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A B S T R A C T

Internet of Things (IoT) applications are being rapidly deployed in the context
of smart homes, automotive vehicles, smart factories, and many more. In these
applications, embedded devices are widely used as sensors, actuators, or edge
nodes. The embedded devices operate distinctively on a task or interact with
each other to collectively perform certain tasks. In general, increase in Internet-
connected things has made embedded devices an attractive target for various
cyber attacks, where an attacker gains access and control remote devices for
malicious activities. These IoT devices could be exploited by an attacker to
compromise the security of victim’s platform without requiring any physical
hardware access.

In order to detect such software attacks and ensure a reliable and trustworthy
IoT application, it is crucial to verify that a device is not compromised by
malicious software, and also assert correct execution of the program. In the lit-
erature, solutions based on remote attestation, anomaly detection, control-flow
and data-flow integrity have been proposed to detect software attacks. However,
these solutions have limited applicability in terms of target deployments and
attack detection, which we inspect thoroughly.

In this dissertation, we propose three solutions to detect software attacks
on embedded IoT devices. In particular, we first propose SWARNA, which
uses remote attestation to verify a large network of embedded devices and
ensure that the application software on the device is not tampered. Verifying
the integrity of a software preserves the static properties of a device. To se-
cure the devices from various software attacks, it is imperative to also ensure
that the runtime execution of a program is as expected. Therefore, we focus
extensively on detecting memory corruption attacks that may occur during
the program execution. Furthermore, we propose, SPADE and OPADE, secure
program anomaly detection that runs on embedded IoT devices and use deep
learning, and machine learning algorithms respectively to detect various run-
time software attacks. We evaluate and analyse all the proposed solutions on
real embedded hardware and IoT testbeds. We also perform a thorough secu-
rity analysis to show how the proposed solutions can detect various software
attacks.

v



Z U S A M M E N FA S S U N G

Internet der Dinge (IoT) Anwendungen werden zunehmend in immer mehr
Bereichen eingeführt, wie intelligenten Gebäuden, Kraftfahrzeugen, intelligen-
ten Fabriken als Beispiele neben vielen Anderen. In diesen Anwendungen
werden eingebettete Geräte häufig als Sensoren, Aktoren oder Edge Nodes
eingesetzt. Diese eingebetteten Geräte arbeiten eigenständig an einer Aufgabe
oder interagieren miteinander, um gemeinsam bestimmte Aufgaben zu erfüllen.
Die zunehmende Vernetzung von Dingen mit dem Internet hat eingebettete
Geräte zu einem attraktiven Ziel für verschiedene Cyberangriffe gemacht, bei
denen ein Angreifer Zugriff auf entfernte Geräte erhält und diese für bösartige
Aktivitäten kontrolliert. Diese IoT-Geräte erleichtern es einem Angreifer, die
Plattform des Geschädigten zu kompromittieren, ohne dass ein physischer
Hardware-Zugang erforderlich ist.

Um solche Softwareangriffe zu erkennen und sicherzustellen, dass die IoT-
Anwendungen wirklich vertrauenswürdig und zuverlässig sind, muss unbe-
dingt überprüft werden, dass die Geräte nicht durch eine bösartige Software
kompromittiert wurden und die korrekte Ausführung des Programms sicher-
gestellt ist. In der Literatur wurden Lösungen vorgeschlagen, die auf Remote-
Attestierung, Anomalieerkennung, Kontroll- und Datenflussintegrität basieren,
um Softwareangriffe zu erkennen. Diese Lösungen sind jedoch nur begrenzt
anwendbar, was den Einsatz und die Erkennung von Angriffen betrifft, wie
wir gründlich untersuchen.

In dieser Dissertation schlagen wir drei Lösungen zur Erkennung von
Software-Angriffen auf eingebettete IoT-Geräte vor. Zunächst stellen wir SWAR-
NA vor, das ein großes Netzwerk von eingebetteten Geräten mithilfe von
Remote-Attestierung überprüft und sicherstellt, dass die Anwendungssoft-
ware auf dem Gerät nicht manipuliert wurde. Dabei werden die statischen
Eigenschaften des Geräts bewahrt . Um die Geräte vor verschiedenen Softwa-
reangriffen zu schützen, muss unbedingt auch sichergestellt werden, dass die
Ausführung eines Programms zur Laufzeit wie erwartet erfolgt. Wir konzentrie-
ren uns daher weitgehend auf die Erkennung von Angriffen auf den Speicher,
die während der Programmaus- führung auftreten können. Wir präsentieren
SPADE und OPADE, welche eine sichere Erkennung von Programmanomalien
ermöglichen, die auf eingebetteten IoT-Geräten laufen und Deep Learning
bzw. maschinelle Lernalgorithmen verwenden, um verschiedene Softwarean-
griffe während der Laufzeit zu erkennen. Wir bewerten und analysieren alle
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vorgeschlagenen Lösungen auf normaler eingebetteter Hardware sowie IoT-
Testumgebungen. Wir führen auch eine gründliche Sicherheitsanalyse durch,
um zu zeigen, wie die vorgeschlagenen Lösungen verschiedene Softwareangrif-
fe erkennen können.
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1
I N T R O D U C T I O N

chapter contents

1.1 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Dissertation Statement . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

A rapid deployment of IoT applications has led to increase in Internet con-
nected devices. Embedded devices are widely used in IoT applications such as
home automation, automotive, healthcare, as well as in critical infrastructures
namely electric power grid, chemical facilities, natural gas and oil distribution.
In these applications, embedded devices typically monitor their physical en-
vironment to read data from various sensors, process data and make control
decisions to act on physical environment. In general, due to the fact that devices
are connected to each other and to the Internet has made embedded devices an
attractive target for various cyber attacks, where an attacker gains access and
control devices for malicious activities. Internet connected devices facilitate an
attacker to compromise the victim’s platform without requiring any physical
hardware access.

Software attacks. Due to the additional cost, energy (battery usage), and limited
resources on embedded devices, security is an afterthought, and not incorpo-
rated by design. The consequence is an ongoing stream of exploits. An attack on
a water treatment plant in 2021 manipulated the quantity of chemical mix [53],
and a similar attack was also seen in 2016 [75]. In late 2019, a vulnerability in a
communication protocol was exploited to gain unauthorized access to a hotel’s
in-room robot assistant that could be used to spy on guests. [58]. In 2017, a
protocol vulnerability on Philips hue smart lamps was exploited to control the
smart street lights of an entire city [94]. In another example, two researchers
remotely updated the firmware of a car to gain control of its steering wheel,
breaks, and engine [83]. Those are only a few examples of evident attacks that
are known to the public. The above attacks either tamper the application binary
or corrupt the runtime memory to gain control of the device.

1
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Defense approaches. Remote attestation, control flow integrity (CFI), and
program anomaly detection are techniques that have been widely advocated to
detect various software attacks. Remote attestation is a prominent approach to
remotely verify the integrity of the software running on embedded device [44,
98, 23] or the runtime control flow of the program [3, 104]. In remote attestation,
an external trusted entity verifies the IoT devices, and is reactive in nature. CFI
is a prevention mechanism that monitors the control flow of a program on a
device at execution, ensuring that it follows pre-determined legitimate paths.
CFI and remote attestation, however, cannot capture the non-deterministic
runtime characteristics of a program (e.g., execution of if-else statements at
runtime). Program anomaly detection techniques, on the other hand, use
various features to capture the behavior of a program [116, 117]. Even a subtle
deviation in the runtime behavior compared to the normal execution is flagged
as anomaly.

Challenges. In order to ensure the IoT applications are truly trustworthy and
reliable it is imperative to (i) assure that the devices are not compromised
by malicious software, (ii) assert correct execution of the embedded control
program, and (iii) finally ensure that the proposed attack detection mechanism
is itself secured. A wide range of solutions have been proposed to detect
software attacks on embedded IoT devices.

Due to the limited resources on embedded devices, the goal of ensuring
device security is most often offloaded to a remote entity with unlimited re-
sources (c.f. remote attestation). Remote attestation solutions have been applied
for both verifying device software and also to verify correct execution of the
program. However, the solutions most often rely on special hardware capa-
bilities [44, 20, 104], or apply to single device setting [98, 4]. With increase in
IoT applications where devices are distributed and operate collectively (e.g.,
smart cities, automated factories), there is a need for swarm attestation. Current
swarm attestation techniques rely on special hardware capabilities to generate
attestation results which makes them inapplicable to both legacy and lower-end
constrained devices (class 0 or class 1 devices [19]).

However, implementing a secure software-based swarm attestation is chal-
lenging for several reasons. Software-based attestation relies on strict timeout
values to generate attestation results, and the non-deterministic behavior of
multi-hop wireless networks causes unpredictable communication latency mak-
ing it difficult to derive the timeout value. Also, malicious relay nodes could
tamper with responses of their descendants making it hard to pinpoint benign
and malicious nodes in the network.
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IoT devices that are slightly less resource constrained, implement solutions
that can execute on IoT devices with limited or no dependency on external
entities, which make them proactive in detecting attacks at runtime. Anomaly
detection is widely deployed on embedded devices which use various features
like process information [21], performance counters [2], and Linux system
call usage [29, 119] for detecting runtime anomalies. Most of the proposed
solutions [2, 119] can detect only changes in high-level execution contexts and
is not sensitive to small local variations between two system calls (c.f. control-
oriented attacks). Inversely, plain sequence-based approaches are sensitive to
only local variations or is order-insensitive [29, 101]. Sequence-based solutions
cannot detect attacks that takes illegal-yet-valid control path. Identifying the
correct features to trace and designing an anomaly detection scheme to detect
both local variations and changes in high-level execution contexts is challenging.
It should also be noted that there are very few anomaly detection techniques
for embedded devices and a proposed solution has to be efficient in terms of
memory requirement and runtime latency.

1.1 contributions

In this dissertation, we address the aforementioned challenges and present
three solutions to secure embedded IoT devices. The first solution is aimed
at verifying the IoT devices to detect any attacks that may have tampered
the application software. The other two solutions focus on detecting memory
corruption attacks that may occur during the execution of a program. More
specifically, this dissertation has the following contributions:

• Classification of attacks: Over the past few decades in the literature, we can
find various attacks that have been demonstrated on IoT devices. In this
dissertation, we define and classify the attacks into various categories that
helps us in designing a defense solution focused on an attack class.

• Software-based remote network attestation: To cater to the increasing in
scale and number of IoT deployments, we present SoftWAre-based Remote
Network Attestation (SWARNA), a system to attest swarm of remote IoT de-
vices. SWARNA builds a deterministic communication path enforcing time
bounds across a wireless multi-hop IoT network for attestation purposes.
Also, SWARNA implements two novel remote swarm attestation protocols:
(i) SWARNA-ind to verify the devices individually, and (ii) SWARNA-agg
that verifies a network of devices by aggregating the attestation results at
intermediate nodes. We implement SWARNA and evaluate attestation times
and communication overhead both via IoT testbed and simulation. We also
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demonstrate applicability of SWARNA with an IoT periodic data collection
application.

• Secure program anomaly detection: In order to detect memory corruption
attacks at program runtime, we propose a secure program anomaly detec-
tion for embedded IoT devices (SPADE). SPADE runs on embedded devices
and the anomaly detection is triggered efficiently to detect attacks instanta-
neously. For anomaly detection, SPADE captures the behavior of a program
using function calls with precise caller sites and implements a gated re-
current unit (GRU)-based anomaly detection scheme to detect attacks that
modify the execution flow of a program. The function call traces during
program execution are extracted from embedded trace macrocell (ETM) [78],
an on-board debugging component present on an ARM Cortex processor.
Such hardware-based tracing incurs only minimal overhead. We also con-
sider software-based tracing by instrumenting the source code, which incurs
higher overhead but can extract many more useful features and does not
add hardware constraints. SPADE leverages trusted hardware that provides
an isolated execution environment, to defend the proposed anomaly detec-
tor against mimicry attacks. SPADE thus combines trusted hardware and
software solutions to create secure and trustworthy IoT systems. We evaluate
the anomaly detection accuracy through real-world applications, and its
static and runtime overhead.

• Online program anomaly detection: We first introduce behavioural control
anomaly (BCA), an anomaly seen during program execution that affects the
behaviour of the program by modifying one or several control aspects of
the program. We further classify the anomalies into: control flow anomaly
(CFA), control branch anomaly (CBA), and control intensity anomaly (CIA).
We design an online program anomaly detection for embedded IoT devices
(OPADE). OPADE captures sequence of function calls with its precise calling
location, number of times a function call was invoked, and a loop execution
cycle count using hardware counters. OPADE implements an hierarchical
temporal memory (HTM) based anomaly detection technique that supports
sequence and continual learning, and does not require a separate data
collection and training like other neural network algorithms. Similar to
SPADE, OPADE runs inside trusted execution environment. We evaluate
OPADE for its anomaly detection accuracy in detecting the BCAs and also
its overhead.

Declaration of Originality. All ideas, models, algorithms, and implementa-
tion details described are the results of my work under the supervision of
Prof. Patrick Eugster. All systems presented in this dissertation – SWARNA,
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SPADE, OPADE– are built from scratch. I was fortunate to collaborate with
colleagues and students, who have at times assisted me in extending and
evaluating specific prototype components. Furthermore, the co-authors of the
publications have contributed in designing the algorithms, models of the im-
plemented systems, and discussions while working on the publications.

SWARNA was published together with Prof. Patrick Eugster and Prof. Silvia
Santini who was involved in discussions throughout the work. Akash Agarwal
was involved in the discussions along with Prof. Patrick Eugster in designing
SPADE, in particular the threshold based anomaly detection technique. The
HTM algorithm in OPADE was implemented by Fiona Murphy during her
internship supervised by me and Prof. Patrick Eugster.

1.2 dissertation statement

In this dissertation, we introduce methodologies to build trustworthy and
reliable IoT applications by securing embedded IoT devices. We propose a
system to collectively verify the integrity of the software running on remote
IoT devices and further propose two solutions, which are secure by design, to
detect memory corruption attacks that occur during the runtime execution of a
program, and detects broader class of attacks on embedded device at runtime
compared to state-of-the-art detection techniques.

1.3 roadmap

The dissertation is structured as follows: Chapter 2 presents the background
information on various attacks on embedded IoT devices and their classifica-
tion required to understand this dissertation. The background also provides
working of remote attestation protocol which is used to verify integrity of
devices. Chapter 3 provides the literature review of works closely related to
this dissertation.

We then present the dissertation in two parts. Part I focuses on detecting
attacks that tamper the application software. Chapter 4 presents a software-
based remote network attestation technique that verifies the integrity of the
software running on the device.

Part II of the dissertation focuses on detecting memory corruption attacks
that may occur during the execution of a program. Chapter 5 presents a GRU-
based anomaly detection technique to detect attacks that modify the execution
flow of a program. Chapter 6 presents an HTM based online anomaly detec-
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tion technique that detects various behavioural control anomalies. Chapter 7

concludes this dissertation and presents future research directions.
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In this chapter, we provide basic information on attacks and essential defense
mechanisms vital to understanding this dissertation. First, we broadly classify
attacks targeted at embedded IoT devices in Section 2.1. We then describe the
software attacks in detail in Section 2.2, as the focus of this dissertation is de-
tecting software attacks. We broadly classify the software attacks into software
tampering and memory corruption attacks, which are described in Section 2.2.1
and Section 2.2.2. We also review the most prominent memory corruption
attacks: control-oriented and data-oriented attacks. Finally, in Section 2.3, we
explain the working of remote attestation, which is used for detecting software
attacks.

2.1 attacks on embedded iot devices

An IoT system comprises several smart devices that exchange data through
the Internet. In this section, we classify and describe attacks compromising the
security of embedded IoT devices.

We broadly classify the attacks on embedded IoT devices into two categories:
software attacks and hardware attacks [71]. Figure 1 shows the classification
of attacks on embedded IoT. Based on the literature, we classify attacks that
compromise only the software of a device, that is, the code and the data residing
on the device, as software attacks. With software attacks, an attacker can exploit
vulnerabilities in the code to take the target device under control which may
lead to catastrophic consequences. An attacker can execute a software attack
remotely, making it an easy and widespread choice of attack.

8
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Figure 1: IoT attacks classification

The attacks that capture a device and physically tamper it are classified as
hardware attacks [61, 71]. Hardware attacks that directly access the internal
components of a device using expensive and sophisticated equipment are
termed as invasive attacks. Hardware attacks that use low-cost electrical engi-
neering tools to extract the cryptographic material stored on the device are
termed as non-invasive attacks. The famous side-channel attack is an example of
a non-invasive attack, which uses electromagnetic radiation, power, or time to
extract sensitive data during normal device operations.

In this dissertation, we focus on software attacks and propose several solu-
tions to detect various software attacks. Hence in the following sections, we
provide an in-depth description of software attacks.

2.2 software attacks

An attack is defined as a software attack when an adversary modifies the
code or data on a device. We further categorize software attacks into software
tampering attacks and memory corruption attacks (ref. Figure 1).

2.2.1 Software Tampering Attacks

The adversary here is capable of modifying the application binary before or after
deployment by exploiting vulnerabilities in the source code or the deployment
setting. Along with the application software, the adversary can also modify
any configuration settings on the device. However, the application binary or
the device configuration typically resides in a device’s non-volatile memory
(survives device restarts) and does not change during program execution.
Hence, we define attacks that only tamper the static properties of a device as
software tampering attacks.
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Figure 2: Memory corruption attacks classification

2.2.2 Memory Corruption Attacks

During program execution, an application generates various runtime informa-
tion that is stored in volatile memory (resets on device restarts). Typically in
embedded devices, the runtime information is stored on a stack or heap, which
resides on the volatile RAM. An attacker can exploit the vulnerabilities in the
application software, like buffer overflow, to modify the runtime data of the
application. Therefore, we classify attacks that modify the contents of runtime
memory as memory corruption attacks. As the memory corruption attacks take
place during the execution of an application program, in the literature, memory
corruption attacks are also referred to as runtime attacks [28]. The classification
of memory corruption attacks is shown in Figure 2.

Based on the data that is modified in the memory, memory corruption attacks
can be further classified into control-oriented attacks and data-oriented attacks.
Figure 3 shows how the control and data flow look during various memory
corruption attacks. We further explain the memory corruption attacks in detail.

2.2.2.1 Control-oriented attacks

In control-oriented attacks, the adversary modifies the control information (e.g.,
return address, code pointer) of a program that resides in memory during
program execution. The aim of an adversary is to divert the intended execution
flow of a program. By subverting the control flow, the adversary can trigger one
or several malicious actions, such as accessing sensitive data, illegally executing
a program, or injecting malware.

Control-oriented attacks [34] can be broadly classified into (1) code injection
and (2) code-reuse attacks. In code injection, an adversary first exploits a
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vulnerability to inject malicious executable code into the application’s address
space. As a next step, the adversary uses the same or finds another exploit to
redirect the control flow of a program to execute the injected malicious code.
The control flow of a program during the attack is shown in attack 1 in Figure 3.
The figure shows that the malicious code is placed in the runtime stack, and
the current return address of a program is altered to point to the malicious
code location, which is further executed. Executing a code injection attack on
Harvard architecture, where the code and data memories are separated, is not
straightforward and requires expert skills [48]. The Harvard architecture is the
typical CPU design in embedded systems.

In contrast to code injection attacks, code-reuse attacks do not require inject-
ing malicious code into the application’s address space. Instead, in code-reuse
attacks, an adversary redirects the control flow of a program to execute an
already existing code block of the program. For example, as shown in Figure 3,
in attack 2, the return address is modified to redirect the control flow of a
program to a current location in the program memory. If the attacker can
execute a function that performs critical tasks, then the effect of such an attack
is disastrous.

In order to redirect the control flow of a program, the adversary tampers the
code pointer. The most common way to hijack the control flow is to change
the return address of a function stored on the program stack to a new address
location. Function pointers can also be modified to hijack the control flow of the
program. The target address can point to a critical function that an adversary
can obtain by reverse engineering the program binary using a debugger.

2.2.2.2 Data-oriented attacks

Data-oriented attacks modify the benign behavior of a program by altering the
non-control data (data variables that do not contain any address information).
The adversary modifies the internal data variables or data pointers during the
execution of a program without violating the control flow integrity.

In the literature, several types of attacks corrupt the non-control data to alter
the program’s behavior. Data-oriented attacks [28] can be categorized into (1)
direct data manipulation and (2) data-oriented programming. In direct data
manipulation, an adversary directly changes the non-control data variable to
achieve the required malicious goal. Here the attacker should know the precise
address of the target variable. Binary analysis or deriving the randomized
address stored in the memory can be used to obtain the target address of a
variable. The attacker then exploits a program vulnerability to overwrite a
data variable’s memory location. In Figure 3, a direct data manipulation attack
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flow and data-flow is altered during various memory corruption attacks.
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shows that the non-control data variables stored on the stack are altered to a
malicious value.

Based on the impact of an attack, we classify direct data manipulation into
control branch and control intensity attacks (cf. Figure 2). When an adversary
modifies critical decision-making variables at runtime to illegally execute a
control branch, we term such an attack a control branch attack. Control branch
attacks alter the benign control flow path of a program without violating the
control flow integrity of a program, i.e., the attack does not introduce any
illegal control flow. If the adversary corrupts a data variable to alter the amount
of control operations is called a control intensity attack. An example of such an
attack is modifying the number of loop iterations to dispense large amounts of
chemicals illegally.

Data-oriented programming attack is a systematic technique of generating
expressive non-control data exploits. The attack involves finding gadgets and
chaining them in arbitrary sequences using a gadget dispatcher. The dispatcher
is usually a loop [59] because an attacker can execute a sequence of instructions
several times to achieve the desired effect within a loop.

