# **European Journal of Inorganic Chemistry**

Supporting Information

Ligand Exchange Triggered Photosensitizers – Bodipy-Tagged NHC-Metal Complexes for Conversion of <sup>3</sup>O<sub>2</sub> to <sup>1</sup>O<sub>2</sub>

Stepan Popov and Herbert Plenio\*

License: CC BY-NC-ND 4.0 International - Creative Commons, Attribution-NonCommercial-NoDerivatives

# **Table of contents**

| UV/Vis measurements       | 4  |
|---------------------------|----|
| Fluorescence measurements | 14 |
| NMR spectra               | 20 |
| IR spectra                | 35 |
| Cyclic voltammetry        | 37 |
| Mass spectrometry data    |    |
| Crystal structure data    | 47 |
| References                | 48 |

**Materials.** All chemicals were purchased as reagent grade from commercial suppliers and used without further purification unless otherwise noted. DCM was obtained from Fisher Scientific and pentane was obtained from BCD Chemie GmbH in Frankfurt. All solvents were stored over molecular sieves (4 Å) under N<sub>2</sub>. Preparative chromatography was performed using Merck silica 60 (0.063 – 0.02 mesh). *Meso*-Cl BODIPY was synthesized according to the literature procedure <sup>[1]</sup>.



Figure S1. Home-built photoreactor for photocatalytic experiments.



Figure S2. Light intensity spectrum of the green LED system used in photocatalysis experiment.

#### **UV/Vis measurements**



**Figure S3.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [RhCl(cod)(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regression for a decreasing of the absorbance at 410 nm for **A** and **B**.



**Figure S4.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuCl(NHC\_PK)] ( $c = 5.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(NHC\_PK1)] ( $c = 5.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regression for a decreasing of the absorbance at 410 nm for **A** and **B**.



**Figure S5.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(NHC\_PK2)] ( $c = 5.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuCl(Cy<sub>2</sub>P-bdp)] ( $c = 5.0 \ \mu$ M) in CH<sub>3</sub>CN. **C**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [PdCl(allyl)(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regressions for a decreasing of the absorbance at 410 nm for **A**,**B** and **C**.



**Figure S6.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuCl(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of 2,6-diiodo-BODIPY ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. **C**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(NHC\_PK1)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regressions for a decreasing of the absorbance at 410 nm for **A**, **B** and **C**.



**Figure S7.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuCl(NHC\_PK)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(NHC\_PK2)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. **C**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuNTf<sub>2</sub>(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regressions for a decreasing of the absorbance at 410 nm for **A**, **B** and **C**.



**Figure S8.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of BODIPY imidazolium salt **3** ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [AuCl(NHC\_OH1)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. **C**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [IrCl(cod)(NHC\_OH1)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regressions for a decreasing of the absorbance at 410 nm for **A**, **B G**nd



**Figure S9.** Left: **A**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of of [CuCl(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN in the absorption spectra. **B**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of [RhCl(CO)<sub>2</sub>(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. **C**: Decay of the DPBF ( $c_0 = 90 \ \mu$ M) in a presence of of [IrCl(CO)<sub>2</sub>(**3**)] ( $c = 1.0 \ \mu$ M) in CH<sub>3</sub>CN. Solutions were irradiated with a green LED. Right: Linear regressions for a decreasing of the absorbance at 410 nm for **A**,**B** and **C**.



Figure S10. Absorbance at  $\lambda_{abs, max}$  for the corresponding metal complexes with different concentrations in CH<sub>3</sub>CN solution.



**Figure S11.** Absorbance at  $\lambda_{abs, max}$  for the corresponding metal complexes with different concentrations in CH<sub>3</sub>CN solution.



Figure S12. Absorbance at  $\lambda_{abs, max}$  for the corresponding metal complexes with different concentrations in CH<sub>3</sub>CN solution.

#### **Fluorescence measurements**

Quantum yields were determined according to the literature procedure (U. Resch-Genger, K. Rurack, *Pure Appl. Chem.*, **2013**, 85, 2005–2026) using rhodamine 6G (from Sigma-Aldrich, BioReagent, suitable for fluorescence) as the standard. Absorption and emission spectra for all compounds and standards were obtained over a range of concentrations (200 nM to 0.5  $\mu$ M, in acetonitrile) where a linear correlation between concentration and absorption was observed. The absorbance was within the range of 0.01 to 0.12. The quantum yield was calculated according to the equation:

$$\varphi_x = \varphi_{st}(\frac{r_x}{r_{st}})(\frac{\eta_x}{\eta_{st}})^2$$

where the subscripts *st* and *x* denote standard and test respectively,  $\varphi_x$  is the fluorescence quantum yield, *r* the gradient from the plot of integrated fluorescence intensity vs. absorbance, and  $\eta$  the refractive index of the solvent.  $\varphi_{st} = 0.95$  in EtOH.



