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A. Derivation of the Lower Bound
As stated in the paper, the ELBO objective can be decom-
posed into a lower bound and an expected KL term, i.e.,

J(θ) =

∫
x

∑
o

p(x, o)
(
R(x)− log p(x, o) (9)

+ log p̃(o|x)
)
dx+

∫
x

p(x)
∑
o

p(o|x) log p(o|x)
p̃(o|x)

.

We can verify that this decomposition is valid by using the
identity log p(o|x) = log p(x, o)− log p(x), i.e.,

J(θ) =

∫
x

∑
o

p(x, o)
(
R(x)− log p(x, o)

+ log p̃(o|x)
)
dx

+

∫
x

∑
o

p(x)p(o|x)
(
log p(x, o)− log p(x)

− log p̃(o|x)
)
dx.

=

∫
x

∑
o

p(x, o)
(
R(x)− log p(x)

)
dx

=

∫
x

p(x)
(
R(x)− log p(x)

)
dx. (10)

We can see that Eq. 10 corresponds to the original definition
of L(θ) in the paper.

B. Computation of the MMD
The Maximum Mean Discrepancy (Gretton et al., 2012) is
a nonparametric divergence between mean embeddings in
a Reproducible Kernel Hilbert Space. We approximate the
MMD between two sample sets X and Y as

MMD(X,Y) =
1

m2

m∑
i,j

k(xi, xj) +
1

n2

n∑
i,j

k(yi, yj)

− 2

mn

m∑
i

n∑
j

k(xi, yi).

We use a squared exponential kernel given by

k(x,y) = exp

(
− 1

α
(x− y)>Σ(x− y)

)
,

where Σ is a diagonal matrix where each entry is set to
the median of squared distances within the ground-truth set
and the bandwidth α is chosen depending on the problem.
When ground-truth samples are not available, we apply
GESS (Nishihara et al., 2014) with large values for burn-
in, thinning and chain lengths to produce baseline samples

that are regarded as ground-truth. Note that obtaining these
ground-truth samples is computationally very expensive,
taking up to 2 days of computation time on 120 CPU cores.
We estimate the MMD based on ten thousand ground-truth
samples and two thousand samples from the given sampling
method. For MCMC methods, we choose the two thousand
most promising samples by applying a sufficient amount of
burn-in and using the largest thinning that keeps at least two
thousand samples in the set.

C. Component Optimization
As the Lagrangian of the optimization problem for the com-
ponent update corresponds to the Lagrangian of MORE (Ab-
dolmaleki et al., 2016) with ω = 1, the solution has the form

p(x|o) ∝ q(x|o)
η
η+1 exp (r̃o(x))

1
η+1 , (11)

where we substituted ω = 1 in Equation 5.

When the quadratic reward surrogate is given as

r̃o(x) = −
1

2
x>Rx+ x>r,

the parametersR and r (which are learned with weighted
least squares) correspond to the natural parameters of a
multivariate normal distribution

pr(x) = N (x|µr = R−1r,Σr = R−1) ∝ exp (r̃o(x)) .

Hence, the log-densities of p(x|o) are given by a linear
interpolation of the log-densities of q(x|o) and pr(x), i.e.

log p(x|o) = η

η + 1
log q(x|o) + 1

η + 1
log pr(x) + const.

The natural parameters of p(x|o) are therefore given by

P =
1

η + 1
(ηQ+R) , p =

1

η + 1
(ηq + r) ,

where Q = Σ−1q and q = Σ−1q µq are the natural parame-
ters of q(x|o).

As a function of the Lagrangian multiplier η,

p(x|o, η) = N
(
x|µp = P (η)−1p(η),Σp = P (η)−1

)
defines an e-geodesic, i.e. a straight line connecting q(x|o)
and pr(x) in logarithmic scale. During optimization we
want to find the largest step-size η such that p(x|o, η) stays
within the trust region. As we are minimizing a scalar on
a convex function, a simple line-search would be feasible.
However, the dual objective

Go(η) =ηε(o) + η logZ(Q, q)− (η + 1) logZ(P ,p),
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where logZ(X,x) = − 1
2 (x
>X−1x + log |2πX−1|) is

the log partition function of a Gaussian with natural param-
etersX and x, as well as the gradient

dGo(η)

dη
= ε(o)− KL(p(x|o, η)||q(x|o))

can be computed with little overhead and hence we use
L-BFGS for dual descent.

