

to ∂Rd
+ and E is a corresponding extension operator. The term f − ERf is

in [Xs0,p0(Rd
+),Xs1,p1

Ei
(Rd

+)]θ because it satisfies pure Dirichlet boundary con-
ditions on ∂Rd

+. The argument for ERf happens completely at the boundary
and is displayed in Figure 3.
Here, Ws,p

• (cEi) is a subspace of Ws,p(Rd−1) with zero condition on the full
dimensional set Ei ⊆ Rd−1 and q, ε and η are parameters yet to be determined.
We need to establish
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Xs,p
Ei

(Rd
+)

[
Xs0,p0(Rd

+),Xs1,p1
Ei

(Rd
+)
]
θ

[
X1/q−ε,q(Rd

+),Xs1,p1
Ei

(Rd
+)
]
η

Ws−1/p,p
• (cEi)

[
W−ε,q
• (cEi),Ws1−1/p1,p1

• (cEi)
]
η

R

reiteration

(♥)

E

Figure 3.: Schematic presentation of the main argument to prove the inclusion
“⊇” in part (a) of Theorem 2.1.4.

• the construction of an extension operator E from ∂Rd
+ to Rd

+ which is
consistent in s ∈ R \ Z and p ∈ (1,∞) and

• the precise definition of the spaces Ws,p
• (cEi) for a suitable range of s

including verification of the interpolation identity (♥).

The passage through spaces of negative order in (♥) is inevitable and can
be implemented in virtue of Proposition 2.2.14 only because ∂D is porous in
∂O.

2.4.2. Spaces of functions vanishing on a full-dimensional
subset

For this part we work with a d-regular set U ⊆ Rd whose boundary is a
Lebesgue null set and whose interior Ů is of class Dt for some t ∈ (0, 1),
compare with Definition 2.2.12.
We remark that most results stated in Section 2.2.2 for open sets still apply

in this context. Pointwise multiplication by the characteristic functions of U
and Ů coincide on Lp(Rd), for |∂U | = 0. Moreover, Ů is d-regular by the same
argument and the corresponding Rychkov’s extension operators can also be
regarded as extension operators for functions defined on U .
Let R denote the pointwise restriction operator |U and let E denote some

extension operator Xs,p(U) → Xs,p(Rd). We will specify consistency require-
ments later on. For p ∈ (1,∞) and s ∈ (0,∞) we define the bullet space
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2.4. Proof of Theorem 2.1.4

Xs,p
• (cU) := {f ∈ Xs,p(Rd) : Rf = 0}

with subspace topology. This subspace is complemented in virtue of the pro-
jection 1− ER.
The pointwise multiplier 1U is bounded on Xs,p(Rd) for t(1/p−1) < s < t/p

due to Proposition 2.2.14. This allows us to extend the definition of Xs,p
• (cU)

to such s by

Xs,p
• (cU) := {f − 1Uf : f ∈ Xs,p(Rd)},

where the topology is again the subspace topology. Note that for s ∈ (0, t/p)
this gives the same space as above and that now 1−1U becomes the comple-
menting projection.
The following lemma captures the interpolation behavior of these spaces.

Lemma 2.4.1. Let p0, p1 ∈ (1,∞), s0 ∈ (t(1/p0 − 1),∞), s1 ∈ (t(1/p1 −
1),∞), and θ ∈ (0, 1). Up to equivalent norms it follows that

[Xs0,p0
• (cU),Xs1,p1

• (cU)]θ = Xs,p
• (cU),(i)

(Xs0,p0
• (cU),Xs1,p1

• (cU))θ,p = Ws,p
• (cU),(ii)

with the two exceptions that in (i) for X = W either all or none of s0, s1, s have
to be integers and that in (ii) integer s is only permitted when s0 = s1(= s).

Proof. By symmetry we may assume s0 ≤ s1. In virtue of Corollary 1.1.3 we
shall transfer the interpolation identities of Proposition 1.2.9 for the Xs,p(Rd)-
spaces to the Xs,p

• (cU)-spaces. We only have to identify suitable projections
P .
If s0 > 0, then we pick Rychkov’s extension operator E that is consistent

up to a positive integer greater s1 and use P := 1− ER.
Now assume s0 ≤ 0. If s1 < t/p1, then we can directly use P := 1 − 1U .

Otherwise, there are p ∈ (1,∞) and s ∈ (0, t/p) such that (s, 1/p)> lies on
the segment connecting (s0, 1/p0)> and (s1, 1/p1)> in the (s, 1/p)-plane. If
necessary, we can arrange that s is not an integer. We have just obtained in-
terpolation for the spaces on the segment connecting (s0, 1/p0)> and (s, 1/p)>
and in order to conclude, we patch this interpolation scale together with the
one for positive differentiability by the technique illustrated in the proof of
Proposition 2.3.4.
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2. Interpolation Theory

2.4.3. The case of pure Dirichlet conditions
For this part we strengthen our previous requirements on U ⊆ Rd to the effect
that it should be a closed d-regular set with (d− 1)-regular boundary.
It follows that ∂U is a Lebesgue null set and we claim that Ů is of class Dt

for all t ∈ (0, 1). Indeed, by Example 2.2.13 the open set cU has this property
and since we have ∂Ů ⊆ ∂U = ∂ (cU) with set difference of zero Lebesgue
measure, we see by the very definition that if cU is of class Dt, then so is Ů .
We start out with a reformulation of Corollary 2.2.15.

Lemma 2.4.2. If p ∈ (1,∞) and s ∈ [0, 1/p), then Xs,p(cU) = Xs,p
• (cU)|cU

with equivalent norms.

Proof. The inclusion Xs,p
• (cU)|cU ⊆ Xs,p(cU) is clear. For the converse let f ∈

Xs,p(cU) and F an extension of f in Xs,p(Rd). We get 1cU F ∈ Xs,p(Rd) owing
to Corollary 2.2.15. Hence, we have 1cU F ∈ Xs,p

• (cU) and f = (1cU F )|cU ∈
Xs,p
• (cU)|cU follows. For the boundedness, we calculate

‖f‖Xs,p• (cU)|cU ≤ ‖1cU F‖Xs,p(Rd) . ‖F‖Xs,p(Rd)

and take the infimum over all such extensions F .

In order to proceed, we need a generic re-norming lemma and its conse-
quence for the pointwise multiplication by 1cU . To fix ideas for the following,
we include a proof even though the result is known in the literature.

Lemma 2.4.3. If p ∈ (1,∞) and s ∈ R, then

‖f‖Xs,p(Rd) ≈ ‖f‖Xs−1,p(Rd) + ‖∇f‖Xs−1,p(Rd) (f ∈ S ′(Rd)).(2.8)

Proof. In the following all function spaces are on Rd and we omit the de-
pendence. The operator I−1f := F−1(1 + |ξ|2)1/2Ff is invertible from S ′ into
itself. By definition it restricts to an isomorphism I−1 : Hs,p → Hs−1,p. By
interpolation the same holds for I−1 : Ws,p → Ws−1,p, see Proposition 1.2.9.
Hence, we find for all f ∈ S ′,

‖f‖Xs,p ≈ ‖F−1(1 + |ξ|2)1/2Ff‖Xs−1,p .

Comparing with (2.8), we see that it remains to prove

‖f‖Xs−1,p +
d∑
j=1
‖F−1ξjFf‖Xs−1,p ≈ ‖F−1(1 + |ξ|2)1/2Ff‖Xs−1,p .(2.9)
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2.4. Proof of Theorem 2.1.4

To this end we consider Fourier multipliers f 7→ F−1mFf , defined on S ′ via a
smooth and bounded function m : Rd → C, to pass from one side to the other.
If such a multiplier is also bounded on Lp, then it is bounded on Hk,p for all
integers k since it commutes with I−1 and its inverse. Hence, it is bounded
on Xs,p for all s ∈ R by interpolation. This being said, we obtain “.” in
(2.9) by considering the Fourier multipliers associated with (1 + |ξ|2)−1/2 and
ξj(1+|ξ|2)−1/2. Their Lp boundedness follows easily from the Mihlin multiplier
theorem [23, Thm. 6.1.6]. Next, we pick a smooth function χ : R→ [0, 1] that
vanishes on (−1, 1) and is identically 1 outside of [−2, 2] in order to write

(1 + |ξ|2)1/2 =
(

(1 + |ξ|2)1/2

1 +∑d
j=1 χ(ξj)|ξj|

)
+

d∑
j=1

(
(1 + |ξ|2)1/2

1 +∑d
j=1 χ(ξj)|ξj|

)(
χ(ξj)|ξj|

ξj

)
ξj.

Again by Mihlin’s theorem each bracket corresponds to an Lp-bounded Fourier
multiplier. This yields the converse estimate “&”.

Lemma 2.4.4. For p ∈ (1,∞) and s ∈ (1/p, 1+1/p), pointwise multiplication
by 1cU is Xs,p

∂U(Rd)→ Xs,p
• (cU) bounded.

Proof. For f ∈ C∞∂U(Rd) we have that ∇(1cU f) = 1cU ∇f . Hence, we can
combine Lemma 2.4.3 and Proposition 2.2.14 to the effect that

‖1cU f‖Xs,p ≈ ‖1cU f‖Xs−1,p + ‖1cU ∇f‖Xs−1,p

. ‖f‖Xs−1,p + ‖∇f‖Xs−1,p

≈ ‖f‖Xs,p .

(2.10)

For s ∈ (1/p, 1] we can use that C∞∂U(Rd) is dense in Xs,p
∂U(Rd) by Lemma 2.2.5

to conclude that 1cU : Xs,p
∂U(Rd) → Xs,p(Rd) is bounded. That it actually

maps into the closed subspace Xs,p
• (cU) follows by construction. Suppose now

s ∈ (1, 1 + 1/p). The commutation ∇(1cU ·) = 1cU∇(·) extends by density to
all f ∈ X1,p

∂U(Rd). Hence, it holds in particular on Xs,p
∂U(Rd) and the calculation

(2.10) re-applies.

We get the analogue of Lemma 2.4.2 in the case s ∈ (1/p, 1 + 1/p).

Lemma 2.4.5. If p ∈ (1,∞) and s ∈ (1/p, 1 + 1/p), then Xs,p
∂U(cU) =

Xs,p
• (cU)|cU with equivalent norms.

Proof. The inclusion Xs,p
∂U(cU) ⊆ Xs,p

• (cU)|cU works exactly as in the proof of
Lemma 2.4.2 when using Lemma 2.4.4 instead of Corollary 2.2.15.
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Conversely, let f ∈ Xs,p
• (cU). Since f is in particular a member of Xs,p(Rd),

we find a sequence (fn)n ⊆ S(Rd) that approximates f in the topology of
Xs,p(Rd). Let E be Rychkov’s extension operator for U , which, as we recall,
acts consistently on W1,d+1(Rd). We apply the projection P = 1−ER to that
sequence. Since P projects onto Xs,p

• (cU), we get Pfn = 0 almost everywhere
on U on the one hand and Pfn ∈ C(Rd) in virtue of Sobolev embeddings on
the other hand. By d-regularity, the intersection of U with balls centered in
U has positive Lebesgue measure. Hence, the Pfn vanish everywhere on U .
In particular they vanish on ∂U , which means Pfn ∈ Xs,p

∂U(Rd). Now, since
fn → f in Xs,p(Rd), also Pfn → Pf = f in Xs,p(Rd). Since Xs,p

∂U(Rd) is a
closed subspace of Xs,p(Rd), this gives f ∈ Xs,p

∂U(Rd).

Eventually, we can transfer the interpolation settled in Lemma 2.4.1 to
the spaces incorporating pure Dirichlet boundary conditions. Since we can
take U = cO, this gives the full claim of Theorem 2.1.4 for pure Dirichlet
conditions.
Proposition 2.4.6. Let p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0), s1 ∈ (1/p1, 1], and
θ ∈ (0, 1). There are continuous inclusions

[Xs0,p0(cU),Xs1,p1
∂U (cU)]θ ⊇

Xs,p
∂U(cU) (if s > 1/p)

Xs,p(cU) (if s < 1/p)
,(i)

(Xs0,p0(cU),Xs1,p1
∂U (cU))θ,p ⊇

Ws,p
∂U(cU) (if s > 1/p)

Ws,p(cU) (if s < 1/p)
,(ii)

with the exception that s0 6= 0 and s1 6= 1 are required in (i) for X = W. If in
addition cU is d-regular, then both inclusions become equalities with equivalent
norms.

Proof. Let 〈 · , · 〉 denote either the θ-complex or (θ, p)-real interpolation
bracket. Using Lemma 2.4.2 and Lemma 2.4.5, we get

〈Xs0,p0
• (cU),Xs1,p1

• (cU)〉|cU ⊆ 〈Xs0,p0
• (cU)|cU ,Xs1,p1

• (cU)|cU〉
= 〈Xs0,p0(cU),Xs1,p1

∂U (cU)〉.

Lemma 2.4.1 identifies the space on the left-hand side with either Xs,p
• (cU)|cU

or Ws,p
• (cU)|cU , depending on the choice of the interpolation bracket above.

The claim then follows from Lemma 2.4.2 in the case s < 1/p and from
Lemma 2.4.5 in the case s > 1/p.
The final statement on equalities in these inclusions follows from Proposi-

tion 2.3.6.
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2.4.4. Localization
We recall that O satisfies a uniform Lipschitz condition around N := ∂O \D
with bi-Lipschitz constant L as in Assumption 2.1.1 (N). We claim that
we can select countably many points xi ∈ ∂O \D, i ∈ I ⊆ N \ {0}, with
corresponding coordinate charts (Uxi ,Φxi) =: (Ui,Φi), and an open set U0
that does not intersect N , with the following properties. With J := {0} ∪ I,
the covering

O ⊆
⋃
j∈J

Uj(2.11)

admits a smooth partition of unity by functions ηj ∈ C∞(Rd) satisfying

(i) supp(ηj) ⊆ Uj, (ii)
∑
j∈J

ηj = 1 on Rd,

(iii)
∑
j∈J

1Uj ≤ C on Rd, (iv) ‖ηj‖L∞ + ‖∇ηj‖L∞ ≤ C ′,

and there are auxiliary functions χi ∈ C∞(Rd) with ‖χi‖L∞ + ‖∇χi‖L∞ ≤ C ′

such that χi is 1 on Φi(supp ηi) and supported in (−1, 1)d, whereas χ0 is 1 on
supp η0 and supported in U0. Here, C and C ′ are constants that depend only
on L and d.
The construction is as follows. For any x ∈ N we extend Φx to a bi-

Lipschitz map Ux → [−1, 1]d with the same Lipschitz constant not larger than
L. From Φx(x) = 0 we conclude that Φx(Ux∩B(x, 1

2L)) is contained in B(0, 1
2)

and hence does not intersect the boundary of the unit cube. The inclusion
Bx := B(x, 1

2L) ⊆ Ux then follows from the fact that bi-Lipschitz mappings
between closed sets preserve the boundaries. Starting from ⋃

x∈N
1
8Bx ⊇ N , we

use the Vitali covering lemma (Lemma A.1.2) to extract a countable collection
(xi)i∈I ⊆ N such that ⋃i∈I 5

8Bi ⊇ N with the 1
8Bi mutually disjoint. We have

abbreviated as usual Bi := Bxi .
If x ∈ Rd is contained in Ui, then Ui ⊆ B(xi, L

√
d) ⊆ B(x, 2L

√
d) by the

Lipschitz property and size of the unit cube. Due to B(xi, 1
16L) ⊆ Ui and

mutual disjointness there are at most (32L2
√
d)d such i. Bounded overlap

guarantees that U0 := Rd \ ⋃i∈I 5
8Bi is an open set that pays for (2.11) and

we can take C := 1 + (32L2
√
d)d in (iii).

For i ∈ I we pick ϕi ∈ C∞0 (Bi) with range in [0, 1], equal to 1 on 7
8Bi, and

‖∇ϕi‖∞ ≤ cL for a dimensional constant c. We also pick a smooth ϕ0 with
range in [0, 1], support in Rd \ ⋃i∈I 6

8Bi, and equal to 1 on Rd \ ⋃i∈I 7
8Bi. For

any x ∈ Rd the sum ∑
j∈J ϕj(x) contains at most C non-zero terms, one of
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which is equal to 1. Hence, functions ηj with the properties specified in (i),
(ii), (iv) are given by ηj := ϕj/

∑
j∈J ϕj. Observe that ηj is smooth since the

family (Bi)i is locally finite by the usual counting argument. For i ∈ I we can
take the χi all the same since Φi(supp(ηi)) is contained in B(0, 1

2). We pick
χ0 ∈ C∞(U0) equal to 1 on Rd \ ⋃i∈I 6

8Bi to complete the construction.
With this formalism at hand, we define the retraction-coretraction pair

E : f 7−→
(
χ0f, (χi(f ◦ Φ−1

i ))i∈I
)
,(2.12)

R : (gj)j∈J 7−→ η0g0 +
∑
i∈I

ηi(gi ◦ Φi).(2.13)

Indeed, we find REf = f for f ∈ Lp(O). It is implicitly understood that
functions with compact support are extended by zero and domains of defini-
tions are appropriately restricted to make these definitions meaningful. We
introduce natural function spaces for these mappings.

Definition 2.4.7. For p ∈ (1,∞) and s ∈ [0, 1] define the Banach space

Xs,p(O) := Xs,p(O)× `p(I; Xs,p(Rd
+)), ‖g‖Xs,p(O) :=

(∑
j∈J
‖gj‖pXs,p

)1/p
.

Remark 2.4.8. The space Xs,p(O) is constructed by `p-superposition from
Xs,p(O) and Xs,p(Rd

+). Real and complex interpolation behaves in the best
possible (componentwise) way under this operation [93, Sec. 1.18.1]. Precisely,
the spaces Xs,p(O) interpolate according to the same rules as do Xs,p(O) and
Xs,p(Rd

+) according to Proposition 2.3.4.

Lemma 2.4.9. For p ∈ (1,∞) and s ∈ [0, 1] the maps E : Xs,p(O)→ Xs,p(O)
and R : Xs,p(O)→ Xs,p(O) are bounded.

Proof. In view of Remark 2.4.8 we only have to treat the extremal cases
s = 0 and s = 1. For convenience we write Lp(O) and W1,p(O) instead of
Xs,p(O), respectively.
Given f ∈ Lp(O), we use the uniformity and support properties of the

partition of unity along with the uniform bi-Lipschitz property of the Φi when
applying the transformation formula [81, Sec. 2.3.1], to give

‖Ef‖pLp(O) =
∫
O
|χ0f |p dx+

∑
i∈I

∫
Rd+
|χi(f ◦ Φ−1

i )|p dx(2.14)

.
∫
O

∑
j∈J

1Uj |f |p dx.
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2.4. Proof of Theorem 2.1.4

The right-hand side is bounded by C‖f‖pLp due to the finite overlap prop-
erty (iii). Similarly, given g ∈ Lp(O), we can estimate

‖Rg‖pLp(O) ≤
∫
O

(
|η0g0|+

∑
i∈I
|ηi(gi ◦ Φi)|

)p
≈
∫
O

(
|η0g0|p +

∑
i∈I
|ηi(gi ◦ Φi)|p

)
.
∫
O
|g0|p +

∑
i∈I

∫
Rd+
|gi|p = ‖g‖pLp(O),

(2.15)

where in the second step we have used again that for fixed x the sum contains
at most C non-zero terms and hence the `1-norm can be replaced by an
`p-norm at the expense of a constant depending on C. The previous two
estimates yield the claim in case s = 0.
We turn to the case s = 1 and recall that W1,p-spaces are defined by restric-

tion. Let f ∈ W1,p(O) and let F ∈ W1,p(Rd) be any extension. Calculating
∇(EF ) by the product and chain rules [81, Sec. 2.3.1], we can use the same
argument as in (2.14) to get∑

j∈J
‖(EF )j‖pLp(Rd) + ‖∇(EF )j‖pLp(Rd) . ‖F‖

p
Lp(Rd) + ‖∇F‖pLp(Rd).

Since each (EF )j extends (Ef)j, the left-hand side controls ‖Ef‖W1,p(O) from
above and we can pass to the infimum over F to obtain the required bound-
edness of E . Likewise, given G ∈ Xs,p(Rd) × `p(I; Xs,p(Rd)) we can recycle
(2.15) to the effect that

‖RG‖pLp(Rd) + ‖∇RG‖pLp(Rd) .
∑
j∈J
‖Gj‖pLp(Rd) + ‖∇Gj‖pLp(Rd)

and we conclude as before.

To bring the boundary conditions into play, we introduce a modified version
of Xs,p(O). We set

Ei := Φi(D) ∪
(
Rd−1 \ (−1, 1)d−1

)
(i ∈ I)(2.16)

and define

Xs,p
E (O) := Xs,p

∂O(O)××
i∈I

Xs,p
Ei

(Rd
+) (s > 1/p),(2.17)

which we consider as a closed subspace of Xs,p(O) in virtue of Lemma 2.2.11.
Let us make sure that these transformed Dirichlet parts are of the same geo-
metric quality as D.
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2. Interpolation Theory

Lemma 2.4.10. The set Ei defined in (2.16) is (d − 1)-regular in Rd−1 and
has porous boundary.

Proof. Let B ⊆ Rd−1 be a ball of radius r(B) ≤ 1 centered in Ei. There are
two cases. The first one is that 1

2B intersects the complement of (−1, 1)d−1.
Then there is a ball B′ of radius r(B)/4 contained in B\[−1, 1]d−1. The second
one is that 1

2B is properly contained in the domain of Φ−1
i and thus there is a

ball B′′ ⊆ Rd centered in ∂O such that r(B) ≈ r(B′′) and Φ−1
i (B) ⊇ B′′∩∂O.

(i) We show that Ei is (d − 1)-regular. In the first case we have |B ∩
Ei| & (r(B)/4)d−1. In the second case we use that bi-Lipschitz images have
comparable Hausdorff measure [97, Thm. 28.10 a)] and that D is (d − 1)-
regular to conclude

|B ∩ Ei| ≈ Hd−1(Φ−1
i (B ∩ Ei)) ≥ Hd−1(B′′ ∩D) & r(B)d−1.

(ii) We show that ∂Ei is porous. Again, in the first case, already B′ does not
intersect ∂Ei. Otherwise, we use porosity of ∂D in ∂O, taking Remark 1.3.24
into account, to find a ball centered in ∂O and contained in B′′ which avoids
∂D. Transforming this ball back using Φi, we find a ball centered in B with
comparably smaller radius that does not intersect ∂Ei.

The next lemma shows that E and R defined in (2.12) and (2.13) are well-
behaved with respect to the Dirichlet conditions defined in (2.16) and (2.17).

Lemma 2.4.11. For p ∈ (1,∞) and s ∈ (1/p, 1], the operators E : Xs,p
D (O)→

Xs,p
E (O) and R : Xs,p

E (O)→ Xs,p
D (O) are bounded.

Proof. For E , it suffices to consider f ∈ C∞D (O) since the general case follows
by density, see Lemma 2.2.5. Since χ0 is smooth with support away from
∂O \D, we get that χ0f is smooth with compact support away from ∂O.
In particular, we have χ0 f ∈ Xs,p

∂O(O). We conclude from the bi-Lipschitz
property of Φi that

d(Ei, supp(f ◦ Φ−1
i )) = d(Φi(D),Φi(supp f)) ≈ d(D, supp f) > 0.

Hence, χi(f ◦ Φ−1
i ) is a Lipschitz continuous function on Rd

+ whose compact
support has positive distance to Ei. Thus, it is contained in W1,p

Ei
(Rd

+) ⊆
Xs,p
Ei

(Rd
+).

As for R, we take g = (gj)j∈J from C∞∂O(O)××i∈I C∞Ei(R
d
+), which is dense

in Xs,p
E (O) due to Lemmas 2.2.5 and 2.4.10. As before, we only have to show

that the support ofRg has positive distance toD. But supp(η0 g0) ⊆ supp(g0)
has positive distance to D by construction and for supp(ηi(gi ◦ Φi)) we can
argue as above.

44



2.4. Proof of Theorem 2.1.4

Remark 2.4.12. Observe that (R, E) is a retraction-coretraction pair for
the spaces Xs,p

D (O) and Xs,p
E (O) since this was the case without boundary

conditions and R and E preserve the boundary conditions by the foregoing
lemma. In particular, R is onto in the situation with boundary conditions.

We formulate a reduction result based on this localization.

Proposition 2.4.13. The set inclusions (2.5) and (2.6) follow from the set
inclusions

[Xs0,p0(Rd
+),Xs1,p1

Ei
(Rd

+)]θ ⊇
Xs,p

Ei
(Rd

+) (if s > 1/p)
Xs,p(Rd

+) (if s < 1/p)
(2.18)

and

(Xs0,p0(Rd
+),Xs1,p1

Ei
(Rd

+))θ,p ⊇
Ws,p

Ei
(Rd

+) (if s > 1/p)
Ws,p(Rd

+) (if s < 1/p).
(2.19)

Proof. We apply Proposition 1.1.1 with the pair (E ,R) defined in (2.12) and
(2.13). Owing to the mapping properties derived in Lemmas 2.4.9 and 2.4.11,
we get equal sets

[Xs0,p0(O),Xs1,p1
D (O)]θ = R[Xs0,p0(O),Xs1,p1

E (O)]θ.

Remark 2.4.12 yields that the inclusion (2.5) holds provided that we can prove

[Xs0,p0(O),Xs1,p1
E (O)]θ ⊇

X
s,p
E (O) (if s > 1/p)

Xs,p(O) (if s < 1/p).
(2.20)

The `p-superpositions of spaces Xs,p(O) and Xs,p
Ei

(Rd
+) on the left interpolate

componentwise, see Remark 2.4.8. This being said, the above follows from
the assumption (2.18) for the components on Rd

+ and Proposition 2.4.6 for
the component on O.
The real case is the same upon using W-spaces on the right of (2.20) and

appealing to assumption (2.19) instead.

Remark 2.4.14. It stems from the interpolation on the left-hand side of
(2.20) that at least at this stage of the proof we prefer talking about set
inclusions only. Continuity of (2.20) would require continuity of (2.18) (which
we could obtain) – but with uniform bounds in I (which we believe to be
rather painful).
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2. Interpolation Theory

2.4.5. Extension and restriction operators for the half-space
We introduce the extension and restriction operators appearing in Figure 3.
As usual, X denotes either H or W.

The restriction operator R

Let F ⊆ ∂Rd
+ be (d − 1)-regular. We identify ∂Rd

+ with Rd−1 whenever
convenient. Proposition 2.2.1 yields a restriction operator RF : Xs,p(Rd) →
Ws−1/p,p(F ) for p ∈ (1,∞) and s ∈ (1/p, 1 + 1/p). By construction, we have
for u ∈ Xs,p(Rd) ∩ C(Rd),

RFu(x′) = u(x′, 0) (a.e. x′ ∈ F ).(2.21)

In virtue of this formula RF is well-defined on the quotient space Xs,p(Rd
+) ∩

C(Rd
+). The inclusion chain

C∞0 (Rd)|Rd+ ⊆ Xs,p(Rd
+) ∩ C(Rd

+) ⊆ Xs,p(Rd
+) = Xs,p(Rd)|Rd+

and the density of the first space in the last space shows that we can extend
RF to Xs,p(Rd

+) by continuity. We abbreviate R := R∂Rd+
.

The extension operator E

For the extension operator we also need to consider spaces of negative smooth-
ness. They have been defined on the whole space in Section 1.2. We set
Xs,p(Rd

+) := Xs,p(Rd)|Rd+ , where the restriction of distributions |Rd+ : S ′(Rd)→
D′(Rd

+) coincides with the pointwise restriction when s is non-negative.
We construct E via the bounded analytic C0-semigroup (e−Λt)t≥0 generated

by Λ := −(1−∆x′)1/2 in Lp(Rd−1). Here, ∆x′ denotes the Laplacian in Rd−1.
A reader who is not familiar with these notions may consult the textbook
[3], in particular Example 3.7.6 and Theorem 3.8.3. By means of the Fourier
transform F in Rd−1 the operators e−Λt are unambiguously defined on all of
S ′(Rd−1) through

e−Λt : S ′(Rd−1)→ D′(Rd
+), u 7→ F−1

(
e−t
√

1+|ξ′|2Fu(ξ′)
)
.

We write Dp(Λk) for the maximal domain of Λk in Lp(Rd) and equip it with
the graph norm ‖ · ‖Lp + ‖Λk · ‖Lp . By definition of Bessel potential spaces,
we have for k ∈ N up to equivalent norms

Dp(Λk) = Hk,p(Rd−1) = Wk,p(Rd−1).(2.22)
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2.4. Proof of Theorem 2.1.4

Abstract semigroup theory [93, Thm. 1.14.5] provides an equivalent norm on
the real interpolation space Wk−1/p,p = (Lp,Hk,p)1− 1

kp
,p:

‖∂kt e−Λtu‖Lp(R+;Lp(Rd−1)) ≈ ‖u‖Wk−1/p,p(Rd−1) (u ∈Wk−1/p,p(Rd−1)).(2.23)

With this at hand, we fix χ ∈ C∞0 (R+) with χ(0) = 1 and define the operator

Eu(x′, xd) := χ(xd)e−Λxdu(x′) (x′ ∈ Rd−1, xd ≥ 0).(2.24)

Proposition 2.4.15. The operator E defined in (2.24) is Ws,p(Rd−1) →
Xs+1/p,p(Rd

+) bounded for all p ∈ (1,∞) and s ∈ R \ Z.

Proof. Our argument is an adaption of [93, Sec. 2.9.3] and divides into six
steps.
Step 1: E : W1−1/p,p(Rd−1) → W1,p(Rd

+) is bounded. First, we note that
for ϕ ∈ C∞0 (R+) the multiplication operator

ϕ(xd) : Lp(R+; Lp(Rd−1))→ Lp(R+; Lp(Rd−1))(2.25)

is bounded. By boundedness of the semigroup the same is true for

ϕ(xd)e−Λxd : Lp(Rd−1)→ Lp(R+; Lp(Rd−1)).(2.26)

In particular, we get E : Lp(Rd−1) → Lp(Rd
+) if we choose ϕ = χ in (2.26).

Using the product rule and (2.25), we deduce from (2.23) that for k ∈ N we
have

‖∂kdEu‖Lp(Rd+) . ‖u‖Wk−1/p,p(Rd−1).(2.27)

Using (2.22), (2.25), the identity Λe−Λxd = −∂de−Λxd and (2.27), we obtain

‖Eu‖W1,p(Rd+) ≈ ‖Eu‖Lp(R+;W1,p(Rd−1)) + ‖Eu‖W1,p(R+;Lp(Rd−1))

≈ ‖Eu‖Lp(Rd+) + ‖χ(xd)Λe−Λxdu(x′)‖Lp(Rd+) + ‖∂dEu‖Lp(Rd+)

. ‖u‖W1−1/p,p(Rd−1).

Step 2: E : Wk−1/p,p(Rd−1)→Wk,p(Rd
+) is bounded for k ∈ N. We argue by

induction. The case k = 1 was treated in Step 1. Recall from Definition 1.2.3
that we do not have to consider mixed derivatives. Moreover, the derivatives in
xd-direction are under control owing to (2.27). We fix 1 ≤ j ≤ d−1. As e−Λxd

and ∂j both are Fourier multipliers on S ′(Rd−1), they commute. Assume the
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2. Interpolation Theory

claimed boundedness holds for k ∈ N. Then ∂kj E : Wk−1/p,p(Rd−1)→ Lp(Rd
+)

is bounded and we conclude from Lemma 2.4.3 that

‖∂k+1
j Eu‖Lp(Rd+) = ‖∂kj E∂ju‖Lp(Rd+) . ‖∂ju‖Wk−1/p,p(Rd−1) . ‖u‖Wk+1−1/p,p(Rd−1).

Step 3: Lifting property. To bring negative orders of differentiability into
play, we introduce for m ∈ N the lift operator I2m := F−1(1 + |ξ′|2)−mF
defined on S ′(Rd−1). It is invertible and we write I−2m := I−1

2m. For s ∈ R
the operator I2m is an isomorphism Hs,p(Rd−1)→ Hs+2m,p(Rd−1) by definition
of the norms on Bessel potential spaces. Since the Fourier multipliers E and
I−2m commute, we can decompose

E = I−2m ◦ E ◦ I2m,(2.28)

in order to lift the argument of E into a space with positive order of differen-
tiability, where I−2m is the analogous operator in Rd.
Step 4: I−2m in d-dimensional space. Since I−2m = (1 − ∆x′)m is a

differential operator of order 2m acting only in d − 1 coordinates, we have
I−2m : Hs+2m,p(Rd) → Hs,p(Rd) for integer s. Interpolation by means of
Proposition 1.2.9 yields I−2m : Xs+2m,p(Rd) → Xs,p(Rd). The differential op-
erator I−2m is local in the sense that it commutes with the distributional
restriction. Hence, its restriction to the upper half-space is well-defined and
we get

I−2m : Xs+2m,p(Rd
+)→ Xs,p(Rd

+).(2.29)

Step 5: Interpolation of I2m and E . As before, we interpolate I2m :
Hs,p(Rd−1) → Hs+2m,p(Rd−1) from Step 3 to obtain for all s ∈ R bounded-
ness of

I2m : Ws,p(Rd−1)→Ws+2m,p(Rd−1).(2.30)

Similarly, real and complex interpolation of the outcome of Step 2 with the
aid of Proposition 2.3.1 yields

E : Ws,p(Rd−1)→ Xs+1/p,p(Rd
+)(2.31)

if s ≥ 1− 1/p is not an integer.
Step 6: Patching everything together. Let s ∈ R \ Z. If s ≥ 1 − 1/p,

then E : Ws,p(Rd−1) → Xs+1/p,p(Rd
+) follows by (2.31). Otherwise, we choose

m ∈ N such that 2m + s ≥ 1 − 1/p. We use the decomposition (2.28) to
conclude E : Ws,p(Rd−1)→ Xs+1/p,p(Rd

+) from (2.30), (2.31) and (2.29).
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The next lemma justifies calling E an extension operator.

Lemma 2.4.16. Let F ⊆ ∂Rd
+ be (d − 1)-regular and RF the corresponding

restriction operator. Let p ∈ (1,∞) and suppose that s > 0 is not an integer.
If u ∈Ws,p(Rd−1), then RFEu = u holds almost everywhere on F

Proof. By density it suffices to prove the claim for u ∈ C∞0 (Rd−1). Due
to (2.22) we have u ∈ Dp(Λk) for all k ∈ N and p ∈ (1,∞). We pick k

and p such that Dp(Λk) is continuously included into C(Rd−1) in virtue of
Sobolev embeddings. Since we have Λke−tΛu = e−tΛΛku for t ≥ 0, the strong
continuity of the semigroup on Lp(Rd−1) implies Eu ∈ C(R+; C(Rd−1)) =
C(Rd

+) and Eu(x′, 0) = u(x′) for almost every x′ ∈ Rd−1. Proposition 2.4.15
guarantees Eu ∈ Xs+1/p,p(Rd

+) and we conclude from (2.21) that RFEu = u

holds almost everywhere on F .

2.4.6. Conclusion of the proof
Here, we will verify the set inclusions (2.18) and (2.19). Thereby we complete
the proof of Theorem 2.1.4.
We start out with the interpolation in the case s ∈ (0, 1/p), which we treat

slightly more generally for a later use.

Proposition 2.4.17. Let p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0), s1 ∈ (1/p1, 1], and
for θ ∈ (0, 1) define p and s as in (2.2). Suppose s < 1/p. Assume that
U ⊆ Rd is a closed d-regular set with porous boundary. Moreover, assume
that cU is also d-regular and that F ⊆ ∂U is (d− 1)-regular. Then it follows
up to equivalent norms that

[Xs0,p0(cU),Xs1,p1
F (cU)]θ = Xs,p(cU),(i)

(Xs0,p0(cU),Xs1,p1
F (cU))θ,p = Ws,p(cU),(ii)

with the exception that s0 6= 0 and s1 6= 1 are required in (i) for X = W.

Proof. The “⊆”-inclusions follow from Proposition 2.3.6. For the converse
let 〈· , ·〉 denote either the θ-complex or (θ, p)-real interpolation bracket. Using
the inclusion Xs1,p1

∂U (cU) ⊆ Xs1,p1
F (cU), we get

〈Xs0,p0(cU),Xs1,p1
∂U (cU)〉 ⊆ 〈Xs0,p0(cU),Xs1,p1

F (cU)〉.

We identify the space on the left-hand side according to Proposition 2.4.6 to
conclude.
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2. Interpolation Theory

Since this proposition can be applied to U := Rd
− and F := Ei, we get (2.18)

and (2.19) in case s < 1/p.
In a next step we establish the rest of Figure 3. To this end, we shall appeal

to the theory of Section 2.4.2 with U = Ei in Rd−1. This requires Ei to be
(d−1)-regular in Rd−1, its boundary to be a Lebesgue null set, and its interior
to be of some class Dt. The first requirement is met by Lemma 2.4.10, which
also guarantees that ∂Ei is porous. Hence, so is its subset ∂E◦i . In view of
Example 2.2.13 the interior of Ei is of class Dt for some t ∈ (0, 1). Finally,
the boundary of a porous set is a null set by Lemma A.1.1.
Due to Lemma 2.4.1 the spaces Ws,p

• (cEi) interpolate as expected. Next, we
check that the extension operator constructed in the previous section preserves
the zero condition when restricted to Ws,p

• (cEi).

Lemma 2.4.18. Let p ∈ (1,∞) and let s > t(1/p − 1) not be an integer. If
X denotes either H or W, then E : Ws,p

• (cEi)→ Xs+1/p,p
Ei

(Rd
+).

Proof. Let u ∈Ws,p
• (cEi). Due to Proposition 2.4.15 we have Eu ∈ Xs+1/p,p(Rd

+).
By Lemma 2.4.16 and the definition of Ws,p

• (cEi) we know thatREiEu = u = 0
holds. This means Eu ∈ Xs+1/p,p

Ei
(Rd

+).

Let now p0, p1 ∈ (1,∞), s0 ∈ [0, 1/p0), s1 ∈ (1/p1, 1], and θ ∈ (0, 1). Let us
recall

1
p

= 1− θ
p0

+ θ

p1
, s = (1− θ)s0 + θs1

and that we assume s > 1/p. By these restrictions on the parameters there
are q ∈ (1,∞) and ε ∈ (0,min{1/q, t(1−1/q)}) such that the point (1/q,−ε)>
lies on the segment connecting (1/p1, s1−1/p1)> and (1/p0, s0−1/p0)> in the
(1/p, s)-plane. Since we have by construction

 1/p

s− 1/p

 = (1− θ)

 1/p0

s0 − 1/p0

+ θ

 1/p1

s1 − 1/p1

 ,
we can fix η ∈ (0, θ) such that

 1/p

s− 1/p

 = (1− η)

1/q

−ε

+ η

 1/p1

s1 − 1/p1

 .

50



2.4. Proof of Theorem 2.1.4

This yields identity (♥) in Figure 3. Adding both lines of the previous equa-
tion gives

s = (1− η)(1/q − ε) + ηs1.

We deduce (
1− θ − η

1− η

)
s0 + θ − η

1− ηs1 = 1/q − ε.

In the following all function spaces are on Rd
+ and we omit the dependence.

Let 〈· , ·〉 denote either the complex or the (· , p)-real interpolation bracket.
From Proposition 2.4.17 and Proposition 2.3.5 we deduce

〈X1/q−ε,q,Xs1,p1
Ei
〉η = 〈[Xs0,p0 ,Xs1,p1

Ei
] θ−η

1−η
,Xs1,p1

Ei
〉η = 〈Xs0,p0 ,Xs1,p1

Ei
〉θ,

where s0 6= 0 and s1 6= 1 are required in case X = W. This establishes
Figure 3 in case of complex interpolation. It also establishes the analogue
that corresponds to real interpolation of H-spaces. As for real interpolation
of W-spaces, we invoke the following reiteration theorem [23, Thm. 3.5.3].

Proposition 2.4.19. Let (X0, X1) be an interpolation couple. Let p ∈ [1,∞],
θ0, θ1 ∈ [0, 1] with θ0 6= θ1, and λ ∈ (0, 1). With θ := (1−λ)θ0 +λθ1 it follows
that up to equivalent norms

((X0, X1)θ0,p, (X0, X1)θ1,p)λ,p = (X0, X1)θ,p,

subject to the interpretation (X0, X1)j,p := Xj in the endpoint cases j ∈ {0, 1}.

Indeed, in combination with Proposition 2.4.17 we can give

(W1/q−ε,q,Ws1,p1
Ei

)η,p = ((Ws0,p0 ,Ws1,p1
Ei

) θ−η
1−η ,p

,Ws1,p1
Ei

)η,p = (Ws0,p0 ,Ws1,p1
Ei

)θ,p

without requiring s0 6= 0 or s1 6= 1. This completes Figure 3 in the remaining
case.
With this at hand, we complete the proof of Theorem 2.1.4. Let 〈· , ·〉 denote

either the complex or the (· , p)-real interpolation bracket. With Lemma 2.4.16
we derive R(f − ERf) = 0 for f ∈ Xs,p, which means f − ERf ∈ Xs,p

∂Rd+
. We

have

〈Xs0,p0 ,Xs1,p1
∂Rd+
〉θ ⊆ 〈Xs0,p0 ,Xs1,p1

Ei
〉θ,
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where Proposition 2.4.6 identifies the left-hand space as Xs,p

∂Rd+
for complex

interpolation and as Ws,p

∂Rd+
for real interpolation. From the decomposition

f = (f − ERf) + ERf

we conclude f ∈ [Xs0,p0 ,Xs1,p1
Ei

]θ for f ∈ Xs,p
Ei

in case of complex interpolation,
which completes the proof of (2.5), and f ∈ (Xs0,p0 ,Xs1,p1

Ei
)θ,p for f ∈ Ws,p

Ei
,

which shows (2.6).

2.5. A complex (W−1,p
D ,W1,p

D )-interpolation
formula

In this section we prove Theorem 2.1.6. We begin by defining spaces of neg-
ative smoothness with boundary conditions on an open set.

Definition 2.5.1. Let O ⊆ Rd be open and D ⊆ O be (d − 1)-regular. Let
p ∈ (1,∞) and s ∈ [0, 1]. For X either H or W define

X−s,p(O) := (Xs,p′(O))∗

and if s > 1− 1/p define

X−s,pD (O) := (Xs,p′

D (O))∗.

In the case O = Rd, this is consistent with previous definitions.
We are concerned with interpolation spaces between W−1,p

D (O) and W1,p
D (O).

These two spaces form an interpolation couple since we can naturally view
W1,p

D (O) as a subspace of W−1,p
D (O) by extending the Lp(O)− Lp′(O) duality.

We also recall that as a consequence of Lemma 2.2.5 the inclusion W1,p
D (O) ⊆

Lp(O) is dense.
As for interpolation of dual spaces, we have the following principle [23,

Cor. 4.5.2], see also [17, Cor. 2.15] for a proper treatment of the spaces of
conjugate-linear functionals indicated by a superscript asterisk.

Proposition 2.5.2. Let (X0, X1) be an interpolation couple such that X0∩X1
is dense in both X0 and X1 and assume that X0 is reflexive. For θ ∈ (0, 1) it
follows that with equal norms

[X∗1 , X∗0 ]1−θ = ([X0, X1]θ)∗.

52



2.5. A complex (W−1,p
D ,W1,p

D )-interpolation formula

Now, the idea of proof is to patch together the interpolation scale pro-
vided by Theorem 2.1.4 with its dual scale. This requires some overlap of
interpolation scales. The following lemmas use some notions introduced in
Section 2.3.1.

Lemma 2.5.3. Let O ⊆ Rd be an open set with porous boundary. Let
p ∈ (1,∞), s ∈ (1/p − 1, 1/p), and let X denote either H or W. There
is a retraction R : Xs,p(Rd) → Xs,p(O) with corresponding coretraction E :
Xs,p(O)→ Xs,p(Rd). These operators are the same for all p and s.

Proof. If s ∈ [0, 1/p), then due to Corollary 2.2.15 we can take R := |O
and E := E0 the extension by 0. By the usual identification of functions
with distributions, these operators consistently act on Xs,p also when s ∈
(1/p− 1, 0]. Indeed, if f ∈ Xs,p(Rd) then for all ϕ ∈ X−s,p′(O) we set

〈f |O, ϕ〉Xs,p(O),X−s,p′ (O) := 〈f, E0ϕ〉Xs,p(Rd),X−s,p′ (Rd),

where 〈· , ·〉 denotes the respective duality pairing. Well-definedness and
boundedness of |O : Xs,p(Rd) → Xs,p(O) follows again from Corollary 2.2.15.
Conversely, given g ∈ Xs,p(O), we let the zero extension E0g act on ψ ∈
X−s,p′(Rd) via

〈E0g, ψ〉Xs,p(Rd),X−s,p′ (Rd) := 〈g, ψ|O〉Xs,p(O),X−s,p′ (O).

It is bounded since |O : X−s,p′(Rd) → X−s,p′(O) is bounded by definition of
the quotient norm. Finally, (E0g)|O = g follows by concatenating the two
identities above.

Lemma 2.5.4. Let O ⊆ Rd be an open set with (d−1)-regular boundary. Let
p ∈ (1,∞), s0, s1 ∈ (1/p− 1, 1/p), θ ∈ (0, 1), and set s := (1− θ)s0 + θs1. If
X denotes either H or W, then up to equivalent norms

[Xs0,p(O),Xs1,p(O)]θ = Xs,p(O)

with the exception that s = 0 is only allowed if X = H.

Proof. The corresponding identities on O = Rd are due to Proposition 1.2.9.
The conclusion follows from Proposition 1.1.1 applied with the retraction-
coretraction pair from Lemma 2.5.3.

With these tools at hand, we can give the
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2. Interpolation Theory

Proof of Theorem 2.1.6. We appeal to Wolff’s result, Proposition 2.3.3. All
function spaces will be on O and we omit the dependence. We fix some
s ∈ (0,min{1/p, 1− 1/p}) and consider the following diagram.

H−s,p Lp Hs,p W1,p
D

[· , ·]1/2

[· , ·]s

The 1/2-interpolation is due to Lemma 2.5.4 and s-interpolation is due to
Theorem 2.1.4. Proposition 2.3.3 yields Lp = [H−s,p,W1,p

D ]s/(1+s). Therefore
we can consider the diagram

W−1,p
D H−s,p Lp W1,p

D

[· , ·]1−s

[· , ·]s/(1+s)

where the (1 − s)-interpolation follows from Theorem 2.1.4 by means of the
duality principle of Proposition 2.5.2. Another application of Proposition 2.3.3
completes the proof.

2.6. Real interpolation via the trace method
Here, we present the proof of Theorem 2.1.7.

2.6.1. Road map
The main new ingredient is Grisvard’s trace characterization of real interpo-
lation spaces [50, Thm. 5.12] stated in Proposition 2.6.1 below.
For a Banach space X we need the usual Bochner–Lebesgue space Lp(R;X)

of X-valued p-integrable functions on the real line and for s > 0 the respective
(fractional) Sobolev spaces Ws,p(R;X) that are defined as in the scalar case
upon replacing absolute values by norms on X. For s > 1/p such functions
have a continuous representative and in that sense Ws,p(R;X) ⊆ C(R;X)
holds with continuous inclusion [90, Cor. 26]. In particular, the pointwise
evaluation |t=0 : Ws,p(R;X) → X is well-defined and bounded. All this was
already used in [50] and was known at the time by different proofs.
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2.6. Real interpolation via the trace method

Proposition 2.6.1 (Grisvard). Let X0, X1 be Banach spaces such that X1 ⊆
X0 with dense and continuous inclusion. Let p ∈ (1,∞) and s > 1/p. Then(

Lp(R;X1) ∩Ws,p(R;X0)
)
|t=0 ⊆

(
X0, X1

)
1− 1

sp
,p
.

The strategy to obtain Theorem 2.1.7 is schematically displayed in Figure 4.
Owing to Proposition 2.3.6 and the bounded inverse theorem, we only need
to prove the set inclusion “⊇” in (f). As usual, it suffices to only consider the
case s0 = 0 and s1 = 1.

Ws+1/p,p
R×D (Rd+1) Ws+1/p(R; Lp(Rd)) ∩ Lp(R; Ws+1/p

D (Rd))

Ws,p(O ⊥ D) Ws+1/p(R; Lp(O)) ∩ Lp(R; Ws+1/p
D (O))

Ws,p(O) ∩ Lp(O, d−spD )
(
Lp(O),Ws+1/p,p

D (O)
)
ϑ,p

Ws,p
D (O)

(
Lp(O),W1,p

D (O)
)
s,p

Fubini

|x∈OEO⊥D

|t=0E0

reiterationHardy

Figure 4.: Schematic presentation of the argument for obtaining the inclusion
“⊇” in Theorem 2.1.7 for s > 1/p. For s < 1/p the diagram would
start with Ws,p(O) instead.

The key observation is that functions in the second space of Figure 4 can
be extended by zero to the set

O ⊥ D :=
(
O × {0}

)
∪
(
D × R

)
,

without losing Sobolev regularity. We shall see that O ⊥ D is, as expected, a
d-regular subset of Rd+1. By means of the Jonsson–Wallin operator EO⊥D we
can then extend to all of Rd+1 and via a Fubini property we end up in a space
suitable for Grisvard’s result. Taking the trace yields the desired inclusion, up
to applying reiteration techniques from Proposition 2.4.19 in the final step.
Unless otherwise stated, we make the following

Assumption 2.6.2. The set O ⊆ Rd is open and d-regular. The Dirichlet
part D ⊆ O is Ahlfors–David regular.
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2. Interpolation Theory

Only the final step will use the (d − 1)-regularity of the full boundary ∂O
additionally assumed in Theorem 2.1.7.

2.6.2. Hardy’s inequality
In order to obtain the first inclusion in Figure 4, we establish a fractional
Hardy inequality adapted to mixed boundary conditions that might be of
independent interest. In contrast to related inequalities in [38] we completely
avoid the use of capacities.

Definition 2.6.3. A set U ⊆ Rd is plump if there exists κ ∈ (0, 1) with the
property:

∀x ∈ U, r ≤ diam(U) ∃y ∈ B(x, r) : B(y, κr) ⊆ U.

Remark 2.6.4. A comparison with Definition 1.3.23 yields first examples of
plump sets. Namely, if E ⊆ Rd is uniformly porous, then cE is plump. This
example can be modified to the effect that E is bounded and (uniformly)
porous and Q ⊆ Rd is an open cube containing E: Still we have that Q \E is
plump.

We cite a result of Dyda–Vähäkangas [34, Thm. 1]. Upper and lower As-
souad dimension have been introduced in Definition 1.3.13, and for uniformly
`-regular sets they coincide and equal `.

Proposition 2.6.5 (Dyda–Vähäkangas). Let p ∈ (1,∞) and s ∈ (0, 1). Sup-
pose that U ⊆ Rd is a proper, plump, open set in Rd. Assume one of the
following conditions:

(i) dimAS(∂U) < d− sp and U is unbounded.

(ii) dimAS(∂U) > d− sp and either U is bounded or ∂U is unbounded.

Then there exists a constant c such that the inequality∫
U

|f(x)|p
d(x, ∂U)sp dx ≤ c

∫
U

∫
U

|f(x)− f(y)|p
|x− y|sp+d

dx dy

holds for all measurable functions f for which the left-hand side is finite.

Remark 2.6.6. In the proof of the previous proposition, a clever absorption
into the term on the left-hand side is used. This is how the finiteness condition
enters the game.
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2.6. Real interpolation via the trace method

With this at hand, we can state and prove the Hardy inequality alluded to
above.

Proposition 2.6.7. Let p ∈ (1,∞) and s ∈ (0, 1), s 6= 1/p. Under Assump-
tion 2.6.2 there is a constant C > 0 such that the fractional Hardy inequality∫

O

|f(x)|p
d(x,D)sp dx ≤ C‖f‖pWs,p(O)(2.32)

holds for all f ∈Ws,p(O) if s < 1/p and for all f ∈Ws,p
D (O) if s > 1/p.

Proof. In both cases we shall reduce the claim to Proposition 2.6.5 on some
auxiliary set.
Case 1: s < 1/p. Since D is Ahlfors–David regular, so is D by Re-

mark 1.3.11. According to Example 1.3.25, D is uniformly porous. Hence,
U := Rd \ D is plump. Since (d − 1)-regular sets have empty interior, we
conclude ∂U = D, which has upper and lower Assouad dimension d− 1. Part
(i) of Proposition 2.6.5 yields for all measurable f for which the left-hand side
is finite∫

Rd

|f(x)|p
dD(x)sp dx ≤ c

∫
Rd

∫
Rd

|f(x)− f(y)|p
|x− y|sp+d

dx dy ≤ c‖f‖pWs,p(Rd).(2.33)

Example 2.2.13 guarantees that x 7→ dD(x)−sp is locally integrable. Thus,
(2.33) applies to every f ∈ C∞0 (Rd), a dense subspace of Ws,p(Rd), and we
can use Fatou’s lemma to extend (2.33) to all f ∈Ws,p(Rd). Restriction to O
yields (2.32) for f ∈Ws,p(O).
Case 2: s > 1/p and D is unbounded. Part (ii) of Proposition 2.6.5 applies

to U := Rd \D and we can argue as before, except that now we have (2.33) a
priori for f ∈ C∞D (Rd), a dense class of f ∈Ws,p

D (Rd) in view of Lemma 2.2.5.
Hence we get (2.32) for f ∈Ws,p

D (O).
Case 3: s > 1/p and D is bounded. Let Q be an open cube that contains

D. As before we obtain that U := 2Q \ D is plump, where 2Q denotes the
concentric cube with twice the sidelength. Moreover, ∂U = ∂(2Q) ∪ D is
uniformly (d− 1)-regular as a finite union of sets with that property. Hence,
it has lower Assouad dimension d− 1. Part (ii) of Proposition 2.6.5 yields for
all measurable g for which the left-hand side is finite∫

U

|g(x)|p
d(x, ∂U)sp dx ≤ c

∫
U

∫
U

|g(x)− g(y)|p
|x− y|sp+d

dx dy ≤ c‖g‖pWs,p(U).(2.34)

This applies to g ∈ C∞∂U(U) and extends to g ∈Ws,p
∂U(U) as in Case 2.
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2. Interpolation Theory

Let now f ∈Ws,p
D (O). Let us fix η ∈ C∞0 (2Q) equal to 1 on Q and let E be

an extension operator for O as in Proposition 2.2.9. We can bound∫
O

|f(x)|p
dD(x)sp dx ≤

∫
O∩Q

|η(x)Ef(x)|p
dD(x)sp dx+

∫
O\Q

|f(x)|p
dD(x)sp dx

≤
∫
U

|η(x)Ef(x)|p
d(x, ∂U)sp dx+

∫
O\Q

|f(x)|p
dD(x)sp dx =: I1 + I2,

where we have used O ∩ Q ⊆ U and D ⊆ ∂U to obtain I1. Since on
cQ we have d(· , D) ≥ d(D, ∂Q) > 0, we control I2 by ‖f‖pLp(O). Next,
Ef ∈ Ws,p

D (Rd) follows from Lemma 2.2.11. Pointwise multiplication by η

is bounded on Ws,p(Rd) and maps Ws,p
D (Rd) → Ws,p

∂U(Rd) since this is true
for the respective dense subsets provided by Lemma 2.2.5. In conclusion, we
have ηEf ∈ Ws,p

∂U(Rd). Hence, the extension of (2.34) gives control on I1 by
‖ηEf‖pWs,p(Rd). The boundedness of E leads us to a desirable bound for I1.

