
Computer Science
Department
Intelligent Autonomous
Systems Group

Sample Efficient Monte Carlo
Tree Search for Robotics
Zur Erlangung des Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.)

ag der Prüfung: September 22, 2022

1. Gutachten: Prof. Jan Peters, Ph.D
2. Gutachten: Prof. Csaba Szepesvári, Ph.D
3. Gutachten: Prof. Dr. Joni Pajarinen
Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2023

Genehmigte Dissertation von Tuan Dam
Tag der Einreichung: August 11, 2022, Tag der Prüfung: September 22, 2022

Sample Efficient Monte Carlo Tree Search for Robotics

Submitted doctoral thesis by Tuan Dam

1. Review: Prof. Jan Peters, Ph.D
2. Review: Prof. Csaba Szepesvári, Ph.D
3. Review: Prof. Dr. Joni Pajarinen

Date of submission: August 11, 2022
Date of thesis defense: September 22, 2022

Darmstadt, Technische Universität Darmstadt,
Jahr der Veröffentlichung der Dissertation auf TUprints: 2023

Bitte zitieren Sie dieses Dokument als:
URN: urn:nbn:de:tuda-tuprints-229318
URL: http://tuprints.ulb.tu-darmstadt.de/22931

Dieses Dokument wird bereitgestellt von tuprints,
E-Publishing-Service der TU Darmstadt
http://tuprints.ulb.tu-darmstadt.de
tuprints@ulb.tu-darmstadt.de

CC BY-SA 4.0 International

For my father

Erklärungen laut Promotionsordnung

§8 Abs. 1 lit. c PromO

Ich versichere hiermit, dass die elektronische Version meiner Dissertation mit der schriftli-
chen Version übereinstimmt.

§8 Abs. 1 lit. d PromO

Ich versichere hiermit, dass zu einem vorherigen Zeitpunkt noch keine Promotion versucht
wurde. In diesem Fall sind nähere Angaben über Zeitpunkt, Hochschule, Dissertationsthe-
ma und Ergebnis dieses Versuchs mitzuteilen.

§9 Abs. 1 PromO

Ich versichere hiermit, dass die vorliegende Dissertation selbstständig und nur unter
Verwendung der angegebenen Quellen verfasst wurde.

§9 Abs. 2 PromO

Die Arbeit hat bisher noch nicht zu Prüfungszwecken gedient.

Darmstadt, August 11, 2022
T. Dam

v

Abstract

Artificial intelligent agents that behave like humans have become a defining theme and
one of the main goals driving the rapid development of deep learning, particularly rein-
forcement learning (RL), in recent years. Monte-Carlo Tree Search (MCTS) is a class of
methods for solving complex decision-making problems through the synergy of Monte-
Carlo planning and Reinforcement Learning (RL). MCTS has yielded impressive results
in Go (AlphaGo), Chess(AlphaZero), or video games, and it has been further exploited
successfully in motion planning, autonomous car driving, and autonomous robotic as-
sembly tasks. Many of the MCTS successes rely on coupling MCTS with neural networks
trained using RL methods such as DeepQ-Learning, to speed up the learning of large-scale
problems. Despite achieving state-of-the-art performance, the highly combinatorial nature
of the problems commonly addressed by MCTS requires the use of efficient exploration-
exploitation strategies for navigating the planning tree and quickly convergent value
backup methods. Furthermore, large-scale problems such as Go and Chess games re-
quire the need for a sample efficient method to build an effective planning tree, which
is crucial in on-the-fly decision making. These acute problems are particularly evident,
especially in recent advances that combine MCTS with deep neural networks for function
approximation. In addition, despite the recent success of applying MCTS to solve various
autonomous robotics tasks, most of the scenarios, however, are partially observable and
require an advanced planning method in complex, unstructured environments.
This thesis aims to tackle the following question: How can robots plan efficiency under
highly stochastic dynamic and partial observability? The following paragraphs will try to
answer the question:
First, we propose a novel backup strategy that uses the power mean operator, which
computes a value between the average and maximum value. We call our new approach
Power Mean Upper Confidence bound Tree (Power-UCT). We theoretically analyze our
method providing guarantees of convergence to the optimum. Finally, we empirically
demonstrate the effectiveness of our method in well-known Markov decision process
(MDP) and partially observable Markov decision process (POMDP) benchmarks, showing

vi

significant improvement in terms of sample efficiency and convergence speed w.r.t. state-
of-the-art algorithms.
Second, we investigate an efficient exploration-exploitation planning strategy by provid-
ing a comprehensive theoretical convex regularization framework in MCTS. We derive
the first regret analysis of regularized MCTS, showing that it guarantees an exponen-
tial convergence rate. Subsequently, we exploit our theoretical framework to introduce
novel regularized backup operators for MCTS based on the relative entropy of the policy
update and, more importantly, on the Tsallis entropy of the policy, for which we prove
superior theoretical guarantees. Afterward, we empirically verify the consequence of
our theoretical results on a toy problem. Eventually, we show how our framework can
easily be incorporated in AlphaGo, and we empirically show the superiority of convex
regularization, w.r.t. representative baselines, on well-known RL problems across several
Atari games.
Next, we take a further step to draw the connection between the two methods, Power-UCT
and the convex regularization in MCTS, providing a rigorous theoretical study on the
effectiveness of α-divergence in online Monte-Carlo planning. We show how the two
methods can be related by using α-divergence. We additionally provide an in-depth study
on the range of α parameter that helps to trade-off between exploration-exploitation in
MCTS, hence showing how α-divergence can achieve state-of-the-art results in complex
tasks.
Finally, we investigate a novel algorithmic formulation of the popular MCTS algorithm for
robot path planning. Notably, we study Monte-Carlo Path Planning (MCPP) by analyzing
and proving, on the one part, its exponential convergence rate to the optimal path in
fully observable MDPs, and on the other part, its probabilistic completeness for finding
feasible paths in POMDPs (proof sketch) assuming limited distance observability. Our
algorithmic contribution allows us to employ recently proposed variants of MCTS with
different exploration strategies for robot path planning. Our experimental evaluations in
simulated 2D and 3D environments with a 7 degrees of freedom (DOF) manipulator and
in a real-world robot path planning task demonstrate the superiority of MCPP in POMDP
tasks.
In summary, this thesis proposes and analyses novel value backup operators and policy
selection strategies both in terms of theoretical and experimental perspectives to help cope
with sample efficiency and exploration-exploitation trade-off problems in MCTS and bring
these advanced methods to robot path planning, showing the superiority in POMDPs w.r.t
the state-of-the-art methods.

vii

Zusammenfassung

Künstliche intelligente Agenten, die sich wie Menschen verhalten, sind in den letzten
Jahren zu einem bestimmenden Thema und einem der Hauptziele geworden, die die
rasante Entwicklung des Deep Learning, insbesondere des Reinforcement Learning (RL),
vorantreiben. Monte-Carlo Tree Search (MCTS) ist eine Klasse von Methoden zur Lösung
komplexer Entscheidungsprobleme durch die Synergie von Monte-Carlo-Planung und
Reinforcement Learning (RL). MCTS hat beeindruckende Ergebnisse bei Go (AlphaGo),
Schach (AlphaZero) oder Videospielen erzielt und wurde auch bei der Bewegungsplanung,
dem autonomen Fahren von Autos und der autonomen Montage von Robotern erfolgreich
eingesetzt. Viele der MCTS-Erfolge beruhen auf der Kopplung von MCTS mit neuronalen
Netzen, die mit RL-Methoden wie Deep Q-Learning trainiert werden, um das Lernen von
großen Problemen zu beschleunigen. Obwohl MCTS den neuesten Stand der Technik
erreicht, erfordert die hochgradig kombinatorische Natur der Probleme, die üblicherweise
mit MCTS behandelt werden, den Einsatz effizienter Strategien für die Navigation im Pla-
nungsbaum und schnell konvergierende Methoden für die Wertsicherung. Darüber hinaus
erfordern große Probleme wie Go- und Schachspiele eine Sampling-Effizienz-Methode, um
einen effektiven Planungsbaum zu erstellen, der für die fliegende Entscheidungsfindung
entscheidend ist. Diese akuten Probleme sind besonders offensichtlich, vor allem bei den
jüngsten Fortschritten, die MCTS mit tiefen neuronalen Netzen zur Funktionsannähe-
rung kombinieren. Trotz der jüngsten Erfolge bei der Anwendung von MCTS zur Lösung
verschiedener Aufgaben der autonomen Robotik sind die meisten Szenarien jedoch teil-
weise beobachtbar und erfordern eine fortschrittliche Planungsmethode in komplexen,
unstrukturierten Umgebungen.
Diese Arbeit zielt darauf ab, die folgenden Fragen zu beantworten: Wie können Roboter
unter hoch stochastischer Dynamik und partieller Beobachtbarkeit effizient planen? In den
folgenden Abschnitten wird versucht, diese Frage zu beantworten: Zunächst schlagen wir
eine neuartige Backup-Strategie vor, die den Power-Mittelwert-Operator verwendet, der
einen Wert zwischen dem Durchschnitts- und dem Maximalwert berechnet. Wir nennen
unseren neuen Ansatz Power-UCT. Wir analysieren unsere Methode theoretisch und geben

viii

Garantien für die Konvergenz zum Optimum. Schließlich demonstrieren wir empirisch
die Effektivität unserer Methode in bekannten MDP- und POMDP-Benchmarks, die eine
signifikante Verbesserung in Bezug auf die Stichprobeneffizienz und die Konvergenzge-
schwindigkeit im Vergleich zu modernen Algorithmen zeigen.

Zweitens untersuchen wir eine effiziente Explorations-Ausnutzungs-Planungsstrategie,
indem wir einen umfassenden theoretischen konvexen Regularisierungsrahmen in MCTS
bereitstellen. Wir leiten die erste Regret-Analyse von regularisierten MCTS ab und zeigen,
dass sie eine exponentielle Konvergenzrate garantiert. Anschließend nutzen wir unseren
theoretischen Rahmen, um neuartige regularisierte Backup-Operatoren für MCTS einzu-
führen, die auf der relativen Entropie der Politikaktualisierung und, was noch wichtiger ist,
auf der Tsallis-Entropie der Politik basieren, für die wir überlegene theoretische Garantien
beweisen. Anschließend verifizieren wir die Konsequenz unserer theoretischen Ergebnisse
empirisch an einem Spielzeugproblem. Schließlich zeigen wir, wie unser Rahmenwerk
leicht in AlphaGo integriert werden kann, und wir zeigen empirisch die Überlegenheit
der konvexen Regularisierung im Vergleich zu repräsentativen Baselines bei bekannten
RL-Problemen in mehreren Atari-Spielen.

In einem weiteren Schritt stellen wir die Verbindung zwischen den beiden Methoden,
Power-UCT und der konvexen Regularisierung in MCTS, her und liefern eine rigorose
theoretische Studie über die Effektivität der α-Divergenz in der Online Monte-Carlo
Planung. Wir zeigen, wie die beiden Methoden durch die Verwendung der α-Divergenz
miteinander verbunden werden können. Darüber hinaus bieten wir eine detaillierte
Studie über den Bereich des α-Parameters, der dabei hilft, einen Kompromiss zwischen
exploration-exploitation in MCTS zu finden, und zeigen somit, wie α-Divergenz in AlphaGo
und AlphaZero integriert werden kann, um bei komplexen Aufgaben die besten Ergebnisse
zu erzielen.

Schließlich untersuchen wir eine neuartige algorithmische Formulierung des beliebten
MCTS-Algorithmus für die Roboterbahnplanung. Insbesondere untersuchen wir die Monte-
Carlo-Pfadplanung (MCPP), indem wir zum einen ihre exponentielle Konvergenzrate zum
optimalen Pfad in vollständig beobachtbaren MDPs analysieren und beweisen und zum
anderen ihre probabilistische Vollständigkeit für das Finden machbarer Pfade in POMDPs
(Beweisskizze) unter der Annahme begrenzter Beobachtbarkeit der Entfernung. Unser al-
gorithmischer Beitrag ermöglicht es uns, kürzlich vorgeschlagene Varianten von MCTS mit
verschiedenen Explorationsstrategien für die Roboterbahnplanung einzusetzen. Unsere
experimentellen Auswertungen in simulierten 2D- und 3D-Umgebungen mit einem Mani-
pulator mit 7 Freiheitsgraden (DOF) und in einer realen Roboter-Bahnplanungsaufgabe
zeigen die Überlegenheit von MCPP in POMDP-Aufgaben.

ix

Zusammenfassend lässt sich sagen, dass in dieser Arbeit neuartige Value-Backup-Operatoren
und Policy-Selection-Strategien sowohl aus theoretischer als auch aus experimenteller
Sicht vorgeschlagen und analysiert werden, um mit den Trade-Off-Problemen Stichproben-
Effizienz und Exploration-Exploitation in MCTS zurechtzukommen und diese fortschrittli-
chen Methoden in die Roboterbahnplanung einzubringen.

x

Acknowledgements

Today I sit here writing these acknowledgements to express my deepest gratitude to
all who have accompanied, helped, and supported me along the way to completing
this dissertation. This study would not have been possible without the support of all of
you.
First and foremost, I would like to thank Professor Jan Peters. Thank you for creating a
great environment and welcoming me into the IAS family. This is a great honor for me.
Thank you for your understanding, your advice, your encouragement, your help, and for
providing me with an excellent environment to complete this work. Without it, there
would be no success like today.
Next, words cannot express all my deep gratitude to Professor Joni Pajarinen. I want to
thank you so much for guiding me throughout this journey. Thank you for your dedicated
guidance, understanding, and sympathy that cheered me up throughout the dissertation.
Without your help, I probably would not be where I am today. Your great input, vision,
and encouragement are difficult to express here. My sincere thanks and deepest gratitude
to you.
The next person I would like to acknowledge is Dr. Carlo D’Eramo, who has closely
followed, played, studied and worked with me since the first days I came here. Thank
you very much for your help. I hope for more opportunities to work together in the
future.
The next one is definitely Dr. Georgia Chalvatzaki. I cannot express my gratitude to you
for your direct or indirect help to me. Thank you for your kindness and warm heart. You
will be much more successful in the future.
Pascal Klink, you are one of my greatest colleagues. You are always great and professional
in all the things you do. Having the chance to work with you is my great luck. Thank you
for helping me along the way. I hope there will be many, many more good collaborations
in the future.

My big thanks and sincere gratitude to all members of IAS family: Boris, Hany, Niklas,
Oleg, Puze, Junning, Michael, Joe, Samuele, Simone, Riad, Firas, Davide, Ali, Snehal, An,
Tim, Daniel, João, Kay, Kai, Bang, Tianyu, Julen, Marco, Svenja, Doro.... Thank you so
much for your help. We have wonderful memories with each other.
I also thank my committee members Csaba Szepesvári and Oskar von Stryk for evaluating
my dissertation and participating in the defense.
Thanks to my dear family. My sister, thank you for giving me motivation and encouraging
words and for taking care of our mother so that I could continue my journey and finish
this thesis. Next, I want to give you my great love, mom. Thank you for your boundless
love, advice and encouragement and for giving me a positive outlook on the future.
I love you, mama.
Thank you for everything!

xii

Contents

Abstract vi

Zusammenfassung viii

Acknowledgements xi

1. Introduction 1
1.1. Motivation . 3
1.2. Major Contributions . 5

1.2.1. Power Mean Estimation in Monte-Carlo Planning 5
1.2.2. Convex Regularization in Monte-Carlo Tree Search 5
1.2.3. α-divergence in Monte-Carlo Tree Search 6
1.2.4. Monte-Carlo Robot Path Planning 6

1.3. Thesis Outline . 7

2. Generalized Mean Estimation in Monte-Carlo Tree Search 9
2.1. Introduction . 9
2.2. Related Work . 11
2.3. Background . 11

2.3.1. Monte-Carlo Tree Search . 12
2.3.2. Upper Confidence bound for Trees 12
2.3.3. Power Mean . 13

2.4. Power Mean Backup . 14
2.4.1. Power-UCT . 14

2.5. Theoretical analysis . 16
2.6. Experiments . 19

2.6.1. FrozenLake . 19
2.6.2. Copy Environment . 20
2.6.3. Rocksample and PocMan . 21

xiii

2.7. Conclusion . 23

3. Convex Regularization in Monte-Carlo Tree Search 25
3.1. Introduction . 25
3.2. Preliminaries . 27

3.2.1. Markov Decision Processes . 27
3.2.2. Monte-Carlo Tree Search and Upper Confidence bounds for Trees . 27

3.3. Regularized Monte-Carlo Tree Search . 28
3.3.1. Legendre-Fenchel transform . 29
3.3.2. Regularized backup and tree policy 30
3.3.3. Convergence rate to regularized objective 31

3.4. Entropy-regularization backup operators 31
3.4.1. Regret analysis . 32
3.4.2. Error analysis . 34

3.5. Empirical evaluation . 36
3.5.1. Synthetic tree . 37
3.5.2. Entropy-regularized AlphaGo . 39

3.6. Related Work . 39
3.7. Conclusion . 40

4. A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree
Search 43
4.1. Introduction . 43
4.2. Related Work . 45
4.3. Preliminaries . 46

4.3.1. Markov Decision Processes . 46
4.3.2. Monte-Carlo Tree Search . 46
4.3.3. α-divergence . 46

4.4. α-divergence in MCTS . 47
4.4.1. α-divergence Regularization in MCTS 47
4.4.2. Connecting Power Mean with α-divergence 48
4.4.3. Regret and Error Analysis of α-divergence in Monte-Carlo Tree Search 49

4.5. Empirical Evaluation . 50
4.5.1. Synthetic Tree . 50

4.6. Conclusion . 52

5. Monte-Carlo Robot Path Planning 53
5.1. Introduction . 53

xiv

5.2. Related Work . 56
5.3. Background . 57

5.3.1. RRT* . 58
5.4. Problem formulation . 59
5.5. Monte-Carlo path planning . 60

5.5.1. Fully observable environment . 60
5.5.2. Partially observable environment 61
5.5.3. Theoretical analysis . 62

MDP . 63
POMDP . 65

5.6. Experiments . 66
5.6.1. Experimental evaluation in simulation 67
5.6.2. Real robot object disentangling task 69

5.7. Conclusions . 71

6. Conclusion 72
6.1. Summary of Contributions . 72
6.2. Open Problems . 74

6.2.1. Maximum Expected Value Estimation of Power Mean 74
6.2.2. Uncertainty Value Estimation . 74
6.2.3. Efficient Monte-Carlo Planning for Autonomous Car Driving 75

6.3. Future Work . 75
6.3.1. p-Adaptation . 76
6.3.2. Wasserstein Monte-Carlo Tree Search 76
6.3.3. AlphaGo for Autonomous Car Driving 77

A. Appendix 78
A.1. Generalized Mean Estimation in Monte-Carlo Tree Search 78
A.2. Convex Regularization in Monte-Carlo Tree Search 93
A.3. A Unified Perspective on Value Backup and Exploration in Monte-Carlo

Tree Search . 104

Curriculum Vitae 107

List of Figures 112

List of Tables 115

List of Algorithms 116

xv

List of Acronyms 117

List of Symbols 119

Bibliography 122

xvi

1. Introduction

“Driving in Monte Carlo is like riding a bike in your
house.”

— Nelson Piquet

Autonomous agents performing online planning tasks need optimal decisions with an
efficient sampling strategy. These are even more important in robotic applications, such as
autonomous car driving [1]–[3], robot path planning [4]–[7], and human-robot collabora-
tion [8], [9], where the need for optimal online decisions is crucial. In addition, sampling
in real robotic scenarios has been expensive due to the slow movements of robots and
expensive queries of physical robot systems [10], preventing the applicability of current
methods. Monte-Carlo Tree Search [11] is a powerful tool for online robot planning that,
besides having many advantages that can ensure choosing an optimal decision [12] and
help with sample efficiency because of the use of a simulation for planning, still poses
many open problems.
What is Monte-Carlo Tree Search?
Monte-Carlo Tree Search (MCTS) [11] is an effective online planning strategy that com-
bines Monte-Carlo sampling with forward tree search to find optimal decisions on-the-fly.
MCTS uses a black-box model of environments in simulation to build a planning tree. As
shown in Fig. 1.1, MCTS consists of four basic steps: Selecting the nodes based on the
current statistical information to traverse in the tree, expanding the tree, roll-out in the
environments and backup the collected rewards from the environment along the tree. The
core nature that determines the success of MCTS planning is an effective value backup
operator and an efficient policy search in the tree.
Why do we need Monte-Carlo Tree Search?
By coupling MCTS planning with pre-trained deep neural networks, MCTS has shown great
success in various tasks ranging from board games to video games. Notably, with impressive
results in the game of Go (AlphaGo) [13] and the game of Chess (AlphaZero) [14] and

1

Selection Expansion

Evaluation Backpropagation

V node

Q node

rollout

backpropagate

traverse

newly created V node

newly created Q node

Figure 1.1.: This figure illustrates the four basic steps of Monte-Carlo Tree Search.

recent successful applications of MCTS as an effective planning strategy in autonomous
car driving [15], robot assembly [16], and robot motion planning tasks [17], MCTS has
been one of the topics that play an increasingly important role in driving the development
of autonomous robotics applications.

What are the current Monte-Carlo Tree Search problems?

The use of simulations for planning in MCTS helps to shorten the limitations of sampling in
real robots, such as slow movements and expensive queries of physical systems. However,
this poses an open research question that how can we efficiently sample in simulations
that still ensure choosing the optimum? This problem is called sample efficiency. sample
efficiency refers to the number of times an agent interacts with simulated environments
(the number of actions and the corresponding observed states/rewards performed in
simulations) to get to the optimum. An algorithmic MCTS strategy is called sample
efficiency if it makes good use of samples in simulations for the fast convergence of value
functions and ensures choosing optimal decisions.

Additionally, the high stochasticity of real robotic tasks requires an effective method to
either exploit the current good action or explore other actions hoping to reach higher per-
formance levels. This is called exploration-exploitation dilemma. exploration-exploitation
trade-off in MCTS refers to an effective value function estimation and the corresponding

2

policy selection in the tree that balances between the exploration of good branches to
get more rewards or the exploitation of other branches for faster value function conver-
gence.
In addition, robots acting under uncertainty face many difficulties. Full states of envi-
ronments are only partially observed, making it hard for decision making. An optimal
policy can be obtained based on the belief distributions over the states. However, the
belief calculation is computationally expensive, especially in high-dimensional state space.
This disclosed problem has been severely implied in robot path planning, in which the
current state-of-the-art methods such as Rapidly exploring random trees (RRT)s/RRTs*
are only designed for fully observable tasks.
The objective study of this thesis is to investigate Monte-Carlo Planning methods both in
terms of theory and experiments to solve these sample efficiency and exploration-exploitation
dilemma problems and transform these advanced methodologies to robot path planning
tasks, showing the advantages in partial observable settings both in simulations and real
robotic scenarios.

1.1. Motivation

With the progressive growth of science and technology, notably artificial intelligence (AI),
robots nowadays play an increasingly important role in human life. Humans have devel-
oped intelligent robots capable of performing challenging tasks for industrial production
and our own daily lives. Fundamental building blocks contributing to this widespread
success are the increasing popularity of machine learning (ML), particularly reinforce-
ment learning (RL) and deep learning (DL), which have driven the development of
robotics.
DL has recently gained wide adoption in both academia and industry and has been
successfully applied in a wide range of applications from computer vision [18]–[21]
and natural language processing [22]–[24] to robotics [25]–[27]. Contributing to these
successes are the outcomes of AlphaGo [28] and AlphaZero [14] that can defeat humans
in the Go and Chess games. The profound success of AlphaGo, AlphaZero lies in the
synergistic combination of Monte-Carlo Tree Search (MCTS) [11], an effective method
that combines a random sampling strategy with an online tree search to determine
the optimal decision, with pre-trained neural networks using Reinforcement Learning
(RL) [29] methods such as Deep Q-Learning [30]. These achievements become even
more remarkable due to the high branching factor and the large-scale properties of Go and

3

Chess games. However, despite these successes, both AlphaGo and AlphaZero suffer from
poor sample efficiency mostly because of the polynomial convergence rate of the employed
state-of-the-art-method Upper Confidence bound Tree (UCT) [12] or Polynomial Upper
Confidence bound Tree (PUCT) [31], which uses the average reward backup operator. The
inefficiency of the average backup operator is well-known for the issue of underestimating
the optimum [32]. One can think of using the maximum backup operator [32], but it
overestimates the optimal branch.

MCTS has further shown surprising results in videos game [33]. Notable examples are the
outcome achievements of Atari games [34], which unify a forward tree search with a prior
deep Q-learning network. However, the high stochasticity of Atari games [34] requires an
efficient exploration strategy for sufficient accumulation of rewards from environments to
speed up the convergence of value estimation in the tree.

These issues pose an open research question to find an effective backup operator for
sample efficiency in combination with an efficient exploration-exploitation strategy.

One of a concerned topic in robotic community is robot path planning. Robot path planning
is typically addressed by sampling-based methods [35], [36]. Rapidly exploring random
trees (RRTs*) [37] is the chosen state-of-the-art method that ensures the probabilistic
completeness to find a feasible path in fully observable environments [38]. However, most
of the real robotic tasks are in partially observable environments because robots typically
observe information about environments from laser sensors [39], camera images [40],
and sensory feedback [41], which typically contain noise. Therefore, robots normally
operate in environments under uncertainty. The need for a strategic online planning
method in unknown, unstructured environments becomes critical.

This thesis tackles following openMCTS problems: sample efficiency, exploration-exploitation.
We take a further step to show how can MCTS help with partial observability. in robotic
tasks. First, backup operator and planning policy in the MCTS tree in both MDP and
POMDP environments are crucial to break the issue of sample efficiency. Second, entropy
regularization in online Monte-Carlo planning helps to balance exploration and exploita-
tion. Finally, a novel sampling-based robot path planning method based on MCTS has
been proposed to show the advances over the state-of-the-art RRT*, notably in partial
observability environments.

4

1.2. Major Contributions

This dissertation proposes advanced methods for one of a powerful tools for online
planning in robotics, MCTS, and brings these advanced methods as new sampling-based
techniques to solve robot path planning tasks, showing the superiority of the methods
in POMDPs both in simulations and real robots. The contributions of this dissertation
are fourfold: (i) Demonstrate that the use of power mean (Power-UCT) as a new backup
operator can help with the sample efficiency problem in online Monte Carlo planning.
Provide an asymptotic convergence guarantee for the optimum. (ii) Introduce the use of
convex regularization framework in MCTS with an exponential convergence guarantee.
Investigate different types of entropy-based regularization and show the advantages for
solving the exploration-exploitation problem in Monte Carlo planning. (iii) Provide a
unified view of α-divergence in MCTS. Combining the two methods (Power-UCT and the
convex regularization framework) and giving a rigorous theoretical analysis. (iv) Propose
to use MCTS for robot path planning. Provide an exponential convergence guarantee to
find the optimal path in MDPs, and probabilistic completeness to find a feasible path in
POMDPs, showing the advantage over RRT* in POMDPs. Each of these contributions will
be presented separately in four main chapters. Here we list the main contributions.

1.2.1. Power Mean Estimation in Monte-Carlo Planning

We show how the power mean backup operator (Power-UCT) can help overcome the
limitations of regular methods like UCT [12], which is well-known for the problem
of underestimating the tree’s optimal branch in terms of a novel backup operator and
sampling strategies [32]. Mainly, Power-UCT uses power mean as a new backup operator
and Upper Confidence Bound (UCB) [42] as a policy selection in MCTS, generalizing the
well-known state-of-the-art method UCT, which solves the problem of the underestimate
of the average backup operator in UCT. Furthermore, we prove that Power-UCT ensures a
theoretically polynomial convergence guarantee to the optimum. We additionally analyze
the effectiveness of p-constant value that balances exploration and exploitation in some
MDP and POMDP environments, showing the benefits of Power-UCT over baseline methods.
This approach will be presented in chapter 2.

1.2.2. Convex Regularization in Monte-Carlo Tree Search

We additionally provide a comprehensive study of the use of convex regularization frame-
work in MCTS (Extended Empirical Exponential Weight (E3W)). Subsequently, we prove

5

that E3W ensures an exponential convergence rate and derive a first regret analysis of
regularized MCTS methods. Finally, we narrow down the scope of the study to entropy-
based regularizers and show performance benefits of the Tsallis entropy-based regularizer
(TENTS) over other methods in some Atari games. This approach will be presented in
chapter 3.

1.2.3. α-divergence in Monte-Carlo Tree Search

We provide a rigorous theoretical study of α-divergence in MCTS. In detail, we exploit that
entropy regularization in MCTS can be achieved by employing the α-divergence function
as the regularizer, therefore to relatively derive the maximum entropy, the relative entropy
of the policy update, and, more importantly, derive the Tsallis entropy of the policy those
has been proposed in E3W. Furthermore, we generalize the definition of average mean
by considering the α-divergence function as the probability distance and deriving power
mean, which has been used as a novel backup operator in Power-UCT. Finally, we show
how α-divergence can be integrated into MCTS and the effectiveness of α parameters in
the Synthetic Tree problem. This approach will be presented in chapter 4.

1.2.4. Monte-Carlo Robot Path Planning

Next, sampling-based approaches such as RRTs* [37] or probabilistic roadmap planning
are commonly used in robot path planning. However, these approaches are limited to
problems where the robots observe the environment fully. This assumption is not satisfied
in practice since many robotics systems operate under partial observability. We propose a
forward search-based path planning approach using MCTS with continuous actions and
observations with an exponential convergence rate guarantee in fully observable MDPs
and probabilistic completeness guarantee in partially observable POMDPs. Existing MCTS
methods for continuous spaces do not provide convergence rate proofs and have not been
demonstrated in POMDP tasks. Moreover, the MCTS planner takes advantage of recently
proposed Power-UCT [43] and Tsallis Entropy Monte-Carlo Planning (TENTS) [44] MCTS
approaches, which have not previously been used in robotics. Experiments show that our
approach outperforms RRTs in challenging MDP tasks and demonstrates the approach
in a real-world robotic POMDP physical object disentangling task where existing path
planning methods do not converge to an optimal solution. This approach will be presented
in chapter 5.

6

Chapter 2: Generalized
Mean Estimation in
Monte-Carlo Tree Search

Asymptotic convergence
guarantee

Regret and error bound
analysis

Chapter 3: Convex Regularization in
Monte-Carlo Tree Search

Entropy regularization in MCTS

Exponential convergence guarantee

Regret and error bound analysis

Chapter 4: A Unified Perspective on
Value Backup and Exploration in
Monte-Carlo Tree Search

Connect Power-UCT and entropy
regularization in MCTS using
 -divergence

Exploration-exploitation based on

Chapter 5: Monte-Carlo Path
Planning

MCTS sampling-based robot
path planning

Ensure exponential
convergence rate to find the
optimal path in MDPs and
probabilistic completeness to
find a feasible path in
POMDPs (proof sketch)

Introduce Power-UCT and
Tsallis Entropy Monte-Carlo
Planning (TENTS) to
Monte-Carlo Path Planning
(MCPP)

Sample Efficiency Exploration-Exploitation Partial Observability

Sample Efficient Monte Carlo Tree Search for
Robotics

Thesis Outline

Figure 1.2.: This figure illustrates the outline of the thesis.

1.3. Thesis Outline

In this section, we attempt to give a brief overview of how the rest of the thesis is structured.
For the big picture, please refer to the Fig. 1.2.

In Chapter 1: ”Introduction”, we provide motivation for our work and briefly outline
contents of the thesis.

In Chapter 2: ”Generalized Mean Estimation in Monte-Carlo Tree Search”, we demonstrate
the benefits of using power mean as the backup operator to replace the average backup
operator of UCT. We call our method Power-UCT and indicate that Power-UCT ensures the
same polynomial convergence rate as UCT and demonstrate the advantages over baselines
in both MDP and POMDP tasks.