2.3 defense : remote attestation

Remote attestation [98, 3] is a security mechanism used by a trusted entity to
verify the integrity of a remote untrusted device. Due to the limited resources
on embedded devices, using an external trusted entity in the IoT architecture
is typical. Remote attestation uses a challenge-response protocol to validate the
internal state of a remote device. In remote attestation, a trusted entity called
the verifier issues a challenge to an untrusted prover. The prover generates a
response to the challenge and sends it to the verifier to prove its legitimate
state. It is generally assumed that the verifier is aware of all the possible correct
states of the prover. The challenge is generated such that a compromised prover
cannot produce a valid response.

The Figure 4 summarizes the working of remote attestation. First, the verifier
creates a unique challenge and sends an attestation request to a remote prover.
Next, the prover executes an attestation routine to calculate and send an
attestation response back to the verifier. Finally, the verifier compares the state
of the prover received in the attestation response with the expected state of
the device. If the results match, the verifier declares the remote device to be
trusted; otherwise, the remote device remains untrusted.

Remote attestation is broadly classified into three categories:
• Hardware-based attestation: Hardware-based attestation techniques rely

on tamper-resistant components like trusted platform module (TPM) or
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physical unclonable functions (PUF). The attestation response is calculated
using tamper-proof hardware; therefore, the verifier trusts the attestation
response.

• Software-based attestation: Software-based attestation does not require any
trusted hardware; instead, it relies on strict time restrictions. When the
verifier sends an attestation request, it expects the prover to generate a
response within the given time bounds. If the prover cannot generate a
valid response within the given time, then the prover is assumed to be
compromised. Software-based attestation depends on the fact that, given
sufficient time, an adversary can move the malware present on the device
and still generate a valid response. However, with an added restriction of
time guarantees, the verifier can successfully verify the integrity of a prover.

• Hybrid attestation: Attestation techniques that do not require tamper-
resistant hardware but still depend on specific hardware for generating
attestation results is categorized as hybrid attestation. In the literature,
micro-controllers are modified to restrict access to certain memory regions
for attestation, or specific types of ROMs are used.

Remote attestation is used to attest a single prover or a collection of devices,
which is called swarm attestation [23]. In the literature, we find remote at-
testation has been used to verify the software integrity of devices, and also
runtime execution of the application program [3, 104]. We review various
remote attestation techniques in the literature in Section 3.1.
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In this chapter, we review the literature works related to this dissertation. We
first present the related works that verify the static properties of an embedded
device through remote attestation in Section 3.1. In Section 3.2, we review the
defense mechanisms proposed to detect various memory corruption attacks.

3.1 detecting software tampering attacks using remote attes-
tation

Remote attestation is popularly used to detect attacks that alter a device’s static
properties, such as the program binary and software configuration. Remote
attestation implements a challenge-response protocol that enables a trusted
verifier to verify the integrity of the software running on a remote embedded
device.

We classify the remote attestation works into two dimensions - (1) attestation
approach and (2) attestation scope.

Approach - Software vs Hardware. Early remote attestation approaches were
mostly software-based with the focus being to implement an optimized and
secure routine to calculate a memory checksum (e.g., [98, 4]). That is, on
attestation request, a device computes the checksum of attestable memory, and
the verifier accepts a device’s response only if it is received within a predefined
time frame. One of the reasons software-based remote attestation has been
criticized for its difficulty in implementing a simple, time-optimal checksum
function. Castelluccia et al. [25] perform several attacks on SWATT [98] to show
the difficulty of implementing a time-optimal checksum routine for software
attestation. After refutations the authors state [49] that software attestation can
be secure if the verifier communicates directly with the device over a single hop
and data memory is included in the attestation measurement. Later, Armknecht

16
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et al. [12] present a formal generic security framework to implement such time-
optimal attestation routines. However, the checksum function or the attestation
protocol may have to be slightly modified based on device architecture. Li et
al. [76] propose pre-filling data memory with pseudo-random values known
to the verifier before attestation to detect malware in unused memory. SµV [9]
presents a software-based security architecture that provides memory isolation
using selective software virtualisation and machine-level code verification.

Based on limitations of software-based remote attestation, trusted hardware
like TPMs are exploited to perform hardware-based remote attestation [105].
Due to the relatively high overhead and complexity involved in such hardware-
based solutions, several hybrid secure architectures for IoT have been proposed.
SMART [44] stores the attestation routine and secret keys in ROM and modifies
the micro-controller to restrict access to the code in ROM. A hybrid remote attes-
tation with formally verified security guarantees is proposed in VRASED [87].
TyTAN [20] and Sancus [85] are other secure hardware architectures that pro-
vide remote attestation features and can run several separate programs in
isolation. HAtt [7] leverages physical unclonable functions to attest the memory
of a remote IoT device iteratively in blocks instead of the entire memory at
once, as done in existing software and hybrid attestation techniques.

Scope - Nodes vs Swarms.There has been an increase in IoT malware used
as bots for large-scale distributed denial-of-service (DDoS) attacks [72]. Since
in IoT applications devices are interconnected to form a network, several
researchers have thus considered remote attestation for entire swarms. Building
on SMART, LISA [23] stores the attestation routine, a pre-computed checksum,
and secret keys in secure memory. On attestation request, a memory checksum
is computed upon and compared against pre-computed values. Identifiers of
benign nodes are combined and sent in a response packet whose size increases
with network size. In contrast, SWARNA aggregates responses by ⊕-ing the
received checksums, yielding constant packet sizes. SANA [8] introduces a
novel optimistic aggregate signature (OAS) which uses multi-signature and
aggregate signature schemes. With OAS, a correct node signs a default message
sent by verifier and a malicious node signs the hash of its program memory.
SANA was implemented on secure architectures, SMART and TyTAN. While
LISA, SANA, and SWARNA use aggregation as a technique to minimize
communication overhead, they differ greatly in what is aggregated. US-AID [60]
is applicable to dynamic topologies. Nodes periodically attest their neighbors,
to identify software attacks and use periodic heartbeat messages to identify
their physical presence. By combining continuous attestations and heartbeat
messages, US-AID identifies both software and physical attacks. ESDRA [74]
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takes a distributed approach where neighboring nodes directly attest provers
and hence an IoT swarm.

As stated, previous works on software-based remote attestation require a
strict timing guarantee for successful operation, making software-based attes-
tation challenging for multi-hop networks. Seshadri et al. [97] propose an
expanding ring method for multi-hop networks where the sink attests one-hop
nodes and these nodes attest their neighbors. The focus is to implement optimal
checksum calculation routine and not efficient swarm attestation protocol.

3.2 memory corruption attacks defenses

In this section, we present the related works in identifying various memory cor-
ruption attacks, specifically control-oriented and data-oriented attacks targeted
at an embedded device.

Program anomaly detection. Using machine learning algorithms to capture
program runtime information has proved to yield effective behavioral models
to detect deviations (program anomalies) during runtime. Such a technique
is orthogonal to integrity techniques – that solely focus on static analysis – in
that it is designed to offer quantitative behavior such as distinguishing path
frequencies that might be indicative of run-time program misuses.

Forrest et al. first proposed program anomaly detection using system call
traces [47]. Initial approaches used hidden markov models (HMMs) [114] and
finite state automata (FSA) [95] to analyze information flows quantitatively
using frequencies of system calls. STILO [117] and CMarkov [116] introduced
static program analysis to initialize HMMs and use 1-level calling context
respectively. These approaches primarily focus on the identification of local
anomalies by inspecting short call segments. They are therefore suitable for only
control-oriented attacks that exhibit deviations in short traces. Also, HMMs
tend to converge to local optima, hampering prediction performance. The use of
HMMs for predicting the next executed call and characterize normal executions
has limitations. Firstly, it can captures only limited call history to model the next
call. Therefore, it loses valuable execution information for informed predictions.
Secondly, HMMs tend to converge to local optima, hampering prediction
performance.

Long-span anomaly detection (LAD) [101] captures long-term behavior of ex-
ecutions using co-occurrence and frequency analysis. But it is order-insensitive
and fails to jointly learn the semantics of individual function calls and their
interactions appearing in the trace sequences. Therefore, it cannot detect aber-
rant path attacks where the attack trace resembles a normal trace with just a
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few missing sequences (cf. Table 3). In contrast, our proposed scheme leverages
machine learning models to analyze long traces. We show empirically that even
moderate-length traces can effectively detect control-oriented and aberrant path
attacks (data-oriented attacks).

Anomaly detection on embedded devices. Several features of embedded
devices have been explored in identifying various types of anomalies on
lightweight devices. HADES-IoT [21] prevents executing new processes that do
not belong to a known whitelist of benign processes. However, this technique
does not defend against control-oriented attacks. Abbas et al. [2] use hardware
performance counters to train benign and anomalous applications using a sup-
port vector machine. However, the hardware counters used are not available on
several lightweight embedded devices like Cortex-M. Yoon et al. [119] cluster
system calls to identify patterns in system call frequency distributions using
k-means clustering. Monitoring frequencies of system calls can detect only
changes in high-level execution contexts and is not sensitive to small local
variations between two system calls (as in control-oriented attacks). Inversely,
plain sequence-based approaches are sensitive to only local variations and
cannot detect aberrant path attacks. A fine-grained context-sensitive sequence-
based approach can detect a large set of attacks including control-oriented
and aberrant path attacks which we demonstrated in this paper. Orpheus [29]
builds an event-aware finite state automaton (eFSA) model to detect runtime
data-oriented attacks that change Linux system call usage and cannot detect
attacks on bare-metal devices.

Alternate defense approaches. In this paper, we propose an on-device at-
tack detection solution for resource-constrained IoT devices using a program
anomaly detection algorithm. Most popular alternative techniques to program
anomaly detection to secure devices against control-oriented attacks include
remote attestation [3] and CFI [1]. In remote attestation, a trusted external
entity verifies a remote IoT device for its software integrity. C-FLAT [2] re-
motely verifies the control flow using remote attestation technique. Along with
control flow attestation, OAT [104] verifies the integrity of critical data. Recent
works on remote attestation use secure hardware and swarm attestation for
IoT networks [24]. Remote attestation requires an external trusted verifier to
periodically verify IoT devices, and is reactive in nature. Unlike remote attes-
tation and anomaly detection, CFI is a prevention mechanism, CFI works on
the device, monitoring the control flow of a program on a device at execution,
ensuring that it follows pre-determined legitimate paths. CFI is widely stud-
ied for general-purpose systems and is shown to incur very high processing
overhead as the program regularly checks every control flow step [1]. CFI has
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been attempted on resource-constrained devices using a pure software-based
approach [32], exhibiting significant runtime overhead compared to hardware-
based CFI techniques [33]. Also, CFI in general addresses only control-oriented
attacks. Hasan et al. [55] use ARM TrustZone on Cortex-A to verify all actu-
ator commands before forwarding them to the peripheral. The approach can
only partially detect control-oriented attacks, and fails to detect aberrant path
attacks. Data flow integrity [26] defends against specific data-oriented attacks
by instrumenting all memory-accessing instructions, which however incurs a
very high runtime overhead.

Secure machine learning. ARM TrustZone on Cortex-A has been used to
securely execute machine learning algorithms and ensure user data privacy [16],
providing the classification result to the application in the non-secure region.
DeepLog [37] uses long short term memory (LSTM) to identify anomalies in
system logs generated during normal execution of an underlying Linux system.
In contrast to these works, the objective of proposed approaches in this thesis is
to detect anomalies during the execution of a user program in the non-secure
region. Several privacy-preserving neural network inference approaches have
been proposed [93, 81, 51, 68]. The main objective of these works is similarly to
ensure the privacy of the user’s input provided to the machine learning model.
Another focus is to secure the model structure and parameters from users.
Inference in these works is typically performed in the cloud. In general, these
works focus on preserving user data privacy, whereas we use neural networks
to provide integrity of a program’s control flow. Also, they focus on securing
convolutional neural networks that cannot remember long-term sequences and
hence cannot be efficiently used for anomaly detection.

Neural networks on embedded devices. Several authors implement neural
network inference engines on tiny micro-controllers for specific applications
other than anomaly detection [121, 100, 90]. Nyamukuru et al. [90] show
that the soft-sign activation function is computationally more efficient com-
pared to the sigmoid and tanh activation functions used in standard GRUs.
DeepIoT [118] compresses deep neural networks by over 90%, thereby reducing
execution time by over 72%. DeepIoT and the soft-sign activation function
could be used to reduce the static and runtime overhead of the machine learn-
ing models used by the proposed techniques. DeepIoT reduces the number of
hidden elements between the layers by choosing an optimal dropout probability
for each layer.
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4.1 introduction

Embedded devices in Internet of Things (IoT) applications interact with each
other to collectively perform certain tasks. Examples include smart cities, homes,
and industries. Increase in internet-connected things has made them attractive
targets for various malware attacks. Securing data transmission and guaran-
teeing the integrity of the devices are crucial for the dependability of IoT
applications.

4.1.1 IoT Malware

Several incidents demonstrate the catastrophic effect of remote malware in-
jection in large-scale attacks. E.g., a protocol vulnerability was exploited to
update Philips hue smart lamps with malicious firmware, allowing the at-
tacker to control the smart lights of an entire city [94]. In another example,
two researchers remotely updated the firmware of a car to gain control of its
steering wheel, breaks, and engine [83]. Francillon et al. describe an attack to
compromise devices based on Harvard architecture [48]. Most of these malware
attacks exploit software vulnerabilities to remain on the devices undetected
and survive device restarts.

Due to limited resources and weak security of embedded devices, IoT systems
have become a preferred target for attacks. A 2018 survey by Gartner reports
that nearly 20% of organizations worldwide experienced at least one IoT-based
attack in three years [65].
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4.1.2 Remote Attestation

Remote attestation is a prominent approach to detect presence of malware on a
remote embedded device by verifying the integrity of its software [105, 44, 98,
23]. In remote attestation, a trusted entity called the verifier issues a challenge
to a remote device to prove the correct state of the device’s program memory.
If the response to the challenge meets the verifier’s expectation, the remote
device is declared trusted. There are different variants of remote attestation.
Hardware-based remote attestation requires trusted hardware like TPMs to
generate attestation results [105]. Due to the relatively high cost and complexity
of hardware-based solutions, several hybrid architectures for IoT have been
proposed that restrict access to certain memory regions by modifying the micro-
controller [44, 20]. (Pure) software-based solutions require no additional trusted
hardware of any kind [98, 4]. A device must however respond within a strict
timeout, or attackers could compute the correct response to the challenge.

Early attestation schemes focused on single device settings, where the verifier
can directly communicate with devices. Following the increase in IoT applica-
tions operating collectively, attention has shifted to attesting entire networks,
a.k.a. swarm attestation [23]. E.g., SANA [8], LISA [23], and ESDRA [74] are
hardware-based swarm attestation protocols.

4.1.3 Back to the Future

Miniaturization of hardware [42] and recent deployment of low-power long
range communication technologies like LPWAN and LoRA [82] enable new IoT
applications with tiny devices connected to the Internet (e.g., smart clothing,
freight monitoring, disposable IoT). It remains a challenge to enable trusted
hardware on such low(est)-end constrained IoT devices; for devices where the
hardware might be available, even if individually small, the incurred costs can
substantially increase for large-scale deployments.

An average of 127 IoT devices are connected to the Internet every second
and the total number of devices is expected to reach 41 billion by 2027 [86].
While hardware-based remote attestation offers the highest dependability, most
fielded IoT devices (still) use conventional processors without trusted hardware.
For example, Philips Lighting alone installed 44 million connected light points
in 2017 and 2018 which are not equipped with trusted hardware [102]. (As a
comparison point, ARM launched its trusted hardware in 2003 [31].) In order to
secure the billions of legacy IoT devices and next generation IoT applications,
it is necessary to (re)investigate solutions for devices without trusted hardware.
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4.1.4 Challenges

However, implementing secure software-based swarm attestation is challenging
for several reasons: (C1) to prevent the attacker from getting sufficient time
to forge an acceptable response, the attestation routine must be time-optimal;
(C2) the non-deterministic behavior of multi-hop wireless networks causes
unpredictable communication latency, which in turn makes it difficult to derive
the timeout value required by software-based remote attestation; (C3) malicious
relay nodes could tamper with responses of their descendants making it hard to
pinpoint correct and malicious nodes in the network. Several authors (e.g., [98,
4, 12]) provide guidelines and solutions addressing C1, however challenges C2
and C3 have not yet been tackled in the literature.

4.1.5 Contributions and Roadmap

To overcome these challenges, we make several contributions. After further
defining the problem addressed, we:

1. design deterministic communication paths in Section 4.4 for attestation
purpose enforcing time bounds across multi-hop IoT networks (cf. C2).

2. introduce two novel remote swarm attestation protocols SWARNA-ind and
SWARNA-agg in Section 4.5 (cf. C3), and analytically assess their respective
total attestation times and communication overheads, exhibiting tradeoffs.

3. in Section 4.6, we implement SWARNA-agg and SWARNA-ind on Con-
tiki OS using open standard IoT protocols allowing interoperability, easy
deployment and integration of SWARNA in real-world applications.

4. empirically evaluate attestation times and communication overheads via
both IoT testbed [5] and simulation in Section 4.7, and confirming our
analytical assessment. For attesting a 30 nodes network on the testbed
SWARNA-ind takes around 6s and SWARNA-agg takes between 1.5s to 8.2s
depending on the number of malicious nodes in the network. We also show
that SWARNA maintains constant payload size whereas it increases linearly
with network size for SANA [8] and LISA [23].

5. demonstrate applicability of SWARNA with an IoT periodic data collection
application in Section 4.7. Testbed results show that attestation has only
minimal impact on the application’s packet delivery ratio (0.4% drop) with
upto 4% false positive rates and 0 false negatives.

6. analyze security of SWARNA in Section 4.8.

Section 4.9 draws final conclusions.
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Figure 5: Example topology with leaf nodes, source nodes, relay nodes and a trusted sink
node. The verifier is a trusted external entity communicating with nodes
through the sink.

4.2 problem definition

This section presents the system and threat model considered, and also the
assumptions and problem addressed.

4.2.1 System Model

We consider an IoT scenario where a network (for instance a wireless sensor
network) of multi-hop nodes are connected to the Internet through a sink node
(cf. Figure 5) with source nodes generating data, and relay nodes forwarding the
data. Nodes without any child node are leaf nodes. The verifier is a trusted entity
external to the network that sends attestation requests and verifies respective
responses. The network setting described corresponds to use-cases like smart
city or industrial IoT; the system model is also in line with models considered
in the literature of swarm attestation. However, existing swarm attestation
techniques assume trusted hardware on all devices in the network [23, 8],
whose integrity has to be verified. In this chapter, we focus on proposing an
efficient swarm software-based remote attestation protocol.

4.2.2 Assumptions

We make a few assumptions common to software-based single device attestation
works (cf. Section 3.1). We assume that a public-key infrastructure suitable for
embedded IoT devices (e.g., [112, 23]) is in place and nodes in the network can
use the public key of the verifier to verify signed attestation requests. We assume
that the verifier is aware of the architecture, software state (e.g., firmware
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version, initial configuration), and CPU model of the IoT devices (if devices
are homogeneous, it is sufficient for the verifier to store the configuration of a
single IoT device). Such information can be obtained during deployment. We
assume that the sink node is trusted and communication between devices in
the network and the outside world passes through it [97].

4.2.3 Threat Model

Wang et al. [112] classify non-physical attacks along three dimensions. With
respect to those dimensions, the attacks considered in this chapter are as
follows:
1. Outsider vs insider attacks: We consider outsider attacks since several types

of IoT malware were injected remotely to control devices and launch large-
scale DDoS attacks [72]. The compromised devices can collude with each
other to evade detection. To handle insider attacks (impersonation and
proxy attacks), nodes typically require secret keys which software-based
solutions cannot securely store [12]. However, additional mechanisms can
be incorporated along with remote attestation to handle insider attacks [80].

2. Passive vs active attacks: We consider both active and passive malware attacks.
Active malware can modify/drop any packets received or generated. In
contrast, passive malware does not interfere in the protocol operation. The
attacker can also use protocol messages to launch DDoS attacks in the
network and render the system unresponsive.

3. Mote-class vs laptop-class devices: The attacker can use either a mote- or
laptop-class device to infect the devices in the network with malicious soft-
ware as long as the used device is not part of the network (cf. inside attacker).

4.2.4 Problem Statement

We consider an IoT system where an attacker can compromise several devices
by injecting malicious code into them using vulnerabilities in the software
running on the devices. A trusted verifier wants to collectively verify the
integrity of the IoT devices. Our objective is to cater to the current needs that
are applicable to legacy devices and next generation IoT applications without
trusted hardware or modified hardware.

We are interested in practical solutions, i.e., solutions that perform well with
respect to the following metrics:

Overall communication overhead: The total number of packets transmitted in the
network during remote attestation execution. A high communication over-



4.3 overview 29

head has a direct impact on the energy consumption [46]. Hence, an effective
attestation protocol should have low communication overhead.

Overall attestation time: The time taken to attest all the nodes in the network. It
is the total time duration between the verifier sending an attestation request
to the first node in the network and the response received from the last node.

4.3 overview

In this section, we provide an overview of the proposed system – SWARNA–
SoftWAre-based Remote Network Attestation and thereby how the system
addresses the challenges in designing a software-based swarm attestation
protocol.

4.3.1 Monitoring and Control

SWARNA, a pure software-based solution for attesting swarms of IoT devices
proposed in this chapter, does not depend on any trusted hardware for gener-
ating attestation results. Instead, SWARNA uses the checksum of the device
calculated by traversing the memory in pseudo-random pattern [98] (cf. C1).
The checksum must be received at the verifier within strict time bounds to
identify the malicious node. We thus build a deterministic communication path
enforcing time bounds across a wireless multi-hop IoT network for attestation
purposes (cf. C2). The communication path is built by a centralized component,
monitoring & control unit as shown in Figure 6a. Monitoring & control unit has
similar capabilities as the verifier and the two components can be deployed on
a single or separate machines. Routing information transmitted to the nodes
are signed by monitoring & control unit and hence a malicious node cannot
deliberately change routing paths used for attestation. The communication path
built by monitoring & control unit can co-exist with other paths constructed
by any distributed or centralized routing schemes. However, a malicious relay
node can still drop/delay/modify results of descendant nodes to distract from
its own incorrect state. If the verifier does not receive an attestation response, it
is difficult to determine whether there was a packet drop due to poor channel
condition or a malicious activity. A solution for swarm attestation must be able
to eventually verify all devices even in lossy networks, i.e., losses should not
affect security but only efficiency.
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4.3.2 Attestation Protocols

We present two software-based attestation protocols to verify remote IoT devices
(cf. C3). Existing over-the-air reprogramming methods [99] can update the
devices to use SWARNA.