2.6.3. Details of the proof
We are in the position to give a precise meaning to Figure 4. The first inclusion
was established in Section 2.6.2. We continue with the zero extension part on
the left.
The following lemma is a straightforward consequence of a product formula

for the Hausdorff measure [42, Thm. 2.10.45]. Full details are written out in
[38, Cor. 7.6].

Lemma 2.6.8. If O ⊆ Rd is d-regular and D ⊆ Rd is (d − 1)-regular, then
D × R, O × {0}, and O ⊥ D ⊆ Rd are d-regular.

Since O ⊥ D is a d-regular subset of Rd+1, the fractional Sobolev spaces
Ws,p(O ⊥ D) are defined as in Section 2.2.1 and there is a corresponding
Jonsson–Wallin theory in Rd+1. In the following, we systematically use bold
face to distinguish geometric objects such as points, balls, and Hausdorff
measures in Rd+1 from their counterparts in Rd.

Proposition 2.6.9. Let p ∈ (1,∞) and s ∈ (0, 1). Under Assumption 2.6.2
the zero extension operator

(E0f)(x, t) :=
f(x) (if x ∈ O, t = 0)

0 (if x ∈ D, t ∈ R)

is Ws,p(O) ∩ Lp(O, d−spD )→Ws,p(O ⊥ D) bounded.
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2.6. Real interpolation via the trace method

Proof. Since the outer measure E 7→ Hd(E × {0}) on Rd is a translation
invariant Borel measure that assigns finite measure to the unit cube [97, §27],
the induced measure coincides up to a norming constant cd > 0 with the d-
dimensional Lebesgue measure. Thus, E0f ∈ Lp(O ⊥ D) is a consequence of
f ∈ Lp(O).
We use Tonelli’s theorem to bound the remaining part of the Ws,p(O ⊥ D)-

norm by ∫∫
x,y∈O⊥D
|x−y|<1

|E0f(x)− E0f(y)|p
|x− y|d+sp Hd(dx)Hd(dy)

≤ cd

∫∫
x,y∈O
|x−y|<1

|f(x)− f(y)|p
|x− y|d+sp dx dy

+ 2
∫
O

∫
y∈D×R
|y−(x,0)|<1

|f(x)|p
|y − (x, 0)|d+sp H

d(dy) dx.

(2.35)

The first integral on the right is bounded by ‖f‖pWs,p(O). If the inner domain
of integration in the second integral is non-empty, then there exists an integer
n0 ≥ 0 such that 2−n0−1 < dD(x) ≤ 2−n0 . We then split the integral into
dyadic annuli

Cn :=
(
D × R

)
∩
(
(B((x, 0), 2−n) \B((x, 0), 2−n−1)

)
,

each of which satisfies Hd(Cn) . 2−dn since D × R is d-regular, to give∫
y∈D×R
|y−(x,0)|<1

1
|y − (x, 0)|d+sp H

d(dy)

.
n0∑
n=0

2(n+1)(d+sp)2−dn = 2d+sp

2sp − 1(2sp(n0+1) − 1).

By choice of n0, the right-hand side is controlled by dD(x)−sp. In conclusion,
the second integral on the right of (2.35) is bounded by∫

O

∫
y∈D×R
|y−(x,0)|<1

|f(x)|p
|y − (x, 0)|d+sp H

d(dy) dx .
∫
O

|f(x)|p
dD(x)sp dx.

The Fubini property appearing in Figure 4 is as follows. Throughout, we
canonically identify Lp(Rd+1) with Lp(R; Lp(Rd)) by means of Fubini’s theo-
rem.

Lemma 2.6.10. If p ∈ (1,∞) and s ≥ 0, then up to equivalent norms

Ws,p(Rd+1) = Lp(R; Ws,p(Rd)) ∩Ws,p(R; Lp(Rd)).(2.36)
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2. Interpolation Theory

Proof. For s ≥ 0 an integer, the claim follows directly from Fubini’s theorem.
Let now s = k + σ, where k ≥ 0 is an integer and σ ∈ (0, 1). According to
[93, Sec. 2.5.1] we can equivalently norm Ws,p(Rd) by

‖f‖ := ‖f‖Lp +
d∑
j=1

(∫
R

∫
Rd

∣∣∣∣∣∂kf∂xkj
(x+ hej)−

∂kf

∂xkj
(x)
∣∣∣∣∣
p

dx dh
|h|1+sp

)1/p

,

where (ej)j denotes the standard unit vectors in Rd. This equivalent norm
only takes into account differences of f along the coordinate axes. Therefore
we obtain (2.36) from Fubini’s theorem if we equivalently norm all appearing
spaces as described before.

The next lemma makes Figure 4 precise, except for the final step.

Lemma 2.6.11. Let p ∈ (1,∞) and s ∈ (0, 1). Under Assumption 2.6.2 the
set inclusion

(Lp(O),Ws+1/p,p
D (O))ϑ,p ⊇Ws,p(O) ∩ Lp(O, d−spD ),

holds for ϑ ∈ (0, 1) satisfying ϑ(s+ 1/p) = s.

Proof. We fix a function f in Ws,p(O) ∩ Lp(O, d−spD ).
The inclusion Ws+1/p,p

D (O) ⊆ Lp(O) is continuous and it is dense since
already C∞∂O(O) is dense in Lp(O). In view of Proposition 2.6.1 it suffices to
construct a function

F ∈ Lp(R; Ws+1/p,p
D (O)) ∩Ws+1/p,p(R; Lp(O)) such that F |t=0 = f.(2.37)

For the construction we start by extending f to O ⊥ D by zero. This extension
E0f is in Ws,p(O ⊥ D) due to Proposition 2.6.9. Since O ⊥ D is a d-regular
subset of Rd+1 according to Lemma 2.6.8, we can use Proposition 2.2.1 to
extend E0f to a function G ∈ Ws+1/p,p(Rd+1) in virtue of the corresponding
Jonsson–Wallin operator. In view of Lemma 2.6.10 we have by canonical
identification

G ∈ Lp(R; Ws+1/p,p(Rd)) ∩Ws+1/p,p(R; Lp(Rd)).

A closer inspection reveals the following.

(i) Let R be the Jonsson–Wallin restriction to the d-set D×R in Rd+1. We
have RG = 0 by construction and therefore G ∈Ws+1/p,p

D×R (Rd+1). Owing
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2.6. Real interpolation via the trace method

to Lemma 2.2.5, we approximate G ∈ Ws+1/p,p
D×R (Rd+1) in that space by

test functions Gn ∈ C∞D×R(Rd+1). By slicing

Gn ∈ Lp(R; Ws+1/p,p
D (Rd)) ∩Ws+1/p,p(R; Lp(Rd))

and due to the Fubini property of Lemma 2.6.10 the limit G is contained
in the same space, which is to say,

G ∈ Lp(R; Ws+1/p,p
D (Rd)) ∩Ws+1/p,p(R; Lp(Rd)).

(ii) Let R be the Jonsson–Wallin restriction to the d-set Rd × {0} in Rd+1.
This operator is bounded from Ws+1/p(Rd+1) into Lp(Rd×{0}) by Propo-
sition 2.2.1. On the other hand, we can look at the restriction |t=0
defined on Lp(R; Ws+1/p,p(Rd)) ∩Ws+1/p,p(R; Lp(Rd)) and bounded into
Lp(Rd). Identifying corresponding objects via Fubini’s theorem as be-
fore, it turns out that these two restrictions are the same since they
obviously agree on a dense class of continuous functions. Since RG and
f coincide Hd-almost everywhere on O × {0} by construction, we can
record

G|t=0 = f almost everywhere on O.

The outcome of observations (i) and (ii) shows that F := G|O×R verifies
(2.37).

Together with Proposition 2.3.6 we obtain

Corollary 2.6.12. If in addition to Assumption 2.6.2 the set O has (d− 1)-
regular boundary, then the set inclusion in Lemma 2.6.11 is an equality with
equivalent norms.

Eventually, we can complete the

Proof of Theorem 2.1.7. In the following all function spaces will be on O and
we omit the dependence on O for clarity. In view of the reiteration theorem
above it suffices to treat the case s0 = 0 and s1 = 1 and prove for s ∈ (0, 1)
that up to equivalent norms it follows that

(Lp,W1,p
D )s,p =

Ws,p
D (if s > 1/p)

Ws,p (if s < 1/p)
.(2.38)
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If s + 1/p = 1, then the claim follows from Corollary 2.6.12. The proof for
s+ 1/p 6= 1 divides into four cases.
Case 1: s > 1/p and s + 1/p < 1. We have a diagram suitable for Wolff

interpolation:

Lp Ws,p
D Ws+1/p,p

D W1,p
D .

(· , ·)ϑ,p

(· , ·)µ,p

Indeed, the (ϑ, p)-interpolation is due to Corollary 2.6.12 and the (µ, p)-
interpolation with suitable µ ∈ (0, 1) is due to Theorem 2.1.5. The claim
follows by Proposition 2.3.3.
Case 2: s > 1/p and s + 1/p > 1. We fix any t ∈ (s, 1) and let λ ∈ (0, 1)

satisfy (1−λ)s+λ(s+ 1/p) = t. Applying one after the other Theorem 2.1.5,
Corollary 2.6.12, and Proposition 2.4.19, we obtain

Wt,p
D = (Ws,p

D ,Ws+1/p,p
D )λ,p = ((Lp,Ws+1/p,p

D )ϑ,p,Ws+1/p,p
D )λ,p = (Lp,Ws+1/p,p)θ,p,

with θ = t/(s+ 1/p). Once again by Proposition 2.4.19 and Corollary 2.6.12
we find

(Lp,Wt,p
D )s/t,p = (Lp, (Lp,Ws+1/p,p

D )θ,p)s/t,p = (Lp,Ws+1/p,p
D )ϑ,p = Ws,p

D .

Thus we obtain the desired result (2.38) from Proposition 2.3.3 applied as
follows:

Lp Ws,p
D Wt,p

D W1,p
D .

(· , ·)s/t,p

(· , ·)µ,p

Indeed, we have obtained the (s/t, p)-interpolation above and the (µ, p)-
interpolation for appropriately chosen µ is due to Theorem 2.1.5. Note that
because of the exceptional case for real interpolation of Sobolev spaces we
cannot pick t = 1 right away.
Case 3: s < 1/p and s + 1/p < 1. We can apply one of the previous two

cases with s+1/p in place of s to obtain (Lp,W1,p
D )s+1/p,p = Ws+1/p,p

D . Together
with Corollary 2.6.12 in the first and reiteration in the third step, we are led
to the desired result

Ws,p = (Lp,Ws+1/p,p
D )ϑ,p = (Lp, (Lp,W1,p

D )s+1/p,p)ϑ,p = (Lp,W1,p
D )s,p.
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2.6. Real interpolation via the trace method

Case 4: s < 1/p and s+ 1/p > 1. We pick 1/p < λ < κ < 1. By one of the
first two cases along with Proposition 2.4.19, we find

(Lp,Wκ,p
D )λ/κ,p = (Lp, (Lp,W1,p

D )κ,p)λ/κ,p = (Lp,W1,p
D )λ,p = Wλ,p

D .

Together with Theorem 2.1.5 this establishes for suitable µ the diagram

Lp Wλ,p
D Wκ,p

D Ws+1/p,p
D .

(· , ·)λ/κ,p

(· , ·)µ,p

Proposition 2.3.3 yields Wκ,p
D = (Lp,Ws+1/p,p

D )θ,p with θ = κ/(s + 1/p). We
conclude by using one after the other Corollary 2.6.12, reiteration, one of the
first two cases, and again reiteration:

Ws,p = (Lp,Ws+1/p,p
D )ϑ,p = (Lp, (Lp,Ws+1/p,p

D )θ,p)s/κ,p = (Lp,Wκ,p
D )s/κ,p

= (Lp, (Lp,W1,p
D )κ,p)s/κ,p = (Lp,W1,p

D )s,p.
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CHAPTER 3

Extension operators for Sobolev spaces with boundary
conditions

Sobolev spaces Wk,p
D (O) that contain functions that only vanish on a portion

D of the boundary of some given open set O ⊆ Rd play an eminent role in
the study of the mixed problem for elliptic operators. In the study of these
spaces, an extension operator is a crucial tool.
Early contributions to the history of Sobolev extension operators include

the works of Stein [92, pp. 180–192] and Calderón [27] on Lipschitz domains as
well as the seminal paper of Jones [65] on (ε, δ)-domains. The latter work was
later refined by Chua [29] and Rogers [84]. Though all these constructions
aim at the full Sobolev space W1,p(O), they restrict to bounded extension
operators on the space with vanishing trace on D and the extensions preserve
the trace condition on D if a mild regularity assumption is imposed, see
Lemma 2.2.11 (the lemma is formulated for Rychkov’s extension operator,
but the proof applies verbatim if s = 1).
All these constructions rely on regularity assumptions for the full boundary

of the underlying set O. However, if we consider a (relatively) interior point of
D, then it is possible to extend the function by zero around that point, so that
a relaxation on the boundary regularity is feasible. This effect was exploited
using localization techniques by several authors, see Brewster, Mitrea, Mitrea,
and Mitrea [26] for a very mature incarnation of this idea using local (ε, δ)-
charts, and [56] for a version using Lipschitz manifolds. We will present both
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3. Extension operators for Sobolev spaces with boundary conditions

frameworks in detail in Section 3.2 and show that they are included in our
setup.
One drawback of this method is that the regularity assumption for the

Neumann boundary part ∂O \ D has to hold not merely on this boundary
portion but in a neighbourhood of it, which in particular contains interior
points of D. This forbids all kinds of cusps that are arbitrarily close to the
interface between the Dirichlet and the Neumann boundary parts.
In this work, we will introduce an (ε, δ)-condition that is adapted to the

Dirichlet condition on D. To be more precise, we also connect nearby points
in O by ε-cigars, but these are with respect to the Neumann boundary part
∂O \D and not the full boundary ∂O, which means that ε-cigars may “leave”
the domain across the Dirichlet part D to some extent that is measured by
a quasi-hyperbolic distance condition. This allows to have certain inward and
outward cusps arbitrarily close to the interface between the Dirichlet and
Neumann parts, see Example 3.2.5 for an illustrating example. However,
there are types of cusps that are particularly nasty and which are excluded
from our setting by the aforementioned quasihyperbolic distance condition. In
Example 3.2.7 we show that in these kinds of configurations there cannot exist
a bounded extension operator, which emphasizes that it is indeed necessary
that we have incorporated some further restriction in our setup. A detailed
description of our geometric framework will be given in Assumption 3.1.1.
Next, we give a precise definition of what we mean by the term extension

operator, followed by our main result.

Definition 3.0.1. Call a linear mapping E defined on L1
loc(O) into the mea-

surable functions on Rd an extension operator if it satisfies Ef(x) = f(x) for
almost every x ∈ O and for all f ∈ L1

loc(O).

Theorem 3.0.2. Let O ⊆ Rd be open and let D ⊆ ∂O be closed. Assume that
O and D are subject to Assumption 3.1.1. Moreover, fix an integer k ≥ 0.
Then there exists an extension operator E such that for all 1 ≤ p < ∞ and
0 ≤ ` ≤ k one has that E restricts to a bounded mapping from W`,p

D (O) to
W`,p

D (Rd). The operator norm of E depends on geometry only via the implicit
constants and parameters in Assumption 3.1.1.

In addition, we will present a further improvement for the first-order case
in Theorem 3.8.3. We also show local and homogeneous estimates in Theo-
rem 3.9.2.
This chapter is based in a joint publication with Russell Brown, Robert

Haller-Dintelmann, and Patrick Tolksdorf, see [19].
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3.1. Geometry and Function Spaces

Outline of the chapter

First of all, we introduce our geometric setting in Section 3.1 and provide
examples of admissible geometries. We also give counterexamples for W1,p

D (O)
extension domains.
Right after that, we dive into the construction of the extension operator.

Sections 3.3 and 3.4 are all about cubes. In there, we will define collections
of exterior and interior cubes coming from two different Whitney decomposi-
tions, and will explain how an exterior cube can be reflected “at the Neumann
boundary” to obtain an associated interior cube. In contrast to Jones, not
all small cubes in the Whitney decomposition of O are exterior cubes. The
treatment of Whitney cubes which are “almost” exterior cubes are the central
deviation from Jones’ construction and are thus the heart of the matter in
this construction. These two sections are highly technical.
Eventually, we come to the actual crafting of the extension operator for

Theorem 3.0.2 in Section 3.5. This section also contains results on (adapted)
polynomials which are needed to define the extension operator via “reflec-
tion”. The proof of Theorem 3.0.2 will be completed in Section 3.7. Before
that, we introduce an approximation scheme that yields more regular test
functions for Wk,p

D (O) in Section 3.6. This additional regularity is crucial for
Proposition 3.7.1.
Finally, we present some additional first-order theory in Section 3.8, fol-

lowed by some short observations on locallity and homogeneity in Section 3.9
which build on an observation made in Remark 3.5.12.

3.1. Geometry and Function Spaces

3.1.1. Geometry

Let Ξ ⊆ Rd be open. For two points x, y ∈ Ξ their quasihyperbolic distance,
first introduced by Gehring and Palka [46], is given by

kΞ(x, y) := inf
γ

∫
γ

1
d(z, ∂Ξ) | dz|,

where the infimum is taken over all rectifiable curves γ in Ξ joining x with y.
Notice that its value might be∞. This is the case if there is no path connecting
x with y in Ξ. The function kΞ is called the quasihyperbolic metric. If Ξ′ ⊆ Ξ
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3. Extension operators for Sobolev spaces with boundary conditions

define

kΞ(x,Ξ′) := inf{kΞ(x, y) : y ∈ Ξ′} (x ∈ Ξ).

To construct the Sobolev extension operator in Theorem 3.0.2, we will rely
on the following geometric assumption.

Assumption 3.1.1. Let O ⊆ Rd be open, D ⊆ ∂O be closed, and define
N := ∂O \ D. We assume that there exist ε ∈ (0, 1], δ ∈ (0,∞] and K > 0
such that for all points x, y ∈ O with |x−y| < δ there exists a rectifiable curve
γ that joins x and y and takes values in Ξ := Rd \N and satisfies

length(γ) ≤ ε−1|x− y|,(LC)

d(z,N) ≥ ε
|x− z||y − z|
|x− y|

(z ∈ γ),(CC)

kΞ(z,O) ≤ K (z ∈ γ).(QHD)

Furthermore, assume that there exists λ > 0 such that for each connected
component Om of O holds

∂Om ∩N 6= ∅ =⇒ diam(Om) ≥ λδ.(DC)

Remark 3.1.2. Let (Ξm)m denote the connected components of Ξ. From
d(z, ∂Ξm) = d(z, ∂Ξ) for z ∈ Ξm follows directly that kΞ(x, y) = kΞm(x, y)
holds for all x, y ∈ Ξm. Note that ∂Ξ = N since N ⊆ ∂O contains no interior
points. Moreover, for x ∈ Ξm and y ∈ Ξn with m 6= n one has kΞ(x, y) = ∞
since there is no connecting path between those points. Finally, kRd(x, y) = 0
holds for all x, y ∈ Rd by the convention 1/∞ = 0.

Remark 3.1.3. (i) Consider the pure Dirichlet case D = ∂O. Then the
ε-cigars are allowed to take values in all of Rd. In particular, we may
connect points by a straight line, so that (LC) is clearly satisfied. Condi-
tion (CC) is void and also (QHD) is trivially fulfilled, see Remark 3.1.2.
Moreover, the diameter condition is always fulfilled since there are no
connected components that intersect N = ∅. Consequently, if D = ∂O,
then Assumption 3.1.1 is fulfilled for any open set O.

(ii) Consider the pure Neumann case D = ∅ and fix ε, δ. The curve γ can
only connect points in the same connected component of O. Thus, O
is the union of at most countably many (ε, δ)-domains, whose pairwise
distance is at least δ and whose diameters stay uniformly away from
zero. In particular, if δ =∞, then O is connected and unbounded.
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3.1. Geometry and Function Spaces

(iii) A similar condition on the diameter of connected components was in-
troduced in [26, Sec. 2] in order to transfer Jones’ construction of the
Sobolev extension operator in [65] to disconnected sets. In the situa-
tion of Assumption 3.1.1 the positivity of the radius only ensures that
the connected components of O whose boundaries have a common point
with N do not become arbitrarily small. This is because our construc-
tion is global and not using a localization procedure. We will present a
thorough comparison with the geometry from [26] in Section 3.2.

3.1.2. Function spaces

Write Wk,p(O) for the collection of all Lp(O) functions that have weak deriva-
tives up to the integer order k and which are again in Lp(O). Equip Wk,p(O)
with the usual norm. Recall that by Proposition 1.2.11 the space W1,∞(Rd)
coincides with the space Lip(Rd) of Lipschitz continuous functions. A partic-
ular consequence is that (locally) Lipschitz continuous functions are weakly
differentiable. We will exploit this fact in Section 3.7. Note that on domains
a mild geometric assumption is needed to ensure that W1,∞(O) coincides
with Lip(O), see also Remark 1.2.12. This can be observed by considering
O = B(0, 1) \ [0, 1) as a counterexample.

Definition 3.1.4. Let O ⊆ Rd be open and let D ⊆ O be closed. Define the
space of smooth functions on O which vanish in a neighborhood of D by

C∞D (O) :=
{
f ∈ C∞(O) : d(supp(f), D) > 0

}
.

Using this space of test functions, we define Sobolev functions vanishing
on D. Note that we exclude the endpoint case p = ∞ in that definition.
However, in the case k = 1, we will work with a related space in Section 3.8.

Definition 3.1.5. Let O ⊆ Rd be open and let D ⊆ O be closed. For an
integer k and p ∈ [1,∞) define the Sobolev space Wk,p

D (O) as the closure of
C∞D (O) ∩Wk,p(O) in Wk,p(O).

In Section 3.6 we will see that even the space C∞D (Rd)|O ∩Wk,p(O) is dense
in Wk,p

D (O) as long as we assume the geometry from Assumption 3.1.1; In
fact, we will approximate by compactly supported C∞D (Rd) functions, which
are therefore in particular in Wk,p(O).
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3. Extension operators for Sobolev spaces with boundary conditions

3.2. Comparison with other results and examples
The most general geometric setup to construct a Sobolev extension operator
for the spaces W1,p

D (O) was considered in the work of Brewster, Mitrea, Mitrea,
and Mitrea [26, Thm. 1.3, Def. 3.4] and reads as follows.

Assumption 3.2.1. Let O ⊆ Rd be an open, non-empty, and proper subset
of Rd, D ⊆ ∂O be closed, and let N := ∂O \D. Let ε, δ > 0 be fixed. Assume
there exist an at most countable family {Ui}i of open subsets of Rd satisfying

(i) {Ui}i is locally finite and has bounded overlap,

(ii) there exists r0 > 0 such that for all i there exists an (ε, δ)-domain Oi ⊆
Rd whose connected components are all of diameter at least r0 and O ∩
Ui = Oi ∩ Ui,

(iii) there exists r ∈ (0,∞] such that for all x ∈ N there exists i for which
B(x, r) ⊆ Ui.

Here, an open set Oi is called an (ε, δ)-domain if there exist ε, δ > 0 such
that for all x, y ∈ Oi there exists a rectifiable curve γ that joins x and y, takes
its values in Oi, and satisfies (LC) and (CC) with respect to ∂Oi instead of N .
The standard example of a fractal (ε, δ)-domain is the von Koch snowflake [94,
Fig. 3.5]. The following proposition is a special case of Proposition 5.1.4, which
also takes into account the geometry used in Chapter 5.

Proposition 3.2.2. Assumption 3.2.1 implies Assumption 3.1.1.

A common geometric setup which is used in many works dealing with mixed
Dirichlet/Neumann boundary conditions requires Lipschitz charts around points
on the closure of N and is presented in the following assumption.

Assumption 3.2.3. Let O ⊆ Rd be a bounded open set and D ⊆ ∂O be
closed. Put N := ∂O \D. Assume that around each point x ∈ N there exists
a neighborhood Ux of x and a bi-Lipschitz homeomorphism Φx : Ux → (−1, 1)d
such that Φx(x) = 0, Φx(Ux ∩ O) = (−1, 1)d−1 × (0, 1), and Φx(Ux ∩ ∂O) =
(−1, 1)d−1 × {0}.

Proposition 3.2.4. Assumption 3.2.3 implies Assumption 3.2.1.

Proof. By [35, Lem. 2.2.20], for any x ∈ N the set Ox := Ux ∩O is an (ε, δ)-
domain. Here, ε and δ do only depend on d and the Lipschitz constant. The
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3.2. Comparison with other results and examples

compactness of N implies that there exist finitely many x1, . . . , xm ∈ N such
that N ⊆ ⋃m

j=1 Uxj . Define Ui := Uxi and Oj := Oxj for j = 1, . . . ,m. Due
to the finiteness of the family {Oj}mj=1, the constants ε and δ can be chosen
to be uniform in j. Finally, if r > 0 is the Lebesgue number of the covering
{Uxi}mi=1, then for all x0 ∈ N there exists 1 ≤ i ≤ m such that B(x0, r) ⊆ Ui.
Thus, all requirements in Assumption 3.2.1 are fulfilled.

Next, we give an example of a two-dimensional domain that satisfies As-
sumption 3.1.1 but not Assumption 3.2.1. We further show that, within this
configuration, the geometry described in Assumption 3.1.1 is in some sense
optimal.

Example 3.2.5. Let θ ∈ (0, π) and let S+
θ ⊆ R2 denote the open sector

symmetric around the positive x-axis with opening angle 2θ. Let O ⊆ R2 be
any domain satisfying

O ∩ S+
θ = {(x, y) ∈ S+

θ : y < 0},

and define

D := ∂O ∩
[
R2 \ S+

θ

]
and N := ∂O \D = (0,∞)× {0}.

Essentially, this means that inside the sector S+
θ the domain O looks like the

lower half-space and the half-space boundary that lies inside S+
θ is N . In the

complement of the sector S+
θ , O could be any open set and the boundary of

O in the complement of S+
θ is defined to be D. See Figure 5 for an example

of such a configuration.
To verify that such a domain fulfills the geomteric setup described in As-

sumption 3.1.1, consider first the set

∆θ := (R2 \ S+
θ ) ∪ {(x, y) ∈ R2 : y < 0},

which is an (ε, δ)-domain for some values ε, δ > 0. Since O ⊆ ∆θ and N ⊆
∂∆θ, the (ε, δ)-paths with respect to ∆θ for points in O satisfy (LC) and (CC).
Hence, to conclude the example, we only have to show that there exists K > 0
such that for all z ∈ ∆θ and with Ξ = R2 \N it holds

kΞ(O, z) ≤ K.(3.1)

Since the paths obtained above take their values only in ∆θ this will establish
the remaining condition (QHD). Notice that since

S+
θ ∩ {(x, y) ∈ R2 : y < 0} ⊆ O
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3. Extension operators for Sobolev spaces with boundary conditions

θ

y

x

Sθ

Γ
D

Ω

Figure 5.: A generic picture of a domain described in Example 3.2.5.

it suffices to show that there exists K > 0 such that for all z ∈ ∆θ it holds

kΞ(S+
θ ∩ {(x, y) ∈ R2 : y < 0}, z) ≤ K.

We only describe one particular case in detail, the remaining cases are similar
and left to the reader. Assume that θ < π/2 and pick z = (v, w) ∈ ∆θ

with v ≥ 0 and w > 0. Choose (x, y) ∈ ∂S+
θ such that y := −w and let

γ := γ1 + γ2 + γ3 with

γ1 : [0, 1]→ R2, t 7→ (x, y) + t(y − x, 0),
γ2 : [0, 1]→ R2, t 7→ (y, y) + t(0, w − y),
γ3 : [0, 1]→ R2, t 7→ (y, w) + t(v − y, 0).

This construction is depicted in Figure 6. The path γ then connects (x, y) to
(v, w) and

kΞ((x, y), (v, w)) ≤
∫ 1

0

|y − x|
|y|

dt+
∫ 1

0

|w − y|
|y|

dt+
∫ 1

0

|v − y|
w

dt

= 4 + x+ v

w
.

Notice that x = w/ tan(θ) and that v ≤ w/ tan(θ), so that

kΞ((x, y), (v, w)) ≤ 2
(

2 + 1
tan(θ)

)
.
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θ

y

x

Sθ

Γ

b
(v, w)

b
(x, y)γ1

γ2

γ3

Figure 6.: A path connecting (v, w) and (x, y) that is ’short’ with respect to
the quasihyperbolic distance.

In the remaining cases v < 0 and w ≥ 0, v < 0 and w < 0, or v ≥ 0 and
w < 0 the quasihyperbolic distance to O will even be smaller. This proves
the validity of (3.1) and thus, since O is connected and hence (DC) is void,
that O fulfills Assumption 3.1.1.

Remark 3.2.6. Notice that the geometric setup in Assumption 3.2.1 imposes
boundary regularity in a neighborhood of N , while in the situation described
in Example 3.2.5 the portion D of ∂O can be arbitrarily irregular as long as
it stays outside of S+

θ .

We conclude this section by giving examples of domains where the boundary
portion D fails to remain outside of a sector S+

θ and show that the W1,p
D -

extension property fails for these types of domains. These examples show that
interior cusps that lie directly on the interface separating D and N destroy the
W1,p

D -extension property. The same happens with “interior cusps at infinity”,
that is to say, if D and N approach each other at infinity at a certain rate.

Example 3.2.7 (Interior boundary cusp in zero). Let α ∈ (1,∞) and consider

O := R2 \ {(x, y) ∈ R2 : x ≥ 0 and − xα ≤ y ≤ 0}.

Define D and N via

D := {(x, y) ∈ R2 : x ≥ 0 and − xα = y} and N := (0,∞)× {0}.
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3. Extension operators for Sobolev spaces with boundary conditions

To prove that the W1,p
D -extension property fails, let 1 < p < ∞ and 0 < r <

∞. Let fr be a smooth function, that is supported in
Qr := {(x, y) ∈ R2 : r/2 ≤ x ≤ 2r and 0 ≤ y ≤ r},

satisfies 0 ≤ fr ≤ 1, and is identically 1 on
Rr := {(x, y) ∈ R2 : 3r/4 ≤ x ≤ 3r/2 and 0 ≤ y ≤ r/2}.

Moreover, let fr be such that ‖∇fr‖L∞ . r−1. In this case
‖fr‖pW1,p(O) . (r2 + r2−p).(3.2)

Next, employ the fundamental theorem of calculus and a density argument to
conclude that for all F ∈W1,p(Rd) it holds∫ 3r/2

3r/4
F (x, 0) dx−

∫ 3r/2

3r/4
F (x,−xα) dx =

∫ 3r/2

3r/4

∫ 0

−xα
∂yF (x, y) dy dx.

If there exists a bounded extension operator E : W1,p
D (O) → W1,p

D (R2), put
F := Efr and conclude that the second integral on the left-hand side vanishes
since Efr ∈ W1,p

D (R2). Using further that by construction the trace of Efr
onto the set (3r/4, 3r/2)× {0} is identically 1, one concludes

3r
4 ≤

∫ 3r
2

3r
4

∫ 0

−xα
|∂yEfr(x, y)| dy dx . r(α+1)/p′‖Efr‖W1,p(R2).

Dividing by r and using that E is bounded delivers together with (3.2) the
relation

1 . r(α+1)/p′−1(r2/p + r2/p−1),
which results for r → 0 in the condition

α + 1
p′

+ 2
p
− 2 ≤ 0 ⇐⇒ α ≤ 1.

This is a contradiction since α is assumed to be in (1,∞). Thus, there cannot
be a bounded extension operator E : W1,p

D (O)→W1,p
D (R2).

Example 3.2.8 (Interior boundary cusp at infinity). Let α ∈ (0,∞) and
consider

O := {(x, y) ∈ R2 : either y > 0 or x > 0 and y < −x−α}.
Define D and N via

D := {(x, y) ∈ R2 : x > 0 and − x−α = y} and N := R× {0}.
The proof that in this situation there does not exists a bounded extension
operator E from W1,p

D (O) to W1,p
D (R2) for any p ∈ (1,∞) is similar to Exam-

ple 3.2.7 and we omit the details.
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3.3. Whitney decompositions and the quasihyperbolic distance

3.3. Whitney decompositions and the
quasihyperbolic distance

In this section, we introduce the Whitney decomposition of an open subset of
Rd and show how condition (QHD) relates to properties of Whitney cubes. A
cube Q ⊆ Rd is always closed and is said to be dyadic if there exists k ∈ Z such
that Q coincides with a cube of the mesh determined by the lattice 2−kZd.
Two cubes are said to touch, if a face of one cube lies in a face of the other
cube, and they are said to intersect if their intersection is non-empty. The
sidelength of a cube is denoted by l(Q). For a number α > 0 the dilation of
Q about its center by the factor α is denoted by αQ.
Let F ⊆ Rd be a non-empty closed set. Then, by [92, Thm. VI.1] there

exists a collection of cubes {Qj}j∈N with pairwise disjoint interiors such that

(i) ⋃
j∈NQj = Rd \ F ,

(ii) diam(Qj) ≤ d(Qj, F ) ≤ 4 diam(Qj) for all j ∈ N,

(iii) the cubes {Qj}j∈N are dyadic,

(iv) 1
4 diam(Qj) ≤ diam(Qk) ≤ 4 diam(Qj) if Qj ∩Qk 6= ∅,

(v) each cube has at most 12d intersecting cubes.

The collection {Qj}j∈N is called Whitney cubes and will be referred to as
W(F ). In connection with Whitney cubes, the letters (i)-(v) refer always to
the above properties. We say that a collection of cubes Q1, . . . , Qm ∈ W(F )
is a touching chain if Qj and Qj+1 are touching cubes and that it is an
intersecting chain if Qj ∩ Qj+1 6= ∅ for all j = 1, . . . ,m − 1. The length
of a chain is the number m.
Let us mention that for a cube Q ∈ W(F ) and x ∈ Q we have diam(Q) ≥

1
5 d(x, F ). This follows from

4 diam(Q) ≥ d(Q,F ) ≥ d(x, F )− diam(Q),

and will be used freely in the rest of this chapter.
The following lemma translates (QHD) to the existence of intersecting

chains of uniformly bounded length. Notice that if (Ξm)m∈I denotes the con-
nected components of the set Ξ = Rd \N , Gehring and Osgood [45, Lem. 1]

75



3. Extension operators for Sobolev spaces with boundary conditions

proved that for any two points x, y ∈ Ξm there exists a quasihyperbolic
geodesic γx,y with endpoints x and y satisfying

kΞ(x, y) =
∫
γx,y

1
d(z, ∂Ξ) | dz|.

Trivially, if Ξ = Rd, then any path connecting x and y is a quasihyperbolic
geodesic.

Lemma 3.3.1. Fix k > 0. There exists a constant M = M(d, k) ∈ N such
that for all x, y ∈ Ξ with kΞ(x, y) ≤ k there exists an intersecting chain
Q1, . . . , Qm ∈ W(N) with x ∈ Q1 and y ∈ Qm and m ≤M .
Conversely, if for x, y ∈ Ξ there exists an intersecting chain connecting x

and y of length less than M ∈ N, then kΞ(x, y) ≤M .

Proof. Notice that kΞ(x, y) < ∞ implies that x and y lie in the same con-
nected component of Ξ. Assume first that

|x− y| ≤ 1
10
√
d

min{d(x,N), d(y,N)}.(3.3)

Let Qx, Qy ∈ W(N) with x ∈ Qx and y ∈ Qy, and let Q̃x denote the region
occupied by Qx and all its intersecting Whitney cubes and similarly let Q̃y

denote its counterpart for Qy. Then by (iv)

d(x, cQ̃x) ≥
1

4
√
d

diam(Qx) and d(y, cQ̃y) ≥
1

4
√
d

diam(Qy).

This combined with (3.3) yields

d(x, cQ̃x) ≥
1

4
√
d

diam(Qx) ≥
1
2 |x− y|.

By symmetry, the same is valid for y instead of x. Consequently, Q̃x and Q̃y

have a common point and thus, x and y can be connected by an intersecting
chain of length at most 4.
Now, let

|x− y| > 1
10
√
d

min{d(x,N), d(y,N)}.

Assume without loss of generality that d(x,N) ≤ d(y,N). Fix a quasihy-
perbolic geodesic γx,y that connects x with y (see the discussion before this
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proof). Then Herron and Koskela [59, Prop. 2.2] ensures the existence of
points y0 := x, y1, . . . , y` ∈ Rd \N such that γx,y is contained in the closure of⋃`
i=0Bi, where Bi := B(yi, ri) with ri := d(yi, N)/(10

√
d), and such that

` ≤ 20
√
d kΞ(x, y).(3.4)

Next, we estimate the number of Whitney cubes that cover each of these balls.
Denote the number of Whitney cubes that cover Bi by Wi. Let Q ∈ W(N)
be such that Q ∩Bi 6= ∅. Then,

diam(Q) ≥ 1
4 d(Q,N) ≥ 1

4[d(yi, N)− ri − diam(Q)],

so that by definition of ri

diam(Q) ≥ (10
√
d− 1) d(yi, N)

50
√
d

.

Moreover,

diam(Q) ≤ d(Q,N) ≤ d(Bi ∩Q,N) ≤ d(yi, N) + ri =
[
1 + 1

10
√
d

]
d(yi, N).

Consequently,

Wi

[
(10
√
d− 1) d(yi, N)

50d

]d
≤

∑
Q∈W(N)
Q∩Bi 6=∅

|Q| ≤
∣∣∣∣B(yi, [1 + 1

5
√
d

]
d(yi, N)

)∣∣∣∣,

which proves that Wi is controlled by a constant depending only on d. We
conclude by (3.4) and the bound on each Wi that there exists an intersecting
chain connecting x and y of length bounded by a constant depending only on
d and k.
For the other direction, let Q1, . . . , Qm be an intersecting chain that con-

nects x with y and with m ≤ M . Thus, by definition Qj ∩ Qj+1 6= ∅. Let γ
be a path connecting x and y which is constructed by linearly connecting a
point in Qj−1 ∩Qj with a point in Qj ∩Qj+1. Thus, employing (ii) delivers

kΞ(x, y) ≤
m∑
j=1

∫
γ∩Qj

1
d(Qj, N) | dz| ≤

m∑
j=1

diam(Qj)
diam(Qj)

= m.
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3. Extension operators for Sobolev spaces with boundary conditions

3.4. Cubes and chains
In this section, we describe how to “reflect” cubes at N if O is subject to As-
sumption 3.1.1, and establish some natural properties of theses “reflections”.
This is an adaptation of an argument of Jones presented in [65]. Throughout,
assume in Sections 3.4 and 3.5 that O is an open set subject to Assump-
tion 3.1.1 which satisfies O 6= Rd. (When O is dense in Rd, Theorem 3.0.2
follows in a trivial way. The details will be presented separately in the proof
of the theorem.) Recall that we assume diam(Om) ≥ λδ, where (Om)m are
the connected components of O whose boundary hits N . This is in contrast
to [65] where Jones assumes without loss of generality (by scaling) that the
domain has connected components of diameter at least 1 and that δ is at most
1. This has the disadvantage that homogeneous estimates are only achievable
on small scales even if δ =∞ and the domain is unbounded. We will comment
on this topic later on in Remark 3.5.12.

Lemma 3.4.1. We have |N | = 0.

Proof. Fix x0 ∈ N and y ∈ O with |x0 − y| < δ
2 . Let Q be any cube in Rd

centered in x0 with l(Q) ≤ 1
2 |x0 − y|. We will show that [Rd \ N ] ∩ Q has

Lebesgue measure comparable to that of Q. Let x ∈ O with |x−x0| ≤ 1
8 l(Q).

Then, we have

|x− y| ≥ 15
8 l(Q) and |x− y| ≤ 17

16 |x0 − y|.(3.5)

Let γ be a path connecting x and y subject to Assumption 3.1.1 (note that
|x − y| < δ is either void if δ = ∞ or otherwise it follows from the second
inequality in (3.5)). By virtue of (3.5), the intermediate value theorem implies
that there exists z ∈ γ with |x − z| = 1

8 l(Q). This point lies in 1
2Q by

construction. Moreover, (CC) together with |y− z| ≥ |x− y| − |x− z| implies

d(z,N) ≥ εl(Q)
8
|x− y| − |x− z|

|x− y|
≥ εl(Q)

8 (1− l(Q)
8|x− y|) ≥

7ε
60 l(Q).

Thus, lim supl(Q)→0
|[Rd\N ]∩Q|
|Q| > 0, where the lim sup is taken over all cubes

centered at x0. Since 1Rd\N(x0) = 0 and 1Rd\N ∈ L1
loc(Rd), Lebesgue’s differ-

entiation theorem implies |N | = 0.

To proceed, we define two families of cubes. The family of interior cubes is
given by

Wi := {Q ∈ W(N) : Q ∩O 6= ∅}.
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3.4. Cubes and chains

These interior cubes will be the reflections of exterior cubes We. To define
We we use numbers A > 0 and B > 2 whose values are to be fixed during
this section and define

We := {Q ∈ W(O) : diam(Q) ≤ Aδ and d(Q,N) < B d(Q,D)}.

Remark 3.4.2. First, the collection We is empty if and only if D = ∂O.
Indeed, if D = ∂O then the second condition in the definition We can never
be fulfilled. To the contrary, if N is non-empty, then, using the relative
openness of N , one can fix a ball centered in N that does not intersect D, and
small cubes inside this ball will satisfy both conditions. Second, if D 6= ∂O,
then for a cube Q ∈ We we have

d(Q,O) = min{d(Q,N), d(Q, ∂O \N)} ≥ B−1 d(Q,N)

what implies that for all Q ∈ We it holds

d(Q,O) ≤ d(Q,N) ≤ B d(Q,O).(3.6)

Thus, the diameter of Q is comparable to its distance to N .

For the rest of this section, we assume that N 6= ∅. Before we present
how to “reflect” cubes, we prove a technical lemma that, given an exterior
cube Q ∈ We, allows us to find a connected component of O whose boundary
intersects N and which is not too far away from Q.

Lemma 3.4.3. Let Q ∈ We. Then there exists a connected component Om of
O with N ∩ ∂Om 6= ∅ and x ∈ Om with

d(x,Q) ≤ 5B diam(Q).

Proof. By (ii) and Remark 3.4.2, there exists x′ ∈ N such that d(x′, Q) ≤
4B diam(Q). Since x′ ∈ N there is x′′ ∈ N with d(x′′, Q) ≤ 9

2B diam(Q).
Denote the at most countable family of connected components of O whose

boundary has a non-empty intersection with N by {Om}m and the connected
components whose boundary has an empty intersection with N by {Υm}m.
If there is Om with x′′ ∈ ∂Om, then the proof is finished. If not, pick a

sequence (xn)n in O that converges to x′′ ∈ N ⊆ ∂O. If all but finitely many
xn are contained in the union of the Om, this concludes the proof as well.
Otherwise, choose a subsequence (again denoted by xn) for which there are
indices mn such that xn ∈ Υmn . Furthermore, x′′ ∈ cΥm for all m since N ∩
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3. Extension operators for Sobolev spaces with boundary conditions

∂Υm = ∅. Now, by connecting x′′ and xn by a straight line, the intermediate
value theorem implies the existence of a point x′n ∈ ∂Υmn with

|x′′ − x′n| ≤ |x′′ − xn|.

We have x′n ∈ D. Passing to the limit n→∞ yields x′′ ∈ D by the closedness
of D and thus a contradiction.

The following lemma assigns to every cube in We a “reflected” cube in Wi.
For the rest of Sections 3.4 and 3.5 we will reserve the letter M to denote the
constant M appearing in Lemma 3.3.1 applied with k = 2K, where K is the
number from Assumption 3.1.1. Notice that M solely depends on d and K.
For the rest of this section we make the following agreement.

Agreement 1. If X and Y are two quantities and if there exists a constant
C depending only on d, p, K, λ, and ε such that X ≤ CY holds, then we
will write X . Y or Y & X. If both Y

C
≤ X ≤ CY holds, then we will write

X ≈ Y .

Lemma 3.4.4. There exist constants C1 = C1(M, ε) > 0 and C2 = C2(λ) > 0
such that if AB ≤ C1 and B ≥ C2, then for every Q ∈ We there exists a cube
R ∈ Wi satisfying

diam(Q) ≤ diam(R) . (1 +B + (AB)−1) diam(Q)(3.7)

and

d(R,Q) . (1 +B + (AB)−1) diam(Q).(3.8)

Proof. Fix Q ∈ We and recall that diam(Q) ≤ Aδ by definition of We and
that B > 2. By Lemma 3.4.3 there exists a connected component Om of O
with N ∩ ∂Om 6= ∅ and x ∈ Om with d(x,Q) ≤ 5B diam(Q). We introduce
the additional lower bound B ≥ 3/λ, which is only needed in the case δ <∞
but we choose B always that large for good measure.
So, in the case δ < ∞, since (AB)−1 diam(Q) ≤ δB−1 < min(δ, λδ/2) ≤

min(δ, diam(Om)/2) owing to (DC), we find y ∈ Om satisfying

|x− y| = (AB)−1 diam(Q) and |x− y| < δ.(3.9)

If δ = ∞, then O is unbounded by (DC) and N 6= ∅, so we again find
y ∈ O satisfying the first condition whereas the second becomes void for
Assumption 3.1.1.
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3.4. Cubes and chains

Hence, let γ be a path provided by Assumption 3.1.1 connecting x and y,
and let z ∈ γ with |x− z| = 1

2 |x− y|. Estimate by virtue of (CC) and (3.9)

d(z,N) ≥ ε

2 |y − z| ≥
ε

2
(
|x− y| − |x− z|

)
= ε

4(AB)−1 diam(Q).(3.10)

By Assumption 3.1.1 we have kΞ(z,O) ≤ K, hence there exists z′ ∈ O with
kΞ(z, z′) ≤ 2K. Thus, by Lemma 3.3.1 there exists an intersecting chain
Q1, . . . , Qm ∈ W(N) with Qm ∩ O 6= ∅, z ∈ Q1, and m ≤ M . Choose the
reflected cube as R := Qm. Using (ii) and (iv), one gets

4 diam(R) ≥ d(R,N) ≥ d(z,N)−
m∑
j=1

diam(Qj) ≥ d(z,N)−
m∑
j=1

4m−j diam(R).

Thus, by (3.10) and m ≤M

11 + 4M
3 diam(R) ≥ ε

4(AB)−1 diam(Q).

Consequently, there exists C = C(M, ε) > 0 such that AB ≤ C implies
diam(Q) ≤ diam(R).
In order to control diam(R) by diam(Q), employ (ii) and (iv) and the

triangle inequality to deduce

41−m diam(R) ≤ diam(Q1) ≤ d(z,N) ≤ d(z,Q) + diam(Q) + d(Q,N).

The right-hand side is estimated by the triangle inequality, followed by (3.6)
and (ii), the choice |x − z| = 1

2 |x − y| combined with (3.9), and d(x,Q) ≤
5B diam(Q), yielding

d(z,Q) + diam(Q) + d(Q,N) ≤ |z − x|+ d(x,Q) + diam(Q) +B d(Q,O)
≤ ((2AB)−1 + 1 + 9B) diam(Q).

Taking into account that d(z, R) ≤ diam(R)(4m − 1)/3 (estimate the sizes of
the cubes in the connecting chain using a geometric sum), the distance from
R to Q is estimated similarly, yielding

d(R,Q) ≤ diam(R) + diam(Q) + |x− z|+ d(z,R) + d(x,Q)

≤ (1 + (2AB)−1 + 5B) diam(Q) + 4m + 2
3 diam(R).

Together with the previous estimate, this concludes the proof.
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3. Extension operators for Sobolev spaces with boundary conditions

For the rest of this chapter, we fix the notation that if Q ∈ We and R ∈ Wi

is the cube constructed in Lemma 3.4.4, then R is denoted by R = Q∗ and
Q∗ is called the reflected cube of Q. The next lemma gives a bound on the
distance of reflected cubes of two intersecting cubes.

Lemma 3.4.5. If Q1, Q2 ∈ We with Q1 ∩Q2 6= ∅, then

d(Q∗1, Q∗2) . (1 +B + (AB)−1) diam(Q1).

Proof. Fix z ∈ Q1 ∩ Q2 and let x1 ∈ Q1, x2 ∈ Q2, x∗1 ∈ Q∗1, and x∗2 ∈ Q∗2.
One gets by the triangle inequality

|x∗1 − x∗2| ≤ |x∗1 − x1|+ |x1 − z|+ |z − x2| − |x2 − x∗2|,

and taking the infimum then reveals

d(Q∗1, Q∗2) ≤ d(Q1, Q
∗
1) + diam(Q1) + diam(Q2) + d(Q2, Q

∗
2).

The desired bound for the first term is just Lemma 3.4.4. For the third
term, employ (iv). Finally, the fourth term can be handled by combining the
previous two arguments.

In the proof of the boundedness of the extension operator, one needs to
connect Whitney cubes by appropriate touching chains. The following lemma
presents a basic principle of how to build a chain out of a path γ and how the
quantities length(γ) and d(γ,N) translate into the length of the chain and
the distance of the cubes of the chain to N .

Lemma 3.4.6. Let R1, R2 ∈ W(N) with R1 6= R2 and let x ∈ R1, y ∈ R2,
and γ be a rectifiable path in Rd \ N connecting x and y. Assume that there
exist constants C1, C2 > 0 such that length(γ) ≤ C1 diam(R1) and d(z,N) ≥
C2 diam(R1) for all z ∈ γ, then there exists a touching chain of cubes R1 =
S1, . . . , Sm = R2 in W(N), where m is bounded by a number depending only
on d, C1, and C2. Moreover,

C2

5 diam(R1) ≤ diam(Si) ≤ (5 + C1) diam(R1) (i = 1, . . . ,m).

Proof. Let S be the finite set of cubes inW(N) intersecting γ. For S ∈ S one
finds by (ii) and by assumption that diam(S) ≥ C2

5 diam(R1). Fix z ∈ S ∩ γ,
then

d(z,N) ≤ d(x,N) + |x− z| ≤ 5 diam(R1) + length(γ) ≤ (5 + C1) diam(R1),

82



3.4. Cubes and chains

so that diam(S) ≤ (5 +C1) diam(R1) by (ii). This, together with length(γ) ≤
C1 diam(R1) implies that S ⊆ B(x, (5+2C1) diam(R1)). Because all elements
of S have mutually disjoint interiors, one finds

](S) ≤ |B(x, (5 + 2C1) diam(R1))|
( C2

5
√
d

diam(R1))d
= cd

(
5
√
d(5 + 2C1)
C2

)d
,

where ](S) denotes the cardinality of S and cd := |B(0, 1)|. By (iii), the
elements of S are dyadic and thus one finds a subset of S which is a touching
chain starting at R1 and ending at R2.
Lemma 3.4.7. There exist constants C1, C2 > 0 depending only on ε, d, λ,
and K such that if A ≤ C1 and B ≥ C2 and if Qj, Qk ∈ We with Qj ∩Qk 6= ∅,
then there exists a touching chain Fj,k = {Q∗j = S1, . . . , Sm = Q∗k} of cubes in
W(N) connecting Q∗j and Q∗k, where m can be bounded uniformly by a constant
depending only on ε, d, K, A, and B. Moreover, there exist K1, K2 > 0
depending only on ε, d, K, A, and B such that

K1 diam(Qj) ≤ diam(Si) ≤ K2 diam(Qj) (i = 1, . . . ,m).

Proof. If Q∗j = Q∗k there is nothing to show. Thus, assume Q∗j 6= Q∗k and
let x ∈ Q∗j and y ∈ Q∗k. We show in the following that the assumptions of
Lemma 3.4.6 are satisfied.
Using Lemmas 3.4.4 and 3.4.5 in conjunction with (iv) gives

|x− y| ≤ d(Q∗j , Q∗k) + diam(Q∗j) + diam(Q∗k)(3.11)
. (1 +B + (AB)−1) diam(Qj).

If δ is finite we get from Qj ∈ We that

|x− y| . (A+ AB +B−1)δ,

so we obtain |x − y| < δ when we first choose B large enough and after-
wards A sufficiently small. Let γ be a path connecting x and y according to
Assumption 3.1.1. By (LC), (3.11), and (3.7) one finds

length(γ) . (1 +B + (AB)−1) diam(Q∗j).

To estimate the distance between z ∈ γ and N , notice that if |x − z| ≤
1
2 diam(Q∗j), then d(z,N) ≥ 1

2 diam(Q∗j). Analogously, but by employing ad-
ditionally (3.7) twice and (iv), if |y − z| ≤ 1

2 diam(Q∗k), then

d(z,N) ≥ 1
2 diam(Q∗k) ≥

1
2 diam(Qk) ≥

1
8 diam(Qj)(3.12)

&
(
1 +B + (AB)−1

)−1
diam(Q∗j).
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3. Extension operators for Sobolev spaces with boundary conditions

In the remaining case, one estimates by (CC), the calculation performed
in (3.12), and (3.11) that

d(z,N) &
diam(Q∗j)2

(1 +B + (AB)−1)|x− y| &
diam(Q∗j)

(1 +B + (AB)−1)2 .

The following lemma provides the existence of chains that “escape O” for
reflections of cubes Q ∈ W(O) that are close to a relatively open portion of
D. These chains will be important to obtain a Poincaré inequality with a
quantitative control of the constants.

Lemma 3.4.8. There exist constants C1, C2 > 0 depending only on ε, d, λ,
and K such that if A ≤ C1 and B ≥ C2 and if Q ∈ W(O) \ We satisfies
diam(Q) ≤ Aδ and has a non-empty intersection with a cube in We, then for
each intersecting cube Qj ∈ We of Q there exists a touching chain FP,j =
{Q∗j = S1, . . . , Sm} of cubes in W(N), where m is bounded by a constant
depending only on ε, d, K, A, and B, and Sm ∩ Qj is a dyadic cube that
satisfies

|Sm ∩Qj| & diam(Qj)d.

Furthermore, all Si ∈ FP,j satisfy

K1 diam(Qj) ≤ diam(Si) ≤ K2 diam(Qj) (i = 1, . . . ,m).

The constants K1, K2 > 0 depend only on ε, d, K, A, and B.

Proof. Let Qj ∈ We be an intersecting cube of Q. Then, using properties of
the Whitney decomposition and Q /∈ We, one estimates

B d(Qj, ∂O \N) ≤ 6B d(Q, ∂O \N) ≤ 6 d(Q,N) ≤ 36 d(Qj, N).(3.13)

Let B ≥ 720, then (3.13) and Remark 3.4.2 imply that d(Qj, ∂O \ N) =
d(Qj, O). Hence, using (3.13) again and (iv), one finds that d(Qj, N) ≥
B
36 d(Qj, O) ≥ B

36 diam(Qj). Let x0 ∈ D be such that d(x0, Qj) = d(Qj, O) ≤
4 diam(Qj). The properties collected above then imply

d(x0, N) ≥ d(Qj, N)− d(x0, Qj)− diam(Qj) ≥ (36−1B − 5) diam(Qj),

and if y is any point from B(x0, 5 diam(Qj)) then the previous estimate de-
livers

d(y,N) ≥ d(x0, N)− 5 diam(Qj) ≥ (36−1B − 10) diam(Qj) ≥ 10 diam(Qj).
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3.4. Cubes and chains

Fix y ∈ B(x0, 5 diam(Qj))∩O. Notice that the midpoint z of Qj is contained
in B(x0, 5 diam(Qj)). Thus, each point on the line segment γ1 connecting y
to z has at least a distance which is larger than 10 diam(Qj) to N .
For x ∈ Q∗j ∩ O Lemma 3.4.4 together with {y} ∪ Qj ⊆ B(x0, 6 diam(Qj))

implies

|x− y| ≤ d(y,Qj) + d(Qj, Q
∗
j) + diam(Qj) + diam(Q∗j)

. (1 +B + (AB)−1) diam(Qj).