In Chapter 3: ”Convex Regularization in Monte-Carlo Tree Search”, we introduce the
use of convex regularization in MCTS and study the properties of various entropy-based
regularizers both in terms of theory and experiment in MCTS.

In Chapter 4: ”A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree
Search”, we introduce α-divergence and show the connection of how to use α-divergence

7

to derive Power-UCT and E3W, providing the regret bound of Power-UCT and entropy
regularisation methods with respect to α parameters.
In Chapter 5: ”Monte-Carlo Path Planning”, we propose to use MCPP as a sampling-
based robot path planning method in high dimensional continuous state and action space.
Shows the convergence rate in MDPs, probabilistic completeness in POMDPs (proof sketch),
and furthermore shows the benefit of the method in POMDPs compared to the baseline
RRT*.
In Chapter 6: ”Conclusion”, we review the contributions, open problems and future work
of the Ph.D. thesis.

8

2. Generalized Mean Estimation in
Monte-Carlo Tree Search

“Expectation is the mother of all frustration.”
— Antonio Banderas

We consider Monte-Carlo Tree Search (MCTS) applied to Markov Decision Processes
(MDPs) and Partially Observable MDPs (POMDPs), and the well-known Upper Confidence
bound for Trees (UCT) algorithm. In UCT, a tree with nodes (states) and edges (actions)
is incrementally built by the expansion of nodes, and the values of nodes are updated
through a backup strategy based on the average value of child nodes. However, it has
been shown that with enough samples the maximum operator yields more accurate node
value estimates than averaging. Instead of settling for one of these value estimates, we go
a step further proposing a novel backup strategy which uses the power mean operator,
which computes a value between the average and maximum value. We call our new
approach Power-UCT, and argue how the use of the power mean operator helps to speed
up the learning in MCTS. We theoretically analyze our method providing guarantees of
convergence to the optimum. Finally, we empirically demonstrate the effectiveness of our
method in well-known MDP and POMDP benchmarks, showing significant improvement
in performance and convergence speed w.r.t. state of the art algorithms.

2.1. Introduction

Monte-Carlo Tree Search (MCTS) [32] is an effective strategy for combining Monte-Carlo
search with an incremental tree structure. MCTS is becoming increasingly popular in
the community, especially after the outstanding results recently achieved in the game of
Go [28]. In the last years, the MCTS research has mainly focused on effective ways of
expanding the tree, performing rollouts, and backing up the average reward computed
from rollouts to the parent nodes. We consider the Upper Confidence bound applied

9

to Trees (UCT) algorithm [12], which combines tree search with the well-known UCB1
sampling policy [45], as an effective way of dealing with the action selection to expand
the tree. In UCT, the estimate of the value of each node is computed by performing
multiple rollouts starting from the node, and updating the node’s value as the average of
the collected rewards; then, the node’s value is backed up to the parent nodes that are
updated with the average of the value of the children nodes. Since the action selection
policy tends to favor the best actions in the long run, UCT has theoretical convergence
guarantees to the optimal value. However, it has been shown that using the average reward
for backup leads to an underestimation of the optimal value, slowing down the learning;
on the other hand, using the maximum reward leads to an overestimation causing the
same learning problems, especially in stochastic settings [32]. This problem is also evinced
in the well-known Q-Learning algorithm [46], where the maximum operator leads to
overestimation of the optimal value [47]. Some variants ofQ-Learning based on (weighted)
mean operators have been successfully proposed to address this issue [48], [49].
In this chapter, we introduce a novel backup operator based on a power mean [50] that,
through the tuning of a single coefficient, computes a value between the average reward
and the maximum one. This allows to balance between the negatively biased estimate
of the average reward, and the positively biased estimate of the maximum reward; in
practice, this translates in balancing between a safe but slow update, and a greedy but
misleading one. In the following, we propose a variant of UCT based on the power mean
operator, which we call Power-UCT. We theoretically prove the convergence of Power-UCT,
based on the consideration that the algorithm converges for all values between the range
computed by the power mean. We empirically evaluate Power-UCT w.r.t. UCT and the
recent MENTS algorithm [31] in classic MDP and POMDP benchmarks. Remarkably, we
show how Power-UCT outperforms the baselines both in terms of quality and speed of
learning. Thus, our contribution is twofold:

1. We propose a new backup operator for UCT based on a power mean, and prove the
convergence to the optimal values;

2. We empirically evaluate the effectiveness of our approach comparing it with UCT in
well-known MDPs and POMDPs, showing significantly better performance.

The rest of this chapter is organized as follows. First we describe related work. Next, we
discuss background knowledge of MCTS, UCB and UCT. Then, we describe the power
mean operator and introduce our Power-UCT algorithm. We derive theoretical results and
prove convergence to the optimum for Power-UCT. Finally, we present empirical results
in both MDP and POMDP problems, showing that Power-UCT outperforms baselines in
MCTS.

10

2.2. Related Work

Several works focus on adapting how UCB1 [45] is applied to MCTS. For this purpose
UCB1-tuned [45] modifies the upper confidence bound of UCB1 to account for variance
in order to improve exploration. [51] propose a Bayesian version of UCT, which obtains
better estimates of node values and uncertainties given limited experience. However, the
Bayesian version of UCT is more computation-intensive. While most work on bandits in
MCTS focuses on discrete actions, work on continuous action MCTS also exists [52]. Since
our MCTS algorithm is based on the UCT algorithm, which is an extension of UCB1, our
method could be applied to all of these MCTS algorithms.
Many heuristic approaches based on specific domain knowledge have been proposed, such
as adding a bonus term to value estimates based on domain knowledge [53]–[57] or prior
knowledge collected during policy search [58]–[62]. We point out that we provide a
novel node value backup approach that could be applied in combination with all of these
methods.
To improve upon UCT algorithm in MCTS, [63] formalizes and analyzes different on-policy
and off-policy complex backup approaches for MCTS planning based on techniques in the
Reinforcement Learning literature. [63] propose four complex backup strategies: MCTS(λ),
MaxMCTS(λ), MCTSγ , MaxMCTSγ . [63] report that MaxMCTS(λ) and MaxMCTSγ per-
form better than UCT for certain setup of parameter. [64] proposed an approach called
SARSA-UCT, which performs the dynamic programming backups using SARSA [65].
Both [63] and [64] directly borrow value backup ideas from Reinforcement Learning in
order to estimate the value at each tree node. However, they do not provide any proof of
convergence.
Instead, our method provides a completely novel way of backing up values in each MCTS
node using a power mean operator, for which we prove the convergence to the optimal
policy in the limit. The recently introduced MENTS algorithm [31], uses softmax backup
operator at each node in combination with EXT3 policy, and shows better convergence
rate w.r.t. UCT. Given its similarity to our approach, we empirically compare to it in the
experimental section.

2.3. Background

In this section, we first discuss an overview of Monte Carlo Tree Search method. Next, we
discuss UCB algorithm and subsequently an extension of UCB to UCT algorithm. Finally,

11

we discuss the definition of Power Mean operator and its properties.

2.3.1. Monte-Carlo Tree Search

MCTS combines tree search with Monte-Carlo sampling in order to build a tree, where
states and actions are respectively modeled as nodes and edges, to compute optimal
decisions. MCTS requires a generative black box simulator for generating a new state
based on the current state and chosen action. The MCTS algorithm consists of a loop of
four steps:

– Selection: start from the root node, interleave action selection and sampling the
next state (tree node) until a leaf node is reached

– Expansion: expand the tree by adding a new edge (action) to the leaf node and
sample a next state (new leaf node)

– Simulation: rollout from the reached state to the end of the episode using random
actions or a heuristic

– Backup: update the nodes backward along the trajectory starting from the end of
the episode until the root node according to the rewards collected

In the next subsection, we discuss UCB algorithm and its extension to UCT.

2.3.2. Upper Confidence bound for Trees

In this work, we consider the MCTS algorithm UCT (Upper Confidence bounds for
Trees) [12], an extension of the well-known UCB1 [45] multi-armed bandit algorithm.
UCB1 chooses the arm (action a) using

a = argmax
i∈{1...K}

Xi,Ti(n−1) + C

√︄

logn
Ti(n− 1)

. (2.1)

where Ti(n) =
∑︁n

t=1 1{t = i} is the number of times arm i is played up to time n.
Xi,Ti(n−1) denotes the average reward of arm i up to time n − 1 and C =

√
2 is an

exploration constant. In UCT, each node is a separate bandit, where the arms correspond
to the actions, and the payoff is the reward of the episodes starting from them. In the

12

backup phase, value is backed up recursively from the leaf node to the root as

Xn =

K
∑︂

i=1

(︂Ti(n)

n

)︂

Xi,Ti(n). (2.2)

[12] proved that UCT converges in the limit to the optimal policy.

2.3.3. Power Mean

In this work, we introduce a novel way of estimating the expected value of a bandit
arm (Xi,Ti(n−1) in (2.1)) in MCTS. For this purpose, we will use the power mean [66],
an operator belonging to the family of functions for aggregating sets of numbers, that
includes as special cases the Pythagorean means (arithmetic, geometric, and harmonic
means):
Definition 1. For a sequence of positive numbers X = (X1, ..., Xn) and positive weights
w = (w1, ..., wn), the power mean of order p (p is an extended real number) is defined as

M[p]
n (X,w) =

(︄

∑︁n
i=1wiX

p
i

∑︁n
i=1wi

)︄ 1
p

. (2.3)

With p = 1 we obtain the weighted arithmetic mean. With p→ 0 we have the geometric
mean, and with p = −1 we have the harmonic mean [66] Furthermore, we get [66]

M[−∞]
n (X,w) = lim

p→−∞
M[p]

n (X,w) = Min(X1, ..., Xn), (2.4)

M[+∞]
n (X,w) = lim

p→+∞
M[p]

n (X,w) = Max(X1, ..., Xn), (2.5)

The weighted arithmetic mean lies between Min(X1, ..., Xn) and Max(X1, ..., Xn). More-
over, the following lemma shows that M[p]

n (X,w) is an increasing function.

Lemma 1. M[p]
n (X,w) is an increasing function meaning that

M[1]
n (X,w) ≤ M[q]

n (X,w) ≤ M[p]
n (X,w), ∀p ≥ q ≥ 1 (2.6)

For the proof, see [66].

13

2.4. Power Mean Backup

As previously described, it is well known that performing backups using the average of
the rewards results in an underestimate of the true value of the node, while using the
maximum results in an overestimate of it [32]. Usually, the average backup is used when
the number of simulations is low, for a conservative update of the nodes due to the lack
of samples; on the other hand, the maximum operator is favoured when the number of
simulations is high. We address this problem proposing a novel backup operator for UCT
based on the power mean (Equation 2.3)

Xn(p) =

(︄

K
∑︂

i=1

(︃

Ti(n)

n

)︃

X
p

i,Ti(n)

)︄

1
p

. (2.7)

This way, we bridge the gap between the average and maximum estimators with the
purpose of getting the advantages of both. We call our approach Power-UCT and describe
it in more detail in the following.

2.4.1. Power-UCT

Indeed, the Power-UCT pseudocode shown in Algorithm 2.1 is almost identical to the
UCT one, with only few differences highlighted for clarity. MCTS has two types of nodes:
V_Nodes corresponding to state-values, and Q_Nodes corresponding to state-action values.
An action is taken from the V_Node of the current state leading to the respective Q_Node,
then it leads to the V_Node of the reached state. The introduction of our novel backup
operator in UCT does not require major changes to the algorithm. In Power-UCT, the
expansion of nodes and the rollouts are done in the same way as UCT, and the only
difference is the way the backup of returns from Q_nodes to V_nodes is computed. In
particular, while UCT computes the average of the returns, Power-UCT uses a power mean
of them. Note that our algorithm could be applied to several bandit based enhancements
of UCT, but for simplicity we only focus on UCT. For each state s, the backup value of
corresponding V_node is

V (s)←
(︄

∑︂

a

n(s, a)

N(s)
Q(s, a)p

)︄ 1
p

(2.8)

14

s: state
a: action
N(s): number of simulations of V_Node of state
s

n(s, a): number of simulations of Q_Node of
state s and action a

V (s): Value of V_Node at state s. Default is 0
Q(s, a): Value of Q_Node at state s, action a.
Default is 0

τ(s, a): transition function
γ: discount factor
ϵ > 0:
R = Rollout(s, depth)

if γdepth < ϵ then
return 0

a ∼ πRollout(.)
(s′, r) ∼ τ(s, a)
return r + γRollout (s′, depth+ 1)

a = SelectAction(s)
return argmax

a

Q(s, a) + C
√︂

logN(s)
n(s,a)

a = Search(s)
while Time remaining do

SimulateV (s, 0)
return SelectAction(s)

SimulateV(s, depth)
a =SelectAction (s)
SimulateQ (s, a,depth)
N(s)← N(s) + 1

V (s)←
(︁
∑︁

a

n(s,a)
N(s) Q(s, a)p

)︁1/p

SimulateQ(s, a, depth)
(s′, r) ∼ τ(s, a)
if Node s′ not expanded then

Rollout(s′,depth)
else

SimulateV (s′,depth+ 1)
n(s, a)← n(s, a) + 1

Q(s, a)←
(
∑︁

a

rs,a)+γ.
∑︁

s′

N(s′).V (s′)

n(s,a)

MainLoop
while resource budget remains do

a = Search(s)

Algorithm 2.1: Pseudocode of Power-UCT.

15

where N(s) is the number of visits to state s, n(s, a) is the number of visits of action a in
state s. On the other hand, the backup value of Q_nodes is

Q(s, a)← (
∑︁

a rs,a) + γ.
∑︁

s′ N(s′).V (s′)

n(s, a)
(2.9)

where γ is the discount factor, s′ is the next state after taking action a from state s, and
rs,a is the reward obtained executing action a in state s.

2.5. Theoretical analysis

In this section, we show that Power-UCT can smoothly adapt to all theorems of UCT [12].
The following results can be seen as a generalization of the results for UCT, as we consider a
generalized mean instead of a standard mean as the backup operator. Our main results are
Theorem 6 and Theorem 7, which respectively prove the convergence of failure probability
at the root node, and derive the bias of power mean estimated payoff. In order to prove
them, we start with Theorem 1 to show the concentration of power mean with respect
to i.i.d random variables X. Subsequently, Theorem 2 shows the upper bound of the
expected number of times when a suboptimal arm is played. Theorem 3 bounds the
expected error of the power mean estimation. Theorem 4 shows the lower bound of the
number of times any arm is played. Theorem 5 shows the concentration of power mean
backup around its mean value at each node in the tree.
Theorem 1. If X1, X2, ..., Xn are independent with Pr(0 ≤ Xi ≤ 1) = 1 then for any ϵ > 0,
p ≥ 1, ∃Cp > 0 that

Pr
(︄⃓

⃓

⃓

⃓

⃓

(︃∑︁n
i=1X

p
i

n

)︃
1
p

− E

[︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

]︄⃓

⃓

⃓

⃓

⃓

> ϵ

)︄

≤ 2 exp (︁−Cpnϵ
2
)︁

Theorem 1 is derived using an estimation of variance of power mean operator, and
Chernoff’s inequality. Note that this result can be considered a generalization of the
well-known Hoeffding inequality to power mean. Next, given i.i.d. random variables Xit

(t=1,2,...) as the payoff sequence at any internal leaf node of the tree, we assume the
expectation of the payoff exists and let µin = E[Xin]. We assume the power mean reward
drifts as a function of time and converges only in the limit, which means that

µi = lim
n→∞

µin.

16

Let δin = µi − µin which also means that
lim
n→∞

δin = 0.

From now on, let ∗ be the upper index for all quantities related to the optimal arm. By
assumption, the rewards lie between 0 and 1. Let’s start with an assumption:
Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that{Xit}t is {Fit}-adapted
and Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1 and
the limit of µin = E[Xin(p)] exists, Further, we assume that there exists a constant C > 0 and
an integer Nc such that for n > Nc, for any δ > 0, △n(δ) = C

√︁

n log(1/δ), the following
bounds hold

Pr(Xin(p) ≥ E[Xin(p)] +△n(δ)/n) ≤ δ, (2.10)
Pr(Xin(p) ≤ E[Xin(p)]−△n(δ)/n) ≤ δ. (2.11)

Under Assumption 1, a suitable choice for the bias sequence ct,s is given by

ct,s = 2C

√︃

log t
s

. (2.12)

where C is an exploration constant.
Next, we derive Theorems 2, 3, and 4 following the derivations in [12]. First, from
Assumption 1, we derive an upper bound on the error for the expected number of times
suboptimal arms are played.
Theorem 2. Consider UCB1 (using power mean estimator) applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1 and where the bias sequence, ct,s
defined in (2.12). Fix ϵ ≥ 0. Let Tk(n) denote the number of plays of arm k. Then if k is the
index of a suboptimal arm then Each sub-optimal arm k is played in expectation at most

E[Tk(n)] ≤
16C2 lnn
(1− ϵ)2△2

k

+A(ϵ) +Nc +
π2

3
+ 1. (2.13)

Next, we derive our version of Theorem 3 in [12], which computes the upper bound of
the difference between the value backup of an arm with µ∗ up to time n.
Theorem 3. Under the assumptions of Theorem 2,

⃓

⃓E
[︁

Xn(p)
]︁

− µ∗
⃓

⃓ ≤ |δ∗n|+O
(︄

K(C2 logn+N0)

n

)︄ 1
p

.

17

A lower bound for the times choosing any arm follows
Theorem 4. (Lower Bound) Under the assumptions of Theorem 2, there exists some positive
constant ρ such that for all arms k and n, Tk(n) ≥ ⌈ρ log(n)⌉.
For deriving the concentration of estimated payoff around its mean, we modify Lemma 14
in [12] for power mean: in the proof, we first replace the partial sums term with a partial
mean term and modify the following equations accordingly. The partial mean term can
then be easily replaced by a partial power mean term and we get

Theorem 5. Fix an arbitrary δ ≤ 0 and fix p ≥ 1, let △n = (94)
p−1(9

√︂

1
Cp

n log(2/δ)). Let
n0 be such that

√
n0 ≤ O(K(C2 logn0 +N0(1/2))). (2.14)

Then for any n ≥ n0, under the assumptions of Theorem 2, the following bounds hold true

Pr(Xn(p) ≥ E[Xn(p)] + (△n/n)
1
p) ≤ δ (2.15)

Pr(Xn(p) ≤ E[Xn(p)]− (△n/n)
1
p) ≤ δ (2.16)

Using The Hoeffding-Azuma inequality for Stopped Martingales Inequality (Lemma 10
in [12]), under Assumption 1 and the result from Theorem 4 we get
Theorem 6. (Convergence of Failure Probability) Under the assumptions of Theorem 2, it
holds that

lim
t→∞

Pr(It ̸= i∗) = 0. (2.17)

And finally, the following is our main result showing the expected payoff of our Power-
UCT.
Theorem 7. Consider algorithm Power-UCT running on a game tree of depth D, branching
factor K with stochastic payoff at the leaves. Assume that the payoffs lie in the interval [0,1].
Then the bias of the estimated expected payoff, Xn, is O(KD(log(n)/n) 1

p + KD(1/n)
1
p).

Further, the failure probability at the root convergences to zero as the number of samples
grows to infinity.

Proof. (Sketch) As for UCT [12], the proof is done by induction on D. When D = 1,
Power-UCT corresponds to UCB1 with average mean backup at the leaf node, and the

18

proof of convergence follows as the result of Hoeffding’s inequality, the expected payoff is
guaranteed directly from Theorem 1, Theorem 3 and Theorem 6. Now we assume that the
result holds up to depth D − 1 and consider the tree of depth D. Running Power-UCT on
root node is equivalent to UCB1 on non-stationary bandit settings, but with power mean
backup. The error bound of running Power-UCT for the whole tree is the sum of payoff
at root node with payoff starting from any node i after the first action chosen from root
node until the end. This payoff by induction at depth D − 1 in addition to the bound
from Theorem 3 when the drift-conditions are satisfied, and with straightforward algebra,
we can compute the payoff at the depth D, in combination with Theorem 6. Since our
induction hypothesis holds for all nodes at a distance of one node from the root, the
proof is finished by observing that Theorem 3 and Theorem 5 do indeed ensure that the
drift conditions are satisfied. This completes our proof of the convergence of Power-UCT.
Interestingly, the proof guarantees the convergence for any finite value of p.

2.6. Experiments

In this section, we aim to answer the following questions empirically: Does the Power
Mean offer higher performance in MDP and POMDP MCTS tasks than the regular Mean?
How does the value of p influence the overall performance? How does Power-UCT, our
MCTS algorithm based on the Power Mean, compare to state-of-the-art methods in tree-
search? We chose the recent MENTS algorithm [31] as a representative state-of-the-art
method.
For MENTS we find the best combination of the two hyper-parameters by grid search. In
MDP tasks, we find the UCT exploration constant using grid search. For Power-UCT, we
find the p-value by increasing it until performance starts to decrease.

2.6.1. FrozenLake

For MDPs, we consider the well-known FrozenLake problem as implemented in OpenAI
Gym [67]. In this problem, the agent needs to reach a goal position in an 8x8 ice grid-
world while avoiding falling into the water by stepping onto unstable spots. The challenge
of this task arises from the high-level of stochasticity, which makes the agent only move
towards the intended direction one-third of the time, and into one of the two tangential
directions the rest of it. Reaching the goal position yields a reward of 1, while all other
outcomes (reaching the time limit or falling into the water) yield a reward of zero. As can

19

Table 2.1.: Mean and two times standard deviation of the success rate, over 500 evaluation
runs, of UCT, Power-UCT and MENTS in FrozenLake from OpenAI Gym. The
top row of each table shows the number of simulations used for tree-search
at each time step.

Algorithm 4096 16384 65536 262144

UCT 0.08± 0.02 0.23± 0.04 0.54± 0.05 0.69± 0.04

p=2.2 0.12± 0.03 0.32± 0.04 0.62± 0.04 0.81± 0.03
p=max 0.10± 0.03 0.36± 0.04 0.55± 0.04 0.69± 0.04

MENTS 0.28± 0.04 0.46± 0.04 0.62± 0.04 0.74± 0.04

10 100 150 300 400 500
p-values

10

12

14

16

18

20

Di
sc

ou
nt

ed
 R

ew
ar

d

Figure 2.1.: Evaluating Power-UCT w.r.t. different p-values: The mean discounted total
reward at 65536 simulations (shaded area denotes standard error) over 100
evaluation runs.

be seen in Table 2.1, Power-UCT improves the performance compared to UCT. Power-UCT
outperforms MENTS when the number of simulations increases.

2.6.2. Copy Environment

Now, we aim to answer the question of how Power-UCT scales to domains with a large
number of actions (high branching factor). We use the OpenAI gym Copy environment
where the agent needs to copy the characters on an input band to an output band. The
agent can move and read the input band at every time-step and decide to write a character
from an alphabet to the output band. Hence, the number of actions scales with the size of
the alphabet.

20

0 10000 20000 30000 40000 50000 60000
Rollouts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Di
sc

ou
nt

ed
 R

ew
ar

ds

rocksample 11x11 (16 actions)

Power-UCT, p = 200.0
Power-UCT, p = 150.0
Power-UCT, p = 100.0
Power-UCT, p = 10.0
Power-UCT, p = 4.0
Power-UCT, p = max
POMCP

0 10000 20000 30000 40000 50000 60000
Rollouts

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Di
sc

ou
nt

ed
 R

ew
ar

ds

rocksample 15x15 (20 actions)

Power-UCT, p=170.0
Power-UCT, p=150.0
Power-UCT, p=100.0
Power-UCT, p=10.0
Power-UCT, p=4.0
Power-UCT, p=max
POMCP

0 50000 100000 150000 200000 250000
Rollouts

0

5

10

15

20

25

30

Di
sc

ou
nt

ed
 R

ew
ar

ds

rocksample 15x35 (40 actions)

Power-UCT, p=100.0
Power-UCT, p=10.0
Power-UCT, p=4.0
Power-UCT, p=max
POMCP

Figure 2.2.: Performance of Power-UCT compared to UCT in rocksample. The mean of
total discounted reward over 1000 evaluation runs is shown by thick lines
while the shaded area shows standard error.

Contrary to the previous experiments, there is only one initial run of tree-search and
afterwards, no re-planning between two actions occurs. Hence, all actions are selected
according to the value estimates from the initial search. The results in Tables 2.2 and 2.2
show that Power-UCT allows solving the task much quicker than regular UCT. Furthermore,
we observe that MENTS and Power-UCT for p =∞ exhibit larger variance compared to
Power-UCT with a finite value of p and are not able to reliably solve the task, as they do
not reach the maximum reward of 40 with 0 standard deviation.

2.6.3. Rocksample and PocMan

In POMDP problems, we compare Power-UCT against the POMCP algorithm [68] which is
a standard UCT algorithm for POMDPs. Since the state is not fully observable in POMDPs,
POMCP assigns a unique action-observation history, which is a sufficient statistic for
optimal decision making in POMDPs, instead of the state, to each tree node. Similar
to fully observable UCT, POMCP chooses actions using the UCB1 bandit. Therefore, we
modify POMCP to use the power mean identically to how we modified fully observable
UCT and get a POMDP version of Power-UCT. We also modify POMCP similarly for the
MENTS approach. Next, we discuss the evaluation of the POMDP based Power-UCT,
MENTS, and POMCP, in the rocksample and pocman environments [68].
Rocksample. The rocksample (n,k) ([69]) simulates a Mars explorer robot in an n x
n grid containing k rocks. The task is to determine which rocks are valuable using a

21

Table 2.2.: Mean and two times standard deviation of discounted total reward, over 100
evaluation runs, of UCT, Power-UCT and MENTS in the copy environment with
144 actions (top) and 200 actions (bottom). Top row: number of simulations
at each time step.

Algorithm 512 2048 8192 32768

UCT 2.6± 0.98 9.± 1.17 34.66± 1.68 40.± 0.
p = 3 3.24± 1.17 12.35± 1.14 40.± 0. 40.± 0.
p = max 2.56± 1.48 9.55± 3.06 37.52± 5.11 39.77± 0.84

MENTS 3.26± 1.32 11.96± 2.94 39.37± 1.15 39.35± 0.95

(a) 144 Actions
Algorithm 512 2048 8192 32768

UCT 1.98± 0.63 6.43± 1.36 24.5± 1.56 40.± 0.
p = 3 2.55± 0.99 9.11± 1.41 36.02± 1.72 40.± 0.
p = max 2.03± 1.37 6.99± 2.51 27.89± 4.12 39.93± 0.51

MENTS 2.44± 1.34 8.86± 2.65 34.63± 5.6 39.42± 0.99

(b) 200 Actions

long range sensor, take samples of valuable rocks and finally leave the map to the east.
There are k + 5 actions where the agent can move in four directions (North, South, East,
West), sample a rock, or sense one of the k rocks. Rocksample requires strong exploration
to find informative actions which do not yield immediate reward but may yield high
long term reward. We use three variants with a different number of actions: rocksample
(11,11), rocksample (15,15), rocksample (15,35) and set the exploration constant as
in [68] to the difference of the maximum and minimum immediate reward. In Fig. 2.2,
Power-UCT outperforms POMCP for almost all values of p. For sensitivity analysis, Fig. 2.1
shows the performance of Power-UCT in rocksample (11x11) for different p-values at
65536 simulations. Fig. 2.1 suggests that at least in rocksample finding a good p-value
is straightforward. Fig. 2.3 shows that Power-UCT significantly outperforms MENTS in
rocksample (11,11). A possible explanation for the strong difference in performance
between MENTS and Power-UCT is that MENTS may not explore sufficiently in this task.
However, this would require more in depth analysis of MENTS.
Pocman. We further evaluate our algorithm in the pocman problem [68]. In pocman,
an agent called PocMan must travel in a maze of size (17x19) by only observing the
local neighborhood in the maze. PocMan tries to eat as many food pellets as possible.

22

0 10000 20000 30000 40000 50000 60000
Rollouts

0

5

10

15

20

Di
sc

ou
nt

ed
 R

ew
ar

ds

rocksample 11x11

Power-UCT, p = 100
MENTS
POMCP

Figure 2.3.: Performance of Power-UCT compared to UCT and MENTS in rocksample
11x11. The mean of discounted total reward over 1000 evaluation runs is
shown by thick lines while the shaded area shows standard error.

Four ghosts try to kill PocMan. After moving initially randomly the ghosts start to follow
directions with a high number of food pellets more likely. If PocMan eats a power pill,
he is able to eat ghosts for 15 time steps. PocMan receives a reward of −1 at each step
he travels, +10 for eating each food pellet, +25 for eating a ghost and −100 for dying.
The pocman problem has 4 actions, 1024 observations, and approximately 1056 states.
Table 2.3 shows that Power-UCT and MENTS outperform POMCP.

2.7. Conclusion

We proposed to use power mean as a novel backup operator in MCTS, and derived a variant
of UCT based on this operator, which we call Power-UCT. We theoretically prove the con-
vergence of Power-UCT to the optimal value, given that the value computed by the power
mean lies between the average and the maximum. The empirical evaluation on stochastic
MDPs and POMDPs, shows the advantages of Power-UCT w.r.t. other baselines.
Possible future work includes the proposal of a theoretically justified or heuristic approach
to adapt the greediness of power mean. Moreover, we are interested in analysing the bias
and variance of the power mean estimator, or analysing the regret bound of Power-UCT in
MCTS. Furthermore, we plan to test our methodology in more challenging Reinforcement
Learning problems through the use of parametric function approximators, e.g. neural
networks.

23

Table 2.3.: Discounted total reward in pocman for the comparison methods. Mean ±
standard error are computed from 1000 simulations except in MENTS where
we ran 100 simulations.

1024 4096 16384 65536
POMCP 30.89± 1.4 33.47± 1.4 33.44± 1.39 32.36± 1.6

p = max 14.82± 1.52 14.91± 1.52 14.34± 1.52 14.98± 1.76

p = 10 29.14± 1.61 35.26± 1.56 44.14± 1.60 53.30± 1.46
p = 30 28.78± 1.44 33.92± 1.56 42.45± 1.54 49.66± 1.70

MENTS 54.08± 3.20 55.37± 3.0 53.90± 2.86 51.03± 3.36

24

3. Convex Regularization in Monte-Carlo
Tree Search

“Only entropy comes easy.”
— Anton Chekhov

Monte-Carlo planning and Reinforcement Learning (RL) are essential to sequential de-
cision making. The recent AlphaGo and AlphaZero algorithms have shown how to suc-
cessfully combine these two paradigms to solve large-scale sequential decision problems.
These methodologies exploit a variant of the well-known UCT algorithm to trade off the
exploitation of good actions and the exploration of unvisited states, but their empirical
success comes at the cost of poor sample efficiency and high computation time. In this
chapter, we overcome these limitations by introducing the use of convex regularization
in Monte-Carlo Tree Search (MCTS) to drive exploration efficiently and improve policy
updates. First, we introduce a unifying theory on using generic convex regularizers in
MCTS, deriving the first regret analysis of regularized MCTS and showing that it guaran-
tees an exponential convergence rate. Second, we exploit our theoretical framework to
introduce novel regularized backup operators for MCTS based on the relative entropy of
the policy update and, more importantly, on the Tsallis entropy of the policy, for which
we prove superior theoretical guarantees. Third, we empirically verify the consequence
of our theoretical results on a toy problem. Finally, we show how our framework can
easily be incorporated in AlphaGo, and we empirically show the superiority of convex
regularization, w.r.t. representative baselines, on well-known RL problems across several
Atari games.