D. Weight Optimization
The optimization of the distribution over weights is similar
to the optimization of the components but we are optimiz-
ing over a discrete distribution rather than a multivariate
normal. Similar to the component optimization, the optimal
distribution has the form

p(o) ∝ q(o)
ηw
ηw+1 exp (r̃w(o))

1
ηw+1 , (12)

and corresponds to a log-linear interpolation between the
last distribution q(o) and a distribution pr(o) ∝ exp(r̃w(o))
that is specified by the reward function. The optimal step-
size ηw can be found by minimizing the dual

Gw(ηw) = ηwεw + (1 + ηw) log
∑
o

p(o|ηw)

based on the gradient

dGw(ηw)

dηw
= ε− KL(p(o|η)||q(o)).

E. Hyper-parameters
Table 1 lists the hyper-parameters as well as their values for
the experiments. We will now briefly discuss some of these
hyper-parameters.

E.1. KL bounds

The trust regions are necessary for the component updates
in order to ensure that the components stay within regions
where their local reward surrogate r̃o(x) remains valid. As
the reward surrogate is updated in each EM iteration, we
also update the reference distribution q(x|o) after each EM
iteration. However, this may allow the component to en-
ter regions that are insufficiently covered by samples after
several EM iterations which would result in bad local sur-
rogates. We therefore compute the KL bound based on the
effective number of samples within the active set, namely
the KL bound is given by

ε(o) = min(1e−3, 1e−5 · neff(o)),

where the effective sample size is computed based on the
importance weights

neff(o) =

(∑Ns
i=1 wi(o)

)2
∑Ns

i=1 wi(o)2
.

Table 1: A list of the hyper-parameters of VIPS as well their
values used during the experiments.

DESCRIPTION VALUE

MAXIMUM NUMBER OF COMPONENTS 1, 5, 40
NUMBER OF EM ITERATIONS 10
KL BOUND FOR WEIGHTS 1e−2
MAXIMUM KL BOUND FOR COMPONENTS 1e−3
KL BOUND FACTOR FOR COMPONENTS 1e−5
NUMBER OF SAMPLES PER COMPONENT 10 ·D
NUMBER OF INITIAL SAMPLES 20, 20000
SAMPLE REUSE FACTOR 3
ADDING RATE FOR COMPONENTS 30
DELETION RATE FOR COMPONENTS 300
MINIMUM WEIGHT 1e−7
INITIAL WEIGHT 1e−7
γ FOR ADDING-HEURISTIC 500
`2-REGULARIZATION FOR WLS 1e−10

As we ignore the weights for sampling during training, the
KL bound for the weights is not critical and could even
be dropped. However, for the experiments we chose a KL
bound of εw = 1e−2, because it seems sensible to prevent
large jumps in the log responsibilities.

E.2. Samples

As stated in the paper, we draw 10D samples per component
and roughly reuse the samples from the last 3 most recent
iterations. For the experiments, we drew 20000 additional
samples from the initial mixture at the beginning of the
optimization for better initial exploration. However, we
lowered this value to 20 for VIPS1 which often already
converged after 20000 iterations.

E.3. Adding and Deleting Components

We added a single new component every third sampling
iteration and initialized its weight to 1e−7. For computing
the score ei for deciding where to add the component, we
use γ = 500. This hyper-parameter is probably the least
intuitive to be chosen. When γ is too small, new modes
may only be discovered when we have sampled close to
their peak. However, when γ is too large we might add
components at irrelevant regions, especially when the target
distribution has heavy tails. However, we found γ = 500 to
produce good results among all our experiments.

We delete a component when its weight was below 1e−7 for
the last 300 EM-Iterations (i.e. 30 sampling iterations). We
do not want to keep components with lower weight, because
their effect on the approximation would be marginal.
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