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Kurzfassung

Heutzutage konzentriert sich die mobile Kommunikation hauptsächlich auf die mensch-

liche Kommunikation, wie Textnachrichten, Video- und Sprachanrufe und die Übertra-

gung großer Datenmengen für z. B. Audio- und Video-Streaming-Anwendungen.

Audio- und Videokommunikation erfordern mäßige Latenzzeiten und niedrige oder

mittlere Datenraten, während die Übertragung großer Dateien im Allgemeinen hohe

Datenraten erfordert, aber auch mit hohen Latenzzeiten zurechtkommen könnte.

Neben Modi mit noch höheren Datenraten und mehr Geräten pro einzelner Zelle im

Vergleich zu früheren Generationen wird der aktuelle 5G-Mobilfunkstandard mehr

Anwendungen aus der Regelungstechnik ermöglichen, da niedrige Latenzen und

garantierte maximale Fehlerraten für sogenannte Wireless Networked Control Sys-

tems (WNCS) erforderlich sind. Der neue 5G-Standard berücksichtigt WNCS in seinem

Ultra-Reliable Low Latency Communication (URLLC)-Szenario, das eine niedrigratige

Kommunikation mit minimaler Latenz und verbesserter Fehlerkorrektur für diese

spezielle Art der Kommunikation mit viel kleineren Datenmengen im Vergleich zu an-

deren Szenarien bietet. Die genauen Anforderungen an Latenzzeit, maximale Fehler-

wahrscheinlichkeit und Datenrate werden durch die Dynamik der jeweiligen Anlagen

bestimmt. Ein geschlossenes Regelsystem besteht aus drei Hauptkomponenten: Re-

gler, Regelstrecke und Sensor. Der Regler sendet auf der Grundlage des geschätzten

Streckenzustands Steuerbefehle an das Stellglied in der Regelstrecke. Das Stellglied

setzt die Befehle um und ändert so den Zustand der Regelstrecke. Der Sensor sendet

Messungen des Streckenzustands zurück an den Regler, um die Rückkopplungsschleife

zu schließen. Die drahtlose Übertragung kann dann entweder zur Übermittlung von

Sensorwerten an den Regler, zur Übermittlung von Steuerbefehlen vom Regler an das

Stellglied in der Strecke oder sogar für beides verwendet werden. Wenn mehrere Teil-

systeme auf denselben drahtlosen Kommunikationsressourcen betrieben werden, muss

ein Mehrfachzugriffsschema zur Vermeidung von Störungen implementiert werden, das

auch den Zustand und die Anforderungen des Regelungssystems berücksichtigt. Dies

kann entweder zentral erfolgen, wobei eine zentrale Instanz die Ressourcen den einzel-

nen Teilsystemen zuweist, oder dezentral, wobei die einzelnen Teilsysteme kooperativ

handeln.

Ein wesentliches Element der Regelungstheorie ist die möglichst genaue Kenntnis des

Systemzustands durch den Sensor und die anschließende Übertragung an den Regler,

damit dieser die optimale Stellgröße zur Minimierung einer von der jeweiligen Anwen-

dung abhängigen Kostenfunktion erzeugen kann. Für die Übertragung über einen dig-

italen Kommunikationskanal wird der Anlagenzustand, der als Vektor kontinuierlicher
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Werte modelliert werden kann, zunächst erfasst und muss anschließend in digitale Sym-

bole übersetzt werden. Bei diesem Prozess gibt es zwei Hauptfehlerquellen. Erstens

werden die Messungen selbst durch das Messrauschen beeinträchtigt. Der aus diesem

Rauschen resultierende Fehler kann verringert werden, wenn mehrere unabhängige Mes-

sungen desselben Wertes vorgenommen und kombiniert werden. Zweitens ist die Anzahl

der verfügbaren Symbole, die in einem festen Zeitrahmen mit einer festen Datenrate

übertragen werden können, begrenzt, so dass die Werte quantisiert werden müssen. In

dieser Arbeit wird gezeigt, dass es ein Optimum im Kompromiss zwischen der Anzahl

der verrauschten Messungen und der Anzahl der verfügbaren Sendesymbole mit einer

jeweils gleichen Anzahl von Bits gibt, wenn die insgesamt verfügbare Zeit oder Energie

begrenzt ist und durch den Mess- und den Sendeprozess nacheinander genutzt wird.

Da Gebiete des kontinuierlichen Zustandsraums vor der Übertragung auf ein einziges

Symbol abgebildet werden, gehen durch die Quantisierung Informationen über den

Systemzustand verloren. Generell gilt: Je mehr unterscheidbare Symbole in der Kom-

munikationsverbindung vom Sensor zum Controller zur Verfügung stehen, desto kleiner

ist der resultierende Quantisierungsfehler. Das zur Quantifizierung des Fehlers verwen-

dete Maß ist das Bayes-Risiko. Um die Informationen über den von jedem Symbol

übertragenen Systemzustand zu erhöhen, wird ein Schema nicht-äquidistanter Quan-

tisierungsintervallgrenzen abgeleitet, das den Quantisierungsfehler für eine gegebene

Anzahl von übertragenen Datensymbolen und eine bekannte Verteilung möglicher Sen-

sorwerte minimiert. Da das Optimierungsproblem für dieses Schema rechenintensiv

ist, wird ein zweites Schema implementiert, das lediglich die Wahrscheinlichkeit aller

möglichen Übertragungsdatensymbole ausgleicht. Schließlich wird eine äquidistante

Abtastung des Sensorwerteraums für eine gegebene Anzahl von Sendedatensymbolen

mit den beiden vorhergehenden Schemata verglichen, um eine Basislinie zu erhalten.

Durch Anwendung der drei Verfahren auf drei verschiedene Verteilungen eines skalaren

Sensorwerts kann gezeigt werden, dass das informationsoptimale Verfahren im Vergle-

ich zum linearen Verfahren bei gleichem Bayes-Risiko bis zu 20 % der erforderlichen

Bits einsparen kann. In den meisten Fällen erreicht das äquidistante Schema etwa

die Hälfte der Reduktion des Bayes-Risikos, die das informationsbasierte Schema im

Vergleich zum äquidistanten Schema erreicht.

Wenn mehrere Teilsysteme mit einzelnen Sensoren und Anlagen um drahtlose Kom-

munikationsressourcen in WNCS konkurrieren, reichen die Ressourcen in manchen Sit-

uationen nicht aus, um immer Sensormesswerte von allen Sensoren zu einem zentralen

Regler zu übertragen. In diesem Fall muss eine Teilmenge von Sensoren ausgewählt

und die verfügbaren Ressourcen müssen auf diese verteilt werden, um Interferenzen

zwischen den Übertragungen zu vermeiden. Bei einem zentral geplanten, zeitdiskreten

System kann eine zentrale Stelle die Sensoren auswählen, von denen in den jeweili-
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gen Zeitschlitzen Messwerte angefordert werden sollen. Für die jeweils nicht aus-

gewählten Teilsysteme muss eine Vorhersage des aktuellen Zustands gemacht werden.

Die Regelungsleistung hängt von der Minimierung der Unsicherheit über den aktuellen

Systemzustand ab, der als weißes Gaußsches Systemrauschen modelliert wird, wobei

die Varianz des Rauschens ein Maß für die Unsicherheit ist. Zu diesem Zweck wird

die Optimalität eines regelmäßigen Aktualisierungsschemas für lineare Teilsysteme mit

additivem weißem Gaußschen Rauschen gezeigt. Danach wird der optimale Anteil

der Kommunikationsressourcen für jedes Teilsystem bei einer gegebenen Gesamtzahl

von Kommunikationsressourcen abgeleitet. Die berechneten Ressourcenanteile für die

Subsysteme aus dieser Optimierung werden dann einem Algorithmus zur Planung der

tatsächlichen Übertragungen zugeführt. Dieser zweistufige Ansatz ermöglicht eine

Offline-Berechnung der Ressourcenanteile, während zur Laufzeit nur die tatsächliche

Planung auf der Grundlage der vorberechneten Anteile erfolgen muss. Die durch-

schnittliche Unsicherheit über die Subsystemzustände wird im Vergleich zu bestehen-

den Planungsalgorithmen um bis zu 20 % reduziert. Darüber hinaus verringert sich die

Schwankung der Unsicherheit über die Teilsystemzustände im Zeitverlauf um bis zu

60 %.

Schließlich wird die Verringerung des Energieverbrauchs der drahtlosen Übertragung

von Steuerbefehlen an die Stellglieder in den Regelstrecken untersucht. In Regelungsan-

wendungen müssen die berechneten Regelgrößen, die vom Regler an die Stellglieder

gesendet werden, innerhalb einer systemabhängigen Frist korrekt geliefert werden.

Diese drei Anforderungen stehen in Konkurrenz zueinander, so dass ein Kompromiss

gefunden werden muss. Da die Datenpakete, die die Befehle enthalten, klein sind,

wird statt der bekannten Shannon-Kapazitätsformel für unendliche Paketlängen eine

angepasste Formel für kurze Pakete angewendet, um die erforderliche Energie zu bes-

timmen. Die angepasste Formel kann dann verwendet werden, um die optimale An-

zahl von Zeit-Frequenz-Ressourcen für einen minimalen Gesamtenergieverbrauch zu

finden, die für eine einzelne Übertragung zugewiesen werden müssen. Für das resul-

tierende Optimierungsproblem, das die individuellen Fristen, Befehlspaketgrößen und

Kanaleigenschaften jedes Agenten berücksichtigt, wird die Konvexität gezeigt. Die

berechnete optimale Verteilung der begrenzten Zeit- und Bandbreitenressourcen auf

die einzelnen Subsysteme bei minimalem Energieverbrauch wird dann unter Zuhilfe-

nahme eines Orthogonal Frequency Division Multiplex (OFDM)-Schemas angewendet.

Da OFDM keine kontinuierliche, sondern nur eine auf Ressourcenblöcken basierende

Aufteilung der Ressourcen erlaubt, wird ein Algorithmus für die Zuteilung von Zeit-

und Frequenzblöcken aus dem OFDM-Schema entwickelt und gezeigt, dass er nahe an

die theoretischen Grenzen der kontinuierlichen Lösung herankommt. Im Vergleich zu

einem Schema, das nur die Gesamtzahl der jedem Agenten zugewiesenen Zeit-Frequenz-
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Ressourcen ausgleicht, wird bei Anwendung des vorgeschlagenen Schemas die erforder-

liche Gesamtenergie zur Einhaltung der Fehlerraten- und Übertragungszeitgrenzen um

bis zu 50 % reduziert.



V

Abstract

Today, mobile communication is mainly focused on human communication, like text

messaging, video and voice calls, and the transmission of large data volumes for e.g.

audio and video streaming applications. Audio and video communication require mod-

erate latencies and low or medium data rates, while the transmissions of large files

generally require high data rates, but could also cope with high latencies. In addi-

tion to modes with even higher data rates and more devices per single cell compared to

previous generations, the current 5G mobile radio standard will allow for more applica-

tions from the control domain, since low latencies and guaranteed maximum error rates

are required for so-called Wireless Networked Control Systems (WNCS)s. The new 5G

standard considers WNCS in its Ultra-Reliable Low Latency Communication (URLLC)

scenario, which provides a low-rate communication with minimal latency and improved

error correction for this special type of communication with much smaller amounts of

data compared to other scenarios. The exact requirements on latency, maximum error

probability and data rate are determined by the dynamics of the respective plants. A

closed-loop control system consists of three main components, controller, plant and

sensor. The controller sends control commands to the plant, based on the estimated

plant state. The plant then applies the commands, thus changing its state. The sensor

transmits measurements of the plant state back to the controller to close the feedback

loop. Wireless transmission can then be used to transmit either sensor values to the

controller, transmit control commands from the controller to the actuator at the plant,

or even for both. If multiple subsystems are operated on the same wireless communi-

cation resources, a multiple access scheme to prevent interference, which considers also

the state and demands of the control system, has to be implemented. This can be done

either in a centralized fashion, where a central entity allocates the resources to the

individual subsystems, or in a decentralized fashion, where the individual subsystems

act cooperatively.

A crucial element in control theory is the acquisition of as accurate as possible knowl-

edge of the system state by the sensor and the subsequent transmission to the controller

to enable it to generate the optimum control input to minimize a cost function, which

depends on the respective application. For the transmission over a digital communica-

tion channel, the plant state, which can be modeled as a vector of continuous values,

is first sensed and has to be translated to digital symbols afterwards. There are two

main sources of error in this process. First, the measurements themselves are impaired

by the measurement noise. The error resulting from this noise can be reduced, if mul-

tiple independent measurements of the same value are taken and combined. Second,

the number of available symbols, which can be transmitted in a fixed time frame with
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a fixed data rate, is limited, so the values have to be quantized. In this thesis, the

existence of an optimum in the tradeoff of the number of noisy measurements and the

number of available transmit data symbols with an equal number of bits is shown, if

the available time or energy is limited and shared by the measurement and the trans-

mission process. Since domains of the continuous state value space are mapped to a

single symbol before transmission, information about the system state is lost due to the

quantization. Generally, the more distinct symbols are available in the communication

link from the sensor to the controller, the smaller is the resulting quantization error.

The measure applied to quantify the error is the Bayes risk. To increase the infor-

mation about the system state carried by each symbol, a scheme of non-equidistant

quantization interval bounds, minimizing the quantization error for a given number of

transmit data symbols, and a known distribution of possible sensor values is derived.

Since the optimization problem for this scheme is computationally demanding, a sec-

ond scheme purely equalizing the probability of all possible transmit data symbols is

implemented. Finally, as a baseline, an equidistant sampling of the sensor value space

for a given number of transmit data symbols is compared to the previous two schemes.

By applying the three schemes to three different distributions of a scalar sensor value,

it can be shown that the information-optimal scheme can save up to 20 % of the re-

quired bits for the same Bayes risk, when compared to the linear scheme. In most of

the cases, the equidistant scheme achieves about half of the reduction of Bayes risk the

information based scheme achieves, when compared to the equidistant scheme.

If multiple subsystems with individual sensors and plants are competing for wireless

communication resources in WNCS, in some situations the resources are insufficient to

always transmit sensor readings from all sensors to the central controller. In this case,

a subset of sensors has to be selected and the available resources have to be distributed

to them to prevent interference between the transmissions. With a centrally scheduled,

discrete time system, a central entity can select the sensors to request readings from in

each time slot. For the non-selected subsystems, a prediction of the current state has to

be made. The control performance depends on minimizing the uncertainty about the

current system state, which is modeled as a white Gaussian system noise, where the

variance of the noise is a measure for the uncertainty. For this purpose, the optimality

of a regular update scheme for linear subsystems with additive white Gaussian noise is

shown. After that, the optimum communication resource share for each subsystem for

a given number of communication resources is derived. The calculated resource shares

for the subsystems from this optimization are then fed to an algorithm to schedule the

actual transmissions. This two-step approach allows for an offline calculation of the

resource shares, while during runtime only the actual scheduling based on the precal-

culated shares has to be done. The average uncertainty about the subsystem states is



VII

reduced by up to 20 % compared to existing scheduling algorithms. Furthermore, the

variation over time of the uncertainty about the subsystem states is reduced by up to

60 %.

Finally, the reduction of the energy consumption of the wireless transmission of control

commands to the actuators at the plants is investigated. In control applications, the

calculated control inputs sent from the controller to the actuators must be delivered

correctly before a system-dependent deadline. These three requirements are compet-

ing, so a tradeoff has to be found. Since the data packets containing the commands are

small, instead of the well-known Shannon capacity formula for infinite packet length,

an adapted formula for short packets is applied to determine the required energy. The

adapted formula can then be used to find the optimum number of time-frequency re-

sources for minimal total energy consumption to be allocated for a single transmission.

The resulting optimization problem considering the individual deadlines, command

packet sizes and channel characteristics of each agent is shown to be convex. The

derived optimal distribution of the limited time and bandwidth resources to the indi-

vidual subsystems for minimal energy consumption is then applied using an Orthogonal

Frequency Division Multiplex (OFDM) scheme. Since OFDM does not allow for a con-

tinuous, but only for a resource-block based splitting of resources, an algorithm for the

allocation of time-frequency blocks from the OFDM scheme is developed and shown to

perform close to the theoretical bounds from the continuous solution. Compared to a

scheme only balancing the time-frequency resources allocated to each agent, the total

required energy to fulfill the error rate and transmission time limits is reduced by up

to 50 % when applying the proposed scheme.
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1

Previously Published Material

This thesis contains material that has been previously published in scientific confer-

ences. Table 1 summarizes the papers relevant for the content of this thesis. This is

done in order to make correct use of the gathered data and previous results as well

as the reused text passages. A comprehensive list of all scientific publications of the

author of this thesis is available in Chapter 5.2 at the end of the thesis.

The pronoun “I” will be used exclusively in this chapter to describe the specific contri-

butions of the author of this thesis. For the remainder of the thesis, the pronoun “we”

will be used to refer to the contribution of all co-authors of the respective publication.

In Chapter 2, “Sensor Value Quantization and Transmission”, the influence of the

number of measurements and quantization accuracy of a quantizing sensor on the er-

ror between the true value, which is measured by a sensor and then transmitted over

a wireless link, and the value reconstructed from the received quantized measurements

was investigated. The model and part of the mathematical derivations and numerical

results were already presented in [KASK19]. In [KASK19], I derived the stochastic

properties of each step for an arbitrary distribution of the value of interest in the pro-

cessing chain. Based on these results, I suggested a quantization scheme to maximize

the mutual information between the measured and the estimated value of interest. In

this thesis, the quantization scheme is improved further to minimize the actual esti-

mation error. This new scheme is then compared to the scheme from [KASK19] and a

non-optimized scheme.

In Chapter 3, “Scheduling of Sensor Readings with Constrained Communication“, I

optimized the scheduling of sensor value transmissions for minimum state estimation

error at a central controller to achieve optimal control performance in linear control

Table 1: List of publications related to this thesis

Chapter Publication
Chapter 2: Sensor Value Quantization
and Transmission

[KASK19]

Chapter 3: Scheduling of Sensor
Readings with Constrained
Communication

[KK20]

Chapter 4: Deadline-Aware Control
Command Transmission

[KOK21]
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subsystems. The model, optimization problem and scheduling algorithm as well as part

of the results were already shown in [KK20], which is in turn based on the model from

[AVK+19]. This thesis extends the results for a single set of subsystem parameters

from [KK20] by investigating the performance of the scheduling algorithm for different

system parameters for the linear subsystems. Therefore, in addition to [KK20], different

ratios of higher and lower dynamic systems as well as completely random parameter

sets are investigated in this thesis.