3.1. Introduction

Monte-Carlo Tree Search (MCTS) is a well-known algorithm to solve decision-making
problems through the combination of Monte-Carlo planning and an incremental tree

25

structure [32]. MCTS provides a principled approach for trading off between exploration
and exploitation in sequential decision making. Moreover, recent advances have shown
how to enable MCTS in continuous and large problems [28], [70]. Most remarkably,
AlphaGo [28] and AlphaZero [14], [71] couple MCTS with neural networks trained using
Reinforcement Learning (RL) [29] methods, e.g., Deep Q-Learning [30], to speed up
learning of large scale problems. In particular, a neural network is used to compute
value function estimates of states as a replacement for time-consuming Monte-Carlo
rollouts, and another neural network is used to estimate policies as a probability prior
to the therein introduced PUCT action selection strategy, a variant of well-known UCT
sampling strategy commonly used in MCTS for exploration [12]. Despite AlphaGo and
AlphaZero achieving state-of-the-art performance in games with high branching factor
like Go [28] and Chess [14], both methods suffer from poor sample-efficiency, mostly
due to the polynomial convergence rate of PUCT [31]. This problem, combined with the
high computation time to evaluate the deep neural networks, significantly hinder the
applicability of both methodologies.

In this chapter, we provide a theory of the use of convex regularization in MCTS, which
proved to be an efficient solution for driving exploration and stabilizing learning in
RL [72]–[75]. In particular, we show how a regularized objective function in MCTS can be
seen as an instance of the Legendre-Fenchel transform, similar to previous findings on the
use of duality in RL [76]–[78] and game theory [79], [80]. Establishing our theoretical
framework, we can derive the first regret analysis of regularized MCTS, and prove that a
generic convex regularizer guarantees an exponential convergence rate to the solution of
the regularized objective function, which improves on the polynomial rate of PUCT. These
results provide a theoretical ground for the use of arbitrary entropy-based regularizers in
MCTS until now limited to maximum entropy [31], among which we specifically study the
relative entropy of policy updates, drawing on similarities with trust-region and proximal
methods in RL [72],[81], and the Tsallis entropy, used for enforcing the learning of sparse
policies [82]. Moreover, we provide an empirical analysis of the toy problem introduced
in [31] to evince the practical consequences of our theoretical results for each regularizer.
Finally, we empirically evaluate the proposed operators in AlphaGo, on several Atari
games, confirming the benefit of convex regularization in MCTS, and in particular the
superiority of Tsallis entropy w.r.t. other regularizers.

26

3.2. Preliminaries

Background knowledge on Markov Decision Processes, Monte-Carlo Tree Search and the
state-of-the-art method Upper Confidence bounds for Trees (UCT) will be presented in
this section.

3.2.1. Markov Decision Processes

We consider the classical definition of a finite-horizon Markov Decision Process (MDP) as
a 5-tupleM = ⟨S,A,R,P, γ⟩, where S is the state space, A is the finite discrete action
space, R : S × A × S → R is the reward function, P : S × A → S is the transition
kernel, and γ ∈ [0, 1) is the discount factor. A policy π ∈ Π : S × A → R is a probabil-
ity distribution of the event of executing an action a in a state s. A policy π induces a
value function corresponding to the expected cumulative discounted reward collected
by the agent when executing action a in state s, and following the policy π thereafter
Qπ(s, a) ≜ E

[︁
∑︁∞

k=0 γ
kri+k+1|si = s, ai = a, π

]︁, where ri+1 is the reward obtained after
the i-th transition. An MDP is solved finding the optimal policy π∗, which is the policy that
maximizes the expected cumulative discounted reward. The optimal policy satisfies the op-
timal Bellman equation [83] Q∗(s, a) ≜

∫︁

S P(s′|s, a) [R(s, a, s′) + γmaxa′ Q∗(s′, a′)] ds′,
and is the fixed point of the optimal Bellman operator
T ∗Q(s, a) ≜

∫︁

S P(s′|s, a) [R(s, a, s′) + γmaxa′ Q(s′, a′)] ds′.
We define the Bellman operator under the policy π as
TπQ(s, a) ≜

∫︁

S P(s′|s, a)
[︁

R(s, a, s′) + γ
∫︁

A π(a′|s′)Q(s′, a′)da′
]︁

ds′, the optimal value func-
tion V ∗(s) ≜ maxa∈AQ∗(s, a), and the value function under the policy π as V π(s) ≜

maxa∈AQπ(s, a).

3.2.2. Monte-Carlo Tree Search and Upper Confidence bounds for Trees

Monte-Carlo Tree Search (MCTS) is a planning strategy based on a combination of Monte-
Carlo sampling and tree search to solve MDPs. MCTS builds a tree where the nodes
are the visited states of the MDP, and the edges are the actions executed in each state.
MCTS converges to the optimal policy [12], [31], iterating over a loop composed of four
steps:

1. Selection: starting from the root node, a tree-policy is executed to navigate the tree
until a node with unvisited children, i.e. expandable node, is reached;

27

2. Expansion: the reached node is expanded according to the tree policy;
3. Simulation: run a rollout, e.g. Monte-Carlo simulation, from the visited child of

the current node to the end of the episode;
4. Backup: use the collected reward to update the action-values Q(·) of the nodes

visited in the trajectory from the root node to the expanded node.
The tree-policy used to select the action to execute in each node needs to balance the
use of already known good actions, and the visitation of unknown states. The Upper
Confidence bounds for Trees (UCT) sampling strategy [12] extends the use of the well-
known UCB1 sampling strategy for multi-armed bandits [45], to MCTS. Considering each
node corresponding to a state s ∈ S as a different bandit problem, UCT selects an action
a ∈ A applying an upper bound to the action-value function

UCT(s, a) = Q(s, a) + ϵ

√︄

logN(s)

N(s, a)
, (3.1)

where N(s, a) is the number of executions of action a in state s, N(s) =
∑︁

aN(s, a), and ϵ

is a constant parameter to tune exploration. UCT asymptotically converges to the optimal
action-value function Q∗, for all states and actions, with the probability of executing a
suboptimal action at the root node approaching 0 with a polynomial rate O(1

t
), for a

simulation budget t [12], [31].

3.3. Regularized Monte-Carlo Tree Search

The success of RL methods based on entropy regularization comes from their ability
to achieve state-of-the-art performance in decision making and control problems, while
enjoying theoretical guarantees and ease of implementation [72],[74],[82]. However, the
use of entropy regularization in MCTS is still mostly unexplored, although its advantageous
exploration and value function estimation would be desirable to reduce the detrimental
effect of high-branching factor in AlphaGo and AlphaZero. To the best of our knowledge,
the MENTS algorithm [31] is the first and only method to combine MCTS and entropy
regularization. In particular, MENTS uses a maximum entropy regularizer in AlphaGo,
proving an exponential convergence rate to the solution of the respective softmax objective
function and achieving state-of-the-art performance in some Atari games [84]. In the
following, motivated by the success in RL and the promising results of MENTS, we derive
a unified theory of regularization in MCTS based on the Legendre-Fenchel transform [77],

28

that generalizes the use of maximum entropy of MENTS to an arbitrary convex regularizer.
Notably, our theoretical framework enables to rigorously motivate the advantages of using
maximum entropy and other entropy-based regularizers, such as relative entropy or Tsallis
entropy, drawing connections with their RL counterparts TRPO [72] and Sparse DQN [82],
as MENTS does with Soft Actor-Critic (SAC) [74].

3.3.1. Legendre-Fenchel transform

Consider an MDPM = ⟨S,A,R,P, γ⟩, as previously defined. Let Ω : Π→ R be a strongly
convex function. For a policy πs = π(·|s) and Qs = Q(s, ·) ∈ R

A, the Legendre-Fenchel
transform (or convex conjugate) of Ω is Ω∗ : RA → R, defined as

Ω∗(Qs) ≜ max
πs∈Πs

TπsQs − τΩ(πs), (3.2)

where the temperature τ specifies the strength of regularization. Among the several
properties of the Legendre-Fenchel transform, we use the following [76], [77].
Proposition 1. Let Ω be strongly convex.

• Unique maximizing argument: ∇Ω∗ is Lipschitz and satisfies

∇Ω∗(Qs) = argmax
πs∈Πs

TπsQs − τΩ(πs). (3.3)

• Boundedness: if there are constants LΩ and UΩ such that for all πs ∈ Πs, we have
LΩ ≤ Ω(πs) ≤ UΩ, then

max
a∈A

Qs(a)− τUΩ ≤ Ω∗(Qs) ≤ max
a∈A

Qs(a)− τLΩ. (3.4)

• Contraction: for any Q1, Q2 ∈ R
S×A

∥ Ω∗(Q1)− Ω∗(Q2) ∥∞≤ γ ∥ Q1 −Q2 ∥∞ . (3.5)

Note that if Ω(·) is strongly convex, τΩ(·) is also strongly convex; thus all the properties
shown in Proposition 1 still hold1.
Solving equation (2) leads to the solution of the optimal primal policy function ∇Ω∗(·).
1Other works use the same formula, e.g. Equation (3.2) in [85].

29

Since Ω(·) is strongly convex, the dual function Ω∗(·) is also convex. One can solve the
optimization problem (3.2) in the dual space [86] as

Ω(πs) = max
Qs∈RA

TπsQs − τΩ∗(Qs) (3.6)

and find the solution of the optimal dual value function as Ω∗(·). Note that the Legendre-
Fenchel transform of the value conjugate function is the convex function Ω, i.e. Ω∗∗ = Ω.
In the next section, we leverage on this primal-dual connection based on the Legendre-
Fenchel transform as both conjugate value function and policy function, to derive the
regularized MCTS backup and tree policy.

3.3.2. Regularized backup and tree policy

In MCTS, each node of the tree represents a state s ∈ S and contains a visitation count
N(s, a). Given a trajectory, we define n(sT) as the leaf node corresponding to the reached
state sT . Let s0, a0, s1, a1..., sT be the state action trajectory in a simulation, where n(sT)
is a leaf node of T . Whenever a node n(sT) is expanded, the respective action values
(Equation 3.7) are initialized as QΩ(sT , a) = 0, and N(sT , a) = 0 for all a ∈ A. For all
nodes in the trajectory, the visitation count is updated by N(st, at) = N(st, at) + 1, and
the action-values by

QΩ(st, at) =

{︄

r(st, at) + γρ if t = T

r(st, at) + γΩ∗(QΩ(st+1)/τ) if t < T
(3.7)

where QΩ(st+1) ∈ R
A with QΩ(st+1, a), ∀a ∈ A, and ρ is an estimate returned from an

evaluation function computed in sT , e.g. a discounted cumulative reward averaged over
multiple rollouts, or the value-function of node n(sT+1) returned by a value-function
approximator, e.g. a neural network pretrained with deep Q-learning [30], as done
in [28], [31]. We revisit the E2W sampling strategy limited to maximum entropy regular-
ization [31] and, through the use of the convex conjugate in Equation (3.7), we derive a
novel sampling strategy that generalizes to any convex regularizer

πt(at|st) = (1− λst)∇Ω∗(QΩ(st)/τ)(at) +
λst

|A| , (3.8)

where λst = ϵ|A|/log(∑︁a N(st,a)+1)with ϵ > 0 as an exploration parameter, and∇Ω∗ depends
on the measure in use (see Table 3.1 for maximum, relative, and Tsallis entropy). We
call this sampling strategy Extended Empirical Exponential Weight (E3W) to highlight the

30

extension of E2W from maximum entropy to a generic convex regularizer. E3W defines
the connection to the duality representation using the Legendre-Fenchel transform, that
is missing in E2W. Moreover, while the Legendre-Fenchel transform can be used to derive
a theory of several state-of-the-art algorithms in RL, such as TRPO, SAC, A3C [87], our
result is the first introducing the connection with MCTS.

3.3.3. Convergence rate to regularized objective

We show that the regularized value VΩ can be effectively estimated at the root state s ∈ S,
with the assumption that each node in the tree has a σ2-subgaussian distribution. This re-
sult extends the analysis provided in [31], which is limited to the use of maximum entropy.

Theorem 1. At the root node s where N(s) is the number of visitations, with ϵ > 0, VΩ(s)
is the estimated value, with constant C and Ĉ, we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{ −N(s)ϵ

Ĉσ log2(2 +N(s))
}, (3.9)

where VΩ(s) = Ω∗(Qs) and V ∗
Ω(s) = Ω∗(Q∗

s).
From this theorem, we obtain that the convergence rate of choosing the best action a∗ at
the root node, when using the E3W strategy, is exponential.
Theorem 2. Let at be the action returned by E3W at step t. For large enough t and constants
C, Ĉ

Pr(at ̸= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}. (3.10)

This result shows that, for every strongly convex regularizer, the convergence rate of
choosing the best action at the root node is exponential, as already proven in the specific
case of maximum entropy [31].

3.4. Entropy-regularization backup operators

From the introduction of a unified view of generic strongly convex regularizers as backup
operators in MCTS, we narrow the analysis to entropy-based regularizers. For each entropy

31

function, Table 3.1 shows the Legendre-Fenchel transform and the maximizing argument,
which can be respectively replaced in our backup operation (Equation 3.7) and sampling
strategy E3W (Equation 3.8). Using maximum entropy retrieves the maximum entropy
MCTS problem introduced in the MENTS algorithm [31]. This approach closely resembles
the maximum entropy RL framework used to encourage exploration [73], [74]. We
introduce two novel MCTS algorithms based on the minimization of relative entropy of the
policy update, inspired by trust-region [72],[88] and proximal optimization methods [81]
in RL, and on the maximization of Tsallis entropy, which has been more recently introduced
in RL as an effective solution to enforce the learning of sparse policies [82]. We call
these algorithms RENTS and TENTS. Contrary to maximum and relative entropy, the
definition of the Legendre-Fenchel and maximizing argument of Tsallis entropy is non-
trivial, being

Ω∗(Qt) = τ · spmax(Qt(s, ·)/τ), (3.11)

∇Ω∗(Qt) = max{Qt(s, a)

τ
−
∑︁

a∈K Qt(s, a)/τ − 1

|K| , 0}, (3.12)

where spmax is defined for any function f : S ×A → R as

spmax(f(s, ·)) ≜ (3.13)
∑︂

a∈K

(︄

f(s, a)2

2
− (
∑︁

a∈K f(s, a)− 1)2

2|K|2

)︄

+
1

2
,

and K is the set of actions that satisfy 1+ if(s, ai) >
∑︁i

j=1 f(s, aj), with ai indicating the
action with the i-th largest value of f(s, a) [82]. We point out that the Tsallis entropy is not
significantly more difficult to implement. Although introducing additional computation,
requiring O(|A| log(|A|)) time in the worst case, the order of Q-values does not change
between rollouts, reducing the computational complexity in practice.

3.4.1. Regret analysis

At the root node, let each children node i be assigned with a random variable Xi, with
mean value Vi, while the quantities related to the optimal branch are denoted by ∗, e.g.
mean value V ∗. At each timestep n, the mean value of variable Xi is Vin . The pseudo-
regret [89] at the root node, at timestep n, is defined as RUCT

n = nV ∗−∑︁n
t=1 Vit . Similarly,

32

Table 3.1.: List of entropy regularizers with Legendre-Fenchel transforms and maximizing
arguments (Max arg. : Max argument).

Entropy Regularizer Ω(πs) Legendre-Fenchel Ω∗(Qs) Max arg. ∇Ω∗(Qs)

Maximum ∑︁

a π(a|s) logπ(a|s) τ log∑︁a e
Q(s,a)

τ
e

Q(s,a)
τ

∑︁

b e
Q(s,b)

τ

Relative DKL(πt(a|s)||πt−1(a|s)) τ log∑︁a πt−1(a|s)e
Qt(s,a)

τ
πt−1(a|s)e

Qt(s,a)
τ

∑︁

b πt−1(b|s)e
Qt(s,b)

τ

Tsallis 1
2(∥ π(a|s) ∥22 −1) Equation (3.11) Equation (3.12)

we define the regret of E3W at the root node of the tree as

Rn = nV ∗ −
n
∑︂

t=1

Vit = nV ∗ −
n
∑︂

t=1

I(it = i)Vit (3.14)

= nV ∗ −
∑︂

i

Vi

n
∑︂

t=1

π̂t(ai|s),

where π̂t(·) is the policy at time step t, and I(·) is the indicator function.
The expected regret is defined as

E[Rn] = nV ∗ −
n
∑︂

t=1

⟨π̂t(·), V (·)⟩ . (3.15)

Theorem 3. Consider an E3W policy applied to the tree. Let define DΩ∗(x, y) = Ω∗(x)−
Ω∗(y)−∇Ω∗(y)(x− y) as the Bregman divergence between x and y, The expected pseudo
regret Rn satisfies

E[Rn] ≤− τΩ(π̂) +

n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) (3.16)

+O(n

logn).

This theorem bounds the regret of E3W for a generic convex regularizer Ω; the regret
bounds for each entropy regularizer can be easily derived from it. Letm = mina∇Ω∗(a|s).

33

Corollary 1. Maximum entropy regret
E[Rn] ≤ τ(log |A|) + n|A|

τ
+O(n

logn).

Corollary 2. Relative entropy regret
E[Rn] ≤ τ(log |A| − 1

m
) + n|A|

τ
+O(n

logn).

Corollary 3. Tsallis entropy regret
E[Rn] ≤ τ(|A|−1

|A|) + n|K|
2 +O(n

logn).

Remarks. The regret bound of UCT and its variance have already been analyzed for
non-regularized MCTS with binary tree [89]. On the contrary, our regret bound analysis
in Theorem 3 applies to generic regularized MCTS. From the specialized bounds in the
corollaries, we observe that the maximum and relative entropy share similar results,
although the bounds for relative entropy are slightly smaller due to 1

m
. Remarkably,

the bounds for Tsallis entropy become tighter for increasing number of actions, which
translates in limited regret in problems with high branching factor. This result establishes
the advantage of Tsallis entropy in complex problems w.r.t. to other entropy regularizers,
as empirically confirmed in Section 3.5.

3.4.2. Error analysis

We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value: εΩ = VΩ(s)− V ∗(s).
Theorem 4. For any δ > 0 and generic convex regularizer Ω, with some constant C, Ĉ, with
probability at least 1− δ, εΩ satisfies

−
√︄

Ĉσ2 log C
δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√︄

Ĉσ2 log C
δ

2N(s)
. (3.17)

To the best of our knowledge, this theorem provides the first result on the error analysis
of value estimation at the root node of convex regularization in MCTS. To give a better
understanding of the effect of each entropy regularizer in Table 3.1, we specialize the
bound in Equation 3.17 to each of them. From [82], we know that for maximum entropy
Ω(πt) =

∑︁

a πt logπt, we have − log |A| ≤ Ω(πt) ≤ 0; for relative entropy Ω(πt) =
KL(πt||πt−1), if we definem = mina πt−1(a|s), then we can derive 0 ≤ Ω(πt) ≤ − log |A|+

34

0.00

0.01

0.02

0.03

0.04

0.05
k=16 d=1

0.00

0.05

0.10

0.15

0.20

U
C

T

0 5e3 10e3

Simulations

0

250

500

750

1000

1250

1500

R

0.00

0.02

0.04

0.06

0.08

0.10
k=4 d=2

0.00

0.05

0.10

0.15

0.20
k=8 d=3

0.0

0.1

0.2

0.3

0.4

0.5
k=12 d=4

0.0

0.2

0.4

0.6

0.8
k=16 d=5

0.00

0.05

0.10

0.15

0.20

0.25

0.0

0.1

0.2

0.3

0.4

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.0

0.2

0.4

0.6

0.8

1.0

0 5e3 10e3

Simulations

0

100

200

300

400

500

0 5e3 10e3

Simulations

0

200

400

600

800

UCT MENTS RENTS TENTS

0 5e3 10e3

Simulations

0

100

200

300

400

500

0 5e3 10e3

Simulations

0

200

400

600

Figure 3.1.: For each algorithm, we show the convergence of the value estimate at the
root node to the respective optimal value (top), to the UCT optimal value
(middle), and the regret (bottom).

35

log 1
m
; and for Tsallis entropy Ω(πt) =

1
2(∥ πt ∥22 −1), we have − |A|−1

2|A| ≤ Ω(πt) ≤ 0. Then,

defining Ψ =

√︃

Ĉσ2 log C
δ

2N(s) ,

Corollary 4. Maximum entropy error
−Ψ− τ log |A|

1− γ
≤ εΩ ≤ Ψ.

Corollary 5. Relative entropy error
−Ψ− τ(log |A| − log 1

m
)

1− γ
≤ εΩ ≤ Ψ.

Corollary 6. Tsallis entropy error
−Ψ− |A| − 1

2|A|
τ

1− γ
≤ εΩ ≤ Ψ.

These results show that when the number of actions |A| is large, TENTS enjoys the
smallest error; moreover, we also see that lower bound of RENTS is always smaller than
for MENTS.

3.5. Empirical evaluation

In this section, we empirically evaluate the benefit of the proposed entropy-based MCTS
regularizers. First, we complement our theoretical analysis with an empirical study of the
synthetic tree toy problem introduced in [31], which serves as a simple scenario to give
an interpretable demonstration of the effects of our theoretical results in practice. Second,
we compare to AlphaGo [28], recently introduced to enable MCTS to solve large scale
problems with high branching factor. Our implementation is a simplified version of the
original algorithm, where we remove various tricks in favor of better interpretability. For
the same reason, we do not compare with the most recent and state-of-the-art MuZero [90],
as this is a slightly different solution highly tuned to maximize performance, and a detailed
description of its implementation is not available.
The learning time of AlphaZero can be slow in problems with high branching factor, due
to the need of a large number of MCTS simulations for obtaining good estimates of the
randomly initialized action-values. To overcome this problem, AlphaGo [28] initializes
the action-values using the values retrieved from a pretrained network, which is kept fixed
during the training.

36

1 2 3 4 5

2
4
6
8

10
12
14
16

UCT

1 2 3 4 5

2
4
6
8

10
12
14
16

MENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

RENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

TENTS

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(a)

1 2 3 4 5

2
4
6
8

10
12
14
16

UCT

1 2 3 4 5

2
4
6
8

10
12
14
16

MENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

RENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

TENTS

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

UCT

(b)

1 2 3 4 5

2
4
6
8

10
12
14
16

UCT

1 2 3 4 5

2
4
6
8

10
12
14
16

MENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

RENTS

1 2 3 4 5

2
4
6
8

10
12
14
16

TENTS

0

200

400

600

800

1000

1200

1400

R

(c)

Figure 3.2.: For different branching factor k (rows) and depth d (columns), the heatmaps
show: the absolute error of the value estimate at the root node after the last
simulation of each algorithm w.r.t. the respective optimal value (a), and w.r.t.
the optimal value of UCT (b); regret at the root node (c).

3.5.1. Synthetic tree

This toy problem is introduced in [31] to highlight the improvement of MENTS over
UCT. It consists of a tree with branching factor k and depth d. Each edge of the tree is
assigned a random value between 0 and 1. At each leaf, a Gaussian distribution is used
as an evaluation function resembling the return of random rollouts. The mean of the
Gaussian distribution is the sum of the values assigned to the edges connecting the root
node to the leaf, while the standard deviation is σ = 0.052. For stability, all the means
are normalized between 0 and 1. As in [31], we create 5 trees on which we perform 5
different runs in each, resulting in 25 experiments, for all the combinations of branching
factor k = {2, 4, 6, 8, 10, 12, 14, 16} and depth d = {1, 2, 3, 4, 5}, computing: (i) the value
estimation error at the root node w.r.t. the regularized optimal value: εΩ = VΩ − V ∗

Ω;
(ii) the value estimation error at the root node w.r.t. the unregularized optimal value
εUCT = VΩ − V ∗

UCT; (iii) the regret R as in Equation (3.14). For a fair comparison, we use
fixed τ = 0.1 and ϵ = 0.1 across all algorithms. Figure 3.1 and 3.2 show how UCT and
each regularizer behave for different configurations of the tree. We observe that, while
2The value of the standard deviation is not provided in [31]. After trying different values, we observed that
our results match the one in [31] when using σ = 0.05.

37

(a) Results in trees with high branching factor.

0.010.1 1.0

0.01

0.1

1.0

UCT

0.010.1 1.0

0.01

0.1

1.0

MENTS

0.010.1 1.0

0.01

0.1

1.0

RENTS

0.010.1 1.0

0.01

0.1

1.0

TENTS

0

1000

2000

3000

4000

5000

R

(b) k = 100, d = 1.

0.010.1 1.0

0.01

0.1

1.0

UCT

0.010.1 1.0

0.01

0.1

1.0

MENTS

0.010.1 1.0

0.01

0.1

1.0

RENTS

0.010.1 1.0

0.01

0.1

1.0

TENTS

0

250

500

750

1000

1250

1500

1750

R

(c) k = 8, d = 3.
Figure 3.3.: High branching factor trees (a), regret sensitivity study w.r.t. ε and τ (b, c).

RENTS and MENTS converge slower for increasing tree sizes, TENTS is robust w.r.t. the
size of the tree and almost always converges faster than all other methods to the respective
optimal value. Notably, the optimal value of TENTS seems to be very close to the one of
UCT, i.e. the optimal value of the unregularized objective, and also converges faster than
the one estimated by UCT, while MENTS and RENTS are considerably further from this
value. In terms of regret, UCT explores less than the regularized methods and it is less
prone to high regret, at the cost of slower convergence time. Nevertheless, the regret of
TENTS is the smallest between the ones of the other regularizers, which seem to explore

38

too much. In Figure (a), we show further results evincing the advantages of TENTS over
the baselines in problems with high branching factor, in terms of approximation error and
regret. Finally, in Figures (b) and (c) we carry out a sensitivity analysis of each algorithm
w.r.t. the values of the exploration coefficient ε and τ in two different trees. Note that
ε is only used by E3W to choose whether to sample uniformly or from the regularized
policy. We observe that the choice of τ does not significantly impact the regret of TENTS,
as opposed to the other methods. These results show a general superiority of TENTS in
this toy problem, also confirming our theoretical findings about the advantage of TENTS
in terms of approximation error (Corollary 6) and regret (Corollary 3), in problems with
many actions.

3.5.2. Entropy-regularized AlphaGo

Atari. Atari 2600 [84] is a popular benchmark for testing deep RL methodologies [30],
[91], [92] but still relatively disregarded in MCTS. We use a Deep Q-Network, pretrained
using the same experimental setting of [30], to initialize the action-value function of
each node after expansion as Qinit(s, a) = (Q(s, a)− V (s)) /τ , for MENTS and TENTS, as
done in [31]. For RENTS we initQinit(s, a) = logPprior(a|s))+(Q(s, a)− V (s)) /τ , where
Pprior is the Boltzmann distribution induced by action-values Q(s, .) computed from the
network. Each experimental run consists of 512 MCTS simulations. The temperature τ is
optimized for each algorithm and game via grid-search between 0.01 and 1. The discount
factor is γ = 0.99, and for PUCT the exploration constant is c = 0.1. Table 3.2 shows the
performance, in terms of cumulative reward, of standard AlphaGo with PUCT and our
three regularized versions, on 22 Atari games. Moreover, we test also AlphaGo using the
MaxMCTS backup [63] for further comparison with classic baselines. We observe that
regularized MCTS dominates other baselines, in particular TENTS achieves the highest
scores in all the 22 games, showing that sparse policies are more effective in Atari. In
particular, TENTS significantly outperforms the other methods in the games with many
actions, e.g. Asteroids, Phoenix, confirming the results obtained in the synthetic tree
experiment, explained by corollaries 3 and 6 on the benefit of TENTS in problems with
high-branching factor.

3.6. Related Work

Entropy regularization is a common tool for controlling exploration in Reinforcement
Learning (RL) and has lead to several successful methods [72]–[74], [93]. Typically spe-

39

cific forms of entropy are utilized such as maximum entropy [74] or relative entropy [72].
This approach is an instance of the more generic duality framework, commonly used in
convex optimization theory. Duality has been extensively studied in game theory [79],[80]
and more recently in RL, for instance considering mirror descent optimization [94], [95],
drawing the connection between MCTS and regularized policy optimization [96], or for-
malizing the RL objective via Legendre-Rockafellar duality [78]. Recently [77] introduced
regularized Markov Decision Processes, formalizing the RL objective with a generalized
form of convex regularization, based on the Legendre-Fenchel transform. In this chapter,
we provide a novel study of convex regularization in MCTS, and derive relative entropy
(KL-divergence) and Tsallis entropy regularized MCTS algorithms, i.e. RENTS and TENTS
respectively. Note that the recent maximum entropy MCTS algorithm MENTS [31] is
a special case of our generalized regularized MCTS. Unlike MENTS, RENTS can take
advantage of any action distribution prior, in the experiments the prior is derived using
Deep Q-learning [30]. On the other hand, TENTS allows for sparse action exploration
and thus higher dimensional action spaces compared to MENTS. Several works focus on
modifying classical MCTS to improve exploration. UCB1-tuned [45] modifies the upper
confidence bound of UCB1 to account for variance in order to improve exploration. [51]
proposes a Bayesian version of UCT, which obtains better estimates of node values and un-
certainties given limited experience. Many heuristic approaches based on specific domain
knowledge have been proposed, such as adding a bonus term to value estimates [53]–[57]
or prior knowledge collected during policy search [58]–[62]. [63] formalizes and analyzes
different on-policy and off-policy complex backup approaches for MCTS planning based
on RL techniques. [64] proposes an approach called SARSA-UCT, which performs the
dynamic programming backups using SARSA [65]. Both [63] and [64] directly borrow
value backup ideas from RL to estimate the value at each tree node, but they do not
provide any proof of convergence.

3.7. Conclusion

We introduced a theory of convex regularization in Monte-Carlo Tree Search (MCTS)
based on the Legendre-Fenchel transform. We proved that a generic strongly convex
regularizer has an exponential convergence rate for the selection of the optimal action
at the root node. Our result gives theoretical motivations to previous results specific to
maximum entropy regularization. Furthermore, we provided the first study of the regret
of MCTS when using a generic strongly convex regularizer, and an analysis of the error
between the regularized value estimate at the root node and the optimal regularized value.
We use these results to motivate the use of entropy regularization in MCTS, considering

40

maximum, relative, and Tsallis entropy, and we specialized our regret and approximation
error bounds to each entropy-regularizer. We tested our regularized MCTS algorithm in a
simple toy problem, where we give an empirical evidence of the effect of our theoretical
bounds for the regret and approximation error. Finally, we introduced the use of convex
regularization in AlphaGo, and carried out experiments on several Atari games. Overall,
our empirical results show the advantages of convex regularization, and in particular the
superiority of Tsallis entropy w.r.t. other entropy-regularizers.
Future developments of this work can investigate the possibility of mixing UCT and the
regularized policy in a complementary manner. In our empirical results, we observed
that UCT enjoys a better cumulative regret than regularized policies, while regularized
policies have a better one-step regret due to the exponential convergence rate. Considering
that cumulative regret and one-step regret can be both significant objectives to minimize
according to the problem at hand [97], studying theoretically sound ways of mixing UCT
and regularized policy seems a promising idea.

41

Table 3.2.: Average score in Atari over 100 seeds per game. Bold denotes no statistically
significant difference to the highest mean (t-test, p < 0.05). Bottom row
shows # no difference to highest mean.

UCT MaxMCTS MENTS RENTS TENTS
Alien 1,486.80 1,461.10 1,508.60 1,547.80 1,568.60
Amidar 115.62 124.92 123.30 125.58 121.84
Asterix 4, 855.00 5,484.50 5,576.00 5,743.50 5,647.00
Asteroids 873.40 899.60 1, 414.70 1, 486.40 1,642.10
Atlantis 35, 182.00 35,720.00 36,277.00 35, 314.00 35,756.00
BankHeist 475.50 458.60 622.30 636.70 631.40
BeamRider 2,616.72 2,661.30 2,822.18 2, 558.94 2,804.88
Breakout 303.04 296.14 309.03 300.35 316.68
Centipede 1, 782.18 1, 728.69 2,012.86 2,253.42 2,258.89
DemonAttack 579.90 640.80 1,044.50 1,124.70 1,113.30
Enduro 129.28 124.20 128.79 134.88 132.05
Frostbite 1, 244.00 1, 332.10 2,388.20 2,369.80 2,260.60
Gopher 3, 348.40 3, 303.00 3,536.40 3,372.80 3,447.80
Hero 3, 009.95 3, 010.55 3,044.55 3,077.20 3,074.00
MsPacman 1, 940.20 1, 907.10 2, 018.30 2,190.30 2,094.40
Phoenix 2, 747.30 2, 626.60 3, 098.30 2, 582.30 3,975.30
Qbert 7, 987.25 8, 033.50 8, 051.25 8, 254.00 8,437.75
Robotank 11.43 11.00 11.59 11.51 11.47
Seaquest 3,276.40 3,217.20 3,312.40 3,345.20 3,324.40
Solaris 895.00 923.20 1,118.20 1,115.00 1,127.60
SpaceInvaders 778.45 835.90 832.55 867.35 822.95
WizardOfWor 685.00 666.00 1,211.00 1,241.00 1,231.00
Highest mean 6/22 7/22 17/22 16/22 22/22

42

4. A Unified Perspective on Value Backup
and Exploration in Monte-Carlo Tree
Search

“I don’t believe we’re seeing the beginning of a
divergence. We have seen a partial divergence on this
case.”