**Figure S13.** Left: absorbance (black) and emission (red,  $\lambda_{exc}$  = 540 nm) spectra of [AuCl(**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [AuCl(**3**)].



**Figure S14.** Left: absorbance (black) and emission (red,  $\lambda_{exc} = 540$  nm) spectra of [AuNTf<sub>2</sub>(**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [AuNTf<sub>2</sub>(**3**)].



**Figure S15.** Left: absorbance (black) and emission (red,  $\lambda_{exc}$  = 540 nm) spectra of [CuCl(**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [CuCl(**3**)].



**Figure S16.** Left: absorbance (black) and emission (red,  $\lambda_{exc}$  = 540 nm) spectra of [PdCl(ally) (**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [PdCl(allyl)(**3**)].



**Figure S17.** Left: absorbance (black) and emission (red,  $\lambda_{exc} = 540$  nm) spectra of [IrCl(CO)<sub>2</sub>(**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [IrCl(CO)<sub>2</sub>(**3**)].



**Figure S18.** Left: absorbance (black) and emission (red,  $\lambda_{exc} = 540$  nm) spectra of [RhCl(CO)<sub>2</sub>(**3**)] in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for [RhCl(CO)<sub>2</sub>(**3**)].



**Figure S19.** Left: absorbance (black) and emission (red,  $\lambda_{exc}$  = 540 nm) spectra of Rhodamine 6G in EtOH solution. Right: integrated fluorescence intensity *vs.* absorbance plot for Rhodamine 6G.



**Figure S20.** Left: absorbance (black) and emission (red ,  $\lambda_{exc} = 540$  nm) spectra of **3**·HI in CH<sub>3</sub>CN solution. Right: integrated fluorescence intensity *vs.* absorbance plot for BODIPY HI **3**.



**Figure S21.** Left: absorbance spectra of [IrCl(cod)(**3**)] in CH<sub>3</sub>CN solution. Right: absorbance spectra of [RhCl(cod)(**3**)] in CH<sub>3</sub>CN solution.





Figure S22. <sup>1</sup>H-NMR (300 MHz) of 8-imidazolo-BODIPY 2 in CDCl<sub>3</sub>.



Figure S23. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of 8-imidazolo-BODIPY 2 in CDCl<sub>3</sub>.



Figure S24. <sup>19</sup>F-NMR (471 MHz) of 8-imidazolo-BODIPY 2 in CDCl<sub>3</sub>.



Figure S25. <sup>1</sup>H-NMR (500 MHz) of BODIPY imidazolium salt 3 in CDCl<sub>3</sub>.



Figure S26. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of BODIPY imidazolium salt 3 in CDCl<sub>3</sub>.



Figure S27. <sup>19</sup>F-NMR (471 MHz) of BODIPY imidazolium salt 3 in CDCl<sub>3</sub>.



Figure S28. <sup>11</sup>B-NMR (160 MHz) of BODIPY imidazolium salt 3 in CDCl<sub>3</sub>.

![](_page_23_Figure_2.jpeg)

Figure S29. <sup>19</sup>F{<sup>11</sup>B}-NMR (471 MHz) of BODIPY imidazolium salt 3 in CDCl<sub>3</sub>.

![](_page_24_Figure_0.jpeg)

Figure S30. <sup>1</sup>H-NMR (500 MHz) of [AuCl(3)] complex in CDCl<sub>3</sub>.

![](_page_24_Figure_2.jpeg)

Figure S31. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of [AuCl(3)] complex in CDCl<sub>3</sub>.

![](_page_25_Figure_0.jpeg)

Figure S32. <sup>19</sup>F-NMR (471 MHz) of [AuCl(3)] complex in CDCl<sub>3</sub>.

![](_page_25_Figure_2.jpeg)

Figure S33. <sup>1</sup>H-NMR (500 MHz) of [IrCl(cod)(3)] complex in CDCl<sub>3</sub>.