4.3.2.1 SWARNA-individual

In SWARNA-individual (SWARNA-ind), the verifier attests devices individually
which can be several hops away from the verifier. Each trigger for attestation
verifies all the nodes and incurs high cost in terms of attestation time and
communication overhead. We thus propose SWARNA-aggregate (SWARNA-
agg).

4.3.2.2 SWARNA-aggregate

SWARNA-agg aggregates the attestation responses at intermediate nodes mini-
mizing attestation time and communication overhead. SWARNA-agg works in
two phases to deal with false suspicions or indecision caused due to aggrega-
tion. The second phase is invoked only on suspected nodes, if there are any.
The overhead increases with the number of malicious nodes depending on the
network topology. This makes SWARNA-agg more suitable for networks with
fewer malicious nodes or when attestation is performed very often as part of
network maintenance. Evaluation results show SWARNA-agg performs better
than SWARNA-ind as long as the number of malicious nodes are below 50%
and 70% for higher and lower transmission powers respectively. Aggregation
reduces attestation time and communication overhead, hence, in medium to
large IoT deployments like smart grid, agriculture monitoring, or industrial
IoT application, SWARNA-agg can be deployed. For small networks like smart
home where devices are usually directly reachable from the sink SWARNA-ind
can be used to verify the integrity of devices.

4.4 deterministic communication paths

We discuss the impact of network reliability on identifying malicious nodes
and mechanisms for creating deterministic communication paths.
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Figure 6: (a): A simple 4 node network (1 sink, 1 leaf, and 2 relay nodes), the verifier,
and monitoring & control unit. (b): Example of TSCH schedules created by
monitoring & control unit for the network shown in a.

4.4.1 Network Reliability and False Positives

A malicious node can drop packets of itself or its descendants. However, it is not
possible to determine remotely whether a missing packet is due to malicious
activity or just poor channel conditions. In order to identify a benign node
during attestation, the verifier should receive the attestation response from the
node, lest that node be suspected eventually. Under poor channel conditions,
many false positives will occur. A highly reliable communication protocol can
minimize these false positives.

Dedicated slots for communication can vastly improve the determinism in
wireless settings. Centrally coordinated slot allocation mechanisms can elim-
inate the influence of an attacker in modifying the dedicated slots. However,
such techniques incur very high overhead in dynamic wireless networks. Hence
— for attestation purposes only — we allocate centrally coordinated dedicated
slots based on knowledge of physical topology. For application traffic and all other
purposes a distributed routing protocol can be used.

4.4.2 TSCH Link-Layer Protocol

We consider IEEE 802.15.4 Time Slotted Channel Hopping (TSCH) link-layer
protocol [62], shown to achieve time-synchonized communication with relia-
bility over 99.99% in real-world deployments [41, 40]. Several alternatives for
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time-slotted communication in IEEE 802.11 networks [15] exist. TSCH being a
widely accepted open-source standard simplifies deployment.

In a TSCH network, time is divided into timeslots which are combined to
form a slotframe repeating continuously over time. Communication between
nodes is orchestrated by a schedule which defines actions (transmit, receive, or
sleep) to be performed in a particular timeslot. Figure 6 shows an example of
dedicated timeslots for communication. In the example, node 4 transmits to
node 3 in timeslot 0 and to node 2 in timeslot 1. The standard defines several
mechanisms for creating and maintaining schedules [107].

Algorithm 1: Creating dedicated TSCH schedules on monitoring &
control unit
Variables : Set of all nodes in network nodes

Schedule for a node N, SN [len]

1 task create_schedules()
2 foreach N ∈ nodes do
3 ts← 0

4 foreach c ∈ children(N) do
5 if SN [ts] = free ∧ Sc[ts] = free then
6 SN [ts]← Rx

7 Sc[ts]← Tx

8 ts← ts+ 1

4.4.3 Generating TSCH Schedules for Attestation

For attestation, SWARNA uses predetermined TSCH schedules — called hard
cells in TSCH terminology — which are initialized and maintained by moni-
toring & control unit in a secure environment using cryptographic signatures
and verification. Algorithm 1 shows a mechanism used in SWARNA to create
dedicated TSCH schedules. Hop count is used as a metric to derive children
and parent nodes. The physical topological information is considered for gener-
ating the schedules and not the communication topology. The communication
topology can change drastically during the network lifetime. However, the
physical node reachability can also change due to external noise, but less fre-
quently. Such changes are learned through infrequent setup messages. Once
the schedules are created, monitoring & control unit transmits the signed
messages with schedules to each node in the network. TSCH allows several
slotframes to operate simultaneously. Application traffic can use attestation
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timeslots, a different scheduling mechanism like Orchestra [41], or Competition
[52] that describes a simple approach for routing using a single shared timeslot.

With dedicated schedules and time synchronization, the end-to-end net-
work reliability achieved is higher compared to contention-based networks. A
highly reliable network aids in identifying malicious nodes in a vulnerable
network with fewer false positives, that leads to unnecessary reprogramming
of devices affecting the application’s performance. However, poor reliability, in-
versely, does not incur false negatives in detecting malicious nodes – SWARNA
identifies all the malicious nodes in the network (Figure 4.7.3).

4.5 swarna protocols

In this section we present SWARNA, our approach to remote attestation of
swarms of IoT devices. We propose two variants of SWARNA – SWARNA-
individual and SWARNA-aggregate. Both rely on program memory checksum
calculation. Several software-based remote attestation techniques in the litera-
ture provide algorithms for calculating such checksums, e.g., [98, 4, 12]. We use
the state-of-the-art block-based pseudo-random memory traversal technique of
AbuHmed et al. [4].

We use the following notations. {e1, . . . , ek} represents a set with elements e1
. . . ek, [f1, . . . , fk] represents a tuple, e.g., a message m, containing fields f1. . . fk.
A message m signed by the verifier with secret key vrf is represented as mvrf

and |X| is the cardinality of a set X. Table 1 summarizes the notations used and
the functions available to SWARNA.

4.5.1 SWARNA-individual

SWARNA-individual — SWARNA-ind for short — works by attesting devices
individually which can be several hops away from the verifier. In SWARNA-ind,
the verifier generates a signed attestation request attReq for a given node N as

[N,nonce, seq, req]vrf .

nonce is a random value generated for N and seq indicates the attestation
instance. The verifier sends attReq to N and records the time as T start. N
accepts attReq only if it is signed by the verifier and seq is greater than the
values it has seen before. N uses the nonce to calculate the checksum cs of its
program memory and generates an attestation response attResp as

[N, cs, resp]
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Notation Description

the verifier Verifier
attReq Request generated by the verifier to initiate attestation

process
attResp Attestation response
mvrf Message m signed by the verifier’s secret key vrf

N Node ID
cs Memory checksum of a node
nonce Used in calculating the cs. Sent in attReq

seq Indicates the instance of attestation process
Taccept Time for a node to respond with attResp for an attReq

Tout Timeout after which received attResp are aggregated

Node state Description

Correct Node whose software is in the expected state and that
can generate a correct checksum cs within Taccept

Malicious Node compromised by an attacker that cannot generate
a correct checksum cs within Taccept

Suspected Node suspected to be malicious

Function name Description

chksum(nonce) Returns checksum of attestable memory calculated for
challenge nonce

verify_req(m) Returns true iff m is signed by the verifier
msg_type(m) Returns type of m. type is req or resp for SWARNA-ind,

and req_pi, resp_pi, req_pii, or resp_pii for SWARNA-
agg. setup identifies network setup requests

curr_time() Returns current system time
send(m, N) Unicasts message m to single node N

bcast(msg, N) Broadcasts message m to nodes N={N1 . . .Nk }
sink_id Yields identifier of the sink
def_parent(N) Returns default parent of node N

parents(N) Returns all immediate parent nodes of N
children(N) Returns all immediate child nodes of N
descend(N) Returns all nodes for which N is a relay
func_entered(m) For receiving a message m

deref(m, type) Decomposes m based on type to individual fields

Table 1: Generic notation, node states, and standard functions.
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and forwards it to the verifier through its default path. The verifier records
the time when it receives attResp as Tend. Algorithm 2 shows the detailed
algorithm for N.
attResp is accepted only if following conditions are met:

1. Tend − T start ⩽ Taccept, where Tend − T start includes time to transmit and
verify attReq, calculate cs, and transmit attResp.

2. The received cs matches the cs generated by the verifier on its site using the
same nonce sent to N in attReq

If N responds with a wrong checksum or does not reply within Taccept, the
verifier can re-program N using over-the-air re-programming techniques [99].
Re-programming is required to ensure that an intermediate node does not
modify the response of any descendant nodes. A malicious node triggering
such an operation will be ignored by a remote node due to signature verification
failure. The verifier repeats the above-mentioned procedure by first verifying
nodes at one hop away from sink, then nodes at two hops etc.

Algorithm 2: SWARNA-ind on node N

Variables : Current sequence number curSeq

1 upon func_entered(m)
2 if verify_req(m) ∧ msg_type(m) = req then
3 [N,nonce, seq]← deref(m,req)
4 if seq > curSeq then
5 curSeq← seq

6 cs ← chksum(nonce)
7 attResp← [N, cs, resp]

8 send(attResp, sink_id)

4.5.2 SWARNA-aggregate

SWARNA-ind attests nodes individually which is suboptimal in terms of
communication overhead and attestation time in many scenarios. SWARNA-
aggregate — SWARNA-agg for short — attempts to overcome the limitations
of SWARNA-ind without compromising on the security guarantees.

In short, SWARNA-agg works in two phases to identify all malicious nodes
in the network. The first phase (Phase I) follows a bottom-up approach and
marks all the nodes in the network as correct, malicious, or suspected. At the
end of Phase I, if all the nodes are identified as correct or malicious then the
protocol terminates. If not, in order to mark all suspected nodes as either correct
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or malicious, a second phase (Phase II) is triggered for the suspected nodes
following a top-down approach. Figure 7 shows an overview of the protocol
used in SWARNA-agg.

Algorithm 3: Calculating Tout on node N

Variables : Set of child nodes child

Time to attest a 1-hop node (configured) Tattest

Number of hops from the sink hop

TSCH timeslot duration T slot

1 upon func_entered(m)
2 if msg_type(m) = setup ∧ |children(N)| = 0 then
3 Tout ← 0

4 resp← [N,hop, setup]

5 bcast(resp, parents(N))
6 else if msg_type(m) = setup ∧ |children(N)| > 0 then
7 [Ni,hopi]← deref(m, setup)
8 child← child∪ {Ni}

9 k← |child|

10 if k = |children(N)| then
11 Tout ← max(hop1, . . . , hopk)× Tattest × T slot

12 resp← [N,hop, setup]

13 bcast(resp, parents(N))

4.5.2.1 Aggregation and aggregation timeout

In order to reduce communication overhead, a relay node in SWARNA-agg
aggregates the checksums received in the responses from its child nodes and
forwards a single response representing the software states of all its descendant
nodes. If the verifier receives a wrong aggregated result, identifying malicious
nodes from the aggregated result is generally impossible. To address this, each
node transmits the response to all of its parent nodes instead of just the default
parent. Figure 5 shows an example of alternate paths available for each node.
This redundancy is exploited to better identify malicious nodes. If there are
several malicious nodes in a given sub-tree, the degree of redundancy required
to uniquely identify the malicious nodes is equal to the number of malicious
nodes.

Each node is configured with an aggregation timeout Tout, which represents
the maximum time it takes for an attResp from a farthest descendant node to
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reach the node. A simple methodology to calculate Tout on a node is shown in
Algorithm 3. Time to attest a 1-hop node, Tattest, is a configurable parameter
which remains constant for a given hardware.

Algorithm 4: SWARNA-agg on leaf node N

Variables : Flag PIDone← false for Phase I completion
Current sequence number curSeq

1 upon func_entered(m)
2 if verify_req(m) ∧ msg_type(m) = req_pi then
3 [nonce, seq]← deref(m, req_pi)
4 if seq > curSeq then
5 curSeq← seq

6 cs ← chksum(nonce)
7 attResp← [N, cs, resp_pi]

8 bcast(attResp, parents(N))
9 PIDone← true

10 else if PIDone ∧ msg_type(m) = req_pii then
11 attResp← [N, cs, resp_pii]

12 send(attResp, sink_id)
13 PIDone← false

4.5.2.2 Phase I - bottom-up swarm attestation

Phase I follows a bottom-up approach where attReq is processed from leaf
nodes through the relay nodes up to the sink. The verifier generates a signed
attReq in Phase I as

[nonce, seq, req_pi]vrf

where nonce is a random value for attesting the network and seq indicates
the attestation instance. The verifier sends attReq to the sink node which is
broadcast to its neighbors. When a relay node receives attReq, it records the
local time as T req and further broadcasts attReq unaltered. Algorithm 4 shows
the algorithm for leaf nodes. When leaf node N receives attReq, it verifies the
signature and processes attReq. N uses the nonce to compute the checksum
of its program memory. Leaf node N generates attResp in Phase I as

[N, cs, resp_pi]

and broadcasts it to every node for which N is a child node. attResp is
transmitted to all parent nodes to allow the verifier to unequivocally identify
the malicious nodes (cf. Section 4.5.2.1).
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Algorithm 5: SWARNA-agg on relay node N

Variables : Set of checksums from children csChild

Flag PIDone← false for Phase I completion
Aggregation timeout timer← 0

1 upon func_entered(m)
2 if msg_type(m) = req_pi then
3 T req ← curr_time()
4 bcast(m, children(N))
5 else if msg_type(m) = resp_pi then
6 T resp ← curr_time()
7 if (T resp − T req) > T reject then
8 raise “unsolicited resp” alert
9 return

10 [Ni, csi]← deref(m, resp_pi)
11 if (Ni ∈ children(N)) then
12 csChild ← csChild ∪ {csi}
13 k← |csChild|

14 if timer = 0 then
15 timer← curr_time()
16 else
17 return
18 attime← curr_time() − timer

19 if k = |children(N)| ∨ attime > Tout then
20 aggcs ← cs1 ⊕ . . .⊕ csk
21 cs ← chksum(aggcs)
22 attResp← [N, cs ⊕ aggcs, resp_pi]

23 bcast(attResp, parents(N))
24 PIDone← true

25 timer← 0

26 else if PIDone ∧ msg_type(m) = req_pii then
27 attResp← [N, cs, {cs1, . . . , csk}, resp_pii]

28 send(attResp, sink_id)
29 PIDone← false
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The algorithm for intermediate relay nodes is given in Algorithm 5. Consider
a relay node N with k child nodes. N processes attResp only if it has seen an
attReq in latest T reject time duration, otherwise it raises an unsolicited message
received as an action to curb DDoS-attacks where the nodes are tricked into
performing attestation (line 8). T reject is generally set to twice Tout with some
additional constant time for calculating the checksum. N waits for responses
from all its k child nodes N1 . . .Nk or until Tout— derived during network
setup — expires. N aggregates the received checksums to use it as a nonce to
calculate its own cs (line 20). Relay node N generates attResp in Phase I as

[N, cs ⊕ aggcs, resp_pi]

where ⊕ represents an xor operation, and then broadcasts attResp to all its
parent nodes (line 21 – line 23). The sink forwards the response packets to the
verifier for verification. The number of response packets the sink receives is at
most equal to the number of its child nodes.

Verification. The verifier receives attResp for a node from multiple unique
paths, if available. As discussed in Section 4.5.2.1 verifier uses redundant paths
available in the network to mark unambiguously correct and malicious nodes,
and remaining nodes for which a decision cannot be made due to insufficient
redundancy are marked as suspected (cf. Table 1). The verifier triggers a Phase II
top-down attestation to mark the suspected nodes as unambiguously either
correct or malicious.

4.5.2.3 Phase II - top-down swarm attestation

In Phase II, the verifier recursively performs top-down attestation on the sus-
pected nodes. The verifier unicasts attReq to each suspected node in increasing
order of its hop distance as

[N, req_pii]

N processes Phase II attReq only if it has completed Phase I and generates a
response attResp as

[N, cs, {cs1 . . . csk}, resp_pii]

where {cs1 . . . csk} are the checksums received from the child nodes of N,
{N1 . . . Nk}.

Verification. The recursive algorithm used by the verifier to perform top-down
attestation is given in Algorithm 6. It distinguishes three cases – a node N

reported either
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i) the correct checksum cs: In this case the verifier simply marks N and all
its descendants until the leaf node as correct (line 15). N aggregates the
measurements received from its child nodes within acceptable time and
uses it as nonce to calculate its own measurement, so if N reports a correct
checksum cs then its child nodes must be correct. Recursively all their
children must also be correct.

ii) the wrong checksum cs but N is correct: This happens when a descendant
node is malicious and generated a wrong cs or failed to generate a checksum
within acceptable time. N will report a measurement calculated using a
wrong nonce causing it to be suspected by the verifier. In this case, the
verifier aggregates cs1, . . . , csk reported by N in Phase II attResp to re-
calculate the checksum (line 20); the checksum is used to verify if N (line 24)
or any of its descendants (line 30) are malicious. It is necessary for the
verifier to execute the attestation routine without which it is impossible to
locate the malicious node.

iii) the wrong checksum cs and N is malicious: the re-calculated cs by the
verifier for N (line 20) will not match cs reported by N. The verifier marks
N as malicious and further verifies N’s child nodes recursively. (line 25 –
line 30).

4.5.3 Theoretical Analysis

We theoretically compare communication overhead and attestation time of
SWARNA-agg and SWARNA-ind. Consider a tree with depth d, branching
factor w and a total of n nodes. We assume the following definitions will
remain constant for a network:
• T sigv is signature verification time,

• T cs is the time for calculating checksum,

• l is the communication latency per hop which is sum of queuing delay and
time to transmit a packet

4.5.3.1 Complexity of SWARNA-ind

Attestation time. SWARNA-ind attests each device individually in the increas-
ing order of its depth from the sink:

Tatt = n×
(︁
2× (l× d) + T cs + T sigv

)︁
(1)
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Algorithm 6: SWARNA-agg Phase II verification on the verifier
Input : Set of suspected nodes from Phase I suspect
Variables : Node ID sets correct, malicious

Received/expected checksum at the verifier rcs, ecs
Number of child nodes k

Receiver timeout T recv

1 task phase_ii_verify(suspect)
2 foreach N ∈ suspect do
3 if N /∈ correct then // Can change handling prev.
4 [newC,newM]← rec_verify(N, suspect)
5 correct← correct∪newC

6 malicious← malicious∪newM

7 function rec_verify(N, suspect)
8 corr,mal← ∅
9 send(N, req_pii)
10 timer← curr_time()
11 wait until func_entered(m) ∨ (curr_time() - timer) > T recv

12 if m = null then
13 return [corr,mal]

14 [N, rcs, {rcs1, . . . , rcsk}]← deref(m, resp_pii)
15 if rcs = ecs then
16 corr← corr∪ {N}∪ descend(N)
17 else if k = 0 then
18 mal← mal∪ {N}

19 else
20 cs ← chksum(rcs1 ⊕ . . .⊕ rcsk)
21 if rcs = cs then
22 corr← corr∪ {N}

23 else
24 mal← mal∪ {N}

25 foreach Nc ∈ children(N) do
26 if Nc ∈ suspect then
27 if rcsc = ecsc then
28 corr← corr∪ {Nc}∪ descend(Nc)
29 else
30 [corr,mal]← rec_verify(Nc, suspect)
31 return [corr,mal]



4.5 swarna protocols 43

Since n = (1+ 2+ . . .+ 2d), we have d = logn. Therefore, for SWARNA-ind
the complexity of Tatt is O(n logn).

Communication overhead. In the worst case a node may transmit n requests
and n response packets making the complexity O(n2).

4.5.3.2 Complexity of SWARNA-agg

Attestation time. In a time-synchronized tree, all leaf nodes at same depth from
the sink will receive attReq simultaneously and calculate their checksums by
end of T cs . The nodes at same depth will compete with w− 1 sibling nodes for
transmission. Hence, time taken to transmit attResp by a node with w child
nodes is T cs +w× l. The attestation time for Phase I is thus as follows:

Tatt_PI = l× d⏞ ⏟⏟ ⏞
attReq

+(T cs +w× l)× d⏞ ⏟⏟ ⏞
attResp

+T sigv (2)

Therefore, the complexity of Tatt_PI will be O(logn).
The attestation time for Phase II, Tatt_PII, depends on the number of suspected

nodes and their depth from the sink. In the worst case where all n nodes are
suspected, a Phase II attReq is sent to n nodes in the network and Phase II
attResp is received. (cf. Section 4.5.2.3). The maximum attestation time of
Phase II is thus:

Tmax_PII = n×
(︁
2× (l× d)

)︁
(3)

From Equation 2 and Equation 3, we have

Tatt = Tatt_PI + Tatt_PIIwith 0 ⩽ Tatt_PII ⩽ Tmax_PII

Communication overhead. To generate a signed attReq we consider a 256 bit
elliptic curve digital signature [66] that generates a 32B output. The payload
size of attReq is 38B (1B seq, 4B nonce, 1B label and 32B signature). attResp
contains a 1B label, 1B node ID (for up to 255 nodes network) and 8B checksum,
making it a 10B packet. Considering the header size of the protocols shown
in the protocol stack in Figure 8, the maximum payload of a IEEE 802.15.4
frame is 102B [62]. Hence, our requests and responses are transmitted without
any fragmentation. In Phase I of SWARNA-agg, every node in the network
will transmit one request and one response packet and Phase II transmissions
depend on the number of suspected nodes. Therefore, the complexity of com-
munication overhead will be O(n+ s2) where s is the number of suspected
nodes.
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SWARNA
Transport - UDP

Network - RPL (IPv6)
MAC - TSCH 

PHY - IEEE 802.15.4 

Figure 8: Protocol/soft-
ware stack on IoT
devices.

