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Figure S1: (A) Volume drift (or change) of keratin bulk material in the NPT ensemble (1 bar, 300 K) over 200 ns simulation
time against the bond number with an initial system size of 60 · 60 · 60 nm. The average is computed from 10 independent
samples and the standard deviation of the mean is used as the error. (B) Convergence of the standard deviation of the
Young’s modulus σ(E) against the number of independent simulations used for averaging and, in different colors, the system
sizes that were tested. 30 bond neighbors are used for these simulations. A system size of 60 · 60 · 60 nm with 30 bonds
neighbors is sufficiently large.

Figure S2: (Top) The top-viewing perspective of the spatula. Spatula beads are shown in green and a visual representation
of the bond network is shown in purple. (Bottom) The shape of the spatula from its side is inspired by the finite element
model of Sauer et al.[1] and the finite element calculations of Xu et al.[2]
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Vertex x (nm) y (nm) Vertex x (nm) y (nm)
1 0.000 82.780 62 0.000 92.780
2 0.000 60.900 61 0.000 114.660
3 22.680 61.330 60 22.680 114.230
4 44.160 61.080 59 44.160 114.480
5 66.780 61.310 58 66.780 114.250
6 89.140 61.550 57 89.140 114.010
7 113.090 61.540 56 113.090 114.020
8 138.600 62.230 55 138.600 113.330
9 163.710 62.470 54 163.710 113.090
10 188.760 62.100 53 188.760 113.460
11 213.790 62.450 52 213.790 113.110
12 237.290 62.260 51 237.290 113.300
13 256.460 59.770 50 256.460 115.790
14 273.290 55.720 49 273.290 119.840
15 287.650 50.800 48 287.650 124.760
16 302.490 45.000 47 302.490 130.560
17 317.480 37.370 46 317.480 138.190
18 332.730 26.260 45 332.730 149.300
19 347.200 17.070 44 347.200 158.490
20 362.240 8.890 43 362.240 166.670
21 376.230 2.460 42 376.230 173.100
22 390.260 0.360 41 390.260 175.200
23 402.970 0.000 40 402.970 175.560
24 415.000 2.270 39 415.000 173.290
25 423.820 6.910 38 423.820 168.650
26 430.010 13.090 37 430.010 162.470
27 434.190 20.690 36 434.190 154.870
28 437.410 30.860 35 437.410 144.700
29 438.180 44.000 34 438.180 131.560
30 438.960 61.000 33 438.960 114.560
31 439.730 81.800 32 439.730 93.760

Table S1: All 62 vertices of our mesoscale spatula model.

Name Extent (relative to lx of spatula) Color in Figure 1
Spatula pad 70% to 100% blue
Shaft haft 0% to 5% grey
Spatula tip 95% to 100% red

Spatula joint 60% to 65% purple
xs 65% -

Table S2: Names, colors and the position of different areas of the mesoscale spatula model. The extent is relative to the
spatula length in the x direction lx.
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1 Surface model details

The surface is generated much like the bulk keratin model, it has the same random arrangement of beads
and the same bead density. We use the same minimum distance between beads and the same target density
to fill the simulation box up to a maximum height zm with beads. The minimum height of the surface is
always 13 nm. In the case of rough surfaces, we insert beads underneath a three-dimensional landscape
defined by zm = 13 nm +λ sin(x ·πnp/l

s
x +πXx) · sin(y ·πnp/l

s
y +πXy) with the peak height λ = 8 nm, the

number of peaks in x and y direction np, and the length of the surface in x and y: lsx and lsy. We apply a
random phase shift using a uniformly distributed random number X ∼ U([0, 2]) in the x and y directions
to simulate random placements of the spatula on top of a surface.