If δ is finite, we can ensure |x− y| < δ using exactly the same argument as in
the proof of Lemma 3.4.7 and otherwise this condition is again meaningless.
Let γ2 be the path connecting x and y subject to Assumption 3.1.1 and let Q ∈
W(N) with y ∈ Q. Since d(Q,N) ≥ C diam(Q∗j) for some C > 0 depending
only on ε, K, d, A, and B, one concludes as in the proof of Lemma 3.4.7 that
the path γ2, and hence, by the consideration above, also the path γ = γ1 + γ2
which connects x ∈ Q∗j with z ∈ Qj, satisfies the assumptions of Lemma 3.4.6,
where Q∗j fulfills the role of R1 and R2 is some cube in W(N) that contains
z. Note that the constants appearing in Lemma 3.4.6 depend only on ε, K,
d, A, and B.
As in the statement of the lemma we write Sm for R2 and distinguish cases

for the relation between Sm and Qj. Since Qj ∩ Sm 6= ∅ and since Whitney
cubes are dyadic, it either holds Sm ⊆ Qj or Qj ⊆ Sm. If Qj ⊆ Sm the proof
is finished. If Sm ⊆ Qj, then

4 diam(Sm) ≥ d(Sm, N) ≥ d(Qj, N) ≥ 36−1B diam(Qj),

so that |Sm ∩Qj| & diam(Qj)d.

The next lemma shows that for a fixed cube R ∈ Wi there are only finitely
many cubes in We whose reflected cube is R.

Lemma 3.4.9. There is a constant C ∈ N such that for each R ∈ Wi there
are at most C cubes Q ∈ We such that Q∗ = R, where C solely depends on d,
K, A, B, and ε.

Proof. Let α denote the implied constant from (3.8) and let Q ∈ We be
a cube with reflected cube R, then it follows with (3.7) that d(R,Q) ≤
α diam(R). So, if xR denotes the center of R, every cube Q with Q∗ = R must
be contained in B(xR, (α + 3

2) diam(R)). Because for those cubes diam(Q) is
controlled from below by diam(R) according to (3.7) and because cubes from
We have disjoint interiors, the lemma follows by the usual counting argu-
ment.
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3. Extension operators for Sobolev spaces with boundary conditions

3.5. Construction of the extension operator and
exterior estimates

This section is devoted to the construction of the extension operator from
Theorem 3.0.2. We also already establish the respective estimates on Rd \O.
To do so, we start with a preparatory part on (adapted) polynomials, followed
by some overlap considerations. We proceed with the construction of the
actual operator, in which the adapted polynomials will appear, followed by
the exterior estimates, for which we will need the results on overlap.

Agreement 2. If not otherwise mentioned, the symbols k and p are supposed
to refer to these parameters in Theorem 3.0.2. The numbers A and B, which
were introduced in Section 3.4, will be considered as fixed numbers depending
only on ε, d, K and λ such that all statements in Section 3.4 are valid. From
now on we will use the symbols . and & in a more liberal way than described
in Agreement 1.

Polynomial fitting and Poincaré-type estimates
We record some results on polynomial approximation and Poincaré type es-
timates. Most of them stem from [29] and were used therein for a similar
purpose.
We start out with the following generic norm comparison lemma for poly-

nomials of fixed degree, see [29, Lem. 2.3].

Lemma 3.5.1. Let Q,R be cubes with R ⊆ Q and assume that there exists a
constant κ > 0 such that |R| ≥ κ|Q|. Then for each polynomial P of degree
at most m one has

‖P‖Lp(Q) . ‖P‖Lp(R),

where the implicit constant does only depend on d, κ, p and m. In particular,
if S is another cube with S ⊆ Q and |S| ≥ κ|Q|, then the Lp norms over R
and S are equivalent norms on Pm and the implicit constants do only depend
on d, κ, p and m.

The following lemma provides “adapted” polynomials together with corre-
sponding Poincaré-type estimates. A proof can be found in [29, Thm. 4.5,
Thm. 4.7 & Rem. 4.8]; Note that the proof of the remark still works when
replacing Whitney cubes by cubes of the same size.
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Lemma 3.5.2. Let Q be a cube, R a touching cube of Q of the same size,
and k ≥ 0 an integer. Then there exists a linear projection P : L1(Q)→ Pk−1
that satisfies the estimate

‖∂αPf‖Lp(Q) . ‖∂αf‖Lp(Q)(3.14)

for f ∈ C∞D (Rd)|Q ∩ Wk,p(Q), |α| ≤ k, and 1 ≤ p ≤ ∞. Moreover, the
Poincaré-type estimate

‖∂α(f − Pf)‖Lp(Q∪R) . diam(Q)`−|α|‖∇`f‖Lp(Q∪R),

holds for f ∈ C∞D (Rd)|Q∪R∩Wk,p(Q∪R), 0 ≤ ` ≤ k, |α| ≤ `, and 1 ≤ p ≤ ∞.
The implicit constants depend only on d, k, and p. Of course, the case Q = R

is also permitted.

Remark 3.5.3. (i) The polynomial Pf will be denoted by (f)Q. The case
|α| = k in (3.14) was not stated in [29] but follows since the degree of
Pf is at most k − 1.

(ii) That the projection is always meaningfully defined on L1(Q) becomes
evident from (4.2) in [29].

(iii) In the case α = 0 we can drop the intersection with C∞D (Rd) in both
estimates in Lemma 3.5.2. This follows from a direct computation using
the representation formula for the projection given in [29].

Combining these results gives a Poincaré-type estimate where the polyno-
mial is only adapted to a subcube of the domain of integration.

Corollary 3.5.4. Let Q and R be cubes with R ⊆ Q such that there is κ > 0
with |R| ≥ κ|Q|. Then with f ∈ C∞D (Rd)|Q ∩Wk,p(Q), 0 ≤ ` ≤ k, |α| ≤ `,
and 1 ≤ p ≤ ∞ we obtain

‖∂α(f − (f)R)‖Lp(Q) . diam(Q)`−|α|‖∇`f‖Lp(Q),

where the implicit constant does only depend on d, k, p, and κ. We may also
replace Q by the union of two touching cubes of the same size where one of
them contains R as a subcube.

Proof. Step 1. We start with the case that Q is a single cube. Using
Lemma 3.5.2 and Lemma 3.5.1 we get from the fact that ∂α((f)Q − (f)R) is
a polynomial of degree at most k − 1 the estimate

‖∂α(f − (f)R)‖Lp(Q) ≤ ‖∂α(f − (f)Q)‖Lp(Q) + ‖∂α((f)Q − (f)R)‖Lp(Q)

. diam(Q)`−|α|‖∇`f‖Lp(Q) + ‖∂α((f)Q − (f)R)‖Lp(R).
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The first term is already fine so we focus on the second one. Using that R ⊆ Q

and Lemma 3.5.2 twice, we estimate further

‖∂α((f)Q − (f)R)‖Lp(R) ≤ ‖∂α(f − (f)Q)‖Lp(R) + ‖∂α(f − (f)R)‖Lp(R)

. ‖∂α(f − (f)Q)‖Lp(Q) + diam(R)`−|α|‖∇`f‖Lp(R)

. diam(Q)`−|α|‖∇`f‖Lp(Q).

Step 2. Now assume that Q = Q1 ∪ Q2 is the union of two touching cubes
with R ⊆ Q1 and |R| ≥ κ|Q1|. We reduce this case to the already shown case.
Start with the triangle inequality to get

‖∂α(f − (f)R)‖Lp(Q) ≤ ‖∂α(f − (f)R)‖Lp(Q1) + ‖∂α(f − (f)R)‖Lp(Q2).

The first term is fine by Step 1 and for the second one we continue with

‖∂α(f − (f)R)‖Lp(Q2) ≤ ‖∂α(f − (f)Q2)‖Lp(Q2) + ‖∂α((f)Q2 − (f)R)‖Lp(Q2).

Again, the first term is good and for the other one we exploit Q1 ⊆ 3Q2 to
derive with Lemma 3.5.1

‖∂α((f)Q2 − (f)R)‖Lp(Q2) . ‖∂α((f)Q2 − (f)R)‖Lp(Q1)

≤ ‖∂α(f − (f)Q2)‖Lp(Q) + ‖∂α(f − (f)R)‖Lp(Q1).

The first term is good by Lemma 3.5.2 and the second one by Step 1.

Some overlap considerations
Let Qj ∈ We and let Q ∈ W(O) \We be such that it intersects a cube in We

and satisfies diam(Q) ≤ Aδ. Define

F (Qj) :=
⋃

Qk∈We

Qj∩Qk 6=∅

⋃
S∈Fj,k

2S and FP (Q) :=
⋃

Qk∈We

Q∩Qk 6=∅

⋃
S∈FP,k

2S.

We count how many of these “extended” chains F (Qj) and FP (Q) can inter-
sect a fixed point x ∈ Rd. We present the case of F (Qj) in full detail and
only sketch the necessary changes when considering FP (Q).
By Lemma 3.4.7, we know that a chain Fj,k has length less than a constant

M which does only depend on d, K, λ, and ε. If x ∈ F (Qj), then there exist
k ∈ N and S ∈ Fj,k with x ∈ 2S. Assume R ∈ W(N) is any cube such that
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also x ∈ 2R. By (ii) and an elementary geometric consideration one infers for
z ∈ S that

4 diam(R) ≥ d(R,N) ≥ d(z,N)− |x− z| − 3
2 diam(R).

Pick some z that satisfies |x− z| ≤ diam(S)/2, then

4 diam(R) ≥ d(S,N)− 1
2 diam(S)− 3

2 diam(R) ≥ 1
2 diam(S)− 3

2 diam(R).

By symmetry (interchange S and R), this implies that

1
11 diam(S) ≤ diam(R) ≤ 11 diam(S).(3.15)

Now let Fα,β be another chain such that x ∈ ∪S∈Fα,β2S. This means that
there is a cube in Fα,β that fulfills the role of R above. Since Q∗α and R as
well as Q∗j and S are connected by touching chains of Whitney cubes each
of length at most M , we deduce from (3.15) that diam(Q∗α) ≈ diam(Q∗j) and
conclude d(Q∗j , Q∗α) . diam(Q∗j). Then the usual counting argument yields a
bound on such reflected cubes Q∗α. Finally, Lemma 3.4.9 implies that there
exists a constant C > 0 that depends only on d, K, λ, and ε such that

∑
Qj∈We

1F (Qj)(x) ≤ C.(3.16)

Let us now sketch the case of FP (Q). Fix x ∈ FP (Q) and letQ′ ∈ W(O)\We

be another cube that intersects a cube in We and satisfies diam(Q′) ≤ Aδ.
Assume that also x ∈ FP (Q′). This means that for some cubes Qk ∈ We

with Qk ∩Q 6= ∅ and Q` ∈ We with Q` ∩Q′ 6= ∅ we find cubes S ∈ FP,k and
R ∈ FP,` such that x ∈ 2S∩2R. The lengths of these chains are again bounded
by a number M owing to Lemma 3.4.8 instead of Lemma 3.4.7. Hence, the
comparability argument from above yields again d(Q∗, (Q′)∗) . diam(Q∗).
Finally, employing the same counting arguments as before reveals the bound

∑
Q∈W(O)\We

Q∩We 6=∅
diam(Q)≤Aδ

1FP (Q)(x) ≤ C(3.17)

for some constant C > 0 that depends only on d, K, λ, and ε.
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Construction of the extension operator
Fix an enumeration (Qj)j of We and take a partition of unity (ϕj)j on⋃
Qj∈We

Qj valued in [0, 1] and satisfying supp(ϕj) ⊆ 17
16Qj as well as the

bound ‖∂αϕj‖L∞ . diam(Qj)−|α| for |α| ≤ k and an implicit constant only
depending on k and d.
Let f be a measurable function on O and A ⊆ Rd closed. Write EAf for

the zero extension of f to A ∪ O. Clearly, EA is isometric from Lp(A ∩ O) to
Lp(A) for all 1 ≤ p ≤ ∞. Moreover, if f ∈ C∞D (O) ∩Wk,p(O) and A ∩N = ∅,
then EAf is again in C∞D (A) ∩Wk,p(A). A relevant example is A = Q ∈ Wi.
Note that then ‖∂αEAf‖Lp(A) = ‖∂αf‖Lp(A∩O) holds for any |α| ≤ k.
Recall the notation introduced in Remark 3.5.3. Define the extension op-

erator E on some locally integrable f by

Ef(x) :=


f(x), x ∈ O,
0, x ∈ D,∑
Qj∈We

(EQ∗j f)Q∗j (x)ϕj(x), x ∈ cO.

If We is empty (which is the case if D = ∂O according to Remark 3.4.2) then
the sum is empty and its value is considered to be zero.

Remark 3.5.5. One has supp(ϕj) ∩ supp(ϕk) 6= ∅ if and only if Qj ∩ Qk 6=
∅. To see this, assume to the contrary that supp(ϕj) ∩ supp(ϕk) 6= ∅, but
Qj and Qk are disjoint. Moreover, assume without loss of generality that
diam(Qj) ≥ diam(Qk). It follows from the dyadic structure of the cubes that
diam(Qk) ≤ 1

16 diam(Qj). Finally, use (ii) in a short computation to arrive at
a contradiction.

Remark 3.5.6. If f is locally integrable on O then Ef is defined almost
everywhere on Rd according to Lemma 3.4.1. Moreover, Ef is smooth on
Rd \ O by construction. Note that the sets supp(ϕj) for j ∈ J have bounded
overlap according to Remark 3.5.5 and (v). Hence, due to Remark 3.5.3, E
restricts to a bounded operator from Lp(O) to Lp(Rd) for all 1 ≤ p ≤ ∞. If
f ∈ C∞D (O)∩Wk,p(O) then Ef vanishes almost everywhere around D. Indeed,
this follows from the support assumption on f and the fact that Q∗j is close
to D if x ∈ Qj is close to D, see (3.8).

Estimates for the extension operator
We show estimates for the extension operator on different types of cubes.
The overlap considerations from before will permit us to sum them up in
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3.5. Construction of the extension operator and exterior estimates

Proposition 3.5.11 to arrive at exterior estimates for the extension operator.

Lemma 3.5.7. Let f ∈ C∞D (O) ∩Wk,p(O), 0 ≤ ` ≤ k, |α| ≤ `, and 1 ≤
p ≤ ∞. If S1, . . . , Sm is a touching chain of Whitney cubes with respect to N
whose length is bounded by a constant M , then

‖∂α((ES1f)S1 − (ESmf)Sm)‖Lp(S1) . diam(S1)`−|α|‖∇`f‖Lp(
⋃m

r=1(2Sr)∩O),

where the implicit constant does only depend on d, k, p, andM . The assertion
remains true if the chain consists of cubes in Ξ = Rd \ N of fixed size (not
necessarily Whitney cubes). In that case, the set ⋃mr=1(2Sr)∩O in the Lp-norm
on the right-hand side can be replaced by ⋃mr=1 Sr ∩O.

Proof. We focus first on the case of Whitney cubes.
Note first that the sizes of cubes from the chain are pairwise comparable due

to the bound on the chain length. Using Lemma 3.5.1 repeatedly in the sequel
(observe that the whole chain is contained in a comparably larger cube), we
begin with

‖∂α((ES1f)S1 − (ESmf)Sm)‖Lp(S1) .
m−1∑
r=1
‖∂α((ESrf)Sr − (ESr+1f)Sr+1)‖Lp(Sr)

Fix r = 1, . . . ,m−1 and estimate one summand from the right-hand side just
before by

. ‖∂α((ESrf)Sr − (ESr∪Sr+1f)Sr)‖Lp(Sr)

+ ‖∂α((ESr∪Sr+1f)Sr)− (ESr+1f)Sr+1)‖Lp(Sr+1)

. ‖∂α((ESrf)Sr − ESrf)‖Lp(Sr) + ‖∂α(ESrf − (ESr∪Sr+1f)Sr)‖Lp(Sr)

+ ‖∂α(ESr+1f − (ESr∪Sr+1f)Sr)‖Lp(Sr+1)

+ ‖∂α((ESr+1f)Sr+1 − ESr+1f)‖Lp(Sr+1)

. ‖∂α((ESrf)Sr − ESrf)‖Lp(Sr) + ‖∂α(ESr∪Sr+1f − (ESr∪Sr+1f)Sr)‖Lp(Sr∪Sr+1)

+ ‖∂α((ESr+1f)Sr+1 − ESr+1f)‖Lp(Sr+1).

By virtue of Lemma 3.5.2, the first and the last term on the right-hand side are
controlled by diam(S1)`−|α|‖∇`f‖Lp(Sr∩O) and diam(S1)`−|α|‖∇`f‖Lp(Sr+1∩O).
If Sr and Sr+1 are of the same size, the second term can be controlled

using Corollary 3.5.4. Otherwise, assume without loss of generality that
diam(Sr+1) < diam(Sr). Since the cubes are dyadic, it follows that Sr∪Sr+1 ⊆
2Sr. Moreover,

d(2Sr, N) ≥ d(Sr, N)− 1
2 diam(Sr) ≥

1
2 diam(Sr).
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3. Extension operators for Sobolev spaces with boundary conditions

Hence, E2Srf is a smooth extension of ESr∪Sr+1f to 2Sr, in particular we have
(ESr∪Sr+1f)Sr = (E2Srf)Sr . Invoking Corollary 3.5.4 yields

‖∂α(ESr∪Sr+1f − (ESr∪Sr+1f)Sr)‖Lp(Sr∪Sr+1)

≤ ‖∂α(E2Srf − (E2Srf)Sr)‖Lp(2Sr) . diam(S1)`−|α|‖∇`f‖Lp((2Sr)∩O).

The case of cubes of fixed size in Rd \N is even simpler. First, we do not
have to argue that the cubes have comparable size. Second, we can omit the
argument for the case diam(Sr+1) < diam(Sr), which furthermore allows us to
estimate against Sr ∩O instead of (2Sr) ∩O. Besides that, the proof applies
verbatim to this case.

Lemma 3.5.8. Let f ∈ C∞D (O) ∩Wk,p(O), 0 ≤ ` ≤ k, |α| ≤ `, and 1 ≤ p ≤
∞. If Qj ∈ We, then

‖∂αEf‖Lp(Qj) . diam(Qj)`−|α|‖∇`f‖Lp(F (Qj)∩O) + ‖∂αf‖Lp(Q∗j∩O).

Proof. Observe that ϕk vanishes on Qj if Qk∩Qj = ∅. Hence, by definition it
holds Ef = ∑

Qk∈We

Qj∩Qk 6=∅
(EQ∗

k
f)Q∗

k
ϕk and ∑ Qk∈We

Qj∩Qk 6=∅
ϕk = 1 on Qj. Consequently,

using the Leibniz rule we get

‖∂αEf‖Lp(Qj) ≤
∥∥∥∥ ∑

Qk∈We

Qj∩Qk 6=∅

∑
β≤α

cα,β∂
α−β

[
(EQ∗

k
f)Q∗

k
− (EQ∗j f)Q∗j

]
∂βϕk

∥∥∥∥
Lp(Qj)

+ ‖∂α(EQ∗j f)Q∗j‖Lp(Qj) =: I + II.

We employ the estimate for ∂βϕk and Lemma 3.5.1 (taking Lemma 3.4.4 into
account), followed by Lemma 3.5.7 and (v) to derive

I .
∑

Qk∈We

Qj∩Qk 6=∅

∑
β≤α

diam(Qk)−|β|‖∂α−β
[
(EQ∗

k
f)Q∗

k
− (EQ∗j f)Q∗j

]
‖Lp(Q∗j )

. diam(Qj)`−|α|‖∇`f‖Lp(F (Qj)∩O).

Term II is controlled by ‖∂αf‖Lp(Q∗j∩O) using (3.14) from Lemma 3.5.2; Note
that we can switch to Q∗j using Lemma 3.5.1 as in the estimate for term I.

Lemma 3.5.9. Let f ∈ C∞D (O) ∩Wk,p(O), 0 ≤ ` ≤ k, |α| ≤ `, and 1 ≤ p ≤
∞. If Q ∈ W(O) \ We intersects a cube in We and satisfies diam(Q) ≤ Aδ,
then

‖∂αEf‖Lp(Q) . diam(Q)`−|α|‖∇`f‖Lp(FP (Q)∩O).
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Proof. Note that Q satisfies the assumptions of Lemma 3.4.8. For Qj ∈ We

an intersecting cube of Q let Q∗j = S1, . . . , Smj be the corresponding touching
chain. Then

‖∂αEf‖Lp(Q) .
∑

Qj∈We

Q∩Qj 6=∅

∑
β≤α

diam(Q∗j)−|β|
∥∥∥∂α−β[(EQ∗j f)Q∗j

]∥∥∥
Lp(Q∗j )

.
∑

Qj∈We

Q∩Qj 6=∅

∑
β≤α

diam(Q∗j)−|β|
{∥∥∥∂α−β[(ES1f)S1 − (ESmj f)Smj

]∥∥∥
Lp(S1)

+ ‖∂α−β(ESmj f)Smj ‖Lp(Smj )

}
.

By virtue of Lemma 3.5.7 and (v) the first term in the sum is controlled
by diam(Q)`−|α|‖∇`f‖Lp(

⋃mj
r=1(2Sr)∩O). For the second term in the sum, note

that ESmj f = 0 on the cube Smj ∩ Qj and that |Smj ∩ Qj| & diam(Qj)d
by Lemma 3.4.8. By using Lemma 3.5.1 and the fact that (ESmj f)Smj∩Qj
vanishes, estimate that

‖∂α−β(ESmj f)Smj
∥∥∥

Lp(Smj )
. ‖∂α−β

[
(ESmj f)Smj − (ESmj f)Smj∩Qj

]∥∥∥
Lp(Smj∩Qj)

.

Using Lemma 3.5.2 and diam(Smj) ≈ diam(Qj), we further estimate

≤
∥∥∥∂α−β[ESmj f − (ESmj f)Smj

]∥∥∥
Lp(Smj )

+
∥∥∥∂α−β[ESmj∩Qjf − (ESmj f)Smj∩Qj

]∥∥∥
Lp(Smj∩Qj)

. diam(Smj)`−|α|+|β|‖∇`f‖Lp(Smj∩O)

+ diam(Smj ∩Qj)`−|α|+|β|‖∇`f‖Lp(Smj∩Qj∩O)

. diam(Qj)`−|α|+|β|‖∇`f‖Lp(Smj∩O).

With (v) and diam(Qj) ≈ diam(Q) this concludes the proof.

Lemma 3.5.10. Let f ∈ C∞D (O)∩Wk,p(O), 0 ≤ ` ≤ k, |α| ≤ `, and 1 ≤ p ≤
∞. If Q ∈ W(O) \ We intersects a cube in We and satisfies diam(Q) > Aδ,
then

‖∂αEf‖Lp(Q) . max(1, δ−`)‖f‖W`,p(
⋃
Qj∈We

Q∩Qj 6=∅
Q∗j∩O).

Proof. Note that in fact diam(Q) ≈ δ because Q intersects We. The same is
true for its intersecting Whitney cubes. Hence, with a similar calculation as
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in Lemma 3.5.8 we derive

‖∂αEf‖Lp(Q) .
∑

Qj∈We

Q∩Qj 6=∅

∑
β≤α

δ−|β|‖∂α−β(EQ∗j f)Q∗j‖Lp(Q∗j )

.
∑

Qj∈We

Q∩Qj 6=∅

∑
β≤α

δ−|β|‖∂α−βf‖Lp(Q∗j∩O)

. max(1, δ−`)‖f‖W`,p(
⋃
Qj∈We

Q∩Qj 6=∅
Q∗j∩O).

Proposition 3.5.11. For all 1 ≤ p ≤ ∞ and 0 ≤ ` ≤ k there exists a
constant C > 0 depending only on d, ε, δ, k, p, λ, and K such that for all
f ∈ C∞D (O) ∩Wk,p(O) and |α| ≤ ` one has

‖∂αEf‖Lp(Rd\O) ≤ C‖f‖W`,p(O).(3.18)

Proof. The estimates for the derivatives in the case p < ∞ are deduced by
the following calculation based on Lemmas 3.5.8, 3.5.9, and 3.5.10

‖∂αEf‖pLp(Rd\O) =
∑

Qj∈We

‖∂αEf‖pLp(Qj) +
∑

Q∈W(O)\We

Q∩We 6=∅

‖∂αEf‖pLp(Q)

.
∑

Qj∈We

(
diam(Qj)(`−|α|)p‖∇`f‖pLp(F (Qj)∩O) + ‖∂αf‖pLp(Q∗j∩O)

)
+

∑
Q∈W(O)\We

Q∩We 6=∅
diam(Q)>Aδ

max(1, δ−`p) ‖f‖pW`,p(
⋃
Qj∈We

Q∩Qj 6=∅
Q∗j∩O)

+
∑

Q∈W(O)\We

Q∩We 6=∅
diam(Q)≤Aδ

diam(Qj)(`−|α|)p‖∇`f‖pLp(FP (Q)∩O).

Since ` − |α| ≥ 0 and diam(Qj) is comparably smaller than δ, we can get
rid of the factors in front of the norm terms to the cost of an implicit con-
stant depending on δ and k. The estimate then follows from Lemma 3.4.9 in
conjunction with (v), (3.16), and (3.17).
The estimate in the case p = ∞ is even simpler because we can use the

same estimates but can omit the overlap argument.

Remark 3.5.12. Assume that E and F are subsets of Rd such that the
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following versions of (3.16) and (3.17) hold true:∑
Qj∈We

Qj∩E 6=∅

1F (Qj) ≤ C1F and
∑

Q∈W(O)\We

Q∩We 6=∅
diam(Q)≤Aδ
Q∩E 6=∅

1FP (Q) ≤ C1F .

Then we may replace the Lp(Rd \ O)-norm on the left-hand side of (3.18) by
an Lp(E ∩ (Rd \ O))-norm and the W`,p(O)-norm on the right-hand side by
an W`,p(F ∩ O)-norm. Moreover, if |α| = ` and E is contained in the neigh-
borhood NAδ(O), then it suffices to estimate against ‖∇`f‖Lp(F∩O). Indeed,
in this case the second term in the final estimate in the proof of Proposi-
tion 3.5.11 vanishes. We will benefit from these observations in Section 3.9.

3.6. Approximation with smooth functions
In this section, we show that smooth and compactly supported functions on
Rd whose support stays away from D are dense in C∞D (O) ∩ Wk,p(O). In
particular, both classes of functions have the same Wk,p(O)-closure. We will
benefit from this fact in Section 3.7. To do so, we use an approximation
scheme similar to that introduced in [65, Sec. 4]. The arguments rely on
techniques similar to what we have used in the construction of the extension
operator.
To begin with, let f ∈ C∞D (O) ∩Wk,p(O) and put κ := d(supp(f), D) > 0.

Furthermore, let η > 0 quantify the approximation error. We need parameters
A, B, s, t, and ρ for which we will collect several constraints in the course of
this section (similar to what we have done in Section 3.4). Some parameters
depend on each other, but there is a non-cyclic order in which they can be
picked. This will enable us to show the following proposition.

Proposition 3.6.1. Let f , η, and κ be as above. Then there is a function g
which is smooth on Rd, satisfies d(supp(g), D) > κ/2, and ‖f−g‖Wk,p(O) . η.
In particular, smooth and compactly supported functions on Rd whose support
have positive distance to D are dense in C∞D (O)∩Wk,p(O) with respect to the
Wk,p(O) topology.

For brevity, put B̃t := Nt(∂O) for the tubular neighborhood of size t around
∂O and choose s ∈ (0, 1) in such a way that we have the estimate

‖f‖Wk,p(B̃3s∩O) ≤ η.(3.19)
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We may assume that s is smaller than κ/2. Furthermore, we define a region
near N that stays away from D and is adapted to the support of f , namely

Bt :=
{
x ∈ Rd : d(x,N) < t and d(x,D) > κ

2
}
.

Later on, we will only deal with t ∈ (0, 3s), so that (3.19) will in particular
be applicable on Bt ∩O.
Denote the zero extension of f to

O0 := O ∪
⋃
x∈D

B(x, 3κ/4)

by E0f . Note that this function is again smooth since d(B(x, 3κ/4), supp(f)) ≥
κ
4 for x ∈ D.

Lemma 3.6.2. Let x ∈ O \Bs, then B(x, t) ⊆ O0 for all 0 < t < s/2.

Proof. Recall s < κ/2. We distinguish two cases.
Case 1 : d(x,D) ≤ κ/2. Let z ∈ D with |x− z| = d(x,D). For y ∈ B(x, κ/4)
we derive

|y − z| ≤ |x− y|+ |x− z| < κ/4 + κ/2 = 3κ/4,

so by choice of s we see

B(x, t) ⊆ B(x, κ/4) ⊆ B(z, 3κ/4) ⊆ O0.

Case 2 : d(x,D) > κ/2 and consequently d(x,N) ≥ s. Then d(x, ∂O) ≥
min(κ/2, s) = s > t, therefore B(x, t) ⊆ O ⊆ O0 (keep in mind x ∈ O).

A family of interior cubes
Assume that ρ is a dyadic number and G is the collection of all dyadic cubes
of sidelength ρ. Recall Ξ = Rd \N . As before, write (Om)m for the connected
components of O whose boundary intersects N and (Υm)m for the remaining
ones. Write Σ′ for the collection of cubes in G that are contained in Ξ.
Moreover, we introduce the collection of cubes

Σ :=
{
R ∈ G : there exist S ∈ W(N) and m : diam(S) ≥ Aρ, R ⊆ S

& R ∩Om 6= ∅
}
.
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These cubes take the role ofWi in the upcoming approximation construction.
Note that Σ ⊆ Σ′. For R ∈ Σ define enlarged cubes

R̂ := BR and ˆ̂
R := 2BR.

We claim that if we choose ρ ≤ κ
2
√
d
, then R ⊆ O0. Indeed, if R∩D = ∅, then

R is properly contained in O since it has a non-trivial intersection with O and
avoids its boundary. Otherwise, let z ∈ R ∩ D, then R ⊆ B(z, diam(R)) ⊆
B(z, 3κ/4).
Before we turn to our first lemma, let us mention that for a cube Q ∈ W(N)

and x ∈ Q we have diam(Q) ≥ 1
5 d(x,N). This follows from

4 diam(Q) ≥ d(Q,N) ≥ d(x,N)− diam(Q)

and was already used in earlier sections of this chapter.

Lemma 3.6.3. There are constants C1 = C1(d) and C2 = C2(A, s) such that⋃
m

Om \Ns(N) ⊆
⋃
R∈Σ

R,

provided A ≥ C1 and ρ ≤ C2.

Proof. Let x ∈ Om \ Ns(N). In particular, x ∈ Ξ and hence there exists
S ∈ W(N) that contains x. Since d(x,N) ≥ s by choice of x we conclude
diam(S) ≥ 1

5 d(x,N) ≥ s
5 . Hence, if we choose ρ ≤ s

5A , then diam(S) ≥ Aρ.
Let R be some cube in G that contains x. If we demand A ≥

√
d, then R ⊆ S

because both are dyadic cubes, diam(S) ≥
√
dρ = diam(R), and they have a

common point. Finally, R ∩Om 6= ∅ since x ∈ Om, so R ∈ Σ.

If we do not allow to keep some distance to N , then at least the enlarged
cubes R̂ cover the whole Neumann boundary region where f is non-zero.

Lemma 3.6.4. There are constants C1 = C1(A, ε) and C2 = C2(A, δ, ε, κ, λ)
such that

B2s ∩
⋃
m

Om ⊆
⋃
R∈Σ

R̂,

provided B ≥ C1 and ρ ≤ C2.

Proof. Let x ∈ B2s ∩ Om. Choose ρ ≤ ε
80A min(δ, λδ). Then 20A

ε
ρ < λδ/2 ≤

diam(Om)/2 by Assumption 3.1.1, hence there exists some y ∈ Om satisfying

97



3. Extension operators for Sobolev spaces with boundary conditions

|x − y| = 20A
ε
ρ. Moreover, since |x − y| < δ, there is an ε-cigar provided by

Assumption 3.1.1 that connects x and y. Let z ∈ γ with |x − z| = 1
2 |x − y|.

Then

d(z,N) ≥ ε

2 |y − z| ≥
ε

4 |x− y| = 5Aρ.

Since γ takes its values in Ξ, there exists a cube S ∈ W(N) with z ∈ S. We
deduce diam(S) ≥ 1

5 d(z,N) ≥ Aρ. If we require A ≥
√
d, then as in the

previous lemma there is some cube R ∈ G that contains z and consequently
is a subcube of S. To conclude that R ∈ Σ it suffices to ensure that γ does
not escape Om. To this end, let us assume that z 6∈ Om. Since x ∈ Om, there
would be some z̃ ∈ γ with z̃ ∈ ∂Om. Since z̃ 6∈ N by definition of γ, we must
have z̃ ∈ D. Now recall that by definition of B2s it holds d(x,D) > κ

2 . On
imposing the constraint ρ ≤ ε2κ

40A we then get the contradiction

d(x,D) ≤ |x− z̃| ≤ length(γ) ≤ 20A
ε2 ρ ≤ κ

2 < d(x,D).

So, indeed, z ∈ Om and therefore R ∈ Σ. Denote the center of R by xR and
estimate

|x− xR|∞ ≤ |x− z|+ |xR − z|∞ ≤
(10A

ε
+ 1

2

)
ρ.

So, if we choose B ≥ 20A
ε

+ 1, then x ∈ R̂.

We have already mentioned that the collection Σ is a substitute for Wi, so
it is not surprising that we want to connect nearby cubes in Σ by a touching
chain of cubes (which we even allow to be in Σ′) of bounded length.

Lemma 3.6.5. There are constants C1 = C1(B, d, ε), C2 = C2(d, ε), and
C3 = C3(B, d, δ) such that any pair of cubes R, S ∈ Σ with ˆ̂

R ∩ ˆ̂
S 6= ∅ can be

connected by a touching chain of cubes in Σ′ whose length is controlled by C1,
provided that A ≥ C2 and ρ ≤ C3.

Proof. By definition of Σ we can pick x ∈ R ∩ Om and y ∈ S ∩ O`. By
assumption we moreover fix z ∈ ˆ̂

R ∩ Ŝ. Let xR, yS denote the centers of R
and S, then

|x− y| ≤
√
d
(
|x− xR|∞ + |xR − z|∞ + |yS − z|∞ + |y − yS|∞

)
(3.20)

≤
√
d(1 + 2B)ρ.
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3.6. Approximation with smooth functions

If we choose ρ ≤ δ
2
√
d(1+B) , then |x − y| < δ and we can connect x and y by

an ε-cigar. Fix any z ∈ γ and pick Q ∈ G such that z ∈ Q. By symmetry
we assume without loss of generality that |x − z| ≤ |y − z|. This implies, in
particular, that |x− y| ≤ 2|y − z|.
Case 1 : |x−z| ≤ 4

√
d
ε
ρ. Then, since R ∈ Σ, we find Q̃ ∈ W(N) with R ⊆ Q̃

and diam(Q̃) ≥ Aρ. Using x ∈ R ⊆ Q̃, it follows

d(x,N) ≥ d(Q̃,N) ≥ diam(Q̃) ≥ Aρ,

consequently

d(Q,N) ≥ d(x,N)− |x− z| − diam(Q) ≥
(
A− 4

√
d

ε
−
√
d
)
ρ.

We choose A ≥
√
d(4/ε + 2) to conclude d(Q,N) ≥ diam(Q), in particular

Q ∈ Σ′.
Case 2 : |x− z| > 4

√
d
ε
ρ. We calculate using (CC)

d(Q,N) ≥ d(z,N)− diam(Q) ≥ ε

2 |x− z| −
√
dρ > diam(Q).

So, as before, Q ∈ Σ′.
Taking (LC) and (3.20) into account, we get

length(γ)+diam(Q) ≤
√
d
(2B + 1

ε
+1

)
ρ & Q ⊆ B(x, length(γ)+diam(Q)).

By the usual counting argument that we have already used in Lemma 3.4.6,
it follows that the number of such cubes Q can be bounded by a constant
depending only on B, d, and ε. We select a touching chain out of that
collection of cubes to conclude the proof.

Remark 3.6.6. There is a constant C = C(B, d, ε, s) such that for R, S ∈ Σ
as in the foregoing lemma with R ∩ B2s 6= ∅ we have that the connecting
chain stays in B̃3s provided ρ ≤ C. Indeed, let C̃ be the constant C1 from
that lemma with dependence on B, d, and ε. If x is contained in some
cube from the connecting chain between R and S and y ∈ R ∩ B2s, then
d(x, ∂O) ≤ d(y,N) + C̃

√
dρ < 2s + C̃

√
dρ, so the claim follows if we choose

ρ ≤ s(C̃
√
d)−1.

So far, we have seen that near N and away from D we can reasonably cover
the components Om. The next two lemmas show that we will not have to
bother with the components Υm.
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3. Extension operators for Sobolev spaces with boundary conditions

Lemma 3.6.7. There is a constant C = C(B, d, δ, ε, κ) such that for any
R ∈ Σ with ˆ̂

R ∩B2s 6= ∅ it follows ˆ̂
R ∩ ⋃m Υm = ∅ provided that ρ ≤ C.

Proof. Assume there exists y ∈ ˆ̂
R ∩ Υm. Furthermore, let x ∈ R ∩ O`. It

holds |x−y| ≤ 2B
√
dρ, so x and y can be connected by a path in Ξ if we ensure

ρ ≤ (4
√
dB)−1δ, and its length can be controlled by length(γ) ≤ ε−1|x − y|

according to (LC). Since x and y are in different connected components by
assumption, there must be a point z ∈ γ which satisfies z ∈ D. By assumption
we may pick some z̃ ∈ ˆ̂

R ∩B2s. Then

d(x,D) ≥ d( ˆ̂
R,D) ≥ d(z̃, D)− diam( ˆ̂

R) ≥ κ/2− 2B
√
dρ.

On the other hand,

|x− z| ≤ length(γ) ≤ 2B
√
d

ε
ρ.

If we choose ρ ≤ εκ
16
√
dB

as well as ρ ≤ κ
8B
√
d
, then we arrive at the contradiction

d(x,D) ≤ |x− z| ≤ κ

8 <
κ

4 ≤ d(x,D).

Lemma 3.6.8. Let x ∈ B2s ∩
⋃
m Υm, then x 6∈ supp(f).

Proof. Let x ∈ B2s ∩Υm, then there is y ∈ N such that |x− y| < 2s. Since
y 6∈ Υm, there is z ∈ ∂Υm ⊆ D on the connecting line between x and y. Thus,

d(x,D) ≤ |x− z| ≤ |x− y| < 2s < κ = d(supp(f), D).

Consequently, x 6∈ supp(f).

Construction of the approximation and estimates
Let ψ be a cutoff function valued in [0, 1] which is 1 in a neighborhood of Bs,
supported in Ns(Bs), and satisfies |∂αψ| . s−|α| for |α| ≤ k. Moreover, fix
an enumeration (Rj)j of Σ and let ϕj be a partition of unity on ⋃j R̂j with
supp(ϕj) ⊆ ˆ̂

Rj and |∂αϕj| . ρ−|α|. The implicit constants depend on α, d,
and B. Note that according to Lemma 3.6.4 this partition of unity exists in
particular on B2s ∩

⋃
mOm.

Now we may construct the approximation g of f for Proposition 3.6.1. With
Lemma 3.6.2 in mind, choose t ∈ (0, s/2) small enough that

‖f − E0f ∗ Φt‖Wk,p(O\Bs) ≤ ηsk,(3.21)
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3.6. Approximation with smooth functions

where Φt is a mollifier function supported in B(0, t). Recall the notation for
adapted polynomials introduced in Remark 3.5.3 and put

g1 :=
∑
j

(E0f)Rjϕj, g2 := E0f ∗ Φt, and g := ψg1 + (1− ψ)g2.

With a further constraint on ρ we see that g1 vanishes near D.

Lemma 3.6.9. There is a constant C = C(d,B, κ) such that d(supp(g1), D) ≥
3κ/4 provided ρ ≤ C.

Proof. Let x ∈ Rd with d(x,D) ≤ 3κ
4 . If x ∈ supp(ϕj) then fix any y ∈ Rj.

We estimate (with z the center of Rj)

d(y,D) ≤ |y − z|+ |x− z|+ d(x,D) ≤ 1
2
√
dρ+B

√
dρ+ 3κ

4 .

Chose ρ ≤ κ
4(1+2B)

√
d
, then d(y,D) ≤ 7

8κ < d(supp(f), D), so y 6∈ supp(E0f)
and (E0f)Rj = 0 by linearity of the projection. But this means g1(x) = 0.

Finally, we get to the

Proof of Proposition 3.6.1. Assume that all constraints on the parameters col-
lected in this section are fulfilled. We split the proof into several steps.
Step 1: g is well-defined and smooth. We have already noticed after the

definition of Σ that we can ensure that all its cubes are contained in O0, so
the usage of polynomial approximations is justified and yields the smooth
function g1 on Rd. By definition of the mollification, g2 is a smooth function
in O \ Bs. If x ∈ O with d(x,D) ≤ κ/2, then we get as in Lemma 3.6.2 that
B(x, κ/4) ⊆ B(z, 3κ/4) ⊆ O0 for some z ∈ D and E0f vanishes on this ball,
so by definition of the mollification, g2 vanishes in that neighborhood of D.
Together with the knowledge on the support of 1− ψ we infer that (1− ψ)g2
can be extend by zero to a smooth function on Rd.
Step 2: d(supp(g), D) ≥ κ/2. First, we have d(supp(g1), D) ≥ 3κ/4 by

Lemma 3.6.9. On the other hand, we have already noticed in Step 1 that
d(supp(g2), D) ≥ κ/2, which in total gives a distance of at least κ/2 to D.
Step 3: Split up the terms for estimation. Let α be some multi-index with
|α| ≤ k. Then

∂α(f − g) = ∂α(ψ(f − g1)) + ∂α((1− ψ)(f − g2))
=
∑
β≤α

cα,β
(
∂α−βψ∂β(f − g1) + ∂α−β(1− ψ)∂β(f − g2)

)
=:

∑
β≤α

cα,β(Iα,β + IIα,β).

101



3. Extension operators for Sobolev spaces with boundary conditions

Clearly, it suffices to estimate for fixed α and β the terms Iα,β and IIα,β in the
Lp(O)-norm. The estimate for IIα,β is possible in a uniform manner whereas
for Iα,β we will have to carefully consider different relations between |α|, |β|,
and k.
Step 4: Estimate for IIα,β. Owing to (3.21), this term is under control on

keeping |∂α−β(1− ψ)| . s−|α−β| ≤ s−k in mind (recall s < 1).
Step 5: Reduction of the area of integration for Iα,β. Since the support

of ψ is contained in Ns(Bs), we only have to consider this region. Assume
x ∈ Ns(Bs)\B2s. Then we must have d(x,D) ≤ κ/2. But in this region f and
g1 vanish according to the definition of κ and Step 2. So we only have to deal
with B2s. Furthermore, f vanishes on B2s∩

⋃
m Υm according to Lemma 3.6.8

and the same is true for g1 owing to Lemma 3.6.7. So in summary, we only
need to estimate the term Iα,β on B2s ∩

⋃
mOm.

Step 6: Estimate for Iα,β if |β| < |α|. Since ψ = 1 on Bs and |α− β| 6= 0,
we even only have to estimate the Lp norm over (B2s \ Bs) ∩

⋃
mOm. Write

M for this set. The fact (B2s \Bs)∩Ns(N) = ∅ allows us to use Lemma 3.6.3
to cover M by cubes from Σ to calculate
‖∂α−βψ∂β(f − g1)‖pLp(M) ≤

∑
Rj∈Σ

Rj∩B2s 6=∅

sp(|β|−|α|)‖∂β
(
E0f −

∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

(E0f)Rkϕk
)
‖pLp(Rj).

Using that (ϕk)k is a partition of unity on Rj, we derive using the Leibniz
rule that on Rj we have

∂β
∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

(E0f)Rkϕk = ∂β(E0f)Rj + ∂β
∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

[
(E0f)Rk − (E0f)Rj

]
ϕk.

Using Lemma 3.5.2 we can estimate the norm of ∂β
[
E0f − (E0f)Rj

]
against

ρk−|β|‖∇kE0f‖Lp(Rj). From ρ ≤ s ≤ 1 we obtain s|β|−|α|ρk−|β| ≤ 1, so we infer
with (3.19) that∑

Rj∈Σ
Rj∩B2s 6=∅

sp(|β|−|α|)‖∂β
[
E0f − (E0f)Rj

]
‖pLp(Rj) . ‖∇

kf‖pLp(B̃3s∩O) ≤ ηp.

For the second term, we first expand using the Leibniz rule to obtain
∂β
∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

[
(E0f)Rk − (E0f)Rj

]
ϕk

=
∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

∑
γ≤β

cβ,γ∂
β−γ

[
(E0f)Rk − (E0f)Rj

]
∂γϕk.
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3.7. Conclusion of the proof of Theorem 3.0.2

According to Lemma 3.6.5 we can apply Lemma 3.5.7 to the effect that

‖∂β−γ
[
(E0f)Rk − (E0f)Rj

]
‖Lp(Rj) . ρk−|β|+|γ|‖∇kf‖Lp(Gj,k∩O),

where Gj,k denotes the union over the cubes of the connecting chain from
Lemma 3.6.5 between Rj and Rk. The ρ factor compensates for s|β|−|α| and
|∂γϕk| as before. The sums in k and j add up by similar (but simpler) overlap
considerations as already seen in Section 3.5 for Fj,k. Finally, since Gj,k stays
in B̃3s by Remark 3.6.6, we get an estimate against η as was the case for the
first term.
Step 7: Estimate for Iα,β if |β| = |α|. The estimate follows the same ideas

as in Step 6, so we only mention which modifications are needed.
First of all, we have to estimate over the whole B2s ∩

⋃
mOm. According to

Lemma 3.6.4, this set can be covered by the enlarged cubes R̂j. As there are
no derivatives on ψ, this term can be ignored. For the Lp(R̂j) norm of

∂β
∑
Rk∈Σ

ˆ̂
Rk∩Rj 6=∅

[
(E0f)Rk − (E0f)Rj

]
ϕk

we use Lemma 3.5.1 to estimate

‖∂β−γ
[
(E0f)Rk − (E0f)Rj

]
‖Lp(R̂j) . ‖∂

β−γ
[
(E0f)Rk − (E0f)Rj

]
‖Lp(Rj),

where the implicit constant imports a dependence on B (which determines κ
in that lemma). Then this term can be handled as in Step 6.
For the term ∂β

[
f−(E0f)Rj

]
we crudely apply the triangle inequality. Then

we can estimate ∂βf directly with (3.19), and for ∂β(E0f)Rj we estimate with
Lemma 3.5.1 and Lemma 3.5.2 that

‖∂β(E0f)Rj‖Lp(R̂j) . ‖∂
β(E0f)Rj‖Lp(Rj) . ‖∇kf‖Lp(Rj∩O).

Step 8: Approximation by compactly supported functions. As we have seen
in the previous steps, g is an approximation to f that satisfies all properties
but the compact support. But if we multiply g with a cutoff ψn from B(0, n)
to B(0, 2n) then this sequence does the job.

3.7. Conclusion of the proof of Theorem 3.0.2
First, we show that the extension of a compactly supported function in
C∞D (Rd)|O ∩Wk,p(O) constructed in Section 3.5 is weakly differentiable up to
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3. Extension operators for Sobolev spaces with boundary conditions

order k. More precisely, we show this for the larger class C∞D (Rd)|O∩Wk,∞(O),
which makes this result also applicable for Section 3.8. Clearly, compactly sup-
ported functions in C∞D (Rd)|O ∩Wk,p(O) belong to this class, though the in-
clusion is not topological. Combined with the exterior estimates from Propo-
sition 3.5.11 and the density result from Section 3.6, this will allow us to
conclude Theorem 3.0.2.

Proposition 3.7.1. Let f ∈ C∞D (Rd)|O ∩Wk,∞(O) and |α| ≤ k − 1. Then
∂αEf exists and has a Lipschitz continuous representative gα which satisfies
d(supp(gα), D) > 0.

Proof. Fix an extension F ∈ C∞D (Rd) of f . We show the claim by induction
over |α|. By Proposition 3.5.11, Ef is well-defined and bounded. Now assume
that |α| < k and ∂αEf is well-defined and bounded. It suffices to show that
∂αEf is given by a Lipschitz function. To this end, define gα to equal ∂αF on
O and ∂αEf otherwise. We proceed in two steps.
Step 1: gα is a representative of ∂αEf . That gα and ∂αEf coincide onO∪cO

is by definition. It follows from Remark 3.5.6 that ∂αEf vanishes around D.
The same is true for F by assumption. Consequently, Lemma 3.4.1 reveals
that gα is a representative of ∂αEf .
Step 2: gα is Lipschitz continuous. By assumption, gα is Lipschitz on O.

Furthermore, gα is smooth on Rd \O and its gradient is bounded according to
Proposition 3.5.11. Hence, gα is Lipschitz on any line segment contained in
the exterior of O. The claim follows if we show that gα is continuous on ∂O.
This is already established around D, so it only remains to show continuity
in x ∈ N with d(x,D) > 0.
Clearly, it suffices to consider y ∈ Rd\O close to x to show continuity. More-

over, using the positive distance of x to D, we may assume using Lemma 3.4.4
that y ∈ Qj for some cube Qj ∈ We and that Q∗j ⊆ O. Write yj for the center
of Qj. Fix some cube R which contains Qj and Q∗j with size comparable to
Q∗j . Also, note that Ef(z) = (EQ∗j f)Q∗j (z) in a neighborhood of yj by choice
of the partition of unity used in the construction of E , and that EQ∗j f = F on
Q∗j since Q∗j is properly contained in O. Then

|gα(x)− gα(y)|
≤ |∂αF (x)− ∂αF (yj)|+ |(∂αF − ∂α(EQ∗j f)Q∗j )(y

j)|+ |∂αEf(yj)− ∂αEf(y)|

≤ ‖∂αF‖Lip(Rd)|x− yj|+ ‖∂α
(
F − (F )Q∗j

)
‖L∞(R) + ‖∂αEf‖Lip(Qj) diam(Qj).

Clearly, the first and the last term tend to zero when y approaches x. Fi-
nally, we estimate the second term using Corollary 3.5.4 to get decay of order
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3.8. Extending Lipschitz functions which vanish on D

diam(R) ≈ diam(Qj). Hence, gα is indeed continuous in x.

We are now in the position to prove Theorem 3.0.2.

Proof of Theorem 3.0.2. Let f ∈ C∞D (Rd)|O∩Wk,p(O) with compact support.
First, we treat the trivial case O = Rd. In this situation, we extend f to
D by zero. This is a representative according to Lemma 3.4.1, it is weakly
differentiable of all orders by assumption on f , and the extension is isometric
with respect to the norm of Wk,p(O). Hence, this case can be completed by
continuity, compare with the conclusion of the general case below.
Otherwise, derive from Proposition 3.7.1 that Ef has weak derivates up to

order k and satisfies d(supp(Ef), D) > 0. From the latter follows in particular
that ∂αEf vanishes inD. Proposition 3.5.11 yields the desired estimate on Rd\
O. Taking Lemma 3.4.1 into account, these estimates sum up to an estimate
that holds almost everywhere on Rd \ O, which completes the boundedness
assertion.
Because we have the positive distance of the support of Ef to D, a convo-

lution argument shows that moreover Ef ∈Wk,p
D (Rd). Finally, we can extend

E by density to Wk,p
D (O) using the definition of that space and the density of

C∞D (Rd)|O ∩Wk,p(O) shown in Section 3.6.

3.8. Extending Lipschitz functions which vanish
on D

Definition 3.8.1. Let O ⊆ Rd be open and D ⊆ O. Define

LipD(O) := {f : O → C : f ∈ Lip(O) and f vanishes on D}.

By the canonical identification of LipD(O) as a subspace of Lip(O) a norm is
inherited.

The following approximation lemma for functions in LipD(O) is a modified
version of an argument of Stein [92, p. 188] and is used as a substitute for the
result from Section 3.6.

Lemma 3.8.2. Let f ∈ LipD(O). Then there exists a bounded sequence
(fn)n ⊆ C∞D (Rd)|O ∩W1,∞(O) that converges to f in L∞(O) and satisfies the
estimate ‖fn‖Lip(O) . ‖f‖Lip(O), where the implicit constant does only depend
on d.
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3. Extension operators for Sobolev spaces with boundary conditions

Proof. By the Whitney extension theorem, it suffices to show the claim for
whole space functions. For convenience, we drop Rd in the notation of function
spaces for the rest of this proof.
Pick a family of functions ϕn : [0,∞)→ [0, 1] satisfying for y ≥ x > 0

(i) ϕn = 0 on [0, 1/n), (ii) ϕn = 1 on (2/n,∞),

(iii) |ϕn(x)− ϕn(y)| . 1
x
|x− y|,

for an explicit construction see [56, Thm. 3.7]. Put ψn(x) := ϕn(dD(x)).
By construction, ψn vanishes around D and, by Lipschitz continuity of the
distance function, (iii) yields for x, y ∈ Rd with dD(x) ≤ dD(y) the bound

|ψn(x)− ψn(y)| . dD(x)−1|x− y|.(3.22)

It suffices to show that there is a sequence of Lipschitz functions whose sup-
ports have positive distance to D which fulfill all claims but smoothness, since
then we can conclude using mollification. Note that the mollified sequence
still converges in L∞ owing to the Lipschitz continuity.
In this light, define the sequence of functions fn := ψnf . Clearly, these

functions are Lipschitz, and their supports stay away from D because ψn has
this property. Next, we show that fn converges to f in L∞. To this end, let
x ∈ Rd and pick z ∈ D satisfying |x− z| = dD(x). Since f(z) = 0, we get

|f(x)− fn(x)| = (1− ψn(x))|f(x)− f(z)| ≤ ‖f‖Lip(1− ψn(x)) dD(x).

By definition of ψn, (1−ψn(x)) dD(x) ≤ 2/n. Consequently, |f(x)−fn(x)| → 0
uniformly in x.
It remains to show that the Lipschitz seminorms of fn can be estimated

against ‖f‖Lip. The argument uses the same trick (using an element from D)
that we have just seen. So, let x, y ∈ Rd. Assume without loss of generality
that dD(x) ≤ dD(y) and let z realize the distance from x to D. Using (3.22),
we obtain

|fn(x)− fn(y)| ≤ |f(x)− f(y)|ψn(y) + |f(x)||ψn(x)− ψn(y)|
. ‖f‖Lip|x− y|+ |f(x)− f(z)| dD(x)−1|x− y|.

The first term is fine and for the second we notice that

|f(x)− f(z)| ≤ ‖f‖Lip|x− z| = ‖f‖Lip dD(x).
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Theorem 3.8.3. Let O ⊆ Rd be an open set and D ⊆ O be closed such that
O and D are subject to Assumption 3.1.1. Then there exists an extension
operator E which is bounded from LipD(O) to LipD(Rd).

Proof. Let f ∈ LipD(O) and let (ϕn)n be the approximation in C∞D (Rd)|O ∩
W1,∞(O) constructed in Lemma 3.8.2. Write E for the extension operator
constructed in Section 3.5 for the case k = 1. According to Proposition 3.5.11
we have L∞ bounds for E on ϕn. In particular, this shows the L∞(Rd) bound
for E on f , where the latter is defined by approximation. Moreover, this
permits us to calculate for almost every x, y ∈ Rd that

|Ef(x)− Ef(y)| = lim
n→∞

|Eϕn(x)− Eϕn(y)|.