Chapter 4, “Deadline-Aware Control Command Transmission“, is about the allocation

of time-frequency resources for the timely reception of control commands sent from

a central controller to multiple agents. The agents have individual deadlines, which

determine the maximum allowable time after command generation to receive the com-

mand correctly. For the short-packet nature of control commands the approximation

from [PPV10] is used. The convexity of the required energy was shown in [SSY+19],

which allowed me to rewrite the problem as a convex optimization problem. While

the model, problem and the algorithm are already shown in [KOK21], in this thesis I

extend the numerical results to include also different total available bandwidth config-

urations, which result in a higher number of available resources to illustrate the effects

of a less constrained environment compared to the scenario shown in the paper.
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Chapter 1

Introduction

1.1 Communication and Control

The current roll-out of 5G mobile networks will greatly influence the types of services

used over mobile networks [KK20]. Nowadays, the Internet of Things (IoT) receives

growing attention from many different research fields, e.g. industrial communication

[WSJ17] or connected cars [PFL+16], [KASK19]. While the growth of the number

of personal devices is already slowing down, the fraction of traffic of autonomous de-

vices communicating with each other is rapidly growing [Cis19], [KK20]. Currently,

most IoT devices serve as home appliances, building control or environmental sensors

[Cis20], [KOK21]. While previous generations of mobile networks focused on human

users and high data rates, 5G networks will also provide communication channels par-

ticularly suited for industrial communication and control applications [WSJ17], as well

as connected cars and autonomous driving [PFL+16], [KK20]. The enormous amount

of additional smart devices deployed will greatly increase the number of devices per

area [GRC+14], [KASK19]. Despite the ever-growing number of devices per cell and

increased data rates, also latency and reliability guarantees can be established [SYQ17].

This allows for new services, especially from the control domain, which heavily depend

on latency guarantees [TC03], [KK20]. Many devices will act as autonomous agents and

not only do sensing, but also cooperate to fulfill tasks [YSL13]. Most of them will use a

wireless connection for communication, which results in increasing competition for the

available communication resources like frequency bands. The sensors will be used for

sensing many different types of values like temperature, humidity, air pressure, filling

levels of tanks, positions, or velocities [KASK19]. One important application from the

control domain is autonomous driving, where information from sensors in the vehicles

and along the road has to be transmitted between vehicles and central entities to man-

age traffic. Obviously, the amount of data to be exchanged varies heavily, depending

on the number of vehicles per area, the weather conditions etc [KK20].

For Industry 4.0, a shift to wireless instead of the current wired connections is de-

sired. Wireless systems are rapidly reconfigurable and can be easily adapted to current

production requirements [KK20]. Recent developments in industrial automation intro-

duce wireless communication to production facilities for e.g. real-time monitoring or
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process control [KRZ+20]. In IoT for industrial manufacturing, called Industrial In-

ternet of Things (IIoT), devices are part of industrial production processes and, there-

fore, directly embedded into control loops, which impose different demands on wireless

communication systems compared to previous applications like voice, web browsing

and video streaming [KOK21]. The real-time requirements of industrial control sys-

tems imply challenges on the communication system design very different from previous

generations of communication systems. The control counterpart also has to be adapted

to the specific characteristics of wireless connections. Current control systems rely on

high data rates, low latency, and low error probabilities [KK20]. In control, the data

amounts are small, in the order of tenths or a few hundred bytes, while the constraints

on latency and packet error rate are even tighter than in other fields. Packet error rates

as low as 10−9 and latencies of less than 0.25 to 5 ms are required [SMK+17]. The new

5G mobile radio standard is the first to define requirement profiles for these use cases

[3GP19], [KOK21].

The combination of control and wireless communication systems, called Wireless Net-

worked Control Systems (WNCS), is an important area of current research, especially

the joint optimization of both, to adapt either part to possibly varying conditions of

each other. If, for example, an autonomous vehicle drives along a straight and empty

road, the communication can be reduced. In a crowded city scenario with a lot of

intersections, the communication effort is much higher. At the same time, the speed

of the vehicle can be adapted to the available communication resources [KK20].

WNCS are composed of subsystems which communicate over a shared wireless com-

munication channel to exchange sensor values and control commands. The subsystems

either work cooperatively to achieve a common task, or they compete for communica-

tion and other resources [KK20]. In the aforementioned autonomous driving example,

the subsystems are, for example, a lane keeping subsystem, a subsystem for keeping

the distance to the preceding vehicle and so on. In the connected cars application,

multiple vehicles exchange data to form platoons or reduce distances in intersections.

In all cases, the sensors need to transmit data like the position of the road marking or

the distance of the preceding vehicle to the corresponding controller. Inside a vehicle

this can either be done over a bus system, like the widely used CAN-Bus [ISO15], or

also a wireless network of all components. Between different vehicles or elements of

the infrastructure, as discussed in [3GP15], a wireless transmission is required.

In the industrial domain, there are many different types of plants [BHCW18],

[KRZ+20]. Like in the autonomous driving example, the requirements on the con-

trol loop depend on the type of tasks to be fulfilled. While there are tasks like heating

and stirring large volumes of liquid, which is an inherently slow process [Lun16a], there
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are other tasks, which might involve moving machines, which have more demanding

requirements on the reaction time and precision of the underlying control system. In

either case, the available transmission resources are limited and shared between the

subsystems. In a digital control system, the data rate transmitted by a sensor depends

on two factors, the resolution of the sensed value and the update rate. Both of these

parameters influence the ability of the controller to know the current subsystem state,

which is crucial for an optimal control action. For the second link from the controller

to the actor, the relation is similar, the finer the resolution of the control input and

the more often a new control input is sent, the higher is the required data rate. Also

for this link, the finer the resolution and the higher the control input update rate, the

closer is the applied control input to the calculated optimum, which improves the con-

trol performance. The control performance describes the difference between the true

subsystem state and the desired state. For the lane keeping example above the control

performance could be the distance of the center of the vehicle from the center of the

lane, for the distance keeping example the difference between the desired and the true

distance.

WNCS can generally be divided into two types, centralized and decentralized, as shown

in [GYH17]. In both types, the subsystems of decentralized WNCS compete for com-

munication resources in a shared communication medium such as a frequency band. For

the decentralized type, a multiple-access scheme has to be implemented, which allows

the individual subsystems to prevent collisions on the medium without central coor-

dination. The centralized type has an additional central scheduler, which coordinates

the multiple access and centrally allocates the available resources to the subsystems.

This central allocation reduces the complexity of the scheduling process and leads,

in general, to a better exploitation of the available resources, e.g. transmission time,

bandwidth for wireless communication e.t.c., especially if these resources are scarce.

This thesis will therefore only consider the centralized type of WNCS. The wireless

Controller

Plant Sensor

Wireless 
Channel

Wireless 
Channel

Figure 1.1: The general layout of a wireless networked control system

link can be either on the connection from the sensor to the controller or from the

controller to the actuator at the plant. Fig. 1.1 illustrates the possibilities, either of
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the links or even both can be wireless. Examples for sensors remote from the plants

might be cameras, e.g. for scanning the road marking in autonomous driving, infrared

thermometers or ultrasonic distance sensors, e.g. for measuring the distance to the

preceding vehicle.

1.2 Open Issues

Based on the general problems identified in the previous section, we have identified

several research questions not yet covered by existing literature. Since the topics in

the following chapters are related, but the focus is individual, the relevant literature

will be discussed in the beginning of each chapter.

In the first step, a sensor takes measurements, which are required by the controller to

assess the subsystem state and generate control inputs accordingly. If this wireless link

is limited in capacity, the following questions arise:

1. How to adapt the transmission data rate between sensor and controller to the

current state of the respective subsystem? Which reduction in data rate is possi-

ble, if only a certain accuracy of the quantity of interest is required by the current

subsystem state?

2. What is the influence of the initial measurement error of the sensor and the error

introduced by quantizing the measured quantity on the final subsystem state

estimation error at the controller?

If there are multiple subsystems competing for transmission resources, it might be

not possible to transmit sensor values constantly for all subsystems, if the available

communication resources are insufficient. Instead, only part of the subsystems can

transmit a new sensor reading to the controller at a time, while the others will have to

wait. This impairs the ability of the controller to observe the subsystem states, which

ultimately leads to a suboptimal control input. Facing this situation, we identified the

following questions:

3. How can we improve on the knowledge of the controller about the subsystem

states, if there are not enough resources to transmit an update of each subsystem

sensor to each controller permanently? Is there a simple scheme to follow, which

takes the different characteristics of subsystems into account, which does not

require exhaustively checking all possible subsets of subsystems for transmission?
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4. How to select subsystems for state transmission, if the age of the previously sent

information and the subsystem characteristics are equal?

Finally, the controller has decided for a control input to the plant. Now, if this input has

to be transmitted over a shared communication medium, the real-time properties of this

medium are influenced by all subsystems jointly. We investigated, how this problem

can be tackled in an Orthogonal Frequency Division Multiplex (OFDM) system, which

results in these questions:

5. What are the implications of the very small amounts of data such commands are

comprised of?

6. How should time-frequency resources be allocated to reduce the energy required

to transmit commands to multiple agents at a time, while each agent has a certain

deadline to receive the command?

1.3 Contributions and thesis overview

This thesis will focus on centralized WNCS, where the allocation of communication

resources is carried out by a central scheduler. While the exact system models in the

following chapters will differ, a common property is the central controller working with

one or more agents. Generally, each agent comprises a control loop, which consists of

a sensor, a controller, and a plant, like shown in Fig. 1.1.

First, only the link from the sensor to the controller will be considered in Chapter 2.

The available communication resources on this link are assumed to be limited in the

available transmit time or energy. To assess the influence of these reduced resources

on the plant state estimation at the controller, in a first step, the acquisition of sen-

sor data from the plant by the sensor, the subsequent wireless transmission to the

controller and, finally, the plant state estimation at the controller is investigated and

adapted to the available resources. Therefore, the quantization and mapping of the

continuous plant state to a data word is adjusted to reduce the state estimation er-

ror at the central controller addressing issue No. 1 from Section 1.2. There are two

sources of the estimation error at the controller, the measurement noise at the sensor

itself and the quantization error caused by the translation to data words. While the

measurement noise can be tackled by combining multiple independent measurements,

the quantization error can be reduced by increasing the number of different data words
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and, hence, quantizations steps. In a second step, we show that there is a tradeoff

between the number of measurements to average over at the sensor, which reduces the

measurement error at the sensor, and number of quantization steps, which allows for a

finer resolution of the transmitted values to reduce the quantization error, if the total

time or energy available for taking measurements and transmit them is limited. The

tradeoff is shown to have a pareto-optimal solution for minimal estimation error at the

central controller, addressing issue No. 2.

Controller

Sensor

Wireless 
Channel

Wireless 
Channel

Pnt
Plant

Sensor
Sensor

Figure 1.2: The layout of a wireless networked control system with multiple subsystems
and wireless command and sensor value transmission

In Chapter 3, multiple subsystems, each consisting of a plant and a sensor, which are

controlled by a central entity, share wireless transmission resources for sensor value and

control command transmission, as depicted in Fig. 1.2. The subsystems are assumed

to be scalar and linear. The focus in this chapter is on the central scheduler at the

controller itself. The scheduler now has to coordinate the sensor value and control

command transmissions of all the subsystems, each consisting of a linear plant with

Gaussian system noise and a sensor. The control goal in Chapter 3 is to steer each

plant to an equilibrium state. To calculate optimal control inputs, which minimize

the deviation from the equilibrium state, the controller must have information about

each of the plant states, which is gathered by the corresponding sensors [Lun16b]. If

multiple subsystems are to be monitored, the wireless communication resources have

to be split and, thus, a scheduling of the updates sent from the sensor to the controller

is needed to prevent collisions of the transmissions. If the available communication

resources are insufficient to always transmit updates from all sensors, a prioritization

has to be implemented. Based on the deviation from the control goal as the optimality

measure, an adapted update scheme for the sensor readings is derived, considering

the individual system constant of each subsystem and the system noise levels, like in

question No. 3 from Section 1.2. We show that the optimum update scheme for the

considered scalar linear subsystems is a regular update scheme, where the update rate

is calculated based on the subsystem characteristics. To apply this optimum rate, we

present a scheduling algorithm, which distributes the inevitable deviation from this

calculated optimum rate, which is induced by integer effects to all subsystems, equally,
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considering the time passed since previous transmissions for the same subsystem and,

thus, tackling question No. 4.

Controller

Plant

Sensor

Wireless 
Channel

Figure 1.3: The layout of a wireless networked control system with wireless command
transmission

The transmission of commands to the individual agents is then further investigated

in Chapter 4. The considered system layout is shown in Fig. 1.3. The mentioned

requirements of control systems, like minimizing the amount of data transmitted while

maintaining required low latency, are considered by applying a correction term derived

in [PPV10] to the well-known Shannon capacity formula. The Shannon capacity is

only valid for infinitely long code lengths, which is approximately true for systems

transmitting larger amounts of data or over longer times. The correction term from

[PPV10] introduces an allowable probability of error to cope with the short packages.

Based on this correction, an optimum time-frequency resource allocation for an OFDM

system, considering individual command deadlines for each agent, is found.
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Chapter 2

Sensor Value Quantization and
Transmission

Several parts of the content of this section have been originally published by the au-

thor of this thesis in [KASK19]. This paragraph shall illustrate the previous work from

[KASK19], the relation to and the additional work presented in this chapter. Espe-

cially the model and the derivations of the probability density functions, as well as the

results for the entropy based quantization scheme have already been published. Ex-

tending [KASK19], another adaptive nonlinear quantization scheme is introduced for

even better estimation results, compared to [KASK19]. As a benchmark for both non-

linear schemes, a fixed linear quantization scheme is employed and shown to be inferior

to the proposed nonlinear schemes. Furthermore, results for different distributions of

the parameter of interest are shown.

2.1 Introduction

This chapter considers the wireless transmission of values from the sensor to the con-

troller over a wireless channel as part of the control loop, as shown in Fig. 2.1. The

sensor measures the state of the plant once or multiple times and quantizes the mea-

surements to a single data word. This data word is then transmitted over the wireless

Controller Plant

Sensor
Wireless 
Channel

Figure 2.1: The networked control loop with wireless measurement data transmission
from the sensor to the controller

communication link to a controller, which generates a control value to control the plant.

The plant is either connected to the controller by wire or also uses a wireless connection

to receive control values. This second connection is assumed to be ideal throughout

the chapter, hence it is not considered in the problem formulation. Such a layout is
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often used in multi-agent control systems, where the sensors will take measurements

of the plants’ state parameters, which are not used directly at or close to the sensor,

thus needing communication. This chapter focuses on the measurement, quantization

and subsequent transmission of sensor values to the controller.

One example for such control systems is smart logistics [WHZ18], where many small

vehicles act as the plants and distribute products. During operation, a huge amount

of data, e.g. position, remaining fuel, or battery power, is collected by sensors on the

vehicles and is then used at central controllers to calculate individual control actions

for the devices, for example to schedule refueling of vehicles. Since the devices are

moving most of the time, a wireless connection is required.

Another example are cognitive buildings, which have numerous sensors installed in all

areas [PBB18]. Here, environmental data, like temperature, humidity, or air pressure

is collected as well as the presence of humans is detected. From the collected data, the

overall system behavior including the user preferences can be learned by a central con-

troller. This controller then drives plants like blinds, lightning or heating. Even in this

static application with fixed sensors, a wireless connection simplifies the installation,

especially in existing buildings.

From those examples, it can be clearly seen that the sensors and corresponding con-

trollers are often separated and a wired communication link is not desired for different

reasons. In this case, the communication has to be wireless, and the increasing density

of devices increases the competition for the limited wireless communication resources.

Additionally, the devices often rely on battery power, which imposes additional con-

straints on the energy consumption of the systems.

According to the first two questions in Section 1.2, we want to find a scheme to translate

these input values from the different sensors to data words. Examples for sensors

are temperature sensors, humidity sensors and Global Navigation Satellite System

(GNSS)s, providing the data as analog voltages or in digital form as high-resolution

values. To reduce the amount of different data words, ranges of sensor output values can

be aggregated. In the temperature case for example, ranges of 5 ℃ could be translated

to a single data word and too high or too low temperatures, which do not occur in

the considered system, could be neglected completely in the encoding. Similarly, for

the GNSS, locations, which are never used by the device, e.g. in the middle of the

ocean or on a different continent, could be left out in the quantization. In this chapter,

quantization schemes with a certain number of steps are optimized to minimize the

system state estimation error at the controller. Therefore, the distribution of possible

sensor values, i.e. which actually occur in the considered system, has to be known.
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In this work, we focus on a single sensor-receiver pair and use the properties of the

underlying measurement model and communication model to jointly optimize the qual-

ity of the estimation at the receiver. Multiple noisy measurements of a parameter are

taken and aggregated afterwards. The aggregated value is quantized and transmitted

over a wireless channel. For both phases, measurement and transmission, only lim-

ited time and energy is available. The time limit results from the large amount of

devices competing for transmission time. This limit can directly be translated to a

limit of the data bits that can be transmitted in one time slot. On the other hand, a

high transmit power to improve the signal-to-noise ratio (SNR) at the receiver might

drain a prohibitively high amount of energy from the batteries of mobile or embedded

devices. For this reason, a limitation in resolution of the quantization prior to the

transmission is needed. As each individual measurement is also consuming time and

power, the two phases of measuring and transmitting compete for the available time

and energy resources. To find the best ratio of number of measurements and number

of quantization intervals for a given time or energy limit, the Bayes risk is used as an

estimation quality measure. This joint optimization of the number of measurements

and the number of quantization steps allows for a minimum Bayes risk for given time

or energy resource constraints.

Next, we will give an overview over the related work and then introduce the system

model of this chapter in Section 2.3. To model the problem, first the aggregated

probability-density function (pdf) is derived in Section 2.4.1. In the next two sub-

sections, Section 2.4.2 and Section 2.4.3, the considered estimators are introduced.

Afterwards, the two adapted quantization schemes are shown in Section 2.4.4 and

Section 2.4.5. For comparison, a linear benchmark quantization scheme is shown in

Section 2.4.6. Finally, the schemes are compared using numerical experiments in terms

of conveyed mutual information in Section 2.5.2 and Bayes risk in Section 2.5.3. Fur-

thermore, the tradeoff between the number of measurements and the number of quan-

tization steps for limited time and energy is shown in Section 2.5.4.

