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Abstract
A magnetically levitated spindle was designed for fatigue testing of cylinders
made of fiber reinforced plastic. In these fatigue tests, the speed of the cylin-
ders is varied cyclically between 15,000 and 30,000 rpm until their mechanical
failure occurs. Several eigenfrequencies have to be passed to reach the opera-
tional speed range. During long-term operation, the rotor of the spindle is prone
to overheating due to various losses. One way of reducing the rotor tempera-
ture is to decrease the bias current of the radial active magnetic bearings. Since
the bias current influences the dynamic behavior of the system, the control of
the bearings has to be adapted as well. This article describes a controller design
for the system with different bias currents to determine the smallest usable bias
current. A detailed model of the plant is developed, which is then used to opti-
mize the parameters of the utilized controller with a predefined structure using
the weighted∞ norm as the objective function. Since the rotor is highly gyro-
scopic, its eigenfrequencies change with the rotational speed. To ensure that the
system meets certain robustness criteria at all rotational speeds, the parameters
of the controller are simultaneously optimized for the plant model at different
speeds. This approach leads to a controller which can be used in the entire speed
range without the need for gain scheduling. The functionality of the controller
and the influence of the bias current on the rotor temperature are investigated
through measurements.
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1 INTRODUCTION

Outer-rotor flywheels, in which energy is stored as kinetic energy of the rotor, provide a possibility for short-term energy
storage and load smoothing services. In this flywheel design, the rotor is a hubless hollow cylinder made of fiber rein-
forced plastic (FRP). All rotating components are integrated into the inner circumference of the FRP rotor. Two realized
systems are described in References 1,2. The energy density of these systems increases with the radii of the rotor and
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its rotational speed. Both lead to increased mechanical stress in the FRP.3 Consequently, high stress in the material
accompanies a high energy density of the energy storage. Charging and discharging of a flywheel leads to cyclic varying
multiaxial mechanical stresses in the rotor, which can damage it over time.3 To investigate the cycle stability and hence
the lifetime of the FRP rotor of the flywheels, a test rig was designed and built to perform fatigue tests on thick-walled
FRP cylinders, which serve as proxy specimens for the rotors. A cross section of the test rig is shown in Figure 1 on
the left. The test rig is described in more detail in References 4,5. An outside view of the system is shown in Figure A1
in Appendix A. During a fatigue test, the rotational speed of the FRP cylinder is periodically varied from 15,000 to
30,000 rpm until it fails or a maximum cycle count of 200,000 is reached. In the latter case, the test takes approximately
3 months. A segmented steel ring is placed inside the FRP cylinder to create mechanical stress comparable to the one in
the rotor of an outer-rotor flywheel. The FRP cylinder with the steal segments is called specimen in the following. For
overload tests, the rotational speed can be ramped up to 40,000 rpm, but this article will focus on the normal operation up
to 30,000 rpm.

The outer diameter of the FRP cylinder is 190 mm. Hence, at 30,000 rpm the surface speed is about 298 m/s. To reduce
drag and subsequent heating of the specimen, all tests take place in a vacuum. The vacuum chamber also serves as a
containment. As a further security measure, a steel tube is placed inside the containment as a liner to absorb the kinetic
energy of fragments from a failed specimen.6,7 A driving spindle is placed on top of the containment. In the spindle,
which is also evacuated, a 30 kW permanent magnet synchronous machine (PMSM) is used to accelerate and decelerate
the rotor. The specimen is connected to the driving spindle via an aluminum hub and a shaft coupling. A predetermined
breaking point in form of a taper was incorporated into the hub to protect the spindle in case of a specimen failure.
This flexible taper has a major impact on the rotor dynamics, which will be discussed further in Section 2. To avoid
excessive wear, the rotor is supported by active magnetic bearings (AMBs), which also allow for active control of the
rotor dynamics.

One of the two radial AMBs is placed above and the other below the PMSM. Both are heteropolar AMBs with eight
poles and a differential winding scheme (DWS) (cf. Reference 8). The axial AMB is located above the upper radial AMB.
The position sensors which are needed for the control of the AMBs are positioned at both ends of the rotor of the driving
spindle. Further position sensors are located inside the specimen. These sensors are used to monitor the position and
radial enlargement of the specimen during operation. The test rig is placed on spring elements to reduce and dampen the
solid body eigenfrequencies of the stator.

The test rig is heating up due to various energy losses during operation. In the stator, these are composed of ohmic
and remagnetization losses in the PMSM and the AMBs. The losses on the rotor are dominated by remagnetization losses.
Losses due to air friction can be neglected because of the operation in vacuum.4 The stator is cooled using a water-cooling
system. However, the loss energy on the rotor is only ineffectively transferred to the stator via radiation. This can lead to

F I G U R E 1 Left: Cross section of the test rig; right: Rotor with the specimen
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overheating of the rotor during long-term operation and can damage the magnets of the PMSM and the specimen. Hence,
losses on the rotor have to be minimized. A significant portion of the remagnetization losses on the rotor are the rotational
losses in the heteropolar radial AMBs.4,5 These are largely determined by the bias current IB, which is used to linearize the
characteristic of the AMBs (cf. Reference 8) and to increase their force slew-rate at low control currents (cf. Reference 9).
In the discussed system, IB can be adjusted by the amplifier of the AMBs allowing for a reduction of the steady state rotor
temperature to a certain extent without changing the hardware of the system. However, if a very low IB is chosen or it
is set to zero and the control current Ic is allowed to be bigger than IB, a nonlinear controller has to be used. Nonlinear
controller designs based on feedback linearization,10–12 sliding mode control,12 backstepping,9,13 and control Lyapunov
functions,9 among others, can be used for an AMB with low or zero bias current. Normally, IB is set to a fixed value
but IB and the controller can also be adjusted depending on Ic

14 or the rotor deflection.15,16 However, using nonlinear
control increases the difficulty in determining the stability and robustness of the controlled system. Furthermore, to
utilize these control schemes Ic > IB has to be possible, which is not the case for AMB with a DWS as used in the test rig.
Hence, this article focuses on linear control, where the control current of the AMB must always be smaller than the fixed
bias current.

The goal of this article is therefore to determine the smallest IB for the radial AMBs still allowing for a robust opera-
tion using a linear controller. To achieve this, the control of the AMBs has to be adjusted with IB, which will be carried
out using a model-based design of a linear, time-invariant (LTI) output feedback control. Many AMB systems (with
IB ≥ Ic) are controlled using PID control.8,17 For complex AMB systems with multiple in- and outputs, ∞-control18–20

and 𝜇-synthesis20–25 are often used which allow for the inclusion of uncertainties and system limitations in the design.
However, these designs often lead to high-order controllers and an order reduction technique has to be applied. To avoid
this, the controller structure for the AMBs of the discussed test rig is fixed and only its parameters are optimized by min-
imizing the ∞ norm of the system.26 Comparable approaches for AMBs were used in References 27,28, utilizing more
specialized objective functions and boundary condition formulations. However, the∞ norm allows easy adaptation and
extension of the controller design. This approach also enables the inclusion of structured uncertainties in the design,29

which will be used here to consider the speed-dependent eigenfrequencies of the flexible and gyroscopic rotor.
The model of the system is described and compared to measurements in Section 2. The focus here lies on the strong

influence of the gyroscopic effects on the elastic rotor. Section 3 discusses the design of the controller and the simulated
results for various IB. An experimental investigation follows in Section 4.

2 PLANT MODEL

The model of the plant has to contain all subsystems which have a major influence on the radial AMBs. This includes
the AMBs and the rotor, but also the stator, the position sensors, the amplifier (AMP) of the AMBs and the PMSM.
The latter has a negative radial stiffness due to the permanent magnets on the rotor. In this article, all subsystems are
represented by linear, rational transfer functions (TFs). Models for the rotor and stator, which both have elastic eigen-
frequencies in the speed range of the test rig, are discussed in Section 2.1. The AMBs and their AMP are described in
Section 2.2. Section 2.3 gives an outline of the other subsystems and their connection in the overall plant model. A com-
parison between the derived model and experiments is shown in Section 2.4. A more detailed description of the model
can be found in Reference 5.