Figure 9: Analytical vs simulation results
for a perfect binary tree with max-
imum depth 3 for SWARNA-agg.

4.6 implementation

IoT nodes are implemented on Contiki, an open-source OS for resource-
constrained embedded devices and IoT [39]. Contiki code is written in C
and the verifier in Python.

The protocol stack of a Contiki node is shown in Figure 8. IEEE 802.15.4-
2015 describes physical and MAC layer protocols for resource-constrained
devices [62]. TSCH is used in all our experiments and monitoring & control
unit creates TSCH schedules for each node (cf. 4.4.2). In order to generate a
network topology we use IPv6 Routing Protocol for Low Power Lossy Networks
(RPL) [6], which forms a directed acyclic graph rooted at the sink. RPL computes
a rank for each node using a metric. For a given node, neighboring nodes with
lower rank are parent nodes, and nodes with higher rank are child nodes. We
use hop count as a metric for RPL.

SWARNA is implemented as an UDP application. In SWARNA-ind, attReq
for nodes at the same hop level are sent in parallel. Only after verifying these
nodes, higher hop distance nodes are attested. In SWARNA-agg, Phase II
attReq for 1-hop nodes are sent in parallel and hence all sub-trees rooted at
1-hop nodes are processed in parallel.

4.7 evaluation

We evaluate SWARNA on a testbed and simulator, compare it to analytical
results and related work.
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4.7.1 Analytical Evaluation vs Simulation Results

We compared the analytical with simulation results for a tree with branching
factor w = 2 and depth d = 3. l is the sum of queuing delay Tq and per hop
transmission time T tx. We use T tx= 10ms, the default length of a timeslot used
in TSCH frame [40]. Tq of 110ms is used for a slotframe length of 11. For this
comparison we ignore T csand T sigv, as they remain constant for a node type.
Figure 9 shows the analytical and simulation results for attestation time which
are an average of 50 runs. The slope of the simulation results closely matches
with the analytical results. With 0 malicious nodes, only Phase I of SWARNA-
agg will be executed. The observed difference between the two techniques
is due to the Tq. During experiments each packet experiences a different Tq,
whereas a constant Tq was considered for analytical results.

4.7.2 Empirical Evaluation

We present the experimental setup followed by the performance of SWARNA
and comparison of SWARNA with the state-of-the-art swarm attestation tech-
niques.

4.7.2.1 Experimental setup on testbed

We evaluate SWARNA on the FIT IoT-LAB testbed at the Grenoble site where
the nodes are deployed in a typical office environment [5]. The site also has
significant noise due to the Wi-Fi access points. We choose 30 nodes such that
multi-hop topologies can be formed. We vary the transmission power (3dBm,
-9dBm, -17dBm) to generate different topologies with 2, 3 and 4 hop networks.
Nodes start with a single slotframe containing one shared timeslot (contention
based) as described in 6TiSCH minimal configuration [40]. Application and
control traffic are transmitted over this shared timeslot. After a certain amount
of network settling time we initiate the attestation process. As a first step,
monitoring & control unit sends a request to each node to add a slotframe for
attestation with TSCH schedule generated by monitoring & control unit (cf.
Figure 6).

We use M3 nodes on the testbed for evaluation. These have an ARM Cortex-
M3 micro-controller operating at 72MHz. Calculating the memory checksum
for 128KB of memory takes 0.3s, and verifying a signature that uses 256bits
elliptic curve digital signature takes 0.01s.
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Figure 10: Attestation time for a 30 nodes network on IoT-LAB testbed, with varying
numbers of malicious nodes and transmission powers. Networks of depth
2, 3 and 4 were generated with 3, -9 and -17dBm transmission power. A
trade-off between x-axis and y-axis for same transmission ranges can be
seen at the intersection of the lines. Up to 50%-80% of malicious nodes in
the network, SWARNA-agg has lower attestation time

4.7.2.2 Overall attestation time

The performance of SWARNA-agg depends on the number of malicious nodes
and their hop counts. Hence, for a given topology we randomly choose a
varying number of malicious nodes. We repeat the experiment for 10× and
calculate the mean and variance with 95% confidence interval.

Malicious nodes and transmission ranges. Figure 10 shows attestation time for
SWARNA-ind and SWARNA-agg. Attestation time of SWARNA-ind does not
change with the number of malicious nodes as it attests the nodes individually.
If there are malicious nodes in the network and SWARNA-agg cannot make a
definite decision in Phase I, Phase II is executed on the suspected nodes, leading
to an increase in attestation time. In Phase I, nodes at the same hop distance
from the sink node calculate their memory checksums at roughly the same time
and also, broadcast attReq and attResp. As a consequence, Phase I has less
impact on attestation time performance compared to Phase II. In Phase II, the
request is sent to each suspected node. After a certain point attestation time of
SWARNA-agg exceeds that of SWARNA-ind because Phase I of SWARNA-agg
does not detect any node as malicious and invokes Phase II on all the nodes
with additional, little, time wasted in Phase I.

We also increase the transmission power of each node which increases the
number of neighbors, thereby reducing the number of hops to the sink node.
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Figure 11: Communication overhead for a 30 nodes network in IoT-LAB testbed, with
varying numbers of malicious nodes and transmission powers. Networks of
depth 2, 3 and 4 were generated with 3, -9 and -17dBm transmission power.
A trade-off between x-axis and y-axis can be seen at the intersection of the
lines for same transmission ranges. For up to 50%-75% of malicious nodes
in the network, SWARNA-agg has lower overall communication overhead
(CO).

Figure 12: Attestation time for different network sizes in the Cooja simulator. For each
bar, the dotted region represents the time taken by Phase I of SWARNA-agg,
and the remaining time is spent on Phase II. In SWARNA-ind varying the
number of malicious nodes has an effect on the overall attestation time (AT),
unlike for SWARNA-agg.
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Hence, we see that attestation time decreases as the number of hops to the sink
decreases.

Network size and breakdown. In order to show the performance of SWARNA
as the network size increases, we run simulations in the Cooja simulator [92],
due to unavailability of large numbers of nodes for long durations. Cooja
emulates the Contiki nodes at hardware level. Figure 12 shows the breakdown
of time spent on Phase I and Phase II with SWARNA-agg. SWARNA-agg with
10% of malicious nodes in the network takes about 40% - 60% less time for
attesting the entire network compared to SWARNA-ind.

4.7.2.3 Overall communication overhead

Figure 11 shows SWARNA-agg has less communication overhead when fewer
nodes are malicious, as Phase II is invoked fewer times and in Phase I every
node transmits a single aggregate response. Lower communication overhead
implies lower energy consumption. It has been clearly shown [46] that aggre-
gation reduces energy spent by the nodes, as energy required for aggregation
operations is less compared to communication (Tx + Rx).

4.7.2.4 Choice: SWARNA-ind vs SWARNA-agg

With lower communication overhead and attestation time, SWARNA-agg repre-
sents a more energy-efficient choice when there are fewer expected malicious
nodes. Earlier work in swarm attestation has considered less than 1% of mali-
cious nodes in evaluation [8]. However, it is obviously difficult to obtain the
knowledge of how many nodes will be compromised ahead of time. In general,
network attestation is triggered periodically with varying frequency, e.g., once
an hour, once a day. Depending on the attestation frequency one can make a
choice of using SWARNA-agg or SWARNA-ind. However, SWARNA-agg is
suitable for most use cases considering the usual behavior of IoT malware –
typically it is installed on a victim device by the attacker and is used as a bot
to launch large-scale attacks days, weeks and sometimes years later only.

4.7.2.5 SWARNA and state-of-the-art swarm attestation

Next we compare SWARNA with state-of-the-art techniques for IoT swarm
attestation – LISA [23] and SANA [8]. Both work only on secure hardware. In
terms of attestation time SANA reports 2.5s for attesting a million devices in its
target setting and LISA-α reports in the best case 0.5s for attesting a 40 nodes
random network, both on a simulator. Raspberry Pis operating at more than
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LISA-α LISA-S SANA SWARNA-ind SWARNA-agg

CO O(n2) O(n) O(n) O(n2) O(n+ s2)

AttReq 43 47 20g+ 78 H+ 39 H+ 38

AttResp 79 47+ 4y32+ 32w H+ 10 H+ 10

+ 20m

H = 54B which includes IPv6, UDP, and MAC headers; s is the
number of suspected nodes; y is the number of descendants of a
node transmitting the message [23]; w and m are the number of
distinct OAS public keys and software configurations of malicious
nodes respectively; g is the number of benign software configurations
[8].

Table 2: Overall communication overhead (CO) and message size (bytes) of swarm
remote attestation techniques for a network of n nodes.

700MHz were considered in case of LISA and a proprietary research platform
in SANA for emulating cryptographic operations. SWARNA in best case takes
1.6s for attesting a 30 nodes network. Note however that in contrast to other
swarm attestation techniques, we evaluated the checksum calculation on a
low-end IoT device with only 72MHz CPU. We gauge communication overhead
via communication complexity and message sizes. Table 2 shows the communi-
cation complexity that includes the number of attReq and attResp transmitted
and message sizes of various approaches. The complexity of SWARNA is com-
parable to previous approaches and provides a similar performance without
special hardware. Also, in case of SANA and LISA-α, the message sizes depend
on neighboring nodes and descendant nodes respectively which can vary with
the network size. SWARNA, instead, has constant payload size.

4.7.3 Use Case: Data Collection

In typical IoT use cases like smart grids, network monitoring, or industrial
IoT, periodic data collection for further processing is a common task. In this
section, we implement a simple UDP data collection application and perform
periodic attestation to study its effect on application performance. We evaluate
the use case on FIT IoT-LAB testbed on a 22 nodes network with 12 source
nodes generating UDP packets every 30s destined to the sink. 5 nodes (20%)
are infected with a passive malware. Two TSCH slotframes are added, one
for application and control traffic based on 6TiSCH minimal and the second
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Figure 13: PDR of a data collection application for a 22 nodes 3 hop network in the
IoT-LAB testbed with 12 source and 9 relay nodes. In a noisy environment,
application PDR drops up to 1.4% and drops by 0.4% when noise is minimal
during attestation. PDR recovers faster when noise is minimal.

slotframe for attestation packets (cf. Section 4.4). SWARNA-agg is used for
attestation.

Impact of attestation on application. Figure 13 shows the packet delivery ratio
(PDR), the ratio of number of packets received at the sink and the number
of packets sent by all source nodes. An attReq is sent at 24 and 56 minutes.
The effect of attestation on application PDR is evaluated under two different
settings: (1) During a working day where the external noise is high due to
experiments running on other neighboring nodes, actively used access points
and also maybe people movement as the chosen testbed is deployed in the
office setup. (2) At night when there is minimal activity and external noise. The
application PDR during working day drops by 1.4% compared to just 0.4% at
night. Application traffic using contention-based communication is affected
by the noise compared to attestation packets using dedicated timeslots. Also,
attestation packets have priority over application packets.

False positives due to packet loss. A malicious relay node can drop packets
from its child nodes or drop its own attestation packets. However, the verifier
cannot differentiate these packet drops from the packets lost due to poor
channel conditions. Hence, the nodes from which the packets are not received
are suspected as malicious. In this experiment, we evaluate the rate of false
positives, where a benign node is suspected due to poor channel conditions. The
verifier sends a Phase II attReq to all the nodes and calculates the number of
attResp packets received within acceptable time. We carry out the experiment
on a working day when external noise is high and also at night where the noise
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is minimal. The results are an average over 10 trials. The timeout value for a
node N is calculated as:

Taccept = round trip time from verifier to sink +

(2× hop count of N × slot frame length) + Tattest

At night, there were no benign nodes that were falsely identified as malicious
(0 false positive rate) and during a work day a 1-hop relay node was falsely
identified as malicious due to delayed packet reception at the verifier (4.5% false
positive rate). There were no false negatives i.e., no malicious node remained
undetected. Attestation packets have dedicated timeslots (Section 4.4) with
high priority and no contention and hence we see very few attestation packets
lost resulting in low false positive rate. Our observations are in line with
literature showing 99.99% reliability of TSCH even under interference and in
large networks [41, 40], confirming our design.

4.8 security analysis

SWARNA secures against network attacks mentioned in Section 4.2.3 as follows:

4.8.1 Passive Malware

Passive malware responds to attReq from the verifier and does not interfere
with the attestation. The presence of malware results in an unexpected memory
checksum which can be detected by comparing the individual attResp with
the expected value on the verifier in case of SWARNA-ind. SWARNA-agg will
detect a malicious node either in Phase I or Phase II depending on depth and
number of unique redundant paths between the node and sink (line 18 and
line 24 in Algorithm 6).

4.8.2 Active Malware

Active malware can perform a number of activities discussed in turn in the
following:

Modifying attResp received from descendant nodes. A descendant of a
malicious node which does not have an alternate correct path is suspected
along with the malicious node in Phase I of SWARNA-agg. During Phase II the
verifier will re-generate the checksum on its site with the nonce the malicious
node claims to have received (line 20 in Algorithm 6). Consider the expected
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checksum is cs and checksum of the node with malware is mcs. For the
malicious node to prove mcs = cs, it should identify a nonce that would output
cs as a result of pseudo-random memory traversal. Generating such a nonce
requires time and high processing power which is impractical for an IoT device.
Hence, the malicious node reports mcs and the verifier will identify it as
malicious.

Delaying/dropping packets from descendant nodes. Delayed packets are not
accepted by parent nodes and are dropped. Assume that in Figure 5, node 6

is malicious and drops all packets from itself and its child nodes. In Phase II,
node 6’s parent, node 4 reports to the verifier that no response from node 6

was received in Phase I. In SWARNA-ind nodes at a one hop distance from
the base station are attested and fixed before attesting nodes at a hop distance
greater than one.

The attestation process has no means to distinguish a packet dropped due
to poor channel condition or due to malicious activity and will thus suspect
the node that generated the lost packet. This ensures that malicious nodes
causing packet drops are always suspected and the false positive rate for a
given application is discussed in Figure 4.7.3

Timing attacks. Due to varying communication latency or checksum calcula-
tion delay, the attacker can utilize any additional time to calculate the correct
checksum. The checksum is calculated in pseudo-random fashion and hence
the attacker cannot know in advance the memory location that will be read
(Section 4.5). However, an active malware can pause checksum calculation at
every memory read and if the memory location points to malware location,
move the malware code to a temporary location in data memory and back.

The standard deviation to calculate the checksum of 128K code memory
on a FIT-IoT LAB testbed node for 50 runs is 0.08ms. However, just read
and compare operations on a 128K memory requires at least 62ms (3 cycles
for single read and compare [10]). Hence, such an attack is not possible on
SWARNA. The communication latency is calculated based on slot frame length
and hop count. Any packet that takes more time is detected as malicious. We
observed false positive rates of 0 and 4.5% under minimal and high external
noise conditions respectively Figure 4.7.3.

Replay attacks. A nonce is added to attReq and used in the process of calculat-
ing memory checksums. In SWARNA-agg a relay node uses the combination of
checksums received from its child nodes as nonce. These nonces thwart replay
attacks.
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Disabling SWARNA. SWARNA can be disabled by disabling network com-
munication or by modifying the firmware. Such attempts can be detected by
the verifier through an absence of response to attReq or a wrong checksum in
attResp respectively.

4.8.3 DDoS Attacks

A malicious node can trigger fake attReq or attResp to launch a DDoS attack,
attempting to make the network unresponsive. SWARNA-ind drops attReq

not signed by the verifier. In SWARNA-agg a fake attReq is broadcast until
it reaches a leaf node, which drops it. A node raises an alarm if it receives
an attResp without having seen a corresponding attReq recently (line 8 in
Algorithm 5).

4.8.4 Modifying Dedicated Slots

A node accepts only signed requests from the verifier, hence any attempt to
change the attestation schedule will be rejected. However, it is possible that
a malware performs a malicious activity between two attestation rounds and
removes itself. Such time-of-check to time-of-use attacks are also applicable
to attestation schemes using trusted hardware [23, 8] and remain an open
problem.

4.8.5 Non-Persistent and Persistent Malware

A non-persistent malware is stored on non-volatile memory of a device. Re-
booting the infected device will remove the malware, however, the vulnera-
bility exploited to infect the device can still be used to re-install the malware.
SWARNA performs attestation on code memory, which usually is a volatile
memory [25]. Hence, SWARNA cannot detect attacks that are non-persistent
in nature. A well-known example of such a malware is Mirai [72]. SWARNA
is aimed at detecting types of malware that are persistent and remains on the
device forever. Several real-world attacks that install persistent malware on IoT
devices and the catastrophic effects it has had are discussed in Section 4.1.1.

4.9 conclusions

Remote attestation (remote attestation) determines the trustworthiness of
resource-constrained devices. Attesting entire swarms rather than single de-
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vices is required for IoT deployments. Existing work on swarm attestation
however requires trusted hardware for remote attestation. These efforts do little
to improve the situation of the many existing legacy deployments without such
hardware or next generation IoT applications with low-end devices where it is
challenging to provide trusted hardware.

This paper presented, to the best of our knowledge, the first, pure software-
based swarm remote attestation technique. By using IEEE 802.15.4 time-slotted
MAC protocol we can overcome the main limitations of existing software-based
solutions. We described two protocol variants — SWARNA-ind and SWARNA-
agg— showed their feasibility on an IoT testbed, and investigated trade-offs
between the two. SWARNA-agg performs better than SWARNA-ind in terms of
attestation time and communication overhead with less than 50%-70% malicious
nodes in the network, making SWARNA-agg a good fit for frequent periodic
remote attestation. Also, SWARNA maintains constant payload size in contrast
to existing hardware-based swarm remote attestation works where it increases
linearly with network size. We also demonstrate feasibility of SWARNA with
a periodic data collection application, showing only minimal impact on the
application’s packet delivery ratio (0.4% drop).
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5.1 introduction

To ensure the reliability of IoT applications, it is imperative to assert correct
execution of control programs running on embedded IoT devices. Otherwise
attackers can exploit vulnerabilities in such programs to completely alter their
behavior.

Runtime software attacks. Due to the additional cost, energy (battery usage),
and development effort involved in securing embedded control programs,
security is, alas, still often an afterthought, and not incorporated by design.
The consequence is an ongoing stream of exploits. An attack on a water
treatment plant in 2016 manipulated the quantity of chemical mix [75], and
a similar attack was seen again in 2021 [53]. In late 2019, a vulnerability in a
communication protocol was exploited to gain unauthorized access to a hotel’s
in-room robot assistant that could be used to spy on guests. [58]. In 2017, a
protocol vulnerability on Philips hue smart lamps was exploited to control the
smart street lights of an entire city [94]. Those are only few examples of evident
attacks that are known to the public.

Defense approaches. Control-oriented attacks [29] typically modify return ad-
dresses to redirect the control flow to an attacker’s desired location, thereby
violating the control flow graph (CFG) of a program. Control flow integrity [1],
remote attestation [3], and program anomaly detection [117] are techniques that
have been advocated to detect control-oriented attacks. Control flow integrity
and remote attestation, however, cannot capture the non-deterministic runtime
characteristics of a program (e.g., execution of if-else statements at runtime).
Program anomaly detection techniques, on the other hand, use various features
to capture the behavior of a program [116, 117]. Any subtle deviation in the
runtime behavior compared to the normal execution is flagged as anomaly.

Stealthy attacks. However, an attacker can exploit vulnerabilities to modify
decision making variables in order to manipulate control flow indirectly. Such
aberrant path attacks [101] (cf. data-oriented attacks [29]) do not violate the CFG
of a program, and hence existing techniques to identify control-oriented at-
tacks are ineffective in detecting them. When a detection technique is in place,
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Figure 14: IoT device classes from ARM Cortex family in decreasing order (left to
right) of their sizes and processing capabilities, and respective application
examples.

the attacker can also attempt to imitate the normal behavior of a program in
a mimicry attack [111] (not part of data-oriented attacks), to evade detection
mechanisms. The above two types of stealthy attacks are challenging to detect,
as they exhibit behaviors closely resembling normal program behavior. Ex-
isting program anomaly detection approaches typically consider either short
sequences of function calls or pair-wise function calls to capture 1-level calling
context [116], making them sensitive to only local variations, and vulnerable to
certain control-oriented attacks (detailed in Section 5.3.1). In addition, to derive
the features [29, 116, 119], these solutions rely on Linux-based tools like strace
and ltrace, which cannot be used on the many embedded devices executing
freeRTOS, ContikiOS, and mbedOS, or running in bare-metal fashion [54]. A
study in 2019 showed that 35% of embedded systems projects did not use any
OS, and when an OS was used only 21% used embedded Linux [43]. Moreover,
existing anomaly detection solutions assume that the detection scheme, trac-
ing mechanism, and the embedded software are not tampered with, which is
unrealistic (cf. stealing machine learning models [109]).

SPADE. In this chapter, we propose a first of its kind secure program anomaly
detection for embedded IoT devices (SPADE). SPADE captures the behavior of
a program using function calls with precise caller sites. We exploit ETM [78],
an on-board debugging component present on an ARM Cortex processor, for
extracting function call traces at program execution. Such hardware-based
tracing incurs only minimal overhead. We also consider software-based tracing
by instrumenting the source code, which incurs higher overhead but can extract
many more useful features and does add hardware constraints.