2.2 Related Work

To give an overview over the current state of the art of this topic, we will now discuss

other works, which investigated related problems. While our focus is on a centralized

sensing scenario in the networked control systems domain, the aspect of sensor value

transmission was already subject in other fields. Hence, first three papers with direct

relation to WNCS are presented, after that three papers considering the transmission

of sensor values over limited communication links in general are shown. A central
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sensing scenario is considered in [ZCWF18], where a discrete-time multi-agent scenario

is assumed. Each agent consists of a controller and the plant, a central entity can

take noisy measurements of the plant states and signals them over a wireless link to

the controllers. The communication resources are limited, thus, not all controllers can

receive updates in all time slots, so the central entity has to find a scheduling for the

transmissions. The communication is scheduled based on the system state deviation

from the equilibrium, but the control law and the quantization prior to transmission

is not adapted to the communication channel state. Effects of the quantization on the

plant state values received at the controllers are not considered.

A decentralized model is used in [VMKH16], where, similar to the previous example,

autonomous agents in the field compete for limited communication resources used to

transmit sensor values. In [VMKH16], however, there is no central entity sensing

the plant states and scheduling the available communication resources. Instead, the

allocation is done in an ALOHA-fashion. Again, the effects of state quantization are

not considered, as well as there is no mechanism to prioritize plants with a higher state

deviation for transmission.

In [CL16], a single control loop is considered. A wireless link is used to transmit

sensor data to the controller, the controller in turn is directly attached to the plant,

like in Fig. 2.1. The transmission is done in a multiple-input multiple-output (MIMO)

fashion, the actual transmit signal is generated directly from the plant state variables

by multiplying with a MIMO precoding vector as a preprocessing step. This analog

transmission allows for a direct translation of communication channel noise to errors

in the plant state estimation at the controller. The transmission is constrained by

the available transmit energy, which is generated from a stochastic energy harvesting

process. The objective is to guarantee the stability of the control loop in the Lyapunov

sense and minimize the plant state estimation error at the controller for a given sensor

battery capacity. While the sensor is assumed to be error-free, the noise during the

wireless transmission and the system noise lead to uncertainty at the controller.

In all these works, the data from the sensor is not interpreted and processed prior to

transmission, except for the MIMO precoding in [CL16], but rather the raw values

are transmitted. The acquisition is not adapted to the communication system state,

and similarly, the process of measuring and then transmitting the data is not adapted

to the state of the underlying control system plant. Sensor outputs with a certain

resolution are not compressed for transmission by reducing the resolution, even if the

control system plant state would only require a coarse control action, which can also be

generated from a coarse input. This missing preprocessing and adaptation leads to the

research question No. 1 from Section 1.2 on how such a preprocessing could improve
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the tradeoff between estimation accuracy and data rate, which will be discussed in this

chapter in Section 2.4.9.

To adapt also the communication itself and not only schedule the transmissions for the

subsystems, there are multiple possibilities. In [SKMN15], the influence of very low

resolution analog-to-digital conversion is considered. A receiver with only 1-bit quan-

tization is used for estimation. The estimation performance is improved by exploiting

information about the temporal evolution of the estimated parameter known a-priori

at both, the transmitter and receiver. While not directly targeted at control systems,

the crucial knowledge of the distribution and temporal evolution of the parameter of

interest is common to our work.

In [LMZ+16], a digital transmission chain is used to transmit sensor data, which is

already discretized by the sensor nodes, in a sensor network. The objective is to

find the optimum power allocation in transmitting the sensor values reliably, while

maximizing the battery lifetime of the sensor network. Tuning the power has direct

influence on the packet loss probability for a given packet size.

A slightly different objective is considered in [KYY+17], which looks at the packet size

of sensor networks and tries to find a trade-off between packet error probability and

data integrity.

While those works consider the quantization and preprocessing, the influence and pos-

sible tradeoffs with the sensing and control task are not considered. Hence, we also

elaborate on research question No. 2 in this chapter, which influence the initial mea-

surement error of the sensor and the quantization for digital transmission, respectively,

have on the state estimate at the controller.

2.3 System Model

This chapter focuses on the sensor value measurement and transmission, so only the

part of the control loop in Fig. 2.1 with the sensor, wireless channel and controller will

be modeled. The detailed chain of the measuring sensor with transmitter, receiver and

estimator is shown in Fig. 2.2. The parameter of interest, denoted by w, is observed by

a sensor and impaired by noise, denoted by m. A batch of Nmeas noisy measurements of

w is taken sequentially, denoted by x1, . . . , xNmeas . Each individual measurement takes

the time Tmeas and the energy Emeas. The measurement values are then aggregated

into a single value s, which is subsequently quantized into one of Qquant data symbols,

denoted by y. The symbol y is then transmitted over a wireless communication channel
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and distorted by receiver noise z. The number Qquant of quantization steps determines

the time and energy spent for transmission, denoted by Ttx and Etx, respectively. The

total energy and time for measuring and transmitting are limited by Emax and Tmax,

respectively. The received symbol, denoted by y′, is then decoded according to a

codebook. The output v of the decoder is used by the estimator Ψ to generate the

estimate ŵ of w. In the next subsections, the individual steps are described in detail.

2.3.1 Measurement Model

The value of w ∈ R is assumed to lie between wmin and wmax and follow a known

pdf pW (w). w is assumed to stay constant during the Nmeas measurements, but with

varying noise m. The noise is assumed to be Additive White Gaussian Noise (AWGN)

with zero-mean and variance σ2
M. The complete measurement phase takes the time

Tacq = NmeasTmeas. Likewise, the complete energy for measuring is Eacq = NmeasEmeas.

The pdf pW (w) as well as wmin, wmax and σ2
M are assumed to be known at the transmitter

and the receiver, since they all are properties of the sensor and the observed process.

To generate the aggregated value s, the measurement values

xn = w +mn, n = 1, . . . , Nmeas (2.1)

are summed up

s =
Nmeas∑
n=1

xn, (2.2)

which is assumed to take no additional time or energy. Instead of the sum the mean

could also be chosen, since they are related by the number of measurements and the

receiver can find the same optimum trade-off between the number Nmeas of measure-

ments and the number Qquant of quantization steps as the sensor, since the properties

of the random value w, the measurement noise m and the resource limits are known to

the receiver.

2.3.2 Quantization and Transmission Model

The quantization of the sum value s to the data symbol y is carried out according to

a Qquant-step function φQ : R 7→ {1, 2, . . . , Qquant}. To allow for a high accuracy of the

state estimate, the amount of information about the parameter of interest w contained
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in a single data symbol y should be maximized. In Section 2.4, φQ is derived based on

the pdfs pW (w) of the parameter of interest w, the measurement noise pdf pM(m) of

m and the resulting aggregated value pdf pS(s) of s. The resulting transmit symbol y

is transmitted over a wireless communication channel. This transmission is subject to

receiver noise z, which is assumed to be AWGN with zero-mean and variance σ2
Z. The

channel has the constant channel coefficient h and the transmit power is given by P .

For a capacity

C = log2

(
1 +

hP

σ2
Z

)
, (2.3)

the channel is assumed allow for error-free communication [Sha48], thus, for the re-

ceived symbol, y′ = y applies. (2.3) is an upper bound for the number of bits, which

can be transmitted error-free in one channel use, i.e. per second and per Hertz. This

bound will be attained for an infinite code length. Therefore, it is not a valid assump-

tion for very small data packets. However, throughout this chapter, we will assume

the sensor readings are transmitted as parts of larger packets, which allows for using

the Shannon Capacity as an approximation of the achievable capacity, when spending

a certain amount of power, or, looking at it the other way around, how much energy is

required when transmitting a data packet of given size over a channel with given noise

level.

All transmit symbols are encoded by the same number Nbits of bits. In [KASK19],

the quantization is designed to make the transmit symbols equally probable and, thus,

carry the same amount of information. Nbits is then determined by

Nbits = log2(Qquant), (2.4)

which is not necessarily an integer number, if Qquant is not a power of 2. To transmit a

non-integer number Nbits of bits, the communication systems symbol alphabet has to

be designed with Qquant different symbols. In this thesis, a quantization scheme with

optimized estimation capabilities will be designed. Thus, the transmit symbols will

not necessarily always carry the same amount of information, but to compare with the

scheme from [KASK19], the equal size of the transmit symbols is kept.

The time Tbit consumed for transmitting one bit is determined by the channel capacity

C as Tbit = 1
C

. Since increased transmission power P increases the capacity C logarith-

mically, linearly increasing the energy Etx for transmission logarithmically increases

the possible number Nbits of bits. This results in a direct proportionality of Qquant and

Etx, i.e. Etx = QquantEquant.
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Figure 2.2: System model of the sensor value quantization and transmission

2.3.3 Estimation Model

The received data symbol y′ is used to generate a likelihood function Ly′(w) for a

certain received y′ for the parameter of interest w considering the knowledge about

the aggregated value s. The likelihood function Ly′(w) is subsequently used by the

estimator Ψ to generate the estimate ŵ of w. The optimization objective is to minimize

the Bayes risk of the estimation, which is a metric for the estimation accuracy [Shy12].

It is calculated according to a distortion function l, i.e. RB = E{l (W ; Ψ(V ))}. In this

work, l is chosen to take the form l(w,Ψ(v)) = |w −Ψ(v)|p with p ≥ 1, i.e.

RB = E{|w −Ψ(v)|p}. (2.5)

For the well-known minimum mean-square error (MMSE) estimator, p = 2 applies. The

MMSE estimation minimizes the squared error, which is suitable, if the cost increases

quadratically with the parameter of interest, e.g. for an error in a voltage measurement,

which results in increased power consumption. In other cases, where there is a linear

dependency of the cost on the estimation error, the minimum absolute-value error

(MAVE) estimator is used with p = 1. An application example would be a distance

measurement of drones, where the error in distance linearly increases with the time to

reach a certain point with constant velocity.

2.3.4 Constraint Model

The estimation process is constrained by limited time or energy resources, which are

shared between the measuring and the transmission phase. The sum time or sum

energy taken by the measurement of w and the transmission of y must not exceed a
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certain limit, Tmax or Emax, respectively. In the time limited case, the number Nmeas

of measurements determines Tacq, the number Nbits of bits determines Ttx. Since the

transmission of the aggregated value s cannot start till all measurements have been

taken, the total time spent for measuring and transmitting is sum of these times. It

must not exceed the available time, i.e.

Tmax ≥ Ttx + Tmeas. (2.6)

Likewise, in the energy limited case, the total energy is the sum of the energy Eacq

consumed for measuring, determined by Nmeas, and the energy Etx, determined by

Qquant. The energy is constraint is then

Emax ≥ Eacq + Etx. (2.7)

2.4 Problem Formulation

The estimation of the quantity of interest w at the receiver is based on a Bayes es-

timation scheme. First, the probability distributions for the non-quantized case are

derived. Based on these distributions, the estimators for the MMSE and MAVE case

are calculated. Then, the quantization and codebook-based reconstruction is intro-

duced. Finally, the Bayes risk, which includes the influence of the quantization, is

calculated.

2.4.1 Probability distribution pS(s)

In this section the pdf pS(s) is derived. The pdf of the parameter w of interest is

pW (w), which is only non-zero for wmin ≤ w ≤ wmax. Each measurement is impaired

with the measurement noise m, which is i.i.d. Gaussian distributed, i.e.

pM(m) =
1√

2πσ2
M

exp

(
− m2

2σ2
M

)
. (2.8)

Nmeas measurement values are taken, which results in the vector

x = w · 1Nmeas + (m1,m2, . . . ,mNmeas)
T (2.9)
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of measurement values, where 1L is the all-ones vector with L elements. The sum of

i.i.d. Gaussian random variables is again Gaussian, which results in

Nmeas∑
n=1

xn = s (2.10)

pS|W (s|w) =
1√

2πσ2
M

exp

(
(s−Nmeas · w)2

2σ2
M

)
. (2.11)

This leads to the joint probability of s and w:

pS,W (s, w) = pS|W (s|w) · pW (w) (2.12)

To get the unconditional pdf of s, the marginal probability w.r.t. w is calculated as

pS(s) =

∫ wmax

wmin

pS,W (s, w)dw. (2.13)

Applying the Bayesian theorem [PP02], the conditional pdf of the parameter of interest

w for a given sum of measurements s can be calculated as

pW |S =
pS|WpW
pS

(2.14)

2.4.2 Minimum Absolute Value Error (MAVE) Estimator

The MAVE estimator ΨMAVE based on the aggregated value s minimizes the mean

absolute value error of the estimate, i.e. p = 1 in (2.5), and is defined in [Shy12] as the

upper or lower bound, respectively, which splits the integral over the a-posteriori pdf

pW |S(w, s) of the parameter of interest w given the aggregated value s into two equal

parts, i.e.∫ ΨMAVE(s)

−∞
pW |S(w, s)dw =

∫ ∞
ΨMAVE(s)

pW |S(w, s)dw = 0.5, (2.15)

and after quantization, i.e. given only the bounds qn and qn+1 of the quantization
interval containing s, the a-posteriori pdf of w is given by

pW |Q(w, n) =

∫ qn+1

qn
pW |S(w, s)ds∫ qn+1

qn
pS(s)ds

=

∫ qn+1

qn
pW |S(w, s)ds

Pr (y′ = n)
(2.16)

and the MAVE estimator for quantization interval n by∫ ΨMAVEq(n)

−∞
pW |Q(w, n)dw =

∫ ∞
ΨMAVEq(n)

pW |Q(w, n)dw = 0.5, (2.17)
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2.4.3 Minimum Mean-Square Error (MMSE) Estimator

The MMSE estimator ΨMMSE(s) based on the aggregated value s minimizes the mean

squared error of the estimate, i.e. p = 2 in (2.5), and is defined as

ΨMMSE(s) =

∫ wmax

wmin

wpW |S(w, s)dw, (2.18)

which is the expected value of the a-posteriori pdf pS,W . With the a-posteriori pdf of
w after quantization pW |Q(w, n) we have

ΨMMSEq(n) =

∫ wmax

wmin

wpW |Q(w, n)dw, (2.19)

2.4.4 Mutual Information Based Quantizer Design

From information theory, it is known that the optimum communication channel usage

is achieved, if the mutual information between the transmitted and received values is

maximized [PS02]. In this scenario this corresponds to the mutual information I(W ;Y ′)

between the parameter of interest w and the received data symbol y′. I(W ;Y ′) depends

on the joint entropy h(W,Y ′) of w and y′, which in turn depends on the joint probability

pY ′,W (y′, w) of y′ and w

pY ′,W (y′, w) =

∫ qy′+1

qy′
pS,W (s, w)ds for y′ = 1, . . . , Qquant (2.20)

h(W,Y ′) =

Qquant∑
y′=1

∫ wmax

wmin

pY ′,W (y′, w) log2 (pY ′,W (y′, w)) dw, (2.21)

the differential entropy hW of the parameter of interest w

hW =

∫ wmax

wmin

pW (w) log2 (pW (w)) dw, (2.22)

and the entropy HY of the received symbol

HY ′ =

Qquant∑
n=1

∫ qn+1

qn

pS(s)ds log2

(∫ qn+1

qn

pS(s)ds

)
. (2.23)
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Please note, that hW and h(W,Y ′) are differential entropies since the random variable
is continuous and, thus, denoted by a small h, whereas the possible values for the
received symbols y′ are discrete. Therefore, its entropy HY ′ is denoted by a capital H.
The mutual information is then given as

I(W ;Y ′) = HY ′ + hW − h(W,Y ′) (2.24)

The differential entropy of the parameter of interest w, hW , only depends on its pdf

pW (w). The joint entropy h(W,Y ′) and the entropy of the received symbols HY ′ depend

on the number of measurements Nmeas, the characteristics of the measurement noise m

and the quantization intervals q1, . . . , qQquant . This leads to the optimization problem

max
q2,...,qQquant

I(W ;Y ′) (2.25)

s. t.

qn < qn+1, for n = 1, . . . , Qquant (2.26)

q1 = −∞ (2.27)

qQquant+1 =∞ (2.28)

for finding the optimum quantization interval bounds q1, . . . , qQquant−1. Constraint

(2.26) ensures that the bounds of the quantization intervals are in monotonically in-

creasing order. Constraints (2.27) and (2.28) fix the bounds of the intervals with the

largest and smallest values to make sure the quantization covers all real numbers.

2.4.5 Simplified Transmit Symbol Entropy Based Quantizer
Design

For finite symbol alphabets, a uniform distribution of the symbols maximizes the mu-

tual information [PS02]. To achieve this uniform distribution for the quantizer out-

puts, the quantization intervals are designed according to pS(s). In a first step, the

cumulative distribution function (cdf) of S is calculated as

PS(s) =

∫ s

−∞
pS(s′)ds′. (2.29)

Then, the quantization interval bounds qn are calculated, with −∞ as left bound of

the first interval q1 and with +∞ as right bound of the last interval qQquant+1. The

bounds q2, . . . , qQquant in between are calculated by solving the equation

n− 1

Qquant

!
= PS(qn) =

∫ qn

−∞
pS(s′)ds′, (2.30)
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which provides equally probable output symbols. Making the transmitted symbols

y1, . . . , yQquant equally probable maximizes (2.23), but does not consider (2.21). Solving

(2.30), however, is much less complex than solving (2.25), reducing computational

effort.

2.4.6 Linear Quantization Based Design

For comparison, a simplistic linear quantizer with intervals of equal width is considered.

It can also be used, if the exact pdf pW (w) is not known, but only the limits wmin and

wmax of the parameter of interest w. For this approach, −∞ is, like for the mutual

information based and the transmit symbol entropy based quantizers from Section 2.4.4

and Section 2.4.5, chosen as left bound q1 of the first interval and with +∞ as right

bound qQquant+1 of the last interval. If Qquant = 2, there are three bounds, of which the

left is already fixed to q1 = −∞ and the right to q3 =∞. The central bound q2 is set

to

q2 = Nmeaswmin +Nmeas
wmax − wmin

2
. (2.31)

If Qquant > 2, the right bound of the first interval is set to

q2 = Nmeaswmin (2.32)

and the left bound of the last interval to

qQquant = Nmeaswmax. (2.33)

The remaining interval bounds are set to

qn = Nmeaswmin +Nmeas
wmax − wmin

Qquant − 2
(2.34)

2.4.7 Likelihood of the Quantity of Interest

Since the transmission errors from the noisy channel are assumed to be completely

removed by the error correction, the received symbol y′ is equal to the transmitted

symbol y. At the receiver, the received symbol y′ is used to look up the bounds qy′

and qy′+1 of the quantization interval containing the aggregated value s. Therefore,
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the likelihood of the parameter of interest w can be calculated from (2.14) and for the

nth quantization interval it is given by

Ln(w) =

∫ qn+1

qn

pS,W (w, s)ds. (2.35)

Ln(w) is the pdf of w, given the received symbol was y′ = n, weighted by the probability
Pr (y′ = n), i.e.