By Proposition 3.7.1, Eϕn is Lipschitz and hence

lim
n→∞

|Eϕn(x)− Eϕn(y)| ≤ lim inf
n→∞

‖∇Eϕn‖L∞(Rd)|x− y|.

Proceeding by Proposition 3.5.11 and Lemma 3.8.2, we obtain

lim inf
n→∞

‖∇Eϕn‖L∞(Rd) . lim inf
n→∞

‖ϕn‖W1,∞(O) . ‖f‖Lip(O).

So, Ef satisfies a Lipschitz estimate against ‖f‖Lip(O) almost everywhere.
Hence, Ef possesses a representative which is Lipschitz on Rd and satisfies
the boundedness estimate.

3.9. Homogeneous estimates
We provide further estimates for the extension operator from Theorem 3.0.2
which concern homogeneous estimates and locality (see Definition 3.9.1 for
a proper definition). These results build on the observations made in Re-
mark 3.5.12.

Definition 3.9.1. An extension operator E on Wk,p
D (O) is called local if there

exist constants r0, κ > 0 such that

‖∇`Ef‖Lp(B(x,r)) . ‖f‖Wk,p(O∩B(x,κr))

for all x ∈ ∂O, r ∈ (0, r0), and ` ≤ k. Moreover, call E homogeneous if one
can replace the right-hand side of that estimate by ‖∇`f‖Lp(O∩B(x,κr)).
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3. Extension operators for Sobolev spaces with boundary conditions

To verify that E is local, we chose E = B(x, r) in Remark 3.5.12 and let
Qj ∈ We with Qj ∩ B(x, r) 6= ∅. Using (3.7), (3.8), the bound on the chain
length from Lemma 3.4.7 as well as the properties of Whitney cubes, we see
that F (Qj) is contained in the ball B(x, κr) for some κ depending only on
ε, d, K, and λ (as before, an analogous version for FP (Q) holds on using
Lemma 3.4.8 instead of Lemma 3.4.7 and a similar reasoning). So, with
F = B(x, κr) we derive locality from Remark 3.5.12 with r0 = ∞. If we
restrict to r0 = Aδ, the same remark also yields that E is homogeneous. Note
that in the case of δ = ∞ this restriction is void. We summarize this result
in the following theorem.

Theorem 3.9.2. Let O ⊆ Rd be open and D ⊆ ∂O be closed such that O and
D are subject to Assumption 3.1.1, and fix some integer k ≥ 0. Then there
exist A, κ > 0 and an extension operator E such that for all 1 ≤ p < ∞ one
has that E restricts to a bounded mapping from Wk,p

D (O) to Wk,p
D (Rd) which is

homogeneous and local, that is, the estimate

‖∇`Ef‖Lp(B(x,r)) . ‖∇`f‖Lp(B(x,κr)∩O)

holds for f ∈ Wk,p
D (O), ` ≤ k, x ∈ ∂O, and r ∈ (0, Aδ). The implicit

constant in that estimate depends on geometry only via the implied constants
and parameters in Assumption 3.1.1.

108



CHAPTER 4

Extension operators for fractional Sobolev spaces with
boundary conditions

Let O ⊆ Rd be open. For s ∈ (0, 1) and p ∈ (1,∞) the fractional Sobolev
space Ws,p(O) is defined in Definition 4.1.6 using an intrinsic norm. Under
the interior thickness condition

∀x ∈ O, r ∈ (0, 1] : |B(x, r) ∩O| & |B(x, r)|(ITC)

an extension operator for these spaces was constructed by Jonsson–Wallin [66],
see Proposition 4.1.13. In fact, the interior thickness condition is equivalent
for Ws,p(O) to admit whole space extensions, see [98]. However, in case there
is a vanishing trace condition on ∂O in a suitable sense, zero extension is
possible, so it is a priori clear that the thickness condition can be relaxed in
the presence of zero boundary conditions.
In Section 4.2 we will construct an extension operator which is adapted

to a vanishing trace condition on a portion of the boundary of O. More
precisely, let D ⊆ ∂O and put N := ∂O\D. We incorporate a vanishing trace
condition on D into Ws,p(O) by intersection with the space Lp(O, d−spD ). On
this space, the interior thickness condition inN (see Definition 4.1.1) turns out
to be sufficient for the existence of an extension operator, and the constructed
extensions also vanish in D in the sense of Definition 2.2.2 if D is (d − 1)-
regular. An example of a now admissible configuration is a self-touching with
a cusp, see Example 4.1.3.
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4. Extension operators for fractional Sobolev spaces

Theorem 4.0.1. Let O ⊆ Rd be open and let D ⊆ ∂O be closed, p ∈ (1,∞)
and s ∈ (0, 1). If O satisfies the interior thickness condition in ∂O \D (see
Definition 4.1.1), then there exists a bounded extension operator

E : Ws,p(O) ∩ Lp(O, d−spD )→Ws,p(Rd).

If D is (d − 1)-regular and s ∈ (1/p, 1), then E maps even into the subspace
Ws,p

D (Rd) of Ws,p(Rd).

Since the thickness condition does not hold in a neighborhood of N , lo-
calization techniques are not applicable. We will construct a superset O of
O which is enlarged near D to satisfy (ITC) and permits for zero extension.
Phrased differently, we reduce the case D 6= ∅ to the case D = ∅ by means of
zero extension. The enlargement is carried out in Section 4.2.1. This type of
construction will also be central in Chapter 5 later on. Afterwards, we will pro-
vide the aforementioned zero extension operator from O to O in Section 4.2.2,
which is bounded due to the additional fractional Hardy term coming from
the Lp(O, d−spD )-norm. With this in hand, we can conclude Theorem 4.0.1 in
Section 4.2.3.
Using the pointwise restriction of Ws,p

D (Rd)-functions toO the spaceWs,p
D (O)

was defined in Definition 2.2.6 (although the notation varies between the chap-
ters). We have already investigated their interpolation behavior in Chap-
ter 2. The next theorem shows that we can identify the intrinsic space
Ws,p(O)∩Lp(O, d−spD ) with Ws,p

D (O) provided a scale-invariant thickness con-
dition for D holds.

Theorem 4.0.2. Let O ⊆ Rd be open, D ⊆ ∂O be closed, p ∈ (1,∞) and
1/p 6= s ∈ (0, 1). If O satisfies the interior thickness condition in ∂O \D and
if D is Ahlfors–David regular (see Definition 1.3.8), then

Ws,p(O) ∩ Lp(O, d−spD ) =Ws,p
D (O)

holds up to equivalent norms.

The inclusion “⊆” follows immediately from Theorem 4.0.1, whereas the
converse inclusion is due to Proposition 2.6.7.
For the endpoint case s = 1 we work with the geometry from Chapter 3

described in Assumption 3.1.1, in which the space W1,p
D (O) carries the usual

local Sobolev norm. Hardy’s inequality for these spaces is provided by the
following theorem, whose proof is given in Section 4.3. It builds on the ap-
proach from [37]; Our primary improvement lies in allowing unbounded open
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4.1. Geometry and function spaces

sets instead of merely bounded domains without demanding a scale-invariant
condition on D.

Theorem 4.0.3. Let O ⊆ Rd be open, D ⊆ ∂O be closed and (d− 1)-regular,
p ∈ (1,∞) and assume that Assumption 3.1.1 is fulfilled. Then Hardy’s
inequality holds for W1,p

D (O), that is, for all f ∈W1,p
D (O) holds

∫
O

∣∣∣∣∣ fdD
∣∣∣∣∣
p

dx . ‖f‖pW1,p(O).

Finally, we transfer the interpolation property of the Ws,p
D (O)-spaces to

arrive at the following purely intrinsic interpolation formula.

Theorem 4.0.4. Let O ⊆ Rd be open and let D ⊆ ∂O be closed. Put N :=
∂O \ D. If O satisfies the interior thickness condition in N , D is Ahlfors–
David regular and Assumption 3.1.1 is fulfilled, then

Ws,p(O) ∩ Lp(O, d−spD ) = (Lp(O),W1,p
D (O))s,p,

where p ∈ (1,∞) and s ∈ (0, 1) \ {1
p
}. Moreover, the inclusion “⊇” holds also

if we relax the Ahlfors–David regularity condition to (d− 1)-regularity and in
this case also s = 1/p is admissible.

To conclude, we consider the necessity of the geometric assumption from
Section 4.2 in Section 4.5. More precisely, we introduce a condition in Defi-
nition 4.5.1 that is strictly weaker than that from Definition 4.1.1 imposed in
Theorem 4.0.1. Proposition 4.5.2 shows that this condition is necessary for
extension operators on the space Ws,p(O) ∩ Lp(O, d−spD ). Example 4.5.5 is a
geometry in which such an extension operator is available but which is not
admissible in Theorem 4.0.1.
The results of this chapter were (partially) published in a journal article [18].

4.1. Geometry and function spaces
We are going to take a look on geometry and function spaces first, before
we continue with the construction of the extension operator in Section 4.2
afterwards.
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4. Extension operators for fractional Sobolev spaces

4.1.1. Geometry
We start with the definition of the interior thickness condition in a part of the
boundary and relate it to (ITC). We will give an example of an admissible
geometry that is not covered by the previous theory afterwards.

Definition 4.1.1. Let E ⊆ Rd and F ⊆ ∂E. Then E satisfies the interior
thickness condition in F if

∀x ∈ F, r ∈ (0, 1] : |B(x, r) ∩ E| & |B(x, r)|.

Lemma 4.1.2. Let E ⊆ Rd. Then E satisfies (ITC) if and only if E satisfies
the interior thickness condition in ∂E.

Proof. Assume (ITC) and let x ∈ ∂E, r ∈ (0, 1]. Then pick some y ∈
B(x, r/2) ∩ E and calculate

|B(x, r) ∩ E| ≥ |B(y, r/2) ∩ E| & |B(y, r/2)| ≈ |B(x, r)|.

Conversely, let x ∈ E, r ∈ (0, 1] and E is interior thick in ∂E. If B(x, r/2) ⊆
E then the claim follows immediately. Otherwise, pick again some y ∈
B(x, r/2) ∩ ∂E and argue as above.

We stress that Definition 4.1.1 provides a way to formulate a sharp condition
at the interface between Dirichlet and Neumann boundary part. The following
simple example shows that a set can satisfy the thickness condition in some
closed subset of the boundary but fails to have it in any neighborhood. We
will later see the more elaborate Example 4.4.1 which additionally satisfies
Assumption 3.1.1. However, the example here is much simpler, so we include
it for good measure.

Example 4.1.3. Let O be the right half-plane touched by a cusp from the
left, for example this could mean

O = {(x, y) ∈ R2 : |y| < x2, x < 0} ∪ {(x, y) ∈ R2 : x > 0}.

Put D to be the boundary of the cusp and N is the y-axis except the origin.
Then the (ITC) estimate holds in N since each ball hits the half-plane with
half its area, but any proper neighborhood around N would contain a region
around the tip of the cusp, in which thickness does not hold (consider a
sequence that approximates the tip of the cusp and test with balls that do
not reach N).
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4.1. Geometry and function spaces

4.1.2. Function spaces
We start out with the classical (intrinsic) definitions of Lebesgue and (frac-
tional) Sobolev spaces up to order 1.

Definition 4.1.4. Let µ be a measure, E ⊆ Rd be measurable and p ∈ (1,∞).
Then Lp(E, µ) is the space of p-integrable complex-valued functions on E with
respect to µ. Write Lp(E) if µ is the Lebesgue measure and Lp(E,w) if µ is
the Lebesgue measure weighted by some positive function w.

Definition 4.1.5. Let O ⊆ Rd be open and p ∈ (1,∞). The Sobolev space
W1,p(O) consists of those f ∈ Lp(O) for which their distributional gradient
lies again in Lp(O), normed by

‖f‖W1,p(O) :=
(
‖f‖pLp(O) + ‖∇f‖pLp(O)

) 1
p .

Definition 4.1.6. Let O ⊆ Rd be open, p ∈ (1,∞) and s ∈ (0, 1). Then
Ws,p(O) denotes the fractional Sobolev space of order s, which consists of
those f ∈ Lp(O) for which

‖f‖Ws,p(O) :=
‖f‖pLp(O) +

∫∫
x,y∈O
|x−y|<1

|f(x)− f(y)|p
|x− y|d+sp dy dx

 1
p

<∞.

Remark 4.1.7. Dropping the restriction |x − y| < 1 leads to an equivalent
norm, compare with the calculation in Remark 1.2.7.

We also define spaces with vanishing trace condition in this “intrinsic” con-
text.

Definition 4.1.8. Let O ⊆ Rd be open and D ⊆ O. The set C∞D (Rd) consists
of those smooth and compactly supported functions on Rd whose support has
strictly positive distance to D. Then

C∞D (O) :=
{
f |O : f ∈ C∞D (Rd)

}
and W1,p

D (O) denotes the closure of C∞D (O) in W1,p(O), where p ∈ (1,∞).

Remark 4.1.9. Observe that W1,p
∅ (Rd) = W1,p(Rd) by the Meyers–Serrin

Theorem.

Besides these intrinsic definitions we can also define spaces (with and with-
out boundary conditions) by means of whole-space restrictions. The following
proposition on traces is taken from [66, Thm. VI.1 & VII.1].
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4. Extension operators for fractional Sobolev spaces

Proposition 4.1.10. Let D ⊆ Rd be (d − 1)-regular, p ∈ (1,∞), s ∈ (1
p
, 1],

and f ∈Ws,p(Rd). For Hd−1-almost every x ∈ D the limit

(RDf)(x) := lim
r→0

1
|B(x, r)|

∫
B(x,r)

f(y) dy

exists, and the restriction operator RD maps Ws,p(Rd) boundedly into the trace
space Lp(D,Hd−1).

Definition 4.1.11. Let D ⊆ Rd be (d− 1)-regular, p ∈ (1,∞) and s ∈ (1
p
, 1].

Then Ws,p
D (Rd) denotes the null space of RD. Moreover, if O ⊆ Rd is open,

put

Ws,p
D (O) :=

{
f |O : f ∈ Ws,p

D (Rd)
}

and equip it with the quotient norm.

Remark 4.1.12. In the situation of Definition 4.1.11, the spaces W1,p
D (Rd)

and W1,p
D (Rd) coincide, see Lemma 2.2.5.

The following proposition is the full-dimensional case in [66, V.1.3]. Note
that the consistency becomes apparent from the formula for the extension
operator on p. 109 in [66].

Proposition 4.1.13. Let Ξ ⊆ Rd be a set that satisfies (ITC), p ∈ (1,∞) and
s ∈ (0, 1). Then Ws,p(Ξ) admits a bounded extension operator E to Ws,p(Rd)
which is consistent in s and p.

4.2. The extension operator
The purpose of this section is to prove Theorem 4.0.1. This follows the plan
outlined in the introduction to this chapter. Throughout, O and D are as in
Theorem 4.0.1 and we put N := ∂O \D for convenience.

4.2.1. Embedding of O into an interior thick set
We construct an open set O ⊆ Rd with O ⊆ O, ∂O ⊆ ∂O, and that satis-
fies (ITC). According to the assumption on N and Lemma 4.1.2 it suffices
to check that O is interior thick in D and the “added” boundary. Of course
we could take O as Rd \ ∂O in this step but this would make zero extension
impossible in Section 4.2.2. Therefore, our construction will be in such a way
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4.2. The extension operator

that |x− y| & dD(x) whenever x ∈ O and y ∈ O \O, which will do the trick
in the second step.
Let {Qj}j be a Whitney decomposition for the complement of N , which

means that the Qj are disjoint dyadic open cubes such that

(i)
⋃
j

Qj = Rd \N (ii) diam(Qj) ≤ d(Qj, N) ≤ 4 diam(Qj).

Using the Whitney decomposition we define

Σ := {Qj : Qj ∩O 6= ∅} and O := O ∪
( ⋃
Q∈Σ

Q \D
)
.

All claimed properties of O except (ITC) follow immediately by definition
(keep in mind N ∩Q = ∅ when checking the inclusion of the boundaries). So,
let x ∈ ∂O and r ∈ (0, 1]. If x ∈ N then we are done by assumption (argue
as in the proof of Lemma 4.1.2). Otherwise, either x ∈ D or x ∈ ∂Q for some
Q ∈ Σ (to see this, use that the Whitney decomposition is locally finite).
But if x ∈ D then x ∈ Q for some Q ∈ Σ by property (i) of the Whitney
decomposition and the definition of Σ. Hence, in either case x ∈ Q for some
Q ∈ Σ. Now we make a case distinction on the radius size compared to the
size of Q. If r ≥ 4 d(Q,N), pick y ∈ Q and z ∈ N with d(Q,N) = |y − z|.
Then with (ii) we get

|x− z| ≤ |x− y|+ |y − z| ≤ diam(Q) + d(Q,N) ≤ 2 d(Q,N) ≤ r/2,

hence B(x, r) contains a ball of radius r/2 centered in N and we are done.
Finally, if r < 4 d(Q,N), then by (ii) we get r < 16 diam(Q) and the claim
follows from (ITC) for Q.

4.2.2. Zero extension
Let O denote the set constructed in the previous section. We define the zero
extension Operator E0 from O to O ∪ D and claim Ws,p(O) ∩ Lp(O, dspD ) →
Ws,p(O ∪D) boundedness. We start with a preparatory lemma.

Lemma 4.2.1. One has 2|x−y| ≥ dD(x) whenever x ∈ O and y ∈ (O\O)∪D.

Proof. The case y ∈ D is trivial so let us consider y ∈ O \O. We distinguish
whether or not x and y are far away from each other in relation to diam(Q),
where Q ∈ Σ contains y.
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4. Extension operators for fractional Sobolev spaces

Case 1 : |x − y| < diam(Q). Fix a point z ∈ ∂O on the line segment
connecting x with y. Assume for the sake of contradiction that z ∈ N . Then
using (ii) we calculate

d(Q,N) ≤ |y − z| ≤ |x− y| < diam(Q) ≤ d(Q,N),

hence z ∈ D. Thus, |x− y| ≥ |x− z| ≥ dD(x).
Case 2 : |x − y| ≥ diam(Q). By definition of Σ and y 6∈ O we can pick

z ∈ Q ∩D. Then

|x− z| ≤ |x− y|+ |y − z| ≤ |x− y|+ diam(Q) ≤ 2|x− y|,

hence 2|x− y| ≥ dD(x).

This enables us to estimate E0. Clearly, we only have to estimate the
Ws,p(O)-seminorm since extension by zero is always isometric on Lp. Let
f ∈Ws,p(O) ∩ Lp(O, d−spD ), then∫∫

x,y∈O∪D
|x−y|<1

|E0f(x)− E0f(y)|p
|x− y|d+sp dy dx(4.1)

≤
∫∫

x,y∈O
|x−y|<1

|f(x)− f(y)|p
|x− y|d+sp dx dy + 2

∫∫
x∈O,y∈(O\O)∪D

|x−y|<1

|f(x)|p
|x− y|d+sp dx dy.

The first term is bounded by ‖f‖pW s,p(O), so it only remains to bound the
second term. On using Lemma 4.2.1 and calculating in polar coordinates we
find for x ∈ O∫

y∈(O\O)∪D
|x−y|<1

|x− y|−d−sp dy ≤ cd

∫ 1

dD(x)/2
t−sp−1 dt . dD(x)−sp.

Plugging this back into (4.1) yields that we can bound the second term therein
by the Hardy term ‖f‖pLp(O,d−spD ).

4.2.3. Proof of Theorem 4.0.1
We combine the results from above with the extension operator of Jonsson–
Wallin to conclude.

Proof of Theorem 4.0.1. Put E = E ◦ E0, where E denotes the extension
operator from Proposition 4.1.13. From Section 4.2.1, O ⊆ O ∪ D ⊆ O

and Lemma 4.1.2 follows that O ∪ D satisfies (ITC), so by construction
E : Ws,p(O) ∩ Lp(O, d−spD )→Ws,p(Rd).
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4.2. The extension operator

It only remains to verify the vanishing trace condition if D is (d−1)-regular
and s > 1/p. This amounts to showing that E maps into the kernel of RD.
To this end, let f ∈ Ws,p(O) ∩ Lp(O, d−spD ), t ∈ (1/p, s), and (fn)n be the
approximation from Lemma 4.2.2 below. Fix n and let x ∈ D for which
(RDEfn)(x) is defined. By assumption on the support of fn we find an r > 0
such that B(x, r) is disjoint to supp(fn). Since the Whitney decomposition
is locally finite, it is moreover possible to choose r small enough that each
Whitney cube that intersects B(x, r) contains x in its closure. Consequently,
since

B(x, r) ⊆ (B(x, r) ∩O) ∪D ∪
( ⋃
Q∈Σ
x∈Q

Q
)
,

we get Efn = E0fn = 0 almost everywhere on B(x, r). Therefore, it follows by
the very definition of RD using mean values over small balls that RDEfn(x) =
0. Finally, RDEf = 0 by continuity and consistency of RD and E .

Lemma 4.2.2. Let O ⊆ Rd be open, D ⊆ ∂O, p ∈ (1,∞), s ∈ (1/p, 1) and
f ∈ Ws,p(O) ∩ Lp(O, d−spD ). Then for any t ∈ (1/p, s) one has that f can
be approximated in Wt,p(O) ∩ Lp(O, d−tpD ) by a sequence (fn)n of functions
vanishing almost everywhere in a neighborhood of D.

Proof. For n ≥ 1 define the cutoff function δn : (0,∞)→ [0, 1] by

δn(x) =


0, if x < 1/n,
nx− 1, if 1/n ≤ x ≤ 2/n,
1, if x > 2/n.

This sequence was already used for a similar purpose in [56, Thm. 3.7] and
it is known from that proof (or distinguishing cases) that

|δn(x)− δn(y)| . 1
x
|x− y| (y ≥ x > 0).(4.2)

Put fn := δn(dD)f . By construction, fn vanishes identically in a neighborhood
of D. Moreover, since δn(dD) converges pointwise and boundedly to 1, and
taking into account that Lp(O, d−spD )∩Lp(O) ⊆ Lp(O, d−tpD ), we get convergence
of fn to f in both Lp(O) and Lp(O, d−tpD ) by Lebesgue’s theorem.
It remains to show convergence in the Wt,p(O)-seminorm. For convenience,
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4. Extension operators for fractional Sobolev spaces

we put ηn := δn(dD) and obtain
∫∫

x,y∈O
|x−y|<1

|(1− ηn)(x)f(x)− (1− ηn)(y)f(y)|p
|x− y|d+tp dx dy

≤
∫∫

x,y∈O
|x−y|<1

|ηn(x)− ηn(y)|p|f(x)|p
|x− y|d+tp dx dy +

∫∫
x,y∈O
|x−y|<1

(1− ηn(y))|f(x)− f(y)|p
|x− y|d+tp dx dy.

Again, the second term goes to zero by Lebesgue’s theorem. In case of
the first term, it is also evident that the integrand goes pointwise almost
everywhere to zero, but we have to show that there exists an integrable bound
for the sequence to apply Lebesgue’s theorem once more. To this end, we
calculate using |ηn(x) − ηn(y)| ≤ 1 and with the aid of (4.2) along with
Lipschitz continuity of dD with constant 1 that

|ηn(x)− ηn(y)| ≤ |ηn(x)− ηn(y)|s . dD(x)−s| dD(x)− dD(y)|s

≤ dD(x)−s|x− y|s.

Hence, the integral over y is not singular anymore and the integral over x can
be estimated by ‖f‖Lp(O,d−spD ).

Corollary 4.2.3. Under the assumptions of Theorem 4.0.1 one has Ws,p(O)∩
Lp(O, d−spD ) ⊆ Ws,p

D (O).

4.3. Hardy’s inequality
To prove Theorem 4.0.3, we show the following version on Rd \D first. Then
the theorem follows readily using boundedness of the extension operator from
Chapter 3. The advantage is that by this decoupling the Hardy inequality
is immediately available whenever there is an extension operator W1,p

D (O)→
W1,p

D (Rd).

Proposition 4.3.1. Let D ⊆ Rd be closed and (d − 1)-regular, and let
p ∈ (1,∞). Then Hardy’s inequality holds for W1,p

D (Rd), that is, for all
f ∈W1,p

D (Rd) holds

∫
Rd

∣∣∣∣∣ fdD
∣∣∣∣∣
p

dx . ‖f‖pW1,p(Rd).
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Before we turn to the proof of this proposition, we show how it implies the
theorem from the introduction.

Proof of Theorem 4.0.3. Let E be the extension operator from Theorem 3.0.2.
Then Proposition 4.3.1 and boundedness yield∫

O

∣∣∣∣∣ fdD
∣∣∣∣∣
p

dx ≤
∫
Rd

∣∣∣∣∣EfdD

∣∣∣∣∣
p

dx . ‖Ef‖pW1,p(Rd) . ‖f‖
p
W1,p(O).

The proof of Proposition 4.3.1 relies on the following Hardy’s inequality with
pure Dirichlet boundary conditions, which is essentially contained in [70], see
also [54].
Proposition 4.3.2. Let O ⊆ Rd with Ahlfors–David regular boundary, where
either O is bounded or ∂O is unbounded. Then we get the estimate∫

O

∣∣∣∣∣ fd∂O
∣∣∣∣∣
p

dx .
∫
O
|∇f |p dx (f ∈ C∞∂O(O)).

The implicit constant depends on geometry only via the implied constants from
Ahlfors–David regularity of ∂O. The inequality extends to W1,p

∂O(O) owing to
Fatou’s Lemma.
Proof of Proposition 4.3.1. Let (Qk)k be a grid of open cubes of diameter 1/4.
We consider the sets Ok := 2Qk \D. Each Ok has an Ahlfors–David regular
boundary where the implicit constants depend only on the (d− 1)-regularity
constants of D and dimension.
To see this, take a ball B centered in ∂Ok with radius r at most 1/2 (which

equals the diameter ofOk). The lower bound follows from the (d−1)-regularity
of ∂(2Qk) or the (d−1)-regularity of D depending on in which part the center
of B lies. The upper bound follows similarly if B doesn’t intersect either
∂(2Qk) or D. Otherwise, say B is centered in ∂(2Qk) and intersects D in x.
Then we estimate Hd−1(B ∩ ∂Ok) ≤ Hd−1(B ∩ ∂(2Qk)) +Hd−1(B(x, 2r)∩D)
and the estimate follows again from the (d− 1)-regularity of the two portions
of the boundary. Note that all constants are uniform in k.
Now take a cutoff function χk which is supported in 2Qk and equals 1 on

Qk. We can essentially use the same cut-off function for each k by translation.
Then we estimate for f ∈W1,p

D (Rd) using Proposition 4.3.2 and the bounded
overlap of (Ok)k that∫

Rd\D

∣∣∣∣∣ fdD
∣∣∣∣∣
p

dx ≤
∑
k

∫
Ok

∣∣∣∣∣ χkfd∂Ok

∣∣∣∣∣
p

dx .
∑
k

‖χkf‖pW1,p(2Qk) . ‖f‖
p
W1,p(Rd).

Note that at the first “.” we crucially use the dependence of the constant in
the Dirichlet Hardy inequality.
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4. Extension operators for fractional Sobolev spaces

4.4. Interpolation with intrinsic spaces
We combine Theorem 4.0.1, Theorem 2.1.7, Theorem 3.0.2 and Theorem 4.0.3
to conclude Theorem 4.0.4.

Proof of Theorem 4.0.4. Throughout, let E denote the extension operator
from Theorem 4.0.1. Recall that E maps into Ws,p

D (Rd).
We start with the inclusion “⊆”. To this end, let f ∈Ws,p(O)∩Lp(O, d−spD ).

Then we get with Theorem 2.1.7 that

Ef ∈ Ws,p
(D)(Rd) = (Lp(Rd),W1,p

D (Rd))s,p.

Here, we put the subscript D on the left-hand side whenever it is meaning-
ful. Consequently, f = (Ef)|O ∈ (Lp(O),W1,p

D (O))s,p. This completes this
inclusion since W1,p

D (O) = W1,p
D (O) owing to Theorem 3.0.2.

Conversely, if f ∈ (Lp(O),W1,p
D (O))s,p, then

Ef ∈ (Lp(Rd),W1,p
D (Rd))s,p ⊆ (Lp(Rd),W1,p(Rd))s,p = Ws,p(Rd).

Restriction to O gives the embedding into Ws,p(O) ⊆ Ws,p(O). For the em-
bedding into Lp(O, d−spD ) we argue similarly using Theorem 4.0.3 and Lp-
interpolation with weights (see [93, Thm. 1.18.5]) to obtain

(Lp(O),W1,p
D (O))s,p ⊆ (Lp(O),Lp(O, d−pD ))s,p = Lp(O, d−spD ).

Note that this inclusion did not use that s 6= 1
p
.

The following example is an elaboration of Example 4.1.3. We construct
an open set O and a Dirichlet part D ⊆ ∂O which are admissible for The-
orem 4.0.4 but which do not fulfill the interior thickness condition in any
neighborhood of the Neumann boundary part ∂O \D.

Example 4.4.1. To construct O, we start with the lower half-space in R2.
We decompose the negative x-axis into dyadic chunks indexed by the integers,
that is, Ik := [−2−k+1,−2−k). For positive k we add a hat to O above Ik with
height len(Ik) and width 2−k len(Ik). Finally, put N := (0,∞) × {0} and
D := ∂O \N .
By Example 3.2.5, Assumption 3.1.1 is satisfied. Moreover, O satisfies the

interior thickness condition in N but not in any neighborhood of N since such
a neighborhood would contain arbitrarily peaked hats. Hence, it only remains
to verify Ahlfors–David regularity for D.
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Let Qk be the closed dyadic cube over Ik. Note that H1(Qk ∩D) ≈ len(Ik)
and that D ⊆ ⋃kQk. We verify Ahlfors–David regularity using cubes instead
of balls and using dyadic side lengths only. So, let x ∈ D, ` = 2m a dyadic
side length and Qk a cube from above that contains x. We compare ` with the
side length of Qk. If ` ≤ 2k, the upper bound follows from the Ahlfors–David
regularity of Qk and its adjacent cubes. Otherwise, Q(x, `) intersects D at
most in ⋃j≤mQj, so by a geometric sum we find the upper bound

H1(Q(x, `) ∩D) ≤
∑
j≤m
H1(Qj ∩D) .

∑
j≤m

2j = 2m+1 ≈ `.

For the lower bound we start with the case ` ≤ 2k−1. Then the lower bound
follows again from the Ahlfors–David regularity of Qk. Otherwise, Q(x, `)
contains Qm−1 and we get the lower bound from this cube.

4.5. On necessary conditions for the existence of
an extension operator

In this final section we consider the necessity of the geometric assumption
in Theorem 4.0.1. We introduce a modified version of the interior thickness
condition in N ⊆ ∂O that degenerates near ∂O \ N in Definition 4.5.1 and
show that this conditions is necessary for Ws,p(O) ∩ Lp(O, d−spD )-extension
domains. This condition also automatically holds whenever Assumption 3.1.1
is satisfied. Finally, we give an example of a geometry that satisfies the
degenerate thickness conditions but is not covered by Theorem 4.0.1.

Definition 4.5.1. Say that O satisfies the degenerate interior thickness con-
dition in N if O ⊆ Rd is open, N ⊆ ∂O and they fulfill

∀x ∈ N, r ≤ min(1, d∂O\N(x)) : |B(x, r) ∩O| & |B(x, r)|.

This condition is necessary for Ws,p(O) ∩ Lp(O, d−spD )-extension operators
as the following proposition shows. The technique is due to Y. Zhou, see [98].

Proposition 4.5.2. Let O ⊆ Rd be open, D ⊆ ∂O be closed, p ∈ (1,∞),
s ∈ (0, 1) and put N := ∂O \ D. If there exists an extension operator E :
Ws,p(O) ∩ Lp(O, d−spD ) → Ws,p(Rd), then O satisfies the degenerate interior
thickness condition in N .

Before we come to the proof we provide a handy lemma needed therein,
see [98, Lemma 2.4].
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4. Extension operators for fractional Sobolev spaces

Lemma 4.5.3. Let O ⊆ Rd be open, p ∈ (1,∞) and s ∈ (0, 1). For x ∈ O
and 0 < t < r ≤ 1 define the cutoff function fr,t on O by

fr,t(y) :=


1, if y ∈ B(x, t) ∩O,
r−|y−x|
r−t , if y ∈ (B(x, r) ∩O) \ B(x, t),

0, if y ∈ O \ B(x, r).

Then one has the estimate

‖fr,t‖Ws,p(O) .
|B(x, r) ∩O|

1
p

(r − t)s ,

where the implicit constant does not depend on x.

Proof of Proposition 4.5.2. We only treat the case sp < d. The necessary
modifications of the proof in [98] become already apparent from this case and
we invite the interested reader to check the other cases himself.
Take x ∈ N and a radius r ≤ min(1, dD(x)). We claim that whenever

0 < t < 1
2 min(1, dD(x)) and b ∈ (0, 1) are such that

|B(x, bt) ∩O| = 1
2 |B(x, t) ∩O|,(4.3)

then

t− bt . |B(x, t) ∩O| 1d .(4.4)

Indeed, we calculate using the fractional Sobolev inequality [31, Thm. 6.5]
that

‖ft,bt‖
L

pd
d−sp (O)

≤ ‖Eft,bt‖
L

pd
d−sp (Rd)

. ‖Eft,bt‖Ws,p(Rd)(4.5)

. ‖ft,bt‖Ws,p(O) + ‖ft,bt‖Lp(O,d−spD ).

If y is in the support of ft,bt then dD(y) ≥ dD(x)−|y−x| ≥ 1
2 dD(x) by choice

of t. This is where the restriction of admissible radii enters the scene. Hence,
we get the estimate

‖ft,bt‖Lp(O,d−spD ) . dD(x)−s|B(x, t) ∩O|
1
p ≤ |B(x, t) ∩O|

1
p

(t− bt)s .

Now, we get a lower bound for the L
pd
d−sp (O)-norm of ft,bt in terms of |B(x, t)∩

O| by the definition of ft,bt and (4.3), and an upper bound if we apply
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4.5. On necessary conditions for the existence of an extension operator

Lemma 4.5.3 to the first summand in the final estimate of (4.5) and use
the previously shown bound for its second term. This gives in summary

|B(x, t) ∩O|
d−sp
pd . ‖ft,bt‖

L
pd
d−sp (O)

.
|B(x, t) ∩O|

1
p

(t− bt)s .

Sorting all terms gives (4.4) as claimed.
To conclude, we define a sequence of “halfing factors” as follows. Put b0 :=

1. Since the function ϕ : b 7→ |B(x, bt) ∩ O| is continuous on [0,∞) for
any radius t in virtue of Lebesgue’s theorem, we inductively find for j ≥ 1
a factor bj such that |B(x, bjr) ∩ O| = 1

2 |B(x, bj−1r) ∩ O|. In particular,
|B(x, bjr)∩O| = 2−j|B(x, r)∩O|. By continuity of ϕ and ϕ(0) = 0 we deduce
that bj is a null sequence. Moreover, with t := bj−1r and b := bj/bj−1 we can
employ (4.4), which leads to the calculation

r =
∑
j≥1

bj−1r − bjr .
∑
j≥0
|B(x, bjr) ∩O|

1
d

.
∑
j≥0

2−j/d|B(x, r) ∩O| 1d ≈ |B(x, r) ∩O| 1d .

Raising to the power of d concludes the proof.

We also verify Definition 4.5.1 in the situation of Assumption 3.1.1.

Proposition 4.5.4. Let O ⊆ Rd be open and D ⊆ ∂O be closed such that
Assumption 3.1.1 holds. Then O satisfies the degenerate interior thickness
condition in ∂O \D.

Proof. For convenience, put N := ∂O \D and let x ∈ N and r an admissible
radius. First, we note that it suffices to consider radii that obey the restriction
r ≤ 1

2 min(δ, λδ, 1) min(1, dD(x)) since we can put C := 1
2 min(δ, λδ, 1) to get

|B(x, r) ∩O| ≥ |B(x,Cr) ∩O| & (Cr)d ≈ rd.

So we assume the aforementioned restriction on r and pick y ∈ B(x, r/8)∩O.
We claim that there exists z ∈ O such that

r/2 ≤ |y − z| ≤ 3r/4.(4.6)

Otherwise, let O′ denote the connected component of O that contains y and
let z ∈ O′. We cannot have |y− z| > 3r/4 since then we could connect y and
z in O′ by a path which would contain a point satisfying (4.6). Hence, O′ ⊆
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4. Extension operators for fractional Sobolev spaces

B(y, r/2) and consequently diam(O′) < r/2 ≤ c. But B(x, r)∩O is connected
and contains y, so B(x, r) ∩ O ⊆ O′ and x ∈ ∂O′, which contradicts (DC) in
Assumption 3.1.1.
To proceed, fix some z ∈ O satisfying (4.6). Due to |y − z| ≤ 3r/4 < δ

there is some ε-cigar γ that connects y with z. By continuity we find w ∈ γ
with |w − y| = 1

2 |y − z|. We calculate the distance of w to D and N . First,
condition (CC) in Assumption 3.1.1 and (4.6) yield

dN(w) ≥ ε|y − z||w − z|
2|y − z| = ε

2 |w − z| ≥
ε

4 |y − z| ≥
ε

8r.

Second, from |w − y| = |y − z|/2 ≤ 3r/8 follows

|w − x| ≤ |w − y|+ |y − x| ≤ 4
8r ≤

1
2 dD(x),

with which we derive

dD(w) ≥ dD(x)− |w − x| ≥ 1
2 dD(x) ≥ r.

Combining both estimates and using that w ∈ O gives B(w, εr/8) ⊆ O ∩
B(x, r). Since |B(w, εr/8)| ≈ rd, the assertion follows.

The following example shows that the condition in Definition 4.5.1 is strictly
weaker compared to the interior thickness condition in N in the sense that
there is a geometry that allows for extension operators (and hence satisfies
the degenerate interior thickness condition), but is not admissible for Theo-
rem 4.0.1 (nor Theorem 3.0.2).

Example 4.5.5. Consider the cusp O := {(x, y) ∈ R2 : x > 0, 0 < y < x2}
and put N := (0,∞) × {0} and D := ∂O \ N . To construct an extension
operator on Ws,p(O) ∩ Lp(O, d−spD ), extend to the upper half-plane by zero
(the calculation is the same as in Section 4.2.2, use that in the mixed case
the connecting straight line intersects D) and extend to the whole space by
reflection (use here that upon reflection the distance of points increases). The
same construction yields a W1,p

D (O)-extension operator. On the contrary, it is
easy to verify that O does not satisfy the interior thickness condition in N .

Remark 4.5.6. Note that the extension operator in Example 4.5.5 decom-
posed (similarly to our extension operator in Theorem 4.0.1) into a zero ex-
tension operator and an extension operator for the pure Neumann case.
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CHAPTER 5

Kato’s square root property: L2–Theory

Let L be a second order elliptic operator in divergence form on an open,
possibly unbounded set O ⊆ Rd, d ≥ 2, with bounded measurable complex
coefficients, formally given by

Lu = −
d∑

i,j=1
∂i(aij∂ju)−

d∑
i=1

∂i(biu) +
d∑
j=1

cj∂ju+ du.(5.1)

Let D be a closed, possibly empty, subset of the boundary ∂O. We com-
plement L with Dirichlet boundary conditions on D and Neumann boundary
conditions on ∂O \D. More generally, L can be an (m×m)-system in which
case u takes its values in Cm and each coefficient is valued in L(Cm).
Let V := W1,2

D (O)m be the W1,2(O)m-closure of smooth functions that van-
ish in a neighborhood of D (Definition 5.1.11). Note that this definition of
W1,2

D (O) coincides with Definition 2.2.6 in virtue of Corollary 5.1.12 under
suitable geometric assumptions, so that the results from Chapter 2 still ap-
ply. The superscript m indicates that we consider Cm-valued functions. As
usual, we interpret L as the maximal accretive operator in L2(O)m associated
with the sesquilinear form a : V × V → C defined by

a(u, v) =
∫
O

d∑
i,j=1

aij∂ju · ∂iv +
d∑
i=1

biu · ∂iv +
d∑
j=1

cj∂ju · v + du · v dx,(5.2)
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5. Kato’s square root property: L2–Theory

which we assume to satisfy for some λ > 0 the (inhomogeneous) Gårding
inequality

Re a(u, u) ≥ λ(‖u‖2
2 + ‖∇u‖2

2) (u ∈ V ).(5.3)

Then L is invertible and there is a unique maximal accretive operator
√
L

in L2(O)m that satisfies (
√
L)2 = L. We give a more detailed account in

Section 5.2. More generally, operators like
√
L arise from functional calculus.

Though we assume some familiarity with this concept, we have supplied the
necessary background for understanding this chapter in Section 1.4.
The Kato problem is to identify the domain of the square root operator as

D(
√
L) = V with equivalent norms. If L is self-adjoint, then this essentially

follows from the (formal) calculation

‖u‖2
V ≈ a(u, u) = (Lu |u)2 = (

√
Lu | (

√
L)∗u)2 = ‖

√
Lu‖2

2,

where the first step uses (5.3), the second step is the definition of L and the
final step uses self-adjointness in a crucial way. Indeed, this can be turned into
a complete proof, Kato’s so-called second representation theorem [69, VI.§2.6].
No such abstract argument can work when L is not self-adjoint [74]. The
problem becomes incomparably harder and tied to deep results in harmonic
analysis. On O = Rd it was eventually solved by Auscher–Hofmann–Lacey–
McIntosh–Tchamitchian in their 2001 breakthrough paper [13] and extended
by four of them to systems [14]. For a historical account and connections to
other fields of analysis the reader can refer to the introduction of [13].
On general open sets O the problem as posed above is wide open till this

day. Applications on sets with “rough” geometry come from various fields
including, with exemplary references, elliptic and parabolic regularity [25,57],
Lions’ non-autonomous maximal regularity problem [1,41] and boundary value
problems [7,11]. This motivates the search for minimal geometric assumptions
that allow to solve the Kato problem. The main result of this chapter improves
on all available results (to be reviewed momentarily) and reads as follows.

Theorem 5.0.1. Let O ⊆ Rd be an open set and D ⊆ ∂O a closed subset of
the boundary. Suppose that D is Ahlfors–David regular and that O is locally
uniform near ∂O \D (Definition 5.1.1). Then D(

√
L) = W1,2

D (O)m holds with
equivalence of norms

‖u‖2 + ‖∇u‖2 ≈ ‖
√
Lu‖2 (u ∈W1,2

D (O)m),

and the implicit constants depend on the coefficients of L only through the
coefficient bounds.
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Here, coefficient bounds refers to the lower bound λ in (5.3) and a pointwise
upper bound Λ for the coefficients. The geometric framework in Theorem 5.0.1
includes the one proposed by Brewster–Mitrea–Mitrea–Mitrea in their influen-
tial paper [26] for treating various aspects of mixed boundary value problems
in vast generality. We have already had a look on it in Assumption 3.2.1
earlier on. It will be discussed in detail in Section 5.1. We do not require
coordinate charts around ∂O \D in any sense and we do not assume that O
satisfies the interior thickness condition

∃c > 0 ∀x ∈ O, r ≤ 1 : |B(x, r) ∩O| ≥ c|B(x, r)|.(5.4)

Those are two main points compared to all earlier results.
Indeed, for pure Neumann boundary conditions (D = ∅) the solution of

the Kato problem was only known on Lipschitz domains [12, 15]. Our as-
sumption reduces to O being an (ε, δ)-domain (with positive radius if it has
infinitely many connected components, see Remark 5.1.5). For example, O
could be the interior of the von Koch snowflake [94, Fig. 3.5]. Pure Dirichlet
conditions (D = ∂O) were first treated in [12] on Lipschitz domains. The
Lions problem on mixed boundary conditions was solved in [15] on a class of
Lipschitz domains if D is a Lipschitz submanifold of ∂O. An elaboration on
their method of proof in [38] yielded the solution on bounded interior thick
sets with Ahlfors–David regular boundary that are locally Lipschitz regular
around ∂O \D.
The proof of Theorem 5.0.1 divides into three steps. They correspond to the

three Sections 5.3 - 5.5. Here, we give an informal overview on the strategy
of proof and to fix ideas it will be somewhat more convenient to reverse the
order of Section 5.3 and Section 5.4.
Some parts of the chapter require that O satisfies (5.4) nonetheless. We

avoid any ambiguity by the following convention. In a context where the
underlying set is interior thick, we use bold letters for the relevant objects
and write for example O instead of O.

Step 1: Dirac operator framework
As many before us, we cast the Kato problem in the abstract first order
framework of perturbed Dirac operators that was introduced by Axelsson–
Keith–McIntosh in their remarkable elaboration of the original proof of the
Kato conjecture [16]. More precisely, we use the refinement in [39] that will al-
low us to work on interior thick sets with porous boundary (Definition 1.3.23).
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5. Kato’s square root property: L2–Theory

The latter holds true under our assumptions (Corollary 5.1.10) and for the
moment let us assume in addition that O is interior thick in the sense of (5.4).
Consequently, we can use the Dirac operator framework as a black box.

In Section 5.4 we explain what is going on “behind the scenes” in more de-
tail, but what basically happens is that harmonic analysis (present due to
the non-smooth coefficients) is decoupled from geometry (present due to the
rough nature of O). The harmonic analysis is taken care of by the Axelsson–
Keith–McIntosh framework. It then turns out that in order to prove our
main theorem, still under the additional assumption (5.4), we only need the
following higher regularity result for the Laplacian with boundary conditions
on O.

Step 2: Higher regularity for the Laplacian
In light of the growing interest in fractional Laplacians in other fields of anal-
ysis this might be of independent interest. The (componentwise) Laplacian
−∆D + 1 corresponds to aij = δij, bi = 0 = cj, d = 1 in (5.1). Definitions of
fractional Sobolev spaces Wα,2(O) and Wα,2

D (O) will be given in Section 5.3.

Theorem 5.0.2. Let O ⊆ Rd be open and interior thick, let D ⊆ ∂O be
closed and Ahlfors–David regular and assume that O is locally uniform near
∂O \D. Then there exists ε ∈ (0, 1

2) such that

−∆D + 1 : W1+s,2
D (O)m →W−1+s,2

D (O)m

is an isomorphism for all s ∈ (−ε, ε). Its fractional power domains in L2(O)
are given by

D((−∆D + 1)α2 ) =
Wα,2

D (O)m if α ∈ (1
2 , 1 + ε),

Wα,2(O)m if α ∈ (0, 1
2).

We give the proof in Section 5.3 below. We remark that the results for s = 0
and α = 1 are elementary consequences of the Lax–Milgram lemma and the
Kato problem for self-adjoint operators, respectively. Hence, we are concerned
with a question of extrapolation. Compared to certain forerunners [15,38,83]
there are two new ingredients that allow us to relax the required geometric
quality of O: Improved complex interpolation theory for (fractional) Sobolev
spaces with boundary conditions, developed in Chapter 2, see also [20], and
Netrusov’s spectral synthesis [2, Ch. 10] replacing more naive measure theo-
retic considerations in [38].

128



5.1. Discussion of the geometric setup

Step 3: Eliminating the interior thickness condition
At this stage the proof of Theorem 5.0.1 has been completed under the addi-
tional assumption (5.4). The final step, carried out in Section 5.5, consists in
eliminating this assumption by an ad hoc method.
First, we observe that if an open set O can be written as a countable union

of disjoint open sets O = ⋃
iOi in such a way that the canonical identification

L2(O)m ∼=
⊗
i

L2(Oi)m

also gives rise to a decomposition of form domains

W1,2
D (O)m ∼=

⊗
i

W1,2
Di

(Oi)m,

then a divergence form operator L on O with Dirichlet boundary part D
inherits a decomposition of its functional calculus as

f(L) ∼=
⊗
i

f(Li),

where Li := L|Oi is subject to Dirichlet conditions on Di := D ∩ ∂Oi. Ob-
viously we are somewhat sketchy and some caution is needed to make such
decomposition precise, see Section 5.5. Solving the Kato problem for the triple
(L,O,D) will therefore be equivalent to solving it for all triples (Li, Oi, Di)
with uniform control of the constants in i (Proposition 5.5.8).
This being said, we reverse the order of reasoning. We let (L0, O0, D0) :=

(L,O,D) be the original operator in Theorem 5.0.1 and construct an open
set O1 disjoint to O with Dirichlet part D1 := ∂O1 such that O := O0 ∪ O1
with Dirichlet part D := D0∪D1 is a “fattened version” of (O,D): It has the
same geometric quality and additionally satisfies (5.4). Then we set L0 := L

and L1 := −∆∂O1 + 1. In the interior thick setting we have already solved
the Kato problem. Hence, we have the solution for (L,O,D) and obtain the
solution for (L,O,D) by restriction to that triple.
The results of this chapter were published in a joint paper with Moritz

Egert and Robert Haller-Dintelmann in [21].

5.1. Discussion of the geometric setup

5.1.1. Locally uniform domains
Definition 5.1.1. Let ε ∈ (0, 1] and δ ∈ (0,∞]. Let O ⊆ Rd be open and
N ⊆ ∂O. Set Nδ := {z ∈ Rd : d(z,N) < δ}. Then O is called locally an

129



5. Kato’s square root property: L2–Theory

(ε, δ)-domain near N if the following properties hold.

(i) All points x, y ∈ O ∩ Nδ with |x − y| < δ can be joined in O by an
ε-cigar with respect to ∂O ∩Nδ, that is to say, a rectifiable curve γ ⊆ O

of length `(γ) ≤ ε−1|x− y| such that

d(z, ∂O ∩Nδ) ≥
ε|z − x| |z − y|
|x− y|

(z ∈ γ).(5.5)

(ii) O has positive radius near N , that is, there exists λ > 0 such that all
connected components O′ of O with ∂O′∩N 6= ∅ satisfy diam(O′) ≥ λδ.

If the values of ε, δ, c need not be specified, then O is simply called locally
uniform near N .

Remark 5.1.2. Definition 5.1.1 describes a quantitative local connectivity
property of O near N . For an illustration of ε-cigars with respect to ∂O the
reader can refer for instance to [94, Fig. 3.1]. Having positive radius is of
course only a restriction if O has infinitely many connected components.

Remark 5.1.3. The positive radius condition is scale invariant in the sense
that δ =∞ forces O to be connected and unbounded in the case N 6= ∅. We
will only need this scale invariant formulation later on in Chapter 6. Hence,
we assume δ < ∞ for the rest of this chapter. In particular, the positive
radius condition then reduces to the existence of a constant c > 0 such that
all connected components O′ of O with ∂O′ ∩N 6= ∅ satisfy diam(O′) ≥ c.

Condition (5.5) originates from Jones’ influential paper [65]. For his (ε, δ)-
domains he requires that all x, y ∈ O with |x − y| < δ can be joined by
an ε-cigar with respect to ∂O. Locally (ε, δ)-domains near a part of the
boundary have been pioneered in [26] using (ε, δ)-domains as charts around
N in analogy with how Lipschitz graphs give rise to the notion of sets with
Lipschitz boundary. Our novel definition avoids charts and is inspired by
Assumption 3.1.1. Let us give a concise comparison, which also includes the
proof of Proposition 3.2.2.

Proposition 5.1.4. Let O ⊆ Rd be an open set and let N ⊆ ∂O.

(i) If O is locally an (ε, δ)-domain near N in the sense of Assumption 3.2.1
(which is Definition 3.4 in [26]), then it is locally uniform near N in
the sense of Definition 5.1.1.
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(ii) If O is locally uniform near N in the sense of Definition 5.1.1, then
(O,N) is an admissible geometry for Assumption 3.1.1 in Chapter 3.

Proof. We start with (i). Besides further quantitative conditions, being an
(ε, δ)-domain near N in the sense of Assumption 3.2.1 means that there exist
(at most) countably many open sets Ui and constants r, c > 0 such that

(a) for each x ∈ N there exists some i such that B(x, 8r) ⊆ Ui and

(b) for each i there is an (ε, δ)-domain Oi with connected components all of
diameter at least c such that O ∩ Ui = Oi ∩ Ui.

We take δ′ := min(δ, εr). Note that in particular δ′ ≤ r. We show that O
is locally an (ε, δ′)-domain near N in the sense of Definition 5.1.1. To this
end, let x, y ∈ O ∩ Nδ′ be such that |x − y| < δ′. According to (a) there is
a ball B of radius r centered in N and an index i such that x, y ∈ 2B and
8B ⊆ Ui. Due to (b) we have x, y ∈ Oi. Consequently, there is a rectifiable
curve γ ⊆ Oi of length `(γ) ≤ ε−1|x− y| that joins x to y in such a way that

d(z, ∂Oi) ≥
ε|z − x| |z − y|
|x− y|

(z ∈ γ).(5.6)

From `(γ) < r we obtain γ ⊆ 3B and (b) yields γ ⊆ Oi ∩ Ui ⊆ O. Given
z ∈ γ, we let z′ be a point in ∂O ∩Nδ′ closest to z. We have |z − z′| ≤ 3r
since B is centered in N , which shows that z′ ∈ ∂O ∩ 6B. Now, (b) yields
z′ ∈ ∂Oi. Thus we proved d(z, ∂Oi) ≤ d(z, ∂O∩Nδ′) and by (5.6) we see that
γ is an ε-cigar with respect to ∂O ∩Nδ′ .
Let O′ be a connected component of O with ∂O′ ∩ N 6= ∅. We complete

the proof of (i) by demonstrating diam(O′) ≥ min(2r, c). Suppose we have
diam(O′) < 2r. As above, we find a ball B and an index i such that O′ ⊆ 2B
and 8B ⊆ Ui. From (b) we obtain that O contains all x ∈ Oi with d(x,O′) <
6r and that O′ ⊆ Oi. In particular, O′ is an open and connected subset of Oi.
Since O′ is a maximal connected subset of O, we also get that no continuous
curve γ ⊆ Oi can join points from Oi \ O′ and O′. Hence, O′ is a connected
component of Oi and diam(O′) ≥ c follows.
Let us prove (ii). Besides O having positive radius near N , for (O,N)

being an admissible geometry for Assumption 3.1.1 we need that there exists
ε′, δ′, K > 0 such that

(c) all x, y ∈ O with |x−y| < δ′ can be joined by an ε′-cigar γ with respect to
N , not necessarily contained in O, such that k(z,O) := infO k(z, ·) ≤ K
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for all z ∈ γ, where k(· , ·) denotes the hyperbolic distance

k(x′, y′) := inf
γ′ ⊆ Rd \N rect.

curve from x′ to y′

∫
γ′

d(z′, N)−1 | dz′|.

Let ε, δ be as in Definition 5.1.1. We check (c) for δ′ := δ
2 , ε

′ := ε and K := 1.
If x, y ∈ Nδ, then we can use the ε-cigar provided by Definition 5.1.1, on
noting that for z ∈ γ ⊆ O we have k(z,O) = 0 and d(z, ∂O ∩Nδ) ≤ d(z,N).
Now, suppose x /∈ Nδ. Let γ be the straight line segment to y and take any
z ∈ γ. First,

ε|z − x||z − y|
|x− y|

≤ ε|x− y| < δ

2 ≤ d(x,N)− δ

2 ≤ d(z,N)

shows that γ is an ε-cigar with respect to N . Second, on taking γ′ as the
segment from z to x in the definition of hyperbolic distance, we find k(z,O) ≤
k(z, x) ≤ `(γ′)2

δ
≤ 1.