— Mario Monti

Monte-Carlo Tree Search (MCTS) is a class of methods for solving complex decision-making
problems through the synergy of Monte-Carlo planning and Reinforcement Learning (RL).
The highly combinatorial nature of the problems commonly addressed by MCTS requires
the use of efficient exploration strategies for navigating the planning tree and quickly
convergent value backup methods. These crucial problems are particularly evident in
recent advances that combineMCTSwith deep neural networks for function approximation.
In this work, we introduce a mathematical framework based on using the α-divergence
for backup and exploration in MCTS. We show that this theoretical formulation unifies
different approaches, including our newly introduced ones (Power-UCT and E3W), under
the same mathematical framework, allowing us to obtain different methods by simply
changing the value of α. In practice, our unified perspective offers a flexible way to balance
exploration and exploitation by tuning the single α parameter according to the problem
at hand. We validate our methods through a rigorous empirical study of a basic toy task
Synthetic Tree problem.

4.1. Introduction

Monte-Carlo Tree Search (MCTS) is an effective method that combines a random sampling
strategy with tree search to determine the optimal decision for on-the-fly planning tasks.

43

MCTS has yielded impressive results in Go [28] (AlphaGo), Chess [14] (AlphaZero), or
video games [33], and it has been further exploited successfully in motion planning [98],
[99], autonomous car driving [100],[101], and autonomous robotic assembly tasks [102].
Many of the MCTS successes [14],[28],[71] rely on coupling MCTS with neural networks
trained using Reinforcement Learning (RL) [29] methods such as Deep Q-Learning [30],
to speed up learning of large scale problems.

Despite AlphaGo and AlphaZero achieving state-of-the-art performance in games with
high branching factors like Go [28] and Chess [14], both methods suffer from poor sample
efficiency, mostly due to the inefficiency of the average mean backup operator, which is
well-known for the issue of underestimating the optimum and leading to the polynomial
convergence rate of PUCT [31]. This problem, combined with the need for effective
exploration techniques, particularly in highly stochastic environments like Atari [103]
poses an open research problem for the MCTS community: effective exploration methods
and sufficient backup operators for the planning tree.

In this work, we provide a theory of the use of α-divergence in MCTS, respectively showing
how the different range ofα parameter solves the exploration-exploitation trade-off schema
and prove that a class of our novel backup operators ensure the exponential convergence
rate, showing the advantages over the polynomial convergence rate of UCT [12]. We
further draw the connection between the two recent advanced MCTS methods, Power-
UCT [43] and E3W [44], which have been proven to provide effective solutions for the
exploration and backup operator problems in the tree, by providing a rigorous theoretical
study of α-divergence in MCTS and analyze how α-divergence can help to derive power
mean and entropic regularization in MCTS.

α-divergence has been first extensively studied in RL context by [88], and later on,
has been proposed to use in [104] as a generalized Tsallis Entropy regularizer in MDP.
However, the study of α-divergence in MCTS is still an open question. In this work, we
first show that power mean (the new backup operator used in Power-UCT) can be derived
as a closed-form solution of a mean of distribution by considering α-divergence as the
probability distance, generalizing the eclipse distance that is used to derive average mean
of a distribution. We further exploit the convex regularization framework in MCTS by
analyzing the α-divergence function as the regularizer to introduce novel regularized
backup operators for MCTS, relatively derive the maximum entropy, the relative entropy
of the policy update, and, more importantly, derive the Tsallis entropy of the policy those
has been proposed in E3W. Finally, we measure α-divergence in Synthetic Tree and show
how α-divergence help to achieve competitive results in challenging problems.

44

4.2. Related Work

We want to improve the efficiency and performance of MCTS by addressing the two crucial
problems of value backup and exploration. Our contribution follows on from a plethora of
previous works that we briefly summarize in the following.

Backup operators. To improve upon the UCT algorithm in MCTS, [63] formalize and
analyze different on-policy and off-policy complex backup approaches for MCTS plan-
ning based on techniques in the RL literature. [63] propose four complex backup strate-
gies: MCTS(λ), MaxMCTS(λ), MCTSγ , MaxMCTSγ , and report that MaxMCTS(λ) and
MaxMCTSγ perform better than UCT for certain parameter setups. [64] propose an ap-
proach called SARSA-UCT, which performs the dynamic programming backups using
SARSA [65]. Both [63] and [64] directly borrow value backup ideas from RL in order to
estimate the value at each tree node. However, they do not provide any proof of conver-
gence. The recently introduced MENTS algorithm [31], uses softmax backup operator at
each node in combination with an entropy-based exploration policy, and shows a better
convergence rate w.r.t. UCT.

Exploration. Entropy regularization is a common tool for controlling exploration in RL and
has led to several successful methods [72]–[74], [93]. Typically specific forms of entropy
are utilized such as maximum entropy [74] or relative entropy [72]. This approach is an
instance of the more generic duality framework, commonly used in convex optimization
theory. Duality has been extensively studied in game theory [79], [80] and more recently
in RL, for instance considering mirror descent optimization [94], [95], drawing the
connection between MCTS and regularized policy optimization [96], or formalizing the
RL objective via Legendre-Rockafellar duality [78]. Recently [77] introduced regularized
Markov Decision Processes, formalizing the RL objective with a generalized form of
convex regularization, based on the Legendre-Fenchel transform. Several works focus on
modifying classical MCTS to improve exploration. For instance, [51] propose a Bayesian
version of UCT to improve estimation of node values and uncertainties given limited
experience.

α-divergence. α-divergence has been extensively studied in RL context by [88], that
propose to use it as the divergence measurement policy search, generalizing the relative
entropy policy search to constrain the policy update. [88] further study a particular class
of f -divergence, called α-divergence, resulting in compatible policy update and value
function improvement in the actor-critic methods. [104] on the other hand, analyze α-
divergence as a generalized Tsallis Entropy regularizer in MDP. Controlling the generalized
Tsallis Entropy regularizer by scaling the α parameter as an entropic index, [104] derive

45

the Shannon-Gibbs entropy and Tsallis Entropy as special cases.

4.3. Preliminaries

In this section, we will present background knowledge on Markov Decision Processes,
Monte-Carlo Tree Search and α-divergence.

4.3.1. Markov Decision Processes

Please refer to Section 3.2.1

4.3.2. Monte-Carlo Tree Search

Please refer to Section 2.3.1

4.3.3. α-divergence

The f -divergence [105] generalizes the definition of the distance between two probabilistic
distributions P and Q on a finite set A as

Df (P∥Q) =
∑︂

a∈A

Q(a)f

(︃

P (a)

Q(a)

)︃

, (4.1)

where f is a convex function on (0,∞) such as f(1) = 0. For example, the KL-divergence
corresponds to fKL = x logx− (x− 1). The α−divergence is a subclass of f -divergence
generated by α−function with α ∈ R. α−function is defined as

fα(x) =
(xα − 1)− α(x− 1)

α(α− 1)
. (4.2)

The α−divergence between two probabilistic distributions P and Q on a finite set A is
defined as

Dα (P∥Q) =
∑︂

a∈A

Q(a)fα

(︃

P (a)

Q(a)

)︃

, (4.3)

46

where∑︁a∈AQ(a) =
∑︁

a∈A P (a) = 1.
Furthermore, given the α−function, we can derive the generalization of Tsallis entropy of
a policy π as

Hπ
α(s) =

1

α(1− α)

(︃

1−
∑︂

a∈A

π(s, a)α
)︃

(4.4)

In addition, we have

lim
α→1

Hπ
1 (s) = −

∑︂

a∈A

π(s, a) logπ(s, a) (4.5)

Hπ
2 (s) =

1

2

(︃

1−
∑︂

a∈A

π(s, a)2
)︃

, (4.6)

respectively, the Shannon entropy (4.5) and the Tsallis entropy (4.6) functions.

4.4. α-divergence in MCTS

In this section, we show how to use α-divergence as a convex regularization function to
generalize the entropy regularization in MCTS and respectively derive MENTS, RENTS,
and TENTS. Additionally, we show how to derive power mean (which is used as the
backup operator in Power-UCT) using α-divergence as the distance function to replace the
Euclidean distance in the definition of the empirical average mean value. Finally, we study
the regret bound and error analysis of the α-divergence regularization in MCTS.

4.4.1. α-divergence Regularization in MCTS

We introduce α-divergence regularization to MCTS. Denote the Legendre-Fenchel trans-
form (or convex conjugate) of α-divergence regularization with Ω∗ : RA → R, defined
as

Ω∗(Qs) ≜ max
πs∈Πs

TπsQs − τfα(πs), (4.7)

where the temperature τ specifies the strength of regularization, and fα is the α function
defined in (4.2). Note that α-divergence of the current policy πs and the uniform policy
has the same form as the α function fs(πs).
It is known that:

47

• when α = 1, we have the regularizer f1(πs) = πs logπs = −H(πs), and derive
Shannon entropy, getting MENTS. Note that if we apply the α-divergence with
α = 1, we get RENTS;

• when α = 2, we have the regularizer f2(πs) =
1
2(πs− 1)2, and derive Tsallis entropy,

getting TENTS.
For α > 1, α ̸= 2 we can derive [106]

∇Ω∗(Qt) =

(︃

max
{︃

Qπ∗
τ (s,a)

τ
− c(s)

τ
, 0

}︃

(α− 1)

)︃
1

α−1

(4.8)

where

c(s) = τ

∑︁

a∈K(s)
Qπ∗

τ (s,a)

τ
− 1

∥K(s)∥ + τ

(︃

1− 1

α− 1

)︃

, (4.9)

with K(s) representing the set of actions with non-zero chance of exploration in state s,
as determined below

K(s) =
{︃

ai

⃓

⃓

⃓

⃓

1 + i
Qπ∗

τ (s,ai)

τ
>

i
∑︂

j=1

Qπ∗
τ (s,aj)

τ
+ i(1− 1

α− 1
)

}︃

, (4.10)

where ai denotes the action with the i−th highest Q-value in state s. and the regularized
value function

Ω∗(Qt) =
⟨︂

∇Ω∗(Qt), Q
π∗
τ (s,a)

⟩︂

. (4.11)

4.4.2. Connecting Power Mean with α-divergence

In order to connect the Power-UCT approach that we introduced in Chapter 2 with α-
divergence, we study here the entropic mean [107] which uses f -divergence, of which
α-divergence is a special case, as the distance measure. Since power mean is a special case
of the entropic mean, the entropic mean allows us to connect the geometric properties of
the power mean used in Power-UCT with α-divergence.
In more detail, let a = (a1, a2, ...an) be given strictly positive numbers and let w =
(w1, w2, ..., wn) be given weights and∑︁n

i=1wi = 1, wi > 0, i = 1...n. Let’s define dist(α, β)
as the distance measure between α, β > 0 that satisfies

dist(α, β) =

{︄

0 if α = β

> 0 if α ̸= β
(4.12)

48

When we consider the distance as f -divergence between the two distributions, we get the
entropic mean of a = (a1, a2, ...an) with weights w = (w1, w2, ..., wn) as

meanw(a) = min
x>0

{︄

n
∑︂

i=1

wiaif

(︃

x

ai

)︃

}︄

. (4.13)

When applying fα(x) =
x1−p−p
p(p−1) + x

p
, with p = 1− α, we get

meanw(a) =

(︄

n
∑︂

i=1

wia
p
i

)︄
1
p

, (4.14)

which is equal to the power mean.

4.4.3. Regret and Error Analysis of α-divergence in Monte-Carlo Tree Search

We measure how different values of α in the α-divergence function affect the regret in
MCTS.
Theorem 12. When α ∈ (0, 1), the regret of E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O(n

logn).

For α ∈ (1,∞), we derive the following results
Theorem 13. When α ∈ (1,∞), the regret of E3W is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O(n

logn).

where |K| is the number of actions that are assigned non-zero probability in the policy
at the root node. Note that when α = 1, 2, please refer to Corollary 1, 2, 3 in Chapter
3.
We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer fα.
Theorem 14. For any δ > 0 and α-divergence regularizer fα (α ̸= 1, 2), with some constant
C, Ĉ, with probability at least 1− δ, εΩ satisfies

−
√︄

Ĉσ2 log C
δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√︄

Ĉσ2 log C
δ

2N(s)
. (4.15)

49

0.0
0.1
0.2
0.3
0.4
0.5

k=10 d=1

0.0
0.1
0.2
0.3
0.4
0.5

U
CT

0 5e3 10e3
Simulations

0
200
400
600
800

R

0.0
0.1
0.2
0.3
0.4
0.5
0.6

k=16 d=2

0.0
0.1
0.2
0.3
0.4
0.5
0.6

0 5e3 10e3
Simulations

0
200
400
600
800

1000

0.0

0.2

0.4

0.6

0.8
k=12 d=3

0.0
0.1
0.2
0.3
0.4
0.5

0 5e3 10e3
Simulations

0

200

400

600

800

=1.0(MENTS) =1.5 =2.0(TENTS) =4.0 =8.0 =16.0

0.0

0.2

0.4

0.6

0.8
k=14 d=3

0.0

0.2

0.4

0.6

0 5e3 10e3
Simulations

0

200

400

600

0.0
0.2
0.4
0.6
0.8
1.0

k=16 d=4

0.0

0.2

0.4

0.6

0.8

0 5e3 10e3
Simulations

0
100
200
300
400
500

Figure 4.1.: We show the convergence of the value estimate at the root node to the
respective optimal value (top), to the UCT optimal value (middle), and the
regret (bottom) with different α parameter of α-divergence in Synthetic tree
environment with α = 1.0 (MENTS), 1.5, 2.0 (TENTS), 4.0, 8.0, 16.0.

For α = 1, 2, please refer to Corollary 4, Corollary 5, Corollary 6 in Chapter 3. We can see
that when α increases, the error bound decreases.

4.5. Empirical Evaluation

In this section, we plan to measure the performance of the advanced method Power-UCT
and the entropy based regularizer MCTS with repect to a range of difference value of α
hyperparameters.

4.5.1. Synthetic Tree

We further use the toy problem Synthetic Tree to measure how the α-divergence help to
balance exploration and exploitation in MCTS. We use the same experimental settings

50

1234

246810121416

=1.0(MENTS)

1234

246810121416

=1.5

1234

246810121416

=2.0(TENTS)

1234

246810121416

=4.0

1234

246810121416

=8.0

1234

246810121416

=16.0

0.00

0.02

0.04

0.06

0.08

0.10

0.12

(a)

1234

246810121416

=1.0(MENTS)

1234

246810121416

=1.5

1234

246810121416

=2.0(TENTS)

1234

246810121416

=4.0

1234

246810121416

=8.0

1234

246810121416

=16.0

0.0

0.1

0.2

0.3

0.4

0.5

UCT

(b)

1234

246810121416

=1.0(MENTS)

1234

246810121416

=1.5

1234

246810121416

=2.0(TENTS)

1234

246810121416

=4.0

1234

246810121416

=8.0

1234

246810121416

=16.0

0

200

400

600

800

1000

1200

1400

R

(c)

Figure 4.2.: We show the effectiveness of α-divergence in Synthetic Tree environment
with different branching factor k (rows) and depth d (columns). The heatmaps
show: the absolute error of the value estimate at the root node after the last
simulation of each algorithm w.r.t. the respective optimal value (a), and w.r.t.
the optimal value of UCT (b); regret at the root node (c).

as in the last section, with the variance of the distributions at each node of the Synthetic
Tree set to σ = 0.05. The mean value of each distribution at each node of the toy problem
is normalized between 0 and 1 for stabilizing. We set the temperature τ = 0.1 and the
exploration ϵ = 0.1. Figure 4.2 illustrates the heatmap of the absolute error of the value
estimate at the root node after the last simulation of each algorithm w.r.t. the respective
optimal regularized value, the optimal value of UCT and regret at the root node with
α = 1.0 (Maximum entropy Monte-Carlo planning (MENTS)), 1.5, 2.0 (Tsallis entropy
Monte-Carlo planning (TENTS)), 4.0, 8.0, 16.0. Figure 4.1 shows the convergence of
the value estimate and regret at the root node of α-divergence in the Synthetic Tree
environment. It shows that the error of the value estimate at the root node with respect
to the optimal UCT value and the regularized value decrease when α increase, which

51

matches our theoretical results in Theorem 14. Regarding the regret, the performance is
different depending on different branching factors k and depth d, which illustrates that
the value of α helps trade-off between exploration and exploitation depending on each
environment. For example, with k = 16, d = 2, the regret is smaller when we increase
the value of α, and the regret is smallest with α = 8.0. When k = 14, d = 3, the regret
is smaller when we increase the value of α and the regret performance is the best with
α = 16.0, and when k = 16, d = 4, the regret enjoys the best performance with α = 2.0
(TENTS)

4.6. Conclusion

We introduced a unified view of the use ofα-divergence inMonte-Carlo Tree Search(MCTS).
We show that Power-UCT and the convex regularization in MCTS can be connected using
α-divergence. In detail, the Power Mean backup operator used in Power-UCT can be
derived as the solution of using α function as the probabilistic distance to replace the
Eclipse distance used to calculate the average mean, in which the closed-form solution
is the generalized power mean. Furthermore, entropic regularization in MCTS can be
derived using α-function regularization. We provided the analysis of the regret bound
of Power-UCT and E3W with respect to the α parameter. We further analyzed the error
bound between the regularized value estimate and the optimal regularized value at the
root node. Empirical results in Synthetic Tree showed the effective balance between
exploration and exploitation of α-divergence in MCTS with different values of α.

52

5. Monte-Carlo Robot Path Planning

“No one saves us but ourselves. No one can and no
one may. We ourselves must walk the path.”

— Buddha

Path planning is a crucial algorithmic component when optimizing robot behavior. Sampling-
based approaches, like rapidly exploring random trees (RRTs) [37] or probabilistic
roadmaps [108], are prominent algorithmic solutions for path planning problems. Despite
its exponential convergence rate, RRT can only find suboptimal paths. On the other hand,
RRT∗, a widely-used extension to RRT, guarantees probabilistic completeness for finding
optimal paths but suffers in practice from slow convergence in complex environments.
Furthermore, real-world robotic environments are often partially observable or with poorly
described dynamics, casting the application of RRT∗ in complex tasks suboptimal. This
work studies a novel algorithmic formulation of the popular Monte-Carlo tree search
(MCTS) algorithm for robot path planning. Notably, we study Monte-Carlo Path Planning
(MCPP) by analyzing and proving, on the one part, its exponential convergence rate
to the optimal path in fully observable Markov decision processes (MDPs), and on the
other part, its probabilistic completeness for finding feasible paths in partially observable
MDPs (POMDPs) assuming limited distance observability (proof sketch). Our algorithmic
contribution allows us to employ recently proposed variants of MCTS [109] with different
exploration strategies for robot path planning. Our experimental evaluations in simulated
2D and 3D environments with a 7 degrees of freedom (DOF) manipulator, as well as in
a real-world robot path planning task, demonstrate the superiority of MCPP in POMDP
tasks.

5.1. Introduction

Robot path planning refers to the process of finding a sequence of configurations that
lead a robot system from a starting configuration to a goal configuration without violating

53

task constraints. Path planning is a crucial component in robotics [110], autonomous
driving [111] and other domains such as surgical planning, computational biology, and
molecules [112]. In robotics, path planning is an integral tool for manipulation tasks with
robotic manipulator arms [113]–[115] and mobile robots [7], [116], [117].
Due to the redundancy of robotic arms and the complexity and constraints of real-world
tasks, sampling-based approaches yielded significant results [35], [36]. Among the dif-
ferent algorithmic contributions [108], [110], [118], [119], RRT∗ [37] is a widely used
method that ensures finding the optimal path with probabilistic completeness guaran-
tees [38]. While RRT∗ is effective in solving path planning tasks in fully observable MDPs,
real-world robotics applications are characterized by partial information, casting their
settings into POMDP problems. In the real world, robots should make decisions based
on information from laser sensors [39], camera images [40], and sensory feedback [41],
which generally contains noise, and subsequently makes it hard for planners such as RRT∗.
Therefore, robot path planning under uncertainty [120]–[123] has become one of the
critical topics in the robotics community and remains an open research challenge.
This work proposes an algorithmic formulation to path planning problems based on the
popular MCTS algorithm. We argue that the exploration-exploitation properties of MCTS
algorithms are essential for robotic path planning in POMDPs, and they can outperform
sampling-based planners like RRT∗ that greedily explore the state-space. To this end, we
formulate an MCPP algorithmic framework that we analyze theoretically and provide
proofs of convergence for the MDP and POMDP settings. In particular, when applying
the upper confidence bounds for Trees (UCT) algorithm [124], we can guarantee the
exponential convergence of MCPP to optimal paths in MDP problems. Crucially, we
extend our theoretical analysis to prove the probabilistic completeness of MCPP in POMDP
problems assuming limited distance observability. To the best of our knowledge, this is
the first work to provide the theoretical analysis for MCTS in both MDP and POMDP robot
path plannings. We continue by proposing different exploration strategies in MCPP for
robotic path planning. In particular, we build on top of our prior work on power-mean UCT
(Power-UCT) [43] and convex regularization with Tsallis Entropy Monte-Carlo Planning
(TENTS) [44], integrating them in MCPP. We provide various experimental evaluations
of MCPP, initially in MDP environments for completeness and thereafter in challenging
POMDP tasks in 2D and 3D while planning with a 7-DOF robot arm. Moreover, we evaluate
the different variants of MCPP against RRT∗ in a real-world POMDP experiment (see Fig.
5.2), where the robot can only observe collisions in the box while planning to take out
a bunny-toy. Our experimental results confirm that MCPP has a higher probability of
solving POMDP path planning tasks with less planning time and requiring fewer samples
than the baseline methods. We believe that our theoretical findings and empirical results

54

Selection Expansion

Simulation Backup

Start

Goal

MCPP node

Maximum step size

Chosen edge

Backpropagate

Rollout

MCPP edge

New added node

Figure 5.1.: Four stages of MCPP planner to traverse from the initial position (in green
color) to the goal position (in blue color).

Start position

Goal position

The bunny

Figure 5.2.: Demonstration of path planning using MCPP in a robotic disentangling task.
A 7-DOF robotic KUKA arm tries to extract an object from the cardboard box
through the hole in the back of the box. The robot does not use any sensors
except for proprioception, making the task partially observable. Therefore,
the task requires advancedMCPP-based path planning that takes information
gathering about the environment into account. We put a limit to prevent the
robot arm to move the hand up, therefore, the robot arm has to find the path
from the start position on the left side to the goal position on the right side
inside the box.

will shed new light on robotic path planning in complex, partially observable tasks. To

55

summarize, our contribution is threefold:
• we prove that MCPP enjoys exponential convergence in choosing the optimal path

in MDP problems and has convergence guarantees to find a feasible path in POMDP
environments with limited distance observability (for the POMDP case, we provide
the proof sketch);

• using our theoretical insights, we propose an MCTS-based path planning framework
that can incorporate different exploration strategies, such as our state-of-the-art
methods, Power-UCT, and TENTS, into POMDP path planning problems;

• we provide empirical evaluations in simulation and real-world experiments that con-
firm our theoretical findings for the MCPP algorithmic framework to be a promising
solution for planning in POMDP environments.

5.2. Related Work

Probabilistic RoadMaps (PRMs) [108] and RRTs [37] are fundamental approaches for
sampling-based motion planning. RRT∗ improves over RRT by applying the rewiring
technique to shorten the unnecessary traversing path. Moreover, RRT∗ has proven to
guarantee probabilistic completeness for choosing the optimal path in MDP problems, but
no convergence rate of RRT∗ has been studied so far.
There are several heuristic improvements over the state-of-the-art RRT and RRT∗. For
example, A* is a sufficient heuristic path planning-based method for finding an optimal
path given the graph representation of the environment. A*-RRT [125] integrates the
benefit of the heuristic A* in RRT by sampling a new tree node using an A* path, and
therefore improving the performance in terms of sample efficiency and cost compared to
RRT. A*-RRT∗ [125] combines A* with RRT∗ to improve the sample efficiency over RRT∗.
Theta*-RRT [126] considers Theta*, an any-angle discrete search method combined with
RRT. Palmieri et al. [126] prove that Theta*-RRT enjoys the probabilistic completeness
of RRT and RRT∗, while finding shorter trajectories and plans significantly faster than
baseline planners (RRT, A*-RRT, RRT∗, A*-RRT∗). Informed-RRT∗ [127] focuses the search
on the ellipsoidal informed subset of the state-space of the initial running solution found
by RRT∗.
Regarding applications of MCTS in path planning, Kim et al. [128] proposes the use of
Voronoi diagrams to discretize the action space and provides a regret-bound analysis
for the sample efficiency, but the authors do not provide a convergence rate for goal

56

reaching in the robot path planning setting. Sun et al. [129] propose POMCP++, an
improvement over POMCP [68] to solve continuous observation problems. First, the
authors propose using multiple particle samples from the current initial belief instead of a
single particle sample of POMCP. Second, the authors handle the continuous observation
space by proposing a new measurement sampling method. At each Q-node in the tree,
POMCP++ either samples a new observation or chooses existing observations with some
probability. Experiments show that POMCP++ yields a significantly higher success rate
and total reward. However, there is no actual convergence rate analysis in the robot path
planning settings. Sunberg et al. [130] integrated the progressive widening technique
in MCTS to discretize the continuous action and observation cases in POMDP settings
and derived POMCPOW and POMCP-DPW (with double progressive widening). The
authors further combined a weighted particle filter with progressive widening and showed
the benefits over the baseline algorithm Determinized Sparse Partially Observable Tree
(DESPOT) [131].

Our work uses a simple uniform discretization of the action space for the MCTS algorithm
in the context of robotic path planning. While our approach can apply the Voronoi diagram
discretization of [128], in this work, we focus on the theoretical justification of our method
and its comparison to sampling-based planners. We provide proofs of convergence for
planning the optimal path to the goal in MDPs and a feasible path in POMDPs (with a
proof sketch), which is not provided in [129], [130], but can also apply to them. Notably,
we propose MCPP as a general MCTS-based framework for robotic path planning. MCPP
can incorporate different exploration strategies [43], [44] to continuous actions, adapting,
subsequently, the convergence rates for MCPP.

5.3. Background

In this section, we first show the most well-known state of the art methods in robot path
planning RRT* showing both its pros and cons. Next, we will briefly give an overview of
what is the robot path planning problem in MDP and POMDP setting, show the difficulty of
planning in POMDP environment that RRT and RRT* cannot solve. finally, we will shortly
summarize the four basic steps of MCTS and show the current advanced Power-UCT and
TENTS methods.

57

5.3.1. RRT*

Rapidly exploring Random Trees (RRT) is the prominent approach to solve the robot path
planning tasks. From the start position, RRTs randomly sample the new vertex in the
robot configuration space to expand the tree until it gets to the goal position region. The
new vertex is satisfied: 1. it lies inside the feasible region, and 2. it lies inside ϵ distance
with the closest vertex of the current RRTs tree. Thus, RRT expands the whole space
quickly and ensures exponential convergence to find the sub-optimal path to the goal
region.

RRT* improves over RRT by rewiring the new sampling vertex with the nearby vertexes
to save the unnecessary path. RRT* further ensures the Probabilistic Completeness of
finding the optimal path to the goal position.

RRTs* can be applied to fully observable environments but these sampling based ap-
proaches can not be applied sufficiently in unstructured, partial observable settings.

Markov Decision Process. A finite-horizon MDP can be defined as a 5-tuple M =
⟨S,A,R,P, γ⟩, where S is the state-space, A is the finite action-space,R : S×A×S → R

is the reward function, P : S×A → S is the transition kernel, and γ ∈ [0, 1) is the discount
factor. A policy π ∈ Π : S × A → R is a probability distribution of the event of executing
an action a in a state s. Most sampling-based algorithms consider the environment as an
MDP. Notably, in robot path planning problems, we know the obstacle space so that when
we sample a new vertex, we can determine if the new sampled point lies in the free space
or not and then calculate the cost function.

Partially Observable MDP. We consider a finite-horizon POMDP as a tuple
M = ⟨S,O,A,R,Ps,Po, γ⟩, where S is the state-space, O is the observation space, A is
the finite action-space, R : S ×A× S → R is the reward function, Ps : S ×A → S is the
state transition kernel, Po : O ×A → S is the observation dynamics, and γ ∈ [0, 1) is the
discount factor. A policy π ∈ Π : O ×A → R is a probability distribution of the event of
executing an action a in an observation o. In POMDP settings, the agent does not observe
the full information of the state of the environment, and the decisions are based only on
observations. In general, the decision process can be made based either on the history of
all past actions and observations ht = {a0, o0, a1, o1, ..., at, ot}, or through the belief of the
agent over the state-space [68].

Monte-Carlo Tree Search. MCTS [109] combines tree search with Monte-Carlo sampling
in order to build a tree, where states and actions are modeled as nodes and edges,
respectively, to compute optimal decisions. The MCTS algorithm consists of a loop of

58

four steps: Selection: start from the root node, interleave action selection and sample
the next state (tree node) until a leaf node is reached; Expansion: expand the tree by
adding a new edge (action) to the leaf node and sampling the next state (new leaf node);
Simulation: rollout from the reached state to the end of the episode using random actions
or a heuristic; Backup: update the nodes backward along the trajectory starting from the
end of the episode until the root node according to the rewards collected.
UCT [12], [124] is an extension of the well-known UCB1 [45] multi-armed bandit algo-
rithm. UCB1 chooses the arm (action a) using

a = argmax
i∈{1...K}

Qi,Ti(n−1) + C

√︄

logn
Ti(n− 1)

. (5.1)

where Ti(n) =
∑︁n

t=1 1{t = i} is the number of times arm i is played up to time n, and
Qi,Ti(n−1) is the average reward of arm i up to time n− 1 and C =

√
2 is an exploration

constant. In UCT, the value of each node is backed up recursively from the leaf node
to the root node as averaging over the child nodes. At each action selection step in
MCTS, each arm in the tree is chosen as the maximum value of nodes in the current non-
stationary multi-armed bandit setup, as in (5.1). UCT ensures the asymptotic convergence
of choosing the optimal arm at the root node [12].
Power-UCT [43], an improvement over UCT, solves the problem of the underestimation of
the average mean and the max-backup operators in MCTS by proposing the use of power
mean as the backup operator. Power-UCT has a polynomial convergence rate for choosing
the optimal action at the root node. TENTS [44] is derived as a result of Tsallis entropy
regularization in MCTS. TENTS has an exponential convergence rate at the root node,
which is faster than Power-UCT and UCT. TENTS has a lower value error and smaller
regret bound at the root node compared to other regularization approaches.