Ln(w) = pW |Q(w, n) Pr (y′ = n) (2.36)

Since the intervals and their bounds are known at the receiver in advance, it can create

a codebook, which assigns an estimated value to each received symbol y′.

2.4.8 Calculation of the Bayes Risk

From (2.5), the Bayes risk of the MAVE estimator is given by

RB, MAVE =

∫ +∞

−∞

∫ wmax

wmin

|ΨMAVE(s)− w| pV,W (s, w)dwds, (2.37)

and similarly for the MMSE estimator by

RB, MMSE =

∫ +∞

−∞

∫ wmax

wmin

(ΨMMSE(s)− w)2 pV,W (s, w)dwds. (2.38)

Since the quantization interval bounds qy′ and qy′+1 derived from the received symbol y′,

serving as the input value to the decoder, only take Qquant different value combinations,

there are only Qquant possible likelihood functions Ly′(w) and, thus, the estimates

ΨMAVEq(y′) and ΨMMSEq(y′) will also take only Qquant different values each. Then, the

total Bayes risk for the estimators is given by

RB, MAVEq =

Qquant∑
n=1

Pr (y′ = n)

∫ wmax

wmin

|ΨMAVE(n)− w| pW |Q(w, n)dw (2.39)

=

Qquant∑
n=1

∫ wmax

wmin

|ΨMAVE(n)− w|Ln(w)dw (2.40)

and

RB, MMSEq =

Qquant∑
n=1

Pr (y′ = n)

∫ wmax

wmin

(ΨMMSE(n)− w)2 pW |Q(w, n)dw (2.41)

=

Qquant∑
n=1

∫ wmax

wmin

(ΨMMSE(n)− w)2 Ln(w)dw. (2.42)
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2.4.9 Resource Constraints

The time and energy constraints, see section 2.3.4, limit the number Nmeas of measure-

ments as well as the number Nbits of bits which can be transmitted over the wireless

channel in a given time or with a given amount of energy, respectively. Since it is

assumed that the data words considered in this chapter are parts of large packets,

Shannon capacity can serve as a valid approximation of the marginal increase of the

required energy. For the transmission, a linear relation between the transmitted and

received power expressed as the channel coefficient h is assumed. In the energy limited

case, this leads to a linear relation between the available quantization steps in a given

time interval Ttx and the transmission energy, as Qquant = 2Nbits and Nbits = TtxC.

For this reason, a parameter γE is introduced to characterize the relation between the

transmission energy Equant needed for transmission of one additional quantization step

and the energy Emeas consumed for each measurement, i.e.

Equant = γEEmeas. (2.43)

For the time limited case, the time needed to transmit one bit and the time needed to

take one measurement are related by a linear coefficient γT, i.e.

Tbit = γTTmeas. (2.44)

2.5 Numerical Results

2.5.1 Setup

All calculations are carried out with fixed measurement noise σ2
M = 9. The range of

w is set to wmin = 0 and wmax = 100. We will compare the quantization scheme with

steps designed to maximize the mutual information I(W ;Y ′) from Section 2.4.4 to the

simpler entropy based scheme from Section 2.4.5 and the linear quantization scheme

described in Section 2.4.6. To show the influence of different pdfs of w, we will compare

three different cases:

1. A triangular distribution, which was already shown in [KASK19]. One example

for such a distribution is a system which senses the distance between a central

point and an agent like a drone, which is located at a random spot around the

central point with a uniform probability for each spot.

p1W (w) =

{
2w

w2
max−w2

min
if wmin ≤ w ≤ wmax

0 otherwise.
(2.45)
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Figure 2.3: The applied distributions for the parameter w for wmin = 0 and wmax = 100

2. A uniform distribution of w between wmin and wmax. This distribution occurs,

if all sensor values are equally likely. This distribution would also be used, if

no a-priori information about the parameter of interest w and its distribution is

available.

p2W (w) =

{
1

wmax−wmin
if wmin ≤ w ≤ wmax

0 otherwise.
(2.46)

3. A bimodal distribution. In many processes the system states can be differenti-

ated into two classes, which have a smooth transition region between them. An

example is the weight of two different sizes of containers, which are filled with a

liquid. While it is possible to get values in between for the not completely filled

larger container, it is most likely to get values close to the two capacities. As a

simple example for such a bimodal pdf we take the U-quadratic distribution:

p3W (w) =

{
12

(wmax−wmin)3

(
w − wmin+wmax

2

)2
if wmin ≤ w ≤ wmax

0 otherwise.
(2.47)

These pdfs (2.45)–(2.47) are shown in Fig. 2.3 for wmin = 0 and wmax = 100. In Fig. 2.4,

the distribution of the measured parameters is shown for Nmeas = 1. Since s includes
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Figure 2.4: The resulting distributions for the measured parameter s for Nmeas = 1 and
the quantization interval bounds for Qquant = 4

the measurement noise, the shape from Fig. 2.3 is convolved with the Gaussian pdf.

For each pdf, the resulting quantization interval borders are marked by vertical lines.

The quantization schemes are distinguished by the symbol at the top of each line,

which are denoted as follows:

• Linear quantization scheme Section 2.4.6 → qEqDist

• Entropy based quantization scheme Section 2.4.5 → qEqProb

• Mutual information based quantization scheme Section 2.4.4 → qMut

The linear quantization scheme obviously has the same interval bounds for each pdf,

since it only depends on wmin and wmax, but not on the actual shape of the pdf in

between. The two other schemes are adapted to the pdfs, which leads to smaller

intervals for larger values of the pdf, because the probability for w and, therefore, s

to lie in this range is higher. A high probability for a data word corresponds to a low

information of this symbol, hence the width of the intervals is reduced to equalize the

information of all symbols, which optimizes the overall mutual information. It also

shows that these two quantization schemes are generally not equivalent.
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2.5.2 Mutual information

First, the mutual information conveyed using the different quantization schemes de-

scribed in Section 2.4.4 – Section 2.4.6 shall be investigated and compared for different

numbers Qquant of quantization intervals. Fig. 2.5 shows, as the ordinates, the mutual
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Nmeas = 3
Nmeas = 5
Nmeas = 9

Figure 2.5: Mutual information for p1W (Linear quantizer: - - Entropy based: · · ·
Mutual info. based: —)

information between the parameter of interest w and the quantized value y, when w

is distributed according to p1W with a triangular shape. As the abscissae, the num-

ber Nbits of bits is shown, which directly relates to the number Qquant of quantization

intervals, according to (2.4). Each color represents a different number Nmeas of mea-

surements. With increasing Nbits, the number Qquant of quantization intervals increases

accordingly, resulting in a finer quantization resolution. This leads to a higher mutual

information I. For high Nbits, the mutual information I asymptotically reaches a

bound, which is dictated by the measurement noise m.

The more measurements are taken, the better is the representation of w in the aggre-

gated value s. Therefore, the influence of the measurement noise is reduced and the

aforementioned bound is higher and, thus, the mutual information can also be higher

for more measurements, if a sufficient number of quantization intervals is available.

Especially for lower Nbits, the quantization based on linear quantization described in
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Section 2.4.6 is largely outperformed by the quantization based on maximizing the

mutual information from Section 2.4.4. The scheme described in Section 2.4.5 is better

than the linear quantization, for low Nbits, approximately up to Nbits = 5, but not

as good as the mutual information optimized scheme. The knee in the curves of the

linear quantizer is due to the fact that for Nbits = 2, which translates to Qquant = 4,

two of the intervals are used for the range of s ≤ Nmeaswmin and s ≥ Nmeaswmax. These

ranges have a low probability to contain s, which is leading to a low information of the

corresponding data symbols y.
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Figure 2.6: Mutual information for p2W (Linear quantizer: - - Entropy based: · · ·
Mutual info. based: —)

In Fig. 2.6 the mutual information for the three quantization schemes is, in the same

way as in Fig. 2.5, shown for the distribution p2W from (2.46), which has a uniform

shape. The entropy based quantization scheme shows the same results as the mutual

information based one for this distribution. This is due to the fact, that the linear

quantization provides the same quantization intervals for this pdf p2W . The linear

scheme can achieve results similar to the other schemes for Nbits > 3, because the

optimum scheme is also a linear one, which can be seen in Fig. 2.4.

In Fig. 2.7, the mutual information for the U-qadratic distribution p3W is shown.

Since the parameter of interest w tends to take values at the borders with a much
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Figure 2.7: Mutual information for p3W (Linear quantizer: - - Entropy based: · · ·
Mutual info. based: —)

higher probability than values in the center, the performance hit of the linear scheme,

compared to the entropy based and mutual information based, is the largest for this

pdf p3W . The linear scheme needs at least Nbits ≥ 5 to reduce this performance gap to

the other schemes.

2.5.3 Bayes risk

To get a general overview of the influence of Nmeas and Nbits on the Bayes risk, serving

as a measure for the error at the estimator, the Bayes risk RB is calculated for up to

Nmeas = 9 measurements and Nbits = 9, resulting in up to Qquant = 512 quantization

steps with both estimators, MMSE and MAVE, for the three distributions of w. For

each distribution, the mutual information based quantizer from Section 2.4.4 is com-

pared to the entropy based quantizer from Section 2.4.5 and the linear quantizer from

Section 2.4.6.

Fig. 2.8 shows RB, AVE as the ordinates for different values of Nmeas as the abscissae for

the MAVE estimator with all three quantizers for the triangular distribution p1W . The

more measurements are taken and the higher the quantization resolution is, the lower
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Figure 2.8: Bayes risk for the MAVE estimator with p1W (Linear quantizer: - - Entropy
based: · · · Mutual info. based: —)

is the Bayes risk RB, AVE. For an increasing Nmeas and a fixed Nbits, RB, AVE decreases

asymptotically, so that for a higher Nmeas the improvement on RB, AVE decreases. This

is also true for increasing Nbits with fixed Nmeas. Since the Bayes risk RB is directly

related to the mutual information I, the asymptotic behaviour for larger Nbits can also

be observed here.

The gain of the mutual information based quantizer to the linear quantizer is high, if

the number of quantization steps Qquant is low, but the results get closer, when Qquant

gets larger. This is because the quantization interval size shrinks for growing Qquant, so

that the increase of the Bayes risk of the suboptimal quantization scheme diminishes,

just as the mutual information from the previous set of experiments suggests. The

knee in the curves for the linear quantization scheme is also visible here, because the

lower mutual information leads to a higher estimation error.

Fig. 2.9 shows a similar behaviour for p2W , but the Bayes risks RB of the mutual

information based scheme and the linear scheme are closer, while the entropy based

scheme achieves the same results as the mutual information based scheme. This is

in accordance to Fig. 2.6, where both schemes are shown to result in similar mutual

information I. The higher overall level of mutual information in Fig. 2.6 does not

lead to a lower Bayes risk in Fig. 2.9, since the pdfs are different and have different

differential entropies. Therefore, there is no direct connection between the mutual

information and the resulting Bayes risk.
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Figure 2.9: Bayes risk for the MAVE estimator with p2W (Linear quantizer: - - Entropy
based: · · · Mutual info. based: —)
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Figure 2.10: Bayes risk for the MAVE estimator with p3W (Linear quantizer: - - En-
tropy based: · · · Mutual info. based: —)

Fig. 2.10 with the distribution p3W in turn shows results similar to Fig. 2.8, but the

difference between the adaptive entropy and mutual information based schemes to the

non-adaptive linear quantizer is, like in Fig. 2.7, the largest of all three considered pdfs.
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As an exception, for 4 ≤ Nbits ≤ 6, the linear scheme slightly outperforms the entropy

based one. Still, the mutual information based scheme yields the lowest Bayes risk for

all Nbits.
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Figure 2.11: Bayes risk for the MMSE estimator with p1W (Linear quantizer: - - En-
tropy based: · · · Mutual info. based: —)
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Figure 2.12: Bayes risk for the MMSE estimator with p2W (Linear quantizer: - - En-
tropy based: · · · Mutual info. based: —)

For the MMSE estimator in Fig. 2.11–Fig. 2.13, a behaviour similar to the MAVE
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Figure 2.13: Bayes risk for the MMSE estimator with p3W (Linear quantizer: - - En-
tropy based: · · · Mutual info. based: —)

estimator is observed. Please note that RB, MSE is quadratic, since the MMSE estimator

is optimal for the squared error, which leads to the larger magnitudes of Bayes risk in

the plots for MMSE.

More measurements lead to a stronger reduction of RB, MSE than for the MAVE estima-

tor, because the quadratic nature of the MMSE estimator penalizes the larger errors for

low Nbits or Nmeas more than the linear MAVE estimator. The knee in the linear quan-

tizer curves, which could already be observed in the plots of the mutual information I

in Fig. 2.5–Fig. 2.7 and the plots of the Bayes risk RB, AVE of the MAVE estimator in

Fig. 2.8–Fig. 2.10, is also visible here. The effect of the different differential entropies

of the three pdfs is apparent especially for Nbits < 3. A uniform distribution like p2W

has the maximum differential entropy, since all possible values wmin ≤ w ≤ wmax have

equal probability. This results in the highest Bayes risk for all quantization schemes

when using this pdf.

Fig. 2.14 shows the Bayes risk for a given maximum time of Tmax = 13 and γT = 0.25

as the ordinates. The abscissae are the used transmission times Ttx. The experiments

are done for the distribution p1W . The available time is completely used, i.e.

Tacq + Ttx = Tmax, (2.48)

so increasing Ttx decreases Tacq and vice versa. The results show the trade-off between

Tacq and Ttx with minimum RB can be found. This result suggests, that there is an
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optimum ratio of time spent for measuring on the one hand and transmission on the

other hand. A similar relation can be found for limited energy. In the next section the

behaviour of this optimum for different constraints is investigated further.
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Figure 2.14: Trade-off Ttx vs. Tacq with Tmax = 13 and γT = 0.25 [KASK19]

2.5.4 Optimum ratio of number of measurements and quanti-
zation steps

To investigate the influence of time constraints on the optimal selection of Nmeas and

Nbits or, likewise, energy constraints on Nmeas and Qquant, the minimum RB, MSE and

RB, AVE for different constraint sets is investigated. The experiments are done for the

distribution p1W .

First, the influence of changing constraints Tmax and Emax is considered. For a fixed

ratio γT and γE, respectively, the optimum allocation of time or energy, respectively,

was found. From the previous results for the Bayes risk, it is clearly visible that a

finer quantization and more measurements will always lead to a lower Bayes risk. This

result suggests that the optimum resource allocation should always use all available

time or energy resources.
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To find the optimum allocation for a given limit, all possible combinations of Nbits

and Nmeas which fully use Tmax in the time limited case, and all possible combinations

of Qquant and Nmeas which fully use Emax in the energy limited case, are considered.

The resulting optimal values for Ttx and Tacq as the ordinates for a given Tmax as the

respective abscissae are shown in Fig. 2.15 and for Etx and Eacq as the ordinates for a

given Tmax as the respective abscissae in Fig. 2.16.

In both cases, for Tmax = 1 or Emax = 1, it is only possible to carry out one measure-

ment, but not to transmit, so the estimate is based solely on pW (w). For the time

constrained case, γT = 2 and Tmax = 1 results in only 0.5 bits available to quantize the

value, so only a single value can be transmitted and the estimation is again carried out

solely based on the knowledge of pW (w).

Both, in the time limited and in the energy limited case, the time or energy spent for

measuring, Tacq or Eacq, and transmitting, Ttx or Etx, increase. In the time limited

case, the time spent for transmission increases faster with increasing Tmax, because one

additional bit always doubles the number of available quantization steps, while the

corresponding two additional measurements, which could be done in the same time,

give less and less improvement for higher Tmax.

In the energy limited case, the growth is almost proportional, because now there is

just a linear instead of an exponential relation between Equant and Qquant. Since the

improvement for each additional quantization step and measurement reduces, they

increase alternatingly. The two estimators only show minor differences in the optimal

resource allocation.

Now, the influence of changing ratio γT is investigated. The available time is set to

Tmax = 13, the ratio γT is varied between 0.75 and 4. For rising γT, this makes the

transmission relatively more time-consuming. The results are shown in Fig. 2.17. The

longer time per bit results in more time spent for transmitting data than measuring.

This leads to a growing Ttx. As shown in the previous results, the overall RB increases,

since the duration of a single measurement and the available time Tmax is held constant,

while less bits can be transmitted. Decreasing Nbits and increasing Nmeas is generally

not an option, because decreasing Nbits by one halves Qquant.

For the energy constrained case, a similar result is shown in Fig. 2.18. Here, the

linear relation between Qquant and Nmeas results in a more constant ratio of Etx and

Eacq, because, in contrast to the previous case, an additional measurement can often

compensate for a smaller Qquant.
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Figure 2.15: Constrained time usage, γT = 2 [KASK19]
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Figure 2.16: Constrained time usage, γE = 0.25 [KASK19]
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Figure 2.17: Variable time usage ratio, Tmax = 13 [KASK19]
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Figure 2.18: Variable energy usage ratio, Emax = 13 [KASK19]
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2.6 Conclusion

In this chapter, the estimation of a parameter following a given pdf using quantized

measurements transmitted over a wireless channel was considered. Multiple noisy

measurements of a parameter can be taken sequentially and are aggregated afterwards.

The aggregated value is quantized and transmitted to the receiver, which executes the

estimation of the measured parameter.

Three different quantization schemes were developed and compared with respect to

the conveyed mutual information between the quantity of interest and the resulting

data symbols, as well as the resulting Bayes risk after estimation based in these data

symbols. We have shown, that the lowest Bayes risk is achieved by the scheme which

is created by maximizing the mutual information. A scheme, which aims at making all

data symbols equally likely, often delivers similar results, but reduces the complexity

of calculating the quantization steps.