To identify aberrant path attacks, SPADE captures long-term traces. A gated
recurrent unit (GRU) [30] neural network is used to model program behavior.
GRUs have the ability to remember short-term as well as long-term depen-
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dencies. SPADE leverages trusted hardware providing an isolated execution
environment to defend the proposed anomaly detector against mimicry attacks.
SPADE thus combines trusted hardware and software solutions to create secure
and trustworthy IoT systems. Note the emphasis on the combination, as trusted
hardware does not solve all problems trivially. Minimizing code deployed on
such hardware is essential, just like minimizing the number of context switches
between secure and non-secure regions, which SPADE achieves by strategically
minimizing the triggers to anomaly detection. SPADE is implemented on tiny
embedded devices based on the most resource-constrained processor Cortex-M,
making our solution amenable to all classes of IoT devices (see Figure 14 for
classes of IoT devices with their computational capabilities).

To the best of our knowledge, SPADE is the first program anomaly detection
solution to exhaustively detect stealthy attacks and to use deep learning on the
most constrained devices for detection; it also detects all control-flow attacks.

Contributions and roadmap. In summary this chapter has the following con-
tributions:
• a first of its kind secure program anomaly detection technique SPADE for

detecting control-oriented and stealthy attacks that include aberrant path
and mimicry attacks. In particular our design encompasses the following:

– a GRU-based anomaly detection scheme to detect control-oriented and
aberrant path attacks;

– a novel hardware-based tracing technique for collecting the trace features
for anomaly detection using the ETM, thereby introducing minimal
overhead;

– a software-based tracing technique using source code instrumentation
that provides flexibility in choosing the granularity of the traces and also
the trace features.

• the implementation of SPADE for embedded devices with Cortex-M pro-
cessor, the most resource-constrained processor available, showing broad
applicability of our solution (cf. Figure 14).

• an evaluation of SPADE’s anomaly detection accuracy through real-world
applications, and its static and runtime overhead. The results show that
our GRU-based anomaly detection scheme can detect anomalies with 100%
accuracy and only 0-0.5% false positives. SPADE incurs 11.3% average code
size overhead with software-based tracing and only 2% with hardware-based.
We also show how SPADE can detect various attacks.

The rest of the chapter is organized as follows. Section 5.2 presents the threat
model considered, security goals, and challenges for secure program anomaly
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detection. Section 5.3 gives an overview of SPADE by presenting its architecture.
Section 5.4 details the design of our proposed solution. Section 5.5 presents
implementation details. Section 5.6 evaluates SPADE on various case study
applications. Section 5.7 discusses how SPADE can identify the attacks de-
scribed in our threat model. We discuss our design and implementation choices
in Section 5.8. Finally, Section 5.9 concludes with possible future research
directions.

5.2 problem statement

We present our threat model, security goals, and the challenges involved in
achieving secure program anomaly detection.

5.2.1 Threat Model

We discuss the attacker abilities assumed, followed by attacks using them, and
finally illustrate those attacks.

Attacker abilities. We assume that an attacker can exploit vulnerabilities
present in an embedded application to launch software exploits, thereby gain-
ing access to devices. We also assume that there are no internal threats in
the development setting (e.g., during training). These basic assumptions are
common to program anomaly detection works [29, 119, 3].

Attacks. Control-oriented attacks modify return addresses to redirect the con-
trol flow of a program to a location in existing or newly injected code, intro-
ducing illegal control flows. A stealthy attack, where an attacker can exploit a
vulnerability, e.g., to change an authentication variable to access critical tasks,
does not introduce any illegal control flow. Aberrant path attacks, first coined
by Shu et al. [101], group several attacks that indirectly affect the control flow of
a program without affecting the integrity of control paths. Cheng et al. consider
these as data-oriented attacks [29]. However, a solution for detecting the above
attacks is futile without being resilient to mimicry attacks [115] (not part of
data-oriented attacks). Aberrant path and mimicry attacks are stealthy in nature,
making their detection challenging.

Attacks illustration. In order to illustrate how attackers can execute control-
oriented, aberrant path, and mimicry attacks we use the open syringe applica-
tion [3] as shown in Listing 5.1. The application controls the bolus of a syringe
by the number of units specified over a serial port by an authenticated user.
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1 char cmd[20] = {0};
2 int cmd_ready = 0;
3

4 void bolus(int direction) { ... }
5

6 void process_cmd() {
7 if(cmd[0] == ’+’) bolus(PUSH);
8 else if(cmd[0] == ’-’) bolus(PULL);
9 }

10

11 void config() {
12 char buffer[20] = {0};
13 int authenticated = 0;
14

15 while(serial_available()) {
16 char in_char = (char)serial_read();
17 if(in_char == ’\n’) {
18 if(auth_password(buffer)) {
19 authenticated = 1;

20 serial_write("...");

21 }

22 break;
23 } else { buffer += in_char; }
24 }

25 if(authenticated) {
26 cmd = read_cmd();

27 cmd_ready = 1;

28 ... /*any other critical tasks*/

29 }

30 }

31

32 void loop_pass() {
33 config();

34 if(cmd_ready) process_cmd();
35 }

Listing 5.1: Code snippet of open syringe application [3] (slightly modified to demon-
strate all the attacks). The authentication is performed similar to the SSH
protocol.
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Table 3: Sample of traces under normal conditions, during a control-oriented attack,
aberrant path attack, and mimicry attack.

Normal - auth Normal - fail Control-oriented attack Aberrant path attack Mimicry attack

loop_pass->config loop_pass->config loop_pass->config loop_pass->config loop_pass->config

config->serial_avail config->serial_avail config->serial_avail config->serial_avail config->serial_avail

config->serial_read config->serial_read config->serial_read config->serial_read config->serial_read

lines 2 - 3 repeated lines 2 - 3 repeated lines 2 - 3 repeated lines 2 - 3 repeated lines 2 - 3 repeated

config->auth_password config->auth_password config->auth_password config->auth_password config->auth_password

config->serial_write loop_pass->config config->bolus config->serial_write

config->read_cmd ... ... config->read_cmd config->read_cmd

loop_pass->process_cmd ... ... loop_pass->process_cmd loop_pass->process_cmd

process_cmd->bolus ... ... process_cmd->bolus process_cmd->bolus

... ... ... ... ...

Table 3 shows sequences of collected traces during normal execution of both
successful and failed authentication for approaches that consider two-tuple
information (also called 1-level calling context); a function call with its caller
function is represented as caller->callee. A control-oriented attack exploits a
buffer overflow vulnerability (Line 12–Line 17) to overwrite the return address
of config and jump to bolus, executing critical commands that impact the actu-
ators. Such an attack introduces an illegal control path (config->bolus) during
runtime. A (non-control) data-oriented attack modifies the decision-making
variable authenticated to execute critical functions and control the syringe
without successful authentication (Line 26–Line 28). Critically, as shown in
Table 3, aberrant path attacks do not introduce any illegal control path.

Securing the tracing mechanism and the detection process is crucial; with-
out this, a proposed solution becomes itself vulnerable to mimicry attacks
and an attacker can easily evade aberrant path detection. Table 3 shows how
the tracing mechanism can be tampered with to include a missing sequence
(config->serial_write) and mimic the normal behavior of a program. Xu et
al. [115] discuss various ways of carrying out a mimicry attack.

5.2.2 Security Goals

Concretely, considering the above threat model, the three main security guar-
antees provided by this work are as follows:

G1 Detection of control-oriented attacks that modify the return address of a
vulnerable function.
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G2 Detection of aberrant-path attacks (cf. data-oriented attacks) tampering with
predicate-use variables to execute incompatible branches.

G3 Protection against mimicry attacks attempting to evade detection by tamper-
ing with tracing mechanisms to introduce missing sequences.

While G1 and G2 are achieved using our novel anomaly detection technique at
runtime, G3. leverages trusted hardware.

5.2.3 Trusted Hardware (and) Challenges

To isolate user application code and SPADE code we leverage ARM TrustZone
for Cortex-M [11]. Due to several attacks on IoT devices in recent times, trusted
hardware has become a norm for carrying out critical operations. Most devices
in the Cortex-A category of processors have inbuilt trust anchors. In 2018, ARM
released TrustZone for the Cortex-M family [89].

However, there are several non-trivial challenges that need to be addressed
when using trusted hardware, and the challenges only get more stringent for
tiny devices with a Cortex-M processor. Also, additional effort is required
in implementing detection algorithms, such as the one based on the neural
networks we introduce shortly, for Cortex-M compared to Cortex-A, not only
due to tighter resource constraints, but also due to non-availability of several
libraries.

Precisely, we identify the following challenges implementing a secure pro-
gram anomaly detection for tiny IoT devices:

C1 The detection process, user application code, runtime tracing mechanisms,
and the generated traces have to be secured. Attackers otherwise can simply
modify any of these to circumvent the detection.

C2 Straightforwardly placing all the code in the secure region of trusted hard-
ware is not an option. The secure code base has to be kept minimal (i) due
to limited secure memory [84, 45], and (ii) to ensure no vulnerabilities are
introduced unknowingly, which otherwise can provide illegal access to the
secure region.

C3 Switching between secure and non-secure regions of trusted hardware has
to be minimal as each switch incurs overhead.

Besides the above challenges we identify the following challenges in design-
ing an actual detection scheme:

C4 The anomaly detection scheme must be able to detect all the attacks de-
scribed in Section 5.2.1 with acceptable false positive and false negative rates.
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1 void config() {
2 ...

3 while(serial_available()) { ... }
4

5 if(authenticated) {
6 cmd = read_cmd();

7 if(cmd[0] == ’+’) bolus(PUSH);
8 else if(cmd[0] == ’-’) bolus(PULL);
9 ...

10 }

11 }

Listing 5.2: Modified open syringe application to demonstrate the need for tracing
precise call location.

C5 In order to implement an anomaly detection scheme for tiny embedded
devices, the anomaly detector and any model it relies on have to be efficient
in terms of space and runtime latency.

As foreshadowed, in this paper we consider neural networks to accurately
detect anomalies. This makes challenges C4 and C5 particularly stringent for
embedded devices.

5.3 overview and system architecture

In this section, we present the system architecture of SPADE, and tracing
features.

5.3.1 Precise Calling Context

We extract various features from the running application in order to detect
attacks at runtime. SPADE captures short- and long-term patterns with precise
call sites as a context for anomaly detection (C4). We further explain the attacks
that can go undetected when just calling functions are considered as context [29,
119, 116] and how SPADE can detect such an attack using precise call location.

For the program in Listing 5.1, a 1-level calling context (as considered in [116])
can detect a control-oriented attack as the attack introduces an illegal con-
trol path config->bolus (process_cmd->bolus is the legal control path). Con-
sider a developer writing the same application differently by eliminating the
process_cmd function and including its features within config as shown in
Listing 5.2. The 1-level calling context trace for the normal authenticated case
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and during control-oriented attack will be the same (config->bolus), and
hence the control-oriented attack goes undetected. Capturing precise calling
location can however identify such an attack. In the normal authenticated case,
the bolus function will be invoked from Line 7 or Line 8 of Listing 5.2, whereas
during a control-oriented attack the same function will be invoked from Line 11

of (return address will be changed to point to bolus function).
We consider two different types of tracing, hardware(-based) tracing and

software(-based) tracing, which exhibit a trade-off between (a) performance vs
(b) flexibility and availability: Hardware tracing is performed by leveraging
a built-in circular embedded trace buffer (ETB) available on several ARM
embedded devices, which provides instruction tracing with minimal overhead.
Software tracing is performed by instrumenting the source code to trace various
features, providing flexibility in type and granularity of features collected.

More precisely, SPADE uses the following tracing features extracted for
anomaly detection from a given control program.

Definition 1 (Context-sensitive function call) A context-sensitive function call
f : l → f ′ indicates that a function f ′ is invoked from location l which is within the
scope of function f. Here l is a precise call site which is captured as the context.

Definition 2 (Call sequence) A sequence of context-sensitive calls is denoted X =

(x1, x2, ..., xn) where xi = fi : li → f ′i.

5.3.2 Main Components

SPADE consists of several software modules running on a target IoT device.
Figure 15 shows SPADE’s architecture. ARM TrustZone isolates processes,
peripherals, and memory regions into secure (green; right) and non-secure
regions (red; left). Importantly, SPADE runs in the secure region (C1) and
the underlying operating system (if any) and user applications run in the
non-secure region (C2).

SPADE further contains a buffer reader that reads required partial traces, from
the ETB or from a buffer implemented in software, when indicated by the
anomaly detector module. The latter module runs a neural network inference
engine that checks the runtime function traces against a trained neural network
model. The anomaly detector is triggered by checkpoints in the user application.
A watchdog keeps track of checkpoint triggers, and invokes the anomaly detector
if the module suspects there has been a suppression of triggers.
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Figure 15: System architecture overview.

5.3.3 Checkpoints

To facilitate on-device anomaly detection, the detection module has to be in-
voked several times during program execution. We achieve this by introducing
checkpoints after the execution of critical tasks that affect the operation of
the embedded software (e.g., actuators, serial reads, or network packet reads).
However, designing a generic technique to identify such logical checkpoints
is not plausible because there are several sensors, actuators, and a large set
of APIs from different libraries/vendors to access the sensors and actuators.
Therefore, we introduce a simple intuitive API,

int ADCheckpoint()

that a programmer can leverage to declare a checkpoint; multiple checkpoints
at any granularity can be introduced. Providing APIs to collect information
from a program is a standard approach followed in automotive open system
architecture (AUTOSAR) [14], and related literature (e.g., [104]).

A checkpoint invokes the anomaly detector, which reads the relevant traces
to check for an anomaly. However, an attacker may modify the application
to remove or alter the location of a checkpoint to evade detection. To protect
against such checkpoint corruptions, the execution of a checkpoint also notifies
the watchdog that monitors its executions. The processing of a watchdog
is discussed shortly. Finally, the detection process itself introduces overhead
(reading traces, runtime inference, anomaly detection) that can affect the real-
time performance of user application running in the non-secure region. The
introduction of checkpoints for the program running in the non-secure region
alleviates overheads by minimizing the context switches between secure and
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non-secure regions for anomaly detection (C3). In summary, checkpoints are
used to trigger anomaly detection for the three following reasons:
1. Processing large traces at a time introduces noticeable lag in user application

responsiveness because the anomaly detector can hold the processor for a
longer duration.

2. The hardware trace buffer leveraged or the software buffer used for anomaly
detection is limited in size, hence waiting till the end of a program (or single
execution) may cause buffer overrun, leading to missed trace samples.

3. The time spent in anomaly detection can be minimized by tracing only
critical tasks instead of the entire program.

5.3.4 Buffer Reader

When hardware tracing is enabled, the buffer reader module implements the
protocol of ARM’s CoreSight library [78] to access the trace information from
the ETB. The ETB stores the trace information in a predefined format (see
Section 5.4.3) that cannot be directly used for anomaly detection. The buffer
reader module processes the trace information to extract the required trace
features. If software tracing is enabled, function traces of the instrumented
program running in the non-secure region are collected and stored in the secure
region to prevent any unauthorized access. Hence, when an instrumented
function is executed, there is a context switch into the secure region to write the
trace into the software buffer. The buffer reader waits for a trigger and reads N

trace entries from the current pointer in the software or hardware buffer (latest
N).

5.3.5 Anomaly Detection

Modeling and inference. In order to detect control-oriented and aberrant path
attacks on the device, we build a model of program behavior using a GRU
that captures short- and long-term dependencies. To train the GRU model
before deployment, we extract the program traces from the embedded device
to an external general-purpose system either by hardware or software tracing
mechanisms. For hardware tracing, the execution traces are extracted from the
on-chip debug and trace tools of the ARM CoreSight. With software tracing,
the instrumented binary prints the execution traces through a serial port. The
trained model is stored in the secure region, used by the anomaly detector
at runtime for detecting program anomalies. When the anomaly detector is
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Table 4: Different encoding techniques.

Encoding
technique

Prediction
accuracy

(%)

Model
size
(KB)

Single
inference

(ms)

Label 95.2 15.05 3.1
One-hot 95.3 25 4.7
Embeddings 97.3 34.27 6.3

triggered, the module reads latest N traces from the buffer reader, and encodes
them to the input structure needed by the GRU model that predicts the (N+1)th

trace entry using the trained model. The predicted output is compared to a
pre-derived threshold to check for an anomaly.

Watchdog. As the checkpoints are non-secure, an attacker could modify the
user application or execute a control-oriented attack to bypass anomaly detector.
To overcome this, we introduce a watchdog, a timer in the secure region which
is reset each time the anomaly detector is triggered. On expiration, it invokes
the anomaly detector unconditionally, thereby preventing an attacker to bypass
detection. The timer value is application-dependent and chosen as the largest
value between consecutive checkpoints.

5.4 spade

This section details our program anomaly detection scheme, including how it
is secured, and our tracing mechanisms.
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5.4.1 Program Behavior Modeling using Precise Call Sites

We capture the behavior of a program and design an anomaly detection scheme
based on a language learning model. Our scheme can jointly learn the seman-
tics of individual function calls and their interactions appearing in the trace
sequences, whilst existing solutions are limited to coarse-grained features and
pairwise function call patterns. As already highlighted in Section 5.3.1, the
latter kind of patterns is insufficient to detect control-oriented attacks.

Our anomaly detection approach directly addresses these limitations by
capturing short- and long-term patterns with precise function invocation lo-
cations. As shown in Table 3, though each entry in an aberrant path attack
reflects a legal control path, the sequence as a whole is illegal. In the exam-
ple, config->serial_write is skipped and the read_cmd function is directly
invoked, which differentiates between malign and benign sequences. In order
to detect such an attack it is important to preserve the ordering of function
call occurrences. We use recurrent neural networks (RNNs) to capture short-
and long-term patterns and also to achieve order sensitivity. Before further
detailing our modeling and anomaly detection techniques, we provide a brief
background on RNNs.

Background on recurrent neural networks (RNNs). RNNs efficiently model
sequential data. The value of a hidden state is determined using the current
input and the value of a hidden state at a previous time step; hence, subsequent
outputs contain information of previous states. Vanilla RNNs suffer from
vanishing gradient problems when modeling long inputs. GRUs, just like long
short term memories (LSTMs), solve this issue by using various gates in each
memory cell to decide what to remember and forget at that cell.

Language model based anomaly detection. GRUs have a simpler structure
and can reduce the number of parameters needed to train. For this reason, in
SPADE, we choose GRUs as primary RNN units for our feature prediction
model. In Section 5.6.4 we compare LSTMs vs GRUs for anomaly detection in
terms of accuracy and overhead.

Figure 16 illustrates the architecture of our GRU model (C5). The model
estimates the probability distribution of the (N+1)th context-sensitive call given
the previous N calls. For a given user application, let S be the set of possible
context-sensitive function calls of length k. Label encoding is performed for
every element in S. We choose label encoding as it results in smaller model size
and runtime inference compared to other alternative encoding techniques as
shown in Tab. 4.
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Let X = (x1, x2, . . . , xl) denote the input call sequence, where xi ∈ S and l is
the input sequence length. The set of sequences is used at the input layer, and
fed to the model. The GRU unit has an internal state in the hidden layer and a
state update is performed recurrently at each time step t as follows:

zt =σ(WzXt +Uzht−1) rt = σ(WrXt +Urht−1)˜︁ht =ϕ(WhXt +Uh(rt ⊙ ht−1)) ht = ztht−1 + (1− zt)ht
˜

where σ is a sigmoid function, ϕ is the rectified linear unit, and W,U are
the learnable parameters. A softmax layer is used as the output to estimate
normalized probabilities of next calls in the sequence.

The sequence probability is estimated using a chain rule as:

P(X) =

l∏︂
i=1

P(xi|x1:i−1) (4)

We train this GRU-based language model over normal call sequence data; the
training sequences are generated by considering sliding windows of predefined
lengths over the execution traces. The model is trained using a probabilistic
loss function such as cross-entropy, to obtain the probability distribution of the
estimation instead of a single value. The cross-entropy loss is given as:

loss = −
∑︁l

i=1

∑︁k
j=1 xi,j × log(P(x̂i,j)) (5)

where x̂i,j is the predicted output for the given input xi,j. The training is
performed to minimize loss.

During inference, the GRU model gathers trace sequences of a predefined
length N (same as the length of window used during training) from the buffer
reader as input, and encodes them using label encoding. We predict the next
call – i.e., the (N+ 1)th call – in this sequence using the trained language model
as P(xN+1|x1:N). This yields a vector of normalized probabilities (P1, . . . ,Pk)
as predictions for the next call, where Pi denotes the probability of call i. We
define a threshold-based classifier as follows:

C(x1:N; θ) =

⎧⎨⎩anomaly ifPi < θ,∀i ∈ {1, . . . ,k}

normal otherwise
(6)

By changing the threshold value θ, we construct an operating characteristic
curve to evaluate the performance of our model and choose the threshold that
yields the best accuracy (see Section 5.6.2).
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5.4.2 Trusted Execution Environment for Anomaly Detection

In this paper we use the commercially available ARM TrustZone as trusted exe-
cution environment (our architecture can also use others) to secure the anomaly
detection process. We first provide a brief background on the architecture of
ARM TrustZone for Cortex-M devices, followed by how SPADE leverages the
features of TrustZone to design a secure anomaly detection technique (C1).

Background on ARM TrustZone for Cortex-M. TrustZone allows developers
to design a secure application using trusted execution environment. The secure
region code can access all the peripherals, code, and data residing in both the
secure and non-secure regions. However, the non-secure region can access only
itself. Switching between the two regions is done in hardware, thereby keeping
the latency overhead of context switching to a minimum. Since TrustZone for
Cortex-M based devices differs from that for Cortex-A devices, in the following
we use TrustZone-M to specifically refer to the TrustZone component of a
Cortex-M device.