5.4. Problem formulation

Let us define the robot path planning problem, both for MDPs and POMDPs. LetX = (a, b)d

be the configuration space of the robot, where a, b ∈ R are joint limits in configuration
space, with a < b, and d ∈ N , d > 0 denoted the robot’s DOF. Let’s define XOBS as
the obstacles region and X\XOBS the open set, and the obstacle-free space as XFREE =
cl(X\XOBS), where cl(·) denotes the closure of a set. The initial condition, or start region,
xINIT is an element of XFREE, and the goal region xGOAL is an open subset of XFREE. A path
planning problem is defined by the triplet (XFREE, xINIT, xGOAL). A trajectory is defined as
the map τ : [0, T] → XFREE, where τ(0) = xINIT, τ(T) = xGOAL. Let’s define a function

59

σ : X × X → R as the cost function for moving the robot from the configuration point
xi to xj , where xi, xj ∈ X . A solution to such a problem is a trajectory that moves the
robot from the initial region to the goal region, while avoiding collisions with obstacles
and having minimum cost.
Fully observable problem. Here, we assume that we know the state of the environment,
i.e., we know the XOBS space and XFREE regions. Whenever a new point is sampled in the
configuration space X = (a, b)d, we can measure the cost and determine if the point is
inside the free space or not.
Partially observable problem. In this setting, we assume that the environment is partially
observable, i.e., we only know the start position and the goal position. We do not observe
the full state but only observations of the environment and progressively build a belief
about the environment’s state from observations.

5.5. Monte-Carlo path planning

We wish to transform MCTS into a sampling-based method for solving robot path planning
problems when applicable. We build our proposed MCPP approach starting from the UCT
algorithm. MCPP and UCT share similar ways of selecting nodes to traverse and back up
the value of nodes in the tree. However, we need to make several algorithmic choices to
do path planning with UCT. First, we draw an ϵ-ball to limit the maximum distance that
the robot can move from the current configuration point. Second, we perform uniform
sampling of the configuration points inside the ϵ-ball to discretize the continuous actions
in the MDP. Third, we investigate different exploration strategies for MCPP, like in the
Power-UCT and TENTS algorithms. We provide a proof of the exponential convergence
rate of finding the optimal path in MDPs. Moreover, we connect this result to Power-UCT
and TENTS and derive their respective convergence rates for path planning. In POMDPs,
we provide a probabilistic completeness guarantee for finding the feasible path to the goal
with limited distance observations.

5.5.1. Fully observable environment

In an MDP, the agent knows the full state of the environment. Let us define the start
position as xINIT and the goal position as xGOAL. The cost function is the Euclidean distance
d(x, y) between two points x and y. We want to minimize the total cost, that is, the total
distance traveled from the start to the goal position using MCPP. As shown in Fig. 5.1, at

60

Goal position

Start position

Sequential circles

Intersection

,

Maximum step
size

Figure 5.3.: 2-D sketch of the proof for exponential convergence of MCPP to the optimal
path in MDPs. The MDP proof relies on showing that MCPP convergences
exponentially to a path starting from x0 and ending at xl while the agent stays
inside a tube composed of a sequence of spheres with a radius of ϵ.

each node of the tree, starting from the root node, actions are generated by uniformly
sampling random points in the ϵ-ball distance from the current node.
The Algorithm 5.1 provides the pseudocode of the MCPP method in the MDP case. The
MainLoop procedure is the main loop of the algorithm. The algorithm stops when the
xGOAL position is reached. The algorithm follows the four basic steps of a regular MCTS
method. First, at the Selection step, we determine the next node to traverse in the tree by
selecting the action as in the SelectAction procedure. Here, an action is selected based
on the UCB algorithm. Note that when we implement Power-UCT [43] we also use UCB,
while TENTS [44] uses stochastic Tsallis entropy regularization for the action sampling.
Second, at the Expansion step, |A| number of actions are generated by uniformly sampling
inside the circle C(s, ϵ) as shown in the Expand procedure. When we reach the leaf node,
a new node is created and added to the MCTS tree. Third, at the Simulation step, as
shown in the Rollout procedure, the value function of the current node s is calculated as
the distance from that node s to the goal position. Finally, at the Backup step, the return
value is backpropagated in the two procedures SimulateV, SimulateQ.

5.5.2. Partially observable environment

Under partial observability, the agent does not observe the full state of the environment,
but has only access to possibly noisy observations. The MCPP planner makes decisions
based on the current belief of the agent over the state of the environment. Therefore,
our approach in POMDP will be the same as in MDP, except for the fact that we do the

61

planning in the belief space. The other choice is that MCPP planner can make decisions
over the history of actions and observation as if it has some sufficient statistic [132],[133].

|A|: number of actions.
N(s): number of simulations of V_Node.
Default is 0.

n(s, a): number of simulations of Q_Node.
Default is 0.

r, r(s, a): intermediate rewards defined as the
distance between two nodes.

V (s): Value of V_Node at state s. Default is 0.
Q(s, a): Value of Q_Node. Default is 0.
γ: discount factor. Default is 1.
R = Rollout(s)

R = Distance from the current node s to
the goal position.

return R

a = SelectAction(s)
return argmaxa Q(s, a) + C

√︂

logN(s)
n(s,a)

a = Search(s)
while Time remaining do

SimulateV (s)
return argmaxa Q(s, a)

R = Expand(s)
Generate |A| actions for the current node s

by randomly sampling |A| via-points
inside the circle C(s, ϵ)

discountedReward = Rollout(s)
return discountedReward

SimulateV(s)
a =SelectAction (s)
SimulateQ (s, a)
N(s) = N(s) + 1

V (s) =
(︁
∑︁

a

n(s,a)
N(s) Q(s, a)

)︁

SimulateQ(s, a)
(s′, r) ∼ τ(s, a)
if V (s′) not expanded then

r = r + γExpand(s′)
else

SimulateV (s′)
r(s, a) = r(s, a) + r

n(s, a) = n(s, a) + 1

Q(s, a) =
(
∑︁

a

rs,a)+γ
∑︁

s′

N(s′).V (s′)

n(s,a)

where V (s′) is the value function of the
next node by action a from the current
Q(s, a) node

MainLoop
while Xgoal is reached do

a = Search(s)
Execute(a) in real Robot

Algorithm 5.1: Pseudocode of MCPP.

5.5.3. Theoretical analysis

In this section, we prove that MCPP ensures an exponential convergence rate for finding
the optimal path from the start position to the goal position in an MDP environment. In a

62

POMDP setting, we prove that there is a high probability that MCPP can find the path to
the goal position.

MDP

First, we make the following assumption.

Assumption 1. There exists an optimal path from the start position xINIT to the goal position
xGOAL with δ clearance (minimum distance to an obstacle).

Based on this assumption, we derive a theorem for the convergence rate of finding the
optimal path using MCPP:

Theorem 1. The probability that MCPP fails to find the optimal path from xINIT to xGOAL
after n simulations is at most ae−bf(n)n, for some constants a, b ∈ R>0.

Proof. Let us consider all feasible paths from the start position (xINIT) to the goal position
(xGOAL). We will prove that MCPP ensures probabilistic completeness of finding the
shortest path from (xINIT) to (xGOAL). We will further prove that the failure probability of
finding the shortest path decays exponentially for an infinite number of samples.

We choose a ball with radius ϵ = δ, where δ is the clearance of the shortest path τ ∗.
Along the path τ ∗, we define a set of l + 1 circles with the radius ϵ and the center
xt(t = 0...l) ∈ XFREE. Here x0 = xINIT and xl = xGOAL, as shown in Fig. 5.3. We define
each circle Ct = (xt, ϵ), t = 0, 1, ...l. We define the intersection set ut = Ct ∩ Ct+1. Let p
be the probability that MCPP can move from Ct to Ct+1. Consider starting from planning
node xt, which is the center of the circle Ct. If the next planning node xt+1 lies in the circle
Ct+1, it has to lie inside the intersection ut, and we can see that p < 1/2. For the robot to
travel from x0 to xl, it has to use at least l MCPP vertices. Let the probability that MCPP
chooses the best action (action with smallest cost) be f(n). Therefore, the probability of
MCPP of taking an optimal action that also lies inside ut is f(n)p. The failure probability
that MCPP cannot find the shortest path τ ∗ from x0 to xl is Pr(Xn < l) where Xn is the
number of circles Ct, t ∈ 1, 2, ...l which are connected by vertices, that is, for an optimal
path, all circles need to be connected by vertices. To calculate Xn, the initial value of Xn

is zero. We will incrementally increase Xn by one when a new circle along the optimal
path is connected with a new vertex. When Xn is equal to or greater than l, we, then,
have found the optimal path. Let us upper bound the failure probability Pr(Xn < l) by

63

first upper bounding Pr(Xn = h), as

Pr(Xn = h) ≤
(︄

n

h

)︄

(f0p)
h(1− f0p)

n−h (5.2)

≤
(︄

n

h

)︄

(f(n)p)h(1− f0p)
n−h,

where (f(n)p)h is the upper bound probability of having h circles connected by vertices
and (︁n

h

)︁ makes sure there is at least one consecutive sequence of connected circles. f0 is
the initial probability of choosing the optimal action. equation 5.2 can be explained as
H(x) = xh(1−x)n−h is a decreasing function. This yields an upper bound for Pr(Xn = h)

Pr(Xn = h) ≤
(︃

n

h

)︃

(f(n)p)h(1− f0p)
n−h

≤
(︃

n

h

)︃

(f(n)p)h(1− αf(n)p)n−h

where f0 = α is a constant and f(n) ≤ 1 so that 1− f0p ≤ 1−αf(n)p. The probability of
failing to find the optimal path is then

Pr(Xn < l) =
l−1
∑︂

h=0

Pr(Xn = h)

≤
l−1
∑︂

h=0

(︃

n

h

)︃

(f(n)p)h(1− αf(n)p)n−h

≤
l−1
∑︂

h=0

(︃

n

l − 1

)︃

(f(n)p)h(1− αf(n)p)n−h (as l << n)

≤
(︃

n

l − 1

)︃ l−1
∑︂

h=0

(1− αf(n)p)n

(as f(n)p < 1/2 so that f(n)p < 1− f(n)p < 1− αf(n)p)

≤
(︃

n

l − 1

)︃ l−1
∑︂

h=0

(e−αf(n)p)n =

(︃

n

l − 1

)︃

le−αf(n)pn

(as 1− αf(n)p <= e−αf(n)p)

=

∏︁n
i=n−l i

(n− 1)!
le−αf(n)pn ≤ l

(l − 1)!
nle−αf(n)pn ≤ ae−bf(n)pn

The provided convergence rate proves that theMCPP algorithm is probabilistically complete
and converges to the optimal path exponentially.

64

Obstacle

Goal position

Start position

Maximum step
size

Figure 5.4.: Sketch of how to generate paths for MCPP algorithm from xINIT to xGOAL
positions with minimum number of via-points in POMDP environments.

Let us define g(t) as the failure probability of finding the optimal path from xINIT to xGOAL
after t time steps. We derive the following corollaries:
With Power-UCT, fPower-UCT = 1− (1

t
)α)t. The probability that the MCPP using Power-UCT

fails to find the path from x0 to xl is as follows.
Corollary 7. Power-UCT
gPower-UCT(t) = ae−b(1−(1

t
)α)t,where 0 < α < 1, a, b ∈ R>0

With TENTS fTENTS = 1 − ct exp{− t
ĉ(log t3))t}. The probability that MCPP using TENTS

fails to find the path from x0 to xl is
Corollary 8. TENTS
gTENTS(t) = ae

−b(1−ct exp{− t

ĉ(log t3))t},where a, b, c, ĉ ∈ R>0

The results show that MCPP-TENTS robot path planning converges faster compared to
MCPP-Power-UCT.

POMDP

First, we make the following assumption.
Assumption 2. The agent observes the environment only up to γ distance.
This assumption is reasonable in many robotic settings, e.g., for mobile robotics. Based
on this assumption and Assumption 1, we derive a theorem to show that with high
probability, the MCPP algorithm can find the feasible path to the goal position in a POMDP
environment:
Theorem 2. In POMDP environments with limited distance observability, MCPP will find a
path from the start position xINIT to the goal position xGOAL with high probability.

65

Proof. We assume that there is a finite number of feasible paths (τ1, τ2, ...τK) to go from
the start position xINIT (or x0) to the goal position xGOAL. Each feasible path τi has at
least δi clearance from obstacles. We choose ϵ = min{δ1, δ2, ...δK , γ}. γ is the observation
distance defined in Assumption 2.
Along each path τi, let us define a set of circles Ci = (xi, ϵ), i = 0, 1, ...lτi . as shown in
Fig. 5.3. Let us define C as the set of all circles (along all the feasible paths that we define).
We assume that if the agent collides, the agent moves back to the last planning point and
will not go to the direction of the obstacle again with high probability. We define that the
probability pcollision → 0 when the time step t→∞. We prove that with high probability,
the agent can find the path from the start position xINIT to the goal position xGOAL.
The proof is derived by induction. From the start position x0, there is a finite number
of circles Ci ∈ C as the next feasible region that the MCPP planner can sample as the
next node in the tree (MCPP samples the next planning point inside the ϵ-ball distance).
Because the probability of colliding again is pcollision → 0 when the time step t→∞, and
the MCPP objective is to minimize the cost to go to the goal position. When we increase
the number of samples, the next planning node will lie inside the circle that contains
the optimal path. Therefore, with high probability 1− pcollision the next MCPP node will
be inside one of the circles Ci. Assume now that the agent is inside the circle Ci. Using
the same induction, there is high probability 1− pcollision that the next MCPP node will
be inside one of the next circle Ci+1. Ci+1 ∈ C. Since the number of circles is finite, the
agent will get to the goal region after a certain number of time steps with high probability,
concluding the proof.

5.6. Experiments

In this section, we evaluate the performance MCPP in challenging POMDP environments.
In MCPP, we apply the two recent advanced improvement techniques in MCTS, Power-
UCT and TENTS, along with the baseline MCTS method, UCT. We compare our new
robot path planning methods against the baseline sampling-based method RRT∗, and a
state-of-the-art continuous action POMDP solver POMCP-DPW [130]. In simulation, we
also compared against two different simple heuristic methods. The first method puts a
ball around the agent to sample the next point. We use the same step size (the ball’s
diameter) and the same number of samples as MCPP and RRT*. In the second heuristic,
we use an ϵ-greedy probability (1%) to sample the goal position or otherwise the next
node, similarly to random node sampling in RRT*. We do not put any restrictions on the

66

step size to sample the next node.
The POMDP setting of our experiment is the same as in [134]. Similar to the path planning
definition in Sec. 5.4, the state space X consists of configuration space coordinates such
as robot joint angles. The action space A is identical to the state space, consisting of
target configuration space coordinates defining where to move the robot. We use linear
interpolation to move the robot from the current configuration to the next one. The
observation is a configuration in collision with an obstacle in obstacle space XOBS, or the
goal configuration xGOAL, when the robot reaches the goal. We assume static obstacles and
deterministic transition and observation probabilities Ps and Po. We define the reward
function as a success pseudo-probability along the path from one configuration (x1) to
another (x2) R(x1, x2) = PSUCCESS(x1, x2) where PSUCCESS(x1, x2) is defined in [134]. We
set the discount factor γ = 1 and limit the planning horizon. As in [134], to approximate
the belief over states, based on prior collisions, we compute a probabilistic map that
assigns a probability of colliding to any given position in the environment. The belief
distribution is able to represent multi-modal and asymmetric belief distributions (see
Fig. 2 in [134]). Initially, we assume a non-zero probability of colliding at any location
on the map. After each collision, we update the map by assigning a failure probability
that takes into account the collision coordinates and the movement direction (see Fig. 2
in [134]).
Following the previous POMDP definition, we evaluate the methods in simulation in
two 7-DOF configuration space POMDP tasks with 2D and 3D task spaces. Finally, we
compare MCPP to RRT* in a real robot POMDP disentangling application, similar to the
one described in [134].

5.6.1. Experimental evaluation in simulation

We provide three simulation settings in 2D and 3D state spaces to demonstrate that the
MCPP planner is more explorative and can easily solve POMDP path planning problems
compared to baselines. First, in a 2D U-Shape problem (Fig. 5.5), the start position is in
green color while the goal position is in blue color. We compare UCT, Power-UCT, and
TENTS compared to RRT∗ and POMCP-DPW. As shown in Table 5.1, over 100 random
seeds with the same number of samples (500), UCT and Power-UCT obtain 93% and 95%
success rate, respectively, with approximately the same number of collisions. TENTS is less
explorative, with 31% success rate and 18.3 collisions. POMCP-DPW gets 46% success rate
and 22.7 collisions while RRT∗ gets 76% success rate with 14.6 collisions. The benefits
of MCPP over RRT∗ can be explained as, even using a similar representation with the

67

MCTS after 20 iterations 7 links generic planar robot model

Figure 5.5.: U-Shape 2D POMDP. Green point is the start position. Blue point is the goal
position. Red points are the collisions. The figure shows a success case
using MCPP, where the blue line depicts the 2D trajectory of the end effector.
Note that in all the 2D experiments we plan in the configuration space using
a 7-DOF planar robot arm model illustrated on the right.

RRT* after 30 iterations MCPP after 9 iterations

Figure 5.6.: L-Shape 2D POMDP. Green point is the start position. Blue point is the goal
position. Red points are the collisions. The blue lines are the planning path.
The figure shows a failure case of RRT* and a success case for MCPP, which
shows that it is more explorative. Over 20 random seeds, RRT* failure to
solve the problem with 0% success, while MCPP obtain 100% success with
UCT and Power-UCT. TENTS gets 85%.

updating belief (probabilistic map), MCPP makes decisions based on the value function
of the POMDP (by building a multistep look-ahead forward tree search), which is more
explorative towards the goal. In contrast, each step decision of RRT* will be more greedy
in choosing the smallest cost. Meanwhile, MCPP shows the benefit of uniformly sampling
the actions inside the ϵ-ball compared to POMCP-DPW, which restricts the number of
actions by using the progressive widening technique. Both of the two random heuristic

68

RRT* After 30 iterations MCPP After 8 iterations

Figure 5.7.: High Wall Environment in 3D. Grey point is the start position. Blue point is
the goal position. Red points are collisions. Over 20 random seeds, RRT∗

can only success with 35%, UCT obtains 55% success rate. Power-UCT gets
70% success rate while TENTS gets 45% success rate.

baselines fail to solve this task. We demonstrate one more 2D POMDP experiment with an
L shape obstacle (Fig. 5.6. Over 20 random seeds with 500 samples, RRT* fails to solve the
problem, while UCT and Power-UCT obtain 100% success rate. TENTS is less explorative
with 85% success rate. POMCP-DPW obtains 85% success rate. The two heuristic methods
fail to solve this task.
Third, we build a High-wall 3D POMDP (Fig. 5.7). In this problem, the start position
(green color) and the goal position (blue color) are very close, while there is a high wall
standing between. The agent is not aware of the existence of the wall. As we can see in
Table 5.2, for 20 random seeds with the same number of samples (500), UCT obtains 55%
success rate with 16.4 collisions on average. Power-UCT gets a higher success rate with
70% and 15.7 collisions on average. TENTS is less explorative with 45% success rate and
23.0 collisions on average. POMCP-DPW gets 70% success rate and 15.9 collisions. On
the other hand, RRT∗ can only obtain 10% success rate and 26.0 collisions. Finally, the
first baseline heuristic method fails to solve this task, while the second one achieves 15%
success rate.

5.6.2. Real robot object disentangling task

We compare MCPP against RRT∗ in the real-robot disentangling POMDP problem, as
in [134]. We use a 7-DOF KUKA LBR robot arm equipped with a SAKE gripper. Fig. 5.2
illustrates the intermediate scenario of the robot arm trying to reach the goal position in

69

Table 5.1.: Comparison for the U-Shape 2D POMDP
Methods Time(second) Collisions Success Rate

RRT* 1555±229 14.6±1.5 76%
UCT 141.7±16.3 15.9.±1.7 93.0%

Power-UCT 146±17 15.8±1.7 95.0%
TENTS 179.5±16 18.3±1.7 31%

POMCP-DPW 322±30.8 22.7±1.6 46%

Table 5.2.: Comparison for the High-Wall 3D POMDP
Methods Time(second) Collisions Success Rate

RRT*(bias=1) 2854.6±4.1 26.0±0.4 10%
RRT*(bias=100) 2080.3±2.6 19.4±1.7 35%
RRT*(bias=200) 2548.1±2.7 22.2±1. 55%

UCT 178.8±13.0 16.4±1.0 55%
Power-UCT 208±18.5 15.7±1.2 70.0%
TENTS 267.6±17.1 23.0±1.2 45.0%

POMCP-DPW 215.56±23.9 15.9±1.4 70.0%

Table 5.3.: Comparison for the real robot object disentangling
Methods Time(second) Collisions Success Rate

RRT* 1099 ±356 10.25 ±3 40%
UCT 346.2 ±64 20.2 ±3 70%

Power-UCT 436.5 ±177 22.5 ±6 40.0%
TENTS 428.5 ±133 25 ±6 20.0%

the unknown box environment, while trying to disentangle the toy-bunny that was lying
inside the box (the grasp part was pre-programmed). The robot does not know the shape
of the box.

To evaluate the performance of our MCPP variants, we run both UCT, Power-UCT, and
TENTS. We run 10 random seeds, each random seed with 500 number of samples, and
perform 30 iterations to determine if the planners can reach the goal position or not. After
each iteration, if the robot hits a collision, the robot moves back a bit from the last collision
position and performs the planning again with the new start position. The detailed results
are shown in Table 5.3. While RRT* can get 40% success rate over ten random seeds,
UCT achieves 70% which shows the benefits of MCPP in a real-world POMDP. Power-UCT
achieves 40% success rate, and TENTS can only succeed 20% of the times. In terms of

70

time, the average time in all success cases of UCT, Power-UCT, and TENTS are 364.2
seconds, 436.5 seconds, and 428.5, respectively, which are much faster compared to RRT*
with an average of 1099 seconds. This can be explained as RRT* spends more time in
performing the sorting to find the nearest node, as it is more biased to grow towards large
unsearched areas.

5.7. Conclusions

This chapter addressed the major challenges of planning robot paths under partial ob-
servability from a theoretical perspective, deriving a new framework for applying MCTS
planning in continuous action spaces for robot path planning. We theoretically analyzed
our proposed Monte-Carlo Path Planning (MCPP) approach and proved an exponential
convergence rate for MCPP for choosing the optimal path in fully observable MDPs and
probabilistic completeness for finding a feasible path in POMDPs. Moreover, MCPP allows
us to integrate different established exploration strategies in MCTS literature to improve
exploration for path planning. We empirically analyzed our MCPP variants in benchmarks
for POMDP path planning problems, showing superiority in terms of performance and
computational time compared to RRT∗, and POMCP-DPW. We further applied our new
method to a real robot POMDP problem using a KUKA 7-DOF robot arm to disentangle
objects from other objects, without any sensory information, except for the observation
of collisions. Future development involves the application of MCPP to more complicated
robotic tasks and studying heuristics to accelerate the planning process with MCPP.

71

6. Conclusion

“Let us go over, and sit in the shade of the trees.”
— Stonewall Jackson

This thesis proposed and studied advanced MCTS methods both in terms of theoretical and
experimental perspectives to tackle the following open MCTS problems: sample efficiency,
exploration-exploitation trade-off and transform these advanced methodologies to solve
robot path planning tasks, showing superior performances both in simulations and real
robotics in POMDP settings. First, we investigated the benefits of using power mean as
a novel value backup operator, called Power-UCT, compared to baselines. Second, we
provided a comprehensive study of the use of convex regularization, and an in-depth study
of entropy based regularization in MCTS. Third, we introduced the use of α-divergence in
MCTS and theoretically connected the two works Power-UCT and entropy regularization
using α-divergence. Last, we transformed our advanced MCTS methods to robot path
planning tasks and showed the benefits in POMDPs. Detailed contributions are shown
below.

6.1. Summary of Contributions

In Chapter 2, we proposed to use power mean as a novel backup operator in MCTS and
derived a variant of UCT based on this operator, which we called Power-UCT. In detail,
Power-UCT and UCT [12] share the same way of node selection strategy in the tree
using UCB [42]. However, Power-UCT differentiates from UCT by replacing the average
value backup operator in UCT using the power mean backup operator. Furthermore,
we theoretically provided an asymptotic convergence guarantee of Power-UCT to the
optimal value, given that the value computed by the power mean lies between the average
and the maximum, alleviating the problem of underestimating of the average backup
operator in UCT. We eventually showed how Power-UCT could help with sample efficiency

72

by empirically providing advantages of Power-UCT in stochastic MDPs and POMDPs w.r.t.
other baselines.

In Chapter 3, we provided an in-depth study of the use of convex regularization in MCTS.
We proposed a new algorithm called Extended Empirical Exponential Weight (E3W),
derived the first regret analysis of the regularised MCTS and showed that it guarantees
an exponential convergence rate to choose the optimum. We took a further step to study
different kinds of entropy regularization in MCTS and respectively derived Maximum
Entropy Monte-Carlo Planning (MENTS), Relative Entropy Monte-Carlo Planning (Relative
entropy Monte-Carlo planning (RENTS)), and Tsallis Entropy Monte-Carlo Planning
(TENTS). We compared the benefits of the three methods both in terms of theory and
experiments, showing the superiority of TENTS over MENTS and RENTS. We shed a
light on how different entropy regularization methods help to balance exploration and
exploitation in the tree. In detail, MENTS benefits of more explorations due to the softmax
form of the regularized policy, while TENTS has the advantages of the sparse policy and
can effectively exploit, especially in environments with high branching factors.

In Chapter 4, we introduced the use of α-divergence in MCTS, showed how to establish
the connection between the two works (Power-UCT and E3W) using α-divergence, and
provided a rigorous theoretical study of α-divergence in MCTS. In detail, we used the α-
divergence function as the regularizer to introduce novel regularized backup operators for
MCTS, relatively derived the maximum entropy, the relative entropy of the policy update,
and, more importantly, derived the Tsallis entropy of the policy those has been proposed
in E3W. Furthermore, we generalized the definition of average mean by considering
the α-divergence function as the probability distance and deriving power mean, which
has been used as a novel backup operator in Power-UCT. Finally, we showed how the α

parameter could help to balance between exploration and exploitation in Synthetic Tree
environments.

Chapter 5 focused on solving major challenges of planning robot paths under partial
observability, in which the current state-of-the-art method RRT* is only designed for
full observability. We transformed the use of MCTS to solve the robot path planning
tasks in continuous action spaces. We called our approach Monte-Carlo Path Planning
(MCPP) and proved an exponential convergence rate for MCPP for choosing the optimal
path in fully observable MDPs and probabilistic completeness for finding a feasible path
in POMDPs (proof sketch). Furthermore, we showed how the current advanced MCTS
methods in literature could be integrated into MCPP and subsequently demonstrated the
superiority in terms of performance and computational time compared to RRT∗, and other
POMDP solvers Partially Observable Monte-Carlo Planning Double Progressive Widening

73

(POMCP-DPW) [130] in both simulations and real robotic tasks.

6.2. Open Problems

Despite having state-of-the-art methods that help to solve current open Monte-Carlo
Tree Search (MCTS) problems and achieving promising results when transforming these
advanced methods to apply to robot path planning tasks, there are still, however, many
open challenges associated with our proposed works that will be addressed here.

6.2.1. Maximum Expected Value Estimation of Power Mean

Maximum expected value estimation plays an important role in many reinforcement
learning (RL) algorithms [135], such as Q-learning [49], [136], [137] and MCTS [138].
However, despite promising results, many current approaches in the literature often
introduce biases and/or variances [49], [138]. One can think of using the maximum
estimator. However, the maximum is overestimated [32]. In MCTS, an effective value
estimator should select the optimal branch for faster convergence in order to select optimal
actions. The value returned by the power mean is between the average mean estimator and
the maximum estimator and may increase/decrease based on the p coefficient; therefore, it
may help to make a trade-off between bias/variance. As the number of samples in a given
node increases, we can increase the p coefficient value to move our estimator towards
the optimal value. Nevertheless, in our current approach, we consider the p-coefficient
as a fixed constant, and therefore an open question arises: can we have an approach for
adjusting the p-coefficient in Power-UCT?

6.2.2. Uncertainty Value Estimation

Value estimation is challenging in stochastic environments with partial observability.
Current approaches, which consider the value function in the tree as a single value, do
not consider the uncertainty of the reward function. Therefore, these methods cannot
represent the uncertainty of the environment, which in return prevents the agent from
making decisions, especially in an environment that needs to be explored. Our introduced
convex regularization framework inspired by the Legendre-Fenchel transform [139]
provides a guarantee for the exponential convergence rate to select the optimum and can
help to find a tradeoff between exploration and exploitation. However, by representing
each value node as a single value function, it cannot properly model the uncertainty from

74

the reward function and the stochasticity of the dynamic transition of environments [140].
This issue presents an open challenge for MCTS researchers in terms of modeling and
backpropagating the uncertainty of value nodes in tree search.

6.2.3. Efficient Monte-Carlo Planning for Autonomous Car Driving

Autonomous driving has attracted significant attention from the scientific community in
recent years. Especially with the rapid progress of artificial intelligence nowadays, the
application of deep learning for vehicle planning in complex environments has become
a trendy direction and has achieved promising results [141]–[144]. [144] developed a
deep Monte Carlo tree search control method (deep-MCTS) for vision-based autonomous
driving by maintaining two deep neural networks. One network is used to predict state
from observed camera images of environments. The other network is trained to predict
probabilistic action distributions and value functions of specific states. Based on the prior
knowledge of these two neural networks, anMCTS tree is constructed to output the optimal
trajectory for autonomous vehicle control. Although Deep-MCTS achieved significant
performance results compared to Deep Deterministic Policy Gradient (DDPG) [145]
and Deep Q-Network (DQN) [146], Deep-MCTS still suffers from the sample efficiency
problem due to polynomial convergence rate of the UCT [124] method used. This problem,
combined with the costly computations due to the slow processing time of camera image
acquisition and deep neural network evaluation, prevents the applicability of the method
in real vehicle scenarios. These problems open the need for an efficient planning method
for vehicle planning.

6.3. Future Work

Possible future work includes proposals of a theoretically justified or heuristic approach to
adapt the greediness of power mean, combining our advanced methods with AlphaGo
algorithm [28] in autonomous car driving and introducing the use of α-function [147] in
Wasserstein Barrycenter [148] to backpropagate uncertainty.

We are going to present these future directions as below.

75

6.3.1. p-Adaptation

To take advantage of Power-UCT, it is desirable to have a different p coefficient for each
node and adapt its value during training according to the number of visits. In particular,
we decrease p when the number of visits is small since the average operator performs
better in this case; on the contrary, we increase it when the number of visits is large, which
is the case where the maximum operator is more effective. For future work, we plan a
heuristic adaptive procedure to tune p as p value increases a fixed step size length when
the number of visits at that node increases. The intuitive motivation of this approach
is supported by its theoretical guarantees of convergence for any value of p, which we
prove in the Chapter 2. To the best of our knowledge, this is the first work to show an
adaptive method of backup value in MCTS that still ensures convergence to the optimal
value.

Even if the heuristic approach to adapting the greediness of power mean has an intuitive
explanation, we plan to study a more rigorous and theoretically justified way of doing it.
Future work could be analyse the bias and variance of the power mean estimator or provide
theoretical analysis for the adaptation of p coefficient of Power-UCT in MCTS.

6.3.2. Wasserstein Monte-Carlo Tree Search

A single value function cannot fully represent the uncertainty of the environment. A
promising approach is to consider each value function as a probabilistic distribution.
There are several works in MCTS [51],[149]–[151] and in RL [92],[152],[153] following
this idea.

Recently, [140] discussed how to model and propagate the uncertainty of value functions
in temporal difference (TD) learning using L2-Wasserstein barycenters, and applied it to Q-
learning to demonstrate exploration benefits in different environments. The Wasserstein
distance comes from the optimal transport community. Intuitively, it represents the
”cost” of moving the probability mass from one distribution to another. [140] uses the
L2-Wasserstein barrycenter in combination with the Euclidean distance to derive the
Wasserstein Q-learning (WQL) method, which outperforms Q-learning in some toy tasks
and Atari games. To adopt this idea, one can think of applying it to MCTS to solve highly
stochastic tasks. However, TD learning backpropagation is very sensitive to step-size
learning and easily converges to the local optimum. Moreover, TD learning introduces
errors at each learning step, which prevents the applicability of the approach compared
to baselines.