Besides the quantization scheme, the two main parameters to tune are the accuracy

of the measurement and the precision of the quantization. In the used model, multi-

ple measurements can improve the measurement accuracy, while the precision of the

quantization is determined by the number of quantization steps. If the required time

and energy resources for measuring and transmitting are comparable and limited, a

trade-off between measurement accuracy and quantization precision can be made to

reduce the overall estimation error. This trade-off is highly dependent on the resource

constraints and the ratio of the energy or time resources used for measurement and

quantization improvement. For an optimum quantization the distribution of the sensor

value and of the sensor noise must be known, otherwise the linear quantization scheme

with equidistant intervals has to be used.
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Chapter 3

Scheduling of Sensor Readings with
Constrained Communication

Several parts of the content of this section have been originally published by the au-

thor of this thesis in [KK20]. This paragraph shall illustrate the previous work from

[KK20], the relation to and the additional work presented in this chapter. The model,

problem formulation and the scheduling algorithm were already published. Results for

a single configuration of subsystem coefficients were also shown previously in [KK20].

The simulations in the numerical part are extended to show results for different sys-

tem characteristics and also examine the influence of the ratio of different subsystem

characteristics on the overall system.

3.1 Introduction

The performance of control processes is not only determined by the accuracy of the

plant state measurement, which was investigated in the previous chapter. Another

important aspect is also the timely reception of the sensor values. Depending on the

system, which is to be controlled, “timely” can result in vastly different requirements.

There are highly dynamic processes like keeping the lane in autonomous driving, which

requires fast reactions to getting away from the center. The reaction times should be

as fast as 0.1 s, in such lane keeping systems, as shown in [BDH+20]. Then there are

processes, which require only a medium response time, i.e. keeping the distance in

autonomous driving or correcting the altitude of a drone. The vehicle distance control

is needed for platooning scenarios as described in [PYZ+20]. The response time are in

the range of about 5 s seconds here. Similarly, when talking about multicopter drones,

the correction times are in the range of a 2–3 s seconds, as shown in [XMH19]. These

reactions result in a constant stream of input commands to the plant to keep it in

a safe operating region. On the other hand, there are processes with low dynamics,

which even return to an equilibrium, if no external input is given. An example for

such a process is a crane, where the load attached will swing, but eventually remain

static in the center. By a sophisticated control scheme, however, the amplitude of the

oscillations and/or the time until it is virtually stationary can be reduced.
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The dynamics of the process determine the control law in the controller, but also the

uncertainties about the plant state evolution have to be considered. Such uncertainties

are caused on the one hand by random influences on the process and measurement

inaccuracies, but on the other hand also properties of the process not considered in the

control model contribute to this uncertainty. If no uncertainty was there, the initial

state of the plant is perfectly known and all inputs for the whole future are known, the

plant state could be precalculated for the whole future. Since this is not possible, the

plant state has to be sensed from time to time to correct the plant state estimate at

the controller.

In this chapter, we will now deal with the questions No. 3 and No. 4 from Section 1.2.

We consider multiple discrete time linear subsystems with different dynamics and a

central scheduler, which can request sensor readings from each subsystem. The com-

munication resources are limited, so it is not possible to get a sensor reading from every

sensor in every time slot, the central scheduler rather has to select a subset of subsys-

tems to request sensor readings from in every time slot. In this chapter we will assume

fine quantization and, thus, treat the errors introduced by quantization as negligible.

Hence, only the system noise is assumed to lead to uncertainty about the system state.

In this chapter, the focus is on the deterministic case without packet loss. There

are multiple control loops and a central scheduler, which is aware of the subsystems

characteristics and schedules the transmissions from sensors and to controllers. The

optimality of a fixed update frequency scheme for a minimum mean-square estima-

tion error at the controller is shown. For derivation of the frequencies and the actual

scheduling, we propose a two-step approach. In the first step, the individual update

frequency for each subsystem is determined based on the system noise power and the

subsystem dynamics. We show in Section 3.4, that this resource allocation problem is

in fact a convex problem, which can be solved existing optimization frameworks like

[GB14]. For the second step, we developed an algorithm in Section 3.5, which sched-

ules the available communication resources in each time step fairly to the subsystems

according to the derived update frequencies from the first step. The main advantage

of this two-step approach is the reduced effort during runtime, because only the sec-

ond step has to be carried out during runtime. Finally, we show the advantage of our

approach with numerical results in Section 3.6.

3.2 Related Work

This section discusses related work and will give an overview of the state of the art. The

basic requirement is to keep the plant state information fresh at the controller, as well
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as transmit the calculated control commands to the plants. Since these requirements

are strongly related, papers for each of the problems as well as works considering both

are discussed.

A very general solution to minimize the overall time passed since the last update of the

sensor value at the controller is investigated in [HYE16]. Multiple sensors, acting as

sources of information, generate data packets for their respective destinations and store

them at queues at the transmitters. Transmitters can serve one or multiple sources.

The actual transmission of the data packets by the transmitters is done over a wireless

broadcast channel to the respective receivers. The scheduling of these transmissions is

now optimized centrally for interference free reception while minimizing the ages of the

last received update for all sensor – receiver pairs. This ensures a timely update of the

state information for all subsystems, but does not consider the individual subsystem

dynamics.

If the system has a central scheduler to schedule the updates, which is aware of the

dynamics, the scheduling decision can be further optimized. This system layout is in-

vestigated in [ZCWF18], which was already mentioned in Section 2.1. Here, the central

scheduler transmits the sensor values to the subsystems according to a precalculated

schedule, which is based on the uncertainty about the current subsystem states. In each

time step, a fixed number of transmission slots is available. The required optimization

is a mixed-integer problem, which only gives a schedule for a fixed time horizon and is

considerably hard because of its nonconvex structure.

In [MGW+19], a model similar to [ZCWF18] with multiple independent subsystems is

used. Unlike [ZCWF18], the wireless connection is not between sensor and controller,

but rather between controller and plant. The available resources elements are defined

as the time slots in the IEEE 802.15.4 standard, [IEE20]. The scheduling also considers

packet loss and varying link qualities by a prediction model. The loss probability can

be reduced by using multiple resource elements to transmit the same data. Due to the

lossy links, the optimization has to be redone for each time step, taking the predicted

link qualities into account.

The restriction of the time limited schedule is relieved in [AVK+19], which also uses a

central entity to schedule the updates. Similar to [ZCWF18], the subsystems all consist

of a sensor, a plant and a controller. The sensor cannot directly transmit values to

the controller, but rather the central entity can request sensor readings and transmit

them to the respective controllers. The communication resources are limited, so it

is not possible to always update all the controllers. For the scheduling decision the

time passed since the last transmission of the sensor value for a subsystem is used to
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find the most outdated values. This approach is compared to an improved scheduling

based on the error covariance of the current state estimate at the controller, Value of

Information (VoI). The variance-based approach considers different dynamics of the

subsystems.

In [AVK20], the same model as in [AVK+19] is used. Based on the age of the last

successful transmission, the problem is modeled as a Markov Decision Process (MDP)

with the times passed since the last transmission for each subsystem as the multidi-

mensional state and the scheduling decision for the current time step as action. To

limit the infinite state space, the number of possible states is capped by limiting the

maximum considered ages. The model also incorporates packet-loss probabilities for

the communication links, which results then in a deterministic scheduling policy.

The major drawback of [ZCWF18] and [MGW+19] is the time limited schedule, so

only a limited time horizon can be used for scheduling optimization. In [AVK20] the

time horizon is infinite, but the state space is artificially limited to render the problem

tractable. This leads to research question No. 3 from Section 1.2, which is asks for

a general rule for an update rate based on the subsystem characteristics. During

research, the problem of integer effects on the performance became apparent, since the

general rule found for state update transmissions can give ambiguous results, if more

subsystems are equally eligible for transmission. Therefore, an algorithm to equalize

these effects on all subsystems and reduce the overall fluctuation of error covariances

was developed, tackling question No. 4.

3.3 System Model

3.3.1 Control System Model

The overall control system consists of Nsys independent subsystems as shown in Fig. 3.1.

Each subsystem i consists of a plant Pi, a controller Ci and a sensor Si. A central

scheduler polls measurements yi from the sensor Si (uplink) and forwards them to

the controller Si (downlink). Each subsystem i ∈ 1, . . . , Nsys is modeled as a discrete

time linear system with a scalar state xi(k) at time instant k, a system coefficient ai,

measurement noise wi(k) and the control variable is ui(k). Each subsystem i follows a

linear system equation

xi(k + 1) = aixi(k) + ui(k) + wi(k). (3.1)



3.3 System Model 45

Central Scheduler

Wireless Channel

. . . 

UplinkDownlink

. . . 

Figure 3.1: System model of the WNCS with wireless sensor readings

The system noise wi(k) is assumed to be zero-mean Gaussian i.i.d. for all times k

and all systems i with variance Wi. The subsystems can be observed according to the

observation equation

yi(t) = xi(k) + vi(t) (3.2)

with the measurement noise vi(k) ∼ N (0, Vi). Since the system is linear with Gaussian

noise, the Kalman filter [Kal60] gives the MMSE estimate x̂ of the system state x based

on the observation y. The estimation error is ei(k) = xi(k)−x̂i(k). The control variable

ui is then calculated according to a deadbeat law, i.e. ui(k) = −aix̂i(k), to achieve the

control goal xi = 0 for all subsystems. A cost function

J(k) := |x(k)| (3.3)

for deviating from this goal is assumed. The limited communication resources only

allow for sensor readings of scheduled time slots. The Kalman filter is modified to

predict the intermediate values, if no sensor reading is available for a subsystem in a

given time slot. The availability of a new value is described by a binary scheduling

decision variable πi(k), which is set to 1, if the system i is scheduled in time slot k and

to 0 otherwise. The expression x(a|b) is used to denote quantity x at time instant a

with the knowledge from time instant b with b ≤ a. The modified Kalman filter with
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the estimation error covariance Pi of ei, and the Kalman gain gi is then given as

x̂i(k|k − 1) = aix̂i(k − 1|k − 1) + ui(k − 1) (3.4)

Pi(k|k − 1) = a2
iPi(k − 1) +Wi (3.5)

gi(k) = πi(k)
Pi(k|k − 1)

Pi(k|k − 1) + Vi
(3.6)

x̂i(k|k) = x̂i(k|k − 1) + gi(k) (yi(k)− x̂i(k)) (3.7)

Pi(k|k) = (1− gi(k))Pi(k|k − 1) (3.8)

Because the instantaneous value xi(k) is not known at the central scheduler, πi can only

be based on Pi. The scheduling should minimize the uncertainty about the system state

xi(k) at the controller, which is induced by the system noise wi(k) and results in the

estimation error ei(k), which is also Gaussian distributed with zero-mean and variance

Pi, since (3.4) – (3.8) resemble a linear time-invariant (LTI) system. Gaussian noise

filtered with a LTI filter is still Gaussian [PP02]. The uncertainty about the subsystem

state xi(k) results in the system error variance Pi. So minimizing the uncertainty about

the subsystem states corresponds to minimizing
∑Nsys

i=1 Pi(k) ∀k. The transmission of

the current observation yi(k) reduces the uncertainty. The variances Pi do not depend

directly on the unknown subsystem states xi and, thus, it is possible to precalculate

them based on (3.4) - (3.8). Henceforth, the measurement noise is assumed to be

negligible, i.e. Vi = 0. This results in gi(t) being either 1 or 0 and the system state

xi(k) as well as the error covariance Pi is set to zero every time a transmission to the

controller is scheduled. After this, the system noise wi(k) adds uncertainty in every

system time step k. If the system has been scheduled last in time step l ≤ k, the

variance Pi is

Pi = Var(ei,k) =

{
Wi(k − l) if |ai| = 1

Wi
1−a2(k−l)

i

1−a2i
else.

(3.9)

Since only the time duration d = k− l between consecutive transmissions at time steps

k and l determines the error covariance Pi, a function fi(d) to calculate the sum of

variances Pi after d timeslots without transmission can be written, as

fi(d) :=
k∑

m=l

Pi(m) =

{
Wi

d(d+1)
2

if ai = 1

Wi
1

1−a2i

(
1− 1−a2d

1−a2i

)
else.

(3.10)

The control cost function (3.3) can be minimized for each time step individually to

minimize the overall cost. Because of the deadbeat control, the state xi is always

zero-mean Gaussian distributed. The remaining deviation from the control goal xi = 0

after application of the control variable ui derived from x̂i is almost equal to the

estimation error ei, i.e. Var(xi(k)) ≈ Var(ei(k)) = Pi(k). The approximation comes
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from the fact that the measurement is received with delay due to latency induced by the

communication. It is possible that more recent information is available at the central

scheduler, reducing the estimation error ei(k) there, but it could not be used for better

control, since it has not been transmitted to the controller yet. The expected value

of the cost function J can then be calculated from the standard normal distribution

function as

E{|xi(k)|} =

√
2

π

√
Var(xi(k)). (3.11)

The overall control objective with respect to the scheduling is

arg min
π

∑Nsys

i=1

∑Tsim
k=1 Var(xi(k)). (3.12)

3.3.2 Communication System Model

The communication time slots, denoted by t, are shorter than the control time slots,

denoted by k. In each of the control system time slots k for subsystem i, T si com-

munication time slots t take place. Additionally, a sampling offset T 0
i between the

subsystems is used. The relation between t and k is then given like in [AVK+19] as

ki(t) = b t−T
0
i

T s
i
c. The communication system is based on the scheduling decisions πi

made by a central scheduler and is used to transmit measurements from sensors to

controllers, which are directly attached to the plants. Transmission takes place in a

packet based fashion with equally sized packets. In one communication time step t,

RUL packets can be transmitted in the uplink and RDL packets in the downlink. The

system is assumed to have no packet loss. The scheduling decision is modeled by the

variable πUL(t) ∈ RNsys×1 and πDL(t) ∈ RNsys×1 for uplink and downlink, respectively.

3.4 Problem Formulation

3.4.1 Influence of Long-Term evaluation of subsystem vari-
ances

In [AVK+19], the error covariance Pi is used as VoI to derive the scheduling πi in a

greedy fashion. This minimizes the uncertainty about subsystem i in the current time

step, but (3.12) rather asks for the minimization of the overall sum of uncertainty. This

means, a greedy scheduling decision might be suboptimal.
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Figure 3.2: Greedy Scheduling from [AVK+19]
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Figure 3.3: Scheduling according to (3.12)

Figure 3.4: Scheduling examples

Fig. 3.4 illustrates the problem: For two subsystems i and j, it is assumed that in time

step k = 4 one communication resource is available and T si = T sj = 1. For subsystem

i with small ai = 1.05, a high Pi can accumulate over time, so this system will be

scheduled in time step k = 4 as shown in Fig. 3.2, whereas a second system j with

system coefficient aj = 1.2 is not scheduled. According to ai and aj, the variances

Pi and Pj grow in the next time steps. In Fig. 3.3, another scheduling possibility is

shown. The sum of Pi and Pj does not grow as fast as in Fig. 3.2, so the scheduling in

Fig. 3.3 outperforms the greedy one over time.

The functions fi are used to consider this in the scheduling. Their exponential shape

makes a regular scheduling of each subsystem desirable. The individual slope of fi sug-

gests an update rate depending on the system constant ai, the system noise covariance

Wi, and the available communication resources. Stable systems with |ai| < 1 get a low
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or zero rate, while system with large ai are scheduled more often. When looking at

the scheduling based on the current variance, a regular scheme for the scheduling of

the subsystems becomes apparent. The following proof shows the optimality of such a

scheme.

3.4.2 Optimality of a Regular Update Scheme

To show the optimality of a regular update scheme, we consider a single subsystem i

with system constant ai 6= 1, a system noise variance of Wi, and a finite operation time

horizon Tsim, i.e. k = 1, . . . , Tsim. During the operation time, N + 1 sensor values are

transmitted, where the first and last transmission take place at k = 0 and k = Tsim,

respectively. The time durations between two consecutive transmissions are denoted

by di,1, . . . , di,N with di,n ≥ 0, n = 1, . . . , N . Now, the scheduling minimizing the sum

of error variances over k up to Tsim is to be found. Using (3.10), this leads to the

optimization problem

arg min
di

∑N
n=1 fi(di,n) (3.13)

s.t.
∑N

n=1 di,n = Tsim (3.13a)

with the Langragian

L(d, µ) = inf
µ

N∑
n=1

Wi

1− a2
i

(
1− 1− a2di,n

i

1− a2
i

)
+ µ (di,n − Tsim) (3.14)

and its partial derivatives with respect to the di:

∂L

∂di,n
=

Wi

(1− a2
i )

2

(
−2 log (ai)a

2di,n
i

)
+ µ. (3.15)

Since µ,Wi and ai do not depend on n, they are equal for all partial derivatives of

L(µ,di). This results in equal di,n to bring all components of the gradient to zero,

i.e., equal durations between the transmissions for a single subsystem are optimal for

reducing the sum of error variances over time, but are not necessarily integer multi-

ples of the time slot duration. This is also applicable in case of multiple subsystems.

Henceforth, scalar di will be used for the durations between consecutive transmissions

of subsystem i.
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3.4.3 The rate optimization problem

To find the optimum duration di for each subsystem, the optimization problem (3.13)

is modified to use an update rate

ri =
1

di
. (3.16)

The results from [AVK+19] suggest a resource allocation, which is defined by

min{RDL, RUL}, since there is no gain in receiving information at the central scheduler,

which cannot be forwarded to the systems. On the other hand, if no data was received

from the sensors, the downlink capacity RDL cannot be fully used. Since the data itself

does not influence the scheduling decision, but rather the calculated error variance Pi,

the scheduling for uplink and downlink, πUL and πDL, is always the same. Then, the

sum of the average variances per timeslot k is minimized:

arg min
r

∑Nsys

i=1 ri max (Wi, fi(1/ri)) (3.17)

s.t. 0 ≤ ri, i = 1, . . . , Nsys (3.17a)

R = T s min{RUL, RDL} (3.17b)

R ≥
∑Nsys

i=1 ri. (3.17c)

The maximum in the objective (3.17) sets the lower bound of uncertainty to the system

noise covariance Wi. Constraint (3.17a) ensures positive rates, while (3.17c) limits the

sum rate to the available communication resources given by (3.17b).