Remark 5.1.5. By definition, (O, ∂O) is an admissible geometry in [19] if
and only if O is an (ε, δ)-domain with positive radius. Thus, all introduced
notions of locally (ε, δ)-domains near the full boundary imply that O has
positive radius. This observation sharpens [26, Lem. 3.7].

Remark 5.1.6. The proof moreover shows that if δ =∞ in Definition 5.1.1
then the same is true for Assumption 3.1.1.

Bounded Lipschitz domains are locally uniform, see [38, Rem. 5.11] or [94,
Prop. 3.8]. In particular, the local (ε, δ)-condition near N in the sense of
[26] already comprises Lipschitz regular sets near N , see Proposition 3.2.4.
The standard example of a fractal locally uniform domain is the von Koch
snowflake [94, Fig. 3.5].

5.1.2. Corkscrew condition and porosity
We establish the corkscrew condition in our context. As before, we write Nδ

for the set of points with distance to N less than δ.

Proposition 5.1.7. Suppose that O ⊆ Rd is open and locally an (ε, δ)-domain
near N ⊆ ∂O. Then there exists a constant κ ∈ (0, 1] such that:

∀x ∈ Nδ/2 ∩O, r ≤ 1 ∃z ∈ B(x, r) : B(z, κr) ⊆ O ∩ B(x, r).
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Proof. Let C := 1
2 min(δ, c, 1). It suffices to obtain some κ that works for all

radii r ≤ C and all x ∈ Nδ/2 ∩ O. Indeed, for r ≤ 1 we find z ∈ B(x,Cr) ⊆
B(x, r) with B(z, (κC)r) ⊆ O ∩ B(x, r), so we only need to use κC instead of
κ. Finally, with a constant strictly smaller than κC and a limiting argument,
we can allow all x ∈ Nδ/2 ∩O.
Let x ∈ Nδ/2 ∩O. We claim that there is y ∈ O satisfying r

2 ≤ |x− y| ≤
3r
4 .

Suppose this was not true and let O′ be the connected component of O that
contains x. Then O′ ⊆ B(x, r2) ⊆ Nδ and we also have B(x, δ) ∩Nδ ∩O ⊆ O′

since all points in the left-hand set can be joined to x via a curve in O. The
first inclusion gives diam(O′) < c, whereas the second one gives ∂O′ ∩N 6= ∅
in contradiction with Definition 5.1.1.
We fix any y ∈ O as above. Then |x− y| ≤ δ

2 and in particular y ∈ Nδ ∩O.
Let γ ⊆ O be the joining ε-cigar with respect to ∂O ∩ Nδ. By continuity
we pick z ∈ γ with |z − x| = 1

2 |x − y| and verify the required properties for
κ := ε

8 . First, we have B(z, κr) ⊆ B(x, r) by construction. Second, r ≤ δ
2

yields d(z,Rd \Nδ) ≥ δ
2−|x−z| ≥

r
2 . Third, |z−y| ≥

1
2 |x−y| and |x−y| ≥

r
2

plugged into (5.5) give d(z, ∂O ∩ Nδ) ≥ κr. The last two bounds imply
B(z, κr) ⊆ Rd \ ∂O. But as z ∈ O we must have B(z, κr) ⊆ O.

Remark 5.1.8. If δ =∞ and N 6= ∅, then there exists a constant κ ∈ (0, 1]
such that

∀x ∈ O, r > 0 ∃z ∈ B(x, r) : B(z, κr) ⊆ O ∩ B(x, r).

Indeed, the positive radius condition then forces O to be a connected and
unbounded open set. In particular, there is y ∈ O satisfying r/2 ≤ |x− y| ≤
3r/4. Connect x and y by an ε-cigar γ. By continuity, there is z ∈ γ with
|z−x| = 1

2 |x−y|. Put κ := ε/8. By the triangle inequality, B(z, κr) ⊆ B(x, r).
Also, it follows from (5.5) that d(z, ∂O) = d(z, ∂O ∩ Nδ) ≥ κr. Hence,
B(z, κr) ⊆ Rd \ ∂O and z ∈ O lets us conclude B(z, κr) ⊆ O ∩ B(x, r).

The property above is closely related to porosity in the following sense.

Definition 5.1.9. A set E ⊆ Rd is porous if there exists κ ∈ (0, 1] with the
property that:

∀x ∈ E, r ≤ 1 ∃z ∈ B(x, r) : B(z, κr) ⊆ B(x, r) \ E.

Proposition 5.1.7 entails in particular that N is porous. As a non-trivial ex-
ample let us mention that Ahlfors–David regular sets are porous by Lemma A.1.7.
This leads to the following important corollary of Proposition 5.1.7.
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Corollary 5.1.10. Under the assumptions of Theorem 5.0.1 the full boundary
∂O is porous.

Proof. In view of the examples given above, the claim amounts to showing
that the union of two porous sets E0, E1 is again porous. To this end, start
without loss of generality with a ball B centered in E0 and obtain a ball B′ ⊆
B\E0 with comparable radius. Then either 1

2B
′ ⊆ B\(E0∪E1) or 1

2B
′∩E1 6=

∅. In the first case we are done and in the second case porosity of E1, applied
with r = 1

2 r(B′) and x an intersection point, furnishes a comparably sized
ball B′′ ⊆ B′ \ E1 ⊆ B \ (E0 ∪ E1).

5.1.3. Sobolev extensions

The Hilbert space W1,2(O) on an open set O ⊆ Rd is the collection of all
u ∈ L2(O) such that ∇u ∈ L2(O)d with norm

‖u‖W1,2(O) :=
(
‖u‖2

L2(O) + ‖∇u‖2
L2(O)d

)1/2
.(5.7)

We introduce the subspace of functions that vanish on a subset of O as follows.

Definition 5.1.11. Let O ⊆ Rd be open and D ⊆ O be closed. The Hilbert
space W1,2

D (O) is the W1,2(O)-closure of the set of test functions

C∞D (O) :=
{
u|O : u ∈ C∞0 (Rd) and d(supp(u), D) > 0

}
.

For pure Dirichlet conditions we recover W1,2
0 (O) = W1,2

∂O(O). If O is an
(ε, δ)-domain with positive radius, then Jones’ extension operator and density
of C∞0 (Rd) in W1,2(Rd) allows to obtain W1,2(O) = W1,2

∅ (O). In view of
Proposition 5.1.4.(ii) we may state a special case of Theorem 3.0.2 in the
following

Corollary 5.1.12. Let O ⊆ Rd be open and D ⊆ ∂O be closed. If O is
locally uniform near ∂O\D, then there is a bounded linear extension operator
E : W1,2

D (O)→W1,2
D (Rd).

There are further natural choices for the test function class C∞D (O) in Def-
inition 5.1.11 that all lead to the same W1,2(O)-closure, see Section 3.6.
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5.2. Definition of the elliptic operator
Throughout, we assume that O ⊆ Rd is open and D ⊆ ∂O is closed. Identi-
fying L2(O)m with its anti-dual space (L2(O)m)∗, we have dense embeddings

V = W1,2
D (O)m ⊆ L2(O)m ⊆ (W1,2

D (O)m)∗.

We assume that the coefficients aij, bi, cj, d : O → L(Cm) in (5.1) are bounded
and measurable. We group them as A := (aij)ij, b := (bi)i and c := (cj)j in
the coefficient matrix d c

b A

 : O → L(Cm)(1+d)×(1+d),(5.8)

and we introduce for a Cm-valued function u the gradient ∇u := (∂iu)i as a
vector in (Cm)d. Here, i and j always refer to column and row notation, re-
spectively. With this notation, the sesquilinear form in (5.2) can be rewritten
as

a : V × V → C, a(u, v) =
∫
O

d c

b A


 u

∇u

 ·
 v

∇v

 dx.(5.9)

Our ellipticity assumption is the lower bound (5.3). Note also that (‖ · ‖2
2 +

‖∇ · ‖2
2)1/2 is the Hilbert space norm on W1,2

D (O)m.
The Lax-Milgram lemma associates with a the bounded and invertible op-

erator

L : W1,2
D (O)m → (W1,2

D (O)m)∗, 〈Lu, v〉 = a(u, v).

We define L to be the maximal restriction of L to an operator in L2(O)m.
Then L is an invertible, maximal accretive, sectorial operator in L2(O) of
some angle ω ∈ [0, π/2), see [53, Prop. 7.3.4]. The adjoint L∗ is associated in
the same way with a∗(u, v) := a(v, u), see [69, Thm. VI§2.5]. Consequently,
L is self-adjoint when the matrix in (5.8) is Hermitian.
The square root

√
L is defined via the sectorial functional calculus for L. It

is invertible and maximal accretive [53, Cor. 7.1.13]. In particular, it coincides
with Kato’s original definition of the square root [69, Thm. V§3.35] as the
unique maximal accretive operator in L2(O)m that satisfies (

√
L)2 = L.
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5. Kato’s square root property: L2–Theory

It will be convenient to write L as a composition of differential and multi-
plication operators, more in the spirit of the formal definition (5.1). To this
end, we introduce the closed and densely defined operator

∇D : W1,2
D (O)m ⊆ L2(O)m → L2(O)dm, ∇Du = ∇u(5.10)

and let − divD be its (unbounded) adjoint. In view of (5.9) it follows that

L =
[
1 − divD

] d c

b A


 1

∇D

(5.11)

with maximal domain in L2(O)m. Integration by parts reveals divD(ui)i =∑d
i=1 ∂iui for (ui)i ∈ (C∞0 (O)m)d but in this generality no explicit description

of D(divD) is available.

5.3. Higher regularity for fractional powers of the
Laplacian

The goal of this section is to show Theorem 5.0.2, thereby accomplishing
Step 2 from the introduction. In the whole section we fix O and D satisfying
the assumptions from Theorem 5.0.2. It suffices to treat the case m = 1 since
−∆D in L2(O)m acts componentwise. We adopt the convention that function
spaces without reference to an underlying set are understood on the whole
space, e.g. we write W1,2 instead of W1,2(Rd).

5.3.1. Fractional Sobolev spaces on open sets with
vanishing trace condition

To make this chapter as self-contained as possible, we recall the (fractional)
Sobolev spaces of regularity s ∈ (0, 3

2) in the Hilbertian case. Whereas this is
a classical topic on Rd and was presented in Section 1.2 in the preliminaries,
different definitions suiting different purposes are possible on O. We follow
the treatment from Chapter 2 with a focus on interpolation theory.
If s ∈ (0, 1), then Ws,2 consists of all u ∈ L2 such that

‖u‖2
Ws,2 := ‖u‖2

L2 +
∫∫

x,y∈Rd
|x−y|<1

|u(x)− u(y)|2
|x− y|d+2s dx dy <∞.
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If s ∈ (0, 1
2), then W1+s,2 consists of all u ∈ L2 with ‖u‖2

W1+s,2 := ‖u‖2
L2 +

‖∇u‖2
Ws,2 < ∞. It will be convenient to set W0,2 := L2. It follows from the

structure of the norms that these spaces are Hilbert spaces and that ∇ maps
W1+s,2 into Ws,2. The Bessel potential space

Hs,2 :=
{
u ∈ L2 : ‖u‖Hs,2 := ‖(1−∆) s2u‖L2 <∞

}
(5.12)

coincides with Ws,2 by [93, Sec. 2.4.2. Rem. 2]. Here, ∆ is the Laplacian in Rd.
Since D is a (d − 1)-set, see Remark 1.3.11 for this terminology, a ver-

sion of the Lebesgue differentiation theorem allows us to define traces on D.
The following is a weakened version of Proposition 2.2.1 that suffices for our
purpose.

Proposition 5.3.1. Let s ∈ (1
2 ,

3
2) and u ∈ Ws,2. For Hd−1-almost every

x ∈D the limit

(RDu)(x) := lim
r→0

1
|B(x, r)|

∫
B(x,r)

u(y) dy

exists. The restriction operator RD maps Ws,2 boundedly into L2(D,Hd−1).

With the trace operator at hand, we introduce the closed subspace Ws,2
D of

Ws,2 by

Ws,2
D :=

{
u ∈Ws,2 : RDu = 0

}
.

In the case s = 1 this notion is consistent with Definition 5.1.11, see Lemma 2.2.5.
Finally, we denote the distributional restriction to O by |O and define frac-

tional Sobolev spaces on O by restriction. Let s ∈ [0, 3
2) and t ∈ (1

2 ,
3
2). Put

Ws,2(O) := {u|O : u ∈ Ws,2} and Wt,2
D (O) := {u|O : u ∈ Wt,2

D } and equip
them with quotient norms.

Remark 5.3.2. These spaces are again Hilbert spaces by construction as
quotients of Hilbert spaces. Since O is interior thick, we have that Wt,2

D (O)
is a closed subspace of Wt,2(O) with an equivalent norm, see Lemma 2.2.11.
As a cautionary tale, let us stress that in the context of this section W1,2(O)
is embedded into but possibly not equal to the collection of all u ∈ L2(O)
with ∇u ∈ L2(O)d and norm (5.7). However, as a consequence of Corol-
lary 5.1.12, the definition of W1,2

D (O) above coincides with the original one
from Definition 5.1.11 up to equivalent norms.
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Spaces of negative smoothness are defined by duality extending the inner
product on L2(O). For s ∈ [0, 3

2) and t ∈ (1
2 ,

3
2) let W−s,2(O) and W−t,2

D (O)
be the anti-dual spaces of Ws,2(O) and Wt,2

D (O), respectively.
We turn our focus to the density of test functions in these spaces. The

following proposition follows as a special case of Netrusov’s Theorem [2,
Thm. 10.1.1] if one replaces the appearing capacities by the Hausdorff mea-
sure using [2, Thm. 5.1.9]. To make the statement more concise, we use the
concept of Hausdorff co-dimension, defined by

codimH(E) := d− dimH(E),
where

dimH(E) := inf
{
s ∈ (0, d] : Hs(E) = 0}

is the Hausdorff dimension of E ⊆ Rd. For more information take a look at
Section 1.3.2.
Proposition 5.3.3 (A Version of Netrusov’s Theorem). Let 0 < s < d

2 and
let E ⊆ Rd be closed. If 2s < codimH(E), then C∞E is dense in Ws,2.
In order to show that this version of Netrusov’s Theorem is applicable in

our setting, we use the elementary covering lemma for porous sets presented
in Lemma A.1.8.
Proposition 5.3.4. There exists 0 < s0 ≤ 1

2 such that C∞∂O(O) is dense in
Ws,2(O) and the zero extension operator E0 : Ws,2(O)→Ws,2 is bounded for
0 < s < s0.
Proof. Since ∂O is porous by Corollary 5.1.10, we can pick C ≥ 1 and
0 < t < d as in Lemma A.1.8. We take 0 < s < 1 such that 2s < d − t.
Then, let B be some ball centered in ∂O with r(B) = 1 and let 0 < r < 1.
Given (Bi)i a covering of ∂O ∩ B provided by the lemma mentioned above
and ` ∈ (t, d), we estimate

H`
r(∂O ∩B) ≤

∑
i

r(Bi)` = #i r
` ≤ Cr`−t.

Taking the limit as r → 0, we arrive at H`(∂O∩B) = 0. Finally, a countable
covering of ∂O by such balls yields H`(∂O) = 0, so by definition we have
dimH(∂O) ≤ t and therefore 2s < codimH(∂O). Now, Netrusov’s Theorem
gives density of C∞∂O in Ws,2 and the first claim follows by restriction to O.
Boundedness of the zero extension operator for s sufficiently small follows

from a result of Sickel presented in Proposition 2.2.14, take Example 2.2.13
into account. Inspecting the proof of Lemma A.1.8 reveals that the same
range of s as before would work but we do not need such precision.
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5.3.2. Interpolation scales
Some general background on interpolation can be found in Section 1.1. The
following notion of interpolation scale comprises a particular easy way to use
interpolation theory. We will see below that particularly nice interpolation
couples induce interpolation scales.

Definition 5.3.5. Let I ⊆ R be an interval and for each i ∈ I let Hi be a
Hilbert space. Call (Hi)i a complex interpolation scale if whenever i0 < i1,
then Hi1 ⊆ Hi0 with dense and continuous inclusion and

[Hi0 , Hi1 ]θ = H(1−θ)i0+θi1(5.13)

for all θ ∈ (0, 1) up to equivalent norms.

We could have introduced a similar notion for (θ, 2)-real interpolation, but
it is also a good opportunity to note that this coincides with θ-complex inter-
polation when working with Hilbert spaces [61, Cor. C.4.2.]. We will freely
use this fact. If H0, H1 are Hilbert spaces with dense inclusion H1 ⊆ H0, then
([H0, H1]θ)θ∈[0,1] is a complex interpolation scale, see [93, Sec. 1.9.3. Thm. (c)
& (d)] and [93, Sec. 1.10.3. Thm. 2]. In this context (5.13) is called reiteration
in the literature and we use the convention [H0, H1]j = Hj for j = 0, 1.
For the proof of Theorem 5.0.2 we need the following interpolation scales:

(a) (Ws,2
D (O))s∈( 1

2 ,
3
2 ), (b) (Ws,2

D (O))s∈(− 3
2 ,−

1
2 ),

(c) (D((1−∆D) s2 ))s∈[0,∞).

Since 1−∆D is self-adjoint we obtain (c) from [53, Thm. 6.6.9 & Cor. 7.1.6].
Also, (b) follows from (a) by duality [93, Sec. 1.11.2]. Parts (a) uses the
standing geometric assumptions and has been obtained in Theorem 2.1.5. It
will be important in the proof of Theorem 5.0.2 to identify some spaces in (c)
with fractional Sobolev spaces using Theorem 2.1.7.

5.3.3. Mapping properties for 1−∆D

We start with mapping properties for the distributional gradient on spaces of
fractional smoothness.

Lemma 5.3.6. Let s, t > 0 satisfy t < 1
2 and s < s0, where s0 was determined

in Proposition 5.3.4. Then ∇ is a bounded operator W1+t,2(O) → Wt,2(O)d
and W1−s,2(O)→W−s,2(O)d.
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Proof. For the first claim we simply note that ∇ : W1+t,2 → (Wt,2)d is
bounded and that ∇Eu ∈ (Wt,2)d is an extension of ∇u if Eu ∈W1+t,2 is an
extension of u ∈W1+t,2(O).
For the second claim let u ∈ W1−s,2(O) and let Eu ∈ W1−s,2 be some

extension of u. Let i = 1, . . . , d. Given ϕ ∈ C∞∂O(O), we first rewrite the
duality pairing as

−〈∂iu, ϕ〉 = (u | ∂iϕ)L2(O)

= (Eu | E0∂iϕ)L2

= (Eu | ∂iE0ϕ)L2

=
(
(1−∆) 1−s

2 Eu
∣∣∣ ∂i(1−∆)− 1

2 (1−∆) s2E0ϕ
)

L2
,

where we used again the fractional powers of the Laplacian on Rd and com-
muted the respective Fourier multiplication operators. Since the Riesz trans-
form ∂i(1 − ∆)− 1

2 is bounded on L2 by Plancherel’s theorem and the Bessel
spaces in (5.12) coincide with the fractional Sobolev spaces, we obtain

|〈∂iu, ϕ〉| . ‖Eu‖W1−s‖E0ϕ‖Ws,2

. ‖Eu‖W1−s‖ϕ‖Ws,2(O),

where the final step is due to Proposition 5.3.4. By passing to the infimum over
all extensions Eu we arrive at |〈∂iu, ϕ〉| . ‖u‖W1−s,2(O)‖ϕ‖Ws,2(O). But since
C∞∂O(O) is dense in Ws,2(O) by Proposition 5.3.4, this shows ∂iu ∈W−s,2(O)
with ‖∂iu‖W−s,2(O) . ‖u‖W1−s,2(O).

Proposition 5.3.7. Let 0 < s < s0 with s0 as in Proposition 5.3.4. Then
1 − ∆D : W1,2

D (O) → W−1,2
D (O) restricts/extends to a bounded operator

W1±s,2
D (O)→W−1±s,2

D (O).

Proof. By definition, we have

〈(1−∆D)u, v〉 = (u | v)2 + (∇u | ∇v)2 (u, v ∈W1,2
D (O)).

If in addition u ∈ W1±s,2
D (O) and v ∈ W1∓s,2

D (O), then we control the first
part of the right-hand side by

|(u | v)2| ≤ ‖u‖2‖v‖2 ≤ ‖u‖W1±s,2
D (O)‖v‖W1∓s,2

D (O),

whereas for the second part we first use that the W±s,2(O) - W∓s,2(O) duality
extends the inner product on L2(O) and then apply Lemma 5.3.6 to give

|(∇u | ∇v)2| ≤ ‖∇u‖W±s,2(O)‖∇v‖W∓s,2(O) . ‖u‖W1±s,2
D (O)‖v‖W1∓s,2

D (O).
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5.3. Higher regularity for fractional powers of the Laplacian

By virtue of the scale (a) from Section 5.3.2 the fractional Sobolev spaces
form a hierarchy of densely included spaces. This yields the claim.

We continue by recalling an abstract extrapolation result due to S̆nĕıberg
[9, 91].

Proposition 5.3.8. Let a < b, let (Hi)i∈[a,b] and (Ki)i∈[a,b] be complex inter-
polation scales and let T : Ha → Ka be a bounded linear operator that is also
Hb → Kb bounded. Then the set {i ∈ (a, b) | T : Hi → Ki is an isomorphism}
is open.

This enables us to complete the first part of Theorem 5.0.2 through the
following

Proposition 5.3.9. There exists ε ∈ (0, 1
2) such that 1 − ∆D is an isomor-

phism between W1+s,2
D (O) and W−1+s,2

D (O) for all s ∈ (−ε, ε).

Proof. We define β := 1
2s0 and I = [−β, β]. According to Proposition 5.3.7,

1−∆D extends to a bounded operator W1−β,2
D (O)→W−1−β,2

D (O). We denote
this extension by T and the same proposition shows that T also restricts to
a bounded operator W1+β,2

D (O)→W−1+β,2
D (O). From Section 5.3.2 we know

that (W1+s,2
D (O))s∈I and (W−1+s,2

D (O))s∈I are complex interpolation scales.
We know by the Lax–Milgram lemma that s = 0 is contained in the isomor-
phism set in S̆nĕıberg’s Theorem, thus the claim follows.

5.3.4. Domains of fractional powers of the Laplacian
In this section we complete the proof of Theorem 5.0.2.

Proof of Theorem 5.0.2. In view of Proposition 5.3.9 it only remains to deter-
mine the fractional power domains in L2(O). The starting point is that 1−∆D

is a self-adjoint operator and therefore we have D((1−∆D) 1
2 ) = W1,2

D (O) by
the Kato property for self-adjoint operators. Combining Proposition 2.1.7 and
the interpolation scale (c) in Section 5.3.2 we obtain

D((1−∆D)α2 ) =
Wα,2

D (O) (if α > 1/2)
Wα,2(O) (if α < 1/2)

for α ∈ [0, 1], all with equivalent norms. For the extrapolation we decompose
fractional powers of 1−∆D above 1

2 into the inverse of the full operator and
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5. Kato’s square root property: L2–Theory

fractional powers of lower order. Since the fractional powers of 1 − ∆D are
invertible, see Example 1.4.4,

(1−∆D) 1−α
2 : W1−α,2

D (O)→ L2(O)

is an isomorphism for α ∈ [0, 1
2). Using duality and self-adjointness, we more-

over get that (1 − ∆D) 1−α
2 extends to an isomorphism between L2(O) and

W−1+α,2
D (O). In particular, with ε from Proposition 5.3.9 and α ∈ (0, ε),

(1−∆D) 1−α
2 maps into the domain of the extrapolated Lax–Milgram isomor-

phism. On the dense subset D((1−∆D) 1−α
2 ) of L2(O) we have the decompo-

sition
(1−∆D)− 1+α

2 = (1−∆D)−1(1−∆D) 1−α
2 .

Again by example 1.4.4, the left-hand side is an isomorphism from L2(O) onto
D((1 − ∆D) 1+α

2 ). But the right-hand side extends to an isomorphism onto
W1+α,2
D (O), which reveals that indeed D((1−∆D) 1+α

2 ) = W1+α,2
D (O).

5.4. Proof of Theorem 5.0.1 on interior thick sets
This section corresponds to Step 1 of the introduction. Throughout we assume
that O ⊆ Rd is an open and interior thick set, that D ⊆ ∂O is a closed and
Ahlfors–David regular portion of its boundary, and that O is locally uniform
near ∂O \D. The proof heavily relies on [39], which can essentially be used
as a black box, but nonetheless the reader is advised to keep a copy of that
paper handy.

5.4.1. The idea of Axelsson–Keith–McIntosh
On the Hilbert space H := L2(O)m×L2(O)dm×L2(O)m introduce the closed
operators with maximal domain

Γ :=


0 0 0

1 0 0

∇D 0 0

 , B1 :=


1 0 0

0 0 0

0 0 0

 , B2 :=


0 0 0

0 d c

0 b A

 ,(5.14)

where∇D was defined in (5.10) and − divD is its adjoint. Then define the per-
turbed Dirac operator ΠB := Γ +B1Γ∗B2 on D(ΠB) := D(Γ) ∩D(B1Γ∗B2).
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It follows that

ΠB =


0 0 0

1 0 0

∇D 0 0

+


0 1 − divD

0 0 0

0 0 0




0 0 0

0 d c

0 b A

 , Π2
B =


L 0 0

0 ∗ ∗

0 ∗ ∗

 .

Here, coefficients are identified with the corresponding multiplication opera-
tors and, owing to (5.11), the second order operator L with correct domain
appears. The precise structure of the asterisked entries is not needed. The
operators in (5.14) have the following properties.

(H1) Γ is nilpotent, that is, closed, densely defined and satisfies R(Γ) ⊆ N(Γ).

(H2) B1 and B2 are defined on H. There exist κi, Ki ∈ (0,∞), i = 1, 2, such
that

Re(B1U |U)2 ≥ κ1‖U‖2
2 (U ∈ R(Γ∗)),

Re(B2U |U)2 ≥ κ2‖U‖2
2 (U ∈ R(Γ)),

‖BiU‖2 ≤ Ki‖U‖2 (U ∈ H).

(H3) B2B1 maps R(Γ∗) into N(Γ∗) and B1B2 maps R(Γ) into N(Γ).

Indeed, in (H2) we can take κ1 = 1 and κ2 = λ, see (5.9) and also (5.3).
Abstract Hilbert space theory therefore yields that ΠB is bisectorial [16,
Prop. 2.5] and that the unperturbed Dirac operator Π := Γ + Γ∗ is self-
adjoint [16, Cor. 4.3].
Suppose that ΠB even has a bounded H∞-calculus on R(ΠB) ⊆ H. Then

D(
√

Π2
B) = D(ΠB) follows with equivalent homogeneous graph norms, see

Example 1.4.12. In both operators the first component acts independently of
the others and is defined on D(

√
L) and W1,2

D (O)m, respectively. In the light
of Proposition 1.4.8 (i), this gives D(

√
L) = W1,2

D (O)m and the Kato estimate

‖u‖2 + ‖∇u‖2 ≈

∥∥∥∥∥∥∥∥∥∥∥
ΠB


u

0

0



∥∥∥∥∥∥∥∥∥∥∥
2

≈

∥∥∥∥∥∥∥∥∥∥∥
√

Π2
B


u

0

0



∥∥∥∥∥∥∥∥∥∥∥
2

= ‖
√
Lu‖2 (u ∈W1,2

D (O)m).

Implicit constants depend on L only through the bound for the H∞-calculus
for ΠB. In order to prove Theorem 5.0.1 under the additional interior thick-
ness assumption we have to argue that ΠB indeed has a bounded H∞-calculus
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5. Kato’s square root property: L2–Theory

with a bound that depends on L only through its coefficient bounds, or what
is equivalent thereto by McIntosh’s Theorem 1.4.10, that ΠB satisfies the
quadratic estimate∫ ∞

0
‖tΠB(1 + t2Π2

B)−1U‖2
2

dt
t
≈ ‖U‖2

2 (U ∈ R(ΠB))(5.15)

with the same dependency of the implicit constants.

5.4.2. Quadratic estimates for Dirac operators
There are general frameworks of perturbed Dirac operators [15, 16, 39], each
of which starts from a triple of operators (Γ,B1,B2) on H that verifies the
assumptions (H1) - (H3). Additional hypotheses (H4) - (H7) on the operators
and certain geometric assumptions are required in order to obtain (5.15).
We will soon see that the operators in (5.14) verify (H4) - (H7) from [39].

For the time being, we take that for granted and discuss the geometric as-
sumptions. There are four of them [39, Ass. 2.1]:

(O) Comparability |B ∩O| ≈ |B| holds uniformly for all balls B of radius
r(B) ≤ 1 centered in O.

(∂O) Comparability Hd−1(B ∩ ∂O) ≈ rd−1 holds uniformly for all balls B of
radius r(B) ≤ 1 centered in ∂O.

(V ) Multiplication by C∞0 (Rd)-functions maps V = W1,2
D (O)m (the form

domain) into itself and there exists a bounded extension operator E :
V →W1,2(Rd)m.

(α) For some α ∈ (0, 1) the complex interpolation space [L2(O)m, V ]α coin-
cides with Wα,2(O)m up to equivalent norms.

In [39] the terminology domain was used for non-empty proper open subset
and O was named Ω. Their central result [39, Thm. 3.2] is as follows.

Theorem 5.4.1. Under the structural assumptions (H1) - (H7) and the ge-
ometric assumptions (O), (∂O), (V ), (α) the operator ΠB is bisectorial and
satisfies (5.15). Implicit constants depend on B1, B2 only through the param-
eters quantified in (H2).

Let us see how this relates to our geometric assumptions. Clearly (O)
is just the same as (5.4). Theorem 2.1.7 yields (α) for every α ∈ (0, 1

2).
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5.4. Proof of Theorem 5.0.1 on interior thick sets

(Complex interpolation of (at most) countable products of spaces works com-
ponentwise [93, Sec. 1.18.1]). Componentwise application of Corollary 5.1.12
furnishes the extension operator in (V ) and the stability property follows since
multiplication by C∞0 (Rd)-functions is bounded on W1,2(O)m and maps the
dense subset C∞D (O)m ⊆ V into itself.
Our major point here is that (∂O) can be replaced by the significantly

weaker assumption that ∂O is porous. By Corollary 5.1.10 our boundary ∂O
has the latter property.
Fortunately, the reader does not have to go through all of [39] in order to

see why this relaxation of geometric assumptions works. Indeed, as is clearly
stated in that paper before Lemma 7.6, (∂O) is used only once, namely to
ensure validity of the following lemma (with a constant η̂ > 0 that happens
to be 1 under (∂O)). Compare also with their Corollary 7.8.

Lemma 5.4.2. If O ⊆ Rd is open and satisfies (∂O), then for each r0, t0 > 0
there exists C > 0 and η̂ > 0 such that∣∣∣∣{x ∈ O : |x− x0| < r, d(x,Rd \O) ≤ tr

}∣∣∣∣ ≤ Ctη̂rd(5.16)

for all x0 ∈ O, r ∈ (0, r0] and t ∈ (0, t0].

Hence, our only task in relaxing (∂O) is to reprove that lemma under the
mere assumption that ∂O is porous, which we will do now.

Proof of Lemma 5.4.2 assuming only that ∂O is porous. Let E be the set in
(5.16). For t ≥ 1 the trivial bound |E| ≤ |B(x0, r)| . rd is enough. Thus, we
can assume t < 1.
To each x ∈ E there corresponds some x∂ ∈ ∂O with |x− x∂| ≤ tr. Since

different x ∈ E are at distance less than 2r from each other, we can pick a
ball B of radius 4r centered in ∂O that contains all x∂. Temporarily assume
4r ≤ 1. Then we can use Lemma A.1.8 and obtain C ≥ 1 and 0 < s < d

such that B ∩ ∂O can be covered by at most C(4/t)s balls Bi of radius tr
centered in ∂O. Hence, each x ∈ E is contained in one of the balls 2Bi and
we conclude

|E| . (2tr)d#i ≤ C2d4std−srd.

In the case 4r > 1 we have the same type of covering property for B ∩ ∂O:
Indeed, first we use the Vitali lemma to cover B∩∂O by 10d(4r)d ≤ 10d(4r0)d
balls of radius 1 centered in ∂O and then we use Lemma A.1.8 with balls of
radius t

4 ≤ tr. This affects the value of C but we can still take η̂ := d− s.
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5. Kato’s square root property: L2–Theory

The upshot is that Theorem 5.4.1 yields the quadratic estimates (5.15) for
ΠB and hence the proof is complete once we have verified (H4) - (H7).

5.4.3. The additional Dirac operator hypotheses
Here are the additional hypotheses of [39, Sect. 5] that the operators in (5.14)
have to verify. It is convenient to set n := m(d + 2) for the number of
components of a function in H = L2(O)m × L2(O)dm × L2(O)m.

(H4) B1,B2 are multiplication operators with functions in L∞(O;L(Cn)).

(H5) For every ϕ ∈ C∞0 (Rd) the associated multiplication operator Mϕ maps
D(Γ) into itself. The commutator ΓMϕ −MϕΓ with domain D(Γ) acts
via multiplication by some cϕ ∈ L∞(O;L(Cn)) and its components sat-
isfy |ci,jϕ (x)| . |∇ϕ(x)| for an implicit constant that does not depend on
ϕ.

(H6) For every open ball B centered in O, and for all U ∈ D(Γ), V ∈ D(Γ∗)
both with compact support in B ∩O it follows that∣∣∣∣∣

∫
O

ΓU dx
∣∣∣∣∣ . |B| 12‖U‖2,∣∣∣∣∣

∫
O

Γ∗V dx
∣∣∣∣∣ . |B| 12‖V ‖2.

(H7) There exist β, γ ∈ (0, 1] such that the fractional powers of Π = Γ + Γ∗
satisfy

‖U‖[H,W1,2
D (O)n]β . ‖(Π

2)β/2U‖2 (U ∈ R(Γ∗) ∩D(Π2)),

‖V ‖[H,W1,2
D (O)n]γ . ‖(Π

2)γ/2V ‖2 (V ∈ R(Γ) ∩D(Π2)),

where [· , ·] denotes again the complex interpolation bracket.

In (H5) we have D(Γ) = W1,2
D (O)m × L2(O)dm × L2(O)m. The mapping

property follows from (V ) and the commutator assertion from the product
rule. By duality, (H5) also holds for Γ∗ with commutators Γ∗Mϕ −MϕΓ∗ =
−c∗ϕ.
For (H6), take a unit vector e ∈ Cn and let ϕ ∈ C∞0 (O) be valued in

[0, 1] with ϕ = 1 on supp(U). We have |U · Γ∗(ϕe)| ≤ |U | since divD(ϕe) =
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5.4. Proof of Theorem 5.0.1 on interior thick sets

div(ϕe) = 0 on supp(U), see also Section 5.2. Moreover, ϕΓU = ΓU follows
from (H5) using ∇ϕ = 0 on supp(U). So, we obtain

∣∣∣∣∣
∫
O

ΓU · e dx
∣∣∣∣∣ =

∣∣∣∣∣
∫
O
U · Γ∗(ϕe) dx

∣∣∣∣∣ ≤
∫
O
|U | dx ≤ |B|1/2‖U‖2,

which suffices since e was arbitrary. For V we simply switch the roles of Γ
and Γ∗.
In (H7) we take β = 1. By choice of U we conclude U ∈W1,2

D (O)m×{0}×
{0}, so we obtain from the bounded H∞-calculus for the self-adjoint operator
Π and Example 1.4.12 that

‖U‖W1,2
D (O)n = ‖ΠU‖2 ≈ ‖(Π2)1/2U‖2.(5.17)

We take γ ∈ (0, ε) with ε as in Theorem 5.0.2. As Π2 corresponds to Π2
B

with A = 1, b = ct = 0, and d = 1, we discover −∆D + 1 in the upper left
corner and obtain with

W :=


v

0

0

 that V =


0

v

∇Dv

 = ΠW,

where v ∈ D(−∆D + 1). We conclude

‖V ‖[H,W1,2
D (O)n]γ ≈ ‖V ‖Wγ,2(O)n . ‖v‖W1+γ,2

D (O)

≈ ‖(−∆D + 1)1/2+γ/2v‖2 = ‖(Π2)1/2+γ/2W‖2,

where the first step is due to Theorem 2.1.7, the second step uses Lemma 5.3.6
and the third one follows from Theorem 5.0.2. Using (5.17) and the ver-
sion of Example 1.4.4 for bisectorial operators, the last term compares to
‖Π(Π2)γ/2W‖2 = ‖(Π2)γ/2V ‖2.
The proof of Theorem 5.0.1 is now complete under the additional assump-

tion that the underlying open set satisfies the interior thickness condition
(5.4). Note that here O takes the role of O in Theorem 5.0.1. At this point in
the proof, our result already fully covers all earlier results from the literature.
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5.5. Elimination of the interior thickness
condition

In this section we complete the proof of Theorem 5.0.1 with the strategy
sketched in Step 3 from the introduction to this chapter. In the whole sec-
tion we work with two triples of domain, Dirichlet part and elliptic sys-
tem: (O,D,L) will be satisfying the assumptions from Theorem 5.0.1 and
for (O,D,L) we start with O ⊆ Rd open and D ⊆ ∂O closed, but further
properties including interior thickness of O will be added in the course of the
proof.

5.5.1. Localization of the functional calculus to invariant
open subsets

Definition 5.5.1. A good projection is an orthogonal projection Q on L2(O)
that commutes with bounded multiplication operators and with∇D on W1,2

D (O).
In this case the inclusion map from the image QL2(O) of Q back into L2(O)
is denoted by Q∗.

Note that the inclusion map from Definition 5.5.1 coincides with the adjoint
of Q : L2(O) → QL2(O), which justifies the usage of the symbol Q∗. We let
good projections act componentwise on L2(O)m. The concrete example the
reader should have in mind is thatQ is the multiplication by the characteristic
function of the union of connected components of O if the latter fulfills the
geometric requirements from Theorem 5.0.1. We shall come back to that. In
fact, we will only work with two good projections later on, but we believe that
the more general localization procedure that we are going to construct in this
section could prove useful elsewhere.
Let (Qi)i∈I , I ⊆ N, be a family of pairwise orthogonal good projections

which decomposes L2(O)m in the sense that

L2(O)m ∼=
⊗
i

QiL2(O)m via the isomorphism S : U 7→ (QiU)i.

The `2-tensor notation is explained in the list of notations. We remind the
reader that in such a context we also use `2-tensors of operators who act
componentwise on their natural domain. Since a good projection commutes
with ∇D it is also bounded on W1,2

D (O). Consequently, we have

W1,2
D (O)m ∼=

⊗
i

QiW1,2
D (O)m(5.18)
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5.5. Elimination of the interior thickness condition

via the same isomorphism S as before.

Lemma 5.5.2. Let Q be a good projection. Then Q commutes with L in the
sense that QL ⊆ LQ.

Proof. Recall the block decomposition (5.11) of L. By definition, Q com-
mutes with the second and third block of that decomposition. By duality and
self-adjointness of the projection, Q also commutes with the first block and
therefore with L.

The lemma shows that LQ∗i is an operator in QiL2(O)m. More precisely,
it is the part of L in QiL2(O)m with maximal domain Qi D(L). An abstract
property of functional calculi stated in Proposition 1.4.8 allows us to pull the
projections in and out of the functional calculus, that is

Qif(L) ⊆ f(L)Qi and f(LQ∗i ) = f(L)Q∗i .(5.19)

As above we get in particular D(f(LQ∗i )) = Qi D(f(L)). We use these calcu-
lation rules freely in order to give the following decomposition of the functional
calculus for L via good projections.

Proposition 5.5.3. One has

f(L) = S−1
[⊗

i

f(LQ∗i )
]
S with D(f(L)) = S−1

(⊗
i

D(f(LQ∗i ))
)
,(5.20)

where the equality of spaces is with equivalent norms.

Proof. If u ∈ D(f(L)), then Qiu ∈ D(f(LQ∗i )) and Qif(L)u = f(LQ∗i )Qiu

hold for all i according to (5.19). We conclude

Sf(L)u = (Qif(L)u)i = (f(LQ∗i )Qiu)i =
[⊗

i

f(LQ∗i )
]
Su

and the inclusion “⊆” of operators in (5.20) follows as S is an isomorphism.
Conversely, let (ui)i ∈ D(⊗i f(LQ∗i )). Then u := ∑

i ui converges in the `2

sense and we have Su = (ui)i. It remains to prove u ∈ D(f(L)). From the
second identity in (5.19) we get ui ∈ D(f(L)) for every i as well as

f(L)
[ ∑
i∈I∩{0,...,n}

ui

]
=

∑
i∈I∩{0,...,n}

f(LQ∗i )ui (n ∈ N).

In the limit as n→∞ the term on the right-hand side converges by definition
of the domain of the tensorized operator and ∑i∈I∩{0,...,n} ui tends to u. Since
f(L) is a closed operator, we conclude u ∈ D(f(L)).
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5.5.2. Projections coming from indicator functions
From now on we assume that O is locally uniform near N := ∂O \D and
that there is a decomposition O = ⋃

iOi, where the Oi are pairwise disjoint
open sets. Since Oi is open and closed in O, it follows ∂Oi ⊆ ∂O. We put
Di := D ∩ ∂Oi. We write Pi for the orthogonal projection on L2(O) induced
by multiplication with 1Oi . We also use the zero-extension operators

Ei : L2(Oi)→ PiL2(O).

These are unitary with E∗i the pointwise restriction of functions to Oi. This
allows us to identify L2(Oi)m with PiL2(O)m.
We start by investigating how this identification extends to W1,2

D (O)m.

Lemma 5.5.4. Let ϕ ∈ C∞Di(Oi)m. If Eϕ ∈ C∞Di(R
d)m is any extension, then

d(supp(Eϕ) ∩Oi,O \Oi) > 0,

and Eiϕ ∈ C∞D (O)m with ∇Eiϕ = Ei∇ϕ.

Proof. For the first claim let x ∈ supp(Eϕ)∩Oi and let z′ ∈ O \Oi = O\Oi

realize the distance of x to O \ Oi. Hence, we can pick some z ∈ ∂Oi on the
line segment connecting x and z′. First, consider the case that z ∈ Di. Then

d(x,O \Oi) = |x− z′| ≥ |x− z| ≥ d(suppEϕ,Di) > 0.

Otherwise, we are in the case z ∈ N . If d(x,O \ Oi) ≥ δ
2 , then we are

done, so let us assume d(x,O \ Oi) < δ
2 , so that in particular |x − z| < δ

2 .
Then there is y ∈ O \ Oi such that |x − y| < δ

2 . This gives x, y ∈ Nδ and
by Definition 5.1.1 we can join x and y by a continuous path in O. But as
x ∈ Oi and y ∈ O \ Oi, this path has to cross ∂Oi ⊆ ∂O, which leads to a
contradiction. Consequently, with ρ := min(d(suppEϕ,Di), δ2) we get

d(supp(Eϕ) ∩Oi,O \Oi) ≥ ρ.

For the second claim we fix a smooth function χ equal to 1 outside the ρ-
neighborhood ofO\Oi and equal to 0 on the respective ρ

2 -neighborhood. Then
χEϕ ∈ C∞0 (Rd)m vanishes on O \Oi, whereas on Oi we have χEϕ = Eϕ = ϕ

by the choice of ρ. We conclude Eiϕ = (χEϕ)|O and ∇Eiϕ = Ei∇ϕ on
O. Finally, let x ∈ D. Then either there is j 6= i with d(x,Oj) < ρ

2 , in
which case we have d(x, ∂O \ Oi) < ρ

2 and hence χ = 0 in a neighborhood
of x. Else, we have d(x,Oj) ≥ ρ

2 for all j 6= i, so that x ∈ D ⊆ ∂O

implies x ∈ D ∩ ∂Oi = Di and hence Eϕ = 0 holds near x. This proves
χEϕ ∈ C∞D (Rd)m. Now, Eiϕ ∈ C∞D (O)m follows by restriction to O.
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5.5. Elimination of the interior thickness condition

Proposition 5.5.5. The Pi are good projections that satisfy PiW1,2
D (O) =

EiW1,2
Di

(Oi).

Proof. By Lemma 5.5.4 we know that Ei is an isometry from the dense subset
C∞Di(Oi) of W1,2

Di
(Oi) into W1,2

D (O). Therefore, Ei is W1,2
Di

(Oi) → W1,2
D (O)

bounded. Since Ei maps into the range of Pi, we arrive at EiW1,2
Di

(Oi) ⊆
PiW1,2

D (O).
On the other hand, take ϕ ∈ C∞D (O). Then we have ϕ|Oi ∈ C∞Di(Oi) and

Piϕ = Ei(ϕ|Oi)(5.21)

is in C∞D (O) due to Lemma 5.5.4 with gradient

∇Piϕ = Ei∇(ϕ|Oi) = Ei(∇ϕ)|Oi = Pi∇ϕ.

As a consequence, we get that Pi is bounded on C∞D (O) for the W1,2
D (O)-norm.

By density, Pi is bounded on W1,2
D (O) and the identity above extends to the

same space, thereby showing that Pi is a good projection. We use this to have
a second look on identity (5.21). The left-hand side is bounded on W1,2

D (O)
by the foregoing argument and the right-hand side maps into EiW1,2

Di
(Oi) by

the very first step of this proof. We conclude PiW1,2
D (O) ⊆ EiW1,2

Di
(Oi) by

continuity.

From the preceding proposition and (5.18) we get the decomposition

W1,2
D (O)m ∼=

⊗
i

PiW1,2
D (O)m =

⊗
i

EiW1,2
Di

(Oi)m(5.22)

via the usual isomorphism S. Analogously to Section 5.2, we introduce in
L2(Oi)m the divergence form operator Li with coefficients A|Oi , b|Oi , c|Oi ,
d|Oi corresponding to the sesquilinear form

ai : W1,2
Di

(Oi)m ×W1,2
Di

(Oi)m → C, ai(u, v) =
∫
Oi

d c

b A


 u

∇u

 ·
 v

∇v

 dx.

We will see momentarily that this operator is unitarily equivalent to LP∗i . As
in Section 5.3.3, the key lies in showing unitary equivalence for the gradients.

Lemma 5.5.6. The operators ∇Di and ∇DP∗i are unitarily equivalent via
Ei∇Di = ∇DP∗i Ei.
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5. Kato’s square root property: L2–Theory

Proof. The two operators have the same domain W1,2
Di

(Oi) by definition and
Proposition 5.5.5. Moreover, they have the same action as both appearing
gradients are restrictions of the respective distributional gradient, which com-
mutes with the zero extension operator.

Proposition 5.5.7. The operators Li and LP∗i are unitarily equivalent via
EiLi = LP∗i Ei.

Proof. First of all, we note that D(Li) and D(LP∗i Ei) are both subsets of
W1,2

Di
(Oi)m. For the first operator this holds by definition, whereas for the

second one it follows from D(L) ⊆W1,2
D (O)m and Proposition 5.5.5. Next, let

u, v ∈W1,2
Di

(Oi)m and let Ev ∈W1,2
D (O)m be any extension of v. Lemma 5.5.6

yields

ai(u, v) =
∫
O

d c

b A


 Eiu
Ei∇u

 ·
 Ev

∇Ev

 dx

=
∫
O

d c

b A


 P∗i Eiu
∇(P∗i Eiu)

 ·
 Ev

∇Ev

 dx = a(P∗i Eiu,Ev).

If u ∈ D(Li), then the left-hand side becomes (Liu | v)L2(Oi)m = (EiLiu |Ev)L2(O)m .
Since Ev can be any function in W1,2

D (O)m, we conclude that P∗i Eiu ∈ D(L)
with LP∗i Eiu = EiLiu. Conversely, let u ∈ D(LP∗i Ei). We take Ev = Eiv,
which is admissible by Proposition 5.5.5, and the right-hand side becomes
(LP∗i Eiu | Eiv)L2(O)m = (E∗i LP∗i Eiu | v)L2(Oi)m . This proves u ∈ D(Li) with
Liu = E∗i LP∗i Eiu.

Let us summarize the situation. The set O is locally uniform near ∂O \D
and can be decomposed into pairwise disjoint open sets Oi. The divergence
form operator L is given by coefficients A, b, c, d on O and Li is the diver-
gence form operator on Oi whose coefficients are obtained by restricting the
coefficients of L to Oi, and which is subject to a vanishing trace condition
on Di = D ∩ ∂Oi. Combining all intermediate steps, we derive the following
correspondence.

Proposition 5.5.8. The following are equivalent:

(i) D(
√
L) = W1,2

D (O)m with ‖
√
Lu‖2 ≈ ‖u‖W1,2(O)m,

(ii) D(
√
Li) = W1,2

Di
(Oi)m with ‖

√
Liu‖2 ≈ ‖u‖W1,2(Oi)m for all i, where the

implicit constants are independent of i.
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5.5. Elimination of the interior thickness condition

Proof. Proposition 5.5.7 gives LP∗i = EiLiE∗i . Then we use Proposition 5.5.3
for f(z) :=

√
z and the compatibility of the functional calculus with unitary

equivalences in Proposition 1.4.8.(ii) to figure out that

D(
√
L) = S−1

(⊗
i

D(
√
LP∗i )

)
= S−1

(⊗
i

Ei D(
√
Li)

)
.

On the other hand, we conclude from (5.22) that

W1,2
D (O)m = S−1

(⊗
i

PiW1,2
D (O)m

)
= S−1

(⊗
i

EiW1,2
Di

(Oi)m
)
.

Both chains of equalities are topological. Now, (ii) is the same as saying that
the tensor spaces on the right-hand sides coincide up to equivalent norms.
Since S is an isomorphism, this is equivalent to (i).

5.5.3. Embedding of O into an interior thick set
Now, we reverse the order of reasoning by embedding the geometric configu-
ration (O,D) in a “fattened version” (O,D) with the same geometric quality
but additionally satisfying the interior thickness condition. This is the con-
tent of the following proposition, the proof of which will occupy the rest of
the section.

Proposition 5.5.9. Let O and D be as in Theorem 5.0.1 and put N :=
∂O \D. Then there exists an open interior thick set O ⊇ O such that O \O
is open and ∂O ⊆ ∂O. With D := ∂O \ N one has that D is closed and
Ahlfors–David regular, D ⊆ D and O is locally uniform near N := N . In
particular, D ∩ ∂O = D.

By assumption O is locally an (ε, δ)-domain near N . Let Σ denote a grid
of open axis-parallel cubes of diameter δ

8 in Rd. Let Σ′ contain those cubes Q
from Σ for which Q intersectsD but which stay away from N , say Q∩Nδ/4 = ∅
for good measure. Now, put

O := O ∪
⋃
Q∈Σ′

(Q \ ∂O) and D := ∂O \N.

Clearly O is an open superset of O. Moreover, D is a closed superset of D
because O \ O stays away from N and hence the relative openness of N in
∂O is inherited to ∂O. We have to verify the following conditions:

(a) O \O is open and ∂O ⊆ ∂O,
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5. Kato’s square root property: L2–Theory

(b) O is locally uniform near N ,

(c) O is interior thick, that is, it satisfies (5.4), and

(d) D satisfies the Ahlfors–David condition.

Then D ⊆D ⊆ cN implies D ∩ ∂O = D.
Proof of (a). We have O \O = ⋃

Q∈Σ′(Q \O), which is an open set. Since
O is open as well, ∂O ⊆ ∂O follows. �

Proof of (b). From the construction of Σ′ we get O ∩ Nδ/4 = O ∩ Nδ/4.
This already gives the ε-cigar condition with δ replaced by δ/4. Since O is
open and closed in O, connected components of O are also connected com-
ponents of O and hence satisfy the positive radius condition by assumption.
All remaining connected components keep distance to N and are therefore
not considered in the positive radius condition. Consequently, O is an (ε, δ4)-
domain near N = N . �

The boundary ∂O is porous by Corollary 5.1.10. This implies |∂O| = 0,
see Lemma A.1.1. Since the cubes in Σ are all of the same size, we can also
record the following observation. We will freely use these facts from now on.

Lemma 5.5.10. Each cube Q ∈ Σ is interior thick and has Ahlfors–David
regular boundary, where implicit constants depend only on δ and d.

Proof of (c). Let B be a ball of radius r = r(B) ≤ 1 with center x ∈ O.
If x ∈ Q for some Q ∈ Σ′, then |B ∩O| ≥ |B ∩Q| & rd with implicit constant
depending on δ and d. Otherwise, we must have x ∈ O. If additionally
x ∈ Nδ/2, then Proposition 5.1.7 yields the desired lower bound |B ∩O| & rd.
It remains to treat the case x ∈ O \ Nδ/2. Let Q′ be a cube in the grid Σ

whose closure contains x. Again, if Q′ ⊆ O, then |B ∩O| ≥ |B ∩Q′| and we
are done. If not, then Q′ intersects cO and from x ∈ O we conclude that Q′
contains some z ∈ ∂O. By the size of Q′ we infer Q′ ∩ Nδ/4 = ∅. Therefore,
we have z ∈ D, which implies Q′ ∈ Σ′ and we are back in the very first case. �

We continue with the following

Lemma 5.5.11. One has D = D ∪ ⋃Q∈Σ′(∂Q \O).

Proof. We show that

∂O = ∂O ∪
⋃
Q∈Σ′

(∂Q \O)
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5.5. Elimination of the interior thickness condition

since then the lemma follows by intersection with cN , taking into account
d(Q,N) ≥ δ

4 for Q ∈ Σ′.
Let x ∈ ∂O. Then x 6∈ O since O is open and contains O. If every

neighborhood of x intersects O, then x ∈ ∂O.
Otherwise, there is some open ball B with center x that is disjoint to O.

However, as every neighborhood of x intersects O by assumption, there must
be some Q′ ∈ Σ′ such that B ∩ Q′ 6= ∅. Since Σ is a grid, the ball B only
intersects finitely many cubes in Σ′. We conclude that the sequence of balls
( 1
n
B)n∈N hits some cube Q ∈ Σ′ infinitely often. Thus, x is in the closure of

Q. But x /∈ O and x /∈ O imply x /∈ Q, hence we must have x ∈ ∂Q\O. This
completes the proof of the inclusion “⊆”.
Conversely, let x ∈ ∂O ∪ ⋃Q∈Σ′(∂Q \ O). If x ∈ ∂O, then x ∈ ∂O follows

from (a). Otherwise, there is some Q′ ∈ Σ′ such that x ∈ ∂Q′ \ O. Since Σ
is a grid of open cubes, this implies x /∈ Q for every Q ∈ Σ. Hence, we have
x 6∈ O. But each neighborhood of x intersects Q′ and since the boundary of
an open set has no interior points, it also intersects Q′ \ ∂O ⊆ O. Hence, we
have x ∈ ∂O.

Proof of (d). For the rest of the section let B be some ball with center x
in D and radius r = r(B) ∈ (0, diam(D)). Our task is to show comparability

Hd−1(D ∩B) ≈ rd−1(5.23)

and we organize the argument in the cases coming from Lemma 5.5.11. By
the same lemma we have diam(D) =∞ if and only if we have diam(D) =∞.
Hence, we can use the Ahlfors—David condition for D with balls up to radius
say 2 diam(D) owing to Lemma A.1.4.
Case 1: x ∈ D. The lower bound in (5.23) follows directly from the Ahlfors–

David condition for D:

Hd−1(D ∩B) ≥ Hd−1(D ∩B) & rd−1.