76

Taking inspiration from this direction, we propose to learn value posterior functions
using L1-Wasserstein Barycenters and instead use the α-function to replace the Euclidean
distance. Consequently, when considering each node in the tree as a Gaussian distribution,
we can derive a close form solution to compute the mean, and standard deviation of each
value node as the power mean backup operator of the mean and standard deviation of
next Q value nodes. Action selection could be Optimistic Sampling [51] and Thompson
Sampling [150].

6.3.3. AlphaGo for Autonomous Car Driving

Following the successes of our advanced MCTS methods, which have already shown
their theoretical and experimental superiority in various environments, a possible future
direction could be to apply Power-UCT and E3W (especially with the promising results of
TENTS in AlphaGo) to autonomous driving tasks using pre-trained Deep Neural Networks.
Specifically, the power mean backup operator can replace the inefficient average mean
backup operator of the current UCT strategy in Deep-MCTS. The returned power mean
solves the underestimation problem of the average mean backup operator and the over-
estimation problem of the maximum value backup operator, improving the Monte Carlo
planning performance. Moreover, one can think of using entropy regularizations in MCTS
for autonomous driving since the advantages of MENTS, RENTS, and especially TENTS
have already been illustrated by using the AlphaGo algorithm in Atari games in Chapter 3.
The results and advantages of it due to the guarantee of exponential convergence rate to
the optimum of the convex regularization framework, such an approach is conceivable as
shown in Chapter 3.

77

A. Appendix

A.1. Generalized Mean Estimation in Monte-Carlo Tree Search

We derive here the proof of convergence for Power-UCT. The proof is based on the proof
of the UCT [12] method but differs in several key places. In this section, we show that
Power-UCT can smoothly adapt to all theorems of UCT [12]. The following results can be
seen as a generalization of the results for UCT, as we consider a generalized mean instead
of a standard mean as the backup operator. Our main results are Theorem 6 and Theorem
7, which respectively prove the convergence of failure probability at the root node, and
derive the bias of power mean estimated payoff. In order to prove them, we start with
Theorem 1 to show the concentration of power mean with respect to i.i.d random variable
X. Subsequently, Theorem 2 shows the upper bound of the expected number of times
when a suboptimal arm is played. Theorem 3 bounds the expected error of the power
mean estimation. Theorem 4 shows the lower bound of the number of times any arm is
played. Theorem 5 shows the concentration of power mean backup around its mean value
at each node in the tree.

We start with well-known lemmas and respective proofs: The following lemma shows that
Power Mean can be upper bound by Average Mean plus with a constant

Lemma 2. Let 0 < l ≤ Xi ≤ U,C = U
l
, ∀i ∈ (1, ..., n) and p > q. We define

Q(X,w, p, q) =
M[p]

n (X,w)

M[q]
n (X,w)

D(X,w, p, q) = M[p]
n (X,w)−M[q]

n (X,w).

78

Then we have

Q(X,w, p, q) ≤ Lp,q
D(X,w, p, q) ≤ Hp,q

Lp,q =
(︄

q(Cp − Cq)

(p− q)(Cq − 1)

)︃
1
p

(︄

p(Cq − Cp)

(q − p)(Cp − 1)

)︃− 1
q

Hp,q = (θUp + (1− θ)lp)
1
p − (θU q + (1− θ)lq)1/q,

where θ is defined in the following way. Let

h(x) = x
1
p − (ax+ b)1/q

where

a =
U q − lq

Up − lp

b =
Uplq − U qlp

Up − lp

x
′

= argmax{h(x), x ∈ (lp, Up)}

then

θ =
x′ − lp

Up − lp
.

Proof. Refer to [66].

Lemma 3. Let X be an independent random variable with common mean µ and a ≤ X ≤ b.
Then for any t

E[exp(tX)] ≤ exp
(︃

tµ+ t2
(b− a)2

8

)︃

(A.1)

Proof. Refer to [154] page 67.

Lemma 4. Chernoff’s inequality t > 0,

Pr(X > ϵ) ≤ exp(−tϵ)E[exp(tX)] (A.2)

79

Proof. This is a well-known result.

The next result show the concentration Inequality of Power Mean estimation
Theorem 1. If X1, X2, ..., Xn are independent with Pr(0 ≤ Xi ≤ 1) = 1 then for any ϵ > 0,
p ≥ 1, ∃Cp > 0 that

Pr
(︄⃓

⃓

⃓

⃓

⃓

(︃∑︁n
i=1X

p
i

n

)︃
1
p

− E

[︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

]︄⃓

⃓

⃓

⃓

⃓

> ϵ

)︄

≤ 2 exp (︁−Cpnϵ
2
)︁

Proof. Apply the Theorem 6 [155], we have
√︁

Var(∥ X ∥p)
E(∥ X ∥p)

≃ 1√
n

(︃

1

p

σp

µp

)︃

(A.3)

where ∥ X ∥p is p-norm. µp = E[Xp], σ2
p = Var(Xp)

Then

Var
(︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

)︄

≃ 1

n

(︄

1

p

σp

µp

E

[︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

]︄)︄2

(A.4)

Let define 1
Cp

=

(︃

1
p

σp
µp
E

[︃

(︂∑︁n
i=1 X

p
i

n

)︂ 1
p

]︃)︃2

We have

Var
(︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

)︄

≃ 1

nCp

(A.5)

With σ2 = Var(X), Applying Lemma 3 and Lemma 4 we have

Pr(|X − E[X]| > ϵ) ≤ 2 exp
(︃

− ϵ2

σ2

)︃

(A.6)

Apply (A.6) for the power mean of X1, X2, ..., Xn, and based on the result of A.5, we get
the result of Theorem 1.

With △n = 9
√︂

1
Cp

n log(2
δ
), (δ > 0 are constant), and µp = E

[︃

(︂∑︁n
i=1 X

p
i

n

)︂ 1
p

]︃

, apply
Theorem 1, we get

Pr
(︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

− µp >
△n

9n

)︄

≤ exp
(︄

−Cpn

(︃△n

9n

)︃2
)︄

.

80

Therefore,

Pr
(︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

− µp >
△n

9n

)︄

≤ exp
(︃

−Cp

1

Cp

log
(︃

2

δ

)︃)︃

=
δ

2
. (A.7)

we have

Pr
(︄

(︃∑︁n
i=1X

p
i

n

)︃
1
p

− µp >
△n

9n

)︄

≤ δ

2
. (A.8)

Let’s start with an assumption
Assumption 1. Fix 1 ≤ i ≤ K. Let {Fit}t be a filtration such that{Xit}t is {Fit}-adapted
and Xi,t is conditionally independent of Fi,t+1, Fi,t+2, ... given Fi,t−1. Then 0 ≤ Xit ≤ 1 and
the limit of µin = E[Xin(p)] exists, Further, we assume that there exists a constant C > 0 and
an integer Nc such that for n > Nc, for any δ > 0, △n(δ) = C

√︁

n log(1/δ), the following
bounds hold:

Pr(X in(p) ≥ E[X in(p)] +△n(δ)/n) ≤ δ, (A.9)
Pr(X in(p) ≤ E[X in(p)]−△n(δ)/n) ≤ δ. (A.10)

Under Assumption 1, For any internal node arm k, at time step t, let define µkt = E[Xkt(p)],
a suitable choice for bias sequence is that ct,s = 2C

√︂

log t
s

(C is an exploration constant)
used in UCB1 (using power mean estimator), we get

Pr
(︄

(︂

∑︁s
i=1X

p
ki

s

)︂
1
p − µkt > 2C

√︃

log t
s

)︄

≤ t−4 (A.11)

Pr
(︄

(︂

∑︁s
i=1X

p
ki

s

)︂
1
p − µkt < −2C

√︃

log t
s

)︄

≤ t−4. (A.12)

From Assumption 1, we derive the upper bound for the expectation of the number of plays
a sub-optimal arm
Theorem 2. Consider UCB1 (using power mean estimator) applied to a non-stationary
problem where the pay-off sequence satisfies Assumption 1 and where the bias sequence,
ct,s = 2C

√︁

log t/s (C is an exploration constant). Fix ϵ ≥ 0. Let Tk(n) denote the number of

81

plays of arm k. Then if k is the index of a suboptimal arm then Each sub-optimal arm k is
played in expectation at most

E[Tk(n)] ≤
16C2 lnn
(1− ϵ)2△2

k

+A(ϵ) +Nc +
π2

3
+ 1. (A.13)

Proof. When a sub-optimal arm k is pulled at time t we get
(︄

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk(t− 1)

≥
(︄

∑︁Tk∗ (t−1)
i=1 X

p
k∗,i

Tk∗(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk∗(t− 1)

(A.14)

Now, consider the following two inequalities:
• The empirical mean of the optimal arm is not within its confidence interval

(︄

∑︁Tk∗ (t−1)
i=1 X

p
k∗,i

Tk∗(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk∗(t− 1)

≤ µ∗
t (A.15)

• The empirical mean of the arm k is not within its confidence interval
(︄

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︄
1
p

≥ µkt + 2C

√︄

ln t
Tk(t− 1)

(A.16)

If both previous inequalities (A.15), (A.16) do not hold, and if a sub-optimal arm k is
pulled, then we deduce that

µkt + 2C

√︄

ln t
Tk(t− 1)

≥
(︄

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︄
1
p

see (A.16) (A.17)

and
(︄

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︄
1
p

≥
(︄

∑︁Tk∗ (t−1)
i=1 X

p
k∗,i

Tk∗(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk∗(t− 1)

− 2C

√︄

ln t
Tk(t− 1)

see (A.14)

(A.18)
and

(︄

∑︁Tk∗ (t−1)
i=1 X

p
k∗,i

Tk∗(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk∗(t− 1)

≥ µ∗
t see (A.15). (A.19)

82

So that

µkt + 4C

√︄

ln t
Tk(t− 1)

≥ µ∗
t . (A.20)

µkt = µk + δkt, µ∗
t = µ∗ + δ∗t and we have an assumption that limt→∞ µkt = µk for any

k ∈ [1, 2, ...K] yields limt→∞ δkt = 0 Therefore, for any ϵ > 0, we can find an index A(ϵ)
such that for any t > A(ϵ): δkt ≤ ϵ△k with △k = µ∗ − µk. Which means that

4C

√︄

ln t
Tk(t− 1)

≥ △k − δkt + δ∗t ≥ (1− ϵ)△k (A.21)

which implies Tk(t− 1) ≤ 16C2 ln t
(1−ϵ)2△2

k

.
This says that whenever Tk(t − 1) ≥ 16C2 ln t

(1−ϵ)2△2
k

+ A(ϵ) + Nc, either arm k is not pulled
at time t or one of the two following events (A.15), (A.16) holds. Thus if we define
u = 16C2 ln t

(1−ϵ)2△2
k

+A(ϵ) +Nc, we have

Tk(n) ≤ u+
n
∑︂

t=u+1

1{It = k;Tk(t) ≥ u}

≤ u+
n
∑︂

t=u+1

1{(A.15), or (A.16) holds }

We have from (A.11),(A.12)

Pr
(︄

(︂

∑︁Tk∗ (t−1)
i=1 X

p
k∗,i

Tk∗(t− 1)

)︂
1
p
+ 2C

√︄

ln t
Tk∗(t− 1)

≤ µ∗
t

)︄

≤
t
∑︂

s=1

1

t4
=

1

t3
(A.22)

and

Pr
(︄

(︂

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︂
1
p ≥ µkt + 2C

√︄

ln t
Tk(t− 1)

)︄

≤
t
∑︂

s=1

1

t4
=

1

t3
(A.23)

83

so that from (A.22), we have

E[Tk(n)] ≤
16C2 ln t
(1− ϵ)2△2

k

+A(ϵ) +Nc +
n
∑︂

t=u+1

2

t8C
2−1

=
16C2 ln t
(1− ϵ)2△2

k

+A(ϵ) +Nc

+
n
∑︂

t=u+1

2

t3

≤ 16C2 ln t
(1− ϵ)2△2

k

+A(ϵ) +Nc +
π2

3

Based on this result we derive an upper bound for the expectation of power mean in the
next theorem as follows.
Theorem 3. Under the assumptions of Theorem 2,

⃓

⃓E
[︁

Xn(p)
]︁

− µ∗
⃓

⃓ ≤ |δ∗n|+O
(︄

K(C2 logn+N0)

n

)︄
1
p

.

Proof. In UCT, the value of each node is used for backup as Xn =
∑︁K

i=1

(︂

Ti(n)
n

)︂

X i,Ti(n),
and the authors show that

⃓

⃓E
[︁

Xn

]︁

− µ∗
⃓

⃓ ≤
⃓

⃓E
[︁

Xn

]︁

− µ∗
n

⃓

⃓+
⃓

⃓µ∗
n − µ∗

⃓

⃓

=
⃓

⃓δ∗n
⃓

⃓+
⃓

⃓E
[︁

Xn

]︁

− µ∗
n

⃓

⃓

≤
⃓

⃓δ∗n
⃓

⃓+O
(︄

K(C2 logn+N0)

n

)︄

(A.24)

We derive the same results replacing the average with the power mean. First, we have

E
[︁

Xn(p)
]︁

− µ∗
n = E

⎡

⎣

(︄

K
∑︂

i=1

Ti(n)

n
X

p

i,Ti(n)

)︄

1
p

⎤

⎦− µ∗
n. (A.25)

In the proof, we will make use of the following inequalities:
0 ≤ Xi ≤ 1, (A.26)
x

1
p ≤ y

1
p when 0 ≤ x ≤ y, (A.27)

(x+ y)m ≤ xm + ym(0 ≤ m ≤ 1), (A.28)
E[f(X)] ≤ f(E[X]) (f(X) is concave). (A.29)

84

With i∗ being the index of the optimal arm, we can derive an upper bound on the difference
between the value backup and the true average reward

E

⎡

⎣

(︄

K
∑︂

i=1

Ti(n)

n
X

p

i,Ti(n)

)︄

1
p

⎤

⎦− µ∗
n

≤ E

⎡

⎢

⎣

⎛

⎝

⎛

⎝

K
∑︂

i=1;i ̸=i∗

Ti(n)

n

⎞

⎠+X
p

i∗,Ti∗(n)

⎞

⎠

1
p

⎤

⎥

⎦
− µ∗

n(see (A.26))

≤ E

⎡

⎢

⎣

⎛

⎝

K
∑︂

i=1;i ̸=i∗

Ti(n)

n

⎞

⎠

1
p

+X i∗,Ti∗(n)

⎤

⎥

⎦
− µ∗

n(see (A.28))

= E

⎡

⎢

⎣

⎛

⎝

K
∑︂

i=1;i ̸=i∗

Ti(n)

n

⎞

⎠

1
p

⎤

⎥

⎦
+ E

[︁

X i∗,Ti∗(n)

]︁

− µ∗
n

= E

⎡

⎢

⎣

⎛

⎝

K
∑︂

i=1;i ̸=i∗

Ti(n)

n

⎞

⎠

1
p

⎤

⎥

⎦

≤

⎛

⎝

K
∑︂

i=1;i ̸=i∗

E

[︃

Ti(n)

n

]︃

⎞

⎠

1
p

(see (A.29))

≤ ((K − 1)O
(︄

K(C2 logn+N0)

n

)︄

)
1
p (Theorem 2 & (A.27)) (A.30)

According to Lemma 1, it holds that

E
[︁

Xn(p)
]︁

≥ E
[︁

Xn

]︁

for p ≥ 1. Because of this, we can reuse the lower bound given by (A.24)

−O
(︄

K(C2 logn+N0)

n

)︄

≤ E
[︁

Xn

]︁

− µ∗
n,

85

so that

−O
(︄

K(C2 logn+N0)

n

)︄

≤ E
[︁

Xn

]︁

− µ∗
n

≤ E
[︁

Xn(p)
]︁

− µ∗
n. (A.31)

Combining (A.30) and (A.31) concludes our prove

⃓

⃓E
[︁

Xn(p)
]︁

− µ∗
⃓

⃓ ≤ |δ∗n|+O

(︄

K(C2 logn+N0)

n

)︄
1
p

.

The following theorem shows lower bound of choosing all the arms
Theorem 4. (Lower Bound) Under the assumptions of Theorem 2, there exists some positive
constant ρ such that for all arms k and n, Tk(n) ≥ ⌈ρ log(n)⌉

Proof. There should exist a constant S that
(︄

∑︁Tk(t−1)
i=1 X

p
k,i

Tk(t− 1)

)︄
1
p

+ 2C

√︄

ln t
Tk(t− 1)

≤ S

for all arm k so

µk + δkt + 2C

√︄

log t
Tk(t− 1)

≤ S

because

lim
t→∞

δkt = 0

so there exists a positive constant ρ that Tk(t− 1) ≥ ⌈ρ log(t)⌉

The next result shows the estimated optimal payoff concentration around its mean (Theo-
rem 5). In order to prove that, we now reproduce here Lemma 5, 6 [12] that we use for
our proof:

86

Lemma 5. Hoeffding-Azuma inequality for Stopped Martingales (Lemma 10 in [12]).
Assume that St is a centered martingale such that the corresponding martingale difference
process is uniformly bounded by C. Then, for any fixed ϵ ≥ 0, integers 0 ≤ a ≤ b, the following
inequalities hold

Pr(SN ≥ ϵN) ≤ (b− a+ 1) exp
(︂−2a2ϵ2

C2

)︂

+ Pr(N /∈ [a, b]), (A.32)

Pr(SN ≤ ϵN) ≤ (b− a+ 1) exp
(︂−2a2ϵ2

C2

)︂

+ Pr(N /∈ [a, b]), (A.33)

Lemma 6. (Lemma 13 in [12]) Let (Zi), i=1,...,n be a sequence of random variables such that
Zi is conditionally independent of Zi+1, ..., Zn given Z1, ..., Zi−1. Let define Nn =

∑︁n
i=1 Zi,

and let an is an upper bound on E[Nn]. Then for all △ ≥ 0, if n is such that an ≤ △/2 then
Pr(Nn ≥ △) ≤ exp(−△2/(8n)). (A.34)

The next lemma is our core result for propagating confidence bounds upward in the
tree, and it is used for the prove of Theorem 5 about the concentration of power mean
estimator.
Lemma 7. let Zi, ai be as in Lemma 6. Let Fi denotes a filtration over some probability
space. Yi be an Fi-adapted real valued martingale-difference sequence. Let Xi be an i.i.d.
sequence with mean µ. We assume that both Xi and Yi lie in the [0,1] interval. Consider the
partial sums

Sn =

(︄

∑︁n
i=1(1− Zi)X

p
i + ZiY

p
i

n

)︄
1
p

. (A.35)

Fix an arbitrary δ > 0, and fix p ≥ 1. Let △n = 9
√︂

1
Cp

n log(2/δ), and △ = (9/4)p−1△n let

Rn = E

[︄(︄

∑︁n
i=1X

p
i

n

)︄
1
p
]︄

− E[Sn]. (A.36)

Then for n such that an ≤ (1/9)△n and |Rn| ≤ (4/9)(△/n)
1
p

Pr(Sn ≥ E[Sn] + (△/n)
1
p) ≤ δ (A.37)

Pr(Sn ≤ E[Sn]− (△/n)
1
p) ≤ δ (A.38)

87

Proof. We have a very fundamental probability inequality:
Consider two events: A,B. If A ∈ B, then Pr(A) ≤ Pr(B).
Therefore, if we have three random variables X,Y, Z and if we are sure that

Y ≥ Z, then Pr(X ≥ Y) ≤ Pr(X ≥ Z) (A.39)

We have
(︄

∑︁n
i=1(1− Zi)X

p
i + ZiY

p
i

n

)︄
1
p

=

(︄

∑︁n
i=1X

p
i

n
+

Zi(Y
p
i −X

p
i)

n

)︄
1
p

≤
(︄

∑︁n
i=1X

p
i

n
+

2
∑︁n

i=1 Zi

n

)︄
1
p

(Xi, Yi ∈ [0, 1])

≤
(︄

∑︁n
i=1X

p
i

n

)︄
1
p

+

(︄

2
∑︁n

i=1 Zi

n

)︄
1
p

(see (A.27)) (A.40)

Therefore,

T = Pr
(︄

Sn ≥ E[Sn] + (△/n)
1
p

)︄

(A.41)

= Pr
(︄

(︂

∑︁n
i=1(1− Zi)X

p
i + ZiY

p
i

n

)︂
1
p ≥ E[

∑︁n
i=1X

p
i

n

)︂
1
p
]−Rn + (△/n)

1
p

)︄

(see (A.36))

(A.42)

≤ Pr
(︄

(︂

∑︁n
i=1X

p
i

n

)︂
1
p
+
(︂2
∑︁n

i=1 Zi

n

)︂
1
p ≥ E

[︄

(︂

∑︁n
i=1X

p
i

n

)︂
1
p

]︄

−Rn + (△/n)
1
p

)︄

(see (A.39), (A.40))) (A.43)

Using the elementary inequality I(A+B ≥ △/n) ≤ I(A ≥ α△/n) + I(B ≥ (1−α)△/n)
that holds for any A,B ≥ 0; 0 ≤ α ≤ 1, we get

T ≤ Pr
(︃

(︂

∑︁n
i=1X

p
i

n

)︂
1
p ≥ E

[︄

(︂

∑︁n
i=1X

p
i

n

)︂
1
p

]︄

+ 1/9(△/n)
1
p

)︃

+ Pr
(︃

(︂2
∑︁n

i=1 Zi

n

)︂
1
p ≥ 8/9(△/n)

1
p −Rn

)︃

(A.44)

88

Define µp = E

[︄

(︂∑︁n
i=1 X

p
i

n

)︂
1
p

]︄

, we have

≤ Pr
(︃

(︂

∑︁n
i=1X

p
i

n

)︂
1
p ≥ µp + 1/9(△/n)

1
p

)︃

+ Pr
(︃

(︂2
∑︁n

i=1 Zi

n

)︂
1
p ≥ 4/9(△/n)

1
p

)︃

(see Rn ≤ (4/9)(△/n)
1
p) (A.45)

= Pr
(︃

(︂

∑︁n
i=1X

p
i

n

)︂
1
p ≥ µp +

1

9

9

4
(
4

9
△n/n)

1
p

)︃

+ Pr
(︃

(︂2
∑︁n

i=1 Zi

n

)︂
1
p ≥ (

(4/9)p△
n

)
1
p

)︃

(definition of △) (A.46)

≤ Pr
(︃

(︂

∑︁n
i=1X

p
i

n

)︂
1
p ≥ µp +△n/9n

)︃

+ Pr
(︃

(︂

∑︁n
i=1 Zi

n

)︂

≥ 2△n/9n

)︃

(see (A.27) and f(x) = ax is decrease when a < 1) (A.47)

The first term is bounded by δ/2 according to (A.8) and the second term is bounded by
δ/2 according to Lemma 6 (the condition of Lemma 6 is satisfied because an ≤ (1/9)△n).
This finishes the proof of the first part (A.37). The second part (A.38) can be proved in
an analogous manner.

Theorem 5. Fix an arbitrary δ ≤ 0 and fix p ≥ 1, let △n = (94)
p−1(9

√︂

1
Cp

n log(2/δ)). Let
n0 be such that

√
n0 ≤ O(K(C2 logn0 +N0(1/2))). (A.48)

Then for any n ≥ n0, under the assumptions of Theorem 2, the following bounds hold true

Pr(Xn(p) ≥ E[Xn(p)] + (△n/n)
1
p) ≤ δ (A.49)

Pr(Xn(p) ≤ E[Xn(p)]− (△n/n)
1
p) ≤ δ (A.50)

Proof. Let Xt is the payoff sequence of the best arm. Yt is the payoff at time t. Both Xt, Yt

lies in [0,1] interval, and
Xn(p) =

(︂∑︁n
i=1(1−Zi)X

p
i
+ZiY

p
i

n

)︂
1
p Apply Lemma 6 and remember thatX 1

p−Y 1
p ≤ (X−Y)

1
p

89

we have

Rn = E

[︄

(︂

∑︁n
i=1X

p
i

n

)︂
1
p

]︄

− E

[︄

(︂

∑︁n
i=1(1− Zi)X

p
i + ZiY

p
i

n

)︂
1
p

]︄

.

= E

[︄

(︂

∑︁n
i=1X

p
i

n

)︂
1
p −

(︂

∑︁n
i=1(1− Zi)X

p
i + ZiY

p
i

n

)︂
1
p
]︂

.

≤ E

[︄

(︂

∑︁n
i=1X

p
i −

∑︁n
i=1(1− Zi)X

p
i − ZiY

p
i

n

)︂
1
p

]︄

.

= E

[︄

(︂

∑︁n
i=1 Zi(X

p
i − Y

p
i)

n

)︂
1
p

]︄

.

≤ E

[︄

(︂

K
∑︂

i=1

Ti(n)

n

)︂
1
p

]︄

.

≤
(︄

∑︁K
i=1 E[Ti(n)]

n

)︄
1
p

. see Jensen inequality

=

(︄

(K − 1)O

(︄

K(C2 logn+N0(1/2))

n

)︄)︄
1
p

.

So that let n0 be an index such that if n ≥ n0 then an ≤ △n/9 and Rn ≤ 4/9(△n/n)
1
p .

Such an index exists since △n = O(√n) and an, Rn = O((logn/n) 1
p). Hence, for n ≥ n0,

the conditions of lemma 6 are satisfied and the desired tail-inequalities hold for Xn(p).

In the next theorem, we show that Power-UCT can ensure the convergence of choosing
the best arm at the root node.
Theorem 6. (Convergence of Failure Probability) Under the assumptions of Theorem 2, it
holds that

lim
t→∞

Pr(It ̸= i∗) = 0 (A.51)

Proof. We show that Power-UCT can smoothly adapt to UCT’s prove. Let i be the in-
dex of a suboptimal arm and let pit = Pr(X i,Ti(t)(p) ≥ X

∗
T∗(t)(p)) from above. Clearly,

Pr(It ̸= i∗) ≤∑︁i ̸=i∗ pit. Hence, it suffices to show that pit ≤ ϵ/K holds for all suboptimal

90

arms for t sufficiently large.
Clearly, if X i,Ti(t)(p) ≤ µi +△i/2 and X

∗
T∗(t)(p) ≥ µ∗ −△i/2 then X i,Ti(t)(p) < X

∗
T∗(t)(p).

Hence,

pt ≤ Pr(X i,Ti(t)(p) ≤ µi +△i/2) + Pr(X∗
T∗(t)(p) ≥ µ∗ −△i/2)

The first probability can be expected to be converging much slower since Ti(t) converges
slowly. Hence, we bound it first.
In fact,

Pr(X i,Ti(t)(p) ≤ µi +△i/2) ≤ Pr(X i,Ti(t)(p) ≤ µi,Ti(t)
− |δi,Ti(t)|+△i/2).

Without the loss of generality, we may assume that |δi,Ti(t)| ≤ △i/4. Therefore

Pr(X i,Ti(t)(p) ≤ µi +△i/2) ≤ Pr(X i,Ti(t)(p) ≤ µi,Ti(t)
+△i/4).

Now let a be an index such that if t ≥ a then (t + 1)Pr(X i,Ti(t)(p) ≤ µi,Ti(t)
+△i/4) ≤

ϵ/(2K). Such an index exist by our assumptions on the concentration properties of the
average payoffs. Then, for t ≥ a

Pr(X i,Ti(t)(p) ≤ µi,Ti(t)
+△i/4) ≤ Pr(X i,Ti(t)(p) ≤ µi,Ti(t)

+△i/4, Ti(t) ≥ a)

+Pr(Ti(t) ≤ a)

Since the lower-bound on Ti(t) grows to infinity as t→∞, the second term becomes zero
when t is sufficiently large. The first term is bounded using the method of Lemma 5. By
choosing b = 2a, we get

Pr(X i,Ti(t)(p) ≤ µi,Ti(t)
+△i/4, Ti(t) ≥ a) ≤ (a+ 1)Pr(X i,a(p) ≤ µi,a +△i/4, Ti(t) ≥ a)

+Pr(Ti(t) ≥ 2b) ≤ ϵ/(2K),

where we have assumed that t is large enough so that P (Ti(t) ≥ 2b) = 0.
Bounding Pr(X∗

T∗(t)(p) ≥ µ∗ − △i/2) by ϵ/(2K) can be done in an analogous manner.
Collecting the bound yields that pit ≤ ϵ/K for t sufficiently large which complete the
prove.

Now is our result to show the bias of expected payoff Xn(p)

91

Theorem 7. Consider algorithm Power-UCT running on a game tree of depth D, branching
factor K with stochastic payoff at the leaves. Assume that the payoffs lie in the interval [0,1].
Then the bias of the estimated expected payoff, Xn, is O(KD(log(n)/n) 1

p + KD(1/n)
1
p).

Further, the failure probability at the root convergences to zero as the number of samples
grows to infinity.

Proof. The proof is done by induction on D. When D = 1, Power-UCT becomes UCB1
problem and as the result of Hoeffding’s inequality, the convergence is guaranteed directly
from Theorem 1, Theorem 3 and Theorem 6.
Now we assume that the result holds up to depth D − 1 and consider the tree of Depth
D. Running Power-UCT on root node is equivalence as UCB1 on non-stationary bandit
settings. The error bound of running Power-UCT for the whole tree is the sum of payoff
at root node with payoff starting from any node i after the first action chosen from root
node until the end. This payoff by induction at depth (D − 1) is

O(K(D − 1)(log(n)/n) 1
p +KD−1(1/n)

1
p).

According to the Theorem 3, the payoff at the root node is

|δ∗n|+O
(︄

K(logn+N0)

n

)︄
1
p

.

The payoff of the whole tree with depth D

|δ∗n|+O
(︄

K(logn+N0)

n

)︄
1
p

= O(K(D − 1)(log(n)/n) 1
p +KD−1(1/n)

1
p)

+O
(︄

K(logn+N0)

n

)︄
1
p

≤ O(K(D − 1)(log(n)/n) 1
p +KD−1(1/n)

1
p)

+O
(︄

K

(︃ logn
n

)︃ 1
p

+KN0

(︃

1

n

)︃ 1
p

)︄

= O(KD(log(n)/n) 1
p +KD(1/n)

1
p)

92

with N0 = O((K−1)KD−1), which completes our proof of the convergence of Power-UCT.
Since by our induction hypothesis this holds for all nodes at a distance of one node from the
root, the proof is finished by observing that Theorem 3 and Theorem 5 do indeed ensure
that the drift conditions are satisfied. Interestingly, the proof guarantees the convergence
for any finite value of p.

A.2. Convex Regularization in Monte-Carlo Tree Search

In this section, we describe how to derive the theoretical results presented for the Convex
Regularization in Monte-Carlo Tree Search.

First, the exponential convergence rate of the estimated value function to the conjugate
regularized value function at the root node (Theorem 1) is derived based on induction
with respect to the depth D of the tree. When D = 1, we derive the concentration of the
average reward at the leaf node with respect to the∞-norm (as shown in Lemma 1) based
on the result from Theorem 2.19 in [156], and the induction is done over the tree by
additionally exploiting the contraction property of the convex regularized value function.
Second, based on Theorem 1, we prove the exponential convergence rate of choosing the
best action at the root node (Theorem 2). Third, the pseudo-regret analysis of E3W is
derived based on the Bregman divergence properties and the contraction properties of the
Legendre-Fenchel transform (Proposition 1). Finally, the bias error of estimated value at
the root node is derived based on results of Theorem 1, and the boundedness property of
the Legendre-Fenchel transform (Proposition 1).

Let r̂ and r be respectively the average and the the expected reward at the leaf node, and
the reward distribution at the leaf node be σ2-sub-Gaussian.

Lemma 1. For the stochastic bandit problem E3W guarantees that, for t ≥ 4,

Pr(︁ ∥ r − r̂t ∥∞≥
2σ

log(2 + t)

)︁

≤ 4|A| exp
(︂

− t

(log(2 + t))3

)︂

.