3.5 Scheduling Algorithm

After calculating the rates, the actual scheduling is derived. As discussed in Sec-

tion 3.4.3, the uplink and downlink scheduling is equal. The primary goal of the

scheduling algorithm for the possibly non-integer duration values di is to bring the in-

dividual durations as close to the desired values as possible. As shown in Section 3.4.2,

the duration between consecutive transmissions is more important than the average, so

Algorithm 1 only considers the time since the last scheduling. The first transmission

for all subsystems is assumed to take place at t = 0. Then, in each communication time

slot t, Algorithm 1 is run to find the RUL or RDL subsystems, which have the longest

time passed since their respective last transmission, relative to their desired duration

di. The resulting vector π has elements for every subsystem.
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Algorithm 1 Transmission scheduling

Rremain ← min{RDL, RUL} {Remaining resources for this time slot}
π(t)← 0
while Rremain 6= 0 do
δn ← 1

δr
(t1− tl) {Normalized time since last TX}

ni ← arg maxi δn(i)
πni

(t)← 1 {Schedule subsystem with longest duration since last transmission}
tl,ni
← t {Save current transmission time step}

Rremain ← Rremain − 1
end while
return π(t){Return the scheduling for the current time slot}

3.6 Numerical Results

In this section, the performance of the proposed scheduling algorithm from Section 3.5

is evaluated. For this purpose, the influence of the number Nsys of subsystems, the dif-

ference of the subsystem coefficients ai between each other, and the ratio of subsystems

with high dynamics, i.e. larger ai, to subsystems with lower dynamics, i.e. smaller ai,

shall be investigated. All experiment are conducted for Tsim = 4000 simulation time

steps.

The influence of the number of subsystems with constant communication resources

RUL and RDL was derived for a set of four system classes, each of them containing one

quarter of the subsystems, with

ai ∈ {0.75, 1, 1.25, 1.5}. (3.18)

The noise variance for all subsystems i is set to Wi = 1. The number T s
i of communi-

cation time slots per system time slot is set to T s
i = 10.

First, we want to investigate, how this constraining environment influences the time

duration di between two transmissions of the different subsystem classes. By increasing

Nsys while keeping RUL and RDL constant, the resources per subsystem are reduced,

which leads to increasing durations di between consecutive transmissions. Additionally,

the share of resources changes between the subsystem classes; subsystems with smaller

ai get a smaller share. Fig. 3.5 shows the average duration between transmissions as

the ordinates for different numbers of subsystems Nsys as the abscissae with resources

RUL = RDL = 1. The optimization shown in (3.17) reduces the resources assigned to

the systems with a low system constant, when Nsys increases, resulting in longer times

between two subsequent transmissions. For the stable subsystems with ai = 0.75,

almost no transmissions are scheduled for Nsys ≥ 60. For small ri, due to (3.16), even
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Figure 3.5: Duration between transmissions for RUL = 1

small changes in ri result in great changes of the corresponding di and lead to the

fluctuations visible in Fig. 3.5 for ai = 0.75. These small variations result from the

numerical solution of (3.17). Since these subsystems are stable, they do not contribute

much to the overall uncertainty optimized in (3.17) and the fluctuations do not impact

the result. For comparison, the results from [AVK+19] are shown. The differences

between the two schemes are significant, especially for the subsystems with ai = 1,

which are scheduled more often with the results from (3.17).

Next, the control performance of the different scheduling algorithms is compared in

terms of the mean absolute estimation error Σe(k) = 1
Nsys

∑Nsys

i=1 α
√
Pi(k). Fig. 3.6

shows the results for RUL = RDL = 1 in the upper part and RUL = RDL = 3 in

the lower part. As the ordinates, the sum of the mean absolute estimation error

Σe(k) over all subsystems k is shown versus the total number Nsys of subsystem as

the abscissae. With RUL = RDL = 3, both algorithms achieve the same Σe except for

many subsystems, i.e. Nsys > 180. In the more constrained case (RUL = RDL = 1),

the reduction of Σe of the proposed method compared to [AVK+19] becomes apparent.

Furthermore, as explained already in the previous paragraph, the fluctuations from

Fig. 3.5 are not influencing in the total uncertainty.
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Figure 3.6:
∑

k Σe for RUL = RDL = 1 and RUL = RDL = 3

To illustrate the advantage of the proposed scheme from Section 3.5 for different sets

of dynamics of the subsystems, i.e. different sets of coefficients ai, with respect to the

mean absolute estimation error Σe at the central controller, the next experiments were

conducted with changing sets of dynamics of the subsystems. First, we will show, how

a large spread in system coefficients ai influences the results. This spread is modeled

by the spreading factor

α ∈ R+ (3.19)

The four classes of subsystems are now not fixed, but given by

ai ∈ 1.05 + {0, 0.3, 0.45, 0.75}α. (3.20)

As a consequence, all subsystems will always be unstable, but with different dynamics.

The number of subsystems was fixed to Nsys = 160, with 40 subsystems per each class

as described in (3.20). First, the influence of the spreading factor α on the durations di

between two consecutive transmissions for subsystem i was investigated. The results are

shown in Fig. 3.7. The available communication resources were set to RUL = RDL = 1.

Similar to the results shown in Fig. 3.5, the proposed algorithm selects smaller di for
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Figure 3.7: Duration between transmissions for RUL = 1 and different spreads α be-
tween the subsystem coefficients

smaller system coefficients ai compared to the reference scheme from [AVK+19], i.e.

scheduling them more often, while the update rate for subsystems with large ai, and,

therefore, higher dynamics, is reduced. For a low spreading factor α, the difference

in the durations di is also low, because even the subsystems in the highest class with

ai = 1.05 + 0.75α have low dynamics for small α compared to the setups with larger α.

The higher the spreading factor α, the more demanding the update task gets, because

especially those subsystems in the class with the largest coefficients ai result in high

dynamics for subsystems of this class, while the subsystems from the lowest class are

kept constant at ai = 1.05. This results in higher dynamics of the overall system,

making the estimation task more demanding and resulting in higher estimation errors.

This is shown in Fig. 3.8, where the influence of the spreading factor α on the sum of

the mean absolute estimation error Σe is depicted. For an increasing spread between

the largest ai and the smallest ai, the proposed algorithm from Section 3.5 reduces the

estimation error at the central controller compared to the VoI based greedy scheme

from [AVK+19].
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Figure 3.8:
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k Σe for RUL = RDL = 1 and RUL = RDL = 3 with varying spread α of
ai and Nsys = 160

Now, the influence of the ratio of the number of subsystems with high ai to the number

of subsystems with low ai shall be investigated. For this purpose, only two classes of

subsystems are used, ai ∈ {1.1, 1.7}. The factor β determines the ratio of the two

types, with

ai =

{
1.7 for i < βNsys

1.1 else.
(3.21)

Defining β as in (3.21) lets β directly resemble the ratio of the number of subsystems

with ai = 1.7 the total number Nsys of subsystems.

Fig. 3.9 shows results similar to Fig. 3.5 and Fig. 3.7. The more subsystems with high

dynamics with ai = 1.7 are in the system, the more demanding the estimation task gets,

because the uncertainty about the subsystem states grows faster for higher ai, so that

more subsystems are scheduled more often, resulting in a lower di for these subsystems.

Since the numbers RUL and RDL of communication resources are not changed, no
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Figure 3.9: Duration between transmissions for RUL = 1 and different shares β between
the subsystem coefficients

additional resources are added to the system, all di increase with an increasing share of

the subsystems with ai = 1.7, because the number of subsystems Nsys is kept constant.

Hence, decreasing di for one subsystem i results in (slightly) increasing dj for all other

subsystems j. Thus, β is also influencing the total performance, even if the number

Nsys of subsystems and the communication resources RUL and RDL are kept constant

as in the previous experiment with a varying α, changing the spread of the coefficients

ai. The algorithm from [AVK+19] generally spends less resources on the lower dynamic

subsystems than the algorithm proposed in Section 3.5. This was already visible in

Fig. 3.5 and Fig. 3.7. Our proposed algorithm from Section 3.5, in comparison, gives

more resources to the subsystems with ai = 1.1, especially if β is low and, thus the

number of subsystems with ai = 1.1 is low, while the other subsystems with ai = 1.7

are scheduled more rarely, if β increases and the number of subsystems with ai = 1.7

therefore also increases.̧

Fig. 3.11, similar to Fig. 3.8 for the spread α of the subsystem coefficients ai, shows the

influence of β, the ratio of the number of subsystems with ai = 1.7 to the total number

of subsystems Nsys, as the abscissae on the mean absolute estimation error Σe as the
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Figure 3.10: Duration between transmissions for RUL = 3 and different shares β be-
tween the subsystem coefficients

ordinates. In the upper half, the communication resources are set to RUL = RDL = 1,

in the lower half to RUL = RDL = 3. In both cases, the increase of
∑

k Σe for higher

β, which could already be anticipated by the shape of the curves in Fig. 3.9 and

Fig. 3.10, is clearly visible. For most of the ratios β, our proposed algorithm from

Section 3.5 achieves slightly lower sums of mean absolute errors
∑

k Σe. The only

exception happens for β = 0.6 and RUL = RDL = 3: The gap between curves for

our algorithm from Section 3.5 and the algorithm from [AVK+19] is zero here, mainly

because the latter apparently can handle this situation much better compared to the

other scenarios with different β. The reason for the same
∑

k Σe is, that here the

resource allocation of both algorithms, the one from [AVK+19] and the one proposed

in Section 3.5, result in the same update rates for the subsystem types, as shown in

Fig. 3.10.

The next set of experiments shall illustrate the properties of the scheduling resulting

from the scheduling algorithm described in Section 3.5 during runtime of the system.

The evolution of the absolute estimation error over time behaves differently for the two

schemes. The same experiment as in Fig. 3.5 and Fig. 3.6 is now conducted and the
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behaviour of the uncertainty Σe at each time step k as the ordinates over the whole

simulation time k = 0, . . . , Tsim as the abscissae is investigated. Exemplarily, Σe for

Nsys = 160 and RUL = RDL = 1 is shown in Fig. 3.12 for each control system time step

k. Since the subsystems are assumed to have been reset at k = 0, multiple systems

have to be scheduled in the first time slots, which results in a transient phase for both

algorithms. After this initial phase, the uncertainty about the system state, in terms

of the mean absolute error Σe, when applying our algorithm, is almost constant, while

the one from [AVK+19], besides having about 20% higher mean absolute error, shows

a regular oscillating pattern as described in Section 3.4.1.

In Fig. 3.13 the same experiment is conducted with RDL = RUL = 3. While in Fig. 3.6

both, the proposed and the method from [AVK+19], seem almost equivalent, Fig. 3.13

reveals the slightly lower average of the mean absolute error Σe of the proposed method

during the whole simulation time. The small spike around k = 3900 of the proposed

method comes from the fact, that at this time the subsystems with ai = 0.75 are
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scheduled the first time, resulting in a small disturbance, which can be viewed as a

very long transient phase. Like in Fig. 3.12, the method from [AVK+19] results in a

strong oscillation of Σe, which does not converge to a limit like our algorithm.
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3.7 Conclusion

In this chapter, an optimized scheduling of sensor value transmission for discrete time

LTI subsystems was developed. First we have shown, that the optimum control per-

formance is achieved by a regular scheduling of sensor value transmission. Then, the

communication resource allocation optimization problem was stated and an algorithm

to generate the scheduling was developed. The results could be evaluated by the derived

analytic expressions for the state estimation error variance.

The estimation error variance Σe is, compared to existing methods, not only reduced

in mean, but is also almost constant during the system operation time.

The precalculation of transmission frequencies for each subsystem greatly reduces the

runtime computational complexity, because the optimization problem is only solved

once, while during runtime only the time duration between subsequent transmissions

must be adjusted to approximate the precalculated update rates. The derived an-

alytic expressions for evaluation make Monte-Carlo simulations obsolete. While the

current system model of scalar linear systems with a deadbeat control is very simplis-

tic, extensions to other linear-quadratic regulation models can easily be made. Another

extension to multidimensional subsystem states requires only minor changes to the cost

function (3.10).
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Chapter 4

Deadline-Aware Control Command
Transmission

Several parts of the content of this section have been originally published by the author

of this thesis in [KOK21]. This paragraph shall illustrate the previous work from

[KOK21], the relation to and the additional work presented in this chapter. The

model, problem and scheduling algorithm were already published, also results for one

bandwidth configuration were shown. The simulations are extended in this chapter to

also display results for different amounts of communication resources. Furthermore,

the actual exploitation of the available resources by the different allocation algorithms

is investigated.

4.1 Introduction

In this chapter, the transmission of control commands from the central controller to the

agents over a wireless link is investigated. The sensor is assumed to be attached directly

to the controller, so no additional communication for state estimation at the controller

is required for deriving the control commands. Hence, the focus in this chapter is now

on the connection between the central scheduler, which also acts as controller in this

case, and the actor at the plant, like shown in Fig. 4.1.

Plant
Wireless 
Channel

Controller Sensor

Figure 4.1: The networked control loop with wireless command transmission from the
controller to multiple plants

Like in the previous chapter, a timely reception of the command at the plant is crucial

for optimal control [Lun16b]. While there were no actual limits assumed on the system

states in the previous chapter, in real world applications such limits always exist. In

the autonomous driving example from [BDH+20], where the current lane has to be
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kept, the limits might be the road markings, which must not be crossed by any part of

the vehicle. In the distance keeping example from [PYZ+20], the distance must not fall

below a certain security distance, because otherwise the braking distance might lead

to fatal accidents.

The control process dictates, depending on its characteristics, a maximum latency,

after which the control commands have to be successfully delivered to the plant and

the maximum percentage of failed transmissions. To achieve energy-optimal commu-

nication while maintaining the error rate and latency requirements, the allocation of

time-frequency resources has to be adapted to the individual wireless channel condi-

tions and transmission deadlines resulting from the control perspective. The capacity

of a communication channel for infinite time-frequency resources according to Shan-

non is determined by the SNR [Sha48]. This is a valid assumption for transmissions of

large amounts of data over infinite time-frequency resources, but since IIoT is especially

about short packets and low latencies, this estimation is way too optimistic. The sce-

nario considered in this chapter therefore requires a different estimation of achievable

rate. Error free transmission in limited time and bandwidth is not possible, so a rela-

tion of the SNR at the receiver, latency, allowable packet error rate and time-frequency

resources is required. Hence, the investigated energy minimization is formulated using

a more realistic capacity formula for short packets derived by Polyanskiy et al. in

their seminal paper [PPV10]. The characteristics of the short packet formula as well

as its implications on the energy minimization problem considered in this chapter are

investigated, according to 5 from Section 1.2.

Since the allowable packet error rate and number of time-frequency resources are lim-

ited, the SNR at the receiver, which is determined by the transmit power and the

channel gain, has to be tuned to meet the requirements. To increase the SNR, the

transmit power has to be increased, which results in an increase of total energy con-

sumption.

The controller can sense the states of the agents, generates control commands accord-

ing to the states and transmits them to the agents via a wireless link. The control

commands are assumed to be short data packets of up to a few hundred bits in size.

For each agent, we consider the different dynamics of the various types of machines

by means of the definition of agent-specific deadlines. Additionally, the maximum al-

lowable packet error rate is constrained to a low constant value to account for e.g.

the safety requirements of industrial production plants. The available bandwidth for

transmission is limited. Under these constraints, we find the optimal time-frequency re-

source allocation to the agents minimizing the required energy for transmission. This

energy minimization problem relates the time-frequency resource allocation for the
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transmission of the control commands to each agent to the required transmit power

and, therefore, energy consumption. Question 6 from Section 1.2 asks for this relation

between deadlines, time-frequency resource allocation and energy consumption.

For this purpose, we first formulate a problem with a continuous amount of resources

for each agent in Section 4.4. The given agent-specific maximum latencies lead to

deadlines, when the transmission has to be finished the latest. The channel conditions

are also given, as well as the common maximum packet error rate. This problem is

shown to be convex. Then, we propose a gradient-based algorithm in Section 4.5 to

allocate the time-frequency resources in an OFDM scheme in a quantized fashion. For

comparison, an allocation balancing the number of resources for each agent, as far as

the deadlines allow, is calculated. The three approaches are compared in Section 4.6

and the gradient based allocation is shown to be close to the continuous lower bound.

Moreover, the balancing allocation of resources to all agents is shown to perform worse

than the gradient-based algorithm.

4.2 Related Work

In this section, an overview of existing work and the state of the art for wireless control

command transmission is given.

In [LNL+21], a system with a single controller and agent is investigated. The wireless

link is situated between the controller and the plant, similar to the setup shown in

Fig. 4.1 for multiple agents. The focus of this work is to find the requirements on the

communication channel to enable the stabilization of the control loop. It is shown,

that only the SNR of the communication channel determines the stabilizability of the

control loop, not the latency of the channel. The effects of quantization to discrete

commands and packet loss due to the short packet effect are considered. Further

control requirements, like bounds on the state or the control input, leading to latency

restrictions, are not considered.

In [dIS+20], the transmission of control commands from the controller to the plant over

a wireless link is considered. The effects on the communication channel characteristics

due to the short packets utilized to transmit the commands are also regarded. The

main goal is to minimize the required energy for the transmission, which is achieved

by minimizing the power spectral density of the time and bandwidth limited transmit

signal. The limited number of time-frequency resources is split between an initial

transmit and a potential retransmit, potentially saving energy, if no retransmission is
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needed. The receiver incorporates a buffer for control commands for the next few time

steps and is assumed to send an acknowledgment for each correctly received packet.

The acknowledgment is assumed to require a fixed portion of the available time and

bandwidth resources. Each transmitted packet contains commands to refill the buffer

completely. A maximum probability of a buffer underrun at the receiver has to be

reached, thus including maximum transmission latency requirements. In this scenario,

all available time-frequency resources are used for the single agent, while the multi-

agent scenario is not considered.

A multi-agent bandwidth minimization problem is studied in [WQQ20]. While not

directly considering a control scenario, the transmission from a single transmitter to

multiple agents with strict reliability and latency requirements can also be used in

the scenario in Fig. 4.1 for command transmission. The channel is assumed to be

frequency selective, but only known to the receiver. The transmit power per resource

element is fixed. To minimize the energy required for transmissions while fulfilling the

requirements on latency, error rate and minimum throughput, it is therefore sufficient

to minimize the total allocated bandwidth.