For the upper bound we need to make sure that B does not intersect too
many cubes in Σ′. Consider the subcollection

Σ′B := {Q ∈ Σ′ : Q ∩B 6= ∅}.(5.24)

If r ≤ δ, then #Σ′B . 1 by the grid size of Σ and we obtain

Hd−1
( ⋃
Q∈Σ′

∂Q ∩B
)
≤

∑
Q∈Σ′B

Hd−1(∂Q ∩B) . (#Σ′B)rd−1 . rd−1,(5.25)
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5. Kato’s square root property: L2–Theory

where the third step uses the upper bound in the Ahlfors–David condition
for the boundaries of the cubes Q ∈ Σ as in Lemma 5.5.10, even though B is
not necessarily centered in ∂Q. This is not an issue because if ∂Q ∩B is not
empty, then B is contained in a ball with doubled radius centered in ∂Q.
If r > δ, then we need the following lemma to bound the size of Σ′B. Its

proof is similar to that of Lemma 5.4.2.

Lemma 5.5.12. Let x ∈ D, r ∈ (0, 2 diam(D)), h ∈ (0, r) and consider the
set

Er,h := {y ∈ B(x, r) : d(y,D) ≤ h}.

Then |Er,h| . hrd−1, where the implicit constant only depends on D and d.

Proof. For convenience, put E := Er,h and fix y′ ∈ E. Associate to each
y ∈ E some yD ∈ D with |y− yD| ≤ h. We claim that B := B(y′D, 4r) ⊇ {yD :
y ∈ E}. Indeed,

|yD − y′D| ≤ |yD − y|+ |y − y′|+ |y′ − y′D| < h+ 2r + h < 4r.

Moreover, there is some C > 0 such that B ∩D can be covered by C(r/h)d−1

many balls Bi of radius h centered in D, see Lemma A.1.5. Next, pick y ∈ E.
Then yD ∈ B ∩D and therefore yD ∈ Bi for some i ∈ I. Thus, y ∈ 2Bi and
consequently E ⊆ ⋃i 2Bi. Finally,

|E| ≤
∑
i

|2Bi| . #ih
d . (r/h)d−1hd = hrd−1.

Coming back to finding a substitute for (5.25) in the case r > δ, we claim
that ⋃Σ′B ⊆ E2r,δ/8. Indeed, let Q ∈ Σ′B and y ∈ Q. Since Q intersects D, we
have d(y,D) ≤ diam(Q) = δ

8 , and by definition of Σ′B in (5.24) there is some
z ∈ Q ∩B so that

|x− y| ≤ |x− z|+ |z − y| ≤ r + diam(Q) ≤ r + δ

8 < 2r.

Owing to Lemma 5.5.12, we can now do the following counting argument:

(#Σ′B)δd ≈
∣∣∣∣∣⋃Σ′B

∣∣∣∣∣ ≤ |E2r,δ/8| . δrd−1.

It follows that #Σ′B . (r/δ)d−1, which in turn gives

Hd−1
( ⋃
Q∈Σ′

∂Q ∩B
)
≤

∑
Q∈Σ′B

Hd−1(∂Q) ≈ (#Σ′B)δd−1 . rd−1.
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5.5. Elimination of the interior thickness condition

This is the same upper bound as in the case r < δ, see (5.25). Hence, in both
cases the Ahlfors–David condition for D allows us to estimate

Hd−1(D ∩B) ≤ Hd−1(D ∩B) +Hd−1
( ⋃
Q∈Σ′

∂Q ∩B
)
. rd−1,

which gives the required upper bound in (5.23).
Case 2: x ∈ ∂Q\O for some Q ∈ Σ′. We distinguish whether 1

2B is disjoint
to D or not. So, let us first suppose that 1

2B ∩ D 6= ∅ and let z ∈ 1
2B ∩ D.

Then B(z, r2) is centered in D and contained in B, so that we obtain the lower
bound from the Ahlfors–David condition for D applied to B(z, r2). For the
upper bound, we use Case 1 applied to B(z, 2r) ⊇ B.
Now, suppose that 1

2B∩D = ∅. By construction of Σ′ we have d(x,D) ≤ δ
8

and d(x,N) ≥ δ
4 . Hence

r
2 ≤

δ
8 and 1

2B does not intersect ∂O = D∪N . Since
this ball is centered outside of O and does not intersect ∂O, we must have
1
2B ⊆

cO. This shows ∂Q ∩ 1
2B = (∂Q \ O) ∩ 1

2B and the lower bound in
(5.23) follows from the Ahlfors–David condition for ∂Q. For the upper bound
we argue as in Case 1 with radii r ≤ δ.
This concludes the proof of (d) and hence the proof of Proposition 5.5.9. �

5.5.4. Proof of Theorem 5.0.1
We combine Theorem 5.5.8 with Proposition 5.5.9.

Proof of Theorem 5.0.1. Given O and D, construct sets O and D according
to Proposition 5.5.9. To ease the connection with Section 5.5.2 we put O0 := O

and O1 := O \ O. Then D0 := D ∩ ∂O = D and D1 := D ∩ ∂O1 = ∂O1. We
extend the coefficients A, b, c, d to coefficients A, b, c, d on O. For A and d
we put the corresponding identity matrix on O \ O to ensure ellipticity and
b, c are simply extended by zero. With those extended coefficients we define
the operator L with form domain W1,2

D (O) as in (5.11). Since by (5.22) the
form domain for L splits as

W1,2
D (O) ∼= W1,2

D0(O0)⊗W1,2
D1(O1),

we get that the coefficients for L are again elliptic in the sense of (5.3) with
lower bound min(λ, 1) and upper bound max(Λ, 1). Here, Λ is an upper
bound for the coefficients of L. Proposition 5.5.7 reveals that L is unitarily
equivalent to LP∗0 . It was shown in Section 5.4 that Theorem 5.0.1 is valid on
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5. Kato’s square root property: L2–Theory

interior thick sets. Consequently, we can apply that theorem to the operator
L on O. But this brings us into the business of Proposition 5.5.8 and we can
conclude the square root property for L.
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CHAPTER 6

Kato’s square root property: Lp–Theory

As in Chapter 5, we consider a second order elliptic (m × m)-system L in
divergence form on an open and possibly unbounded set O ⊆ Rd, d ≥ 2, with
bounded measurable complex coefficients, formally given by

Lu = −
d∑

i,j=1
∂i(aij∂ju)−

d∑
i=1

∂i(biu) +
d∑
j=1

cj∂ju+ du.

Here, (m × m)-system means that the coefficients are valued in L(Cm) and
that u takes its values in Cm. Let D be a closed, possibly empty, subset of
the boundary ∂O. We complement L with Dirichlet boundary conditions on
D and Neumann boundary conditions on N := ∂O \ D. The pair (O,D) is
always assumed to be regular in the sense of Chapter 5, which is to say that
D is Ahlfors–David regular and O is locally uniform near ∂O \D.
To be more precise, let V := W1,2

D (O)m be the W1,2(O)m-closure of smooth
functions that vanish in a neighborhood of D, then we interpret L as the
maximal accretive operator in L2(O)m associated with the sesquilinear form
a : V × V → C defined by

a(u, v) =
∫
O

d∑
i,j=1

aij∂ju · ∂iv +
d∑
i=1

biu · ∂iv +
d∑
j=1

cj∂ju · v + du · v dx,(6.1)

which we assume to satisfy for some λ > 0 the (inhomogeneous) Gårding
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6. Kato’s square root property: Lp–Theory

inequality

Re a(u, u) ≥ λ(‖u‖2
2 + ‖∇u‖2

2) (u ∈ V ).(6.2)

The operator L possesses a square root L 1
2 in virtue of its sectorial functional

calculus and it essentially follows from Theorem 5.0.1 that

L
1
2 : W1,2

D (O)m → L2(O)m is a topological isomorphism.

In this chapter we cope with the question when L 1
2 extends from W1,2

D (O)m∩
W1,p

D (O)m to a W1,p
D (O)m → Lp(O)m isomorphism. The rough nature of ge-

ometry and coefficients leads to the inconvenience that such an extrapolation
is not possible for all p ∈ (1,∞) as would be the case in classical Calderón-
Zygmund theory. A review on relevant counterexamples can be found in [36,
Introduction].
Let us come to positive results. In the whole space situation, a pretty clear

picture was given by Auscher in [5]. Up to the endpoints, the range in which
L

1
2 extends to an isomorphism is determined by boundedness properties of

the semigroup generated by −L and its gradient family. Put

J := {p ∈ [1,∞] : {e−tL}t>0 is Lp-bounded},
I := {p ∈ [1,∞] : {

√
t∇e−tL}t>0 is Lp-bounded}.

The sets J and I are intervals in virtue of interpolation. For brevity, write
S := S(L) := {e−tL}t>0 and N := N (L) := {

√
t∇e−tL}t>0 for the involved

operator families in the sequel. The precise meaning of boundedness of these
families will be clarified in Definition 6.1.1. With these families define the
critical numbers

p−(L) := inf J , p+(L) := supJ ,
q−(L) := inf I, q+(L) := sup I.

For upper bounds for p−(L) and q−(L), lower bounds for p+(L) and q+(L),
and relations between these numbers the reader is advised to consult [5].
Eventually, it can be shown that L 1

2 extends to a W1,p → Lp isomorphism
when p−(L) < p < q+(L).
A first major step towards a satisfactory Lp-theory for the square root prop-

erty in the case of mixed boundary conditions was accomplished by Auscher,
Badr, Haller-Dintelmann, and Rehberg in [8]. They worked in bounded and
d-regular domains with a Lipschitz boundary around the Neumann boundary
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part and a (d− 1)-regular Dirichlet part. The most severe constraint in their
setting is that they only allow real, scalar coefficients, in which case p−(L)
is automatically 1. They showed the square root property for the interval
(1, 2 + ε) for some ε > 0.
This result was refined by Egert in [36]. In there, complex systems were

permitted and the isomorphism range is given by (p−(L), 2 + ε).
These two results have in common that the geometry is dictated by the

L2-result from [38]. Due to our improvement on the L2-theory in Chapter 5,
an improvement in the Lp-theory is natural. In the range p ∈ (p−(L), 2), we
obtain an Lp result only imposing the geometric constraints needed in the L2-
theory. For p > 2 we seek an “optimal” result in the spirit of the whole space
result in [5], that is to say, the upper bound shall be given in terms of q+(L)
and not merely some ε which cannot be quantified in a useful manner. In this
situation we have to impose stronger requirements, namely pure Neumann
boundary conditions, that O is an (ε,∞)-domain near the full boundary ∂O,
and that some of the lower-order coefficients vanish. We emphasize that our
notion of (ε,∞)-domain near ∂O forces O to be unbounded, and that this
unbounded nature plays a crucial role in the proof. Our main result of this
chapter then reads as follows.

Theorem 6.0.1. Let O ⊆ Rd be an open set and D ⊆ ∂O a closed subset of
the boundary. Suppose that D is Ahlfors–David regular and that O is locally
uniform near N = ∂O \D (Definition 5.1.1). Then the following holds:

(i) If p−(L) < p < 2, then L
1
2 extends to an isomorphism W1,p

D (O)m →
Lp(O)m.

(ii) If 2 < q < q+(L), O is an (ε,∞)-domain near ∂O, D = ∅, and
the coefficients b and d vanish, then L

1
2 extends to an isomorphism

W1,q(O)m → Lq(O)m.

Upper and lower bounds depend on L only via its coefficient bounds and implied
constants from Lp-bounds for S and Lq-bounds for N , respectively.

Here, coefficient bounds refers to the lower bound in the ellipticity condition
and the pointwise upper bound for the coefficients, see also Chapter 5.

Remark 6.0.2. In this thesis, we only allow systems in which each component
is subject to Dirichlet boundary conditions on the same portion D ⊆ ∂O of
the boundary. In contrast, Egert’s work [36] allows W1,2

D (O) (Definition 6.6.1)
as the form domain, which roughly means that the kth component is subject
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6. Kato’s square root property: Lp–Theory

to a vanishing trace condition on the set Dk ⊆ ∂O. As is explained in [35,
Sec. 5.6], Steps 1 and 2 in Chapter 5 are perfectly compatible with such
systems. However, the construction of O in Step 3 depends on D, hence it
is not possible to perform Step 3 with varying Dirichlet parts. Therefore, the
L2-theory forces us to work in this restricted class of systems. However, the
Calderón-Zygmund decomposition in Section 6.6 is not touched upon this,
which is why we will perform it in full generality.

Outline of this chapter

We give a brief overview of this chapter. First, we deal with concepts of Lp →
Lq boundedness and Lp → Lq off-diagonal estimates of families of operators
on L2 in Section 6.1. The highlight of this section is Proposition 6.1.5, in
which L2 off-diagonal estimates for L are established. Afterwards, we present
“Lp-extrapolation” results in Section 6.2. These are divided into the cases
p < 2, which is due to Blunck and Kunstmann, and p > 2, which is a very
mature version of a good-λ argument. Section 6.3 presents the McIntosh
approximation, which is used to derive nice representation formulæ for L 1

2

and related operators. In Section 6.4, one of the Lp-extrapolation results
comes into action and is used to show Lp-boundedness of the H∞-calculus of
L. These bounds are used later-on in Section 6.7.
To extend the square root isomorphism on L2 to Lp, we essentially need

lower and upper Lp-bounds. The key difficulty in the lower bounds are Riesz-
transform bounds. These are dealt with in Section 6.5. For the case p > 2 we
will need a conservation property and local Poincaré inequalities, which are
also established in that section. The conservation property will explain why
we need pure Neumann boundary conditions and is the reason why we have
to require that certain coefficients vanish. The local Poincaré inequalities use
the homogeneous extension theory from the end of Chapter 3. To get theses
inequalities in a scale-invariant way, the unboundedness of O enters the scene.
The upper bounds for the square root are shown in Section 6.7. The case

p > 2 follows easily by duality from the Riesz-transform bounds. For the case
p < 2 we have to work harder (the lower bound p−(L) < 2 is not enough for
a duality argument). The argument relies on a Sobolev Calderón-Zygmund
decomposition, which is performed in Section 6.6.
Finally, everything is assembled in Section 6.8.
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6.1. Boundedness properties of operator families

Notation
If B ⊆ Rd is a ball, put C1(B) := 4B and, if j ≥ 2, put Cj(B) := 2j+1B \2jB.
Note that for j ≥ 2 we have by the reverse triangle inequality d(B,Cj(B)) ≥
2j−1 r(B). We employ the same convention with cubes instead of balls.
For p, q ∈ (1,∞), write

γpq := d

∣∣∣∣∣1p − 1
q

∣∣∣∣∣ .
If q = 2, write γp instead of γp2. The same goes for the case p = 2, in which
we simply write γq.
The upper Sobolev exponent p∗ of p ∈ [1,∞] is given as follows. If p < d,

then 1/p∗ := 1/p− 1/d. Otherwise, p∗ :=∞. The lower Sobolev exponent p∗
is determined by 1/p∗ := 1/p+ 1/d.
In the course of this chapter, we will occasionally work with the semigroup

generated by −L∗. The operator L∗ is associated with the adjoint form

a∗(u, v) := a(v, u) (u, v ∈W1,2
D (O)m),(6.3)

see [82, Prop. 1.24]. Clearly, the coefficient bounds of a and a∗ coincide. The
functional calculi of L and L∗ are linked by Proposition 1.4.6.

6.1. Boundedness properties of operator families
In this section we investigate boundedness properties of several families of
operators associated with the elliptic operator L. These families will oc-
cur in integral kernels later-on. In classical harmonic analysis, such kernels
are usually assumed to satisfy at least weak size and regularity properties,
see [48, Sec. 5.3.2]. Boundedness of these families replaces the size condition,
whereas off-diagonal estimates permit us to do similar arguments as with
kernel regularity.

Definition 6.1.1. Let U ⊆ C \ {0} and T := {T (z)}z∈U be a family of
bounded operators L2(Ξ)m1 → L2(Ξ)m2 , where m1,m2 are natural numbers
and Ξ ⊆ Rd is a measurable set. Given 1 ≤ p ≤ q ≤ ∞, say that T is Lp → Lq
bounded if there is a constant C such that for all u ∈ L2(Ξ)m1 ∩ Lp(Ξ)m1 and
z ∈ U one has

‖T (z)u‖Lq(Ξ)m2 ≤ C|z|−
γpq

2 ‖u‖Lp(Ξ)m1 .(6.4)
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6. Kato’s square root property: Lp–Theory

Assume that in addition there is c ∈ (0,∞) such that whenever E,F ⊆ Ξ and
supp(u) ⊆ E the stronger estimate

‖T (z)u‖Lq(F )m2 ≤ C|z|−
γpq

2 e−c
d(E,F )2
|z| ‖u‖Lp(E)m1(6.5)

holds. In this case, say that T satisfies Lp → Lq off-diagonal estimates.
Finally, if p = q in the above situation, we simply talk about Lp-boundedness
and Lp off-diagonal estimates.

Remark 6.1.2. If T is a family that satisfies Lp → Lq off-diagonal estimates,
we say that c, C ∈ (0,∞) are implied constants if the family T satisfies (6.5)
with this choice of constants.

We start out with L2 off-diagonal estimates of Gaffney type. The proof
is an adaptation of that given in [5, Prop. 2.1]. The argument is based on
a perturbation and the Crouzeix–Delyon Theorem, which we will recall mo-
mentarily.

Definition 6.1.3. Let T be an operator on a Hilbert spaceH and ω ∈ [0, π/2].
Say that T is m-ω-accretive if its numerical range

W(T ) :=
{

(Tu |u)H : u ∈ D(T )
}

is contained in S+
ω and T + ε is invertible for some ε > 0.

A proof for the following result can be found in [53, Cor. 7.1.17].

Proposition 6.1.4 (Crouzeix–Delyon Theorem). Let T be an injective and
m-ω-accretive operator on a Hilbert space H for some ω ∈ [0, π/2]. If f ∈
H∞(S+

ψ ) for some ψ ∈ (ω, π), then f(T ) is a bounded operator on H and one
has the estimate

‖f(T )‖H→H ≤
(
2 + 2√

3
)
‖f‖H∞(S+

ψ
).

Let us come back to the Gaffney type estimates. For this, recall the meaning
of the families S and N from the introduction to this chapter.

Proposition 6.1.5 (Gaffney estimates). Given ϕ ∈ [0, π/2 − ω), the fami-
lies {e−zL}z∈Sϕ, {z∇e−z2L}z∈Sϕ and {zLe−zL}z∈Sϕ satisfy L2 off-diagonal es-
timates, and the implied constants do only depend on L via its coefficient
bounds.
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Proof. In the whole proof we abbreviate V := W1,2
D (O)m. The symbol “.”

will only be used for bounds independent of the function ϕ and the parameter
ρ, which we introduce in a moment. The argument divides into three steps.
Step 1: Reduction to real times.
Let z ∈ S+

ψ and write z = |z|eiθ. Recall the coefficients A, b, c, and d ap-
pearing in the form a from the definition of L. We multiply these coefficients
by eiθ to define a new form aθ. Its coefficients then have the same upper bound
as before and the lower bound (5.3) holds with λ replaced by cψλ, where cψ is
some constant depending on ψ. This latter fact follows by elementary trigono-
metric considerations. The L2 realization of aθ is eiθL and we conclude that
this operator is again sectorial, but of a smaller angle. We emphasize that the
coefficient bounds of eiθL do only depend on the coefficient bounds of L and ψ,
but not on θ. Now, since the sectorial functional calculus is compatible with
scaling, we get zL = |z|(eiθL) and e−zL = e−|z|(eiθL). Therefore, the estimate
for, say, zLe−zL follows from the estimate for the family {t(eiθL)e−t(eiθL)}t>0.
Step 2: Perturbation of the sesquilinear form. Let t > 0, ϕ a bounded
Lipschitz function with Lipschitz constant at most 1 and let ρ > 0. Define
the form bρ(u, v) := a(e−ρϕu, eρϕv) for u, v ∈ V . Observe that the right-
hand side is well-defined since the component-wise multiplication with e±ρϕ
preserves V . We have omitted the dependence on ϕ to ease notation and since
all estimates will be independent of ϕ. Using the product and chain rule leads
to

bρ(u, v) =
∫
O
A∇u · ∇v − ρuA∇ϕ · ∇v + ρvA∇u · ∇ϕ+ ρ2uvA∇ϕ · ∇ϕ

+ b∇uv − ρub∇ϕv + uc∇v + ρuvc∇ϕ+ duv dx

= a(u, v) +
∫
O
−ρuA∇ϕ · ∇v + ρvA∇u · ∇ϕ+ ρ2uvA∇ϕ · ∇ϕ

− ρub∇ϕv + ρuvc∇ϕ dx
=: a(u, v) + cρ(u, v).

Observe that bρ is a perturbation of a. Write Λ and λ for the upper and
lower bounds of a. The upper bound can be chosen in such a way that is
also dominates the coefficient functions. We claim that there is a constant
c ∈ (0,∞) depending only on d, Λ and λ such that

(i) Re bρ(u, u) ≥ λ

2‖u‖
2
V − cρ2‖u‖2

2, (ii) |bρ(u, u)| ≤ 2Λ‖u‖2
V + cρ2‖u‖2

2.

In the course if this, we will furthermore see that bρ(·, ·) is a bounded form,
but we only care for the precise constants when both arguments coincide.
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It suffices to show that there exists such a constant c for which |cρ(u, u)| ≤
min(λ/2,Λ)‖u‖2

V +cρ2‖u‖2
2. Then (ii) follows from the definition of Λ and the

triangle inequality, whereas (i) is a consequence of

Re bρ(u, u) = Re a(u, u) + Re cρ(u, u) ≥ Re a(u, u)− |c(u, u)|

and the definition of a lower bound as in (6.2).
We estimate the terms of cρ separately. The first-order terms are estimated

in the same way, so we will only demonstrate the calculation on one of them.
This being said, use the triangle inequality, the bound on the Lipschitz con-
stant of ϕ, the Cauchy-Schwarz inequality and comparability of the 2-norm
with the 1-norm to get∣∣∣∫

O
ρuA∇ϕ · ∇v

∣∣∣ ≤ ρ
∑
j

∫
O
|u|
(∑

i

|aij∂iϕ|
)
|∂jv| ≤

√
dρdΛ‖u‖2‖v‖V .

Now, specialize to u = v and apply Young’s inequality with ε to the right-hand
side to deduce

≤ d
√
dΛ1

2
(
ρ2ε−2‖u‖2

2 + ε2‖u‖2
V

)
.

Choosing ε small enough so that d
√
dΛ1

2ε
2 ≤ 1

5 min(λ/2,Λ) concludes this
term. Note that the factor 1/5 is because cρ consists of 5 terms.
We continue with the zeroth-order terms. For the term with factor ρ2, the

Cauchy-Schwarz inequality and the almost everywhere bound on |∇ϕ| readily
reveal ∣∣∣∫

O
ρ2uvA∇ϕ · ∇ϕ

∣∣∣ ≤ ρ2d2Λ‖u‖2‖v‖2,

which is already fine. The zeroth-order terms with a factor ρ are estimated
similarly, followed by the same argument using Young’s inequality with ε as
above.
Step 3: Operators associated with the perturbed form. It follows from (i)
that Re bρ(u, u) + 2cρ2‖u‖2

2 is strictly positive, hence we can calculate with (i)
and (ii) that

| tan(bρ(u, u) + 2cρ2(u |u)2)| ≤ | Im bρ(u, u) + 2cρ2‖u‖2
2|

Re bρ(u, u) + 2cρ2‖u‖2
2
≤ 4Λ

λ
+ 3.

This means that the numerical range of the sesquilinear form bρ(u, u) +
2cρ2(u |u)2 is contained in the sector S+

θ , where θ := arctan(4Λ/λ+ 3). Also,
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6.1. Boundedness properties of operator families

(i) and the Lax-Milgram Lemma reveal that u 7→ bρ(u, · ) + 2cρ2(u | · )2 is an
isomorphism V → V ∗.
Let Lρ denote the L2-realization of bρ(·, ·). As for bρ, we omit again the

dependence on ϕ for the same reason. Then the numerical range of Lρ + 2cρ2

is also contained in S+
θ and, since Lρ + 2cρ2 is the part of an isomorphism, it

is itself invertible. But this means nothing else than that Lρ + 2cρ2 is m-θ-
accretive. Therefore, by Crouzeix–Delyon’s theorem (Proposition 6.1.4), its
H∞(S+

ψ )-calculus is bounded with a universal constant for every ψ ∈ (θ, π).
Let ψ := π/4 + θ/2 ∈ (θ, π/2) and consider the functions e−tz and tze−tz.

First, their H∞(S+
ψ )-norm is independent of t because scaling is a bijection

on S+
ψ . Second, the norm is finite because ψ < π/2 and only depends on the

coefficient bounds and dimension for they fully determine ψ. Therefore, the
bounded H∞-calculus of Lρ + 2cρ2 yields

‖e−tLρ‖L2→L2 + ‖t(Lρ + 2cρ2)e−tLρ‖L2→L2 . e2cρ2t.(6.6)

To deduce a similar estimate for the gradient of the semigroup, use the ellip-
ticity property (i) and the fact that the semigroup maps into the domain of
its generator to get

‖∇e−tLρu‖2
2 ≤

2
λ

Re bρ(e−tLρu, e−tLρu) + 2cρ2‖e−tLρu‖2
2

= 2
λ

Re((Lρ + 2cρ2)e−tLρu | e−tLρu).

Multiply this identity by t, take absolute values and use the Cauchy-Schwarz
inequality together with the bounds from (6.6) to conclude

‖
√
t∇e−tLρu‖2

2 ≤
2
λ
|(t(Lρ + 2cρ2)e−tLρu | e−tLρu)| ≤ 2

λ
e4cρ2t‖u‖2

2.

Next, we apply the square root to this inequality and take the supremum over
‖u‖2 = 1 to deduce the operator norm bound

‖
√
t∇e−tLρ‖L2→L2 . e2cρ2t,

that is, the operator family {
√
t∇e−tLρ}t>0 satisfies the same bounds as the

families in (6.6).
Step 4: Conclude using similarity between L and Lρ. Fix E,F ⊆ O and
u ∈ L2(O) with supp(u) ⊆ E. We specialize ϕ and ρ from above. Define
the bounded Lipschitz functions ϕn(x) := min(dE(x), n) for n ≥ 1. Their
Lipschitz constants are at most 1, which follows from [dE]Lip ≤ 1 and the
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6. Kato’s square root property: Lp–Theory

fact that Lipschitz constants add up when taking the minimum of Lipschitz
functions on Rd. Also, put ρ := d

4ct , where d := d(E,F ). Let Lρ,n be the
operator from Step 2 with these choices of ϕn and ρ.
As already noted in Step 1, multiplication with e±ρϕn leaves V invariant.

By duality we get extensions to V ∗. Note that e−ρϕn is the inverse of eρϕn .
Reinterpreting bρ,n(u, v) = a(e−ρϕnu, eρϕnv) in this light, we see that the form
operators V → V ∗ induced by these forms are similar. Since e±ρϕn is also
an isomorphism pair on L2, this similarity inherits to L and Lρ,n for they are
parts of the form operators.
Using the aforementioned similarity, it follows from Proposition 1.4.8 (ii)

and e−ρϕn = 1 on E that

e−tLu = e−ρϕneρϕne−tLe−ρϕnu = e−ρϕne−tLρ,nu.

On F we have the crude estimate |e−ρϕ| ≤ e−ρmin(d(E,F ),n). Hence, applying
the L2(F )-norm to this identity gives

‖e−tLu‖L2(F ) ≤ e−ρmin(d(E,F ),n)‖e−tLρ,nu‖2.

Using (6.6) and the support property of u gives

. e−ρ(min(d,n)−2cρt)‖u‖L2(E) → e− d2
8ct‖u‖L2(E) as n→∞.

Similarly, we derive the identity

tLe−tLu = e−ρϕntLρ,ne−tLρ,nu
= e−ρϕnt(Lρ,n + 2cρ2)e−tLρ,nu− e−ρϕnt2cρ2e−tLρ,nu.

Taking the L2(F )-norm and estimating as above yields

‖tLe−tLu‖L2(F ) . e− d2
8ct
(
1 + d2

8ct
)
‖u‖L2(E).

Boundedness of the function x 7→ (1 + x)e−x2 for positive x then leads to

‖tLe−tLu‖L2(F ) . e− d2
16ct‖u‖L2(E).

Finally, rewrite
√
t∇e−tL using similarity to Lρ,n, apply the product rule, and

estimate (taking |∇ϕ| ≤ 1 into account) the appearing semigroup and gradient
semigroup terms as before. Then boundedness of the auxiliary function x 7→
(1 + 1

4cx)e−x
2

2 lets us conclude as before

‖
√
t∇e−tLu‖L2(F ) . e− d2

16ct‖u‖L2(E).
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In Proposition 6.1.12 we will establish and relate various Lp and Lp → L2

(respectively L2 → Lp) bounds and off-diagonal estimates. Our last result
is the L2 anchor for this, and the next two lemmas give, on the other hand,
Lp → L2 respectively L2 → Lp bounds for S or N . Then Proposition 6.1.12
will be a straightforward consequence of composition (see Lemma 6.1.9 below)
and interpolation.

Lemma 6.1.6. Let p ∈ [1, 2). If S is Lp bounded, then S is Lp → L2 bounded.

Proof. Let u ∈ L2(O)m ∩ Lp(O)m with normalization ‖u‖p = 1 for conve-
nience. Also, let θ ∈ (0, 1) be such that

1
2 = 1− θ

p
+ θ

2∗ ,(6.7)

which is possible due to p < 2. Using the classical Gagliardo-Nirenberg in-
equality on Rd and the extension operator from Theorem 3.0.2 we get the
following inhomogeneous estimate on O:

‖v‖L2(O) . ‖v‖θW1,2(O)‖v‖1−θ
Lp(O) (v ∈W1,2

D (O)).

The estimate remains true on W1,2
D (O)m by component-wise application. Use

this version with v = e−tLu. Squaring both sides of the inequality, using nor-
malization of ‖u‖p combined with Lp boundedness of the semigroup, applying
the ellipticity assumption (6.2) and using that the semigroup maps into the
domain of its generator gives

‖e−tLu‖2
2 . ‖e−tLu‖2θ

W1,2(O)m ≤ λ−θ Re a(e−tLu, e−tLu)θ

. |(Le−tLu | e−tLu)2|θ.

The analyticity of the semigroup gives in particular that t 7→ e−tLu is dif-
ferentiable with derivative −Le−tLu, see [53, Prop. 3.4.1 b)]. Hence, if we
put f(t) := ‖e−tLu‖2

2, then the above estimate translates into the differential
inequality f(t) ≤ C(−f ′(t))θ, where t > 0 and C ∈ (0,∞) is the implied
constant from above.
We may assume f(s) 6= 0 on (t/2, t), since otherwise f(t) = 0 by the

semigroup property and the Lp → L2 estimate is then trivially satisfied. Then
we can take the differential inequality to the power of 1/θ and divide by f(t)
to get −Cf ′(t)/f(t)1/θ ≥ 1. Integrating this expression from t/2 to t gives

t

2 ≤ −C
∫ t

t/2

f ′(s)
f(s)1/θ ds ≤ Cθ

1− θf(t)1−1/θ.
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Rearranging this inequality and plugging in the definition of f gives

‖e−tLu‖2 = f(t)1/2 . t−
1
2

θ
1−θ .(6.8)

Write out the definition of 2∗ in (6.7) and rearrange terms to see

θ

d
= (1− θ)

(1
p
− 1

2
)
.

Plug this back into (6.8), then the normalization of ‖u‖p yields that this is
the desired Lp → L2 bound.

We continue with the case p > 2. Here, we need one of the geometrical
extra assumptions in Theorem 6.0.1 (ii), which permits the usage of global
homogeneous estimates on O.

Lemma 6.1.7. Assume that O is an (ε,∞) domain near ∂O. Let p ∈ (2,∞)
and assume that N is Lp bounded. Then S is L2 → Lp bounded.

Proof. Step 1: Boundedness of S up to 2∗. Let t > 0, p ∈ (2, 2∗) and
u ∈ L2(O)m with normalization ‖u‖2 = 1. The ellipticity condition (6.2),
e−tLu ∈ D(L) and the Cauchy-Schwarz inequality yield

λ‖e−tLu‖2
W1,2(O)m ≤ Re a(e−tLu, e−tLu) ≤ ‖Le−tLu‖2‖e−tLu‖2.(6.9)

By choice of p there is θ ∈ (0, 1) such that 1/p = (1 − θ)/2 + θ/2∗. Using
the classical Gagliardo-Nirenberg inequality and the extension operator for O
(compare for the proof of Lemma 6.1.6) we get the following inhomogeneous
interpolation inequality:

‖v‖p . ‖v‖1−θ
2 ‖v‖θW1,2(O)m (v ∈W1,2

D (O)m).

Divide (6.9) by λ and combine this with the interpolation inequality applied
to v = e−tLu ∈ D(L) ⊆W1,2

D (O)m to deduce

‖e−tLu‖p . t−θ/2‖e−tLu‖1−θ/2
2 ‖tLe−tLu‖θ/22 .

Now, using contractivity of the semigroup and L2-boundedness of the family
{tLe−tL}t>0, which is a consequence of Proposition 6.1.5 (or can be deduced
from the Crouzeix-Delyon theorem), and the normalization of ‖u‖2, this re-
duces to ‖e−tLu‖p . t−θ/2. If we write out the definition of 2∗ in the defining
equality for θ and solve the expression for θ, this reveals θ = γp, which com-
pletes the proof of L2 → Lp boundedness.
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Step 2: Going farther using Sobolev embeddings. If d = 2 then L2 → Lp
boundedness follows directly from Step 1 since then 2∗ =∞. Hence, we may
assume d ≥ 3. Also, we assume p ≥ 2∗ since otherwise the claim is again
trivial by Step 1. Then there is a finite sequence q0, . . . , qk such that q∗k = p,
qj+1 = q∗j for all j and q0 ∈ [2, 2∗). By Step 1, the semigroup is L2 → Lq0

bounded. In the sequel, we show that {e−tL}t>0 is Lqj → Lq∗j bounded for all
j. Then the claim follows using composition, see Lemma 6.1.9 below.
Fix t > 0 and some index j. For brevity, write q := qj. By construction,

q ∈ [2, p] ∩ [2, d]. The latter is a consequence of q∗ ≤ q∗k = p < ∞. Hence,
{
√
t∇e−tL}t>0 is Lq-bounded by interpolation of the assumption with the L2-

bound, which holds always (see Step 1). Write C ∈ (0,∞) for the implied
constant, C depends on L via the respective Lp-bound. Since O is an (ε,∞)
domain near ∂O, the Sobolev inequality on Rd together with the homogeneous
estimates for the extension operator in Theorem 3.9.2 yield a homogeneous
Sobolev embedding on O. Then we get for u ∈ Lq(O)m the bound

‖e−tLu‖Lq∗ (O)m . ‖∇e−tLu‖Lq(O)m ≤ Ct−
1
2‖u‖Lq(O)m .

Since γqq∗ = 1, this completes the claim.

Corollary 6.1.8. Assume that O is an (ε,∞) domain near ∂O. Let p ∈
(2,∞) and assume that N is Lp bounded. Then N is also L2 → Lp bounded.

Proof. Write
√

2t∇e−2tL =
√

2
√
t∇e−tLe−tL. Then the claim follows from

Lemma 6.1.7 and the assumption on using composition, see Lemma 6.1.9
below.

Lemma 6.1.9 (Composition of off-diagonal estimates). Let U ⊆ C and let
S := {S(z)}z∈U , T := {T (z)}z∈U be operator families such that T is Lp → Lq
bounded and S is Lq → Lr bounded for 1 ≤ p ≤ q ≤ r ≤ ∞. Then the family
{S(z)T (z)}z∈U is Lp → Lr bounded. If both families even satisfy the respective
off-diagonal estimates, then the same is true for the product family.

Proof. We start with the case of mere boundedness, which is fairly easy. Let
z ∈ U and C,C ′ the implied constants of Lq → Lr and Lp → Lq boundedness.
Then

‖S(z)T (z)‖Lp→Lr ≤ C|z|−γqr/2‖T (z)‖Lp→Lq ≤ CC ′|z|−γqr/2|z|−γpq/2.

When summing up γpq and γqr, the terms ±1/q cancel out to give γpr, which
completes this part.
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For the off-diagonal estimates, let E,F ⊆ O be measurable and u ∈ L2(O)m
supported in E. We assume d(E,F ) > 0 since otherwise (6.4) already im-
plies (6.5) by the support property of u. Therefore, Lemma 6.1.10 below is
applicable with ambient set O in place of Ξ. Let G denote the auxiliary set
from that lemma. Moreover, write C, c ∈ (0,∞) and C ′, c′ ∈ (0,∞) for the
implied constants from the Lq → Lr and Lp → Lq off-diagonal estimates.
Then, using the decomposition 1O = 1G + 1cG and the properties of the set
G we obtain

‖S(z)T (z)u‖Lr(F )m

≤ ‖S(z)1GT (z)u‖Lr(F )m + ‖S(z)1cGT (z)u‖Lr(F )m

≤ C|z|−γqr/2
(
e−c

d(F,G)2
|z| ‖T (z)u‖Lq(G) + e−c

d(F,cG)2
|z| ‖T (z)u‖Lq(cG)

)
≤ CC ′|z|−γqr/2|z|−γpq/2

(
e−c

d(F,G)2
|z| e−c

′ d(E,G)2
|z| + e−c

d(F,cG)2
|z| e−c

′ d(E,cG)2
|z|

)
‖u‖Lp(E)

≤ CC ′|z|−γpr/2
(
e−c

d(E,F )2
2|z| + e−c

′ d(E,F )2
2|z|

)
‖u‖Lp(E).

Lemma 6.1.10. Let E,F ⊆ Ξ ⊆ Rd be measurable sets with d(E,F ) 6=
0. Then there is an open set G ⊆ Ξ such that E ⊆ G, F ⊆ cG and
d(E, cG), d(F,G) ≥ d(E,F )/2.

Proof. DefineG := {x ∈ Ξ: d(x, F ) > d(E,F )/2}. The inequality d(F,G) ≥
d(E,F )/2 follows directly from the definition of G.
To see the analogous bound for d(E, cG), argue by contradiction and assume

there were some z ∈ cG and x ∈ E with |x−z| < d(E,F )/2−ε for some ε > 0.
By definition of G, there would exist y ∈ F satisfying |y−z| ≤ d(E,F )/2+ε.
Then the triangle inequality yields the contradiction

d(E,F ) ≤ |x− y| ≤ |x− z|+ |y − z| < d(E,F ).

Consequently, d(E, cG) ≥ d(E,F )/2.
The inclusion E ⊆ G is a consequence of d(x, F ) ≥ d(E,F ) > d(E,F )/2

for x ∈ E. Note that we use here that d(E,F ) 6= 0. Finally, x ∈ F implies
d(x, F ) = 0 ≤ d(E,F )/2, so F ⊆ cG.

For later use, we also treat duality of off-diagonal estimates.

Lemma 6.1.11 (Duality). Let U ⊆ C and let T := {Tz}z∈U be an operator
family on L2 which is Lp → Lq bounded for 1 ≤ p ≤ q ≤ ∞. Then T ∗ :=
{T ∗z }z∈U is Lq′ → Lp′ bounded. Moreover, if T satisfies Lp → Lq off-diagonal
estimates, then T ∗ satisfies Lq′ → Lp′ off-diagonal estimates. In both cases,
the implied constants for T and T ∗ coincide.
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Proof. We focus on the off-diagonal estimates since all steps needed in the
verification of boundedness are included in the calculation for off-diagonal
estimates.
So, let E,F ⊆ Ξ be measurable and let u ∈ Lq′ ∩L2 with support in E and

write C, c ∈ (0,∞) for the implied constants of Lp → Lq boundedness of T .
Then for z ∈ U we get using duality and the identity γpq = γq′p′ the estimate

‖T ∗z u‖Lp′ (F ) = sup
‖v‖p=1

|(1FT ∗z u | v)| = sup
‖v‖p=1

|(u |1ETz(1Fv))|

≤ sup
‖v‖p=1

‖u‖q′‖Tz(1Fv)‖Lq(E) ≤ sup
‖v‖p=1

C‖u‖q′ |z|−γpq/2e−cd(E,F )2/|z|‖v‖Lp(F )

≤ C|z|−γq′p′/2e−cd(E,F )2/|z|‖u‖Lq′ (E).

It (more or less) just remains to patch all the preparatory work together.

Proposition 6.1.12 (Lp → L2 off-diagonal estimates). Let p0 ∈ (1, 2) and
q0 ∈ (2,∞). Then the following holds.

(i) If S is Lp0 bounded, then S, N and {tLe−tL}t>0 satisfy Lp → L2 off-
diagonal estimates for all p ∈ (p0, 2).

(ii) If O is an (ε,∞) domain near ∂O and N is Lq0 bounded, then S and
N satisfy L2 → Lq off-diagonal estimates for all q ∈ (2, q0).

Proof. We begin with the proof of (i). We first claim that these families are
Lp0 → L2 bounded. For S this is just Lemma 6.1.6. In the other cases, we
re-use the trick from Corollary 6.1.8. Write

√
2t∇e−2tL =

√
2(
√
t∇e−tL)e−tL

and 2tLe−2tL = 2(tLe−tL)e−tL. Then the claim follows by composition of the
Lp → L2 boundedness for S with the L2-boundedness of N and {tLe−tL}t>0.
In the end, we use interpolation to get off-diagonal estimates. We present

this technique with all details once and use it freely afterwards. Let p ∈ (p0, 2)
and write

1/p = (1− θ)/p0 + θ/2(6.10)

for some θ ∈ (0, 1). Moreover, let t > 0 and T (t) be some operator to the
index t in one of the three families. Also, fix E,F ⊆ O measurable. Then we
get with u ∈ Lp(O)m ∩ L2(O)m supported in E that

‖T (t)u‖L2(F ) ≤ ‖T (t)‖1−θ
Lp0 (E)→L2(F )‖T (t)‖θL2(E)→L2(F )‖u‖Lp(E)(6.11)

≤ (C ′)1−θt−(1−θ)γp0/2Cθe−θc
d(E,F )2

t ‖u‖Lp(E),
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6. Kato’s square root property: Lp–Theory

where we have used the Lp0 → L2 boundedness from above with implied
constant C ′ ∈ (0,∞) and L2 off-diagonal estimates with implied constants
C, c ∈ (0,∞). Note that we have considered T (t) as an operator from L2(E)→
L2(F ) to “encode” the off-diagonal bounds in the operator norm, which makes
it accessible for interpolation.
Let’s have a closer look at the exponent of t. Expand γp0 and use (6.10) to

get

(1− θ)γp0 = d
(1− θ

p0
− 1− θ

2

)
= d

(1
p
− θ

2 −
1
2 + θ

2

)
= γp.

Hence, the scaling in (6.11) is correct, which completes the proof of (i).
The proof of (ii) is similar, but relies on Lemma 6.1.7. Indeed, the interpo-

lation argument to obtain off-diagonal estimates works the same provided we
have established L2 → Lp boundedness for S and N beforehand. For S, this
is directly Lemma 6.1.7 and for N we argue by the same decomposition as
in (i). Note that the decomposition argument now uses not only the L2 → Lq
boundedness of the semigroup as a non-trivial ingredient, but also the Lq
boundedness of N . Therefore, boundedness of {tLe−tL}t>0 does not come for
free as was the case in (i).

Remark 6.1.13. Given ϕ ∈ [0, π/2 − ω), we can replace real times t > 0 in
the conclusions of Proposition 6.1.12 by z ∈ Sϕ. This means, for instance,
that in (i) we get Lp → L2 off-diagonal estimates for {e−zL}z∈Sϕ . To see
this, take θ ∈ (ϕ, π/2 − ω) and let z ∈ Sϕ. Let w denote the intersection
point between ∂Sθ and the axis passing through z that is parallel to the real
axis. Put t := z − w. By construction, t > 0, arg(z) < ϕ, and |w| ≤ |z|.
Consequently, t ≥ |z|(cos(ϕ) − cos(θ)). Hence we can write z = t + w, and
conclude by composition with the complex L2 off-diagonal estimates from
Proposition 6.1.5.

Lemma 6.1.14 (Exponential decay). Assume S is Lq-bounded for some q ∈
[1,∞] and p ∈ (q, 2) or p ∈ (2, q), respectively. Then

‖e−tLu‖p . e−ct‖u‖p (t > 0, u ∈ L2 ∩ Lp),

where the implicit constant depends on L via its coefficient bounds and the
implied constant from Lq-boundedness of S.

Proof. It follows from (6.2) that L − λ/2 is still m-θ-accretive for some an-
gle θ ∈ [0, π/2) only depending on the coefficient bounds of L. Hence, the
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Crozeix-Delyon theorem yields etλ/2‖e−tL‖L2→L2 ≤ 4. Complex interpolation
of this bound with the Lq-boundedness of S from the assumption gives the
claim.

6.2. Lp-estimates for operators on L2

In the following, we will present two results to establish Lp-bounds for an
operator on L2. The first one goes back to Blunck and Kunstmann [24] and
deals with the case p < 2. The second one captures p > 2 and is a version of
a good-λ argument established originally by Auscher, Coulhon, Duong, and
Hofmann in [10], but this argument has deep roots in harmonic analysis, see
the historical remarks in [5, p.2 footnote 7].

Some motivation
We believe this is a good spot to explain what we mean by “Lp-bounds for
an L2-operator”, although we have already implicitly used this concept in the
section right before. Consider an operator T on L2 and the dense subspace
L2 ∩ Lp of Lp. Let u ∈ L2 ∩ Lp, then T is well-defined on u and Tu is in
particular a measurable function. Then the question is if there is a constant
C > 0 such that ‖Tu‖p ≤ C‖u‖p. If this is the case, T can be continuously
extended to an extension on Lp, again with operator norm bounded by C.
Often, the operator T is given as the strong limit of bounded operators

Tn on L2 which are more regular. For example, they might be given by a
nice representation formula, which already allows to show Lp-boundedness for
all p. A reader who is familiar with the classical theory of singular integral
operators might think of Tn as being given by a truncated kernel. In this
situation, though Tn is already bounded on Lp, the constant in the Lp-bound
a priori degenerates when n→∞.
In such a situation, instead of establishing Lp-bounds for the operator T

directly, it suffices to show that there is a constant C > 0 such that ‖Tnu‖p ≤
C‖u‖p for all u ∈ L2 ∩ Lp uniformly in n. Indeed, then the bounds for T
follow from Fatou’s lemma, since the L2-convergence also yields convergence
of |Tnu|p to |Tu|p almost everywhere along a subsequence.
The result in Section 6.2.1 could be applied directly to T , whereas the

result in Section 6.2.2 already requires that the operator is bounded on Lp. Of
course, the Lp-boundedness is only used in a qualitative and not a quantitative
way. Hence, this second method is definitely tailored to the situation with an
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6. Kato’s square root property: Lp–Theory

approximating family {Tn}n. However, even in the first situation it is often
better to work with an approximation of good operators since the a priori Lp-
boundedness makes it easier to perform certain calculations which are useful
when checking the assumptions in the extrapolation theorems.

6.2.1. Beyond Calderón-Zygmund theory

The following proposition is due to Blunck and Kunstmann [24], a simplified
version on Rd was shown in [5] and extended to arbitrary measurable subsets
using an extension–restriction argument in [36, Prop. 5.2].

Proposition 6.2.1 (Blunck & Kunstmann extrapolation). Let q ∈ [1, 2),
p ∈ (q, 2), Ξ ⊆ Rd be measurable and T : L2(Ξ)m1 → L2(Ξ)m2 be bounded,
where m1,m2 ∈ N. Assume there is a family (Ar)r>0 of bounded operators on
L2(Ξ)m1 such that for any open ball B ⊆ Rd with radius r and u ∈ L2(Ξ)m1

with supp(u) ⊆ B it holds

(∫
Cj(B)∩Ξ

|T (1− Ar)u|2
) 1

2

≤ g(j)r
d
2−

d
q

(∫
B∩Ξ
|u|q

) 1
q

(j ≥ 2),(BK1)
(∫

Cj(B)∩Ξ
|Aru|2

) 1
2

≤ g(j)r
d
2−

d
q

(∫
B∩Ξ
|u|q

) 1
q

(j ≥ 1).(BK2)

If Σ := ∑
j g(j)2 dj

2 is finite, then T admits Lp-bounds and the implied constant
depends on T only via the L2-bound for T and Σ.

Remark 6.2.2. In the situation of Proposition 6.2.1, T is actually of weak-
type (q, q), which then yields the strong Lp-bounds. Since we won’t need the
weak-type estimate for T , we have decided to go with the simpler formulation.

Example 6.2.3. Assume −L is the generator of a semigroup e−tL on L2(Ξ)m1

that satisfies Lq → L2 off-diagonal estimates. Consider the family Ar :=
1 − (1 − e−r2L)n for some n ∈ N and all r > 0, and let B and u as in the
Proposition. Clearly, Ar is bounded on L2(Ξ)m1 . We claim that {Ar}r>0
satisfies (BK2). To see this, expand

Ar =
n∑
k=1

(
n

k

)
(−1)k+1e−kr2L.
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6.2. Lp-estimates for operators on L2

With C, c ∈ (0,∞) the implied constants from the Lq → L2 off-diagonal
estimates we readily derive(∫

Cj(B)∩Ξ
|Aru|2

) 1
2

≤ C
n∑
k=1

(
n

k

)
(kr2)−γq/2e−c4j−1/k

(∫
B∩Ξ
|u|q

) 1
q

. 2nr−γqe− c
n

4j−1
(∫

B∩Ξ
|u|q

) 1
q

.

So, with g(j) := 2ne− c
n

4j−1 the summability condition in Proposition 6.2.1 is
clearly satisfied due to the double exponential decay in j.

6.2.2. Good-λ estimates
Definition 6.2.4. Let Ξ ⊆ Rd be measurable and f a locally integrable
function on Ξ. Define the maximal operator on Ξ by

MΞ f(x) = sup
B3x

r(B)−d
∫
B∩Ξ
|f(y)| dy (x ∈ Rd).

Remark 6.2.5. Note thatMΞ f coincides withM(E0f) up to a dimensional
constant, where E0f is the zero extension of f to Rd.

The following proposition is a consequence of the whole space version found
in [5, Thm. 1.2]. The trick is borrowed from [36] and was already mentioned
above Proposition 6.2.1. One has to apply the whole space result to the
operators T ′ := E0TRΞ and A′r := E0ArRΞ. Thereby, it is helpful to keep
Remark 6.2.5 in mind.

Proposition 6.2.6 (Good-λ extrapolation). Let q ∈ (2,∞], Ξ ⊆ Rd be mea-
surable and T : L2(Ξ)m1 → L2(Ξ)m2 be bounded, where m1,m2 ∈ N. Assume
there is a family (Ar)r>0 of bounded operators on L2(Ξ)m1 and a constant
C > 0 such that for any open ball B with radius r := r(B) and all u ∈ L2(Ξ)m1

it holds (∫
B∩Ξ
|T (1− Ar)u|2

) 1
2
≤ Cr

d
2 MΞ(|u|2)1/2(y) (y ∈ B),(GL1) (∫

B∩Ξ
|TAru|q

) 1
q

≤ Cr
d
qMΞ(|Tu|2)1/2(y) (y ∈ B).(GL2)

Then, if p ∈ (2, q) and T maps L2(Ξ)m1 ∩ Lp(Ξ)m1 into Lp(Ξ)m2, there is a
constant c > 0 that depends only on dimension, q, p and C such that

‖Tu‖p ≤ c‖u‖p (u ∈ L2(Ξ)m1 ∩ Lp(Ξ)m1).
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6. Kato’s square root property: Lp–Theory

Remark 6.2.7. As already mentioned in the motivation, note that Propo-
sition 6.2.6 already assumes that the operator is bounded on Lp. However,
boundedness is only used qualitatively, and it is the aim of this result to give
good quantitative bounds which allow for a limiting argument.

6.3. McIntosh approximation & functional
calculus

This section is dedicated to an approximation technique due to McIntosh.
First, we show operator-adapted approximations to the identity. For a rough
operator this leads to approximations by operators with nice representation
formulæ which have the a priori qualitative Lp-boundedness and are suitable
to bring off-diagonal bounds into action.
Let us first introduce some terminology and relate it to the algebra of

functions H∞0 (S+
ϕ ) introduced in Section 1.4. If f is a holomorphic function

on S+
ϕ , say that f is regularly decaying in 0 if there are C0, s0, r0 > 0 such that

|f(z)| ≤ C0|z|s0 for all z ∈ S+
ϕ with |z| < r0. Similarly, say that f is regularly

decaying in ∞ if there are C∞, s∞, r∞ > 0 such that |f(z)| ≤ C∞|z|−s∞ for
all z ∈ S+

ϕ with |z| > r∞. If f is both regularly decaying in 0 and ∞, then we
say that f is regularly decaying. Observe that f is regularly decaying if and
only if f ∈ H∞0 (S+

ϕ ).

Proposition 6.3.1 (McIntosh approximation). Let T be a sectorial operator
of angle ω ∈ [0, π), ϕ ∈ (ω, π) and f ∈ H∞0 (S+

ϕ ). Put c :=
∫∞

0 f(t) dt
t
and let

(an)n, (bn)n be sequences with an → 0 and bn →∞. Then

bn∫
an

f(tT )x dt
t
−→ cx (x ∈ D(T ) ∩ R(T ) ).

Proof. For convenience, put ft := f(tz) and Fa,b :=
∫ b
a f(tz) dt

t
for 0 < a ≤

b < ∞ on S+
ϕ . Write C, s ∈ (0,∞) for the implied constants coming from

f ∈ H∞0 (S+
ϕ ). The proof divides into several steps.

Step 1: Properties of Fa,b.
Claim 1 : Fa,b is holomorphic. Fix 0 < a ≤ b < ∞ and let (zn)n be a

sequence in S+
ϕ that converges to z ∈ S+

ϕ . One has ft(zn)→ ft(z) by continuity
of f and ft(w) is bounded for (t, w) ∈ [a, b]×({zn : n ∈ N}∪{z}) by continuity
of f and compactness. Hence, Lebesgue’s theorem implies Fa,b(zn)→ Fa,b(z),
which means that Fa,b is continuous in z.
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6.3. McIntosh approximation & functional calculus

Next, let ∆ ⊆ S+
ϕ be the boundary of a compactly contained triangle. Then

the Fubini-Tonelli theorem together with Cauchy’s integral theorem applied
to the holomorphic function ft yield∫

∆

∫ b

a
f(tz) dt

t
dz =

∫ b

a

∫
∆
ft(z) dz dt

t
= 0.

Altogether, Morera’s theorem yields that Fa,b is holomorphic on S+
ϕ .

Claim 2 : Fa,b is regularly decaying in 0 and ∞. To see that Fa,b decays in
∞, estimate

|Fa,b(z)| ≤ C
∫ ∞
a

t−s|z|−s dt
t

= C
a−s

s
|z|−s.

Similarly, |Fa,b(z)| ≤ C bs

s
|z|s. So altogether, Fa,b ∈ H∞0 (S+

ϕ ) with

|Fa,b(z)| ≤ C

s
max(a−s, bs) min(|z|−s, |z|s).(6.12)

Claim 3 : Fa,b is in H∞(S+
ϕ ) uniformly in a and b. To see this, use a scaling

by |z|−1 to derive

|Fa,b(z)| ≤
∫ ∞

0
|ft(z)| dt

t
=
∫ ∞

0
|f(tz|z|−1)| dt

t
≤ C

∫ ∞
0

min(ts, t−s) dt
t
.