Proof. Let us define Nt(a) as the number of times action a have been chosen until time
t, and Nt

ˆ (a) =
∑︁t

s=1 πs(a), where πs(a) is the E3W policy at time step s. By choosing

93

λs =
|A|

log(1+s) , it follows that for all a and t ≥ 4,

Nt
ˆ (a) =

t
∑︂

s=1

πs(a) ≥
t
∑︂

s=1

1

log(1 + s)
≥

t
∑︂

s=1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2

≥
∫︂ 1+t

1

1

log(1 + s)
− s/(s+ 1)

(log(1 + s))2
ds =

1 + t

log(2 + t)
− 1

log 2 ≥
t

2 log(2 + t)
.

From Theorem 2.19 in [156], we have the following concentration inequality

Pr(|Nt(a)− N̂ t(a)| > ϵ) ≤ 2 exp{− ϵ2

2
∑︁t

s=1 σ
2
s

} ≤ 2 exp{−2ϵ2

t
},

where σ2
s ≤ 1/4 is the variance of a Bernoulli distribution with p = πs(k) at time step s.

We define the event
Eϵ = {∀a ∈ A, |Nt

ˆ (a)−Nt(a)| ≤ ϵ},
and consequently

Pr(|Nt
ˆ (a)−Nt(a)| ≥ ϵ) ≤ 2|A| exp(−2ϵ2

t
). (A.52)

Conditioned on the event Eϵ, for ϵ = t
4 log(2+t) , we have Nt(a) ≥ t

4 log(2+t) . For any action
a by the definition of sub-gaussian,

Pr
(︄

|r(a)− r̂t(a)| >

√︄

8σ2 log(2
δ
) log(2 + t)

t

)︄

≤ Pr
(︄

|r(a)− r̂t(a)| >
√︄

2σ2 log(2
δ
)

Nt(a)

)︄

≤ δ

by choosing a δ satisfying log(2
δ
) = 1

(log(2+t))3
, we have

Pr
(︄

|r(a)− r̂t(a)| >
√︄

2σ2 log(2
δ
)

Nt(a)

)︄

≤ 2 exp
(︄

− 1

(log(2 + t))3

)︄

.

Therefore, for t ≥ 2

Pr
(︄

∥ r − r̂t ∥∞>
2σ

log(2 + t)

)︄

≤ Pr
(︄

∥ r − r̂t ∥∞>
2σ

log(2 + t)

⃓

⃓

⃓

⃓

⃓

Eϵ

)︄

+ Pr(EC
ϵ)

≤
∑︂

k

(︄

Pr
(︄

|r(a)− r̂t(a)| >
2σ

log(2 + t)

)︄

+ Pr(EC
ϵ) ≤ 2|A| exp

(︄

− 1

(log(2 + t))3

)︄)︄

+ 2|A| exp
(︄

− t

(log(2 + t))3

)︄

= 4|A| exp
(︄

− t

(log(2 + t))3

)︄

.

94

Lemma 2. Given two policies π(1) = ∇Ω∗(r(1)) and π(2) = ∇Ω∗(r(2)), ∃L, such that

∥ π(1) − π(2) ∥p≤ L ∥ r(1) − r(2) ∥p .

Proof. This comes directly from the fact that π = ∇Ω∗(r) is Lipschitz continuous with ℓp-
norm. Note that p has different values according to the choice of regularizer. Refer to [85]
for a discussion of each norm using maximum entropy and Tsallis entropy regularizer.
Relative entropy shares the same properties with maximum Entropy.

Lemma 3. Consider the E3W policy applied to a tree. At any node s of the tree with depth d,
Let us define N∗

t (s, a) = π∗(a|s).t, and Nt
ˆ (s, a) =

∑︁t
s=1 πs(a|s), where πk(a|s) is the policy

at time step k. There exists some C and Ĉ such that

Pr(︁|Nt
ˆ (s, a)−N∗

t (s, a)| >
Ct

log t
)︁

≤ Ĉ|A|t exp{− t

(log t)3 }.

Proof. We denote the following event,

Erk = {∥ r(s′, ·)− r̂k(s
′, ·) ∥∞<

2σ

log(2 + k)
}.

95

Thus, conditioned on the event ⋂︁t
i=1Ert and for t ≥ 4, we bound |Nt

ˆ (s, a)−N∗
t (s, a)| as

|Nt
ˆ (s, a)−N∗

t (s, a)| ≤
t
∑︂

k=1

|π̂k(a|s)− π∗(a|s)|+
t
∑︂

k=1

λk

≤
t
∑︂

k=1

∥ π̂k(·|s)− π∗(·|s) ∥∞ +
t
∑︂

k=1

λk

≤
t
∑︂

k=1

∥ π̂k(·|s)− π∗(·|s) ∥p +
t
∑︂

k=1

λk

≤ L

t
∑︂

k=1

∥ Q̂k(s
′, ·)−Q(s′, ·) ∥p +

t
∑︂

k=1

λk(Lemma 2)

≤ L|A| 1p
t
∑︂

k=1

∥ Q̂k(s
′, ·)−Q(s′, ·) ∥∞ +

t
∑︂

k=1

λk(Property of p-norm)

≤ L|A| 1pγd

t
∑︂

k=1

∥ r̂k(s′′, ·)− r(s′′, ·) ∥∞ +
t
∑︂

k=1

λk(Contraction 3.3.1)

≤ L|A| 1pγd

t
∑︂

k=1

2σ

log(2 + k)
+

t
∑︂

k=1

λk

≤ L|A| 1pγd

∫︂ t

k=0

2σ

log(2 + k)
dk +

∫︂ t

k=0

|A|
log(1 + k)

dk

≤ Ct

log t .

for some constant C depending on |A|, p, d, σ, L, and γ . Finally,

Pr(|Nt
ˆ (s, a)−N∗

t (s, a)| ≥
Ct

log t) ≤
t
∑︂

i=1

Pr(Ec
rt
) =

t
∑︂

i=1

4|A| exp(− t

(log(2 + t))3
)

≤ 4|A|t exp(− t

(log(2 + t))3
)

= O(t exp(− t

(log(t))3)).

Lemma 4. Consider the E3W policy applied to a tree. At any node s of the tree, Let us define
N∗

t (s, a) = π∗(a|s).t, and Nt(s, a) as the number of times action a have been chosen until

96

time step t. There exists some C and Ĉ such that

Pr(︁|Nt(s, a)−N∗
t (s, a)| >

Ct

log t
)︁

≤ Ĉt exp{− t

(log t)3 }.

Proof. Based on the result from Lemma 3, we have

Pr(︁|Nt(s, a)−N∗
t (s, a)| > (1 + C)

t

log t
)︁

≤ Ct exp{− t

(log t)3 }

≤ Pr(︁|N̂ t(s, a)−N∗
t (s, a)| >

Ct

log t
)︁

+ Pr(︁|Nt(s, a)− N̂ t(s, a)| >
t

log t
)︁

≤ 4|A|t exp{− t

(log(2 + t))3
}+ 2|A| exp{− t

(log(2 + t))2
}(Lemma 3 and (A.52))

≤ O(t exp(− t

(log t)3)).

Theorem 8. At the root node s of the tree, defining N(s) as the number of visitations and
VΩ∗(s) as the estimated value at node s, for ϵ > 0, we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Proof. We prove this concentration inequality by induction. When the depth of the tree is
D = 1, from Proposition 1, we get

|VΩ(s)− V ∗
Ω(s)| =∥ Ω∗(QΩ(s, ·))− Ω∗(Q∗

Ω(s, ·)) ∥∞≤ γ ∥ r̂ − r∗ ∥∞ (Contraction)

where r̂ is the average rewards and r∗ is the mean reward. So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ).

From Lemma 1, with ϵ = 2σγ
log(2+N(s)) , we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ) ≤ 4|A| exp{− N(s)ϵ

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

97

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) =
QΩ(s, a), where sa is the state reached taking action a from state s. then at depth D − 1

Pr(|VΩ(sa)− V ∗
Ω(sa)| > ϵ) ≤ C exp{− N(sa)ϵ

Ĉ(log(2 +N(sa)))2
}. (A.53)

Now at the depth D, because of the Contraction Property, we have

|VΩ(s)− V ∗
Ω(s)| ≤ γ ∥ QΩ(s, ·)−Q∗

Ω(s, ·) ∥∞
= γ|QΩ(s, a)−Q∗

Ω(s, a)|.

So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ QΩ(s, a)−Q∗

Ω(s, a) ∥> ϵ)

≤ Ca exp{−
N(sa)ϵ

Câ(log(2 +N(sa)))2
}

≤ Ca exp{−
N(sa)ϵ

Câ(log(2 +N(s)))2
}.

From (A.53), we can have limt→∞N(sa) = ∞ because if ∃L,N(sa) < L, we can find
ϵ > 0 for which (A.53) is not satisfied. From Lemma 4, when N(s) is large enough, we
have N(sa)→ π∗(a|s)N(s) (for example N(sa) >

1
2π

∗(a|s)N(s)), that means we can find
C and Ĉ that satisfy

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Lemma 5. At any node s of the tree, N(s) is the number of visitations. We define the event

Es = {∀a ∈ A, |N(s, a)−N∗(s, a)| < N∗(s, a)

2
} where N∗(s, a) = π∗(a|s)N(s),

where ϵ > 0 and VΩ∗(s) is the estimated value at node s. We have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ|Es) ≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

98

Proof. The proof is the same as in Theorem 2. We prove the concentration inequality by
induction. When the depth of the tree is D = 1, from Proposition 1, we get

|VΩ(s)− V ∗
Ω(s)| =∥ Ω∗(QΩ(s, ·))− Ω∗(Q∗

Ω(s, ·)) ∥≤ γ ∥ r̂ − r∗ ∥∞ (Contraction Property)

where r̂ is the average rewards and r∗ is the mean rewards. So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ).

From Lemma 1, with ϵ = 2σγ
log(2+N(s)) and given Es, we have

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ r̂ − r∗ ∥∞> ϵ) ≤ 4|A| exp{− N(s)ϵ

2σγ(log(2 +N(s)))2
}

= C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}.

Let assume we have the concentration bound at the depth D − 1, Let us define VΩ(sa) =
QΩ(s, a), where sa is the state reached taking action a from state s, then at depth D − 1

Pr(|VΩ(sa)− V ∗
Ω(sa)| > ϵ) ≤ C exp{− N(sa)ϵ

Ĉ(log(2 +N(sa)))2
}.

Now at depth D, because of the Contraction Property and given Es, we have

|VΩ(s)− V ∗
Ω(s)| ≤ γ ∥ QΩ(s, ·)−Q∗

Ω(s, ·) ∥∞
= γ|QΩ(s, a)−Q∗

Ω(s, a)|(∃a, satisfied).

So that

Pr(|VΩ(s)− V ∗
Ω(s)| > ϵ) ≤ Pr(γ ∥ QΩ(s, a)−Q∗

Ω(s, a) ∥> ϵ)

≤ Ca exp{−
N(sa)ϵ

Câ(log(2 +N(sa)))2
}

≤ Ca exp{−
N(sa)ϵ

Câ(log(2 +N(s)))2
}

≤ C exp{− N(s)ϵ

Ĉ(log(2 +N(s)))2
}(because of Es)

.

99

Theorem 9. Let at be the action returned by algorithm E3W at iteration t. Then for t large
enough, with some constants C, Ĉ,

Pr(at ̸= a∗) ≤ Ct exp{− t

Ĉσ(log(t))3
}.

Proof. Let us define event Es as in Lemma 5. Let a∗ be the action with largest value
estimate at the root node state s. The probability that E3W selects a sub-optimal arm at s
is

Pr(at ̸= a∗) ≤
∑︂

a

Pr(VΩ(sa)) > VΩ(sa∗)|Es) + Pr(Ec
s)

=
∑︂

a

Pr((VΩ(sa)− V ∗
Ω(sa))− (VΩ(sa∗)− V ∗

Ω(sa∗)) ≥ V ∗
Ω(sa∗)− V ∗

Ω(sa)|Es) + Pr(Ec
s).

Let us define ∆ = V ∗
Ω(sa∗)− V ∗

Ω(sa), therefore for ∆ > 0, we have

Pr(at ̸= a∗) ≤
∑︂

a

Pr((VΩ(sa)− V ∗
Ω(sa))− (VΩ(sa∗)− V ∗

Ω(sa∗)) ≥ ∆|Es) + +Pr(Ec
s)

≤
∑︂

a

Pr(|VΩ(sa)− V ∗
Ω(sa)| ≥ α∆|Es) + Pr(|VΩ(sa∗)− V ∗

Ω(sa∗)| ≥ β∆|Es) + Pr(Ec
s)

≤
∑︂

a

Ca exp{−
N(s)(α∆)

Câ(log(2 +N(s)))2
}+ Ca∗ exp{−

N(s)(β∆)

Ĉa∗(log(2 +N(s)))2
}+ Pr(Ec

s),

where α+ β = 1, α > 0, β > 0, and N(s) is the number of visitations the root node s. Let
us define 1

Ĉ
= min{ (α∆)

Ca
,
(β∆)
Ca∗
}, and C = 1

|A| max{Ca, Ca∗} we have

Pr(a ̸= a∗) ≤ C exp{− t

Ĉσ(log(2 + t))2
}+ Pr(Ec

s).

From Lemma 4, ∃C ′

, C
′ˆ for which

Pr(Ec
s) ≤ C

′

t exp{− t

C
′ˆ (log(t))3

},

so that

Pr(a ̸= a∗) ≤ O(t exp{− t

(log(t))3 }).

100

Theorem 10. Consider an E3W policy applied to the tree. Let define DΩ∗(x, y) = Ω∗(x)−
Ω∗(y)−∇Ω∗(y)(x− y) as the Bregman divergence between x and y, The expected pseudo
regret Rn satisfies

E[Rn] ≤ −τΩ(π̂) +
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) +O(
n

logn).

Proof. Without loss of generality, we can assume that Vi ∈ [−1, 0], ∀i ∈ [1, |A|]. as the
definition of regret, we have

E[Rn] = nV ∗ −
n
∑︂

t=1

⟨π̂t(·), V (·)⟩ ≤ V̂ 1(0)−
n
∑︂

t=1

⟨π̂t(·), V (·)⟩ ≤ −τΩ(π̂)−
n
∑︂

t=1

⟨π̂t(·), V (·)⟩ .

By the definition of the tree policy, we can obtain

−
n
∑︂

t=1

⟨π̂t(·), V (·)⟩ = −
n
∑︂

t=1

⟨︂

(1− λt)∇Ω∗(Vt̂(·)), V (·)
⟩︂

−
n
∑︂

t=1

⟨︃

λt(·)
|A| , V (·)

⟩︃

= −
n
∑︂

t=1

⟨︂

(1− λt)∇Ω∗(Vt̂(·)), V (·)
⟩︂

−
n
∑︂

t=1

⟨︃

λt(·)
|A| , V (·)

⟩︃

≤ −
n
∑︂

t=1

⟨︂

∇Ω∗(Vt̂(·)), V (·)
⟩︂

−
n
∑︂

t=1

⟨︃

λt(·)
|A| , V (·)

⟩︃

.

101

with

−
n
∑︂

t=1

⟨︂

∇Ω∗(Vt̂(·)), V (·)
⟩︂

=
n
∑︂

t=1

Ω∗(Vt̂(·) + V (·))−
n
∑︂

t=1

Ω∗(Vt̂(·))−
n
∑︂

t=1

⟨︂

∇Ω∗(Vt̂(·)), V (·)
⟩︂

− (
n
∑︂

t=1

Ω∗(Vt̂(·) + V (·))−
n
∑︂

t=1

Ω∗(Vt̂(·)))

=
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·))

− (
n
∑︂

t=1

Ω∗(Vt̂(·) + V (·))−
n
∑︂

t=1

Ω∗(Vt̂(·)))

≤
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) + n ∥ V (·) ∥∞

(Contraction property, Proposition 1)

≤
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)).(because Vi ≤ 0)

And

−
n
∑︂

t=1

⟨︃

λt(·)
|A| , V (·)

⟩︃

≤ O(n

logn), (Because
n
∑︂

k=1

1

log(k + 1)
→ O(n

logn))

So that

E[Rn] ≤ −τΩ(π̂) +
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) +O(
n

logn).

We consider the generalized Tsallis Entropy Ω(π) = Sα(π) = 1
1−α

(1−∑︁i π
α(ai|s)).

According to [157], when α ∈ (0, 1)

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) ≤ (τα)−1|A|α

−Ω(π̂n) ≤
1

1− α
(|A|1−α − 1).

Then, for the generalized Tsallis Entropy, when α ∈ (0, 1), the regret is

E[Rn] ≤
τ

1− α
(|A|1−α − 1) + n(τα)−1|A|α +O(n

logn),

102

when α = 2, which is the Tsallis entropy case we consider, according to [158], By Taylor’s
theorem ∃z ∈ conv(V̂ t, V̂ t + V), we have

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) ≤
1

2

⟨︁

V (·),∇2Ω∗(z)V (·)
⟩︁

≤ |K|
2

.

So that when α = 2, we have

E[Rn] ≤ τ(
|A| − 1

|A|) +
n|K|
2

+O(n

logn).

when α = 1, which is the maximum entropy case in our work, we derive.

E[Rn] ≤ τ(log |A|) + n|A|
τ

+O(n

logn)

Finally, when the convex regularizer is relative entropy, One can simply writeKL(πt||πt−1) =
−H(πt)− Eπt logπt−1, let m = mina πt−1(a|s), we have

E[Rn] ≤ τ(log |A| − 1

m
) +

n|A|
τ

+O(n

logn).

Before derive the next theorem, we state the Theorem 2 in [77]
• Boundedness: for two constants LΩ and UΩ such that for all π ∈ Π, we have

LΩ ≤ Ω(π) ≤ UΩ, then

V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ V ∗

Ω(s) ≤ V ∗(s). (A.54)

Where τ is the temperature and γ is the discount constant.
Theorem 11. For any δ > 0, with probability at least 1− δ, the εΩ satisfies

−
√︄

Ĉσ2 log C
δ

2N(s)
− τ(UΩ − LΩ)

1− γ
≤ εΩ ≤

√︄

Ĉσ2 log C
δ

2N(s)
.

Proof. From Theorem 2, let us define δ = C exp{−2N(s)ϵ2

Ĉσ2
}, so that ϵ =

√︃

Ĉσ2 log C
δ

2N(s) then
for any δ > 0, we have

Pr(|VΩ(s)− V ∗
Ω(s)| ≤

√︄

Ĉσ2 log C
δ

2N(s)
) ≥ 1− δ.

103

Then, for any δ > 0, with probability at least 1− δ, we have

|VΩ(s)− V ∗
Ω(s)| ≤

√︄

Ĉσ2 log C
δ

2N(s)

−
√︄

Ĉσ2 log C
δ

2N(s)
≤ VΩ(s)− V ∗

Ω(s) ≤
√︄

Ĉσ2 log C
δ

2N(s)

−
√︄

Ĉσ2 log C
δ

2N(s)
+ V ∗

Ω(s) ≤ VΩ(s) ≤
√︄

Ĉσ2 log C
δ

2N(s)
+ V ∗

Ω(s).

From Proposition 1, we have

−
√︄

Ĉσ2 log C
δ

2N(s)
+ V ∗(s)− τ(UΩ − LΩ)

1− γ
≤ VΩ(s) ≤

√︄

Ĉσ2 log C
δ

2N(s)
+ V ∗(s).

A.3. A Unified Perspective on Value Backup and Exploration in
Monte-Carlo Tree Search

Theorem 12. When α ∈ (0, 1), the regret of E3W [44] with the regularizer fα is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) + n(2τ)−1|A|α +O(n

logn).

Proof. Please refer to equation (A.54) in Theorem 10

Theorem 13. When α ∈ (1,∞), α ̸= 2, the regret of E3W [44] with the regularizer fα is

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O(n

logn).

where |K| is the number of actions that are assigned non-zero probability in the policy at
the root node.

104

Proof. From Theorem 10, we have

E[Rn] ≤ −τΩ(π̂) +
n
∑︂

t=1

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) +O(
n

logn).

Here, Ω(π̂) = fα(π̂) =
1

α(1−α)(1 −
∑︁

i π̂
α(ai|s)). So as the result from Theorem 10, we

have

−Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).

By Taylor’s theorem ∃z ∈ conv(V̂ t, V̂ t + V), we have

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) ≤
1

2

⟨︁

V (·),∇2Ω∗(z)V (·)
⟩︁

.

So that according to Equations (4.8), (4.9), (4.10), (4.11), we have

DΩ∗(Vt̂(·) + V (·), Vt̂(·)) ≤
1

2

⟨︁

V (·),∇2Ω∗(z)V (·)
⟩︁

≤ |K|
2

.

so that

E[Rn] ≤
τ

α(1− α)
(|A|1−α − 1) +

n|K|
2

+O(n

logn).

We analyse the error of the regularized value estimate at the root node n(s) w.r.t. the
optimal value: εΩ = VΩ(s)− V ∗(s). where Ω is the α-divergence regularizer fα.
Theorem 14. For any δ > 0 and α-divergence regularizer fα (α ̸= 1, 2), with some constant
C, Ĉ, with probability at least 1− δ, εΩ satisfies

−
√︄

Ĉσ2 log C
δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√︄

Ĉσ2 log C
δ

2N(s)
. (A.55)

Proof. We have

0 ≤ −Ω(π̂n) ≤
1

α(1− α)
(|A|1−α − 1).

105

combine with Theorem 11 we will have

−
√︄

Ĉσ2 log C
δ

2N(s)
− τ

α(1− α)
(|A|1−α − 1) ≤ εΩ ≤

√︄

Ĉσ2 log C
δ

2N(s)
. (A.56)

106

Curriculum Vitae

Tuan Dam

Technische Universität Darmstadt
Hochschulstr. 10 https://www.ias.informatik.tu-darmstadt.de/
64289 Darmstadt, Germany Team/TuanDam
Computer Science TU Darmstadt, Hessen, Germany
Email: tuanquangdam@gmail.com cell: available upon request

Research Interests: Reinforcement Learning under uncertainty, Monte Carlo Tree Search,
Multi Armed Bandit, POMDPs, MDPs, Information Theory, Robotics

EDUCATION
TU Darmstadt, Hessen, Germany 2018 - now
PhD Candidate at Intelligent Autonomous Systems Group
Research: Monte-Carlo Tree Search, MDP, POMDP, Robot Path Planning
Hanyang University, Seoul, Korea 2014 - 2016
M.S. in Electrical and Computer Engineering

Posts & Telecommunications Institute of Technology (PTIT), Vietnam 2003 - 2007
B.S. in Computer Science

AWARDS
2004: Silver prize National Mathematical Medalist
2006: Encouragement prize of the Student Scientific Research at University
2007: Golden prize of the Student Scientific Research at University

107

2015: The best researcher student in OSLab

PUBLICATIONS Google Scholar

Conferences
Dam, T, Klink, P.; D’Eramo, C.; Peters, J.; Pajarinen, J. (2020). Generalized Mean Esti-
mation in Monte-Carlo Tree Search, Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI).[pdf]
Dam, T, D’Eramo, C.; Peters, J.; Pajarinen J. (2021). Convex Regularization in Monte-
Carlo Tree Search, Proceedings of the International Conference on Machine Learning
(ICML).[pdf]

Dam, T; Chalvatzaki, G; Peters, J.; Pajarinen J. (2022). Monte-Carlo Robot Path Plan-
ning, IEEE/RSJ International Conference on Intelligent Robots and Systems 2022.

Journals
Dam, T, D’Eramo, C.; Peters, J.; Pajarinen J. (2022). A Unified Perspective on Value
Backup and Exploration in Monte-Carlo Tree Search, Submitted to the Journal of
Machine Learning Research (JMLR).[pdf]

Dam, T; Chalvatzaki, G; Peters, J.; Pajarinen J. (2022). Monte-Carlo Robot Path Plan-
ning, IEEE Robotics and Automation Letters 2022.

Technical reports
Dam, T. Regularize Sparse Markov Decision Processes for Reinforcement Learn-
ing.[pdf]

Dam, T. SAPD: Nonlinear Function Approximation Convergence in Reinforcement
Learning. [pdf]

WORK EXPERIENCE Github

108

Auburn University 2017
Research Assistant, USA

DFKI: German Research Center for Artificial Intelligence 2017
Research Assistant, Berlin, Germany

HMI lab, VNU 2016 - 2017
Research Assistant, Hanoi, Vietnam

OSLab 2014 - 2016
Research Assistant, Master Student, Seoul, Korea

Vietinbank 2011 - 2014
Senior Software Developer, Hanoi, Vietnam

Nomovok 2008 - 2011
Software Developer, Hanoi, Vietnam

TALKS

A Unified Perspective on Value Backup and Exploration in Monte-Carlo Tree Search
[video] [pdf] Scool, Inria

TEACHING

Robot Learning Summer 2022

Robot Learning Winter 2021/2022

109

Robot Learning: Integrated Project, Part 1 (Literature Review and Simulation Studies)
Winter 2021/2022

Robot Learning: Integrated Project, Part 2 (Evaluation and Submission to a Confer-
ence) Winter 2021/2022

SUPERVISION
MS Thesis 2022, Pascal Stenger, Above Average Decision Making Under Uncertainty

MS Thesis 2022, (co-supervised with Junning Huang), Ruidi He, Path Consistency
Learning for Autonomous Car Driving

MS Thesis 2021, (co-supervised with Joni Pajarinen and Georgia Chalvatzaki), Cedric
Derstroff, Memory Representations for Partially Observable Reinforcement Learning

Robot Learning: Integrated Project Winter 2021, (co-supervised with Carlo D’Eramo),
Lukas Schneider, Benchmarking advances in MCTS in Go and Chess

Robot Learning: Integrated Project Winter 2021, (co-supervised with Georgia Chal-
vatzaki, and Carlo D’Eramo), Daniel Mansfeld, Alex Ruffini, Learning Laplacian Repre-
sentations for continuous MCTS

Robot Learning: Integrated Project Winter 2019, (co-supervised with Boris Belousov),
Maximilian Hensel, Accelerated Mirror Descent Policy Search

REVIEWING
ICML, NeurIPS, AAAI, IROS, CoRL

PATENTS
SQLite SHADOW Journaling Mode: Techniques for ensuring data integrity by main-
taining the original and replica of the database for journaling of SQLite databases on
Android-based mobile systems. Patent approved by Korean Government Research.

110

SKILLS
Programming: Python (e.g., PyTorch, Tensorflow), LaTeX, Linux, C/C++, Git.
Languages: Vietnamese (Native speaker), English (Fluent)

111

List of Figures

1.1. This figure illustrates the four basic steps of Monte-Carlo Tree Search. . . 2
1.2. This figure illustrates the outline of the thesis. 7

2.1. Evaluating Power-UCT w.r.t. different p-values: The mean discounted total
reward at 65536 simulations (shaded area denotes standard error) over
100 evaluation runs. 20

2.2. Performance of Power-UCT compared to UCT in rocksample. The mean of
total discounted reward over 1000 evaluation runs is shown by thick lines
while the shaded area shows standard error. 21

2.3. Performance of Power-UCT compared to UCT and MENTS in rocksample
11x11. The mean of discounted total reward over 1000 evaluation runs is
shown by thick lines while the shaded area shows standard error. 23

3.1. For each algorithm, we show the convergence of the value estimate at the
root node to the respective optimal value (top), to the UCT optimal value
(middle), and the regret (bottom). 35

3.2. For different branching factor k (rows) and depth d (columns), the heatmaps
show: the absolute error of the value estimate at the root node after the
last simulation of each algorithm w.r.t. the respective optimal value (a),
and w.r.t. the optimal value of UCT (b); regret at the root node (c). 37

3.3. High branching factor trees (a), regret sensitivity study w.r.t. ε and τ (b, c). 38

4.1. We show the convergence of the value estimate at the root node to the
respective optimal value (top), to the UCT optimal value (middle), and the
regret (bottom) with different α parameter of α-divergence in Synthetic
tree environment with α = 1.0 (MENTS), 1.5, 2.0 (TENTS), 4.0, 8.0, 16.0. 50

112

4.2. We show the effectiveness of α-divergence in Synthetic Tree environment
with different branching factor k (rows) and depth d (columns). The
heatmaps show: the absolute error of the value estimate at the root node
after the last simulation of each algorithm w.r.t. the respective optimal
value (a), and w.r.t. the optimal value of UCT (b); regret at the root node (c). 51

5.1. Four stages of MCPP planner to traverse from the initial position (in green
color) to the goal position (in blue color). 55

5.2. Demonstration of path planning using MCPP in a robotic disentangling task.
A 7-DOF robotic KUKA arm tries to extract an object from the cardboard
box through the hole in the back of the box. The robot does not use any
sensors except for proprioception, making the task partially observable.
Therefore, the task requires advanced MCPP-based path planning that takes
information gathering about the environment into account. We put a limit
to prevent the robot arm to move the hand up, therefore, the robot arm has
to find the path from the start position on the left side to the goal position
on the right side inside the box. 55

5.3. 2-D sketch of the proof for exponential convergence of MCPP to the optimal
path in MDPs. The MDP proof relies on showing that MCPP convergences
exponentially to a path starting from x0 and ending at xl while the agent
stays inside a tube composed of a sequence of spheres with a radius of ϵ. . 61

5.4. Sketch of how to generate paths for MCPP algorithm from xINIT to xGOAL
positions with minimum number of via-points in POMDP environments. . 65

5.5. U-Shape 2D POMDP. Green point is the start position. Blue point is the
goal position. Red points are the collisions. The figure shows a success
case using MCPP, where the blue line depicts the 2D trajectory of the end
effector. Note that in all the 2D experiments we plan in the configuration
space using a 7-DOF planar robot arm model illustrated on the right. . . 68

5.6. L-Shape 2D POMDP. Green point is the start position. Blue point is the goal
position. Red points are the collisions. The blue lines are the planning path.
The figure shows a failure case of RRT* and a success case for MCPP, which
shows that it is more explorative. Over 20 random seeds, RRT* failure to
solve the problem with 0% success, while MCPP obtain 100% success with
UCT and Power-UCT. TENTS gets 85%. 68

113

5.7. High Wall Environment in 3D. Grey point is the start position. Blue point is
the goal position. Red points are collisions. Over 20 random seeds, RRT∗

can only success with 35%, UCT obtains 55% success rate. Power-UCT gets
70% success rate while TENTS gets 45% success rate. 69

114

List of Tables

2.1. Mean and two times standard deviation of the success rate, over 500 eval-
uation runs, of UCT, Power-UCT and MENTS in FrozenLake from OpenAI
Gym. The top row of each table shows the number of simulations used for
tree-search at each time step. 20

2.2. Mean and two times standard deviation of discounted total reward, over 100
evaluation runs, of UCT, Power-UCT and MENTS in the copy environment
with 144 actions (top) and 200 actions (bottom). Top row: number of
simulations at each time step. 22

2.3. Discounted total reward in pocman for the comparison methods. Mean
± standard error are computed from 1000 simulations except in MENTS
where we ran 100 simulations. 24

3.1. List of entropy regularizers with Legendre-Fenchel transforms and maxi-
mizing arguments (Max arg. : Max argument). 33

3.2. Average score in Atari over 100 seeds per game. Bold denotes no statistically
significant difference to the highest mean (t-test, p < 0.05). Bottom row
shows # no difference to highest mean. 42

5.1. Comparison for the U-Shape 2D POMDP 70
5.2. Comparison for the High-Wall 3D POMDP 70
5.3. Comparison for the real robot object disentangling 70

115

List of Algorithms

2.1. Pseudocode of Power-UCT. 15

5.1. Pseudocode of MCPP. 62

116

List of Acronyms

Notation Description
AI Artificial Intelligence
A3C Asynchronous Advantage Actor Critic
DL Deep Learning
DESPOT Determinized Sparse Partially Observable Tree
DOF Degrees Of Freedom
DQN Deep Q Learning
Deep-MCTS Deep Monte-Carlo Tree Search
E3W Extended Empirical Exponential Weight
E2W Empirical Exponential Weight
MCPP Monte-Carlo Path Planning
MCTS Monte-Carlo Tree Search
MDP Markov Decision Process
MDPs Markov Decision Processes
MENTS Maximum Entropy Monte-Carlo Planning
ML Machine Learning
POMCP Partially Observable Monte Carlo Planning
POMCP-DPW Partially Observable Monte Carlo Planning Double Progressive Widening
POMDP Partially observable Markov Decision Process

117

POMDPs Partially observable Markov Decision Processes
Power-UCT Power Mean Upper Confidence bound Tree
PUCT Polynomial Upper Confidence bound Tree
SAC Soft Actor-Critic
SARSA State-Action–Reward–State–Action
RL Reinforcement learning
RENTS Relative Entropy Monte-Carlo Planning
RRT Rapidly exploring Random Tree
RRTs Rapidly exploring Random Trees
TENTS Tsallis Entropy Monte-Carlo Planning
TRPO Trust Region Policy Optimization
UCB Upper Confidence Bound
UCT Upper Confidence bound Tree

118

List of Symbols

Notation Description
Pr Probability
E Expectation
Var Variance
exp Exponential power
log logarithm
lim limit
∑︁ sum
I(.) indicator function
∥ . ∥p p-norm
∥ . ∥∞ maximum-norm
|.| absolute value
Ω(.) regularizer
Ω∗(.) Legendre-Fenchel transform
DKL Kullback–Leibler divergence
Df (P ∥ Q) f -divergence between two distributions P and Q

Dα(P ∥ Q) α-divergence between two distributions P and Q

Hπ
α(s) generalization of Tsallis entropy of policy π at state s with parameter α

fα α function

119

DΩ∗(x, y) Bregman divergence between x and y
Rn pseudo regret
τ regularization temperature
∆Ω∗(.) max argument
LΩ lower bound of Ω
UΩ upper bound of Ω
|A| number of actions in set A
|K| number of actions that are assigned non-zero probability
∫︁ integral
≜ is defined as
s state s

a action a

r reward
S state space
A action space
P transition kernel
R reward function
O Complexity
Π policy set
γ discount factor
ϵ positive constant epsilon
N(s) number of visitations at node V state s

n(s, a) number of visitations at node Q state, action s, a

Ti(n) the number of times arm i is played up to time n

T ∗Q(s, a) optimal Bellman operator

120

TπQ(s, a) Bellman operator under policy π

τ(s, a) transition function at state s, taking action a

X̄ i,Ti(n) average reward of arm i up to time n

V (s) V value function at state s

V ∗(s) optimal V value function at state s

VΩ(s) regularized V value function at state s

V ∗
Ω(s) optimal regularized V value function at state s

Q(s, a) Q value function at state s action a

Q∗(s, a) optimal Q value function at state s action a

QΩ(s) regularized Q value function at state s

Q∗
Ω(s) optimal regularized Q value function at state s

π policy
µ mean
µ∗ optimal mean value

121

Bibliography

[1] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for
autonomous vehicles,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 1, no. 1, pp. 187–210, 2018.