[SSY+19] maximizes the energy efficiency in a scenario with multiple sensors transmit-

ting data to agents. Sensors and agents are assumed to be in different mobile radio cells,

the transmissions were done in Ultra-Reliable Low Latency Communication (URLLC)

style. This results in a multi-hop scenario from the sensor as transmitter to the first

base station, from the first base station via the backhaul link to a second base station

and from the second base station to the agent. The deadlines for these transmissions

are assumed identical, which is unrealistic for an industrial plant with agents belonging

to different classes of machines, such as heaters with lower dynamics and transporta-

tion devices keeping a lane or driving in a platoon, resulting in higher dynamics, as

discussed in Section 3.1.

The small amounts of data required for transmitting control commands to each agent

individually require a different assessment of the communication channel capacity,

which is given by Polyanskiy et. al. in [PPV10]. The deadlines induced by the control

requirements are already considered in [WQQ20] and [dIS+20], but the combination of

different latency requirements for multiple agents and minimization of transmit energy,

as formulated as question No. 5 in Section 1.2, is not considered. In [SSY+19], it is

shown that increased time-frequency resources do not always result in reduced energy

consumption, especially for short data packets, which leads to question No. 6 on how

to distribute the available resources for minimal transmit energy consumption.
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Figure 4.2: System model of the deadline-aware control command transmission

4.3 System Model

The system consists of a single central controller and M agents randomly distributed

around the controller, as shown in Fig. 4.2. The central controller senses the control

system states of all agents and generates control commands accordingly, which are then

transmitted to the agents. The control system is assumed to be discrete-time with a

time slot duration T . For each time slot a new control command is generated for every

agent, the commands are all available at the beginning of the time slot. The time

elapsed since the beginning of the time slot is denoted by t, 0 ≤ t ≤ T , t = 0 indicates

where transmission starts.

The performance of the control system is determined by the latency of the control

commands, so each agentm has an individual deadline τm, 0 ≤ τm ≤ T for the successful

reception of its command after the beginning of the time slot. The value of τm depends

on the dynamics of agent m, where higher dynamics generally lead to shorter deadlines.

Allocating resources to agent m after its deadline τm has passed would not contribute

to a timely reception, so we assume no resources after the deadline are allocated.

Additionally, the probability of a lost control command must not exceed pc to keep the

agents in a safe operation region.

Throughout this paper, a continuous quantity x will be denoted by x′(t), while its

piecewise continuous counterpart will be denoted by xt. The total bandwidth available

for transmission is denoted by B. The time-variant bandwidth assigned to agent m at

time t is b′m(t) ≤ B. b′m(t) is assumed to fulfill the uncertainty principle, i.e. it does

not change arbitrarily fast. Moreover, the sum of all assignments must not exceed the
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total bandwidth, i.e.

M∑
m=1

b′m(t) ≤ B for 0 ≤ t ≤ T. (4.1)

The commands for each agent, consisting of N bits, are transmitted over a wireless

channel, which is perfectly known at the central controller and the receiving agents.

The agents are assumed to be stationary. The channel between the controller and

every agent is modelled as line-of-sight (LOS). Thus, the channel is assumed to stay

constant over T and B. The power gain of the channel from the central controller to

agent m is denoted by the scalar channel gain Gm.

The transmission is performed interference free by using frequency division multiple

access on the available bandwidth B and time T for each agent. The integral of b′m(t)

with respect to t corresponds to the time-frequency resources of agent m, denoted by

n′m

n′m =

∫ T

0

b′m(t)dt. (4.2)

The Power-Spectral-Density (PSD) of the transmit power for agent m is denoted by

qm. It is assumed to stay constant for the whole transmission. The total energy Em

spent for the transmission to agent m is then given by

Em = qm

∫ T

0

b′m(t)dt. (4.3)

To account for the deadlines τm in (4.3), the assigned bandwidth for agent m, b′m(t),

must be set to zero for t > τm. The receiver noise is assumed to be AWGN, whose

power σ2
m(t) depends only on the noise PSD N0 and the bandwidth b′m(t) ≤ B assigned

to agent m at t, i.e. σ2
m(t) = N0b

′
m(t). The SNR at agent m is then

γm =
qmb

′
m(t)

σ2
m

=
qmb

′
m(t)

N0b′m(t)
=
qm
N0

. (4.4)

Since the commands are short and transmit time and bandwidth is limited, the well-

known Shannon capacity formula

Cm = log2 (1 + γm) (4.5)

for error-free transmission is too optimistic to determine the minimum SNR and has

to be extended for short packets. Therefore, also the channel dispersion for agent m,

Vm = γm
2 + γm

(1 + γm)2 log2
2 (e) , (4.6)
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has to be considered. In [SSY+19] the approximation

Vm ≈ log2
2 (e) (4.7)

is given, which is valid for γm ≥ 5dB. For the strict demands on pc, the short packet

sizes N and limited resources nm, generally γm ≥ 5dB is required. For an AWGN

channel, the normal approximation from [PPV10] gives the short packet formula for

a packet error rate pc, given a certain packet size N , the number of time-frequency

resources nm, the channel dispersion Vm and the SNR at the receiver γm. The packet

error probability pc,m for agent m can then be approximated by

pc,m ≈ Q

(
nmCm −N + log2 nm

2√
nmVm

)
, (4.8)

where Q(·) is the Gaussian Q-function.

The minimal Shannon capacity corrected for short packets Ccorr,m and therefore Em

required to fulfill the latency and error rate requirements pc,m for each agent m can be

calculated using a reformulated version of (4.8):

Ccorr,m ≈
1

n′m

(√
n′mVmQ

−1(pc) +N − log2(n′m)

2

)
(4.9)

Em (n′m, Gm, N, pc) = (2Ccorr,m − 1)
N0n

′
m

Gm

(4.10)

In the next section, the minimum total energy for continuous nm will be derived. In

practice, however, a continuous allocation of time-frequency resources is not possible.

Therefore, we follow the approach used in mobile radio standards like 5G New Radio

(NR) to implement the OFDM scheme, dividing the time-frequency plane into a grid

of rectangles, called resource elements. The total available bandwidth B is split into

Nsc subcarriers. The subcarrier bandwidth is bsc, such that B = bscNsc. The number

of OFDM symbols per time slot is Nsym, such that T = Nsymtsym. Considering the

available bandwidth, we define a time-frequency resource element as tsymbsc. Each

resource element is identified by its time index t, t = 1, . . . , Nsym and subcarrier index

s, s = 1, . . . , Nsc. The number of resource elements for agent m is denoted by nm. The

complete distribution of resource elements is collected in the vector n = [n1, . . . , nM ]T.

Due to the nature of OFDM, the area of one resource element is always tsymbsc =

1s · Hz. In Section 4.5, two algorithms to derive distributions of resource elements n

are proposed.
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4.4 Problem Formulation

4.4.1 General formulation

The overall goal is to minimize the total energy E =
∑M

m=1Em (n′m, Gm, N, pc) used for

the command transmission. Since B as well as the available time, due to the deadlines,

is limited, n′m is also limited. The energy minimization problem for the continuous

resource case is then

min
n′1,...,n

′
M

M∑
m=1

Em (n′m, Gm, N, pc) , (4.11a)

s.t.

M∑
m=1

b′m(t) ≤ B for 0 ≤ t ≤ T, (4.11b)

b′m(t) = 0 for τm < t ≤ T,m = 1, . . . ,M, (4.11c)

where (4.11b) enforces the bandwidth limitation and (4.11c) effectively restricts the

transmission to 0 ≤ t ≤ τm.

4.4.2 Convex reformulation

Problem (4.11a)–(4.11c) is hard to tackle, because the solution space is non-convex.

We will now implement constraints on nm and b′m(t) to get a convex subset of the

original solution space, still containing the optimal solution.

First, we restrict on nm to make (4.11a) convex. In [SSY+19], the partial convexity

of (4.10) in nm up to an inflection point nm,thr, i.e. for nm ≤ nm,thr, is shown. For

illustrative purposes of this partial convexity of (4.10), three examples for different

packet sizes N are shown in Fig. 4.3.

Furthermore, the number nm of resources achieving the global minimum of (4.10),

nm,min, is shown to be 0 ≤ nm,min ≤ nm,thr. Thus, adding the constraint nm ≤ nm,thr

will turn (4.10) and (4.11a) into convex functions in nm. To illustrate these properties,

Fig. 4.4 shows graphs for (4.10) with pc = 10−9, Gm = −70 dB and N = 512.

Since (4.11a) is only based on nm and not on b′m(t) directly, b′m(t) can be restricted to

be piecewise constant, without further restrictions on nm. The values of the constant

pieces are then collected in a vector bm.
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Figure 4.3: Required energy Em

Furthermore, only the integral over b′m(t) determines nm in (4.2). and therefore Em

in (4.10). Hence, b′m(t) can be assumed to be piecewise constant. As a consequence,

(4.2) becomes a sum of rectangular areas. The width of the rectangles is selected as

the distance between two consecutive deadlines.

An example is given in Fig. 4.4. A piecewise constant allocation is shown for three

agents with deadlines τ1, τ2, τ3 in increasing order. The vectors are then b1 = (2, 0, 0)T,

b2 = (1, 4, 0)T and b3 = (5, 3, 1)T. The first constant starts at t = 0 and ends at τ1,

the second ranges from τ1 to τ2 and so on, up to τM .

0 τ1 τ2 τ3 T
0

2

4

6

8

t

b m

n1
n2
n3

Figure 4.4: Example for constant bandwidth assignments
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With the auxiliary variable

τ0 = 0, (4.12)

we have the convex problem

min
n1,...,nM

M∑
m=1

Em (n′m, Gm, N, pc) (4.13a)

nm :=
M∑
k=1

(τk − τk−1)bm,k (4.13b)

s.t.

M∑
m=1

bm,k ≤ B for k = 1, . . . ,M (4.13c)

bm,k = 0 for m = 1, . . . ,M, k = m+ 1, . . . ,M (4.13d)

nm ≤ nm,thr for m = 1, . . . ,M (4.13e)

4.5 Resource Scheduling Algorithms

4.5.1 Gradient-Based Resource Scheduling Algorithm

The continuous allocation of time-frequency resources is not possible in an OFDM

scheme, which splits the time-frequency plane into a grid of small rectangles. There-

fore, (4.13a)–(4.13e) can only be used as a lower bound on E. To find a solution

for the discrete-time and discrete-bandwidth problem, two scheduling algorithms are

developed. The first algorithm is based on the fact that (4.13a) is convex in nm for

all m up to nm,thr. All resource elements are iteratively allocated to the agents. In

each iteration, the resource elements n = [n1, . . . , nM ]T, which were allocated in the

previous iteration, determine the possible reduction of Em for each agent m, if an

additional resource element is allocated to it. Therefore, the gradient of E, ∂E
∂n

(n) is

used as the decision criterion to select the agent for the resource element in the current

iteration. The resource elements can be distributed to the agents according to (4.13d)

and (4.13e). However, not all resource elements are beneficial to all agents because of

(4.13d). For resources at t, only agents with τm ≥ t can benefit. The larger t, the more

deadlines τm have passed, hence less agents will benefit from these resources. Before

allocating the resource elements, the level of competition, i.e. how many agents can

actually benefit from a certain resource element, must be calculated for each resource

element.



4.5 Resource Scheduling Algorithms 71

Therefore, the algorithm consists of two phases. First, the level of competition for

each resource element is determined. Second, the resource elements are allocated to

the agents, starting with the resource elements with the lowest level of competition. If

multiple agents can use a resource element, the agent who achieves a greater energy

reduction with this additional resource element gets it.

Algorithm 2 Algorithm Phase 1: Determine level of competition

Input: τ1, . . . , τM
Output: n1, . . . , nM

PHASE 1: Calculate levels of competition
1: for t = 1 : Nsym do
2: for s = 1 : Nsc do
3: for m = 1 : M do
4: if t ≤ τm then . check, if resource element at s and t is before deadline of

agent m
5: rs,t,m = 1
6: else
7: rs,t,m = 0
8: end if
9: end for
10: end for
11: end for
12: cs,t =

∑M
m=1 rs,t,m . calculate levels of competition

In the first phase, the level of competition is stored in matrix C ∈ NNsc×Nsym . The

element cs,t of matrix C contains the number of agents, which can use the resource

element at subcarrier s and time instant t. To calculate C, first, the three-dimensional

array R ∈ {0; 1}Nsc×Nsym×M is generated. The element rs,t,m is set to 1, if agent m can

use the resource element at subcarrier s and time instant t, and to 0 otherwise. Finally,

the array R is summed up along the third dimension to get C, i.e. cs,t =
∑M

m=1 rs,t,m.

In the second phase, the resource elements are allocated to the agents in increasing

level of competition, starting with elements with cs,t = 1 up to cs,t = M . Elements

with cs,t = 0 are neglected, because no agent benefits from them. Now, all resource

elements with the current level of competition are determined and their subcarrier and

time indices s and t are stored in the vectors s and t, respectively. In each iteration, one

resource element identified by corresponding s and t from s and t is considered. First,

the agents competing for this element are stored in the vector m. Then, the current

total number nm of elements allocated to agent m is calculated. The agent m from m

with the smallest derivative gm = ∂Em

∂nm
(nm) is assigned the resource element, because

this results in the greatest reduction of E. If gm ≥ 0, nm,min is achieved, agent m has
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Algorithm 3 Phase 2 of gradient-based Scheduling algorithm

PHASE 2: Allocate resource elements to agents
1: for l = 1 : M do
2: (s, t) = findindex(cs,t == l) . find all resource elements for current level of

competition
3: for (s, t) ∈ (s, t) do
4: nm =

∑M
m=1

∑Nsc

s=1 as,t,m . calculate current numbers of resource elements
5: m = findindex(rs,t == 1) . find all agents competing for this element
6: gm = ∂Em

∂nm
(nm) . calculate derivative for m ∈m

7: o = sort(g)
8: for m ∈ o do
9: if m ∈m then . check if element usable by agent m
10: if gm < 0 then . check if not yet larger than nm,min

11: as,t,m = 1
12: break for
13: else
14: as,t,m = 0
15: end if
16: end if
17: end for
18: end for
19: end for
20: nm,opt =

∑M
m=1

∑Nsc

s=1 as,t,m . calculate final numbers of resource elements

no benefit from any more resources. The allocation is stored in the three-dimensional

array A ∈ {0; 1}Nsc×Nsym×M .

Finally, all allocations from A are combined to get the total numbers of resources nm.

If the resource elements can only be assigned in groups like the physical resource blocks

in 5G NR [3GP21], the Nsc for the algorithm has to be reduced accordingly. For the

calculation of gm and the final counting to get nm, the size of one resource element

group has to be adapted. A summary of the code is presented in Algorithm 2 and

Algorithm 3.

4.5.2 Deadline-Aware Balancing Scheduling Algorithm

For comparison, a simpler resource element balancing algorithm is developed. The

gradient of E is not considered, but rather the number of resource elements already

allocated to agent m is the decision criterion for the current iteration. The resource

element is allocated to the agent with the least number of resources, i.e. with the
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lowest nm whose deadline has not yet passed and, thus, can use the resource element

of the current iteration. This is done by replacing line 6 in Algorithm 3 by gm = nm.

Furthermore, the check in line 10 must be removed, since the number nm of allocated

resources is always positive. A summary of this modified second phase is shown in

Algorithm 4.

Algorithm 4 Phase 2 of balancing scheduling algorithm

PHASE 2 of balancing allocation: Allocate resource elements to agents
1: for l = 1 : M do
2: (s, t) = findindex(cs,t == l) . find all resource elements for current level of

competition
3: for (s, t) ∈ (s, t) do
4: nm =

∑M
m=1

∑Nsc

s=1 as,t,m . calculate current numbers of resource elements
5: m = findindex(rs,t == 1) . find all agents competing for this element
6: gm = nm . take number of already allocated resources
7: o = min(g)
8: as,t,o = 1
9: end for
10: end for
11: nm,opt =

∑M
m=1

∑Nsc

s=1 as,t,m . calculate final numbers of resource elements

As a consequence, an equal allocation, as far as the deadlines allow, is achieved. More-

over, the channel gain Gm is not considered. Hence, the number nm,min, which achieves

the minimum energy Em as shown in Fig. 4.3 can also be exceeded if sufficient resources

are available, i.e. ntot is large, leading to an increase of the required total energy E.

This case is investigated in detail in the next section.

4.6 Numerical Results

The numerical results are generated for parameters based on the 5G NR standard. In

particular, we consider the frame structure [3GP21] and the possibility to make shorter

time allocations instead of assigning a whole frame to an agent, so-called minislots

[3GP20]. The carrier frequency fc is chosen to be 6 GHz, corresponding to unlicensed

band n96 of 5G NR. The channel is assumed to be pure LOS, so Gm only depends on

the distance of agent m to the central controller, but not on the subcarrier frequency

or the time t. Random deadlines τ1, . . . , τM are used and the results are derived from

a Monte-Carlo simulation. Each Monte-Carlo run uses a new set of deadlines, drawn

from the uniform distribution U (14tsym; 70tsym) for each τm to ensure τm ≤ T on the

one hand and make the problem feasible on the other hand. Parameters common to
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Carrier frequency fc 6 GHz

Noise power spectral density N0 −174 dBm
Hz

Number of subcarriers Nsc 4
Subcarrier bandwidth Bsc 15 kHz
Symbol duration tsym 66.666µs
Deadlines τm τm ∼ U(14tsym; 70tsym)
Maximum packet error probability pc 10−9

Number of OFDM symbols Nsym 70
Monte-Carlo runs per experiment R 10,000

Table 4.1: Simulation parameters
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Figure 4.5: Energy for different number M of agents

all simulations are given in Table 4.1. The allocations generated by the gradient-based

scheduling algorithm described in Section 4.5.1 and the balancing scheduling algorithm

described in Section 4.5.2 are compared to the continuous lower bound derived in Sec-

tion 4.4.2. Both, the gradient-based scheduling algorithm and the balancing scheduling

algorithm, are used to either assign a single resource element or four resource elements

from a single OFDM symbol per iteration.

In Fig. 4.5 the required energy E for different numbers M of agents is shown. The

available resources are kept constant as in Table 4.1. On the axis of the ordinate, the
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Figure 4.6: Energy for different packet sizes N

required total energy E is shown in a logarithmic scale. The axis of abscissa is used

to depict the number M of agents competing for resources. The agents are spaced

equidistant on a straight line starting at the central controller. The agent m = 1 is at

a distance dmin = 5 m from the central controller, the agent m = M at dmax = 100 m.