![](_page_26_Figure_0.jpeg)

Figure S34.  ${}^{13}C{}^{1}H$ -NMR (126 MHz) of [IrCl(cod)(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_26_Figure_2.jpeg)

Figure S35. <sup>19</sup>F-NMR (471 MHz) of [IrCl(cod)(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_27_Figure_0.jpeg)

Figure S36. <sup>1</sup>H-NMR (500 MHz) of [RhCl(cod)(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_27_Figure_2.jpeg)

Figure S37. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of [RhCl(cod)(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_28_Figure_0.jpeg)

Figure S38. <sup>19</sup>F-NMR (471 MHz) of [RhCl(cod)(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_28_Figure_2.jpeg)

Figure S39. <sup>1</sup>H-NMR (500 MHz) of [PdCl(allyl)(3)] complex in CDCl<sub>3</sub>.

![](_page_29_Figure_0.jpeg)

Figure S40. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of [PdCl(allyl)(3)] complex in CDCl<sub>3</sub>.

![](_page_29_Figure_2.jpeg)

Figure S41. <sup>19</sup>F-NMR (471 MHz) of [PdCl(allyl)(3)] complex in CDCl<sub>3</sub>.

![](_page_30_Figure_0.jpeg)

Figure S42. <sup>1</sup>H-NMR (500 MHz) of [IrCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_30_Figure_2.jpeg)

Figure S43. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of [IrCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_31_Figure_0.jpeg)

Figure S44. <sup>19</sup>F-NMR (471 MHz) of [IrCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_31_Figure_2.jpeg)

Figure S45. <sup>1</sup>H-NMR (500 MHz) of [RhCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_32_Figure_0.jpeg)

Figure S46.  ${}^{13}C{}^{1}H$ -NMR (126 MHz) of [RhCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_32_Figure_2.jpeg)

Figure S47. <sup>19</sup>F-NMR (471 MHz) of [RhCl(CO)<sub>2</sub>(3)] complex in CD<sub>2</sub>Cl<sub>2</sub>.

![](_page_33_Figure_0.jpeg)

Figure S48. <sup>1</sup>H-NMR (500 MHz) of [CuCl(3)] complex in CDCl<sub>3</sub>.

![](_page_33_Figure_2.jpeg)

Figure S49. <sup>13</sup>C{<sup>1</sup>H}-NMR (126 MHz) of [CuCl(3)] complex in CDCl<sub>3</sub>.

![](_page_34_Figure_0.jpeg)

Figure S50. <sup>19</sup>F-NMR (471 MHz) of [CuCl(3)] complex in CDCl<sub>3</sub>.

#### IR spectra

IR spectra of the metal carbonyls were recorded on a Fisher Scientific Nicolet 6700 FT-IR spectrometer in 1,2-dichloroethane solution using the ATR method with germanium prism in the corresponding accessory. (IC department)

![](_page_35_Figure_2.jpeg)

Figure S51. IR spectrum of [IrCl(CO)<sub>2</sub>(3)] complex.

![](_page_35_Figure_4.jpeg)

Figure S52. IR spectrum of [IrCl(CO)<sub>2</sub>(IMes)] complex.

IR spectra of the metal carbonyls were recorded on an FT-IR Perkin-Elmer spectrometer in  $CDCl_3$  solution using the ATR method with UATR Diamond/ZnSe ATR accessory. (OC department)

![](_page_36_Figure_1.jpeg)

**Figure S53.** IR spectrum of [IrCl(CO)<sub>2</sub>(**IMes**)] complex (data from this spectrometer not used in the discussion)

![](_page_36_Figure_3.jpeg)

**Figure S54.** IR spectrum of  $[IrCl(CO)_2(3)]$  complex. (data from this spectrometer not used in the discussion)

#### **Cyclic voltammetry**

![](_page_37_Figure_1.jpeg)

**Figure S55a.** Cyclic voltammogram of [IrCl(cod)(**3**)] was recorded in dry methylene chloride under an atmosphere of argon, supporting electrolyte N*n*Bu<sub>4</sub>PF<sub>6</sub> (c = 0.1 mol/L) at variable scan rate referenced vs Fc/Fc<sup>+</sup>.

![](_page_37_Figure_3.jpeg)

**Figure S56b.** Cyclic voltammogram of [IrCl(cod)(IMes)] was recorded in dry methylene chloride under an atmosphere of argon, vs. FcMe<sub>8</sub>, supporting electrolyte N*n*Bu<sub>4</sub>PF<sub>6</sub> (c = 0.1 mol/L) at variable scan rate.