2 Details about the parameterization of the anisotropic bonded interactions
of the mesoscale keratin force field

Before parameterizing the bond coefficients k and kb, the ideal bulk keratin system size is determined by
applying strain of 0, 1, and 2% in the (virtual) fibril direction for ten independently created bulk keratin
systems of different sizes. For each system, Young’s modulus is calculated. This is done by increasing
box lengths, as shown in Figure S1 (B). By ideal bulk system size, we mean here that computation is
expeditious and that the average and standard deviation of Young’s modulus E are converged. No finite-
size effects affect our force field parameterization, and statistics are distinct enough to distinguish between
fitting or unfitting parameters. For each system size, Young’s modulus along the (virtual) fibril direction
E is calculated for all ten systems, and the smallest system size at which the standard deviation of Young’s
modulus is converged is chosen. As seen in Figure S1 (B), a system size of (60)3 nm is sufficiently large
and is used from here on out for all simulations of Young’s modulus and Poisson’s ratio.
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Figure S3: Resulting Poisson’s ratios ν and Young’s moduli E of the bulk keratin material system of the combination of k
and kb values (listed in Table S3). The standard deviation using three samples for averaging (grey) and 10 samples (colored)
are used as the error. The bond coefficients labeled in the legend are in units of kJ mol−1 nm−2. Grey data points are listed
in Table S3. The average is computed from 10 independent samples and the standard deviation of the mean is used as the
error.
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k (kJ mol−1 nm−2) kb (kJ mol−1 nm−2) E (MPa) σ(E) (MPa) ν σ(ν)
220 1150 4229.89 11.34 0.399 0.001
220 1250 4523.01 12.37 0.404 0.001
230 1150 4308.66 13.32 0.396 0.000
230 1250 4596.50 42.65 0.401 0.002
235 1150 4312.27 6.13 0.394 0.001
235 1250 4584.15 38.98 0.398 0.001
240 1150 4338.86 20.17 0.394 0.001
240 1250 4645.88 58.69 0.396 0.002
245 1150 4401.44 17.26 0.390 0.002
245 1250 4643.31 9.31 0.397 0.002
255 1150 4404.21 14.41 0.390 0.001
255 1250 4673.84 43.26 0.394 0.001
260 1150 4417.73 32.20 0.388 0.001
260 1250 4732.51 17.59 0.394 0.001
223 1250 4553.27 42.13 0.402 0.003
223 1230 4508.45 35.65 0.402 0.002
223 1220 4451.48 46.55 0.400 0.002
223 1210 4442.88 38.58 0.399 0.003
229 1250 4577.57 41.32 0.400 0.001
229 1230 4499.05 38.81 0.400 0.002
229 1220 4513.33 28.54 0.399 0.001
229 1210 4476.64 43.26 0.398 0.002

Table S3: A small selection of results of the bulk keratin material parametrization of the anisotropic bond coefficients k
and kb. The Young’s modulus E is calculated between 0% and 2% strain in the direction of the (virtual) fibrils, and the
Poisson’s ratio ν is the average between 1% and 2% strain orthogonal to the fibril direction. The values are averages over 3
independently generated systems.

3 Details about the parameterization of the nonbonded interactions of the
mesoscale keratin force field

We compare different system sizes to ensure that finite-size effects are negligible. Figure S4 shows that
p converges slowly with increasing system size. For the smallest system of 30 · 30 nm (blue), each bead
is bonded to Nbonds/N = 8.6% of all beads, leading to finite-size effects. For a system of size 90 · 90 nm,
the ratio of bonds to the number of beads is only 0.9%. We continue with this size since it is a good
compromise of the value of p with computational efficiency.
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Figure S4: Pull-off pressure of different sized bulk keratin systems ranging from 30 nm box length (total number of beads
N = 350) to 150 nm (N = 8875). With an increasing number of beads, the average and the standard deviation of the pull-off
pressure converges. The ratio of the bulk keratin pull-off pressure to the all-atom pull-off pressure p/pua is shown in the
legend. The force field parameters used for this validation are k = 226 kJ mol−1 nm−2, kb = 1220 kJ mol−1 nm−2, σ = 2.8
nm, and ε = 1000 kJ mol−1. The average is computed from 10 independent samples and the standard deviation of the mean
is used as the error.

4 United-atom gecko keratin model

The united-atom (UA) gecko keratin model uses the GROMOS 54A7 force field for all atoms present in
the system, keratin protein and surface[3, 4, 5, 6].

In earlier coarse-grained work[7] we discovered that only the intrinsically disordered protein regions
(IDRs) of the gecko keratin directly contact the surface and not the beta-folded region of the keratin
protein that polymerizes into nanofibrils. Thus only the IDRs of the gecko keratin protein are responsible
for the adhesive energetic interaction between spatula and surface. Therefore we amorphized a gecko beta-
keratin protein (Ge-cprp-9), where only the intrinsically disordered parts of the protein are considered.

The exact equilibration protocol, including energy minimization, amorphization at 2000 K with subse-
quent cool down, and multi-step equilibrations in the NPT ensemble with and without soft-core potentials,
would go beyond the scope of this SI.

Additionally, gecko keratin contains a large fraction of disulfide bonds.[8, 7] We cross-link one-third of
the cysteines (≈ 7.5% of the amino acids in the protein). Therefore, achieving the same cross-link density
as in a previous coarse-grained work.[8]

The united-atom keratin simulations of the previous work were carried out using the GROMACS
2018 software package[9]. The production runs to calculate Young’s modulus were performed in three-
dimensional periodic boundary conditions (PBC). The timestep was 2 fs, and a velocity rescale[10] ther-
mostat kept the temperature at 300 K. A semi-isotropic Berendsen[11] barostat with a compressibility of
4.5 · 10−5 bar−1 in x and y, and a compressibility of 0 bar−1 in z, kept the pressure of the system at 1
bar. Production runs were repeated five times for five independently generated systems (n = 25). Young’s
modulus was computed with a linear fit to the first 1% strain. Poisson’s ratio was computed as the average
over strain 1% to 5%.