2.1 Rotor and stator

The rotor has four elastic eigenfrequencies below 500 Hz. Hence, its elasticity has to be considered in the model. To
accomplish this, the rotor is modeled with cylindrical Timoshenko beam finite elements (cf. Reference 30) as shown in
Figure 2. The outer part of the thrust disk, the permanent magnets of the PMSM, the shaft coupling, and the steel segments
inside the FRP are modeled as masses without stiffness. The model has 74 elements and 75 nodes. Every node has four
degrees of freedom xi, yi, 𝜑x,i, and 𝜑y,i, which describe the translational displacement in the radial x- and y-direction, as
well as the rotation around the x- and y-axis, respectively. Ten nodes are highlighted in Figure 2. The red cross marks the
node located in the center of gravity of the rotor. The translational displacement of nodes 1, 7, and 9 are measured by
radial position sensors. The smallest air gaps between rotor and stator are at nodes 2 and 8, where touchdown bearings
are located. The AMBs interact at nodes 3 and 6 and the PMSM at nodes 4 and 5.
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F I G U R E 2 Beam finite element model of the rotor

Only linear material behavior and small deformations are considered in the beam finite element model (BFEM).
Hence, a linear system of equations in the form of

Mq̈r + (D + G(Ω))q̇r + Kqr = F

with qr =
[
… , xi, 𝜑y,i, yi, 𝜑x,i, …

]T (1)

can be derived from the BFEM. M, D, and K are the mass, damping, and stiffness matrix, respectively. G(Ω) is the gyro-
scopic matrix, which depends on the rotational frequencyΩ. External forces on the rotor are summarized in the vector F.
M, K, and G(Ω) are directly derived from the BFEM. D is estimated by means of modal damping factors, which are fitted
to the measurements described in Section 2.4.

For a first validation of the BFEM, its eigenfrequencies are compared to the results of a volume finite element model
(VFEM), which is implemented and evaluated in the commercial software ANSYS Workbench. For this comparison, the
AMBs are simplified as springs with a constant stiffness of 106 N∕m. The PMSM is neglected. The first four eigenmodes
(EMs) of the VFEM sorted by ascending eigenfrequency (EF) at standstill are shown in Figure 3A. In this visual repre-
sentation, red areas indicate large and blue areas small displacements. In the first EM, the rotor tilts around the PMSM
and the upper AMB and the biggest displacement occurs at the specimen. The taper at the hub of the specimen shows
a small elastic deformation. The second EM is characterized by translational movement of the rotor and tilting of the
specimen around its center of gravity. All higher EMs show no or only a small movement of the center of gravity of the
specimen. The fourth EM shows a clear elastic deformation of the rotor. The EFs of these EMs calculated for the BFEM
and the VFEM are shown in Figure 3B under variation of Ω. Due to the gyroscopic effects, the EMs split into a forward
mode, whose EF mostly increases with Ω, and a backward mode, whose EF decreases with Ω (cf. References 8,30). The
EF of the first backward mode, which is about 16 Hz for Ω = 0, approaches 0 Hz for high rotational speeds. In contrast,
the EF of the fourth forward mode, which is about 400 Hz forΩ = 0, rises to such an extent that, it is not equal to the rota-
tional frequency below 40,000 rpm. The fifth and sixth EM, which are not shown in Figure 3, follow at 1 and 1.7 kHz and
only show a small dependency on Ω. During acceleration, the forward modes of the first, second, and third EM have to
be passed with the rotational speed to get to the operation range between 15,000 and 30,000 rpm. At these critical speeds,
where Ω is equal to an EF of a forward mode, the unbalance of the rotor can lead to a strong excitation of the respective
EM. The taper at the hub was designed so that no critical speed is inside the operation range.5 The backward mode of the
fourth EM, like all backward modes, does not get directly excited by the unbalance. The comparison between the BFEM
and VFEM shows a good agreement. Hence, the BFEM, which has only 74 elements, compared to 228,695 elements in
the VFEM, is used for the simulation of the rotor. To further decrease the calculation time for the following controller
optimization, EMs with an EF above 5 kHz were removed from the rotor model since no influence of these EMs on the
rotor’s behavior has been observed in experiments.

The stator is also modeled with cylindrical beam finite elements, which are shown in Figure 4A. The marked nodes
1 to 9 are the counterparts of the respective nodes on the rotor. The red cross marks the center of gravity. The mass and
the moment of inertia of the liner within the containment are lumped in node 10. Four spring elements are located at the
corners of the base (see Figure 1) which support the test rig. Each spring has a horizontal stiffness kmech,h and a vertical
stiffness kmech,v. The distance between two springs along one side is lspring. In the model, the springs are combined at
node 11 to one translational spring with horizontal stiffness 4kmech,h in x- and y-direction, respectively, and one rotational
spring with stiffness kmech,vl2

spring around the x- and y-axis, respectively. The spindle housing is simplified as a homogenous
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(A) (B)

F I G U R E 3 (A) Eigenmodes (EMs) of the rotor calculated by means of the volume finite element model (VFEM); (B) Comparison of
the speed-dependent eigenfrequencies (EFs) calculated utilizing the beam finite element model (BFEM) and the VFEM. The line colors
correspond to those shown in (A) above the EMs

(A) (B)

F I G U R E 4 (A) Beam element model of the stator; (B) Calculated eigenmodes of the stator

cylinder. A stiffness-free mass on the inside of the housing is used to represent the actuators. The spindle housing has an
additional supporting structure and a tuning weight, as can be seen in Figure A1. The stiffness of the support is included
in the stiffness of the spindle housing and the tuning weight is modeled as a stiffness-free cylinder, which can be seen on
the upper end of the stator in Figure 4.

A system of linear equations for the stator deflection qs equivalent to Equation (1) can be derived from the BFEM.
For the stator G(Ω) is equal to 0 and the EMs and EFs are independent of the rotational speed of the rotor. The first
four EMs of the stator are shown in Figure 4B. The first and second EM are rigid body modes of the stator on the spring
elements. In the third and fourth EM, the spindle housing tilts on the lid of the containment. This behavior, which is
known from measurements and a VFEM, is due to buckling of the lid and cannot be reproduced directly via beam ele-
ments. To create a similar behavior in the BFEM the modulus of elasticity of the lid was reduced to 0.075% of that of
steel. The tuning weight and the supporting structure (see Figure A1) were introduced to reduce the vibration amplitudes
when the third EM of the stator is excited. EMs higher in frequency than the fourth are poorly represented by the model
and are therefore removed since no significant influence of these EMs on the behavior of the system was observed in
experiments.
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2.2 Magnetic bearings

Both heteropolar radial AMBs have four pole pairs with a nominal radial air gap of 0.4 mm between rotor and stator. Two
opposing pole pairs are operated together using a DWS for the x- and y-direction, respectively. In a DWS, separate coils
are used for IB and the control current Ic, which always has to be smaller than IB.

The force of one AMB in one direction FAMB,i is approximated with the linearized equation

FAMB,i = kI,iIc,i − kx,i ΔqAMB,i, (2)

whereΔqAMB,i is the difference between the deflection of the rotor and the stator at the location of the AMB (cf. Reference
8). The proportionality factors kI,i and kx,i are calculated using a reluctance network of the AMB which is described
in detail in Reference 5. Both depend on IB, where kI,i∼IB and kx,i∼I2

B. kx,i is negative, hence, FAMB,i increases with the
relative deflection of the rotor. This unstable characteristic necessitates an active control of the AMBs. FAMB,i is adjusted
by changing the voltage Ui applied to the control coil,8 which in turn changes Ic,i. The resulting Ic,i can be calculated with

Ui = RiIc,i + Liİc,i + kind,iΔq̇AMB,i, (3)

where Ri is the ohmic resistance and Li the inductance of the control coil. The last term describes the induced voltage by
the relative velocity of the rotor in the AMB Δq̇AMB,i. The factor kind,i as well as Li can be derived via the induction law
and the reluctance network.5 A more detailed discussion on AMBs can by be found in References 8,31.

Ui is adjusted by the AMP using pulse-width modulation with a main cycle frequency of 40 kHz. The control law,
which determines the pulse-width for each main cycle, is implemented on a field programmable gate array (FPGA). For
modeling purposes, it is assumed that the voltage pulses are perfectly rectangular. In this case, the duty cycle corresponds
to the fraction of the average voltage of the present main cycle to the supply voltage. During one main cycle, the position
and current signals are acquired, converted from analog to digital, the control law is evaluated and the voltage is applied
to the coils. Data acquisition and conversion together take about 1 μs and the evaluation of the control law another 2 μs.
This leaves around 22 μs per main cycle to adjust the voltage. Hence, the maximum mean voltage which can be applied
to the coils is reduced from the voltage of the power supply of 54 V to 47.25 V. The discretization of the digital FPGA is
neglected in the model and the output of the controller model is the analog set voltage Uset. The AMP is simulated as a
time delay of 14 μs utilizing a third-order Padé approximant. The 14 μs result from the 3 μs for the data acquisition and
evaluation plus half of the remaining main cycle time.