#### Mass spectrometry data

![](_page_38_Figure_1.jpeg)

# Meas. m/z m/z lon Formula Adduct Sum Formula |err| [mDa] |err| [ppm] mSigma e Conf z 1 371.22155 371.22131 C20H26BF2N4 M+H C20H25BF2N4 0.12 0.33 4.8 even 1+

#### Accurate Mass Measurement

Figure S57. Mass spectra of 8-imidazolo BODIPY (2).

![](_page_39_Figure_0.jpeg)

Figure S58. Mass spectra of BODIPY imidazolium salt (3)

![](_page_40_Figure_0.jpeg)

Accurate Mass Measurement

| # | Meas. m/z | Ion Formula     | m/z       | Sum Formula     | err  [mDa] | err [ppm] | e Conf | Adduct | z  |
|---|-----------|-----------------|-----------|-----------------|------------|-----------|--------|--------|----|
| 1 | 625.19859 | C28H32AuBCIN    | 625.19765 | C28H32AuBCIN    | 0.44       | -0.71     | odd    | Μ      | 1+ |
| 1 | 650.25461 | C25H34AuBF2N5   | 650.25355 | C25H34AuBF2N5   | 0.61       | -0.94     | even   | M      | 1+ |
| 1 | 662.23084 | C28H36AuBCIFN2  | 662.23043 | C28H36AuBCIFN2  | 0.09       | 0.13      | odd    | M      | 1+ |
| 1 | 662.23084 | C28H36AuBCIFN2  | 662.23043 | C28H32AuBCIFN   | 0.09       | 0.13      | odd    | M+NH4  | 1+ |
| 2 | 625.19859 | C23H31AuBCIFN4  | 625.19745 | C23H31AuBCIFN4  | 0.72       | -1.16     | even   | Μ      | 1+ |
| 2 | 650.25461 | C30H35AuBFN2    | 650.25375 | C30H35AuBFN2    | 0.33       | -0.51     | odd    | M      | 1+ |
| 2 | 662.23084 | C23H35AuBCIF2N5 | 662.23023 | C23H35AuBCIF2N5 | 0.19       | -0.29     | even   | M      | 1+ |
| 2 | 662.23084 | C23H35AuBCIF2N5 | 662.23023 | C23H31AuBCIF2N4 | 0.19       | -0.29     | even   | M+NH4  | 1+ |

Summenformel Auftragsformular C23H32AuBClF2N4 = 645g/mol

Figure S59. Mass spectra of [AuCl(3)].

![](_page_41_Figure_0.jpeg)

| # | Meas. m/z | Ion Formula   | m/z       | Sum Formula   | err  [mDa] | err [ppm] | e Conf | Adduct | z  |
|---|-----------|---------------|-----------|---------------|------------|-----------|--------|--------|----|
| 1 | 713.31873 | C31H43BF2IrN4 | 713.31726 | C31H43BF2IrN4 | 0.80       | -1.12     | even   | Μ      | 1+ |
| 1 | 713.31873 | C31H43BF2IrN4 | 713.31726 | C31H42BF2IrN4 | 0.80       | -1.12     | even   | M+H    | 1+ |

Figure S60. Mass spectra of [IrCl(cod)(3)].

![](_page_42_Figure_0.jpeg)

Accurate Mass Measurement

| # | Meas. m/z | Ion Formula   | m/z       | Sum Formula   | err  [mDa] | err [ppm] | e <sup>-</sup> Conf | Adduct | z  |
|---|-----------|---------------|-----------|---------------|------------|-----------|---------------------|--------|----|
| 1 | 623.26046 | C31H43BF2N4Rh | 623.25984 | C31H43BF2N4Rh | 0.07       | -0.12     | even                | М      | 1+ |
| 1 | 623.26046 | C31H43BF2N4Rh | 623.25984 | C31H42BF2N4Rh | 0.07       | -0.12     | even                | M+H    | 1+ |

Figure S61. Mass spectra of [RhCl(cod)(3)].

![](_page_43_Figure_0.jpeg)

Accurate Mass Measurement

Figure S62. Mass spectra of [PdCl(allyl)(3)].