The integral on the right-hand side is clearly finite and independent of a, b
and z. For later use, we summarize this as

|Fa,b(z)| . 1 (0 < a ≤ b <∞, z ∈ S+
ϕ ).(6.13)

Step 2: Calculation of Fa,b(T ).
We use the Fubini-Tonelli theorem to calculate Fa,b(T ). Its application is

readily justified using (6.12). So

2πi
∫ b

a
f(tT ) dt

t
=
∫ b

a

∫
<

f(tz)(z − T )−1 dz dt
t

(6.14)

=
∫
<

∫ b

a
f(tz) dt

t
(z − T )−1 dz = 2πiFa,b(T ).

Observe that the integral on the left-hand side with a, b replaced by an, bn
are precisely the integrals for which we want to show strong convergence to c
times the identity on D(T ) ∩ R(T ).
Step 3: Convergence of Fan,bn(T )x for x ∈ D(T ) ∩ R(T ).
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6. Kato’s square root property: Lp–Theory

For convenience, put e := z
(1+z)2 on S+

ϕ . Evidently, e ∈ H∞0 (S+
ϕ ).

Claim 1 : Fan,bn converges locally uniformly to c for n → ∞. We want to
appeal to Vitali’s theorem from complex analysis, see [53, Prop. 5.1.1].
First, we have to check that Fan,bn is a locally bounded sequence. But

we have already seen in (6.13) that Fan,bn is actually uniformly bounded for
the H∞(S+

ϕ )-norm, so this can be checked. Second, Fan,bn has to converge
pointwise on a set with a limit point in S+

ϕ . To see this, let r ∈ (0,∞), then

Fan,bn(r) =
∫ bn

an
f(tr) dt

t
=
∫ rbn

ran
f(t) dt

t
−→ c.

Hence, by Vitali’s theorem, there is a holomorphic function g on S+
ϕ to which

Fan,bn converges locally uniformly when n → ∞. But g coincides with c on
(0,∞), so the identity theorem reveals that Fan,bn converges locally uniformly
to the constant value c.
Claim 2 : R(e(T )) = D(T )∩R(T ). By the basic properties of the functional

calculus we can write

e(T ) = T (1 + T )−2 = (1 + T )−1T (1 + T )−1.

This shows R(e(T )) ⊆ D(T )∩R(T ). Conversely, let x ∈ D(T )∩R(T ). By the
latter, there is y ∈ D(T ) with x = Ty. But since y ∈ D(T ), we can also write
y = (1+T )−1z for some z. Apply 1+T to deduce z = (1+T )y = y+x ∈ D(T ).
Consequently, there is some w such that z = (1 + T )−1w. In total,

x = Ty = T (1 + T )−1z = T (1 + T )−2w ∈ R(e(T )).

Claim 3 : Fan,bn(T )x converges to cx for x ∈ D(T )∩R(T ). Put fn := Fan,bne.
Since Fan,bn is uniformly bounded, fn ∈ H∞0 (S+

ϕ ) for uniform implied constants
C ′, s′ ∈ (0,∞). So |fn(z)− ce(z)| is uniformly integrable over the contour of
a sector. Also, fn → ce pointwise by Claim 1, so Lebesgue’s theorem yields

‖fn(T )− ce(T )‖X→X ≤ (2π)−1
∫
<

|fn(z)− ce(z)| |dz|
|z|
→ 0.

Since e(T ) is bounded, it follows fn(T ) = Fan,bn(T )e(T ). In particular,
Fan,bn(T ) converges to c strongly on R(e(T )), which coincides with D(T ) ∩
R(T ) by Claim 2.
Step 4: Upgrade to x ∈ D(T ) ∩ R(T ).
This follows from Step 3 with the usual ε/3-argument provided we have

shown that {Fa,b(T )}0<a≤b<∞ is uniformly bounded. To this end, rewrite

Fa,b(z) =
∫ b

0
ft(z) dt

t
−
∫ a

0
ft(z) dt

t
= h(bz)− h(az),(6.15)
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where h(z) :=
∫ 1
0 f(tz) dt

t
.

We claim that h ∈ E(S+
ϕ ). Some arguments are similar to arguments that

we have used before, so we keep them brief. First, h decays of order |z|s
in zero, where s is the order of decay of f , see Step 1. Second, g := h −
c is a holomorphic function that decays of order |z|−s in infinity. Indeed,
derive the identity g(z) =

∫∞
1 f(tz) dt

t
from the identity theorem by using the

substitution t′ := t
s
for any real s in the defining integral for c. Then the

estimate can again be obtained by mimicking the calculation from Step 1.
Proceed with the decomposition

h =
(
c(1 + z)−1 + g

)
− c(1 + z)−1 + c.(6.16)

The function c(1 + z)−1 + g is holomorphic and decays regularly at infinity,
because this is the case for each addend. But we can also write

c(1 + z)−1 + g = (c+ g)− cz(1 + z)−1 = h− cz(1 + z)−1,

so this function is also regularly decaying in zero. Altogether, we find that
c(1+z)−1 +g ∈ H∞0 (S+

ϕ ), which yields h ∈ E(S+
ϕ ) by the decomposition (6.16).

Using linearity of the functional calculus and scaling (see Proposition 1.4.7),
this allows us to turn (6.15) into

Fa,b(T ) = hb(T )− ha(T ) = h(bT )− h(aT ).

Moreover, (1.6) in the very same proposition on scaling shows that the op-
erators on the right-hand side have operator norms independent of a and b,
which concludes this proof.

Remark 6.3.2. For a general function in H∞0 we have to work with 0 <

a < b < ∞ in Step 1 to ensure Fa,b ∈ H∞0 . However, with better decay, we
can do more. Consider f := z 1

2 e−z on S+
ϕ for some ϕ ∈ (0, π/2) and define

Fa :=
∫∞
a f(tz) dt

t
for a > 0. Then, using Γ(1/2) =

√
π, we get for z ∈ S+

ϕ and
with a suitable c depending on ϕ that

|Fa(z)| ≤
∫ ∞
a

(t|z|) 1
2 e−2ct|z| dt

t
≤ e−ca|z|

∫ ∞
0

(t|z|) 1
2 e−ct|z| dt

t
= e−ca|z|

(
π

c

) 1
2
.

So indeed, Fa ∈ H∞0 (S+
ϕ ) and Proposition 6.3.1 holds with bn :=∞ for all n.

Example 6.3.3. Let T be an injective sectorial operator of angle ω < π/2
on a reflexive Banach space X and let ϕ ∈ (ω, π/2). Then T is densely
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defined with dense range, see [53, Prop. 2.1.1 h)]. Hence, also D(T ) ∩ R(T )
is dense in X, see [53, Prop. 2.1.1 c)]. Recall

∫∞
0 t

1
2 e−t dt

t
= Γ(1/2) =

√
π

and consider f =
√

ze−z ∈ H∞0 (S+
ϕ ). Then

∫∞
0 f(t) dt

t
=
√
π and the McIntosh

approximation (Proposition 6.3.1) in combination with Remark 6.3.2 yield

1√
π

∞∫
an

t
1
2T

1
2 e−tTx dt

t
→ x when n→∞(6.17)

for all x ∈ X and all positive null sequences (an)n.

Example 6.3.4. Put T := L and X := L2(O)m. Then Example 6.3.3 is
applicable. By (6.14) we rewrite the left-hand side in (6.17) as Fan(T ). The
substitution t = s2 gives

Fa2
n
(z) =

∫ ∞
a2
n

ft(z) dt
t

= 2
∫ ∞
an

fs2(z) ds
s

=: Gan(z).

Of course, Gan ∈ H∞0 (S+
ϕ ) since this is true for Fa2

n
. Hence, plugging L into

Gan and redoing the calculation from (6.14) gives

2√
π

∞∫
an

L
1
2 e−s2Lu ds→ u as n→∞

for all u ∈ L2(O)m and all positive null sequences (an)n. We can always
replace u by L− 1

2u to derive the representation formula

L−
1
2u = 2√

π

∫ ∞
0

e−s2Lu ds (u ∈ L2(O)m)

in the sense of an improper Riemann integral in 0. The identity L 1
2 e−s2LL−

1
2 =

e−s2L is clear by the basic properties of the sectorial functional calculus. Sim-
ilarly, we obtain with u replaced by L 1

2u for u ∈ D(L 1
2 ) that

L
1
2u = 2√

π

∫ ∞
0

Le−t2Lu dt (u ∈ D(L 1
2 ))(6.18)

in the sense of an improper Riemann integral. Note that we have used
Le−t2L = [z 1

2 e−t2zz 1
2 ](L) ⊇ L

1
2 e−s2LL

1
2 and the domain of the operator on

the right-hand side coincides with D(L 1
2 ).

Apply Lemma 6.1.14 to the representation of L− 1
2 to arrive at the following
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Corollary 6.3.5. Assume S is Lq-bounded for some q ∈ (1,∞) and p ∈ (q, 2)
or p ∈ (2, q), respectively. Then

‖L−
1
2u‖p . ‖u‖p (u ∈ L2(O)m ∩ Lp(O)m),

where the implicit constant depends on L via its coefficient bounds and the
implied constant from Lq-boundedness of S.

Proof. Use the representation for L− 1
2 from the example above and the ex-

ponential decay from Lemma 6.1.14 with implied constants C, c ∈ (0,∞) to
derive

‖L−
1
2u‖p ≤

2C√
π

∫ ∞
0

e−cs2 ds‖u‖p.

The integral in s is finite and depends on L only via ellipticity and the implied
constants from Lq-boundedness of S.

6.4. Bounded H∞-calculus
The Crouzeix–Delyon Theorem yields that the H∞-calculus of L on L2 is
bounded. As a first application of the extrapolation theorem of Blunck and
Kunstmann, we moreover derive Lp bounds for the H∞-calculus on Lp ∩L2 in
the case p < 2 and assuming suitable off-diagonal decay. These bounds are
extended to p > 2 using duality. The result of this section is interesting on
its own, but will also be needed in the proof of Proposition 6.7.1.

Proposition 6.4.1. Assume that S satisfies Lp → L2 off-diagonal estimates
for some p ∈ (1, 2) or L2 → Lp off-diagonal estimates if p ∈ (2,∞). Then
there exists a constant C > 0 such that one has for all ϕ ∈ (ω, π) the estimate

‖f(L)‖p ≤ C‖f‖∞‖u‖p (f ∈ H∞(S+
ϕ ), u ∈ L2 ∩ Lp).(6.19)

The constant C depends on L only via its coefficient bounds and the implied
constants from the off-diagonal estimates.

Proof. Step 1: Reduction to f ∈ H∞0 (S+
ϕ ) with ‖f‖∞ = 1. Let f ∈ H∞(S+

ϕ )
and define e := z(1 + z)−2. The normalization of the norm simply follows by
scaling. For convenience, put c := ‖e‖H∞(S+

ϕ ).
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6. Kato’s square root property: Lp–Theory

Now consider the sequence fn := fen, where en := e
1
n . Since en has decay

of order 1
n
in 0 and ∞, fn ∈ H∞0 (S+

ϕ ). Moreover, the sequence of functions z 1
n

converges pointwise to 1 as n→∞, hence fn converges pointwise to f , and

‖fn‖H∞(S+
ϕ ) ≤ ‖f‖H∞(S+

ϕ )c
1
n . 1.(6.20)

Since the H∞(S+
ϕ )-calculus of L is bounded on L2(O)m, we derive from (6.20)

that the family {fn(L)}n of operators on L2 is uniformly bounded. Hence,
the Convergence Lemma (see [53, Prop. 5.1.4 b)], dense domain and range are
implied by the properties of L) shows that fn(L) converges strongly to f(L) on
L2(O)m. So, if (6.19) holds for all f ∈ H∞0 (S+

ϕ ), we get for u ∈ L2(O)m∩Lp(O)m
from Fatou’s lemma and with Cϕ the implied constant from (6.20) that

‖f(L)u‖p ≤ lim inf
k
‖fnk(L)u‖p ≤ lim inf

k
C‖fnk‖H∞(S+

ϕ )‖u‖p

≤ CCϕ‖u‖p.

Density of L2(O)m ∩ Lp(O)m in Lp(O)m concludes this step.
Step 2: Reduction to p ∈ (1, 2), where S satisfies Lp → L2 off-diagonal
estimates. Assume that S satisfies L2 → Lp off-diagonal estimates for some
p ∈ (2,∞). Duality yields that the dual family S∗ = S(L∗) satisfies L2 →
Lp′ off-diagonal estimates, see Lemma 6.1.11. Put g := f ∗, then duality,
Proposition 1.4.6 and the assumption of this step yield

‖f(L)‖Lp→Lp = ‖f(L)∗‖Lp′→Lp′ = ‖g(L∗)‖Lp′→Lp′ ≤ C‖g‖H∞(S+
ϕ )

= C‖f‖H∞(S+
ϕ ).

Step 3: The case f ∈ H∞0 (S+
ϕ ), ‖f‖∞ = 1 and p ∈ (1, 2) where S satisfies

Lp → L2 off-diagonal estimates. We appeal to Proposition 6.2.1 with T :=
f(L) and Ar := 1 − (1 − e−r2L)n, where n is such that γp + 2n > d/2. The
smoothing operator Ar was discussed in Example 6.2.3 and f(L) is a bounded
operator on L2(O)m by definition of the functional calculus of L.
It remains to verify (BK1). For this, let B be a ball of radius r and u ∈

L2(O)m with suppu ⊆ B. Since 1 − Ar = [(1 − e−r2z)n](L) is bounded,
T (1− Ar) can be rewritten as [f(1− e−r2z)n](L). Using Lemma 6.4.2 below,
write

T (1− Ar)u =
∫

Γ+
η+(z)e−zLu dz −

∫
Γ−
η−(z)e−zLu dz.(6.21)

For j ≥ 2, take the L2(Cj(B) ∩ O)-norm in (6.21) and use the Lp → L2 off-
diagonal estimates (note that these are valid on Γ± taking Remark 6.1.13 into
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account) with implied constants C, c ∈ (0,∞) to obtain(∫
Cj(B)∩O

|T (1− Ar)u|2
) 1

2

≤ C(Ij,+ + Ij,−)‖u‖Lp(B∩O),

where

Ij,± :=
∫

Γ±
|η±(z)||z|−γp/2e−c4j−1r2/|z| d|z|.(6.22)

To complete the proof, we have to show that Ij,± ≤ g(j)r−γp with g(j)
summable against 2dj/2. We proceed by establishing good estimates for η±.
For this, we will use the estimate

|1− e−r2ξ|n . min(1, r2n|ξ|n) (ξ ∈ γ±),(6.23)

which is a consequence of the complex path integral and that the exponential
function is its own complex primitive.
Recall η±(z) = 1

2πi
∫
γ±

ezξg(ξ) dξ with g(ξ) := f(ξ)(1− e−r2ξ)n. The normal-
ization of f and (6.23) give the pointwise bound |g(ξ)| ≤ en min(1, r2n|ξ|n) for
ξ ∈ Γ±. Moreover, for z ∈ γ± and ξ ∈ Γ± one has

| arg(zξ)| = | ± π/2∓ θ ± η| = π/2 + (ν − θ) > π/2.

Consequently, using the substitution u = |z|s, one has

|η±(z)| .
∫ ∞

0
e−c|z|sg(se±ν) ds .

∫ ∞
0

e−c|z|s min(1, `2nsn) ds

=
∫ r−2

0
e−c|z|sr2nsn ds+

∫ ∞
r−2

e−c|z|s ds

= |z|−1
(∫ |z|

r2

0
e−cur2n|z|−nun du+

∫ ∞
|z|
r2

e−cu du
)
.

(6.24)

In the case r2n|z|−n ≤ 1 we continue with

= |z|−1
(∫ |z|

r2

0
e−cur2n|z|−nun du+

∫ ∞
|z|
r2

e−cu
(
|z|
r2

)n
r2n|z|−n du

)
≤ |z|−1r2n|z|−n

∫ ∞
0

e−cuun du.

Otherwise, in the case r2n|z|−n ≥ 1, proceed in (6.24) with

≤ |z|−1
(
r2n|z|−n

∫ |z|
r2

0
un du+

∫ ∞
|z|
r2

e−cu du
)

. |z|−1
( |z|
r2 + 1

)
≤ 2|z|−1.
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6. Kato’s square root property: Lp–Theory

In summary, this shows |η±(z)| . |z|−1 min(1, r2n|z|−n). Plug this back
into (6.22), split the integral according to the cases from the minimum, and
use the substitution s = t4−(j−1)r−2 to derive

Ij,± .
∞∫
0

min(1, r2nt−n)t−γp/2e−c4j−1r2/t dt
t

=
r2∫

0

t−γp/2e−c4j−1r2/t dt
t

+
∞∫
r2

r2nt−n−γp/2e−c4j−1r2/t dt
t

≤ e−c4j−1
r2∫

0

t−γp/2e−c4j−1r2/t dt
t

+
∞∫
r2

r2nt−n−γp/2e−c4j−1r2/t dt
t

≤ r−γp
(

e−c4j−1
∞∫
0

s−γp/2e−c/s ds
s

+ 4−(j−1)(n+γp/2)
∞∫
0

s−n−γp/2e−c/s ds
s

)
.

The integrals in both terms are finite and depend only on γp and implicit
constants from the off-diagonal estimates. Also, the factor r−γp appears in
both terms as desired. Finally, summability against 2dj/2 is clear for the first
term due to the double exponential decay in j, whereas the second term decays
sufficiently fast by the constraint on n introduced right at the beginning of
this proof.

The following lemma was used in the proposition above. A proof can be
found in [36, Lemma 5.1]. The assertion can be seen as a special case of
compatibility between the sectorial calculus of the generator of an analytic
semigroup and its Phillips calculus, see [53, Sec. 3.3] for more information.

Lemma 6.4.2. Let ω < θ < ν < ϕ < π/2 and f ∈ H∞0 (S+
ϕ ). Let Γ±

parameterize the rays from 0 to∞ of angle ±π/2−θ and γ± the corresponding
rays of angle ±ν. Then one has the identity

f(L) =
∫

Γ+
e−zLη+(z) dz −

∫
Γ−

e−zLη−(z) dz,

where

η±(z) := 1
2πi

∫
γ±

ezξf(ξ) dξ.

6.5. Riesz transform
We consider the operator ∇L− 1

2 called the Riesz transform. In the case of
classical Fourier analysis, the Fourier multiplier with symbol −i ξj|ξ| is called the
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6.5. Riesz transform

jth Riesz transform. Recall that the Fourier symbols of ∂j and ∆ are given
by iξ and −|ξ|2. Then it immediately becomes apparent that the jth Riesz
transform is just the jth component of the operator ∇L− 1

2 with L = −∆,
which motivates the nomenclature above.
In Theorem 5.0.1 we have seen that D(L 1

2 ) = W1,2
D (O)m and that L− 1

2 is a
topological isomorphism from L2(O)m to W1,2

D (O)m. This shows in particular
that the Riesz transform on L2(O) is well-defined and bounded.
The aim of this section is to establish Lp-bounds for the Riesz transform.

Owing to Proposition 6.2.1, we derive these bounds in the case p < 2 in
Section 6.5.1. The arguments for this case are in a straightforward accordance
with the material in [36, Sec. 6]. The situation for p > 2 is more difficult. In
the pure Neumann case D = ∅ we modify the arguments from [5, Sec. 4.1.2]
to get a result in our geometric situation. This is carried out in Section 6.5.4.
As a preparation, we will establish local Poincaré inequalities in Section 6.5.2,
which heavily use the properties of the extension operator from Theorem 3.9.2.
Also, we will need a conservation property. It will be shown in Section 6.5.3
and is the reason why we have to restrict ourself to the pure Neumann case
along with further restrictions already mentioned in the main result of this
chapter.

6.5.1. The case p < 2
Proposition 6.5.1. Suppose that N satisfies Lq → L2 off-diagonal estimates
for some q ∈ (1, 2) and let p ∈ (q, 2). Then

‖∇L−
1
2u‖p . ‖u‖p (u ∈ Lp(O)m ∩ L2(O)m),

and the bound depends on L only via its coefficient bounds and the implied
constants in the off-diagonal estimates.

Proof. To derive Lp-boundedness of the Riesz transform, we employ Propo-
sition 6.2.1 with T = ∇L− 1

2 . For brevity, write γ := γq. Define the operator
family {Ar}r>0 as in Example 6.2.3 by Ar := 1 − (1 − e−r2L)n but with the
additional constraint γ + 2n > d/2 on n, compare with Step 3 in the proof of
Proposition 6.4.1. Condition (BK2) was already checked in that example.
To establish (BK1), let B ⊆ Rd be some open ball of radius r > 0 and

u ∈ L2(O)m with support in B. We derive a useful representation formula for
T first. Note that the Bochner integrals 2√

π

∫∞
ε L

1
2 e−t2Lv dt exist in L2(O)m

and converge to v as ε → 0 for all v ∈ L2(O)m according to Example 6.3.4.
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6. Kato’s square root property: Lp–Theory

By L2-boundedness of the Riesz transform,
2√
π

∫ ∞
ε
∇e−t2Lv dt = ∇L− 1

2
2√
π

∫ ∞
ε

L
1
2 e−t2Lv dt→ ∇L− 1

2v as ε→ 0.

Specify v = (1− Ar)u to derive the identity
2√
π

∫ ∞
ε
∇e−t2L(1− Ar)u dt→ T (1− Ar)u as ε→ 0.(6.25)

We want to rewrite the integrand in the left-hand side of (6.25). To this end,
using the functional calculus of L and the binomial theorem, we get

e−t2L(1− e−r2L)n = [e−t2z(1− e−r2z)n](L)

=
[ n∑
k=0

(
n

k

)
(−1)ke−(t2+kr2)z

]
(L)

=
n∑
k=0

(
n

k

)
(−1)ke−(t2+kr2)L.

Keeping the definition of Ar in mind, plug this into the left-hand side of (6.25)
to arrive at

2√
π

∫ ∞
ε

n∑
k=0

(
n

k

)
(−1)k∇e−(t2+kr2)Lu dt.(6.26)

We claim that the limit ε→ 0 of (6.26) exists in L2(Cj(B)∩O). Indeed, this
follows from Lebesgue’s theorem if the integral

∫∞
0 ‖∇e−(t2+kr2)Lu‖L2(Cj(B)∩O) dt

is finite for k = 1, . . . , n. We use the L2 off-diagonal estimates for N from
Proposition 6.1.5 and the transformation s = (t2 + kr2)−1 to calculate∫ ∞

0
‖∇e−(t2+kr2)Lu‖L2(Cj(B)∩O) dt .

∫ ∞
0

(t2 + kr2)−1e−
c4j−1r2
t2+kr2 ‖u‖2 dt

≤ 1
2

∫ ∞
0

s−
1
2 e−cr2s ds ‖u‖2,

which is indeed finite. Consequently, keeping (6.25) in mind, we derive in
L2(Cj(B) ∩O) the identity

T (1− Ar)u =
∫ ∞

0

n∑
k=0

(
n

k

)
(−1)k∇e−(t2+kr2)Lu dt.

Now, apply the substitution s = t2/r2 + k to transform the right-hand side
into ∫ ∞

0

n∑
k=0

(
n

k

)
(−1)k1(0,∞)(r2(s− k))∇e−r2sLu

r

2
√
s− k

ds.
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Using the auxiliary function

h(s) := 1
2

n∑
k=0

(
n

k

)
(−1)k1(0,∞)(r2(s− k)) 1√

s− k
,

this can be rewritten as

T (1− Ar)u =
∫ ∞

0
h(s)r∇e−r2sLu ds.

For j ≥ 2, we apply the L2(Cj(B) ∩ O)-norm to our representation of
T (1−Ar) above and apply Lq → L2 off-diagonal estimates for N with implied
constants C, c ∈ (0,∞) to derive

(∫
Cj(B)∩O

|T (1− Ar)u|2
) 1

2

≤ Cr−γ
∞∫
0

|h(s)|s−γ/2−1/2e−c4j−1/s ds‖u‖Lq(B∩O).

We split the integral on the right-hand side into a local integral and a global
integral. To be precise, write

∞∫
0

|h(s)|s−γ/2−1/2e−c4j−1/s ds =
∫ 4n

0
. . . ds+

∫ ∞
4n

. . . ds =: I0 + I∞.

We begin with an estimate for I0. We want to extract exponential decay (for
this, we need that s is small) by splitting the exponential term in the integral,
and remain with a finite term. Observe that s−γ/2−1/2e− c

2s remains bounded
for s→ 0 by l’Hôpital’s rule, and the bound on (0, 4n) depends only on γ and
n. Thus, we get

I0 ≤ e− c4j−1
8n

4n∫
0

|h(s)|s−γ/2−1/2e− c
2s ds . e− c4j−1

8n

n∑
k=0

(
n

k

) 4n∫
0

1(0,∞)(s− k)√
s− k

ds

≤ e− c4j−1
8n

n∑
k=0

(
n

k

)∫ 4n

0
s−

1
2 ds ≤ e− c4j−1

8n 2n
∫ 4n

0
s−

1
2 ds.

The integral on the right-hand side is finite, so we have bounded I0 by a term
with double exponential decay in j.
To estimate I∞, we derive a better representation formula for h using the
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residue theorem. As a primer, calculate for fixed 0 ≤ k ≤ n that(
n

k

)
(−1)k = n! 1

(−1) · · · (−k)
1

1 · · · (n− k)

= n!
k−1∏
j=0

1
j − k

n∏
j=k+1

1
j − k

= n!(−1)n
n∏
j=0
j 6=k

1
k − j

.

Plug this back into the definition of h and note that for s > 4n the indicator
functions in the definition of h all evaluate to 1, to get

h(s) = 1
2

n∑
k=0

(
n

k

)
(−1)k(s− k)− 1

2 = 1
2n!(−1)n

n∑
k=0

∏
j 6=k

1
k − j

1√
s− k

.

Now, note that the function

1
z(z− 1) . . . (z− n)

1√
s− z

has poles of order 1 in k = 0, . . . , n with corresponding residues ∏j 6=k
1
k−j

1√
s−k .

Therefore, the residue theorem reveals

(−1)nn!
2πi

∫
|z|=s/2

1
z(z − 1) . . . (z − n)

1√
s− z

dz = 2h(s).

Due to s > 4n and |z| = s/2 on the contour of integration, we have by the
reverse triangle inequality |z − k| ≥ s/2 − n ≥ s/4 for k = 0, . . . , n. Also,
|s− z| ≥ s− s/2 = s/2, so

|h(s)| .
∫
|z|=s/2

s−n−3/2 | dz| . s−n−1/2.

Use this and the substitution s = 4j−1t to estimate I∞ according to

I∞ .
∫ ∞

4n
s−n−γ/2e−c4j−1/s ds

s
≤ 4−(j−1)(n+γ/2)

∫ ∞
0

t−n−γ/2e−c/t dt
t
.

The integral on the right-hand side is finite, so I∞ decays like 4−(j−1)(n+γ/2).
By our constraint on n, this shows sumability of I1 + I∞ against 2dj/2. This
establishes (BK1).
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6.5.2. Local Poincaré inequalities
We show local Poincaré inequalities for W1,p

D (O), which roughly means that
we estimate the Lp-norm of a function on a ball centered in ∂O against its
gradient norm on a slightly enlarged ball. If the ball is not centered in the
Dirichlet part D, we have to subtract the mean value to arrive at such an
estimate. The crucial point for a local inequality is that the implied constant
in this bound scales like the radius of the ball. In this thesis we will only use
the case D = ∅, but it felt natural to include the general case for the sake of
improving the general theory of mixed boundary conditions.
The starting point for these estimates is Theorem 3.9.2. However, we will

need properties beyond those implied by Assumption 3.1.1, like the corkscrew
condition nearN coming from Proposition 5.1.7 or Remark 5.1.8, and Ahlfors–
David regularity of D. Note that if δ =∞ in 5.1.1, then the same is true for
Assumption 3.1.1, see Remark 5.1.6.

Proposition 6.5.2 (Local Poincaré inequality, Neumann case). There are
constants R ∈ (0,∞] and c ∈ [1,∞) such that for any ball B centered in N

with radius at most R it holds

‖f − (f)B∩O‖Lp(B∩O) . r(B)‖∇f‖Lp(cB∩O) (f ∈W1,p
D (O)).

Here, (f)B∩O is the mean value of f over B ∩ O. If O is locally an (ε,∞)-
domain near N , then R =∞.

Proof. For brevity, put r := r(B). We use the extension operator E from
Theorem 3.9.2. The constant R is given by the radius bound in that result
and c is the enlargement factor in there. The structure of the radius bounds
gives R =∞ in the situation when O is locally an (ε,∞)-domain near N .
Then, split

‖f − (f)B∩O‖Lp(B∩O) ≤ ‖Ef − (Ef)B‖Lp(B) + ‖(Ef)B − (f)B∩O‖Lp(B)

=: I + II.

Let S ⊆ B with |S| > 0. Since B is convex, we can use the classical Poincaré
inequality

‖g − (g)S‖Lp(B) . r
|B|
|S|
‖∇g‖Lp(B) (g ∈W1,p(B)),(6.27)

see [47, Lem. 7.12 & Lem. 7.16]. Combined with Theorem 3.9.2, estimate

I . r‖∇Ef‖Lp(B) . r‖∇f‖Lp(cB∩O).
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For the other term, use Jensen’s inequality, (6.27) with S := B ∩ O, the
corkscrew condition (either from Proposition 5.1.7 if δ is finite or Remark 5.1.8
otherwise), and Theorem 3.9.2 as above, to give

II =
∥∥∥−∫

B
[Ef − (f)B∩O]

∥∥∥
Lp(B)

≤ ‖Ef − (f)B∩O‖Lp(B)

. r
|B|
|B ∩O|

‖∇Ef‖Lp(B) ≈ r‖∇Ef‖Lp(B) . r‖∇f‖Lp(cB∩O).

The following result is the analogue for balls centered in the Dirichlet part.

Proposition 6.5.3 (Local Poincaré inequality, Dirichlet case). There are
constants R ∈ (0,∞] and c ∈ [1,∞) such that for any ball B centered in D

with radius at most R it holds

‖f‖Lp(B∩O) . r(B)‖∇f‖Lp(cB∩O) (f ∈W1,p
D (O)).(6.28)

If O is locally an (ε,∞)-domain near N , then R =∞.

Before we turn to the proof of the local Poincaré inequality on balls centered
in D, we need a comparison result for capacity and Hausdorff content.
The case p ≤ d in the following proposition can be obtained from [2,

Thm. 5.1.13]; A simplified version can also be found in [35, Thm. 1.2.32].
The case p > d is treated in [35, Lem. 1.2.10 & Rem. 1.2.8], though the
uniformity of the constant is only implicit in the proof by translation in the
Lp′-norm for the convolution Gα ∗ δx.

Proposition 6.5.4 (Lower bound for C1,p). Let 1 < p <∞. Then there is a
constant A > 0 such that for all E ⊆ Rd compact and non-empty one has

Hd−1
∞ (E) ≤ AC1,p(E) (p ≤ d) and A−1 ≤ C1,p(E) (p > d).

Proof of Theorem 6.5.3. As in the proof of Proposition 6.5.2, the parameters
R and c come from Theorem 3.9.2. Also, write again E for that extension
operator. We follow the usual strategy to transform to a reference geometry.
Our preparatory work allows us to control the “perturbation” in the Dirichlet
part.
Let B = B(x, r) be a ball with x ∈ D and 0 < r ≤ R. By continuity it

suffices to show (6.28) for f ∈ C∞D (O). Put g(y) := Ef(x+ry) for y ∈ B(0, 1).
By consistency of the extension operator and Sobolev embeddings, g has a
continuous representative which vanishes everywhere on K := r−1((D ∩B)−
x).
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6.5. Riesz transform

We claim that C1,p(K) & 1. Indeed, if p > d then this follows directly
from Proposition 6.5.4. Otherwise, note first that Hd−1

∞ and Hd−1 are com-
parable under Ahlfors–David regularity (the calculation is similar to that in
Lemma A.2.4). Then, we use that proposition in conjunction with the dilation
property of the Hausdorff measure [97, Thm. 28.1], translation invariance and
Ahlfors–David regularity to give

C1,p(K) & Hd−1
∞ (K) ≈ Hd−1(K) = r1−dHd−1(B ∩D) ≈ 1.

Now, we can show (6.28). Using the extension operator and the transfor-
mation rule, we deduce

‖f‖Lp(B∩O) ≤ ‖Ef‖Lp(B) = rd/p‖g‖Lp(B(0,1)).

Applying Lemma 6.5.5 below with Ξ := B(0, 1) and using C1,p(K) & 1 leads
to

. rd/pC1,p(K)−1/p‖∇g‖Lp(B(0,1)) . rd/p‖∇g‖Lp(B(0,1)).

Next, apply the chain rule to the definition of g and transform back to B to
deduce

= rd/p+1‖[∇Ef ](ry + x)‖Lp(B(0,1)) = r‖∇Ef‖Lp(B).

Finally, Theorem 3.9.2 lets us conclude

. r‖∇f‖Lp(cB∩O).

Lemma 6.5.5 (Simplified version of [2, Cor. 8.2.2]). Let Ξ ⊆ Rd be open,
bounded and convex. Then there is a constant A > 0 such that if K ⊆ Ξ
is a compact subset with C1,p(K) > 0 and f ∈ W1,p(Ξ) has a continuous
representative that vanishes identically on K, then

‖f‖Lp(Ξ) ≤ AC1,p(K)−1/p‖∇f‖Lp(Ξ).

6.5.3. Conservation property
Loosely speaking, the conservation property states “e−tL1 = 1”. Since the
semigroup maps into W1,2

D (O)m, this identity forces us to work with pure
Neumann boundary conditions. On unbounded domains, such an identity
cannot hold true in the L2-sense because the constant 1 is not even in that
space. But we can nevertheless show the following adjoint version.
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6. Kato’s square root property: Lp–Theory

Proposition 6.5.6 (Conservation property). Suppose D = ∅, that the coeffi-
cients b and d of L vanish, and let u ∈ L2(O)m be compactly supported. Then
e−tL∗u ∈ L1(O)m and

∫
O u =

∫
O e−tL∗u holds for all t > 0.

Proof. Say u is supported in the ball B with radius r = r(B). Let ψ be a
smooth, compactly supported cutoff function for B and put ψn(x) := ψ(x/2n)
for x ∈ Rd. Also, keep in mind that the form domain of a and a∗ reduces to
W1,2(O)m by D = ∅. The proof divides into several steps.
Step 1: e−tL∗u ∈ L1. This is a straightforward consequence of L2 off-

diagonal estimates for S(L∗) and Hölder’s inequality. Write C, c ∈ (0,∞) for
the implied constants and estimate∫

O
|e−tL∗u| =

∫
4B∩O

|e−tL∗u|+
∑
j≥2

∫
Cj(B)∩O

|e−tL∗u|

. Crd/2
(
1 +

∑
j≥2

2jd/2e−c4j−1r2/t
)
‖u‖2.

The series in j is convergent, which completes this step.
Step 2: e−tL∗u→ u in L1 as t→ 0. As above, we employ a dyadic splitting

of the area of integration and use Hölder’s inequality to find∫
O
|e−tL∗u− u| . rd/2‖e−tL∗u− u‖2 +

∑
j≥2

∫
Cj(B)∩O

|e−tL∗u− u|.

The first term is fine by the strong continuity of the semigroup on L2. For the
other term, keep in mind that u = 0 on Cj(B) for j ≥ 2, and assume t ≤ 1.
Then, off-diagonal estimates allow us to derive∫

Cj(B)∩O
|e−tL∗u− u| =

∫
Cj(B)∩O

|e−tL∗u|

≤ Crd/22jd/2e−c4j−1r2/t‖u‖2 ≤ Crd/22jd/2e−c4j−1r2/2e−c2r2/t‖u‖2.

Then the sum over j is convergent, so we conclude
∑
j≥2

∫
Cj(B)∩O

|e−tL∗u− u| . rd/2e−c2r2/t‖u‖2,

which vanishes for t→ 0.
Step 3: t 7→ a∗(e−tL∗u, ψn) is a uniformly bounded sequence in L∞(0,∞)

which goes pointwise to 0 as n → ∞. Recall the definition of a∗ in (6.3).
We have ψn ∈ W1,2(O)m by construction. Here, we need the pure Neu-
mann boundary conditions to be able to plug ψn into a∗. Moreover, e−tL∗u ∈
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6.5. Riesz transform

D(L∗) ⊆ W1,2(O)m. Hence, since b = d = 0, we get from the definition (6.1)
of a the identity

a∗(e−tL∗u, ψn) = a(ψn, e−tL∗u)

=
∫
O

d∑
i,j=1

∂ie−tL
∗
u · aij∂jψn +

d∑
j=1

e−tL∗u · cj∂jψn.
(6.29)

Due to ψn = 1 on 2nB, the gradient terms of ψn are supported outside of
2nB. This is the reason why we had to restrict ourself to the case where b
and d vanish. Next, we take absolute values in (6.29) and use L2 off-diagonal
estimates for N and S with implied constants C, c ∈ (0,∞) to deduce

|a∗(e−tL∗u, ψn)| . C(t−1/2 + 1)e−c4n−1/t2‖u‖2.

For fixed t, this goes to zero when n → ∞, and t−1/2e−c4n−1/t2 ≤ t−1/2e−c/t2

yields a uniform bound.
Step 4:

∫
0 etL∗u is constant in t. Let 0 < s < t <∞. Since e−tL∗u, e−sL∗u ∈

L1 by Step 1 and ψn is uniformly bounded and goes pointwise to 1, Lebesgue’s
theorem yields∫

O
e−tL∗u−

∫
O

e−sL∗u = lim
n→∞

(∫
O

e−tL∗uψn −
∫
O

e−sL∗uψn
)
.

By analyticity of the semigroup, ∂τe−τL
∗ = −L∗e−τL∗ holds. This derivative

interchanges with the bounded functional v 7→
∫
O vψn on L2(O), hence

= lim
n→∞

∫ t

s
∂τ

∫
O

e−τL∗uψn dτ = lim
n→∞

−
∫ t

s
a∗(e−τL∗u, ψn) dτ.

The limit is zero due to Lebesgue’s theorem and Step 3.
Step 5:

∫
O e−tL∗u =

∫
O u for all t > 0. Apply the limit s → 0 to the

identity from Step 4 and use the strong continuity from Step 2 to deduce∫
O

e−tL∗u = lim
s→0

∫
O

e−sL∗u =
∫
O
u.

6.5.4. The case p > 2
Proposition 6.5.7. Assume D = ∅, that the coefficients b and d of L vanish,
and suppose that N satisfies Lq → L2 off-diagonal estimates for some q ∈
(2,∞) and let p ∈ (2, q). Then ∇L− 1

2 is bounded on Lp(O)m, and the bound
depends on L only via its coefficient bounds and the implied constants in the
off-diagonal estimates.
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6. Kato’s square root property: Lp–Theory

Proof. Note first that it suffices to show uniform Lq-bounds for the truncated
operators Tε :=

∫∞
ε t

1
2∇e−tLu dt

t
for ε > 0, which is a consequence of the

strong convergence of 1√
π
Tε → ∇L− 1

2 discussed in Example 6.3.3 and the
discussion in Section 6.2. To show Lq-bounds independent of ε, we appeal to
the extrapolation result from Proposition 6.2.6. As before, define the operator
family {Ar}r>0 by Ar := 1− (1− e−r2L)n, where n > d/4.
Step 1: Verify assumption (GL1). Since the L2-norm is taken over B,

we use the decomposition u = ∑
j≥1 1Cj(B)u to bring off-diagonal decay into

business. For brevity, let us put uj := 1Cj(B)u. Note that the sum converges
in L2 by Lebesgue’s theorem. Hence, by L2-continuity of Tε with constant
independent of ε (which is a consequence of L2-boundedness of the Riesz
transform and uniform bounds for the McIntosh approximation, see the final
step of its proof), and the triangle inequality we have

(∫
B∩O
|Tε(1− Ar)u|2

) 1
2
≤
∑
j≥1
‖Tε(1− Ar)uj‖L2(B∩O).(6.30)

It suffices to show the bounds

‖Tε(1− Ar)uj‖L2(B∩O) ≤ rd/2g(j)
(
−
∫

2j+1B∩O
|u|2

) 1
2

(6.31)

for j ≥ 1, where g(j) is summable over j ≥ 1. Indeed, the mean value integrals
can be bounded by MO(|u|2)1/2(y) for y ∈ B and the sum over j in (6.30)
then reduces to an absolute constant.
For j = 1, L2-boundedness of {Tε(1− Ar)}ε,r>0 immediately gives

‖Tε(1− Ar)u1‖L2(B∩O) . ‖u‖L2(C1(B)∩O) . rd/2
(
−
∫

4B∩O
|u|2

) 1
2
.

Now let j ≥ 2. Recall the identity

Tε(1− Ar) =
∫ ∞
ε

t
1
2∇e−tL(1− Ar)

dt
t

=
∫ ∞
ε

t
1
2∇f(L) dt

t
,(6.32)

where we use the auxiliary function f(z) := e−tz(1 − e−r2z)n. Let ω < θ <

ν < ϕ < π/2, then clearly f ∈ H∞0 (Sϕ), so that, owing to Lemma 6.4.2, we can
write

f(L) =
∫

Γ+
e−zLη+(z) dz −

∫
Γ−

e−zLη−(z) dz,
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6.5. Riesz transform

where

η±(z) = 1
2πi

∫
γ±

ezξf(ξ) dξ (z ∈ Γ±),

and Γ±, and γ± are defined as in Lemma 6.4.2. We want to derive pointwise
estimates for |η±| as in the proof of Proposition 6.4.1. To this end, we seek
good pointwise bounds the integrand ezξf(ξ) = eξ(z−t)(1− e−r2ξ)n in the defi-
nition of η±. For its second factor, (1− e−r2ξ)n, we can rely on (6.23), so we
only need to control eξ(z−t). From | arg(z − t)| ≥ | arg(z)| one gets

| arg(ξ(z − t))| ≥ | arg(ξ) + arg(z − t)| ≥ | arg(ξ) + arg(z)| = π/2 + (ν − θ).

As ν − θ > 0, it follows |eξ(z−t)| ≤ e−c|ξ||z−t| with c > 0 depending on ν − θ.
Finally, since t > 0 and −z ∈ Sν+π/2, the reverse triangle inequality on sectors
lets us conclude |eξ(z−t)| ≤ e−c|ξ|(|z|+|t|) for some different c > 0 as above. Now
we can essentially repeat the calculation in the proof of Proposition 6.4.1 to
derive the bound

|η±(z)| . (|z|+ t)−1 min(1, r2n(|z|+ t)−n) (z ∈ Γ±),

the only difference is that we use the transformation u = s(|z|+ t) instead of
u = |z|s after splitting the integrals.
Let us come back to (6.31) with j ≥ 2. We use identity (6.32), insert the

definition of f(L), and commute ∇ with the inner integral, to give

‖Tε(1− Ar)uj‖L2(B∩O) ≤ 2
∞∫
ε

∫
Γ±

t
1
2 |z|−

1
2 |η±(z)‖z 1

2∇e−zLuj‖L2(B∩O) d|z| dt
t
.

Using the bound on |η±|, and L2 off-diagonal estimates, we control the last
quantity by∫ ∞

ε

∫
Γ±
t

1
2 |z|−

1
2 e−c

4jr2
|z| (|z|+ t)−1r2n(|z|+ t)−n d|z| dt

t
‖uj‖L2(O).(6.33)

Next, we bound the inner integral. To ease notation, write β := 4jr2

t
, and

|z| = s. Split the integral into s ≤ t and s ≥ t. In the first case, we use the
trivial bounds (s+ t)−1 ≤ s−1, and (s+ t)−n ≤ t−n, to give

∫ t

0
e−c 4jr2

s t
1
2 s−

1
2 (s+ t)−1r2n(s+ t)−n ds ≤ βn4−jn

∫ t

0
e−c 4jr2

s t
1
2 s−

1
2

ds
s
.
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6. Kato’s square root property: Lp–Theory

Using the transformation u = 4jr2

s
, and recalling the definition of β, continue

with

βn4−jn
∫ t

0
e−c 4jr2

s t
1
2 s−

1
2

ds
s
≤ βn4−jnβ− 1

2

∫ ∞
β

e−cuu 1
2

ds
s

(6.34)

To estimate the integral in u, we can either neglect the factor e−cu to get an
estimate against β 1

2 , or we split c = c1 + c2 with c1, c2 > 0 to give∫ ∞
β

e−cuu− 1
2

du
u
≤ e−c1β

∫ ∞
β

e−c2uu−
1
2

du
u
. e−c1β.

In summary, as a consequence of βne−c1β . 1 for β ≥ 1, we can bound the
term on the right-hand side of (6.34) by

βn4−jn min(e−c1β, β
1
2 ) . 4−jn min(β− 1

2 , βn).

In the second case, when s ≥ t, use the inequalities (s + t)−1 ≤ s−1, and
(s+ t)−n ≤ s−n, to give∫ ∞

t
t

1
2 s−

1
2 e−c 4jr2

s (s+ t)−1r2n(s+ t)−n ds ≤
∫ ∞
t

e−c 4jr2
s t

1
2 s−

1
2

(
r2

s

)n ds
s
.

We use again the transformation u = 4jr2

s
to derive the identity

∫ ∞
t

e−c 4jr2
s t

1
2 s−

1
2

(
r2

s

)n ds
s

=
∫ β

0
e−cut 1

2 (4jr2)− 1
2u

1
2 +n4−jn du

u

= β−
1
2 4−jn

∫ β

0
e−cuu 1

2 +n du
u
.

The integral in u can be controlled by min(β 1
2 +n, 1), either by neglecting e−cu,

or by using integrability of e−cuun− 1
2 over (0,∞), so that we get in summary∫ ∞

t
t

1
2 s−

1
2 e−c 4jr2

s (s+ t)−1r2n(s+ t)−n ds . 4−jn min(βn, β− 1
2 ).

Going back to (6.33), this yields the bound

‖Tε(1− Ar)uj‖L2(B∩O) . 4−jn(2jr)−γ
∫ ∞
ε

min(β
γ
2 +n, β−

1
2 ) dt

t
‖uj‖L2(O).

The integral in t is bounded by a universal constant, which can be seen by
splitting the integral at height 4jr2. Also

‖uj‖L2(O) . 2
jd
2 r

d
2

(
−
∫

2j+1B∩O
|u|2

) 1
2
,
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6.5. Riesz transform

so that in the end we get (6.31) with g(j) := 2j(d/2−2n), which is indeed
summable in j by the constraint on n. This concludes the proof of (GL1).
Step 2: Verify assumption (GL2). We continue with (GL2). Here, we need

the conservation property and local Poincaré inequalites, so this is the part
of the proof that brings the extra restrictions on coefficients and boundary
conditions into play. For the rest of the proof, conservation property will al-
ways refer to Proposition 6.5.6 and local Poincaré inequality to the Neumann
version Proposition 6.5.2. Note that the local Poincaré inequality works for
balls B with 1

2B ∩ O 6= ∅. To see this, distinguish whether the ball is prop-
erly contained in O or not. If this is the case, use the convex version stated
in (6.27). Otherwise, use an auxiliary boundary ball centered in an intersec-
tion point of ∂O with B of radius 2 r(B). To introduce the mean value on this
auxiliary ball, an estimate similar to that of term II in the proof of the local
Poincaré inequality can be used (since 1

2B ∩ O 6= ∅, the corkscrew condition
can be applied to a ball centered in ∂O of radius r(B)/2).
To ease notation, we will denote integrals over B∩O only by

∫
B and assume

tacitly that the integrand is extended outside O by zero.
Reductions. Let us start with three reductions. For this, take an arbitrary

ball B in Rd of radius r = r(B) and let u ∈ L2(O)m. First, we may assume
that 1

2B hits O. Indeed, if B does not hit O, (GL2) is void, and otherwise we
can replace B by 2B in (GL2). Second, it suffices to show the claim with Ar
replaced by e−kr2L for all k = 1, . . . , n in virtue of the expansion of Ar. Third,
with v :=

∫∞
ε e−t2Lu dt it suffices to show

‖∇e−kr2Lv‖Lq(B) ≤ crd/2MO(|∇v|2)1/2(y)(6.35)

for all y ∈ B. Indeed, since the defining integral for v converges absolutely
in W1,2(O)m by exponential decay and gradient estimates of the semigroup,
pull ∇e−kr2L into the integral and commute the semigroup terms to conclude
on the one hand that ∇e−kr2Lv = Tεe−kr

2Lu. On the other hand, ∇v = Tεu,
which completes this reduction step.
To estimate the left-hand side of (6.35) we test with g ∈ C∞0 (B ∩ O).

Calculate first with the conservation property that

0 =
∫
B
∇g =

∫
Rd

e−kr2L∗∇g,
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6. Kato’s square root property: Lp–Theory

where the semigroup is supposed to act componentwise. The integrand is
integrable by Step 1 in the proof of the conservation property, so Lebesgue’s
theorem yields

= lim
N→∞

N∑
j=1

∫
Cj(B)

e−kr2L∗∇g.

The same stays true if we multiply the right-hand side by any constant. Hence∫
B
∇e−kr2Lvg = lim

N→∞
−

N∑
j=1

∫
Cj(B)

ve−kr2L∗ div g

= lim
N→∞

−
N∑
j=1

∫
Rd

(1Cj(B)[v − (v)4B])e−kr2L∗ div g

= lim
N→∞

N∑
j=1

∫
B
∇e−kr2L[1Cj(B)(v − (v)4B)]g.

In accordance with our convention for integrals we write (v)4B for the mean
value of the zero extension E0v of v over 4B. Finally, use this identity to get
by duality

‖∇e−kr2Lv‖Lq(B) = sup
g∈C∞0 (B)
‖g‖q′=1

∣∣∣ lim
N→∞

N∑
j=1

∫
B

e−kr2L∇(1Cj(B)[v − (v)4B])g
∣∣∣

≤ lim inf
N→∞

N∑
j=1

∥∥∥∇e−kr2L(1Cj(B)[v − (v)4B])
∥∥∥

Lq(B)
.

(6.36)

We derive suitable bounds for the terms of the sum on the right-hand side
of (6.36) and start with the case j = 1. Using that N is L2 → Lq bounded
and the local Poincaré inequality, we readily get

‖∇e−kr2L(14B[v − (v)4B])‖Lq(B) . r−1(r2)−γq/2‖v − (v)4B‖L2(4B∩O)

. r−γq‖∇v‖L2(c4B∩O) . rd/qMO(|∇v|2)1/2(y)

for all y ∈ B. We continue with j ≥ 2. We seek the bound∥∥∥∇e−kr2L(1Cj(B)[v − (v)4B])
∥∥∥

Lq(B)
. g(j)rd/qMO(|∇v|2)1/2(y)(6.37)

for summable g(j) and all y ∈ B. Using a telescoping sum we get the decom-
position

v − (v)4B = v − (v)2j+1B +
j∑
`=2

(v)2`B − (v)2`+1B =: I + II.
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We start with term I. Using the L2 → Lq off-diagonal decay of N with implied
constants C, c ∈ (0,∞), calculate

‖∇e−kr2L(1Cj(B)[v − (v)2j+1B])‖Lq(B) . r−1r−γqe−c4j−1‖v − (v)2j+1B‖L2(Cj(B)).

Now estimate the L2(Cj(B))-norm by the L2(2j+1B)-norm and apply the local
Poincaré inequality to obtain

. r−γqe−c4j−1‖∇v‖L2(c2j+1B) . rd/qe−c4j−12(j+1)d/2MO(|∇v|2)1/2(y)

for y ∈ B. We continue with the estimate corresponding to II. As a primer,
calculate using Jensen’s inequality and the local Poincaré inequality

|(v)2`B − (v)2`+1B|2 =
∣∣∣−∫

2`B
v − (v)2`+1B

∣∣∣2 ≤ −∫
2`B
|v − (v)2`+1B|2

. −
∫

2`+1B
|v − (v)2`+1B|2 . 4`r22−`dr−d‖∇v‖2

L2(c2`+1B).

Take the square root and an estimate against the maximal operator to obtain

|(v)2`B − (v)2`+1B| . 2`rMO(|∇v|2)1/2(y)(6.38)

for all y ∈ B. Let us come back to the actual estimate. Using off-diagonal
bounds and Hölder’s inequality we find

j∑
`=1
‖∇e−kr2L(1Cj(B)[(v)2`B − (v)2`+1B])‖Lq(B)

.
j∑
`=1

r−1r−γqe−c4j−1 |Cj(B)|1/2|(v)2`B − (v)2`+1B|.

Plugging in (6.38) leads to

.
j∑
`=1

2`r−γqe−c4j−12jd/2rd/2MO(|∇v|2)1/2(y)

. rd/qe−c4j−12j+12jd/2MO(|∇v|2)1/2(y)

for all y ∈ B. In total, we have obtained (6.37) with g(j) = e−c4j−12(j+1)d.
Since g(j) is summable, we obtain from (6.36) the bound

‖∇e−kr2Lv‖Lq(B) . rd/qMO(|∇v|2)1/2(y)

for y ∈ B, which completes the proof of (GL2).
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6. Kato’s square root property: Lp–Theory

6.6. A Calderón-Zygmund decomposition for
Sobolev functions

Calderón-Zygmund decompositions are a classical tool in harmonic analysis.
The idea is to decompose a function on all scales into good and bad functions,
where good means small in a certain sense and the bad functions are at least
localized in a good manner. The classical Calderón-Zygmund decomposition
happens at the level of Lebesgue spaces. Here, we show a decomposition in
W1,p

D -spaces. A decomposition in homogeneous Sobolev spaces on the whole
space was performed in [5, Lem. 4.12]. This construction was modified for
mixed boundary conditions on domains in [8, Sec. 7], but only in the case
m = 1. A refinement for Cm-valued functions was performed in [36]. In this
section, we first show a version for spaces W1,p

D (Rd) which only uses (d − 1)-
regularity of Dk for each k. A version on domains then follows on any open
set for which an extension operator is at hand.

Definition 6.6.1. Let p ∈ [1,∞], m ∈ N, Ξ ⊆ Rd open and Ek ⊆ Ξ for
k = 1, . . . ,m. With the array E := (Ek)mk=1 define the space

W1,p
E (Ξ) :=

m⊗
k=1

W1,p
Ek

(Ξ),

equipped with the subspace topology inherited from W1,p(Ξ)m. Moreover,
introduce the abbreviation ‖ · ‖W1,p(Ξ) for the norm on W1,p

E (Ξ).

Lemma 6.6.2 (Sobolev Calderón-Zygmund – whole space). Let Dk ⊆ Rd be
closed and (d − 1)-regular for k = 1, . . . ,m, and let 1 < p < ∞. For every
u ∈W1,p

D (Rd) and every α > 0 there exist an (at most) countable index set J ,
a family of cubes (Qj)j∈J and functions g, bj : Rd → Cm for j ∈ J such that
the following holds.

(i) u = g +∑
j bj holds pointwise almost everywhere,

(ii) the family (Qj)j is locally finite, and every x ∈ Rd is contained in at
most 12d cubes,

(iii) ∑j |Qj| . 1
αp
‖u‖pW1,p(Rd),

(iv) g ∈W1,∞
D (Rd) with ‖g‖W1,∞(Rd) . α,

(v) bj ∈W1,p
D (Rd) with ‖bj‖W1,p(Rd) . α|Qj|

1
p for every j,
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6.6. A Calderón-Zygmund decomposition for Sobolev functions

(vi) ‖g‖W1,p(Rd) + ‖∑j∈J ′ bj‖W1,p(Rd) . ‖u‖W1,p(Rd) for all J ′ ⊆ J ,

(vii) bj is compactly supported in Qj for every j,

(viii) if 1 < q < ∞, u ∈ W1,q
D (Rd) and J ′ ⊆ J , then ∑

j∈J ′ bj converges
unconditionally in W1,q

D (Rd).

Before coming to the proof, let us shortly state the situation on O as a
corollary.