2.3 Overall system

The sensors which are used to measure the radial position of the rotor have an external digital evaluation unit. It adds
14.3 μs of time delay to the system, which is again modeled using a third-order Padé approximant. The evaluation unit
has an analog low pass filter (LP) with a cut-off frequency 𝜔c of 50 kHz and a digital LP with 𝜔c = 10 kHz. After signal
processing on the external evaluation unit, the signal is converted back to analog and passed on to the FPGA. The sensors
used to monitor the position of the specimen can easily be damaged during operation, hence, they are not used to control
the AMBs and are not included in the model. The current sensors have a cut-off frequency of 2 MHz. Their dynamic
behavior is neglected in the model. All signals are filtered with an analog LP before the analog to digital conversion at the
FPGA to reduce aliasing. This filter is a first order LP with a cut-off frequency of 5.6 kHz.

When the rotor is not centered in the stator, the magnets of the PMSM on the rotor create a radial force that pulls the
rotor toward the stator. This force can be expressed via the negative stiffness kx,PMSM,32 which can be estimated with

kx,PMSM = −
𝜋rP,PMSMlFe,PMSMB2

L,PMSM

2𝜇0lL,PMSM
, (4)

wherein𝜇0 is the permeability of vacuum, rP,PMSM the inner radius and lFe,PMSM the active length of the stator of the PMSM.
lL,PMSM is the length of its air gap. BL,PMSM is the magnetic flux density in the air gap, which can be approximated with33

BL,PMSM =
BR,Mag

1 + lL,PMSM𝜇r,Mag

hMag

. (5)
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BR,Mag is the remanent magnetization, 𝜇r,Mag the relative permeability, and hMag the thickness of the permanent mag-
nets. In the model, the radial force of the PMSM is evenly distributed between two nodes (see Section 2.1). The radial
force on each node FPMSM,i results from

FPMSM,i = −
kx,PMSM

2
ΔqPMSM,i, (6)

where ΔqPMSM,i is the relative deflection of the rotor at the respective nodes.
The overall model of the plant  (s) is shown in Figure 5. The bold variables are vectors which group several variables,

for example, Uset =
[
Uset,u,x,Uset,u,y,Uset,l,x,Uset,l,y

]T contains the set voltages for the control coil of the upper (index u) and
lower (index l) AMB in x- and y-direction, respectively. In the following no distinction will be made between x and y due to
the rotational symmetry of the model. The inputs of  (s) are Fun and Uset. Fun contains rotational harmonic disturbance
forces which are used to simulate the unbalance of the rotor. The outputs of  (s) areΔq, Ic,Δq̃sen, and Ĩc.Δq is comprised
of the relative rotor deflections (Δq = qr − qs) at the touchdown bearings, the radial AMBs and the specimen (nodes 2,
3, 6, 8, and 9 in Figures 2 and 4A). Δq̃sen contains the measured and filtered relative rotor deflections (nodes 1 and 7 in
Figures 2 and 4A) and Ĩc the filtered control currents.

2.4 Experimental validation

To validate and adjust the model, measurements are performed on the test rig. For these measurements, the AMBs are
controlled using a decentralized PID-controller for the position (cf. Reference 8) and a subordinate PI-controller for each
current. The controller coefficients were adjusted experimentally.

First, the comparison between model and measurement is carried out using the diagonal elements ii(s) with s ∈ C

of the sensitivity function (s) at Ω = 0. The maximum gain of ii(j𝜔) for 𝜔 ∈ R and all i is a measure for the stability
margins of the system.34 Artificial noise 𝓃i is added to the measured position signals Δq̃sen,i in the closed loop to acquire
ii which is given by34

ii(s) =
Δq̃sen,i(s) +𝓃i(s)

𝓃i(s)
. (7)

The measured and simulated ii of the system with IB = 4.3 A is shown in Figure 6. The measurements with noise
excitation showed a low coherence in the low-frequency range. Therefore, further measurements were performed in the
low-frequency range using a mono-frequency sinusoidal excitation, which are marked with “x” and have a coherence of
almost one. The model was adjusted to the measurement mainly by tuning the modal damping as well as the air gap of
the AMBs and the PMSM.5 The adjusted model shows good agreement with the measurement up to 1 kHz. However, the
maximum gain of ll at the lower AMB is about 20 dB, which in the measurement can only be seen with the sinusoidal
excitation. According to Reference 34, the gain should be below 12 dB to be suitable for long-term operation. This limit
has to be considered in the following design of the controller.

To validate the model behavior with changing Ω, a slow acceleration from 0 to 30,000 rpm in approximately 300 s
was recorded on the test rig. The measured deflections of the rotor and the specimen as well as the control currents

F I G U R E 5 Structure of the plant model
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F I G U R E 6 Simulated and measured diagonal elements of the sensitivity function of the AMBs at 0 rpm with a decentral PID control
and IB = 4.3 A. Two types of measurements were performed. The first using noise as excitation shows a low coherence below 100 Hz.
Therefore, additional measurements with sinusoidal excitation were performed at low frequencies

of the upper and lower AMB are shown in Figure 7A. The first critical speed is passed at 1300 rpm, which results in
comparatively high deflections at the lower measurement position and the specimen as well as high control currents in
the lower radial AMB. For this reason, a high IB of 7.6 A is used in the low speed range. Above 6000 rpm, IB is reduced to
4.3 A and the amplification of the derivative term in the position controller is reduced by 36% so that the first backward
mode, which approaches 0 Hz for high speeds, is not excited by amplified noise. To compare the rotor EFs of the model
with the measurement, a measured Campbell diagram of the upper sensor is shown in Figure 7B. The yellow line going
from 0 Hz at 0 rpm to 500 Hz at 30,000 rpm shows speed synchronous deflections, which dominate the deflections and
reach 36 𝜇𝑚 at 12,000 rpm. However, the amplitudes in the Campbell diagram are cut off at 1 𝜇𝑚 in order to make the EFs
visible. The other straight lines starting at 0 Hz are harmonic deflections of higher order. EFs are visible as blurry curved
lines in the background. Dashed red lines show the calculated EFs from the model. The fourth EF is overestimated by
the model by about 10 Hz. The increase of the EF of the third forward mode is underestimated. But in general, there is a
good agreement between measurement and model.

3 CONTROLLER DESIGN AND BIAS CURRENT REDUCTION

The derived model is used to design a controller for the system. At first, weighting functions for the physical inputs and
outputs are introduced to incorporate performance and robustness goals in the design as well as to scale the TFs and
make them dimensionless.24 The∞ norm of the weighted TFs of the model will be used as the objective function for the
controller optimization, which is described in the next section. Section 3.2 presents an approach to consider the strongly
speed-dependent rotor behavior without making the design too conservative or requiring gain scheduling. This approach
will be used to design controllers for the system with varying IB, to determine how low IB can be chosen (see Section 3.3).
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(A) (B)

F I G U R E 7 (A) Measured deflections and currents during acceleration from 0 to 30,000 rpm with a decentral PID control for the radial
AMBs; (B) Campbell diagram of the rotor deflection at the upper radial position sensor. The shown deflection amplitudes in the Campbell
diagram are cut off at 1 𝜇𝑚. The dashed red lines show the calculated eigenfrequencies of the rotor from the model

3.1 Generalized model with weighted physical inputs

As described in Section 1, the goal of the controller design in this article is to find an LTI output feedback(s) that stabilizes
the plant and satisfies certain requirements. First, it is required that disturbances during operation must not lead to high
relative rotor deflections, control currents or voltage demand. For this purpose, is extended to the weighted plant model
 as shown in Figure 8. Ud and n are added as new inputs. Ud is a disturbance voltage which is added to the voltage
𝓾 calculated by the controller. The sensor noise n is added to Δq̃sen and Ĩc, which are then combined to the measured
plant output �̃�. The outputs Δq and Ic are used to evaluate the rotor deflections and control currents, respectively. Due
to the simplified model of the AMP, only a phase shift occurs between Uset and U. Since only the amplitude of the output
signals will be utilized for the evaluation of the system, Uset could be used for the evaluation of the utilization of the
voltage. However, since the TFs from Ud to 𝓾 can be used to limit the influence of multiplicative model uncertainties35

and Ud is usually small (𝓾 ≈ Uset),𝓾 will be used here as the third evaluation output. Stable weighting functions are
introduced for the disturbance inputs Fun, Ud, and n as well as the evaluation outputsΔq, Ic, and𝓾. Finally, the weighted
disturbance inputs are combined in the vector𝔀 and the weighted evaluation outputs in the vector 𝔃.