Secure anomaly detection. Our proposed program anomaly detection scheme
(i) captures runtime traces and (ii) compares them against a GRU model to
detect anomalies. However, without securing the tracing process and the model,
an attacker can tamper with either (i) or (ii) to circumvent the objective of
the underlying detection scheme, making it futile. The hardware isolation of
TrustZone-M is used in SPADE for achieving the following:

secure boot : The secure boot feature of a TrustZone-M device is executed
each time the device is reset. It verifies the integrity and authenticity of the
user application running in the non-secure region. By leveraging secure boot,
SPADE ensures the non-secure region code is not modified, which makes
it impossible for an attacker to execute a mimicry attack and subvert our
detection scheme.

secure tracing : SPADE reads the instruction traces from ETB for runtime
behavior analysis. We map this hardware feature for tracing the program
execution with minimal overhead to the secure region of the embedded
device (Figure 17 shows ETM and ETB mapped to secure region), thereby
ensuring that the attacker cannot tamper with the tracing mechanism or
the traces. When software tracing is used, SPADE uses software hooks at
locations where trace features are collected. A software hook induces a jump
to the secure region, where the features are extracted and stored in a software
trace buffer also residing in the secure region (see Figure 15).
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Table 5: Software and hardware traces for the code in Listing 5.1.

Software traces Hardware traces

loop_pass:33->config config:15

config:15->serial_avail config:16

config:16->serial_read config:18

config:18->auth_password config:20

config:20->serial_write config:26

config:26->read_cmd loop_pass:33

loop_pass:34->process_cmd process_cmd:7

process_cmd:7->bolus loop_pass:34

5.4.3 Tracing

The feature collection process impacts the accuracy of the neural network model
used for anomaly detection. We extract various features from the application for
training the model and successfully detecting an attack at runtime. Collection
of training data and model training takes place under supervision and before
deployment, and hence overhead there is not a concern. However, the overhead
to collect the trace data for inference at runtime has to be minimal to ensure
minimal effect on the application’s performance. SPADE supports two different
ways of tracing: first a hardware approach that has negligible overhead; second
a software approach that provides flexibility in tracing granularity and features
captured, and can also be used in absence of the required hardware. Before
detailing the tracing techniques, we provide a brief background on the ARM
CoreSight architecture used in hardware tracing.

Background on CoreSight architecture. Figure 17 shows a simplified version
of the CoreSight architecture [78] retaining only the components relevant to
SPADE. The ETM is an optional debugging component which generates trace
packets.

To extract traces from ETM, an external hardware debugging device is
required and the traces have to be captured at the speed of the processor.
CoreSight also provides an optional on-chip buffer, the embedded trace buffer
(ETB), which stores the trace packets generated by ETM and can be read at a
slower rate. The trace data from ETB can be accessed from the software running
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Figure 17: ARM CoreSight debug architecture (simplified from [78]) showing ETM and
ETB interaction with the core processor.

on the processor through the advanced high-performance bus (AHB) bus. The
ETB’s size depends on the manufacturer; it is typically limited to 4-8 KB.

Hardware tracing. We propose a novel mechanism of tracing by leveraging
the features of the underlying hardware with which the tracing overhead is
negligible. We use ARM’s CoreSight on-chip debug architecture which includes
several components, of which we access the instruction tracing feature of ETM.
For anomaly detection, we consider the branch address packets generated by
the ETM. A sample trace packet extracted from the ETB is as follows

BranchAddressPacket Bytes=89d600, addr=0x2b08

where the addr indicates the return location of the branch. Table 5 shows the
sample traces collected for the program shown in Listing 5.1.

Software tracing. A pure software-based tracing does not make any assump-
tions on the hardware. Here we instead instrument the source code to collect
function entries and their precise call sites (cf. Section 5.3.1). The functions
in an embedded program along with their call sites are considered to model
the behavior of a program. By using this combined information we can detect
control-oriented and aberrant path attacks. For the program listing shown in
Listing 5.1, config is invoked from loop_pass at Line 33. Assuming – for ease
of presentation only – that the line numbers represent actual addresses in the
application binary, loop_pass:33->config represents a 1-level calling context.
Table 5 shows sample traces collected using software tracing.

5.5 implementation

We implemented the various components of SWARNA (see Figure 15) in the
C programming language. The code introduced by SWARNA for anomaly
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detection in the secure region is only 1.2 KB, not including the neural network
model. Additional care is taken to ensure that there are no vulnerabilities in
the secure region, and that the code in the secure region does not interact with
the outside world (C2). This section highlights several implementation issues.

5.5.1 Traces for Training

In order to collect the training data with hardware tracing enabled, traces are
read from ETB while having the embedded device connected to the desktop. A
debugger is used to download the ETB data onto the desktop computer. For
software tracing, the application is instrumented to capture function entries
and their calling location. For instrumentation, an application is compiled with
the GNU option finstrument-function, which invokes a pre-defined function
during the entry and exit of every function in the application. We limit the
traced functions to the application level, critical system functions, and actuator
code.

A typical embedded control program runs in an infinite loop after a set of
initialization functions. Due to this nature, initialization functions appear only
once in the collected trace. Hence, we remove such entries and consider only
function invocations within the infinite loop, greatly reducing the vocabulary
size: for the considered applications, we see a reduction in vocabulary size by
10-82%. This also reduces the model size and runtime inference. We eliminate
initialization traces for model training as an optimization technique. An attack
that jumps to the initialization function during program runtime will still
be detected. However, an attack during initialization can lead to higher false
positives, but the attack will not go undetected. The anomaly detector will raise
an alarm because it encounters a path not seen during the training process. The
additional optimization can always be disabled, if required.

5.5.2 Neural Network Model

We used the Keras APIs [69] to implement the GRU network and TensorFlow
to generate a trained model. Several experiments were conducted to choose
hyperparameters for training the GRU model. We use STM32Cube.AI [103]
for compressing the TensorFlow model to a lightweight model suitable for
micro-controllers and to implement a neural network inference engine on the
embedded device.

We implemented a language model based anomaly detection
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Table 6: Hyperparameters for
training neural network.

Hyperparameter Value

Hidden layers 1

Neural nodes 32

Epochs 150

Batch size 16

Sequence length 10

Dropout rate 0.2
Learning rate 0.001

(see Section 5.4.1) using Python. The model is
trained using benign traces. We implemented
a GRU neural network architecture as out-
lined in Figure 16. Table 6 shows the cho-
sen values for each of the hyperparameters
for the given network architecture. The de-
tection scheme is first evaluated on a desk-
top computer against the test data to derive
optimal thresholds for identifying anomalies.
The thresholds derived are later used by the
anomaly detector module on the embedded
device to detect anomalies at runtime (see
Equation 6).

5.6 evaluation

We extensively evaluate the performance and detection accuracy of SPADE. In
particular, we address the following research questions:

RQ1: What is the effectiveness of SPADE in detecting real-world attack variants?

(a) What is the detection accuracy for each attack variant and how sensitive is
the detection accuracy to the classification threshold?

(b) How does SPADE compare to the state of the art?

RQ2: What are the impacts of software and hardware tracing on SPADE’s
performance?

(a) What are the static and runtime overheads due to tracing and modeling?

(b) How does software and hardware tracing affect attack detection?

5.6.1 Experimental Setup

Case studies of embedded applications. In order to evaluate the performance
of SPADE, we consider five real-world embedded control programs. A control
program will sense the environment, perform lightweight processing, and,
depending on the results, act on the actuators present on the device.

fall detection : A simple threshold-based fall detection [17] is implemented
using the on-board accelerometer sensor. The application allows an authen-
ticated user to configure threshold value on the press of a button. The fall
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detection algorithm monitors the 3-axis accelerometer values, and raises
alarm if the computed fall value is greater than a configured threshold.

open syringe : The open syringe application has been widely used in the
literature to showcase various attacks [29, 3, 104]. The application takes user
commands to control the bolus of a fluid-filled syringe. The application ac-
cepts commands to set the quantity of liquid to be dispensed and commands
to push/pull the syringe by the set quantity value. We use the serial port for
input and output.

cryptography : IoT applications that ensure data privacy perform some
form of encryption or decryption on the embedded device [79]. We im-
plement an application that accepts user text over the serial port and an
input command. Based on the command, it encrypts or decrypts using the
AES-CBC algorithm [50] and prints the result.

udp data collection : Data collection is widely used in several IoT appli-
cations like smart grid, city, health, and many more [79]. We implement a
periodic UDP-based data collection application that runs a low-power IP
stack (LwIP). The embedded device sends the temperature value once every
2 s to the UDP server over the network. The embedded application accepts
commands over the network to stop sending the data or change the sending
rate.

light controller : The on-board LED is controlled using commands to
turn-on/off the LED or to change its color and brightness. The application is
similar to the open-source light controller [77].

Choice of hardware. The experiments are evaluated on a tiny embedded
device with a Cortex-M processor. Existing works on anomaly detection for IoT
consider higher-end devices like Raspberry Pi which has Cortex-A processor
(see Figure 14). SPADE can run on Cortex-M and thus on higher-end devices
(whilst the opposite is not generally true) making it applicable to a large class
of IoT devices.

We evaluate SPADE on the latest hardware by STMicroelectronics (STM) –
STM32L56 with ARM Cortex-M33 core, TrustZone-M, 512 KB of flash memory,
256 KB of SRAM, and clock cycle of 110 MHz. Though the underlying Cortex-
M33 core supports the ETB used for hardware tracing, it is not enabled on
STM32L56. Cortex-M33 devices are available only from 2019 [96], and none
of these devices currently has ETB enabled. Therefore to evaluate SPADE
with hardware tracing, we extract ETB data from NXP’s freedom K64F with
Cortex-M4 processor. Cortex-M33 and Cortex-M4 differ mostly in the TrustZone
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Figure 18: The graphs indicate the achieved false negative rate (FNR), false positive
rate (FPR), and anomaly detection accuracy for various applications. The
vertical line (dashed blue) in each graph shows the threshold values for the
application.

availability [36].1 The extracted ETB traces are stored on the TrustZone-M
enabled STM32L56 as a simple buffer just for evaluation purposes without loss
of validity.

5.6.2 RQ1: Real-world Attack Detection

Data preparation. For data collection, the embedded applications are run for
1h, during which the user interacts with the applications at random times. We
split the collected data into (a) training data (65%) used for training the neural
network model and (b) test data (35%) used for deriving the threshold θ in
Equation 6 for attack detection. However, importantly, runtime attack detection
and runtime overhead are evaluated on the IoT device.

Attack variants. The case study applications have buffer overflow vulnerabilities
which we exploit and carry various attacks at runtime. We repeat the below
experiments for 20 times and plot the results.

1 A Cortex-M33 based device with ETB enabled is very likely to become available in the near
future due to the fact that the processor itself can support ETB and also most of these devices
already have CoreSight architecture’s ETM implemented (cf. Figure 17).
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Figure 19: Detection accuracy of aberrant-path attacks for various applications

redirect control flow : We modify the return address and jump to a
critical function in the program. At runtime, for each application we carry
out such a control-oriented attack 10 times and redirect the control flow
to a different location each time. SPADE can detect all the attacks (refer to
Section 4.8 for a detailed analysis).

overwrite decision-making variable : At runtime, we carry out 10 dif-
ferent aberrant-path attacks on each of the application to override the decision
made (e.g., execute an else block instead of if block) to illegally execute
critical block of code.

Table 7: Model prediction accuracy

Application
Prediction

Accuracy (%)

Open syringe 94.5
Fall detection 99.3
Data collection 97.4
Cryptography 96.2
Light controller 97.5

Model Prediction Accuracy. Given
trace sequences of length N, our GRU
model predicts the (N + 1)th call. Ta-
ble 7 shows the prediction accuracy for
the various case study embedded appli-
cations. From the table and Figure 19,
we observe that models with lower pre-
diction accuracy have higher FPR. How-
ever, no attacks go undetected.

Detection accuracy. To detect an
anomaly, a GRU is executed against a predefined length of runtime traces.
If all the probabilities in the encoded output vector are below a threshold,
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then the anomaly detector marks it as an anomaly (see Equation 6). Detection
accuracy is the number of these anomalies SPADE detects successfully and
halts execution. Figure 19 shows the false negative rate (FNR), false positive
rate (FPR), and detection accuracy for aberrant-path attack variants. SPADE
achieves 100% accuracy with 0-0.5% false positives and 0% false negatives. For
control-oriented attacks, our system achieves 100% accuracy with 0 FPR and
FNR. Please refer to Table 5.6.2 for prediction accuracy of the GRU model.

Threshold and its sensitivity. The threshold selection is performed based
on a subset of the data collected during an application’s normal runtime; we
identify the threshold value θ using the test data. For a given dataset, let S
be the set of possible context-sensitive function calls of length k. An input
call sequence (x1, x2, ..., xN) is fed to the GRU model that yields a vector of
normalized probabilities P = (P1,P2, ...,Pi, ...,Pk) as predictions for the next call,
where Pi denotes the probability of call i. Denoting the ground truth for the
next call as x̂j ∈ S for j ⩽ k, for a given P the threshold is evaluated as θj = Pj,
where Pj is the probability of x̂j in the output vector P. Finally, we derive the
anomaly detection threshold as:

θ = min(θ1, θ2, ...θj, ..., θl−N), (7)

where l is the length of test data S.
Figure 18 shows the sensitivity of FNR, FPR and detection accuracy against

the threshold values. The vertical line shows the chosen threshold value for the
application.

SPADE vs existing techniques. We compare SPADE against the basic n-gram
anomaly detection technique [47] and LAD [101] that is closest to our work.
The traces during an aberrant path attack are collected for the fall detection
application. The n-gram model stores traces of length n in a database during
training. At runtime, if the n-length trace collected does not match any entry
in the database an anomaly is flagged. To detect an aberrant path attack using
n-grams, the minimum value of n required is 23, for which the observed
FPR is 0.6% and 0% FNR. We observed that for a higher n value the FPR
only increases. However, SPADE detects this attack with 0.002% FPR and 0%
FNR. LAD captures long-term behavior using co-occurrence and frequency
analysis. However, such an approach fails to capture the order of function calls.
Therefore, LAD fails to detect a subtle form of aberrant path attack where the
attack trace resembles a normal trace with a few missing sequences (cf. Table 3).
For a variant of aberrant path attack which introduces illegal trace sequences,
LAD is shown to achieve over 90% detection accuracy with 0.01% FPR [101].
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Figure 20: Static overhead that shows the application code size with SPADE overhead
(tracing + anomaly detection), and GRU model size for hardware-based
(HW) and software-based (SW) traces.

While LAD raises slightly fewer false alarms than SPADE, LAD fails to detect
all the anomalies, whilst SPADE never misses any anomaly.

5.6.3 RQ2: Overhead and Trade-offs

Static overhead. Figure 20 shows the application code size with SPADE
overhead, and GRU model size when hardware and software tracing are
enabled respectively (cf. Section 5.4.3). SPADE code size overhead includes
tracing functionalities in the non-secure region, and the anomaly detection
(1.2 KB of code) in the secure region. SPADE incurs 11.3% average code size
overhead with software tracing and only 2% with hardware tracing. We do
not see a significant overhead with hardware tracing as only a couple of lines
of code are introduced to read the data from ETB. However, we see that the
GRU model has a smaller size with software tracing compared to hardware
tracing. With software tracing, we can have the flexibility of choosing only
the required files/functions to be traced. Figure 21 shows how the model size
increases when more modules are considered for tracing. We trace user code
and functions related to sensors and actuators (in our case LEDs, UART, LwIP)
running in the non-secure region. However, when hardware tracing is enabled,
the function traces for all the software modules are captured by the hardware.
Hence, the number of unique samples in the traces collected is higher for
hardware tracing compared to software tracing, thereby increasing the model
size. However, hardware tracing has less overhead, when all the modules are
considered for software tracing (see Figure 21).
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Figure 21: The graph shows the GRU model size when various software modules of the
fall detection application are considered for tracing. ‘a’ - app, ‘u’ - utilities,
‘d’: drivers, ‘pd’: partial code from drivers, ‘h’ - hardware.

Runtime overhead. We evaluate the runtime overhead of SPADE on the em-
bedded device. Table 8 shows the values of runtime performance for various
applications when hardware or software tracing are enabled. We use a bench-
mark application that is part of STM32Cube.AI [103] to measure a single
runtime GRU inference which is averaged over 16 runs. The overall execution
time includes time to switch the context between secure and non-secure regions,
executing the GRU inference engine, and detecting whether there is an anomaly.
The context switching time is hardware-dependent and is reported as 3-4 cycles
per switch [64]. A context switch is performed when a checkpoint for anomaly
detection is executed, and also for trace collection with software tracing. The
latency involved in a single GRU inference with hardware tracing is higher
than software tracing due to increased number of unique functions traced with
hardware tracing However, the overall execution time with hardware tracing
is smaller than with software tracing. In order to secure the software trace
buffer and the tracing mechanism, there is a context switch for secure tracing
(see Section 5.4.2) which introduces a noticeable runtime overhead.

Trade-offs in Tracing. Tracing with ETB incurs negligible overhead compared
to software tracing. Though the model size with hardware tracing is slightly
larger (approx. 2 KB) than software tracing (Figure 20), the overall runtime over-
head of software tracing is 20-80% higher than hardware (Table 8) tracing for
various applications. Hence, when the chosen IoT embedded device supports
ETB, hardware tracing can be chosen over software. Hardware tracing is also
beneficial when third-party libraries are used for which source code is not avail-
able. Yet, with hardware tracing, only return information can be captured on
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Table 8: Runtime overhead of SPADE using software-based (SW) and hardware-based
(HW) traces.

# of context
switches

Single GRU
inference (ms)

Overall
exec. (ms)

Open syringe
HW 2 5.3 5.9
SW 1178 3 7.6

Fall detection
HW 2 5 5.6
SW 4131 3.2 18.3

Cryptography
HW 2 5.1 5.7
SW 9365 3.4 29.24

Data collection
HW 2 4.3 4.9
SW 3241 3 13.8

LED controller
HW 2 5.3 5.9
SW 868 3 7.64

the device, and hence when code injection attacks (a variant of control-oriented
attacks) that do not use return calls, cannot be detected. However, with static
binary information combined with the trace packet information such an attack
can be detected offline. Since the focus of SPADE is to detect attacks on the
device, we do not demonstrate off-line detection. The off-line detection scheme
does not affect the performance of SPADE.

Though software tracing incurs higher static and runtime overhead, it pro-
vides the flexibility in determining the trace features and granularity of traces,
thereby detecting a larger class of attacks than hardware tracing. Evidently, it
can be implemented on devices even when ETB is not enabled.

5.6.4 GRU vs LSTM

Table 9 compares GRUs with LSTMs as a potential alternative. LSTMs achieve
100% detection accuracy with 0 FNR and 0-0.1% FPR, and GRUs achieve 100%
accuracy with 0 FNR and 0-0.5% FPR for various applications. However, GRUs
do so with much reduced overhead. Their models are at least 25% smaller and
take 41% less time for a single inference compared to LSTMs.

To understand the effect of FPR, we plot the number of times the anomaly
detector is triggered against its execution latency. We assume an over-the-air
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Table 9: GRU vs LSTM – compares the model size, single runtime inference, and
anomaly detection accuracy. In order to achieve 100% accuracy, the false
negative and false positive rates are tabulated. Applications with least and
highest FPR are tabulated.

Model
size (KB)

Inference
(ms)

Accuracy (%)

FNR FPR

Open syringe
GRU 14.64 3 0 0

LSTM 19.76 5.3 0 0

Data collection
GRU 14.62 3 0 0.5
LSTM 19.74 5.2 0 0.1

Figure 22: The graph shows the effect of 0.3% FPR on the anomaly detector’s perfor-
mance. A false alarm triggers unnecessary reprogramming (the peaks in
GRU). The peaks in GRU indicates reprogramming.

reprogramming is performed when an anomaly is detected. Hence, a false
alarm reprograms the device. A reprogramming cost of 1.2 s is considered [38].
Fall detection application has an FPR of 0.3% for GRUs and 0 for LSTMs. With
0.3% FPR, a reprogramming happens after anomaly detector is triggered over
330 times.

For fall detection application, Figure 22 shows that with 0.3% FPR, a repro-
gramming happens after anomaly detector is triggered over 330 times. A trigger
to the anomaly detector depends on the application, where it can be once in
days, weeks or months. In the fall detection application anomaly detector is
executed when there is a read for threshold configuration or when the actuator
is triggered. Assuming the anomaly detector is executed once every hour, a 0.3%
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FPR raises a false alarm indicating an anomaly is detected once in two weeks. A
lower FPR or an infrequent trigger to the anomaly detector will further reduce
the false alarms. In contrast, LSTMs do not falsely detect anomalies. Hence,
LSTMs may perform better (depends on the FPR of the application) over time
than GRUs considering the reprogramming cost involved.

5.7 security analysis

In this section we consider the attacks discussed in the threat model (see
Section 5.2.1), and show how SPADE thwarts them.

5.7.1 Control-oriented Attacks

Control-oriented attacks modify the return addresses of vulnerable functions to
jump into any other functions within the application program (code re-use) or to
a location in the code injected by the attacker (code injection). We demonstrate
how SPADE successfully detects code re-use attacks using the open syringe
application (Listing 5.1). The overflow vulnerability at Line 12 is exploited to
execute the bolus function and inject the chemical at an unexpected time. In
the application, the bolus function is always invoked from process_cmd. The
attacker exploits the buffer overflow vulnerability in the config function to
jump directly to the bolus function. In SPADE, caller-callee relationships are
used as trace features for model training. Since the trace entry config->bolus
is not seen during training and occurs only at runtime, SPADE can successfully
detect such an attack (G1). With hardware tracing, where only return addresses
are considered, the GRU model that remembers long-term dependencies detects
such an attack due to incorrect order of return addresses. Code-injection attacks
are detected similarly.

5.7.2 Stealthy Attacks

Stealthy attacks are intricately crafted to resemble the normal execution of a
program.