Consequently, the larger the number M of agents is, the closer the individual agents

are spaced. The packet size is N = 256 bits, which is in the center of the range for N ,

where (4.8) is valid, according to [PPV10]. The more agents are in the scenario, the

less resources per agent are available, therefore the required energy E increases. In a

highly constrained scenario, i.e. nm � nm,min, changes in nm have greater influence on

Em, because, as shown in Fig. 4.3, (4.10) is strictly convex in nm for nm < nm,min. The

continuous lower bound gives the minimum E, if there were no quantization effects

of nm on E. The influence of the coarse grid with the allocation in blocks of four

resource elements on the performance becomes apparent especially for M ≥ 8. For

M ≥ 8, the gradient based scheduler is about 0.1 dB worse than the optimum in single

resource element case and about 1.25 dB in the 4-resource element case. Meanwhile, the

balancing algorithm needs 5 dB and 2.3 dB more than the lower bound, respectively.

In Fig. 4.6, the influence of different packet sizes N as the abscissae on the required

energy E as the ordinates is investigated. The number of agents is M = 7, the agents
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Figure 4.7: Energy for varying maximum agent distances dmax, resulting in different
Gm

are spaced equidistant from dmin = 5m to dmax = 100m, like in the previous experi-

ment. Since the number of resources and agents is fixed, the scenario becomes more

constrained when the packet size increases. This is because the more bits are transmit-

ted, the larger is the number of bits per resource element. The effect on E is similar to

the previous result, due to the curvature of (4.10) for small nm in constrained scenar-

ios. The gradient-based scheduling algorithm for a single resource element gets results

about 0.3 dB worse than the optimum derived by solving (4.11a), even for high N .

The balancing benchmark scheduler always needs about 3 dB more energy than the

gradient-based algorithm, even with the fine grid of only one resource element, because

it does not consider the different gradients of Em caused by the different channel gains

Gm and packet sizes N .

In Fig. 4.7, the influence of different channel gains Gm on the required energy E is

shown. The M = 7 agents are again placed equidistantly, agent m = 1 is at dmin = 5 m,

but agent m = M is varied from dmax = 10 m to dmax = 160 m. The agents in between

are placed accordingly to keep the equidistant positioning. Since a pure LOS channel

is assumed, the channel gains Gm in dB-scale are directly proportional to the distances

dm of the agents to the central controller, which are shown on the axis of abscissae.
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The higher dmax, the greater is the distance between neighboring agents and, thus, their

difference in Gm. The optimal resource allocation has to account for this difference.

Since the balancing scheduler only takes the number of resources into account, the

energy requirement is up to 3 dB higher than for the gradient based scheduler. This is

an interesting result especially for scenarios, where non-line-of-sight propagation leads

to largely different channel gains.
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Figure 4.8: Avg. difference of min. and max. nm for varying max. agent distances
dmax, resulting in different Gm

The benefit of assigning resources nm based on the gradient of E, compared to the

balancing scheduling for different channel gains Gm, is investigated in Fig. 4.8. The

setup is the same as in Fig. 4.7, the maximum distance dmax is again shown as the

abscissae.

The difference δm, as defined in (4.14), between the largest and the smallest nm(r) for

all agents in a single run r of the experiment, averaged over the total number R of runs

with the same dmax, is shown as the ordinates.

δ(r) = max
m

nm(r)−min
m

nm(r) (4.14)

δ =
1

R

R∑
r=1

δ(r) (4.15)
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The continuous lower bound suggests a larger difference in the assigned nm is beneficial

in terms of energy consumption by assigning more resources to agents with low Gm.

For the gradient based scheduler, almost the same δ as the continuous lower bound

is attained. Especially for larger dmax, the 4-resource element case cannot achieve the

results of the finer resource grid, since the adaptation is worse due to the coarser grid.

The difference in the distances rm and, thus, the channel gains Gm is not considered

by the balancing scheduler, resulting in the constant average differences.

Now, the number of subcarriers is increased to Nsc = 12. First, the required energy

E for different packet sizes N is shown in Fig. 4.9, similar to Fig. 4.6. Due to the
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Figure 4.9: Energy for different packet sizes N with Nsc = 12

higher number of available resources, the transmit power can be reduced, resulting in a

lower total energy consumption. On the other hand, the results of the gradient based

scheduler are now even closer to the continuous lower bound, while the balancing

scheduler uses about 1.5 dB more energy. The gap between the algorithms shrinks,

because the absolute value of the gradient of Em decreases for nm close to nmin, cf.

Fig. 4.3.

Next, the required energy for a varying number of agents M like in Fig. 4.5 was

investigated for Nsc = 12. The number of bits per packet was set to N = 64. The

plot Fig. 4.10 shows the results. The granularity of the resource allocation has, like

in Fig. 4.9, almost no influence on the required energy E. Compared to Fig. 4.5,
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the required energy E is lower, while the slightly concave shape of the curves is still

visible. The reason for this shape lies partly in (4.9) and (4.10), but also the better

exploitation of available resources contributes to it. To illustrate this, an additional

curve is displayed in Fig. 4.10, showing the energy E required, if all time-frequency

resources

ntot = TB (4.16)

are allocated to the agents, i.e.

nm,fair =
ntot

M
. (4.17)

This allocation is not possible under the constraints, because (4.17) does not consider

the individual deadlines τm, but rather assumes τm = T . With a growing number M

of agents, the benefit, i.e. the reduction of the sum energy E, of ignoring the deadlines

shrinks. This is due to the better exploitation of the available time-frequency resources,

even if the deadlines are considered.
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Figure 4.10: Energy for different number M of agents with Nsc = 12

The percentage of used resources of the available total resources ntot

%ntot = 100 ·
∑M

M=1 nm
ntot

(4.18)
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is shown as the abscissae in Fig. 4.11. If the number of agents M is increased, the

probability to have at least one of them with a late deadline increases. Therefore, in

mean, the exploitation of the available time-frequency resources gets better, leading to

the increasing values for %ntot in Fig. 4.10 for increasing M .

The less agents are competing for the resources, i.e. the smaller M , the smaller gets the

sum
∑M

M=1 nm,min of resources required to achieve the minimum required energy. Since

the balancing allocation scheme does not consider the gradient gm, more resources than

necessary to achieve nm,min might be allocated to agent m. Hence, the exploitation of

available resources is better, but the required energy E is increased due to the curvature

of (4.10) shown in Fig. 4.3.
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Figure 4.11: Share of resources allocated to agents for number M of agents with Nsc =
12

To make this effect even more visible, the number of available resource is now increased

to Nsc = 20, while M is set to the values from the previous experiments. Now, for

M < 8 the gap in energy consumption between the balancing and the gradient based

algorithm is wider than for the more constrained scenarios with M > 8. This effect on

the required energy E for Nsc = 20 is visible in Fig. 4.12.

The increasing gap between the balancing and the gradient-based schemes already

observed in Fig. 4.11 is even more pronounced in Fig. 4.13. While the continuous lower
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Figure 4.12: Energy for different number M of agents with Nsc = 20

bound and the gradient based algorithm reduce the number of allocated resources

for a M < 8, the balancing algorithm still allocates all resources usable by the agents,

therefore, forM < 8, the sum ntot >
∑M

M=1 nm,min of allocated time-frequency resources

is larger than the sum of the minimal energy achieving allocations nm,min, which results

in the increased energy consumption E shown in Fig. 4.12.
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Figure 4.13: Share of resources allocated to agents for number M of agents with Nsc =
20

4.7 Conclusion

In this chapter, the time-frequency resource allocation for a single central controller

transmitting control commands to multiple agents, was optimized for minimum energy

consumption. The agents needed to receive the control commands before an individual

deadline. Since control commands generally are of small size, the problem was stated

based on an adapted version of the Shannon capacity formula for short packets. The

resulting continuous minimization problem was shown to be convex.

For application in mobile radio systems like 5G, due to the OFDM scheme applied,

the resource allocation has to be done based on fixed size resource elements, turning

the problem into a mixed integer problem. An algorithm to find a scheduling of these

resource elements based on the gradient of the required transmit energy was proposed

and compared to a simple resource balancing algorithm only considering the dead-

lines in terms of the required total transmit energy and the amount of time-frequency

resources allocated to the individual agents.

The resource blocks were configured to occupy either 1 Hz·s or 4 Hz·s in the time-

frequency plane. The gradient-based algorithm was shown to perform only about
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0.3 dB worse in terms of required energy than the continuous optimum and showed

improvements of more than 50% to the balancing algorithm, when blocks of 1 Hz·s were

allocated at once, especially if the channel gains among the agents are very different.

If 4 Hz·s are allocated at once, the gradient-based algorithm performed about 1.25 dB

worse than the lower bound, while the balancing algorithm again required about double

the energy compared to the gradient-based.

Furthermore, the ability of the gradient-based scheduling algorithm to adapt to dif-

ferent requirements due to different deadlines was demonstrated by investigating the

average difference between the largest and the smallest resource allocation to the agents.

Especially for a high difference in channel gains the difference in resource allocations

is large. Since the balancing scheduling algorithm does not consider channel gains, the

difference stays constant for all channel gain configurations.

Another important aspect shown is the ability of the proposed algorithm to reduce

the total number of allocated resource elements, compared to the balancing scheme,

especially for the larger resource block configurations of 4 Hz·s. This larger allocation of

the balancing scheme leads also to a higher noise energy at the receivers at the agents,

which has to be compensated by a higher transmit energy for this agent, resulting in

the observed increase of the total transmit energy.
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Chapter 5

Conclusions

5.1 Summary

In this thesis, three important aspects of WNCS were investigated and existing methods

were improved. First, the measurement and quantization of sensor values to measure

the state of the control system was investigated. Then, the scheduling of the trans-

mission of the sensor values to the controller was considered. Finally, the resource

allocation for transmitting control commands from a central controller to distributed

agents was optimized. A closed loop control system generally consists of one or more

loops, each of them including sensors, controllers, and plants. Each of these compo-

nents can be located remotely from its predecessor and/or successor, which imposes the

requirement to transmit information. Since the resources for wireless communication

are limited, an optimum utilization of this scarce resource is pursued.

In Chapter 2, the acquisition of sensor values and their transmission to the controller

were optimized in terms of needed energy and time. There are two parameters available

for adjustment, which were shown to have a tradeoff. First, there is the number of

quantization intervals, determining the resolution of the transmitted values. Second,

the number of measurements taken by a sensor impaired by measurement noise before

quantization. A higher number of measurements allows for, under the assumption the

noise of each measurement is uncorrelated, an averaging and therefore reduction of

the noise. Each of those tasks consumes time and energy, which are generally limited.

Hence, a pareto-optimal solution for minimum Bayes risk was shown to exist. For

the known properties of the quantity measured by the sensor, determined by the a-

priori distribution of the parameter and the number of measurements, a quantization

scheme tailored to the random distribution of possible sensor values was developed to

improve the utility of each transmitted bit. Therefore, the mutual information between

the source, the sensed value of interest in this case, and the sink, the estimator at

the controller, was maximized. The resulting estimation error at the controller was

evaluated in terms of the Bayes risk for the mean-absolute and the mean-squared

error. Finally, it was shown that this tradeoff has a pareto-optimum with a certain

combination of the number of quantization steps and the number of measurements, if

either the available total time or total energy for the acquisition and transmission are

limited. Using the presented quantization scheme, a reduction of required bits of up
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to 20% for the same Bayes risk, which was used as a measure for the quality of the

estimate, could be achieved on the considered a-priori distributions.

In Chapter 3, the scheduling of sensor value transmissions of a control system with

multiple discrete time linear subsystems, each having a scalar system state and a dead-

beat control scheme was investigated. The subsystems were assumed to accumulate

Gaussian system noise. To achieve the control goal of steering each subsystem to the

equilibrium, a central controller calculates a control input to each subsystem. To derive

the correct control input, updates about the current subsystem states have to be sent

to the central controller. The resources for transmission of these updates were limited,

so it was not possible to send an update for each subsystem in each time slot. We

have shown, that a periodic updating scheme is optimal to minimize the deviation of

the subsystems from the equilibrium over time. Furthermore, we stated an optimiza-

tion problem to find the optimum update rate for each subsystem based on its system

constant and the available transmission resources. We also considered the influence of

the different system constants on the behaviour of the uncertainty about each subsys-

tem state in the future. This optimization problem was shown to be convex. Finally,

we developed an algorithm to apply the calculated rates. Since the update rates do

not necessarily translate to an integer number of time steps between consecutive up-

dates, the resulting error is distributed equally by the scheduling algorithm among the

subsystems. This scheme also reduces fluctuations of the estimation error covariance

over time. Combining the results from the continuous optimization and the algorithm

for the application of the calculated update rates, we see a reduction of up to 20% in

the mean absolute error over all subsystems, compared to the reference scheme from

prior work, which did only work on the current uncertainty about the subsystem states

and did not include the future development. We could also reduce the variation of

this mean absolute error of the runtime of the system by about 60% compared to the

reference scheme.

In Chapter 4 the timely transmission of control commands from the controller to the

actuator was investigated. The small amounts of data to be transmitted, as well

as the required low latency between control input generation at the controller and

the application of this input at the actuator, a modified version of the well-known

Shannon channel capacity formula, which is adapted to data packets of short finite

length, was used. A command of a certain number of bits had to be transmitted

to each agent before an individual deadline. To achieve a minimal overall energy

consumption for the transmission, an optimization problem to allocate time-frequency

resources to the agents was derived. This problem was shown to be convex, which

allows for an efficient solution using available optimization frameworks. Additionally,

a energy-gradient-based algorithm to assign blocks of time-frequency resources in an
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OFDM fashion was developed to tackle the mixed-integer problem resulting from the

resource block structure in OFDM. The results of this algorithm were compared to the

results acquired by solving the continuous optimization problem in terms of required

total transmit energy. For further comparison, a simplistic algorithm, which only

balances the time-frequency resources allocated to the agents was developed. The

gradient-based algorithm was shown to achieve results close to the continuous solution

derived from the convex optimization problem, while the resource-balancing algorithm

required a much higher energy for transmission. The reduction of required energy for

the balancing scheme was shown to be up to 3 dB or halving the required amount of

energy. The gradient-based algorithm also considers the optimum amount of time-

frequency resources, which is especially required for short packages. This is due to the

fact that in short package communication more time-frequency resource also increase

the noise power, which results in an optimum number of time frequency resource for a

given packet size. In contrast to the classic Shannon formula, the required energy for

transmission rises, if too many time-frequency resources are allocated.

5.2 Outlook

Finally, we want to give some further research directions. For the state estimation

discussed in Chapter 2, independent realizations of the random variable were consid-

ered. However, in control systems, possible trajectories are at least partly known, so

including this a priori knowledge can further help in reducing the required quantization

intervals or improving the estimation performance. Furthermore, the communication

energy model can be improved by applying the short packet formula from [PPV10]

to get a tighter approximation of the required transmission energy, but also introduce

possible transmission errors.

The simple linear subsystems in Chapter 3 do not include any measurement noise,

which would make the scheduling more challenging. The value of information cannot

be calculated in closed form anymore, because it is not reset to zero after a single

transmission. The subsystems themselves can be extended to feature multidimensional

states. This also allows for a model considering only partial observability. Furthermore,

transmission error probabilities can make the model even more realistic.

The channel model in Chapter 4 does not consider channel fading or frequency selectiv-

ity. This would increase the complexity of the allocation algorithm, since the channel

coefficient is an additional parameter for the allocation of resource elements besides the

timeliness, which guarantees the transmission before the deadline, and the gradient of
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the transmission energy. Even more energy could be saved, if a retransmission scheme

was implemented, which can first try with a lower transmit energy and only use a

higher energy for a possible retransmission.
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List of Acronyms

AWGN Additive White Gaussian Noise

cdf cumulative distribution function

GNSS Global Navigation Satellite System

IIoT Industrial Internet of Things

IoT Internet of Things
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LTI linear time-invariant

MAVE minimum absolute-value error
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MMSE minimum mean-square error

NR New Radio
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WNCS Wireless Networked Control Systems
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AT Transpose of matrix A

AH Hermitian transpose of matrix A

|·| l2-norm

Var{·} Variance of a random variable

E{·} Expected Value of a random variable

I (X;Y ) Mutual information of the random variables X and Y

Ly′(x) Likelihood function of the parameter x for the observation y′

L((x),µ) Lagrangian function for argument x with Lagrange multipliers µ

pX(x) pdf of the random variable X

pX,Y (x, y) Joint pdf of the random variables X and Y
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X = x

1 Vector of ones
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bxc Greatest integer less than or equal to x
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C Communication channel capacity
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Emeas Energy required for a single measurement

Equant Energy required per quantization step

Etx Energy required for transmission

h Communication channel coefficient

mn Measurement noise of the nth measurement of w

Nmeas Number of measurements

Nbits Number of quantization bits

P Transmit power

Qquant Number of quantization intervals

RB Bayes risk

RB, AVE Bayes risk of the MAVE estimator

RB, MSE Bayes risk of the MMSE estimator

s Aggregated value derived from the measurements xn

Tmax Acquisition and transmission time limit

Tbit Time required to transmit a single bit

Ttx Time required for transmission
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Tacq Total time reqired for acquisition

v Decoder output generated from y′

w Value of interest

ŵ Estimated value of w generated by Ψ

wmax Upper bound of the value w of interest

wmin Lower bound of the value w of interest

xn nth noisy measurement of w

y Index of the quantization interval selected for s, transmitted over the
wireless communication channel

y′ The symbol at receiver of the wireless communication channel

z Receiver noise at the receiver of the wireless communication channel

γE Ratio of Equant to Emeas

γT Ratio of Tbit to Tmeas
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σZ Communication noise power

φQ Step function with Qquant steps for quantization of s
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List of Variables from Chapter 3

ai System coefficient of the ith subsystem

Ci Controller of the ith subsystem

ei(k) Estimation error of the ith subsystem at time instant k

fi(d) Function to calculate the sum of variances Pi of the ith subsystem
after d timeslots without transmission

gi(k) Kalman gain of the ith subsystem at time instant k
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Nsys Number of subsystems
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Vi Measurement noise covariance of the ith subsystem
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Wi System noise covariance of the ith subsystem
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µ Lagrange multipliers
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πDL Downlink scheduling
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Cm Shannon channel capacity for agent m
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dmin Minimum distance of agents from central controller

Em Total transmission energy for agent m

Gm Channel gain of agent m

gm Derivative of the required transmit energy w.r.t. nm for agent m

M Number of agents

N Number of bits in a single command
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Nsc Number of subcarriers
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Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO
Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der
schriftlichen Version übereinstimmt.
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