Since an LTI output feedback is used for the control of the AMBs,𝓾 is calculated from �̃� with

𝓾(s) = −(s)�̃�(s). (8)

 can be divided into four subsystems according to

[
𝔃(s)
�̃�(s)

]

=

[
𝓏𝓌(s) 𝓏𝓊(s)
 �̃�𝓌(s)  �̃�𝓊(s)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟



(s)

[
𝔀(s)
𝓾(s)

]

. (9)

Using Equations (8) and (9) yields the TF matrix
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F I G U R E 8 Weighted model of the plant with a controller

𝔃𝓌(s) = 𝓏𝓌(s) − 𝓏𝓊(s)(s)
(
 +  �̃�𝓊(s)(s)

)−1
 �̃�𝓌(s) (10)

from𝔀 to𝔃. The goal of the controller design is to find the TF matrix  that stabilizes the closed loop and minimizes the
influence of𝔀 on𝔃. To quantify the latter, the∞ norm of the system ‖𝔃𝓌(s)‖∞ is used. The∞ norm of the rational
transfer function matrix  is the supremum of the largest singular value 𝜎 of  over all frequencies 𝜔 ∈ R35

||(s)||∞ = sup
𝜔∈R

𝜎((j𝜔)). (11)

The smallest ‖𝔃𝓌(s)‖∞ reached during the controller optimization, hence, the final value of the objective function of
the optimization, will be denoted as 𝛾 . The weighting functions in  are selected in such a way that all requirements
on 𝔃𝓌 are fulfilled when ‖𝔃𝓌(s)‖∞ < 1, hence, in the optimization when 𝛾 < 1.

To determine the weighting functions, first, physical limitations of the system are considered. For one thing, the rel-
ative rotor deflections at position i must not exceed the value Δqmax,i. In particular, at positions 2 and 8 in Figures 2 and
4A the relative rotor deflections must not exceed the radial air gap of the touchdown bearings of Δqmax,2 = Δqmax,8 =
0.2 mm and at position 3 and 6 the radial air gap of the AMBs of Δqmax,3 = Δqmax,6 = 0.4 mm. Furthermore, the rela-
tive deflection of the specimen at position 9 must remain smaller than the radial air gap of its touchdown bearing of
Δqmax,9 = 2 mm. Due to rotational symmetry, these limits apply to the x- as well as the y-direction. Hence,Δq is chosen as
(cf. Reference 24)

Δq = k ,Δq diag
(

q−1
max,2, q

−1
max,2, … , q−1

max,9, q
−1
max,9

)
, (12)

where k ,Δq = 1.25 is a safety factor.
Similarly, Ic,i must not surpass IB and Uset cannot exceed Umax. Since the model does not represent high frequen-

cies well, the gain of their weighting functions I andU is increased for high frequencies to prevent high-frequency
control activities.22,23,36 With 𝜔 ,I,1 = 𝜔 ,U,1 = 5 kHz and 𝜔 ,I,2 = 𝜔 ,U,2 = 500 Hz, the weighting functions are
chosen as

 I(s) = k ,II−1
B

(
s + 𝜔 ,I,2

)
𝜔 ,I,1

(
s + 𝜔 ,I,1

)
𝜔 ,I,2



and U(s) = k ,U U−1
max

(
s + 𝜔 ,U,2

)
𝜔 ,U,1

(
s + 𝜔 ,U,1

)
𝜔 ,U,2

. (13)

 is an 4× 4 identity matrix. k ,I = k ,U = 1.6 are introduced as safety factors.
The current noise input is scaled with the standard deviation of the measured current signals𝓃I,max = 1.2 mA.𝓃I,max

was measured while the current control was active (the AMP was switching) but the position control was deactivated.
The position noise measured in the same manner would lead to a scaling factor of 0.4 𝜇𝑚. However, small scratches on
the sensor target area on the rotor lead to further high-frequency excitation of the AMBs. These are one of the main
reasons for the higher harmonic deflections in Figure 7B, which have a maximum amplitude of about 1 𝜇𝑚. To con-
sider these scratches, the position noise input is scaled with 𝓃Δq,max = 1 𝜇𝑚. The gain of the weighting functions is
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F I G U R E 9 Unbalance of the rotor model

again increased for high frequencies to further reduce high-frequency control activities. The weighting functions are
given by

𝓃,I(s) = 𝓃I,max
3s + 3𝜔 ,𝓃
s + 3𝜔 ,𝓃



and 𝓃,Δq(s) = 𝓃Δq,max
3s + 3𝜔 ,𝓃
s + 3𝜔 ,𝓃

 (14)

with 𝜔 ,𝓃 = 500 Hz. Ud represents test signals which might be introduced to measure TFs.20 But as mentioned before,
this input can also be used to limit the susceptibility of the control to multiplicative model uncertainties.Ud is chosen as

Ud = Ud,max  (15)

with Ud,max = 0.1 Umax.
Finally, the unbalance of the rotor is represented by external forces which are applied to the four discrete positions

on the rotor shown in Figure 9. Test or compensation unbalance masses can be attached to these positions, allowing to
experimentally identify the unbalance. The estimated unbalance mi𝜀i is 3.6 gmm for position i = 1, 2.9 gmm for i = 2,
18.9 gmm for i = 3, and 16.3 gmm for i = 4. Note that with these four positions all four EMs shown in Figure 3A can be
excited.

On each position i, the unbalance is represented by a force in x-direction FUn,i,x and a force in y-direction FUn,i,y, so that
the amplitude of the resulting force is equal to mi𝜀iΩ2

j at a given speedΩj. In an idealized system, there is a 90◦ phase shift
between FUn,i,x and FUn,i,y and each has an amplitude of mi𝜀iΩ2

j . For the controller design, FUn,i,x and FUn,i,y are modeled
as distinct inputs, which results in the loss of the fixed phase relationship between them. Hence, the amplitudes of FUn,i,x

and FUn,i,y are divided by
√

2 so that the maximum amplitude of the resulting force for any phase shift is still equal to
mi𝜀iΩ2

j . Note that with this approach, the unbalance can directly excite the backward modes of the rotor model, which
makes the controller design more conservative since this is not the case in the real system.

The excitation frequency of the unbalance is equal to the rotational speed. However, during the optimization
all frequencies 𝜔 ∈ R are checked (see Equation (11)). Hence, when the model is evaluated at a given speed Ωj, a
fourth-order bandpass filter is introduced in the weighting function of the unbalance, which attenuates the influence of
non-rotor-synchronous frequencies. Finally, the weighting function of the unbalance inputsFun is given by

Fun

(
s,Ωj

)
=

(
0.02 Ωjs

)4

(
s2 + 0.02 Ωjs + Ω2

j

)4

Ω2
j

√
2

diag (m1𝜀1,m1𝜀1, … ,m4𝜀4,m4𝜀4) . (16)

3.2 Approach for the controller design

When using ∞ control theory, the controller which minimizes ‖𝔃𝓌‖∞ normally has about the same order as 𝔃𝓌.35

Even if all EMs above 1 kHz are discarded in the model of the rotor,  still has an order of 92. The weighting functions
further increase the order of the controller. The implementation of a controller of this order on the FPGA is not feasi-
ble. In this article, instead of reducing the controller after a ∞ design process, the structure and thus the order of the
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controller  is predefined and only the controller’s parameters are adjusted using an optimization algorithm (cf. Refer-
ences 28,37). This procedure offers a wide range of possibilities for model-based tuning of the controller (cf. Reference
29), some of which will be utilized in the second part of this section. The parameter optimization will be performed
using the function hinfstruct in MATLAB26,38 which is based on Reference 39. This function first seeks parameters of
 which stabilize the closed loop and then tries to minimize 𝛾 by adjusting the parameters. One disadvantage of hin-
fstruct is that it might converge to a local minimum, which makes it necessary to run the optimization several times
with random start values. Furthermore, if the structure of  is poorly chosen, a stabilizing parameter set might not be
found. However, it is already known from previous experiments that a cascaded decentral PID controller is sufficient to
stabilize the examined system (see Section 2.4), which also gives a first set of stabilizing parameters as start values for
one optimization run. In order to provide the optimization algorithm with more adjustment possibilities, the decentral
PID-structure is extended with a PD-coupling of the position signals between the upper and lower AMB. The struc-
ture of the controller for one direction (x or y) is shown in Figure 10A. The decentral controller is shown in black, the
coupling in green. Both PD- and PI-subsystems and additionally every D-term has an adjustable first order LP. Hence,
22 parameters can be adjusted during optimization. Negative and positive real values are allowed for the parameters
of the P- and D-terms of the coupling controllers, all others are limited to positive real values. A minimum value is
defined for the I-parameters to lift the rotor out of the touchdown bearings. The minimum value of the LP cut-off fre-
quency is set to 10 Hz. Due to the vertical orientation and the rotational symmetry of the test rig, the same parameter
set is used for the x- and y-direction. A coupling between the x- and y-direction in the controller is not considered in
this article.