Aberrant path attacks. While control-oriented attacks induce illegal control
paths, aberrant path attacks do not take any illegal control path making them
more difficult to identify. In order to induce an aberrant path attack, a decision-
making variable is modified to illegally execute critical functions accessible
only to authenticated users. The attack can be demonstrated via Listing 5.1,
where an attacker overflows the buffer at Line 12 to set the authenticated
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flag. Though function auth_password returns false, the attacker can access
critical functions (Line 26-Line 28).

As shown in Table 3, under normal authenticated execution, after
config->auth_password, config->serial_write and other following func-

tions are executed. However, if auth_password returns false (wrong password),
config->serial_write, read_cmd, and the following functions are never in-
voked. The attacker exploits a vulnerability to execute read_cmd and the follow-
ing critical functions even after auth_password returns false. The GRU-based
anomaly detection scheme considered by SPADE remembers long-term se-
quences and hence can detect such an attack (G2) with 100% detection accuracy
(see Figure 18).

Mimicry attacks. As can be seen in Table 3, in order to evade detection as an
aberrant path attack, an attacker can invoke the missing functions between
config->auth_password and config->read_cmd to mimic a normal execution
of an authentic case. However, to mimic the normal sequence, the attacker has
to modify either of the following: 1. the application binary; 2. runtime traces;
3. the anomaly detection process to simply return true always. SPADE leverages
the advantages of hardware security provided by TrustZone. When an attacker
tries to install a modified binary, the secure boot fails and raises an alarm.
Runtime traces are stored in the secure region, and the tracing is performed
securely (see Section 5.4.3). Hence, the attacker cannot modify the runtime
traces. For the same reason, the attacker cannot tamper with the anomaly
detector module, which resides in the secure region (G3).

5.7.3 Modifying Checkpoints

An attacker can try to load a modified firmware to remove a checkpoint.
However, the secure boot process of the trusted hardware prevents the device
from booting with an untrusted firmware. Instead of attempting to replace
the firmware, an attacker can try to exploit a vulnerability in the application
program to skip a checkpoint. An attempt to skip a checkpoint incurs a control-
oriented attack. Such an attempt is futile because the watchdog module will
periodically trigger anomaly detection to identify changes in the control flow
of the program.
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5.8 discussion

Benchmark applications and their complexity. At the time of writing, there are
no standard benchmarks for bare-metal embedded devices. Hence it is typical
in related work to choose a certain number of applications (1 to 5) for evaluation
[17, 29, 3, 104]. Most of the embedded applications are simple, performing
a single task which reflects in our chosen low-complexity applications (light
controller). However, SPADE can be applied to a more complex application on
a higher-end IoT device, when ensuring that the training data is collected with
a high code coverage, and tuning the model hyperpameters to achieve a good
prediction accuracy.

Criteria for checkpoints. For detecting anomalies with high accuracy, the
anomaly detector can be triggered after executing sensor and actuator APIs,
where critical tasks that can alter the behavior of an embedded program are
executed. A programmer is the best judge in identifying such APIs. However,
one can always eliminate the need for introducing the checkpoints by sim-
ply triggering our anomaly detector periodically at the potential expense of
increased overhead.

Security limitations. In order to achieve the security goals described in Sec-
tion 5.2.2, the current implementation of SPADE runs an anomaly detector at
critical locations considering recent trace data. If the attack takes place very
early SPADE may not be able to catch it depending on trace window length
and checkpoint location. However, this is a performance choice and one can
trigger an anomaly detector at the beginning to identify such an attack.

Also, if the trace during an aberrant path attack is exactly the same as a
benign trace, the attack will go undetected. Due to several software modules
(Figure 21) involved in a program, running into such a corner case is very
unlikely, as also seen in related work [101].

5.9 conclusion

In this paper, we proposed a novel secure program anomaly detection technique
for embedded IoT devices called SPADE. SPADE can detect control-oriented
attacks that introduce illegal control flows. SPADE also detects intricately
crafted stealthy attacks such as aberrant path and mimicry attacks that do not
introduce illegal control flows and closely resemble a normal execution. SPADE
runs on embedded devices to detect attacks at runtime.
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We implemented a GRU-based anomaly detection scheme to remember
long-term dependencies, which helps detect aberrant path attacks. To create a
GRU model, we consider fine-grained traces with precise call sites as calling
context for function invocations. The traces are collected using a hardware-
based approach where we leverage an embedded trace buffer (ETB) from an
on-board debugging component, as well as an alternate software-based tracing,
where the source code is instrumented. SPADE incurs 11.3% average code size
overhead with software-based tracing and only 2% with hardware-based. The
overall execution time of software-based tracing is on average 52% higher than
hardware-based tracing. However, we also showed that software-based tracing
provides flexibility in determining the granularity of the traces and the trace
features, thereby detecting a larger class of attacks than hardware-based tracing.
SPADE achieves 100% detection accuracy with 0-0.5% false positives and 0%
false negatives. We evaluate static and runtime overhead of SPADE using
real-world embedded applications, demonstrating feasibility of our solution.

The GRU model introduces a higher overhead compared to hardware-based
tracing and anomaly detection scheme. There have been some efforts in the
literature on model pruning and compression for neural network architec-
tures [118], which we consider exploring in future work along with other
techniques to minimize the overhead of the GRU model.
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6.1 introduction

Embedded IoT systems permeate our daily lives through various applications
like smart homes, healthcare wearables, and more. Due to the advancements
in hardware and software domain, in most of these IoT applications, the
processing has moved from remote servers to edge and end nodes. As a result,

90
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embedded IoT devices are now required to handle sensitive information or
perform critical tasks, which has made embedded devices an attractive target
for cyber attacks. An attacker in control of an IoT device can completely alter the
behavior of the embedded program and can also instigate a severe disruption
by controlling the entire back-end through these Internet-connected embedded
devices.

In most recent software attacks, the vulnerabilities present in the code were
exploited to gain access to the device. For example, 66% of the vulnerabilities
reported by CERT use buffer overflow [13]. In the literature, solutions are
proposed to detect such memory corruption attacks. However, the proposed
mechanisms are inapplicable to run on embedded devices, or the attack detec-
tion is not realtime. The detection is run later on data collected from embedded
devices. Whenever an attacker exploits the vulnerability to take control of the
target device, the attacker immediately executes the intended malicious action,
like changing the quantity of chemicals or remotely controlling the steering
wheels, brakes, and engine of a car. Considering the impact of the attacks, it is
vital to detect the attack when it takes place on the device and stop any further
execution or escalate it to the concerned users for immediate action.

In this work, we propose a lightweight solution that runs on an embedded
device and monitors the behavior of a running program to detect changes in
the program’s behavior at runtime. Several attacks have been discovered in the
literature, and solutions have been proposed to address them individually. In
this chapter, we propose to detect BCAs, irrespective of the attack causing them.
We define a BCA as an anomaly seen during program execution that affects the
behavior of a program by modifying one or several control aspects. We further
classify a BCA into three types: (1) control flow anomaly that occurs when
an attack changes the control flow of a program, (2) control branch anomaly
that indicates that an illegal control branch is executed without altering the
control flow of the program, and (3) control intensity anomaly that stipulates
the frequency of a control loop is altered.

In order to detect the BCAs in realtime, we propose an online program
anomaly detection for embedded IoT devices– OPADE. To detect the anomalies,
we capture various program features during the execution. In particular, we
capture the sequence of functions executed with their precise calling sites as
context, the number of times a function call is invoked, and the loop execu-
tion cycle count. We use a combination of source code instrumentation and
hardware performance counters to capture the various features. We implement
an online anomaly detection algorithm based on HTM [57]. We implement
a proof-of-concept prototype on Raspberry Pi, a popular choice for building
IoT applications. We evaluate OPADE for its accuracy in detecting real-world
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attacks and synthetically generated anomalies. OPADE introduces 11.3% of
static overhead and 3.4% of runtime overhead on average.

The rest of the chapter is organized as follows. Section 6.2 presents the defi-
nitions of various behavioral control anomalies and threat models considered.
Section 6.3 details the design of our proposed solution. Section 6.4 presents
implementation details. Section 6.5 evaluates OPADE on various case study
applications. Finally, Section 6.6 concludes the chapter with possible future
research directions.

6.2 problem statement

In this section, we first introduce behavioural control anomalies, then present
our threat model and the challenges involved in detecting anomalies during
program execution.

1 auth = read()

2 if(auth) privileged = true;
3 else privileged = false;

4 if(privileged) {
...

5 control_actuator();

}

else {
...

6 retry();

}

void control_actuator(){
7 steps = read();

for(i = 0; i < steps; i++){
...

8 write();

}

...

}

Listing 6.1: A sample embedded control program where an authenticated privileged
user controls the actuator.
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Figure 23: Static control flow
path for the sam-
ple application pro-
gram in Listing 6.1.

Table 10: Behavioural control anomalies ob-
served during execution of the pro-
gram in Listing 6.1.

Anomaly Control path Path valid?

CFA 1 3 7 invalid
CBA 1 3 4 5 valid
CIA ... 8 8 8 ... valid

6.2.1 Behavioural Control Anomalies

In this section, we present behavioural control anomaly (BCA), an anomaly
seen during program execution that affects the behavior of a program by
modifying one or several control aspects. Listing 6.1 shows a sample embedded
program that provides an authenticated user privileged access to control an
actuator. Figure 23 shows a valid control flow execution path for the program
in Listing 6.1.

We further categorize BCA into three types:

A1 Control flow anomaly: A CFA is a change in the control flow of a program.
Such an anomaly violates the static control flow graph of the program as
seen in Tab. 10.

A2 Control branch anomaly: A CBA indicates that the control branch of a
program is altered; however, it is still a legal control flow. A CBA will
not violate the control flow graph. As seen in Figure 23, there exists a
valid path through 1 , 3 , 4 , 5 . But, in Listing 6.1, only a privileged user
( 2 ) should access the critical function control_actuator ( 5 ). Here, an
external attacker modifies the privileged variable by exploiting a buffer
overflow vulnerability in read(). Hence, during the program execution, a
non-accessible branch was traversed illegally.

A3 Control intensity anomaly: A CIA shows that the intensity of a control loop
is altered by executing the loop an illegal number of times. In Listing 6.1,
the write function ( 8 ) can be executed several times. Here, the attacker



6.2 problem statement 94

increases the steps variable to a large number which can have a catastrophic
effect.

6.2.2 Threat Model

We discuss the attacker abilities assumed and the attacks that can cause a BCA.

Attacker abilities. We assume that an attacker can exploit vulnerabilities
present in an embedded application to launch software exploits, thereby gain-
ing access to devices. We also assume that there are no internal threats in the
development setting. These basic assumptions are common to existing program
anomaly detection works [29, 119, 3].

Attacks. A Control-oriented attack exploits vulnerabilities in a program to corrupt
control data such as return address or code pointer in the program memory
to divert the control flow of the program. The control flows may be redirected
to a location in existing (code-reuse attacks) or newly injected code (code
injection attack), thereby introducing illegal control flows. In contrast, a data-
oriented attack manipulates non-control data to alter the behavior of a program.
The attack exploits vulnerabilities to corrupt critical data variables or data
pointers without violating the integrity of control flow paths. A comparatively
recent, data-oriented programming attack systematically constructs non-control
data exploits. Before the attack, data-oriented gadgets are identified, which are
a short sequence of instructions. Then gadget dispatchers are used to chain the
disjoint gadgets in a sequence to carry out an attack.

Figure 24 shows the relation between the various runtime attacks and the
BCAs. We further explain how these attacks can be carried out that cause
various BCAs.

• A control-oriented attack modifies the control flow of a program and hence
introduces a CFA.

• Data-oriented attacks - A data-oriented attack corrupts data variables which
can have a differing effect on the program behavior depending on how the
data variable is used. An attack that modifies a critical decision-making
variable may introduce CBA. An example in Listing 6.1 shows how an
authentication variable can be altered to illegally access the control branch
( 5 ) of a program accessible only to authenticated users. A data-oriented
attack that modifies the data variable to manipulate the frequency of control
operations may introduce CIA. E.g., the number of loop iterations can be
altered to inject large amounts of a drug ( 8 ).
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Figure 24: The figure shows various runtime attacks and the BCAs caused by these
attacks.

• Data-oriented programming - Data-oriented programming attack has two
steps: finding gadgets and chaining them in an arbitrary sequence using a
dispatcher. The dispatcher is usually a loop [59] because, within a loop, an
attacker can execute a sequence of instructions several times to achieve the
desired effect. Hence, a data-oriented programming attack may introduce a
CIA.

6.2.3 Example: A Vulnerable Insulin Pump

We present a simple example of the control program used to operate an insulin
pump. The program shown in Listing 6.1 is based on the working of insulin
pump [91] since the actual source code for the insulin pump is proprietary. An
insulin pump is a small device that regularly delivers insulin throughout the
day called a basal dose. When required, insulin can also be delivered as a surge,
called bolus dosage. In order to indicate the basal and bolus dosages, the insulin
pump usually communicates with an external remote controller. The users can
input and program the insulin pump through the remote controller. Several at-
tacks on insulin pumps have been demonstrated in the past [70, 108]. Listing 6.1
shows a sample attack on an insulin pump. When the insulin pump receives a
packet from a remote controller, it checks if it is from a paired controller. The
function recv_pkt has a buffer overflow vulnerability that the attacker exploits
to carry out various attacks depending on the level of expertise. The attacker
can modify the return address of control_loop to jump bolus function and
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Table 11: Sample of traces under normal conditions, during a control-oriented attack,
aberrant path attack, and mimicry attack.

Benign - auth Benign - fail CFA CBA

loop->recv_pkt loop->recv_pkt loop->recv_pkt loop->recv_pkt

loop->verify_device loop->verify_device loop->verify_device loop->verify_device

loop->get_insulin_units loop->config_mesg loop->config_mesg loop->config_mesg

loop->bolus loop->bolus loop->get_insulin_units

bolus->hw_inject loop->bolus

loop-ID 127238 bolus->hw_inject

inject insulin at the wrong times (control-oriented attack). The attacker can
also exploit the vulnerability to simply change paired_device = 1, thereby
illegally triggering the bolus function (data-oriented attack). The attacker can
also modify the bolus_units, BASAL_UNIT to change the amount of insulin
injected when the bolus is invoked (data-oriented attack).

With the next-generation closed-loop implementation of an insulin pump,
where a continuous glucose monitor measures realtime glucose values and
adjusts the dosage on the insulin pump without manual programming, the
attacks demonstrated will be more relevant.

6.3 opade

This section details our program anomaly detection scheme and the program
features considered for anomaly detection.

6.3.1 Overview

The various software modules running on an IoT device are shown in Figure 25.
ARM TrustZone isolates processes, peripherals, and memory regions into
secure (green; right) and non-secure regions (red; left). Importantly, OPADE
runs in the secure region and the underlying operating system (if any) and
user applications run in the non-secure region.

OPADE further contains a software buffer that stores the features collected
from a user application. The instrumented application invokes a buffer writer
module, which structures and stores the features in a software buffer. A buffer
reader reads the partial traces from the buffer and encodes it into the format
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1

2 /* Insulin pump injects basal units of insulin periodically */

3 unit8_t BASAL_UNIT = 2;

4

5 /* Control insulin bolus */

6 void bolus(int units) {
7 int i;
8 int bolus_units = units / BASAL_UNIT;
9

10 for(i = 0; i < bolus_units; i++){
11 // invoke hardware to inject insulin

12 hw_inject();

13 }

14 }

15

16 void control_loop() {
17 int paired_device = 0, units;
18 pkt_t pkt;

19

20 while(1) {
21 // pkt received from a remote controller

22 if(recv_pkt(&pkt){ // vulnerable
23 if(verify_device(pkt)){
24 // pkt is from a paired device

25 paired_device = 1;

26 } else {
27 // pkt from an unknown device

28 config_mesg();

29 }

30

31 if(paired_device){
32 // get units from pkt received

33 units = get_insulin_units(&pkt);

34 bolus(units);

35 }

36

37 }

38 }

Listing 6.2: An example of a control loop in insulin pump.
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required by the anomaly detector. Then, the anomaly detector executes the HTM
algorithm within a time window periodically that checks the runtime traces
against its learned program behavior. The main objective of the buffer reader
and buffer writer modules are to continuously provide the traces in a streaming
fashion to the HTM algorithm for online and continuous anomaly detection.
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Figure 25: Overview of OPADE.

6.3.2 Features for Anomaly Detection

This section discusses various features collected during program execution for
detecting anomalies presented in Section 6.2.1.

Sequence modeling with calling context. We capture the behavior of a program
and design an anomaly detection scheme. Our scheme can jointly learn the
semantics of individual function calls and their interactions appearing in the
trace sequences. Existing solutions are limited to coarse-grained features and
pairwise function call patterns. They are, therefore, suitable for only attacks
that exhibit deviations in short traces. Our anomaly detection approach directly
addresses these limitations by capturing short- and long-term patterns with
precise function invocation locations.

As shown in Table 11, though each entry of CBA reflects a legal control
path (e.g., control_loop->recv_pkt), the sequence as a whole is illegal. The
program in Listing 6.2 shows that config_mesg is executed when the pump
receives a packet from an unknown controller and get_insulin_units, bolus
is executed for a paired device. Hence, the functions invoked in the order
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verify_device, config_mesg, get_insulin_units are illegal. In order to
detect such an attack, it is important to preserve the ordering of function
call occurrences. We use HTMs to capture short- and long-term patterns and
achieve order sensitivity.

Algorithm 7: Handling loops while collecting execution sequence trace.
Variables :

1 upon func_entered(func, call_site)
2 if func = temp_func∧ call_site = temp_call_site then
3 func_called← func_called+ 1

4 store(func, call_site, func_called)
5 temp_func← func

6 temp_call_site← call_site
7 func_called← 0

handling loops : The functions invoked within a loop will appear several
times in the trace depending on the loop iterations. A large loop iteration
count may fill the trace buffer quickly, leading to the loss of important trace
information, leaving us only with a sequence of the same function. Also,
OPADE detects anomalies by learning the sequence of function calls. The
same function appearing several times does not provide new information for
the algorithm to learn.

Algorithm 7 shows how OPADE handles loops. Before storing a function f
entry to the trace, we check if the previous function stored is f. If the same
function is invoked several times, we increment the counter of this function.
The final output stored in the trace looks like f1->f2:n, where n indicates
the number of times f2 is invoked from f1. For the example program in
Listing 6.2, the function hw_inject which is executed within a for loop will
be stored as bolus->hw_inject:bolus_units

Program behavior modeling using precise call sites. In OPADE, we capture
short- and long-term patterns and their precise calling location. Capturing the
precise location enables us to detect a broad range of attacks, thereby improving
the accuracy of detecting an attack.

For the program in Listing 6.2, during program execution, a control-oriented
attack generates control_loop:38->bolus as execution sequence, which is
a CFA. However, without a precise call site, the 1-level calling context trace
during the same attack shows control_loop->bolus, which is not an anomaly
because there exists a legal control path.
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Loop cycle count. Modeling the control sequence of a program can detect
attacks that modify the control branch during execution. However, there are
attacks that corrupt a data variable to manipulate the number of control
operations [53]. For example, an attacker may corrupt the state variable that
controls the number of times a loop is executed. In Listing 6.2, the local variable
units can be modified to alter the amount of insulin injected in bolus, which
can have a catastrophic effect.

We capture the number of cycles consumed to execute a loop which aids
in detecting attacks on loop iterations. When capturing loop execution cycle
count, it is crucial to have high precision and low overhead. A low-precision
counter may not capture loop anomalies that increase the loop iterations by a
small number. In order to differentiate the loops in the program, we assign a
unique ID for each loop. Section 6.3.3 provides a detailed description of how
the loop execution cycle count is collected. For nested loops, we capture the
execution cycle count for the outer loop.

6.3.3 Tracing

We extract various features from the application to detect an attack successfully
at runtime. The feature collection process impacts the accuracy of the model
in detecting anomalies. OPADE uses an online detection algorithm that learns
on the fly and runs on the same embedded device. Hence, the overhead to
collect the trace data has to be kept minimal to ensure minimal effect on the
application’s performance.

We perform fine-grained source code instrumentation to collect function
entries, their precise call sites, and the number of cycles required to execute
critical loops. The collected features are used to model the normal behavior of a
program. Any deviation from the normal behavior of a program is flagged as an
anomaly, and by using the combined features, we can detect BCA presented in
Section 6.2.1. Software-based tracing provides flexibility in tracing granularity
and features captured.

For the program listing shown in Listing 6.2, bolus is invoked from control_loop
at Line 34. Assuming – for ease of presentation only – that the line numbers
represent actual addresses in the application binary, control_loop:34->bolus
represents a 1-level calling context. Table 11 shows sample traces collected
using software tracing.

Function tracing. In order to capture the function traces and the precise call
sites, OPADE instruments all the function entries. When capturing the infor-
mation about a function entry, we also store the information of the caller site



6.3 opade 101

by reading the EAX register that stores the return address of the invoked func-
tion [110]. By reading the return address from the stack, we avoid additional
instrumentation for capturing the caller site information.

Loop execution cycle count. In order to capture the execution time of a loop,
we use hardware performance counters commonly available on IoT devices.
In addition, we leverage the cycle count register of performance monitoring
unit (PMU) to calculate the time required for executing a loop. A PMU is
essentially a set of registers and counters of a processor that one can program
to capture various events during the execution of an application. At the end
of a measurement, the PMU software provides the aggregated results of the
counter values. The advantage of using a hardware counter is its high precision
and low overhead. In addition, a high-precision counter is advantageous for
anomaly detection because there may be loops with very few iterations. If this
loop is vulnerable to attacks, capturing the time taken to execute the loop with
high precision detects minor variations that can occur during an attack.