5 Simulation details

All simulations are carried out using the GROMACS 2018 and 2021 software packages[9]. The van der
Waals interaction cutoff is 12 nm, and van der Waals interactions are modeled using the 12-6 Lennard-
Jones potential. We use the potential-shift-Verlet scheme[12] as a cutoff modifier for a physically[13]
smooth transition at the cutoff. We simulate state points in NVT and NPT with a temperature of 300 K
and a pressure of 1 bar, respectively. Different thermostats and barostats are used at different stages; see
the following subsections. The timestep is 20 fs.
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5.1 Mechanical property calculations with the mesoscale keratin material

5.1 Mechanical property calculations with the mesoscale keratin material

Young’s modulus and Poisson’s ratio are calculated for the three-dimensionally periodic mesoscale keratin
material by scaling the initial system configuration in (virtual) fibril direction to give strains of 0 to 2%.

A semi-isotropic Berendsen barostat[11] with a compressibility of 0 bar−1 in the fibril direction keeps the
pressure at 1 bar using a coupling time of τp = 100 ps and allows the perpendicular dimensions to adjust.
A velocity rescale thermostat[10] is used with a coupling time of τT = 2 ps. The systems are simulated for
200 ns. Pressure, density, and bond energies converge during the first nanosecond of the simulation. The
last 180 ns are assumed to be in equilibrium and are used for the analysis of mechanical properties.

5.2 Mesoscale keratin material detachment simulations

To perform mesoscale keratin material detachment simulations, the material with the optimized parameters
(Section 3) is placed on top of a surface of height 13 nm with a minimum distance between surface and
bulk of σ = 4.0 nm. The fibril direction is parallel to the surface. The PBC in directions parallel to the
surface makes the mesoscale keratin material and surface semi-infinite, i.e., two infinite plates in adhesive
contact. The surface beads are fixed in place. The center of mass (COM) of the beads of the top half of
the bulk keratin is connected by a harmonic bond to a virtual particle, which can be moved at will and
which mimics the action of a cantilever.

The pulling simulations of the mesoscale keratin material periodic parallel to the surface are performed
in three consecutive steps. First, the keratin material is preloaded (i.e., pressed against the surface) with
a constant pressure of 0.2553 kJ mol−1 nm−3 (corresponding to a constant force of 2068 kJ mol−1 nm−1 in
the 90 · 90 nm system) acting on the top half of the material for 100 ns (red particles in Figure 5). Next,
the system is allowed to relax for 100 ns with no external force applied. Finally, the keratin material is
pulled away from the surface in the direction normal to the surface. To this end, the virtual cantilever is
moved away from the surface with constant velocity v = 0.001 nm ps−1 (with the harmonic force constant
kpull = 1000 kJ mol−1 nm−2 or kpull = 1660 pN nm−1), with the virtual particle located initially at the

COM of the top half of the keratin. The resulting loading rate, Ḟ = kpullv = 1.66 · 1012 pN s−1, is equal to
the loading rate of the united-atom reference simulations[14].

The preload and relax phases use a stochastic dynamics (SD) thermostat[15] with a coupling time of
τT = 1 ps to inhibit any possibility of the harmonic keratin network to periodically oscillate without being
able to dissipate the energy. The final pulling simulation, when the virtual cantilever moves away from the
surface to pull off the bulk keratin material, uses a velocity rescale thermostat[10] with τT = 1 ps, because
the friction of the SD thermostat would bias the measured pull-off force. All simulations take place in the
NVT ensemble with a large vacuum volume above the keratin to allow the pull-off.

6 Spatula detachment simulations

Initially, the spatula is generated as described in Section 2.2. Then we push the spatula pad beads (Figure
1 blue and Table S3) for 100 ns with a constant pressure of 0.2553 kJ mol−1 nm−3 against the surface. The
surface beads are fixed in space. The center of mass (COM) of the shaft haft, designated as the first five
percent (in x dimension, with the shaft haft coming before the spatula pad) of the spatula length (lx·0−5%),
as seen in Figure 1 (grey) and described in Table S3, is kept from rotating around the axis normal to the
surface by a flat-bottom[16, 17] potential (as implemented in GROMACS[9]) with kflat−bottom = 2 · 104 kJ
mol−1 nm−2, the distance where the potential starts is r0 = 2 nm. After this preload step, the system is
allowed to relax with no applied forces for another 100 ns. A flat-bottom[16, 17] potential is, however, still
used to restrict the spatula from rotating around the axis normal to the surface.