As an example, a controller is designed for the generalized plant model from Section 3.1 with IB = 4.3 A and Ω =
375 Hz, which is in the middle of the operational speed range, using hinfstruct and the coupled PID-controller structure
(Figure 10A). After four optimization runs with different initial parameters, the best controller reached 𝛾 = 0.37. Hence,
forΩ = 375 Hz all requirements so far are met. However, this is not the case ifΩ changes. This can be seen in Figure 10B,
in which ‖𝔃𝓌(s,Ωi)‖∞ with the optimized controller is evaluated at 300 equally distributedΩi in the speed rangeΩges =
[0 Hz, 500 Hz]. At 22,500 rpm ‖𝔃𝓌(s,Ωi)‖∞ approximately equals 𝛾 , but between 8000 and 13,000 rpm ‖𝔃𝓌(s,Ωi)‖∞
exceeds one and reaches 128. Hence, the controller does not meet the criteria imposed by the weighting functions in this
speed range.

Another aspect which has to be checked, is the sensitivity of the system, hence, the maximum gain of ii(s,Ω) for all
s ∈ C and Ω ∈ Ωges has to be determined. Since ii(s,Ω) is a single-input-single-output (SISO) TF, finding its maximum
gain over all s ∈ C for a given Ωj is equivalent to the evaluation of ‖‖‖ii

(
s,Ωj

)‖‖‖∞. The maximum gain for all Ω ∈ Ωges is
approximated by calculating ‖ii(s,Ωi)‖∞ at 300 equally distributed Ωi in Ωges. ‖ii(s,Ω)‖∞ has to be computed for both
bearings. The sensitivity ‖uu(s,Ωi)‖∞ of the upper AMB (in x- or y-direction) and the sensitivity ‖ll(s,Ωi)‖∞ of the lower
AMB (in x- or y-direction) are shown in Figure 10B divided by 100.6 (12 dB). As mentioned in Section 2.4, the gain of

(A) (B)

F I G U R E 10 (A) Structure of the controller in one radial direction. The decentral controller is shown in black, the added coupling in
green; (B) Largest singular value over the rotational speed of the controlled system with IB = 4.3 A and the controller designed for
Ω = 375 Hz (22,500 rpm)



FRANZ et al. 13 of 23

allii should be below 12 dB. However, as can be seen in Figure 10B, even at the design speed of 22,500 rpm, ‖uu(s,Ωi)‖∞
exceeds this limit by a factor of 10 and ‖ll(s,Ωi)‖∞ exceeds it by a factor of eight.

Hence, the sensitivity function matrix  as well as the speed-dependent dynamics of  must be considered in the
design of the controller. There are several ways to achieve the latter. The controller can be designed for different rotational
speeds Ωj and then switched or interpolated when Ω changes (e.g., Reference 40). Alternatively, the model uncertainty
could be considered as further TFs in  , which might lead to very conservative results. The approach that will be taken
in this article is to tune the controller for multiple Ωj simultaneously. To accomplish this, several TFs of the plant at
different Ωj are connected in parallel. For example, for two rotational speeds Ω1 and Ω2 Equation (9) turns into

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝔃1(s)
�̃�1(s)
𝔃2(s)
�̃�2(s)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝓏𝓌(s,Ω1) 𝓏𝓊(s,Ω1) 0 0
 �̃�𝓌(s,Ω1)  �̃�𝓊(s,Ω1) 0 0

0 0 𝓏𝓌(s,Ω2) 𝓏𝓊(s,Ω2)
0 0  �̃�𝓌(s,Ω2)  �̃�𝓊(s,Ω2)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝔀1(s)
𝓾1(s)
𝔀2(s)
𝓾2(s)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (17)

In the same manner, the controller from Equation (8) gets expanded to (cf. Reference 26)

[
𝓾1(s)
𝓾2(s)

]

=

[
−(s) 0

0 −(s)

][
�̃�1(s)
�̃�2(s)

]

. (18)

Note that the parameterization of for both subsystems is the same. This is possible since a parameter in the optimization
with hinfstruct can be used at multiple positions. The goal of the optimization becomes

min
(s)

‖diag (𝔃𝓌(s,Ω1) ,𝔃𝓌(s,Ω2))‖∞ , (19)

which will minimize the maximum of the ∞ norms of both systems.26 If the ∞ norm in Equation (19) is less than
one, both systems meet the design criteria. This can be extended accordingly for any number of Ωj. However, it must be
considered that the computational effort for the controller design increases significantly with each new subsystem, even
if the order of the controller  remains the same. Therefore, only as many subsystems as necessary should be used.

As previously mentioned, the controller design should also consider the 12 dB-limit on ii. This constrained could be
addressed by including �̃� in 𝔃 (see Figure 8), since the TFs from 𝓷 to �̃� correspond to  . However, to incorporate the
12 dB requirement on  from Reference 34, noise with an amplitude 40 times higher than the measured one would have
to be considered. This approach would lead to an undesirably conservative controller design, as 𝓷 also excites the other
outputs of  . Therefore, another system  , is set up which only includes the inputs and outputs needed for  as well
as a weighting function . The system is shown in Figure 11A. The input 𝓷Δq is noise which is added to the position
signals. The output is

�̃�Δq = Δq̃sen +𝓷Δq. (20)

The weighting function is chosen as

 (s) = 10−0.6 s + 𝜔 ,2
s + 𝜔 ,1

 (21)

with 𝜔 ,1 = 1 mHz and 𝜔 ,2 = 1.5 Hz. The LP in Equation (21) is introduced to achieve a good tracking behavior at low
frequencies20 and, more importantly for this test rig, to prevent the first backward EM of the rotor from moving to very
low frequencies at high speeds. Note that also the off-diagonal elements of  are included in the design, which is not
necessary according to Reference 34 and can be avoided by further splitting  in uu and ll. However, the latter might
lead to high amplitudes of the off-diagonal elements of  , which should be considered here, especially because of the
optimization of the coupling subsystems in the controller. As a compromise, the full TF matrix  will be included in the
controller optimization, but it will only be checked for ii if they also meet the criteria for other Ω ∈ Ωges. Hence, after
a successful controller optimization, ‖ (s)(s,Ω)‖∞ will be smaller than one for the Ωj which were included in the
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(A) (B)

F I G U R E 11 (A) Weighted model of the sensitivity function; (B) Largest singular value of the controlled generalized model and the
diagonal elements of the weighted sensitivity function over the rotational speed with IB = 4.3 A where the controller is designed for multiple
systems 𝔃𝓌

(
s,Ωj

)
and (s)

(
s,Ωj

)
for various rotational speeds Ωj.

design process, but might exceed one at deviating Ω. In the designed controllers discussed in the following section, the
computed values of ‖ (s)(s,Ωi)‖∞ never exceeded 1.6 and only exceeded 1.2 for IB > 4.6 A. Applying the 12 dB limit
to the full TF matrix  implies that the maximum gain of ii is smaller than 12 dB, hence, the design could be seen as
conservative. However, this is intended here since new systems should rather aim at a value of 9.5 dB.34 For future work,
it will be useful to determine a valid limit for ||||∞ or to check if the 12 dB limit (or 9.5 dB limit) should be applied to the
off-diagonal elements of  as well.

Like 𝔃𝓌,  will generally have to be considered in the controller design for multiple Ωj. Hence, the goal of the
optimization now is

min
(s)

‖diag (𝔃𝓌(s,Ω1) , … ,𝔃𝓌(s,Ωn) , (s)(s,Ωn+1) , … , (s)(s,Ωm))‖∞ . (22)

An iterative process is used to determine which 𝔃𝓌
(

s,Ωj
)

and 
(

s,Ωj
)

have to be included in Equation (22). For
example, continuing from Figure 10B, a next step could be to include 𝔃𝓌 and  for 9700 rpm to counteract the first dis-
tinct peak in ‖𝔃𝓌(s,Ωi)‖∞ and then rerun the controller optimization. Afterwards, ‖𝔃𝓌(s,Ω)‖∞ and ‖‖ ,ii(s)ii(s,Ω)‖‖∞
are evaluated again with the new controller parameters for all Ω ∈ Ωges. To formalize the procedure, the values Γmax and
Γmin of the TFs are determined where

Γmax = max
Ω in 𝛀ges

(Γ(Ω)),

and Γmin = min
Ω in 𝛀ges

(Γ(Ω))

with Γ(Ω) = max
(
‖𝔃𝓌(s,Ω )‖∞ , ‖‖ ,ii(s)ii(s,Ω)‖‖∞

)
. (23)

If Γmax ≤ 1, the designed controller can be used and the design process is finished. If Γmin > 1, the present controller
cannot be used for the system. Hence, either the system cannot be robustly stabilized with the predefined controller
structure or the optimization has to be repeated with different starting parameters, since it cannot determine if it reached
the global minimum. However, if Γmax > 1 and Γmin < 1, hence, ‖𝔃𝓌(s,Ω)‖∞ or ‖‖ ,ii(s)ii(s,Ω)‖‖∞ is below one for
some Ω ∈ Ωges and above one for others, 𝔃𝓌

(
s,Ωj

)
or 

(
s,Ωj

)
, respectively, has to be included in Equation (22) for a Ωj

in the area where it is above one. After the subsequent controller optimization, Γmax and Γmin have to be evaluated again.
This procedure is repeated until either Γmax ≤ 1 or Γmin > 1.