C26H36BF2N4Pd

559.20305

559.20394

1

C26H36BF2N4Pd

0.49

0.88

even

Μ

![](_page_44_Figure_0.jpeg)

Accurate Mass Measurement

| Meas. m/z | # | Ion Formula     | m/z      | err [ppm] | mSigma | # mSigma | Score  | rdb  | e Conf | N-Rule |
|-----------|---|-----------------|----------|-----------|--------|----------|--------|------|--------|--------|
| 661.2141  | 1 | C25H31BF2IrN4O2 | 661.2132 | -0.6      | 2.5    | 1        | 100.00 | 12.5 | even   | ok     |
|           | 2 | C29H32IrN4O2    | 661.2149 | 1.4       | 90.6   | 2        | 4.76   | 16.5 | even   | ok     |
|           | 3 | C46H28BF2O2     | 661.2145 | 1.7       | 122.2  | 3        | 0.86   | 32.5 | even   | ok     |
|           | 4 | C49H27BFO       | 661.2134 | 0.1       | 133.8  | 4        | 0.76   | 36.5 | even   | ok     |

Figure S63. Mass spectra of [IrCl(CO)<sub>2</sub>(3)].

![](_page_45_Figure_0.jpeg)

| Meas. m/z | # | Ion Formula    | m/z      | err [ppm] | mSigma | # mSigma | Score  | rdb  | e <sup>-</sup> Conf | N-Rule |
|-----------|---|----------------|----------|-----------|--------|----------|--------|------|---------------------|--------|
| 584.1876  | 1 | C26H34BF2N5ORh | 584.1874 | 0.5       | 2.1    | 1        | 100.00 | 12.5 | even                | ok     |
|           | 2 | C38H23FN5O     | 584.1881 | 0.9       | 75.8   | 2        | 11.94  | 29.5 | even                | ok     |
|           | 3 | C41H22N5       | 584.1870 | -1.1      | 93.0   | 3        | 5.51   | 33.5 | even                | ok     |
|           |   |                |          |           |        |          |        |      |                     |        |

Figure S64. Mass spectra of [RhCl(CO)<sub>2</sub>(3)].

![](_page_46_Figure_0.jpeg)

Figure S65. Mass spectra of [CuCl(3)].

## Crystal structure data

![](_page_47_Picture_1.jpeg)

Table S1. Crystal data and structure refinement for [IrCl(CO)<sub>2</sub>(3)].

| Identification code | [IrCl(CO) <sub>2</sub> ( <b>3</b> )] |
|---------------------|--------------------------------------|
| Empirical formula   | $C_{25}H_{32}BCIF_2IrN_4O_2$         |
| Formula weight      | 697.00                               |
| Temperature/K       | 293(2)                               |
| Crystal system      | triclinic                            |
| Space group         | P-1                                  |
| a/Å                 | 8.9881(4)                            |
| b/Å                 | 10.8888(5)                           |
| c/Å                 | 14.4922(7)                           |
| α/°                 | 87.662(4)                            |
| β/°                 | 81.638(4)                            |

| γ/°                                         | 76.400(4)                                        |
|---------------------------------------------|--------------------------------------------------|
| Volume/ų                                    | 1363.89(11)                                      |
| Z                                           | 1                                                |
| ρ <sub>calc</sub> g/cm <sup>3</sup>         | 0.849                                            |
| µ/mm⁻¹                                      | 2.518                                            |
| F(000)                                      | 343.0                                            |
| Crystal size/mm <sup>3</sup>                | $0.4 \times 0.16 \times 0.16$                    |
| Radiation                                   | ΜοΚα (λ = 0.71073)                               |
| 2O range for data collection/°              | 5.148 to 56.16                                   |
| Index ranges                                | -9 ≤ h ≤ 11, -9 ≤ k ≤ 13, -18 ≤ l ≤ 18           |
| Reflections collected                       | 10240                                            |
| Independent reflections                     | 5970 [ $R_{int}$ = 0.0203, $R_{sigma}$ = 0.0415] |
| Data/restraints/parameters                  | 5970/0/333                                       |
| Goodness-of-fit on F <sup>2</sup>           | 1.048                                            |
| Final R indexes [I>=2σ (I)]                 | $R_1 = 0.0319$ , $wR_2 = 0.0571$                 |
| Final R indexes [all data]                  | $R_1 = 0.0474$ , $wR_2 = 0.0627$                 |
| Largest diff. peak/hole / e Å <sup>-3</sup> | 0.72/-0.74                                       |

**Experimental** Single crystals of  $C_{25}H_{32}BCIF_{2}IrN_{4}O_{2}$  [IrCl(CO)<sub>2</sub>(**3**)] were grown by cooling a pentane/CH<sub>2</sub>Cl<sub>2</sub> solution of the complex. A suitable crystal was selected and kept at 293(2) K during data collection.

#### References

[1] P. Irmler, F. Gogesch, A. Mang, M. Bodensteiner, C. Larsen, O. Wenger and R. Winter, *Dalton Trans.*, **2019**, *48*, 11690-11705;