In the fourth step, the spatula is prepared to be bent upwards. Therefore, we move the shaft haft
COM away from the surface for 300 ps with kpull = 1 · 105 kJ mol−1 nm−2 and a velocity of 0.1 nm ps−1.
Simultaneously, the shaft haft is kept from rotating as described above. This step is done to correct a
GROMACS specific error that arises when the spatula initially bends opposite of the set bending direction
(due to thermal fluctuations).
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As done by Sauer et al.[1], the main pulling mechanism is broken into two parts: bending the shaft so
that it has an inclination of some degree to the surface (step 5), and then pulling the spatula vertically off
that surface (step 6). The bending is carried out by applying an umbrella potential (V (θ) = k/2 (θ − θ0)2

with k = 5 · 109 kJ mol−1 rad−2) on the COM of the spatula shaft haft using an ”angle-axis” geometry.
This is GROMACS terminology for an angle-dependent harmonic potential between two vectors. Here,
one vector is defined between two COMs, and the second vector is defined by an axis. The angle-axis is
defined between the shaft haft COM and the spatula tip COM (Table S3) and the vector parallel to the
surface {−1, 0, 0}. We rotate with 0.001 deg ps−1 upwards (Note that the angle-force constant is in units
of radians, while the unit for the rate of bending is expressed in degree, as used in GROMACS). This
pulling results in a force normal (upwards) to the shaft bending the spatula along the way.

200 225 250 275 300 325 350
Shaft haft COM position z (nm)

0.0

0.5

1.0

1.5

2.0

2.5

|
U

LJ
|

W
p

F: 16.61 1012 (pN s 1)
F: 1.66 1012 (pN s 1)
F: 0.83 1012 (pN s 1)
F: 0.33 1012 (pN s 1)

0.30

0.540.600.66

(a)

175 200 225 250 275 300 325 350
Shaft haft COM postion z (nm)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

|
U

LJ
| a

nd
 W

p (
10

6  k
J m

ol
1 ) F: 16.61 1012 (pN s 1)

F: 1.66 1012 (pN s 1)
F: 0.83 1012 (pN s 1)
F: 0.33 1012 (pN s 1)

(b)

200 225 250 275 300 325 350
Shaft haft COM position z (nm)

0.0

0.5

1.0

1.5

2.0

2.5

|
U

Bo
nd

|
W

p

F: 16.61 1012 (pN s 1)
F: 1.66 1012 (pN s 1)
F: 0.83 1012 (pN s 1)
F: 0.33 1012 (pN s 1)

0.07
0.240.280.29

(c)

175 200 225 250 275 300 325 350
Shaft haft COM postion z (nm)

0.5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

|
U

Bo
nd

| a
nd

 W
p (

10
6  k

J m
ol

1 ) F: 16.61 1012 (pN s 1)
F: 1.66 1012 (pN s 1)
F: 0.83 1012 (pN s 1)
F: 0.33 1012 (pN s 1)

(d)

Figure S5: (A) Ratio of adhesive energy overcome during detachment to work of pull-off for different loading rates. The
position of the shaft haft when the force is at its maximum (pull-off) is marked with a triangle. Red values at the beginning
of black dashed lines note the ratio at the position of pull-off. (B,D) Energies (solid lines) and work (dashed lines) shown
side-by-side for the varying loading rates. (C) Ratio of bending energy to work of pull-off. Data shown is the average
computed from 10 independent samples.
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Figure S6: The ratio of overcome adhesive energy (blue) at the position of the maximum force is compared to contributions
overcome from bending (red) and dissipated rest (green) energies to work of pull-off for different loading rates. The ratios
are annotated in the stacked bars. The spatula equilibrium inclination is θS = 60◦ (A) and (B) θS = 75◦. The average is
computed from 10 independent samples.
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Figure S7: The pull-off force is shown against the peak (or valley) density. The data points are the average computed from
10 independent samples and the standard deviation of the mean is used as the error.
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Rep. 1986, 5, 10 2729.

[17] H. Ryu, T.-R. Kim, S. Ahn, S. Ji, J. Lee, PLOS ONE 2014, 9, 10 e108888.

10



REFERENCES

Table of Contents

A multiscale modeling approach derives a particle-based mesoscale gecko spatula model that is able to link atomistic and
mesoscale simulations and yield pull-off forces similar to experimental work. A root-mean-square roughness causality is
disproven and a roughness wavelength-dependent sigmoidal trend is revealed, instead. We confirm an experimental hypoth-
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