For this article, 𝔃𝓌
(

s,Ωj
)

and 
(

s,Ωj
)

were chosen in such away, that Γmax and Γmin are not only both above or
below one, but Γ(Ω) is approximately constant and equal to 𝛾 for allΩ ∈ Ωges, hence Γmax ≈ Γmin ≈ 𝛾 . In other words, the
controller performance is almost independent ofΩ, simplifying the performance comparison of the optimized controllers
for different IB by means of 𝛾 .
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F I G U R E 12 Smallest 𝛾 which was reached by the parameter optimization of a predefined controller for the system with different IB

where the controller performance is nearly independent of Ω for 300 tested Ωi in Ωges

For the test rig with IB = 4.3 A, 𝔃𝓌
(

s,Ωj
)

was included in the controller design for 0, 9700, 21,500, and 31,000 rpm
and (s)

(
s,Ωj

)
for 0, 5500, 9700, and 31,000 rpm. Thirty one thousand rpm was included to ensure AMB stability in

the case the PMSM control overshoots 30,000 rpm. The smallest 𝛾 which was reached after four optimization runs was
0.99. Compared to the previous optimization, 𝛾 increased since the design is now more restrictive. However, Γ(Ω) is nearly
constant over Ω. This can be seen in Figure 11B, in which ‖𝔃𝓌(s,Ωi )‖∞, ‖uu(s,Ωi)‖∞ ∕100.6 , and ‖ll(s,Ωi)‖∞ ∕100.6

are shown for the system with the optimized controller. The values are again evaluated at 300 equally distributed Ωi in
Ωges. Between 0 and 30,000 rpm ‖𝔃𝓌(s,Ωi )‖∞, which here is bigger than the other two, is always smaller than one and
deviates from 𝛾 only by 0.06%. ‖uu(s,Ωi)‖∞ and ‖ll(s,Ωi)‖∞ are also below 100.6 for all evaluatedΩi. Hence, the derived
controller meets all design criteria.

3.3 Minimum bias current

The previously described controller design process was repeated for several IB with a minimum step size of 0.1 A to
approximate the smallest IB for which a permissible controller can be found.Ωj for which 𝔃𝓌 and  have to be included
in the design generally change with IB and have to be adjusted accordingly. More Ωj had to be included in the design
for small IB (IB < 2.5 A) than for bigger IB. The smallest 𝛾 obtained for each IB is shown in Figure 12. The maximum
deviation from Γ(Ωi) to 𝛾 is less than 0.4%, again evaluated at 300 equally distributedΩi inΩges. More importantly, if 𝛾 ≤ 1,
then Γmax ≤ 1 and if 𝛾 > 1, then Γmin > 1. The smallest calculated 𝛾 is at IB = 3 A. From here, 𝛾 rises for increasing and
decreasing IB. The smallest IB with 𝛾 ≤ 1 is 2.4 A. Hence, 2.4 A is the smallest IB for which a controller of the predefined
structure was found with which the closed loop meets the criteria defined by the weighted TFs. In contrast, the highest
IB for which a permissible controller was found is 4.4 A.

For all IB, the weighted TFs with the highest gain, therefore the ones which dominate the design process, are ,iiii
at small frequencies (10–100 Hz) and the TFs U 𝓷 from𝓷 to U (see Figure 8) at high frequencies (>1 kHz). For small IB,
the weighted TFs from all disturbance inputs𝔀 to the weighted control currents IC also become significant as the control
currents are restricted by IB (see Equation 13). This is particularly pronounced in the low-frequency range (< 100 Hz).
An adjustment of the controller to avoid current saturation leads to an increase of the high-frequency gain of U 𝓷. This
trade-off as well as the reduced maximum force and the smaller force slew rate leads to an increase of 𝛾 for small IB. The
increase of 𝛾 for high IB can be attributed to the enlarged negative stiffness of the AMBs (see Equation 2), which has to be
compensated by an increased feedback gain. This in turn amplifies the susceptibility to noise. If one AMB is simplified as
a SISO system, the growth of 𝛾 with IB can more formally be explained by the increase of the value of Bode’s sensitivity
integral,35,41 since the real part of the unstable poles of the open loop rise with IB. Hence, the gain of the sensitivity function
has to increase with IB in some frequency range. The assumption of a SISO system is of course not accurate here since
the upper and lower AMB are coupled in the controller and by the rotor, among other things, but a comparable behavior
is also to be expected for multiple-input-multiple-output systems (cf. Reference 42).

A qualitative description of how the parameters of the optimized controllers change with IB is given in Appendix B.
Experimental validations of some of the controllers as well as the reduction of the rotor temperature are shown in the
next section.
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4 EXPERIMENTAL VALIDATION

At first, the sensitivity of the system with an optimized controller is evaluated. The gain of the sensitivity function at
0 rpm of the upper and lower AMB with IB = 2.4 A and the respective optimized controller are shown in Figure 13. Simu-
lated as well as measured results with noise excitation and sinusoidal excitation are shown. Slight deviations are evident
between the model and the measurements, but the maximum gain is below the required 12 dB and even below 9.5 dB
(see Section 3.2). The same is true for the sensitivity functions of both AMBs with IB = 4.3 A and the respective optimized
controller (see Figure A2). Hence, a significant reduction of the sensitivity in comparison to the previous experimentally
adjusted decentral PID controller was achieved (cf. Figure 6).

In a next step, the optimized controllers for the AMBs with IB = 2.4 A, IB = 2.6 A, IB = 3.0 A, and IB = 4.0 A are tested
during an acceleration of the rotor with the specimen from 0 to 30,000 rpm. The measured deflections of the rotor as
well as the currents of the radial AMBs are shown in Figure 14. The deflections of the specimen are shown in Figure A3,
which look almost identical in all four measurements. In comparison to the decentral PID controller (see Figure 7A),
the optimized controllers show a smaller influence of high-frequency disturbances, which can be seen in the current
plots. Furthermore, the deflections and currents while passing the first EF of the rotor with the optimized controllers are
considerably smaller than with the decentral PID controller, whereas they are higher while passing the third EF of the
rotor. Especially for IB = 2.4 A and IB = 4.0 A, the control currents get close to IB around the third EF. This might be due
to an underestimation of the unbalance of this EM in the model. The measurement with IB = 2.6 A shows the smallest
deflections and currents. The rotational speed at which the first and third EF are passed increases from 650 rpm with
IB = 2.4 A to 800 rpm with IB = 4.0 A and from 9000 rpm with IB = 2.4 A to 10,400 rpm with IB = 4.0 A, respectively. Fur-
thermore, with increasing IB also increases the excitation of the stator-EF at 17,000 rpm. However, all four controllers
can be used in the entire speed range and all have a smaller gain of the sensitivity function than the decentral PID
controller.

To evaluate the influence of IB on the rotor temperature, further measurements are performed where, after an initial
acceleration to 15,000 rpm, the rotor with the specimen was periodically accelerated until the rotor reached a temperature
of around 94◦C. Each acceleration cycle consists of an acceleration from 15,000 to 30,000 rpm in 10 s, a hold time t30k =
2 s at 30,000 rpm, a deceleration to 15,000 rpm in 10 s and a hold time t15k = 2 s at 15,000 rpm. Then the cycle repeats.
t30k and t15k are used to let the rotational speed settle. The rotor temperature is measured contactless with two infrared
sensors. The upper sensor measures the temperature between the thrust disk of the axial AMB and the upper radial AMB,
the lower sensor measures below the lower radial AMB at the same axial position as the lower radial position sensors

F I G U R E 13 Simulated and measured diagonal elements of the sensitivity function of the AMBs at 0 rpm with IB = 2.4 A and the
respective optimized controller. The measurements were performed using noise and sinusoidal excitation
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(A)

(C) (D)

(B)

F I G U R E 14 Measured rotor deflection and currents during an acceleration from 0 to 30,000 rpm in 300 s with (A) IB = 2.4 A, (B)
IB = 2.6 A, (C) IB = 3.0 A, and (D) IB = 4.0 A and the respective optimized controller

F I G U R E 15 Measured rotor temperature at the upper and lower measurement position during cycling with different bias currents

(see Figure 1). The measured rotor temperatures at these positions during cycling with different IB are shown in Figure 15.
The used sensors can only measure temperatures above 50◦C. At the start of each measurement, the test stand was at the
ambient temperature of about 20◦C.
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F I G U R E 16 Measured rotor temperature at the upper measurement position during cycling while varying the hold time t15k at
15,000 rpm with IB = 2.4 A.