[2] B. Paden, M. Čáp, S. Z. Yong, D. Yershov, and E. Frazzoli, “A survey of motion
planning and control techniques for self-driving urban vehicles,” IEEE Transactions
on intelligent vehicles, vol. 1, no. 1, pp. 33–55, 2016.

[3] S. Kuutti, R. Bowden, Y. Jin, P. Barber, and S. Fallah, “A survey of deep learn-
ing applications to autonomous vehicle control,” IEEE Transactions on Intelligent
Transportation Systems, vol. 22, no. 2, pp. 712–733, 2020.

[4] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,”
IEEE Transactions on robotics and automation, vol. 16, no. 5, pp. 615–620, 2000.

[5] T. T. Mac, C. Copot, D. T. Tran, and R. De Keyser, “Heuristic approaches in robot
path planning: A survey,” Robotics and Autonomous Systems, vol. 86, pp. 13–28,
2016.

[6] N. Sariff and N. Buniyamin, “An overview of autonomous mobile robot path plan-
ning algorithms,” in 2006 4th student conference on research and development,
pp. 183–188, IEEE, 2006.

[7] H.-y. Zhang, W.-m. Lin, and A.-x. Chen, “Path planning for the mobile robot: A
review,” Symmetry, 2018.

[8] J. Mainprice and D. Berenson, “Human-robot collaborative manipulation planning
using early prediction of human motion,” in Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on, pp. 299–306, IEEE, 2013.

[9] M. Chen, S. Nikolaidis, H. Soh, D. Hsu, and S. Srinivasa, “Planning with trust for

122

human-robot collaboration,” in Proceedings of the 2018 ACM/IEEE international
conference on human-robot interaction, pp. 307–315, 2018.

[10] M. Cutler, T. J. Walsh, and J. P. How, “Real-world reinforcement learning via
multifidelity simulators,” IEEE Transactions on Robotics, vol. 31, no. 3, pp. 655–671,
2015.

[11] C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A survey of monte carlo tree
search methods,” IEEE Transactions on Computational Intelligence and AI in games,
vol. 4, no. 1, pp. 1–43, 2012.

[12] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved monte-carlo search,” Univ.
Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[13] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. van den Driessche,
T. Graepel, and D. Hassabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[14] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez, M. Lanctot,
L. Sifre, D. Kumaran, T. Graepel, et al., “Mastering chess and shogi by self-play
with a general reinforcement learning algorithm,” arXiv preprint arXiv:1712.01815,
2017.

[15] S. Mo, X. Pei, and C. Wu, “Safe reinforcement learning for autonomous vehicle
using monte carlo tree search,” IEEE Transactions on Intelligent Transportation
Systems, 2021.

[16] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble with structured
representations and search for robotic architectural construction,” in Proceedings of
the 5th Conference on Robot Learning (A. Faust, D. Hsu, and G. Neumann, eds.),
vol. 164 of Proceedings of Machine Learning Research, pp. 1401–1411, PMLR, 08–11
Nov 2022.

[17] S. Eiffert, H. Kong, N. Pirmarzdashti, and S. Sukkarieh, “Path planning in dynamic
environments using generative rnns and monte carlo tree search,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA), pp. 10263–10269,
IEEE, 2020.

[18] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification with deep

123

convolutional neural networks,” Advances in neural information processing systems,
vol. 25, 2012.

[19] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio, “Generative adversarial nets,” Advances in neural
information processing systems, vol. 27, 2014.

[20] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in International conference on machine learning,
pp. 448–456, PMLR, 2015.

[21] R. Girshick, “Fast r-cnn,” in Proceedings of the IEEE international conference on
computer vision, pp. 1440–1448, 2015.

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” arXiv preprint arXiv:1810.04805,
2018.

[23] M. E. Peters, M. Neumann, M. Iyyer, M. Gardner, C. Clark, K. Lee, and L. Zettlemoyer,
“Deep contextualized word representations,” in NAACL, 2018.

[24] T. Young, D. Hazarika, S. Poria, and E. Cambria, “Recent trends in deep learning
based natural language processing,” ieee Computational intelligenCe magazine,
vol. 13, no. 3, pp. 55–75, 2018.

[25] H. A. Pierson and M. S. Gashler, “Deep learning in robotics: a review of recent
research,” Advanced Robotics, vol. 31, no. 16, pp. 821–835, 2017.

[26] L. Tai, J. Zhang, M. Liu, J. Boedecker, and W. Burgard, “A survey of deep network
solutions for learning control in robotics: From reinforcement to imitation,” arXiv
preprint arXiv:1612.07139, 2016.

[27] L. Tai and M. Liu, “Deep-learning in mobile robotics-from perception to control
systems: A survey on why and why not,” arXiv preprint arXiv:1612.07139, vol. 1,
2016.

[28] D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al., “Mastering
the game of go with deep neural networks and tree search,” nature, vol. 529,
no. 7587, p. 484, 2016.

[29] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning, vol. 135. MIT
press Cambridge, 1998.

124

[30] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, et al., “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[31] C. Xiao, R. Huang, J. Mei, D. Schuurmans, and M. Müller, “Maximum entropy
monte-carlo planning,” in Advances in Neural Information Processing Systems,
pp. 9516–9524, 2019.

[32] R. Coulom, “Efficient selectivity and backup operators in monte-carlo tree search,”
in International conference on computers and games, Springer, 2006.

[33] I. Osband, C. Blundell, A. Pritzel, and B. Van Roy, “Deep exploration via
bootstrapped dqn,” Advances in neural information processing systems, vol. 29,
pp. 4026–4034, 2016.

[34] X. Guo, S. Singh, H. Lee, R. L. Lewis, and X. Wang, “Deep learning for real-time
atari game play using offline monte-carlo tree search planning,” Advances in neural
information processing systems, vol. 27, 2014.

[35] M. Elbanhawi and M. Simic, “Sampling-based robot motion planning: A review,”
IEEE Access, 2014.

[36] I. Noreen, A. Khan, Z. Habib, et al., “Optimal path planning using rrt* based
approaches: a survey and future directions,” Int. J. Adv. Comput. Sci. Appl, 2016.

[37] J. J. Kuffner and S. M. LaValle, “Rrt-connect: An efficient approach to single-query
path planning,” in Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065),
vol. 2, pp. 995–1001, IEEE, 2000.

[38] M. Kleinbort, K. Solovey, Z. Littlefield, K. E. Bekris, and D. Halperin, “Probabilis-
tic completeness of rrt for geometric and kinodynamic planning with forward
propagation,” IEEE RA-L, 2018.

[39] M. Ivanov, L. Lindner, O. Sergiyenko, J. C. Rodríguez-Quiñonez, W. Flores-Fuentes,
and M. Rivas-Lopez, “Mobile robot path planning using continuous laser scanning,”
in Optoelectronics in machine vision-based theories and applications, pp. 338–372,
IGI Global, 2019.

[40] Y. Mezouar and F. Chaumette, “Path planning for robust image-based control,”
IEEE Trans. on robotics and automation, 2002.

125

[41] V. J. Lumelsky, “Dynamic path planning for a planar articulated robot arm moving
amidst unknown obstacles,” Automatica, 1987.

[42] P. Auer, “Using confidence bounds for exploitation-exploration trade-offs,” Journal
of Machine Learning Research, vol. 3, no. Nov, pp. 397–422, 2002.

[43] T. Dam, P. Klink, C. D’Eramo, J. Peters, and J. Pajarinen, “Generalized mean
estimation in monte-carlo tree search,” 2019.

[44] T. Q. Dam, C. D’Eramo, J. Peters, and J. Pajarinen, “Convex regularization in monte-
carlo tree search,” in International Conference on Machine Learning, pp. 2365–2375,
PMLR, 2021.

[45] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the multiarmed
bandit problem,” Machine learning, vol. 47, no. 2-3, pp. 235–256, 2002.

[46] C. Watkins, Learning from Delayed Rewards. PhD thesis, King’s College, Cambridge,
England, 1989.

[47] J. E. Smith and R. L. Winkler, “The optimizer’s curse: Skepticism and postdecision
surprise in decision analysis,” Management Science, vol. 52, no. 3, 2006.

[48] H. V. Hasselt, “Double q-learning,” in Advances in Neural Information Processing
Systems, 2010.

[49] C. D’Eramo, M. Restelli, and A. Nuara, “Estimating maximum expected value
through gaussian approximation,” in International Conference on Machine Learning,
2016.

[50] P. S. Bullen, Handbook of means and their inequalities. Springer Science & Business
Media, 2013.

[51] G. Tesauro, V. Rajan, and R. Segal, “Bayesian inference in monte-carlo tree search,”
arXiv preprint arXiv:1203.3519, 2012.

[52] C. Mansley, A. Weinstein, and M. Littman, “Sample-based planning for continuous
action markov decision processesgeneralizedfmean,” in Twenty-First International
Conference on Automated Planning and Scheduling, 2011.

[53] S. Gelly and Y. Wang, “Exploration exploitation in go: Uct for monte-carlo go,” in
NIPS: Neural Information Processing Systems Conference On-line trading of Explo-
ration and Exploitation Workshop, 2006.

126

[54] F. Teytaud and O. Teytaud, “On the huge benefit of decisive moves in monte-carlo
tree search algorithms,” in Proceedings of the 2010 IEEE Conference on Computational
Intelligence and Games, IEEE, 2010.

[55] B. E. Childs, J. H. Brodeur, and L. Kocsis, “Transpositions and move groups in monte
carlo tree search,” in 2008 IEEE Symposium On Computational Intelligence and
Games, IEEE, 2008.

[56] T. Kozelek, “Methods of mcts and the game arimaa,” Univerzita Karlova,
Matematicko-fyzikální fakulta, 2009.

[57] G. Chaslot, M. Winands, J. V. D. Herik, J. Uiterwijk, and B. Bouzy, “Progressive
strategies for monte-carlo tree search,” New Mathematics and Natural Computation,
vol. 4, no. 03, pp. 343–357, 2008.

[58] S. Gelly and D. Silver, “Combining online and offline knowledge in uct,” in Proceed-
ings of the 24th international conference on Machine learning, pp. 273–280, ACM,
2007.

[59] D. P. Helmbold and A. Parker-Wood, “All-moves-as-first heuristics in monte-carlo
go.,” in IC-AI, pp. 605–610, 2009.

[60] R. J. Lorentz, “Improving monte–carlo tree search in havannah,” in International
Conference on Computers and Games, pp. 105–115, Springer, 2010.

[61] D. Tom, “Investigating uct and rave: Steps towards a more robust method,” Master
thesis, University of Alberta, 2010.

[62] J.-B. Hoock, C.-S. Lee, A. Rimmel, F. Teytaud, M.-H. Wang, and O. Teytaud, “In-
telligent agents for the game of go,” IEEE Computational Intelligence Magazine,
2010.

[63] P. Khandelwal, E. Liebman, S. Niekum, and P. Stone, “On the analysis of complex
backup strategies in monte carlo tree search,” in International Conference onMachine
Learning, 2016.

[64] T. Vodopivec, S. Samothrakis, and B. Ster, “On monte carlo tree search and rein-
forcement learning,” Journal of Artificial Intelligence Research, vol. 60, pp. 881–936,
2017.

[65] G. A. Rummery, Problem solving with reinforcement learning. PhD thesis, University
of Cambridge Ph. D. dissertation, 1995.

[66] D. S. Mitrinovic and P. M. Vasic, Analytic inequalities. Springer, 1970.

127

[67] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and
W. Zaremba, “Openai gym,” arXiv preprint arXiv:1606.01540, 2016.

[68] D. Silver and J. Veness, “Monte-carlo planning in large pomdps,” in Advances in
neural information processing systems, 2010.

[69] T. Smith and R. Simmons, “Heuristic search value iteration for pomdps,” in Pro-
ceedings of the 20th conference on Uncertainty in artificial intelligence, pp. 520–527,
AUAI Press, 2004.

[70] T. Yee, V. Lisỳ, M. H. Bowling, and S. Kambhampati, “Monte carlo tree search in
continuous action spaces with execution uncertainty.,” in IJCAI, pp. 690–697, 2016.

[71] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, et al., “Mastering the game of go without human
knowledge,” Nature, vol. 550, no. 7676, pp. 354–359, 2017.

[72] J. Schulman, S. Levine, P. Abbeel, M. Jordan, and P. Moritz, “Trust region policy
optimization,” in International Conference on Machine Learning, pp. 1889–1897,
2015.

[73] J. Schulman, X. Chen, and P. Abbeel, “Equivalence between policy gradients and
soft q-learning,” arXiv preprint arXiv:1704.06440, 2017.

[74] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic: Off-policy maxi-
mum entropy deep reinforcement learning with a stochastic actor,” in International
Conference on Machine Learning, pp. 1861–1870, 2018.

[75] L. Buesing, N. Heess, and T. Weber, “Approximate inference in discrete distributions
with monte carlo tree search and value functions,” in International Conference on
Artificial Intelligence and Statistics, pp. 624–634, PMLR, 2020.

[76] A. Mensch and M. Blondel, “Differentiable dynamic programming for struc-
tured prediction and attention,” in International Conference on Machine Learning,
pp. 3462–3471, 2018.

[77] M. Geist, B. Scherrer, and O. Pietquin, “A theory of regularized markov decision
processes,” in International Conference on Machine Learning, pp. 2160–2169, 2019.

[78] O. Nachum and B. Dai, “Reinforcement learning via fenchel-rockafellar duality,”
CoRR, vol. abs/2001.01866, 2020.

[79] S. Shalev-Shwartz and Y. Singer, “Convex repeated games and fenchel duality,”
Advances in neural information processing systems, vol. 19, pp. 1265–1272, 2006.

128

[80] L. Pavel, “An extension of duality to a game-theoretic framework,” Automatica,
vol. 43, no. 2, pp. 226 – 237, 2007.

[81] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov, “Proximal policy
optimization algorithms,” arXiv preprint arXiv:1707.06347, 2017.

[82] K. Lee, S. Choi, and S. Oh, “Sparse markov decision processes with causal sparse
tsallis entropy regularization for reinforcement learning,” IEEE Robotics and Au-
tomation Letters, vol. 3, no. 3, pp. 1466–1473, 2018.

[83] R. Bellman, “The theory of dynamic programming,” tech. rep., Rand corp santa
monica ca, 1954.

[84] M. G. Bellemare, Y. Naddaf, J. Veness, and M. Bowling, “The arcade learning
environment: An evaluation platform for general agents,” Journal of Artificial
Intelligence Research, vol. 47, pp. 253–279, 2013.

[85] V. Niculae and M. Blondel, “A regularized framework for sparse and structured
neural attention,” arXiv preprint arXiv:1705.07704, 2017.

[86] O. Nachum and B. Dai, “Reinforcement learning via fenchel-rockafellar duality,”
arXiv preprint arXiv:2001.01866, 2020.

[87] M. Geist and B. Scherrer, “L1-penalized projected bellman residual,” in Proceedings
of the European Workshop on Reinforcement Learning (EWRL 2011), Lecture Notes
in Computer Science (LNCS), Springer Verlag - Heidelberg Berlin, september 2011.

[88] B. Belousov and J. Peters, “Entropic regularization of markov decision processes,”
Entropy, vol. 21, no. 7, p. 674, 2019.

[89] P.-A. Coquelin and R. Munos, “Bandit algorithms for tree search,” arXiv preprint
cs/0703062, 2007.

[90] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre, S. Schmitt, A. Guez,
E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap, and D. Silver, “Mastering atari,
go, chess and shogi by planning with a learned model,” 2019.

[91] H. Van Hasselt, A. Guez, and D. Silver, “Deep reinforcement learning with double
q-learning,” in Thirtieth AAAI conference on artificial intelligence, 2016.

[92] M. G. Bellemare, W. Dabney, and R. Munos, “A distributional perspective on rein-
forcement learning,” in Proceedings of the 34th International Conference on Machine
Learning-Volume 70, pp. 449–458, JMLR. org, 2017.

129

[93] V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning,” in
International conference on machine learning, pp. 1928–1937, 2016.

[94] W. H. Montgomery and S. Levine, “Guided policy search via approximate mirror
descent,” in Advances in Neural Information Processing Systems, pp. 4008–4016,
2016.

[95] J. Mei, C. Xiao, R. Huang, D. Schuurmans, and M. Müller, “On principled entropy
exploration in policy optimization,” in Proceedings of the 28th International Joint
Conference on Artificial Intelligence, pp. 3130–3136, AAAI Press, 2019.

[96] J.-B. Grill, F. Altché, Y. Tang, T. Hubert, M. Valko, I. Antonoglou, and R. Munos,
“Monte-carlo tree search as regularized policy optimization,” arXiv preprint
arXiv:2007.12509, 2020.

[97] S. Bubeck, R. Munos, and G. Stoltz, “Pure exploration in finitely-armed and
continuous-armed bandits,” Theoretical Computer Science, vol. 412, pp. 1832–1852,
04 2011.

[98] Q. V. Nguyen, F. Colas, E. Vincent, and F. Charpillet, “Long-term robot motion
planning for active sound source localization with monte carlo tree search,” in 2017
Hands-free Speech Communications and Microphone Arrays (HSCMA), pp. 61–65,
IEEE, 2017.

[99] F. Sukkar, G. Best, C. Yoo, and R. Fitch, “Multi-robot region-of-interest reconstruc-
tion with dec-mcts,” in 2019 International Conference on Robotics and Automation
(ICRA), pp. 9101–9107, IEEE, 2019.

[100] N. C. Volpi, Y. Wu, and D. Ognibene, “Towards event-based mcts for autonomous
cars,” in 2017 Asia-Pacific Signal and Information Processing Association Annual
Summit and Conference (APSIPA ASC), pp. 420–427, IEEE, 2017.

[101] J. Chen, C. Zhang, J. Luo, J. Xie, and Y. Wan, “Driving maneuvers prediction based
autonomous driving control by deep monte carlo tree search,” IEEE transactions on
vehicular technology, vol. 69, no. 7, pp. 7146–7158, 2020.

[102] N. Funk, G. Chalvatzaki, B. Belousov, and J. Peters, “Learn2assemble with structured
representations and search for robotic architectural construction,” in 5th Annual
Conference on Robot Learning, 2021.

[103] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and

130

M. Riedmiller, “Playing atari with deep reinforcement learning,” arXiv preprint
arXiv:1312.5602, 2013.

[104] K. Lee, S. Kim, S. Lim, and S. Choi, “A unified framework for maximum entropy
reinforcement learning,” arXiv preprint arXiv:1902.00137, 2019.

[105] I. Csiszár, “Eine informationstheoretische ungleichung und ihre anwendung auf
beweis der ergodizitaet von markoffschen ketten,” Magyer Tud. Akad. Mat. Kutato
Int. Koezl., vol. 8, pp. 85–108, 1964.

[106] G. Chen, Y. Peng, and M. Zhang, “Effective exploration for deep reinforcement
learning via bootstrapped q-ensembles under tsallis entropy regularization,” arXiv
preprint arXiv:1809.00403, 2018.

[107] A. Ben-Tal, A. Charnes, and M. Teboulle, “Entropic means,” Journal of Mathematical
Analysis and Applications, vol. 139, no. 2, pp. 537–551, 1989.

[108] D. Hsu, L. E. Kavraki, J.-C. Latombe, R. Motwani, S. Sorkin, et al., “On finding
narrow passages with probabilistic roadmap planners,” in Robotics: the algorithmic
perspective: 1998 workshop on the algorithmic foundations of robotics, pp. 141–154,
1998.

[109] H. Baier and P. D. Drake, “The power of forgetting: Improving the last-good-reply
policy in monte carlo go,” IEEE Trans. on Computational Intelligence and AI in
Games, 2010.

[110] S. M. LaValle et al., “Rapidly-exploring random trees: A new tool for path planning,”
Ames, IA, USA, 1998.

[111] J. Ji, A. Khajepour, W. W. Melek, and Y. Huang, “Path planning and tracking for
vehicle collision avoidance based on model predictive control with multiconstraints,”
IEEE Trans. on Vehicular Techn., 2016.

[112] J.-C. Latombe, “Motion planning: A journey of robots, molecules, digital actors,
and other artifacts,” IJRR, 1999.

[113] G. Sahar and J. M. Hollerbach, “Planning of minimum-time trajectories for robot
arms,” IJRR, 1986.

[114] B. K. Kim and K. G. Shin, “Minimum-time path planning for robot arms and their
dynamics,” Trans. on SMC, 1985.

[115] T. Kunz, U. Reiser, M. Stilman, and A. Verl, “Real-time path planning for a robot
arm in changing environments,” in IROS, 2010.

131

[116] A. Zelinsky, R. A. Jarvis, J. Byrne, S. Yuta, et al., “Planning paths of complete
coverage of an unstructured environment by a mobile robot,” in Int’l Conf. on
Advanced Robotics, 1993.

[117] C. Alexopoulos and P. M. Griffin, “Path planning for a mobile robot,” IEEE Trans.
on SMC, vol. 22, no. 2, pp. 318–322, 1992.

[118] S. M. Persson and I. Sharf, “Sampling-based a* algorithm for robot path-planning,”
IJRR, 2014.

[119] L. Kavraki, P. Svestka, J.-C. Latombe, and M. Overmars, “Probabilistic roadmaps
for path planning in high-dimensional configuration spaces,” IEEE Transactions on
Robotics and Automation, vol. 12, no. 4, pp. 566–580, 1996.

[120] E. Galceran and M. Carreras, “A survey on coverage path planning for robotics,”
Robotics and Autonomous systems, 2013.

[121] N. Dadkhah and B. Mettler, “Survey of motion planning literature in the presence
of uncertainty: Considerations for uav guidance,” Journal of Intelligent & Robotic
Systems, 2012.

[122] M. W. Achtelik, S. Lynen, S. Weiss, M. Chli, and R. Siegwart, “Motion-and
uncertainty-aware path planning for micro aerial vehicles,” Journal of Field Robotics,
2014.

[123] M. Kazemi, K. Gupta, and M. Mehrandezh, “Path-planning for visual servoing: A
review and issues,” Visual Servoing via Advanced Numerical Methods, 2010.

[124] L. Kocsis and C. Szepesvári, “Bandit based monte-carlo planning,” in European
conference on machine learning, pp. 282–293, Springer, 2006.

[125] M. Brunner, B. Brüggemann, and D. Schulz, “Hierarchical rough terrain motion
planning using an optimal sampling-based method,” in 2013 IEEE International
Conference on Robotics and Automation, pp. 5539–5544, IEEE, 2013.

[126] L. Palmieri, S. Koenig, and K. O. Arras, “Rrt-based nonholonomic motion planning
using any-angle path biasing,” in 2016 IEEE International Conference on Robotics
and Automation (ICRA), pp. 2775–2781, IEEE, 2016.

[127] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot, “Informed rrt*: Optimal sampling-
based path planning focused via direct sampling of an admissible ellipsoidal heuris-
tic,” in 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems,
pp. 2997–3004, IEEE, 2014.

132

[128] B. Kim, K. Lee, S. Lim, L. Kaelbling, and T. Lozano-Pérez, “Monte carlo tree search
in continuous spaces using voronoi optimistic optimization with regret bounds,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 9916–9924,
2020.

[129] K. Sun, B. Schlotfeldt, G. J. Pappas, and V. Kumar, “Stochastic motion planning
under partial observability for mobile robots with continuous range measurements,”
IEEE Transactions on Robotics, vol. 37, no. 3, pp. 979–995, 2020.

[130] Z. N. Sunberg and M. J. Kochenderfer, “Online algorithms for pomdps with continu-
ous state, action, and observation spaces,” in Twenty-Eighth International Conference
on Automated Planning and Scheduling, 2018.

[131] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “Despot: Online pomdp planning
with regularization,” Advances in neural information processing systems, vol. 26,
pp. 1772–1780, 2013.

[132] T. Smith and R. Simmons, “Point-based pomdp algorithms: Improved analysis and
implementation,” arXiv:1207.1412, 2012.

[133] D. Braziunas, “Pomdp solution methods,” Uof Toronto, 2003.
[134] J. Pajarinen, O. Arenz, J. Peters, and G. Neumann, “Probabilistic approach to

physical object disentangling,” IEEE Robotics and Automation Letters, vol. 5, no. 4,
pp. 5510–5517, 2020.

[135] C. D’Eramo, A. Nuara, M. Pirotta, and M. Restelli, “Estimating the maximum
expected value in continuous reinforcement learning problems,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 31, 2017.

[136] Z. Zhang, Z. Pan, and M. J. Kochenderfer, “Weighted double q-learning.,” in IJCAI,
pp. 3455–3461, 2017.

[137] P. Lv, X. Wang, Y. Cheng, and Z. Duan, “Stochastic double deep q-network,” IEEE
Access, vol. 7, pp. 79446–79454, 2019.

[138] T. Imagaw and T. Kaneko, “Estimating the maximum expected value through
upper confidence bound of likelihood,” in 2017 Conference on Technologies and
Applications of Artificial Intelligence (TAAI), pp. 202–207, IEEE, 2017.

[139] H. Attouch and R. J.-B. Wets, “Isometries for the legendre-fenchel transform,”
Transactions of the American Mathematical Society, vol. 296, no. 1, pp. 33–60, 1986.

133

[140] A. M. Metelli, A. Likmeta, and M. Restelli, “Propagating uncertainty in reinforce-
ment learning via wasserstein barycenters,” Advances in Neural Information Pro-
cessing Systems, vol. 32, 2019.

[141] Q. Rao and J. Frtunikj, “Deep learning for self-driving cars: Chances and challenges,”
in Proceedings of the 1st International Workshop on Software Engineering for AI in
Autonomous Systems, pp. 35–38, 2018.

[142] J. Ni, Y. Chen, Y. Chen, J. Zhu, D. Ali, and W. Cao, “A survey on theories and
applications for self-driving cars based on deep learning methods,” Applied Sciences,
vol. 10, no. 8, p. 2749, 2020.

[143] S. Grigorescu, B. Trasnea, T. Cocias, and G. Macesanu, “A survey of deep learn-
ing techniques for autonomous driving,” Journal of Field Robotics, vol. 37, no. 3,
pp. 362–386, 2020.

[144] C. Li, T. Trinh, L. Wang, C. Liu, M. Tomizuka, and W. Zhan, “Efficient game-
theoretic planning with prediction heuristic for socially-compliant autonomous
driving,” arXiv preprint arXiv:2207.03673, 2022.

[145] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and
D. Wierstra, “Continuous control with deep reinforcement learning,” arXiv preprint
arXiv:1509.02971, 2015.

[146] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik,
I. Antonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-
level control through deep reinforcement learning,” Nature, vol. 518, no. 7540,
pp. 529–533, 2015.

[147] S.-I. Amari, “alpha-divergence is unique, belonging to both f -divergence and breg-
man divergence classes,” IEEE Transactions on Information Theory, vol. 55, no. 11,
pp. 4925–4931, 2009.

[148] M. Cuturi and A. Doucet, “Fast computation of wasserstein barycenters,” in Inter-
national conference on machine learning, pp. 685–693, PMLR, 2014.

[149] A. Bai, F. Wu, and X. Chen, “Bayesian mixture modelling and inference based
thompson sampling in monte-carlo tree search,” Proceedings of the Advances in
Neural Information Processing Systems (NIPS), pp. 1646–1654, 2013.

[150] A. Bai, F. Wu, Z. Zhang, and X. Chen, “Thompson sampling based monte-carlo

134

planning in pomdps,” in Proceedings of the International Conference on Automated
Planning and Scheduling, vol. 24, 2014.

[151] C. F. Hayes, M. Reymond, D. M. Roijers, E. Howley, and P. Mannion, “Risk aware
and multi-objective decision making with distributional monte carlo tree search,”
arXiv preprint arXiv:2102.00966, 2021.

[152] B. Mavrin, H. Yao, L. Kong, K. Wu, and Y. Yu, “Distributional reinforcement
learning for efficient exploration,” in International conference on machine learning,
pp. 4424–4434, PMLR, 2019.

[153] W. Dabney, M. Rowland, M. G. Bellemare, and R. Munos, “Distributional rein-
forcement learning with quantile regression,” in Thirty-Second AAAI Conference on
Artificial Intelligence, 2018.

[154] L. Wasserman, “All of statistics: a concise course in statistical inference. 2004,”
2004.

[155] D. François, V. Wertz, and M. Verleysen, “The concentration of fractional distances,”
IEEE Transactions on Knowledge and Data Engineering, vol. 19, no. 7, pp. 873–886,
2007.

[156] M. J. Wainwright, High-dimensional statistics: A non-asymptotic viewpoint, vol. 48.
Cambridge University Press, 2019.

[157] J. Abernethy, C. Lee, and A. Tewari, “Fighting bandits with a new kind of smooth-
ness,” arXiv preprint arXiv:1512.04152, 2015.

[158] J. Zimmert and Y. Seldin, “An optimal algorithm for stochastic and adversarial
bandits,” in The 22nd International Conference on Artificial Intelligence and Statistics,
pp. 467–475, PMLR, 2019.

135