6.3.4 Online Anomaly Detection using HTMs

Background on HTMs. Hierarchical temporal memory (HTM) [56] is a bio-
logically inspired technology that mimics the behavior and architecture of the
neocortex, the largest area of the human brain. HTM by design supports se-
quence and continual learning. Hence, HTM does not require separate training
or manual intervention. Also, HTM allows continuous online learning where
the applications can learn new patterns without any retraining.

HTMs represent data using sparse distributed representation (SDR). SDR
is a binary vector with only a small percentage of active bits, typically less
than 2%. The bits in the SDR correspond to the neurons in the neocortex
and are based on the observation that only a small percentage of neurons are
active in the brain at any point in time. The most important property of SDR
is the semantic property. SDRs that have active bits in the same location are
semantically related. The more common active bits, the more semantically they
are similar.

HTM learning algorithms work on SDRs. There are encoders designed
to convert different data types - it could be a GPS location, temperature,
image, time, or just a number - into a SDR that can be recognized by the
HTM algorithm. The key component of HTM networks is the spatial pooler
that continuously encodes streams of inputs into SDRs. The objective of the
spatial pooler is to learn feedforward connections and form efficient input
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Figure 27: Workflow of HTM program anomaly detection.

representations. The learning algorithm in HTM is called temporal memory,
which is responsible for learning sequences of SDRs, which are formed by
spatial pooling algorithm, and making predictions. Temporal memory learns
by storing the transitions in a data stream. The memory of HTM is updated
every time there is a change in input and predicts what to expect next. This
prediction is then compared to what happens next and minimizes the prediction
error, thereby building a predictive model. The main advantage of continuous
learning is that it can adapt to changing patterns on the fly without retraining
outside the device.

Encoder for traced features. In OPADE we capture the following features for
detecting anomalies during program execution:
• Sequence of function calls

• Precise calling location as context

• Number of times the function call is invoked

• Loop execution cycle count
Table 11 shows a partial sample of the collected program execution trace. A

function call with its precise calling context is represented as caller_loc->callee.
The number of times a function is invoked (because it is executed within a
loop) is represented as caller_loc->callee:n, where n indicates the number
of times caller_loc->callee is executed. In Listing 6.2, Line 10 shows the
example of a loop execution that is represented as loop-ID:cycles in traces,
where cycles is the number of cycles it took to execute the loop with identifier
ID.

In OPADE, we use random distributed scalar encoder (RDSE) to encode
the number of times a function is invoked and the loop execution cycle count.
Given a numeric scalar value, RDSE encodes the number into an SDR. The
RDSE encodes input patterns where the on-bits are distributed along the output
of the encoder. The benefit of RDSE is that it does not require a minimum
or maximum of an input range, and the encoding is determined at runtime
[22]. A function call represented as caller_loc->callee is encoded using
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SimHash document encoder (SHDE). A SHDE encodes text and documents
into SDRs. SHDE is a locally sensitive hash algorithm that was first proposed
by Charinikar et al. [27]. The encodings of similar words will share similar
representations of SDRs. The SHDE maintains bitwise similarity by calculating
hamming distance, where the words with small hamming distance have high
overlap.

Program anomaly detection. HTM offers many features which prove to be ad-
vantageous for program anomaly detection: higher-order temporal prediction
abilities, online learning, which can detect anomalies in real-time, and adapt-
ability in a streaming setting which makes the algorithm robust to changes in
the data, as well as noise.

In order to detect anomalies during program execution OPADE runs HTM’s
spatial pooler and temporal memory algorithms. OPADE executes the algo-
rithms periodically with the collected runtime traces. At time t, the encoded
runtime data is fed into the spatial pooling algorithm. Each layer in HTM
network is structured as mini-columns, and the spatial pooling algorithm
activates/deactivates the columns based on the input. The output of spatial
pooling is an SDR. The temporal sequences from this glspl sdr are learned
by the temporal memory algorithm by activating the individual cells in the
mini-columns. The activated cells, in turn, will cause a few other cells to enter
into a predictive state based on the connections between the cells at time t.
At time t+1, when the subsequent encoded data arrives, again the spatial
pooling and temporal memory algorithms are executed. The temporal memory
calculates the anomaly score based on the number of cells in the predictive
state activated in time t+1.

6.4 implementation

The various components of OPADE (see Figure 25) is implemented in the C
programming language. Furthermore, the code in the secure region does not
interact with the outside world, minimizing the attack vector space. This section
highlights several implementation issues.

6.4.1 Source Instrumentation

The C source files of an application are instrumented to collect function entries
with their calling location. For instrumentation, an application is compiled with
the GNU option finstrument-function, which invokes a pre-defined function
during the entry and exit of every function in the application. However, the
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underlying OS and additional library functions cannot be captured with only
source code instrumentation. Hence, when an OS is used, we also capture
system and library calls with its calling locations. We use strace -i for system
calls and ltrace -i for library calls, respectively. Note that no additional
instrumentation is performed for capturing the precise call location.

In order to capture loop execution count, we instrument loop constructs of
C programming language (e.g., for, while). In addition, a Python module is
implemented in order to instrument the loop constructs.

6.4.2 Hierarchical Temporal Memory Algorithm

The HTM architecture (see Figure 26) for anomaly detection is implemented us-
ing the C++ library htm.core. In order to find optimal parameters of HTM for a
given application, we perform an offline parameter optimization. For parameter
optimization, we run an application for 1 hour to collect the traces. Then, we
perform particle swarm optimization to fine-tune the model performance.

6.5 evaluation

We extensively evaluate the performance and detection accuracy of OPADE. In
particular, we address the following research questions:

RQ1: What is the accuracy of OPADE in detecting program behaviour anoma-
lies?

RQ2: How effectively does OPADE detect real-world attacks that cause BCAs?

RQ3: What is the overhead incurred by OPADE?

6.5.1 Experimental Setup

Case studies of embedded applications. In order to evaluate the performance
of OPADE, we consider five real-world embedded control programs. A control
program will sense the environment, perform lightweight processing, and,
depending on the results, act on the actuators present on the device.

fall detection : A simple threshold-based fall detection [17] is implemented
using a 3-axis accelerometer sensor. The application verifies the input creden-
tials and allows an authenticated user to configure the threshold value. The
fall detection algorithm monitors the 3-axis accelerometer values and raises
the alarm if the computed fall value is greater than a configured threshold.
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open syringe : The open syringe application has been widely used in the
literature to showcase various attacks [29, 3, 104]. The application takes user
commands to control the bolus of a fluid-filled syringe. The application ac-
cepts commands to set the quantity of liquid to be dispensed, and commands
to push/pull the syringe by the set quantity value. We use the serial port for
input and output.

mqtt subscriber and publisher : MQTT is a standard messaging proto-
col used in IoT. It is lightweight and designed for low-bandwidth networks
and high-latency networks. MQTT works on the principle of publish/sub-
scribe model with a central broker. We use the open-source MQTT-C im-
plementation, which is written for embedded systems and systems alike
[18]. For all our experiments, we run publisher and subscriber on the target
hardware and simply combine the final results.

mnist : A feed-forward neural network is trained to classify the numbers from
a popular MNIST dataset [73]. The program is written in C. The trained
model is saved on the embedded device, and we run only the prediction
on the device. The program [73] reads 200 images stored in a csv file and
returns a score based on the number of images classified correctly.

activity detection : The application reads the accelerometer and gyro-
scope data from the embedded device and detects if the activity is a walk or a
run. The application uses a 3-axis accelerometer data similar to fall detection;
however, instead of threshold-based detection, a machine learning model is
trained and used for activity detection. We use the open-source code [113] for
training the model and convert it to a TensorFlow-lite model using the C++
library [106]. Finally, prediction using TensorFlow-lite in C++ is performed
on the embedded device.

Choice of hardware. We demonstrate and evaluate OPADE on ARM-based
devices (mainly Raspberry Pi), which are widely popular for building IoT
applications. In addition, we use OP-TEE as the OS for a trusted execution
environment and Linux as the normal world OS. OPADE does not use any
OS-specific features and is designed for bare-metal embedded devices. strace
and ltrace are used in OPADE along with application traces only if they are
available. Otherwise, OPADE instruments all the available source code making
it easily applicable to bare-metal systems.
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Table 12: Code coverage.

Applications Lines Executed Branches Executed Calls Executed

Fall detection 100% 100% 100%
Open Syringe 82.76% 100% 95.45%
mnist 72.83 70.16% 68.7%
tflite 100% 100% 100%
MQTT 66.09% 83% 68.4%

(a) ROC Curve for CFA (b) ROC Curve for CBA

Figure 28: The graph shows the ROC curve indicating the rate of false positives and
true positives when the threshold for anomaly detection is varied. (a) shows
the ROC curve for CFA and (b) shows the ROC curve for CBA for various
applications.

6.5.2 RQ1: Systematic Evaluation Program Behaviour Anomalies

We systematically demonstrate the accuracy of OPADE through ROC and PR
curves.

Data Collection. For systematic analysis, we first collect the data from the
application running on the device to an external system. We then introduce
synthetic anomalies to evaluate the detection accuracy. Next, we execute each
case study application for 1 hour, during which the user interacts with the
applications at random times, and collect the data. The code coverage for each
application is shown in Table 12. We use the open-source Linux tool gcov to
calculate the code coverage. Finally, the average of all the application files is
presented for each application.
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Synthetic Anomalies. We generate three types of synthetic anomalous traces
for each embedded application considered. Given an application trace T of
length N, we generate Ta with the following anomalies:
• CFA: Given T , 10% of N entries are modified to mimic a CFA. We first

generate a set of 20 addresses that is not present in T . To create a CFA, we
randomly choose a function trace entry fx->fy in T and replace the calling
location fx with one of the 20 generated addresses.

• CBA: Given T , 10% of N entries are added to mimic a CBA. First, an
anomaly pool is created by randomly picking 20 function trace entries from
T . To generate the anomalous application trace Ta, we introduce one of the
function trace entries fx->fy from the anomaly pool at a random location
in T .

• CIA: Given T , 5% of loop iteration entries are modified to mimic a CIA.
We randomly choose a loop iteration entry in T and increase the loop cycle
count by m times, where m is a random number between 2 and 10.

Detection accuracy. Figure 28 shows the receiver operating characteristic (ROC)
curve for various applications. The HTM algorithm provides an anomaly score
based on the prediction made at time t− 1 and actual data seen at time t. We
evaluate the rate of false positives and true positives by varying the threshold
to mark a prediction as anomalous based on its anomaly score. As seen in
Figure 28a, the ROC curve for CFA converges sooner because a CFA introduces
a new caller->callee relation and the algorithm can quickly identify with
high confidence. Figure 28b shows that the ROC curve for CBA also converges,
but, at a higher threshold because CBA does not introduce any unknown
caller->callee entry. Instead, the algorithm learns the long-term pattern to
identify CBAs.

6.5.3 RQ2: Real-world Attack Detection

In this section, we evaluate the performance of OPADE in detecting real-
world attacks. We first deploy an application and OPADE on the target device.
Then, at application runtime, we carry out one of the attacks described in the
Section 6.2.2 and present the results of how OPADE detects these attacks at
runtime.

Attack variants.
a1 - redirect control flow to cause cfa : We consider the fall detec-

tion application, which has a buffer overflow vulnerability when it reads a
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Figure 29: For fall detection application, control-oriented, and data-oriented attacks
were carried out during program execution. As a result, we see CFA and CBA
during the attack. The figure shows actual anomalies which are generated
during the attacks and anomalies predicted by OPADE’s HTM algorithm
at runtime. The figure also shows the true positives where HTM predicts
the anomalies correctly when there is an actual anomaly and false positives
where HTM marks a benign control flow as an anomaly.

user input for configuring the threshold value. As an attacker, we falsely trig-
ger a fall alarm even when there is no fall. At application runtime, we exploit
the buffer overflow vulnerability to modify the return address and jump to
the critical function in the program that triggers a fall alarm. Redirecting the
control flow will cause a CFA.

a2 - overwrite decision-making variable to cause cba : In the fall
detection application, as an attacker, we change the threshold value for fall
detection without the required correct credentials. We exploit the buffer
overflow vulnerability in the application to override the decision-making
variable and execute an else block (for authenticated user) instead of if
block (for non-authenticated user).

a3 - increase loop iteration to cause cia : The open syringe applica-
tion exhibits a buffer vulnerability when accepting commands from the user.
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Figure 30: For open syringe application, we carry out a data-oriented attack to dispense
a large quantity of chemicals during program execution. As a result, we
see a CIA during the attack. The figure shows actual anomalies which are
expected during the attacks and predicted anomalies by OPADE’s HTM
algorithm at runtime. The figure also shows the true positives where HTM
predicts the anomalies correctly when there is an actual anomaly and false
positives where HTM marks a benign loop intensity as an anomaly.

When the user enters a required quantity of liquid to be dispensed, the
application checks if the quantity is within the required range. However, as
an attacker, we exploit the vulnerability to change the quantity of liquid to
be dispensed to a very large value outside the verified range.

Detection accuracy. For fall detection application, Figure 29 shows the actual
anomalies CFA and CBA introduced when we redirect the control flow (A1)
and overwrite a decision-making variable respectively. The figure also shows
the anomalies predicted by the online HTM algorithm during runtime. Note
that we consider the first 20 min of the data as a probationary period required
for the algorithm to learn the program behavior. The probationary period can
be increased or decreased depending on the complexity of the application. As
seen in the figure, all the actual anomalies are detected by our HTM algorithm.
However, we observe that the false positive rate is 0.17%.
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Figure 30 shows the actual CIA anomalies seen when we, as an attacker,
carry out an attack to illegally dispense liquid which is 2-10 times higher than
the normal range (A3). The figure also shows the anomalies predicted as CIA
by our system. Again, we consider the first 20 min as a probationary period.
The figure shows that all the actual CIA anomalies are detected by OPADE,
and there is 0.07% of false positives.

6.5.4 RQ3: Overhead

This section presents the static and runtime overhead introduced when execut-
ing OPADE.

Static overhead. We measure the static overhead in terms of increase in binary
size of an application. In this section, we present the static overhead introduced
by OPADE.

Figure 31 shows the original code size of various applications and the ap-
plication code size when compiled with OPADE. OPADE code size overhead
includes tracing functionalities in the non-secure region and anomaly detec-
tion in the secure region. OPADE incurs 11.3% average code size overhead.
The absolute increase in code size ranges from 0.2 to 4.5 KB. The introduced
overhead is very minimal compared to the available program memory on IoT
devices. The increase in code size is not proportional to the original application
code size and depends on the number of functions in the application that are
instrumented. The advantage of using HTM as a learning model is that we
eliminate the need to store a model on the device.

Runtime overhead. Figure 32 shows the overhead caused by running OPADE
on embedded device. The overhead is caused by three major sources: executing
HTM algorithm (encoding and anomaly detection), switching to secure region,
and overhead caused by tracing. For evaluating runtime overhead, we use
Python scripts to feed the inputs to the application program at runtime. The
same script is used with and without OPADE, and we calculate the overall
increase in the runtime execution of a program which is shown in Figure 32.
The figure shows that the overhead caused by OPADE for each application falls
between 2%-5%.

We also evaluated the time taken to execute an individual instance of HTM.
In OPADE the anomaly detector is executed every T sec (ref Figure 25), and for
the evaluated use cases, we choose T = 5. We further explain that the values
of T have minimal to no impact on the runtime overhead but may impact the
detection accuracy. In our evaluation, the time taken to execute a HTM, ht
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Figure 31: The graph shows the code size of various applications with and without
OPADE.

Figure 32: The graph shows the execution time of various applications with and
without OPADE. The runtime overhead includes the overhead introduced
by the HTM algorithm and other components of OPADE, which includes
tracing and context switching overhead.
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over one trace point is 7 ms. If n trace points are generated by an application
within the time window T , then the overall time taken by HTM for the time
period T is ht * n. Since the features collected by OPADE are the same for any
given application, the average ht remains the same. Therefore, T is directly
proportional to n, and varying T will have minimal effect on the overall runtime
overhead.

6.6 conclusion

In this chapter, we proposed OPADE, an online program anomaly detection
technique for embedded IoT devices. OPADE is implemented on trusted hard-
ware, thereby ensuring that OPADE components are secured by design. We
introduced various behavioural control anomalies (BCAs), namely control flow
anomaly (CFA), control branch anomaly (CBA), and control intensity anomaly
(CIA) that are seen when the behavior of a program is altered during the
execution of a program. We also discussed how and which control-oriented
and data-oriented attacks presented in literature cause each of the BCAs.

We implemented an anomaly detection technique that uses HTM to detect
BCAs. The anomaly detection algorithm considers fine-grained function calls
with precise-call sites as a context for function invocations and loop execution
cycle count derived from hardware performance counters. We run OPADE on
synthetically generated anomalous traces and also real-world attacks on the
device to evaluate the accuracy of OPADE in detecting BCAs. In both cases,
OPADE successfully detected all the anomalies. A false positive rate of 0.12%
on average was observed in detecting real attacks. OPADE introduces 11.3% of
static overhead and 3.4% of runtime overhead on average.
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In this dissertation, we presented solutions to detect software attacks targeted
at embedded IoT devices. In this chapter, we summarize the contributions of
the research work carried out as part of this dissertation and outline possible
future research directions.

7.1 dissertation summary

The increase in Internet-connected embedded devices in IoT applications has
made these devices an attractive target for various software attacks. We showed
that the existing mechanisms in detecting software attacks have limited appli-
cability for embedded devices due to their high overheads, chosen platforms,
and attacks detected. The main objective of this dissertation is to build trust-
worthy and reliable IoT applications by detecting software attacks and securing
embedded IoT devices.

The proposed solutions addressed two major security goals:
Part I The first part discussed the solution to detect software tampering attacks.

In IoT applications where the embedded devices interact with each other
to collectively perform specific tasks are deployed as small or large-scale
networks. In Chapter 4, we presented SWARNA to collectively verify the
integrity of the software running on remote IoT devices employing remote
attestation. Existing works on swarm attestation require trusted hardware,
whereas SWARNA is a pure software-based solution for swarm attestation.
Software-based attestation solution works on the principle of time guar-
antees. Hence, we also designed deterministic communication paths for
attestation that enforces strict time bounds across multi-hop networks using
IEEE 802.15.4 time-slotted MAC protocol. We also showcased that SWARNA
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is secure against various network attacks and can successfully detect the
presence of passive and active malware on the devices.

PART II The second part focused on detecting runtime software attacks. We proposed
two secure program anomaly detection techniques that run on embedded
devices to detect memory corruption attacks that occur during the run-
time execution of a program. In Chapter 5, we presented SPADE to detect
control-oriented attacks and stealthy attacks such as aberrant path and
mimicry attacks. Control-oriented attacks introduce illegal control flows,
and stealthy attacks resemble normal execution without introducing any
illicit control flows. To detect the attacks, we implemented a GRU-based
anomaly detection algorithm with precise call sites as a context for function
invocations. In Chapter 6, we first introduced the definition of BCA, an
anomaly seen during program execution that affects the behaviour of the
program by modifying one or several control aspects of the program. Then,
we presented an HTM-based online program anomaly detection algorithm
to detect various types of BCAs. The runtime overhead to execute a single in-
stance of HTM is constant, irrespective of the application. However, a single
GRU inference time depends on application complexity and is higher than
HTM. Due to the complexity of the underlying machine learning technique,
OPADE can run on devices with Cortex-A processors or processors with
higher processing abilities. In contrast, SPADE can run on tiny embedded
devices with Cortex-M processor (processing capabilities and memory size:
Cortex-M < Cortex-A).

7.2 future research directions

We outline some possible future research for which this dissertation acts as a
groundwork.

Hybrid Attack Detection for IoT:. In this dissertation, we presented techniques
for on-device attack detection and remote attack detection using a trusted
verifier. Some works use remote verification in the literature to detect memory
corruption attacks and not just software tampering attacks [104, 35, 120]. How-
ever, the limitation remains in identifying the time to trigger the verification
before the attack goes unnoticed (TOCTOU [88]) and late detection of an attack
where the catastrophic effect has already occurred.

Anomaly detection and remote attestation for memory corruption attacks
require traces of various features during program execution. Partial traces of
these features can be used locally on the device for low overhead anomaly
detection, and the result can be used as a trigger for the device to send the
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full traces to a remote verifier. The remote verifier, which does not have any
resource constraints, can extensively investigate if there was an attack with
high confidence and accuracy. However, it is challenging to maintain and verify
the possible runtime states of the IoT device.

Reinforcement learning for parameter tuning:. In machine learning, hyper-
parameter tuning is an omnipresent problem. We can implement a fully au-
tonomous system with on-device anomaly detection and online learning algo-
rithms like HTM. However, the issue of hyper-parameter tuning needs to be
addressed for deploying an autonomous system. Reinforcement learning can
be used to include user feedback and optimize the hyper-parameters, thereby
adapting the algorithm to firmware updates. Some initial works in this direc-
tion optimize the parameters based on the model loss [67], which needs to be
adapted to derive and incorporate user knowledge.

However, it is crucial to keep the overhead minimal for IoT devices; hence,
we can combine reinforcement learning with hybrid attack detection. When we
have a hybrid approach, the opportunities are endless. For example, we can use
reinforcement learning on a remote server to include user feedback regarding
anomalies. We can also use federated learning to optimize the parameters and
send the learnt parameters to the end-device [63].

Research in attacks side effects. A BCA is introduced when there is an illegal
control path, a data variable is altered that executes a legal-but-incorrect branch,
or the altered variable affects the loop execution. Although by identifying BCAs,
we can detect a large class of attacks, the attacks that do not introduce any BCA
will go unnoticed. An attacker may inject a small amount of chemical several
times instead of a large amount one single time or even exploit an integer
overflow vulnerability to allocate more than the required memory to carry out
an attack [122]. Research exploring the side effects caused by such attacks is
required to detect the attacks efficiently. E.g., monitoring stack or heap usage,
especially monitoring the pattern of heap allocation and deallocation, may
indicate an illegal use of heap allocation.
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