Since the upper measurement position is between the axial and the upper radial AMB, whereas the lower measure-
ment position is below all major loss-inducing components, the temperature rise at the upper position is bigger than at
the lower position (cf. References 4,5). The rotor reaches 94◦C at the upper position after 387 cycles in less than 3 h with
IB = 3.5 A. Reaching the same temperature with IB = 2.4 A takes 806 cycles and more than twice as long. This illustrates
the strong impact of IB on the rotor temperature. Reducing IB also reduces the temperatures of the AMB stators, which
are shown in Figure A4. This helps to reduce the rotor temperature since the stator also emits thermal radiation to the
rotor, which increases with the stator temperature.

The rotor will reach a steady state temperature above 100◦C even with IB = 2.4 A. To safely prevent overheating of the
permanent magnets of the PMSM, the temperature should remain well below 100◦C. To further reduce the temperature,
the test cycles can be adjusted by increasing t15k, since the losses at 15,000 rpm are smaller than at 30,000 rpm.4 This
temperature reduction can be seen in Figure 16, in which the upper rotor temperature is shown during long-term cycling
with IB = 2.4 A. The shown measurement is a direct continuation of the one from Figure 15 with the same IB. After the
rotor reached 94.7◦C, t30k was reduced to 1 s and t15k increased to 21 s, which led to a decrease in the rotor temperature.
Then t15k was incrementally reduced until the rotor temperature started to rise again. t15k = 12 s led to a steady state
temperature of approximately 91.5◦C and t15k = 11 s to approximately 92.5◦C. Hence, if the steady state rotor temperature
below 92◦C is targeted, a full cycle takes 33 s, which includes the acceleration and deceleration time of 10 s each as well
as t15k = 12 s and t30k = 1 s. With IB = 2.6 A, t15k = 17 s is required to stay below 92◦C. Hence, by reducing IB from 2.6 to
2.4 A, the time for a full cycle is reduced from 38 to 33 s, which reduces the total time it takes to test 200,000 cycles (see
Section 1) by 11 days.

5 DISCUSSION

The goal of the described procedure was to reduce the rotor temperature of a magnetically levitated spindle for fatigue
tests during long-term operation. The focus was on reducing the bias current IB of the radial AMBs. To assure a stable
operation with different IB, the controller must also be adjusted. This was done using a parameter optimization of a
predefined controller structure. The presented optimization process considers the limitations and the speed-dependent
dynamics of the system as well as its sensitivity function. The optimized controllers show a smaller maximum gain of the
sensitivity function and are less susceptible to noise compared to a previously experimentally adjusted controller. For the
described system, the smallest IB for which a permissible controller was found is 2.4 A. Note that high IB (here IB > 4.4 A)
also obstruct a robust control of the AMBs. Measurements show that the increase in rotor temperature during cycling can
significantly be reduced by decreasing IB. This in turn allows to considerably shorten the time it takes to perform 200,000
test cycles by reducing the hold time at 15,000 rpm. The focus of this article was on an AMB system, but the described
controller design process can also be applied to other systems which are subject to strong parameter variations and for
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which a simple controller structure is desired (e.g., References 26,29). However, the controller design process has some
drawbacks and limitations:

• The optimization process can take significantly more time than a normal ∞-optimization (for the described system
2 days instead of a few minutes). This is partly due to the iterative process for the parameter optimization, but also
due to the high order and dimension of the combined system. However, it has to be considered that a ∞-controller
with comparable tolerance to parameter variations would be much more conservative. For the described system no
∞-controller with 𝛾 < 1 could be found that works in the entire speed range. A less conservative controller might
be achieved via 𝜇-synthesis (e.g., References 20,22), but the controller would again have a high order, the iterative
synthesis process might take a long time and in rare cases might not converge (cf. References 24,35).

• In the described approach the requirement 𝛾 ≈ Γ(Ω) is only checked at 300 discrete, equally distributed Ωi in Ωges.
Hence, peaks in 𝔃𝓌 or ii might be missed if they only affect a speed range which is smaller than 1000 rpm. For
the investigated system, the evaluation was repeated at 971 discrete, equally distributed Ωi in Ωges for the optimized
controllers with IB equal to 2.1, 2.4, 3.0, 4.3, 4.4 A as well as 6.5 A and no such peak could be found. However, this
might not be true for other systems.

• The optimization cannot distinguish between local and global minima, hence, there might be permissible controllers
for smaller IB than 2.4 A for the investigated system.

Only one fixed controller structure and equal IB for the upper and lower AMB were considered in this article. Differ-
ent controller structures or allowing dissimilar IB for the upper and lower AMB might enable further reductions of IB.
Further reductions might also be achievable by reducing the amplitudes of the disturbance inputs, for example, reducing
the influence of unbalance by utilizing an unbalance compensation method43 or reducing measurement errors by com-
pensating the sensor runout.44 The safety factors which were introduced for the control current and the voltage are partly
necessary to ensure that the system remains stable when the system parameters change due to high rotor and stator tem-
peratures. These safety factors might be reduced when further models for the high-temperature behavior of the AMBs
are considered in the optimization process. This can also be done for other changes or nonlinearities in the system (cf.
Reference 37).

ACKNOWLEDGMENTS
This research was funded by the German Federal Ministry for Economic Affairs and Energy, grant numbers 03ET6064A
and 03EI3000A. Open Access funding enabled and organized by Projekt DEAL.

CONFLICT OF INTEREST
The authors declare no potential conflict of interest.

DATA AVAILABILITY STATEMENT
Data available on request from the authors.

ORCID
Daniel Franz https://orcid.org/0000-0001-9534-847X

REFERENCES
1. Quurck L, Richter M, Schneider M, Franz D, Rinderknecht S. Design and practical realization of an innovative flywheel concept for

industrial applications. Tech Mech. 2017;37(2–5):151-160.
2. Schneider M, Rinderknecht S. System loss measurement of a novel outer rotor flywheel energy storage system. Proceedings of the IEEE

International Electric Machines & Drives Conference (IEMDC); 2019:1379-1385; IEEE.
3. Arnold SM, Saleeb AF, Al-Zoubi NR. Deformation and life analysis of composite flywheel disk systems. Compos Part B Eng.

2002;33(6):433-459.
4. Franz D, Schneider M, Richter M, Rinderknecht S. Thermal behavior of a magnetically levitated spindle for fatigue testing of fiber

reinforced plastic. Actuators. 2019;8(2):37.
5. Franz D. Magnetgelagerter Schleuderprüfstand zur Untersuchung der Betriebsfestigkeit von Faserverbund-Rotoren (magnetically levi-

tated test rig for the investigation of the fatigue strength of fiber composite rotors). TU Darmstadt, Dissertation; 2021.
6. Hagg AC, Sankey GO. The containment of disk burst fragments by cylindrical shells. J Eng Power. 1974;96(2):114-123.
7. Pichot M, Kramer J, Hayes RJ, Thompson RC, Beno JH. The flywheel battery containment problem. Proceedings of the SAE International

Congress & Exposition; 1997.

https://orcid.org/0000-0001-9534-847X
https://orcid.org/0000-0001-9534-847X


20 of 23 FRANZ et al.

8. Maslen EH, Schweitzer G. Magnetic Bearings: Theory, Design, and Application to Rotating Machinery. Springer; 2009.
9. Wilson B, Tsiotras P, Ferri-Heck B. Experimental validation of control designs for low-loss active magnetic bearings. Proceedings of AIAA

Guidance, Navigation and Control Conference and Exhibit; 2005:1-20.
10. Hung JY, Albritton NG, Xia F. Nonlinear control of a magnetic bearing system. Mechatronics. 2003;13(6):621-637.
11. Jastrzebski RP, Pöllänen R. Compensation of nonlinearities in active magnetic bearings with variable force bias for zero- and reduced-bias

operation. Mechatronics. 2009;19(5):629-638.
12. Charara A, de Miras J, Caron B. Nonlinear control of a magnetic levitation system without premagnetization. IEEE Trans Contr Syst

Technol. 1996;4(5):513-523.
13. de Queiroz MS, Dawson DM. Nonlinear control of active magnetic bearings: a backstepping approach. IEEE Trans Contr Syst Technol.