Corollary 6.6.3 (Sobolev Calderón-Zygmund – open set). Let O ⊆ Rd be
open, Dk ⊆ ∂O be closed and (d− 1)-regular for k = 1, . . . ,m such that O is
locally a uniform domain near ∂O \Dk for all k, and let 1 < p < ∞. Then
for every u ∈ W1,p

D (O) and every α > 0 there exist an (at most) countable
index set J , a family of cubes (Qj)j∈J and functions g, bj : O → Cm for j ∈ J
such that the following holds.

(i) u = g +∑
j bj holds pointwise almost everywhere,

(ii) the family (Qj)j∈J is locally finite, and every x ∈ O is contained in at
most 12d cubes,

(iii) ∑j∈J |Qj| . 1
αp
‖u‖pW1,p(O),

(iv) g ∈ LipD(O) with ‖g‖Lip(O) . α,

(v) bj ∈W1,p
D (O) with ‖bj‖W1,p(O) . α|Qj|

1
p for every j ∈ J ,

(vi) if p < d, then bj ∈ Lq(O) for q ∈ [p, p∗] with ‖bj‖q . α|Qj|1/p+(1−θ)/d,
where θ ∈ [0, 1] is such that 1/q = (1− θ)/p+ θ/p∗,

(vii) ‖g‖W1,p(O) + ‖∑j∈J ′ bj‖W1,p(O) . ‖u‖W1,p(O) for all J ′ ⊆ J ,

(viii) bj is supported in Qj ∩O for every j,

(ix) if 1 < q < ∞, u ∈ W1,q
D (O) and J ′ ⊆ J , then ∑

j∈J ′ bj converges
unconditionally in W1,q

D (O).

Proof. Using the extension operators for W1,p
Dk

(O) componentwise onW1,p
D (O)

we get an extension U := Eu ∈ W1,p
D (Rd) of u. We apply the whole-space

Calderón-Zygmund decomposition (Proposition 6.6.2) to U to obtain an index
set J , cubes (Qj)j∈J and functions G,Bj : Rd → Cm satisfying the properties
in that proposition. Define g = G|O and bj = Bj|O.
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6. Kato’s square root property: Lp–Theory

Most properties listed in this corollary are clear by definition, we only
comment on the exceptions. For (iii) and (vii), use boundedness of the ex-
tension operator. In (iv), note that W1,∞

D (Rd) = LipD(Rd) ⊆ LipD(O) by
Rademacher’s theorem.
Finally, to see (vi) we interpolate two bounds. First, we derive with the

Poincaré inequality on cubes (take the compact support assumption (vii) into
account) followed by (v) the estimate

‖Bj‖Lp(Rd)m . |Qj|1/d‖Bj‖W1,p(Rd) . α|Qj|1/p+1/d.

Second, the Sobolev inequality in combination with (v) gives the bound
‖bj‖p∗ . α|Qj|1/p. Therefore, if 1/q = (1 − θ)/p + θ/p∗ = 1/p − θ/d, then
‖bj‖q . α|Qj|1/p+(1−θ)/d by the interpolation inequality.

Now we return to the proof of the Rd version.

Proof of Proposition 6.6.2. For brevity we omit Rd in the notation for func-
tion spaces. If 1 ≤ k ≤ m then we write u(k) for the kth component of
u. Implicit constants expressed by the symbol “.” are always meant to be
independent of the scale α. The proof divides into 6 steps.
Step 1: Adapted maximal function and Whitney decomposition. To start

with, we consider the set

U :=
{
x ∈ Rd : M

(
|u|p + |∇u|p +

m∑
k=1

∣∣∣u(k)

dDk

∣∣∣p)(x) > αp
}
.

Since the maximal function is upper semi-continuous, U is open. If U is
empty, we put g = u, so that we don’t need bad functions at all. Then (i)
is fulfilled by construction and all other assertions except (iv) are void. To
show (iv), we use the definition of U and the fact that a function is dominated
by its maximal function almost everywhere (which is an easy consequence of
Lebesgue’s differentiation theorem) to conclude for almost every x ∈ Rd that

|g(x)|p + |∇g(x)|p ≤M
(
|u|p + |∇u|p +

m∑
k=1

∣∣∣u(k)

dDk

∣∣∣p)(x) ≤ αp.

This already yields g ∈W1,∞ with the desired norm estimate. Moreover, since
u has vanishing trace on D by assumption, g ∈ W1,∞

D follows by consistency
of the trace operator.
Otherwise, consider the closed set F := Rd \ U . We claim that F is a

proper subset of the Euclidean space, since then we can decompose U using a
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6.6. A Calderón-Zygmund decomposition for Sobolev functions

Whitney decomposition. For the construction of the Whitney decomposition
and further properties, the reader can consult [22, Lem. 5.1]. Indeed, it follows
from the weak-type estimate for the maximal operator and Hardy’s inequality
(Proposition 4.3.1) that

|U | . 1
αp

(
‖u‖pW1,p +

m∑
k=1

∫
Rd

∣∣∣u(k)

dDk

∣∣∣p) . 1
αp
‖u‖pW1,p <∞.(6.39)

Starting from a Whitney decomposition of U and enlarging all cubes by the
factor 9

8 , we arrive at a family of cubes (Qj)j with the properties

(a) Qj ⊆ U for every j, (b) (Qj)j is locally finite,
(c) 8
√
dQj ∩ F 6= ∅, (d)

∑
j

1Qj ≤ 12d,

(e) Qj ∩Qk 6= ∅ implies diam(Qj)
diam(Qk)

≤ 4.

Indeed, (a) follows immediately from the properties of Whitney cubes. For (b),
fix x ∈ U and employ a counting argument on B(x, d(x, F )/2). For (c),
calculate using the properties of Whitney cubes that a non-enlarged cube
has to be scaled by the factor 9

√
d to hit F . Then the claim for Qj follows

by definition. Property (d) can be looked up in [22, Lem. 5.2 (c)]. Finally,
for (e), check that the enlarged cubes intersect if and only if the original cubes
intersect. Then, the claim follows from [22, Lem. 5.2 (a)].
Properties (b) and (d) yield (ii). For brevity, put dj := diam(Qj). Moreover,

using that we have enlarged the Whitney cubes above, we can construct a
partition of unity (ϕj)j on U such that

supp(ϕj) ⊆ Qj and ‖ϕj‖∞ + dj‖∇ϕj‖∞ . 1.(6.40)

We conclude this step with the proof of (iii), which follows readily from (a), (d)
and (6.39) with the calculation

∑
j

|Qj| ≤
∫
U

∑
j

1Qj ≤ 12d|U | . 1
αp
‖u‖pW1,p .

Step 2: Estimates for u on cubes. In this short but crucial step we derive
estimates for u using the maximal function, which will turn useful in the
estimates for good and bad functions later on. For convenience, put Q∗j :=
8
√
dQj.
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6. Kato’s square root property: Lp–Theory

Fix j and pick z ∈ Q∗j ∩ F , which is possible owing to (c). Then it follows
from the definition of F that

∫
Qj
|u|p + |∇u|p +

m∑
k=1

∣∣∣u(k)

dDk

∣∣∣p . |Qj|
|Q∗j |

∫
Q∗j

|u|p + |∇u|p +
m∑
k=1

∣∣∣u(k)

dDk

∣∣∣p
≤ |Qj|M

(
|u|p + |∇u|p +

m∑
k=1

∣∣∣u(k)

dDk

∣∣∣p)(z)

≤ αp|Qj|.

(6.41)

Step 3: Definition of good and bad functions. Fix j and 1 ≤ k ≤ m. Say
that Qj is k-usual if d(Qj, Dk) ≥ dj and that Qj is k-special if d(Qj, Dk) < dj.
The nomenclature is motivated as follows. In the k-usual situation we can
define and estimate the bad functions using a Poincaré argument and, hence,
don’t rely on the usage of boundary conditions. In the k-special case we
will benefit from the Hardy term in the maximal function. Since different
components of u are subject to different Dirichlet conditions, this also explains
the coupling between j and k in the classification of the cubes.
That being said, define the bad function bj on Qj componentwise via

b
(k)
j := ϕj(u(k) − u(k)

Qj
) if Qj is k-usual, b

(k)
j := ϕju

(k) otherwise.

Here, u(k)
Qj

denotes the mean value of u(k) over Qj. Put g := u −∑j bj, then
the validity of (i) is by definition. Note that there is no issue of convergence
according to (d). Furthermore, property (vii) holds by construction.
Step 4: Taking care of the bad functions. Fix some j and 1 ≤ k ≤ m. First,

we consider the case that Qj is k-usual. Using the product rule and (6.40),
start with

‖b(k)
j ‖

p
W1,p =

∫
Rd
|ϕj(u(k) − u(k)

Qj
)|p + |∇ϕj(u(k) − u(k)

Qj
)|p + |ϕj∇u(k)|p

.
∫
Qj
|u(k)|p + |u(k)

Qj
|p + 1

dpj
|u(k) − u(k)

Qj
|p + |∇u(k)|p.

Using Jensen’s inequality for the second term and Poincare’s inequality for
the third term, we obtain

.
∫
Qj
|u(k)|p + |∇u(k)|p.

This completes this estimate owing to (6.41) from Step 2.
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6.6. A Calderón-Zygmund decomposition for Sobolev functions

To the contrary, assume that Qj is k-special. Note that if y ∈ Qj, then
dDk(y) ≤ d(Qj, Dk) + dj. So, by definition of k-special cubes, it follows
2dj > dDk(y) for all y ∈ Qj, which allows us to estimate

‖b(k)
j ‖

p
W1,p =

∫
Rd
|ϕju(k)|p + |∇ϕu(k)|p + |ϕ∇u(k)|p

.
∫
Qj
|u(k)|p + 1

dpj
|u(k)|p + |∇u(k)|p

.
∫
Qj
|u(k)|p +

∣∣∣u(k)

dDk

∣∣∣p + |∇u(k)|p.

Then we conclude using Step 2 as before.
To complete the proof of (v), we have to ensure the vanishing trace condition

on D. In any case, ϕju(k) ∈W1,p
Dk

by assumption on u(k). In the k-usual case,
note that ϕju(k)

Qj
is a compactly supported Lipschitz function which vanishes

on Dk by the support property of ϕj and the fact that Qj is a k-usual cube.
Hence, this term also lies in the correct space.
Step 5: Convergence of the series of bad functions. Let 1 < q <∞ be such

that u ∈ W1,q
D and let J ′ ⊆ J be an arbitrary subcollection. Observe that

∇∑j∈J ′ bj = ∑
j∈J ′ ∇bj due to (b). Hence, using (d) in combination with the

equivalence of `p-norms on finite sets and the calculations from Step 4, we get

‖
∑
j∈J ′

bj‖qW1,q =
∫
Rd
|
∑
j∈J ′

bj|q + |
∑
j∈J ′
∇bj|q

.
∑
j∈J ′

∫
Qj
|bj|q + |∇bj|q

.
∫
Rd

∑
j∈J ′

1Qj
(
|u(k)|q +

∣∣∣u(k)

dDk

∣∣∣q + |∇u(k)|q
)
.

The function ∑
j∈J ′ 1Qj is globally bounded by (d) and the Hardy term is

under control owing to Hardy’s inequality from Theorem 4.0.3. As a by-
product, with J ′ = J this gives the estimate for ‖b‖W1,p in (vi). Of course,
the estimate for ‖g‖W1,p is then a trivial consequence of g = u − b, which
completes (iv). Next, assume that J inherits its ordering from the natural
numbers. Then, if we replace J ′ by J ′m := J ′ ∩ {m,m + 1, . . . }, the sequence
of functions ∑j∈J ′m 1Qj converges pointwise to zero, so that we can appeal
to Lebesgue’s theorem to conclude that the partial sums of ∑j∈J ′ bj form a
Cauchy sequence. Hence, the series converges in W1,q

D . That the convergence
is unconditional follows by a similar argument (take two rearrangements and
subtract their partial sums from each other).
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Step 6: Controlling the good function. Fix again some 1 ≤ k ≤ m. On
F we have that g and u coincide by construction, so that the full Sobolev
estimate on F follows the same lines as in Step 1 for the case U = ∅. So
from now on, fix x ∈ U . First, we show |g(k)(x)|p . αp, which completes
the non-gradient estimates in (iv). Write Ju,x and Js,x for the index sets of
k-usual and k-special cubes which contain x. Both sets contain at most 12d
elements according to (d). Using that (ϕj)j is a partition of unity on U , we
calculate

g(k)(x) = u(k)(x)−
∑
j

b
(k)
j (x)

= u(k)(x)−
∑

j∈Ju,x
ϕj(x)(u(k)(x)− u(k)

Qj
)−

∑
j∈Js,x

ϕj(x)u(k)(x)

=
∑

j∈Ju,x
ϕj(x)u(k)

Qj
.

Using the comparability of `p norms on finite sets, Jensen’s inequality, Step 2
and the bound on #Ju,x we derive

|g(k)(x)|p .
∑

j∈Ju,x
|u(k)
Qj
|p ≤

∑
j∈Ju,x

(
−
∫
Qj
|u(k)|

)p
.

∑
j∈Ju,x

−
∫
Qj
|u(k)|p(6.42)

. αp.

Note that ∑j∇ϕj(x) = 0 holds since (ϕj)j is a partition of unity and the sum
is locally finite. Then a similar representation for the gradient follows using
the product rule and reads

∇g(k)(x) =
∑

j∈Ju,x
u

(k)
Qj
∇ϕj(x).

Instead of estimating this term directly, put

h(x) :=
∑
j∈Jx

u
(k)
Qj
∇ϕj(x) and hs(x) :=

∑
j∈Js,x

u
(k)
Qj
∇ϕj(x).

Here, Jx is the collection of cubes that contain x and coincides with the union
of Ju,x and Js,x. Consequently, ∇g(k)(x) = h(x) − hs(x), and the bound for
g will follow from |h(x)|p + |hs(x)|p . αp. We show this latter claim in the
following.
With the same arguments as for (6.42), but taking the observation dj & dDk

on k-special cubes from Step 4 into account, estimate

|hs(x)|p .
∑
j∈Js,x

( 1
dj
−
∫
Qj
|u(k)|

)p
.

∑
j∈Js,x

−
∫
Qj

∣∣∣u(k)

dDk

∣∣∣p . αp.
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To estimate |h(x)|p, fix some j0 such that x ∈ Qj0 , which exists by construction
of (Qj)j. If Qj is any cube that contains x, then the sizes of Qj and Qj0 are
comparable by (e). In particular, there is a factor c > 0 that does not depend
on j such that Qj ⊆ cQj0 . Furthermore, assume that c ≥ 8

√
d, so that

Q∗j0 := cQj0 intersects F according to (c). Now, extend the defining sum of
h(x) using the fact that ∑j∇ϕ(x) = 0 to obtain

h(x) =
∑
j∈Jx

u
(k)
Qj
∇ϕj(x) =

∑
j∈Jx

(
u

(k)
Qj
− u(k)

Q∗j0

)
∇ϕj(x).

As before, estimate

|h(x)|p .
∑
j∈Jx

1
dpj
|u(k)
Qj
− u(k)

Q∗j0
|p.(6.43)

We proceed by estimating a fixed term in that sum, so pick some j ∈ Jx. Using
that u(k)

Q∗j0
is just a constant, |Q∗j0| ≈ |Qj|, Qj ⊆ Q∗j0 and Jensen’s inequality,

calculate

|u(k)
Qj
− u(k)

Q∗j0
|p =

∣∣∣∣−∫
Qj
uk(y)− u(k)

Q∗j0
dy
∣∣∣∣p . −∫

Q∗j0

|uk(y)− u(k)
Q∗j0
|p dy.

Owing to the classical Poincaré inequality on Q∗j0 and the comparability
diam(Q∗j0) ≈ dj we further estimate

. diam(Q∗j0)p−
∫
Q∗j0

|∇u(k)|p ≈ dpj −
∫
Q∗j0

|∇u(k)|p.

Plugging this back into (6.43), the factors dpj cancel out. The mean value
integral can be estimated against αp using the maximal operator trick from
Step 2. Finally, the bound on #Jx lets us conclude the estimates for (iv).

6.7. Boundedness of the square root
We are going to show (upper) Lp-bounds for the square root. These comple-
ment the lower bounds coming from the Riesz transform already shown. The
case p > 2 is fairly easy by a duality argument with the Riesz transform and
is presented in Section 6.7.2. The argument in the case p < 2 is much more
difficult. Of course we could also argue by duality in this case, but we would
have to invest Lp-boundedness for N ∗, which is a stronger requirement than
merely Lp-bounds for S. The proof is again closely oriented at [36, Prop. 8.1].
Besides the necessary changes to treat unbounded sets, we have also corrected
a minor flaw that appears in the case d = 2 in that paper.
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6. Kato’s square root property: Lp–Theory

6.7.1. The case p < 2: weak-type argument
The following proposition provides Lp-bounds for L 1

2 using a weak-type esti-
mate. The Calderón-Zygmund decomposition from Section 6.6 is an essential
tool in the proof.

Proposition 6.7.1. Let q ∈ (1, 2] be such that there exists s ∈ [q, q∗) such
that S is Ls-bounded, and let p ∈ (q, 2). Then one has the estimate

‖L
1
2u‖p . ‖u‖W1,p(O)m (u ∈W1,2

D (O)m ∩W1,p
D (O)m),

where the implicit constant depends on L only via its coefficient bounds and
implied constants coming from the Ls-bounds for S.

Remark 6.7.2. There are two remarks in order:

(i) On O = Rd one can permit q = 1. In our case, this is not possible
because the Sobolev Calderón-Zygmund decomposition is only available
in the reflexive range, which is an artifact of Hardy’s inequality.

(ii) Note that the boundedness assumption for S is strictly weaker than that
for the Riesz transform in Proposition 6.5.1.

Proof. Throughout, we will often omit the underlying set or number of com-
ponents in the notation of function spaces if that makes the notation easier,
for example we will write W1,2 instead of W1,2(O)m.
The representation formula (6.18) allows us to write L 1

2 as an improper
Riemann integral. To be more precise, let u ∈W1,2

D (O)m = D(L 1
2 ), then

L
1
2u = lim

n→∞

2√
π

∫ ∞
2−n

Le−t2Lu dt,(6.44)

where the limit is taken in L2(O)m. With this, we can divide the proof into
three steps. First, we show a weak-type estimate for the truncated operators
Tn :=

∫∞
2−n Le−t2L dt that is uniform in n. This step is subdivided into several

intermediate claims. Second, we conclude uniform Lp-bounds for Tn and p ∈
(q, 2) using complex interpolation. Finally, we conclude the Lp-bound for L 1

2 .
Step 1: Weak-type estimate for Tn. Let u ∈ W1,2

D (O)m ∩W1,p
D (O)m and

α > 0. We want to show the weak-type estimate∣∣∣{x ∈ O : |Tnu(x)| > α
}∣∣∣ . α−q‖u‖qW1,q ,(6.45)
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where the implicit constant is independent of n. Using Corollary 6.6.3, per-
form a Calderón-Zygmund decomposition of u, that is to say, decompose
u = g + ∑

j bj. Put b := ∑
j bj, then b ∈ W1,2

D (O)m ∩W1,q
D (O)m by prop-

erty (ix) in the corollary. For brevity, we will from now on only write (i)-(ix)
for the respective properties of the Calderón-Zygmund decomposition without
any further specification.
Split estimate into good and bad part. As usual in Calderón-Zygmund the-

ory, split the left-hand side of (6.45) into∣∣∣{x : |Tnu(x)| > α
}∣∣∣ ≤ ∣∣∣{x : |Tng(x)| > α

2
}∣∣∣+ ∣∣∣{x : |Tnb(x)| > α

2
}∣∣∣.(6.46)

Note that x ∈ O, but we omit this quantification to save space.
Handling the good part. The first term on the right-hand side is for free

from the L2-theory. Indeed, Tchebychev’s inequality and the L2-estimate for
the square root (which also yields uniform W1,2

D (O)m → L2(O)m bounds for
{Tn}n, compare with the beginning of the proof of Proposition 6.5.1) yield∣∣∣{x : |Tng(x)| > α

2
}∣∣∣ . α−2‖Tng‖2

2 . α−2‖g‖2
W1,2 .

To proceed, use the interpolation inequality for Sobolev spaces (which follows
from the interpolation inequality for Lebesgue spaces applied to function and
gradient separately) with θ = 2−q

2 , (iv) and (vii) to conclude

‖g‖2
W1,2 . α2−q‖g‖qW1,q . α2−q‖u‖qW1,q .

Combining the last two estimates completes the estimate for the good function
term on the right-hand side of (6.46).
Reduction to finitely many bad functions. Let J0 ⊆ J be finite. Split

b = (b − ∑j∈J0 bj) + ∑
j∈J0 bj and use Tchebychev’s inequality and the L2-

boundedness of {Tn}n to deduce∣∣∣{x : |Tnb(x)| > α

2
}∣∣∣ . ∣∣∣{x : |Tn

(∑
j∈J0

bj
)
(x)| > α

4
}∣∣∣+ 16

α2

∥∥∥b− ∑
j∈J0

bj
∥∥∥2

2
.

Thus, an estimate of the first term against α−q‖u‖qW 1,q with bound indepen-
dent of J0 yields the claim because the second term tends to zero by (ix) when
making J0 sufficiently large. As a slight abuse of notation, we still write b for
the sum ∑

j∈J0 bj. Moreover, in the further course of this proof, the index j
will only range over the finite index set J0 and not anymore over J .
Decomposition of the bad part. Denote the sidelength of Qj by `j and write

rj for the largest dyadic number less than `j. The integrand in the definition
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6. Kato’s square root property: Lp–Theory

of Tn is integrable in the L2 → L2 operator norm away from 0, which is a
consequence of the boundedness of the family {tLe−tL}t>0 on L2. Hence, we
can split the defining integral of Tn into a local integral from 2−n to rj ∨ 2−n
and a global integral from rj ∨ 2−n to ∞, and both integrals again yield
bounded operators on L2. Furthermore, since ∑j bj is a finite sum by the
previous reduction, we can pull the summation out of the local and global
integrals. Altogether, this gives

∣∣∣{x ∈ O :
∣∣∣[ ∞∫

2−n
Le−t2Lb dt

]
(x)
∣∣∣ > α

2
}∣∣∣

≤
∣∣∣∣{∣∣∣[

rj∨2−n∫
2−n

Le−t2Lb dt
]
(x)
∣∣∣ > α

4

}∣∣∣∣+ ∣∣∣∣{∣∣∣[
∞∫

rj∨2−n
Le−t2Lb dt

]
(x)
∣∣∣ > α

4

}∣∣∣∣
=
∣∣∣∣{∣∣∣[∑

j

rj∨2−n∫
2−n

Le−t2Lbj dt
]
(x)
∣∣∣ > α

4

}∣∣∣∣+ ∣∣∣∣{∣∣∣[∑
j

∞∫
rj∨2−n

Le−t2Lbj dt
]
(x)
∣∣∣ > α

4

}∣∣∣∣
=: I + II.

Let us mention that making the truncation at a dyadic scaling and not at
height `j directly will only become handy when estimating the global integral
later on.
Handling the local integral. We continue with an estimate for the local

integral I. Assume rj > 2−n since otherwise the term is trivial. The next step
is again classical in Calderón-Zygmund theory. We split O = ⋃

j(4Qj ∩ O) ∪
(O \ ⋃j 4Qj), and use additivity of the measure and Tchebychev’s inequality
to get

I .
∣∣∣⋃
j

4Qj

∣∣∣+ α−2
∥∥∥1O\⋃

j
4Qj

∑
j

∫ rj∨2−n

2−n
Le−t2Lbj dt

∥∥∥2

2
.(6.47)

Using subadditivity of the measure and (iii), conclude∣∣∣⋃
j

4Qj

∣∣∣ .∑
j

|Qj| . α−q‖u‖qW1,q .(6.48)

Thus, the first term on the right-hand side of (6.47) is fine. To estimate the
L2-norm, we test with v ∈ L2(O)m satisfying ‖v‖2 = 1 and use the triangle
inequality to deduce∣∣∣∣∫

O
1O\∪j4Qj

∑
j

rj∫
2−n

Le−t2Lbj dt v dx
∣∣∣∣ ≤∑

j

∫
O\4Qj

∣∣∣ rj∫
2−n

Le−t2Lbj dt
∣∣∣|v| dx.(6.49)
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6.7. Boundedness of the square root

Note that we only ignore the enlarged cube in which bj is supported. The
reason is that we have introduced this restriction of integration area to bring
off-diagonal estimates into business. Hence, it is no surprise that we further
decompose O\4Qj into the annuli Ck(Qj)∩O, where j is fixed for the moment.
With the Cauchy-Schwarz inequality, this gives∫

O\4Qj

∣∣∣∫ rj

2−n
Le−t2Lbj dt

∣∣∣|v| dx
≤
∑
k≥2
‖
∫ rj

2−n
Le−t2Lbj dt‖L2(Ck(Qj)∩O)‖E0v‖L2(Ck(Qj)).

(6.50)

Here, E0v is the zero extension of v. For the latter factor, continue with

‖E0v‖2
L2(Ck(Qj)) . 2kd`dj −

∫
Ck(Qj)

|E0v|2 dx ≤ 2kd`djM(|E0v|2)(y) (y ∈ Qj).

For the other factor, we claim that we can chose q ≤ r ≤ min(2, q∗) for which
the family {tLe−tL}t>0 satisfies Lr → L2 off-diagonal estimates. Indeed, if q∗
is larger than 2, we can simply put r = 2, which is admissible by Proposi-
tion 6.1.5. Otherwise, owing to the assumption on q, fix s ∈ [q, q∗) for which S
is Ls-bounded. Then, for any r ∈ (s, q∗], we can rely on Lr → L2 off-diagonal
estimates for the family {tLe−tL}t>0 thanks to Proposition 6.1.12 (i). (Note
for later use that this choice of r also yields Lr → L2 off-diagonal estimates for
S.) In either case, we assume that the off-diagonal estimates are with respect
to the distance d∞(·, ·) instead of d(·, ·) and we write C, c ∈ (0,∞) for the
implied constants. For the integrand of the local integral, this together with
the support property of bj and the definition of rj results in the bound

‖Le−t2Lbj‖L2(Ck(Qj)∩O) ≤ Ct−γr−2e−c4k−1r2
j /t

2‖bj‖r.

Together with the bound (vi) for ‖bj‖r this gives∥∥∥∫ rj

2−n
Le−t2Lbj dt

∥∥∥
L2(Ck(Qj)∩O)

≤
∫ rj

2−n
‖Le−t2Lbj‖L2(Ck(Qj)∩O) dt

. α`
d/q+1−θ
j

∫ rj

2−n
t−γr−2e−c4k−1r2

j /t
2 dt,

where θ = γqr. Using the substitution s = 4kr2
j/t

2 and rj ≈ `j, this results
using the definition of θ in

≤ 1
2α`

d/q+1−θ
j (2krj)−γr−1

∫ ∞
4k

s(γr−1)/2e−cs/4 ds

. α`
d/2
j 2−k(γr+1)

∫ ∞
4k

s(γr−1)/2e−cs/4 ds.
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6. Kato’s square root property: Lp–Theory

Next, we use the lower bound on s to extract exponential decay by splitting
the exponential term. We have seen this trick several times in the course of
this chapter. This yields

. α`
d/2
j 2−k(γr+1)e−c4k/8

∫ ∞
0

s(γr−1)/2e−cs/8 ds.

The integral in s is finite and does not depend on j or k. We can plug this
estimate back into (6.50) to arrive at∫

O\4Qj

∣∣∣∫ rj

2−n
Le−t2Lbj dt

∣∣∣|v| dx . α`dj
∑
k≥2

2k(d/2−γr−1)e−c4k/8M(|E0v|2)(y) 1
2 ,

where y ∈ Qj. The sum in k is convergent due to the double exponential
decay in k. Next, we average this over Qj (which does not affect the left-hand
side) to get∥∥∥∫ rj

2−n
Le−t2Lbj dt

∥∥∥
L2(Ck(Qj)∩O)

. α`dj −
∫
Qj
M(|E0v|2)(y) 1

2 dy

= α
∫
Qj
M(|E0v|2)(y) 1

2 dy.

Summing this bound over j yields a bound for (6.49), namely
∣∣∣∣∫
O

1O\∪j4Qj
∑
j

rj∫
2−n

Le−t2Lbj dt v dx
∣∣∣∣ . α

∑
j

∫
Qj
M(|E0v|2) 1

2 dy

. α
∫
∪jQj
M(|E0v|2) 1

2 dy,

where we have used the finite overlap property (ii) of the Qj in the final step.
We apply Kolmogorov’s inequality with q = 1/2 (see [48, Ex. 2.1.5]), followed
by (6.48) and the normalization of ‖v‖2 to get

. α
∣∣∣⋃
j

Qj

∣∣∣ 1
2
∥∥∥|E0v|2

∥∥∥ 1
2

1
. α1−q/2‖u‖q/2W1,q‖v‖2 = α1−q/2‖u‖q/2W1,q .

Square this and multiply by α−2 as in (6.47) to get a bound against α−q‖u‖qW1,q

for the whole local integral.
Controlling the global integral. As a preparation, consider the function

F =
∫∞

1 ze−t2z dt. Recall the notation Ft for t > 0. For r > 0 the substitution
t = sr yields

Fr2 =
∫ ∞

1
r2ze−s2r2z ds = r

∫ ∞
1

z(sr)e−(sr)2z ds
s

= r
∫ ∞
r

zte−t2z dt
t
.
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6.7. Boundedness of the square root

Consequently, scaling and Fubini’s theorem (justified by F ∈ H∞0 (S+
ϕ ) for

all ϕ ∈ (0, π/2), which can be seen by a calculation similar to that in Re-
mark 6.3.2) reveal

F (r2L) = Fr2(L) = r
∫ ∞
r

Le−t2L dt.

We will use this representation to decompose the global integral into a square
function. Also, introduce for each integer k the set Jk = {j ∈ J0 : rj ∨ 2−n =
2k}, which groups bad functions supported on the same dyadic scale, so to
say. Recall that J0 and therefore all Jk are finite, and only finitely many Jk
are non-empty. Hence, we can write

∑
j∈J0

∞∫
rj∨2−n

Le−t2Lbj dt =
∑
k

∑
j∈Jk

∞∫
rj∨2−n

Le−t2Lbj dt =
∑
k

F (4kL)
(∑
j∈Jk

2−kbj
)

without worrying about convergence, rearrangement or whatsoever. Finally,
as for the local integral, chose q ≤ r ≤ min(2, q∗) such that S satisfies Lr → L2

off-diagonal estimates.
With these preparations at hand, we come back to term II for the global

integral and estimate it first using Tchebychev’s inequality to get

II . 1
αr

∥∥∥∑
j∈J0

∫ ∞
rj∨2−n

Le−t2Lbj dt
∥∥∥r
r

= 1
αr

∥∥∥∑
k

F (4kL)
(∑
j∈Jk

2−kbj
)∥∥∥r

r
.(6.51)

Since S satisfies Lr → L2 off-diagonal estimates, the H∞-calculus of L on
L2 admits Lr-bounds by Proposition 6.4.1, so that Lemma 6.7.3 below is
applicable, and turns (6.51) into the square function

.
1
αr

∥∥∥(∑
k

∣∣∣∑
j∈Jk

2−kbj
∣∣∣2) 1

2
∥∥∥r
r

= 1
αr

∫
O

(∑
k

∣∣∣∑
j∈Jk

2−kbj
∣∣∣2) r2 .

Use r/2 ≤ 1, and the finite overlap (ii) of the Qj together with the support
condition (viii) for the bad functions to get

≤ 1
αr

∫
O

∑
k

∣∣∣∑
j∈Jk

2−kbj
∣∣∣r . 1

αr
∑
k

∑
j∈Jk

2−kr
∫
O
|bj|r.

Using 2k ≥ rj & `j for j ∈ Jk and the Lr-estimate for bad functions (vi)
further gives

.
1
αr

∑
j∈J0

`−rj αr|Qj|r/q−θr/d`rj ,
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6. Kato’s square root property: Lp–Theory

where θ ∈ [0, 1] is appropriately chosen. Canceling out some factors and using
r/q − θr/d = 1, which is easily seen by a rearrangement of the definition of
θ, this becomes with (iii)

=
∑
j∈J0

|Qj| . α−q‖u‖qW1,q .

Bringing everything together, this completes the proof of the weak-type esti-
mate (6.45).
Step 2: Lp-bounds for Tn by interpolation. For p ∈ (1,∞), introduce the

Marcinkiewicz space

Lp,∞(O) :=
{
f ∈ L1(O) + L∞(O) : ‖f‖Lp,∞(O) <∞

}
,

where

‖f‖Lp,∞(O) := sup
α>0

α
∣∣∣{x ∈ O : |f(x)| > α

}∣∣∣ 1
p ,

see [93, Sec. 1.18.6, Lemma]. Note that ‖ · ‖Lp,∞ is only a quasi-norm, which
means that the triangle inequality only holds up to a constant. If 1 < q < 2,
θ ∈ (0, 1) and 1/p := (1− θ)/q + θ/2, then we get the interpolation identity

(Lq,∞(O),L2(O))θ,p = Lp(O),(6.52)

see [93, Sec. 1.18.6, Thm. 2] and take [93, Sec. 1.18.6, Lemma] into account.
Here, we use that the real interpolation method also works with quasi-Banach
spaces, that is to say, complete quasi-normed spaces. So, identity (6.52) has
to be understood as an equality of sets with an equivalence between the quasi-
norm on the left-hand side and the norm on the right-hand side.
With this nomenclature, the weak-type estimate (6.45) can be rephrased to

‖Tn‖Lq,∞(O)m . ‖u‖W1,q(O)m (u ∈W1,2
D (O)m ∩W1,q

D (O)m),

with an implicit constant independent of n. Using Lemma 2.2.8, W1,2
D (O) ∩

W1,q
D (O) is dense in W1,q

D (O). Therefore, since Lq,∞(O) is complete, Tn extends
to a bounded operator W1,q

D (O)m → Lq,∞(O)m with bound independent of n.
Also, Tn : W1,2

D (O)m → L2(O)m. This is because Tn decomposes into the
square root and a uniformly bounded approximation of the identity on L2,
and for the former we have shown the respective bound in Theorem 5.0.1.
Hence, we get from Proposition 1.1.1 (applied with R = |O and E from

Theorem 3.0.2), real interpolation, and (6.52) that Tn is a map

W1,p
D (O)m = (W1,q

D (O)m,W1,2
D (O)m)θ,p → (Lq,∞(O)m,L2(O)m)θ,p = Lp(O)m,
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6.7. Boundedness of the square root

where we have used the compatibility of (real) interpolation with finite prod-
ucts, and equality is up to equivalent (quasi-)norms. Consequently,

‖Tnu‖Lp(O)m . ‖u‖W1,p(O)m (u ∈W1,p
D (O)m ∩W1,2

D (O)m),(6.53)

where the implicit constants do not depend on n.
Step 3: Conclusion of the proof. Let p ∈ (q, 2), then estimate (6.53) and

identity (6.44) along with Fatou’s lemma readily reveal

‖L
1
2u‖q ≤ lim inf

n

2
π
‖Tnu‖q . ‖u‖W1,q(O)m (u ∈W1,q

D (O)m ∩W1,2
D (O)m).

The correct dependence of the implicit constant on L was tracked throughout
the proof.

Lemma 6.7.3 ([36, Lem. 8.2]). Let p ∈ (1,∞), Ξ ⊆ Rd be measurable and
m ∈ N. Also, let T be an injective sectorial operator on L2(Ξ)m such that for
some ψ ∈ (0, π) it holds

‖f(T )u‖p ≤ Cψ‖f‖∞‖u‖p (f ∈ H∞(S+
ψ ), u ∈ L2(Ξ)m ∩ Lp(Ξ)m).

If f ∈ H∞0 (S+
ψ ), then there is a constant C ∈ (0,∞) that depends on f and ψ

such that
∥∥∥∥∑
k∈Z

f(4kT )uk
∥∥∥∥
p
≤ CCψ

∥∥∥∥(∑
k∈Z
|uk|2

) 1
2
∥∥∥∥
p

for every sequence (uk)k∈Z ⊆ L2(Ξ)m ∩ Lp(Ξ)m for which the right-hand side
is finite.

6.7.2. The case p > 2: duality with the Riesz transform
Proposition 6.7.4. Assume that O is an (ε,∞)-domain near ∂O and let
q ∈ (2,∞) be such that N is Lq-bounded and let p ∈ (2, q). Then one has the
estimate

‖L
1
2u‖p . ‖u‖W1,p(O) (u ∈W1,2

D (O)m ∩W1,p
D (O)m),

where the implicit constant depends on L only via its coefficient bounds and
implied constants from Lq-bounds.
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6. Kato’s square root property: Lp–Theory

Proof. Since N is Lq bounded, it follows from Proposition 6.1.12 (ii) that S
satisfies L2 → Lp off-diagonal estimates. Using duality (see Lemma 6.1.11),
S∗ = S(L∗) satisfies Lp′ → L2 off-diagonal estimates. The implied con-
stants are the same as the implied constants coming from the L2 → Lp off-
diagonal estimates for S. As usual, decompose operators in N ∗ = N (L∗)
as
√

2(
√
t∇e−tL∗)e−tL∗ . The L2 off-diagonal estimates for N (L∗) provided by

Proposition 6.1.5 have good implied constants since L and L∗ have the same
coefficient bounds. Then, use the composition technique from Lemma 6.1.9
to conclude Lp′ → L2 off-diagonal estimates for N ∗. Consequently, the Riesz
transform ∇(L∗)− 1

2 admits Lp′-bounds by Proposition 6.5.1 applied with p′

instead of p.
To bring this into action, we claim the following two facts for u ∈W1,p

D (O)m∩
W1,2

D (O)m and v ∈W1,p′
D (O)m ∩W1,2

D (O)m:

(L 1
2u | (L∗) 1

2v)2 = a(u, v) and |a(u, v)| . ‖u‖W1,p(O)m‖v‖W1,p′ (O)m ,

where the implicit constant depends on dimension and the upper coefficient
bound for L. The latter claim follows from Hölder’s inequality and bound-
edness of the coefficients. For the former, start with u ∈ D(L) and v ∈
W1,2

D (O)m. Using the Kato result on L2 for L∗ we get v ∈ D((L∗) 1
2 ). Hence,

since L is obtained from a by the form method, this implies

(L 1
2u | (L∗) 1

2v)2 = (Lu | v)2 = a(u, v).(6.54)

The right-hand side is a bounded sesquilinear form on W1,2
D (O)m and the same

is true for the left-hand side since L 1
2 and (L∗) 1

2 are topological isomorphisms
from W1,2

D (O)m → L2(O)m. To conclude, notice that D(L) is dense in D(L 1
2 ) =

W1,2
D (O)m, so identity (6.54) extends to u ∈W1,2

D (O)m by continuity.
With these preparations, the proof is almost done. Let u ∈ W1,p

D (O)m ∩
W1,2

D (O)m and v ∈ Lp′(O) ∩ L2(O). Decompose v = (L∗) 1
2 (L∗)− 1

2v. Then,

|(L 1
2u | v)| = |a(u, (L∗)− 1

2v)| . ‖u‖W1,p‖(L∗)− 1
2v‖W1,p′ . ‖u‖W1,p‖v‖p′ ,

where we have upgraded the boundedness of the Riesz transform in Lp′ to
a full W1,p-bound for (L∗)− 1

2 using Corollary 6.3.5. Thus, testing yields the
claim.

6.8. Proof of Theorem 6.0.1
Now the proof of the main theorem of this chapter is essentially a combination
of the results from Sections 6.5 and 6.7, mixed with some standard arguments.
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Proof of Theorem 6.0.1. We start with the proof of (i). Chose p−(L) < r <

q < p. On the one hand, since S is Lq-bounded, Proposition 6.7.1 is applicable
(with s = q) and yields the Lp-bound

‖L
1
2u‖p . ‖u‖W1,p(O) (u ∈W1,p

D (O)m ∩W1,2
D (O)m).(6.55)

Since W1,p
D (O)m and Lp(O)m are Banach spaces and W1,2

D (O)m ∩W1,p
D (O)m

is dense in W1,p
D (O)m, the bound (6.55) reveals that L 1

2 has a continuous
extension to W1,p

D (O)m, again denoted by L 1
2 . The upper bound for L 1

2 has
the correct dependence on L according to Proposition 6.7.1.
On the other hand, since S is Lr-bounded by choice of r, it follows from

Proposition 6.1.12 that N satisfies Lq → L2 off-diagonal estimates. Hence,
Proposition 6.5.1 yields

‖∇L−
1
2u‖p . ‖u‖p (u ∈ Lp(O)m ∩ L2(O)m).

Combine this bound with the Lp-bound from Corollary 6.3.5 to deduce the
inhomogeneous Sobolev bound

‖L−
1
2u‖W1,p(O)m . ‖u‖p (u ∈ Lp(O)m ∩ L2(O)m).(6.56)

To show that L 1
2 is surjective, let u ∈ Lp(O)m and let (un)n be a sequence

in Lp(O)m ∩ L2(O)m that converges to u with respect to the Lp norm. The
Cauchy property of (un)n inherits to the sequence (L− 1

2un)n in W1,p
D (O)m in

virtue of the estimate (6.56). Consequently, there is v ∈ W1,p
D (O)m to which

L−
1
2un converges. Use the L2 identity un = L

1
2L−

1
2un, the continuity of L 1

2 on
W1,p

D (O)m and the aforementioned convergence of L− 1
2un to deduce un → L

1
2v

in Lp. But un converges also to u by construction, so u = L
1
2v, which shows

ontoness.
To see that L 1

2 is injective on W1,p
D (O)m, let u ∈ W1,p

D (O)m with L 1
2u = 0

and let (un)n ⊆ W1,p
D (O)m ∩W1,2

D (O)m be an approximating sequence for u
with respect to the W1,p(O)m-topology. Use (6.56) with L 1

2un and continuity
to get

‖un‖W1,p(O)m . ‖L
1
2un‖p → ‖L

1
2u‖p = 0.

Thus, (un)n is a null sequence and u = 0 as desired.
Finally, an application of (6.56) with L

1
2u for u ∈ W1,p

D (O)m ∩W1,2
D (O)m

shows that the lower bound depends as expected on L according to Proposi-
tion 6.5.1 and Corollary 6.3.5.
Assertion (ii) follows by the very same argument but with Proposition 6.7.4

instead of Proposition 6.7.1 and Proposition 6.5.7 instead of Proposition 6.5.1.
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APPENDIX A

Appendix

A.1. Porous sets
We provide a streamlined approach to the geometry of porous sets. All this
is known to the experts but some results require going through existing liter-
ature in a rather opaque way. The reader may look up relevant definitions in
Section 1.3.
Lemma A.1.1. Every porous set E ⊆ Rd is a Lebesgue null set.
Proof. By Remark 1.3.24, each ball B centered in E contains a ball of com-
parable radius that does not intersect E. Hence, there is δ ∈ (0, 1) depending
only on E such that

|B ∩ E|
|B|

≤ 1− δ.

By Lebesgue’s differentiation theorem this implies 1E = 0 almost everywhere.

We recall the Vitali covering lemma that will be used frequently in the
following, see [58, Thm. 1.2].
Lemma A.1.2. Let {Bi}i∈I be a family of open balls with uniformly bounded
radii. Then there exists a subfamily {Bj}j∈J of disjoint balls such that⋃

i

Bi ⊆
⋃
j

5Bj.

221



A. Appendix

Corollary A.1.3. Let E ⊆ Rd and 0 < r ≤ R < ∞. For any ball B of
radius R the set E ∩ B can be covered by 10d(R/r)d ball of radius r centered
in E ∩B.

Proof. Consider the covering {B(x, r/5)}x∈B∩E of B ∩E. We find a disjoint
subfamily {Bi}i∈I such that B∩E ⊆ ∪i∈I5Bi. We denote by #i the cardinality
of I and calculate

#icd(r/5)d = |
⋃
i∈I
Bi| ≤ |2B| = cd2dRd,

where cd is the measure of the unit ball. This shows #i ≤ 10d(R/r)d.

We continue with the simple observation that the radius bound by 1 in the
definition of `-regularity is arbitrary.

Lemma A.1.4. Let E ⊆ Rd and 0 < ` ≤ d. If for some M ∈ (0,∞) there
is comparability H`(B ∩ E) ≈ r(B)` uniformly for all open balls B of radius
r(B) ≤M centered in E, then the same is true for any M ∈ (0,∞).

Proof. Suppose we have uniform comparability for balls up to radius r(B) ≤
m. Given M > m, we need to extend it to balls B centered in E of radius
r(B) ≤M . Let c := m/M . The calculation

m`r(B)`
M `

. Hl(cB ∩ E) ≤ H`(B ∩ E)

gives the lower estimate. For the upper one, we cover B ∩ E by 10d/cd balls
of radius cr(B) centered in B ∩E according to Corollary A.1.3 and conclude
H`(B ∩ E) . r(B)`.

We come to computing the Assouad dimensions of Ahlfors-regular sets.

Lemma A.1.5. Let E ⊆ Rd be `-regular for some 0 < ` ≤ d and let M <∞.
There exist constants c, C > 0 such that, if x ∈ E and 0 < r ≤ R < M ,
then in order to cover E ∩ B(x,R) by balls of radius r centered in E, at
least c(R/r)` and at most C(R/r)` balls are needed. If E is unbounded and
uniformly `-regular, then this also holds for M =∞.

Proof. Let {Bi}i∈I be some cover of E ∩ B(x,R) by balls of radius r. We
use Lemma A.1.4 to calculate

R` . H`(B(x,R) ∩ E) ≤ H`(∪i∈IBi ∩ E) ≤
∑
i∈I
H`(Bi ∩ E) . #ir

`,
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which shows #i & (R/r)` and gives the constant c. As for C, we select a
subfamily of disjoint balls Bj from the covering {B(x, r/5)}x∈B∩E of B ∩ E.
Then we estimate, using Lemma A.1.4,

#j(r/5)` .
∑
j∈J
H`(Bj ∩ E) ≤ H`(2B ∩ E) . (2R)`

and conclude #j . (R/r)`.

Proposition A.1.6. Let E ⊆ Rd be uniformly `-regular. It follows that
dimAS(E) = dimAS(E) = `.

Proof. We can rephrase Lemma A.1.5 in the language of Definition 1.3.13. It
precisely asserts that ` ∈ AS(E) ∩AS(E). Hence, we get dimAS(E) ≥ ` and
dimAS(E) ≤ `. The claim follows since dimAS(E) ≤ dimAS(E) holds for any
set E. Indeed, given λ ∈ AS(E) and µ ∈ AS(E) we have (R/r)λ . (R/r)µ
for all 0 < r < R < diam(E) and hence λ ≤ µ.

We turn to porosity. The following result was already mentioned in the
introduction to Chapter 2.

Lemma A.1.7. Let E ⊆ F ⊆ Rd. If F is `-regular and E is m-regular with
0 < m < ` ≤ d, then E is porous in F . Likewise, if dimAS(E) < dimAS(F ),
then E is uniformly porous in F .

Proof. We begin with the first claim. Lemma A.1.5 yields some C ≥ 1 such
that, if x ∈ E and 0 < r ≤ R ≤ 1, then at most C(2R/r)m balls of radius
r centered in E are needed to cover E ∩ B(x, 2R). It also yields some c > 0
such that at least c(R/(2r))` balls of radius 2r centered in F are needed to
cover F ∩ B(x,R). We use this observation with r = κR, where κ ∈ (0, 1)
satisfies c/(2κ)` > C(2/κ)m. This is possible due to m < `.
Let {Bi}i∈I be a family of #i ≤ C(2/κ)m balls of radius r centered in

E that cover E ∩ B(x, 2R). By choice of κ the balls {2Bi}i∈I cannot cover
F ∩ B(x,R). Pick y ∈ F ∩ B(x,R) that is not contained in any of the 2Bi.
By construction we have B(y, r) ⊆ Rd \ ∪i∈IBi but due to r < R we also
have B(y, r) ⊆ B(x, 2R) and hence E ∩ B(y, r) ⊆ ∪iBi. Thus, we must have
E ∩ B(y, r) = ∅ and conclude that E is porous in F .
The proof of the second claim is identical, but we do not assume R ≤ 1

and have the covering properties for some m ∈ AS(E) and ` ∈ AS(F ) with
m < ` by assumption.
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Lemma A.1.8. If E ⊆ Rd is porous, then there exist C ≥ 1 and 0 < s < d

such that, given x ∈ E and 0 < r < R ≤ 1, there is a covering of E ∩B(x,R)
by C(R/r)s balls of radius r centered in E. Moreover, if E is uniformly
porous, then dimAS(E) < d.

Proof. We only show the porous case since the uniform case again just follows
by dropping all restrictions on the radii. In the following all cubes are closed
and axis-aligned. We can equivalently replace balls by cubes and radii by
side lengths in the definition of porosity and Assouad dimension. Likewise, it
suffices to establish the claim of the lemma with cubes.
In view of Remark 1.3.24 we can fix n ∈ N such that for every cube Q ⊆ Rd

there is a cube Q′ ⊆ Q \ E of sidelength `(Q′) = `(Q)/n. We fix a cube Q
centered in E of side length R ≤ 1. Let 0 < r ≤ R and fix k ∈ N such that
R/(2n)k+1 ≤ r < R/(2n)k. We claim that we can cover Q by ((2n)d − 1)k+1

closed cubes of side length R/(2n)k+1. Put s := log((2n)d − 1)/ log(2n) < d.
Then

((2n)d − 1)k+1 = (2n)s(2n)ks < (2n)s(R/r)s

shows the assertion.
For the claim we start with k = 1. There is a cube Q′ ⊆ Q \ E of side

length R/n. Then there is a cube Q′′ in the grid of (2n)d cubes with sidelength
R/(2n) covering Q that is contained in Q′. This means that we only need
(2n)d − 1 cubes of side length R/(2n) to cover E. We conclude by applying
this argument inductively on each cube of the previous covering.

Combining the uniform cases of the two preceding lemmas lets us re-obtain
a result of Luukkainen [73, Thm 5.2]. Note that dimAS(Rd) = d due to
Proposition A.1.6.

Proposition A.1.9. A set E ⊆ Rd is uniformly porous if and only if its
upper Assouad dimension is strictly less than d.

We can use the non-uniform cases to show that some open sets are of class
Dt. The argument is a slight adaption of [71, Thm. 4.2].

Proposition A.1.10. Let O ⊆ Rd be open. If ∂O is porous, then O ∈ Dt for
some t ∈ (0, 1). If ∂O is `-regular for some 0 < ` < d, then O ∈ Dt for all
t ∈ (0,max{1, d− `}).
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Proof. If ∂O is porous, then we pick C ≥ 1 and 0 < s < d according to
Lemma A.1.8 such that for each j ≥ 0 and for any ball B with radius r ≤ 1
centered in ∂O we can cover B ∩ ∂O by at most C2js balls of radius r2−j. If
∂O is `-regular, then Lemma A.1.5 guarantees that we can take s = `. In any
case, fix max(s, d − 1) < u < d. Put Ej := {x ∈ B : d(x, ∂O) ≤ r2−j} and
Aj := Ej \ Ej+1. By construction, the covering property for B ∩ ∂O implies
that we can cover Ej by at most C2js balls of radius r2−(j−1). The d-regularity
of the Lebesgue measure then implies

|Aj| ≤ |Ej| . 2jsrd2d−jd.(A.1)

We use that {Aj}j≥0 is a disjoint cover of B \ ∂O, comparability d(x, ∂O) ≈
r2−j on Aj, estimate (A.1), and s < u to calculate∫

B\∂O
d(y, ∂E)u−d dy ≤

∑
j

∫
Aj

d(y, ∂O)u−d dy .
∑
j

|Aj|2dj−ujru−d

.
∑
j

ru2j(s−u) . ru.

Setting t := d− u ∈ (0, 1), we write this in the form

sup
x∈∂O

sup
0<r≤1

rt−d
∫

B(x,r)\∂O
d(y, ∂O)−t <∞,

which just means that O ∈ Dt. In the case of `-regular boundary, every
u ∈ (max{`, d− 1}, 1) and thus every t ∈ (0,max{1, d− `}) was admissible in
the proof.

A.2. Background on Hardy’s inequality
In the sequel we provide the essential notions and calculations to derive Propo-
sition 4.3.2 from the material in [70]. The Hausdorff measure, Hausdorff con-
tent and related notions were presented in Section 1.3.

Definition A.2.1. Let E ⊆ Rd be closed. Call E uniformly p-fat if there
exists a constant b > 0 such that

capp(E ∩ B(x, r),B(x, 2r)) ≥ brd−p.

Here, capp(·, ·) is the relative p-capacity. A definition is provided in [70, Sec.
2].

225



A. Appendix

Definition A.2.2. Let O ⊆ Rd be open. Then O satisfies the inner boundary
density condition with exponent λ if there exists a constant c > 0 such that
for all x ∈ O holds

Hλ
∞(B(x, 2 d∂O(x)) ∩O) ≥ c d∂O(x)λ.

It is shown in [70, Thm. 1] that cO is uniformly p-fat if O satisfies the inner
boundary density condition with exponent λ > d− p. The result there is for-
mulated for domains but an inspection of the proof shows that connectedness
is superfluous. Moreover, the constant for the uniform p-fatness condition
depends on O only via λ and c.
Now Hardy’s inequality follows from the uniformly p-fat complement con-

dition and the constant depends on O only via b, or by the previous consid-
eration, via λ and c. This follows since the constants were explicitly traced
in [54] and this observation was also confirmed by the author of [70].
To relate the inner boundary density condition with Ahlfors–David regu-

larity, we introduce the notion of `-thickness.

Definition A.2.3. Let E ⊆ Rd be a Borel set and 0 < ` ≤ d. Call E `-thick
if

∀x ∈ E, 0 < r < diam(E) : H`
∞(B(x, r) ∩ E) & r`.(A.2)

Lemma A.2.4. Let E ⊆ Rd be Ahlfors–David regular. Then E is (d − 1)-
thick and the implicit constant in (A.2) depends only on the implicit constants
in the Ahlfors–David regularity condition.

Proof. Let F ⊆ E be a Borel set and let xj ∈ F , 0 < rj ≤ diam(E) such
that ⋃j B(xj, rj) covers F . Then

∑
j

rd−1
j &

∑
j

Hd−1(B(xj, rj) ∩ E) ≥ Hd−1(F ∩ E) = Hd−1(F ).

Taking the infimum over all such coverings yields Hd−1
∞ (F ) & Hd−1(F ). Now

if we take F to be B(x, r) ∩ E the claim follows.

Lemma A.2.5. Let O ⊆ Rd be open. If ∂O is λ-thick and either O is bounded
or ∂O is unbounded, then E satisfies the inner boundary density condition with
exponent λ. Again, the constant c in the inner boundary density condition
depends only on the implicit constant in the definition of λ-thickness.
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Proof. Let x ∈ O and y ∈ B(x, 2 d∂O(x)), then

Hλ
∞(B(x, 2 d∂O(x)) ∩ ∂O) ≥ Hλ

∞(B(y, d∂O(x)) ∩ ∂O).

If O is bounded, then so is the function d∂O on O and we can apply the λ-
thickness condition to get the desired lower bound. If ∂O is unbounded, then
all radii are permitted in the λ-thickness condition and we are also done.

Remark A.2.6. IfO is unbounded and ∂O is bounded, we can obtain Hardy’s
inequality by considering the auxiliary set B(x, 2 diam(∂O)) for some x ∈ ∂O.
The key steps for this argument are contained in the proof of Theorem 4.0.3.
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