1996;4(5):545-552.
14. Johnson D, Brown GV, Inman DJ. Adaptive variable bias magnetic bearing control. Proceedings of the 1998 American Control Conference

(ACC); vol. 4, 1998:2217-2223.
15. Motee N de Queiroz MS. Control of active magnetic bearings with a smart bias. Proceedings of the 41st IEEE Conference on Decision and

Control; 2002:860-865; IEEE.
16. Sahinkaya MN, Hartavi AE. Variable bias current in magnetic bearings for energy optimization. IEEE Trans Magn. 2007;43(3):1052-1060.
17. Siva Srinivas R, Tiwari R, Kannababu C. Application of active magnetic bearings in flexible rotordynamic systems – a state-of-the-art

review. Mech Syst Signal Process. 2018;106:537-572.
18. Steyn SJM, van Vuuren PA, van Schoor G. Multivariable H∞ or centre of gravity PD control for an active magnetic bearing flywheel system.

SAIEE Afr Res J. 2011;102(3):76-88.
19. Hirata M, Ohno T, Nonam K. Robust control of a magnetic bearing system using constantly scaled H-inf contol. Proceedings of the 6th

International Symposium on Magnetic Bearings: ISMB6; 1998:713-722.
20. Lösch F. Identification and automated controller design for active magnetic bearing systems. ETH Zurich, Dissertation; 2002.
21. Sawicki JT, Maslen EH, Bischof KR. Modeling and performance evaluation of machining spindle with active magnetic bearings. J Mech

Sci Technol. 2007;21(6):847-850.
22. Lanzon A, Tsiotras P. A combined application of H_infinit loop shaping and mu-synthesis to control high-speed flywheels. IEEE Trans

Contr Syst Technol. 2005;13(5):766-777.
23. Mushi SE, Lin Z, Allaire PE. Design, construction, and modeling of a flexible rotor active magnetic bearing test rig. IEEE/ASME Trans

Mechatron. 2012;17(6):1170-1182.
24. Maslen EH, Sawicki JT. Mu-synthesis for magnetic bearings: why use such a complicated tool? Proceedings of the ASME 2007 International

Mechanical Engineering Congress and Exposition; 2007:1103-1112; ASME.
25. Nonami K, Ito T. μ synthesis of flexible rotor-magnetic bearing systems. IEEE Trans Contr Syst Technol. 1996;4(5):503-512.
26. Gahinet P, Apkarian P. Decentralized and fixed-structure H∞ control in MATLAB. Proceedings of the IEEE Conference on Decision and

Control and European Control Conference; 2011:8205-8210; IEEE.
27. Duan G-R, Howe D. Robust magnetic bearing control via eigenstructure assignment dynamical compensation. IEEE Trans Contr Syst

Technol. 2003;11(2):204-215.
28. Larsonneur R. Design and control of active magnetic bearing systems for high speed rotation. ETH Zurich, Dissertation; 1990.
29. Apkarian P, Gahinet P, Buhr C. Multi-model, multi-objective tuning of fixed-structure controllers. Proceedings of the European Control

Conference (ECC); 2014:856-861; IEEE.
30. Genta G. Dynamics of Rotating Systems. Springer; 2005.
31. Chiba A, Fukao T, Ichikawa O, Oshima M, Takemoto M, Dorrell DG, eds. Magnetic Bearings and Bearingless Drives. Elsevier; 2005:

45-84. doi:10.1016/B978-0-7506-5727-3.X5000-7
32. Müller G, Vogt K, Ponick B. Berechnung Elektrischer Maschinen (Calculation of Electric Machines). 6th ed. Wiley-VCH; 2011.
33. Binder A. Elektrische Maschinen und Antriebe (Electric machines and drives). Springer; 2012.
34. ISO 14839-3:2006 Mechanical vibration—Vibration of rotating machinery equipped with active magnetic bearings—Part 3: Evaluation of

stability margin; 2006.
35. Zhou K, Doyle JC. Essentials of Robust Control. Prentice Hall; 1998.
36. Sivrioglu S, Nonami K, Saigo M. Low power consumption nonlinear control with H∞ compensator for a zero-bias flywheel AMB system.

J Vib Control. 2004;10(8):1151-1166.
37. Apkarian P, Noll D. Optimization-based control design techniques and tools. In: Baillieul J, Samad T, eds. Encyclopedia of Systems and

Control. Springer; 2013:1-12.
38. Balas G, Chiang R, Packard A, Safonov M. Robust Control Toolbox 3: Getting Started Guide. The MathWorks, Inc.; 2011.
39. Apkarian P, Noll D. Nonsmooth H ∞ synthesis. IEEE Trans Automat Contr. 2006;51(1):71-86.
40. Barbaraci G, Pesch AH, Sawicki JT. Experimental investigations of minimum power consumption optimal control for variable speed AMB

rotor. Proceedings of the ASME International Mechanical Engineering Congress and Exposition; 2010:1047-1056; ASME.
41. Freudenberg J, Looze D. Right half plane poles and zeros and design tradeoffs in feedback systems. IEEE Trans Automat Contr.

1985;30(6):555-565.
42. Jr Wall JE, Doyle JC, Harvey CA. Tradeoffs in the design of multivarable feedback systems; 1981. doi:10.2172/7061962
43. Herzog R, Buhler P, Gahler C, Larsonneur R. Unbalance compensation using generalized notch filters in the multivariable feedback of

magnetic bearings. IEEE Trans Contr Syst Technol. 1996;4(5):580-586.

info:doi/10.1016/B978-0-7506-5727-3.X5000-7
info:doi/10.2172/7061962


FRANZ et al. 21 of 23

44. Setiawan JD, Mukherjee R, Maslen EH. Adaptive compensation of sensor runout for magnetic bearings with uncertain parameters: theory
and experiments. J Dyn Syst Meas Control. 2001;123(2):211-218.

How to cite this article: Franz D, Jungblut J, Rinderknecht S. Controller parameterization and bias current
reduction of active magnetic bearings for a flexible and gyroscopic spindle. Advanced Control for Applications:
Engineering and Industrial Systems. 2022;4(3):e113. doi: 10.1002/adc2.113

APPENDIX A

(A) (B)

F I G U R E A1 Outside view of the test rig: (A) model (rear view); (B) photo (front view)

F I G U R E A2 Simulated and measured diagonal elements of the sensitivity function of the AMBs at 0 rpm with IB = 4.3 A and the
respective optimized controller. The measurements were performed using noise and sinusoidal excitations
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(A)

(C) (D)

(B)

F I G U R E A3 Measured deflection of the specimen during an acceleration from 0 to 30,000 rpm in 300 s with (A) IB = 2.4 A, (B)
IB = 2.6 A, (C) IB = 3.0 A, and (D) IB = 4.0 A and the respective optimized controller

F I G U R E A4 Measured stator temperature during cycling with different bias currents. The temperatures were measured with
Pt100-sensores which are attached to the coils of the components

APPENDIX B

CHANGE OF THE OPTIMIZED CONTROLLER PARAMETERS WITH THE BIAS CURRENT
The parameterization of the optimized controllers varies considerably between some successive IB, but certain trends are
noticeable. The proportional and integral gain in the position controllers q,uu and q,ll (Figure 10A) increase with IB. The
proportional gain in q,ul is in a similar range to the previous two for low IB but decreases with IB. The proportional gain
in q,lu is smaller than the other three for small IB but increases with IB. Hence, the proportional gains in q,lu and q,ul
approach each other for increasing IB and are comparable for IB > 5 A. The differential feedback in q,ul is negative for all
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IB. This is the only negative parameter in the optimized controllers. The cut-off frequency 𝜔c of the LP in q,ul is around
its minimum value of 10 Hz for all IB. 𝜔c of the differential feedback LP in q,uu is also low (< 100 Hz) for small IB and
increases with IB. If this 𝜔c is reduced too much, the fourth forward mode (see Figure 3B) can be destabilized at high Ω.
For IB ≤ 2.6 A, the proportional gain in the current controllers I,uu and I,ll are in the same range and decrease with IB.
However, for IB > 2.6 A, the proportional gain in I,ll increases with IB, whereas it decreases further in I,uu. 𝜔c of the LP
in I,uu is between 600 and 900 Hz, whereas 𝜔c in I,ll is above 10 kHz for most IB and the LP was turned off.
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